
ABSTRACT
This paper presents Pilot, a platform-based HW/SW synthesis
system for field programmable System-on-a-Chip (FPSoC). It
starts from a system-level design specification and targets at
FPSoC platforms. In order to automate this process as much as
possible, a System-level Data Model (SDM) is built in Pilot to
provide a basis for developing system-level HW/SW synthesis
algorithms and an abstraction for accepting different types of
design specifications. A preliminary HW/SW co-design flow based
on SDM is also proposed. Many key issues such as profiling,
HW/SW partitioning, scheduling, interface generation, and code
generation are addressed. A JPEG encoder is used as an example to
demonstrate the design flow. The experimental results are given for
the evaluation of Pilot.

Keywords
Pilot, FPSoC, Platform-Based Design, System-level Data Model,
Model of Computation

1. INTRODUCTION
A System-on-a-Chip (SoC) platform is a family of
micro-architectures that is essentially “fixed” so that it supports a
substantial re-use of software [8]. The basic components of the
platform, including a number of predetermined processors,
memory blocks, on-chip bus architectures, various IP cores, etc.,
should be unchanged during the design process. The main benefit
of starting with an SoC platform is that the component designs,
including CPU, memory and some common peripherals, are
already optimized and verified. Designs based on such platforms
are able to utilize a stable, core-based architecture that can be
rapidly extended and customized for a range of applications.
Derivatives can be easily created by adding different software or
hardware to this groundwork. The designers using the platform
only need to focus on creating their value-added parts of the
system. This significantly saves the design time and further ensures
first-time design success.

For the purpose of fully exploiting the benefits of the SoC
platforms, platform-based design [8] was recently introduced as a
solution that would balance production cost with design time. The
tenet behind the platform-based design approach is to take
advantage of the predefined micro-architectures, thereby avoiding
designing a chip from scratch. Several research projects have been

* This research is partially supported by the National Science Foundation

under the award CCR-0096383, the MARCO/DARPA Gigascale Silicon
Research Center (GSRC) and Altera Corporation.

propelled along this trend. The "Mescal" project [8] by UC
Berkeley and Princeton is working to define a methodology and
design environment for application-specific fully programmable
platforms. The “Metropolis” project [10] by UC Berkeley is trying
to employ a formal design methodology and generic mechanism to
model arbitrary communication and computation semantics and
model the heterogeneous system. By going from the highest level
of abstraction down to the implementation through a series of
refinements, a refined system will eventually be mapped to a given
platform.

In this paper, we present a platform-based HW/SW synthesis
system called Pilot. Instead of facing the problem of platform
creation, which is generally difficult, Pilot looks at how to
effectively map a system-level design specification onto a given
SoC platform, in particular, the FPSoC platform. A FPSoC
platform integrates microprocessors, RAMs, programmable blocks,
and several peripherals in a programmable device. Such a
programmable device is a viable solution for rapid prototyping of a
complex system. Due to limited on-chip resources for a selected
platform, efficient system level synthesis algorithms such as
scheduling, partitioning, communication synthesis, etc., are needed
to tradeoff performance for cost of the system. Pilot tries to tackle
these issues and provide a framework for optimizing and
synthesizing designs at the system level.

The rest of the paper is organized as follows. Section 2 gives an
overview of the Pilot framework and presents the design
framework. Section 3 introduces the SDM that serves as the
internal representation of the whole system. Sections 4 and 5
discuss the Pilot input language and candidate platform,
respectively. Section 6 explores the details of our HW/SW
implementation methodology. In Section 7, a JPEG encoding
system is used as an example to go through our platform-based
synthesis flow. Section 8 describes the current status of our Pilot
system. Section 9 concludes the paper.

2. OVERVIEW OF THE PILOT SYSTEM

2.1 Objective
Our Pilot synthesis system starts from system-level design
specification, and targets at FPSoC platform. To be more precise,
Pilot tries to provide synthesis capabilities to map a system-level
design specification to a given FPSoC platform. The goal is to
automate this design process as much as possible, and explore the
solution space of simultaneously optimizing the HW/SW
implementation of an application at the system level.

