
156

DProf: Distributed Profiler with Strong Guarantees

ZACHARY BENAVIDES, University of California, Riverside, USA

KEVAL VORA, Simon Fraser University, British Columbia, Canada

RAJIV GUPTA, University of California, Riverside, USA

Performance analysis of a distributed system is typically achieved by collecting profiles whose underlying
events are timestamped with unsynchronized clocks of multiple machines in the system. To allow comparison
of timestamps taken at different machines, several timestamp synchronization algorithms have been developed.
However, the inaccuracies associated with these algorithms can lead to inaccuracies in the final results of
performance analysis. To address this problem, in this paper, we develop a system for constructing distributed
performance profiles called DProf. At the core of DProf is a new timestamp synchronization algorithm,
FreeZer, that tightly bounds the inaccuracy in a converted timestamp to a time interval. This not only allows
timestamps from different machines to be compared, it also enables maintaining strong guarantees throughout
the comparison which can be carefully transformed into guarantees for analysis results. To demonstrate the
utility of DProf, we use it to implement dCSP and dCOZ that are accuracy bounded distributed versions of
Context Sensitive Profiles and Causal Profiles developed for shared memory systems. While dCSP enables user
to ascertain existence of a performance bottleneck, dCOZ estimates the expected performance benefit from
eliminating that bottleneck. Experiments with three distributed applications on a cluster of heterogeneous
machines validate that inferences via dCSP and dCOZ are highly accurate. Moreover, if FreeZer is replaced by
two existing timestamp algorithms (linear regression & convex hull), the inferences provided by dCSP and
dCOZ are severely degraded.

CCS Concepts: · Software and its engineering→ Software performance; ·Computingmethodologies

→ Distributed algorithms.

Additional KeyWords and Phrases: Performance Debugging, Distributed Systems, Timestamp Synchronization

ACM Reference Format:

Zachary Benavides, Keval Vora, and Rajiv Gupta. 2019. DProf: Distributed Profiler with Strong Guarantees.
Proc. ACM Program. Lang. 3, OOPSLA, Article 156 (October 2019), 24 pages. https://doi.org/10.1145/3360582

1 INTRODUCTION

Improving the performance of a distributed program requires careful understanding of the relative
behavior of its components. This behavior can be captured by timestamping important events (e.g.,
arrival at a barrier etc.). Once recorded, these timestamps can be analyzed to gain insight into the
behavior of the system. While timing information can be easily captured on any single machine,
efficiently synchronizing local timestamps to enable their comparison is a challenging task. The
local clocks differ not only in their offset but also in frequency, making direct comparison of their
timestamps a problem.

Authors’ addresses: Zachary Benavides, Department of Computer Science and Engineering, University of California,
Riverside, California, USA, zbena001@ucr.edu; Keval Vora, School of Computing Science, Simon Fraser University, British
Columbia, British Columbia, Canada, keval@cs.sfu.ca; Rajiv Gupta, Department of Computer Science and Engineering,
University of California, Riverside, California, USA, gupta@cs.ucr.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).
2475-1421/2019/10-ART156
https://doi.org/10.1145/3360582

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 156. Publication date: October 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

156:2 Zachary Benavides, Keval Vora, and Rajiv Gupta

The problem of meaningfully comparing local timestamps generated in a distributed system is
known as timestamp synchronization. The earliest timestamp synchronization algorithms were
proposed by Duda et al. [Duda et al. 1987]. These algorithms assume the existence of a linear
conversion function between each pair of clocks, and use statistical methods to estimate the
parameters of these functions. Others have developed improvements on these basic techniques to
increase their accuracy or efficiency [Becker 2010; Dunigan 1992; Hofman and Hilgers 1998; Maillet
and Tron 1995; Rabenseifner 1997]. Poirier et al. [Poirier et al. 2010] showed that by viewing the
problem through the lens of linear programming, it is possible to strongly bound the error in the
conversion process though at the cost of considerable inefficiency.
In this paper, we develop a tool for performance profiling of distributed systems called DProf.

Critical to the utility of any tool are its accuracy and cost. Table 1 summarizes our findings
when using existing timestamp synchronization techniques (detailed results in ğ3.5). We observe
that most existing techniques provide low accuracy with no bounds on the error in their results,
hence providing no insights into how accurate their results may be. While Huygens [Geng et al.
2018] provides high accuracy, it synchronizes clocks (e.g. the PTP Hardware Clocks) in the NICs
which limits its applicability for programmable performance profiling. Even though AR-Convex
Hull [Poirier et al. 2010] reports bounds on synchronized timestamps, its accuracy is sensitive to
the volume of events timestamped during tracing, and furthermore the overhead for synchronizing
large number of timestamps makes it impractically expensive.
At the core of DProf is a new error-bounded timestamp synchronization algorithm, FreeZer in

Figure 1, which bridges the performance gap between the error-bounded but inefficient Poirier’s
algorithm [Poirier et al. 2010], and the family of efficient but unbounded algorithms inspired by
Duda et al. [Duda et al. 1987]. Thus, analyses built with DProf as their foundation are both accurate
and affordable. We demonstrate this by lifting two recent performance analysis techniques, namely
Context Sensitive Profiling [Benavides et al. 2017] and Causal Analysis [Curtsinger and Berger 2015],
originally developed for shared memory systems into the distributed domain. We refer to these
distributed versions as dCSP and dCOZ (see Figure 1).

Fig. 1. DProf overview.

While dCSP enables user to ascertain existence of a performance bottleneck, dCOZ estimates the
expected performance benefit from eliminating that bottleneck. Experiments with three distributed
applications on a cluster of 8 heterogeneous machines validate that inferences via dCSP and dCOZ

are highly accurate. Furthermore, we demonstrate the strength of FreeZer by comparing it with
two existing timestamp algorithms (linear regression and convex hull [Duda et al. 1987]); our
results show that using these techniques, when used instead of FreeZer, provided severely degraded
inferences.

Various other performance analysis solutions have been developed for shared memory parallel
systems including critical path analysis [Böhme et al. 2012; Hollingsworth 1996; Yang and Miller

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 156. Publication date: October 2019.

DProf: Distributed Profiler with Strong Guarantees 156:3

Table 1. Key characteristics of existing synchronization solutions and our Freezer technique.

Accuracy
Error Synchronization

Bounds Overhead

Linear Regression [Duda et al. 1987]

Low No Low
[Maillet and Tron 1995] [Rabenseifner 1997]
[Becker 2010] [Dunigan 1992]
[Hofman and Hilgers 1998]
Two-point Alg. [Ashton 1995] Low No Low
Controlled Logical

Low No Low
Clock [Rabenseifner 1997]
Convex Hull [Duda et al. 1987] Low No Medium
Huygens [Geng et al. 2018] High No Low
AR-Convex Hull [Poirier et al. 2010] Variable Yes High
Freezer High Yes Low

1988], logical zeroing [Hollingsworth and Miller 1994], TaskProf [Yoga and Nagarakatte 2017],
Quartz [Anderson and Lazowska 1990], Parashares [Kambadur et al. [n.d.]], IPS-2 [Miller et al.
1990], Bottle Graphs [Bois et al. 2013], etc. that can be used to develop different insights into parallel
program behavior. DProf can be used to implement these capabilities for analyzing distributed
executions. Performance analyses like HPCToolkit [Adhianto et al. 2008], Scalasca [Geimer et al.
2010], VAMPIR [Nagel et al. 1996], Log2 [Ding et al. 2015], [Liu and Mellor-Crummey 2011], [Shende
and Malony 2006], etc. can similarly be enhanced to provide error bounds for computed results.
The remainder of the paper is organized as follows. We introduce the problem statement and

notation in ğ2. Our synchronization algorithm called FreeZer and its evaluation is presented in
ğ3. The use of FreeZer to build the DProf distributed profiling framework and further its use to
implement dCSP and dCOZ analyses is presented in ğ4. In ğ6 we present case studies to validate
the effectiveness of dCSP and dCOZ. Conclusions are presented in ğ7.

2 TIMESTAMP CONVERSION PROBLEM

Performance analysis of distributed programs involves capturing relevant program events along
with their timing information to deduce underlying performance bottlenecks. While timing infor-
mation can be easily gathered across events within a single machine, absence of a global clock
in any distributed setting makes it challenging to accurately capture the timing information for
events spanning across multiple machines.
To facilitate comparison across event timings that are captured locally on different machines,

we first convert them to a common timeline and then directly compare these converted times. We
first formally define the timestamp conversion process, and then discuss the challenges involved in
accurately converting event timestamps.

