Pruning Dynamic Slices With Confidence

Xiangyu Zhang

Neelam Gupta

Rajiv Gupta

The University of Arizona, Department of Computer Scierfagson, Arizona 85721
{xyzhang,ngupta,gupta}@cs.arizona.edu

Abstract

Given an incorrect value produced during a failed program ru
(e.g., a wrong output value or a value that causes the program
crash), the backward dynamic slice of the value very fretiuen
captures the faulty code responsible for producing therieco
value. Although the dynamic slice often contains only a $mal
percentage of the statements executed during the failegtaormo
run, the dynamic slice can still be large and thus consideeffort
may be required by the programmer to locate the faulty code.

In this paper we develop a strategy for pruning the dynamic

slice to identify a subset of statements in the dynamic shiaeare
likely responsible for producing the incorrect value. Wesatye
that some of the statements used in computing the incoredgé v
may also have been involved in computing correct values,(a.g
value produced by a statement in the dynamic slice of therinco

rect value may also have been used in computing a correctitoutp

value prior to the incorrect value). For each such executa-s
ment in the dynamic slice, using the value profiles of the etext
statements, we computecanfidence valueanging from0to1—a

1. Introduction

Dynamic slicing was first proposed by Korel and Laski [13] to
guide software developers in the debugging process. Thanaign
slice of a value computed at a program point in the execution
trace includes all those executed statements which weeethjir

or indirectly involved in the computation of the value. Amificant
amount of research on algorithms for computing dynamiceslic
has been carried out [1, 23, 24, 25]. Computation of dynatides
normally consists of two steps: building the dynamic dejeece
graph for a program execution (where dependences inclute bo
data and control dependences); and then traversing themilyna
dependence graph to compute the dynamic slice of a computed
value that is observed to be incorrect by the programmeo(iact
value may correspond to an incorrect output or a value thatesa
the program to crash). Due to the size of the dynamic depeeden
graph, which keeps growing as program executes, one challei
dynamic slicing is the cost of computing it [23]. Our prior kan
dynamic slicing has already addressed this problem [25, T8
effectiveness of dynamic slicing in fault location is detared by

two factors:How often is the faulty statement present in the slice?
andHow big is the slice, i.e. how many statements are included in
the slice?n our previous work [27] we evaluated the effectiveness

higher confidence value corresponds to greater likelihbad the
execution of the statement produced a correct value. Giveiteal
run involving execution of a single error, we demonstratg the

pruning of a dynamic slice by excluding only the statemernite w
the confidence value of 1 is highly effective in reducing tiees
of the dynamic slice while retaining the faulty code in thieesl
Our experiments show that the number of distinct statemardas
pruned dynamic slice are 1.79 to 26.93 times less than theyul
namic slice. Confidence values also prioritize the statésnarthe
dynamic slice according to the likelihood of them being faliVe
show that examining the statements in the order of incrga=in-
fidence values is an effective strategy for reducing theedfdfault
location.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Debugging aids, Testing toolagTr
ing; D.3.4 [Programming Languagé&sProcessors—Debuggers

General Terms Algorithms, Measurement, Reliability, Verifica-
tion

Keywords debugging, dynamic slicing, data and control depen-
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of backward dynamic slicing in fault location. We observedtt
dynamic slices are able to contain the faulty statement istrab
the cases and in general dynamic slices are quite small cechpa
the number of executed statements. However, we also olisérae
the absolute number of statements in the slice could stilatge
and in addition many of the statements are apparently unpltke
be faulty even though they are present in the slice.

Given an observed incorrect value,, in this paper, we de-
velop an approach for computingRauned Dynamic Slicef x,,
PDS(x,), which contains a subset of statements from Ehe
namic Sliceof x,, DS(x,), that are highly likely to include faulty
statements. We observe that althouBi$(x,) contains all exe-
cuted statements that are involved in computing not all of these
statements are equally likely to be involved in causing ttre-e
neous behavior. In particular, let us consider a commoratit
in which the program produces some correct outpitss) before
producing the incorrect value,. From the perspective of thg 's
andx,, itis possible to divide the executed statement®$i( x )
into two sets:May Sef DS,,qy(X0), containing executed state-
ments fromDS(x,) that are also involved in computing one or
more of the,/  values; andMust SetDSmu.s: (X, ), containing ex-
ecuted statements from.S(x,) that were involved in computing
none of they/_ values. In other words:

DS(%0) = DSmust(X0) U DSmay(Xo)
DSmust(x0) = DS(x0) — | J DS(/,)
vy

DS’may(Xo) = DS(XO) - DSmust(Xo)



While the statements in thB.S,,..:(X,) are always included
in the pruned slice®DS(x,), the ones iNDSyay(%xo) Mmay or
may not be included iPDS(x,). We develop an analysis that
computes for value computed by each statement executior
DSimay (o), aconfidence valu€'(v@Qs) between 0 and 1. High
confidence value for a statement execution indicates th&iawe a
high confidence that the statement produced a correct Vahe.
confidence values are computed using #adue profilesof the
executed statements.tAreshold confidence may be set such that
only statement executions InSy.., (X ») that have a confidence of
less thanr are included in the pruned dynamic sli€&D S, (x,).

In other words:

PDS:(%o) = DSmust(Xo) U DSy qy(Xo)

where, DSpay(Xo) = {s s.t. s € DSpmay A C(v@s) < 7}
As we will show later, our analysis may yield confidence value
of 1 for many statement executions and thus they are pruoed fr
the dynamic slice irrespective of the choicerpf.e. they are never
included inPDS;(x,) forall 7.

input input
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PDSimax
PDSmin
IDS
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@ Never included in PDS
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Figure 1. Pruning dynamic slice.

Figure 1 illustrates pruning of dynamic slices visuallystiows
a dynamic dependence graph of a computation that produaes tw
v/, values before producing the incorrect valug. DS is the
Dynamic Sliceof x,. A subset of nodes i .S that form theldeal
Dynamic Slice(IDS) is shown — IDS originates at the point of
program error and contains only those statement executiats
produce erroneous values. The node®isi that are not present in
I1DS have been divided into three categories. The nodes labeled
in DS belong toD S....st, as they are not involved in computing the
v/, values, and thus they are always included’ip.S, the Pruned
Dynamic Sliceof x,. The remaining nodes ib.S are labeled with
eithery/ or 7. The,/ nodes have confidence value of 1 and thus they
are never included i DS. The nodes labeletihave a confidence
value of less than 1 and thus the value of thresholittermines

whether or not they are included iADS. The identification of,/
nodes is made possible by recognizing trat change in the values
produced by such nodes would alter the output values thag¢ wer
known to be correctTherefore it is assumed that these nodes must
have produced correct values. As the figure shows, the shalle
(largest) pruned dynamic slice that is produced by our &lyor
corresponds t@&” D Spin (PDShaz). The key point to note here is
that even ifr is setto 1, we obtain a pruned dynamic slie®S,,.q
which is smaller than the dynamic slié2S. We would also like to
point out thatP D S, corresponds to what is known agynamic
dice[3] — as our experiments show, often when faulty code is not
captured by the dynamic dice it is capturedBP Sraz -

