
Detecting Virus Mutations Via Dynamic Matching

Min Feng Rajiv Gupta
CSE Dept., University of California, Riverside

{mfeng,gupta}@cs.ucr.edu

Abstract

To defeat current commercial antivirus software, the
virus developers are employing obfuscation techniques to
create mutating viruses. The current antivirus software can-
not handle the obfuscated viruses well since its detection
methods that are based upon static signatures are not re-
silient to even slight variations in the code that forms the
virus. In this paper, we propose a new type of virus signa-
ture, called dynamic signature, and an algorithm for match-
ing dynamic signatures. Our dynamic signature is created
based on the runtime behavior of a virus. Therefore, an
obfuscated virus can also be detected using a dynamic sig-
nature as long as it dynamically behaves like the original
virus. We also discuss issues related to deploying our virus
detection approach. Our experiments based upon several
known mutating viruses show that our method is effective in
identifying obfuscated viruses.

1. Introduction
A computer virus is a computer program which can prop-

agate itself without the user’s consent. Usually, it has mali-
cious intent, e.g. to damage a computer system or acquire
information without owners’ permission. An antivirus soft-
ware is used to identify and remove computer viruses.

Existing commercial antivirus software use static signa-
tures to identify viruses. Each signature is a static pattern
of program code which is present in every infection of the
virus. A file is declared as infected if it contains a sequence
of instructions that is matched by a static signature. For
each virus variant, at least one signature is needed so that
the virus can be detected. The procedure of creating a sig-
nature involves human effort and is time-consuming. With
the rapid growth of viruses, commercial antivirus software
seems to be in difficulty. Symantec Internet Security Threat
Report states “the release rate of malicious code and other
unwanted programs may be exceeding that of legitimate
software applications.”

Besides the explosion of virus quantity, the virus devel-
opers also update their viruses frequently to evade detection
from antivirus software. In each update, they only add or

change a small portion of code. Usually, the updates have
two purposes. The first purpose is to mutate the code in or-
der to invalidate the static signatures used by the antivirus
software. Therefore, the antivirus software developers have
to develop new signatures for detecting different variants.
The second purpose is to add new anti-detector features.
For example, Bagle, which is a widespread virus family,
was once updated to include a new backdoor which can dis-
able the security system in the local machine.

To further protect their viruses from antivirus software,
the virus developers apply obfuscation techniques to the
virus programs [16]. The obfuscation techniques they use
include instruction substitution, instruction permutation, in-
sertion of superfluous instructions, variable renaming, and
control-flow alteration. A self-mutating virus is a virus
which obfuscates itself each time it infects a new file. It is
hard for current antivirus software to detect a self-mutating
virus since its code keeps changing. Theoretically, two self-
mutating virus variants may seem different in static code
but dynamically behave the same. Therefore, it is difficult
to develop a single static signature which can be used to
identify all variants of a self-mutating virus.

This paper aims to design a virus detection approach
which is resilient to obfuscation. In this paper, we pro-
pose a novel type of virus signature, called dynamic sig-
nature, which is created based on the runtime behavior of
the viruses. Each dynamic signature is a backward slice of
a library function call which is unique to the correspond-
ing virus’ runtime trace. No matter how the viruses mu-
tate their static code, as long as they dynamically behave in
a similar fashion, their dynamic signatures do not change.
We also present an algorithm for matching dynamic virus
signatures and extracting a good dynamic signature from a
set of known virus variants. The matching algorithm in this
paper is effective in matching virus signatures – matching
algorithm presented in our prior work was not found to be
effective for this purpose [26]. To make our dynamic virus
detection approach practical, we come up with a solution
for deploying our detection method and develop a few tech-
niques for reducing the overhead. Specifically, in this paper
we make the following contributions:

1. Dynamic signature. We propose a new type of virus
signature, dynamic signature, which is much more resilient
to obfuscation than static signature. The criteria for extract-
ing a dynamic signature is formally defined.

2. Signature matching algorithm. We present a method
for searching a signature in the runtime trace of a target pro-
gram. This algorithm can handle a set of obfuscation trans-
formations, including variable renaming, instruction per-
mutation, insertion of superfluous instructions, control flow
alteration, and limited set of instruction substitutions.

3. Evaluation. Our evaluation based upon known viruses
shows that our virus detection method is very effective in
identifying different variants belonging to the same virus
family including self-mutating viruses. Moreover, in our
experiments we did not observe any false positives.

The remainder of the paper is organized as follows. In
section 2 we develop the notion of dynamic virus signa-
tures and develop a dynamic matching algorithm to identify
these signatures in execution traces of programs. We also
discuss practical issues of safety and cost in deploying a
dynamic virus detection technique. In section 3 we discuss
our implementation and present the results of our experi-
mental evaluation. In section 4 we discuss related work and
we conclude in section 5.

2. Dynamic Virus Detection
In this section we motivate the need for dynamic detec-

tion of viruses and then develop the formal definition of dy-
namic signature for virus detection. We also provide an
algorithm for searching for a dynamic signature through the
runtime trace of a program run. To give an intuitive expla-
nation of the underlying ideas, we use the sample program
shown in Fig.1.

