
A Framework for Partial Data Flow Analysis*

Fbjiv Gupta and Mary Lou Soffa
{ gupt a,soffa} @cs. pit t .edu

Department of Computer Science
University of Pittsburgh

Pittsburgh, Pa, 15260

Abstract
Although data pow analysis was first developed for

use in compilers, i t s usefulness is now recognized in
many software tools. Because of its compiler ori-
gins, the computation of data pow for software tools
is based on the traditional exhaustive data flow frame-
work. However, although this framework is useful for
computing data pow for compilers, it is not the most
appropriate for sofsware tools, particularly those used
in the maintenance stage. In maintenance, testing and
debugging is typically performed in response to pro-
gram changes. As such, the data pow required is de-
mand driven from the changed program points. Rather
than compute the data flow exhaustively using the tra-
ditional data flow framework, we present a framework
f o r partial analysis. The framework includes a speci-
fication language enabling the specification of the de-
mand driven data flow desired by a user. From the
specification, a partial analysis algorithm is automati-
cally generated using an L-attributed definition for the
grammar of the specification language. A specification
of a demand driven data pow problem expresses char-
acteristics that define the kind of traversal needed in
the partial analysis and the type of dependencies t o be
captured. The partial analyses algorithms are eficient
in that only as much of the program is analyzed as
actually needed, thus reducing the time and space re-
quirements over exhaustively computing the da ta f low
information. The algorithms are shown to be useful
when debugging and testing programs during mainte-
nance.
Keywords - control p o w graph (CFG), program de-
bugging, program testing, code optimization.

1 Introduction
Static program analysis was first developed in the

early 70s for use in compiler optimizations, recogniz-
ing that knowledge about the flow of data values in a
program leads to better register allocation and more
run-time efficient code. Its use in parallelizing com-
pilers is invaluable, as code must be transformed us-
ing data dependency information in order to fully ex-
ploit the parallel architectures [5, 171. In addition,
static analysis has also become a primary component

*Partially supported by National Science Foundation Pres-
idential Young Investigator Award CCR-9157371 and Grant
CCR-9109089 to the University of Pittsburgh,

of many software tools, such as editors [20], debug-
software testers [3, 9, 191 program integra-
and parallel program analyzers [2, 41. Data
been proven to be especially useful in tools

for the maintenance stage [6, 81. Although compilers
and software tools utilize static analysis to improve
their capabilities and performances, there are impor-
tant differences in the data flow information needed
between these two classes of software.

Compilers require information about the flow of
data for an entire program, as global optimizations
are typically applicable to all code in the program. As
such, data flow information is computed exhaustively
using the traditional data flow framework [12] and is
computed before optimizations are applied. The types
of data flow or data dependency information needed
are based on the kinds of optimizations and paralleliz-
ing transformations to be applied and are thus known
beforehand. And lastly, optimizations are applied in
many cases after a program has been debugged. Thus,
the data flow computation is not really designed to
easily incorporate changed program text.

On the other hand, data flow needed by many soft-
ware tools is demand driven from one or more program
points rather than exhaustive. For example, when de-
bugging, we may want to know what data values reach
a use at a program point or what statements impact
on the value of a variable at a program point. In data
flow testing, after a change has been made in a pro-
gram, we want to know the impact that change has on
the data values that it can reach. Thus, software tools
are interested in the flow of data from program points.
Also, the data flow problems to be solved are not fixed
before the software tool executes but can vary depend-
ing on the user. For example, a t a program point
during debugging, a user may want to ask such ques-
tions as will a value reach a point along any path and
what value must reach a point along all paths, as well
as other questions that would help locate bugs. And
lastly, many tools are used while the program is under
development or maintenance and thus changes in the
program are expected and must be efficiently handled.

Thus, exhaustive data flow information is needed in
compilers whereas the data flow needed in a number
of software tools is demand driven. The types of data
flow needed is fixed for compilers but not for software
tools, and the software tools need to efficiently respond
to program changes. Although these basic differences

0-8186-6330-8/94 $04.00 0 1994 IEEE
4

exist in the data flow requirements for compilers and
software tools, exhaustive algorithms derived from the
data flow framework are typically used to compute the
data flow for software tools. This approach causes the
computation of data flow information about parts of
a program that is not required by the data flow prob-
lem. When changes are made to code, the data flow
has to be recomputed exhaustively and compared to
previous data flow or has to be incrementally updated,
under the assumption that exhaustive data flow has
already been computed [I, 18, 221. A major problem
with computing data flow information exhaustively is
the high cost both in execution time and memory de-
mands. Experimental studies show that performing
analyses even over small or medium size programs can
take several hours [13].

In order to provide more f lez ibz l i ty and ef ic iency
in the data flow computation for software tools, we
present a framework for the computation of demand
driven data flow using partial analysis algorithms. As
this framework supports the computation of demand
driven data flow from a program point, only the part
of the program required for analysis is used to compute
the data flow information. The framework is general in
that many types of demand driven data flow problems,
needed for software tools, can be expressed and com-
puted. And lastly, a specification technique is included
with the framework that enables the specification of
data flow problems and the automatic generation of
algorithms to perform the partial analysis. With this
facility, the user is provided with a model for data
flow problems and can express the particular problem
of interest in the specification language. Using our
framework, whenever data flow information with par-
ticular characteristics is required, the user only has
t,o write a short specification identifying these char-
acteristics. The characteristics identify the type of
traversal through the program that is needed in the
analysis and the dependencies required. Besides the
specification technique, the framework also contains
an L-attributed definition of the grammar for the spec-
ification language to actually generate the appropriate
partial analysis algorithms. The framework is flexible
in that additional characteristics of data flow problems
can be easily added. We demonstrate the framework
for a set of characteristics derived from common data
flow problems for software tools. A prototype has been
implemented and the utility and efficiency of the par-
tial analysis algorithms in testing and debugging is
examined.

