
GO: Out-Of-Core Partitioning of Large
Irregular Graphs

Gurneet Kaur
CSE Dept., UC Riverside

Rajiv Gupta
CSE Dept., UC Riverside

Abstract—Single-PC, disk-based processing of large irregular
graphs has recently gained much popularity. At the core of a
disk-based system is a static graph partitioning that must be
created before the processing starts. By handling one partition at
a time, graphs that do not fit in memory are processed on a single
machine. However, the multilevel graph partitioning algorithms
used by the most sophisticated partitioners cannot be run on
the same machine as their memory requirements far exceed
the size of the graph. The popular memory efficient Mt-Metis
graph partitioner requires 4.8× to 13.8× the memory needed to
hold the entire graph in memory. To overcome this problem, we
present the GO out-of-core graph partitioner that can successfully
partition large graphs on a single machine. GO performs just
two passes over the entire input graph, partition creation pass
that creates balanced partitions and partition refinement pass that
reduces edgecuts. Both passes function in a memory constrained
manner via disk-based processing. GO successfully partitions
large graphs for which Mt-Metis runs out of memory. For graphs
that can be successfully partitioned by Mt-Metis on a single
machine, GO produces balanced 8-way partitions with 11.8×
to 76.2× fewer edgecuts using 1.9× to 8.3× less memory in
comparable runtime.

Index Terms—irregular graphs, out-of-core processing, multi-
level graph partitioning

I. INTRODUCTION

Graph analytics is employed in many domains to gain
insights by analyzing large graphs representing entities and
interactions among them. Real world graphs often contain
millions of vertices and billions of edges (see Table I), and
iterative graph analytics queries require multiple passes over
the graph until convergence. Therefore, there has been a great
deal of interest in developing scalable graph analytics systems
that exploit parallelism available on distributed systems [2],
[4], [16], [17]) as well as shared memory systems [18], [21].

Before parallel or distributed analytics on large graphs can
be performed, they typically must first be partitioned. In context
of distributed systems the graph is partitioned across multiple
machines such that each machine is primarily responsible for
computations that operate on its assigned partition. In context
of a single shared-memory machine, the graph is partitioned
to enable out-of-core or disk-based processing of a large graph
on a single machine [12], [22], [23], [25]. When the graph is
too large to fit in the memory available on the machine, it is
divided into smaller partitions and stored on disk. This enables
partitions to be loaded one at a time into memory and processed.

TABLE I: Input Graphs of Varying Sizes: Flickr (FL), PokeC
(PK), LiveJournal (LJ), Orkut (OK), UKdomain2002 (UK02),
Wikepedia-eng (WK), Twitter-WWW (TW), Twitter-MPI (TM),
and UKdomain-2007 (UK07). [13], [26]

Graph Vertices Edges Graph Size | E |
G | V | | E | | E | + | V | | V |

FL 1,715,255 15,551,249 17.3 million 9.1
PK 1,632,803 30,622,564 32.3 million 18.7
LJ 4,036,537 34,681,189 38.7 million 8.6

OK 3,072,441 117,185,083 120.3 million 38.1
UK02 18,520,486 261,787,258 280.3 million 14.1

WK 12,150,976 378,142,420 390.3 million 31.1
TW 41,652,230 1,202,513,195 1,244.2 million 28.9
TM 999,999,987 1,614,106,343 2,614.1 million 1.6

UK07 105,153,952 3,301,876,564 3,407.0 million 31.4

For superior performance, partitioning algorithms endeavor to
create partitions that are well balanced and minimize edgecuts
(i.e., number of edges that cross partition boundaries).

Although the problem of graph partitioning is known to
be NP-hard [1], highly effective multilevel graph partitioning
algorithms have been developed and are widely used [5]–[8],
[24]. A large graph goes through a series of coarsening phases
which, by merging vertices, produces significantly smaller
graphs at each subsequent level. Once a sufficiently small graph
is obtained, it is partitioned. Next this partitioning is projected
to the coarsened graph at the next level to obtain its partitioning
that is further refined using the Kernighan-Lin algorithm [10]
to reduce edgecuts. This preceding step is repeated through
the levels eventually producing a partitioning for the original
full graph. Many implementation frameworks for multilevel
graph partitioning are available for distributed systems (e.g.,
ParMetis [9], Scotch [19], KaFFPa [20]). These frameworks
enable end-to-end processing of large graphs on distributed
systems as both partitioning and subsequent analytics tasks
can be performed on the same distributed platform.

While a framework that implements multilevel graph parti-
tioning on a single shared-machine, called Mt-Metis [14], [15],
is also available, it does not enable end-to-end processing of
large graphs on a single machine because Mt-Metis requires
that not only the input graph be held in memory but also the
coarsened graphs. Since the out-of-core processing of large
graphs is required in the first place because the entire graph
does not fit in memory, executing Mt-Metis to partition such a
graph fails as it runs out of memory. Therefore current out-of-
core graph processing systems employ very simple partitioning978-1-7281-7744-1/21/$31.00 ©2021 IEEE

schemes that simply distribute vertices among partitions [22].
Consequently, end-to-end processing of large graphs on a single
machine using sophisticated partitioners is an open problem.

We present GO, an Out-of-core Graph Partitioner, that given
a fixed amount of memory on a machine, successfully partitions
large graphs that cannot be held in the given amount of memory.
GO performs just two passes over the entire input graph, the
partition creation pass that creates balanced partitions and the
partition refinement pass that reduces edgecuts. Both passes are
designed to function in a memory constrained manner. During
the partition creation phase parallel threads read the graph
from disk and assign vertices, along with their adjacency lists,
to different partitions. Once the available memory is full, the
subpartitions created thus far are written to disk to free up the
memory. Thus, the threads can resume reading the remainder of
the graph from disk and partitioning it. This process produces
an initial partitioning that resides on disk. Next the partition
refinement phase reads portions of all partitions into memory,
refines these subpartitions against each other using the KL-
algorithm [10], and maintains the refined partitioning. This
process is repeated until entire initial partitioning has been
read and processed to generate the final refined partitioning.

Since GO performs partitioning without creating coarsened
graphs, it is a single level partitioner with greatly reduced
memory requirement. In other words, given a graph that can
be held in available memory, GO can partition the graph
without requiring the initial partitioning to be written to and
then read back from disk during refinement. That is, entire
partitioning can be performed in-memory. On the other hand,
since Mt-Metis requires additional memory to hold coarsened
graphs, total memory that it requires to hold all graphs is
several times (4.8× to 13.8×) the memory needed to simply
hold the original graph. Thus, Mt-Metis cannot partition the
graph successfully even if enough memory is available to hold
the entire input graph in memory. The quality of partitions
produced by GO were found to be superior to those produced
by Mt-Metis both in the terms of balance and edgecuts. This
is due to careful design of initial partitioning algorithm and
our modified application of KL-algorithm.