1 lea edi, ptr [ebp+0x4025] // edi = mem[ebp+...]
2 mov ecx, 0x3ec5 // ecx = 0x3ec5
3 mov edx, 0xef4013a0 // edx = 0xef4013a0

loop:
4 mov al, byte ptr ds[edi] // al = mem[ds+edi]
5 sub al, dl // al = al - dl
6 sub al, dh // al = al - dh
7 xor al, cl // al = al ˆ cl
8 rol edx, cl // rotate edx by cl bits
9 mov byte ptr ds[edi], al // mem[ds+edi] = al

10 inc edi // edi = edi + 1
11 dec ecx // ecx = ecx - 1
12 jnz loop // jump
13 push edi // push args into stack
14 call 0x7c92a950 // call a lib func

Figure 1. Sample code extracted from Bagle.
This example is extracted from the assembly code of

Bagle, which is a widespread email-based virus. For ease
of presentation and understanding we have performed some
simplifications on the original code. The key part of the
sample code is a loop formed by instructions 4 through
12. The instructions preceding the loop (i.e., instructions 1

through 3) initialize the loop counter (ecx), starting address
(edi), and another variable (edx). During each iteration,
the loop fetches a value from the data segment, performs a
calculation based upon that value, and then finally puts the
new computed value back into the data segment. Following
the loop, the program calls a library function that uses the
newly computed values – the use of these values triggers the
actions of the virus. Many different kinds of obfuscation
transformations [16] can be applied to this piece of code
to affect mutations of the Bagle virus. We will consider
such mutations to illustrate the functioning of our dynamic
signature-based virus detection technique.

2.1. Static Signatures

Before presenting our dynamic technique, in this section,
we briefly discuss how static signatures are used for virus
detection and how the detection can be thwarted when the
original virus is mutated via obfuscation transformations.
Static signature based virus detection is the most common
method that is employed by traditional antivirus software
for identifying viruses. When antivirus software scans a file
for viruses, it compares the contents of the file to a dictio-
nary of known virus signatures. If a virus signature is found
in the file, then the file is treated as infected and the antivirus
software can take actions that remove the virus.

A static virus signature consists of a sequence of ma-
chine language instructions which are both unique to the
virus and are present in every one of the virus’ infections.
Every time a new virus is encountered, it is analyzed to
identify its signature which then inserted in the dictionary of
static signatures used by the antivirus program so that future
encounters with this virus can be detected and dealt with.
For example, we could use the sequence of instructions
shown in Fig.1 as the virus signature to identify whether
a file is infected by Bagle. Suppose the above segment of
code is unique to Bagle, this is a very efficient way to iden-
tify Bagle infections.

However, as the antivirus software evolves, the virus au-
thors also develop ways to hide their viruses. One way is
that the authors can regularly update the virus codes, e.g.
mutating independent statements or changing the data seg-
ment in the virus, in order to hide the viruses from the an-
tivirus software. Another more sophisticated way is to cre-
ate a virus which can avoid detection by mutating itself each
time it infects a new program. Each new mutation essen-
tially performs the same task as its parent. These type of
virus is called a self-mutating virus. Because both meth-
ods involve code mutations, they are effective in thwarting
detection by traditional static signature based antivirus soft-
ware. For example, in the sample program shown in Fig.1,
we could change the relative order of instructions 2 & 3,
7 & 8, and 10 & 11 without altering the semantics of the
code since instructions in each pair are independent of each
other. After mutation, the antivirus software cannot use the

original static signature to identify the new infection any
more. In order to detect a virus and its variants, the tradi-
tional antivirus detectors have to use shorter signatures. For
example, in the sample program, instruction 4-6 could be
used as a signature to identify both the original and mutated
viruses since they are dependent to each other and thus hard
to mutate. But as signatures get smaller, the likelihood of
false identification increases. Therefore, it is easy to see
that the traditional virus signature does not work well when
a virus mutates repeatedly.

To identify the viruses in the same family, some new de-
tection methods based on control-flow or call graphs were
proposed [10]. However, current obfuscation techniques
can alter the program’s structure by introducing useless con-
ditional and unconditional branch instructions such that at
runtime, the order in which the program executes instruc-
tions is unchanged. For example, the sample program could
become the one shown in Fig.2 after being obfuscated.

1 lea edi, ptr [ebp+0x4025] // edi = mem[ebp+...]
2 mov edx, 0xef4013a0 // edx = 0xef4013a0
3 mov ecx, 0x3ec5 // ecx = 0x3ec5

loop:
4 mov al, byte ptr ds[edi] // al = mem[ds+edi]
5 mov ebx, 0 // ebx = 0

l1:
6 cmp ebx, 1 // ebx == 1 ?
7 je l2 // jump to l2 if true
8 sub al, dl // al = al - dl
9 inc ebx // ebx = ebx + 1

10 jmp l1 // jump to l1
l2:

11 sub al, dh // al = al - dh
12 rol edx, cl // rotate edx by cl bits
13 xor al, cl // al = al ˆ cl
14 mov byte ptr ds[edi], al // mem[ds+edi] = al
15 sub ecx, 1 // ecx = ecx - 1
16 inc edi // edi = edi + 1
17 sub edi, 0 // garbage code
18 jnz loop // jump
19 push edi // push args into stack
20 call 0x7c92a950 // call a lib func

Figure 2. Mutated version of sample code.
In the mutated code shown in Fig.2, we permute the or-

der of three pairs of instructions (2 & 3, 12 & 13, 15 & 16),
substitute “sub ecx, 1” for “dec ecx”, insert a superfluous
instruction 17, and alter its control flow by adding new in-
structions (5, 6, 7, 9 & 10). These new instructions will
not change the program semantics but prevent the antivirus
software from identifying the virus using static signature.

From the above example, we can see that it is easy to
change the static structure of a virus while keeping its run-
time semantics the same. Therefore, the static information
based antivirus software could be easily overwhelmed by
the obfuscation techniques. In the following sections, we
present our dynamic signature which is created based on a
virus’ runtime trace and illustrate how to identify an infec-
tion by using dynamic signature.

