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ABSTRACT 
This paper describes methods for synthesizing the internal 
representation of a compiler into a hardware description language 
in order to program reconfigurable hardware devices. We 
demonstrate the usefulness of static single assignment (SSA) in 
reducing the amount of data communication in the hardware. 
However, the placement of Φ-nodes by current SSA algorithms is 
not optimal in terms of minimizing data communication. We 
propose an improved SSA algorithm which optimally places Φ-
nodes, further decreasing area and communication latency. Our 
algorithm reduces the data communication (measured as total 
edge weight in a control data flow graph) by as much as 20% for 
some applications as compared to the best-known SSA algorithm 
– the pruned algorithm. We also show that our algorithm 
frequently leads to increased overall area, and describe future 
modifications to our model that should correct this shortcoming. 

1. INTRODUCTION 
Reconfigurable devices contain logic that can quickly be 
reprogrammed as often as needed. This has led to a revolution in 
the way designers conceptualize hardware systems, as the very 
logic that drives circuitry can be customized as often as needed. 
Reconfigurable hardware is usually realized via Field 
Programmable Gate Array (FPGA) technology. Increasingly, this 
hardware is being incorporated into computing systems, often 
coupled with one or more microprocessor or ASIC devices on the 
same chip. The reconfigurable components of the system provide 
fast, flexible logic at a very low cost. These components can be 
modified and re-implemented, much like software programs. 
Therefore, it has become attractive to design hardware algorithms 
in a high-level programming language, and compile this code into 
actual hardware logic (rather than software binary form). 
The compiler straddles the boundary between application and 
hardware, making it a natural area to perform reconfigurable 
system exploration. The compiler can already map portions of the 
application to different processors by simply emitting code. In 
order to complete the system exploration space – one with 
processors, ASIC and reconfigurable components, we need a path 
from the compiler to a hardware description language (HDL). 
This HDL can then be synthesized into reconfigurable circuitry. 
An area of extreme importance is the translation of the compiler’s 
intermediate representation (IR) to a form that is suitable for 
synthesis to hardware. During this translation, we should attempt 
to exploit the existing concurrency of the application and discover 
additional parallelism. Also, we should determine the types of 
hardware specialization that will increase the efficiency of the 

application. Finally, we must take into account the hardware 
properties of the circuit, e.g. power dissipation, critical path and 
interconnect area. 
Static single assignment [1,2] transforms the IR such that each 
variable is defined exactly once. It is an ideal transformation for 
hardware because side effects of the transformation, Φ-nodes, are 
easily implemented in hardware as multiplexors. Furthermore, it 
creates a one-to-one mapping between each variable and its 
corresponding value, which allows the compiler to identify each 
individual signal uniquely. It has been used in many projects 
where the final output is an HDL [3,4,5]. Yet, SSA was originally 
developed to enable optimizations for microprocessor 
architectures; it was not originally meant for hardware synthesis. 
In this paper, we describe SSA and its effect on the optimization 
of hardware properties of the circuit. We show how SSA can be 
used to minimize data communication; this has a direct effect on 
the area, amount of interconnect and delay of the final circuit. 
Furthermore, we show that SSA in its original form is not optimal 
in terms of data communication and give an optimal algorithm for 
the placement of Φ-nodes to minimize the amount of data 
communication. 
In the next section, we give background material related to our 
research. We show how SSA is useful to minimize interconnect in 
the hardware in Section 3. Furthermore, we point out a 
fundamental shortcoming of traditional SSA and develop a new 
SSA algorithm to overcome this limitation. Section 4 presents 
experiments to illustrate the effect of these algorithms to 
minimize data communication. We discuss related work in 
Section 5 and provide concluding remarks in Section 6. 

