
International Journal o[Parallel Programming, Vol. 21, No. 3, 1992

Exploiting
Fine-Grained
Based Upon

Rajiv Gupta 2 and Sunah Lee 2

Parallelism o.n a
MIMD Architecture

Channel Queues1

Received August 1991, Revised January 1993

We present techniques for exploiting fine-grained parallelism extracted from
sequential programs on a fine-grained MIMD system. The system exploits
fine-grained parallelism through parallel execution of instructions on multiple
processors as well as pipelined nature of individual processors. The processors
can communicate data values via globally shared registers as well as dedicated
channel queues. Compilation techniques are presented to utilize these mecha-
nisms. A scheduling algorithm has been developed to distribute operations
among the processors in a manner that reduces communication among the
processors. The compiler identifies data dependencies which require syn-
chronization and enforces them using channel queues. Delays that may result by
attempting write operations to a full channel queue are avoided by spilling
values from channels to local registers. If an interprocessor data dependency
does not require synchronization, then the data value is passed through a
shared register or shared memory.

KEY WORDS: Multiprocessor systems; parallelizing compilers; fine-grained
parallelism; top-down scheduling; redundant synchronization; channel queues.

1. INTRODUCTION

Implicit parallelism present in sequential programs is an important source
of fine-grained parallelism. This parallelism can be divided into two broad

1 Partially supported by National Science Foundation Presidential Young Investigator Award
CCR-9157371 (CCR-9249143) to the University of Pittsburgh.

2 Department of Computer Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260.

169

828/21/3-[0885-7458/92/0600-0169506,50/0 �9 1992 Plenum Publishing Corporation

170 Gupta and Lee

categories, namely loop level parallelism and extra-loop (or nonloop)
parallelism. Commercially available multiprocessor systems, such as Encore
and Alliant, can exploit loop level parallelism effectively. However, they are
ineffective in exploiting extra-loop parallelism present in the sequential
parts of a program. The Very Long Instruction Word (VLIW) architec-
tures are a family of architectures that can effectively exploit fine-grained
parallelism present in sequential parts of a program. (1'2) A VLIW machine
consists of multiple processors that operate in lockstep executing instruc-
tions fetched from a single stream of long instructions. The synchronization
of the processors is guaranteed by the hardware on a per instruction basis.
A value computed by a processor in one instruction is accessible to the
other processors in the next instruction. The data values are communicated
among the processors through shared registers. The long instruction word
allows initiation of several fine-grained operations in each instruction.
The compilers for VLIW machines can detect and schedule extra-loop
parallelism in sequential parts of the program and also exploit loop level
parallelism through loop unrolling, software pipelining and other loop
transformations.(3-7)

There are two main limitations of a VLIW machine. First it cannot be
used as a multiprocessor since it executes a single stream of instructions.
The second disadvantage arises due to events that are not predictable
at compile-time. For example bank access conflicts cannot always be
avoided since the operands required for an operation may not be known
at compile-time due to the presence of arrays and pointers. The lockstep
operation of multiple processors makes the machine intolerant to runtime
delays caused by unpredictable events. The delay in the completion of any
one of the operations in a long instruction, delays the completion of the
entire instruction.

In this paper we present a tightly coupled fine-grained MIMD
architecture whose processors can execute relatively independent streams of
instructions as well as tightly synchronized instruction streams. The system
contains a small number of processors, possibly on the same chip, which
allows exploitation of instruction level parallelism. Fine-grained parallelism
is exploited by executing multiple instructions in parallel on different
processors as well as overlapped execution of instructions on pipelined
processors. Globally shared registers and dedicated channel queues are
provided which allow the processors to exchange data at high speed are
provided. If no synchronization is required during the communication of a
data value from one processor to another, then a globally shared register
is used to communicate a data value, or else the channel queue from the
sending processor to the receiving processor is used to communicate the
data value. Unlike a VLIW machine, the MIMD system is tolerant of

Exploiting Parallelism on Fine-Grained M I M D Architecture 171

delays caused by unpredictable events since the processors are not required
to operate in lockstep.

The compilation techniques developed for VLIW machines, such as
trace scheduling, ~5) region scheduling, ~6~ software pipelining, ~v~ and optimal
loop parallelization C4) can also be used to generate code for the fine-grained
architecture. However, the above techniques must be adapted to take
advantage of the data communication mechanisms supported by this
system. During the distribution of instructions among the processors an
attempt should be made to minimize the synchronization of processors.
This is because frequent processor synchronization can potentially result in
runtime delays as well as reduce the effectiveness of a processor's pipeline.
A scheduling algorithm, namely top-down scheduling, that achieves the
above goal is proposed in this paper. In addition, we present compilation
techniques that are required to take advantage of channel queues to enforce
data dependencies within loop iterations as well as data dependencies
across loop iterations.

In the next section, a brief description of the fine-grained MIMD
architecture is presented. In subsequent sections the compilation techniques
for the architecture are discussed in detail. A scheduling algorithm which
attempts to reduce interprocessor communication is presented. Techniques
are presented for distinguishing between situations in which shared
registers can be used for communicating data values among processors and
situations in which channel queues must be used for the communication
of data values. We also present techniques by which anticipated delays
during read/write operations on channels are avoided. Results of some
experiments that demonstrate the effectiveness of the scheduling algorithm
and the feasibility of a channel based architecture are presented.

2. T H E A R C H I T E C T U R E

In this section we discuss the primary features of the fine-grained
MIMD architecture. The system is composed of four pipelined RISC
processors augmented with multiprocessor support. The processors have a
load/store architecture which is preserved by the multiprocessor features
provided in the architecture. An operand involved in the execution of an
instruction is read from, or written to, the executing processor's private
register, a register globally shared among all of the processors, or a channel
queue between the executing processor and any other processor in the
system. The operand specification in an instruction includes a couple of bits
to distinguish between the three types of operand sources/destinations. The
remainder of the bits specify a particular private register, shared register or
a channel queue. We envision that the four processor system will be

172 Gupta and Lee

implemented on a single chip which enables the implementation of high
speed synchronization and data communication mechanisms.

