
ABSTRACT 
This paper presents Pilot, a platform-based HW/SW synthesis 
system for field programmable System-on-a-Chip (FPSoC). It 
starts from a system-level design specification and targets at 
FPSoC platforms. In order to automate this process as much as 
possible, a System-level Data Model (SDM) is built in Pilot to 
provide a basis for developing system-level HW/SW synthesis 
algorithms and an abstraction for accepting different types of 
design specifications. A preliminary HW/SW co-design flow based 
on SDM is also proposed. Many key issues such as profiling, 
HW/SW partitioning, scheduling, interface generation, and code 
generation are addressed. A JPEG encoder is used as an example to 
demonstrate the design flow. The experimental results are given for 
the evaluation of Pilot. 
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1. INTRODUCTION 
A System-on-a-Chip (SoC) platform is a family of 
micro-architectures that is essentially “fixed” so that it supports a 
substantial re-use of software [8]. The basic components of the 
platform, including a number of predetermined processors, 
memory blocks, on-chip bus architectures, various IP cores, etc., 
should be unchanged during the design process. The main benefit 
of starting with an SoC platform is that the component designs, 
including CPU, memory and some common peripherals, are 
already optimized and verified. Designs based on such platforms 
are able to utilize a stable, core-based architecture that can be 
rapidly extended and customized for a range of applications. 
Derivatives can be easily created by adding different software or 
hardware to this groundwork. The designers using the platform 
only need to focus on creating their value-added parts of the 
system. This significantly saves the design time and further ensures 
first-time design success. 

For the purpose of fully exploiting the benefits of the SoC 
platforms, platform-based design [8] was recently introduced as a 
solution that would balance production cost with design time. The 
tenet behind the platform-based design approach is to take 
advantage of the predefined micro-architectures, thereby avoiding 
designing a chip from scratch. Several research projects have been 
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propelled along this trend. The "Mescal" project [8] by UC 
Berkeley and Princeton is working to define a methodology and 
design environment for application-specific fully programmable 
platforms. The “Metropolis” project [10] by UC Berkeley is trying 
to employ a formal design methodology and generic mechanism to 
model arbitrary communication and computation semantics and 
model the heterogeneous system. By going from the highest level 
of abstraction down to the implementation through a series of 
refinements, a refined system will eventually be mapped to a given 
platform. 

In this paper, we present a platform-based HW/SW synthesis 
system called Pilot. Instead of facing the problem of platform 
creation, which is generally difficult, Pilot looks at how to 
effectively map a system-level design specification onto a given 
SoC platform, in particular, the FPSoC platform. A FPSoC 
platform integrates microprocessors, RAMs, programmable blocks, 
and several peripherals in a programmable device. Such a 
programmable device is a viable solution for rapid prototyping of a 
complex system. Due to limited on-chip resources for a selected 
platform, efficient system level synthesis algorithms such as 
scheduling, partitioning, communication synthesis, etc., are needed 
to tradeoff performance for cost of the system. Pilot tries to tackle 
these issues and provide a framework for optimizing and 
synthesizing designs at the system level. 

The rest of the paper is organized as follows. Section 2 gives an 
overview of the Pilot framework and presents the design 
framework. Section 3 introduces the SDM that serves as the 
internal representation of the whole system. Sections 4 and 5 
discuss the Pilot input language and candidate platform, 
respectively. Section 6 explores the details of our HW/SW 
implementation methodology. In Section 7, a JPEG encoding 
system is used as an example to go through our platform-based 
synthesis flow. Section 8 describes the current status of our Pilot 
system. Section 9 concludes the paper. 

2. OVERVIEW OF THE PILOT SYSTEM 

2.1 Objective 
Our Pilot synthesis system starts from system-level design 
specification, and targets at FPSoC platform. To be more precise, 
Pilot tries to provide synthesis capabilities to map a system-level 
design specification to a given FPSoC platform. The goal is to 
automate this design process as much as possible, and explore the 
solution space of simultaneously optimizing the HW/SW 
implementation of an application at the system level. 

2.2 System Organization 
An SDM is developed to provide a basis for system-level HW/SW 
synthesis algorithms. It also serves as a unified internal 
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representation of the system to capture the design throughout the 
whole synthesis process. The core of SDM is the FunState [5] 
Model of Computation (MoC). It is able to represent the 
heterogeneous HW/SW system formally, abstractly and 
unambiguously. In addition to FunState MoC, we have 
supplementary information stored in SDM to capture the platform 
and input language-specific characteristics. 
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FIGURE 1. PROPOSED PILOT DESIGN FRAMEWORK. 
 