2.2 System Organization
An SDM is developed to provide a basis for system-level HW/SW
synthesis algorithms. It also serves as a unified internal

Pilot – A Platform-Based HW/SW Synthesis System for FPSoC*

Zhong Chen†, Jason Cong‡, Yiping Fan‡, Xun Yang‡, Zhiru Zhang‡

†Department of Computer Science & Technology, Peking University, Beijing, 100871, China
‡UCLA Computer Science Department, UCLA, Los Angeles, CA 90095, USA

representation of the system to capture the design throughout the
whole synthesis process. The core of SDM is the FunState [5]
Model of Computation (MoC). It is able to represent the
heterogeneous HW/SW system formally, abstractly and
unambiguously. In addition to FunState MoC, we have
supplementary information stored in SDM to capture the platform
and input language-specific characteristics.

Scheduling

Design Spec.
in SpecC

Simulation

Target SW Target PLD

SW Code Gen HW Code Gen

Partitioning

Interface
Synthesis

HW synthesis

SW synthesis

Altera’s
Platform Info.

Estimation

System
Data

Model

Synthesis

C Code VHDL

FIGURE 1. PROPOSED PILOT DESIGN FRAMEWORK.

An SDM-centralized design framework of our platform-based
HW/SW synthesis system is illustrated in Figure 1. The input of the
Pilot is a system level design specification and a platform
description, both of which are converted into the internal
representation. Building upon SDM, we have several tools to do
HW/SW co-simulation, performance estimation and co-synthesis.
After the partitioning, scheduling and HW/SW synthesis, the C
code and VHDL code will be generated for the software and
hardware parts, respectively.

3. SYSTEM-LEVEL DATA MODEL
In this section, we discuss SDM, a unified internal representation
of the Pilot system. A unified internal representation can cover the
whole life cycle of the flow and support inter-operatability of CAD
tools, thus simplifying the design flow. SDM consists of two parts:

• A mathematical model (i.e., MoC) which abstracts the design
and captures the essential properties of the system.

• Supplementary information repository which stores the
platform information and input language-specific features.

3.1 Requirements for Model of Computation
We believe that taking a systematic, engineering-oriented,
tool-based approach instead of an ad hoc one is essential for coping
with the increasing complexity of designing current HW/SW
systems. One key of a sound system-level design methodology is to
adopt an MoC [11], because it provides proper abstraction of a
system, and concretely captures the properties to be analyzed and
verified.

A good MoC should be able to support hierarchy, abstraction,
timing, parallelism and non-determinism. Support of hierarchy is
crucial for reducing the complexity because it can simplify the
specification process by enabling top-down or bottom-up
specification. Representing concurrency is indispensable as
modern embedded systems typically have many parts working in
parallel. Handling timing constraints is important to the design of

an embedded system especially the real-time system, while
non-determinism is used to model unspecified or unknown
behaviors and to avoid over-restriction on the design
implementation.

A good MoC should be executable, synthesizable, verifiable, and
unbiased towards any specific implementation. Otherwise, the
simulation, synthesis, validation and verification of the design
could not proceed.

In past decades, a variety of MoCs have been proposed, such as
CFSM [12] (co-design finite state machine), Statecharts [13], SDF
[15], Colored Petri Net [16] etc. However, due to the
heterogeneous nature of the current embedded system, designers
have to employ a mixture of different MoCs and modeling
languages to depict the system functions with different
characteristics, which makes the design inefficient and error-prone.
Integrating different MoCs into a single system is becoming one of
the major sources of complexity in a heterogeneous system design
environment. The difficulty would be significantly reduced if we
could have a versatile MoC, able to represent several other MoCs.
Different types of design specification could be transformed into
the unified internal representation.

3.2 FunState MoC
After careful evaluation of several candidates, we chose FunState
[5] as the core MoC of SDM because it satisfies all the
requirements and is capable of representing several well-known
computing paradigms including CFSM, SDF, Colored Petri Net,
SPI [14], etc.

FunState is a mixed data/control flow MoC. The data flow part is a
function network and the control flow part is a finite-state machine.
The data flow part consists of a set of function units (functions and
embedded components) that perform intensive computation on
incoming streams of tokens. A set of storage units (queues and
registers) are used to store the tokens. Functions and storages are
connected by directed arcs. In the control part, a finite state
machine controls the behaviors of the function units dictating when
and how they are to be executed.

The precise definitions of the key constituent of FunState are given
as follows:

• Components: The basic FunState component consists of a
network N and a finite state machine M. The network N = (F,
S, E) contains a set of storage units s ∈ S, a set of functions f ∈
F, and a set of directed edges e ∈ E, where E ⊆ (F×S) ∪ (S×F).