Distributed Timing Model. Let N = {n0,n1, ...,nk } be the set of nodes in a distributed system with
k compute nodes (machines) and let C = {c0, c1, ..., ck } be the set of clocks such that ∀ci ∈ C, ci is
the clock for ni . With absence of a global clock, the clocks inC are not synchronized with each other
and operate at different frequencies. Today’s multicore machines have a separate clock associated
with each core, hence, each core becomes a separate node in our distributed system. However, this
model can be used for distributed settings where all cores within a socket or all cores within a
machine rely on single synchronized clock, by simply modeling each socket or each machine as a
node in the distributed system.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 156. Publication date: October 2019.

156:4 Zachary Benavides, Keval Vora, and Rajiv Gupta

Let TS = {ts0, ts1, ..., tsk } be the captured timestamps such that ∀tsi ∈ TS, tsi is captured on ci
in units of clock cycles. Let rt(tsi) be an abstract oracle that maps tsi to the real time. Since the
captured timestamps are relative to their respective local epochs, ∀tsi , tsj ∈ TS, tsi may or may
not be equal to tsj even though rt(tsi) = rt(tsj). Timestamp conversion is the process to convert
all the local timestamps to a common base so that they become directly comparable. In particular, a
function conv(tsi) that converts any given timestamp to a common base must achieve the following
∀ tsi , tsj ∈ TS :

rt(tsi) ⊕ rt(tsj) ↔ conv(tsi) ⊕ conv(tsj)
(1)

|rt(tsi) − rt(tsj)| = |rt(conv(tsi)) − rt(conv(tsj))|

where ⊕ ∈ {=,,, >, <, ≥, ≤}. The first relation ensures that the ordering of timestamps becomes
comparable after conversion while the second relation ensures that the timing information is
preserved across the converted timestamps. For simplicity, we assume that our common base is
provided by n0, i.e., ∀tsi ∈ TS \ {t0}, conv(tsi) converts the tsi in terms of c0 such that conv(tsi) is
directly comparable to ts0. To convert tsi in terms of c0, we need two measures:

(1) Frequencies of ci and c0, referred to as f r (ci) and f r (c0) respectively.
(2) Special timestamps, zi and z0 that are captured on ci and c0 respectively at the same moment

of real time. We call these special timestamps as zeros.

With the above measures, tsi can be converted in terms of c0 using conv(tsi) defined as:

conv(tsi) = (tsi − zi) ×
f r (c0)

f r (ci)
+ z0 (2)

Problem. The main challenge is to compute f r (ci) and zi measures with high precision to ensure
that the relations in Eq. 1 are maintained correctly. While accurate estimates can be computed
when low-precision frequency and zero measures are adequate, the difficulty increases quickly
with rising precision requirement.

Our Approach. Since in practice we cannot fully control the accuracy of frequency and zero
measures to a precision high enough that guarantees correct comparison of timestamps, we tightly
bound the inaccuracies in these estimates so that the timestamp conversion can provide strong
guarantees for converted values. This means, f r (ci) and zi are now in interval domains with strong
lower and upper bounds and conv(tsi) converts tsi from time domain to interval domain to preserve
strong bounds over the converted timestamp value, hence capturing conversion inaccuracies.
As summarized in Table 1, our solution (Freezer) is aimed to provide high accuracy with tight

error bounds and low synchronization overheads. In ğ3.5, we will compare Freezer with existing
solutions to showcase its high error-bounded accuracy.

3 FREEZER: BOUNDED FreQUENCY & ZerO ESTIMATION

In this section, we analyze the inaccuracies involved in estimating frequency and zero measures,
and develop solutions to tightly bound the estimates for strong profiling guarantees.

Algorithm 1: Computing absolute frequency of ci

1: ts1 ← timestamp() // e.g., using x86 TSC

2: sleep(t)
3: ts2 ← timestamp()
4: fi (t) ← (ts2 − ts1)/t

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 156. Publication date: October 2019.

DProf: Distributed Profiler with Strong Guarantees 156:5

3.1 Estimating Relative Frequencies

A straightforward way to compute frequency estimates is to individually determine the abso-
lute frequency at which each clock is operating by counting the number of cycles elapsed for a
predetermined amount of time, as shown in Algorithm 1. Here counting cycles can be achieved
using local x86 timestamp counters (TSC) ś the use of the invariant TSC, widely available on
modern x86 Intel and AMD systems, provides a constant frequency time source even in presence of
dynamic frequency scaling. While this solution may suffice for capturing less accurate frequency
estimates, computing highly accurate frequencies requires precisely measuring a given amount
of time. Unfortunately, exact measurements are impossible due to the inherent non-determinism
in today’s computing systems. For instance, the sleep commands only guarantee suspension
for at least (and not exactly) the amount of time provided by the user. Furthermore, there is no
guarantee of the closeness of the amount of time that is actually slept to the amount of time that is
requested. Although increasing t to a high enough value in Algorithm 1 can arbitrarily mitigate
these inaccuracies, determining a sufficient value of t for some user defined tolerance is infeasible
for reasons already discussed.
Since we want to compare the timestamps of distributed events (i.e., timestamps captured

across on clocks), we aim to compute a relative measure between multiple clocks. Comparing
frequencies of multiple clocks can be achieved by directly computing relative frequencies between
those clocks. Furthermore, the computation for relative frequencies can be carefully controlled to
provide stronger guarantees which become useful to capture the deterministic error bound. By
carefully computing relative instead of absolute frequencies, we can not only arbitrarily mitigate
the sources of inaccuracy, but we can do so in a way that bounds the accuracy of our estimate.

Similar to computing absolute frequencies, a simple way to compute relative frequencies across
a pair of clocks is to measure the number of cycles spent for the same amount of real time t on
those clocks (see Algorithm 2). In this case, fj→i (t) (computed on line 5) is the relative frequency
to convert durations captured on c j to the units of ci . We can capture the inaccuracies introduced
by the non-deterministic factors as follows:

fj→i (t) =
f r (ci) × (t + a)

f r (c j) × (t + b)
(3)

where f r (ci) is the frequency of clock i , and variables a and b represent the inaccuracies introduced
by the sleep calls (i.e., a call to sleep(t) will introduce a delay of t + a seconds for some positive
value of a). We can carefully eliminate the effect of inaccuracies by taking the limit as t tends
to ∞ as described next. Let A and B be positive constants such that a < A and b < B. Consider

Algorithm 2: Computing relative frequency of ci and c j using their absolute frequencies

ci

1: ts1 ← timestamp()
2: sleep(t)
3: ts2 ← timestamp()
4: di f fi ← ts2 − ts1

c j

1: ts1 ← timestamp()
2: sleep(t)
3: ts2 ← timestamp()
4: di f fj ← ts2 − ts1

5: fj→i (t) ← di f fi / di f fj

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 156. Publication date: October 2019.

156:6 Zachary Benavides, Keval Vora, and Rajiv Gupta

continuous functions f +j→i and f −j→i as defined below:

f +j→i (t) =
f r (ci) × (t +A)

f r (c j)(t)

�

�

�

�

f −j→i (t) =
f r (ci)(t)

f r (c j) × (t + B)

By L’Hopital’s rule, we have:

lim
x→∞

f +j→i (x) = lim
x→∞

f −j→i (x) =
f r (ci)

f r (c j)

Since f −j→i (t) ≤ fj→i (t) ≤ f +j→i (t), we can conclude that:

lim
t→∞

fj→i (t) =
f r (ci)

f r (c j)

Hence, the impact of inaccuracies when calculating relative frequencies can be eliminated by
increasing t to a very high value (as is the case with absolute frequencies). While exact relative
frequencies cannot be practically achieved, we can determine the rate at which relative frequencies
become accurate as t increases. The error in a frequency estimate can be computed based on Eq. 3
as:

Error =
f r (ci) × (t + a)

f r (c j) × (t + b)
−

f r (ci)

f r (c j)

To achieve frequency estimates that are accurate within a tolerance T , we have:

f r (ci) × (t + a)

f r (c j) × (t + b)
−

f r (ci)

f r (c j)
< T

=⇒ t >
1

T
(
f r (ci)

f r (c j)
(a − b)) − b

In other words, the length of time that is required to achieve a desired accuracy grows linearly
with desired accuracy.

Bounding Relative Frequencies. Now we show how the error in computed frequency estimates can
be bounded. To determine the accuracy of computed frequency estimates, we bound the relative
frequency to intervals that contain the true relative frequency. The challenge is to make these
intervals as small as possible so that the residual inaccuracies do not meaningfully impact the
profiling results.
The key insight is that instead of trying to measure the same duration on each clock, we

intentionally measure durations which differ in a specific way. In particular, an upper bound can
be computed by measuring a larger interval on the first clock compared to that on the second
clock, and a lower bound can be computed by reversing this procedure, i.e., by measuring a smaller
interval on the first clock compared to that on the second clock. Hence, we can achieve lower
bound f Lj→i (t) and upper bound f Uj→i (t) defined as follows:

f Lj→i (t) =
f r (ci) × t

f r (c j) × (t + ϵ)

�

�

�

�

f Uj→i (t) =
f r (ci) × (t + ϵ)

f r (c j) × t

f Lj→i (t) < fj→i (t) < f Uj→i (t)

where ϵ is an arbitrary variation to increase time intervals (ϵ > 0). While any positive ϵ value can
be used to compute f Lj→i (t) and f Uj→i (t), smaller ϵ values will produce tighter bounds.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 156. Publication date: October 2019.