An SDM-centralized design framework of our platform-based 
HW/SW synthesis system is illustrated in Figure 1. The input of the 
Pilot is a system level design specification and a platform 
description, both of which are converted into the internal 
representation. Building upon SDM, we have several tools to do 
HW/SW co-simulation, performance estimation and co-synthesis. 
After the partitioning, scheduling and HW/SW synthesis, the C 
code and VHDL code will be generated for the software and 
hardware parts, respectively. 

3. SYSTEM-LEVEL DATA MODEL 
In this section, we discuss SDM, a unified internal representation 
of the Pilot system. A unified internal representation can cover the 
whole life cycle of the flow and support inter-operatability of CAD 
tools, thus simplifying the design flow. SDM consists of two parts: 

• A mathematical model (i.e., MoC) which abstracts the design 
and captures the essential properties of the system. 

• Supplementary information repository which stores the 
platform information and input language-specific features. 

3.1 Requirements for Model of Computation 
We believe that taking a systematic, engineering-oriented, 
tool-based approach instead of an ad hoc one is essential for coping 
with the increasing complexity of designing current HW/SW 
systems. One key of a sound system-level design methodology is to 
adopt an MoC [11], because it provides proper abstraction of a 
system, and concretely captures the properties to be analyzed and 
verified. 

A good MoC should be able to support hierarchy, abstraction, 
timing, parallelism and non-determinism. Support of hierarchy is 
crucial for reducing the complexity because it can simplify the 
specification process by enabling top-down or bottom-up 
specification. Representing concurrency is indispensable as 
modern embedded systems typically have many parts working in 
parallel. Handling timing constraints is important to the design of 

an embedded system especially the real-time system, while 
non-determinism is used to model unspecified or unknown 
behaviors and to avoid over-restriction on the design 
implementation. 

A good MoC should be executable, synthesizable, verifiable, and 
unbiased towards any specific implementation. Otherwise, the 
simulation, synthesis, validation and verification of the design 
could not proceed. 

In past decades, a variety of MoCs have been proposed, such as 
CFSM [12] (co-design finite state machine), Statecharts [13], SDF 
[15], Colored Petri Net [16] etc. However, due to the 
heterogeneous nature of the current embedded system, designers 
have to employ a mixture of different MoCs and modeling 
languages to depict the system functions with different 
characteristics, which makes the design inefficient and error-prone. 
Integrating different MoCs into a single system is becoming one of 
the major sources of complexity in a heterogeneous system design 
environment. The difficulty would be significantly reduced if we 
could have a versatile MoC, able to represent several other MoCs. 
Different types of design specification could be transformed into 
the unified internal representation. 

3.2 FunState MoC 
After careful evaluation of several candidates, we chose FunState 
[5] as the core MoC of SDM because it satisfies all the 
requirements and is capable of representing several well-known 
computing paradigms including CFSM, SDF, Colored Petri Net, 
SPI [14], etc. 

FunState is a mixed data/control flow MoC. The data flow part is a 
function network and the control flow part is a finite-state machine. 
The data flow part consists of a set of function units (functions and 
embedded components) that perform intensive computation on 
incoming streams of tokens. A set of storage units (queues and 
registers) are used to store the tokens. Functions and storages are 
connected by directed arcs. In the control part, a finite state 
machine controls the behaviors of the function units dictating when 
and how they are to be executed. 

The precise definitions of the key constituent of FunState are given 
as follows: 

• Components: The basic FunState component consists of a 
network N and a finite state machine M. The network N = (F, 
S, E) contains a set of storage units s ∈ S, a set of functions f ∈ 
F, and a set of directed edges e ∈ E, where E ⊆ (F×S) ∪ (S×F). 

• Storage units: Queues have FIFO behavior and unbounded 
length. Notation q# represents the number of tokens in the 
queue, and q$1, q$2, …, q$n denotes the values of the tokens. 
Registers are linear arrays of values of limited length n. 

• Functions: The function objects f ∈ F are uniquely named. 
They operate on tokens when fired. Every function is either in 
idle or running state. 

