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Program slicing is an effective technique for narrowing the focus of attention to the relevant
parts of a program during the debugging process. However, imprecision is a problem in static
slices, since they are based on all possible executions that reach a given program point rather
than the specific execution under which the program is being debugged. Dynamic slices, based
on the specific execution being debugged, are precise but incur high run-time overhead due to
the tracing information that is collected during the program’s execution. We present a hybrid
slicing technique that integrates dynamic information from a specific execution into a static
slice analysis. The hybrid slice produced is more precise than the static slice and less costly
than the dynamic slice. The technique exploits dynamic information that is readily available
during debugging—namely, breakpoint information and the dynamic call graph. This informa-
tion is integrated into a static slicing analysis to more accurately estimate the potential paths
taken by the program. The breakpoints and call/return points, used as reference points, divide
the execution path into intervals. By associating each statement in the slice with an execution
interval, hybrid slicing provides information as to when a statement was encountered during
execution. Another attractive feature of our approach is that it allows the user to control the
cost of hybrid slicing by limiting the amount of dynamic information used in computing the
slice. We implemented the hybrid slicing technique to demonstrate the feasibility of our
approach.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging

General Terms: Algorithms, Experimentation, Theory

Additional Key Words and Phrases: Breakpoint, dynamic call graph, dynamic slice, hybrid
slice, static slice

1. INTRODUCTION

Slicing has proven to be a useful tool in the debugging of programs. Static
slicing algorithms determine the set of program statements that may affect
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the computation of the value of a variable at a specified program point
[Agrawal 1994; Choi and Ferrante 1994; Gupta and Soffa 1994; Lyle and
Weiser 1987; Weiser 1984]. However, since static slices are computed under
all possible executions of the program that reach a specified point, the
generated slices are large and imprecise (for a particular execution), which
limits their usefulness in practice. Therefore, techniques that improve the
precision and reduce the size of the static slice are of significant interest.

One approach for improving the precision of static slices is to employ
dynamic slicing [Agrawal and Horgan 1990; Duesterwald et al. 1992b;
Korel and Laski 1988]. A dynamic slice is constructed for a fixed input (i.e.,
for a specific program execution) in contrast to a static slice, which makes
no assumptions about the input. However, the construction of a dynamic
slice is expensive, since it requires tracing of the program’s execution.
Therefore, techniques that reduce the expense of dynamic slices without
sacrificing too much of the precision are desirable.

An approach to improve the efficiency of dynamic slicing focuses on the
use of static information to reduce the run-time overhead by limiting the
amount of tracing that is needed during execution [Ball and Larus 1994;
Choi et al. 1991; Duesterwald et al. 1992b; Kamkar et al. 1993; Netzer and
Weaver 1994]. Information about the program is used to determine a
subset of program points that should be traced. Although this approach
does reduce the tracing effort, the size of traces can still be quite large.

Our approach in this article is the development of a hybrid slicing
technique that integrates a limited amount of dynamic information into a
static slicing analysis. The hybrid slice is computed both intraprocedurally
and interprocedurally by exploiting information readily available during
debugging. Inaccuracies in static slices result from the conservative predic-
tion of potential control flow and data dependencies. Our technique uses
dynamic information to more accurately predict control flow and thus
eliminate some of the paths that could not have been involved in the
specific execution. The particular dynamic information exploited is break-
pointing information and dynamic procedure call and return information.
The breakpoint information consists of breakpoint positions in the code
that are encountered as well as breakpoint positions that are not encoun-
tered. For interprocedural slicing, procedure calls and returns are used,
including the code position of the call sites.

The hybrid slicing approach improves on the precision of static slicing by
computing more accurate and therefore smaller slices. The hybrid slice
decomposes the overall slice into subslices by using the dynamic informa-
tion as reference points, thus dividing the execution path into intervals.
Each statement in a slice is associated with the particular execution
interval(s) in which it is found. Therefore, the user can examine slices in
increments and draw conclusions that cannot be inferred simply by exam-
ining an overall static slice, which is the usual approach. Another attrac-
tive feature of our approach is that it allows the user to control the cost of
slicing by limiting the amount of dynamic information provided to the
hybrid slicing algorithm.
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The static slicing analysis technique for the computation of hybrid slices
is unique in the following two respects. In our analysis, when a dependency
being sought is found (e.g., a definition corresponding to a use), it is not
immediately assumed to be part of the slice. The algorithm first must
ensure that the path on which the dependency is found is feasible with
respect to the dynamic information. In order to do so, instead of simply
propagating a variable name of interest, the breakpoint or call/return point
relative to an execution point is also propagated. The dynamic information
and the analysis technique also enable the factoring of the overall slice into
subslices and the exclusion of some statements that would have been
included if no dynamic information were available.

Intraprocedurally, hybrid slicing degenerates to static slicing if no break-
pointing information is provided. It precisely predicts control flow if break-
points are placed to capture the outcome of each predicate in the program.
Hybrid slicing adapts to the user’s demands, since more accurate informa-
tion is provided for program areas that are of most interest to the user, that
is, where the user has introduced breakpoints.

We implemented the hybrid slicing technique at both the intraprocedural
and interprocedural levels to demonstrate its practicality and effectiveness.
We found that the hybrid slice produced is smaller than the static slice and
does reduce in size as more breakpoints are added. We also found that
there is no measurable difference in execution time between computing
static slices and hybrid slices.

Our technique uses the control flow graph as the program representation.
Another representation that has been used in slicing is the program
dependence graph [Ferrante et al. 1987; Horwitz et al. 1990]. The program
dependence graph is not directly applicable to the hybrid slicing technique
for it represents control dependence and not control flow. In order to utilize
breakpointing information during PDG slicing, a mapping would have to be
provided between various points in the control flow graph and the program
dependence graph.

