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ABSTRACT

A reconfigurable computing fabric based on a System on
a Programmable Chip (SoPC) is a parameterized cellular
architecture in which an array of computing cells communi-
cates with an embedded processor through a global memory
[2]. This architecture is customizable to different classes of
applications by functional unit, interconnect, and memory
parameters. In previous work [1], we have demonstrated
the advantage of reconfigurable fabrics for image and sig-
nal processing applications. In this paper, we describe Fab-
ric Generator (FG), a Java-based toolset that greatly ac-
celerates construction of the fabrics presented in [1]. A
module-generation library is used to define, instantiate, and
interconnect the cells’ datapaths. Other tools generate cus-
tomized sequencers for individual cells or collections of cells.
FG has been used to create fabrics for the Altera Excal-
ibur ARM SoPC. We describe the FG tool set as well as
a representative application generated using FG on the Al-
tera. This application, a matched filter, achieved 4.5Gop/s
(where a op is an 8/16-bit multiply-accumulate) on the Ex-
alibur ARM, a 48X speedup over a 1.7GHz Pentium Xeon.
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1. INTRODUCTION

Systems on a Programmable Chip (SoPC) are gaining
popularity as a means of combining on a single chip the
advantages of embedded processors for control and house-
keeping tasks with the performance of application-specific
reconfigurable logic. Several general purpose SoPC prod-
ucts have been offered recently by Altera[3] and Xilinx[4]
in addition to application-specific SOPC being developed for
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telecommunications applications[5, 6].

In previous work ([7], [2], [1]), we have experimented with
hardware/software co-processing on the Altera Excalibur
ARM device. We have found that high performance can be
obtained with a fabric-based approach, in which application-
specific, interconnected compute cells are tiled across the re-
configurable logic, and the cells communicate with the em-
bedded processor over a distributed dual-port memory. The
memory is used to initialize each cell’s data and program and
to monitor the state of the fabric. We have manually devel-
oped Fabric-Based Systems that deliver up to 1.4GMACs
(8-bit data, 16-bit arithmetic) at 33MHz on a 1M Gate Al-
tera Excalibur ARM device.

Recently we have developed a Java-based toolset to au-
tomate fabric creation. Using these tools, it is possible to
define low-level modules, populate a datapath with the mod-
ules, instantiate datapath cells in a fabric, and compile a
microcoded program for datapath control into a sequencer.

In this paper we describe the fabric creation toolset and
illustrate its operation on a Matched Filter application.

2. RELATED WORK

Fabric-based architectures have been popular since the in-
vention of cellular automata. They are attractive because
small, localized cells with small degree interconnect are ef-
ficiently implemented in VLSI or Programmable Logic De-
vices (PLDs), and for some application classes, exceed con-
ventional processors’ or DSPs’ performance by orders of
magnitude. Recent fabric-based architecture proposals in-
clude [8], [9], [10], [11], [12], and [13].

Our architecture design has many similarities to these pro-
posals. The novel aspects of our approach are that in our
parameterized cellular architecture, the cell, the intercon-
nect, and the memory architecture all can be customized
to the application. In addition, an embedded processor is
an integral part of our model. The processor loads data and
program, synchronizes the cells, and can inspect and retrieve
data from the cells’ memories.

The Fabric Generator (FG) is similar to JHDL[14], LDG[15],
PamDCJ16], and other CAD tools embedded in high level
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using the overloading features of Java and C++, also pro-
vide simulation capability, which our system does not yet
include.



VHDL r .
[ — : d I [Technologid
E Data Path E I Module I model
: : : | : I :
' . ! Modul . :
vHDL G f ke (meee )N :
i DataPath | ! | | Technologid
FabI'IC E_-___-_- ____-__‘: I Module I model
T VHDL I VHDL
VHDL Generator : !
— ': |
[ Controller| ! I I
i . i | Module |
; - 5 Abstract | - [
' | Controller | Fabric <.‘:| :
: Representation I . I
""""""" In Java I |
| Module |
Abstract
representation | I
. of controller | Java
Generic — - _I
Assembler /| ———
Abstract
representation
of controller

Figure 1: Fabric Generator Organization

In contrast to these tools, FG uses a built-in programming
model of the Fabric-Based System, and automatically gener-
ates control signals associated with a cell’s datapath. When
given a microcode program for a specific datapath, FG gen-
erates a cell sequencer to control one or more cells. It also
generates a complete fabric with interconnected cells and as-
sociated controllers. Unlike JHDL, FG generates Register-
Transfer-Level VHDL. The present implementation is tar-
geted to the Altera Excalibur part with Apex PLD.