Our experiments with GO prototype on nine input graphs
of varying sizes show that GO can successfully partition large
graphs for which Mt-Metis runs out of memory on the machine
used. For graphs that can be successfully partitioned by Mt-
Metis on a single machine, GO produces balanced 8-way
partitions with 11.8× to 76.2× fewer edgecuts using 1.9× to
8.3× less memory and comparable runtime. To further compare
the quality of partitions produced by GO and Mt-Metis,
we used these partitions to execute PageRank and Weakly
Connected Components workloads on the GridGraph [25] disk-
based processing system. Running times of GridGraph using
GO partitions were always found to be less than those using
Mt-Metis partitions.

II. LIMITATION OF MULTILEVEL PARTITIONING

Given a graph G = (V,E), the goal of k-way graph
partitioning is to partition V into k non-empty disjoint subsets

V1, V2, · · · , Vk. In general all vertices and edges in the graph
have a weight but to simplify the discussion let us assume all
weights are one. The quality of resulting partition is measured
by its balance and edgecuts. Balance is defined as kMAXi(|Vi|)

|V | ,
which is ideally 1, and when it exceeds 1, the greater the value
the greater is the degree of imbalance. Edgecuts corresponds
to the number of edges that connect vertices from different
partitions. A partitioning with lower edgecuts is preferred.

The multilevel graph partitioning scheme employed by Mt-
Metis [14], [15] has three phases. The Coarsening Phase
transforms the given graph G into a sequence of smaller graphs
G1, G2, · · · , GL such that |V | > |V1| > |V2| > · · · > |VL|.
The Partitioning Phase generates k-way partitioning PL of GL.
The Uncoarsening Phase projects PL back to partitioning P of
G going through intermediate partitions PL−1, PL−2, · · · , P1.
A detailed evaluation of Mt-Metis carried out by Lasalle and
Karypis [14] shows that in comparison to ParMetis [9] and
Scotch [19] which are both distributed implementations, the
memory requirements of Mt-Metis is significantly lower. In
fact, the memory requirements of Mt-Metis are only slightly
higher than the serial implementation KMetis [7] – the extra
memory is needed primarily for thread local data structures and
it increases with the number of threads. Moreover, Mt-Metis is
optimized to work for irregular graphs [15]. Table III compares
Mt-Metis and KMetis in terms of edgecuts, peak memory used,
and execution times on 425GB machine.

However, multilevel algorithms have a high memory re-
quirement because in addition to holding G in memory, the
coarsened graphs G1, G2, · · · , GL must also be held in memory.
While the original graph size is |E| + |V |, the cumulative
graph size of coarsened graphs is

∑L
i=1 |Ei|+ |Vi|. Thus, the

combined size of the original graph and the coarsened graphs
is 1 +

∑L
i=1

|Ei|+|Vi|
|E|+|V | times the size of the original graph.

We collected the values of this ratio for the sample graphs
in Table I by running Mt-Metis and the results are presented
in Table II. All experiments in this paper were performed on
a machine with 32 cores (2 sockets, each with 16 cores) with
Intel Xeon Processor E5-2683 v4 processors, 425 GB memory,
1TB SATA Drives, and running CentOS Linux 7. We observe
that the ratio varies from 4.8× to 13.8× for the first six graphs.
The number of levels of coarsening L is also given for each
run. We could not collect the data for the three largest graphs
because, on the machine used, Mt-Metis ran out of memory.

Next we present GO, a two-phase algorithm that does not
employ multilevel partitioning, and can partition the larger
graphs even when provided with memory less than what is
needed to hold the original graph.

III. GO: OUT-OF-CORE GRAPH PARTITIONER

Given a limited amount of memory that cannot even hold the
input graph in adjacency list format, GO uses the given memory
to form memory buffers that are used by multiple threads
to perform parallel graph partitioning in two phases: Initial
Partition Creation; and Partition Refinement to Create Final
Partitions. Both phases are designed to function in memory

TABLE II: Given Original Graph of Size | E | + | V | and (+L) Coarsened Graphs Generated by Mt-Metis:
Ratio is the times by which Cumulative Graph Size of Mt-Metis is Greater than the Original Graph Size.

Input Ratio: 1 +
∑L

i=1
|Ei|+|Vi|
|E|+|V | × Coarsened Graph Levels: (+L)

Graph k=2 k=4 k=8 k=16 k=24 k=32

FL 9.8× (+6) 11.5× (+8) 12.2× (+9) 12.9× (+10) 13.5× (+11) 13.5× (+11)
PK 6.0× (+4) 6.9× (+5) 8.3× (+7) 8.2× (+7) 8.9× (+8) 8.9× (+8)
LJ 10.9× (+5) 13.0× (+7) 12.9× (+7) 13.7× (+8) 13.7× (+8) 13.8× (+8)

OK 9.3× (+5) 10.2× (+6) 10.1× (+6) 10.9× (+7) 10.1× (+6) 10.1× (+6)
UK02 4.8× (+6) 4.9× (+8) 4.9× (+8) 4.9× (+9) 4.9× (+9) 4.9× (+9)

WK 7.0× (+6) 8.0× (+8) 7.9× (+8) 8.2× (+9) 8.2× (+9) 8.2× (+9)
TW, TM, UK07 7 7 7 7 7 7

TABLE III: Comparison of serial implementation KMetis
with the multithreaded Mt-Metis in terms of the number of
Edgecuts, Memory Consumption (GB) and Execution Time

(sec). 8 partitions produced for each input graph on a
machine with 425GB main memory.

Input KMetis
Graph Edgecuts Mem Time

FL 3,371,075 1.70 18.0
PK 4,351,130 2.20 25.0
LJ 7,377,230 4.5 58.0

OK 24,257,372 11.10 103.0
UK02 2,107,793 10.4 62.0

WK 45,803,435 25.5 269.0

Mt-Metis
Edgecuts Mem Time
3,974,999 2.30 6.0
4,196,212 4.00 8.0
7,563,933 6.4 15.0

24,163,859 22.40 32.0
2,241,490 15.4 34.0

44,993,565 55.1 121.8

constrained manner, i.e. they successfully execute using the
given memory that cannot hold the large input graph.

Figure 1 provides an overview of GO. The input graph is
stored on disk in adjacency list format. The available memory
is organized as multiple in-memory buffers. During the first
phase threads read the graph from disk in parallel, assigning
vertices to create balanced initial partitions and accumulating
their adjacency lists in the same buffers. When a buffer is full,
it is written to disk so that processing of rest of the graph can
continue. At the end of the first phase, the initial partitions
are created and each partition is written to disk (Infinimem
object store [11]) as an ordered sequence of batches. In the
second phase once again the in-memory buffers are created,
one for each partition. Portions of partitions from Infinimem
are read into these buffers until the buffers are full, and then the
in-memory portions of the partitions are refined against each
other. Once initial partitions of the graph have gone through
the in-memory buffers, the final refined partitions are available

and written to the disk. Very high degree vertices are treated
differently from other vertices during the above phases to obtain
partitioning with good balance and low edgecuts.

Note that if the buffers are large enough to accommodate
the entire graph during the first phase, then the initial partitions
are not written to disk and re-read for refinement. Instead
the refinement is also fully carried out in memory and
final partitions are finally output to the disk. In subsequent
subsections we present each of these phases in greater detail.