Next we present a motivating example which shows how anal-
ysis of code and runtime information can be used such that the
confidence values of some statement execution3.$.., is de-
termined to be 1. Figure 2(a) shows an execution of a program
that follows the path corresponding to the true evaluatibthe
predicate at node 4. The value shown to the right of each-state
ment is the value computed by the statement during the @recut
The dynamic dependence graph of this execution is showngin Fi
ure 2(b) — the solid edges are data dependence edges while dot
ted edges are control dependence edges. The nodes in thraidyna
slice of the incorrect output value produced by statemeindQde
{0,1,2,3,4,7,10}. Now let us see how the correct outputs pro-
duced by statements 8 and 9 are used to mark the nodeSin.,
as,/or?.

e From the correct output value of written by statement 8 we
infer that the values produced by statements 1, 3 and 5 are als
correct. The reasoning on which this inference is based is as
follows. The statements 3 and 5 represamg-to-one mappings
between the used operand values and generated result values
of X. Therefore any change in the values produced by 1, 3
or 5 will cause the value of output at statement 8 to change.
However, the value of output at statement 8 is known to be
correct. Thus, we mark statements 1, 3 and 5 witimdicating
that they produce correct values. We further conclude that t
true evaluation of predicat&X > Y is also correct. This is
because ifX > Y would have evaluated to false, it would have
produced a different output value féf at statement 8.

Now let us consider the other correct output value written by
statement 9. Since statement 6 does not represent a ome-to-o
mapping between its operand and result, even though the valu
of T that is produced by statement 6 is correct, we do not as-
sume that the value of operatidused in statement 6 is correct.
As a result we conclude that values produced by statements 0
and 2 may or may not be correct and therefore we mark them
with a ?. Note that the value oY generated by statement 0
has another use in the predicate > Y. Even though we
have determined that the predicate correctly evaluateduég t
we cannot determine from this fact that the valueYoused

by the predicate is correct because many different valués of
would have produced the corrdctie evaluation of the predi-
cate. Thus, from both uses ®f we conclude the same thing,
i.e. the value oft” produced by statement 0 may or may not be
correct.

Given the above observations, the pruned dynamic slicecofiact
value output at statement 10 will always include statem@éraad

10. More importantly it will never include statements 1, 3ard

5. However, it may or may not include statements 0 and 2. The
confidence values for statements 0 and 2 will be comparedtigth
thresholdr to make this determination. In other words:

DS =1{0,1,2,3,4,7,10}; IDS = {2,7,10}

PDSpmaz = {0,2,7,10};  PDSpmin = {7,10}
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Figure 2. Pruning dynamic slice.

In the remainder of this paper we will present a confidence
estimation method that will produce the following resulrst
for the above example it will produce a confidence value ofrl fo
values produced by statements 1, 3, 4, and 5. Therefore oningr
algorithm will correctly remove statements 1, 3 and 4 frora th
dynamic slice of the incorrect output value produced byestent
10. Second it will produce confidence values of less than 1 for
statements 0 and 2 such that the confidence value of statement
0 is more than confidence value of 2. Thus, depending upon the
value of 7, three possible pruned slices will resu{t, 2, 7,10},
{2,7,10} and{7,10}. The computation of confidence values will
be performed using thealue profilesof the executed statements
(i.e., the operand values used and result values produceagdu
statement executions).

Given a failed run involving the execution of a single erauy
experiments show that the pruning of a dynamic slice by ekclu
ing only the statements with the confidence value of 1 is Kighl
effective in reducing the size of the dynamic slice whileaneing
the faulty code in the slice. We observe that the number oihdis
statements in a pruned dynamic slieé S, are 1.79 to 26.93
times less than the conventional dynamic slice. Confidentges
also prioritize the statements in the dynamic slice acogrd the
likelihood of them being faulty. We also show that locatinfaalt
by examining the statements in the order of increasing cenie
values is an effective strategy.

The rest of the paper is organized as follows. In section 2 we
formally define confidence valueand show how value profiles
are used foestimating confidence valuds section 3 we present
the results of our experiments to demonstrate the effews®
of pruning dynamic slices using the estimated confidenceegl
Related work is discussed in section 4 and conclusions iioses.

2. Confidence Analysis

In this section we develop an analysis that will serve as the b
sis for pruning a conventional dynamic slice. In this work age
sumethat for the failed program run being analyzed, the failuas w
caused due to the execution ofiagle errorin the program (i.e.,
even though the program may contain many bugs, the failuse wa
caused by encountering one of those bugs). Our goal is tdageve
aheuristicfor pruning a dynamic slice such that the size of the dy-
namic slice is significantly reduced and very rarely is thrergous
statement pruned from the dynamic slice. In other words walavo
like to significantly reduce the size of the slice with minintess

in fault location effectiveness. Before we describe outysis, we
present some basic definitions.

DEeFINITION 1. The Dynamic Dependence Graphof a program
run, DDG(N, E), consists of a set of nodéé and a set of directed
edgesE where: each node; € N corresponds ta‘" execution
instance of statement in the program; and each edge:; —

n; € E corresponds to a dynamic data dependence or dynamic
control dependence af* execution instance of statemenon the

4" execution instance of statement

In other words, with the execution of each statement duripgoa

gram run, a new node is added to the dynamic data dependence
graph and the incoming edges to the node from other nodes on
which the new node is data and control dependent are inteatuc

The execution of every statement during a program run 1®sult
in the computation of a result value. For an assignmentrsgtée
this is the value assigned to the left hand side variablendutie
execution while for a predicate statement the value is eittue
or false corresponding to the result of the predicate’suatain.
The dynamic slice of a value computed by a statement is defised
follows.



DEFINITION 2. Given DD@ N, E), a dynamic dependence graph,
the Dynamic Sliceof n; € N denoted by D&:;) is the subgraph
of DDG(N, E) which includesn; as well as all other nodes and
edges from which; is reachable, i.e.
DS(ni) = ({ni}, {ele=m; —n; € E})U U DS (my)

Vmj—mn;

Consider a failed program run from which two kinds of evi-
dence are collectedhegative evidencia form of the first incorrect
value x , observed by the programmer during the program run; and
positive evidencan form of some correct output valueg/(s) gen-
erated during the program run before the incorrect vatyewas
generated. We classify eacblevantvalue, i.e. value that was in-
volved directly or indirectly in computing, and/ory/ values,
into three distinct categories as defined below.