DProf: Distributed Profiler with Strong Guarantees 156:7

Algorithm 3: Bounding relative frequency of ci and c j by introducing causal dependencies

ci

1: ts1 ← timestamp()
2: send_to(c j)
3: receive_from(c j)
4: ts2 ← timestamp()
5: di f fi ← ts2 − ts1
6:

c j

1: receive_from(ci)
2: ts1 ← timestamp()
3: sleep(t)
4: ts2 ← timestamp()
5: send_to(ci)
6: di f fj ← ts2 − ts1

7: f U
j→i
(t) ← di f fi / di f fj

8: receive_from(c j)
9: ts1 ← timestamp()
10: sleep(t)
11: ts2 ← timestamp()
12: send_to(c j)
13: di f fi ← ts2 − ts1

8: ts1 ← timestamp()
9: send_to(ci)
10: receive_from(ci)
11: ts2 ← timestamp()
12: di f fj ← ts2 − ts1
13:

14: f Lj→i (t) ← di f fi / di f fj

In order to ensure the epsilon is applied to the correct machine, we introduce a causal dependency
between the appropriate clock measurements using communication primtives (i.e. send/recv).
Algorithm 3 shows how we compute bounds f Lj→i (t) and f Uj→i (t).

With fj→i (t) bounded by f Lj→i (t) and f Uj→i (t), the error in fj→i (t) is bounded by f Uj→i (t) − f
L
j→i (t).

If we were intersted in minimizing the maximum error, we could take the midpoint of this interval as
a point estimate. However, directly using the midpoint will lose the information about the direction
of the error. Hence, instead of using the midpoint value, we directly use the captured bounds
(f Lj→i (t) and f Uj→i (t)) while processing runtime profiles to provide strong end-to-end guarantees
over profiling results.

3.2 Estimating Zeros

To analyze timestamps measured via different clocks, we also need to compute comparable times-
tamps across those clocks that capture the same moment in real time. These comparable timestamps
will be used to shift all the remaining timestamps so that the resulting time scale starts from zero.
Hence, we refer to these pairs of comparable timestamps as zeros.

Algorithm 4: Computing zero for ci and c j using causal dependencies

ci

1: receive_from(c j)
2: ts2 ← timestamp()
3: send_to(c j)

c j

1: ts1 ← timestamp()
2: send_to(ci)
3: receive_from(ci)
4: ts3 ← timestamp()

5: zeroj→i ← <(ts1, ts3), ts2>

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 156. Publication date: October 2019.

156:8 Zachary Benavides, Keval Vora, and Rajiv Gupta

Algorithm 4 shows how we can compute zeros across a pair of clocks. We do so by trapping a
timestamp from one clock between a pair of timestamps taken on the other clock. To achieve this,
we introduce causal dependencies that ensure that ts2 on ci is captured between ts1 and ts3 on c j .
Hence, zeroj→i = <(ts1, ts3), ts2> effectively means:

rt(ts1) < rt(ts2) < rt(ts3)

where rt(tsi) maps tsi to the moment in real time when it was captured. While the zero can be
approximated by picking the midpoint so that it becomes <(ts1 + ts3)/2, ts2>, similar to relative
frequency bounds, we explicitly maintain the bounds for zeros so that they can be directly used
along with relative frequency bounds to provide strong guarantees over profiling results. The lower
bound of the zero (i.e., ts1) is matched with that of relative frequency (i.e., f Lj→i (t)) to achieve a
lower bound of the converted timestamp, while the upper bound of zero (i.e., ts3) is matched with
that of relative frequency (i.e., f Uj→i (t)) to achieve an upper bound of the converted timestamp. With
both bounded frequencies and zeros, strong conversion bounds can be provided for all timestamps
taken in the system.

3.3 Evaluation of Timestamp Synchronization

In this section we evaluate the accuracy and cost of our timestamp synchronization method and
compare it with the accuracy and costs of existing methods. The experiments were carried out on
a heterogeneous 8-node cluster with a total of 76 cores operating at 800-2,261 MHz and 8-32 GB
main memory per node. Each node runs 64-bit Ubuntu 14.04 kernel.

Maximum Error - Relative Frequency and Zeros. In our first experiment, we sought to get an
idea for how the error in the relative frequency is affected by the relative location of the clocks
in the cluster. To do so, we calculated the relative frequencies of each of the clocks in our cluster.
Measurements were performed for each pair of cores (there are 76 cores spread across 8 machines).
We measured the frequencies over a duration of 24 hours in order to minimize the effects of
variance in communication costs. Figure 2 shows the maximum error in terms of the difference
between the bounds for our relative frequency measurements. Since the actual relative frequency
can be anywhere within the computed bounds, we measure the worst case error as the size of the
range defined by those bounds. As we can see, the maximum error is clustered in two regions:
(across machines) the causal dependencies incur a roundtrip network communication that increases
the error; and on (same machine) the errors for different cores are lower as there is no network
overhead. While frequency error for cores across different sockets have higher error in some
samples compared to error for those within the socket, the inter-socket communication does not
impact the relative frequency measurements as much.

We validated our claim that length of time required to achieve a desired accuracy grows linearly
with desired accuracy by measuring the maximum error of a relative frequency as difference of its
bounds, i.e., error j→i = f +j→i (t) − f −j→i (t) for varying t . Figure 3 shows that the error drops rapidly
and after 12 hours the accuracy increase is extremely small.

Our next experiment measures the distribution of the error sizes among the zero values calculated
over the clocks in our cluster. We calculated the zero between each pair of clocks in our system, and
took the maximum error as the difference between the upper and lower bounds in the measurement.
Figure 4 summarizes the results of this experiment. The plurality of the zero values had an error
around 0.7 million cycles, and none of the measurements had zero values greater than 1.6 million
cycles. For the gigahertz clocks present on the machines in our system, the error in the zero
measurement is in the millisecond range.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 156. Publication date: October 2019.

DProf: Distributed Profiler with Strong Guarantees 156:9

 2

 4

 6

 8

 10

 12

M
a
x
im

u
m

 E
rr

o
r

(x
1
0
-9
)

Relative Frequency Sample

Same Socket

Same Machine

Across Machines

Fig. 2. Distribution of maximum error in relative frequency measurements.

 0

 1

 2

 3

 4

 5

 6

 1 2 4 6 8 10 12 14 16 18 20 22 24

M
a
x
im

u
m

 E
rr

o
r

(x
1
0
-7
)

t (hours)

fm0c0 -> m0c1
(t)

fm0c0 -> m1c0
(t)

fm0c0 -> m2c0
(t)

fm1c0 -> m1c1
(t)

fm1c0 -> m0c0
(t)

fm1c0 -> m2c0
(t)

fm2c0 -> m2c1
(t)

fm2c0 -> m0c0
(t)

fm2c0 -> m1c0
(t)

Fig. 3. Increase in relative frequency accuracy with t . Subscriptmic j indicates core j on machine i .

 0

 250

 500

 750

 1000

 1250

0.
2M

0.
4M

0.
6M

0.
8M

1.
0M

1.
2M

1.
4M

1.
6M

Straggler Detection

#
 o

f
Z
e
ro

s

Maximum Error in Zero

Fig. 4. Distribution of maximum errors in zero measures.

Inversions due to error. If the error in frequency and zeros is larger than the difference between
two causally ordered events in the system, then an inversion will occur. Our next experiment
investigates how far apart these causally related events needed to be before we stopped witnessing
inversions. We used the algorithm from Algorithm 5 to generate pairs of timestamps which are
causally ordered, then we converted the first timestamp to the base of the second timestamp and
compared them to see if there was an inversion. By inserting a sleep between the taking of the
first timestamp and the waiting at the barrier, we can separate the timestamps by an arbitrary
amount of time. To mitigate the effects of variance in the sleep function we averaged each of our
measurements across 1000 trials. Figure 5 shows that the percentage of inversions drops drastically
at around the 50 microsecond delay mark and disappeared completely when the delay exceeded 140

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 156. Publication date: October 2019.

156:10 Zachary Benavides, Keval Vora, and Rajiv Gupta

microseconds. Thus, if the events in a program are separated by more than about 140 microseconds
in real time, we expect the ordering to be correctly inferred.