3. POLYMORPHOUS COMPUTING FABRIC

At a high level, our Polymorphous Fabric is simply a fab-
ric of simple, inter-connected computational datapath cells,
each with an optional local memory. The collection of local
memories forms a (dual-ported) global memory that can be
loaded and examined from the attached processor. The cells
composing the fabric need not all be the same — a fabric may
contain groups of homogeneous cells, as illustrated in Figure
2, in which different cell types are distinguished by different
names (“Send,” “Rec,” “P,”, and “Ele”). Each datapath
cell may have its own controller, or alternatively, a group of
identical cells may share a controller. Many different sorts
of communications patterns may be realized within a single
fabric.

The Fabric can be considered as a processing memory and
presents a standard memory to the embedded processor.

4. FABRIC GENERATOR

The FG library contains classes to
e define a module
e create a datapath of interconnected modules

e instantiate cells consisting of datapaths with associ-
ated sequencers

e create a fabric of interconnected cells

As cells are instantiated, information is automatically col-
lected about the control signals associated with each datap-
ath, and a file listing each signal is generated as exemplified
in Figure 5, with empty program space. The designer en-
ters into this file the microcode sequence for a datapath and
then runs an assembler, which generates the state machine
to control the datapath. The combination of datapath cells
and sequencers is then synthesized by standard logic synthe-
sis tools and FPGA-specific Place and Route tools to obtain
the fabric’s bit stream. The FG system is shown in Figure
1.

The “Abstract Fabric Representation in Java” is a Java
program written by the fabric designer. The fabric pro-
gram can call methods provided by the library to define
and instantiate modules (see Java modules in the dotted
box). In addition, modules may be defined in VHDL using
technology-specific components, if desired, and instantiated



in the fabric program. Modules can be instantiated to build
a datapath. Next, cells may be defined. A cell contains a
datapath and specifies a sequencer (controller). Cells may
share a sequencer (SIMD mode) or each cell may have a
unique sequencer (MIMD mode). A fabric contains a collec-
tion of cells and sequencers. As shown in the Figure, the fab-
ric program calls a method to generate a sequencer descrip-
tion file (labelled “Abstract representation of controller”).
After the fabric designer has microcoded a low level control
sequence for a datapath, an assembler generates a state ma-
chine (“Controller” in the Figure). The Controllers, Fabric,
and Datapaths in the Figure are then synthesized through
the standard CAD tool chain. The result is a component
with standard memory interface which can be connected to
any processor. In our case the Fabric was connected to ARM
processor inside of Altera Excalibur ARM SoPC.
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Figure 2: Example Fabrics

Example fabrics are shown in Figure 2. The upper fabric
consists of a Send cell and multiple Receive cells. The Send
cell broadcasts data to all the Receive cells. The datapath
for the send cell contains two memories, a multiplexer and a
communication channel. The Send cell has its unique con-
troller. The Receive cells add the channel input with input
from memory, storing the result in memory. All the Receive
cells share a common controller.

The lower fabric is a linear bi-directional array. P_0 reads
data from a memory and sends it on the output communi-
cation channel. It receives data on the input channel and
stores to memory. The three Ele cells each select from either
memory or the input communication channel and forward
on the output channel.

The tools developed to help build such fabrics are de-
scribed in the following sections.

4.1 Defining a Module

The module is the lowest level construct in the design
hierarchy. The library presently contains about twenty pa-

Cell c=new Cell("cell_ 0",Technologie,"SIGNED");

.addModule(new Channel("ch",8,1));

c
c.addModule (new Memory("m0",256,8,0,0,1));
c.addModule (new Operation("opO","+"));
c.addModule (new Memory("mi",256,8,0,0,1));
c.makeConnectionFromModuleiToModule2("ch","op0O") ;
c.makeConnectionFromModule1ToModule2("m0", "opO0") ;
c.makeConnectionFromModuleiToModule2("opO","m1") ;

Figure 3: Creating a Datapath

rameterized modules. Most modules are parameterized by
data width, and may have additional parameters. Arith-
metic fixed point modules may be signed or unsigned. Ex-
isting modules include

e communications channel, may be registered

e multiplexers, bus selectors, bus expanders, bus merge
modules

e memory modules, including dual port memory with a
variety of access options such as random, sequential,
circular and indexed,

e several varieties of registers, including registers that
are visible from the embedded processor

e fixed and floating point adders and multipliers, param-
eterized by mantissa and exponent size

e fixed point multiply-accumulate

e condition codes and registers to send state information
from datapath to controller

New modules can be written in Java, building on a Mod-
uleBase class, or may be created in VHDL and then instan-
tiated through the ModuleBase methods.

