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Abstract 
Although data pow analysis was first developed for 

use in compilers, i t s  usefulness is now recognized in  
many software tools. Because of its compiler ori- 
gins, the computation of data pow for software tools 
is based on the traditional exhaustive data flow frame- 
work. However, although this framework is useful for 
computing data pow for compilers, it is not the most 
appropriate for sofsware tools, particularly those used 
in the maintenance stage. In maintenance, testing and 
debugging is typically performed in response to pro- 
gram changes. As such, the data pow required is de- 
mand driven from the changed program points. Rather 
than compute the data flow exhaustively using the tra- 
ditional data flow framework, we present a framework 
f o r  partial analysis. The framework includes a speci- 
fication language enabling the specification of the de- 
mand driven data flow desired by  a user. From the 
specification, a partial analysis algorithm is automati- 
cally generated using an L-attributed definition for the 
grammar of the specification language. A specification 
of a demand driven data pow problem expresses char- 
acteristics that define the kind of traversal needed in 
the partial analysis and the type of dependencies t o  be 
captured. The partial analyses algorithms are eficient 
in that only as much of the program is analyzed as 
actually needed, thus reducing the time and space re- 
quirements over exhaustively computing the da ta  f low 
information. The algorithms are shown to be useful 
when debugging and testing programs during mainte- 
nance. 
Keywords - control p o w  graph (CFG), program de- 
bugging, program testing, code optimization. 

1 Introduction 
Static program analysis was first developed in the 

early 70s for use in compiler optimizations, recogniz- 
ing that knowledge about the flow of data values in a 
program leads to better register allocation and more 
run-time efficient code. Its use in parallelizing com- 
pilers is invaluable, as code must be transformed us- 
ing data dependency information in order to fully ex- 
ploit the parallel architectures [5, 171. In addition, 
static analysis has also become a primary component 
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of many software tools, such as editors [20], debug- 
software testers [3, 9,  191 program integra- 
and parallel program analyzers [2, 41. Data 
been proven to  be especially useful in tools 

for the maintenance stage [6, 81. Although compilers 
and software tools utilize static analysis to improve 
their capabilities and performances, there are impor- 
tant differences in the data flow information needed 
between these two classes of software. 

Compilers require information about the flow of 
data for an entire program, as global optimizations 
are typically applicable to all code in the program. As 
such, data flow information is computed exhaustively 
using the traditional data flow framework [12] and is 
computed before optimizations are applied. The types 
of data flow or data dependency information needed 
are based on the kinds of optimizations and paralleliz- 
ing transformations to be applied and are thus known 
beforehand. And lastly, optimizations are applied in 
many cases after a program has been debugged. Thus, 
the data flow computation is not really designed to 
easily incorporate changed program text. 

On the other hand, data flow needed by many soft- 
ware tools is demand driven from one or more program 
points rather than exhaustive. For example, when de- 
bugging, we may want to know what data values reach 
a use at  a program point or what statements impact 
on the value of a variable at  a program point. In data 
flow testing, after a change has been made in a pro- 
gram, we want to know the impact that change has on 
the data values that it can reach. Thus, software tools 
are interested in the flow of data from program points. 
Also, the data flow problems to be solved are not fixed 
before the software tool executes but can vary depend- 
ing on the user. For example, a t  a program point 
during debugging, a user may want to ask such ques- 
tions as will a value reach a point along any path and 
what value must reach a point along all paths, as well 
as other questions that would help locate bugs. And 
lastly, many tools are used while the program is under 
development or maintenance and thus changes in the 
program are expected and must be efficiently handled. 

Thus, exhaustive data flow information is needed in 
compilers whereas the data flow needed in a number 
of software tools is demand driven. The types of data 
flow needed is fixed for compilers but not for software 
tools, and the software tools need to efficiently respond 
to program changes. Although these basic differences 

0-8186-6330-8/94 $04.00 0 1994 IEEE 
4 



exist in the data flow requirements for compilers and 
software tools, exhaustive algorithms derived from the 
data flow framework are typically used to compute the 
data flow for software tools. This approach causes the 
computation of data flow information about parts of 
a program that is not required by the data flow prob- 
lem. When changes are made to  code, the data flow 
has to be recomputed exhaustively and compared to 
previous data flow or has to be incrementally updated, 
under the assumption that exhaustive data flow has 
already been computed [I, 18, 221. A major problem 
with computing data flow information exhaustively is 
the high cost both in execution time and memory de- 
mands. Experimental studies show that performing 
analyses even over small or medium size programs can 
take several hours [13]. 

