
Pruning Dynamic Slices With Confidence

Xiangyu Zhang Neelam Gupta Rajiv Gupta
The University of Arizona, Department of Computer Science,Tucson, Arizona 85721

{xyzhang,ngupta,gupta}@cs.arizona.edu

Abstract
Given an incorrect value produced during a failed program run
(e.g., a wrong output value or a value that causes the programto
crash), the backward dynamic slice of the value very frequently
captures the faulty code responsible for producing the incorrect
value. Although the dynamic slice often contains only a small
percentage of the statements executed during the failed program
run, the dynamic slice can still be large and thus considerable effort
may be required by the programmer to locate the faulty code.

In this paper we develop a strategy for pruning the dynamic
slice to identify a subset of statements in the dynamic slicethat are
likely responsible for producing the incorrect value. We observe
that some of the statements used in computing the incorrect value
may also have been involved in computing correct values (e.g., a
value produced by a statement in the dynamic slice of the incor-
rect value may also have been used in computing a correct output
value prior to the incorrect value). For each such executed state-
ment in the dynamic slice, using the value profiles of the executed
statements, we compute aconfidence valueranging from 0 to 1 – a
higher confidence value corresponds to greater likelihood that the
execution of the statement produced a correct value. Given afailed
run involving execution of a single error, we demonstrate that the
pruning of a dynamic slice by excluding only the statements with
the confidence value of 1 is highly effective in reducing the size
of the dynamic slice while retaining the faulty code in the slice.
Our experiments show that the number of distinct statementsin a
pruned dynamic slice are 1.79 to 26.93 times less than the full dy-
namic slice. Confidence values also prioritize the statements in the
dynamic slice according to the likelihood of them being faulty. We
show that examining the statements in the order of increasing con-
fidence values is an effective strategy for reducing the effort of fault
location.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Debugging aids, Testing tools, Trac-
ing; D.3.4 [Programming Languages]: Processors—Debuggers

General Terms Algorithms, Measurement, Reliability, Verifica-
tion

Keywords debugging, dynamic slicing, data and control depen-
dences
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1. Introduction
Dynamic slicing was first proposed by Korel and Laski [13] to
guide software developers in the debugging process. The dynamic
slice of a value computed at a program point in the execution
trace includes all those executed statements which were directly
or indirectly involved in the computation of the value. A significant
amount of research on algorithms for computing dynamic slices
has been carried out [1, 23, 24, 25]. Computation of dynamic slices
normally consists of two steps: building the dynamic dependence
graph for a program execution (where dependences include both
data and control dependences); and then traversing the dynamic
dependence graph to compute the dynamic slice of a computed
value that is observed to be incorrect by the programmer (incorrect
value may correspond to an incorrect output or a value that causes
the program to crash). Due to the size of the dynamic dependence
graph, which keeps growing as program executes, one challenge of
dynamic slicing is the cost of computing it [23]. Our prior work on
dynamic slicing has already addressed this problem [25, 24]. The
effectiveness of dynamic slicing in fault location is determined by
two factors:How often is the faulty statement present in the slice?
andHow big is the slice, i.e. how many statements are included in
the slice?In our previous work [27] we evaluated the effectiveness
of backward dynamic slicing in fault location. We observed that
dynamic slices are able to contain the faulty statement in most of
the cases and in general dynamic slices are quite small compared to
the number of executed statements. However, we also observed that
the absolute number of statements in the slice could still belarge
and in addition many of the statements are apparently unlikely to
be faulty even though they are present in the slice.

Given an observed incorrect value×o, in this paper, we de-
velop an approach for computing aPruned Dynamic Sliceof ×o,
PDS(×o), which contains a subset of statements from theDy-
namic Sliceof ×o, DS(×o), that are highly likely to include faulty
statements. We observe that althoughDS(×o) contains all exe-
cuted statements that are involved in computing×o, not all of these
statements are equally likely to be involved in causing the erro-
neous behavior. In particular, let us consider a common situation
in which the program produces some correct outputs (

√
o
’s) before

producing the incorrect value×o. From the perspective of the
√

o
’s

and×o, it is possible to divide the executed statements inDS(×o)
into two sets:May Set, DSmay(×o), containing executed state-
ments fromDS(×o) that are also involved in computing one or
more of the

√
o

values; andMust Set, DSmust(×o), containing ex-
ecuted statements fromDS(×o) that were involved in computing
none of the

√
o

values. In other words:

DS(×o) = DSmust(×o) ∪ DSmay(×o)

DSmust(×o) = DS(×o) −
[

∀√o

DS(
√

o
)

DSmay(×o) = DS(×o) − DSmust(×o)



While the statements in theDSmust(×o) are always included
in the pruned slicePDS(×o), the ones inDSmay(×o) may or
may not be included inPDS(×o). We develop an analysis that
computes for valuev computed by each statement executions ∈
DSmay(×o), a confidence valueC(v@s) between 0 and 1. High
confidence value for a statement execution indicates that wehave a
high confidence that the statement produced a correct value.The
confidence values are computed using thevalue profilesof the
executed statements. Athreshold confidenceτ may be set such that
only statement executions inDSmay(×o) that have a confidence of
less thanτ are included in the pruned dynamic slicePDSτ (×o).
In other words:

PDSτ (×o) = DSmust(×o) ∪ DSτ
may(×o)

where, DSτ
may(×o) = {s s.t. s ∈ DSmay ∧ C(v@s) < τ}

As we will show later, our analysis may yield confidence values
of 1 for many statement executions and thus they are pruned from
the dynamic slice irrespective of the choice ofτ , i.e. they are never
included inPDSτ (×o) for all τ .

input

Never included in PDS

? May be included in PDS

incorrect

Always included in PDS

?

?

error

correct correct

DS

IDS

PDS

?

PDSmin

max

input input

Figure 1. Pruning dynamic slice.

Figure 1 illustrates pruning of dynamic slices visually. Itshows
a dynamic dependence graph of a computation that produces two√

o
values before producing the incorrect value×o. DS is the

Dynamic Sliceof ×o. A subset of nodes inDS that form theIdeal
Dynamic Slice(IDS) is shown – IDS originates at the point of
program error and contains only those statement executionsthat
produce erroneous values. The nodes inDS that are not present in
IDS have been divided into three categories. The nodes labeled×
in DS belong toDSmust, as they are not involved in computing the√

o values, and thus they are always included inPDS, thePruned
Dynamic Sliceof ×o. The remaining nodes inDS are labeled with
either

√
or ?. The

√
nodes have confidence value of 1 and thus they

are never included inPDS. The nodes labeled? have a confidence
value of less than 1 and thus the value of thresholdτ determines

whether or not they are included inPDS. The identification of
√

nodes is made possible by recognizing thatany change in the values
produced by such nodes would alter the output values that were
known to be correct. Therefore it is assumed that these nodes must
have produced correct values. As the figure shows, the smallest
(largest) pruned dynamic slice that is produced by our algorithm
corresponds toPDSmin (PDSmax). The key point to note here is
that even ifτ is set to 1, we obtain a pruned dynamic slicePDSmax

which is smaller than the dynamic sliceDS. We would also like to
point out thatPDSmin corresponds to what is known as adynamic
dice [3] – as our experiments show, often when faulty code is not
captured by the dynamic dice it is captured byPDSmax.