DEFINITION 3. A relevant valuev generated by node is classi-
fied as:

e \/ or correct if it is used in computing at least one of the
values but it is not used in computing the incorrect vakug
Therefore the values computed by all nodes in

U DS(v/,) — DS(x,) are classified ag/;
v/,

e x orincorrect if it is used in computing the incorrect value,
but it is not used in computing any of the, values. Therefore
the values computed by all nodes in
DS(x,)— U DS(y/,) are classified as<; and

v/,

e 7 or unknown if it is used in computing the incorrect value
X, and at least one of thg/, values. Therefore the values
computed by all nodes iRS(x,)N |J DS(y/,) are classified

v/

o

as?.

In [27] it has been shown that dynamic slif&s (x ) typically
contains the erroneous code responsible for producingntieerect

where Range(v@n) represents all legal values of and
Alt(v@n) C Range(v@n) is a set of alternate values of
such that if any value iMit(v@n) was produced by, the
same correct/_ values would have resulted.

Let us discuss the reasoning behindd@@n) computation when

v is classified a8. If any change whatsoever in the value computed
by n would cause at least one of thé values to change and hence
become incorrect, then we conclude that the valwemputed by

n during the program run must have been correct. In this case th
set Alt(v@n) contains only one value. Therefore as desired, the
confidence estimat€ (v@n) = 1 —10g|range(van) 1 = 1. Onthe
other hand, if changing to other values can still yield the same
v/, values, then we have less confidence in the correctnessuef val
v. As the setAlt(v@n) increases in size, the confidence estimate
C(v@n) reduces and whedlt(v@n) is equal toRange(v@n),
thenC(v@n) = 1 — log|range(van)||Alt(vQn)| = 0.

Before settling on the above definition of confidence, we con-
sidered other simpler definitions of confidence but we fouedht
not to be nearly as effective. For example, we consideredf-a de
inition in which each value’s confidence was proportionatte
number of correct outputs whose computation depended Unaan t
the value. However, we observed that in many cases diffengnt
puts were derived from different values and thus many vakers
assigned the same confidence. In addition, this simplerodédils
to exploit the knowledge that sometimes even though a vakle m
be involved in computing a single correct output, by lookaighe
statements involved we may be able to definitely determiatttie
value is correct. For example, in Figure 2(b), since theealfX
output by statement 8 is correct, we can determine that the va
of X computed by statement 1 must be correct. This is because
the statements along the data dependence chain (4 and &)merf
one-to-one mapping between old and new value’ of

Next we develop an algorithm for computing confidence esti-
mates. While our definition of confidence estimates is quitpke,
the computation of confidence estimates is made challerigyng

value x ,; however, it also includes many statement executions that the need for deriving th&ange(v@n) and Alt(v@n) sets for all

are not responsible for generating the incorrect value oAting

to the above definitions, statement execution®isi( x,) will be
initially classified into two categories — some will be clifissl as

x while others will be classified & The ones that are classified as
x are always included in the dynamic slice. However, we petfor
analysis to determine what subset of statement executiassifted
as? should be included in the pruned dynamic slice.

nodesn that are classified a& There are two key problems that
must be addressed. First, given a variableeferenced by a pro-
gram statement, we first define the seRange(v@n), i.e. the set

of legal valuesthatz may be allowed to take during its reference
by an execution of. Once such a legal set of values is determined
for all variable references, théit() sets will be computed with re-
spect to these legal values. Second, we must develop aritafgor

The decision as to whether the statement executions in the dy for propagation of values. Starting from the values classiéis,/,

namic slice that are classified ashould be included in the pruned
dynamic slice is based up@onfidence analysi$-or every value
computed by statement executionconfidence analysis produces a
confidence valu€'(v@n) that measures the likelihood of the value
being correct. The confidence estimétév@n) ranges from O to

1 whereC'(v@n) = 0 indicates that we have no confidence at all
in the correctness of value while C(v@n) = 1 indicates that
we have the highest possible confidence in the correctnesdicf
v@n. This estimate is defined as shown below.

DEFINITION 4. Confidence estimate of value computed by a
relevant node is defined as follows:

o if v is classified as/ (i.e., correct) then

C(v@n) =1
e elseifv is classified as« (i.e., incorrect) then
C(v@n) =0

o elseifv is classified ag (i.e., unknown) then
C(v@n) =1 — log|range(van)||Alt(vQn)|

we traverse the dynamic dependence graph in a bottom umfashi
to compute thedit() sets of values classified asThe Alt() set of

a value classified ag’ is initialized to the singleton set containing
the value while thedit() set of a value classified &5s computed
by examining theAlt() sets of its child nodes in the dynamic de-
pendence graph.

Let us first discuss how the set kHgal valuesis determined
for each variable reference. A simple approach would be & us
all possible values a variable can take based upon its typeggr,
char, boolean) or compute a more accurate set using statligsen
(e.g., range propagation [2]). However, such an overesginganot
very desirable for debugging because during debugging we ar
interested in analyzing a single program execution (i.e.féiled
run) corresponding to a specific program input. Thereforeuse
thevalue profilefor the failed run to supply the set of legal values
Range().

DEFINITION 5. Given a reference (definition or use) to a variable
v in a program statement, the value profilel’ P(v@s) provides
an ordered list of values taken by variableduring the multiple
executions of in the failed run.



S:Y=.

Reference| Value Profile |

if (..

%ﬁ:x=¥+l [Y@5 [ {1.23456.78D]
fi Yact | {789
if (..) Xact {8,9,10

02: X=Y%2 YQC? {1,2,3,q
i xac? {1,0,1,3
it 7GC® | {9,955

- vacs | {4569
OUXEYHZ | vacs | {13.14,11,13

fi

Figure 3. Value profiles.

A program run generates a large number of values and exgrcise
a large number of dynamic dependences. Capturing thisriigio
perform dynamic slicing is a challenge that is already asisid in
our prior work [25, 26]. We developed a highly compressednfor
whole execution tracel®6], that enables us to hold the execution
trace of 1 to 2 billion instructions in 1 GB of memory.

Now let us consider the rules of propagation along data and
control dependence edges in the dynamic dependence grayph. |
itively, given an execution instance of a statement, theegln the
Alt() set of the result computed by the statement are constrained
by each of its children in the dynamic data dependence gf2ply.
those values can be put into thét() set that do not adversely im-
pact any of the,/, values along any chain of dependence edges
from the executed statement to any of tfigvalues. Therefore, we
also associatellt() sets with dynamic dependence edges and then
the Alt() set for the result value of an executed statement is simply
computed by intersecting thé&it() sets of edges leaving the state-
ment. There are two key operations involved in propagattarst
from the Alt() set of a result computed by an executed statement,
we compute the subset of legal values that the operands kan ta
such that these operand values produce the result valutsroeh
in the Alt() set. Second thellt() set of a result is computed by
examining the subset of legal values already determineddt ef
the uses of the result value.

