
High-Level Data Communication Optimization For
Reconfigurable Systems

Adam Kaplan Majid Sarrafzadeh

Computer Science Department
University of California, Los Angeles

Los Angeles, CA 90095

{kaplan, majid}@cs.ucla.edu

Ryan Kastner

Department of Electrical and Computer Engineering
University of California, Santa Barbara

Santa Barbara, CA 93106

kastner@ece.ucsb.edu

ABSTRACT
This paper describes methods for synthesizing the internal
representation of a compiler into a hardware description language
in order to program reconfigurable hardware devices. We
demonstrate the usefulness of static single assignment (SSA) in
reducing the amount of data communication in the hardware.
However, the placement of Φ-nodes by current SSA algorithms is
not optimal in terms of minimizing data communication. We
propose an improved SSA algorithm which optimally places Φ-
nodes, further decreasing area and communication latency. Our
algorithm reduces the data communication (measured as total
edge weight in a control data flow graph) by as much as 20% for
some applications as compared to the best-known SSA algorithm
– the pruned algorithm. We also show that our algorithm
frequently leads to increased overall area, and describe future
modifications to our model that should correct this shortcoming.

1. INTRODUCTION
Reconfigurable devices contain logic that can quickly be
reprogrammed as often as needed. This has led to a revolution in
the way designers conceptualize hardware systems, as the very
logic that drives circuitry can be customized as often as needed.
Reconfigurable hardware is usually realized via Field
Programmable Gate Array (FPGA) technology. Increasingly, this
hardware is being incorporated into computing systems, often
coupled with one or more microprocessor or ASIC devices on the
same chip. The reconfigurable components of the system provide
fast, flexible logic at a very low cost. These components can be
modified and re-implemented, much like software programs.
Therefore, it has become attractive to design hardware algorithms
in a high-level programming language, and compile this code into
actual hardware logic (rather than software binary form).
The compiler straddles the boundary between application and
hardware, making it a natural area to perform reconfigurable
system exploration. The compiler can already map portions of the
application to different processors by simply emitting code. In
order to complete the system exploration space – one with
processors, ASIC and reconfigurable components, we need a path
from the compiler to a hardware description language (HDL).
This HDL can then be synthesized into reconfigurable circuitry.
An area of extreme importance is the translation of the compiler’s
intermediate representation (IR) to a form that is suitable for
synthesis to hardware. During this translation, we should attempt
to exploit the existing concurrency of the application and discover
additional parallelism. Also, we should determine the types of
hardware specialization that will increase the efficiency of the

application. Finally, we must take into account the hardware
properties of the circuit, e.g. power dissipation, critical path and
interconnect area.
Static single assignment [1,2] transforms the IR such that each
variable is defined exactly once. It is an ideal transformation for
hardware because side effects of the transformation, Φ-nodes, are
easily implemented in hardware as multiplexors. Furthermore, it
creates a one-to-one mapping between each variable and its
corresponding value, which allows the compiler to identify each
individual signal uniquely. It has been used in many projects
where the final output is an HDL [3,4,5]. Yet, SSA was originally
developed to enable optimizations for microprocessor
architectures; it was not originally meant for hardware synthesis.
In this paper, we describe SSA and its effect on the optimization
of hardware properties of the circuit. We show how SSA can be
used to minimize data communication; this has a direct effect on
the area, amount of interconnect and delay of the final circuit.
Furthermore, we show that SSA in its original form is not optimal
in terms of data communication and give an optimal algorithm for
the placement of Φ-nodes to minimize the amount of data
communication.
In the next section, we give background material related to our
research. We show how SSA is useful to minimize interconnect in
the hardware in Section 3. Furthermore, we point out a
fundamental shortcoming of traditional SSA and develop a new
SSA algorithm to overcome this limitation. Section 4 presents
experiments to illustrate the effect of these algorithms to
minimize data communication. We discuss related work in
Section 5 and provide concluding remarks in Section 6.

2. PRELIMINARIES
2.1 Control Data Flow Graphs
We focus on the control data flow graph (CDFG) as a model of
computation (MOC) for the internal representation (IR) of the
compiler. The CDFG offers several advantages over other models
of computation. Most compilers have an IR that can easily be
transformed into a CDFG. Therefore, this allows us to use the
back-end of a compiler to generate code for a variety of
processors. Furthermore, the techniques of data flow analysis (e.g.
reaching definitions, live variables, constant propagation, etc.) can
be applied directly to CDFGs. Finally, many high-level
programming languages (Fortran, C/C++) can be compiled into
CDFGs with slight modifications to pre-existing compilers; a pass
converting a typical high-level IR into control flow graphs and
subsequently CDFGs is possible with minimal modification. Most

importantly, we believe that the CDFG can be mapped to a
variety of different microarchitectures1. All of these reasons
indicate that the CDFG is a good MOC for investigating the
performance of mapping different parts of the application across a
wide variety of SOC components.
A CDFG consists of a set of control nodes Ncfg and control edges
Ecfg. The control nodes are a set of basic blocks. Each control
node holds a number of instructions or computations that execute
atomically. The control edges model the control flow
relationships between the control nodes. The control nodes and
control edges form a directed graph Gcfg(Ncfg, Ecfg). Each control
node contains a set of operations. The data flow relationships
between the operations in a particular control node can be viewed
as a sequential list of instructions I or a data flow graph
Gdfg(Vdfg,Edfg). The conversion from I to Gdfg , and vice-versa, is
trivial. A pictorial view of a CDFG is represented in Figure 1.