Next we present a motivating example which shows how anal-
ysis of code and runtime information can be used such that the
confidence values of some statement executions inDSmay is de-
termined to be 1. Figure 2(a) shows an execution of a program
that follows the path corresponding to the true evaluation of the
predicate at node 4. The value shown to the right of each state-
ment is the value computed by the statement during the execution.
The dynamic dependence graph of this execution is shown in Fig-
ure 2(b) – the solid edges are data dependence edges while dot-
ted edges are control dependence edges. The nodes in the dynamic
slice of the incorrect output value produced by statement 10include
{0, 1, 2, 3, 4, 7, 10}. Now let us see how the correct outputs pro-
duced by statements 8 and 9 are used to mark the nodes inDSmay

as
√

or ?.

• From the correct output value ofX written by statement 8 we
infer that the values produced by statements 1, 3 and 5 are also
correct. The reasoning on which this inference is based is as
follows. The statements 3 and 5 representone-to-one mappings
between the used operand values and generated result values
of X. Therefore any change in the values produced by 1, 3
or 5 will cause the value of output at statement 8 to change.
However, the value of output at statement 8 is known to be
correct. Thus, we mark statements 1, 3 and 5 with

√
indicating

that they produce correct values. We further conclude that the
true evaluation of predicateX > Y is also correct. This is
because ifX > Y would have evaluated to false, it would have
produced a different output value forX at statement 8.

• Now let us consider the other correct output value written by
statement 9. Since statement 6 does not represent a one-to-one
mapping between its operand and result, even though the value
of T that is produced by statement 6 is correct, we do not as-
sume that the value of operandZ used in statement 6 is correct.
As a result we conclude that values produced by statements 0
and 2 may or may not be correct and therefore we mark them
with a ?. Note that the value ofY generated by statement 0
has another use in the predicateX > Y . Even though we
have determined that the predicate correctly evaluated to true,
we cannot determine from this fact that the value ofY used
by the predicate is correct because many different values ofY
would have produced the correcttrue evaluation of the predi-
cate. Thus, from both uses ofY we conclude the same thing,
i.e. the value ofY produced by statement 0 may or may not be
correct.

Given the above observations, the pruned dynamic slice of incorrect
value output at statement 10 will always include statements7 and
10. More importantly it will never include statements 1, 3, 4and
5. However, it may or may not include statements 0 and 2. The
confidence values for statements 0 and 2 will be compared withthe
thresholdτ to make this determination. In other words:

DS = {0, 1, 2, 3, 4, 7, 10}; IDS = {2, 7, 10}

PDSmax = {0, 2, 7, 10}; PDSmin = {7, 10}



Z = Z−2

value
incorrect

correct
value

correct
value

Y = ..0 9

X = .. 201

2 Z = Y+1 10

X = X+1 213

if X > Y T4

X = X+1 225 20X = X−1 11

6 0T = Z%2 1220T = Z%3

10 11Write Z

Write T 09

Write X 228

F

error

Z = Y+2

T

7
1311 20Z = Z+1

(a) Program Execution.

dynamic

Y = ..0 9

X = .. 201

2 Z = Y+1 10

X = X+1 213

if X > Y T4

X = X+1 225

6 0T = Z%2

10 11Write Z

Write T 09

Write X 228

7
11Z = Z+1

?

?

data
dynamic

dependences

dependences
control

(b) Dynamic Dependence Graph.
Figure 2. Pruning dynamic slice.

In the remainder of this paper we will present a confidence
estimation method that will produce the following results.First
for the above example it will produce a confidence value of 1 for
values produced by statements 1, 3, 4, and 5. Therefore our pruning
algorithm will correctly remove statements 1, 3 and 4 from the
dynamic slice of the incorrect output value produced by statement
10. Second it will produce confidence values of less than 1 for
statements 0 and 2 such that the confidence value of statement
0 is more than confidence value of 2. Thus, depending upon the
value of τ , three possible pruned slices will result:{0, 2, 7, 10},
{2, 7, 10} and{7, 10}. The computation of confidence values will
be performed using thevalue profilesof the executed statements
(i.e., the operand values used and result values produced during
statement executions).

Given a failed run involving the execution of a single error,our
experiments show that the pruning of a dynamic slice by exclud-
ing only the statements with the confidence value of 1 is highly
effective in reducing the size of the dynamic slice while retaining
the faulty code in the slice. We observe that the number of distinct
statements in a pruned dynamic slicePDSmax are 1.79 to 26.93
times less than the conventional dynamic slice. Confidence values
also prioritize the statements in the dynamic slice according to the
likelihood of them being faulty. We also show that locating afault
by examining the statements in the order of increasing confidence
values is an effective strategy.

The rest of the paper is organized as follows. In section 2 we
formally defineconfidence valuesand show how value profiles
are used forestimating confidence values. In section 3 we present
the results of our experiments to demonstrate the effectiveness
of pruning dynamic slices using the estimated confidence values.
Related work is discussed in section 4 and conclusions in section 5.

2. Confidence Analysis
In this section we develop an analysis that will serve as the ba-
sis for pruning a conventional dynamic slice. In this work weas-
sumethat for the failed program run being analyzed, the failure was
caused due to the execution of asingle error in the program (i.e.,
even though the program may contain many bugs, the failure was
caused by encountering one of those bugs). Our goal is to develop
a heuristicfor pruning a dynamic slice such that the size of the dy-
namic slice is significantly reduced and very rarely is the erroneous
statement pruned from the dynamic slice. In other words we would
like to significantly reduce the size of the slice with minimal loss
in fault location effectiveness. Before we describe our analysis, we
present some basic definitions.

DEFINITION 1. TheDynamic Dependence Graphof a program
run, DDG(N, E), consists of a set of nodesN and a set of directed
edgesE where: each nodeni ∈ N corresponds toith execution
instance of statementn in the program; and each edgemj →
ni ∈ E corresponds to a dynamic data dependence or dynamic
control dependence ofith execution instance of statementn on the
jth execution instance of statementm.

In other words, with the execution of each statement during apro-
gram run, a new node is added to the dynamic data dependence
graph and the incoming edges to the node from other nodes on
which the new node is data and control dependent are introduced.

The execution of every statement during a program run results
in the computation of a result value. For an assignment statement
this is the value assigned to the left hand side variable during the
execution while for a predicate statement the value is either true
or false corresponding to the result of the predicate’s evaluation.
The dynamic slice of a value computed by a statement is definedas
follows.



DEFINITION 2. Given DDG(N, E), a dynamic dependence graph,
theDynamic Sliceof ni ∈ N denoted by DS(ni) is the subgraph
of DDG(N, E) which includesni as well as all other nodes and
edges from whichni is reachable, i.e.