2.2. Dynamic Signatures

In this section, we develop the notion of dynamic sig-
nature for viruses and then present an algorithm for detect-
ing dynamic signatures in the next section. The dynamic
signature we develop is in form of a Dynamic Data De-
pendence Graph (dDDG). Thus, unlike the aforementioned
static signatures, a dynamic signature will capture a virus’
runtime behavior. Searching for the dDDG correspond-
ing to a dynamic signature of a virus in the dDDG for an
entire program run will be a highly expensive. However,
to make the cost acceptable, we identify short fragments
of Dynamic Backward Slices (DBSs) [28] computed at se-
lected program points. As we will show, dynamic signature
detection, which we refer to as dynamic matching, is quite
robust in the presence of code obfuscation techniques.

The dDDG of a program run is a directed acyclic graph
representing data dependences between different execution
instances of statements in a program run. More precisely, a
dDDG is defined as follows:

Definition 1. The dDDG of a program run,
dDDG(N,E), consists of a set of nodes N and a set of
directed edges E where: each node ni ∈ N represents the
ith execution instance of statement n in the program; and
each edge mj → ni ∈ E corresponds to a dynamic data
dependence of the ith execution instance of statement n on
the jth execution instance of statement m.

Figure 3. dDDG of the sample program.
Fig.3 shows the dDDG of a program run of the sam-

ple code from Fig.1. Beside the first three statements, each
statement has an execution instance for each iteration. The
last node stands for the whole library function called by
statement 14. Within the library function the values stored
by statement 9 are read and thus the function node has an
edge from each instance of node 9.

Definition 2. Given dDDG(N,E), a Dynamic Back-
ward Slice (DBS) of a statement execution ni ∈ N denoted
by DBS(ni) is the subgraph of dDDG(N,E) which in-
cludes ni as well as all other nodes and edges from which
ni is reachable, i.e.

DBS(ni) = (ni, e|e = mj → ni ∈ E) ∪
⋃

∀mj→ni

DBS(mj)

For any virus, no matter what it aims to do, it finally
calls some library function to realize its goal. Most of the
statements in the virus are dedicated to preparing data for
the library function call. In other words, if a statement’s re-
sult does not reach any library function call, then the state-
ment is likely to be superfluous code that is intentionally
introduced to thwart the detection of the virus by a static
signature based antivirus software. Because a virus com-
putes values used in library function calls, it is only appro-
priate that our dynamic signature based technique look for
the presence of dynamic virus signatures within DBSs of
library function calls.

An advantage of using DBSs is that the superfluous code
introduced to obfuscate the virus will most likely be elim-
inated during the construction of the dynamic backward
slice. The nodes in bold cycles shown in Fig.3 comprise the
DBS of the library function called by the last statement in
the sample code. Although statement 12 controls the loop,
it is not in the DBS because there is no statement having a
data dependence on it. Therefore, DBS is immune to control
flow mutation since it does not include control dependences.

Our dynamic signature of a virus is a compact represen-
tation of DBS of a library function call, which is unique to
the virus and present in its every run.

Definition 3. Given DBS(ni) which is unique to the
virus and present in its every run, a dynamic signature
DS(N,E, f) is its compact representation where: each
node n ∈ N represents statement n in DBS(ni) instead
of its execution instance, each edge m → n ∈ E means
that there is at least one execution instance of statement n
in DBS(ni) which depends on statement m’s results, and
f represents the library function call statement, based on
which DBS(ni) is created.

(a) (b)
Figure 4. Dynamic signatures of (a) the sample code
and (b) the mutated code.

In other words, the original DBS is an execution
instance-based data dependence graph while our dynamic
signature is a statement-based graph. The conversion pro-
cess is very simple and fast: we create a node for each state-
ment in DBS and connect node m to n if there exists at
least one edge from {m1,m2, . . .} to {n1, n2, . . .} inDBS.

We use a statement-based graph as our virus signature be-
cause the original DBS is very large and repetitive, which
may cause the matching process to become extremely slow.
Fig.4 show the dynamic signatures constructed based on the
sample code and the mutated code. They are clearly much
smaller than the corresponding DBSs. We also observe that
the two dynamic signatures are very similar, which means
our dynamic signature is more robust than static signatures
in presence of obfuscation techniques.
2.3. Signature Matching

The goal of the signature matching is to automatically
establish a correspondence between instructions from our
virus signature and DBSs of a program run. Given a
dynamic signature DS(N,E, f) and a program run, the
matching process contains three phrases:

1. Decomposing the program run. Before matching,
we first generate the DBSs for library calls from the dDDG
of the program run. All the DBSs are in the compact form
discussed earlier.

2. Comparing library function call. We compare the
function call in the dynamic signature with that in each
DBS. If they are different, the signature and the DBS are
considered to perform different tasks. In order to overcome
the API substitution technique, we treat two library func-
tion calls as compatible if they perform the same task. We
discard all the DBSs where the function call does not match
the call in the dynamic signature.

3. Matching the signature with each DBS. Finally, we
match the dynamic signature with each remaining DBS and
calculate their similarity. If there exists at least one DBS
whose similarity to the dynamic virus signature exceeds a
preset threshold, then the corresponding program is treated
as an infection.

We had developed a dynamic matching algorithm in our
prior work [26]. There are two main aspects to this match-
ing algorithm: instruction matching uses local value histo-
ries of instructions to overestimates of sets of instruction
that potentially match each other; and structure matching
that refines these overestimates iteratively to produce an ac-
curate match. A high degree of match between the two
dDDGs is treated as a true match. However, this algorithm
is ineffective in virus detection according to our experi-
ments. Both instruction matching and structure matching
had weaknesses which led to matches between virus and its
variants being missed. Next we identify these weaknesses
and describe the ideas used to deal with them.

Our prior algorithm used the local histories of two in-
structions to match them to each other. However, in the
case of virus detection, matching local histories does not
work well. The reason is that the machine on which the
dynamic virus signature is created may differ in its environ-
ment from the machine on which the end user is using the
antivirus software. Such environment differences can lead

Match(DS, DBS)
input:

Dynamic signature DS = G(Na, Ea),
and dynamic backward slice DBS = G(Nb, Eb).

output:
Similarity between DS and DBS.

begin
Step 1: Initialization of match sets.