A. Memory Constrained Initial Partition Creation
For k-way partitioning of graph G, the memory available to

the GO partitioner is divided into k buffers B1, B2 · · ·Bk, one
for each partition. The graph is read using blocked serial reads
from disk. Each source vertex v is assigned to some partition
Pi, and the vertex v and its adjacency list Adj(v) are stored
in buffer Bi. By using a simple hashing function for assigning
partitions to source vertices, a balanced partitioning is ensured.
The above process is repeated as long as there is room in the
buffers to accommodate more of the graph. Once some buffer
B∗ is full, its contents are written to the disk, that is, B∗ is
emptied and processing of the graph is resumed. Emptying
of B∗ is referred to as writing of a batch to disk. When the
entire graph has been processed, all buffers are emptied and the
partitioned graph is available on disk. On disk the graph is now
organized according to partitions, where each partition is made
up of series of batches. Consequently, after this phase, the next
phase (refinement) can read each partition using blocked serial
reads of its batches from the disk. While the partitioned graph
is written to disk, an auxiliary in-memory PID array, indexed
by vertex id, remembers the partition ids of all vertices.

Fig. 1: Overview of Out-of-Core GO Graph Partitioning.

Fig. 2: Organizing Memory into Buffers and Disk Usage.

Parallelization: To parallelize the I/O and processing, we
use t threads that read from disk in parallel and create the
partitions in parallel. To ensure that the t threads do not have
to synchronize with each other when updating the buffers, each
buffer is subdivided into t sub-buffers, one for each thread.
This leads to the organization of the graph as shown in Figure 2
where the number of in-memory buffers is t×k. Corresponding
to each of t× k buffers, the disk contains a series of batches
that are written to disk when the buffers are emptied.

Vertex-Ordered Representation: Note that the source
vertices in the original graph, and corresponding adjacency
lists, are organized on disk in the order of source vertex ids.
Thus, they are read in the order of source vertex ids by the
above partitioning phase, they appear in the order of source
vertex ids in B∗’s, and thus appear in order inside each batch
written to disk. To illustrate this phase let us consider the
example shown in Figure 3. In Figure 3(a) an example graph
and its adjacency list representation is shown. Let us assume
that we are carrying out 2-way partitioning using 2 threads
and hence the memory is organized into 4 buffers. Figure 3(b)
shows the representation of the graph where all of the graph
has been read and processed, part of it has been written to the
disk in its batched partition form while part resides in memory
buffers. Here each buffer has been emptied once. Once the
buffers are emptied, the completed initial partitioning of the
graph that resides on the disk is shown in Figure 3(c). Note
that the contents of in-memory buffers and on-disk batches are
all ordered according to vertex ids of source vertices in them.

Split Adjacency Lists for Irregular Graphs: In out-of-
core processing by systems such as GraphChi [12] and
GridGraph [25], the graph partitions are represented as a subset
of edges from the graph. The edges present in the subgraph
corresponding to a partition are essentially contained in the
partition’s representation. Balancing edges across partitions is
important because the work performed by analytics tasks (e.g.,
single source shortest paths) is proportional to the number of
edges. Since power-law graphs, due to their irregular skewed
degree distribution, contain vertices with very high degrees,
we obtain a balanced partitioning by distributing the edges
incident to such vertices across the partitions. This can be
carried out simply by adding a threshold parameter δ such that
when source vertex v is processed by a thread, after placing δ
edges in its current partition, the partition is changed causing

(a) Example Input Graph.

(b) Ongoing Partitioning: In-Memory (left); & On-Disk (right).

(c) Completed Initial Partitioning.

Fig. 3: Representation of example graph in memory and on
disk where k = 2 and t = 2.

the next δ edges to be placed in a different partition. This
approach enables the edges for vertex v to be split across all
k partitions in batches of δ.

Note that it is also possible for the adjacency list of some
vertex v to get split because the buffer to which the list is
being written to has become full. This can be observed in
Figure 3(c) where vertex 7 is assigned to partition 1 and its
adjacency list consisting of two vertices, 6 and 4, are split
across two consecutive batches on disk. However, note that
in this kind of splitting, the adjacency list is not split across
partitions but rather it is split across batches that belong to
the same partition. Moreover, as we will show later, when
partitions are read from their batches in the refinement phase,
these split adjacency lists will be merged together.

B. Memory Constrained Partition Refinement

For a k-way partitioning, the refinement phase is executed
in parallel by k threads where each thread is assigned the task
of refining a single partition. The memory available is divided
into k buffers of equal size. All threads (Tis), in parallel, load
as much of the subgraphs (wPis) of their respective assigned
initial partitions (Pis) into their buffers (Buffer(Ti)s). After
refining the loaded wPi’s against each other, the buffers are
loaded again and refined. This process continues until the entire
graph has been refined and final partitioning has been found.

Parallel Loading: When buffer Buffer(Ti) is loaded
from partition Pi the vertices assigned to Pi are loaded in
increasing order of vertex id. This is achieved by performing
a merge sort across batches written to Pi by different threads.

Note that when vertices and their adjacency lists are loaded
into Buffer(Ti) in this fashion, if the adjacency list of a
vertex v in Pi had been split across different batches due to
emptying of filled buffers in the initial partitioning phase, then
the spilt adjacency list of v will get merged during loading.
Consequently, after loading, the contents of Buffer(Ti) are
organized as follows. A low degree vertex vl that is assigned
to a unique partition Pi, appears in Buffer(Ti) along with
Adj(vl), its complete adjacency list. A high degree vertex vh
whose edges are spread across all k partitions appears in each
Buffer(T∗) along with the complete subset of its adjacency
list assigned to each partition P∗.

Refinement: The goal of refinement using the Kernighan-
Lin (KL) algorithm [10] is to reduce edgecuts in the existing
partitioning by swapping pairs of vertices between partitions.
Doing so does not alter the balance of the partitions that
is achieved during the initial partitioning phase, the swap
operations are chosen merely to reduce edgecuts. The initial
partitioning is held in memory in PID[*] array where using
vertex id to index the array, we can read the partition id of the
vertex. When swap operations are applied, PID[*] contents are
modified to reflect the change in partitioning.

Given a pair of vertices (v, w) from two different partitions,
PID[v] and PID[w], the decision to swap v and w between
the two partitions is based upon the extent to which the swap
reduces edgecuts, which is also called the GAIN. The external
cost of v with respect to PID[w] (i.e., EC(v)\PID[w]) is the
number of edges from v to vertices in PID[w]. The internal
cost of v, IC(v), is the number of edges from v to vertices in
PID[v]. If the difference between external and internal costs of
v and w, D(v) and D(w), are both positive, then swapping of
the vertices will definitely reduce edgecuts. The GAIN is the
sum D(v) and D(w) if v and w are not directly connected by
an edge; otherwise it is D(v) +D(w)− 2.

When refining a pair of partitions against each other, all
pairs of vertices are considered and the one that provides the
highest Gain are chosen for swapping. This process is repeated
– each application is called a Pass that finds one pair to swap –
until no more pairs with positive Gain are available.