2. PRELIMINARIES 
2.1 Control Data Flow Graphs 
We focus on the control data flow graph (CDFG) as a model of 
computation (MOC) for the internal representation (IR) of the 
compiler. The CDFG offers several advantages over other models 
of computation. Most compilers have an IR that can easily be 
transformed into a CDFG. Therefore, this allows us to use the 
back-end of a compiler to generate code for a variety of 
processors. Furthermore, the techniques of data flow analysis (e.g. 
reaching definitions, live variables, constant propagation, etc.) can 
be applied directly to CDFGs. Finally, many high-level 
programming languages (Fortran, C/C++) can be compiled into 
CDFGs with slight modifications to pre-existing compilers; a pass 
converting a typical high-level IR into control flow graphs and 
subsequently CDFGs is possible with minimal modification. Most 



importantly, we believe that the CDFG can be mapped to a 
variety of different microarchitectures1. All of these reasons 
indicate that the CDFG is a good MOC for investigating the 
performance of mapping different parts of the application across a 
wide variety of SOC components. 
A CDFG consists of a set of control nodes Ncfg and control edges 
Ecfg. The control nodes are a set of basic blocks. Each control 
node holds a number of instructions or computations that execute 
atomically. The control edges model the control flow 
relationships between the control nodes. The control nodes and 
control edges form a directed graph Gcfg(Ncfg, Ecfg). Each control 
node contains a set of operations. The data flow relationships 
between the operations in a particular control node can be viewed 
as a sequential list of instructions I or a data flow graph 
Gdfg(Vdfg,Edfg). The conversion from I to Gdfg , and vice-versa, is 
trivial. A pictorial view of a CDFG is represented in Figure 1. 
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Figure 1:  A Control Data Flow Graph 

In this work, we examine the problem of manipulating a CDFG 
such that the resulting hardware exhibits enhanced performance. 
Our work assumes that there is a tool to synthesize a CDFG into 
some hardware description language (HDL). (EDA tools – either 
academic or commercial – can perform optimization from that 
level on.)  We have built such a tool for system synthesis, and 
have used it to obtain the results of this work. We refer the 
interested reader to [6] for more details. 

3. MINIMIZING INTER-NODE 
COMMUNICATION 
In order to determine the data exchange between nodes in a 
CDFG, we establish the relationship between where data is 
generated and where data is used for calculation. The specific 
place where data is generated is called its definition point. A 
specific place where data is used in computation is called a use 
point. The data generated at a particular definition point may be 
used in multiple places. Likewise, a particular use point may 
correspond to a number of different definition points; the control 
flow dictates the actual definition point at any particular moment.  

If data generated in one control node is used in a computation in a 
second control node, these two control nodes must have a 
mechanism to transfer the data between them. One method of 
                                                                 
1 We refer to a microarchitecture as a register transfer level 

description. 

communicating data between two control nodes is to send it 
across a direct connection between the two control nodes. This 
requires a set of wires to exist between the control nodes.  In an 
alternate scheme, the first control node transfers the data to 
memory and the second control node reads the memory to access 
the data. Therefore, with the latter communication method 
minimizing the inter-node communication would have a direct 
impact on the number of memory accesses, whereas with the 
former method the interconnect between the control nodes would 
be reduced. However, in both scenarios real performance boosts 
can be realized through communication optimization. Thus, 
regardless of the data communication method used, we should try 
to generically model and minimize inter-node communication. 

3.1 Static Single Assignment 
We can determine the relationship between the use and definition 
points through static single assignment [1,2]. Static Single 
Assignment (SSA) renames variables with multiple definitions 
into distinct variables – one for each definition point.  
We define a name to represent the contents of a storage location 
(e.g. register, memory). A name is unspecific to SSA. In non-SSA 
code, a name represents a storage location but we may not know 
the exact location; the precise location of the name depends on the 
control flow of the program. Therefore, we call a name in non-
SSA code a location. SSA eliminates this confusion as each name 
represents a value that is generated at exactly one definition point. 
The SSA definition of a name is called a value.  
In order to maintain proper program functionality, we must add 
Φ-nodes into the CDFG. Φ-nodes are needed when a particular 
use of a name is defined at multiple points. A Φ-node takes a set 
of possible names and outputs the correct one depending on the 
path of execution. Φ-nodes can be viewed as an operation of the 
control node. They can be implemented using a multiplexor. 
Figure 2 illustrates the conversion to SSA. 