N ′a ← Na
for each node n ∈ Na do
Match(n)← {m|m ∈ Nb&op(n) = op(m)}
if Match(n) = ∅

Remove n from N ′a and connect iAnc(n) to iDes(n)
end for

Step 2: Iterative refinement of Match sets.
while not stable do
- Forward pass:

for each node n ∈ N ′a do
for each node n̄ ∈Match(n) do

if ∃a ∈ iAnc(n),Match(a) ∩Anc(n̄) = ∅
Match(n)←Match(n)− n̄

end for
if Match(n) = ∅

Remove n from N ′a and connect iAnc(n) to iDes(n)
end for

- Backward pass:
for each node n ∈ N ′a do

for each node n̄ ∈Match(n) do
if ∃a ∈ iDes(n),Match(a) ∩Dec(n̄) = ∅
Match(n)←Match(n)− n̄

end for
if Match(n) = ∅

Remove n from N ′a and connect iAnc(n) to iDes(n)
end for

end while
Step 3: Calculation of similarity.

sim(DS,DBS)←
|N′a|+|

⋃
n∈N′a

Match(n)|
|Na|+|Nb|

end

Figure 5. Algorithm for matching a signature with a
compact DBS.

to differences in the local histories produced on these ma-
chines. For example, consider the email blaster worm. In
this virus the local histories of some instructions differ for
different machines because these histories depend upon the
email address lists stored on the machines and these email
lists may differ from one another.

To handle the above problem, in our new matching al-
gorithm, we match the two instructions by comparing their
opcodes. If they have the same opcode, we consider them
to be matched; otherwise, they cannot be matched. The
shortcoming of matching instructions by opcode is that this
approach cannot deal with the instruction substitution tech-
niques. For example, if the instruction ”inc eax” is mod-
ified as ”add eax, 1”, they cannot be matched. Therefore,
in order to handle the instruction substitution problem, our
signature matching algorithm looks for partial matches of
a signature to a DBS when the whole signature cannot be
matched. We also believe this problem can be handled by

setting up rules describing which kinds of opcodes can be
matched with each other.

The structure matching proposed in our new algorithm
is also superior. We found that our prior algorithm failed
when the two dDDGs being matched contain nodes which
had no corresponding matches. In our new algorithm we use
the following approach to overcome this problem. When
we find nodes in the two graphs that have no potential cor-
responding matches, we transform the graphs by eliminat-
ing these nodes. The elimination is carried out by connect-
ing the immediate ancestors of an eliminated node directly
to the immediate descendants of the node. We found that
these transformations enabled us to effectively carry out the
matching of the remaining nodes.

Next we present our dynamic matching algorithm that
uses the above form of instruction and structure matching
in detail. We also illustrate the algorithm using an example.

Fig.5 shows our algorithm for matching a signature with
a compact DBS, where iAnc(n) (iDes(n)) denotes the im-
mediate ancestor (descendant) set of node n, and Anc(n)
(Des(n)) stands for the ancestor (descendant) set of node n
(including n). The algorithm computes the Match set for
each node n inNa to be the subset of nodes inNb that match
n. After initialization, the algorithm iteratively calculates
the forward and backward passes. The forward pass ensures
that the two matched instructions use the same operands
while the backward pass ensures they are used by the same
set of instructions. If the Match set of node n ∈ Na be-
comes empty, we remove it from the Na and connect n’s
parents directly to its children. This cuts off the chain effect
of Match(n) begin empty and keeps the matching process
going. The algorithm terminates when allMatch sets stabi-
lize. The final similarity is equal to the number of matched
nodes divided by the total number of nodes.

Initial matches Final matches
Match(1)={1̄} Match(1) = {1̄}
Match(2)={2̄,3̄,4̄,1̄4} Match(2)={2̄}
Match(3)={2̄,3̄,4̄,1̄4} Match(3)={3̄}
Match(4)={2̄,3̄,4̄,1̄4} Match(4)={4̄}
Match(5)={8̄, 1̄1, 1̄7} Match(5)={8̄, 1̄1}
Match(6)={8̄, 1̄1, 1̄7} Match(6)={8̄ 1̄1}
Match(7)={1̄3} Match(7)={1̄3}
Match(8)={1̄2} Match(8)={1̄2}
Match(9)={2̄,3̄,4̄,1̄4} Match(9)={1̄4}
Match(10)={6̄} Match(10)={1̄6}
Match(11)={} Match(11)={}

Table 1. Matches between the dynamic signatures
shown in Fig.4.

We use the examples shown in Fig.4 to illustrate our
matching process. The left column in Table.1 shows the
initial matching results after the first step in our algorithm,
where i denotes node i in Fig.4(a) and j̄ stands for node j
in Fig.4(b). Since the match set of node 11 is empty, we
remove it from the N ′a. In the initial matches, each node is

matched to those nodes which have the same opcode. Then
the forward pass refines the matches according to the depen-
dence relationship. It first passes node 1, 2 & 3 since they
do not have any parents. Then it examines node 4 and re-
moves {2̄, 3̄} from the its match set since node 2̄ & 3̄ do not
depend on node 1̄. Similarly the forward pass removes {1̄7}
from Match(5) and Match (6) and {2̄, 3̄, 4̄} from Match(9).
Because node 11 is removed and not the immediate ancestor
of node 7 any more, the match set of node 7 is not emptied
due to the empty match set of node 11. Now we perform
the backward pass, where we examine the nodes in the re-
verse order. The match sets of node 5 - 10 do not change in
this pass. Let consider node 4. The result of node 4 is used
by node 5 but node 8̄ & 1̄1, which are in the match set of
node 5, do not depend on node 1̄4 at all. Therefore, node 1̄4
does not match node 4 and is removed from the match set
of node 4. Similarly we remove {3̄, 4̄,1̄4} from Match(2)
and {2̄, 4̄,1̄4} from Match(3). Note that the match sets at
this point represent the final results (see Table.1). Node 5
and 6 have two matched nodes 8̄ and 1̄1 since they have
the same opcode and the dependences. If we could build a
set of match rules, like “dec *” = “sub *, 1”, then node 1̄5
would be matched to node 11. While in this example we
performed the forward pass once and backward pass once,
in general we may have to apply them for several times.
Using the final matches, we can get the similarity between
those two signatures as sim = (10+10)/(11+12) = 87%.
If we can set up match rules and recognize the garbage in-
structions like “sub *, 0”, we can further improve the result.