Al(Y@Syg = {9}

9}

1y =
cil x=v+1]1dy
v c
(Write X) 10 Vo

%4
5v
V

(Write X) 1 Vo

(Write X) 14 Vo
Figure 4. Dependences among assignment statements.

Let us consider propagation along dynamic data dependence

edges that connect assignment statements (we will alsadeons
predicate statements shortly). We illustrate propagaiioanalyz-
ing the result value computed 19" execution instance of state-
ment .S in the example from Figure 3. The value Bf computed
by So is 9 and this value is used later B)?, 4*" and4*" ex-
ecution instances of statemeri$, C? and C*® respectively. The
dynamic dependence will therefore include three data digrere
edgesSy — C1, So — C3%, Sg — C%. We further assume that
the values ofX computed byCi, C7 andC3 are output and deter-
mined to be correct. Figure 4 first shows how the potentialesl

in Alt(Y@Sy) set are identified by considering each dynamic data
dependence individually. Given that' represents @ane-to-one
mappingbetween the value operand and resultX (determined
from value profiles), thedlt(Y@Sy — C3) set obtained contains
9. In contrast, since statemer@ and C*® do not represenbne-
to-one mappingdetween the value of operarid and the value
of result X, the setsAlt(Y @Sy — C3) and Alt(Y @Sy — C%)
corresponding to dynamic data dependence edges> C? and
So — C7 contain more than one value. However, thi (Y @Sy)

is computed by intersecting the three sets for the threerdima
data dependences yielding a set with only one element. fidnere
the confidence estimaté(Y @Sy) = 1 and therefore we mark the
value computed by as./, i.e. correct.

From the above analysis we observe two things. First, the pre
ence of one-to-one mappings are greatly beneficial in pguaidy-
namic slice since they prevertlt() sets from expanding as prop-
agation proceeds. Second, we observe that as long as thate is
data dependence edge along which a computed value can be veri
fied (i.e., itsAlt() set contains one value), the value is considered
verified. As we will show later, our approach is very effeetlve-
cause programs often contain many statement executionsdha
respond to one-to-one mappings (e.g., copy operationsgeesipns
with two operands one of which is a constant etc.).

In the above example we considered propagation along dgnami
data dependence edges and these edges were present besween a
signment statement executions. Next we see how to handkitthe
uation in which predicate evaluations are present and hdpee
namic control dependence edges are also present. Thereare t
points to be made here. First we classify the value of a patelias
being correct {/) if the value of one of its direct or indirect con-
trol dependent assignment statements has been determibeg/t
This is because if the predicate would have evaluated diftér the
variable assigned by the control dependent assignmentivirawie
had a different value and hence it would have adversely taffiec
one of they/, values through its further uses. Second it should
be noted that when the result value of a predicate is cladsafie
correct, it only means that the outcome of the predicateuaval
tion (true or false) is correct. However, since a predicataally
represents aany-to-onamapping between its operand values and
true/false result, we cannot infer that the operand valteseces-
sarily correct. The only thing we can say is that the operatdes
are the subset of legal values for which the predicate prexitiee
same desired result, i.e. true/false. To illustrate theralpoints we
use a fragment of the previous example as shown in Figureé. Th

Al(Y@S)) = {9}

S:Y=.

P! :if (Y >6)
ClX=Y+1
fi

(Write X) 10 /o

Figure 5. Dependences involving predicates.

dynamic dependence graph and the results of analysis ansho
in the figure. Note that the predicate evaluatiB is marked as



Initialize: Alt(*) «— {val(x)};
for each relevant nodes; marked? in bottom-up ordedo
if S; is anassignmentX = .. then
Compute Alt(Alt(XQS;));
if |Alt(X@QS;)| = 1 then
C(X@S;) = 1; markS; as+/;
else
C(XQS;) =1~ 10g|Range(xas,)||Al(XQS;)|
endif
elseif S; is apredicatethen
if 3.5, st.S; dynamically control dependent upsh
andsS; is marked,/
then mark S; asy/ endif
endif
endfor

Compute Alt(Alt(XQS;))
Let the following dynamic dependence edges lead
from S; to nodes markeq/ or 7:
to assignmentsS; — C4,, S; — C2,,
to predicates S; — Pj;, Si — Pj;,

..... S —
S —

cn s

ni’
pm

mi*

for each C7 1Y = f(X) st 3.5, — CJ, do
Alt(X@S; — €)= {v: v
v € VP(XQCI) A CI(X =) € Alt(YQCY,)}
endfor
for each PJ : f(X)st38; — PJJ,L. do
Al(X@S; — PJ) = {v: _
v e VP(XQPI) A PI(X =v) = P};}

endfor
Alt(X@S) = 1 Al(X@S; —CY)
Vj,ST;HCgi
n N AXaSs; — P)
vj,Si—P};
endComputeAlt

Figure 6. Confidence computation algorithm.

\/ because its dynamic control dependent clditflis marked,/.
Alt(Y@Sy — Py) also includes values 7 and 8 in addition to 9 as
for these legal values df, the predicat&” > 6 evaluates to true
just as it evaluates to true for the value 9 producedhy

The process we have described is summarized fully in the algo
rithm presented in Figure 6. All nodes in the dynamic depeoéde
graph that have been marked aare the ones that are processed
to compute their confidence estimates. Tie() sets for all nodes
are initialized to the set containing the valuel () produced by the
node. The nodes marké&dare then processed in a bottom-up order
one by one. If a node being processed is an assignment stdteme
then theAlt() set for its result value is computed, from which then
its confidence estimate is derived. Predicate nodes aregsed by
considering the markings on their dynamically control defent
assignment statements. In Figure 6, the functitvmpute Alt()
presents the details of thé/t() set computations which were de-
scribed intuitively earlier.

