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We present techniques for exploiting fine-grained parallelism extracted from 
sequential programs on a fine-grained MIMD system. The system exploits 
fine-grained parallelism through parallel execution of instructions on multiple 
processors as well as pipelined nature of individual processors. The processors 
can communicate data values via globally shared registers as well as dedicated 
channel queues. Compilation techniques are presented to utilize these mecha- 
nisms. A scheduling algorithm has been developed to distribute operations 
among the processors in a manner that reduces communication among the 
processors. The compiler identifies data dependencies which require syn- 
chronization and enforces them using channel queues. Delays that may result by 
attempting write operations to a full channel queue are avoided by spilling 
values from channels to local registers. If an interprocessor data dependency 
does not require synchronization, then the data value is passed through a 
shared register or shared memory. 

KEY WORDS:  Multiprocessor systems; parallelizing compilers; fine-grained 
parallelism; top-down scheduling; redundant synchronization; channel queues. 

1. INTRODUCTION 

Implicit parallelism present in sequential programs is an important source 
of fine-grained parallelism. This parallelism can be divided into two broad 

1 Partially supported by National Science Foundation Presidential Young Investigator Award 
CCR-9157371 (CCR-9249143) to the University of Pittsburgh. 

2 Department of Computer Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260. 

169 

828/21/3-[ 0885-7458/92/0600-0169506,50/0 �9 1992 Plenum Publishing Corporation 



170 Gupta and Lee 

categories, namely loop level parallelism and extra-loop (or nonloop) 
parallelism. Commercially available multiprocessor systems, such as Encore 
and Alliant, can exploit loop level parallelism effectively. However, they are 
ineffective in exploiting extra-loop parallelism present in the sequential 
parts of a program. The Very Long Instruction Word (VLIW) architec- 
tures are a family of architectures that can effectively exploit fine-grained 
parallelism present in sequential parts of a program. (1'2) A VLIW machine 
consists of multiple processors that operate in lockstep executing instruc- 
tions fetched from a single stream of long instructions. The synchronization 
of the processors is guaranteed by the hardware on a per instruction basis. 
A value computed by a processor in one instruction is accessible to the 
other processors in the next instruction. The data values are communicated 
among the processors through shared registers. The long instruction word 
allows initiation of several fine-grained operations in each instruction. 
The compilers for VLIW machines can detect and schedule extra-loop 
parallelism in sequential parts of the program and also exploit loop level 
parallelism through loop unrolling, software pipelining and other loop 
transformations.(3-7) 

There are two main limitations of a VLIW machine. First it cannot be 
used as a multiprocessor since it executes a single stream of instructions. 
The second disadvantage arises due to events that are not predictable 
at compile-time. For example bank access conflicts cannot always be 
avoided since the operands required for an operation may not be known 
at compile-time due to the presence of arrays and pointers. The lockstep 
operation of multiple processors makes the machine intolerant to runtime 
delays caused by unpredictable events. The delay in the completion of any 
one of the operations in a long instruction, delays the completion of the 
entire instruction. 

In this paper we present a tightly coupled fine-grained MIMD 
architecture whose processors can execute relatively independent streams of 
instructions as well as tightly synchronized instruction streams. The system 
contains a small number of processors, possibly on the same chip, which 
allows exploitation of instruction level parallelism. Fine-grained parallelism 
is exploited by executing multiple instructions in parallel on different 
processors as well as overlapped execution of instructions on pipelined 
processors. Globally shared registers and dedicated channel queues are 
provided which allow the processors to exchange data at high speed are 
provided. If no synchronization is required during the communication of a 
data value from one processor to another, then a globally shared register 
is used to communicate a data value, or else the channel queue from the 
sending processor to the receiving processor is used to communicate the 
data value. Unlike a VLIW machine, the MIMD system is tolerant of 



Exploiting Parallelism on Fine-Grained M I M D  Architecture 171 

delays caused by unpredictable events since the processors are not required 
to operate in lockstep. 

The compilation techniques developed for VLIW machines, such as 
trace scheduling, ~5) region scheduling, ~6~ software pipelining, ~v~ and optimal 
loop parallelization C4) can also be used to generate code for the fine-grained 
architecture. However, the above techniques must be adapted to take 
advantage of the data communication mechanisms supported by this 
system. During the distribution of instructions among the processors an 
attempt should be made to minimize the synchronization of processors. 
This is because frequent processor synchronization can potentially result in 
runtime delays as well as reduce the effectiveness of a processor's pipeline. 
A scheduling algorithm, namely top-down scheduling, that achieves the 
above goal is proposed in this paper. In addition, we present compilation 
techniques that are required to take advantage of channel queues to enforce 
data dependencies within loop iterations as well as data dependencies 
across loop iterations. 

In the next section, a brief description of the fine-grained MIMD 
architecture is presented. In subsequent sections the compilation techniques 
for the architecture are discussed in detail. A scheduling algorithm which 
attempts to reduce interprocessor communication is presented. Techniques 
are presented for distinguishing between situations in which shared 
registers can be used for communicating data values among processors and 
situations in which channel queues must be used for the communication 
of data values. We also present techniques by which anticipated delays 
during read/write operations on channels are avoided. Results of some 
experiments that demonstrate the effectiveness of the scheduling algorithm 
and the feasibility of a channel based architecture are presented. 