2.4. Automated Signature Extraction

Once a virus has been encountered and a few variants
of the virus have already been found, we know that we are
dealing with a mutating virus and hence we construct a dy-
namic signature for the virus. This signature is constructed
from the already available set of program runs for the same
virus family (i.e., virus and its mutants). A good signature
is one that can be found in every available program run in-
volving the virus, but at the same time it is unlikely to be
found if the virus is not present. In other words, we want
to minimize the likelihood of both false negatives and false
positives. Usually, a signature for a new virus is chosen by
an antivirus expert. However, the procedure of choosing a
virus signature is very time-consuming while the number of
new viruses being produced continues to increase. There-
fore, we developed a method for automatically extracting
good dynamic signature from the runtime traces of a virus.
The signature extraction procedure consists of three steps:

1. Generating candidate signatures. In this step, given
a set of runtime traces of the same virus family, we create a
dDDG for each trace. In each dDDG, we search for all li-
brary function calls and generate a candidate signature from
each library function call’s DBS. The subsequent steps se-
lect the best signature from the candidates.

2. Filtering out the signatures which could cause false
positives. Intuitively, the shorter the signature, the more
likely its is that it will result in false positives. In this step,
we remove the candidate signatures the sizes of which are
smaller than some established threshold.

3. Choosing a signature which minimizes the false
negatives. Suppose we have n runtime traces. We use Ui =
{DSi1, DSi2, . . .} to denote the set of candidate signatures
generated from the i-th trace. Each candidate signature is
assigned a score, which can be calculated as follows:

score(DS) =

n∑

i=1

max
DSi

j
∈Ui
{sim(DS,DSij)}

The score of DS is equal to the summation of the similari-
ties betweenDS and its corresponding slice in each trace. It
can be seen as the possibility of DS being present in a run-
time trace of the virus. We select the candidate signature
with highest score as the best signature.

Now we have completed our description of how a dy-
namic signature is obtained and how this can be matched
with dynamic backward slices to detect viruses. In the next
section we discuss issues that must be addressed in the de-
ployment of a dynamic virus detector.
2.5. Deploying Dynamic Virus Detection

There are two main challenges in deploying dynamic
virus detection. First, dynamic detection requires an in-
fected program to be executed. However, such execution
will enable the virus to cause the damage that it is intended
to cause. We must solve this problem to make dynamic de-
tection practical. Second, it is not desirable to run a program
using an emulator forever. However, to stop using the em-
ulator we must develop a mechanism that decides that the
virus scanner has sufficiently checked the program. Next
we discuss our solutions for the above two problems.

To address the first problem, we exploit sandboxing [14].
A sandbox is a CPU emulator where a file can be executed
as if it were running on a real computer. When a virus scan
is requested for an executable file, our virus detector loads
the file into the sandbox and then executes it in this com-
pletely isolated environment. Thus, during the execution,
even though the suspect file is indeed infected by a virus, it
cannot cause any damage to the actual host computer.

To overcome the second problem, we need a mechanism
that determines that the program can be cleared as being
sufficiently scanned. Since each library call represents a
potential point through which a virus can attack, we track
the library calls that have been encountered by the emulator
and cleared via dynamic virus signature matching. In fact,
once a library call has been cleared, we can turn off dynamic
signature matching for that library call. However, when the
sandbox encounters a library function call that has not been
covered before, we match its backward slice with the dy-
namic signatures and mark it as encountered and cleared.

Once all library function call sites have been cleared by
the emulator, we can declare the program as being free of
viruses and stop running it using the sandbox.

It is possible that some library function calls in the tar-
get program are not encountered for a very long time. This
will cause the program to continue being run using the em-
ulator. To tackle this problem, our sandbox terminates the
emulation process if no new library function calls have been
encountered for a certain period of time. However, we still
need to deal with the situation where one of the uncleared
library calls is encountered as the program may be infected
by a virus at such a call. We instrument the non-cleared li-
brary function calls such that when they are encountered in
the actual computer, the execution of the program will be
suspended and the program is put in the sandbox for check-
ing the newly encountered library function call. If the pro-
gram is indeed an infection, we terminate that suspended
process and isolate the executable file. If our detector can-
not find any virus signature at that function call, we can re-
move the corresponding instrumentation and continue that
suspended process. In this way, we can make sure our de-
tector does not miss any virus hidden in the target program.

Finally, our virus detector is comprised of three compo-
nents: sandbox, trace collector, and signature scanner. At
the start of the simulation, the sandbox begins executing the
target program and informs the trace collector of the process
to be traced. The trace collector then keeps collecting the
trace and when a backward slice of some library function
call has been generated, it calls upon the signature scanner
to search though the slice for known dynamic virus signa-
tures. Our dynamic detector does not have to be used all the
time. When a new virus family emerges with no static sig-
nature being able to detect all its variants, the antivirus com-
panies can first create a dynamic signature for it and thus
the users can turn on our dynamic virus detector to protect
their computers from the new virus family in time. After
the antivirus companies create the static signatures for all
the variants of the new virus family, our dynamic detector
can be deactivated since the static detector is more efficient.