Taming KL-algorithm’s Complexity for Large Graphs:
In large graphs with millions of vertices in each partition, it
is not practical to consider every pair of vertices from every
pair of partitions and consider them for swapping. To reduce
the complexity we first observe that only boundary vertices
– vertices that have edges cut by the initial partition – for
a pair of partitions need to be considered during refinement.
To further lower the complexity of refinement we limit the
scope of refinement by dividing boundary vertices belonging
to each partition into equal-sized NUMINTS intervals. When
refining two partitions with respect to each other, only all pairs
of vertices from corresponding intervals in the two partitions
are considered. This greatly reduces the pairs considered and
hence the cost of refinement. Note that high-degree vertices
are not included in such pairs as, having partitioned their edges
across partitions, their is no benefit from swapping them. The

low degree vertices are plentiful in a large irregular graph and
hence refinement of intervals that are smaller subgraphs is still
highly effective as will be observed from our experimental
results for GO in comparison to Mt-Metis.

Interval-based Algorithm and Example: Algorithm 1
presents the complete algorithm of our refinement phase. Lines
4-15 show threads loading portions of partitions into buffers
in parallel, identifying boundary vertices, dividing them into
intervals, and calling REFINEPARTITION to refine partitions.
Lines 16-33 show the function including how a partition refines

Algorithm 1 Interval-based KL Algorithm
1: P1 · · ·Pk – Subgraphs Representing k Partitions
2: PID[*] – Initial Partition Ids of Vertices
3: NUMINTS – Number of Intervals
4: for all threads Ti ∈ {T1, · · · , Tk} do
5: do
6: B Load Partitions
7: Read Subgraph wPi of Pi into BUFFER(Ti)
8: merge sorting over source vertex ids causing
9: split adjacency lists to be merged

10: Identify Boundary Vertices in wPi using PID[*]
11: Divide Boundary Vertices into NUMINTS Intervals
12: B Refine Partition wPi against partitions wPj , j > i
13: REFINEPARTITION (wPi ⊆ Pi)
14: while (Pi is exhausted)
15: end for
16: B Refine Partition Pairs
17: function REFINEPARTITION(wPi)
18: for wPj = wPi+1 · · ·wPk do
19: B Refine wPi wrt wPj

20: for interval id x = 1 · · · NUMINTS do
21: B refine interval pair (Iix ∈ wPi, Ijx ∈ wPj)
22: loop B Making a Pass
23: (g, (v, w))← FINDMAXGAINPAIR(Iix, Ijx)
24: break when g = 0
25: Add (v, w) to SWAPSET
26: forever
27: B Update Partitions using SWAPSET
28: for each (v, w) ∈ SWAPSET do
29: SWAP (PID[v], PID[w])
30: end for
31: end for
32: end for
33: end function
34: B Find Pair of Vertices to Swap
35: function FINDMAXGAINPAIR(Iix, Ijx)
36: MAXGAIN ← 0; MAXPAIR ← null
37: for v ∈ Iix do
38: for w ∈ Ijx do
39: D(v) ← EC(v)\Ijx − IC(v)\Iix
40: D(w)← EC(w)\Iix − IC(w)\Ijx
41: if D(v) ≥ 0 ∧ D(w) ≥ 0 then
42: THISGAIN ← D(v) +D(w)− 2× Edge(v, w)
43: end if
44: if THISGAIN > MAXGAIN then
45: MAXGAIN ← THISGAIN;
46: MAXPAIR ← (v, w)
47: end if
48: end for
49: end for
50: return (MAXGAIN, MAXPAIR)
51: end function

Fig. 4: Illustration of Refinement Algorithm.

itself against all other partitions (Line 18), considering pairs of
intervals (Line 20), making multiple passes (Lines 22-26), and
finally applying atomic SWAP operations that update partition
ids stored in array PID. When considering a pair of intervals,
function FINDMAXGAINPAIR (Lines 34-51) is used to consider
all relevant vertex pairs in those intervals and finds the pair
with the highest gain and returns that pair.

Figure 4 illustrates the above algorithm. We assume two
partitions with two intervals each. The top part of the figure
refines the first intervals from both partitions against each
other and does not swap any vertices as no vertex pair with
a positive gain is found after a pass. The bottom part refines
second intervals from both partitions and this time the first pass
identifies a vertex pair with positive gain and in the second
pass (not shown) none is found. The figure shows how the
partitioning as expressed in PID[*] array changes. The EC,
IC, and D values of the source vertices belonging to intervals
are shown. The gains computed in each pass are also shown.
However, note that the tables that show these are for illustration
as no tables are maintained by the algorithm, only the pair
with maximum gain is remembered.

IV. GO PROTOTYPE AND ITS EVALUATION

GO is implemented in C++ and it uses the Infinimem I/O run-
time [11] to leverage its support for seamless batch disk I/O for
variable size records. The records are expressed using Protocol
Buffers [27] which provide efficient serialization/deserialization.
The graph is divided among multiple threads for parallel
processing where each thread reads its assigned part of the
graph and puts it into the in-memory buffers. The graph is
represented in memory using the adjacency list format and
written to disk by the threads to which vertices are assigned
using Infinimem’s batch I/O.

The goal of our evaluation is to compare the quality and
cost of graph partitioning as performed by GO and Mt-Metis.

We study the scalability of GO with increasing graph size
and varying memory availability. For modest sized graphs that
could be successfully partitioned by both GO and Mt-Metis,
we compare the partitions produced by both the systems in
terms of number of edgecuts, balance and peak memory used
in handling graphs of varying sizes.

The graph partitioning experiments were performed on a
machine with 32 cores (2 sockets, each with 16 cores) with Intel
Xeon Processor E5-2683 v4 processors, 425 GB memory, 1TB
SATA Drives and running CentOS Linux 7. Table I includes
graphs of varying sizes ranging from 15.5 million edges to
3.3 billion edges. This allows us to compare the scalability
of partitioning algorithms and demonstrate that eventually for
large graphs Mt-Metis runs out of memory while GO can
successfully partition them even when only given part of the
memory is available on the machine used in the experiments.

Our evaluation considers following partitioning algorithms:

• GO-100 corresponds to the amount of memory so the
graph fits in memory and initial partition is not written
to and re-read from disk;

• GO-75, GO-50, and GO-25 correspond to running GO
with 75%, 50% and 25% of graph in memory. GO will
need to write and re-read the initial partition from disk.

• Mt-Metis is a multithreaded version of Metis [14]. We
compare GO’s performance with Mt-Metis 0.6.0 that
incorporates enhanced coarsening scheme [15] for graphs
with highly variable degree distribution (e.g., power-law).

A. Quality of Partitions: Edgecuts and Balance

We demonstrate that GO can successfully partition all graphs
in Table I using varying amounts of memory that holds 100%,
75%, 50%, or 25% of the graph. Since different configurations
have different amounts of memory available, the partitionings
they produce are different. We compare the quality of partitions
produced using Mt-Metis with the various GO configurations.
Table IV and Figure 5 presents edgecuts data while Table V
presents the balance data for partitionings produced. For Mt-
Metis no data is presented for the three largest graphs (TW,
TM and UK07) because it ran out of memory in the coarsening
phase and terminated (indicated by 7 in the tables).