2. T H E  A R C H I T E C T U R E  

In this section we discuss the primary features of the fine-grained 
MIMD architecture. The system is composed of four pipelined RISC 
processors augmented with multiprocessor support. The processors have a 
load/store architecture which is preserved by the multiprocessor features 
provided in the architecture. An operand involved in the execution of an 
instruction is read from, or written to, the executing processor's private 
register, a register globally shared among all of the processors, or a channel 
queue between the executing processor and any other processor in the 
system. The operand specification in an instruction includes a couple of bits 
to distinguish between the three types of operand sources/destinations. The 
remainder of the bits specify a particular private register, shared register or 
a channel queue. We envision that the four processor system will be 
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implemented on a single chip which enables the implementation of high 
speed synchronization and data communication mechanisms. 

From each processor to every other processor a channel queue is 
provided (see Fig. 1). A receiving processor can read a channel queue only 
after the sending processor has written a value to the channel. A hardware 
counter associated with each queue indicates whether the queue is empty 
or not. The hardware stalls a processor attempting to read an empty queue 
or write to a full channel. The channels are organized as queues because, 
as we will demonstrate later in the paper, through appropriate compilation 
techniques we can ensure that the order in which the values are read by a 
receiving processor is the same as the order in which they are written to the 
channel by the sending processor. 

The processors can communicate with each other th rough  the shared 
registers and channel queues. When a value is communicated through a 
shared register, the synchronization of processors is not guaranteed by the 
hardware. Therefore, it is possible for a processor to incorrectly read a 
value from a shared register before the value has been written to the 
register. On the other hand the hardware guarantees synchronization if a 
data value is communicated through a channel queue. The compiler, 
through its analysis of the parallel instruction schedules, distinguishes the 
situations in which channel queues must be used from the situations in 
which shared registers should be used. Since the synchronization of pro- 
cessors during the communication of values among processors is ensured 
by channel queues, unlike VLIW systems, the processors are no longer 

gisters 

~ueues 

Fig. 1. The fine-grained M[MD architecture. 
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required to operate in strict lockstep fashion. Thus, the MIMD system is 
tolerant of delays that otherwise would be introduced by unpredictable 
events. In addition to channels it is useful to provide barrier synchroniza- 
tion and an efficient collective branching mechanism in such a system. The 
design and use of these mechanisms was discussed in earlier work. ~8~ 

3. C O M P I L E R  S U P P O R T  FOR U T I L I Z I N G  C H A N N E L  Q U E U E S  

Both extra-loop parallelism and loop level parallelism can be detected 
and exploited by the compiler. By constructing a directed acyclic graph 
(DAG) representing the data dependencies among the statements in a 
single basic block, or a sequence of basic blocks, extra-loop parallelism can 
be detected. Fine-grained parallelism present across loop iterations can be 
exposed by loop unrolling. Although loop unrolling is effective in exposing 
loop level parallelism, it causes a significant code growth. A technique 
developed by Aiken and Nicolau 14) transforms parallelism present across 
loop iterations to extra-loop parallelism with little code growth. Thus, after 
applying Aiken and Nicolau's transformation fine-grained parallelism can 
be detected by constructing a DAG for the loop body. The construction of 
a DAG requires data dependency information. There are three types of 
data dependencies flow, anti, and output. The flow dependencies represent 
true data dependencies and the other two types can be eliminated through 
renaming techniques. Furthermore we assume that control dependencies 
due  to if-statements inside the loop body have been converted to data 
dependencies. 19) After the detection of fine-grained parallelism the compiler 
must perform the following steps to generate code for the fine-grained 
MIMD architecture. 

�9 A parallel execution schedule is generated. By scheduling paral- 
lelism such that there are fewer interprocessor data dependencies, 
the top-down scheduling algorithm improves the performance of 
processor pipeline. 

�9 The interprocessor data dependencies, including dependencies 
across loop iterations, are resolved through shared registers, 
channel queues, and shared memory. 

�9 The size of each channel queue is fixed. Thus, delays can be caused 
if an attempt is made to write to a channel that is full. Techniques 
are required to anticipate and avoid such delays. By spilling a data 
value from a channel queue into a private register, the time that 
a data value spends in a channel is reduced and the delay 
associated with a write to a full channel is avoided. 
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3.1. Top-Down Instruction Scheduling 

The need for the use of channels is dependent upon the parallel 
schedule. Thus, before the assignment of channels can be carried out a 
parallel schedule must be generated. The scheduling algorithm examines 
the DAG representing the data dependencies to generate an instruction 
schedule. A parent node in a DAG is data dependent upon its child nodes 
and a directed edge from a child node to a parent node indicates the direc- 
tion in which data flows. A simple approach for generating schedules is list 
scheduling in which the operations ready to be scheduled are determined 
and one by one scheduled upon the processors. If the number of processors 
is greater than or equal to the number of ready operations then all of the 
ready operations are scheduled. On the other hand if the number of opera- 
tions ready to be scheduled is higher, the operations that lie along the 
longer unscheduled paths are scheduled first. The list scheduling algorithm 
does not make any attempt to reduce interprocessor communication. Next 
we discuss modifications to list scheduling to overcome this drawback. 

�9 The list scheduler may assign different processors to a parent node 
and each of its children. In this case interprocessor communication 
is required to enforce data dependencies due to each of the 
children. Without sacrificing any parallelism, the parent node can 
be assigned to one of the processors assigned to its children. 
The result is a reduction in the number of instances in which inter- 
processor communication takes place by one. 

�9 Consider a DAG containing more parallelism than the processors 
in the system can exploit. In this situation the scheduling algo- 
rithm must selectively exploit parallelism in a manner that reduces 
interprocessor communication, The list scheduler is modified so 
that it identifies subDAGs that can be executed in parallel. These 
subDAGs are assigned to different processors. By choosing not 
to exploit the parallelism within a subDAG interprocessor com- 
munication is avoided. At the same time by exploiting the 
parallelism across the subDAGs all processors are kept busy. 
Since most operations require more than one operand it is often 
more likely that parallel subDAGs, each of which has a single root 
node, can be found at the top of the DAG. Thus, the scheduling 
is carried out in top-down fashion instead of the bottom-up 
fashion. As a result, the last instruction in the schedule is selected 
first and the first instruction to be executed is selected last. 