• Storage units: Queues have FIFO behavior and unbounded
length. Notation q# represents the number of tokens in the
queue, and q$1, q$2, …, q$n denotes the values of the tokens.
Registers are linear arrays of values of limited length n.

• Functions: The function objects f ∈ F are uniquely named.
They operate on tokens when fired. Every function is either in
idle or running state.

• Finite State Machine: State machine controls the activation of
embedded components and functions. A synchronous/reactive
model is used. Transitions are labeled with conditions and
actions. Conditions are predicates on storage units. The action
consists of a set of names of function objects.

FunState can efficiently represent concurrency and hierarchy.
Functions can be hierarchical and are called embedded
components. States becomes hierarchical when sub-automata are
embedded. FunState can also be extended to a timed model to
describe the timing properties and constraints of the system. Each
of the functions can be associated with a physical latency attribute.
A timing constraint of a path in the function network can be
specified.

FIGURE 2. A TIMER REPRESENTED IN FUNSTATE

C1: (T# > 0)
C2: (Time# > 0) ∧ (Time$1 = 0)
C3: (T# = 0) ∧ (Time# > 0)

 ∧ (Time$1 > 0)
C4: (T# > 0) ∧ (Time# > 0)

Trigger Init

Time

C1/Init

Decr

C1/Trigger

C3/Decr

C4/Init

T

Figure 2 illustrates a timer example represented by a FunState
component. The timer periodically decreases by a particular
amount of time T. Each time it reaches 0, a signal is sent out by a
function named Trigger. Figure 3 shows the SDF representation
and the equivalent FunState representation of an example.

FIGURE 3. SDF REPRESENTATION IN FUNSTATE.

1

2 1

2

3

2

4

3

F1

F3

F2

4. INPUT LANGUAGE
We prefer a language rather than some visual diagrams to be the
input of our Pilot system. Although both of them can be used to
model the embedded system, designers feel more comfortable with
programming languages than diagrams. Furthermore, using a
language as input easily allows many current existing systems
written in textual languages to move toward SoC implementation.

4.1 Requirements for SLDL
A system level design description language (SLDL) is needed to
provide a uniform functional specification of the SoC system. The
most popular languages, such as C/C++/Java are strong for
software development, but lack hardware design concepts. A good
SLDL should support the following essential concepts:
concurrency, timing, state transition, synchronization, exception
handling, software program construct and behavioral hierarchy,
etc. Table 1 compares several well-known SLDLs against the
above requirements. As the table shows, only SystemC [21] and
SpecC [1] satisfy all the requirements. SystemC provides a library
of C++ classes to model the hardware. It can used to effectively
model and simulate a system. However, it has been envisioned [2]
that synthesis tools for SystemC may have difficulties in

understanding the information in the libraries, where it is hard to
differentiate the code for simulation and the code for specification.

4.2 SpecC
Instead of taking the library-based approach, SpecC extends C
language with a set of new constructs that are needed by the SoC
design specification. This ensures synthesis tools a easier task of
analyzing the specification because all extended constructs are
well-defined and the library for simulation is hidden. Since
synthesis is our focus, we chose SpecC as the input language of
Pilot.

Syntactically, SpecC is a superset of ANSI-C. Semantically, SpecC
explicitly separates communication from computation. The
behavior encapsulates the computations and the channel
encapsulates the communication. A hierarchical network of
behaviors interconnected by hierarchical channels specifies the
functionality of a SpecC design.

As mentioned in Section 2, a SpecC to SDM converter is developed
to map SpecC input to our internal representation. It intends to
transform SpecC behavioral hierarchy to FunState representation
and attaches all the language-specific features (e.g., composite data
types, variable’s scope, etc.) as the supplementary information to
SDM. We transform the SpecC into SDM by applying a set of
mapping rules. These rules are listed in Table 2.

Note that we do not strictly restrict our input to be SpecC, as the
Pilot system has the capability of taking other SLDLs. SDM itself
is input-language-independent and the only overhead is that
different converters might be needed.

5. CANDIDATE PLATFORM
Several requirements for a suitable platform are described as
follows:

• Integrity: The platform should contain a set of dedicated and
optimized components, such as microprocessor, bus, memory,

TABLE 2. SPECC TO SDM MAPPING RULES.

Constructs in SpecC Constructs in SDM

Port Component Interface

Variable Register

Channel Queue

Behavior Component

Method of Behavior Sub-Component

Par Statement Concurrent State Machine

FSM Statement Conventional Finite State Machine

TABLE 1. SLDL SUPPORT FOR ESSENTIAL REQUIREMENTS.