In order to provide more f lez ibz l i ty  and ef ic iency  
in the data flow computation for software tools, we 
present a framework for the computation of demand 
driven data flow using partial analysis algorithms. As 
this framework supports the computation of demand 
driven data flow from a program point, only the part 
of the program required for analysis is used to compute 
the data flow information. The framework is general in 
that many types of demand driven data flow problems, 
needed for software tools, can be expressed and com- 
puted. And lastly, a specification technique is included 
with the framework that enables the specification of 
data flow problems and the automatic generation of 
algorithms to perform the partial analysis. With this 
facility, the user is provided with a model for data 
flow problems and can express the particular problem 
of interest in  the specification language. Using our 
framework, whenever data flow information with par- 
ticular characteristics is required, the user only has 
t,o write a short specification identifying these char- 
acteristics. The characteristics identify the type of 
traversal through the program that is needed in the 
analysis and the dependencies required. Besides the 
specification technique, the framework also contains 
an L-attributed definition of the grammar for the spec- 
ification language to actually generate the appropriate 
partial analysis algorithms. The framework is flexible 
in that additional characteristics of data flow problems 
can be easily added. We demonstrate the framework 
for a set of characteristics derived from common data 
flow problems for software tools. A prototype has been 
implemented and the utility and efficiency of the par- 
tial analysis algorithms in testing and debugging is 
examined. 

A partial analysis algorithm produced by our tech- 
nique is efficient in that the analysis is controlled by 
the dependencies being sought. Only nodes that must 
be visited to compute the required dependencies are 
visited, i.e., the complexity grows with size of the 
(partial) solution that is computed. Thus, we are 
computing less data flow information which results 
in both space and time efficiencies. Our algorithms 
use the control flow graph as the program represen- 
tation. Another type of representation that has been 
used to compute static program slice, a type of de- 
mand driven data flow, is the program dependence 
graph [5, 111. However, this representation needs to 

have the data flow computed exhaustively and then 
selects the information to present to the user, using 
the program dependence graph. Also, slices using the 
program dependence graph are defined only from pro- 
gram points where values are used; for example, in 
debugging, more flexibility is needed for we may want 
a slice from a program point where a variable is not 
used. 

The next section of the paper discusses the charac- 
teristics and specification that we include in our frame- 
work for demand driven data flow for software tools. 
The technique for the automatic generation of partial 
analysis algorithms is presented in section 3. Section 
4 demonstrates our technique through the specifica- 
tion of various partial data flow algorithms useful in 
debugging, testing, and test case generation. Section 
5 considers the related work and a discussion of an 
implementation is included in section 6. 

2 Characteristics and Specification of 
Demand Driven Data Flow 

We begin by identifying general properties of de- 
mand driven data flow. Demand driven data flow is 
defined from a program point or set of points. The 
end of a program is a valid program point, indicating 
that data flow information is required about the en- 
tire program or all possible execution paths. Demand 
driven data flow captures the data dependencies rela- 
tive to a program object, such as a set of variables or 
statements. 

Assume that we want to know where a newly in- 
troduced definition of a variable at  a program point 
may be used (i.e., partial reachable uses) in def-use 
testing of a program. In this case, a forward traver- 
sal must be made from a definition searching for the 
dependencies that can exist along any path from the 
given program point. Since interest is only in the de- 
pendence between a definition and its use, only direct 
dependencies are required. When a use of a variable 
is found, the statement is added to the data flow set 
and the search continues. The search for a use of a 
variable along a. path ends when another definition of 
that variable is found. During the search, informa- 
tion reflecting the data flow information being sought 
is propagated. The identifying characteristics are that 
(i) the search is forward from a program point, (ii) uses 
are needed to identify dependencies, (iii) only immedi- 
ate dependencies are required, and (iv) dependencies 
found along any path are needed. 

Consider a different type of demand driven data 
flow problem, that of computing information useful 
during program debugging. Given a variable use, we 
want to know the locations of all definitions on which 
the use is directly or indirectly flow dependent. If 
any of these definitions are not constants, then an- 
other search must be established to determine their 
definitions, or the closure of the dependencies. Thus, 
the set of variables whose dependencies are required 
changes as data flow information is added to the com- 
puted data flow set. When a statement is added to the 
data flow set, other variables’ dependencies must be 
found and these variables are added to the set of vari- 
able definitions being searched. Thus, variables whose 
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data dependencies are required to  produce the needed 
information are both propagated and spontaneously 

are needed to identify de- 

and (iv) each path from the given pro ram point speci- 
ficed in the criterion is searched for %ependencies. 

The two types of data flow dependencies provided 
in our framework are variable dependencies that relate 
definitions and uses of variables and statement depen- 
dencies that  compute structural relationships among 
the statements (e.g., dominators). To specify a start- 
ing point for a variable computation the user specifies 
a variable of interest at a program point. In case of 
structural dependencies the user specifies statements 
of interest a t  a program point. 