�9 An advantage of list scheduling is that it tries to distribute the 
operations equally among the processors, which results in fast 
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schedules. It is therefore essential to maintain this characteristic 
during top-down scheduling. This goal is achieved by ensuring 
that the subDAGs that are simultaneously scheduled on the 
processors contain the same number of operations. 

The identification of subDAGs for parallel execution is carried out as 
follows. Initially each subDAG contains simply their respective root nodes. 
The subDAGs are gradually expanded by including one node at a time to 
each of the subDAGs. If corresponding to each subDAG, a distinct node 
that is ready to be scheduled can be identified, then these nodes are added 
to the respective subDAGs. This step is carried out repeatedly as long as 
all subDAGs continue to grow. On the other hand if the search fails for 
any one of the subDAGs, none of the nodes identified in the current step 
are added to the subDAGs. This process ensures that the sizes of the 
subDAGs identified are equal. The nodes are examined in a breadth-first 
top-down fashion during this process. 

The modifications to list scheduling give us a new scheduling algo- 
rithm that we refer to as the top-down scheduling algorithm. Top-down 

TopDownScheduling { 
-- parent and child refer to nodes connected by a non-loop carried dependency 

Compute V ni f 
/ 1 if ni has no child 

height(ni) = I  1 + n,,c~xof ,~ (height(nj)) otherwise 

Loop { ~" 
Construct S = n l, n2 . . . . . . .  n,. 

st V n i~  S the parents of ni have been scheduled A height(hi) _> height(hi+l) 

Le tp  be the number of processors available 
For i=l to minimum(p,[S ~ Do 

I f  processor p~ is available and a parent of node nl is scheduled on Pi 
Then schedule ni on processor pi 
Else schedule nl on any available processor 
Endif 

Endfor 

If IS I_>p Then 
-- nodes n i, n2 . . . . . .  np have already been scheduled on thep  processors 
On each processor Pi, schedule a set of  operations Si such that 

Si is a subset of operations belonging to the subtree rooted at ni and 

Endif  
} Until  all operations have been scheduled 

Fig. 2. Top-down scheduling algorithm. 
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scheduling reduces interprocessor communication due to data dependencies 
with iteration distance zero. However, there is additional interprocessor 
communication that may result from loop carried dependencies. The 
top-down scheduling algorithm is described in Fig. 2. 

Runtime Complexity: Let E and V represent the sets of edges and 
nodes in the DAG. Computing the heights of all nodes takes O(IEI) time. 
Updating the status of the nodes to ready also takes O(IEI) time. Main- 
taining the list of ready nodes sorted according to their heights takes 
O(I VI log IVI) time. Before choosing a processor on which to schedule a 
node the algorithm must check if any of the processors on which its parents 
are scheduled are free or not. This will take at most O(IE]) time. Thus, 
the overall runtime complexity of the top-down scheduling algorithm is 
o(I Vl 2). 

An example which illustrates the effect of these modifications upon 
interprocessor communication is shown in Fig. 3. Both list scheduling 
resulted in equally fast schedules. However, the top-down schedule requires 
significantly less interprocessor communication. In Fig. 3, the shaded 
regions represent expected execution time delays for the depicted schedules. 
Since the code being generated is for a MIMD machine, no delay 
instructions are actually introduced in the code. 

c I 
, )  

(i) An Example DAG. 

i 2 ~  1~81210 ~ 1~' ~'~" ~ 7 2 1 2  ~ 1~[0 24 232922 ~'"11 ~ 1~ 2''30 ~ 5  

14 | 15 t'f ~ 2~ 26 I"" ~" 
l~i | 17 25 14 29 30 27 16 

(ii) List Scheduling. 
Fig. 3. A scheduling example. 

2~ 

(iii) Top-Down Scheduling. 
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3.2. Se lect ing  the  M o d e  of In terprocessor  C o m m u n i c a t i o n  

After a schedule has been generated the compiler must identify all 
situations requiring interprocessor communication and then generate code 
to establish communication through channel queues, shared registers, or 
shared memory. In this section we present compile-time techniques that 
enable us to make an appropriate choice for each dependency. Depending 
upon the nature of dependency between pair of statements the following 
actions are performed at runtime. 

Synchronization Only: The enforcement of output dependencies, anti 
dependencies, and indefinite dependencies (a dependence which is assumed 
to exist since the compiler cannot guarantee its absence) only requires 
synchronization of processors. In such a situation the channel is used to 
synchronize the processors. However, the value written to and read from 
the channel is of no interest. 

Communication Only: The enforcement of a flow dependence requires 
the communication of a value from one processor to another. If the pro- 
cessor receiving the value is guaranteed to read the value after the value 
has been computed, then a shared register or shared memory is used to 
communicate the value. Note that a value communicated through a shared 
register or shared memory cannot be overwritten before it is read. This is 
because there will be an anti dependence between the statement that reads 
the value and the statement which performs the subseuent write. As dis- 
cussed earlier, this dependence will be enforced through a synchronization 
edge using a channel to guarantee correct execution. Since there are limited 
number of shared registers available, a global register allocation is required 
to assign some communication only values to shared registers while others 
to Shared memory. A global register allocation applicable to scalars and 
array references has been developed by Duesterwald et al. ~1~ 

Communication and Synchronization: The enforcement of flow 
dependence which not only requires the communication of a value from 
one processor to another, but also requires explicit synchronization to 
force the receiving processor to perform the read after the write operation 
has been performed, is achieved using the channel queue from the sending 
processor to the receiving processor. A flow dependence across iterations 
can only be enforced through channel queues if the iteration distance is a 
compile-time constant. However, if this is not the case we must assume the 
minimum possible value for the iteration distance and treat the dependence 
as a synchronization only dependence. 