Dynamic slicing techniques [Agrawal and Horgan 1990; Duesterwald et
al. 1992b; Korel and Laski 1988] can be used to compute precise slices,
since accurate control and data flow information can be saved during
program execution. Relevant data dependences among statements involv-
ing only scalar variables can be accurately determined if the exact program
path taken during the execution is known. On the other hand, accurate
identification of data dependences in the presence of pointers and arrays
requires tracing all read and write operations. Since the breakpoint history
used during hybrid slicing only enables us to predict the execution path
taken during execution with greater accuracy, its main impact is the
improved precision of static slicing for statements involving scalars. In
contrast dynamic slicing can also accurately slice programs in the presence
of pointers and arrays.

Other approaches to hybrid slicing have been proposed [Choi et al. 1991;
Duesterwald et al. 1992a; 1992b; Kamkar et al. 1993; Netzer and Weaver
1994]. These approaches use static information to improve the execution
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time performance of dynamic slicing while maintaining the precision of
dynamic slicing. In one approach, dependences that can be computed
statically are computed before dynamic slicing and utilized at run-time.
Dependences involving array elements or pointers that must be computed
at run-time are computed at execution time and recorded in a trace
[Duesterwald et al. 1992a; 1992b; Kamkar et al. 1993]. Another approach
records only a small amount of trace information during program execu-
tion. During debugging, these coarse-grained traces are supplemented with
static information to generate fine-grained traces [Choi et al. 1991; Netzer
and Weaver 1994].

The notion of a constrained/quasi-static slice is an approach to reduce the
size of static slices [Weiser 1984]. An algorithm for computing constrained
slices appears in Field et al. [1995]. Constraints on input values are
provided, and using this information, a static slice is produced that
excludes program executions requiring inputs that do not satisfy the given
constraints. In contrast, hybrid slicing integrates dynamic information for
improving the precision and cost of slicing during debugging. The useful-
ness of constrained slicing for understanding legacy codes has been demon-
strated in Ning et al. [1994]. While constrained slicing is useful for program
understanding, hybrid slicing is more appropriate for program debugging.

A related operation to slicing is chopping [Jackson and Rollins 1994;
Reps and Rosay 1995], which computes the elements that cause a program
point to have an effect on another program point. It thus provides a more
focused approach than slicing for determining the effects of a program
point on another. Our approach of using subslices also provides more
focused slices according to the program’s execution history.

In Section 2 of this article, we describe the hybrid slicing technique for a
single program module that uses breakpoint information. In Section 3 we
describe interprocedural slicing that uses call/return information. The
algorithms developed for both types of dynamic information can be used
separately or combined into a hybrid slicing algorithm that uses both
call/return information and breakpoint information to compute the slices.
An implementation is briefly described in Section 4, and concluding re-
marks are given in Section 5.

2. HYBRID SLICING ON A SINGLE PROGRAM MODULE

Program slicing coupled with the breakpointing of a program provides an
effective tool for debugging programs. A typical debugging session based
upon breakpoints and slicing is characterized as follows:

—The user sets breakpoints and starts the program execution.
—When a breakpoint is encountered, the user examines the values of

variables at the breakpoint.
—If the values are as expected, the user resumes the program’s execution.

However, before resuming execution the user may disable some existing
breakpoints and add new ones.
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—If the values are incorrect, the user requests slicing information for
selected variables to locate the potential cause of the error.

The debugging session continues in this way. However, there is no
attempt during the slicing to use the occurrence of a prior breakpoint or the
nonoccurrence of a breakpoint in computing the slice or to provide more
specific information as to whether a statement was encountered before or
after a prior breakpoint. Thus, in our approach to slicing we have two
primary goals. One goal is to provide the user with more accurate slices;
that is, we would like to exclude statements that could not have affected
the values of requested variables at the breakpoint, given the particular
execution. Another goal is to split the overall slice into subslices corre-
sponding to relevant statements that could have been executed between
every successive pair of breakpoints encountered so far. This approach
allows the user to follow the execution of the program as it occurred and
therefore leads to a better understanding of how the values of selected
variables were computed. For example, if the same statement is executed
multiple times, it may be included in multiple subslices. Our approach in
computing hybrid slices is to save the breakpoint positions and use them in
the computation of more accurate slices as well as in the splitting of a slice
into subslices.

In order to define the form of the breakpoint history, we view the
program execution as consisting of a series of intervals where each interval
represents the execution between two successive breakpoints encountered
during the execution. Consider an execution interval during which a set of
breakpoints B was active (i.e., set). Further assume that the interval was
terminated when a breakpoint b [ B was encountered. The history associ-
ated with this execution interval is a pair of the form (b, N 5 B 2 {b}),
where b is the breakpoint encountered at the end of the execution interval,
and N is the set of breakpoints that were active but not encountered during
the interval. The overall breakpoint history is composed of the breakpoint
histories of individual execution intervals. The overall hybrid slice is
composed of the hybrid subslices corresponding to the execution intervals.
The computation of a hybrid slice is initiated with respect to values of
variables at the most recent breakpoint. A more precise definition of the
breakpoint history and hybrid slices follows.

Definition 2.1. The breakpoint history of a program execution is of
the form

BH 5 ^~b0, f!, ~b1, N1 5 B1 2 $b1%!, . . .~bm, Nm 5 Bm 2 $bm%!&,

where b0 is the start node of the program; bm is the latest breakpoint
encountered; Bi is the set of breakpoints that were active during the
execution interval from breakpoint bi21 to bi; and Ni is the set of break-
points that were active but not encountered during the execution interval
from bi21 to bi.
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Definition 2.2. A slicing criterion is of the form SC 5 (V, b), where V
is a set of variables whose values are of interest at breakpoint b.