DS(ni) = ({ni}, {e|e = mj → ni ∈ E}) ∪
[

∀mj→ni

DS(mj)

Consider a failed program run from which two kinds of evi-
dence are collected:negative evidencein form of the first incorrect
value×o observed by the programmer during the program run; and
positive evidencein form of some correct output values (

√
o
s) gen-

erated during the program run before the incorrect value×o was
generated. We classify eachrelevantvalue, i.e. value that was in-
volved directly or indirectly in computing×o and/or

√
o

values,
into three distinct categories as defined below.

DEFINITION 3. A relevant valuev generated by noden is classi-
fied as:

• √ or correct if it is used in computing at least one of the
√

o

values but it is not used in computing the incorrect value×o.
Therefore the values computed by all nodes in
S

∀√o

DS(
√

o
) − DS(×o) are classified as

√
;

• × or incorrect if it is used in computing the incorrect value×o

but it is not used in computing any of the
√

o values. Therefore
the values computed by all nodes in
DS(×o) −

S

∀√o

DS(
√

o) are classified as×; and

• ? or unknown if it is used in computing the incorrect value
×o and at least one of the

√
o

values. Therefore the values
computed by all nodes inDS(×o)∩

S

∀√o

DS(
√

o
) are classified

as?.

In [27] it has been shown that dynamic sliceDS(×o) typically
contains the erroneous code responsible for producing the incorrect
value×o; however, it also includes many statement executions that
are not responsible for generating the incorrect value. According
to the above definitions, statement executions inDS(×o) will be
initially classified into two categories – some will be classified as
× while others will be classified as?. The ones that are classified as
× are always included in the dynamic slice. However, we perform
analysis to determine what subset of statement executions classified
as? should be included in the pruned dynamic slice.

The decision as to whether the statement executions in the dy-
namic slice that are classified as? should be included in the pruned
dynamic slice is based uponconfidence analysis. For every valuev
computed by statement executionn, confidence analysis produces a
confidence valueC(v@n) that measures the likelihood of the value
being correct. The confidence estimateC(v@n) ranges from 0 to
1 whereC(v@n) = 0 indicates that we have no confidence at all
in the correctness of valuev while C(v@n) = 1 indicates that
we have the highest possible confidence in the correctness ofvalue
v@n. This estimate is defined as shown below.

DEFINITION 4. Confidence estimate of valuev computed by a
relevant noden is defined as follows:

• if v is classified as
√

(i.e., correct) then

C(v@n) = 1

• elseifv is classified as× (i.e., incorrect) then

C(v@n) = 0

• elseifv is classified as? (i.e., unknown) then

C(v@n) = 1 − log|Range(v@n)||Alt(v@n)|

where Range(v@n) represents all legal values ofv and
Alt(v@n) ⊆ Range(v@n) is a set of alternate values ofv
such that if any value inAlt(v@n) was produced byn, the
same correct

√
o

values would have resulted.

Let us discuss the reasoning behind theC(v@n) computation when
v is classified as?. If any change whatsoever in the value computed
by n would cause at least one of the

√
o

values to change and hence
become incorrect, then we conclude that the valuev computed by
n during the program run must have been correct. In this case the
setAlt(v@n) contains only one value. Therefore as desired, the
confidence estimateC(v@n) = 1− log|Range(v@n)|1 = 1. On the
other hand, if changingv to other values can still yield the same√

o
values, then we have less confidence in the correctness of value

v. As the setAlt(v@n) increases in size, the confidence estimate
C(v@n) reduces and whenAlt(v@n) is equal toRange(v@n),
thenC(v@n) = 1 − log|Range(v@n)||Alt(v@n)| = 0.

Before settling on the above definition of confidence, we con-
sidered other simpler definitions of confidence but we found them
not to be nearly as effective. For example, we considered a def-
inition in which each value’s confidence was proportional tothe
number of correct outputs whose computation depended upon that
the value. However, we observed that in many cases differentout-
puts were derived from different values and thus many valueswere
assigned the same confidence. In addition, this simpler method fails
to exploit the knowledge that sometimes even though a value may
be involved in computing a single correct output, by lookingat the
statements involved we may be able to definitely determine that the
value is correct. For example, in Figure 2(b), since the value of X
output by statement 8 is correct, we can determine that the value
of X computed by statement 1 must be correct. This is because
the statements along the data dependence chain (4 and 5) perform
one-to-one mapping between old and new values ofX.

Next we develop an algorithm for computing confidence esti-
mates. While our definition of confidence estimates is quite simple,
the computation of confidence estimates is made challengingby
the need for deriving theRange(v@n) andAlt(v@n) sets for all
nodesn that are classified as?. There are two key problems that
must be addressed. First, given a variablex referenced by a pro-
gram statements, we first define the setRange(v@n), i.e. the set
of legal valuesthatx may be allowed to take during its reference
by an execution ofs. Once such a legal set of values is determined
for all variable references, theAlt() sets will be computed with re-
spect to these legal values. Second, we must develop an algorithm
for propagation of values. Starting from the values classified as

√
,

we traverse the dynamic dependence graph in a bottom up fashion
to compute theAlt() sets of values classified as?. TheAlt() set of
a value classified as

√
is initialized to the singleton set containing

the value while theAlt() set of a value classified as? is computed
by examining theAlt() sets of its child nodes in the dynamic de-
pendence graph.

Let us first discuss how the set oflegal valuesis determined
for each variable reference. A simple approach would be to use
all possible values a variable can take based upon its type (integer,
char, boolean) or compute a more accurate set using static analysis
(e.g., range propagation [2]). However, such an overestimate is not
very desirable for debugging because during debugging we are
interested in analyzing a single program execution (i.e. the failed
run) corresponding to a specific program input. Therefore weuse
thevalue profilefor the failed run to supply the set of legal values
Range().

DEFINITION 5. Given a reference (definition or use) to a variable
v in a program statements, the value profileV P (v@s) provides
an ordered list of values taken by variablev during the multiple
executions ofs in the failed run.



S: Y = ..
if (..)

C1: X=Y+1
fi
if (..)

C2: X=Y%2
fi
if (..)

C3: X=Y+Z
fi

Reference Value Profile

Y @S {1,2,3,4,5,6,7,8,9}
Y @C1 {7,8,9}
X@C1 {8,9,10}
Y @C2 {1,2,3,9}
X@C2 {1,0,1,1}
Z@C3 {9,9,5,5}
Y @C3 {4,5,6,9}
X@C3 {13,14,11,14}

Figure 3. Value profiles.

A program run generates a large number of values and exercises
a large number of dynamic dependences. Capturing this history to
perform dynamic slicing is a challenge that is already addressed in
our prior work [25, 26]. We developed a highly compressed form,
whole execution traces[26], that enables us to hold the execution
trace of 1 to 2 billion instructions in 1 GB of memory.