DDConstruct -+ Construct name : DDSpecify 
DDSpecify -+ Variable I Statement 
Variable -+ Vdep Search Reference 
Statement --+ Sdep Search 
Search -+ Direction Extent Path 
Direction + forward I backward 
Eztent -+ immediate I closure 
Path -+ all I any 
Reference + def I use 

DDCompute --+ Compute name :- (DDStart) 
DDStart -+ VInput I SInput 
DDOutput -+ VOutput 1 SOutput 
ProgPoznt -+ in 1 before I after 
VInput -* variable ProgPoint statement 

VOutput --+ { (variable ProgPoint statement, statement) }* 
Slnput -+ statement {, statement } *  
SOutput -+ { (statement, statement) }* 

{ , variable ProgPoint statement )* 

Figure. 1: Specifying the Construction and 
Computation of Demand Driven Data Flow. 

To specify demand driven data  flow computations 
of different types we must specify the characteristics 
that describe the nature of the search that will enable 
the capture of relevant information by the data flow 
computation. In Fig. 1, we present the grammar for 
our specification language. The specification for the 
nature of search includes the direction in which the 
search is to  take place. The search can be carried out 
in either the f orward or backward direction from the 
program point specified by the user. The extent of the 
search indicates whether the search should terminate 
when all statements that have a direct relationship 
(immediate) with the criterion have been found or 
whether it should continue until all statements that 
have direct or indirect (closure) relationship with 
the criterion have been found. For a forward problem 
the user must indicate whether the statements being 
searched for are reachable from a given program point 
along all incoming edges of the statements or a t  least 

any one incoming edge. Similarly for a backward prob- 
lem the user must specify whether from the statements 
being searched, a given pro ram point can be reached 
along a l l  outgoing edges of the statements or a t  least 
along any one outgoing edge. In the case of variable 
dependencies the user must specify whether the search 
is being carried out for definitions (dei) of variables 
or uses (use) of variables. 

The user first specifies a demand driven data flow 
problem using the DDConstruct specification given in 
Fig. 1. This specification associates a name with 
a partial analysis algorithm at  the time the code is 
constructed. When a particular data flow compu- 
tation is needed using the constructed partial anal- 
ysis algorithm, the starting point is specified using 
the DDCompute specification. After the data flow 
has been computed, the name assigned to the com- 
puted set enables the user to  access the items. When 
the construct statement shown below is encountered, 
an algorithm for computing definitions that reach 
uses of variables a t  various program points is con- 
structed from the specification. The  execution of the 
compute statement causes this algorithm to determine 
the reaching definitions for the given starting point in 
the program specified in VInput. 

Construct ReachingDefs: 

Compute ReachingDefs :- ( VInput ) 
Vdep backward immediate any def 

3 Generating Partial Analysis Algo- 
rithms 

Next we describe the construction of a partial anal- 
ysis algorithm from its specification. The construction 
of the algorithm is carried out during the parsing of the 
demand driven data flow Specification. The actions re- 
quired for constructing the algorithm are described by 
an L-attributed definition associated with the gram- 
mar in Fig. 1. An L-attributed grammar allows the 
use of synthesized attributes as well as restricted types 
of inherited attributes. The values of these attributes 
represent the characteristics of the data flow as well as 
the code for the partial data flow algorithm. Due to 
space consideration in this abstract, we make a sim- 
plifying assumption in the following discussion. Al- 
though array variables can be handled by our tech- 
nique, we only discuss scalar variables. The primary 
modification for array variables is the terminating con- 
dition. In general, the search for array variables has 
to  progress to the start of the program in a forward 
search or the end of a program in a backward search. 

The nature of the search to be carried out dur- 
ing partial analysis is described by the synthesized 
attributes Order, Prev, Next, Ext, and Heet associ- 
ated with the symbol Search see Fig. 2). The  at- 
tribute Order describes the or 6 er in which nodes are 
examined during the computation of data flow, the at- 
tributes Next and Prev identify the direction in which 
the flow graph is traversed during the computation of 
the data flow, Ext represents the scope of the search, 
and the meet operator specifies whether the informa- 
tion must be obtainable along all paths or at  least 
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any one path. The Order is depth-first for forward 
data flow problems and is reverse depth-first for back- 
ward data flow problems. In the case of a forward 
search the Prev set of a statement is the set of the 
statement’s predecessors (Pred)  and the Next set is 
the statement’s successors (Succ) in the control flow 
graph. In the case of a backward dat<a flow prob- 
lem it is the opposite. The Meet operator is union for 
any path problems and intersection for all path prob- 
lems. An additional attribute Point is used during 
the construction of new criteria that are added dur- 
ing the computation of the demand driven data flow 
when the Extent of the search is specified as closure. 
Its value is @ e r  for forward problems and before for 
backward problems. 