• Finite State Machine: State machine controls the activation of 
embedded components and functions. A synchronous/reactive 
model is used. Transitions are labeled with conditions and 
actions. Conditions are predicates on storage units. The action 
consists of a set of names of function objects. 



FunState can efficiently represent concurrency and hierarchy. 
Functions can be hierarchical and are called embedded 
components. States becomes hierarchical when sub-automata are 
embedded. FunState can also be extended to a timed model to 
describe the timing properties and constraints of the system. Each 
of the functions can be associated with a physical latency attribute. 
A timing constraint of a path in the function network can be 
specified. 

FIGURE 2. A TIMER REPRESENTED IN FUNSTATE 
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Figure 2 illustrates a timer example represented by a FunState 
component. The timer periodically decreases by a particular 
amount of time T. Each time it reaches 0, a signal is sent out by a 
function named Trigger. Figure 3 shows the SDF representation 
and the equivalent FunState representation of an example. 

FIGURE 3. SDF REPRESENTATION IN FUNSTATE. 
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4. INPUT LANGUAGE 
We prefer a language rather than some visual diagrams to be the 
input of our Pilot system. Although both of them can be used to 
model the embedded system, designers feel more comfortable with 
programming languages than diagrams. Furthermore, using a 
language as input easily allows many current existing systems 
written in textual languages to move toward SoC implementation. 

4.1 Requirements for SLDL 
A system level design description language (SLDL) is needed to 
provide a uniform functional specification of the SoC system. The 
most popular languages, such as C/C++/Java are strong for 
software development, but lack hardware design concepts. A good 
SLDL should support the following essential concepts: 
concurrency, timing, state transition, synchronization, exception 
handling, software program construct and behavioral hierarchy, 
etc. Table 1 compares several well-known SLDLs against the 
above requirements. As the table shows, only SystemC [21] and 
SpecC [1] satisfy all the requirements. SystemC provides a library 
of C++ classes to model the hardware. It can used to effectively 
model and simulate a system. However, it has been envisioned [2] 
that synthesis tools for SystemC may have difficulties in 

understanding the information in the libraries, where it is hard to 
differentiate the code for simulation and the code for specification. 

4.2 SpecC 
Instead of taking the library-based approach, SpecC extends C 
language with a set of new constructs that are needed by the SoC 
design specification. This ensures synthesis tools a easier task of 
analyzing the specification because all extended constructs are 
well-defined and the library for simulation is hidden. Since 
synthesis is our focus, we chose SpecC as the input language of 
Pilot. 

 
Syntactically, SpecC is a superset of ANSI-C. Semantically, SpecC 
explicitly separates communication from computation. The 
behavior encapsulates the computations and the channel 
encapsulates the communication. A hierarchical network of 
behaviors interconnected by hierarchical channels specifies the 
functionality of a SpecC design. 

As mentioned in Section 2, a SpecC to SDM converter is developed 
to map SpecC input to our internal representation. It intends to 
transform SpecC behavioral hierarchy to FunState representation 
and attaches all the language-specific features (e.g., composite data 
types, variable’s scope, etc.) as the supplementary information to 
SDM. We transform the SpecC into SDM by applying a set of 
mapping rules. These rules are listed in Table 2. 

Note that we do not strictly restrict our input to be SpecC, as the 
Pilot system has the capability of taking other SLDLs. SDM itself 
is input-language-independent and the only overhead is that 
different converters might be needed. 

  

5. CANDIDATE PLATFORM 
Several requirements for a suitable platform are described as 
follows: 

• Integrity: The platform should contain a set of dedicated and 
optimized components, such as microprocessor, bus, memory, 

TABLE 2. SPECC TO SDM MAPPING RULES. 

Constructs in SpecC Constructs in SDM 

Port Component Interface 

Variable Register 

Channel Queue 

Behavior Component 

Method of Behavior Sub-Component 

Par Statement Concurrent State Machine 

FSM Statement Conventional Finite State Machine 

TABLE 1. SLDL SUPPORT FOR ESSENTIAL REQUIREMENTS.  

 VHDL Hard- 
wareC 

State- 
charts 

C/C++/ 
Java 

SystemC SpecC 

Concurrency    / /    
Timing    / /    

State Transition    / /    
Synchronization    / /    

Exception handling    / /    
Program Construct    / /    

Behavioral Hierarchy    / /    

 fully supported   partially supported   not supported 



and I/O sub-systems, thereby constituting a total usable 
system.  