Now let us consider the rules of propagation along data and
control dependence edges in the dynamic dependence graph. Intu-
itively, given an execution instance of a statement, the values in the
Alt() set of the result computed by the statement are constrained
by each of its children in the dynamic data dependence graph.Only
those values can be put into theAlt() set that do not adversely im-
pact any of the

√
o values along any chain of dependence edges

from the executed statement to any of the
√

o values. Therefore, we
also associateAlt() sets with dynamic dependence edges and then
theAlt() set for the result value of an executed statement is simply
computed by intersecting theAlt() sets of edges leaving the state-
ment. There are two key operations involved in propagation.First
from theAlt() set of a result computed by an executed statement,
we compute the subset of legal values that the operands can take
such that these operand values produce the result values contained
in the Alt() set. Second theAlt() set of a result is computed by
examining the subset of legal values already determined at each of
the uses of the result value.

{1,3,9}
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(Write X) 10 o
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o(Write X) 1
X = Y + Z

o(Write X) 14

14

Alt(Y@S ) = {9}

{5,9}

{9}

C

Figure 4. Dependences among assignment statements.

Let us consider propagation along dynamic data dependence
edges that connect assignment statements (we will also consider
predicate statements shortly). We illustrate propagationby analyz-
ing the result value computed by9th execution instance of state-
mentS in the example from Figure 3. The value ofY computed
by S9 is 9 and this value is used later by3rd, 4th, and4th ex-
ecution instances of statementsC1, C2 andC3 respectively. The
dynamic dependence will therefore include three data dependence
edgesS9 → C1

3 , S9 → C2
4 , S9 → C3

4 . We further assume that
the values ofX computed byC1

3 , C2
4 andC3

4 are output and deter-
mined to be correct. Figure 4 first shows how the potential values

in Alt(Y @S9) set are identified by considering each dynamic data
dependence individually. Given thatC1 represents aone-to-one
mappingbetween the value operandY and resultX (determined
from value profiles), theAlt(Y @S9 → C1

3 ) set obtained contains
9. In contrast, since statementsC2 andC3 do not representone-
to-one mappingsbetween the value of operandY and the value
of resultX, the setsAlt(Y @S9 → C2

4) andAlt(Y @S9 → C3
4)

corresponding to dynamic data dependence edgesS9 → C2
4 and

S9 → C3
4 contain more than one value. However, theAlt(Y @S9)

is computed by intersecting the three sets for the three dynamic
data dependences yielding a set with only one element. Therefore
the confidence estimateC(Y @S9) = 1 and therefore we mark the
value computed byS9 as

√
, i.e. correct.

From the above analysis we observe two things. First, the pres-
ence of one-to-one mappings are greatly beneficial in pruning a dy-
namic slice since they preventAlt() sets from expanding as prop-
agation proceeds. Second, we observe that as long as there isone
data dependence edge along which a computed value can be veri-
fied (i.e., itsAlt() set contains one value), the value is considered
verified. As we will show later, our approach is very effective be-
cause programs often contain many statement executions that cor-
respond to one-to-one mappings (e.g., copy operations, expressions
with two operands one of which is a constant etc.).

In the above example we considered propagation along dynamic
data dependence edges and these edges were present between as-
signment statement executions. Next we see how to handle thesit-
uation in which predicate evaluations are present and hencedy-
namic control dependence edges are also present. There are two
points to be made here. First we classify the value of a predicate as
being correct (

√
) if the value of one of its direct or indirect con-

trol dependent assignment statements has been determined to be
√

.
This is because if the predicate would have evaluated differently the
variable assigned by the control dependent assignment would have
had a different value and hence it would have adversely affected
one of the

√
o values through its further uses. Second it should

be noted that when the result value of a predicate is classified as
correct, it only means that the outcome of the predicate evalua-
tion (true or false) is correct. However, since a predicate usually
represents amany-to-onemapping between its operand values and
true/false result, we cannot infer that the operand values are neces-
sarily correct. The only thing we can say is that the operand values
are the subset of legal values for which the predicate produces the
same desired result, i.e. true/false. To illustrate the above points we
use a fragment of the previous example as shown in Figure 5. The

S: Y = ..
P 1 : if (Y >6)

C1: X=Y+1
fi

1

Y = ... 9S9

Alt(Y@S ) = {9}
9

T

(Write X) 10 o

X = Y + 1 10

9P Tif Y > 6

{9} {7,8,9}

C1
3

Figure 5. Dependences involving predicates.

dynamic dependence graph and the results of analysis are shown
in the figure. Note that the predicate evaluationP 1

9 is marked as



Initialize: Alt(∗)← {val(∗)};
for each relevant nodeSi marked? in bottom-up orderdo

if Si is anassignmentX = .. then

ComputeAlt(Alt(X@Si));
if |Alt(X@Si)| = 1 then

C(X@Si) = 1; markSi as
√

;
else

C(X@Si) = 1− log|Range(X@Si)||Alt(X@Si)|
endif

elseif Si is apredicatethen
if ∃ Sj stSj dynamically control dependent uponSi

andSj is marked
√

then markSi as
√

endif

endif

endfor

ComputeAlt(Alt(X@Si))
Let the following dynamic dependence edges lead
from Si to nodes marked

√
or ?:

to assignments: Si → C1
1i , Si → C2

2i, .....Si → Cn
ni;

to predicates: Si → P 1
1i, Si → P 2

2i, .....Si → P m
mi.

for each Cj : Y = f(X) st ∃ Si → Cj
ji do

Alt(X@Si → Cj
ji) = {v :

v ∈ V P (X@Cj) ∧ Cj(X = v) ∈ Alt(Y @Cj
ji)}

endfor

for each P j : f(X) st ∃ Si → P j
ji do

Alt(X@Si → P j
ji

) = {v :

v ∈ V P (X@P j) ∧ P j(X = v) = P j
ji}

endfor

Alt(X@Si) =
T

∀j,Si→C
j

ji

Alt(X@Si → Cj
ji)

∩
T

∀j,Si→P
j
ji

Alt(X@Si → P j
ji)

endComputeAlt

Figure 6. Confidence computation algorithm.

√
because its dynamic control dependent childC1

3 is marked
√

.
Alt(Y @S9 → P 1

9 ) also includes values 7 and 8 in addition to 9 as
for these legal values ofY , the predicateY > 6 evaluates to true
just as it evaluates to true for the value 9 produced byS9.

The process we have described is summarized fully in the algo-
rithm presented in Figure 6. All nodes in the dynamic dependence
graph that have been marked as? are the ones that are processed
to compute their confidence estimates. TheAlt() sets for all nodes
are initialized to the set containing the valueval() produced by the
node. The nodes marked? are then processed in a bottom-up order
one by one. If a node being processed is an assignment statement
then theAlt() set for its result value is computed, from which then
its confidence estimate is derived. Predicate nodes are processed by
considering the markings on their dynamically control dependent
assignment statements. In Figure 6, the functionComputeAlt()
presents the details of theAlt() set computations which were de-
scribed intuitively earlier.