Definition 2.3. For a given breakpoint history, BH 5 ^(b0, f), (b1,
N1), . . . (bm, Nm)&, the hybrid slice with respect to a slicing criterion SC 5
(V, bm) is defined as follows:

HSLICE~b0, bm!4 ø
i51

m

HSLICE~bi21, bi!,

where HSLICE(bi21, bi) contains those statements that were possibly
executed after breakpoint bi21 and prior to breakpoint bi and where their
execution, directly or indirectly, influenced the computation of the value of
some variable in V at bm. The statements that influence the computation of
a variable are computed by taking the transitive closure over both data and
control dependences. Data slices are computed by taking the transitive
closure over only data dependences.

As the breakpoint history for a given program execution grows, so does
the number of subslices computed by the hybrid slicing algorithm. The
complexity of computing hybrid slices can be limited by restricting the size
of the breakpoint history. It is reasonable to expect that the subslices
corresponding to the recent breakpoints are of more interest to the user
than the earlier ones. Therefore the size of the history can be limited by
considering the recent breakpoints and eliminating the earlier breakpoints.
For example, let us assume that the complete breakpointing history under
a program execution is given by BH 5 ^(b0, f), (b1, N1), . . . (bm, Nm)&. We
can replace this history by the following shortened breakpoint history:

SBH 5 K~b0, f!,Sbm2D21, Nm2D21 5 ù
i51

m2D21

NiD, ~bm2D, Nm2D! . . . ~bm, Nm!L.

The shortened history only considers the most recent D breakpoints. The
consequence of this approach is that the accuracy of the subslice corre-
sponding to the execution from b0 to bm2D21 is sacrificed to limit the cost of
computing hybrid slices. In fact the subslice for interval b0 to bm2D21
degenerates to the static slice for that interval. The breakpoints in set
Nm2D21 of the shortened history include all those breakpoints that were set
and never encountered for the program’s execution up to breakpoint
bm2D21.

The example in Figure 1 illustrates the usefulness of hybrid slices. We
set breakpoints at statements 4, 9, 10, and 11 before the program execution
begins (see Figure 1(a)). The results of computing hybrid data slices for a
number of breakpoint histories are shown in Figure 1(b). We focus on the
computation of the hybrid slice for variable X when the breakpoint at
statement 11 is encountered. First consider the execution in which no
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breakpoint other than 11 was encountered (see row 1 of Figure 1(b)). Our
algorithm is able to utilize this information to conclude that the value of X
at 11 is the value that was read at statement 1, and therefore the hybrid

Fig. 1. Examples of hybrid data slices.
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slice contains only statement 1. On the other hand, a static data-slicing
algorithm will report that statements 1, 2, 4, 5, 6, 9, and 10 are all part of
the data slice. Therefore by using breakpointing history, the sizes of slices
can be considerably reduced.

Let us consider the last data slice shown in Figure 1(b) (row 4). In this
execution the overall hybrid slice contains all statements that are in the
static slice except for statement 5. By using the breakpoint history, we can
determine that the path through node 5 could not have been executed. By
examining the subslices in the example, we obtain useful information about
the execution of the program. The subslices show that the values of X and Y
are initialized at statements 1 and 2 and then updated at statements 6 and
4, respectively. Next the value of X is modified at statement 9. Using this
current value of X and the value of Y from statement 4, a new value of X is
computed at statement 10. Finally at statement 9 the value of X is updated
again, which is then available at statement 11. It should be noted that
statement 9 is encountered twice during the execution and therefore
contained in 2 subslices. As we can see from this example, by providing
subslices we allow the user to understand the flow of values including those
values computed during the execution of loops. This flow of values could not
have been inferred by simply examining an overall slice for a single
module.

Let us now illustrate the effect of shortening the histories on the quality
of slicing information. Let us assume that the last history in Figure 1(b)
has been shortened to only include the two latest breakpoints, i.e., D is set
to two, and the breakpoints 4, 9, and 10 are no longer part of the history.
Using the shortened history we obtain the subslices HSLICE(9, 11) 5 {9}
and HSLICE(0, 9) 5 {1, 2, 4, 5, 6, 9, 10}. As we can see, the subslice
HSLICE(9, 11) is the same as it was for the complete history. However, the
slice HSLICE(0, 9) has increased in size, since an additional statement,
statement 5, has been included in the subslice. Thus, the precision of the
subslice corresponding to the period of execution over which the history is
not maintained is reduced, while the precision of the subslice for the period
of execution over which the history is maintained is not affected.

Next we develop the algorithms for computing hybrid slices by first
focusing on the computation of data slices. The key problem to be solved for
the computation of data slices is that of identifying those immediate data
dependences (i.e., use to a definition) that can be established along a path
that is feasible under the given breakpointing history. Intuitively, a path is
said to be feasible with respect to a breakpoint history if it visits the
encountered breakpoints in the appropriate order and if it does not visit the
breakpoints that were not encountered in the corresponding execution
intervals. In the computation of static slices all paths to a point are
considered feasible. In contrast, during hybrid slicing only a subset of such
paths are considered feasible. Once an algorithm for identifying immediate
dependences has been developed, it can be repeatedly applied for comput-
ing the transitive closure over the data dependences.
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Definition 2.4. Given a breakpoint history, BH 5 ^(b0, f), (b1, N1), . . .
(bm, Nm)&, a path P from b0 to bm is feasible if and only if path P is
composed of subpaths as follows:

P 5 PATH~b0 ; b1!.PATH~b1 ; b2!.· · ·PATH~bm21 ; bm!

such that, for 1 # i # m, NODES(PATH(bi21 ; bi)) ù Ni 5 f, where
NODES(PATH(bi21 ; bi)) includes all nodes along the path from bi21 to bi
excluding the endpoints bi21 and bi.