++
+ *

*

Figure 1: A Control Data Flow Graph

In this work, we examine the problem of manipulating a CDFG
such that the resulting hardware exhibits enhanced performance.
Our work assumes that there is a tool to synthesize a CDFG into
some hardware description language (HDL). (EDA tools – either
academic or commercial – can perform optimization from that
level on.) We have built such a tool for system synthesis, and
have used it to obtain the results of this work. We refer the
interested reader to [6] for more details.

3. MINIMIZING INTER-NODE
COMMUNICATION
In order to determine the data exchange between nodes in a
CDFG, we establish the relationship between where data is
generated and where data is used for calculation. The specific
place where data is generated is called its definition point. A
specific place where data is used in computation is called a use
point. The data generated at a particular definition point may be
used in multiple places. Likewise, a particular use point may
correspond to a number of different definition points; the control
flow dictates the actual definition point at any particular moment.

If data generated in one control node is used in a computation in a
second control node, these two control nodes must have a
mechanism to transfer the data between them. One method of

1 We refer to a microarchitecture as a register transfer level

description.

communicating data between two control nodes is to send it
across a direct connection between the two control nodes. This
requires a set of wires to exist between the control nodes. In an
alternate scheme, the first control node transfers the data to
memory and the second control node reads the memory to access
the data. Therefore, with the latter communication method
minimizing the inter-node communication would have a direct
impact on the number of memory accesses, whereas with the
former method the interconnect between the control nodes would
be reduced. However, in both scenarios real performance boosts
can be realized through communication optimization. Thus,
regardless of the data communication method used, we should try
to generically model and minimize inter-node communication.

3.1 Static Single Assignment
We can determine the relationship between the use and definition
points through static single assignment [1,2]. Static Single
Assignment (SSA) renames variables with multiple definitions
into distinct variables – one for each definition point.
We define a name to represent the contents of a storage location
(e.g. register, memory). A name is unspecific to SSA. In non-SSA
code, a name represents a storage location but we may not know
the exact location; the precise location of the name depends on the
control flow of the program. Therefore, we call a name in non-
SSA code a location. SSA eliminates this confusion as each name
represents a value that is generated at exactly one definition point.
The SSA definition of a name is called a value.
In order to maintain proper program functionality, we must add
Φ-nodes into the CDFG. Φ-nodes are needed when a particular
use of a name is defined at multiple points. A Φ-node takes a set
of possible names and outputs the correct one depending on the
path of execution. Φ-nodes can be viewed as an operation of the
control node. They can be implemented using a multiplexor.
Figure 2 illustrates the conversion to SSA.

SSA is accomplished in two steps, first we add Φ-nodes and then
we rename the variables at their definition and use points. There
are several methods for determining the location of the Φ-nodes.
The naïve algorithm would insert a Φ-node at each merging point
for each original name used in the CDFG. A more intelligent
algorithm – called the minimal algorithm – inserts a Φ-node at the
iterated dominance frontier (IDF) of each original name [1]. The
semi-pruned algorithm builds smaller SSA form than the minimal
algorithm. It determines if a variable is local to a basic block and
only inserts Φ-nodes for non-local variables [2]. The pruned
algorithm further reduces the number of Φ-nodes by only
inserting Φ-nodes at the IDF of variables that are live at that time
[7]. After the position of the Φ-nodes is determined, there is a
pass where the variables are renamed.
The minimal method requires O(|Ecfg| + |Ncfg|2) time for the
calculation of the iterated dominance frontier. The iterated
dominance frontier and liveness analysis must be computed
during the pruned algorithm. There are linear or near linear time
liveness analysis algorithms [8]. Therefore, the pruned method
has the same asymptotic runtime as the minimal method.
We should suppress any unnecessary data communication
between control nodes. Now we explain how to minimize the
inter-node communication.

3.2 Minimizing Data Communication with
SSA
SSA allows us to minimize the inter-node communication. The
various algorithms used to create SSA all attempt to accurately
model the actual need for data communication between the
control nodes. For example, if we use the pruned algorithm for
SSA, we eliminate false data communication by using liveness
analysis, which eliminates passing data that will never be used
again.
SSA allows us to minimize the data communication, but it
introduces Φ-nodes to the graph. We must add a mechanism that
handles the Φ-nodes. This can be accomplished by adding an
operation that implements the functionality of a Φ-node. A
multiplexor provides the needed functionality. The input names
are the inputs to the multiplexor. An additional control line must
be added for each multiplexor to determine that the correct input
name is selected.