• Usability: A set of basic tools should be available to support 
the hardware platform, so that the design can be accelerated 
and optimized. For example, an optimized compiler for the 
target microprocessor is very important. 

• Flexibility: The platform should be extendible and reducible 
to fit a specific application and satisfy a certain range of 
performance/cost trade-off. 

There exist several well-developed FPSoC platforms in industry. 
Xilinx’ Virtex-II Pro device [19] contains up to four embedded 300 
MHz PowerPC processors, serial I/O transceivers and an FPGA 
fabric, all of which are connected by IBM's CoreConnect on-chip 
bus. While Virtex-II, the predecessor of Virtex-II Pro, only 
contains a soft processor. This FPSoC solution comes with Wind 
River System’s embedded design tools.  

Quicklogic’s QuickMIPS platform [20] contains a 175MHz 
MIPS4Kc processor, a PCI interface, a memory interface, a 110 
Base T Ethernet MAC, an AMBA bus and up to 500,000 system 
gates of programmable logic. Its system Development Kit comes 
with drivers for Ethernet, PCI, MMC, Timer and UART etc. It also 
contains SDK of WindRivers VxWorks®, BlueCat Linux® RTOS 
and debugger.  
Altera’s ARM-based Excalibur devices [18] embed an ARM922T 
hard processor core along with memories and peripherals into a 
programmable logic device (PLD). The devices offer over 200 
MIPS performance and integrated on-board memory, external 
memory interfaces, standard peripherals and interfaces to the logic 
portion of the device. SOPC™ builder for system integration and 
C/C++ compiler/debugger is also provided.  
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Altera’s Nios embedded system [18] is based on a flexible and 
configurable Nios soft processor, as shown in Figure 4. With 
multi-master Avalon™ bus applied in a Nios-based embedded 
system, a number of peripherals are available including UART, 
PIO, DMA, internal memory and external memory interfaces, etc. 
Furthermore, users can customize their own peripherals. Even the 
instruction set of the Nios processors is customizable to some 
extent. 

Nios embedded processor occupies only a small part of the 
programmable device (37% of the APEX20K200, a medium size 
FPGA). Hence, integrating customized logics and multiple 
processors on one chip is possible. Altera also provides Nios 
compiler and SOPC™ tools to accelerate the design cycle.  

The design methodology of the Pilot system fits for multiple 
platforms. We chose Altera’s Nios embedded system as the 
candidate platform to evaluate our approach. A Nios development 
board is used as our experimental environment. It is populated by 
an APEX™ 20KE device, a configuration controller, and off-chip 
SRAMS for storing software programs [18].  

6. HARDWARE/SOFTWARE 
GENERATION 

6.1 Hardware Generation 
In our Pilot system, hardware generation refines the hardware part 
of SDM into synthesizable HDL, and then maps the resulting 
micro-architecture specification into the real platform  Nios 
embedded system.  
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The middle branch of Figure 5 shows our hardware generation flow, 
which includes VHDL code generation, hardware synthesis, 
system generation, system integration and compilation. After 
system-level synthesis, hardware and software parts have been 
partitioned and specified in SDM. VHDL code is then generated 
from the hardware part and fed into a synthesis tool, and the netlists 
are generated in EDIF format for target device. These hardware 
netlists will be integrated into the whole design as a peripheral 
module which interacts with the system module through 
communication modules.  

6.2 Software Generation 
The left branch of Figure 5 shows the software generation flow. 
Similar to the SpecC to SDM converter, the C code generator also 
applies a set of rules that map SDM constructs to C constructs. As a 
result, every port is mapped into a parameter, every memory 
becomes a local variable, and every child component instantiation 



becomes a statement of function call, etc. These rules are listed in 
Table 3. The generated C code will be compiled by Nios GCC 
compiler and executed on Nios processor. 

  

6.3 Interface Generation 
The platform supports different schemes of communication and 
interfacing between software and customized hardware. This 
flexibility enables designers to explore the design space to obtain 
an optimized interfacing mechanism and achieve the best 
performance/cost ratio. In this section, we will compare three 
possible hardware/software communication mechanisms in the 
Nios embedded system. They are message passing, buffering, and 
shared memory, all of which are applied in our case study as 
discussed in section 7. 