The properties of the data flow problem determined 
from this specification are described by the attributes 
Found and New of the symbol Reference. The attribute 
Ext is inherited by Reference. The Found at,tribut,e 
identifies the set, associa.ted with a ~t~atement  which is 
examined to determine whet,her the st,atement should 
be included in the data flow set. Thus, it is the stat,e- 
ment’s reference set (Ref ) ,  if we are looking for uses of 
variables (use) and it is the statement’s definition set 
De , if we are looking for the definitions of variables GI . The attribute New identifies the set specifying 

the additional information regarding a sta.tement that 
the partial analysis algorithm must find a.fter a state- 
ment h a s  been included in the data flow set. Thus, it 
is used when the extent of the search is specified as 
closure. The ext,ent of the search can be determined 
by examining t,he inherit.ed attribut’e Ext a.ssocia.t,ed 
with Reference. If we are looking for uses of a va.riable 
(use), then the New set is the Def set of the statement 
just included in the data flow set. However, if we are 
looking for definitions (def‘), then the New set is the 
Ref set of the statement included in the set. 

Let us next consider the computation of variable 
dependencies. The code that computes data flow is 
constructed from the attributes of the data flow prob- 
lem associated with the symbols Search and Aeference 
(see Fig. 3 ) .  The resulting code is represented by the 
value of the attribute Code associated with Variable. 
In the code for the value of attribute Code, the sets 
Input and Output represent da.ta flow sets associated 
with each statement maintained to assist i n  captur- 
ing data dependencies. These sets cont,ain names of 
variables, a.nd their associated program points , whose 
definitions/uses are being searched. I n  the case of a 
forward data flow problem, the Input. set contains vari- 
ables of interest at  the point just before a statement 
and the Output set contains relevant variables after 
the statement. In the case of a backward data flow 
problem it is the opposite. The variables in  the Out- 
put set of a statement consist of sponfmeous  varia.bles 
(Soutput) and propagated variables (Poutput). The 
sponta.neous variables are those variables which are 
included in the set due to the statement itself, that 
is, they are generated by the statement. Thus, the 
variables in the Soutput. set of a stat,ement s are t,hose 
variables which are being considered due to the inclu- 
sion of s i n  the da.t,a flow set or because s is one of t.he 
statements that is specified as part of t.he criterion. 

The propagated variables are those variables that are 
simply propagated through the statement. Thus, the 
variables in the Poutput set are those that were also 
present in the Input set of the statement and were 
neither killed nor generated by the statement. 

The statement n represents the statement currently 
being examined by the algorithm. This statement is 
obtained from the worklist of statements that  is to be 
examined by the partial analysis algorithm. The state- 
ment n is examined for the definitions/uses of variables 
that meet the required dependencies. If no dependen- 
cies are found in a statement, the search must progress 
along the successors/predecessors of this statement. 
However, if the definition/use of a variable along a 
path is found that satisfies the dependency, or it is 
determined that none will be found along the cur- 
rent path, then the search for that variable along that 
path terminates. The search for other variables in the 
list, if any, continues. The continuation of the search 
along predecessor/successor statements is achieved by 
including these statements in the worklist. If the defi- 
nitions/uses for all variables along n have been found 
(i.e., Output[n] = 4), no new statements would be 
added to the worklist. 

For statement dependencies, the data flow sets con- 
tain statements of interest to the user. The statements 
are propagated as far as they can be propagated un- 
der the user specified search characteristics. Unlike 
variable dependencies, definitions of variables cannot 
stop the propa.gation of statements since we are simply 
interested in structural relationships among the state- 
ments and not the data dependence relationships. In 
case of closure if a statement is included in the da.ta 
flow set then it is also used to construct a new criteria 
(see Fig. 4) .  

Finally the code for capturing relevant informa- 
tion must be embedded in a loop, shown in Fig. 5, 
which examines the statements in the worklist one at  
a time. The worklist is initialized based upon the in- 
put program points of the criterion. At any given 
point in  the algorithm the worklist indicates how far 
the search has progressed. All of the elements in this 
list are examined for the relevant information and the 
worklist is appropriately updated. If all relevant in- 
formation a.long all paths being searched has  been 
found, no new stat,ements would be added to the work- 
list and it becomes empty. At this point the data 
flow set has  been computed and the algorithm ter- 
mina.tes. The statements in the worklist are ordered 
in dept,h-first/reverse-depth-first order and this order- 
ing is maintained as new statements are added to the 
worklist. This improves the efficiency of the algorithm 
by reducing the number of times a statement is ex- 
amined. The code tha.t represents the partial analysis 
algorithm is found in the synthesized attribute Code 
of the symbol DDSpecify. 