Edgecuts: From the number of edgecuts given in Table IV,
we observe that the number of edgecuts produced by all
GO configurations are typically far fewer than Mt-Metis, i.e.
irrespective of the amount of memory available to GO. This
is because the interval size employed by the KL algorithm
during the refinement is similar for all the GO configurations.
The variation in edgecuts for different GO configurations
is due to the difference in refinement intervals caused by
batches merged during the partition refinement phase. Mt-Metis
creates 8-way/16-way/24-way partitioning with 11.8/4.2/2.1×
to 76.2/28.9/10.3× more edgecuts than GO-100. And this
is in spite of GO-100 using much less memory as, being a
single-level algorithm, it does not create coarsened graphs. As
expected, the percentage of edges that are cut increases with
number of partitions.

TABLE IV: Number of Edgecuts for GO-100 and Relative Number for Mt-Metis and Other GO Configurations.

k Algo. Input Graphs
FL PK LJ OK UK02 WK TW TM UK07

8

GO-100 337,908 173,738 452,443 316,918 113,265 655,057 5,837,535 112,048 6,760,828
Mt-Metis 11.8× 24.2× 16.7× 76.2× 19.8× 68.7× 7 7 7
GO-75 2.4× 0.8× 0.4× 1.1× 1.4× 0.5× 1.5× 1.6× 0.6×
GO-50 2.4× 1.3× 0.5× 1.4× 1.2× 0.9× 1.6× 2.5× 0.7×
GO-25 2.8× 1.7× 0.6× 2.4× 2.2× 1.1× 1.7× 4.3× 0.6×

16

GO-100 1,145,151 366,450 493,762 2,640,637 649,569 1,923,263 14,249,266 1,078,944 10,342,321
Mt-Metis 4.2× 15.2× 20.3× 12.5× 4.0× 28.9× 7 7 7
GO-75 2.1× 1.3× 0.9× 0.4× 0.4× 0.8× 1.9× 0.9× 0.5×
GO-50 2.1× 1.5× 1.1× 0.4× 0.3× 1.0× 1.9× 0.8× 1.1×
GO-25 2.2× 2.1× 1.4× 0.6× 0.7× 1.1× 1.9× 1.0× 1.0×

24

GO-100 2,469,269 1,672,698 2,260,283 9,278,356 869,908 6,232,550 22,486,575 3,923,882 13,110,702
Mt-Metis 2.1× 3.8× 5.3× 3.8× 3.3× 10.3× 7 7 7
GO-75 2.0× 0.5× 0.4× 0.2× 0.6× 0.6× 1.7× 0.2× 1.8×
GO-50 2.0× 0.7× 0.5× 0.2× 0.4× 0.7× 1.7× 0.3× 1.8×
GO-25 2.1× 0.7× 0.6× 0.3× 1.1× 0.8× 1.8× 0.6× 1.7×

TABLE V: Balance of Partitions – GO Configurations vs. Mt-Metis: Values are MAXi(| Vi |) as a percentage of | Vi |.
The ideal balance percentage for 8, 16 and 24 partitions is 12.50%, 6.25% and 4.17% respectively.

k Algo. Input Graphs
FL PK LJ OK UK02 WK TW TM UK07

8

GO-100 12.50% 12.50% 16.12% 12.50% 12.50% 12.50% 12.50% 12.51% 12.50%
Mt-Metis 13.76% 13.70% 16.65% 13.70% 12.54% 14.61% 7 7 7
GO-75 12.50% 12.50% 16.12% 12.50% 12.50% 12.50% 12.50% 12.50% 12.50%
GO-50 12.51% 12.51% 16.12% 12.51% 12.50% 12.50% 12.50% 12.51% 12.50%
GO-25 12.52% 12.52% 16.12% 12.51% 12.50% 12.50% 12.50% 12.51% 12.50%

16

GO-100 6.25% 6.25% 8.06% 6.25% 6.25% 6.25% 6.25% 6.26% 6.25%
Mt-Metis 7.62% 6.76% 8.76% 7.21% 6.28% 6.67% 7 7 7
GO-75 6.25% 6.25% 8.06% 6.25% 6.25% 6.25% 6.25% 6.26% 6.25%
GO-50 6.27% 6.27% 8.07% 6.26% 6.25% 6.25% 6.25% 6.26% 6.25%
GO-25 6.30% 6.31% 8.08% 6.29% 6.26% 6.26% 6.25% 6.26% 6.25%

24

GO-100 4.17% 4.17% 5.37% 4.17% 4.17% 4.17% 4.17% 4.17% 4.17%
Mt-Metis 4.86% 4.82% 5.70% 4.48% 4.19% 5.14% 7 7 7
GO-75 4.17% 4.17% 5.37% 4.17% 4.17% 4.17% 4.17% 4.17% 4.17%
GO-50 4.21% 4.23% 5.40% 4.19% 4.17% 4.18% 4.17% 4.17% 4.17%
GO-25 4.22% 4.24% 5.41% 4.24% 4.18% 4.19% 4.17% 4.17% 4.17%

When we look at the ratio of edgecuts for MT-Metis and
GO-100, we also make another observation. The higher the
|E|
|V | ratio for the input graph, the higher is the edgecuts ratio
of Mt-Metis over GO-100. Among the six graphs that are
successfully handled by Mt-Metis, the three largest |E||V | ratios
are 38.1 for OK, 31.1 for WK, and 18.7 for PK. Their Mt-
Metis over GO-100 edgecut ratios are the worst – 76.2× for
OK, 68.7× for WK, and 24.2× for PK. In other words, GO
is more effective in dealing with irregular nature of graphs.

Finally, Figure 5 presents the percentage of edges that are
cut by partitioning. As we can see, the percentage is generally
greater for smaller graphs than for larger graphs, the edgecut
percentage increases with the number of partitions.

Balance of partitions: Next we examine how well bal-
anced are the partitions that are produced. We present the
percentage of vertices that belong to the largest partition in a
partitioning in Table V. Note that the ideal percentage for
best balance is 12.5% for 8-way, 6.25% for 16-way, and
4.17% for 24-way partitioning. We observe that for seven
out of nine graphs – FL, PK, OK, WK, UK2002, TW, and
UK2007 – GO-100 produces almost perfect partitioning. On

the other hand, with Mt-Metis the largest partitions vary from
12.54% to 16.65% in size. Thus, the partitions generated by
GO-100 are more balanced and have fewer edgecuts than
partitions produced by Mt-Metis. When GO is given less
memory, balance of partitions is not adversely impacted but
only very slightly. The highly balanced partitions produced
by GO is due to its superior initial partitioning phase. This is
because the swapping of vertices performed during refinement,
by design, reduce the edgecuts without altering the balance of
the partitions.

B. Memory Usage

Table VI (Left) shows the peak memory used by GO and Mt-
Metis for varying the number of partitions. The peak memory
is noted using the top utility on Linux. For the first six graphs,
since Mt-Metis could successfully partition the graphs, we
calculate the ratio between peak memory used by Mt-Metis
versus that used by GO configurations.