From each processor to every other processor a channel queue is
provided (see Fig. 1). A receiving processor can read a channel queue only
after the sending processor has written a value to the channel. A hardware
counter associated with each queue indicates whether the queue is empty
or not. The hardware stalls a processor attempting to read an empty queue
or write to a full channel. The channels are organized as queues because,
as we will demonstrate later in the paper, through appropriate compilation
techniques we can ensure that the order in which the values are read by a
receiving processor is the same as the order in which they are written to the
channel by the sending processor.

The processors can communicate with each other th rough the shared
registers and channel queues. When a value is communicated through a
shared register, the synchronization of processors is not guaranteed by the
hardware. Therefore, it is possible for a processor to incorrectly read a
value from a shared register before the value has been written to the
register. On the other hand the hardware guarantees synchronization if a
data value is communicated through a channel queue. The compiler,
through its analysis of the parallel instruction schedules, distinguishes the
situations in which channel queues must be used from the situations in
which shared registers should be used. Since the synchronization of pro-
cessors during the communication of values among processors is ensured
by channel queues, unlike VLIW systems, the processors are no longer

gisters

~ueues

Fig. 1. The fine-grained M[MD architecture.

Exploiting Parallelism on Fine-Grained MIMD Architecture 173

required to operate in strict lockstep fashion. Thus, the MIMD system is
tolerant of delays that otherwise would be introduced by unpredictable
events. In addition to channels it is useful to provide barrier synchroniza-
tion and an efficient collective branching mechanism in such a system. The
design and use of these mechanisms was discussed in earlier work. ~8~

3. C O M P I L E R S U P P O R T FOR U T I L I Z I N G C H A N N E L Q U E U E S

Both extra-loop parallelism and loop level parallelism can be detected
and exploited by the compiler. By constructing a directed acyclic graph
(DAG) representing the data dependencies among the statements in a
single basic block, or a sequence of basic blocks, extra-loop parallelism can
be detected. Fine-grained parallelism present across loop iterations can be
exposed by loop unrolling. Although loop unrolling is effective in exposing
loop level parallelism, it causes a significant code growth. A technique
developed by Aiken and Nicolau 14) transforms parallelism present across
loop iterations to extra-loop parallelism with little code growth. Thus, after
applying Aiken and Nicolau's transformation fine-grained parallelism can
be detected by constructing a DAG for the loop body. The construction of
a DAG requires data dependency information. There are three types of
data dependencies flow, anti, and output. The flow dependencies represent
true data dependencies and the other two types can be eliminated through
renaming techniques. Furthermore we assume that control dependencies
due to if-statements inside the loop body have been converted to data
dependencies. 19) After the detection of fine-grained parallelism the compiler
must perform the following steps to generate code for the fine-grained
MIMD architecture.

�9 A parallel execution schedule is generated. By scheduling paral-
lelism such that there are fewer interprocessor data dependencies,
the top-down scheduling algorithm improves the performance of
processor pipeline.

�9 The interprocessor data dependencies, including dependencies
across loop iterations, are resolved through shared registers,
channel queues, and shared memory.

�9 The size of each channel queue is fixed. Thus, delays can be caused
if an attempt is made to write to a channel that is full. Techniques
are required to anticipate and avoid such delays. By spilling a data
value from a channel queue into a private register, the time that
a data value spends in a channel is reduced and the delay
associated with a write to a full channel is avoided.

174 Gupta and Lee

3.1. Top-Down Instruction Scheduling

The need for the use of channels is dependent upon the parallel
schedule. Thus, before the assignment of channels can be carried out a
parallel schedule must be generated. The scheduling algorithm examines
the DAG representing the data dependencies to generate an instruction
schedule. A parent node in a DAG is data dependent upon its child nodes
and a directed edge from a child node to a parent node indicates the direc-
tion in which data flows. A simple approach for generating schedules is list
scheduling in which the operations ready to be scheduled are determined
and one by one scheduled upon the processors. If the number of processors
is greater than or equal to the number of ready operations then all of the
ready operations are scheduled. On the other hand if the number of opera-
tions ready to be scheduled is higher, the operations that lie along the
longer unscheduled paths are scheduled first. The list scheduling algorithm
does not make any attempt to reduce interprocessor communication. Next
we discuss modifications to list scheduling to overcome this drawback.

�9 The list scheduler may assign different processors to a parent node
and each of its children. In this case interprocessor communication
is required to enforce data dependencies due to each of the
children. Without sacrificing any parallelism, the parent node can
be assigned to one of the processors assigned to its children.
The result is a reduction in the number of instances in which inter-
processor communication takes place by one.

�9 Consider a DAG containing more parallelism than the processors
in the system can exploit. In this situation the scheduling algo-
rithm must selectively exploit parallelism in a manner that reduces
interprocessor communication, The list scheduler is modified so
that it identifies subDAGs that can be executed in parallel. These
subDAGs are assigned to different processors. By choosing not
to exploit the parallelism within a subDAG interprocessor com-
munication is avoided. At the same time by exploiting the
parallelism across the subDAGs all processors are kept busy.
Since most operations require more than one operand it is often
more likely that parallel subDAGs, each of which has a single root
node, can be found at the top of the DAG. Thus, the scheduling
is carried out in top-down fashion instead of the bottom-up
fashion. As a result, the last instruction in the schedule is selected
first and the first instruction to be executed is selected last.

�9 An advantage of list scheduling is that it tries to distribute the
operations equally among the processors, which results in fast

Exploiting Parallelism on Fine-Grained M I M D Architecture 175

schedules. It is therefore essential to maintain this characteristic
during top-down scheduling. This goal is achieved by ensuring
that the subDAGs that are simultaneously scheduled on the
processors contain the same number of operations.