3. Experimental Results
3.1 Implementation and Benchmarks

We have developed a dynamic slicing framework which was usedto
conduct experiments. Our tool executesgcc compiler generated bi-
naries for Intel x86 and captures dynamic information including de-
pendence, value, and control flow traces [26]. Even though our tool
works at binary level, the dynamic information is easily mapped
back to source code level using the debugging information gener-

ated bygcc. Figure 7 shows the main components of our tool. The
static analysiscomponent of our tool computes static control de-
pendence (CD) required for forward/backward slice computations
from the binary. The static analysis was implemented using theDi-
ablo [32] retargetable link-time binary rewriting framework asthis
framework already has the capability of constructing the control
flow graph from an Intel x86 binary. Thedynamic profilingcom-
ponent of our system which is based upon theValgrind memory
debugger and profiler [33] accepts the samegcc generated binary,
instruments it by calling theslicing instrumenter, and executes the
instrumented code with the support of theslicing runtime. The slic-
ing instrumenter and the slicing runtime were developed by us to
enable the collection of dynamic information. Valgrind’s kernel is a
dynamic instrumenter which takes the binary and before executing
any new (never instrumented) basic blocks it calls the instrumen-
tation function, which is provided by the slicing instrumenter. The
instrumentation function instruments the provided basic block and
returns the new basic block to the Valgrind kernel. The kernel exe-
cutes the instrumented basic block instead of the original one. The
instrumented basic block is copied to a new code space and thus
it can be reused without calling the instrumenter again. Theslic-
ing runtimeessentially consists of a set of call back functions for
certain events (e.g., entering functions, accessing memory, binary
operations, predicates etc.). It also manages the shadow memory
which is used to capture dynamic dependences. More details on the
working and use of shadow memory can be found in [27]. We in-
tercept the output system call (WRITE etc.) and then augment the
original output with its corresponding position in the DDG.The
confidence componentimplements the analysis in this paper. It re-
ceives dynamic information from the slicing runtime and stores it
as DDG, which is a variant of our prior WET representation [26].

Diablo* Valgrind

Slicing

Instrumenter

Confidence

binary

Slicing

Runtime

CD, PD

events dependence

basic block (bb)

Instrumented bb

Outputs

inputs

values

Figure 7. Tool infrastructure.

Table 1 shows the benchmarks used in our experimentation. The
first five are known as the Siemens suite programs [11]. The last
two unix utilities are also available from the same website [31].
We use this suite of programs because it provides several faulty
versions of the programs which have exactly one fault injected
in each one of them. The versions used in our experiments are
also indicated in Table 1. For each faulty version many test inputs
are also provided in [11]. Different inputs often result in different
positions for the first incorrect output in the output stream. The
columnposition rangeof Table 1 gives the range of the positions of
the first observed wrong output. The greater the position number,
the greater is the number of correct outputs produced beforethe
incorrect output. We can see that it is common for a certain number
of correct outputs to be generated in a failed run. In fact these
numbers can be very high for some failed runs. We exclude the
program tcas and tot info from the Siemens suite becausetcas
is too small andtot info has floating point operations, which are
currently not supported by our tool. We do have some real world
benchmarks. However, most of them are memory corruption errors
for which program executions terminated before any output was
produced.

The test suite provides more versions than those used in our
experiments. We excluded some of the versions as they are notap-
propriate for experimentation. Some versions produce no output or
the very first output produced is wrong. Therefore our approach is
not applicable. In two kinds of situations the faulty statement is not



Benchmark Version Error in Failed Position
Cases Range

print tokens 1 switch-case 6 [14-495]
(565 LOC) 2 switch-case 143 [17-1707]

4 constant 23 [17-1209]
6 constant 143 [13-2714]
7 predicate 28 [8-1271]

print tokens2 4 assignment 268 [20-394]
(510 LOC) 5 return 67 [20-1106]

6 parameter 329 [20-870]
7 predicate 158 [27-486]
8 predicate 194 [60-928]

replace 1 predicate 24 [2-20]
(563 LOC) 3 predicate 130 [2-666]

6 loop condition 92 [2-609]
9 predicate 92 [2-609]
14 predicate 92 [3-49]
18 predicate 190 [2-380]
21 predicate 2 [18-40]
25 predicate 2 [3-11]

schedule 2 assignment 200 [2-38]
(412 LOC) 4 predicate 267 [2-39]

7 added code 20 [2-14]
schedule2 5 added code 32 [5-28]
(307 LOC) 6 constant 2 [10-18]

7 predicate 20 [2-16]
gzip 1 predicate 6 [19-19]

(7199 LOC)
flex 4 constant 12 [16885-53109]

(12418 LOC) 5 constant 257 [7130-9056]
7 constant 97 [6164-6164]
10 array index 6 [7142-7144]
11 predicate 513 [6867-43647]
15 constant 515 [13430-53895]
17 constant 315 [10632-51067]
19 constant 343 [20495-61777]

Table 1. Characteristics of benchmarks

present in the dynamic slice itself and thus we cannot study the ef-
fectiveness of pruning in such cases. First,code omissionfaults are
present in some versions. Since such faults are not even captured in
the static slice of the output, they cannot be caught by any dynamic
slicing algorithm. Second, it is known that the dynamic slice of the
incorrect output does not always include the erroneous statement
executed. This can happen when the erroneous output is produced
due to an incorrect evaluation of a branch predicate causingthe
execution of some statements to be incorrectly bypassed. This sit-
uation can be handled by constructing an expanded dynamic slice
called therelevant slice[6, 27]. While in our experiments we omit
such cases, later we show how they can be handled by extending
our technique.

3.2 Confidence-based Pruning

Since for some faulty versions there are many test inputs, and some
of these may not differ much in their behavior, for each faulty
version we selected three test inputs such that varying number of
correct outputs are generated before the incorrect output is pro-
duced. Whenever possible, we selected three runs such that the
wrong output was observed at: the lower bound ofposition range
in the first run; closest to the middle ofposition rangein the second
run; and at the upper bound ofposition rangein the third run. For
each run, we first computed the dynamic slice of the wrong out-
put and then pruned the slice using confidence analysis. We present
six numbers about the slice sizes in Tables 2 and 3.All.PDSmin,
All.PDSmax, andAll.DS represent the number of DDG nodes
in PDSmin, PDSmax, andDS. The correspondingdistinctnum-

bers (D.PDSmin, D.PDSmax, andD.DS) denote the number
of unique statements in them (note that one unique statementmay
get executed many times and result in many nodes in DDG). We
also present the fault location effectiveness in columnError In.
Here I , X, andD indicate the presence of erroneous statement
in PDSmin, PDSmax, andDS respectively. The results are also
summarized by taking averages across different versions ofeach
benchmark in Table 4.

From these two tables, we make the following observations:
(1) The confidence analysis greatly reduces the size of dynamic

slice without sacrificing the fault location effectiveness. Table 4
shows the average factor by whichPDSmax is smaller thanDS
ranges from4.31 to87514.33 (all) and1.79 to26.93 (distinct). For
flex, the slices are so precisely reduced that they simply contain the
chain of dependences from the erroneous statement to the incorrect
output – this chain includes only a few statements.