The type of each dependence is known to the compiler. However, 
additional analysis is required to determine whether or not the enforcement 
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of a flow dependence requires synchronization. Next we derive results 
that enable us to ascertain the need for synchronization. These results 
essentially identify conditions under which one synchronization subsumes 
another synchronization, i.e., makes the latter unnecessary. In the subse- 
quent discussion, given an interprocessor data dependence edge e, t~r~(e) 
denotes the static estimate of time elapsed since the beginning of the loop's 
execution to the end of the execution of the source instruction corre- 
sponding to the dependence edge e. The time tde~t(e ) denotes the static 
estimate of time elapsed till the beginning of the destination instruction 
corresponding to e. 

Lernma 1. Given two flow dependence edges e I and e 2 from 
processor Pl to processor P2 with the same iteration distances. The 
synchronization for the flow dependence el subsumes the dependence e2 if 
and only if t src( e l ) > t src( e 2 ) and t des,( e l ) < t des,( e 2 ). 

Proo[:  There are only two possibilities to consider here. Either the 
two dependence edges e~ and e2 intersect or they do not intersect. 

Case  I: t s rc (e l )>tsrc (e2)  A taes t (e l )<tae , t (e2)  

If the edges intersect as shown in Fig. 4, then it is clear that enforcing 
the dependence e~ guarantees that e2 is also enforced. Therefore, e2 is 
subsumed by el. 

Case I1: t~r~(e~)<t~rr /x tae~,(ej)<~tae~,(e2) 

If the two edges do not intersect then synchronization is clearly required 
to enforce the two dependencies (see Fig. 5). Consequently the result stated 
previously follows. [] 

In the subsequent results we will consider across iteration dependencies. 
In order to derive results regarding across iteration synchronizations we 

(i) e. P2 

t~(e2) ~ d  d q=(el) 

q=t(e0 

qm(~) 

(ii) P1 P2 

t=(e2) 

t~(el) 

tdest(el) 

q,=(~) 

Fig. 4. Intersecting dependence edges with same iteration distance (d). 
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t~rr 

P1 P 

:d=~(el) 

td~(e9 

Fig. 5. Nonintersecting dependence 
edges with same iteration distance (d). 

must examine successive loop iterations. The number of loop iterations that 
must be examined is one more than the difference between the iteration 
distances of the pair of dependencies being considered. 

Lemma 2. Given a flow dependence edge el with iteration distance 
d and another flow dependence edge e2 with iteration distance d +  1 from 
processor pl to processor P2. The synchronization for flow dependence el 
subsumes the synchronization requirement for the dependence e2 unless the 
condition (tsrc(el) < tsrc(e2) A tdest(el) > tdest(e2)) is true. 

Proof'. In order to derive this result we consider the following cases 
which cover all possible relationships between dependence edges e~ and e2. 

e a s e  I: tsrc(el)<tsrc(e2) ^ tdest(el)<tdest(e2) 

This situation is shown in Fig, 60). Instead of looking at a single loop 
iteration let us examine two successive loop iterations as shown in 
Fig. 6(ii). The dependency e2 has an iteration distance of d +  1. Thus, if we 
examine two successive loop iterations we can represent e 2 as a dependency 
between the loop iterations with iteration distance d. Now from Lemma 1 
it follows that e2 is subsumed by el. 

Case I1: tsr~(el)>t,r~(e2) A tdes~(el)>~tde, t(e2) 

This situation is similar to the previous case. If we examine two loop 
iterations and transform e2 into a dependency of distance d it is clear that 
e2 is subsumed by et. 

C a s e  I Ih ts,c(el)>t~.,~(e2) A t&, l (e l )~ta~s , (e2)  

In this case as in the two previous cases by applying Lemma 1 it is 
clear that e2 is subsumed by e~. 

Case IV: t~rc(el) < ts~c(e2) ^ taes,(el) > tae~t(e2) 
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PI P 
(i) l ............................... 

PI P2 
(ii) 

P1 P 
(iii) .............................. 

--..< 
d+l "--... 

Fig. 6. Nonintersecting dependence edges of iteration distance d+ 1 and d. 

Finally we consider the last possibility. As we can see from Fig. 7 the 
dependency represented by ez is not subsumed by el. Thus, the condition 
that embodies this case is the condition under which e2 is not subsumed 
by el. Therefore, the result stated in Lemma 2 follows. [] 

L o m m a  3. Given a flow dependency from processor Pl to P2 
with iteration distance d. The synchronization that enforces the given 
dependency also enforces (i.e., subsumes) any synchronization from Pl to 
P2 with iteration distance greater than d +  1. 