Algorithm 5: Algorithm for timestamp inversions

Process 1

1: ts1 ← timestamp()
2: sleep(d)
3: barrier()

Process 2

1: barrier()
2: ts2 ← timestamp()

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

Correct

Ordering

Incorrect

Ordering

%
 o

f
In

v
e
rs

io
n
s

d (µs)

Fig. 5. Timestamp inversions in Algorithm 5 indicating potential rt(ts2) ≯ rt(ts1) as d increases.

Cost of capturing events. The timing information is captured using the x86 timestamp counters
whose relative frequency and zero bounds are captured by FreeZer in the previous step. Querying
these counters is a relatively inexpensive operation since it does not need any synchronization
across different cores and can be executed in user space. This helps to keep the overall profiling
lightweight and cause minimal perturbation to the program. We measured the amount of time that
it took to generate and save one hundred thousand to one million events. The results in Figure 6
show that capturing 1M events requires only 197 ms while consuming less than 51MB of main
memory.

 0

 25

 50

 75

 100

 125

 150

 175

 200

 0 1 2 3 4 5 6 7 8 9 10

 0
 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

T
im

e
 (

m
s)

M
e
m

o
ry

 (M
B

)

of Events (x105)

Time

Memory

Fig. 6. Time & memory consumption to capture events.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 156. Publication date: October 2019.

DProf: Distributed Profiler with Strong Guarantees 156:11

3.4 Impact of Communication Latency

Since FreeZer estimates relative frequencies and zeros using send_to and receive_from
network operations, these measures are affected by communication latency. Specifically, the com-
munication hardware impacts errors in the measures; a faster network (e.g., InfiniBand over
traditional TCP/IP/Ethernet) would cause lesser errors compared to a slower network since the
collected timestamps capture the network latency as well. These errors get reflected as bounds
in FreeZer, and hence, a faster network produces tighter bounds for our relative frequencies and
zeros measures. While FreeZer does not (and cannot) calculate the exact relative frequencies and
zeros, it also does not estimate (or approximate) communication latencies to provide strongly
bounded results. As discussed in ğ4, our profiler performs send-receive operations using UDP over
unix sockets instead of using a higher level network programming layer like MPI to eliminate
unpredictable delays that impact measurement accuracy.

3.5 Comparison with Other Algorithms

Accuracy comparison. Next we compare FreeZer with two other timestamp synchronization
methods, linear regression and convex hull algorithms from [Duda et al. 1987]. The linear regression
algorithm forms a set of points from pairs of timestamps taken from message transmission events
during the execution. A linear regression is performed on this set, and the resulting trend line is
used as the conversion function estimate. In the convex hull algorithm, the same set is formed as
above, and then further split into two subsets based on the message transmission direction. The
conversion function is estimated as the line passing through the middle of the corridor formed by
the convex hulls of these subsets.
Since most algorithms do not provide explicit error bounds, we must take care to define what

is meant by accuracy. We use a popular measure of accuracy for timestamp synchronization
algorithms called fast sends. A fast send is a send which is closer to its corresponding receive
than the minimum network transmission time. To measure the number of fast sends we used two
trace files of timestamps generated by running a program on a pair of machines that repeatedly
exchanges messages in both directions. Each message exchange consists of a send and a receive
and causes two events, one before the send and another after the receive, to be generated. Since the
intervals reported by the bounded algorithms are not directly comparable to the point estimates of
the unbounded algorithms, we use the interval midpoints in the following comparison. The results
gathered over 100 trials, presented in Table 2, show that FreeZer performs favorably relative to the
other two algorithms.

Efficiency comparison. The primary factor affecting the synchronization time is the number of
events in the traces. Therefore in Figure 7 we compare the synchronization times of different
algorithms with increasing trace size. Traces were generated in the same way as for accuracy
measurements.

First let us consider the efficiency of linear regression and convex hull algorithms from [Duda et al.
1987] who efficiency is nearly the same. FreeZer is only slightly slower than the linear regression
algorithm ś at 10k messages 0.39× and at 1M messages 0.35×. The small performance gap between
FreeZer and these algorithms is due to FreeZer’s use of arbitrary precision integer arithmetic to
ensure that floating point inaccuracy and finite integer precision do not affect the validity of the
bounds. While the two algorithms are slightly more efficient than FreeZer, they do not provide
error bounds.
The only previous algorithm that reports error bounds is the accuracy reporting convex hull

(ar-convex hull) algorithm of Poirier et al. [Poirier et al. 2010]. This works similarly to the regular
convex hull algorithm above, but it derives bounds on the conversion error for individual timestamps

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 156. Publication date: October 2019.

156:12 Zachary Benavides, Keval Vora, and Rajiv Gupta

Table 2. Accuracy comparison in terms of % fast sends.

Algorithm Min Average Max

FreeZer 0.000 0.000 0.000
Convex hull [Duda et al. 1987] 36.855 40.647 49.490
Linear regression [Duda et al. 1987] 0.075 3.142 30.790

by considering the set of all possible lines in the corridor of the convex hulls. We observe that
the ar-convex hull algorithm is the slowest. For instance, with 10k messages exchanged in each
direction, the speedup of FreeZer over ar-convex hull is 57.25×. The expense of the ar-convex hull
algorithm stems from its formulation. Every bound for each timestamp is found by solving a linear
programming problem whose size grows with the number of timestamps being converted. However,
FreeZer finds each bound for each timestamp by simply using the appropriately bounded relative
frequency and zero. Since the calculation of the relative frequency and zero is independent of the
timestamps being converted, it can be done offline.
There are two additional algorithms. The two-point algorithm [Ashton 1995] first forms the

same set of points as the linear regression algorithm. It then uses this set to construct a set of
"equivalences", which are estimates of points that lie on the true conversion line. The conversion
function estimate is taken as the line connected the two "best equivalences" as defined by a set
of rules intended to minimize error. The controlled logical clock [Rabenseifner 1997] first runs one
of the above algorithms, and then retroactively adjust timestamps which violate pre-determined
causality rules. We chose not to further evaluate these two algorithms for the following reasons. The
controlled logical clock algorithm is a wrapper algorithm which first requires a pre-synchronization
step; it is not a standalone algorithm. The two-point algorithm requires a minimum number of
events to operate, and this threshold is not met by the traces encountered in our later experiments
with real applications.

Thus our results show that FreeZer not only exhibits high efficiency, it also provides

error bounds. Finally, we would like to point out that recently an accurate and efficient approach
for ‘clock synchronization’ was proposed called Huygens [Geng et al. 2018]. Huygens synchronizes

Fig. 7. Comparison of the synchronization times for different algorithms ś note that both axes are on a

log-scale; Annotations show speedup relative to FreeZer.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 156. Publication date: October 2019.

DProf: Distributed Profiler with Strong Guarantees 156:13

clocks (e.g. the PTP Hardware Clocks) in the NICs attached to servers, and is aimed to improve
accuracy of timestamps for data, protocol messages and other transactions between different servers.
Since it solves a similar problem but at a lower-level than timestamp synchronization, it can be
incorporated along-side Freezer to further improve the overall accuracy.

4 PUTTING IT ALL TOGETHER: DPROF AND ITS USES

Figure 8 shows how DProf uses the bounded frequency and zero estimates generated by FreeZer to
perform distributed profiling. DProf performs the following steps: first, FreeZer collects bounded
frequency and zero estimates based on techniques just discussed. Then,DProf profiles the distributed
execution using local x86 timestamp counters to generate process local profiles. These local profiles
are then consolidated using the bounded frequency and zero estimates to generate a unified profile
with global event ordering and timing information. The consolidated profile is then queried and
analyzed based on the kind of profiling being performed by the end user. Next, we discuss each of
the steps in detail.

Bounded	 	
Frequency	 Estimates	

Frequency	
Estimation	

Bounded	 	
Zero	 Estimates	

Zero	
Estimation	

Event	 Traces	 with	 	
Local	 Timestamps	

Distributed	 	
Pro>iling	 	

Pro>ile	
Consolidation	

Event	 Traces	 with	 	
Bounded	 Timestamps	

Pro>ile	 	
Analysis	

Distributed	
Program	

1	 1	

2	 3	

4	

F
r
e
e
Z
e
r
	

Fig. 8. DProf workflow.

4.1 Step 1: Computing Relative Frequency & Zero Bounds

FreeZer computes relative frequency and zero bounds between pairs of clocks. To compare all the
timestamps in the system a base core is chosen, and all the relative frequencies and zeros involving
that base core are computed. Then during the profile consolidation phase, the timestamps are all
converted to the units of the base core. While causal dependences across cores may require network
operations, it is important to ensure that they don’t introduce unpredictable delays that impact the
overall accuracy. For this, DProf performs send-receive operations using UDP over unix sockets
instead of using a higher level network programming layer like MPI.