Let us assume that we are interested in the slice for variable v at
statement s when s is encountered after bi21 and before bi during execu-
tion. Further assume that s is reachable from the definition of variable v at
statement s9. The statement s9 is included in subslice HSLICE(bj21, bj),
where j # i, if and only if there exists a feasible path P such that

—the subpath PATH(bj21 ; bj) in P contains s9 and
—the subpath from s9 to s in P is definition clear with respect to variable v.

The algorithm we present computes immediate data dependences in two
steps: detection and verification. The detection step takes as its initial input
triples of the form (v, s, bm), indicating an interest in the value of variable
v immediately preceding statement s, which is where the latest breakpoint
bm occurred. In the process of taking the closure over data dependences, a
triple (v, s, bi) is considered if variable v is used by statement s and if
statement s has been included in the hybrid subslice HSLICE(bi21, bi). The
output of the detection step is a set of pairs of the form (s9, bj) such that
there is a path from s9 to s through which a definition of variable v in s9
reaches statement s. In addition, this path is feasible with respect to the
portion of breakpoint history (bj, Nj), (bj11, Nj11), . . . , (bi, Ni). The verifica-
tion step ensures that there is a path from bj21 to bj along which s9 is
encountered, therefore implying that s9 should be included in the slice. In
order to take the transitive closure over data dependences, new criteria are
generated from the statements included in the slice, and the above steps
are repeated.

Our presentation of the hybrid slicing algorithm is organized into three
algorithms. The algorithm ComputeTentativeSlice implements the detection
step, and the algorithm ComputeActualSlice implements the verification
step. The algorithm ComputeHybridSlice in Figure 2 calls these algorithms
repeatedly to compute the transitive closure over data dependences. The
input to algorithm ComputeHybridSlice is the breakpointing history (BH)
and slicing criterion (SC). Based upon the slicing criterion a set of triples is
generated. The immediate data dependences corresponding to these triples
are detected by ComputeTentativeSlice, and a set of pairs is generated for
ComputeActualSlice. The pairs that are successfully verified by Compute-
ActualSlice are included in the appropriate subslices. From the newly
added statements to the slice, new sets of triples are generated for the
transitive closure, and the above steps are repeated until no more state-
ments are added to the slice. The algorithm ComputeHybridSlice also
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initializes the data flow sets for algorithms ComputeTentativeSlice and
ComputeActualSlice to process a given set of triples and pairs respectively.

The algorithm ComputeTentativeSlice (Figure 3) performs backward
propagation of variables whose definitions are being sought, based on the
slicing criterion. The data flow sets corresponding to the entry and exit of a
node n are denoted by VARen

all[n] and VARex
all[n]. Each variable v in a data

flow set is associated with a breakpoint bi, which indicates that the search
for the definition of v has progressed to a point prior to the execution of bi.
Therefore during propagation, if this variable reaches the statement that is
the breakpoint bi21, then the propagated breakpoint is modified to bi21 as
it is propagated past breakpoint bi21 (see lines 15–17). On the other hand,
if the variable reaches a statement in Ni, then its propagation is discontin-
ued, since this implies the path is infeasible (in line 9 VARex

f [n] is the
feasible subset of VARex

all[n]). Finally when variable v reaches a definition of
v, we examine the associated breakpoint. If the associated breakpoint is bj,
then the statement becomes a potential candidate for inclusion in subslice
HSLICE(bj21, bj).

The algorithm ComputeActualSlice (Figure 4) performs backward propa-
gation of statements that are potential candidates for inclusion in the slice.
The data flow sets corresponding to the entry and exit of a node n are
denoted by THSLICEen

all[n] and THSLICEex
all[n]. A statement s with associ-

ated breakpoint bi is included in subslice HSLICE(bi21, bi) if a path from
bi21 to statement s can be found along which no node from Ni is encoun-
tered. Therefore if the statement s reaches a statement in Ni, then its

Fig. 2. Overview of hybrid slicing algorithm.
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propagation is discontinued, since this implies that we are on an infeasible
path (in line 14, THSLICEex

f [n] is the feasible subset of THSLICEex
all[n]).

Once a statement is included in subslice HSLICE(bi21, bi), new triples are
generated corresponding to variables referenced by the statement so that
the transitive closure over data dependences can be computed (see line 6).

Next let us consider the control dependences in the computation of slices.
Given a statement s that has just been included in subslice HSLICE(bi21,
bi), the algorithm ComputeControlTriples in Figure 5 describes the treat-
ment of control dependences involving s. An immediate control ancestor of
s, say c, must be included in the hybrid slice, i.e., s is control dependent on
c. However, we must first determine the subslice in which c must be placed.
It is possible that c may be placed in a subslice several breakpoints back as
these breakpoints may have been encountered since the execution of c and
prior to the execution of s. The predicate c along with breakpoint bi is
propagated backward starting at statement s. The data flow sets corre-
sponding to the entry and exit of a node n are denoted by CDen

all[n] and
CDex

all[n]. The propagation along infeasible paths is avoided (see line 12),
and breakpoints associated with the statements being propagated are
appropriately modified during propagation (see lines 14–16). In each data
flow set only the maximum k for which (c, bk) is added to the set is retained,
for we are interested in the latest execution of c preceding the execution of
s. Finally, the data flow set at the predicated node c is examined, and c is

Fig. 3. Identification of potential statements in the slice.
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included in the subslice HSLICE(bk21, bk) such that (c, bk) is contained in
the data flow set at the entry of predicate c (see line 21). Once a statement
is included in a slice the appropriate triples are generated for further
processing (see line 22). The algorithm ComputeControlTriples calls itself
recursively, since we must take the transitive closure over control depen-
dences (see line 23).