A partial analysis algorithm produced by our tech-
nique is efficient in that the analysis is controlled by
the dependencies being sought. Only nodes that must
be visited to compute the required dependencies are
visited, i.e., the complexity grows with size of the
(partial) solution that is computed. Thus, we are
computing less data flow information which results
in both space and time efficiencies. Our algorithms
use the control flow graph as the program represen-
tation. Another type of representation that has been
used to compute static program slice, a type of de-
mand driven data flow, is the program dependence
graph [5, 111. However, this representation needs to

have the data flow computed exhaustively and then
selects the information to present to the user, using
the program dependence graph. Also, slices using the
program dependence graph are defined only from pro-
gram points where values are used; for example, in
debugging, more flexibility is needed for we may want
a slice from a program point where a variable is not
used.

The next section of the paper discusses the charac-
teristics and specification that we include in our frame-
work for demand driven data flow for software tools.
The technique for the automatic generation of partial
analysis algorithms is presented in section 3. Section
4 demonstrates our technique through the specifica-
tion of various partial data flow algorithms useful in
debugging, testing, and test case generation. Section
5 considers the related work and a discussion of an
implementation is included in section 6.

2 Characteristics and Specification of
Demand Driven Data Flow

We begin by identifying general properties of de-
mand driven data flow. Demand driven data flow is
defined from a program point or set of points. The
end of a program is a valid program point, indicating
that data flow information is required about the en-
tire program or all possible execution paths. Demand
driven data flow captures the data dependencies rela-
tive to a program object, such as a set of variables or
statements.

Assume that we want to know where a newly in-
troduced definition of a variable at a program point
may be used (i.e., partial reachable uses) in def-use
testing of a program. In this case, a forward traver-
sal must be made from a definition searching for the
dependencies that can exist along any path from the
given program point. Since interest is only in the de-
pendence between a definition and its use, only direct
dependencies are required. When a use of a variable
is found, the statement is added to the data flow set
and the search continues. The search for a use of a
variable along a. path ends when another definition of
that variable is found. During the search, informa-
tion reflecting the data flow information being sought
is propagated. The identifying characteristics are that
(i) the search is forward from a program point, (ii) uses
are needed to identify dependencies, (iii) only immedi-
ate dependencies are required, and (iv) dependencies
found along any path are needed.

Consider a different type of demand driven data
flow problem, that of computing information useful
during program debugging. Given a variable use, we
want to know the locations of all definitions on which
the use is directly or indirectly flow dependent. If
any of these definitions are not constants, then an-
other search must be established to determine their
definitions, or the closure of the dependencies. Thus,
the set of variables whose dependencies are required
changes as data flow information is added to the com-
puted data flow set. When a statement is added to the
data flow set, other variables’ dependencies must be
found and these variables are added to the set of vari-
able definitions being searched. Thus, variables whose

5

data dependencies are required to produce the needed
information are both propagated and spontaneously

are needed to identify de-

and (iv) each path from the given pro ram point speci-
ficed in the criterion is searched for %ependencies.

The two types of data flow dependencies provided
in our framework are variable dependencies that relate
definitions and uses of variables and statement depen-
dencies that compute structural relationships among
the statements (e.g., dominators). To specify a start-
ing point for a variable computation the user specifies
a variable of interest at a program point. In case of
structural dependencies the user specifies statements
of interest a t a program point.

DDConstruct -+ Construct name : DDSpecify
DDSpecify -+ Variable I Statement
Variable -+ Vdep Search Reference
Statement --+ Sdep Search
Search -+ Direction Extent Path
Direction + forward I backward
Eztent -+ immediate I closure
Path -+ all I any
Reference + def I use

DDCompute --+ Compute name :- (DDStart)
DDStart -+ VInput I SInput
DDOutput -+ VOutput 1 SOutput
ProgPoznt -+ in 1 before I after
VInput -* variable ProgPoint statement

VOutput --+ { (variable ProgPoint statement, statement) }*
Slnput -+ statement {, statement } *
SOutput -+ { (statement, statement) }*

{ , variable ProgPoint statement)*

Figure. 1: Specifying the Construction and
Computation of Demand Driven Data Flow.

To specify demand driven data flow computations
of different types we must specify the characteristics
that describe the nature of the search that will enable
the capture of relevant information by the data flow
computation. In Fig. 1, we present the grammar for
our specification language. The specification for the
nature of search includes the direction in which the
search is to take place. The search can be carried out
in either the f orward or backward direction from the
program point specified by the user. The extent of the
search indicates whether the search should terminate
when all statements that have a direct relationship
(immediate) with the criterion have been found or
whether it should continue until all statements that
have direct or indirect (closure) relationship with
the criterion have been found. For a forward problem
the user must indicate whether the statements being
searched for are reachable from a given program point
along all incoming edges of the statements or a t least

any one incoming edge. Similarly for a backward prob-
lem the user must specify whether from the statements
being searched, a given pro ram point can be reached
along a l l outgoing edges of the statements or a t least
along any one outgoing edge. In the case of variable
dependencies the user must specify whether the search
is being carried out for definitions (dei) of variables
or uses (use) of variables.