 VHDL Hard-
wareC

State-
charts

C/C++/
Java

SystemC SpecC

Concurrency / /
Timing / /

State Transition / /
Synchronization / /

Exception handling / /
Program Construct / /

Behavioral Hierarchy / /

 fully supported partially supported not supported

and I/O sub-systems, thereby constituting a total usable
system.

• Usability: A set of basic tools should be available to support
the hardware platform, so that the design can be accelerated
and optimized. For example, an optimized compiler for the
target microprocessor is very important.

• Flexibility: The platform should be extendible and reducible
to fit a specific application and satisfy a certain range of
performance/cost trade-off.

There exist several well-developed FPSoC platforms in industry.
Xilinx’ Virtex-II Pro device [19] contains up to four embedded 300
MHz PowerPC processors, serial I/O transceivers and an FPGA
fabric, all of which are connected by IBM's CoreConnect on-chip
bus. While Virtex-II, the predecessor of Virtex-II Pro, only
contains a soft processor. This FPSoC solution comes with Wind
River System’s embedded design tools.

Quicklogic’s QuickMIPS platform [20] contains a 175MHz
MIPS4Kc processor, a PCI interface, a memory interface, a 110
Base T Ethernet MAC, an AMBA bus and up to 500,000 system
gates of programmable logic. Its system Development Kit comes
with drivers for Ethernet, PCI, MMC, Timer and UART etc. It also
contains SDK of WindRivers VxWorks®, BlueCat Linux® RTOS
and debugger.
Altera’s ARM-based Excalibur devices [18] embed an ARM922T
hard processor core along with memories and peripherals into a
programmable logic device (PLD). The devices offer over 200
MIPS performance and integrated on-board memory, external
memory interfaces, standard peripherals and interfaces to the logic
portion of the device. SOPC™ builder for system integration and
C/C++ compiler/debugger is also provided.

PIO PLD

PIO

Nios System Module

PLD

RAM

PIO
External M

odules

FIGURE 4. NIOS EMBEDDED SYSTEM

Nios

A
valon B

us

Memory
Controller

Interface
to User
Define

Timer

UART

On-Chip
system

Altera’s Nios embedded system [18] is based on a flexible and
configurable Nios soft processor, as shown in Figure 4. With
multi-master Avalon™ bus applied in a Nios-based embedded
system, a number of peripherals are available including UART,
PIO, DMA, internal memory and external memory interfaces, etc.
Furthermore, users can customize their own peripherals. Even the
instruction set of the Nios processors is customizable to some
extent.

Nios embedded processor occupies only a small part of the
programmable device (37% of the APEX20K200, a medium size
FPGA). Hence, integrating customized logics and multiple
processors on one chip is possible. Altera also provides Nios
compiler and SOPC™ tools to accelerate the design cycle.

The design methodology of the Pilot system fits for multiple
platforms. We chose Altera’s Nios embedded system as the
candidate platform to evaluate our approach. A Nios development
board is used as our experimental environment. It is populated by
an APEX™ 20KE device, a configuration controller, and off-chip
SRAMS for storing software programs [18].

6. HARDWARE/SOFTWARE
GENERATION

6.1 Hardware Generation
In our Pilot system, hardware generation refines the hardware part
of SDM into synthesizable HDL, and then maps the resulting
micro-architecture specification into the real platform  Nios
embedded system.

SDM

After System Synthesis &
Interface Synthesis

FIGURE 5. SW/HW GENERATION FLOW IN PILOT.

VHDL code
generation

HW Synthesis
(LeonardoSpectrum)

HW Modules
(VHDL)

HW Modules
(EDIF)

Hardware part
in SDM Architecture

Specification

System generation
(SOPC builder)

System Module
(EDIF)

Integration and Compilation
(Quartus)

Device
programming file

Software part
in SDM

Software
Generation

Executable

Downloading and running

The middle branch of Figure 5 shows our hardware generation flow,
which includes VHDL code generation, hardware synthesis,
system generation, system integration and compilation. After
system-level synthesis, hardware and software parts have been
partitioned and specified in SDM. VHDL code is then generated
from the hardware part and fed into a synthesis tool, and the netlists
are generated in EDIF format for target device. These hardware
netlists will be integrated into the whole design as a peripheral
module which interacts with the system module through
communication modules.