Figures 6 and 7 illustrate the computation of a hybrid data slice for the
third breakpoint history of the example in Figure 1. The computation of the
data slice takes three iterations. The pairs/triples resulting from each
invocation of the detection/verification step are shown in Figure 6. In the
first detection step starting from statement 11, definitions of X in state-
ments 1, 6, and 10 are identified, and during the verification step state-
ment 10 is included in the slice, while statements 1 and 6 are discarded.
Statement 10 uses variables X and Y whose definitions are sought in the
next iteration. Definitions in statements 1, 4, 5, and 6 are detected, and
during the verification step statements 4 and 6 are included in the slice.
The statements 6 and 4 reference variables X and Y respectively, and in the
final iteration the definitions in statements 1 and 2 are included in the
slice.

Next we illustrate the treatment of control dependences. Let us consider
the last breakpoint history for which the hybrid data slice is shown in
Figure 1(b). Consider the invocation ComputeControlTriples(9 [ HSLI-
CE(b4, b5)). Based upon these results predicate 8, which is the immediate

Fig. 4. Identification of actual statements in the slice.
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control predecessor of 9, is included in subslice HSLICE(b3, b4) (Figure 8).
The predicate 8 is included in subslice HSLICE(b3, b4) because it was
executed during the period of execution that corresponds to this subslice.
Once predicate 8 has been included, the algorithm is recursively invoked to
compute the transitive closure over control dependences. Also, triples are
generated for later processing for variables referenced in 8 to take the
closure over data dependences.

Complexity Analysis of Data Slicing. For the purpose of this analysis we
assume that the program contains V variables, N statements (and the
number of statements is of the same order as the number of edges), and
that d is the maximum depth of loop nests. We further assume that B is the
number of breakpoints in the history. During the detection step the
maximum size of a data flow set is B 3 V. Thus, a single operation on the
data flow set requires at most O(B 3 V) time. Each node may be examined
MAX(d 1 1, B) times until the data flow stabilizes. Thus the cost of the
detection step is bounded by O(MAX(d 1 1, B) 3 N 3 B 3 V). Since the
number of source variables is typically smaller than the number of source
statements, the time for the detection step is bounded by O((d 1 1) 3 N2 3

Fig. 5. Considering control dependencies.
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B). The size of a data flow set during the verification step is bounded by
N 3 B, and the number of times each node may be examined is bounded by
d 1 1. Thus the cost of the verification step is bounded by O((d 1 1) 3 N2 3
B). The total cost of the two steps is therefore given by O(MAX(d 1 1, B) 3
N2 3 B). Since typically d is a small number, it is reasonable to assume
that MAX(d 1 1, B) is equal to B. Thus, the worst-case cost of the two steps
can be considered to be O(B2 3 N2). Since the size of a hybrid slice is
bounded by B 3 N, the maximum number of times the detection and
verification steps are repeated is also bounded by this value. Therefore the
total cost of computing data hybrid slices is O(B3 3 N3).

Fig. 6. Detailed example.
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From the above analysis it is clear that the complexity of hybrid slicing
increases with the length of breakpoint history. Thus, the ability of our
approach to allow the use of shortened histories is significant. On the other
hand the complexity of dynamic slicing cannot be controlled in the above
fashion. In order to obtain precise dynamic slices and subslices for pro-
grams with only scalar references, the dynamic trace of all conditional
branches must be kept so that the program’s execution path is completely
known. In contrast, during hybrid slicing, the breakpoint history is likely to

Fig. 7. Detailed example continued.

Fig. 8. Example of processing control dependencies.
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contain a small subset of recently executed conditional branches. The
computation of precise dynamic slices in the presence of pointers and
arrays would require a significantly larger overhead for tracing read and
write operations by all statements. Thus, while dynamic slicing enables
computation of precise slices, the run-time complexity of computing dy-
namic slices is significantly higher than hybrid slicing.

3. INTERPROCEDURAL HYBRID SLICING

Conceptually the hybrid slicing algorithm using breakpoint history can be
extended to interprocedural hybrid slicing. However, this straightforward
extension could not adequately handle the calling contexts of procedures
and thus would introduce a new source of imprecision in the slice. The
interprocedural hybrid slicing that we present uses the dynamic call and
return information to correctly handle the calling-context problem. A
combination of breakpoints and call/return information can also be used in
the definition of the interprocedural hybrid slice. However, to simplify the
presentation of the algorithms in this section, we focus on the use of only
call/return information to define the interprocedural hybrid slice. In this
case, construction of the hybrid slice is guided by the procedure calls and
returns. As was the case for breakpoint hybrid slices, the call/return hybrid
slices provide more precise information than static slices and provide
subslices that give more detailed information as to where in the call/return
sequence a particular statement may have been executed.

We first present definitions based on the use of call/return information
and then give the algorithms, which are similar to those for breakpoint
hybrid slicing. Our algorithms handle local and global variables, reference
parameters, and aliases.

Definition 3.1. The call history of a program execution is of the form
CH 5 ^CR0, CR1, . . . , CRm&, where CRi is either a procedure call or a
return from a procedure, and CR0 is assumed to be a call to start execution
of the main program. The forms of call and return are

CALL[Pcaller 3 Pcallee at s]: indicates that procedure Pcaller calls
procedure Pcallee at statement s.

RET[Pcallee 3 Pcaller at s]: indicates a return from Pcallee to Pcaller

at statement s (call site of Pcallee in Pcaller).

Definition 3.2. For a calling history, CH 5 ^CR0, CR1, . . . , CRm&, the
overall hybrid slice with respect to a slicing criterion SC 5 (V, CRm) is
defined as follows:

HSLICE~CRm!4 ø
i51

m

HSSLICE~CRi21,CRi!