Computing at Scale. As the number of cores in the cluster increases, computing relative frequency
and zero bounds relative to a single base becomes time consuming. Hence, DProf parallelizes this
computation by selecting multiple base nodes relative to which our estimates get computed. Since

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 156. Publication date: October 2019.

156:14 Zachary Benavides, Keval Vora, and Rajiv Gupta

relative frequency calculation primarily includes waiting times, parallelization is trivially achieved
by having background processes that are pinned to each core and are responsible for maintaining
relative frequency measures against the base core.

Parallelizing zero calculations, on the other hand, requires careful co-ordination since they do not
rely on waiting times. For this case, a tree-based parallelization strategy enables computing multiple
pairs of zeros in parallel. The key idea is to maintain a logical tree where nodes correspond to the
cores in the cluster, and zero calculations occur between nodes to their immediate parents. By doing
so, the zero calculations for nodes at the same level can be performed concurrently. Timestamp
synchronization (event consolidation in step 3) is achieved by converting timestamps multiple times
(based on transitive relation) until they reach the root of the tree. The branching factor of the tree
(and hence, the height of the tree) impacts the tradeoff between performance via parallelization
and synchronization accuracy (each conversion introduces some amount of error). With b being
the branching factor, b × loдb (n) zero calculations are performed serially.

4.2 Step 2: Capturing Distributed Event Profiles

DProf profiles the distributed execution by capturing events and timing information about marked

code regions that are of interest for profiling (we support annotations introduced in CSP [Benavides
et al. 2017]). DProf provides an API to mark entry and exit points for code regions that need
to be profiled. During execution, these entry and exit points translate into events whose timing
information must be captured. As mentioned earlier, the timing information is captured using the
x86 timestamp counters whose relative frequency and zero bounds are captured by FreeZer.

DProf also enables enriching profiles by dynamically capturing context sensitive information
that is necessary for performing different types of analyses. For example, straggler detection (case
study presented in next section) needs information about distributed barriers; hence, the entry and
exit events for distributed barriers are annotated with information about the barrier, like its unique
identifier and number of expected threads. Such context sensitive enrichment of profiles enables
our profiler to be generalized across various profile analyses.
Note that the collected distributed profiles have event and timing information that is local to

individual processes in the distributed system. Next, we discuss how they are consolidated so that
profile information across processes can be collectively used to perform a global analysis.

4.3 Step 3: Consolidating Distributed Event Profiles

Consolidation of event profiles mainly includes converting the captured timestamps across all
processes into a globally consistent time scale. DProf picks one of the core’s clock as a reference
and converts all the timestamps from remaining clocks to that in terms of this reference clock.
Since FreeZer captures relative frequency and zero information in terms of bounds, the timestamps
are converted into interval of timestamps, i.e., the profiling information is transformed from point
domain to interval domain.

Consider a timestamp k captured with corej ’s clock c j which needs to be converted in terms of
the reference clock ci of corei . Assuming the zero for corej with respect to corei to be zeroj→i =

<(zLj , z
U
j), zi>, k is converted to <kL , kU > as:

kL = (ts1 − zi) × f Lj→i (t) + z
L
j

kU = (ts1 − zi) × f Uj→i (t) + z
U
j

Converting all the timestamps in this manner with respect to the same reference core makes them
globally consistent and enables distributed profile analysis.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 156. Publication date: October 2019.

DProf: Distributed Profiler with Strong Guarantees 156:15

4.4 Step 4: Analyzing Profiles

The consolidated profiles represent directly comparable event and timing information along with
context sensitive information that is dynamically captured during runtime. Hence, different kinds
of analyses can be performed over these profiles to gain useful insights about the program, rang-
ing from simply determining how much time was spent in different regions of the program, to
understanding complicated relationships like expected impact of speeding up a code region on the
application’s performance.

4.5 Discussion

Strong Guarantees. Since the timing information in consolidated profiles are in terms of bounded
intervals, the profiling strategy can leverage these intervals to provide strongly bounded results.
This requires carefully maintaining the interval bounds throughout the analysis by designing
interval-aware strategies like interval arithmetic and translation of time intervals into domain-
specific intervals based on the kind of profiling that is being performed. For example, in next section
we will carefully transform the time intervals to strongly bounded straggler scores and speedup
ranges to provide domain-specific guaranteed results.

Eliminating Inverted Orderings. With bounded time intervals, ordering of events occurring nearly
at the same time can sometimes become difficult if the intervals are overlapping. In such cases,
causality ordering across such events can be used to enforce event ordering in the consolidated
profiles and hence, eliminate inverted orderings. For instance, a synchronous send-receive operation
with end of send occurring at <tL

sd
, tU
sd
> and end of receive occurring at <tLrv , t

U
rv> has the causality

ordering tL
sd
< tLrv and tU

sd
< tUrv . This causality ordering can be explicitly incorporated in the

profile to eliminate inversion between the end of send and the end of receive events. However, it is
important to note that such enhancement of consolidated profiles must be done without adjusting
the timing information in bounded intervals in order to maintain strong guarantees.

Extensibility. Different analyses can be performed by viewing the overall profiles in different
ways. In general, since DProf essentially measures the time that the system spends in a user defined
global state, it could be used to solve any problem reducible to that. For example, DProf can be
used to expose concurrency bugs like deadlocks and livelocks. Furthermore, it can also be used to
understand inefficiencies (e.g., retries in leader election) in complex asynchronous systems like
Spark [Zaharia et al. 2010], ASPIRE [Vora et al. 2014, 2017b], and GraphBolt [Mariappan and Vora
2019]. In the next section, we demonstrate how DProf is used to develop distributed versions of
two recent shared memory performance analysis techniques: Context Sensitive Profiling (dCSP)
and Causal Profiling (dCOZ). These can be effectively used in tandem for performance debugging ś
dCSP identifies performance bottlenecks and dCOZ estimates how much application performance
can be expected to improve if the identified performance bottleneck is removed.

5 DISTRIBUTED ANALYSES USING DPROF

In this section, we develop distributed versions of two recent shared memory performance analysis
techniques: Context Sensitive Profiling (dCSP) and Causal Profiling (dCOZ).

5.1 Context Sensitive Profiling: dCSP

Context Sensitive Profiling (CSP) [Benavides et al. 2017] allows analysis of execution times for
different code regions of interest in shared memory parallel programs. The overall execution time
is divided into a sequence of time intervals called frames, during which no process transitions
between code regions. The sequence of frames is then queried to expose different performance

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 156. Publication date: October 2019.

156:16 Zachary Benavides, Keval Vora, and Rajiv Gupta

insights like bottlenecks at synchronization points, workload imbalance, and many others. Using
DProf, we develop CSP to analyze distributed programs by representing our distributed profiles as
sequence of frames.

Aggregated Event View. Constructing the frame sequence using DProf profiles requires an order-
ing across events. Since inter-process events that occur nearly at the same time can have overlapping
time intervals, ordering events results in a simple DAG structure that captures multiple possible
execution orders. Typical context sensitive analysis like straggler detection requires computation
for each different execution path; however, enumerating all possible execution paths can become
infeasible due to path explosion.

A

B

C

D

A

BCD

E E1 5 10

7

18

12

15 20

22 27 1 5 22 27

7 20

Fig. 9. Aggregating overlapping events B, C and D into a single aggregated event BCD.

To address the above issue, we develop an Aggregated Event View that merges overlapping events
into combined events so that the resulting sequence of events have total ordering. Availability of
such a total ordering enables computation of straggler scores with a linear pass over the entire
distributed profile. Since the aggregated event represents multiple underlying events, its timing
interval is computed as the largest interval range spanning across all the underlying events’
intervals. The interval lower (upper) bound of the aggregated event is the minimum (maximum)
of its underlying events. As illustrated in Figure 9, the overlapping events B, C and D are merged
together to a single aggregated event BCD that spans from 7 to 20 so that it fully incorporates the
three intervals.

5.2 Causal Profiling: dCOZ

Causal profiling [Curtsinger and Berger 2015; Yoga and Nagarakatte 2017] is a technique similar to
logical zeroing [Hollingsworth and Miller 1994] that determines the potential impact of optimizing a
selected code region on the overall performance of the program. Such kind of profiling enables users
to understand different bottlenecks in concurrent programs and to prioritize various optimizations to
be incorporated in those programs. While causal profiling systems like COZ [Curtsinger and Berger
2015] enable causal analysis over parallel programs, we develop causal profiling for distributed
applications using DProf. Profiles introduced in [Yoga and Nagarakatte 2017] for task parallel
programs can be similarly extended using DProf.