The identification of subDAGs for parallel execution is carried out as
follows. Initially each subDAG contains simply their respective root nodes.
The subDAGs are gradually expanded by including one node at a time to
each of the subDAGs. If corresponding to each subDAG, a distinct node
that is ready to be scheduled can be identified, then these nodes are added
to the respective subDAGs. This step is carried out repeatedly as long as
all subDAGs continue to grow. On the other hand if the search fails for
any one of the subDAGs, none of the nodes identified in the current step
are added to the subDAGs. This process ensures that the sizes of the
subDAGs identified are equal. The nodes are examined in a breadth-first
top-down fashion during this process.

The modifications to list scheduling give us a new scheduling algo-
rithm that we refer to as the top-down scheduling algorithm. Top-down

TopDownScheduling {
-- parent and child refer to nodes connected by a non-loop carried dependency

Compute V ni f
/ 1 if ni has no child

height(ni) = I 1 + n,,c~xof ,~ (height(nj)) otherwise

Loop { ~"
Construct S = n l, n2 n,.

st V n i~ S the parents of ni have been scheduled A height(hi) _> height(hi+l)

Le tp be the number of processors available
For i=l to minimum(p,[S ~ Do

I f processor p~ is available and a parent of node nl is scheduled on Pi
Then schedule ni on processor pi
Else schedule nl on any available processor
Endif

Endfor

If IS I_>p Then
-- nodes n i, n2 np have already been scheduled on thep processors
On each processor Pi, schedule a set of operations Si such that

Si is a subset of operations belonging to the subtree rooted at ni and

Endif
} Until all operations have been scheduled

Fig. 2. Top-down scheduling algorithm.

176 Gupta and Lee

scheduling reduces interprocessor communication due to data dependencies
with iteration distance zero. However, there is additional interprocessor
communication that may result from loop carried dependencies. The
top-down scheduling algorithm is described in Fig. 2.

Runtime Complexity: Let E and V represent the sets of edges and
nodes in the DAG. Computing the heights of all nodes takes O(IEI) time.
Updating the status of the nodes to ready also takes O(IEI) time. Main-
taining the list of ready nodes sorted according to their heights takes
O(I VI log IVI) time. Before choosing a processor on which to schedule a
node the algorithm must check if any of the processors on which its parents
are scheduled are free or not. This will take at most O(IE]) time. Thus,
the overall runtime complexity of the top-down scheduling algorithm is
o(I Vl 2).

An example which illustrates the effect of these modifications upon
interprocessor communication is shown in Fig. 3. Both list scheduling
resulted in equally fast schedules. However, the top-down schedule requires
significantly less interprocessor communication. In Fig. 3, the shaded
regions represent expected execution time delays for the depicted schedules.
Since the code being generated is for a MIMD machine, no delay
instructions are actually introduced in the code.

c I
,)

(i) An Example DAG.

i 2 ~ 1~81210 ~ 1~' ~'~" ~ 7 2 1 2 ~ 1~[0 24 232922 ~'"11 ~ 1~ 2''30 ~ 5

14 | 15 t'f ~ 2~ 26 I"" ~"
l~i | 17 25 14 29 30 27 16

(ii) List Scheduling.
Fig. 3. A scheduling example.

2~

(iii) Top-Down Scheduling.

Exploiting Parallelism on Fine-Grained MIMD Architecture 177

3.2. Se lect ing the M o d e of In terprocessor C o m m u n i c a t i o n

After a schedule has been generated the compiler must identify all
situations requiring interprocessor communication and then generate code
to establish communication through channel queues, shared registers, or
shared memory. In this section we present compile-time techniques that
enable us to make an appropriate choice for each dependency. Depending
upon the nature of dependency between pair of statements the following
actions are performed at runtime.

Synchronization Only: The enforcement of output dependencies, anti
dependencies, and indefinite dependencies (a dependence which is assumed
to exist since the compiler cannot guarantee its absence) only requires
synchronization of processors. In such a situation the channel is used to
synchronize the processors. However, the value written to and read from
the channel is of no interest.

Communication Only: The enforcement of a flow dependence requires
the communication of a value from one processor to another. If the pro-
cessor receiving the value is guaranteed to read the value after the value
has been computed, then a shared register or shared memory is used to
communicate the value. Note that a value communicated through a shared
register or shared memory cannot be overwritten before it is read. This is
because there will be an anti dependence between the statement that reads
the value and the statement which performs the subseuent write. As dis-
cussed earlier, this dependence will be enforced through a synchronization
edge using a channel to guarantee correct execution. Since there are limited
number of shared registers available, a global register allocation is required
to assign some communication only values to shared registers while others
to Shared memory. A global register allocation applicable to scalars and
array references has been developed by Duesterwald et al. ~1~

Communication and Synchronization: The enforcement of flow
dependence which not only requires the communication of a value from
one processor to another, but also requires explicit synchronization to
force the receiving processor to perform the read after the write operation
has been performed, is achieved using the channel queue from the sending
processor to the receiving processor. A flow dependence across iterations
can only be enforced through channel queues if the iteration distance is a
compile-time constant. However, if this is not the case we must assume the
minimum possible value for the iteration distance and treat the dependence
as a synchronization only dependence.

The type of each dependence is known to the compiler. However,
additional analysis is required to determine whether or not the enforcement

178 Gupta and Lee

of a flow dependence requires synchronization. Next we derive results
that enable us to ascertain the need for synchronization. These results
essentially identify conditions under which one synchronization subsumes
another synchronization, i.e., makes the latter unnecessary. In the subse-
quent discussion, given an interprocessor data dependence edge e, t~r~(e)
denotes the static estimate of time elapsed since the beginning of the loop's
execution to the end of the execution of the source instruction corre-
sponding to the dependence edge e. The time tde~t(e) denotes the static
estimate of time elapsed till the beginning of the destination instruction
corresponding to e.

Lernma 1. Given two flow dependence edges e I and e 2 from
processor Pl to processor P2 with the same iteration distances. The
synchronization for the flow dependence el subsumes the dependence e2 if
and only if t src(e l) > t src(e 2) and t des,(e l) < t des,(e 2).

Proo[: There are only two possibilities to consider here. Either the
two dependence edges e~ and e2 intersect or they do not intersect.