Hybrid Slicing: Integrating Dynamic Information with Static Analysis • 385

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.



where subslice HSSLICE(CRi21, CRi) contains those statements that were
possibly executed after CRi21 and before CRi, and their execution, directly
or indirectly, influenced the computation of the value of some variable in V
at CRm.

During the propagation of data flow information across procedure bound-
aries, the mapping from actuals to formals across a call site and the reverse
mapping from formals to actuals at procedure entry are needed. The
bindings are obtained by examining the appropriate call site. If bind or
bind21 is called with a variable that is not an actual argument or formal
parameter, the function returns that variable (used for globals).

Again, we concentrate on data slices in the description of the call/return
hybrid slice. Consider the example program given in Figure 9, which
consists of a main program and four procedures. Assume the call/return
history and the slicing criterion of variable d at statement 28 as given in
Figure 9. If static slices are obtained using Weiser’s interprocedural slicing
technique [Weiser 1984], which does not take into account the calling
contexts of the calls, the following slice is computed: {2, 3, 6, 11, 12, 15, 16,
20, 27, 30}. If a static slice is computed using the calling context [Horwitz et
al. 1990; Kamkar et al. 1993], more precise information can be found. Using
the calling context, only the call site related to the call is processed. Thus,
statement 6 would not be included as part of the slice, as P2 in statement 7
is not a possible call site. Thus, statement 3 defining y would not be
included in the slice. Using the calling context, the slice consists of the
following statements: {2, 11, 12, 15, 16, 20, 27, 30}.

Using our technique, we are able to compute the precise slice: {2, 11, 12,
16, 20, 27}. In the hybrid slice, statement 15 is not a part of the slice, as
this statement is not executed in the above calling sequence for the
example program. The path containing the call to P2 at statement 14 is the
path that is executed. Likewise, all of the statements in procedure P4 would
not be included, as the path where the call to P4 is found is not executed
(statement 23). Both of these conditions can be determined by using the
dynamic call/return information.

As was the case in the hybrid slicing using breakpoints, we can also
construct subslices that indicate where in the call/return history a particu-
lar statement could be executed. The subslices computed by our algorithm
for the example are also given in Figure 9. Using the subslices, we see that
statement 16 appeared on the slice between CR5 and CR6. Thus, the
assignment statement is executed after P2 returns to P1 at call site 14, but
before P1 calls P3 at statement 17. Statement 27 appears in two subslices.
It was executed after P2 called P3 at call site 22, but before P3 returned to
P2, that is, between CR3 and CR4. It was also on the execution path after P1

called P3 at call site 17, but before the breakpoint in P3, that is, between
CR6 and CR7. This type of detailed information could help the user pinpoint
the occurrence of definitions of variables during debugging.

The technique to compute the hybrid slice using call/return history
closely follows that of the breakpoint hybrid slices. However, instead of
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breakpoints, calls and returns, including the call sites, are used. Initially
we do not consider parameter aliasing, but later we show how it can be
incorporated.

Fig. 9. Examples of interprocedural hybrid data slices.
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Given a call/return history, we define a feasible path as follows:

Definition 3.3. Given a call/return history, CH 5 ^CR0, CR1, . . . , CRm&,
a path from CR0 to CRm is feasible if and only if path P is composed of the
following subpaths:

P 5 PATH~CR0 ; CR1!.PATH~CR1 ; CR2!.· · ·PATH~CRm21 ; CRm!,

such that for 1 # i # m

—if CRi21 is a call and CRi is a call then Pcallee
i21 5 Pcaller

i ;
—if CRi21 is a call and CRi is a return then Pcaller

i21 5 Pcallee
i and Pcallee

i21 5
Pcaller

i and call site si21 5 si;
—if CRi21 is a return and CRi is a call then Pcaller

i21 5 Pcaller
i ; and

—if CRi21 is a return and CRi is a return then Pcallee
i21 5 Pcaller

i .

The overall algorithm for interprocedural slicing, ComputeInterHybrid-
Slice, uses the phases ComputeInterTentativeSlice and ComputeInterActu-
alSlice, which are similar to the phases used in the computation of the
hybrid slice using breakpoint history hybrid slice, as are the same data flow
sets used. However, in the hybrid interprocedural slicing algorithms, the
points of interest are procedure call, entry, and exit points where propaga-
tion starts or terminates. In the remainder of the section we provide a brief
overview of the algorithms. The detailed algorithms are presented in
Figures 10, 11, and 12.

The algorithm ComputeInterHybridSlice (Figure 10) iteratively calls al-
gorithms ComputeInterTentativeSlice and ComputeInterActualSlice to com-
pute the hybrid slice. The algorithm ComputeInterTentativeSlice (Figure
11) propagates variables and call/return history points backward until
either an entry of the current procedure P is reached, a call to a procedure
is reached, or an assignment to a variable being sliced is encountered. If a
call statement is reached, then the call/return history is checked to see if
this call matches a return in the history point. If so, variables are bound to
the formals in the called procedure; and if the variable being sliced is
involved, then the VAR set at the end of the procedure being called is
updated, and the appropriate nodes from the procedure are placed on the
list for slicing. If the node encountered is an entry node of a procedure, the
call/return history is checked to determine if this procedure was called at
the appropriate call history point. If so, the variables being sliced are
bound by a reverse binding of formals to actuals, and propagation continues
at the call point, as determined by the call site information in the
call/return history. When a statement is encountered that defines a vari-
able being sliced, a pair is generated, and propagation for this variable
terminates. A pair consists of a statement and the call/return history point.
If a variable in the criterion is not defined in a procedure, propagation
continues in the calling procedure, and the history point is updated to
include a previous call return point, that is CRi 3 CRi21. Findhistory on
line 13 in the algorithm is a routine that checks the call/return history to
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determine the appropriate point whenever a pair is propagated over a call
site. That is, if the slicing variable is a reference parameter that is not
included in a particular call, say to Px, then the slicing is not done on Px.
The CR point in the pair has to be updated to reflect the number of
procedure calls and returns that are being skipped. The history can be
checked to match the calls and returns that are found in the history until
the correct program point is found.