SSA is accomplished in two steps, first we add Φ-nodes and then 
we rename the variables at their definition and use points. There 
are several methods for determining the location of the Φ-nodes. 
The naïve algorithm would insert a Φ-node at each merging point 
for each original name used in the CDFG. A more intelligent 
algorithm – called the minimal algorithm – inserts a Φ-node at the 
iterated dominance frontier (IDF) of each original name [1]. The 
semi-pruned algorithm builds smaller SSA form than the minimal 
algorithm. It determines if a variable is local to a basic block and 
only inserts Φ-nodes for non-local variables [2]. The pruned 
algorithm further reduces the number of Φ-nodes by only 
inserting Φ-nodes at the IDF of variables that are live at that time 
[7]. After the position of the Φ-nodes is determined, there is a 
pass where the variables are renamed.  
The minimal method requires O(|Ecfg| + |Ncfg|2) time for the 
calculation of the iterated dominance frontier. The iterated 
dominance frontier and liveness analysis must be computed 
during the pruned algorithm. There are linear or near linear time 
liveness analysis algorithms [8]. Therefore, the pruned method 
has the same asymptotic runtime as the minimal method. 
We should suppress any unnecessary data communication 
between control nodes. Now we explain how to minimize the 
inter-node communication.  



3.2 Minimizing Data Communication with 
SSA 
SSA allows us to minimize the inter-node communication. The 
various algorithms used to create SSA all attempt to accurately 
model the actual need for data communication between the 
control nodes. For example, if we use the pruned algorithm for 
SSA, we eliminate false data communication by using liveness 
analysis, which eliminates passing data that will never be used 
again.  
SSA allows us to minimize the data communication, but it 
introduces Φ-nodes to the graph. We must add a mechanism that 
handles the Φ-nodes. This can be accomplished by adding an 
operation that implements the functionality of a Φ-node. A 
multiplexor provides the needed functionality.  The input names 
are the inputs to the multiplexor. An additional control line must 
be added for each multiplexor to determine that the correct input 
name is selected. 

x ← …

y ← x + x

x ← x + y

z ← x + y

x0 ← …

y0 ← x0 + x0

x1 ← x0 + y0

z0 ← x1 + y0

a)

b) x ← … x ← …

← x

x1 ← … x2 ← …

x3 ← Φ(x1,x2)
← x3

Before After

 

Figure 2: a) Conversion of Straight-line Code to SSA  b) SSA 
Conversion with Control Flow 

A fundamental limitation of using SSA in a hardware compiler is 
the use of the IDF for determining the positioning of the Φ-nodes. 
Typically, compilers use SSA for its property of a single 
definition point. We are using it in another way – as a 
representation to minimize the data communication between 
hardware components (CFG nodes). In this case, the positioning 
of Φ-nodes at the iterated dominance frontier does not always 
optimize the data communication. We must consider spatial 
properties in addition to the temporal properties of the CDFG 
when determining the position of the Φ-nodes.   We define 
temporal placement as the traditional placement of a Φ-node at 
the IDF, and introduce spatial placement as the placement of a Φ-
node at its use point(s). 
We illustrate this concept with a simple example. Figure 3a 
exhibits traditional SSA2 form as well as the corresponding 
floorplan, containing control nodes a through e. The Φ-node is 
placed in control node d. In the traditional SSA scheme, the data 

                                                                 
2 We use the terms “traditional SSA” and “temporal SSA” 

interchangeably to mean the SSA introduced by Cytron et al. 
[1]. 

values x2, x3, and x4 (from nodes a, b, and c) are used in node d, 
but only in the Φ-node. Then, the data x5 is used in node e. 
Therefore, there must be a communication connection from node 
a to node d, node b to node d and node c to node d, as well as a 
connection from node d to node e – a total of 4 communication 
links. In Figure 3b, the Φ-node is spatially distributed to node e. 
Then, we only need a communication connection from nodes a,b, 
and c to node e, a total of 3 communication links. 