6.2 Software Generation
The left branch of Figure 5 shows the software generation flow.
Similar to the SpecC to SDM converter, the C code generator also
applies a set of rules that map SDM constructs to C constructs. As a
result, every port is mapped into a parameter, every memory
becomes a local variable, and every child component instantiation

becomes a statement of function call, etc. These rules are listed in
Table 3. The generated C code will be compiled by Nios GCC
compiler and executed on Nios processor.

6.3 Interface Generation
The platform supports different schemes of communication and
interfacing between software and customized hardware. This
flexibility enables designers to explore the design space to obtain
an optimized interfacing mechanism and achieve the best
performance/cost ratio. In this section, we will compare three
possible hardware/software communication mechanisms in the
Nios embedded system. They are message passing, buffering, and
shared memory, all of which are applied in our case study as
discussed in section 7.

6.3.1 Message Passing

PIO

PLD

Nios System Module

FIGURE 6. MESSAGE PASSING.

Nios A
valon B

us

On-chip System

Memory
Controller

Timer

RECV

SEND

Message passing supports a handshaking protocol for
communicating peers. In this communication scheme, the data is
transferred through messages, and several messages may be
combined to form one data package. Handshaking modules should
be inserted to guarantee the correctness of package assembling and
disassembling. In our current implementation as shown in Figure 6,
a RECV module is inserted to assemble data frames into one
package for the PLD module input. A SEND module will
disassemble a large data package into frames so that PIO can
receive them one-by-one. The RECV and SEND modules are
FSMs to communicate with PIO in a handshaking manner. The
PLD starts running after the RECV has finished, and the SEND
starts running after the PLD has given a “DONE” signal.

This communication scheme requires two extra FSM modules in
the system, and communication routines should also be inserted
into the software part. However, the interface of the PLD does not
need to be modified to fit the communication.

6.3.2 Buffering and Shared Memory
Buffering and shared memory are two communication schemes,
both of which extend the bus inside the system module to access
the on-chip memory. The on-chip memory is also directly
accessible by the PLD modules. Figure 7 is the illustration of the
architecture for these communication schemes.

PLD

PIO

Nios System Module

FIGURE 7. BUFFERING AND SHARED MEMORY.

Nios A
valon B

us

On-chip System

Memory
Controller

Timer

Interface to
User define

module

On-chip
RAM

When PLD wants to get data in a buffering communication
mechanism, data will be transferred from the software’s data
memory to this on-chip memory first. PLD then reads the data from
the buffer. The communication routine handles the transfer from
data memory to buffer, and the software program need not be
further modified.

The shared memory mechanism requires the designers to modify
the software program and redirect the memory address storing the
data to the address of the on-chip memory. The communicating
data will be written and read directly into the shared on-chip
memory, either by software or by PLD.

Both of these methods require another mechanism to control the
exclusive access of the on-chip memory. For example, in order to
synchronize the memory access, we can use PIO to send RESET
and START signals to the PLD module, and to receive a DONE
signal from the PLD module.

Buffering and shared memory simplify the communication
controller between the hardware and software parts. In most cases,
however, in order to correctly access the shared memory, the
interface of the hardware module should be modified.

6.4 System Integration
The right branch of Figure 5 is essentially derived from the
interface synthesis, which considers the performance/cost tradeoff
of the whole system and selects the most suitable communication
mechanism for HW/SW interaction.

The architecture specification describes the mechanism of the
hardware/software communication and interfacing method. For
example, a shared memory and parallel I/O port support different
communication mechanisms and have a great impact in terms of
both performance and cost on the resulting system. This will be
elaborated in the next subsection.

This interface generation and system integration step first takes
architecture specification as input, then generates the system
module including CPU, bus, memory controller, and the specified
peripheral modules. Interfacing modules selected by interface

TABLE 3. SDM TO C MAPPING RULES.

Constructs in SDM Constructs in SDM

Interface Parameter

Register Variable

Queue Composite Structure

Component Function

Component Instantiation Function Call

Finite State Machine Switch…Case Statement

synthesis are then generated and inserted between the hardware
modules and the system module.

The entire design will be integrated and compiled for the target
FPGA device, and the corresponding device programming file will
be generated as the result of this step.

In the hardware and interface generation steps, simulation and
verification are also applied to ensure correctness of the design.

7. CURRENT STATUS OF PILOT SYSTEM
Pilot is still under-construction and is far from fully completed.
However, a number of infrastructural tools have been developed in
Pilot, such as:

• Co-simulation: A simulator based on FunState MoC is
developed for validation and verification of the design. It
supports different levels of design; therefore, early functional
verification can be performed.