In the algorithm ComputeInterActualSlice, entry and call nodes are again
treated as nodes of interest (see Figure 12). The pairs, each consisting of a
statement and the call/return history point and which were found in the
ComputeInterTentativeSlice algorithm, are propagated until it can be deter-
mined whether the statement reaches the next valid call/return point and
should be included in the slice. When the statement reaches a call or entry
point, the call/return history is checked to determine if the node reached is
on a feasible path. If so, the statement is added to the slice, and triples are
generated for any variables used in the statement being added. Included in
the slice is the call/return point where the statement was encountered.

Consider the example given in Figure 9 with the criterion (d at statement
28) and the call and return history given in the example. The definition of d
in statement 27 is identified as being a potential statement in the slice
associated with the call to P3 from P1 at statement 17. In the algorithm
ComputeInterActualSlice, statement 27 along with CR7 is propagated until
the entry of procedure P3 is reached. The call/return history is consulted,
and the call is identified as being on a valid path so the statement is put in

Fig. 10. Overview of the interprocedural hybrid slicing algorithm.
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the slice. The reference to d in the statement is bound to the actual
parameter a at the call site (statement 17), and this a, along with the
previous call/return point, CR6, becomes the slicing criterion in the next
phase. Slicing continues from statement 17 using ComputeInterTenta-
tiveSlice, finding statement 16, to be a potential statement to be added to
the slice. The ComputeInterActualSlice determines if statement 16 is on a
valid path. Finding a call to P2 in node 14, which matches the history, it
puts statement 16 in the slice. Slicing continues with ComputeInterTenta-
tiveSlice, with the transitive closure of variables in this statement, which
are a and z. When ComputeInterTentativeSlice takes the path through node
15 and propagates the statement 15 defining z, it finds the entry node. A
check of the call/return history finds that this is an invalid path and that

Fig. 11. Identification of potential statements in the interprocedural slice.
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statement 15 is not included in the slice. The algorithms continue in this
manner, finally finding the subslices given in Figure 9.

The hybrid interprocedural algorithm can be extended to include aliases
caused by reference parameters and global variables. The computation of
the alias sets is performed before slicing begins [Cooper 1985]. The alias
sets for a procedure are placed on the program nodes for that procedure. As
a variable name is propagated in search of its definition, we include in the
slice any definition of an alias as well as any definition of the variable
itself.

Through the utilization of interprocedural hybrid slicing algorithms in
conjunction with static interprocedural slicing algorithms, we can also
allow for shortened call histories. A call history can be shortened by
maintaining only the part of the call graph that corresponds to a recent
period of program execution which is of interest to the user. To illustrate
this approach let us consider the history of the example in Figure 9. Let us
assume that the call graph history is shortened to only include CR6, i.e.,
history from CR1 through CR5 is excluded. Using our hybrid slicing
algorithm we compute the subslice HSLICE(CR6, CR7) 5 {27}. In addition,
we determine that the value of d at the start of P3 is of interest. For the
slicing criterion of d at the start of P3, we compute a static slice using an
existing static slicing algorithm. For example, let us assume that we use
Weiser’s [1984] interprocedural static slicing algorithm, which does not

Fig. 12. Identification of actual statements in the interprocedural slice.
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consider the calling context. The result of this algorithm would be
SLICE(CR0, CR6) 5 {2, 3, 6, 11, 12, 15, 16, 20, 27, 30}. Thus, by sacrificing
the precision and quality of slicing information for earlier parts of the
execution we can reduce the cost of computing hybrid slices.

Complexity Analysis. The complexity of the interprocedural hybrid slic-
ing algorithm is equivalent to computing an intraprocedural hybrid slice on
an expanded flow graph which is obtained by replacing each procedure call
in a caller by the callee’s control flow graph. The breakpoints correspond to
the beginning and ending points of each called procedure. Let Nmax be the
number of nodes in the control flow graph of the largest program module,
and let C be the length of the call graph history, that is, the number of calls
and returns. The size of the expanded flow graph is bounded by C 3 Nmax,
and the number of breakpoints is bounded by C. In the previous section, we
showed that the complexity for intraprocedural hybrid slicing is bounded by
O(B3 3 N3). Thus, the complexity of interprocedural hybrid slicing is given
by O(C3 3 (C 3 Nmax)

3) or O(C6 3 Nmax
3 ). The user can control the cost of

slicing by limiting the size of the history and thus the value of C to a small
number.

Combined Histories. In the interprocedural hybrid slicing algorithm
presented, the only dynamic information that was used was the call/return
history. However, the breakpoint history can also be used in conjunction
with call/return history to further improve the precision of the interproce-
dural slice. The form of the combined history and slice follows.

Definition 3.4. The combined history of a program execution is of the
form * 5 ^H0, H1, . . . Hm&, where Hi is one of the following: Breakpoint: (bi,
Ni); Procedure Call: CALL[Pcaller 3 Pcallee at s]; or Procedure Return:
RET[Pcallee 3 Pcaller at s].