We only described the actions that construct the 
core of the partial analysis algorithm. Additional at- 
tributes that initialize the Input, Soutput, Poutput, 
and Output sets and the worklist at the the start of 
the algorithm are omitted. 
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Search- Direction Eztent Path [ 
#Search.Order = #Direction.Order;#Search.Prev = #Direction.Prev; 
#Search.Next = #Direction.lext; 
#Search.Keet = #Path.neet; 

#Search.Ext = #Extent.Ext; 
#Search.Point = #Direction.Point;] 

Direction- forward [ #Direction.Order = "Depth-First"; #Direction.Prev = "Pred" ; 
#Direct ion. Next = "Succ" ; #Direct ion. Point = "aft er" ] 

I backward [ #Direction. Order = "Reverse-Depth-First" ; #Direction.Prev = "Succ" ; 
#Direction.Bext = "Pred"; #Direction.Point = "before" ] 

Extent + immediate [ #Extent .Ext = "Immediate" ] I closure [ #Extent .Ext = "Closure" ] 

Path + all [ #Path.Keet = "n" ] I any [ #Path.Keet = "U" ] 

Reference ---i def [ #Ref erence.Found = "Def'; 
#Reference .New = if #Reference , Ext = "Closure" then "Ref' else "" ] 

I use [ #Reference. Found = "Ref'; #Reference. New = if #Reference .Ext = "Closure" then "Def' else ")' ] 

Figure 2: Search Attributes.  

Variable + Vdep Search Reference [ 
- point is in, before or aft er 
#Reference.Ext = #Search.Ext 
#Variable. Code = { 

NewInput + #Search.Heet,E#Search.p=e"(n) Output[s] 
If NewInput # Input[n] Then 

Input[n] e NewInput 
FOUND e {(v point s) 3 (v point s)EInput[n] and vE#Reference.Found[n]} 
KILL + {(v point s) 3 (v point s)EInput[n] and v = Def(n)} 
If FOUND # Then 

For each (v point s) E FOUND Do DD +- DD U {(v point s, n)} Endfor 

Soutput[n] +- Soutput[n] U {(v #Search.Point n) 3 vE#Reference.New(n)} 
Endif 

Else Poutput[n] t Input[n] - KILL Endif 
Output[n] +- Soutput[n] U Poutput[n] 
IfOutput[n] # 4 Then 

Endif 
Endif } ] 

For each s E #Search.Next(n) Do Worklist - s +#Seach,Order Worklist Endfor 

Figure 3: Slices f o r  Variable Dependences. 

Statement + Sdep Search [ 
#Statement. Code = { 

NewInput +- #S earch.Meet, E #s earch.Prev(n) Output [s] 
If NewInput # Input[n] Then 

Input[n] + Poutput[n] e NewInput 
If Input[n] # 4 Then 

DD +-- DD U {(s,n) 3 s E Input[n]}; 
If #Search.Ext = "Closure" Then Soutput[n] +-- Soutput[n] U {n} Endif 

Endif 
Output[n] +- Soutput[n] U Poutput[n]; 
If Output[n] # 4 Then 

Endif 
Endif } ] 

For each s E #Search.Bext(n) Do Worklist t s +#Sezch,Order Worklist Endfor 

Figure 4: Slices f o r  Statement Dependences. 
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DDSpecify-+ Variable I Statement [ 
#DDSpecif y . Code = { 

Begin 
DD +- 4; 
Whileworklist # 4 Do 

get n from the head of Worklist; 
#Variable.Code; 1 #Statement.Code 

Endwhile 
return(DD) 

End 11 
Figure 5: Slice Computation Loop. 

Algorithm ComputeDataSlice ( ProgramPoints ) 
Input: Program flow graph; 
Output: SLICE; 
Declare: Worklist: ordered list of statement nodes; 

Begin 
Soutput[n], Poutput[n], Output[n], Input[n], NewInput : set of variables 

SLICE = 4 
For each statement n in the program flow graph Do 

Endfor 
For each ”v before s” E PrograniPoints Do 

Soutput[n] = Poutput[n] = Output[n] = Input[n] = 4; 

For each node n E Pred(s) Do 

Endfor 
Worklist +- s +depth- fzrJ t  Worklist 

Soutput[n] = Soutput[n] U {v}; Output[n] = Output[n] U {v}; 

Endfor 
For each ” v  after s” E ProgramPoints Do 

Solltput[s] = Soutput[s] U {v}; Outpnt[s] = Output[s] U {v}; 
For each node n E Succ(s) Do 

Endfor 
Worklist - t i  +depth-f lrst  Worklist 

Endfor 
While Worklist # d~ Do 

get T I  from the head of Worklist 
NewInput - U J E p r e d  Output[s] 
If NewInput # Input[n] Then 

Input[n] +- NewInput 
If Input[n] n Ref[n] # r#~ Then 

SLICE +- SLICE U (11) 

I’output[n] - Input[n] - Def(n) 
Output[n] +- Soutput[n] U Poutput[n] 

Else Output[n] +- Soutput[n] U Input[n] Endif 
If Output[n] # Then 

Endif 
For each s E Succ(n) Do Worklist + s + d e p t h - f i r s t  Worklist Endfor 

Endif 
Endwhile 
return(SL1CE) 

EndComputeDataSlice 

Figure 6. Algorzthm Constructed from the speczficat2on Construct Dataslice: forward immediate any use; 
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Node Worklist 

S2 {S3,S4) 
S3 {S4} 
S4 (S5) 
S5 {Sl,SG} 
S1 {SG} 

S6 d 

{S2,S3) 

Figure 7. Computing fotnmtd vrtrictble dependencies: 
Compute DD :- ( X after S 1 ,  Y a f t e r  S 1  1. 