Each module has a set of data busses and a set of hidden
signals. The data busses are determined by the nature of the
module. For example an adder has two input busses and an
output bus, while the multiplexer module has an unlimited
number of input busses and one output bus.

The hidden signals include the clock, reset, and enable sig-
nals as well as condition, and interface signals. The condi-
tion signals are automatically connected to the sequencer, so
that computation within a datapath can cause state changes.
The interface signals appear at the high level of the fabric
and thus can be seen from the processor or other external
device.

Moreover the hidden signals provide the interface to high
level synthesis tools. The information on the module’s en-
able and reset signals is used during the automatic controller
synthesis process.

4.2 The Datapath

The “cell” class is used to create datapaths by selecting
modules for inclusion in the datapath and interconnecting
the datapath modules. Figure 3 shows how to create a dat-
apath for the Receive cell of Figure 2. The cell instantiates
Channel, Memory, and Operation modules, and then con-
nects the modules.



4.3 Fabric Specification

A fabric is specified by instantiating cells. Figure 4 shows
the library calls required to instantiate the two types of cells
from Figure 2.

FabricMachine f = new FabricMachine("EF",0,2);

fabric.addCell("Send",0,cell1,0); int i;
for (i=0;i<140;i++) {
fabric.addCell("Rec",i,cell,0);}
for (i=0;i<140;i++) {
fabric.ConnectCell1ToCell2("DataChannel",
"Send" ’o’ n"ch" s
llRecll ,i, "Ch") ;}

Figure 4: Creating a Fabric

This fabric contains one Send cell and 140 Receive cells.
The Send output channel is connected to the input channel
of each Receive cell.

Of note is the final parameter to the addCell method. This
parameter selects a controller for the datapath. All like cells
with the same parameter value are assigned a common con-
troller. In this example, the Send cell has its own controller
0 and all the receive cells share a common controller 0. If
the parameter were changed to “i”, the loop variable, each
Receive cell would have its own controller.

4.4 Sequencer Generation

In addition to generating the VHDL associated with inter-
connected cells, FG generates a state machine to sequence
and control the cells. The state machine is built from a mi-
crocode program written by the fabric designer. A template
listing the datapath’s control signals is generated when a
fabric is instantiated, as shown in Figure 5. This Figure
shows the Receive program. The hidden control signals as-
sociated with modules in the datapath are listed in the gen-
erated template, and the fabric designer appends the actual
program that references these signals. In this example, there
are ten signals that may be set by the sequencer. Two are
8-bit buses, m0_Operand and m1_Operand and the rest are
one-bit control signals. The Condition section is empty, as a
condition module was not used in a datapath. Each “Instr”
may set any of the signals. If a signal is referenced, it is set
to one (or a specific value if it is a bus); otherwise the signal
defaults to zero.

The Receive program has two sections, labelled “process”
and “start.” When the processor issues a Reset signal, con-
trol is transferred to the “start” label, where the StartPro-
gram token appears. The “wait_start” directive means to
wait for the start signal from the processor, and when re-
ceived, branch to “process.” At the same time, the m0 and
ml ResetCounter signals are asserted. Once a start sig-
nal is sent from the host, the instruction sequence at “pro-
cess” is executed. The first instruction is a single cycle
noop. The next instruction reads from the DataChannel
and concurrently accesses memory m0 in read mode by as-
serting the m0_MEnableAcces signal. It also accesses mem-
ory ml in write mode by asserting m1_MReadWrite and
ml_MEnableAcces. Consecutive addresses in the memories
are accessed. This instruction executes for 256 cycles. Then
the datapath must wait for another start signal from the
processor to repeat the cycle.

5. EXAMPLE: MATCHED FILTER

The matched filter is a well-known technique for detect-
ing a signal in an image in the presence of known forms of
“clutter.” By filtering with respect to pre-determined back-
ground signatures, weak signals may be recovered that might
otherwise have been lost in the background. For this appli-
cation, we assume that matched filter coefficients have been
created, and present a fabric design for a bank of matched
filters. This design was created with the Fabric Generator
tool set. The matched filter fabric uses the communication
pattern introduced above in the upper example of Figure 2
in which a Send cell broadcasts a data stream to multiple Re-
ceive cells. A double buffering technique is used by the Send
cell. The host writes data to one memory while the Send
cell broadcasts from the other memory. Thus the communi-
cation time is overlapped with computation. Each Receive
cell computes an inner product, using coefficients stored in
one memory and data from the input channel. The result
is stored in the other memory. The processor initializes the
coefficient memories of the Receive cells and reads back the
result memories after the data has been processed. The
matched filter fabric is shown graphically in Figure 6. The
Send and Receive microcode programs are shown in Figure
7.