The user first specifies a demand driven data flow
problem using the DDConstruct specification given in
Fig. 1. This specification associates a name with
a partial analysis algorithm at the time the code is
constructed. When a particular data flow compu-
tation is needed using the constructed partial anal-
ysis algorithm, the starting point is specified using
the DDCompute specification. After the data flow
has been computed, the name assigned to the com-
puted set enables the user to access the items. When
the construct statement shown below is encountered,
an algorithm for computing definitions that reach
uses of variables a t various program points is con-
structed from the specification. The execution of the
compute statement causes this algorithm to determine
the reaching definitions for the given starting point in
the program specified in VInput.

Construct ReachingDefs:

Compute ReachingDefs :- (VInput)
Vdep backward immediate any def

3 Generating Partial Analysis Algo-
rithms

Next we describe the construction of a partial anal-
ysis algorithm from its specification. The construction
of the algorithm is carried out during the parsing of the
demand driven data flow Specification. The actions re-
quired for constructing the algorithm are described by
an L-attributed definition associated with the gram-
mar in Fig. 1. An L-attributed grammar allows the
use of synthesized attributes as well as restricted types
of inherited attributes. The values of these attributes
represent the characteristics of the data flow as well as
the code for the partial data flow algorithm. Due to
space consideration in this abstract, we make a sim-
plifying assumption in the following discussion. Al-
though array variables can be handled by our tech-
nique, we only discuss scalar variables. The primary
modification for array variables is the terminating con-
dition. In general, the search for array variables has
to progress to the start of the program in a forward
search or the end of a program in a backward search.

The nature of the search to be carried out dur-
ing partial analysis is described by the synthesized
attributes Order, Prev, Next, Ext, and Heet associ-
ated with the symbol Search see Fig. 2). The at-
tribute Order describes the or 6 er in which nodes are
examined during the computation of data flow, the at-
tributes Next and Prev identify the direction in which
the flow graph is traversed during the computation of
the data flow, Ext represents the scope of the search,
and the meet operator specifies whether the informa-
tion must be obtainable along all paths or at least

6

any one path. The Order is depth-first for forward
data flow problems and is reverse depth-first for back-
ward data flow problems. In the case of a forward
search the Prev set of a statement is the set of the
statement’s predecessors (Pred) and the Next set is
the statement’s successors (Succ) in the control flow
graph. In the case of a backward dat<a flow prob-
lem it is the opposite. The Meet operator is union for
any path problems and intersection for all path prob-
lems. An additional attribute Point is used during
the construction of new criteria that are added dur-
ing the computation of the demand driven data flow
when the Extent of the search is specified as closure.
Its value is @ e r for forward problems and before for
backward problems.

The properties of the data flow problem determined
from this specification are described by the attributes
Found and New of the symbol Reference. The attribute
Ext is inherited by Reference. The Found at,tribut,e
identifies the set, associa.ted with a ~t~atement which is
examined to determine whet,her the st,atement should
be included in the data flow set. Thus, it is the stat,e-
ment’s reference set (Ref) , if we are looking for uses of
variables (use) and it is the statement’s definition set
De , if we are looking for the definitions of variables GI . The attribute New identifies the set specifying

the additional information regarding a sta.tement that
the partial analysis algorithm must find a.fter a state-
ment h a s been included in the data flow set. Thus, it
is used when the extent of the search is specified as
closure. The ext,ent of the search can be determined
by examining t,he inherit.ed attribut’e Ext a.ssocia.t,ed
with Reference. If we are looking for uses of a va.riable
(use), then the New set is the Def set of the statement
just included in the data flow set. However, if we are
looking for definitions (def‘), then the New set is the
Ref set of the statement included in the set.

Let us next consider the computation of variable
dependencies. The code that computes data flow is
constructed from the attributes of the data flow prob-
lem associated with the symbols Search and Aeference
(see Fig. 3) . The resulting code is represented by the
value of the attribute Code associated with Variable.
In the code for the value of attribute Code, the sets
Input and Output represent da.ta flow sets associated
with each statement maintained to assist i n captur-
ing data dependencies. These sets cont,ain names of
variables, a.nd their associated program points , whose
definitions/uses are being searched. I n the case of a
forward data flow problem, the Input. set contains vari-
ables of interest at the point just before a statement
and the Output set contains relevant variables after
the statement. In the case of a backward data flow
problem it is the opposite. The variables in the Out-
put set of a statement consist of sponfmeous varia.bles
(Soutput) and propagated variables (Poutput). The
sponta.neous variables are those variables which are
included in the set due to the statement itself, that
is, they are generated by the statement. Thus, the
variables in the Soutput. set of a stat,ement s are t,hose
variables which are being considered due to the inclu-
sion of s i n the da.t,a flow set or because s is one of t.he
statements that is specified as part of t.he criterion.