Demand driven data flow 

4 
{(Y after SI, SZ)} 
{ ( Y  after SI, S?),(X after SI, S3)) 
((1’ after SI,  S?),(S after SI,  S3)} 
{(Y after S1, SL),(S after S I ,  S3)) 
{(Y after S1. S?),(S after S1, S3), 
( Y  after SI, S I ) )  
{(Y after S I ,  S?),(X after SI, S3), 
( Y  after S1, S l ) , (Y  after S1, SG) )  

The applicat.ion of the part,ial analysis algorit.hm 
constructed for a sa.mple pr0gra.m flow graph is illus- 
trated in Fig. 7. Tlie demand driven d a h  flow is 
computed for variables X and Y a.ft.er stat,ement S1. 
The set, Sout,put.[Sl] is init,ialized t,o {(X aft.er Sl),(Y 
after SI)}. The worklist. is inihlized tmo the succes- 
sor set of S1, that is, {S2,S3}. The search for uses 
of X and Y cont,inues dong t,he pa.t.lis from S2 and 
S3. Since S2 uses E’ and S3 uses S t.liey are both 
included in the data flow set. A s  the search cont.iu- 
ues further the st,atement nodes for S4, S5, SI,  and 
SG are examined. This lea.ds to the detection of uses 
of Y by SG a.nd S1. I n  Fig. 7 t,he worklist and the 
da.ta flow set &er the e x a m i i d o n  of each additional 
node is shown. Also t,he Input a.nd Output. sets of all 
the nodes are shown when t.he algorit.liin t,erminates. 
These sets a t  most coiit,ain bot,li (X aft.er S I )  a.nd (Y 

after Sl)  because the information was computed using 
these criteria. This illustrates how the computation of 
a partial data flow set is the computation of only the 
data flow information requested by the user. 

4 Applications 
Demand driven data flow information has been used 

to assist i n  the debugging and testing of programs. In 
the following sections, we give examples for debugging, 
test,ing and test case generation. 
4.1 Test Case Generation and Regression 

Testing 
In order to  reduce the number of test cases gen- 

erated when retesting a program after changes using 
data flow testing, statically determinable properties 
of a program, namely postdominance and dominance, 
can be used to  guide the test case generation process 
[e, 71. Although these properties can be efficiently de- 
termined exhaustively, program changes would require 
repeated computations of the properties. Our partial 
analysis can be used to avoid these computations af- 
ter pr0gra.m changes. In particular, postdominance is 
a property that is used to group def-use pairs in an 
at,t,einpt to find, if possible, a test case that satisfies 
t,he entire group of def-use pairs. Since we need only 
the post.dominatoi-s of a group of def-use pairs, and 
not all of the def-use pairs in the program, we use a 
partial postdominator algorithm to produce postdom- 
inators for the selected group of def-use pairs. Thus, 
after the def-use pairs have been identified as requiring 
test cases, partial analysis is performed to  determine 
a.11 the state1nent.s that postdominate def-use pairs in 
each group. Postdominator information can be ob- 
tained using statement dependencies. A statement S I  
is said to postdominate another statement SZ if all 
pat,lis from S2 to the end of the program pass through 
SI. The  final node in a. flow graph postdominates 
all nodes in  the flow graph. The following statement 
dependency specification computes all nodes that are 
posttdominat.ed by st.atement S, and the postdomina- 
t,or relationships among those nodes. The search that 
is carried out is backward and the problem is an all 
paths problem. 

Construct PDOMS: Sdep backward closure all 
Compute PDOMS :- ( S ) 

As pairs are sa.tisfied, partial analysis continues to  
reduce the size of the program considered. During the 
generation of a test case, for a group of def-use pairs 
that can be potentially tested by a single test case, 
we can ma.ke use of dominator information to guide 
bhe dyna.mic search that is likely to  result in earlier 
termina.t,ion. In other words, the effort expended in 
identifying the test case can be reduced through use of 
domina.t.or informa.tion. As before, only partial domi- 
nator information is required. The forward statement 
dependencies specified below can be used to compute 
all statements that are doinina.ted by statement s. 