6.3.1 Message Passing  
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Message passing supports a handshaking protocol for 
communicating peers. In this communication scheme, the data is 
transferred through messages, and several messages may be 
combined to form one data package. Handshaking modules should 
be inserted to guarantee the correctness of package assembling and 
disassembling. In our current implementation as shown in Figure 6, 
a RECV module is inserted to assemble data frames into one 
package for the PLD module input. A SEND module will 
disassemble a large data package into frames so that PIO can 
receive them one-by-one. The RECV and SEND modules are 
FSMs to communicate with PIO in a handshaking manner. The 
PLD starts running after the RECV has finished, and the SEND 
starts running after the PLD has given a “DONE” signal.  

This communication scheme requires two extra FSM modules in 
the system, and communication routines should also be inserted 
into the software part. However, the interface of the PLD does not 
need to be modified to fit the communication. 

6.3.2 Buffering and Shared Memory 
Buffering and shared memory are two communication schemes, 
both of which extend the bus inside the system module to access 
the on-chip memory. The on-chip memory is also directly 
accessible by the PLD modules. Figure 7 is the illustration of the 
architecture for these communication schemes.  
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When PLD wants to get data in a buffering communication 
mechanism, data will be transferred from the software’s data 
memory to this on-chip memory first. PLD then reads the data from 
the buffer. The communication routine handles the transfer from 
data memory to buffer, and the software program need not be 
further modified. 

The shared memory mechanism requires the designers to modify 
the software program and redirect the memory address storing the 
data to the address of the on-chip memory. The communicating 
data will be written and read directly into the shared on-chip 
memory, either by software or by PLD. 

Both of these methods require another mechanism to control the 
exclusive access of the on-chip memory. For example, in order to 
synchronize the memory access, we can use PIO to send RESET 
and START signals to the PLD module, and to receive a DONE 
signal from the PLD module. 

Buffering and shared memory simplify the communication 
controller between the hardware and software parts. In most cases, 
however, in order to correctly access the shared memory, the 
interface of the hardware module should be modified. 

6.4 System Integration 
The right branch of Figure 5 is essentially derived from the 
interface synthesis, which considers the performance/cost tradeoff 
of the whole system and selects the most suitable communication 
mechanism for HW/SW interaction. 

The architecture specification describes the mechanism of the 
hardware/software communication and interfacing method. For 
example, a shared memory and parallel I/O port support different 
communication mechanisms and have a great impact in terms of 
both performance and cost on the resulting system. This will be 
elaborated in the next subsection. 

This interface generation and system integration step first takes 
architecture specification as input, then generates the system 
module including CPU, bus, memory controller, and the specified 
peripheral modules. Interfacing modules selected by interface 

TABLE 3. SDM TO C MAPPING RULES. 

Constructs in SDM Constructs in SDM 

Interface Parameter 

Register Variable 

Queue Composite Structure 

Component Function 

Component Instantiation Function Call 

Finite State Machine Switch…Case Statement 



synthesis are then generated and inserted between the hardware 
modules and the system module.  

The entire design will be integrated and compiled for the target 
FPGA device, and the corresponding device programming file will 
be generated as the result of this step. 

In the hardware and interface generation steps, simulation and 
verification are also applied to ensure correctness of the design. 

7. CURRENT STATUS OF PILOT SYSTEM 
Pilot is still under-construction and is far from fully completed. 
However, a number of infrastructural tools have been developed in 
Pilot, such as: 

• Co-simulation: A simulator based on FunState MoC is 
developed for validation and verification of the design. It 
supports different levels of design; therefore, early functional 
verification can be performed. 

• HW/SW code generation: A SDM to C source code generator 
has been developed for the final implementation of the 
software components. A hardware code generator is 
developed to generate VHDL code for the identified HW 
components. 

• Partitioning and scheduling: Currently, partitioning and 
scheduling are done manually. However, since SDM has been 
already built up, corresponding system level synthesis 
algorithms are expected to be released in the near future. 

8. CASE STUDY – JPEG ENCODER  

8.1 Introduction of JPEG Encoder 
JPEG is a standard for image compression [6], either for full-color 
images or gray-scale images. We take the discrete cosine transform 
(DCT) based JPEG standard, which is the simplest and most 
commonly used JPEG mode, as our example. We use the existing 
SpecC specification [3][4] provided by Prof. D. Gajski’s research 
group at UCI. It is purely a software specification without any 
unnecessary hardware implementation details. 
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FIGURE 8. JPEG SYSTEM FLOW. 
 