• HW/SW code generation: A SDM to C source code generator
has been developed for the final implementation of the
software components. A hardware code generator is
developed to generate VHDL code for the identified HW
components.

• Partitioning and scheduling: Currently, partitioning and
scheduling are done manually. However, since SDM has been
already built up, corresponding system level synthesis
algorithms are expected to be released in the near future.

8. CASE STUDY – JPEG ENCODER

8.1 Introduction of JPEG Encoder
JPEG is a standard for image compression [6], either for full-color
images or gray-scale images. We take the discrete cosine transform
(DCT) based JPEG standard, which is the simplest and most
commonly used JPEG mode, as our example. We use the existing
SpecC specification [3][4] provided by Prof. D. Gajski’s research
group at UCI. It is purely a software specification without any
unnecessary hardware implementation details.

BMP
Image File

Image
Fragmentation DCT

Quantization Entropy Coding JPEG
Image File

FIGURE 8. JPEG SYSTEM FLOW.

Based on the sequential DCT-based mode, the JPEG encoder is
divided into four functional blocks: the image fragmentation block,
the DCT block, the quantization block and the entropy coding
block, as shown in Figure 8.

In the image fragmentation, a BMP image is divided into the
non-overlapping data blocks, each containing an 8x8 matrix of
pixels. DCT transforms each data block into a frequency
representation. There are two commonly-used DCT algorithms for
this translation process: the standard DCT and the ChenDCT [7].
ChenDCT algorithm is used in our design. The quantization
function quantizes the DCT output coefficient. For DCT output,

the entropy coding module encodes AC coefficients using a
predictive coder and encodes DC coefficients using a run-length
coder. Finally, the Huffman coding algorthm is applied to generate
a JPEG image.

8.2 JPEG Internal Representation in SDM
The dataflow model and non-deterministic FSM of FunState
support the specification of non-determinism. Synthesis algorithm
has the potential and flexibility to refine the specification and
generate a fixed control flow solution. Here we use a fixed control
flow specification and directly translate it into SDM.

The fixed control flow specification representation in FunState is
introduced below. In a fixed control flow specification, the relative
execution order of different components of the system is fixed.
Every behavior in the specification is represented as a component
in FunState. The control flow is represented in the control part of
FunState. The original hierarchy of the specification is maintained.
Channels are represented as queues and variables are represented
as memories. The ports of each behavior are represented as ports of
a component. Figure 9 illustrates the JPEG example represented in
SDM.

Input Output Data

Input Jpeg Output

HWSW

JPEG
Encoder

DCT

FIGURE 9. JPEG REPRESENTATION IN SDM.

Send Recv

Recv Send

The upper part of the model in Figure 9 represents data flow. The
lower part represents FSM. The rectangle in the upper part
represents function, the oval between functions represents register,
and the circle between functions represents queue. The FSM has an
entry state and an end state. The arc between these states indicates
that under certain conditions, the function in the upper part is
activated.

8.3 Experimental Results
In this section, we will discuss the experimental results of our Pilot
flow to implement JPEG to the Nios embedded system. Results
from profiling, synthesis, simulation and system integration are
given. In addition, possible interesting issues from the result
analysis are discussed.

8.3.1 Profiling Results
In profiling, we run the JPEG program both in a PC with Pentium
III 650MHz CPU and in Nios embedded system. It can be seen
from both of the results presented in Table 4 that the DCT module
consumes most of the JPEG running time. In our Pilot flow, the
profiling results are used to guide the HW/SW partitioning.

The latency of the Nios embedded system is much longer, since it
has a much lower frequency (33 MHz vs. 650 MHz of PII).
However, embedded systems have the advantages on low power,
small volume, and the capabilities of ubiquitous computation [17].

8.3.2 Hardware Cost and Performance
According to the profiling results, we chose the DCT module to be
implemented in hardware implementation. Table 5 lists the results
from synthesis and simulation tools. SEND and RECV are used as
the communication module in the message passing scheme.
Half-DCT is a part of the DCT module to loop through the columns
of the input matrix (the other parts are a loop through the rows and
post-processing). Since the entire DCT in a message passing
scheme costs a large number of logic resources, we extract half of it
to fit a real device.

The resource cost numbers (IOs and LCs) and frequency are from
LeonardoSpectrum for Altera Version v2002a.14. The target
device: APEX20KE. Cycle numbers are from the simulation by
ModelSim5.5. The buffering and shared memory schemes have the
same hardware implementation, and cost much less resources than
the message passing scheme. While the latency is longer.