PI P2 P1 P2 PI P 
(i) (ii) 

Fig. 7. Intersecting dependence edges of iteration distance d+ 1 and d. 
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Proof:  In order to prove this result we consider two dependencies el 
and e2 of iteration distance d and d +  2. There are four possible rela- 
tionships between the two dependencies as mentioned in Lemma 2. In the 
first three cases the dependency e2 is subsumed by the dependency el. This 
can be easily shown by first viewing e2 as a dependency of iteration dis- 
tance d + 1 by considering an additional loop iteration and then applying 
the analysis of the first three cases in Lemma 2. The fourth situation is 
shown in Fig. 80). In this case we view e2 as a dependency with iteration 
distance d by considering two additional loop iterations as shown in 
Fig. 8(ii). Next by applying Lemma 1 we conclude that e2 is subsumed by 
el. Thus, we have shown that e2 is subsumed by e~ if the iteration distance 
of e2 is d +  2. It is obvious that this result will hold even if e2 has an 
iteration distance which is greater than d +  2. [] 

T h e o r e m  1 .  Subsumption Theorem: A synchronization introduced 
for enforcing a flow dependency ei with iteration distance d from processor 
Pl to P2 subsumes the synchronization required for enforcing a flow 
dependency ej of iteration distance d', also from Pl to p~, if and only if one 
of the following conditions is true: 

(i) d' = d A tsrc(ei) > tsrc(ej) A tdest(ei) < tdest(ej). 

(ii) d ' = d +  1 A not(tsrc(ei)<t~rc(ej) A tae,,(ei)>tdes,(ej)). 

(iii) d ' > d +  1. 

Proof:  This theorem follows directly from Lemmas 1-3. [] 

( 1 ) ~ 2  ~ (ii).Pll .......................... .P2 

Fig. 8. Dependence edges of iteration distance d and d+ 2. 
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So far we have only considered dependencies between pairs of pro- 
cessors. Introduction of synchronizations between pairs of processors 
creates additional synchronizations between other pairs of processors. Such 
a synchronization is called an implied synchronization since it is not 
explicit!y introduced in the code. For example, introduction of syn- 
chronization from p~ to P2 and P2 to P3 implies a synchronization between 
Pt and P3. The computation of implied synchronizations is necessary to 
determine all interprocessor data dependence edges which do not require 
explicit synchronization. The following result specifies the computation of 
implied synchronizations. 

T h eorem  2. Given a sequence of flow dependence edges e~, e2,..., e, 
with iteration distances of d~, d2 ..... d,, respectively. An edge e; represents a 
flow dependency from processor p~_ a to processor p~ and tae~t(e~) <~ t~r~(e~+ ~ ). 
The introduction of synchronization instructions to enforce the sequence 
of dependencies ez, e2 ..... e, creates an implied synchronization e between 
processors Po and p,. This synchronization has an iteration distance of 
dl + d2-" + d~ and ts~(e)= ts~(el) and t&st(e)= tdest(e~). 

Proof'. The result can be inferred from Fig. 9 as follows. 

P t cannot proceed beyond td~,,(e~) until dL iterations earlier Po has gone 
beyond t~.(el) 

A P2 cannot proceed beyond td~,,(e2) until d2 iterations earlier p~ has gone 
beyond t~(e2) and tde~,(e~) < tsar(e2) 

1% Pl P2 103 Pn-1 Pn 

d2 

d4 

. . . . . . . . . . . . .  111-1 

dl+d; 
N o .  

. . . .  . . . . ~ . . . . ~ . . _ . . . _ . . . J  . . . ~ . . . . .  . . . . . . . . . . .  , 

Fig. 9. Implied synchronizations. 
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^ p, cannot proceed beyond t~ , (en)  until d, iterations earlier p, 1 has 
gone beyond t~rc(e,) and tde~t(e . _  1)< t~rc(e,) 

p, cannot proceed beyond tdr untit dl + d2 . . -  + dn iterations earlier 
Po has gone beyond t~(e~)  

In other words there is an implied synchronization edge e from Po to p, 
with iteration distance of d ~ + d 2 . . . + d n  and t ,~ (e)=t ,~(e~)  and 
t &st(e ) = t d~st(en). [] 

Based upon these results we develop an algorithm for distinguishing 
situations in which shared registers should be used from situations in which 
channels must be used for communicating values between processors. 
There are three major steps in this algorithm. In the first step we construct 
a graph representing the parallel schedule and interprocessor data depen- 
dencies. The dependencies also include loop carried dependencies if the 
code segment represents a loop body. Associated with each dependency is 
the iteration distance which is zero for nonloop carried dependencies and 
nonzero for loop-carried dependencies. Next we compute all implied 
synchronizations using Theorem 2. In the final step we classify each real 
dependence edge as either requiring a shared register or a channel using 
Theorem 1. The algorithm guarantees that the order in which a receiving 
processor reads data values from a channel queue is exactly the same as the 
order in which the data values are written to the channel queue by the 
sending processor. Thus, the implementation of channels as queues is an 
appropriate choice. 

Step 1. Construction of a Graph Representing the Correct Execu- 
tion Order: We construct a directed graph G = (V, E), from the parallel 
schedule and data dependency information, representing the constraints on 
the execution order of the statements as described in Fig, 10. 

S tep  2. Computation of Implied Synchronizations: In this step we 
compute the set of implied synchronizations between pairs of processors, 
see Fig. 11. The computation requires a single bottom up traversal of the 
graph constructed in step 1. In the algorithm I denotes the set of implied 
synchronization edges. 

S tep  3. Identify the Mode of Communication for Interprocessor 
Data Dependencies: The set of flow dependence edges E is partitioned into 
the set of edges E ~'m that will make use of shared registers or shared 
memory and, the set of edges U h will make use of channel queues. For 
each edge in E "rm it is guaranteed that the value will not be read till it has 
been computed. An edge in E srm may represent the transmission of a value 
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p (s )  - the processor on which the statement s has been scheduled for execution. 
ts~,  (s ,p  (s))  - the expected t ime elapsed from the beginning o f  a loop iteration 

to the beginning of  s '  s execution on processor p (s) .  
t , ,a(s  ,p ( s ) )  - the expected t ime elapsed l iom the beginning o f  a loop iteration 

to the end of  the execution o f  s tatement  s on processor p (s) .  