Case I: t s rc (e l)>tsrc (e2) A taes t (e l)<tae , t (e2)

If the edges intersect as shown in Fig. 4, then it is clear that enforcing
the dependence e~ guarantees that e2 is also enforced. Therefore, e2 is
subsumed by el.

Case I1: t~r~(e~)<t~rr /x tae~,(ej)<~tae~,(e2)

If the two edges do not intersect then synchronization is clearly required
to enforce the two dependencies (see Fig. 5). Consequently the result stated
previously follows. []

In the subsequent results we will consider across iteration dependencies.
In order to derive results regarding across iteration synchronizations we

(i) e. P2

t~(e2) ~ d d q=(el)

q=t(e0

qm(~)

(ii) P1 P2

t=(e2)

t~(el)

tdest(el)

q,=(~)

Fig. 4. Intersecting dependence edges with same iteration distance (d).

Exploiting Parallelism on Fine-Grained M I M D Architecture 179

t~rr

P1 P

:d=~(el)

td~(e9

Fig. 5. Nonintersecting dependence
edges with same iteration distance (d).

must examine successive loop iterations. The number of loop iterations that
must be examined is one more than the difference between the iteration
distances of the pair of dependencies being considered.

Lemma 2. Given a flow dependence edge el with iteration distance
d and another flow dependence edge e2 with iteration distance d + 1 from
processor pl to processor P2. The synchronization for flow dependence el
subsumes the synchronization requirement for the dependence e2 unless the
condition (tsrc(el) < tsrc(e2) A tdest(el) > tdest(e2)) is true.

Proof'. In order to derive this result we consider the following cases
which cover all possible relationships between dependence edges e~ and e2.

e a s e I: tsrc(el)<tsrc(e2) ^ tdest(el)<tdest(e2)

This situation is shown in Fig, 60). Instead of looking at a single loop
iteration let us examine two successive loop iterations as shown in
Fig. 6(ii). The dependency e2 has an iteration distance of d + 1. Thus, if we
examine two successive loop iterations we can represent e 2 as a dependency
between the loop iterations with iteration distance d. Now from Lemma 1
it follows that e2 is subsumed by el.

Case I1: tsr~(el)>t,r~(e2) A tdes~(el)>~tde, t(e2)

This situation is similar to the previous case. If we examine two loop
iterations and transform e2 into a dependency of distance d it is clear that
e2 is subsumed by et.

C a s e I Ih ts,c(el)>t~.,~(e2) A t&, l (e l)~ta~s , (e2)

In this case as in the two previous cases by applying Lemma 1 it is
clear that e2 is subsumed by e~.

Case IV: t~rc(el) < ts~c(e2) ^ taes,(el) > tae~t(e2)

180 Gupta and Lee

PI P
(i) l

PI P2
(ii)

P1 P
(iii)

--..<
d+l "--...

Fig. 6. Nonintersecting dependence edges of iteration distance d+ 1 and d.

Finally we consider the last possibility. As we can see from Fig. 7 the
dependency represented by ez is not subsumed by el. Thus, the condition
that embodies this case is the condition under which e2 is not subsumed
by el. Therefore, the result stated in Lemma 2 follows. []

L o m m a 3. Given a flow dependency from processor Pl to P2
with iteration distance d. The synchronization that enforces the given
dependency also enforces (i.e., subsumes) any synchronization from Pl to
P2 with iteration distance greater than d + 1.

PI P2 P1 P2 PI P
(i) (ii)

Fig. 7. Intersecting dependence edges of iteration distance d+ 1 and d.

Exploiting Parallelism on Fine-Grained M I M D Archi tecture 181

Proof: In order to prove this result we consider two dependencies el
and e2 of iteration distance d and d + 2. There are four possible rela-
tionships between the two dependencies as mentioned in Lemma 2. In the
first three cases the dependency e2 is subsumed by the dependency el. This
can be easily shown by first viewing e2 as a dependency of iteration dis-
tance d + 1 by considering an additional loop iteration and then applying
the analysis of the first three cases in Lemma 2. The fourth situation is
shown in Fig. 80). In this case we view e2 as a dependency with iteration
distance d by considering two additional loop iterations as shown in
Fig. 8(ii). Next by applying Lemma 1 we conclude that e2 is subsumed by
el. Thus, we have shown that e2 is subsumed by e~ if the iteration distance
of e2 is d + 2. It is obvious that this result will hold even if e2 has an
iteration distance which is greater than d + 2. []

T h e o r e m 1 . Subsumption Theorem: A synchronization introduced
for enforcing a flow dependency ei with iteration distance d from processor
Pl to P2 subsumes the synchronization required for enforcing a flow
dependency ej of iteration distance d', also from Pl to p~, if and only if one
of the following conditions is true:

(i) d' = d A tsrc(ei) > tsrc(ej) A tdest(ei) < tdest(ej).

(ii) d ' = d + 1 A not(tsrc(ei)<t~rc(ej) A tae,,(ei)>tdes,(ej)).

(iii) d ' > d + 1.

Proof: This theorem follows directly from Lemmas 1-3. []

(1) ~ 2 ~ (ii).PllP2

Fig. 8. Dependence edges of iteration distance d and d+ 2.

182 Gupta and ~ee

So far we have only considered dependencies between pairs of pro-
cessors. Introduction of synchronizations between pairs of processors
creates additional synchronizations between other pairs of processors. Such
a synchronization is called an implied synchronization since it is not
explicit!y introduced in the code. For example, introduction of syn-
chronization from p~ to P2 and P2 to P3 implies a synchronization between
Pt and P3. The computation of implied synchronizations is necessary to
determine all interprocessor data dependence edges which do not require
explicit synchronization. The following result specifies the computation of
implied synchronizations.

T h eorem 2. Given a sequence of flow dependence edges e~, e2,..., e,
with iteration distances of d~, d2 d,, respectively. An edge e; represents a
flow dependency from processor p~_ a to processor p~ and tae~t(e~) <~ t~r~(e~+ ~).
The introduction of synchronization instructions to enforce the sequence
of dependencies ez, e2 e, creates an implied synchronization e between
processors Po and p,. This synchronization has an iteration distance of
dl + d2-" + d~ and ts~(e)= ts~(el) and t&st(e)= tdest(e~).