Time Weighted DAG View. To perform causal analysis on the captured events, we need to care-
fully propagate the impact of optimizing a code region to the remaining execution events. Such
propagation ensures that the causal dependencies remain consistent while the timing information
for events change.
We design a Time Weighted DAG to represent the event and timing information captured by

profiling. Vertices in the graph represent captured events while edges connect events that are
sequentially executed by the same thread, and inter-thread events that are directly related by
causality. The edges are weighted with timestamp intervals that represent the difference between
intervals of events represented by source and destination vertices. For COZ analysis, we categorize
the edges into two types: elastic and inelastic edges. An elastic edge is one whose weights can
be adjusted during COZ analysis, i.e., the duration between their source and destination events

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 156. Publication date: October 2019.

DProf: Distributed Profiler with Strong Guarantees 156:17

receive_end

<240,	255>

loop_begin

<205,	210>

send_end

<190,	200>

<15,20>

<20,20>

<50,55>

receive_begin

<70,	80>

receive_end

<210,	225>

loop_begin

<55,	60>

send_end

<190,	200>

<15,20>

<140,145>

<20,25>

receive_begin

<220,	230>

Inelastic	Edge

Elastic	Edge

<X,	Y>			 Bounded	Interval

Communication

Event

Regular	Event

Fig. 10. Adjusting the time weighted DAG on left to the one on the right causes change in weights of elastic

edges.

is allowed to grow or shrink during impact propagation. We set all the communication edges
to be elastic so that it enables us to carefully adjust the timestamps of communication events
while simultaneously ensuring that causal dependencies are never violated. Inelastic edges, on the
other hand, are those whose weights remain same throughout the analysis. We set all the non-
communication based edges as inelastic. Figure 10 shows two time weighted DAGs with elastic and
inelastic edges. We can transform the left time weighted DAG to the one on the right by adjusting
the timing information; note that the inelastic edge weights remain the same while elastic edges
grow (e.g., between receive_begin and receive_end) and shrink (e.g., between send_end
and receive_end) based on the adjustments.
Algorithm 6 shows the overall algorithm to perform causal analysis using time weighted DAG.

Given a code region r and the amount of reduction, lines 5-18 process the events belonging to r by
directly reducing their execution times. Events that occur after r are collected in global_list
to be processed in lines 20-29. While processing each event in the global_list, the amount of
reduction to be performed can be limited by causal dependencies that need to be maintained during
reduction. For example, while adjusting an end of receive event, the analysis should ensure that the
timestamps do not precede end of send events to avoid inversions (as shown in Figure 10). Similarly,
any exit event from a given barrier should not precede the latest entry event to the same barrier.
Such dependencies are taken care by adjust() (line 23) which analyzes the causal dependencies
of the given event and its predecessor events, its elastic edges and its inelastic edges to determine
the amount of reduction that can be safely performed. This makes the reduction value dynamic,
which gets attached to the future events to be adjusted (lines 26-27). The work-list based reduction
algorithm terminates when there is no remaining reduction to be performed on any event.

6 PERFORMANCE DEBUGGING WITH dCSP & dCOZ

We present how dCOZ and dCSP can be used for performance debugging in distributed programs.
In particular, we show how dCSP can be first used to identify a performance bottleneck, and then
how dCOZ can be used to estimate the expected performance improvement resulting from removal
of the identified bottleneck. We also show the importance of error bounds by showing that the
inferences drawn by dCSP and dCOZ deteriorate significantly if instead of using FreeZer we use
either the linear regression or convex hull algorithms.
To showcase the strength of FreeZer, we choose three popular distributed programs which

have varying degrees of performance bottlenecks: Connected Components [Vora et al. 2017a]

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 156. Publication date: October 2019.

156:18 Zachary Benavides, Keval Vora, and Rajiv Gupta

Algorithm 6: Causal Analysis using Time Weighted DAG.

1: r : code region whose impact is being analyzed
2: reduction: percentage of time reduction for r
3: reдion_list : {v |source(edдe(v)) is an entry event for r }
4: дlobal_list : ∅
5: while reдion_list , ∅ do

6: v ← f irst(reдion_list)
7: reдion_list ← reдion_list \ {v}
8: if v is not processed then

9: cut ← weiдht(v) × (reduction/100)
10: weiдht(v) ← weiдht(v) − cut

11: if v is an exit event for r then
12: pair ←<dest(edдe(v)), cut>
13: дlobal_list ← дlobal_list ∪ {pair }
14: else

15: reдion_list ← reдion_list ∪ {dest(edдe(v))}
16: end if

17: end if

18: end while

19:

20: while дlobal_list , ∅ do

21: <v, cut>← f irst(дlobal_list)
22: дlobal_list ← дlobal_list \ {<v, cut>}
23: new_cut ← adjust(v)

24: if new_cut > 0 then
25: weiдht(v) ← weiдht(v) − new_cut
26: pair ←<dest(edдe(v)),new_cut>
27: дlobal_list ← дlobal_list ∪ {pair }
28: end if

29: end while

30:

31: new_time ← time(proдram_exit_event)
32: speedup ← (oriдinal_time − new_time)/oriдinal_time × 100

(CC), PageRank [Page et al. 1999], and K-Means [Liao [n.d.]]. All three programs iterate over data-
elements (graph vertices/edges for CC and PageRank, points for K-Means) to compute results; as an
example, the overall structure of K-Means is shown in Algorithm 7. We use [Stisen et al. 2015] for
K-Means and LiveJournal [Leskovec et al. 2008] for PageRank and CC to generate important events
for performance analysis. These three distributed programs reflect modern real-world distributed
programs that also extract multicore performance via threading on each machine; in each iteration,
all machines execute their share of the workload in parallel using multiple threads and then they
synchronize at a barrier, exchange information, and move to the next iteration.
We consider stragglers as performance bottlenecks in our distributed programs. Straggler pro-

cesses arise when all processes but one finish their assigned task and are left waiting at the barrier
while the single remaining process slowly finishes its task. Stragglers are a common reason for
slowdown in distributed programs since they can be caused due to several reasons including load
imbalance, hardware performance imbalance, network delays, etc. We used 5 machines to perform

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 156. Publication date: October 2019.

DProf: Distributed Profiler with Strong Guarantees 156:19

Algorithm 7: Distributed K-Means. Region 0 (blue) is the body region, and region 1 (red) is the
barrier region for the dCSP and dCOZ analyses.

1: objects ← read_objects()
2: Send_Receive(objects)
3: clusters ← init_clusters(random_centroids)
4: All_Reduce(clusters)
5: do

#Region(0)
6: for o ∈ objects do
7: c ← compute_closest_cluster(o, clusters)
8: o.cluster ← c

9: c .objects ← c .objects ∪ {o}

10: end for

Region(0)
#Region(1)

11: All_Reduce(clusters)
Region(1)

12: new_centroids ← compute_new_centroids(clusters)
13: All_Reduce(new_centroids)
14: clusters ← init_clusters(new_centroids)
15: chanдe ← compute_change(objects)
16: All_Reduce(chanдe)
17: while chanдe > threshold

this case study and the presence of a straggler process was ensured via workload imbalance, i.e.,
one of the processes was assigned significantly more work compared to other processes. On each
machine the workload was executed in parallel by 8 threads. The impact of stragglers is highest
in CC and lowest in K-Means which allows us to perform sensitivity analysis of Freezer’s strong
guarantees.

Algorithm 7 shows the code region annotations used to generate events for detecting stragglers.
The blue region is where primary work is performed, and the red region is the immediately
following barrier synchronization point. These regions allow us to detect stragglers by searching
for dCSP frames in which all but one process/thread are in the red region, while there is exactly
one thread/process in the blue region. For concrete analysis, we define straggler score (SS) of a
thread t to be the percentage of time that the thread was in the blue region while all other threads
were in the red region.

We perform our analysis in three steps. First, we use dCSP to calculate the straggler scores for
each of the threads in the system. Second, we use the straggler scores calculated by dCSP as input
to dCOZ, and calculate the expected speedup when the straggler identified by dCSP is sped up
by the value of its straggler score. And finally, we eliminate the straggler by removing workload
imbalance and measure the actual execution time to compute the overall prediction error under each
of the three timestamp synchronization schemes: FreeZer, Convex Hull, and Linear Regression.

The relative frequencies measured across our five 8-core machines are between 1.23529ś1.40003
with average being 1.34956 and standard deviation being 0.0668561 (detailed numbers are provided
in Appendix ğA.1). The zeros measured are are TSC numbers which are 17 digits (base 10) with the
error being 5-6 digits.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 156. Publication date: October 2019.

156:20 Zachary Benavides, Keval Vora, and Rajiv Gupta

Table 3. Straggler scores for the straggler process. Higher percentage means more severe straggling.