V = set of  statements in the computation; and 
E = set of  edges in the graph which are determined as follows. 

An edge is introduced from statement si to statement sj if." 
(i) p (si )=p (sj ) and s i is executed immediately after s i ; or 
(ii) p (s i )~p (s j )  and there is a data dependency from sl to sj .  

An edge from statement si to statement sj is denoted as [t,~a (si ,p (si)),  t,,~, (sj ,p (s j ) ) ,  d ], 
where d is the iteration distance of  the dependency known at compile-time. 

Fig. 10. Construction of execution order graph. 

of a scalar variable or an array element. An existing global register alloca- 
tion algorithm (t~ that can handle scalars and array references can be 
employed for selecting the values that will be transmitted through shared 
registers. The remainder of the values are transmitted through shared 
memory. (See Fig. 12.) 

MAXd - maximum iteration distance of a data dependency 

Compute_Implied_Synchronizations { 
I=r 
mark all nodes in G as unvisited p(n) p(c)=p(c') p(n') 
For each processorp Do J_ ~ [ [ 

find the earliest unvisited node n in processor p ' s  schedule and 
If one is found Then Traverse(n) 

Endfnr 
} 

Traverse(n) { 
mark n as visited 
For each child e ofn Do 

If c is unvisited Then Traverse(c) Endif 
Ifp (c)r (n) Then 

Generate implied synchronizations involving edge e = [t,~ (n ~o (n)),t~t~,~ (c ,p (c)),d] as follows: 
For each edge e' = lt,,,a (c" ,p (c)),tsz,,, (n" 09 (n')),d'l e E k.J st p (n')~p (n) and c" is after c Do 

If d+d" <_MAXd Then -- compute implied synchronization using theorem 2 
1 =I k.) { [t,,,d(n,p(n)),t,~,a(n',p(n')), d+ae] } 
-- implied synchronization with iteration distance > MAXd cannot 
subsume a synchronization required for a true data dependency. 

Endif 
Endfor 

Endlf 
Endfor 

Fig. 11. An algorithm for computing implied synchronization. 
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For each ordered processor pair (Pi ,Pj) Do 
d =  0; 
E srm = E ch =(0 
While d _< MAXd Loop 

For each edge e =[l,~(si ,Pi ), laart(Sj ,pj), d] e E k..)l Do 
Identify edges from Pi to pj that are subsumed by e as follows: 
For each edge e' = [ t ~  (s'i ~oi)), ts~n (s'j,p)), d" ] e E such that a v >d Do 

If  -- conditions from theorem 1 
( ( d'--d ) Ik (te~ (si ,Pl )>t,~ (s'i ,Pi ) ) A (t,~ (s) ,p: ) < t,,a~ (S'j p) ) ) ) 
k/ ( (d '=d+l )  A not (tend(Si ,pi )<tend(S'i ,Pl ) A ts~an (Si ,pj )> taan (S'j ,pj))) 
k/ (ae > d + l )  

T h e n E  s'" = E " "  k..) {e'}; E = E  - {e'} 
ElseECh =Ech k.) {e'}; E = E  - {e'} 

Endif  
Endfar  

Endfor  
d = d + l  

Endwhile  
Endfor 

Fig. 12. An a lgor i thm for ident ifying the m o d e  of in terprocessor  communica t ion .  

3,3. Handling Conditional Statements 

So far we assumed that the loop being scheduled contains no condi- 
tional statements. We now briefly demonstrate the feasibility of using chan- 
nel queues in the presence of conditional statements. Consider the situation 
in which a value computed by one processor may be needed by another 
processor in a subsequent iteration. The value can be passed through a 
channel queue as before. However, if the value is not required by the 
receiving processor, the processor still must read the value from the chan- 
nel queue and then discard it. This is essential because a value written to 
a channel queue cannot be overwritten and they must be read if they are 
to be removed from the channel. Thus, conditional read operations on 
channel queues must be transformed in unconditional read operations. 
Similarly it can be shown that conditional write operations to channels 
must also be transformed to unconditional write operations. Consider 
the loop shown in Fig. 13. There is a conditional interprocessor data 
dependence between statements $2 and $3. As shown in Fig. 13 this 
dependence can be handled using the channel queue C12 if the write and 
read operations to C12 are performed unconditionally. 

Dol= 1, N DoI= 1,N 
SI: - P1 P2 SI: - 
$2: If(..) Then A[I] = - Endif ] $2: If(..) Then A[I] = - Endif; C12 = A[I] 
S3:If(..)Then-=A[I]Endif $2 SI $3: t=C12; If(..)Then -= t  Endif 

$4:- I $4 S 3 S4:- 
EndDo EndDo 

Fig. 13. An example  with cond i t iona l  s ta tements .  

828/21/3-2 
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3.4. Reducing Delays Due to Bounded Channel Queues 

The size of each channel queue is bounded. As a result delays may be 
caused when write operations are attempted on a full channel queue. Next, 
we present techniques for generating code so that delays that can be 
anticipated at compile-time are reduced. Consider the communication of 
values vl and v2 from processor Pi to processor Pj as shown in Fig. 14(i). 
If we assume that the channel C U can hold a single data value, then a delay 
can be expected during the execution of code assigned to processor Pt- This 
delay can be avoided either by modifying the code so that processor Pj 
reads the value vl from the channel C~j early and saves it in a private 
register R (see Fig. 14(ii)) or by delaying the write performed by processor 
Pi to channel C,7 by computing the value v2 into a private register R (see 
Fig. 14(iii)). The delay can also be avoided by the combination of the two 
approaches. 