Proof'. The result can be inferred from Fig. 9 as follows.

P t cannot proceed beyond td~,,(e~) until dL iterations earlier Po has gone
beyond t~.(el)

A P2 cannot proceed beyond td~,,(e2) until d2 iterations earlier p~ has gone
beyond t~(e2) and tde~,(e~) < tsar(e2)

1% Pl P2 103 Pn-1 Pn

d2

d4

. 111-1

dl+d;
N o .

. ~ ~ . . _ . . . _ . . . J . . . ~ ,

Fig. 9. Implied synchronizations.

Exploiting Parallelism on Fine-Grained M I M D Architecture 183

^ p, cannot proceed beyond t~ , (en) until d, iterations earlier p, 1 has
gone beyond t~rc(e,) and tde~t(e . _ 1)< t~rc(e,)

p, cannot proceed beyond tdr untit dl + d2 . . - + dn iterations earlier
Po has gone beyond t~(e~)

In other words there is an implied synchronization edge e from Po to p,
with iteration distance of d ~ + d 2 . . . + d n and t ,~ (e)=t ,~(e~) and
t &st(e) = t d~st(en). []

Based upon these results we develop an algorithm for distinguishing
situations in which shared registers should be used from situations in which
channels must be used for communicating values between processors.
There are three major steps in this algorithm. In the first step we construct
a graph representing the parallel schedule and interprocessor data depen-
dencies. The dependencies also include loop carried dependencies if the
code segment represents a loop body. Associated with each dependency is
the iteration distance which is zero for nonloop carried dependencies and
nonzero for loop-carried dependencies. Next we compute all implied
synchronizations using Theorem 2. In the final step we classify each real
dependence edge as either requiring a shared register or a channel using
Theorem 1. The algorithm guarantees that the order in which a receiving
processor reads data values from a channel queue is exactly the same as the
order in which the data values are written to the channel queue by the
sending processor. Thus, the implementation of channels as queues is an
appropriate choice.

Step 1. Construction of a Graph Representing the Correct Execu-
tion Order: We construct a directed graph G = (V, E), from the parallel
schedule and data dependency information, representing the constraints on
the execution order of the statements as described in Fig, 10.

S tep 2. Computation of Implied Synchronizations: In this step we
compute the set of implied synchronizations between pairs of processors,
see Fig. 11. The computation requires a single bottom up traversal of the
graph constructed in step 1. In the algorithm I denotes the set of implied
synchronization edges.

S tep 3. Identify the Mode of Communication for Interprocessor
Data Dependencies: The set of flow dependence edges E is partitioned into
the set of edges E ~'m that will make use of shared registers or shared
memory and, the set of edges U h will make use of channel queues. For
each edge in E "rm it is guaranteed that the value will not be read till it has
been computed. An edge in E srm may represent the transmission of a value

184 Gupta and Lee

p (s) - the processor on which the statement s has been scheduled for execution.
ts~, (s ,p (s)) - the expected t ime elapsed from the beginning o f a loop iteration

to the beginning of s ' s execution on processor p (s) .
t , ,a(s ,p (s)) - the expected t ime elapsed l iom the beginning o f a loop iteration

to the end of the execution o f s tatement s on processor p (s) .

V = set of statements in the computation; and
E = set of edges in the graph which are determined as follows.

An edge is introduced from statement si to statement sj if."
(i) p (si)=p (sj) and s i is executed immediately after s i ; or
(ii) p (s i)~p (s j) and there is a data dependency from sl to sj .

An edge from statement si to statement sj is denoted as [t,~a (si ,p (si)), t,,~, (sj ,p (s j)) , d],
where d is the iteration distance of the dependency known at compile-time.

Fig. 10. Construction of execution order graph.

of a scalar variable or an array element. An existing global register alloca-
tion algorithm (t~ that can handle scalars and array references can be
employed for selecting the values that will be transmitted through shared
registers. The remainder of the values are transmitted through shared
memory. (See Fig. 12.)

MAXd - maximum iteration distance of a data dependency

Compute_Implied_Synchronizations {
I=r
mark all nodes in G as unvisited p(n) p(c)=p(c') p(n')
For each processorp Do J_ ~ [[

find the earliest unvisited node n in processor p ' s schedule and
If one is found Then Traverse(n)

Endfnr
}

Traverse(n) {
mark n as visited
For each child e ofn Do

If c is unvisited Then Traverse(c) Endif
Ifp (c)r (n) Then

Generate implied synchronizations involving edge e = [t,~ (n ~o (n)),t~t~,~ (c ,p (c)),d] as follows:
For each edge e' = lt,,,a (c" ,p (c)),tsz,,, (n" 09 (n')),d'l e E k.J st p (n')~p (n) and c" is after c Do

If d+d" <_MAXd Then -- compute implied synchronization using theorem 2
1 =I k.) { [t,,,d(n,p(n)),t,~,a(n',p(n')), d+ae] }
-- implied synchronization with iteration distance > MAXd cannot
subsume a synchronization required for a true data dependency.

Endif
Endfor

Endlf
Endfor

Fig. 11. An algorithm for computing implied synchronization.

Exploiting Parallelism on Fine-Grained M I M D Architecture 185

For each ordered processor pair (Pi ,Pj) Do
d = 0;
E srm = E ch =(0
While d _< MAXd Loop

For each edge e =[l,~(si ,Pi), laart(Sj ,pj), d] e E k..)l Do
Identify edges from Pi to pj that are subsumed by e as follows:
For each edge e' = [t ~ (s'i ~oi)), ts~n (s'j,p)), d"] e E such that a v >d Do

If -- conditions from theorem 1
((d'--d) Ik (te~ (si ,Pl)>t,~ (s'i ,Pi)) A (t,~ (s) ,p:) < t,,a~ (S'j p))))
k/ ((d '=d+l) A not (tend(Si ,pi)<tend(S'i ,Pl) A ts~an (Si ,pj)> taan (S'j ,pj)))
k/ (ae > d + l)

T h e n E s'" = E " " k..) {e'}; E = E - {e'}
ElseECh =Ech k.) {e'}; E = E - {e'}

Endif
Endfar

Endfor
d = d + l

Endwhile
Endfor

Fig. 12. An a lgor i thm for ident ifying the m o d e of in terprocessor communica t ion .