Construct DOMS: Sdep forward closure all 
Compute DOMS :- ( S ) 
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We have also demonstrated the utility of partial 
data flow algorithms in regression testing to find 
definition-use pairs that  must be tested after a pro- 
gram change [SI. After changes are made to a previ- 
ously tested program, regression testing attempts to 
retest only the changed portion of the code. We de- 
veloped a data flow regression testing technique based 
on partial analysis. An important benefit of this ap- 
proach is that,  unlike previous techniques, no data 
flow history is needed nor is the recomputation of 
data flow for the entire program needed to  detect 
changed definition-use pairs or values. The program 
changes drive the recomputation of the required data 
flow through partial analysis. The technique exam- 
ines the various ways that a program can be modified, 
including inserting and deleting uses and definitions] 
changing operators in assignments and conditionals, 
and inserting and deleting edges. The technique em- 
ploys two partial analysis algorithms] a forward and 
backward walk from the point of change help to iden- 
tify the definitions and uses that are affected by a 
program edit. The backward walk identifies the def- 
initions of a set of variables that reach the changed 
point. The specification for this demand driven data 
flow is: 
BackwardWalk: 

The forward walk identifies the uses of values that 
are directly or indirectly affected by a change in either 
a value or a predicate. The  data dependencies required 
are computed by the following specification. 
Forwardwalk: 

The data flow computed by the partial analysis al- 
gorithm generated by this specification is then inte- 
grated with control dependencies, as done in the slic- 
ing algorithm, to determine the affected pairs. Based 
on the type of change in the program, these two walks 
are used to find the def-use pairs that must be tested 
after a change. 

Vdep backward immediate any def . 

Vdep forward closure any use. 

4.2 Debugging _ _  - 
Various types of demand driven data flow informa- 

tion are particularly suitable for bug localization, in- 
cluding slicing [25]. For example, if the user knows 
that the value of a variable at  a given point is incor- 
rect, then the user can identify the statements that 
are potential sources of the bug by using backward 
data dependencies to identify the statements that di- 
rectly or indirectly contributed to the computation of 
the incorrect value. The user may observe that the 
values of several variables are incorrect. These errors 
may be caused by a single bug or multiple bugs. For- 
ward and backward dependencies can be useful in dis- 
tinguishing between the two types of situations. One 
possible approach is to compute backward closure de- 
pendencies for each incorrect value. The intersection 
of all the backward sets will identify the statements 
that could have caused all of the errors. If there is 
no such statement then there are likely to be multi- 
ple bugs. Another approach would be to first identify 
the statements that potentially caused one of the vari- 
ables to assume an incorrect value using a backward 
propagation. Next, using forward information, we can 
determine if the values of other variables known to 

be incorrect were directly or indirectly influenced by 
the same statements. If this is the case then we can 
conclude that the same bug may have caused several 
variables to  have incorrect values. From the above de- 
scription it should be clear that during debugging the 
user may compute several different types of demand 
driven data  flow to isolate a bug. Both forward and 
backward dependencies are useful in bug localization 
and so are intersections and unions of different sets. 
Some examples of useful data flow sets are given in 
Fig. 8. 

Backward I 111 I IV 1 VI1 I VI11 

s: x = ..Y..; 

I: Uses of X reachable by X’s definition in S along any path: 
Construct DD : Vdep forward immediate any use 
Compute DD :- ( X  after S) 

Construct DD : Vdep forward closure any use 
Compute DD :- ( X  after S)  

Construct DD : Vdep backward immediate any def 
Compute DD :- ( Y  before S) 

IV: All statements that might affect the value of Y in S: 
Construct D D  : Vdep backward closure any def 
Compute DD :- ( Y  before S) 

11: All statements that may be affected by X’s definition in S: 

111: Definitions of Y that reach Y’s  use in S along any path: 

V: Those Uses of X reachable by only X’s definition in S 
along all paths: 
Construct DD : Vdep forward immediate all use 
Compute DD :- ( X  after S)  

VI: Those statements that are affected by only X’s 
definition in S: 
Construct DD : Vdep forward closure all use 
Compute DI) :- ( X  after S)  

VII: Those definitions of Y that, if executed, reach only 
Y’s  use in S along all paths: 
Construct DD : Vdep backward immediate all def 
Compute DD :- (Y before S)  

VIII: Those statements that, if executed, affect only the 
value of Y in S: 
Construct. DD : Vdep backward closure all def 
Compute I)D :- (Y before S)  

Figure 8: Examples of Demand Driven Data Flow 
Crsefd for Debugging and Testing Programs. 

If the bug i n  the program is in the form of an in- 
correct assignment of a value to a variable, then data 
dependencies are sufficient to identify the bug. How- 
ever, the cause of a bug maybe an incorrectly specified 
predicate in a conditional statement. In such situa- 
tions control dependence information may be needed. 
Control dependencies can be integrated with the in- 
formation derived from the partial analysis of data de- 
pendencies. As an example, consider the Weiser slice 
which consists of a subprogram whose execution is suf- 
ficient to enable the computation of the value of a vari- 
able a t  a given program point. Weiser’s slice is com- 
puted by performing a backward closure over data and 
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control dependencies starting from the point of inter- 
est. The reaching definitions that capture the relevant 
data dependencies are computed in a demand-driven 
fashion as shown below. 