3.
3.1

We have developed a dynamic slicing framework which was tesed
conduct experiments. Our tool execuges compiler generated bi-
naries for Intel x86 and captures dynamic information idotg de-
pendence, value, and control flow traces [26]. Even thougloml
works at binary level, the dynamic information is easily mpeg
back to source code level using the debugging informatiorege

Experimental Results
Implementation and Benchmarks

ated bygcc. Figure 7 shows the main components of our tool. The
static analysiscomponent of our tool computes static control de-
pendence (CD) required for forward/backward slice compuria
from the binary. The static analysis was implemented ugie@t-
ablo[32] retargetable link-time binary rewriting framework thsés
framework already has the capability of constructing theticd
flow graph from an Intel x86 binary. Thaynamic profilingcom-
ponent of our system which is based upon Yadgrind memory
debugger and profiler [33] accepts the samme generated binary,
instruments it by calling thelicing instrumenterand executes the
instrumented code with the support of gleing runtime The slic-

ing instrumenter and the slicing runtime were developed $you
enable the collection of dynamic information. Valgrind&rkel is a
dynamic instrumenter which takes the binary and before gieg
any new (never instrumented) basic blocks it calls the umsén-
tation function, which is provided by the slicing instruntem The
instrumentation function instruments the provided bakickand
returns the new basic block to the Valgrind kernel. The Kezre-
cutes the instrumented basic block instead of the original he
instrumented basic block is copied to a hew code space asd thu
it can be reused without calling the instrumenter again. Jlkee

ing runtimeessentially consists of a set of call back functions for
certain events (e.g., entering functions, accessing merborary
operations, predicates etc.). It also manages the shadanorge
which is used to capture dynamic dependences. More detailso
working and use of shadow memory can be found in [27]. We in-
tercept the output system calWRITE etd. and then augment the
original output with its corresponding position in the DDThe
confidence componeithplements the analysis in this paper. It re-
ceives dynamic information from the slicing runtime andregoit

as DDG, which is a variant of our prior WET representation [26

) - Instrumenter
|li> e _‘bm S
§ lici dependence
L event Slicing Confidence
Runtime values
()uuﬂi

Figure 7. Tool infrastructure.

Instrumented bb

inputs

binary . CD, PD
Diablo*

Table 1 shows the benchmarks used in our experimentati@n. Th
first five are known as the Siemens suite programs [11]. The las
two unix utilities are also available from the same websgg] [

We use this suite of programs because it provides severty fau
versions of the programs which have exactly one fault iegct

in each one of them. The versions used in our experiments are
also indicated in Table 1. For each faulty version many tgstiis

are also provided in [11]. Different inputs often result iffetent
positions for the first incorrect output in the output stredrhe
columnposition rangeof Table 1 gives the range of the positions of
the first observed wrong output. The greater the positionbarm
the greater is the number of correct outputs produced béfare
incorrect output. We can see that it is common for a certamtrer

of correct outputs to be generated in a failed run. In facséhe
numbers can be very high for some failed runs. We exclude the
programtcas and tot.info from the Siemens suite becautms

is too small andot.info has floating point operations, which are
currently not supported by our tool. We do have some realdvorl
benchmarks. However, most of them are memory corruptiarerr
for which program executions terminated before any outpat w
produced.

The test suite provides more versions than those used in our
experiments. We excluded some of the versions as they aapnot
propriate for experimentation. Some versions produce houbor
the very first output produced is wrong. Therefore our apgtasa
not applicable. In two kinds of situations the faulty staéermis not



Benchmark | Version Errorin Failed | Position
Cases| Range
print_tokens 1 switch-case 6 [14-495]
(565 LOC) 2 switch-case 143 17-1707
4 constant 23 17-1209
6 constant 143 13-2714
7 predicate 28 8-1271
print_tokens2 4 assignment 268 20-394
(510 LOC) 5 return 67 20-1106]
6 parameter 329 20-870
7 predicate 158 27-486
8 predicate 194 60-928
replace 1 predicate 24 [2-20]
(563 LOC) 3 predicate 130 2-666
6 Joop condition 92 2-609
9 predicate 92 2-609
14 predicate 92 3-49]
18 predicate 190 2-380]
21 predicate 2 18-40]
25 predicate 2 3-11
schedule 2 assignment 200 2-38
(412 LOC) 4 predicate 267 2-39
7 added code 20 2-14
schedule2 5 added code 32 5-28
(307 LOC) 6 constant 2 10-18]
7 predicate 20 2-16]
gzip 1 predicate 6 [19-19]
(7199 LOC)
flex 4 constant 12 16885-53109]
(12418 LOC) 5 constant 257 7130-9056]
7 constant 97 6164-6164]
10 array index 6 [7142-7144]
11 predicate 513 [6867-43647]
15 constant 515 13430-53895
17 constant 315 10632-51067
19 constant 343 20495-61777

Table 1. Characteristics of benchmarks

present in the dynamic slice itself and thus we cannot stoeef-
fectiveness of pruning in such cases. Ficstde omissiofiaults are
present in some versions. Since such faults are not evearedph
the static slice of the output, they cannot be caught by angiahyc
slicing algorithm. Second, it is known that the dynamiceskid the
incorrect output does not always include the erroneousrstnt
executed. This can happen when the erroneous output isgeddu
due to an incorrect evaluation of a branch predicate causiag
execution of some statements to be incorrectly bypassed.sith
uation can be handled by constructing an expanded dynaro& sl
called therelevant slicg6, 27]. While in our experiments we omit

such cases, later we show how they can be handled by extending

our technique.

3.2 Confidence-based Pruning

Since for some faulty versions there are many test inputssame

of these may not differ much in their behavior, for each fault
version we selected three test inputs such that varying eumib
correct outputs are generated before the incorrect ouspptd-
duced. Whenever possible, we selected three runs suchhiat t
wrong output was observed at: the lower boungosition range

in the first run; closest to the middle pbsition rangen the second
run; and at the upper bound pbsition rangein the third run. For
each run, we first computed the dynamic slice of the wrong out-
put and then pruned the slice using confidence analysis. ¥¢ept
six numbers about the slice sizes in Tables 2 andiB.PD S, in,
All.PDSaz, and All.DS represent the number of DDG nodes
in PDSmin, PDSpaz, andDS. The correspondingdistinctnum-

bers ©.PDSnmin, D.PDSna, and D.DS) denote the number

of unique statements in them (note that one unique statemmayt
get executed many times and result in many nodes in DDG). We
also present the fault location effectiveness in columror In.
Here I, X, and D indicate the presence of erroneous statement
in PDSpin, PDSpaz, and DS respectively. The results are also
summarized by taking averages across different versioreac
benchmark in Table 4.

From these two tables, we make the following observations:

(1) The confidence analysis greatly reduces the size of dignam
slice without sacrificing the fault location effectivene3able 4
shows the average factor by whi¢hD.S,,.. is smaller thanD S
ranges fromt.31 t0 87514.33 (all) and1.79 t0 26.93 (distinct). For
flex, the slices are so precisely reduced that they simply cottai
chain of dependences from the erroneous statement to thieeat
output — this chain includes only a few statements.

(2) For most of the versions, we used three runs and studéed th
relation between the pruning capability and the number ofecd
outputs. From Tables 2 and 3 we observe that the absolute size
of the PDSs appear to be independent of the number of correct
outputs. However, the reductions in the size®@S's with respect
to the sizes o) Ss increase as the number of correct outputs grow
because of the increases in the size®dfs.