3,3. Handling Conditional Statements

So far we assumed that the loop being scheduled contains no condi-
tional statements. We now briefly demonstrate the feasibility of using chan-
nel queues in the presence of conditional statements. Consider the situation
in which a value computed by one processor may be needed by another
processor in a subsequent iteration. The value can be passed through a
channel queue as before. However, if the value is not required by the
receiving processor, the processor still must read the value from the chan-
nel queue and then discard it. This is essential because a value written to
a channel queue cannot be overwritten and they must be read if they are
to be removed from the channel. Thus, conditional read operations on
channel queues must be transformed in unconditional read operations.
Similarly it can be shown that conditional write operations to channels
must also be transformed to unconditional write operations. Consider
the loop shown in Fig. 13. There is a conditional interprocessor data
dependence between statements $2 and $3. As shown in Fig. 13 this
dependence can be handled using the channel queue C12 if the write and
read operations to C12 are performed unconditionally.

Dol= 1, N DoI= 1,N
SI: - P1 P2 SI: -
$2: If(..) Then A[I] = - Endif] $2: If(..) Then A[I] = - Endif; C12 = A[I]
S3:If(..)Then-=A[I]Endif $2 SI $3: t=C12; If(..)Then -= t Endif

$4:- I $4 S 3 S4:-
EndDo EndDo

Fig. 13. An example with cond i t iona l s ta tements .

828/21/3-2

186 Gupta and Lee

3.4. Reducing Delays Due to Bounded Channel Queues

The size of each channel queue is bounded. As a result delays may be
caused when write operations are attempted on a full channel queue. Next,
we present techniques for generating code so that delays that can be
anticipated at compile-time are reduced. Consider the communication of
values vl and v2 from processor Pi to processor Pj as shown in Fig. 14(i).
If we assume that the channel C U can hold a single data value, then a delay
can be expected during the execution of code assigned to processor Pt- This
delay can be avoided either by modifying the code so that processor Pj
reads the value vl from the channel C~j early and saves it in a private
register R (see Fig. 14(ii)) or by delaying the write performed by processor
Pi to channel C,7 by computing the value v2 into a private register R (see
Fig. 14(iii)). The delay can also be avoided by the combination of the two
approaches.

Next we present an algorithm which modifies the code so that the
delays can be avoided. For each interprocessor dependence edge we deter-
mine the amount of time by which the write should be delayed or by how
much earlier the read should be performed. In order to ensure that the
effects due to all interprocessor dependencies have been considered we must
examine d successive iterations of the loop, where d is the maximum itera-
tion distance of any interprocessor dependency. The algorithm in Fig. 15
repeatedly detects sequence of edges, from first to last, that are expected to
experience delays. Then it removes the delays either by delaying the writes
using function DelayWrites or by performing early reads using function
EarlyReads. The availability of private registers on communicating pro-
cessors is used to determine the approach to be applied to a sequence of
edges. The delay in a channel write, or the amount by which the read is
moved earlier, can be greater than a length of an iteration since d iterations
are examined by this algorithm. When the shift in the channel read/write
operation is more than a single iteration, then the value will be held in a
private register for more than one iteration. (~~ Furthermore, we also

(i) Pi

v I ->Cij

Cij->vl

Cij->v 2

(ii) Pi Pj

vr>Cij

v2->Cij ~ Cij->R

- - - R->V 1

~1 Cij->v 2

(iii) Pi

vr>Cij

v2.>R - _ ..

R->Cij Cij->vl

Cij->v 2

Fig. 14. Avoiding channel read/write delays.

Exploiting Parallelism on Fine-Grained M I M D Architecture 187

Let E(p,q)= {e 1, e 2 e m,~] denote the set of flow dependence edges from
processor p to q that use channel queue Cvq and the edges are ordered according the
order in which the writes to C m are performed.

t~c (ei) - expected time elapsed from the start of the first loop iteration to the
time at which the write to channel is performed.

ta.~t (ei) - expected time elapsed from the start of the first loop iteration to the
time at which the read on the channel is performed,

current = 2;
first = last = 0;
While current < max Loop

If ta.~t (ec~.,,a-l) > ts,c (ecJ,.,~.,a) Then
If first = 0 Then first = last = current Else last = current Endif

Endif
If (first ~ O) and (last ~ current or current = max) Then

If local registers available at p > local registers available at q
Then DelayWrites(first,last) Else EarlyReads(last,first) Endif
first = last = 0

Endif
current = current + 1

Endwhile

DelayWrites(first, last) {
For i = first To <_ last Do

Shift_write(ei) = ta,at (ei-l) - t,,c (ei)
Endfor

EarlyReads(last, firsO{
For i = last Down To < first Do

Shift_read(el_l) = ta~, (el-l) - t ,~ (el)
Endfor

}

After DelayWrites
.Pi - .Pj

first

last

.Pi �9 .Pj

first ~ 1

last I ~

After Em'l
Pi

first I
last

Fig. 15. An algorithm for reducing channel read/write delays.

Reads

know that an additional value will be spilled from the channel queue to a
private register during each loop iteration. The number of private registers
to hold the spilled values is equal to the dependence distance. If enough
private registers are not available, the values must be spilled in memory. In
Fig. 15, we assume that each channel queue can contain at most one data
value. Thus, each edge is examined for potential delay. However, if the
channel queue length is greater than one, then we need to examine every
/th edge, where l is the length of a channel queue.