Based on the sequential DCT-based mode, the JPEG encoder is 
divided into four functional blocks: the image fragmentation block, 
the DCT block, the quantization block and the entropy coding 
block, as shown in Figure 8. 

In the image fragmentation, a BMP image is divided into the 
non-overlapping data blocks, each containing an 8x8 matrix of 
pixels. DCT transforms each data block into a frequency 
representation. There are two commonly-used DCT algorithms for 
this translation process: the standard DCT and the ChenDCT [7]. 
ChenDCT algorithm is used in our design. The quantization 
function quantizes the DCT output coefficient. For DCT output, 

the entropy coding module encodes AC coefficients using a 
predictive coder and encodes DC coefficients using a run-length 
coder. Finally, the Huffman coding algorthm is applied to generate 
a JPEG image. 

8.2 JPEG Internal Representation in SDM  
The dataflow model and non-deterministic FSM of FunState 
support the specification of non-determinism. Synthesis algorithm 
has the potential and flexibility to refine the specification and 
generate a fixed control flow solution. Here we use a fixed control 
flow specification and directly translate it into SDM. 

The fixed control flow specification representation in FunState is 
introduced below. In a fixed control flow specification, the relative 
execution order of different components of the system is fixed. 
Every behavior in the specification is represented as a component 
in FunState. The control flow is represented in the control part of 
FunState. The original hierarchy of the specification is maintained. 
Channels are represented as queues and variables are represented 
as memories. The ports of each behavior are represented as ports of 
a component. Figure 9 illustrates the JPEG example represented in 
SDM.  
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FIGURE 9. JPEG REPRESENTATION IN SDM. 
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The upper part of the model in Figure 9 represents data flow. The 
lower part represents FSM. The rectangle in the upper part 
represents function, the oval between functions represents register, 
and the circle between functions represents queue. The FSM has an 
entry state and an end state. The arc between these states indicates 
that under certain conditions, the function in the upper part is 
activated. 

8.3 Experimental Results 
In this section, we will discuss the experimental results of our Pilot 
flow to implement JPEG to the Nios embedded system. Results 
from profiling, synthesis, simulation and system integration are 
given. In addition, possible interesting issues from the result 
analysis are discussed. 

8.3.1 Profiling Results 
In profiling, we run the JPEG program both in a PC with Pentium 
III 650MHz CPU and in Nios embedded system. It can be seen 
from both of the results presented in Table 4 that the DCT module 
consumes most of the JPEG running time. In our Pilot flow, the 
profiling results are used to guide the HW/SW partitioning.  

The latency of the Nios embedded system is much longer, since it 
has a much lower frequency (33 MHz vs. 650 MHz of PII). 
However, embedded systems have the advantages on low power, 
small volume, and the capabilities of ubiquitous computation [17].  



 

8.3.2 Hardware Cost and Performance 
According to the profiling results, we chose the DCT module to be 
implemented in hardware implementation. Table 5 lists the results 
from synthesis and simulation tools. SEND and RECV are used as 
the communication module in the message passing scheme. 
Half-DCT is a part of the DCT module to loop through the columns 
of the input matrix (the other parts are a loop through the rows and 
post-processing). Since the entire DCT in a message passing 
scheme costs a large number of logic resources, we extract half of it 
to fit a real device.  

The resource cost numbers (IOs and LCs) and frequency are from 
LeonardoSpectrum for Altera Version v2002a.14. The target 
device: APEX20KE. Cycle numbers are from the simulation by 
ModelSim5.5. The buffering and shared memory schemes have the 
same hardware implementation, and cost much less resources than 
the message passing scheme. While the latency is longer. 

  
Table 6 is a resource cost comparison among three JPEG encoder 
implementations. The first design only loads half of the DCT into 
the device and applies message passing between Half-DCT and the 
Nios system module. The second one applies a buffer between 
DCT and Nios. The third one applies a shared memory 
communication scheme. These results are from Quartus II v2.0. For 
comparison, the resource cost of the Nios system module and the 
capacity of the target device are also given.  

 
Since DCT with a buffering and shared memory mechanism only 
needs several ports to access memory, the port size is much smaller 
than that of the message-passing DCT. This reduces the synthesis 
complexity dramatically and the synthesis result of buffering and 
shared memory DCT is much better than the message passing one 
(Table 5). Although in the entire design, buffering or shared 

memory will cost a few more embedded system block (ESB) 
resources (Table 6), the extra cost is trivial. Buffering and shared 
memory schemes enforce memory access, which introduces extra 
cycles compared with the message-passing scheme. 