Definition 3.5. For a given combined history, * 5 ^H0, H1, . . . Hm&, the
overall hybrid slice with respect to a slicing criterion SC 5 (V, CRm) is
defined as follows:

HSLICE~Hm!4 ø
i50

m21

HSSLICE~Hi, Hi11!

where subslice HSSLICE(Hi, Hi11) contains those statements that were
possibly executed after Hi and before Hi11, and their execution, directly or
indirectly, influenced the computation of the value of some variable in V at
CRm.

With this combined history the breakpoint and call/return algorithms can
be integrated. The data flow sets as before carry either a breakpoint
reference or a call/return reference.
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4. IMPLEMENTATION

We have implemented both the intraprocedural and interprocedural hybrid
slicing algorithms to illustrate the feasibility of computing hybrid slices.
The implementation incorporates the hybrid slicing algorithms in the
Unravel [Lyle et al. 1995] static slicing tool. Unravel, developed at the
National Institute of Standards and Technology, was designed to assist in
the evaluation of software written in ANSI C. We extended the Unravel
tool to accept both breakpoint and call/return histories. These histories are
entered either interactively or through an input file containing the histo-
ries.

Figure 13 shows the interface between the tool and the user and
highlights the statements in the hybrid slice. The breakpoint history is also
displayed. During debugging, breakpoints at statements 6, 33, and 45 were
set. During execution, breakpoints at statements 6 and 45 were encoun-
tered while the breakpoint at statement 33 was not encountered. At the
breakpoint at statement 45 a hybrid slice on variable bill was requested.
The computed hybrid slice contains statements 18, 24, 31, 40, 42, and 44 in
the procedure main. If a static slice at statement 45 would have been
requested, statements 34 and 36 would also have been included.

To illustrate the potential of hybrid slices in reducing the number of
statements from the static slice, hybrid slices were computed for a number
of small programs. Table I shows the results of computing intraprocedural
hybrid slices using breakpoint history. The programs include Heapsort,
procedures Paintface and ClockShowDate taken from the Clock program,
procedures ResolvedGet and SlicePass taken from the static slicing pro-
gram in Unravel, and procedure ComputeTentativeSlice taken from our
implementation of the intraprocedural hybrid slicing algorithm. The second
column gives the number of lines of code in the program modules. In the
third column of Table I, the range of the number of breakpoints that were
set is given, and column four contains the range of the number of state-
ments included in the hybrid slice. In these experiments, all breakpoints
except the first and last were placed on a statement following a conditional
statement. Execution of the hybrid slicing algorithm with zero breakpoints
corresponds to the static slice and resulted in the inclusion of the maximum
number of statements in the slice. It can be observed from the table that as
the number of breakpoints increased, the size of the hybrid slice decreased
due to the greater accuracy of predicting the path taken by the program. In
general the decrease in the size of a hybrid slice depends upon the
placement of breakpoints as well as the variable and the program point
with respect to which the slice is requested. The results in Table I illustrate
that at least for some slicing requests and breakpoint placements the
decrease in the size of the hybrid slice can be significant, ranging from
about 30% to over 50% for these requests.

Table II gives results after running the interprocedural hybrid slicing
algorithm on complete programs. The programs include Heapsort, the
Hybrid slicing algorithm, the Queens program, and the Clinpack routines.
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The program sizes are given in the second column of the table. The slices
were computed for various call/return histories and variables. The third
column contains the number of statements that occur in the static slice,
and the last column gives the number of statements in the interprocedural
hybrid slice. As was the case with the intraprocedural slices, the number of
statements in the interprocedural hybrids was significantly less than the
corresponding static slices. The reductions ranged from 0% to 60%. Thus

Fig. 13. User interface of the hybrid slicer.
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these results illustrate that there are slicing requests that greatly benefit
from the availability of call/return histories.

The above results illustrate that for some slicing requests the hybrid
slices are significantly smaller than static slices and hence more precise.
During the above experiments we observed that there was no measurable
difference in the execution times of static and hybrid slicing algorithms.
Our experience with hybrid slicing so far indicates that the proposed hybrid
slicing algorithms can be implemented with a reasonable amount of effort
and that hybrid slicing is a promising approach for improving the precision
of static slices. However, to quantify the efficiency and precision of hybrid
slicing more extensive experimentation is required.

5. CONCLUDING REMARKS

We have presented the notion of a hybrid slice that utilizes dynamic
information readily available during debugging to improve the effective-
ness of static slicing. Typically a debugger provides a facility for break-
pointing and to trace procedure calls and returns. In order to implement
the hybrid slicing, the breakpoint and caller/return history must be saved,
and the static slicing tool must have access to this history. This is the only
extra run-time cost associated with the hybrid slice that is not typically
incurred with debugging. Thus, our technique requires little additional
tracing at run-time.

The value of the hybrid slice is that it improves the accuracy of the static
slice and provides a more detailed analysis about the statements in the
slice. This information enables the user to better identify where values are

Table I. Intraprocedural Hybrid Slicing

Program
Lines of

Code
Number of

Breakpoints
Slice
Size

Paintface 30 0–3 8–5
ClockShowDate 49 0–4 15–7
ResolvedGet 50 0–4 12–6
SlicePass 47 0–3 9–5
ComputeTentativeSlice 89 0–2 6–4

Table II. Interprocedural Hybrid Slicing

Program
Lines of

Code
Static
Slice

Hybrid
Slice

Heapsort 225 58 37
58 49
58 40

Hybrid 688 10 4
Queens 89 17 12

15 13
Clinpack 256 18 18

50 24
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computed. An important aspect of the hybrid slice is that the detailed
information is guided by the user’s breakpoints. Thus, the information
presented to the user more clearly focuses on the areas of the program that
are of interest to the user. Purely static slices can be produced if no
breakpoints are placed, and control flow is precisely predicted if break-
points are placed at every control predicate. Hybrid slicing also allows the
user to control the cost of hybrid slicing by controlling the size of history.
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