The propagated variables are those variables that are
simply propagated through the statement. Thus, the
variables in the Poutput set are those that were also
present in the Input set of the statement and were
neither killed nor generated by the statement.

The statement n represents the statement currently
being examined by the algorithm. This statement is
obtained from the worklist of statements that is to be
examined by the partial analysis algorithm. The state-
ment n is examined for the definitions/uses of variables
that meet the required dependencies. If no dependen-
cies are found in a statement, the search must progress
along the successors/predecessors of this statement.
However, if the definition/use of a variable along a
path is found that satisfies the dependency, or it is
determined that none will be found along the cur-
rent path, then the search for that variable along that
path terminates. The search for other variables in the
list, if any, continues. The continuation of the search
along predecessor/successor statements is achieved by
including these statements in the worklist. If the defi-
nitions/uses for all variables along n have been found
(i.e., Output[n] = 4), no new statements would be
added to the worklist.

For statement dependencies, the data flow sets con-
tain statements of interest to the user. The statements
are propagated as far as they can be propagated un-
der the user specified search characteristics. Unlike
variable dependencies, definitions of variables cannot
stop the propa.gation of statements since we are simply
interested in structural relationships among the state-
ments and not the data dependence relationships. In
case of closure if a statement is included in the da.ta
flow set then it is also used to construct a new criteria
(see Fig. 4) .

Finally the code for capturing relevant informa-
tion must be embedded in a loop, shown in Fig. 5,
which examines the statements in the worklist one at
a time. The worklist is initialized based upon the in-
put program points of the criterion. At any given
point in the algorithm the worklist indicates how far
the search has progressed. All of the elements in this
list are examined for the relevant information and the
worklist is appropriately updated. If all relevant in-
formation a.long all paths being searched has been
found, no new stat,ements would be added to the work-
list and it becomes empty. At this point the data
flow set has been computed and the algorithm ter-
mina.tes. The statements in the worklist are ordered
in dept,h-first/reverse-depth-first order and this order-
ing is maintained as new statements are added to the
worklist. This improves the efficiency of the algorithm
by reducing the number of times a statement is ex-
amined. The code tha.t represents the partial analysis
algorithm is found in the synthesized attribute Code
of the symbol DDSpecify.

We only described the actions that construct the
core of the partial analysis algorithm. Additional at-
tributes that initialize the Input, Soutput, Poutput,
and Output sets and the worklist at the the start of
the algorithm are omitted.

7

Search- Direction Eztent Path [
#Search.Order = #Direction.Order;#Search.Prev = #Direction.Prev;
#Search.Next = #Direction.lext;
#Search.Keet = #Path.neet;

#Search.Ext = #Extent.Ext;
#Search.Point = #Direction.Point;]

Direction- forward [#Direction.Order = "Depth-First"; #Direction.Prev = "Pred" ;
#Direct ion. Next = "Succ" ; #Direct ion. Point = "aft er"]

I backward [#Direction. Order = "Reverse-Depth-First" ; #Direction.Prev = "Succ" ;
#Direction.Bext = "Pred"; #Direction.Point = "before"]

Extent + immediate [#Extent .Ext = "Immediate"] I closure [#Extent .Ext = "Closure"]

Path + all [#Path.Keet = "n"] I any [#Path.Keet = "U"]

Reference ---i def [#Ref erence.Found = "Def';
#Reference .New = if #Reference , Ext = "Closure" then "Ref' else ""]

I use [#Reference. Found = "Ref'; #Reference. New = if #Reference .Ext = "Closure" then "Def' else ")']

Figure 2: Search Attributes.

Variable + Vdep Search Reference [
- point is in, before or aft er
#Reference.Ext = #Search.Ext
#Variable. Code = {

NewInput + #Search.Heet,E#Search.p=e"(n) Output[s]
If NewInput # Input[n] Then

Input[n] e NewInput
FOUND e {(v point s) 3 (v point s)EInput[n] and vE#Reference.Found[n]}
KILL + {(v point s) 3 (v point s)EInput[n] and v = Def(n)}
If FOUND # Then

For each (v point s) E FOUND Do DD +- DD U {(v point s, n)} Endfor

Soutput[n] +- Soutput[n] U {(v #Search.Point n) 3 vE#Reference.New(n)}
Endif

Else Poutput[n] t Input[n] - KILL Endif
Output[n] +- Soutput[n] U Poutput[n]
IfOutput[n] # 4 Then

Endif
Endif }]

For each s E #Search.Next(n) Do Worklist - s +#Seach,Order Worklist Endfor

Figure 3: Slices f o r Variable Dependences.

Statement + Sdep Search [
#Statement. Code = {

NewInput +- #S earch.Meet, E #s earch.Prev(n) Output [s]
If NewInput # Input[n] Then

Input[n] + Poutput[n] e NewInput
If Input[n] # 4 Then

DD +-- DD U {(s,n) 3 s E Input[n]};
If #Search.Ext = "Closure" Then Soutput[n] +-- Soutput[n] U {n} Endif

Endif
Output[n] +- Soutput[n] U Poutput[n];
If Output[n] # 4 Then

Endif
Endif }]

For each s E #Search.Bext(n) Do Worklist t s +#Sezch,Order Worklist Endfor

Figure 4: Slices f o r Statement Dependences.