8.3.3 JPEG Designs’ Performance 
Table 7 lists the run time results of every module in the resulting 
designs. These numbers are measured by Nios SDK 2.0 and in the 
unit of times/second. The execution cycle of every module begins 
when the data from the previous module is ready, and ends when 
the resulting data is produced. 

Although the DCT function runs in the fewest cycles in the 
message passing scheme, the communication cost overwhelms the 
gain realized by the fewer running cycles. The dominating 
communication cost is the run time of software communication 
routines handling the receiving and sending operations for message 
passing. Moreover, the other half of the DCT is executed by 
software, thus the entire DCT does not show great improvement in 
performance. In a buffering scheme, the communication overhead 
is much lighter since all of the communication operations are data 
transfers between the buffer and data memory of the CPU.  

Shared memory views the data as the global variable accessible by 
the modules connected with it. The programs in the software 
portion (in our scene, they are HandleData and Quantization) are 
not required to transfer data. As long as the previous software 
program ends, the output can be directly accessed from the HW 
module. The output of the HW module is not transferred either, 
thus avoiding the communication cost. This results in the highest 
throughput of the DCT module. 

As we observe the overall performance of the JPEG Encoder 
design, the highest one is the shared memory scheme with speedup 
of 3.2. The optimized speedup is 3.33 by eliminating the run time 
of the DCT.  

 

9. CONCLUSIONS 
The paper has presented a new platform-based synthesis 
framework. A unified SDM is developed to capture the entire 
design and is the basis to build other system level synthesis tools. A 
JPEG encoder is used as an example to evaluate and validate the 
design flow. Experimental results show the impact on the area and 
performance of the final designs by applying HW/SW partitioning 
and different interfacing schemes. Future works will focus on 
developing synthesis algorithms that aim to maximize the overall 
system performance under the platform resource constraints. 

TABLE 4. PROFILING RESULTS. 

PC(PIII 650MHz) NIOS(SW) (33MHz) Module Name 

Time (10-6s) Ratio (%) Time (10-6s) Ratio (%) 

Handle Data 2.56 1.72% 50.31 1.22%
DCT 115.48 77.47% 3160.56 76.46%

Quantization 7.22 4.84% 176.42 4.27%
Huffman Encode 23.80 15.97% 746.29 18.05%

Total 149.06 100.00% 4133.57 100.00%

TABLE 6. COST COMPARISON OF THREE IMPLEMENTATIONS. 

 
Half-DCT 
Message 
Passing 

DCT 
Buffering 

DCT 
Shared 

Memory 

Nios 
System 
Module 

Device  
EP20K200 
EFC484-2X 

Total logic 
elements 

7439 
(89%) 

4555  
(54%) 

4726  
(56%) 

2766  
(33%) 8320 

Total ESB bits 26496  
(24%) 

27840  
(26%) 

27840  
(26%) 

26496  
(24%) 106496 

TABLE 5. SYNTHESIS AND SIMULATION RESULTS 
OF THE GENERATED VHDL CODE.  

 SEND RECV Half-DCT (1) DCT (1) DCT (2)
IOs 916 591 1476 1476 64 

Logic Cells 621 686 3461 6253 2100 
Frequency (MHz) 98.6 179.8 42.6 45.6 38.9 

Cycle 128 128 571 1809 3988 
Latency (10-6s) 1.30 0.712 13.4 39.7 102 

(1) Message passing; (2) Buffering and Shared memory TABLE 7. RUN TIME OF EVERY MODULE OF JPEG DESIGN 
IN DIFFERENT IMPLEMENTATIONS (TIMES/SEC). 

 Pure SW 
Half-DCT  
Message 
Passing 

Buffering Shared memory 

HandleData 21422.59 21422.59 21422.59 21569.24
DCT 194.82 *293.51 2117.89 8156.11

Quantization 3229.26 3255.96 3477.7 3267.38
HuffmanEncode 1006.88 1006.88 1093.8 1006.88

Overall 0.75 0.99 2.09 2.40
Overall Speedup 1.00 1.32 2.79 3.20

*The half hardware DCT runs 2115.26 times/second. 
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