(2) For most of the versions, we used three runs and studied the
relation between the pruning capability and the number of correct
outputs. From Tables 2 and 3 we observe that the absolute sizes
of the PDSs appear to be independent of the number of correct
outputs. However, the reductions in the sizes ofPDSs with respect
to the sizes ofDSs increase as the number of correct outputs grow
because of the increases in the sizes ofDSs.

(3) We observe that the fault location effectiveness ofPDSmax

is very good. Even though it is much smaller thanDS, only in
one case the erroneous statement is removed during pruning –this
happened inreplaceversion v9 run r2. Fig. 8 explains how this
happened. In this run, statementi = i + 1 is wrong such that ’D’
is assigned to the wrong position in arraypat. However, statement
return flagis verified and thusflag=true; is verified, which means
the predicate is correct. Since the predicate represents a one-to-one
mapping to its operand when it evaluates totrue, pat[j] contains
the correct value ’D’. According to our analysis, the store to pat[i]
will get verified and so will the wrong index. As is illustrated in the
right hand side of Fig. 8,pat[j] being correct is the result of both
arraypat andj being wrong.

i=i+1

pat[i]=’D’

…

j=offset+...

while (j>offset) {

     if  (‘D’== pat[j]) {

flag=true;

break;

     } else

j=j-1;

}

return flag;

pat[j] ‘D’

‘D’...

Pat

j

Figure 8. Replace version v9 run r2

(4) Let us comparePDSmax with PDSmin. AlthoughPDSmin

works for a large number of test cases, we did observe that in
several cases, such asreplace v1, v3, v9, v21andschedule v7, it
prunes the erroneous statement whilePDSmax does not do so. On
the other hand,PDSmax works almost equally well for the cases
in which PDSmin also works. As shown in Table 4, when the
erroneous statement is captured in bothPDSmax andPDSmin,
corresponding to theIX columns,PDSmax/PDSmin is roughly
one, i.e. their sizes are nearly the same (the entries markedNA are
ones where there were no slices in that category). Thus, using con-
fidence analysis to obtainPDSmax is an effective method for both
pruning the slice and maintaining the fault location effectiveness.

(5) In some cases such asflex v15, part of the wrong output ap-
pears to be correct which may cause some confusion. For example,



Benchmark Version Wrong Output Pos. (All.PDSmin-All.PDSmax)/All.DS (D.PDSmin-D.PDSmax)/D.DS Error In

print tokens 1 14 (310-310)/712 (41-41)/72 IXD
301 (239-240)/4582 (40-40)/86 IXD
495 (317-317)/13603 (41-41)/134 IXD

2 17 (70-70)/429 (19-19)/61 IXD
231 (68-69)/3605 (18-18)/86 IXD
1707 (70-70)/44158 (19-19)/149 IXD

4 17 (246-246)/603 (40-40)/69 IXD
91 (212-212)/1965 (35-35)/92 IXD

1206 (263-295)/28513 (43-43)/141 IXD
6 13 (1457-1470)/1804 (44-44)/71 IXD

109 (214-214)/1993 (35-35)/97 IXD
2714 (432-432)/66651 (36-36)/145 IXD

7 8(1) (399-400)/698 (41-41)/74 IXD
92(1) (423-436)/1486 (41-41)/94 IXD

1271(1) (390-391)/27274 (37-37)/136 IXD
print tokens2 4 20 (174-174)/902 (40-40)/99 IXD

47 (447-447)/1561 (50-50)/95 IXD
394 (770-770)/8364 (44-44)/138 IXD

5 20 (499-499)/850 (58-58)/97 IXD
79 (364-364)/1013 (59-59)/109 IXD

1106 (285-285)/27841 (56-56)/154 IXD
6 20 (208-208)/680 (61-61)/95 IXD

34 (208-208)/770 (61-61)/97 IXD
870 (208-208)/18602 (61-61)/143 IXD

7 27 (697-698)/1290 (59-60)/96 IXD
75 (329-329)/1140 (53-53)/83 IXD
486 (1105-1105)/10630 (67-67)/148 IXD

8 60(1) (377-377)/2091 (59-59)/100 IXD
63 (377-406)/1676 (48-51)/105 IXD
928 (367-413)/20738 (48-51)/151 IXD

replace 1 2 (192-494)/2212 (38-77)/147 XD
9 (241-461)/1625 (53-81)/130 XD
20 (179-408)/1687 (44-64)/128 XD

3 2 (160-671)/1012 (32-86)/136 IXD
18 (89-89)/1997 (21-21)/155 IXD
666 (17-868)/18522 (3-45)/125 XD

6 2 (371-780)/1166 (45-62)/136 IXD
19 (216-648)/2129 (28-50)/132 IXD
609 (325-605)/20525 (46-49)/153 IXD

9 2 (180-357)/889 (40-61)/115 XD
26(2) (48-243)/3047 (18-42)/125 D

14 3 (289-656)/1187 (55-88)/138 IXD
9 (1006-1689)/2515 (73-117)/161 IXD
49 (103-112)/3021 (23-28)/111 IXD

18 2 (106-107)/669 (26-27)/109 IXD
35 (152-152)/4145 (37-37)/143 IXD
380 (194-194)/12588 (37-37)/127 IXD

21 18 (390-781)/2372 (53-86)/132 XD
40 (502-783)/3501 (42-59)/102 XD

25 3 (321-531)/975 (55-78)/120 IXD
11 (450-552)/2952 (72-84)/165 IXD

schedule 2 2 (464-465)/1046 (65-66)/93 IXD
10 (621-623)/2155 (69-69)/118 IXD
38 (295-359)/6176 (55-55)/119 IXD

4 2 (1225-1468)/2605 (88-98)/119 IXD
10 (1025-1029)/2155 (85-89)/117 IXD

7 2 (386-399)/726 (67-68)/90 IXD
6 (83-284)/1124 (24-65)/105 XD
14 (84-330)/2146 (24-59)/97 XD

schedule2 5 5 (1152-1152)/1823 (64-64)/83 IXD
14 (195-195)/2594 (34-34)/73 IXD
28 (1896-1896)/5639 (60-60)/79 IXD

6 10 (230-230)/1611 (40-40)/67 IXD
18 (254-254)/2526 (42-42)/67 IXD

7 2 (80-145)/696 (27-36)/67 IXD
6 (113-129)/2871 (25-27)/94 IXD
16 (693-709)/3311 (59-61)/84 IXD

(1). Part of the wrong output appeared to be correct;
(2). The root cause was pruned.

Table 2. Pruning effectiveness results of faulty versions for up to three test inputs.