3. Experimental Evaluation
The goal of our experiment was to measure the effective-

ness of our dynamic signature based virus detector, which
can detect different variants in a virus family by using a
single dynamic signature. To do that, we applied our de-
tector to a set of real-world viruses. For each virus family,
we extract the dynamic signature from three randomly se-
lected variants, and then use it to identify other variants in
the same family. We only selected those signatures con-
taining at least 30 nodes – we did not use short signatures
as they are likely to result in false positives. Another goal
of these experiments is to measure the runtime overhead of
dynamic virus detection.

3.1. Implementation
In our implementation, we used QEMU [4], an open

source process emulator, as the sandbox. The trace collec-
tor was realized by modifying the source code of QEMU.
We use the paging register to identify the process to be
traced. To make our technique efficient, we developed a few
methods to reduce the overhead of tracing and matching.

3.1.1 Reducing Tracing Overhead
Trace collection is a time and space-consuming procedure.
It accounts for a major part of overhead introduced by our
detector. The time taken by the trace collecting procedure
is usually several times larger than the normal running time.
The trace data of an application may take several gigabytes
of space. Therefore, to make our virus detector efficient, we
need to reduce the cost of tracing in both time and space.

Time overhead. Due to presence of loops, there is a lot
of repetitive contents in a runtime trace. Our approach to re-
ducing time overhead is based upon avoiding the recording
of repetitive traces. To determine if a program run is in-
fected, our detector decomposes the whole trace into mul-
tiple DBSs and scan those DBSs one by one. If there are
two same DBSs in a trace, the extra DBS is useless since it
does not give extra information to the detector. Therefore, if
we could avoid collecting the part of trace corresponding to
the extra DBS, we could reduce the time overhead of trace
collecting without degrading our detector’s performance.

Definition 4. Given a trace, a User Trace Block (UTB)
is a segment of trace produced from user code and thus, the
trace right before or after a UTB is from library code.

Definition 5. Given a trace, a Library Trace Block (LTB)
is a segment of trace produced from library code and thus,
the trace right before or after the LTB is from user code.

Definition 6. Given a trace, a Paired Trace Block (PTB)
is a pair of UTB and LTB where the UTB is immediately
followed by the LTB.

Figure 6. A PTB Example.
Fig.6 shows an example of PTB. Each DBS of a library

function call usually corresponds to a PTB. To avoid repet-
itive PTB, when the collector reaches a new PTB, it checks
if the addresses of the first n instructions appear more than
m times, where n and m are established parameters. If so,

the collector stalls dumping the trace until the new PTB.
This can significantly reduce the tracing overhead espe-
cially when the execution time of the process is very long.

Space overhead. The trace of a program usually takes
several gigabytes of space. If we save the trace into a file,
the disk operation will greatly increase the tracing overhead.
In practice, we find that in order to create a DBS for the last
library function call during the runtime, we only need to
keep the latest 40 megabytes trace, which can be easily kept
in the memory.
3.1.2 Reducing Matching Overhead
Using separate core to do matching. As the multicore
computers have become available, it is feasible to use a
separate core to conduct the matching procedure. While
the matching task is performed on one core, the scanned
process can still be executed on the other core. Thus, the
matching task will not slow down the scanned process.
Early termination of the matching procedure. In our
matching algorithm, we keep removing the unmatched
nodes away from the node sets until convergence. As we
remove more and more unmatched nodes, the similarity de-
creases correspondingly. To reduce the matching overhead,
we could calculate the similarity after each iteration. Once
the similarity is below some threshold, we can terminate the
matching procedure even though the termination condition
is not satisfied, because the intermediate result has shown
the signature and DBS cannot be matched.
3.2. Examined Viruses

In our experiments, we apply our dynamic signature
based method to seven virus families which in all contain
120 virus variants. These viruses are downloaded from Of-
fensive Computing [1] and VX Heavens [2] websites.

Table.2 lists all the viruses used in our experiment. All of
them are present in infected host files. They cover four dif-
ferent categories of viruses. Except for Dislex and Etap, all
viruses are widespread or were once widespread. Each virus
family has many variants – ranging from 11 to 24. To detect
these variants, existing commercial antivirus software need
at lease one signature for each variant. However, from the
view of execution traces, these variants have similar behav-
iors. Therefore, ideally, we expect our trace matching algo-
rithm to detect all the variants by using only one dynamic
signature. Dislex and Etap are different because they mu-
tate their own codes according to a set of predefined rules
when they infect other files. This makes it difficult for the
static signature based techniques to detect them.
3.3. Detection Rate

When checking a virus V with a signature DS, we treat
V as detected when examining a backward dynamic slice
DBS if the similarity of DBS and DS computed by our
matching algorithm exceeds 0.5. We observed that the sim-
ilarity between two different slices is around 10% − 20%
while the similarity between two matchable slices is about

80% − 90%. Therefore, we set the threshold as 0.5 to dis-
criminate the matched slices from the unmatched ones.

Name Detection Rate Avg Sim. Sig. Size
Agobot 100% 0.89 62
Bagle 100% 0.95 65
Dislex 100% 0.84 48
Etap 93.3% 0.72 44
Kriz 100% 0.82 39

Mytob 100% 0.88 57
Netsky 100% 0.94 63

Table 3. Detection rate. From left to right: virus family
name, detection rate, average similarity, and size of the
signature.
Table.3 shows the experimental results for all seven virus

families. Our dynamic signature based detector identifies
all the viruses except one variant in the Etap family. Corre-
spondingly, the average similarity between Etap and its sig-
nature is lowest. The reason is that Etap applies instruction
substitution technique to mutate its code, which our method
cannot handle effectively. For all other viruses, our method
works well since the similarities between the viruses and
their signatures is very high.
3.4. False Positives

From Table.3, we can see that the size of the signatures
we extracted ranges from 39 to 65 nodes, which is large
enough to avoid false positive. To verify this, we measured
the false positive rates in an experiment. In the trace of a
virus, there are a number of different backward slices. Some
slices belong to the virus and should be detected by using
the corresponding signature while the others should not be
detected. We match each slice in the virus traces with the
dynamic signatures. The result shows that the false positive
rate is 0% for all the slices in the virus traces, that is, there
is no non-virus slice which is identified as a virus slice.