From this example, we can see that traditional Φ-node placement 
is not always optimal in terms of data communication. This arises 
because Φ-nodes are traditionally placed in a temporal manner. 
The iterated dominance frontier is the first place in the timeline of 
the program where the two (or more) locations of a variable 
merge. Clearly, however, this is not necessarily the only place 
where they can be placed. When considering hardware 
compilation, we must think spatially as well as temporally. By 
moving the position of the Φ-nodes, it is possible to achieve a 
better layout of our hardware design. In order to reduce the data 
communication, we must consider the number of uses of the value 
that a Φ-node defines as well as the number of values that the Φ-
node takes as an input. 

3.3 An Algorithm for Distributing  Φ-nodes 
The first step of spatially distributing Φ-nodes is determining 
which Φ-nodes should be moved. We assume that we are given 
the correct temporal positioning of the Φ-nodes according to 
some SSA algorithm (e.g. minimal, semi-pruned, pruned). At this 
point, we have no knowledge of the actual cost of communication 
between any two basic blocks (as this will be determined later 
during layout). Thus, we choose to consider the communication 
cost between any two blocks as a unit cost of 1. (At a later design 
step, an annotated CDFG could return to this phase with complete 
cost information. In this case, a more refined model should be 
used.) The movement of a Φ-node depends on two factors. The 
first factor is the number of values that the Φ-node must choose 
between. We call this the number of Φ-node source values s. The 
second factor is the number of uses that the value of the Φ-node 
defines. We call this the Φ-node destination value d. Taking 
Figure 3a as an example, the Φ-node source values are x2, x3, and 
x4 whereas the Φ-node destination value is x5. Determining s is 
simple; we just need to count the number of source values in the 
Φ-node. Finding the number of uses of the destination value is 
more difficult. We can use def-use chains [9], which can be 
calculated during SSA. 
The relationship between the number of communication links CT 
needed for a Φ-node in temporal SSA and the number of 
communication links CS in spatial SSA is: 

dsCT +=        dsCS ⋅=  

Using these relationships, we can easily determine if spatially 
moving a Φ-node will decrease the total amount of inter-node 
data communication. If CS is less than CT, then moving the Φ- 
node is beneficial. Otherwise, we should keep the Φ-node in its 
current location. 

After we have decided on which Φ-nodes we should move, we 
must determine the control node(s) where we should move the Φ- 
node. This step is rather easy, as we move the Φ-node from its 



original location to control nodes that have a use of the definition 
value of that Φ-node. It is possible that by moving the Φ-node, 
we increase the total number of Φ-nodes in the design. But, we 
are decreasing the total amount of inter-node data communication. 
Therefore, the amount of data communication is not directly 
dependent on number of Φ-nodes. 

It is possible that a use point of the definition value of Φ-node Φ1 
is another Φ-node Φ2. If we wish to move Φ1, we add the source 
values of Φ1 into the source values of Φ2; obviously, this action 
changes the number of source values of Φ2. In order to account 
for such changes in source values, we must consider moving the 
Φ-nodes in a topologically sorted manner based on the CDFG 
control edges. Of course, any back control edges must be 
removed in order to have valid topological sorting. We can not 
move Φ-nodes across back edges as this can induce dependencies 
between the source value and the destination value of previous 
iterations i.e. we can get a situation where b1 ← Φ(b1, …). The 
source value b1 was produced in a previous iteration by that same 
Φ-node. The complete algorithm for spatially distributing Φ-node 
to minimize data communication is outlined in Figure 4. 
 