Benchmark Version Wrong Output Pos. (All.PDSmin-All.PDSmax)/All.DS (D.PDSmin-D.PDSmax)/D.DS Error In

gzip 1 19 (82-394520)/1699490 (10-121)/357 XD
flex 4 16885(1) (13-14)/62235 (7-8)/692 IXD

19825(1) (16-17)/42823 (9-9)/648 IXD
53109(1) (13-14)/1120244 (7-8)/889 IXD

5 7130 (17-76)/23292 (6-18)/542 IXD
8925 (4-4)/81991 (3-3)/681 IXD
9056 (4-4)/59501 (3-3)/709 IXD

7 6164 (17949-18026)/22886 (217-229)/280 IXD
10 7142 (76-86)/84210 (19-23)/730 IXD

8925(1) (74-75)/1021249 (17-18)/786 IXD
11 6867 (15-15)/5756 (10-10)/81 IXD

16092 (15-15)/39484 (10-10)/552 IXD
43647 (15-15)/254532 (10-10)/720 IXD

15 13430(1) (71-71)/30002 (14-14)/824 IXD
16092(1) (71-71)/72756 (14-14)/988 IXD
53859(1) (96-96)/1120987 (19-19)/941 IXD

17 10632 (1-1)/22093 (1-1)/632 IXD
11584 (1-1)/86515 (1-1)/813 IXD
51067 (1-1)/1118733 (1-1)/864 IXD

19 20495(1) (35-54)/32219 (16-20)/764 IXD
21955(1) (35-35)/98133 (16-16)/947 IXD
61777(1) (32-33)/1130822 (15-16)/981 IXD

(1). Part of the wrong output appeared to be correct;

Table 3. Pruning effectiveness results of faulty versions for up to three test inputs.

Benchmark (All.PDSmin − All.PDSmax)/ (D.PDSmin −D.PDSmax) All.DS/ D.DS/
All.DS D.DS All.PDSmax D.PDSmax

print tokens (341-345)/1320 (35-35)/100 73.4 3.12
print tokens2 (428-433)/6543 (55-55)/114 19.53 2.09

replace (310-546)/4112 (43-60)/131 13.14 2.52
schedule (454-596)/3188 (56-70)/117 9.41 1.79
schedule2 (562-630)/2358 (50-58)90 6.58 1.69

gzip (82-394520)/1699490 (10-121)/357 4.31 2.95
flex (1232-1240)/342692 (25-27)727 276.36 26.93

Benchmark All.PDSmax/All.PDSmin D.PDSmax/D.PDSmin

IX X IX X

print tokens 1.01 NA 1 NA
print tokens2 1.01 NA 1.01 NA

replace 1.78 8.55 1.38 3.36
schedule 1.08 3.68 1.03 2.58
schedule2 1.54 NA 1.29 NA

gzip NA 4811.22 NA 12.1
flex 1.05 NA 1.04 NA

Table 4. Summary of results across all versions.
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Figure 9. Pruned dynamic slice for varying threshold (version Vi run Rj).



flex v15has the error ofprintf (”YY USERACTION”) missing a
’\n’ at the end of the string. If we assume the ”YYUSERACTION”
is correct, the wrongprintf will get verified. To solve this problem,
we divide the output into units, which is lines in this case, and
compute slice on the first character of the wrong unit.

Interactive Pruning. It is possible thatPDSmax is still quite
big. However, pruning can be further carried out during debugging.
During the course of debugging the programmer usually investi-
gates the values ingdb and decides if they are correct or wrong.
This information can be fed back to our confidence analysis toen-
able further pruning. Similarly, the user can also look at the slice
and tell our system if certain values seem to be correct. We con-
ducted an experiment trying to simulate this procedure. We picked
replaceversion v14, one of whose three prunings (the third run)
is quite successful and so we are able to understand the relation
from the error to the wrong output. We use the most conservative
pruned slice in the third run,PDS3

max, as a reference when we
start examining thePDS1

max of the first run. We find the first state-
ment instance which is inPDS1

max but not inPDS3
max and mark

it as correct in our system.PDS1
max is further pruned to 587/74

(all/distinct) from 656/88. After another two interactions, we are
able to reduce it to 93/23, which is very close to dependence chain
along which error is propagated. We also tried the same experiment
with replace v3– we used the second run as a reference to prune
the first run and found that in only one step, we reduce the slice
from 671/86 (all/distinct) to 33/15 and it still contained the error.

Varying threshold. So far we have been looking at either
PDSmin or PDSmax. In this experiment, we study the relation-
ship between the thresholdτ and the correspondingPDSτ ’s size
and its fault location effectiveness. The results for threedifferent
runs are plotted in Fig. 9. As we expected, thePDSτ drops in both
size and fault location effectiveness asτ decreases. However, we
did not observe the existence of a value ofτ that nicely balances
between the size and the fault location effectiveness.

3.3 Confidence-based Prioritization

In the preceding section we explored the use of confidence values
to carry out pruning of the dynamic slice. We observed that the
most effective pruning strategy is one in which only the statements
with confidence values of 1 are pruned from the dynamic slice to
producePDSmax. In this section we study an additional use of
confidence values. The statements inPDSmax areprioritized in
the order of increasing confidence values. To locate faulty code,
the statements are then examined by the programmer in the order
of increasing confidence values till the faulty code is encountered.
The effectiveness of this strategy is measured in terms of the per-
centage of executed statements that are examined by the userbefore
encountering the faulty code.

In prior work we have shown that an effective strategy for ex-
ploring dynamic slices to locate the faulty code is to examine the
statements in the dynamic slice in increasing order of theirdepen-
dence distance from the point at which the erroneous value isen-
countered during a failed run [27, 28]. We conducted an experiment
in which we compared the effectiveness of the two strategies: ex-
ploring dynamic slice in order of increasingdependence distances
(DD); and exploring pruned dynamic slicePDSmax in the order
of increasingconfidence values(CV). When using the confidence
value based strategy, if two statements with same confidencevalue
are present, then the dependence distance is used as the tie-breaker.

The results of this experiment are given in Figure 10. For a given
point in each graph, the y-axis represents the fraction of faults lo-
cated while the x-axis represents the percentage of executed state-
ments examined to locate these faults. The results are for the same
failed runs that were used in the experiments presented in the pre-
ceding section. As we can observe, for a given percentage of exe-

cuted statements examined, typically the fraction of faults that are
located is higher forCV in comparison toDD. It should be noted
that there are other works (e.g., [12, 14]) that employ statistical
analysis to prioritize statements for fault location. However, these
techniques perform prioritization based upon dynamic information
collected from multiple program runs. As far as we know, our tech-
nique is the only one that performs prioritization of statements
based upon dynamic information collected from asinglefailed run.

3.4 Relevant Slicing

It is known that a dynamic slice may not be able to capture the error
even though the wrong output is actually caused by the error [6].
Figure 11 gives such an example. It is taken from version v3 run
r1 of gzip. The error is in the assignment tosaveorig name. The
correct code issaveorig name=!noname. Sincesaveorig name
contains the wrong valueFalse, branch S3 is not taken and thus
flags has the wrong value0 while it should have been defined as
ORIG NAME at S3. This wrongflags value is finally propa-
gated to the output file. The dynamic sliceDS of the wrong output
does not contain the error because S4 depends on S2. The fact that
S4 could have had a different value if S3 had taken the other branch
cannot be captured by dynamic slicing technique itself.

 … = ! no_name

S1: if (!save_orig_name) save_orig_name = no_name;

      ...