The execution times for the programs were: CC ś 1799.173 seconds;

PageRank ś 844.251 seconds; and K-Means ś 13.7 seconds.

CC PageRank K-Means

FreeZer 47.19 - 47.21 % 37.17 - 37.19 % 18.9 - 19.9 %
Linear Reg. 23.46 % 18.48 % 8.7 %
Convex Hull 11.75 % 9.73 % 6.9 %

 0

 200

 400

 600

 800

 1000

 20 40 60 80 100 120 140 160 180

#
 o

f
A

g
g
re

g
a
te

d
 E

v
e
n
ts

of Underlying Events

Fig. 11. Size of aggregated events.

Step 1. dCSP: Straggler Detection. With one process chosen to be the straggler, we used dCSP to
measure the straggler score of the chosen process. The results of this step are shown in Table 3.
Since Freezer provides bounded timestamp information, we calculate bounds for straggler scores
by propagating the timestamp bounds throughout the straggler analysis. As we can see, FreeZer’s
bounds for straggler scores are tight, i.e., at most one percent, which is due to little impact of
communication latency on FreeZer’s measurements (see ğ3.4). This shows that FreeZer not only
provides tight bounds in theory, but also provides the same in practice. It is interesting to see that
linear regression (Linear Reg.) also provides positive straggler scores, however they are not even
close to FreeZer’s bounds. Furthermore, convex hull (Convex Hull) provides even smaller straggler
scores, incorrectly diminishing the imbalance issue among threads.
It is interesting to note that the coarse grained view provided by aggregated events does not

impact our profiling results such that the straggler threads go undetected. This is because the
aggregated view mostly summarizes small number of events, leaving out majority of events from
the original profile. Figure 11 shows the distribution of aggregated event sizes in terms of number
of underlying events. As we can see, the size distribution drops sharply; with 1,219 aggregated
events, over 89% have at most 20 underlying events and less than 1% have over 100 underlying
events.

Step 2. dCOZ: Causal Analysis. Next we use dCOZ to answer the question: if the straggler had
finished on time, what reduction in execution time would be observed? Our dCOZ profiler takes
two inputs: the code region that will be sped up to eliminate delay caused by straggler, and the
amount of speedup to apply to that region. It estimates the expected overall speedup of the program.
We again examine the primary work region (blue region in Algorithm 7), except that instead of
using a static region identifier of 0, we use a dynamic region identifier corresponding to the rank
of the process in the MPI global communicator. This allows us to select the right edge in time
weighted DAG view whose loop body corresponds to the process that we’ve elected as the straggler.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 156. Publication date: October 2019.

DProf: Distributed Profiler with Strong Guarantees 156:21

Table 4. Predicted overall speedups via causal profiling given a speedup of the straggler process equal to its

straggler score as computed in Step 1. LR w/ Freezer SS and CH w/ Freezer SS indicate Linear Regression and

Convex Hull synchronization when using straggler scores calculated by FreeZer.

CC PageRank K-Means

FreeZer 44.37-45.30 % 32.94-33.72 % 18.1-18.4 %
Linear Regression 21.60 % 15.53 % 7.7 %
LR w/ FreeZer SS 23.46 % 18.48 % 8.1 %
Convex Hull 8.44 % 6.79 % 5.3 %
CH w/ FreeZer SS 11.75 % 9.72 % 7.6 %

Table 5. Percentage error in prediction.

CC PageRank K-Means

FreeZer 4.28-5.88 % 4.46-5.57 % 1.8-1.8 %
Linear Regression 34.9 % 20.35 % 10.5 %
LR w/ FreeZer SS 31.7 % 16.14 % 10.5 %
Convex Hull 57.54 % 32.8 % 14.0 %
CH w/ FreeZer SS 51.85 % 28.63 % 11.4 %

The results of dCOZ are shown in Table 4. When we calculated the causal profiles using the
linear regression and convex hull synchronizations, we did so using not only the straggler scores
corresponding to those methods, but also using the straggler score as calculated with the FreeZer
synchronization; this eliminates the errors coming from step 1 and clearly shows errors induced by
linear regression and convex hull in dCOZ alone. As we can again see, FreeZer provides strongly
bounded results; in fact, even with smaller execution times for K-Means, FreeZer’s bounds are tight.
While Linear Regression and Convex Hull indicate some performance improvement upon removal
of stragglers, are again far from FreeZer’s results. Even when using FreeZer’s straggler scores,
Linear Regression and Convex Hull provide low numbers, again incorrectly estimating that little
performance improvement can be achieved.

Step 3. Prediction Error. Next we show the strength of FreeZer over linear regression and convex
hull methods by comparing our dCOZ predictions (from Table 4) with execution times when
the straggler is eliminated, i.e., using balanced workload across all threads. The execution times
with and without straggler are: 1799.2s and 1045.6s for CC, 844.3 and 592.6s for PageRank, and
13.7 and 11.4s for K-Means, and the error in our dCOZ prediction is shown in Table 5. The error
values for FreeZer is an order of magnitude lower compared to convex hull and linear regression
methods; this is because FreeZer captures and retains tight bounds throughout the analysis instead
of approximating the estimates, as done by other techniques. Even when using FreeZer’s straggler
scores for linear regression and convex hull, their error values remain high which indicates the low
accuracy of these methods in dCOZ alone.
Note that while FreeZer provides strong bounds, our dCOZ analysis only captures the impact

of eliminating stragglers in terms of speedup on the primary work region. This means, speedups
occurring due to other factors upon straggler elimination like caching effects, improved graph
locality, etc. are not captured by dCOZ. Since these effects also impact execution time, FreeZer’s
error in Table 5 cannot be zero.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 156. Publication date: October 2019.

156:22 Zachary Benavides, Keval Vora, and Rajiv Gupta

It is interesting to note that Linear Regression and Convex Hull underestimate straggler scores
in all cases; this is because our straggler score is defined based on all but one thread being inside
the barrier and synchronization inaccuracies offsetting relative timestamps end up causing multiple

threads to be observed as being outside the barrier.

7 CONCLUSION

We developedDProf, a profiler for distributed programs that provides results with strong guarantees.
DProf relies on bounded frequency and zero measures that tightly capture the inaccuracies in
the timing information. Using DProf, we developed two performance analysis techniques, dCSP
and dCOZ, to demonstrate its versatility and effectiveness in developing tools for distributed
performance debugging.

A APPENDIX

A.1 Relative Frequencies for Performance Debugging

The relative frequencies measured across the five 8-core machines used for performance debugging
in ğ6 are between 1.23529ś1.40003 with average being 1.34956 and standard deviation being
0.0668561. Table 6 and Table 7 shows the frequencies of all 40 cores (5 machines × 8 cores per
machine) relative to a single host machine (host machine is not part of the 5 machines on which
profiles get collected).

Table 6. Frequencies of all 40 cores (5 machines × 8 cores per machine) used for performance debugging in

ğ6 relative to a single host machine.

Core Machine 0 Machine 1

0 1.39998789583816 - 1.399988536446 1.23528657157467 - 1.23528728781227
1 1.39998787495768 - 1.39998857117999 1.23528656912685 - 1.23528724599093
2 1.39998779840999 - 1.39998856764179 1.23528657795941 - 1.23528723807361
3 1.39998409672478 - 1.39998857352618 1.23528658135189 - 1.235287255391
4 1.39998782404304 - 1.3999885785345 1.23528664181965 - 1.23528719264894
5 1.39998789441459 - 1.39998856599002 1.23528658829639 - 1.23528725879004
6 1.39998783306934 - 1.39998857641062 1.23528656905431 - 1.23528723269777
7 1.39998785968398 - 1.39998856312875 1.23528654603035 - 1.23528724815829

Core Machine 2 Machine 3

0 1.31249258885137 - 1.31249307635736 1.40002774414526 - 1.40002811043533
1 1.31249264001219 - 1.31249305393534 1.40002766683076 - 1.40002814637304
2 1.31249260010262 - 1.31249303995655 1.40002775210883 - 1.40002807406718
3 1.31249260911186 - 1.31249312453983 1.40002774391212 - 1.40002808264091
4 1.31249258708874 - 1.31249308555409 1.40002774091796 - 1.40002806462242
5 1.31249257261324 - 1.31249308696561 1.40002772078684 - 1.40002807291304
6 1.31249255172596 - 1.31249308269315 1.40002772219227 - 1.40002807190336
7 1.31249263731281 - 1.31249300333314 1.40002776298356 - 1.40002809653397

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 156. Publication date: October 2019.

DProf: Distributed Profiler with Strong Guarantees 156:23

Table 7. Continuation of Table 6: Frequencies of all 40 cores (5 machines × 8 cores per machine) used for

performance debugging in ğ6 relative to a single host machine.