1. Given a CDFG G(Ncfg, Ecfg)
2. perform_SSA(G)
3. calculate_def_use_chains(G)
4. remove_back_edges(G)
5. topological_sort(G)
6. for each node n ∈  Ncfg
7. for each Φ-node Φ ∈  n
8. s ← |Φ.sources |
9. d ← |def_use_chain(Φ.dest)|
10. if  s ⋅ d < s + d
11. move_to_spatial_locations(Φ)
12. restore_back_edges(G)

Figure 4: Spatial SSA Algorithm 

Theorem 3.1: Given an initially correct placement of a Φ-node, 
the functionality of the program remains valid after moving the 
Φ-node to the basic block(s) of all the use point(s) of the Φ-
node’s destination value. 
Proof:  There are two cases to consider. The first case is when the 
use point is a normal computation. The second case is when a use 
point is Φ-node itself. 

We consider the former case first. When we move the Φ-node 
from its initial basic block, we move it to the basic blocks of 
every use point of the Φ-node’s destination value d. Therefore, 
every use of the d can still choose from the same source values. 
Hence, if the Φ-node source values were initially correct, the use 
points of d remain the same after the movement. We must also 
ensure that moving the Φ-node does not cause some other use 
point that uses the same name but has a different value. The Φ-
node will not move past another Φ-node that has the same name 
because, by 

 

Figure 3a: SSA form and the corresponding floorplan (dotted 
edges represent data communication, and grey edges 
represent control). Data communication = 4 units. 

 

 
Figure 3b:  SSA form with the Φ-node spatially distributed, as 
well as the corresponding floorplan. Data communication = 3 
units. 
  
 



construction of correct initial SSA, that Φ-node must have d as 
one of its source values. 
The proof of the second case follows similar lines to that of the 
first one.  The only difference is that instead of moving the initial 
Φ-node Φi to that basic block, we add the source values to the Φ-
node Φu that uses d. If we move Φi before Φu, then the 
functionality of the program is correct by the same reasoning of 
the first part of proof. Assuming that the temporal SSA algorithm 
has only one Φ-node per basic block per name, we can add the 
source values of Φi to Φu while maintaining the correct program 
functionality.  

Theorem 3.2: Given a correct initial placement of Φ-nodes, the 
spatial SSA algorithm maintains the correct functionality of the 
program. 

Proof: The algorithm considers the Φ-nodes in a topologically 
sorted manner. As a consequence of Theorem 3.1, the movement 
of a single Φ-node will not disturb the functionality of the 
program hence the Φ-node will not move past another value 
definition point with the same name. Since we are considering the 
Φ-nodes in forward topologically sorted order, the movement of 
any Φ-node will never move past a Φ-node which has yet to be 
considered for movement. Also, Φ-node can never move 
backwards across an edge (recall that we remove back edges). 
Therefore, the algorithm will never move a value definition point 
past another value definition point with the same name. Hence 
every use preserves the same definition after the algorithm 
completes. This maintains the functionality of the program.  
Theorem 3.3: Given a floorplan where all wire lengths are unit 
length, the Spatial SSA Algorithm provides minimal data 
communication. 
Proof:  The source values of any given phi function are individual 
control nodes, and the cardinality of these nodes shall be referred 
to as s. Likewise, the destination points of any phi function are 
individual control nodes, and their cardinality will be referred to 
as d. The number of control nodes which define a given phi 
function (i.e. the number of phi nodes for a given phi function) 
will be referred to as n. The amount of data communication that 
this algorithm can reduce is restricted to the number of data edges 
coming into each phi node and the number of data edges coming 
out of each phi node. (The other data communication is already 
minimized, since SSA variables are actual data values. Therefore, 
SSA variables passed between control blocks are actual pieces of 
data that must be moved.) If a phi node is coalesced with its use 
point, then the number of out degree edges specifically leaving 
the phi node can be considered equal to zero. (The phi node's out 
degree data edges are now equal to the out degree of the use 
point, which cannot be reduced any further by the placement or 
removal of the phi node. Therefore the phi node's out degree of 
data will be considered equal to zero in this case.) 
The total number of data communication points entering and 
exiting the phi nodes of a given phi function can be represented 
by a cost equation: 

∑
Φ

+=
nodes n 

)( outinC  

where in is the number of inbound edges to each phi node and out 
is the number of outbound edges from each phi node. 