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

P
er

ce
nt

ag
e

of
 s

lic
es

Similarity

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

P
er

ce
nt

ag
e

of
 s

lic
es

Similarity

non-virus slices virus slice
Figure 7. Similarity distribution.

Fig.7 shows the similarity distribution for both non-virus
slices and virus slices. We can see that the similarities of the
non-virus slices are all below 40% while most of the virus
slices’ similarities are around 80%. Since we set the thresh-
old as 0.5, we did not get any false positives even though
very few virus slices are identified as non-virus.
3.5. Runtime Overhead

Table.4 shows the overhead of our method on several real
virus examples. The data were collected on a Dell Preci-
sion T3400 with one Intel quad-core processors at 2.40GHz,

Name # of Variants Year Self-mut? Category Description
Agobot 24 2004 N worm giving its creator complete access to the infected computer
Bagle 17 2004 N worm sending email to addresses it gathers
Dislex 21 2002 Y virus –
Etap 15 2003 Y virus popping up junk message box
Kriz 11 1998 N virus damaging the motherboard and hard disk

Mytob 12 2005 N worm gathering personal and financial information
Netsky 20 2004 N worm sending email to addresses it gathers

Table 2. Viruses used in the experiment. From left to right: virus family name, number of variants we collected, year virus
first appeared, self-mutating or not, category, and description.

4GB of RAM. All the timings in the table are in seconds.
From the table, we can see that the tracing overhead of our
method is from 2x to 10x while the matching overhead is
relatively small, from 1x to 3x. Since the matching proce-
dure can be executed on a separate core in practice, it will
not affect the overall performance of our dynamic detector.

Name # of slices Exec. Tracing Matching
Bagle.at 292 5.13 50.89 13.57
Bagle.au 289 5.24 36.91 10.25
Netsky.t 613 8.54 64.06 11.73

Kriz.3863 378 19.82 43.68 7.23
Dislex 409 6.77 30.02 6.80

Table 4. Overhead. From left to right: Virus name,
number of backward slices, execution time, tracing
overhead, matching overhead.

The tracing overhead of Bagle.at is almost 10x which is
the highest. This is because its host program does many
different checks on the operating system which produces a
large piece of non-repetitive trace. Kriz.3863 has the low-
est tracing overhead (slightly over 2x) because its host pro-
gram is a notepad. Each time the notepad receives an input,
it calls the same library function to show the character on
the screen. Therefore, most backward slices in its trace are
repetitive, and thus can be neglected. In our experiment, we
did not use any trace compression technique [27] in the trac-
ing procedure. Also we did not use any antivirus technique
[5] to detect the possible entry-points of virus code in a host
program, which can limit the range of code to be traced.
We believe the tracing overhead can be further reduced if
the aforementioned techniques are employed.

4. Related Work
4.1. Malware Detection

Malware detection techniques can be generally divided
into two categories: static analysis and dynamic monitoring.

Static analysis. There are several malware detection
work [6, 7, 12] based on matching static semantic patterns.
SAFE [6] is a malware detector which uses a malicious code
automaton as the semantic signature to match the control
flow graph of a program. If a match is found, the program is
identified as a malware. SAFE can only handle very simple
obfuscations such as garbage insertions. The static analysis

technique proposed in [12] employs the symbolic execution
to match semantic patterns and is designed to detect kernel-
level intrusions (known as rootkits). The malware detector
presented in [7] leverages not only symbolic execution but
other decision procedures to identify general malicious be-
haviors. All of these techniques cannot detect the malicious
behaviors involving control flow alteration and instruction
substitution (Fig.1 and Fig.2). On the contrary, our tech-
nique can effectively detect them by eliminating incompat-
ible nodes in the signature matching.

Several other malware detection methods were based on
code normalization, which can handle control flow alter-
ation [5] and instruction substitution [23]. However, they
both rely on the obfuscation rules and hence can only han-
dle the specific obfuscations that their rules target.

Dynamic monitoring. Generic decryption (GD) [16] is
a technique used by several antivirus companies to detect
encrypted viruses. It executes the suspect program in a vir-
tual machine and search for virus signatures in the potential
virus code region of virtual memory. Petroni and Hicks [20]
proposed a method to detect the control-flow change during
runtime. Erlingsson and Schneider [9] proposed a binary
rewriting method to insert security-purpose inline checks
into Java program. Copilot [19] is a kernel integrity monitor
designed to detect malicious modifications to an operating
system by aggressively examining the host RAM. Laika [8]
is a system which identifies the data structures used by a
program in its memory image by using Bayesian learning.
It can be used to detect polymorphic viruses by comparing
their data structures. Yin et al. designed a system, Panorama
[25], which detects malwares by capturing certain malicious
information access and processing behavior, e.g., password
thieves and network sniffers. Rieck et al. [22] proposed a
machine learning method which extracts the behavior pat-
terns (e.g. opening a file and locking a mutex) shared in a
malware family to detect new instances of the same family.
4.2. Program Differencing

Static differencing. Statically comparing two program
versions have been extensively explored. The early work
[15] checks the differences in the code using line by line
comparison. Several different methods [3, 10, 13] are pro-
posed to assess program equivalence by comparing con-
trol flow or call graphs. Jackson and Ladd [11] proposed

a method which measure differences by comparing in-
put/output dependences of procedures. All these methods
except [10] work on source or intermediate code representa-
tions of the program versions. These methods cannot handle
the program versions which statically appear to be different
but dynamically behave the same, in which case our method
can do well. Recently, Person et al. [18] proposed a differ-
encing algorithm by using symbolic execution, called Dif-
ferential Symbolic Execution (DSE), which can deal with
certain kinds of obfuscations.