(3) We observe that the fault location effectivenes®éiS,.q.
is very good. Even though it is much smaller thaxs, only in
one case the erroneous statement is removed during prurning —
happened ineplace version v9 run r2. Fig. 8 explains how this
happened. In this run, statemeént i + 1 is wrong such that 'D’
is assigned to the wrong position in arreyt. However, statement
return flagis verified and thu$lag=true; is verified, which means
the predicate is correct. Since the predicate represemts-toeone
mapping to its operand when it evaluatedrige, pat[j] contains
the correct value 'D’. According to our analysis, the staredt[i]
will get verified and so will the wrong index. As is illustratén the
right hand side of Fig. 8pat[j] being correct is the result of both
arraypat andj being wrong.

@ i=i+'lv’ v
pat[i]="D

j=offset+...
while (j>offset) { »/
ift (‘D’== patj]) {

Pat
IIEEIN >J<
X

flag=true; \/
break;
else :
e  [pui [ 0]
}
return flag; \

Figure 8. Replace version v9 run r2

(4) Letus compar@ D S,q. With PD S0 . Although PD S,y ir,
works for a large number of test cases, we did observe that in
several cases, such eplace v1, v3, v9, v2andschedule vyit
prunes the erroneous statement wiilB S.,.... does not do so. On
the other handP D S, works almost equally well for the cases
in which PDS,,;,, also works. As shown in Table 4, when the
erroneous statement is captured in b&tD.S,, ., and PDS,,in,
corresponding to théX columns,P DS az /P DSmin is roughly
one, i.e. their sizes are nearly the same (the entries makeate
ones where there were no slices in that category). Thusg esin-
fidence analysis to obtaiR D .S, is an effective method for both
pruning the slice and maintaining the fault location effeaess.

(5) In some cases such fsx v15 part of the wrong output ap-
pears to be correct which may cause some confusion. For é&amp



[ Benchmark | Version | Wrong Output Pos] (All.PDSpin-All.PDSax)[All.DS | (D.PDSyin-D.PDSwaz)/D.DS | Errorin |

print_tokens 1 14 (310-310)/712 @1-41)/72 XD

301 (239-240)/4582 (40-40)/86 XD

495 (317-317)/13603 (41-21)/134 XD

2 17 (70-70)/429 (19-19)/61 XD

231 (68-69)/3605 (18-18)/86 XD

1707 (70-70)/44158 (19-19)/149 XD

4 17 (246-246)/603 (40-40)/69 XD

91 (212-212)/1965 (35-35)/92 XD

1206 (263-295)/28513 (43-43)/141 XD

6 13 (1457-1470)/1804 (@4-28[71 XD

109 (214-214)/1993 (35-35)/97 XD

2714 (432-432)/66651 (36-36)/145 XD

7 8 (399-400)/698 (41-41)/74 IXD

92(0) (423-436)/1486 (41-41)/94 IXD

1271 (390-391)/27274 (37-37)/136 IXD

print_tokens2 4 20 (174-174)/902 (40-20)/99 XD

47 (447-447) 1561 (50-50)/95 XD

394 (770-770)/8364 (44-44)/138 XD

5 20 (499-499)/850 (58-58)/97 XD

79 (364-364)/1013 (59-59)/109 XD

1106 (285-285)/27841 (56-56)/154 XD

6 20 (208-208)/680 (61-61)/95 XD

34 (208-208)/770 (61-61)/97 XD

870 (208-208)/18602 (61-61)/143 XD

7 27 (697-698)71290 (59-60)/96 XD

75 (329-329)/1140 (53-53)/83 XD

486 (1105-1105)/10630 (67-67)/148 XD

8 601 (377-377)/2091 (59-59)/100 IXD

63 (377-406)71676 (48-51)/105 XD

928 (367-413)/20738 (48-51)/151 XD

replace 1 2 (192-494)/2212 (38-77)/147 XD
9 (241-461)/1625 (53-81)/130 XD

20 (179-408)71687 (44-64)128 XD

3 2 (160-671)/1012 (32-86)/136 XD

18 (89-89)/1997 (21-21)/155 XD

666 (17-868)718522 (3-45)/125 XD

6 2 (371-780)/1166 (45-62)/136 XD

19 (216-648)/2129 (28-50)/132 XD

609 (325-605)/20525 (46-249)/153 XD

9 2 (180-357)/889 (40-61)/115 XD
262 (48-243)/3047 (18-42)/125 D

14 3 (289-656)/1187 (55-88)/138 XD

9 (1006-1689)/2515 (73-117)/161 XD

49 (103-112)73021 (23-28)/111 XD

18 2 (106-107)7669 (26-27)/109 XD

35 (152-152)/4145 (37-37)/143 XD

380 (194-194)/12588 (B7-37)/127 XD

21 18 (390-781)/2372 (53-86)/132 XD
20 (502-783)/3501 (42-59)/102 XD

25 3 (321-531)/975 (55-78)/120 XD

11 (450-552)/2952 (72-84)/165 XD

schedule 2 2 (464-465)/1046 (65-66)/93 IXD

10 (621-623)/2155 (69-69)/118 XD

38 (295-359)/6176 (55-55)/119 XD

! 2 (1225-1468)72605 (88-98)/119 XD

10 (1025-1029)/2155 (85-89)/117 XD

7 2 (386-399)/726 (67-68)/90 XD
6 (83-284)/1124 (24-65)/105 XD

14 (84-330)/2146 (24-59)/97 XD

schedule? 5 5 (1152-1152)71823 (64-64)83 XD

14 (195-195)/2594 (34-34)I73 XD

28 (1896-1896)/5639 (60-60)/79 XD

6 10 (230-230)/1611 (40-40)/67 XD

18 (254-2524)12526 (@2-22)I67 XD

7 2 (80-145)7696 (27-36)/67 XD

6 (113-129)72871 (25-27)194 XD

16 (693-709)/3311 (59-61)/84 XD

(1). Part of the wrong output appeared to be correct;
(2). The root cause was pruned.

Table 2. Pruning effectiveness results of faulty versions for ughtee test inputs.



[ Benchmark] Version [ Wrong Output Pos| (All.PDS,in-All.PDSyaz)[All.DS | (D.PDSyin-D.PDSpmaz)/D.DS | Errorin |

gzip 1 19 (82-394520)/1699490 (10-121)/357 XD
flex 4 16885(1) (13-14)/62235 (7-8)/692 IXD
198251 (16-17)/42823 (9-9)/648 IXD

53109(D) (13-14)/1120244 (7-8)/889 IXD

5 7130 (17-76)23292 (6-18)/542 XD
8925 (4-4)/81991 (3-3)/681 XD

9056 (4-4)/59501 (3-3)/709 XD

7 6164 (17949-18026)/22886 (217-229)/280 XD
10 7142 (76-86)/84210 (19-23)/730 XD
89251 (74-75)/1021249 (17-18)/786 IXD

11 6867 (15-15)/5756 (10-10)/81 XD
16092 (15-15)/39484 (10-10)/552 XD

43647 (15-15)/254532 (10-10)/720 XD

15 13430 (71-71)/30002 (14-14)/824 IXD
160921 (71-71)/72756 (14-14)/988 IXD

53859(1) (96-96)/1120987 (19-19)/941 IXD

17 10632 (1-1)/22093 (1-1)/632 XD
11584 (1-1)/86515 (I-1)/813 XD

51067 (1-1)/1118733 (1-1)/864 XD

19 20495 (35-54)/32219 (16-20)/764 IXD
219551 (35-35)/98133 (16-16)/947 IXD

617770 (32-33)/1130822 (15-16)/981 IXD

(1). Part of the wrong output appeared to be correct;

Table 3. Pruning effectiveness results of faulty versions for ughte¢ test inputs.