8

DDSpecify-+ Variable I Statement [
#DDSpecif y . Code = {

Begin
DD +- 4;
Whileworklist # 4 Do

get n from the head of Worklist;
#Variable.Code; 1 #Statement.Code

Endwhile
return(DD)

End 11
Figure 5: Slice Computation Loop.

Algorithm ComputeDataSlice (ProgramPoints)
Input: Program flow graph;
Output: SLICE;
Declare: Worklist: ordered list of statement nodes;

Begin
Soutput[n], Poutput[n], Output[n], Input[n], NewInput : set of variables

SLICE = 4
For each statement n in the program flow graph Do

Endfor
For each ”v before s” E PrograniPoints Do

Soutput[n] = Poutput[n] = Output[n] = Input[n] = 4;

For each node n E Pred(s) Do

Endfor
Worklist +- s +depth- fzrJ t Worklist

Soutput[n] = Soutput[n] U {v}; Output[n] = Output[n] U {v};

Endfor
For each ” v after s” E ProgramPoints Do

Solltput[s] = Soutput[s] U {v}; Outpnt[s] = Output[s] U {v};
For each node n E Succ(s) Do

Endfor
Worklist - t i +depth-f lrst Worklist

Endfor
While Worklist # d~ Do

get T I from the head of Worklist
NewInput - U J E p r e d Output[s]
If NewInput # Input[n] Then

Input[n] +- NewInput
If Input[n] n Ref[n] # r#~ Then

SLICE +- SLICE U (11)

I’output[n] - Input[n] - Def(n)
Output[n] +- Soutput[n] U Poutput[n]

Else Output[n] +- Soutput[n] U Input[n] Endif
If Output[n] # Then

Endif
For each s E Succ(n) Do Worklist + s + d e p t h - f i r s t Worklist Endfor

Endif
Endwhile
return(SL1CE)

EndComputeDataSlice

Figure 6. Algorzthm Constructed from the speczficat2on Construct Dataslice: forward immediate any use;

9

Node Worklist

S2 {S3,S4)
S3 {S4}
S4 (S5)
S5 {Sl,SG}
S1 {SG}

S6 d

{S2,S3)

Figure 7. Computing fotnmtd vrtrictble dependencies:
Compute DD :- (X after S 1 , Y a f t e r S 1 1.

Demand driven data flow

4
{(Y after SI, SZ)}
{ (Y after SI, S?),(X after SI, S3))
((1’ after SI, S?),(S after SI, S3)}
{(Y after S1, SL),(S after S I , S3))
{(Y after S1. S?),(S after S1, S3),
(Y after SI, S I))
{(Y after S I , S?),(X after SI, S3),
(Y after S1, S l) , (Y after S1, SG))

The applicat.ion of the part,ial analysis algorit.hm
constructed for a sa.mple pr0gra.m flow graph is illus-
trated in Fig. 7. Tlie demand driven d a h flow is
computed for variables X and Y a.ft.er stat,ement S1.
The set, Sout,put.[Sl] is init,ialized t,o {(X aft.er Sl),(Y
after SI)}. The worklist. is inihlized tmo the succes-
sor set of S1, that is, {S2,S3}. The search for uses
of X and Y cont,inues dong t,he pa.t.lis from S2 and
S3. Since S2 uses E’ and S3 uses S t.liey are both
included in the data flow set. A s the search cont.iu-
ues further the st,atement nodes for S4, S5, SI, and
SG are examined. This lea.ds to the detection of uses
of Y by SG a.nd S1. I n Fig. 7 t,he worklist and the
da.ta flow set &er the e x a m i i d o n of each additional
node is shown. Also t,he Input a.nd Output. sets of all
the nodes are shown when t.he algorit.liin t,erminates.
These sets a t most coiit,ain bot,li (X aft.er S I) a.nd (Y

after Sl) because the information was computed using
these criteria. This illustrates how the computation of
a partial data flow set is the computation of only the
data flow information requested by the user.

4 Applications
Demand driven data flow information has been used

to assist i n the debugging and testing of programs. In
the following sections, we give examples for debugging,
test,ing and test case generation.
4.1 Test Case Generation and Regression

Testing
In order to reduce the number of test cases gen-

erated when retesting a program after changes using
data flow testing, statically determinable properties
of a program, namely postdominance and dominance,
can be used to guide the test case generation process
[e, 71. Although these properties can be efficiently de-
termined exhaustively, program changes would require
repeated computations of the properties. Our partial
analysis can be used to avoid these computations af-
ter pr0gra.m changes. In particular, postdominance is
a property that is used to group def-use pairs in an
at,t,einpt to find, if possible, a test case that satisfies
t,he entire group of def-use pairs. Since we need only
the post.dominatoi-s of a group of def-use pairs, and
not all of the def-use pairs in the program, we use a
partial postdominator algorithm to produce postdom-
inators for the selected group of def-use pairs. Thus,
after the def-use pairs have been identified as requiring
test cases, partial analysis is performed to determine
a.11 the state1nent.s that postdominate def-use pairs in
each group. Postdominator information can be ob-
tained using statement dependencies. A statement S I
is said to postdominate another statement SZ if all
pat,lis from S2 to the end of the program pass through
SI. The final node in a. flow graph postdominates
all nodes in the flow graph. The following statement
dependency specification computes all nodes that are
posttdominat.ed by st.atement S, and the postdomina-
t,or relationships among those nodes. The search that
is carried out is backward and the problem is an all
paths problem.