Table 6 is a resource cost comparison among three JPEG encoder
implementations. The first design only loads half of the DCT into
the device and applies message passing between Half-DCT and the
Nios system module. The second one applies a buffer between
DCT and Nios. The third one applies a shared memory
communication scheme. These results are from Quartus II v2.0. For
comparison, the resource cost of the Nios system module and the
capacity of the target device are also given.

Since DCT with a buffering and shared memory mechanism only
needs several ports to access memory, the port size is much smaller
than that of the message-passing DCT. This reduces the synthesis
complexity dramatically and the synthesis result of buffering and
shared memory DCT is much better than the message passing one
(Table 5). Although in the entire design, buffering or shared

memory will cost a few more embedded system block (ESB)
resources (Table 6), the extra cost is trivial. Buffering and shared
memory schemes enforce memory access, which introduces extra
cycles compared with the message-passing scheme.

8.3.3 JPEG Designs’ Performance
Table 7 lists the run time results of every module in the resulting
designs. These numbers are measured by Nios SDK 2.0 and in the
unit of times/second. The execution cycle of every module begins
when the data from the previous module is ready, and ends when
the resulting data is produced.

Although the DCT function runs in the fewest cycles in the
message passing scheme, the communication cost overwhelms the
gain realized by the fewer running cycles. The dominating
communication cost is the run time of software communication
routines handling the receiving and sending operations for message
passing. Moreover, the other half of the DCT is executed by
software, thus the entire DCT does not show great improvement in
performance. In a buffering scheme, the communication overhead
is much lighter since all of the communication operations are data
transfers between the buffer and data memory of the CPU.

Shared memory views the data as the global variable accessible by
the modules connected with it. The programs in the software
portion (in our scene, they are HandleData and Quantization) are
not required to transfer data. As long as the previous software
program ends, the output can be directly accessed from the HW
module. The output of the HW module is not transferred either,
thus avoiding the communication cost. This results in the highest
throughput of the DCT module.

As we observe the overall performance of the JPEG Encoder
design, the highest one is the shared memory scheme with speedup
of 3.2. The optimized speedup is 3.33 by eliminating the run time
of the DCT.

9. CONCLUSIONS
The paper has presented a new platform-based synthesis
framework. A unified SDM is developed to capture the entire
design and is the basis to build other system level synthesis tools. A
JPEG encoder is used as an example to evaluate and validate the
design flow. Experimental results show the impact on the area and
performance of the final designs by applying HW/SW partitioning
and different interfacing schemes. Future works will focus on
developing synthesis algorithms that aim to maximize the overall
system performance under the platform resource constraints.

TABLE 4. PROFILING RESULTS.

PC(PIII 650MHz) NIOS(SW) (33MHz) Module Name

Time (10-6s) Ratio (%) Time (10-6s) Ratio (%)

Handle Data 2.56 1.72% 50.31 1.22%
DCT 115.48 77.47% 3160.56 76.46%

Quantization 7.22 4.84% 176.42 4.27%
Huffman Encode 23.80 15.97% 746.29 18.05%

Total 149.06 100.00% 4133.57 100.00%

TABLE 6. COST COMPARISON OF THREE IMPLEMENTATIONS.

Half-DCT
Message
Passing

DCT
Buffering

DCT
Shared

Memory

Nios
System
Module

Device
EP20K200
EFC484-2X

Total logic
elements

7439
(89%)

4555
(54%)

4726
(56%)

2766
(33%) 8320

Total ESB bits 26496
(24%)

27840
(26%)

27840
(26%)

26496
(24%) 106496

TABLE 5. SYNTHESIS AND SIMULATION RESULTS
OF THE GENERATED VHDL CODE.

 SEND RECV Half-DCT (1) DCT (1) DCT (2)
IOs 916 591 1476 1476 64

Logic Cells 621 686 3461 6253 2100
Frequency (MHz) 98.6 179.8 42.6 45.6 38.9

Cycle 128 128 571 1809 3988
Latency (10-6s) 1.30 0.712 13.4 39.7 102

(1) Message passing; (2) Buffering and Shared memory TABLE 7. RUN TIME OF EVERY MODULE OF JPEG DESIGN
IN DIFFERENT IMPLEMENTATIONS (TIMES/SEC).