Benchmark | (All.PDS.in — AL.PDSpaz) | (D.PDSyin, — D.PDSpaz) All.DSI D.DS/
All.DS D.DS All.PDSmaz | D.PDSnmax

print_tokens (341-345)/1320 (35-35)/100 73.4 3.12
print_tokens2 (428-433)/6543 (55-55)/114 19.53 2.09
replace (310-546)/4112 (43-60)/131 13.14 2.52
schedule (454-596)/3188 (56-70)/117 9.41 1.79
schedule2 (562-630)/2358 (50-58)90 6.58 1.69
gzip (82-394520)/1699490 (10-121)/357 431 2.95
flex (1232-1240)/342692 (25-27)727 276.36 26.93

Benchmark | All.PDSpao/AU.PDSyin, | D.PDSmaz/D.PDSpin
X ] X X ] X
printtokens | 1.01 NA 1 NA
printtokens2 | 1.01 NA 1.01 NA
replace 1.78 8.55 1.38 3.36
schedule 1.08 3.68 1.03 2.58
schedule2 | 1.54 NA 1.29 NA
gzip NA 4811.22 NA 12.1
flex 1.05 NA 1.04 NA
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Table 4. Summary of results across all versions.
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flex vi5has the error oprintf ("YY_USERACTION") missing a
"\n’ atthe end of the string. If we assume the "YYSERACTION”
is correct, the wrongrintf will get verified. To solve this problem,
we divide the output into units, which is lines in this cased a
compute slice on the first character of the wrong unit.

Interactive Pruning. It is possible thatP? D S;,... is still quite
big. However, pruning can be further carried out during dgfing.
During the course of debugging the programmer usually tives
gates the values igdb and decides if they are correct or wrong.
This information can be fed back to our confidence analysento
able further pruning. Similarly, the user can also look &t shice
and tell our system if certain values seem to be correct. e co
ducted an experiment trying to simulate this procedure. \ieepl
replaceversion v14, one of whose three prunings (the third run)
is quite successful and so we are able to understand thérelat
from the error to the wrong output. We use the most conserrati
pruned slice in the third runPDS2,.., as a reference when we
start examining thé® DS}, ... of the first run. We find the first state-
ment instance which is i® DS}, ... but notinPDS3,,. and mark
it as correct in our systen?? DS}, ... is further pruned to 587/74
(all/distinc) from 656/88. After another two interactions, we are
able to reduce it to 93/23, which is very close to dependehaéc
along which error is propagated. We also tried the same ewpat

with replace v3- we used the second run as a reference to prune

the first run and found that in only one step, we reduce the slic
from 671/86 &ll/distinc{ to 33/15 and it still contained the error.

Varying threshold. So far we have been looking at either
PDS,nin Of PDS,q.. In this experiment, we study the relation-
ship between the threshotdand the corresponding DS-’s size
and its fault location effectiveness. The results for thddferent
runs are plotted in Fig. 9. As we expected, fA® S drops in both
size and fault location effectiveness aslecreases. However, we
did not observe the existence of a valuerathat nicely balances
between the size and the fault location effectiveness.

3.3 Confidence-based Prioritization

In the preceding section we explored the use of confidenaesal
to carry out pruning of the dynamic slice. We observed that th
most effective pruning strategy is one in which only theestants
with confidence values of 1 are pruned from the dynamic sbice t
produce PDS ... In this section we study an additional use of
confidence values. The statementsA® S, areprioritized in
the order of increasing confidence values. To locate faudte¢
the statements are then examined by the programmer in tlee ord
of increasing confidence values till the faulty code is emcered.
The effectiveness of this strategy is measured in termseopér-
centage of executed statements that are examined by thieaises
encountering the faulty code.

In prior work we have shown that an effective strategy for ex-
ploring dynamic slices to locate the faulty code is to exaartime
statements in the dynamic slice in increasing order of ttheen-
dence distance from the point at which the erroneous valee-is
countered during a failed run [27, 28]. We conducted an exysatt
in which we compared the effectiveness of the two strategies
ploring dynamic slice in order of increasimgpendence distances
(DD); and exploring pruned dynamic slide@DS;,.... in the order
of increasingconfidence valuegCV). When using the confidence
value based strategy, if two statements with same confideaioe
are present, then the dependence distance is used as Ithedier.

The results of this experiment are given in Figure 10. Fovargi
point in each graph, the y-axis represents the fraction wf<do-
cated while the x-axis represents the percentage of exkstdee-
ments examined to locate these faults. The results aredmame
failed runs that were used in the experiments presenteceipres
ceding section. As we can observe, for a given percentageeef e

cuted statements examined, typically the fraction of fatliat are
located is higher fo€'V' in comparison taD D. It should be noted
that there are other works (e.g., [12, 14]) that employ stiatil
analysis to prioritize statements for fault location. Hues these
techniques perform prioritization based upon dynamicrimtion
collected from multiple program runs. As far as we know, @aht
nique is the only one that performs prioritization of statens
based upon dynamic information collected frosirglefailed run.

3.4 Relevant Slicing

Itis known that a dynamic slice may not be able to capture tiroz e
even though the wrong output is actually caused by the e6for [
Figure 11 gives such an example. It is taken from version v ru
rl of gzip The error is in the assignment saveorig_-name The
correct code isaveorig_name=/naname Sincesaveorig_name
contains the wrong valué&'alse, branch S3 is not taken and thus
flags has the wrong valué while it should have been defined as
ORIG_NAME at S3. This wrongflags value is finally propa-
gated to the output file. The dynamic slif&s' of the wrong output
does not contain the error because S4 depends on S2. Thedact t
S4 could have had a different value if S3 had taken the ottaerdbr
cannot be captured by dynamic slicing technique itself.

S1:if (Isave_orig name)save orig name = no_name;

S2: uch flags =0;

S3: if (save_orig_name)

N
flags |= ORIG_NAME;\\

\J
S4: outbuf[outent++]=(uch)(flags);

S5: write (fd, outbuf, cnt);

L

Observed wrong
— —p  Potential Dep.
Figure 11. Gzip version v3 runrl

—» Data Dep.