In a floorplan where each edge has unit cost, this equation 
represents the total cost of this phi function in the graph. 
In order to maintain correctness in a CDFG, every source value of 
a phi function must be coming into all phi nodes defining this 
function. (This is the only data that needs to enter a phi node.) 
Therefore, for all minimal cost cases, we can say that in = s for 
every phi node and the data communication cost of the phi 
function can be restated as 

∑
Φ

+=
nodes n 

  outnsC  

since s is constant. 
This leaves us with two values we can minimize: n (the number of 
total nodes defining a given phi function) and out (the out degree 
of a phi node), since s cannot be reduced (for correctness's sake). 
The most minimal cost we can have is when n = 1 or out = 0.  
(n >= 1, because at least one node must define the phi function. 
out = 0 is possible, as stated earlier.) 
In the case that out = 0, the phi function will be coalesced with 
every use point of that function. That means that the total number 
n of nodes defining this function will equal d (the number of use 
points of the phi function). Therefore, 

ds ⋅=⋅==+= ∑
Φ

sdnsoutnsC
nodes n 

   

(corresponding to spatial placement) 
In the case that n = 1, that means that there is only one node 
defining a given phi function. This means that either a) there is a 
directed edge from this node to every use point or b) there is only 
one use point and this node has been coalesced with it. 
In the case of part a, the total number of directed edges leaving 
the one phi node is equal to d (the number of use points) therefore 

ds +=+=+= ∑
Φ

outsoutsC
nodes n 

  *1  

(corresponding to temporal placement) 
Part b is a special case of C = s * d (n = 1, out = 0). 

Therefore, we can minimize the total in/out degree of the phi 
node(s) by minimizing the equations (C = s + d, C = s * d). This 
corresponds to either choosing temporal placement (in the case of 
s + d < s * d) or choosing spatial placement (if s + d > s * d). 
This minimization of the degree of the phi node(s) leads to 
minimal data communication in a CDFG with edges having unit 
communication cost.  

4. EXPERIMENTAL RESULTS 
To measure the effectiveness of using SSA to minimize data 
communication between control nodes, we examined a set of DSP 
functions. DSP functions typically exhibit a large amount of 
parallelism making them ideal for hardware. The DSP functions 
were taken from the MediaBench test suite [10]. The files were 
compiled into CDFGs using the SUIF compiler infrastructure [11] 
and the Machine-SUIF [12] backend. Then, each of the 
benchmarks was synthesized using the Synopsys Behavioral 



Compiler for architectural synthesis followed by the Synopsys 
Design Compiler for logic synthesis.  
We performed SSA analysis with the SSA library built into 
Machine-SUIF. The library was initially developed at Rice [13] 
and recently integrated into the Machine-SUIF compiler. 
First, we compare the amount of data flow between the control 
nodes using the different SSA algorithms. Given two control 
nodes i and j, the edge weight w(i,j) is the amount of data 
communicated (in bits) from control node i to control node j. The 
total edge weight (TEW) is: 