Next we present an algorithm which modifies the code so that the 
delays can be avoided. For each interprocessor dependence edge we deter- 
mine the amount of time by which the write should be delayed or by how 
much earlier the read should be performed. In order to ensure that the 
effects due to all interprocessor dependencies have been considered we must 
examine d successive iterations of the loop, where d is the maximum itera- 
tion distance of any interprocessor dependency. The algorithm in Fig. 15 
repeatedly detects sequence of edges, from first to last, that are expected to 
experience delays. Then it removes the delays either by delaying the writes 
using function DelayWrites or by performing early reads using function 
EarlyReads. The availability of private registers on communicating pro- 
cessors is used to determine the approach to be applied to a sequence of 
edges. The delay in a channel write, or the amount by which the read is 
moved earlier, can be greater than a length of an iteration since d iterations 
are examined by this algorithm. When the shift in the channel read/write 
operation is more than a single iteration, then the value will be held in a 
private register for more than one iteration. (~~ Furthermore, we also 

(i) Pi 

v I ->Cij 

Cij->vl 

Cij->v 2 

(ii) Pi Pj 

vr>Cij 

v2->Cij ~ Cij->R 

- - -  R->V 1 

~1 Cij->v 2 

(iii) Pi 

vr>Cij 

v2.>R - _ .. 

R->Cij Cij->vl 

Cij->v 2 

Fig. 14. Avoiding channel  read/write delays. 
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Let E(p,q)= {e 1, e 2 ...... e m,~] denote the set of flow dependence edges from 
processor p to q that use channel queue Cvq and the edges are ordered according the 
order in which the writes to C m are performed. 

t~c (ei) - expected time elapsed from the start of the first loop iteration to the 
time at which the write to channel is performed. 

ta.~t (ei) - expected time elapsed from the start of the first loop iteration to the 
time at which the read on the channel is performed, 

current = 2; 
first = last = 0; 
While current < max Loop 

If  ta.~t (ec~.,,a-l) > ts,c (ecJ,.,~.,a ) Then 
If first = 0 Then first = last = current Else last = current Endif 

Endif 
If  (first ~ O) and ( last ~ current or current = max ) Then 

If  local registers available at p > local registers available at q 
Then DelayWrites(first,last) Else EarlyReads(last,first) Endif 
first = last = 0 

Endif 
current = current + 1 

Endwhile 

DelayWrites(first, last) { 
For i = first To <_ last Do 

Shift_write(ei) = ta,at (ei-l) - t,,c (ei) 
Endfor 

EarlyReads(last, firsO{ 
For i = last Down To < first Do 

Shift_read(el_l) = ta~, (el-l) - t ,~ (el) 
Endfor 

} 

After DelayWrites 
.Pi - .Pj 

first 

last 

.Pi �9 .Pj 

first ~ 1  

last I ~  

After Em'l 
Pi 

first I 
last 

Fig. 15. An algorithm for reducing channel read/write delays. 

Reads 

know that an additional value will be spilled from the channel queue to a 
private register during each loop iteration. The number of private registers 
to hold the spilled values is equal to the dependence distance. If enough 
private registers are not available, the values must be spilled in memory. In 
Fig. 15, we assume that each channel queue can contain at most one data 
value. Thus, each edge is examined for potential delay. However, if the 
channel queue length is greater than one, then we need to examine every 
/th edge, where l is the length of a channel queue. 

4. EXPERIMENTAL RESULTS 

The techniques described in this paper were applied to code segments 
taken from scientific programs. We applied this approach to a sample of 
data dependency graphs to study the effectiveness of top-down scheduling 
and to determine the feasibility of providing channel queues. Some of the 
DAGs used in this study hadbeen  constructed by Rodeheffer. (12) Straight- 
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line code segments were constructed by converting control dependencies 
into data dependencies. (9'13~ The test programs include the following: 

EIGEN - The Generalized Eigenvalue Problem. 
LINEAR - Solving Linear Equations Using Residue Arithmetic. 
CURVEFIT - Discrete Chebychev Curve Fit. 
TAYLOR - Evaluation of Normalized Taylor Coefficients. 
FOURIER - Calculation of Fourier Integrals. 
LIVERMORE LOOPS - Loops 2, 7, 9, 10, 21, and 23. 

The results of the experiments conducted demonstrate the effectiveness 
of top-down scheduling. The results in Table I provide a comparison 
between list scheduling and top-down scheduling. In many cases the 
top-down scheduling approach results in almost half the number of inter- 
processor dependencies (#DEPS) as compared to the schedules generated 
using list scheduling. The length of schedules (LENGTH) generated by the 
two scheduling algorithms is almost the same in most cases. Thus, the 
results strongly indicate that top-down scheduling is as effective as list 
scheduling in exploiting parallelism and in addition it significantly reduces 
interprocessor communication. Assuming that each operation takes unit 
time, the fastest possible schedule for a DAG on a p processor system is 
equal to max(VN~/pT, NL), where N~ is the number of nodes in the DAG 
and NL is the longest chain of dependencies in the DAG. The lengths of 
schedules are quite close to the fastest possible schedule (IDEAL) for 
most of the programs indicating that both list scheduling and top-down 