Construct Datas l i ce :  
Weiserslice = q5 
Input = {v after/before s, ....} 
repeat 

Vdep backvard c losure  any def 

Compute Datas l i ce  :- (Input) 
Weiserslice = Weiserslice U Dataslice 
ControlSEce = {S: 3 S’ E WeiserSlice, where S’ 

is control dependent upon S } 
Weiserslice = Weiserslice U ControlSlice 
Input = ControlSlice 

until Input = 4 

The Weiser’s slice can also be computed by a back- 
ward walk along control and data dependence edges 
on a program dependence graph. However, this ap- 
proach requires exhaustive computation of data flow 
information since the program dependence graph can 
only be constructed after all data dependencies and 
control dependencies have been computed. Also, as 
was indicated, slices from program points other than 
where a variable is used are not available (e.g., in Fig. 
7, slice at  S4 on Y). 

5 Related Work 
The framework presented in this paper differs from 

the usual data flow framework [12] in a number of im- 
portant ways. First of all, the number and complexity 
of parameters are increased due to the selection of the 
starting point and variables that is an inherent prop- 
erty of demand driven data flow. Another difference is 
that we also have a language for expressing our char- 
acteristics that is of a higher level than the parameters 
needed in the algorithms. The parameters that are ac- 
tually needed in the algorithm are derived from these 
characteristics. 

One type of demand driven data flow that has been 
developed and used extensively is the static slice [14]. 
Slicing as defined by Weiser is a data flow analysis 
technique that computes the set of statements con- 
tributing to the dependency information desired for a 
fven slicing criterion. The value of slicing is that it 

lters out statements that are not needed to address 
the questions being asked about the behavior of the 
program. 

Related to partial analysis is incremental analysis 
in terms of overall goals. However, the focus of in- 
cremental data flow analysis is to maintain a global 
data flow solution by incrementally updating the sc- 
lution in response to small changes in the program 
[ I ,  18, 21, 22, 261. It may be too expensive to fully 
reanalyze a program from scratch each time a small 
change is made to the program. Instead, an incre- 
mental data flow algorithm takes the global solution 
to an initial instance I of a data flow problem and a 
small change from instance I to another instance I’ 
and computes the updated solution for the changed 
instance I/. 

Olender and Osterweil have developed a tool 
that automatically performs static interprocedural se- 
quencing analysis from programmable constraint spec- 
ifications [15, 161. Sequencing analysis enables the 
detection of data anomalies in a pro ram. In order 
to efficiently carry out sequencing anafysis for various 
objects, a program slice is computed for each object. 
The slice for a given object is represented as a reduced 
control flow graph which can be expected to be signif- 
icantly smaller than the entire program flow graph. 
Thus, sequencing analysis of objects using slices is 
more time efficient than an implementation that relies 
on the original control flow graph. However, it should 
be noted that this approach requires large amount of 
storage to store precomputed slices. In the proposed 
research we are attempting to improve both time and 
space efficiency of data flow analysis. Furthermore, 
the above approach requires the precomputation of 
slices for all objects. 

Work related to the construction of data flow al- 
gorithms has been addressed in the Sharlit tool that 
was developed to help compiler writers develop opti- 
mizers and data flow analyzers [23]. Abstractions are 
presented that enable compiler writers to program in 
a modular fashion. Our technique is oriented toward 
demand driven data flow computation (although ex- 
haustive data flow can be computed), employs specifi- 
cations to automatically produce algorithms and is ori- 
ented to software engineering tools as well as compil- 
ers. SPARE is another tool that facilitates the devel- 
opment of program analysis algorithms [24]. This tool 
supports a high-level specification language through 
which analysis algorithms are expressed. The denota- 
tional nature of the specifications enables automatic 
implementation as well as verification of the algo- 
rithms. Although the tool is useful for rapid prototyp- 
ing, the efficiency of the automatic implementations 
may not be acceptable in a production environment. 

6 Implementation 
We have implemented our technique and have pro- 

duced various types of partial analysis algorithms. 
In preliminary experiments performed, we evaluated 
the merit of using partial analysis algorithms to com- 
pute demand driven data flow information. We made 
simple modifications in programs and computed the 
change in data flow using partial analysis algorithms 
as compared to exhaustively recomputing all data flow 
sets. The results based upon a sample of our runs in- 
dicate a large savings in the size of the data flow sets 
in addition to a savings in execution time. In general, 
the data flow sets, which can grow to  very large sets, 
were reduced. The size of the data flow sets when 
using partial data flow ranged from 1 element to 8 el- 
ements as compared with sets ranging from 49 to 73 
elements for exhaustive data flow analysis. The exe- 
cution time savings for the programs was about 20%. 
The programs used were fairly small programs and 
we expect better performance, at  least in space, when 
larger programs are used. 
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