Construct PDOMS: Sdep backward closure all
Compute PDOMS :- (S)

As pairs are sa.tisfied, partial analysis continues to
reduce the size of the program considered. During the
generation of a test case, for a group of def-use pairs
that can be potentially tested by a single test case,
we can ma.ke use of dominator information to guide
bhe dyna.mic search that is likely to result in earlier
termina.t,ion. In other words, the effort expended in
identifying the test case can be reduced through use of
domina.t.or informa.tion. As before, only partial domi-
nator information is required. The forward statement
dependencies specified below can be used to compute
all statements that are doinina.ted by statement s.

Construct DOMS: Sdep forward closure all
Compute DOMS :- (S)

10

We have also demonstrated the utility of partial
data flow algorithms in regression testing to find
definition-use pairs that must be tested after a pro-
gram change [SI. After changes are made to a previ-
ously tested program, regression testing attempts to
retest only the changed portion of the code. We de-
veloped a data flow regression testing technique based
on partial analysis. An important benefit of this ap-
proach is that, unlike previous techniques, no data
flow history is needed nor is the recomputation of
data flow for the entire program needed to detect
changed definition-use pairs or values. The program
changes drive the recomputation of the required data
flow through partial analysis. The technique exam-
ines the various ways that a program can be modified,
including inserting and deleting uses and definitions]
changing operators in assignments and conditionals,
and inserting and deleting edges. The technique em-
ploys two partial analysis algorithms] a forward and
backward walk from the point of change help to iden-
tify the definitions and uses that are affected by a
program edit. The backward walk identifies the def-
initions of a set of variables that reach the changed
point. The specification for this demand driven data
flow is:
BackwardWalk:

The forward walk identifies the uses of values that
are directly or indirectly affected by a change in either
a value or a predicate. The data dependencies required
are computed by the following specification.
Forwardwalk:

The data flow computed by the partial analysis al-
gorithm generated by this specification is then inte-
grated with control dependencies, as done in the slic-
ing algorithm, to determine the affected pairs. Based
on the type of change in the program, these two walks
are used to find the def-use pairs that must be tested
after a change.

Vdep backward immediate any def .

Vdep forward closure any use.

4.2 Debugging _ _ -
Various types of demand driven data flow informa-

tion are particularly suitable for bug localization, in-
cluding slicing [25]. For example, if the user knows
that the value of a variable at a given point is incor-
rect, then the user can identify the statements that
are potential sources of the bug by using backward
data dependencies to identify the statements that di-
rectly or indirectly contributed to the computation of
the incorrect value. The user may observe that the
values of several variables are incorrect. These errors
may be caused by a single bug or multiple bugs. For-
ward and backward dependencies can be useful in dis-
tinguishing between the two types of situations. One
possible approach is to compute backward closure de-
pendencies for each incorrect value. The intersection
of all the backward sets will identify the statements
that could have caused all of the errors. If there is
no such statement then there are likely to be multi-
ple bugs. Another approach would be to first identify
the statements that potentially caused one of the vari-
ables to assume an incorrect value using a backward
propagation. Next, using forward information, we can
determine if the values of other variables known to

be incorrect were directly or indirectly influenced by
the same statements. If this is the case then we can
conclude that the same bug may have caused several
variables to have incorrect values. From the above de-
scription it should be clear that during debugging the
user may compute several different types of demand
driven data flow to isolate a bug. Both forward and
backward dependencies are useful in bug localization
and so are intersections and unions of different sets.
Some examples of useful data flow sets are given in
Fig. 8.

Backward I 111 I IV 1 VI1 I VI11

s: x = ..Y..;

I: Uses of X reachable by X’s definition in S along any path:
Construct DD : Vdep forward immediate any use
Compute DD :- (X after S)

Construct DD : Vdep forward closure any use
Compute DD :- (X after S)

Construct DD : Vdep backward immediate any def
Compute DD :- (Y before S)

IV: All statements that might affect the value of Y in S:
Construct D D : Vdep backward closure any def
Compute DD :- (Y before S)

11: All statements that may be affected by X’s definition in S:

111: Definitions of Y that reach Y’s use in S along any path:

V: Those Uses of X reachable by only X’s definition in S
along all paths:
Construct DD : Vdep forward immediate all use
Compute DD :- (X after S)

VI: Those statements that are affected by only X’s
definition in S:
Construct DD : Vdep forward closure all use
Compute DI) :- (X after S)

VII: Those definitions of Y that, if executed, reach only
Y’s use in S along all paths:
Construct DD : Vdep backward immediate all def
Compute DD :- (Y before S)

VIII: Those statements that, if executed, affect only the
value of Y in S:
Construct. DD : Vdep backward closure all def
Compute I)D :- (Y before S)

Figure 8: Examples of Demand Driven Data Flow
Crsefd for Debugging and Testing Programs.