The Send program has two sections, labelled memO and
meml. When the processor issues a Reset signal, control
is transferred to the second instruction of meml, where the
StartProgram token appears. While waiting for the start
signal, the m0 and m1 ResetCounter signals are asserted.
Once a start signal is sent from the host, the instruction
at memO is executed. This instruction accesses memory
m0 asserting the m0_MEnableAcces signal and puts a result
onto DataChannel. This instruction executes for 256 cycles.
Then the datapath must wait for another start signal from
the processor, and when it is received, branches to meml.
When start is received, m1 is read, the multiplexer setting is
switched so that meml1 data is output to the channel. The
Receive program is a bit more complicated due to a 16-bit
accumulation stored into an 8-bit memory. After the initial
StartProgram sequence, the accumulator is initialized. Then
the DataChannel and memory 0 are read. In the datapath,
they are the input operands to the multiply. Concurrently
the output of the multiply is loaded into a 16-bit register.
The next instruction continues the same access pattern, and
in addition enables the accumulator, which stores the result
of the add into the accumulator (refer to the acc unit in
Figure 6). This instruction is repeated for 255 cycles. Af-
ter a one cycle delay, m0 is written with the lower half of
the adder output. In the next cycle, m0 is written with the
upper half of the adder output, and control returns to the
start label to wait for a start signal from the processor. It
is possible to fit 140 Receive units onto the APEX 20KE
PLD portion of the Excalibur ARM device. With a clock
frequency of 33MHz, the design achieves 4.5GOps/s where
each Op is a multiply accumulate with 8-bit operands and
16-bit multiplier and adder. The speedup compared to ARM
running at 200 MHz, is 994X. Compared to a TMS320c6201
running at 200MHz, the speedup is 48, and compared to a
Pentium Xeon running at 1.7GHz it is 48.

6. CONCLUSIONS

We have described the Fabric Generator, a tool set to aid



#Inserted by Fabric Generator

# StartProgram -- an entry point into program

# EndLoop label iteration -- String int, if iteration=0 permanent Loop

# wait_start  label -- String Waiting for Start Signal if start=1 jmp to label
# wait_cycles number_cycles -- int

# jmp label -- String

# putChannel name  Number -- String int

# getChannel name  Number -- String int

Channels

DataChannel IN;

END Signals
m0_Operand
mO_MEnableAcces
mO_MReadWrite
mO_MResetCounter
m0_MLoadCounter
ml_Operand
ml_MEnableAcces
ml_MReadWrite
ml_MResetCounter
ml_MLoadCounter

END Conditions

END

# End Inserted by Fabric Generator

Program

process : Instr ;

I N e o B S S S Sy}

Instr getChannel DataChannel, mO_MEnableAcces, ml_MReadWrite, ml_MEnableAcces,wait_cycles 256; # N time
start : Instr StartProgram, wait_start process, mO_MResetCounter, ml_MResetCounter;

END

Figure 5: The Receive Cell Program

construction of fabrics for Systems on a Programmable Chip.
FG supports a programming model of an array of cells with
memory-based communication with an embedded processor.
FG consists of a Java library through which modules, dat-
apaths, and fabrics may be constructed, and an assembler
that generates a state machine sequencer from a sequence

of datapath-specific microinstructions. We have used FG to
build applications for the Altera Excalibur ARM and have
achieved 4.5GOps/sec on a Matched Filter.
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#Send Program
Channels

DataChannel OUT ch_EnableRegister;
END Signals

mO_Operand
mO_MEnableAcces
mO_MReadWrite
mO_MResetCounter
m0_MLoadCounter
ml_Operand
ml_MEnableAcces
ml_MReadWrite
ml_MResetCounter
ml_MLoadCounter
mx0_0
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END Conditions

END

Program

mem0

meml

END

: Instr DataChannel
Instr
: Instr

Instr

mO_MEnableAcces, putChannel

ml_MEnableAcces, mx0_0O, putChannel

#Receive Program Channels
DataChannel IN;
END Signals

mO_Operand
mO_MEnableAcces
mO_MReadWrite
mO_MResetCounter
mO_MLoadCounter
regO_RegisterLoad
accO_RegisterLoad
accO_RegisterInit
mx0_0
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END Conditions

END

Program

start

END
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: Instr
Instr
Instr

Instr
Instr
Instr
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