From the data in Table VI and Table VII we observe the
following. As expected, GO-100 is far more memory efficient
than Mt-Metis as GO is a single level algorithm while Mt-

TABLE VI: (Left) Peak Memory in GB and (Right) Execution Time in Seconds for GO configurations and Mt-Metis.

k Algo. FL PK LJ OK UK02 WK TW TM UK07

8

GO-100 0.61 0.72 1.7 2.70 8.0 7.6 29.8 72.9 79.1
Mt-Metis 2.30 4.00 6.4 22.40 15.4 55.1 7 7 7
GO-75 0.27 0.31 0.8 0.96 3.3 2.5 10.0 52.0 26.5
GO-50 0.26 0.27 0.6 0.93 2.6 2.4 9.8 46.0 26.1
GO-25 0.14 0.16 0.4 0.48 1.6 1.5 6.4 40.4 13.4

16

GO-100 0.67 0.78 1.9 2.80 8.6 8.0 31.2 104.2 82.4
Mt-Metis 2.40 2.70 7.8 20.50 16.2 53.1 7 7 7
GO-75 0.37 0.38 0.9 1.00 3.8 2.9 11.0 83.0 29.0
GO-50 0.31 0.32 0.8 0.99 3.2 2.8 10.3 77.8 28.0
GO-25 0.23 0.22 0.6 0.52 2.2 1.9 7.9 71.4 17.2

24

GO-100 0.45 0.50 2.1 2.90 9.2 8.4 32.6 135.6 85.7
Mt-Metis 2.60 3.70 8.1 17.40 15.9 47.1 7 7 7
GO-75 0.41 0.45 1.0 1.10 4.2 3.3 12.0 114.0 32.0
GO-50 0.38 0.40 0.9 1.00 3.8 3.1 11.5 109.0 31.0
GO-25 0.35 0.30 0.8 0.64 2.8 2.1 8.8 104.0 19.3

FL PK LJ OK UK02 WK TW TM UK07
7.4 6.2 18.9 18.2 70.9 71.9 397 1,722 1,026
6.0 8.0 15.0 32.0 34.0 121.8 7 7 7
7.5 6.5 19.1 20.1 83.4 75.1 427 1,794 1,057
7.9 6.6 19.2 20.2 84.1 78.0 450 1,814 1,073
8.0 8.2 19.4 20.4 87.6 79.9 453 2,068 1,113

7.2 5.8 17.4 17.5 65.1 66.2 396 1,763 965
7.0 7.0 19.0 34.0 34.0 123.6 7 7 7
7.4 6.9 17.7 19.1 65.7 69.1 405 1,789 1,020
8.2 8.2 18.5 20.4 68.3 70.6 413 1,811 1,049
9.4 8.5 19.2 21.0 69.5 74.1 432 1,929 1,094

7.4 6.1 18.6 19.9 60.4 69.0 424 1,869 1,028
6.0 8.0 17.0 30.0 35.0 126.6 7 7 7
7.9 6.5 19.1 21.2 64.8 71.7 425 1,911 1,075
8.2 6.6 19.1 21.9 70.6 73.7 435 1,937 1,080
9.0 7.5 19.2 29.0 71.9 79.2 462 1,948 1,095

k=8

%
 E

d
g
e
c
u
ts

0.00

0.02

0.04

0.06

0.08

FL PK LJ

O
rk

ut

U
K
20

02 W
K

TW TM

U
K
20

07

GO-100 GO-75 GO-50 GO-25

k=16

%
 E

d
g
e
c
u
ts

0.00

0.05

0.10

0.15

0.20

FL PK LJ

O
rk

ut

U
K
20

02 W
K

TW TM

U
K
20

07

GO-100 GO-75 GO-50 GO-25

k=24

%
 E

d
g
e
c
u
ts

0.0

0.1

0.2

0.3

0.4

FL PK LJ

O
rk

ut

U
K
20

02 W
K

TW TM

U
K
20

07

GO-100 GO-75 GO-50 GO-25

Fig. 5: Edgecuts as a percentage of total number of edges for
GO configurations.

Metis is a multilevel algorithm that must additionally hold
coarsened graphs in memory. For first six graphs, GO-100 uses
1.9× to 8.3× lesser amount of memory than Mt-Metis for an
8-way partitioning. For producing greater number of partitions
(i.e., 16 and 24), both GO-100 and Mt-Metis require greater

TABLE VII: Memory Consumption of Mt-Metis Over GO.

k Mt-Metis Input Graphs
vs. FL PK LJ OK UK02 WK

8 GO-100 3.7× 5.5× 3.7× 8.3× 1.9× 7.3×
GO-75 8.5× 12.9× 8.0× 23.3× 4.7× 22.0×
GO-50 8.8× 14.8× 10.7× 24.1× 5.9× 23.0×
GO-25 15.3× 25.0× 16.0× 46.7× 9.6× 34.4×

16 GO-100 3.6× 3.5× 4.1× 7.3× 1.9× 6.6×
GO-75 6.4× 7.1× 8.6× 20.0× 4.2× 18.3×
GO-50 7.7× 8.4× 9.7× 20.7× 5.1× 18.9×
GO-25 10.4× 12.3× 13.0× 39.4× 7.4× 26.5×

24 GO-100 5.8× 7.4× 3.8× 6.0× 1.7× 5.6×
GO-75 6.3× 8.2× 8.1× 15.8× 3.8× 14.2×
GO-50 6.8× 9.2× 9.0× 17.4× 4.2× 15.2×
GO-25 7.4× 12.3× 10.1× 29.0× 5.7× 21.4×

amount of memory although this increase is modest (less than
10%). For the largest three TW, TM, and UK2007 graphs,
GO-100 uses 29.8-32.6GB, 72.9-135.6GB, and 79-85.7GB of
memory respectively. Given that typically Mt-Metis uses many
times the memory used by GO-100, it is not surprising that
Mt-Metis runs out of memory and fails to partition the graphs.

The |E||V | ratio impacts the memory used by the algorithms,
much more so for Mt-Metis than for GO-100 resulting in
the following observations. Although the sizes of WK and
UK2002 are fairly close, their |E||V | ratios are quite different
– 31.1 for WK versus 14.1 for UK2002. This impacts the
relative memory usage of Mt-Metis and GO. As Table VII
shows MT-Metis uses 7.3× for WK and 1.9× for UK2002 in
comparison to GO-100. This is because the coarsened graphs
for Mt-Metis contain greater numbers of edges for WK than
for UK2002 causing greater need for additional memory by
WK than UK2002.

The memory used by GO-25 is at least four times less than
the memory used by GO-100. The exception is the TM input
graph for which GO-100 uses around 1.5× to 2× the memory
used by GO-25. This is because TM has the smallest |E||V | ratio
of 1.6 and hence edges account for smaller fraction of memory
needs. In fact the auxiliary array for holding partition ids of
vertices accounts for significant fraction of memory. Thus,
reducing buffer memory impacts peak memory consumption
far less than for all other graphs.