4. EXPERIMENTAL RESULTS

The techniques described in this paper were applied to code segments
taken from scientific programs. We applied this approach to a sample of
data dependency graphs to study the effectiveness of top-down scheduling
and to determine the feasibility of providing channel queues. Some of the
DAGs used in this study hadbeen constructed by Rodeheffer. (12) Straight-

188 Gupta and Lee

line code segments were constructed by converting control dependencies
into data dependencies. (9'13~ The test programs include the following:

EIGEN - The Generalized Eigenvalue Problem.
LINEAR - Solving Linear Equations Using Residue Arithmetic.
CURVEFIT - Discrete Chebychev Curve Fit.
TAYLOR - Evaluation of Normalized Taylor Coefficients.
FOURIER - Calculation of Fourier Integrals.
LIVERMORE LOOPS - Loops 2, 7, 9, 10, 21, and 23.

The results of the experiments conducted demonstrate the effectiveness
of top-down scheduling. The results in Table I provide a comparison
between list scheduling and top-down scheduling. In many cases the
top-down scheduling approach results in almost half the number of inter-
processor dependencies (#DEPS) as compared to the schedules generated
using list scheduling. The length of schedules (LENGTH) generated by the
two scheduling algorithms is almost the same in most cases. Thus, the
results strongly indicate that top-down scheduling is as effective as list
scheduling in exploiting parallelism and in addition it significantly reduces
interprocessor communication. Assuming that each operation takes unit
time, the fastest possible schedule for a DAG on a p processor system is
equal to max(VN~/pT, NL), where N~ is the number of nodes in the DAG
and NL is the longest chain of dependencies in the DAG. The lengths of
schedules are quite close to the fastest possible schedule (IDEAL) for
most of the programs indicating that both list scheduling and top-down

Table I. Parallel Schedules on a Four Processor System

LIST SCHED T O P - D O W N - S C H E D

IDEAL=max(FNB/p~, NL) L E N G T H # D E P S L E N G T H # D E P S

EIGEN max(F ~] , 7) = 7 7 4 7 2

LINEAR max(F~q, 6) = 6 6 9 6 4

CURVEFIT max(F~q, 7) = 7 12 6 7 4

TAYLOR max(F~7, 11)= 11 11 19 11 7

FOURIER max(F~7, 7) = 8 8 17 8 5

Loop 2 rnax(F~-], 5) = 5 5 8 5 5

Loop 7 max(F~7, 9) = 9 10 13 11 7

Loop 9 m a x (F ~ , 6) = 6 6 9 6 7

Loop 10 m a x ([~ q , 7) = 7 11 11 11 8

Loop 21 max(F~Z'], 6) = 6 6 5 " 6 3

Loop 23 max(F~q, 9) = 10 11 22 11 12

Exploiting Parallelism on Fine-Grained MIMD Architecture 189

scheduling algorithms exploit parallelism quite effectively. The schedules
were also examined to determine the queue length that would guarantee no
delays upon writes to channel queues. It was found that a queue length of
less than four was sufficient for this purpose. This illustrates that the top-
down scheduling algorithm was effective in avoiding loop carried as well as
nonloop carried interprocessor dependencies. This leads us to conclude
that channel queues with small lengths form an effective mechanism for
achieving interprocessor communication in a fine-grained MIMD system
provided that appropriate compilation techniques are used.

5. R E L A T E D W O R K

Following the success of VLIW systems there has been a significant
interest in the development of fine-grained MIMD architectures. The
architecture briefly described in this paper is one such architecture.
Another architecture which falls in the same category is the OSCAR multi-
processor. (14t Although OSCAR is a tightly coupled MIMD system, unlike
the architecture described in this paper, it does not provide fast data
passing mechanisms such as shared registers and channel queues. The data
transfer overhead although low is significant. Thus, OSCAR is can only
effectively exploit n e a r fine grained parallelism.

The architecture described in this paper provides a dedicated channel
queue between every processor pair. An alternative approach for imple-
menting channels is to provide globally shared channels each with a
full/empty synchronization bit. This approach has been studied in earlier
work. (15) The channels must be addressable as registers to achieve high
execution speeds which limits the number of globally shared channels that
can be provided. On the other hand the number of bits needed to address
dedicated channel queues is limited by the number of processors. An
increase in the channel queue length does not increase the number of bits
required to address the channel queues. The channel queues are also easier
to implement in hardware. The compilation techniques for the allocation of
global channels are also nontrivial. (ls~ On the other hand, no compiler
algorithms are required for the allocation of channel queues since they are
dedicated to a pair of procesors. The H E P (~6~ multiprocessor provides
memory channels by adding a synchronization bit to every memory
location in shared memory. Memory channels do not allow high speed
communication among parallel streams. Thus, memory channels are
inappropriate for the fine-grained MIMD architecture presented in this
paper.

The top-down scheduling algorithm described in this paper attempts
to generate schedules with low interprocessor communication to maximize

190 Gupta and Lee

the likelihood of achieving all interprocessor data communication through
shared registers and channel queues. Scheduling algorithm developed for
OSCAR (14) also attempts to reduce interprocessor communication. The
algorithm constructs tasks containing several instructions and schedules
such tasks among the processors. The synchronization is performed at task
level to limit synchronization overhead. This approach is not suitable for
the fine-grained MIMD architecture described in this paper since it would
not fully exploit the channels and shared registers for enforcing maximum
number of data dependencies among the processors. Several coarse-grain
scheduling algorithms which take communication costs into account
during scheduling have also been developed/17'I8) However, these techni-
ques are also inappropriate for the fine-grained MIMD system considered
in this paper.