∑∑=
i j

jiwTEW ),(  

Figure 5 is a comparison of edge weights using three different 
algorithms for positioning the Φ-nodes. We compare the minimal, 
semi-pruned and pruned algorithms. Recall that the pruned 
algorithm is the best algorithm in terms of reducing the number of 
Φ-nodes, but worst in runtime. The minimal algorithm produces 
many Φ-nodes, but has small runtime. The semi-pruned algorithm 
provides a middle ground in terms of runtime and quality of 
result.  
We divide the TEW of the minimal and semi-pruned algorithm 
(respectively) by the TEW of the pruned algorithm. We call this 
the TEW ratio. We use the pruned algorithm as a baseline because 
it consistently produces the smallest TEW. Referring to Figure 5, 
the TEW of the minimal algorithm is much worse than that of the 
pruned algorithm. For example, in the benchmark fft2, the TEW 
of the minimal algorithm is over 70 times that of the TEW of the 
pruned algorithm. The semi-pruned algorithm yields a TEW that 
is smaller than that of the minimal algorithm, but still slightly 
larger than the TEW of the pruned algorithm. All algorithms have 
the same asymptotic runtime and the actual runtimes for all the 
algorithms over all the benchmarks were very small (under 1 
second). Therefore, we feel that one should use the pruned 
algorithm as it minimizes data communication much better than 
the other two algorithms. Furthermore, the actual additional 
runtime needed to run the pruned algorithm is miniscule.  
Each of the algorithms we compared attempt to minimize the 
number of Φ-nodes, and not the data communication. There is 
obviously a relationship between the number of Φ-nodes and the 
amount of data communication. Every Φ-node defines additional 
data communication, but there can be inter-node data transfer 
without Φ-nodes. Furthermore, as we pointed out in Section 3.2, 
minimizing the number of Φ-nodes does not directly correspond 
to minimizing the data communication. 

In Figure 6, we compare the ratio of Φ-nodes and the ratio of 
TEW using the minimal and pruned algorithms. Evidently, the 
number of Φ-nodes is highly related to the amount of data 
communication.  As the Φ-node ratio increases, the TEW ratio 
increases. Correspondingly, a large Φ-node ratio corresponds to a 
large TEW ratio. This lends validation to using SSA algorithms to 
first minimize inter-node communication and then using the 
spatial Φ-node repositioning to further reduce the data 
communication. In other words, minimizing the number of Φ-
nodes is a good objective function to initially minimize data 
communication. 

Our next set of experiments focus on using spatial SSA Φ-node 
distribution to further minimize the amount of data 
communication. Figure 7 shows the number of Φ-nodes that are 
spatially distributed by the spatial SSA algorithm. We can see  
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Figure 5: Comparison of total edge weight (TEW) between the 
minimal and semi-pruned TEW and the pruned TEW 

that these Φ-nodes are fairly common; in some of the 
benchmarks, over 35% of the Φ-nodes are spatially moved. The 
average number of distributed Φ-nodes over all the benchmarks is 
11.65%, 18.21% and 13.56%3 for the pruned, semi-pruned and 
minimal algorithms, respectively. 
Figure 8 gives the percentage of TEW improvement we achieve 
by spatially distributing the nodes. By spatially distributing the 
Φ-nodes, we reduce the TEW by 1.80%, 4.77% and 8.16% in the 
pruned, semi-pruned and minimal algorithms, respectively. We 
believe the small amount of improvement in TEW can be 
attributed to two things. First of all, the TEW contributed by the 
Φ-nodes is only a small portion of the total TEW. Also, when the 
number of Φ-nodes is small, the number of Φ-nodes to distribute 
is also small. This is apparent in the increasing trend seen by the 
pruned, semi-pruned and minimal algorithms. There are many Φ-
nodes when we use the minimal algorithm and correspondingly, 
there TEW improvement of the minimal algorithm is the 8.16%. 
Conversely, the number of Φ-nodes in the pruned algorithm is 
small and the TEW improvement is also small. 
We ran the spatial algorithm through our system framework to 
determine the actual area improvements achieved by performing 
the Spatial SSA Algorithm to distribute the phi-nodes. The results 
are shown in Figure 9. The results are mixed and mostly negative. 
The chart plots the total area of the temporal (original) phi node 
placement divided by the total area of our algorithm’s phi node 
placement. A result above 1 denotes that the temporal area is 
larger than the spatial area, meaning that our spatial phi node 
placement algorithm is beneficial. The benchmarks getblk1 and 
getblk2 benefit immensely from the spatial phi node placement. 