Core Machine 4

0 1.40002789036014 - 1.40002831747008
1 1.4000278943691 - 1.40002822955989
2 1.40002789817165 - 1.40002823701277
3 1.40002790022046 - 1.40002823036416
4 1.400027916588 - 1.40002829188384
5 1.40002792830673 - 1.40002828839855
6 1.40002788726602 - 1.40002822905083
7 1.4000279166127 - 1.40002825884718

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation under Grant
No. CNS-1617424 and Grant No. CCF-1524852. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author and do not necessarily reflect the
views of the National Science Foundation.

REFERENCES

L. Adhianto, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and N. Tallent. 2008. Hpctoolkit: Performance measurement
and analysis for supercomputers with node-level parallelism. In Workshop on Node Level Parallelism for Large Scale

Supercomputers, in conjuction with ACM/IEEE SC.
T.E. Anderson and E.D. Lazowska. 1990. Quartz: A tool for tuning parallel program performance. In ACM SIGMETRICS

Conference on Measurement and Modeling of Computer Systems. 115ś125.
P. Ashton. 1995. Algorithms for off-line clock synchronization. In Technical Report TR-COSC12/95, Dept. of Computer Science,

Univ. of Canterbury.
D. Becker. 2010. Timestamp Synchronization of Concurrent Events. In Schriften des Forschungszentrums Julich, IAS Series,

Volume 4.
Z. Benavides, R. Gupta, and X. Zhang. 2017. Annotation guided collection of context-sensitive parallel execution profiles. In

The 17th International Conference on Runtime Verification, LNCS 10548, Springer. 103ś120.
D. Böhme, F. Wolf, B.R. de Supinski, M. Schulz, and M. Geimer. 2012. Scalable critical-path based performance analysis. In

IEEE 26th International Parallel & Distributed Processing Symposium. 1330ś1340.
K. Du Bois, J.B. Sartor, S. Eyerman, and L. Eeckhout. 2013. Bottle graphs: Visualizing scalability bottlenecks in multi-

threaded applications. In ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages &

Applications. 355ś372.
C. Curtsinger and E.D. Berger. 2015. Coz: finding code that counts with causal profiling. In The 25th Symposium on Operating

Systems Principles. 184ś197.
R. Ding, H. Zhou, J.-G. Lou, H. Zhang, Q. Lin, Q. Fu, D. Zhang, and T. Xie. 2015. Log2: A cost-aware logging mechanism for

performance diagnosis. In USENIX Annual Technical Conference. 139ś150.
A. Duda, G. Harrus, Y. Haddad, and G. Bernard. 1987. Estimating global time in distributed systems. In ICDCS, Volume 87.

299ś306.
T.H. Dunigan. 1992. Hypercube clock synchronization. In Concurrency and Computation: Practice and Experience, 4(3):257-268.
M. Geimer, F. Wolf, B.J. Wylie, E. Ábrahám, D. Becker, and B. Mohr. 2010. The scalasca performance toolset architecture. In

Concurrency and Computation: Practice and Experience, 22(6):702-719.
Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar, M. Rosenblum, and A. Vahdat. 2018. Exploiting a Natural Network Ef-

fect for Scalable, Fine-grained Clock Synchronization. In 15th USENIX Symposium on Networked Systems Design and

Implementation. 81ś94.
R. Hofman and U. Hilgers. 1998. Theory and tool for estimating global time in parallel and distributed systems. In Sixth

Euromicro Workshop on Parallel and Distributed Processing. 173ś179.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 156. Publication date: October 2019.

156:24 Zachary Benavides, Keval Vora, and Rajiv Gupta

J.K. Hollingsworth. 1996. An online computation of critical path profiling. In SIGMETRICS Symposium on Parallel and

Distributed Tools. 11ś20.
J.K. Hollingsworth and B.P. Miller. 1994. Slack: a new performance metric for parallel programs. In Univ. of Maryland and

Univ. of Wisconsin-Madison, Tech. Rep.
M. Kambadur, K. Tang, and M.A. Kim. [n.d.].
J. Leskovec, K.J. Lang, A. Dasgupta, and M.W. Mahoney. 2008. Community structure in large networks: Natural cluster sizes

and the absence of large well-defined clusters. In CoRR, abs/0810.1355.
W.K. Liao. [n.d.]. Parallel k-means data clustering.
X. Liu and J. Mellor-Crummey. 2011. Pinpointing data locality problems using data-centric analysis. In IEEE/ACM 9th Annual

International Symposium on Code Generation and Optimization. 171ś180.
E. Maillet and C. Tron. 1995. On efficiently implementing global time for performance evaluation on multiprocessor systems.

In Journal of Parallel and Distributed Computing, 28(1):84ś93.
M. Mariappan and K. Vora. 2019. GraphBolt: Dependency-Driven Synchronous Processing of Streaming Graphs. In European

Conference on Computer Systems (EuroSys). ACM, Article 25, 16 pages. https://doi.org/10.1145/3302424.3303974
B.P. Miller, M. Clark, J. Hollingsworth, S. Kierstead, S.S. Lim, and T. Torzewski. 1990. Ips-2: the second generation of a

parallel program measurement system. In IEEE Transactions on Parallel and Distributed Systems, 1(2):206ś217.
W.E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach. 1996. Vampir: Visualization and analysis of mpi

resources. https://tu-dresden.de/zih/forschung/projekte/vampir?set_language=en
L. Page, S. Brin, and R. Motwani. 1999. The PageRank citation ranking: Bringing order to the web. In Stanford InfoLab.
B. Poirier, R. Roy, and M. Dagenais. 2010. Accurate offline synchronization of distributed traces using kernel-level events. In

ACM SIGOPS Operating Systems Review, 44(3):75ś87.
R. Rabenseifner. 1997. The controlled logical clock - a global time for trace based software monitoring of parallel applications

in workstation clusters. In The 5th EUROMICRO Workshop on Parallel and Distributed Processing. 477ś484.
S.S. Shende and A.D. Malony. 2006. The tau parallel performance system. In International Journal of High Performance

Computing Applications, 20(2):287ś311.
A. Stisen, H. Blunck, S. Bhattacharya, T.S. Prentow, M.B. Kjñrgaard, A. Dey, T. Sonne, and M.M. Jensen. 2015. Smart devices

are different: Assessing and mitigating mobile sensing heterogeneities for activity recognition. In 13th ACM Conference

on Embedded Networked Sensor Systems. 127ś140.
K. Vora, R. Gupta, and G. Xu. 2017a. KickStarter: Fast and Accurate Computations on Streaming Graphs via Trimmed

Approximations. In International Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS). 237ś251. https://doi.org/10.1145/3037697.3037748
K. Vora, S.-C. Koduru, and R. Gupta. 2014. ASPIRE: Exploiting Asynchronous Parallelism in Iterative Algorithms Using a

Relaxed Consistency Based DSM. In International Conference on Object Oriented Programming Systems, Languages and

Applications (OOPSLA). 861ś878.
K. Vora, C. Tian, R. Gupta, and Z. Hu. 2017b. CoRAL: Confined Recovery in Distributed Asynchronous Graph Processing. In

International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS). ACM,
New York, NY, USA, 223ś236. https://doi.org/10.1145/3037697.3037747

C.-Q. Yang and B.P. Miller. 1988. Critical path analysis for the execution of parallel and distributed programs. In 8th

International Conference on Distributed Computing Systems. 366ś373.
A. Yoga and S. Nagarakatte. 2017. Fast Causal Profiler for Task Parallel Programs. In 11th Joint Meeting of the European

Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering.
M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, and I. Stoica. 2010. Spark: Cluster computing with working sets.

HotCloud 10, 10-10 (2010), 95.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 156. Publication date: October 2019.

	Abstract
	1 Introduction
	2 Timestamp Conversion Problem

	3 FreeZer: Bounded Frequency & Zero Estimation
	3.1 Estimating Relative Frequencies
	3.2 Estimating Zeros
	3.3 Evaluation of Timestamp Synchronization
	3.4 Impact of Communication Latency
	3.5 Comparison with Other Algorithms

	4 Putting It All Together: DProf and its Uses
	4.1 Step 1: Computing Relative Frequency & Zero Bounds
	4.2 Step 2: Capturing Distributed Event Profiles
	4.3 Step 3: Consolidating Distributed Event Profiles
	4.4 Step 4: Analyzing Profiles
	4.5 Discussion

	5 Distributed Analyses using DProf
	5.1 Context Sensitive Profiling: dCSP
	5.2 Causal Profiling: dCOZ

	6 Performance Debugging with dCSP & dCOZ
	7 Conclusion
	A Appendix
	A.1 Relative Frequencies for Performance Debugging

	Acknowledgments
	References