The problem of recognizing dependencies which can be enforced
without explicit synchronization has been addressed in previous work
by Li and Abu-Sufah, (19) Midkiff and Padua, (2~ and Krothapalli and
Sadayappan. (21) Li and Abu-Sufah, (19) identify certain situations where a
dependence is rendered redundant while Midkiff and Padua (2~ determine
all redundant dependencies by performing transitive closures on subgraphs
representing dependencies in a singly nested loop. The Size of dependence
graph increases linearly with the maximum dependence distance in the
loop and the number of transitive closures performed equals the number of
dependencies in the loop. Krothapalli and Sadayappan ~2~) develop an
efficient algorithm by demonstrating that redundant dependencies can
be identified without requiring a complete transitive closure of the data
dependence graph. The algorithm presented in this paper also efficiently
identifies all redundant dependencies. Like the algorithm by Krothapalli
and Sadayappan (2~) all implied synchronizations are computed in a single
pass thus avoiding repeated transitive closures that are required by Midkiff
and Padua's (2~ approach. In addition, the algorithm in this paper differs
from all of these algorithms in one important aspect. It takes advantage of
the specific schedule generated by the top-down scheduling algorithm to
further reduce the number of synchronizations that must be enforced. The
dependencies which are implicitly enforced by the instruction schedule do
not require the use of shared registers or channels.

6. C O N C L U S I O N

This paper demonstrated the use of channel queues to exploit
fine-grained parallelism in sequential programs. Compilation techniques for
the exploitation of such a resource were presented. The use of channel

Exploiting Parallelism on Fine=Grained M I M D Archi tecture 191

queues should provide an improvement in performance over VLIW
machines as the multiple processors are no longer constrained to execute
in lockstep. The experimental results demonstrate that a small queue length
(four) is sufficient to exploit parallelism in several applications.

The compilation techniques developed in this paper are also applicable
to other parallel architectures. The top-down scheduling algorithm can be
used to schedule tasks on shared-memory machines as well as distributed
memory machines since the reduction of interprocessor communication
and processor synchronization is essential for obtaining good performance.
Elimination of redundant synchronizations on a shared-memory machine
can also reduce synchronization overhead.

REFERENCES

1. J. R. Ellis, Bulldog: A Compiler for VLIW Architectures, MIT Press, Cambridge,
Massachusetts (1986).

2. R. Gupta and M. L. Sofia, Compilation Techniques for a Reconfigurable LIW Architec-
ture, The J. of Supereomputing 3:27 ! -304 (1989).

3. A. Aiken and A. Nicolau, A Development Environment for Horizontal Microcode, IEEE
Trans. on Software Eng. 14(5):584-594 (1988).

4. A. Aiken and A. Nicolau, Optimal Loop Parallelization, Proc. of the ACM SIGPLAN
Conf. on Prog. Lang. Design and Implementation, pp. 308-317 (1988).

5. J. A. Fisher, Trace Scheduling: A Technique for Global Microcode Compaction, IEEE
Trans. on Computers C-30(7):478-490 (July 1981).

6. R. Gupta and M. L. Sofia, Region Scheduling: An Approach for Detecting and
Redistributing Parallelism, IEEE Trans. on Software Eng. 16(4):421-431 (April 1990).

7. M. Lain, Software Pipelining: An Effective Scheduling Technique for VLIW Machines,
Proe. of the SIGPLAN Conf. on Prog. Lang. Design and Implementation, pp. 318-328
(1988).

8. R. Gupta, The Fuzzy Barrier: A Mechanism for High-Speed Synchronization of
Processors, Proe. of the Third hTt'l. Con.,(. on Arch. Support for Prog. Lang. and Oper. Syst.,
pp. 54-64 (April 1989).

9. J. R. Allen, K. Kennedy, C. Porterfield, and L Warren, Conversion of Control
Dependence to Data Dependence, Proc. of the Tenth Ann. Syrup. on Principles of Prog.
Lang., pp. 177-189 (1983).

10. E. Duesterwald, R. Gupta, and M. L. Sofia, Register Pipelining: An Integrated Approach
to Register Allocation for Scalar and Subscripted Variables, Int'l. Workshop on Compiler
Construction, Springer Verlag, LNCS 641:192-206 (OctOber 1992).

1 l. D. Callahan and B. Koblenz, Register Allocation via Hierarchical Graph Coloring, Proc.
of the ACM SIGPLAN Conf. on Prog. Lang. Design and Implementation, pp. 192-203
(1991).

12. T. L. Rodeheffer, Compiling Ordinary Programs for Execution on an Asynchronous
Multiprocessor, Department of Computer Science; Ph.D. Dissertation, Carnegie-Mellon
University, Pittsburgh (1985).

13. D. A. Padua, D, 3. Kuck, and D. Lawrie, High-Speed Multiprocessors and Compilation
Techniques, IEEE Trans. on Computers 29(9):763-776 (1980).

192 Gupta and Lee

14. H. Kasahara, H. Honda, and S. Narita, Parallel Processing of Near Fine Grain Tasks
using Static Scheduling on OSCAR, Proe. of Supercomputing, pp. 856-864 (Novem-
ber 1990).

15. R. Gupta, Employing Register Channels for the Exploitation of Instruction Level
Parallelism, Proc. of the SecotM ACM SIGPLAN Syrup. on Principles and Practice o f
Parallel Programming, pp. 118-127 (March 1990).

16. B. J. Smith, Architecture and Applications of the HEP Multiprocessor Computer System,
Real-Time Signal Processing 298:241-248 (August 1981).

17. M. Girkar and C. Polychronopoulos, Partitioning Programs for Parallel Execution, Proc.
of the ACM Supercomputing Conf., pp. 216-229 (1988).

18. V. Sarkar and J. Hennessy, Compile Time Partitioning and Scheduling of Parallel
Programs, Proc. of the A C M SIGPLAN Syrup. on Compiler Construction, pp. 17-26
(1986).

19. z. Li and Abu-Sufah, On Reducing Data Synchronization in Multiprocessed Loops, IEEE
Trans. on Computers C-36(12):105-109 (December 1987).

20. S. P. Midkiff and D. A. Padua, Compiler Algorithms for Synchronization, IEEE Trans. on
Computers C-36(12):1485-1495 (December 1987).

21. V. P. Krothapalli and P. Sadayappan, Removal of Redundant Dependences in
DOACROSS Loops with Constant Dependences, IEEE Trans. on Parallel and Distr. Syst.
2(3):281-289 (July 1991).