S2: uch  flags = 0;

      …

S3: if (save_orig_name)

flags |= ORIG_NAME;

S4: outbuf[outcnt++]=(uch)(flags);

       ...

S5: write (fd, outbuf, cnt);

Data Dep.Potential Dep.

Observed wrong

Figure 11. Gzip version v3 run r1

One proposed solution is to introducepotential dependence
[6] between S4 and S3 such that S1 is reachable from the wrong
output. However, these potential dependence edges are introduced
for each node in the DDG which can result in a much larger slice.
In our example, the computed slice has the size of 1809771/348
(all/distinct). Being presented with even a larger slice than this may
not be appreciated by the programmer.

With our confidence analysis, we are able to select a more
reasonable strategy. Even though the pruned slice may not capture
the erroneous statement, it does capture a part of the dependence
chain from the erroneous statement to the incorrect output.If the
pruned slice is small enough, the programmer is able to inspect
the entire pruned slice and determine the error is not present.
Next the programmer can request for expansion of the pruned
slice using thepotential dependence of the root of the dependence
chain in the pruned dynamic slice. This approach results in a small
increase in the size of the pruned dynamic slice and also appears
to be quite effective. In our example, thePDSmax has the size
of 15/6 (all/distinct). It takes just seconds to figure out that the
chain inPDSmax that should be expanded is S4→S5. By adding
the potential dependence for the root of S4, which is S3 here,the
error is reachable by just one dependence edge. In other words,
with confidence analysis, the programmer is able to search for
the erroneous statement by consideringpotential dependencesin
a demand-drivenfashion. The programmer only asks for potential
dependences after exploring the pruned dynamic slice.
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Figure 10. Locating fault by examining statements in increasing orderof confidence values.

4. Related Work
Dynamic Slicing:Dynamic slicing was introduced as an aid to de-
bugging [13, 1]. Our recent works [24, 25] have greatly reduced the
space and time cost of dynamic slicing. In [27], we evaluatedthe
effectiveness ofbackward dynamic slicesin fault location. Our re-
sult showed that even though dynamic slices can capture the faulty
code, identifying the faulty code from the set of statementsin the
slice still requires non-trivial human effort. We first narrowed the
scope of potentially faulty code in [5] by, for the first time,us-
ing forward dynamic slicesof failure-inducing input difference. We
further narrowed the scope of potentially faulty code in [28] by
identifying bidirectional dynamic slicesof critical predicates. The
intersection of backward, forward, and bidirectional slices yielded
theBidirectional Chopwhich was our smallest estimate of poten-
tially faulty code. The above prior work is based upon identify-
ing multiple kinds ofnegative evidence, i.e. program entities re-
lated to the execution of faulty code. In contrast, in this paper, we
have demonstrated the use ofpositive evidencein form of correct
portions of the output produced during a failing run to reduce the
scope of potentially faulty code. While our prior techniques carried
out coarse-grained pruning of potentially faulty code by intersect-
ing different dynamic slices, the technique presented in this paper
represents a fine-grained pruning of the backward dynamic slice.
Moreover, confidence analysis is also useful in prioritizing the po-
tentially faulty statements which was not possible using our prior
techniques.

The confidence based approach we have presented analyzes
both theprogram state(i.e., values of variables at various pro-
gram points) and the relationships among the values (i.e.,program
dependences). Analysis of program state in conjunction with de-
pendences is the reason why our approach is so effective. As we
saw,dynamic dicing[3] (PDSmin) is not always effective. This is
because while it analyzes dynamic dependences, it does not care-
fully consider the program state.

Delta Debugging:In a series of articles [22, 21, 20], thedelta
debuggingalgorithm has been developed to automatically simplify
or isolate a failure-inducing input [22, 21], produce causeeffect

chains [20] and to link cause transitions [4] to the faulty code. In
[4] delta debugging algorithm is used to analyzeprogram state
changesduring the execution of a failed run to identify points of
cause transitions. Code executed at the points of cause transitions
is expected to be relevant to the fault. Comparing and changing
memory states of C program executions at a point is difficult due to
pointers [4]. In addition, to identify points of cause transitions, the
above state-based analysis has to be performed at a large number of
points along the failed run. Therefore, program state basedanalysis
is difficult and time consuming for C programs [4]. In comparison
our approach is inexpensive in terms of time taken.

Statistical Approaches:A number of statistical approaches that
analyze program spectra of program runs for multiple inputs, in-
cluding inputs corresponding to both failed and successfulruns,
are being employed for fault location. Harrold et al. [8] compared
the spectra of passing and failing runs and found that failing runs
tend to have unusual coverage spectra. Jones et al. [12] ranked each
statement according to its ratio of failing tests to correcttests and
used this information to assist fault location. Liblit et al. [14] de-
scribe a sampling framework and present an approach to guessand
eliminate predicates to isolate a deterministic bug. For isolating
nondeterministic bugs, they use statistical regression techniques to
identify predicates that are highly correlated with the program fail-
ure. In contrast, Renieris and Reiss [17] focused on the difference
between the failing run and asinglepassing run with similar spectra
as a means to narrow down the search space for faulty code.

Our work differs from the above work in significant ways. First,
it focuses on a single failed run corresponding to a single input
for fault location. It is able to prioritize the potentiallyfaulty state-
ments using confidence analysis based upon a single run whilethe
above techniques require multiple runs. Second, an advantage of
our approach is that it provides dependence relationships between
the faulty code (i.e., the cause) and the erroneous output (i.e., the
effect). This information is very useful during debugging.

Other Works:Some additional works include the following. Xie
et al. show that many redundancies [19] in programs correspond
to hard program errors. Hangal et al. [7] identified the causes of



some programming errors in Java programs by observing viola-
tions of program invariants. In [9], we developed a technique that
used a notion of path based weakest preconditions to automatically
locate faulty code in a function when the precondition and post-
condition of the function are available as first order predicate logic
formulas.Recently hardware support for assisting in program de-
bugging has been proposed to increase the efficiency of debugging
[29, 30, 15].

5. Conclusion
We have developed a novel approach for pruning dynamic slices
that exploits program state information in terms of observed values
of variables in addition to the dynamic dependence information as
is done traditionally in dynamic slicing. We developed a simple
analysis that estimates confidence in computed values. Due to a
fairly large number of executed statements that represent one-to-
one mappings between an operand and the result, we are able to
obtain the highest confidence value of one for a large number of
computed values. Therefore, even the largest pruned dynamic slice
that we obtain is significantly smaller than the conventional dy-
namic slice. The number of distinct statements inPDSmax is 1.79
to 26.93 times less than the corresponding number inDS. We show
that our approach is more effective thandynamic dicingbecause
pruning performed by dynamic dicing can often prune the faulty
code from the dynamic slice. As mentioned earlier, it is wellknown
that dynamic slices do not always capture the erroneous statements
[6]. We described a programmer assisted demand-driven strategy
for expanding the pruned dynamic slice to handle this problem. Our
ongoing work is focused on automating this approach.
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