One proposed solution is to introdug®tential dependence
[6] between S4 and S3 such that S1 is reachable from the wrong
output. However, these potential dependence edges aoeliicd
for each node in the DDG which can result in a much larger slice
In our example, the computed slice has the size of 1809781/34
(all/distinct). Being presented with even a larger sliatthis may
not be appreciated by the programmer.

With our confidence analysis, we are able to select a more
reasonable strategy. Even though the pruned slice may pairea
the erroneous statement, it does capture a part of the depeand
chain from the erroneous statement to the incorrect outpthe
pruned slice is small enough, the programmer is able to aispe
the entire pruned slice and determine the error is not ptesen
Next the programmer can request for expansion of the pruned
slice using thepotential dependence of the root of the dependence
chain in the pruned dynamic slic€his approach results in a small
increase in the size of the pruned dynamic slice and alscaappe
to be quite effective. In our example, theDS,,.. has the size
of 15/6 (@ll/distinc). It takes just seconds to figure out that the
chain inPDS,,.. that should be expanded is-S465. By adding
the potential dependence for the root of S4, which is S3 libee,
error is reachable by just one dependence edge. In othersword
with confidence analysis, the programmer is able to search fo
the erroneous statement by considerpaiential dependencea
ademand-driverfashion. The programmer only asks for potential
dependences after exploring the pruned dynamic slice.
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Figure 10. Locating fault by examining statements in increasing ocd@onfidence values.

4. Related Work

Dynamic Slicing:Dynamic slicing was introduced as an aid to de-
bugging [13, 1]. Our recent works [24, 25] have greatly redlihe
space and time cost of dynamic slicing. In [27], we evaludked
effectiveness obackward dynamic slices fault location. Our re-
sult showed that even though dynamic slices can capturethisy f
code, identifying the faulty code from the set of statemémthie
slice still requires non-trivial human effort. We first nanred the
scope of potentially faulty code in [5] by, for the first timas-
ing forward dynamic slicesf failure-inducing input difference. We
further narrowed the scope of potentially faulty code in][B$
identifying bidirectional dynamic slicesf critical predicates. The
intersection of backward, forward, and bidirectional efigyielded
the Bidirectional Chopwhich was our smallest estimate of poten-
tially faulty code. The above prior work is based upon idgnti
ing multiple kinds ofnegative evidencd.e. program entities re-
lated to the execution of faulty code. In contrast, in thipgrawe
have demonstrated the usepafsitive evidencén form of correct
portions of the output produced during a failing run to rezltite
scope of potentially faulty code. While our prior technigwarried
out coarse-grained pruning of potentially faulty code hbigsect-
ing different dynamic slices, the technique presentedimphper
represents a fine-grained pruning of the backward dynarige. sl
Moreover, confidence analysis is also useful in prioritiihe po-
tentially faulty statements which was not possible using mior
techniques.

The confidence based approach we have presented analyze

both theprogram state(i.e., values of variables at various pro-
gram points) and the relationships among the values [fregram
dependencgsAnalysis of program state in conjunction with de-

pendences is the reason why our approach is so effective.eAs w

saw,dynamic dicind3] (P DSmin) is not always effective. This is
because while it analyzes dynamic dependences, it doesarst ¢
fully consider the program state.

Delta Debugging:n a series of articles [22, 21, 20], thielta

debuggingalgorithm has been developed to automatically simplify

or isolate a failure-inducing input [22, 21], produce caeffect

chains [20] and to link cause transitions [4] to the faultyleoln
[4] delta debugging algorithm is used to analy@®gram state
changesduring the execution of a failed run to identify points of
cause transitionsCode executed at the points of cause transitions
is expected to be relevant to the fault. Comparing and ciangi
memory states of C program executions at a point is diffiquet
pointers [4]. In addition, to identify points of cause traiass, the
above state-based analysis has to be performed at a largenofm
points along the failed run. Therefore, program state basatysis

is difficult and time consuming for C programs [4]. In comgan
our approach is inexpensive in terms of time taken.

Statistical ApproachesA number of statistical approaches that
analyze program spectra of program runs for multiple inputs
cluding inputs corresponding to both failed and successfos,
are being employed for fault location. Harrold et al. [8] quared
the spectra of passing and failing runs and found that failims
tend to have unusual coverage spectra. Jones et al. [1Zdasich
statement according to its ratio of failing tests to cortests and
used this information to assist fault location. Liblit et Hl4] de-
scribe a sampling framework and present an approach to guéss
eliminate predicates to isolate a deterministic bug. Folaiing
nondeterministic bugs, they use statistical regressicdmigues to
identify predicates that are highly correlated with thegpean fail-
ure. In contrast, Renieris and Reiss [17] focused on therdiffce
between the failing run andsanglepassing run with similar spectra
&s a means to narrow down the search space for faulty code.

Our work differs from the above work in significant ways. Eirs
it focuses on a single failed run corresponding to a singpaitin
for fault location. It is able to prioritize the potentiafigulty state-
ments using confidence analysis based upon a single run thikile
above techniques require multiple runs. Second, an adyardh
our approach is that it provides dependence relationslapseen
the faulty code (i.e., the cause) and the erroneous outu e
effect). This information is very useful during debugging.

Other Works:Some additional works include the following. Xie
et al. show that many redundancies [19] in programs correspo
to hard program errors. Hangal et al. [7] identified the causfe



some programming errors in Java programs by observing-viola
tions of program invariants. In [9], we developed a techaithat
used a notion of path based weakest preconditions to alitiaihat
locate faulty code in a function when the precondition andt{po
condition of the function are available as first order pratidogic
formulas.Recently hardware support for assisting in mogde-
bugging has been proposed to increase the efficiency of detmug
[29, 30, 15].

5. Conclusion

We have developed a novel approach for pruning dynamicsslice
that exploits program state information in terms of obséneadues

of variables in addition to the dynamic dependence infoionads

is done traditionally in dynamic slicing. We developed a g
analysis that estimates confidence in computed values. ®ae t
fairly large number of executed statements that represesita@

one mappings between an operand and the result, we are able t

obtain the highest confidence value of one for a large number o
computed values. Therefore, even the largest pruned dyrelive
that we obtain is significantly smaller than the conventiaha
namic slice. The number of distinct statement®iR.S,, 4 is 1.79
to 26.93 times less than the corresponding numbérsh We show
that our approach is more effective thdynamic dicingbecause
pruning performed by dynamic dicing can often prune thetjaul
code from the dynamic slice. As mentioned earlier, it is ethwn
that dynamic slices do not always capture the erroneowsnséatts
[6]. We described a programmer assisted demand-drivetegjra
for expanding the pruned dynamic slice to handle this prabf@ur
ongoing work is focused on automating this approach.
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