TABLE VIII: I/O Time in Seconds for GO Configurations.

k GO-Mem Input Graphs
Config. FL PK LJ OK UK02 WK TW TM UK07

8 GO-100 0 (4.7) 0 (3.7) 0 (11.9) 0 (8.9) 0 (47.0) 0 (42.9) 0 (200.5) 0 (1187.0) 0 (478.4)
GO-75 1.02 (5.1) 0.6 (4.2) 3.1 (12.4) 1.2 (9.6) 14.5 (50.6) 5.4 (46.1) 26.6 (493.3) 50.5 (1281.5) 68.6 (499.9)
GO-50 1.52 (8.7) 1.2 (5.0) 5.0 (12.8) 1.5 (10.7) 15.3 (60.7) 8.2 (47.7) 34.2 (509.8) 53.7 (1473.7) 82.5 (523.3)
GO-25 2.63 (6.3) 1.4 (5.7) 5.4 (14.7) 1.6 (11.9) 20.8 (61.4) 8.7 (53.8) 45.4 (572.6) 69.2 (1502.8) 47.9 (622.9)

16 GO-100 0 (4.6) 0 (3.5) 0 (11.0) 0 (8.5) 0 (40.4) 0 (34.8) 0 (173.5) 0 (1216.4) 0 (413.6)
GO-75 1.23 (4.6) 0.41 (5.5) 2.1 (11.4) 1.0 (9.0) 10.7 (41.4) 5.1 (42.3) 26.6 (514.8) 31.9 (1224.6) 49.0 (441.0)
GO-50 1.33 (5.8) 0.82 (5.7) 3.9 (33.7) 1.6 (10.9) 12.7 (42.1) 7.2 (42.9) 34.2 (541.7) 39.0 (1409.2) 62.4 (497.2)
GO-25 1.42 (6.0) 0.83 (6.8) 4.2 (14.1) 1.7 (11.7) 17.5 (45.6) 8.4 (44.2) 45.4 (584.7) 77.0 (1471.0) 64.7 (683.8)

24 GO-100 0 (4.6) 0 (3.8) 0 (11.2) 0 (9.2) 0 (33.4) 0 (34.8) 0 (163.3) 0 (1179.7) 0 (302.5)
GO-75 1.04 (5.2) 0.3 (3.9) 1.3 (11.9) 0.9 (13.9) 5.0 (36.6) 6.4 (122.2) 10.0 (452.4) 36.1 (1257.9) 24.8 (355.3)
GO-50 1.44 (6.2) 0.7 (4.2) 3.4 (12.6) 1.4 (17.4) 6.4 (37.3) 4.0 (120.3) 15.7 (533.4) 49.4 (1463.1) 42.0 (365.0)
GO-25 1.84 (7.4) 0.9 (5.5) 3.6 (14.3) 1.5 (19.3) 7.9 (45.7) 6.2 (138.4) 17.1 (534.8) 87.0 (1499.7) 46.0 (391.1)

TABLE IX: Mt-Metis Over GO Execution Times.

k Mt-Metis Input Graphs
Speedup FL PK LJ OK UK02 WK

8 GO-100 0.8× 1.3× 0.79× 1.7× 0.5× 1.6×
GO-75 0.8× 1.23× 0.78× 1.59× 0.41× 1.6×
GO-50 0.7× 1.21× 0.78× 1.58× 0.40× 1.5×
GO-25 0.7× 0.9× 0.77× 1.6× 0.4× 1.5×

16 GO-100 1.0× 1.2× 1.1× 1.9× 0.5× 1.9×
GO-75 1.0× 1.0× 1.1× 1.8× 0.5× 1.8×
GO-50 0.8× 0.8× 1.0× 1.7× 0.4× 1.7×
GO-25 0.7× 0.8× 0.9× 1.6× 0.4× 1.6×

24 GO-100 0.8× 1.3× 0.9× 1.50× 0.6× 1.8×
GO-75 0.8× 1.23× 0.9× 1.4× 0.54× 1.8×
GO-50 0.7× 1.21× 0.9× 1.3× 0.49× 1.7×
GO-25 0.6× 1.1× 0.8× 1.03× 0.5× 1.6×

C. Execution Times

Table VI (Right) shows the execution time in seconds for
different GO configurations - GO-100, GO-75, GO-50, GO-
25, and Mt-Metis. The execution times of GO-100 compare
well with Mt-Metis and better for graphs with higher |E||V | ratio
(PK, OK WK) with speedups ranging from 1.3× to 1.7×.
(see Table IX). For the two larger graphs the results are quite
different – for UK2002 the execution times for Mt-Metis are
roughly 2× faster than GO-100 while for WK, Mt-Metis runs
1.6× slower. Nevertheless, GO-100 produces partitioning with
fewer edgecuts than Mt-Metis for both UK2002 and WK.

The runtimes of GO scale with graph size ranging from
few seconds for the smallest graph to roughly 32 minutes for
large graphs. Let us compare the execution times of GO-100
with GO-25. We observe that typically GO-25 exceeds the
execution times of GO-100 by less than 50%. For the largest
graph of UK2007 with over 3.3 billion edges, the execution
time of GO-25 exceeds that of GO-100 by 8.5%, 13.4%, and
6.5% for 8-way, 16-way, and 24-way partitionings. Thus, we
see that the runtimes of GO scale well with graph size, number
of partitions, and amount of memory available to run.

Finally, we observed that the I/O times of GO-100 differ
from the I/O times of GO-25 only by a small amount because
the I/O performed by the out-of-core feature is highly efficient.
Table VIII presents the I/O times of writing/reading of initial
partitioning to/from Infinimem is small compared to rest of

TABLE X: Scalability of GO Configurations: Execution
Times in Seconds for PageRank and WCC on GridGraph.

k Part. PageRank
Algo. OK WK TW

8

GO-100 6 19 128
GO-75 7 22 134
GO-50 7 21 128
GO-25 8 20 126

16

GO-100 6 21 96
GO-75 7 23 100
GO-50 8 20 100
GO-25 7 21 102

24

GO-100 8 16 100
GO-75 7 19 110
GO-50 8 20 99
GO-25 7 18 109

WCC
OK WK TW

3 7 48
4 8 48
4 7 49
5 7 44

4 7 37
6 8 39
5 7 39
6 7 38

5 6 33
6 7 34
6 8 37
7 7 40

the I/O time (numbers in parenthesis in the table) for reading
the initial graph and writing out the final partitioning.

D. GridGraph Performance vs. GO Partitioning

Next we study the impact of partitions produced on runtimes
of graph algorithm on a state-of-the-art out-of-core system. We
executed two graph algorithms, PageRank and WCC (Weakly
Connected Components), on the GridGraph [25] out-of-core
system using the partitions produced by GO-100, GO-75, GO-
50 and GO-25. The execution times of GridGraph are given in
Table X. As we can seen from this table, the execution times of
all the GO configurations are comparable. In fact, the runtimes
are same for most of the GO configurations. In other words,
reducing memory to 25% does not result in any slowdowns
on GridGraph as the quality of partitions produced does not
change significantly from GO-100 to GO-25. Therefore we
can conclude that the quality of partitions produced by GO
is fairly insensitive to the aount of memory provided to GO.
The above results are to be expected because, as we reduce
the memory available to GO, the number of edgecuts does not
change significantly.