If the bug i n the program is in the form of an in-
correct assignment of a value to a variable, then data
dependencies are sufficient to identify the bug. How-
ever, the cause of a bug maybe an incorrectly specified
predicate in a conditional statement. In such situa-
tions control dependence information may be needed.
Control dependencies can be integrated with the in-
formation derived from the partial analysis of data de-
pendencies. As an example, consider the Weiser slice
which consists of a subprogram whose execution is suf-
ficient to enable the computation of the value of a vari-
able a t a given program point. Weiser’s slice is com-
puted by performing a backward closure over data and

11

control dependencies starting from the point of inter-
est. The reaching definitions that capture the relevant
data dependencies are computed in a demand-driven
fashion as shown below.

Construct Datas l i ce :
Weiserslice = q5
Input = {v after/before s,}
repeat

Vdep backvard c losure any def

Compute Datas l i ce :- (Input)
Weiserslice = Weiserslice U Dataslice
ControlSEce = {S: 3 S’ E WeiserSlice, where S’

is control dependent upon S }
Weiserslice = Weiserslice U ControlSlice
Input = ControlSlice

until Input = 4

The Weiser’s slice can also be computed by a back-
ward walk along control and data dependence edges
on a program dependence graph. However, this ap-
proach requires exhaustive computation of data flow
information since the program dependence graph can
only be constructed after all data dependencies and
control dependencies have been computed. Also, as
was indicated, slices from program points other than
where a variable is used are not available (e.g., in Fig.
7, slice at S4 on Y).

5 Related Work
The framework presented in this paper differs from

the usual data flow framework [12] in a number of im-
portant ways. First of all, the number and complexity
of parameters are increased due to the selection of the
starting point and variables that is an inherent prop-
erty of demand driven data flow. Another difference is
that we also have a language for expressing our char-
acteristics that is of a higher level than the parameters
needed in the algorithms. The parameters that are ac-
tually needed in the algorithm are derived from these
characteristics.

One type of demand driven data flow that has been
developed and used extensively is the static slice [14].
Slicing as defined by Weiser is a data flow analysis
technique that computes the set of statements con-
tributing to the dependency information desired for a
fven slicing criterion. The value of slicing is that it

lters out statements that are not needed to address
the questions being asked about the behavior of the
program.

Related to partial analysis is incremental analysis
in terms of overall goals. However, the focus of in-
cremental data flow analysis is to maintain a global
data flow solution by incrementally updating the sc-
lution in response to small changes in the program
[I , 18, 21, 22, 261. It may be too expensive to fully
reanalyze a program from scratch each time a small
change is made to the program. Instead, an incre-
mental data flow algorithm takes the global solution
to an initial instance I of a data flow problem and a
small change from instance I to another instance I’
and computes the updated solution for the changed
instance I/.

Olender and Osterweil have developed a tool
that automatically performs static interprocedural se-
quencing analysis from programmable constraint spec-
ifications [15, 161. Sequencing analysis enables the
detection of data anomalies in a pro ram. In order
to efficiently carry out sequencing anafysis for various
objects, a program slice is computed for each object.
The slice for a given object is represented as a reduced
control flow graph which can be expected to be signif-
icantly smaller than the entire program flow graph.
Thus, sequencing analysis of objects using slices is
more time efficient than an implementation that relies
on the original control flow graph. However, it should
be noted that this approach requires large amount of
storage to store precomputed slices. In the proposed
research we are attempting to improve both time and
space efficiency of data flow analysis. Furthermore,
the above approach requires the precomputation of
slices for all objects.

Work related to the construction of data flow al-
gorithms has been addressed in the Sharlit tool that
was developed to help compiler writers develop opti-
mizers and data flow analyzers [23]. Abstractions are
presented that enable compiler writers to program in
a modular fashion. Our technique is oriented toward
demand driven data flow computation (although ex-
haustive data flow can be computed), employs specifi-
cations to automatically produce algorithms and is ori-
ented to software engineering tools as well as compil-
ers. SPARE is another tool that facilitates the devel-
opment of program analysis algorithms [24]. This tool
supports a high-level specification language through
which analysis algorithms are expressed. The denota-
tional nature of the specifications enables automatic
implementation as well as verification of the algo-
rithms. Although the tool is useful for rapid prototyp-
ing, the efficiency of the automatic implementations
may not be acceptable in a production environment.

6 Implementation
We have implemented our technique and have pro-

duced various types of partial analysis algorithms.
In preliminary experiments performed, we evaluated
the merit of using partial analysis algorithms to com-
pute demand driven data flow information. We made
simple modifications in programs and computed the
change in data flow using partial analysis algorithms
as compared to exhaustively recomputing all data flow
sets. The results based upon a sample of our runs in-
dicate a large savings in the size of the data flow sets
in addition to a savings in execution time. In general,
the data flow sets, which can grow to very large sets,
were reduced. The size of the data flow sets when
using partial data flow ranged from 1 element to 8 el-
ements as compared with sets ranging from 49 to 73
elements for exhaustive data flow analysis. The exe-
cution time savings for the programs was about 20%.
The programs used were fairly small programs and
we expect better performance, at least in space, when
larger programs are used.

12

References [13] W. Landi and B. Ryder, ”A safe approximation al-
M. Burke, “An interval analysis approach toward ex-
haustive and incremental interprocedural da t a flow
analysis,” Technical Report R C 12702, IBM Thomas
J . Watson Research Center, Yorktown Heights, New
York, July 1987.