Dynamic differencing. Compared to the research work
in static differencing, relatively fewer works have been done
in dynamic differencing. Reps et al. [21] proposed a
method to detect Y2K bugs by using path profiling and
Wilde [24] developed a system which visualize the changes
in the dynamic behavior of a program. Our prior works
[17, 26] presented techniques to match runtime traces of
two program versions. Compared to them , the match-
ing algorithm proposed in this paper is more powerful and
more suitable for virus detection. First, the prior work com-
pares nodes in dDDGs by comparing their produced values,
which does not work in virus detection since the statements
of a virus may dynamically produce different values on dif-
ferent machines. Second, in prior work, if the match set of
a node is empty (i.e. it cannot match any node in the other
program), it may propagate to other nodes so that the match
sets of its descendants may all become empty. In this pa-
per, we solved the above two problems. Moreover, both of
our prior papers focused on comparing two entire programs
while this paper is mainly about finding a small piece of
signature in a large program.

5. Conclusions
We gave a new type of virus signature, called dynamic

signature, which is designed for detecting mutating viruses.
Correspondingly, we developed a system of approaches for
how to extract and match the dynamic signatures and how
to deploy our dynamic signature based virus detector. Ex-
periments demonstrated that our matching algorithm is very
effective in identifying different variants in a virus family
with a single dynamic signature while producing no false
positive. In the future, we could extend our work to detect-
ing other types of malwares, e.g., rootkits. We also plan
to reduce the overhead of our detection method using trace
compression/optimization techniques in our prior work.

Acknowledgements. This research is supported by NSF
grants CNS-0751961, CNS-0751949, CNS-0810906, and
CCF-0753470 to UC Riverside.

References

[1] Offensive Computing. http://www.offensivecomputing.net/.
[2] VX Heavens. http://vx.netlux.org/.

[3] T. Apiwattanapong, A. Orso, and M. J. Harrold. A differenc-
ing algorithm for object-oriented programs. ASE’04.

[4] F. Bellard. QEMU, a fast and portable dynamic translator. In
ATEC’05.

[5] D. Bruschi, L. Martignoni, and M. Monga. Code normaliza-
tion for self-mutating malware. IEEE Security and Privacy,
2007.

[6] M. Christodorescu and S. Jha. Static analysis of executables
to detect malicious patterns. In USENIX Security Symposium
2003, 2003.

[7] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E.
Bryant. Semantics-aware malware detection. In SP’05, 2005.

[8] A. Cozzie, F. Stratton, H. Xue, and S. T. King. Digging for
data structures. In OSDI 2008.

[9] U. Erlingsson and F. B. Schneider. IRM enforcement of java
stack inspection. 2000.

[10] H. Flake. Structural comparison of executable objects. In
DIMVA’04.

[11] D. Jackson and D. A. Ladd. Semantic diff: A tool for sum-
marizing the effects of modifications. In ICSM’94.

[12] C. Kruegel, W. Robertson, and G. Vigna. Detecting kernel-
level rootkits through binary analysis. ACSAC’04.

[13] J. Laski and W. Szermer. Identification of program modifica-
tions and its applications in software maintenance. CSM’92.

[14] S. Miwa, T. Miyachi, M. Eto, M. Yoshizumi, and Y. Shin-
oda. Design and implementation of an isolated sandbox with
mimetic internet used to analyze malwares. In DETER 2007.

[15] E. W. Myers. An o(nd) difference algorithm and its varia-
tions. Algorithmica, 1986.

[16] C. Nachenberg. Computer virus-antivirus coevolution. Com-
mun. ACM, 1997.

[17] V. Nagarajan, R. Gupta, X. Zhang, M. Madou, and B. D.
Sutter. Matching control flow of program versions. ICSM’07.

[18] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pǎsǎreanu.
Differential symbolic execution. In SIGSOFT ’08/FSE-16.

[19] N. L. Petroni, T. Fraser, J. Molina, and W. A. Arbaugh. Copi-
lot - a coprocessor-based kernel runtime integrity monitor. In
USENIX Security Symposium 2003.

[20] N. L. Petroni and M. Hicks. Automated detection of persis-
tent kernel control-flow attacks. In CCS’07.

[21] T. Reps, T. Ball, M. Das, and J. Larus. The use of program
profiling for software maintenance with applications to the
year 2000 problem. SIGSOFT Softw. Eng. Notes, 1997.

[22] K. Rieck, T. Holz, C. Willems, P. Dussel, and P. Laskov.
Learning and classification of malware behavior. In
DIMVA’08.

[23] A. Walenstein, R. Mathur, M. R. Chouchane, and A. Lakho-
tia. Normalizing metamorphic malware using term rewriting.
SCAM’06.

[24] N. Wilde. Faster reuse and maintenance using software re-
connaissance. Technical Report SERC-TR-75F, SERC, Univ.
of Florida, CIS Department, 1994.

[25] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: Capturing system-wide information flow for mal-
ware detection and analysis. In CCS’07.

[26] X. Zhang and R. Gupta. Matching execution histories of
program versions. SIGSOFT Softw. Eng. Notes, 2005.

[27] X. Zhang and R. Gupta. Whole execution traces and their
applications. ACM Trans. Archit. Code Optim., 2005.

[28] X. Zhang, R. Gupta, and Y. Zhang. Precise dynamic slicing
algorithms. In ICSE’03.