In order to compare the effectiveness of GO’s partitioning
with Mt-Metis partitioning and other simple partitioning
schemes, we ran the workloads of PageRank and WCC on
GridGraph. We compare the running times of GridGraph

TABLE XI: Execution Times in Seconds for GO-100,
Mt-Metis, Cyclic, and Block-Cyclic Partitionings on Medium
Sized Graphs OK, WK and Large Graph TW for PageRank
and Weakly Connected Components (WCC) on GridGraph.

k Part. PageRank
Algo. OK WK TW

8

Mt-Metis 7 21 7
GO-100 6 19 128
Cyclic 8 19 133
Block-Cyclic 8 24 130

16

Mt-Metis 9 22 7
GO-100 8 21 96
Cyclic 9 23 109
Block-Cyclic 8 29 99

24

Mt-Metis 7 18 7
GO-100 6 16 100
Cyclic 7 20 101
Block-Cyclic 7 21 105

WCC
OK WK TW

4 8 7
3 8 48
5 8 50
5 7 49
5 14 7
4 12 37
5 15 39
4 17 37
6 9 7
6 7 33
8 9 44
9 11 35

on OK, WK and TW input graphs for multiple partitioning
schemes. In addition to Mt-Metis and GO, we also collected the
running times of GridGraph when using simple partitioning
strategies, cyclic and block-cyclic, as these strategies have
been used by existing out-of-core systems for evaluating graph
queries to circumvent the memory intensive nature of graph
partitioning. The results shown in Table XI demonstrate that
running times for GO-100 partitioning are same or less than
that for Mt-Metis, Cyclic and Block-Cyclic partitionings with
the exception of WCC for k=8. Note that in Table XI the
minimum execution times are shown in bold. This is to be
expected because GO-100 always produces partitioning that
is superior to the partitioning generated by other methods.

V. CONCLUSIONS

In this paper we presented the GO out-of-core graph
partitioner that can function within the memory constraints
imposed by the machine and successfully partition graphs that
far exceed the size of a graph that can be held in memory. The
execution time and memory requirements scale well with the
graph size. For graphs that can be successfully partitioned using
the in-memory Mt-Metis graph partitioner, GO produces high
quality partitioning in terms of edgecuts and balance. In contrast
to multilevel partitioning scheme used by Mt-Metis, GO is
single level and it partitions the graph in two highly memory
efficient parallel passes. For graphs that can be successfully
partitioned by Mt-Metis on a single machine, GO produces
balanced 8-way partitions with 11.8× to 76.2× fewer edgecuts
using 1.9× to 8.3× lesser memory in comparable runtime.

ACKNOWLEDGEMENTS

This work is supported in part by National Science Founda-
tion grants CCF-1813173, CCF-2002554, and CCF-2028714
to the University of California Riverside.

REFERENCES

[1] T. Bui and C. Jones. Finding good approximate vertex and edge partitions
is NP-hard. Information Processing Letters, pages 153-159, 1992.

[2] R. Chen, J. Shi, Y. Chen, B. Zang, H. Guan, and H. Chen. Powerlyra:
Differentiated graph computation and partitioning on skewed graphs.
ACM Transactions on Parallel Computing, 5(3), 13, 2019.

[3] J. R. Gilbert and E. Zmijewski. A parallel graph partitioning algorithm
for a message-passing multiprocessor. International Journal of Parallel
Programming, (16):498-513, 1987.

[4] J.E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph:
Distributed graph-parallel computation on natural graphs. In USENIX
Symposium on Operating Systems Design and Implementation, 2012.

[5] B. Hendrickson and R. Leland. A Multilevel Algorithm for Partitioning
Graphs. In Technical Report SAND93-1301, Sandia National Labs, 1993.

[6] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning
graphs. In ACM/IEEE Conference on Supercomputing, 1995.

[7] G. Karypis, and V. Kumar. Multilevel k-way partitioning scheme for
irregular graphs. In Journal of Parallel Distributed Computing, 48(1):96-
129, 1998.

[8] G. Karypis, and V. Kumar. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM J. Sci. Comput., vol. 20, no. 1,
pp. 359-392, Dec. 1998.

[9] G. Karypis and V. Kumar. Parallel multilevel k-way partitioning scheme
for irregular graphs. In ACM/IEEE Conference on Supercomputing, 1996.

[10] B.W. Kernighan and S. Lin. An efficient heuristic procedure for
partitioning graphs. Bell System Technical Journal, 49: 291–307, 1970.

[11] S-C. Koduru, R. Gupta, and I. Neamtiu. Size oblivious programming
with InfiniMem. In Workshop on Languages and Compilers for Parallel
Computing, pages 3–19, 2016.

[12] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi: Large-scale graph
computation on just a pc. In USENIX Symposium on Operating Systems
Design and Implementation, pages 31–46, 2012.

[13] J. Leskovec. “Stanford large network dataset collection,”
http://snap.stanford.edu/data/index.html, 2011.

[14] D. LaSalle, and G. Karypis. Multithreaded Graph Partitioning. In IEEE
International Parallel and Distributed Processing Symposium, 2013.

[15] D. LaSalle, Md M. A. Patwary, N. Satish, N. Sundaram, G. Karypis
and P. Dubey. Improving Graph Partitioning for Modern Graphs and
Architectures. In Workshop on Irregular Applications: Architectures and
Algorithms, 2015.

[16] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein. Distributed GraphLab: A Framework for Machine Learning
and Data Mining in the Cloud. In Proceedings of the VLDB Endowment
5, 8 (2012), 716-727.

[17] G. Malewicz, M.H. Austern, A.J.C Bik, J.C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski. Pregel: a system for large-scale graph processing. In
SIGMOD International Conf. on Management of Data, pages 135-146,
2010.

[18] D. Nguyen, A. Lenharth, and K. Pingali. A Lightweight Infrastructure for
Graph Analytics. In ACM Symposium on Operating Systems Principles,
pages 456-471, 2013.

[19] F. Pellegrini and J. Roman. Scotch: A software package for static
mapping by dual recursive bipartitioning of process and architecture
graphs. In International Conference and Exhibition on High-Performance
Computing and Networking, pages 493-498, 1996.

[20] P. Sanders and C. Schulz. Distributed evolutionary graph partitioning.
CoRR, vol. abs/1110.0477, 2011.

[21] J. Shun and G. Blelloch. Ligra: a lightweight graph processing framework
for shared memory. In ACM Symposium on Principles and Practice of
Parallel Programming, pages 135-146, 2013.

[22] K. Vora. LUMOS: Dependency-Driven Disk-based Graph Processing.
In USENIX Annual Technical Conference, pages 429-442, 2019.

[23] K. Vora, G. Xu, and R. Gupta. Load the edges you need: A generic
i/o optimization for disk-based graph processing. In USENIX Annual
Technical Conference, pages 507–522, 2016.

[24] C. Walshaw and M. Cross. Parallel Optimization Algorithms for
Multilevel Mesh Partitioning, In Parallel Computing, 26(12):1635-60,
2000.

[25] X. Zhu, W. Han, and W. Chen. GridGraph: Large-Scale Graph Processing
on a Single Machine Using 2-Level Hierarchical Partitioning. In USENIX
Annual Technical Conference, pages 375–386, 2015.

[26] Konect: http://konect.cc/networks/
[27] Protocol Buffers. Google’s data interchange format,

https://developers.google.com/protocol-buffers