D. Callahan and J. Subhlok, “Static analysis of low-
level synchronization,” Proceeding of the A CM SIG-
PLA N/SIGOPS Workshop on Parallel and Distributed
Debugging, SIGPLAN Notices, Vol. 24, No. 1, pages
100-111, January 1989.

E. Duesterwald, R. Gupta and M.L. Soffa, “Rigorous
data flow testing through output influences,” Proc. 2nd
Irvine Software Symposium, pages 131-145, Irvine, CA,
March 1992.

E. Duesterwald and M.L. Soffa, “Static concurrency
analysis in the presence of procedures using a data-
flow framework,” Proc. ACM Symposium on Testing,
Analysis, and Verification, Victoria, British Columbia,
pages 36-48, October 1991.

J. Ferrante, K. J . Ottenstein, and J. D. Warren, “The
program dependence graph and its use in optimiza-
tion,” AGM Transactions on Programming Languages
and Systems, Vol. 9, No. 3, pages 319-349, July 1987.

R. Gupta and M.L. Soffa. “Employing static informa-
tion in the generation of test cases,” Journal of Soft-
ware Testing, Verification and Reliability, Vol. 3, No.
1, pages 29-48, December 1993.

R. Gupta, “Generalized dominators and postdomina-
tors,” Proc. 19th Annual AGM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
pages 246-257, Albuquerque, New Mexico, January
1992.

R. Gupta, M.J. Harrold, and M.L. Soffa, “An ap-
proach to regression testing using slicing,” Proc. Con-
ference on Software Maintenance, Orlando, Florida,
pages 299-308, November 1992.

M. J. Harrold and M.L. Soffa, “Interprocedural data
flow testing,” Proc. ACM Symposium on Software
Testing, Analysis and Verification, pages 158-167, Key
West. Florida, December 1989.

gorithm for interprocedural pointer aliasing,“ Proc. of
the SIGPLAN Conf. on Programming Language De-
sign a n d Implementation, pages 235-248, June 1992.

[14] J.R. Lyle and M. Weiser, “Automatic program bug
location by program slicing,“ Proc. Second IEEE Sym-
posium o n Computers and Applications, pages 877-883,
June 1987.

[15] K.M. Olender and L.J. Osterweil, “Interprocedural
static analysis of sequencing constraints,” A CM Trans-
actions on Software Engineering and Methodology, Vol.
1, No. 1, pages 21-52, January 1992.

[16] K.M. Olender and L.J. Osterweil, “Cecil: a sequenc-
ing constraint language for automatic static analy-
sis generation,” IEEE Transactions on Software En-
gineering, Vol. 16, No. 3, March 1990.

[17] D. Padua and M.J . Wolfe, “Advanced compiler op-
timizations for supercomputers,” Communications of
the ACM, Vol. 22, No. 12, pages 1184-1201, December
1986.

[18] L.L. Pollock and M.L. Soffa, “An incremental ver-
sion of iterative da t a flow analysis,” IEEE Transac-
tions on Software Engineering, Vol. 15, No. 12, pages
1537-1549, December 1989.

[19] S. Rapps and E. Weyuker, “Selecting software test
data using data flow information,” IEEE Transactions
on Software Engineering, Vol. SE-11, No. 4, pages 367-
375, April 1985.

[20] T . Reps, T. Teitelbaum and A. Demers, “Incremen-
tal context-dependent analysis for language-based edi-
tors,” A CM Transactions on Programming Languages
and Systems, Vol. 5, No. 3, pages 449-477, July 1983.

[al l B. Rosen, “Linear cost is sometimes quadratic,” Proc.
Eighth Annual ACM Symposium on Princtples of Pro-
gramming Languages, pages 117-124, June 1981.

[22] B.G. Ryder and M. C. Paull, “Incremental data flow
analysis algorithms,” ACM Transactions on Program-
ming Languages and Systems, Vol. 10, No. 1 , pages
1-50, Jan. 1988.

[23] S.W.K. Tjiang and J.L. Hennessy, “Sharlit - a tool
for building optimizers,” Proc. ACM Sigplan Conf. on
Programming Language Design a n d implementation,
pages 82-93, 1992.

[24] A. Venkatesh and C.N. Fischer, “SPARE: a develop-
ment environment for program analysis algorithms,”
IEEE Transactions on Software Engineering, Vol. 18,
No. 4, April 1992.

[25] M . Weiser, “Program slicing,” IEEE Transactions on
Software Engineering, Vol. SE-10, No. 4, pages 352-
357, July 1984.

[26] F. Zadeck: “Incremental da t a flow analysis in a struc-
tured program editor,” Proc. AGM SIGPLAN 1984
Symposium on Compiler Construction, June 1984.

[IO] S. Horwitz, J. Prins and T. Reps, “Integrating non-
illterfering versions of programs,>> ACM ti^^^
on Programming Languages and Systems, Vol. 11, No.
3, pages 345-387, July 1989.

[11] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural
slicing using dependence graphs,” ACM Transactions
on Programming Languages and Systems, Vol. 12, No.
I , pages 26-60, January 1990.

[la] J.B. Kam and J.D. Ullman, “Monotone da ta flow
analysis frameworks,” Acta Injormatica, Vol. 7, pages
305-317, 1977.

13