 Pure SW
Half-DCT
Message
Passing

Buffering Shared memory

HandleData 21422.59 21422.59 21422.59 21569.24
DCT 194.82 *293.51 2117.89 8156.11

Quantization 3229.26 3255.96 3477.7 3267.38
HuffmanEncode 1006.88 1006.88 1093.8 1006.88

Overall 0.75 0.99 2.09 2.40
Overall Speedup 1.00 1.32 2.79 3.20

*The half hardware DCT runs 2115.26 times/second.

ACKNOWLEDGMENT
The authors wish to thank Prof. D. Gajski’s research group at UCI
for providing us with the SpecC compiler source code and related
documents. We are also grateful to Altera Corporation for
providing us with the experimental devices.

REFERENCES
[1] D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and S. Zhao,

“SpecC: Specification Language and Methodology,” Kluwer
Academic Publishers, Boston, March 2000.

[2] J. Zhu and D. Gajski, "Compiling SpecC for simulation,"
Proceedings of the conference on Asia South Pacific Design
Automation Conference, Yokohama, Japan, 2001.

[3] H. Yin, H. Du, T. C. Lee and D. Gajski, “Design of a JPEG
Encoder using SpecC Methodology,” Technical Report
ICS-00-23, Department of Information and Computer
Science, University of California, Irvine, July 2000.

[4] L. Cai, J. Peng, C. Chang, A. Gerstlauer, H. Li, A. Selka, C.
Siska, L. Sun, S. Zhao and D. Gajski, “Design of a JPEG
Encoding System,” Technical Report ICS-99-54,
Department of Information and Computer Science,
University of California, Irvine, Nov. 1999.

[5] K. Strehl, L. Thiele, M. Gries, D. Ziegenbein, R. Ernst, and J.
Teich, “FunState – An Internal Design Representation for
Codesign,” IEEE Trans. VLSI Systems, vol. 9, pp. 524 –
544.

[6] V. Bhasharan and K. Konstantinides, “Image and Video
Compression Standards,” Second Editioin, Kluwer
Academic Pubishers, 1997.

[7] W. H. Chen, C. Smith and S. Fralick, “A Fast Computational
Algorithm for the Discrete Cosine Transform,” IEEE Trans.
Communications, vol. 25(9), pp. 1004-1009, Sept. 1977.

[8] K. Keutzer, S. Malik, A. R. Newton, J. M. Rabaey, and A.
Sangiovanni-Vincentelli, “System Level Design:
Orthogonalization of Concerns and Platform-Based
Design,” IEEE Transactions on Computer-Aided Design,
Vol. 19(12), December 2000.

[9] Mescal Web Site, http://www.gigascale.org/mescal.

[10] Metropolis Web Site, http://www.gigascale.org/metropolis.

[11] M. Sgroi, L. Lavagno and A. Sangiovanni-Vincentelli,
“Formal Models for Embedded System Design,” IEEE
Design & Test of Computers, vol. 17(2), pp. 14-27, June
2000.

[12] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L.
Lavagno, C. Passerone, A. Sangiovanni-Vincentelli, E.
Sentovich, K. Suzuki and B. Tabbara, “Hardware-Software
Co-Design of Embedded Systems: The POLIS Approach,”
Kluwer Academic Publishers, 1997.

[13] D. Harel, “Statecharts: A visual formalism for complex
systems,” Science of Computer Programming, vol. 8(3), pp.
231-274, 1987.

[14] D. Ziegenbein, K. Richter, R. Ernst, L. Thiele and J. Teich,
“SPI - A System Model for Heterogeneously Specified
Embedded Systems,” Technical Report TR-SPI-00-04,
Institut für Datentechnik und Kommunikationsnetze, TU
Braunschweig, 2000.

[15] E.A. Lee and D.G. Messerschmitt, “Synchronous dataflow,”
Proceedings of the IEEE, vol. 75(9), pp. 1235-1245,
September, 1987.

[16] K. Jensen, “Colored Petri nets: A high level language for
system design and analysis,” Advances in Petri nets 1990, G.
Rozenberg(ed), Lecture Notes in Computer Science,
Springer, LNCS 483, 1990.

[17] D. Tennenhouse, “Proactive computing,” Communications
of the ACM, vol.43, (no.5), pp. 43-50, May, 2000.

[18] Altera Web Site, http://www.altera.com/.

[19] Xilinx Web Site, http://www.xilinx.com/.

[20] Quicklogic Web Site, http://www.quicklogic.com/.

[21] SystemC Web Site, http://www.systemc.org/.