                                                                 
3 Not all of the benchmarks are included in Figures 7 and 8; the 

omitted benchmarks have 0 Φ-nodes that should be distributed, 
but these benchmarks are included in the averages. 



The other benchmarks either exhibit higher total area due to 
spatial placement or the total area is approximately the same (i.e. 
the total area ratio is approximately equal to 1). 
We believe that the results are somewhat negative for two 
reasons. First, as stated previously, the TEW reduction when 
using the spatial algorithm is not that large. The TEW reduction 
was 1.80%, 4.77% and 8.16% using the pruned, semi-pruned and 
minimal algorithms. Second, and more importantly, we have 
assumed that all wires are of unit length, which is a naïve 
estimation of circuit characteristics. Thus, the TEW is a flawed 
model, as it does not take into account the actual cost of 
communication between control nodes. (In Section 6, we 
conclude with future work intended to enhance this model.) 
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Figure 6: A comparison of total edge weight (TEW) and the 
number of Φ-nodes using the minimal and pruned algorithms. 

5. RELATED WORK 
The idea of hardware compilation has been discussed since the 
1980s. At that time, it was researched under the guise of silicon 
compilation and related closely to what is referred to as 
behavioral synthesis nowadays.  
The past 15 years have brought about a number of platforms that 
take high-level code and generate a hardware configuration for 
that platform. The PRISM project [14] took functions 
implemented in a subset of C and compiled them to their FPGA-
like architecture. The Garp compiler [4] automatically maps C 
code to their MIPS + FPGA architecture. The DeepC compiler 
[15] is the most similar to our work, as it synthesizes Verilog 
from C or Fortran. These are some of the more prevalent 
academic works in hardware compilation. The SystemC [16] and 
SpecC [17] languages have created much industrial interest in 
hardware compilation. Many companies including Synopsis and 
Cadence are exploring hardware compilation from these two 
languages. 
Many compiler techniques use SSA for analysis or transformation 
[18,19,20]. To the best of our knowledge, this is the first work 
that considers SSA form for hardware compilation. 

6. CONCLUSION 
In this work, we presented methods needed for hardware 
compilation. First, we described a framework for compiling a 
high-level application to an HDL. The framework includes 
methods for transforming a traditional compiler IR to an RTL-
level HDL. We illustrated how to transform the IR into a CDFG 

form. Using the CDFG form, we explained methods to control the 
path of execution. Furthermore, we provided methods for 
communicating data between the control nodes of the CDFG. 
We examined the use of SSA to minimize the amount of data 
communication between control nodes. We showed a shortcoming 
of SSA when it is applied to minimizing data communication. The 
temporal positioning of the Φ-node is not optimal in terms of data 
communication. We formulated an algorithm to spatially 
distribute the Φ-node to minimize the amount of data 
communication. We showed that this spatial distribution can 
decrease the data communication (measured as TEW) by 20% for 
some DSP functions. Additionally, we proved that if all data 
communication wire-lengths are of unit cost, the Spatial SSA 
Algorithm provides minimal data communication.  
In practice, we found that our algorithm frequently increases total 
area of the circuit, which is a negative result. As future work, we 
plan to use a feedback mechanism from the hardware floorplanner 
to the compiler to incrementally derive more optimal results. This 
will enable us to annotate the CDFG with better wire length 
estimates (obtained during placement), rather than using the naïve 
unit wire length approximation assumed in this work. Presently, 
we only consider temporal and spatial placement of Φ- nodes (at 
the IDF or at use points), but frequently there is an intermediate 
range of possible placements between these two locations. We 
intend to explore the possibilities for Φ- node distribution across 
this range, while using more realistic wire lengths for higher 
accuracy.  Additionally, we plan to account for the size of 
duplicated multiplexors. Placement of Φ- nodes will become an 
algorithmically harder problem, but will yield higher performance 
through further reduced data communication. 
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