Table I. Parallel Schedules on a Four Processor System 

LIST SCHED T O P - D O W N - S C H E D  

IDEAL=max(FNB/p~, NL) L E N G T H  # D E P S  L E N G T H  # D E P S  

EIGEN max(F ~] ,  7) = 7 7 4 7 2 

LINEAR max(F~q,  6) = 6 6 9 6 4 

CURVEFIT  max(F~q,  7) = 7 12 6 7 4 

TAYLOR max(F~7,  11)=  11 11 19 11 7 

FOURIER max(F~7,  7) = 8 8 17 8 5 

Loop 2 rnax(F~-], 5) = 5 5 8 5 5 

Loop 7 max(F~7,  9) = 9 10 13 11 7 

Loop 9 m a x ( F ~ ,  6) = 6 6 9 6 7 

Loop 10 m a x ( [ ~ q ,  7) = 7 11 11 11 8 

Loop 21 max(F~Z'], 6) = 6 6 5 " 6 3 

Loop 23 max(F~q,  9) = 10 11 22 11 12 
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scheduling algorithms exploit parallelism quite effectively. The schedules 
were also examined to determine the queue length that would guarantee no 
delays upon writes to channel queues. It was found that a queue length of 
less than four was sufficient for this purpose. This illustrates that the top- 
down scheduling algorithm was effective in avoiding loop carried as well as 
nonloop carried interprocessor dependencies. This leads us to conclude 
that channel queues with small lengths form an effective mechanism for 
achieving interprocessor communication in a fine-grained MIMD system 
provided that appropriate compilation techniques are used. 

5. R E L A T E D  W O R K  

Following the success of VLIW systems there has been a significant 
interest in the development of fine-grained MIMD architectures. The 
architecture briefly described in this paper is one such architecture. 
Another architecture which falls in the same category is the OSCAR multi- 
processor. (14t Although OSCAR is a tightly coupled MIMD system, unlike 
the architecture described in this paper, it does not provide fast data 
passing mechanisms such as shared registers and channel queues. The data 
transfer overhead although low is significant. Thus, OSCAR is can only 
effectively exploit n e a r  fine grained parallelism. 

The architecture described in this paper provides a dedicated channel 
queue between every processor pair. An alternative approach for imple- 
menting channels is to provide globally shared channels each with a 
full/empty synchronization bit. This approach has been studied in earlier 
work. (15) The channels must be addressable as registers to achieve high 
execution speeds which limits the number of globally shared channels that 
can be provided. On the other hand the number of bits needed to address 
dedicated channel queues is limited by the number of processors. An 
increase in the channel queue length does not increase the number of bits 
required to address the channel queues. The channel queues are also easier 
to implement in hardware. The compilation techniques for the allocation of 
global channels are also nontrivial. (ls~ On the other hand, no compiler 
algorithms are required for the allocation of channel queues since they are 
dedicated to a pair of procesors. The H E P  (~6~ multiprocessor provides 
memory channels by adding a synchronization bit to every memory 
location in shared memory. Memory channels do not  allow high speed 
communication among parallel streams. Thus, memory channels are 
inappropriate for the fine-grained MIMD architecture presented in this 
paper. 

The top-down scheduling algorithm described in this paper attempts 
to generate schedules with low interprocessor communication to maximize 
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the likelihood of achieving all interprocessor data communication through 
shared registers and channel queues. Scheduling algorithm developed for 
OSCAR (14) also attempts to reduce interprocessor communication. The 
algorithm constructs tasks containing several instructions and schedules 
such tasks among the processors. The synchronization is performed at task 
level to limit synchronization overhead. This approach is not suitable for 
the fine-grained MIMD architecture described in this paper since it would 
not fully exploit the channels and shared registers for enforcing maximum 
number of data dependencies among the processors. Several coarse-grain 
scheduling algorithms which take communication costs into account 
during scheduling have also been developed/17'I8) However, these techni- 
ques are also inappropriate for the fine-grained MIMD system considered 
in this paper. 

The problem of recognizing dependencies which can be enforced 
without explicit synchronization has been addressed in previous work 
by Li and Abu-Sufah, (19) Midkiff and Padua, (2~ and Krothapalli and 
Sadayappan. (21) Li and Abu-Sufah, (19) identify certain situations where a 
dependence is rendered redundant while Midkiff and Padua (2~ determine 
all redundant dependencies by performing transitive closures on subgraphs 
representing dependencies in a singly nested loop. The Size of dependence 
graph increases linearly with the maximum dependence distance in the 
loop and the number of transitive closures performed equals the number of 
dependencies in the loop. Krothapalli and Sadayappan ~2~) develop an 
efficient algorithm by demonstrating that redundant dependencies can 
be identified without requiring a complete transitive closure of the data 
dependence graph. The algorithm presented in this paper also efficiently 
identifies all redundant dependencies. Like the algorithm by Krothapalli 
and Sadayappan (2~) all implied synchronizations are computed in a single 
pass thus avoiding repeated transitive closures that are required by Midkiff 
and Padua's (2~ approach. In addition, the algorithm in this paper differs 
from all of these algorithms in one important aspect. It takes advantage of 
the specific schedule generated by the top-down scheduling algorithm to 
further reduce the number of synchronizations that must be enforced. The 
dependencies which are implicitly enforced by the instruction schedule do 
not require the use of shared registers or channels. 

6. C O N C L U S I O N  

This paper demonstrated the use of channel queues to exploit 
fine-grained parallelism in sequential programs. Compilation techniques for 
the exploitation of such a resource were presented. The use of channel 
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queues should provide an improvement in performance over VLIW 
machines as the multiple processors are no longer constrained to execute 
in lockstep. The experimental results demonstrate that a small queue length 
(four) is sufficient to exploit parallelism in several applications. 

The compilation techniques developed in this paper are also applicable 
to other parallel architectures. The top-down scheduling algorithm can be 
used to schedule tasks on shared-memory machines as well as distributed 
memory machines since the reduction of interprocessor communication 
and processor synchronization is essential for obtaining good performance. 
Elimination of redundant synchronizations on a shared-memory machine 
can also reduce synchronization overhead. 
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