x ← …

y ← x + x

x ← x + y

z ← x + y

x0 ← …

y0 ← x0 + x0

x1 ← x0 + y0

z0 ← x1 + y0

a)

b) x ← … x ← …

← x

x1 ← … x2 ← …

x3 ← Φ(x1,x2)
← x3

Before After

Figure 2: a) Conversion of Straight-line Code to SSA b) SSA
Conversion with Control Flow

A fundamental limitation of using SSA in a hardware compiler is
the use of the IDF for determining the positioning of the Φ-nodes.
Typically, compilers use SSA for its property of a single
definition point. We are using it in another way – as a
representation to minimize the data communication between
hardware components (CFG nodes). In this case, the positioning
of Φ-nodes at the iterated dominance frontier does not always
optimize the data communication. We must consider spatial
properties in addition to the temporal properties of the CDFG
when determining the position of the Φ-nodes. We define
temporal placement as the traditional placement of a Φ-node at
the IDF, and introduce spatial placement as the placement of a Φ-
node at its use point(s).
We illustrate this concept with a simple example. Figure 3a
exhibits traditional SSA2 form as well as the corresponding
floorplan, containing control nodes a through e. The Φ-node is
placed in control node d. In the traditional SSA scheme, the data

2 We use the terms “traditional SSA” and “temporal SSA”

interchangeably to mean the SSA introduced by Cytron et al.
[1].

values x2, x3, and x4 (from nodes a, b, and c) are used in node d,
but only in the Φ-node. Then, the data x5 is used in node e.
Therefore, there must be a communication connection from node
a to node d, node b to node d and node c to node d, as well as a
connection from node d to node e – a total of 4 communication
links. In Figure 3b, the Φ-node is spatially distributed to node e.
Then, we only need a communication connection from nodes a,b,
and c to node e, a total of 3 communication links.

From this example, we can see that traditional Φ-node placement
is not always optimal in terms of data communication. This arises
because Φ-nodes are traditionally placed in a temporal manner.
The iterated dominance frontier is the first place in the timeline of
the program where the two (or more) locations of a variable
merge. Clearly, however, this is not necessarily the only place
where they can be placed. When considering hardware
compilation, we must think spatially as well as temporally. By
moving the position of the Φ-nodes, it is possible to achieve a
better layout of our hardware design. In order to reduce the data
communication, we must consider the number of uses of the value
that a Φ-node defines as well as the number of values that the Φ-
node takes as an input.

3.3 An Algorithm for Distributing Φ-nodes
The first step of spatially distributing Φ-nodes is determining
which Φ-nodes should be moved. We assume that we are given
the correct temporal positioning of the Φ-nodes according to
some SSA algorithm (e.g. minimal, semi-pruned, pruned). At this
point, we have no knowledge of the actual cost of communication
between any two basic blocks (as this will be determined later
during layout). Thus, we choose to consider the communication
cost between any two blocks as a unit cost of 1. (At a later design
step, an annotated CDFG could return to this phase with complete
cost information. In this case, a more refined model should be
used.) The movement of a Φ-node depends on two factors. The
first factor is the number of values that the Φ-node must choose
between. We call this the number of Φ-node source values s. The
second factor is the number of uses that the value of the Φ-node
defines. We call this the Φ-node destination value d. Taking
Figure 3a as an example, the Φ-node source values are x2, x3, and
x4 whereas the Φ-node destination value is x5. Determining s is
simple; we just need to count the number of source values in the
Φ-node. Finding the number of uses of the destination value is
more difficult. We can use def-use chains [9], which can be
calculated during SSA.
The relationship between the number of communication links CT
needed for a Φ-node in temporal SSA and the number of
communication links CS in spatial SSA is:

dsCT += dsCS ⋅=

Using these relationships, we can easily determine if spatially
moving a Φ-node will decrease the total amount of inter-node
data communication. If CS is less than CT, then moving the Φ-
node is beneficial. Otherwise, we should keep the Φ-node in its
current location.

After we have decided on which Φ-nodes we should move, we
must determine the control node(s) where we should move the Φ-
node. This step is rather easy, as we move the Φ-node from its

original location to control nodes that have a use of the definition
value of that Φ-node. It is possible that by moving the Φ-node,
we increase the total number of Φ-nodes in the design. But, we
are decreasing the total amount of inter-node data communication.
Therefore, the amount of data communication is not directly
dependent on number of Φ-nodes.

It is possible that a use point of the definition value of Φ-node Φ1
is another Φ-node Φ2. If we wish to move Φ1, we add the source
values of Φ1 into the source values of Φ2; obviously, this action
changes the number of source values of Φ2. In order to account
for such changes in source values, we must consider moving the
Φ-nodes in a topologically sorted manner based on the CDFG
control edges. Of course, any back control edges must be
removed in order to have valid topological sorting. We can not
move Φ-nodes across back edges as this can induce dependencies
between the source value and the destination value of previous
iterations i.e. we can get a situation where b1 ← Φ(b1, …). The
source value b1 was produced in a previous iteration by that same
Φ-node. The complete algorithm for spatially distributing Φ-node
to minimize data communication is outlined in Figure 4.

1. Given a CDFG G(Ncfg, Ecfg)
2. perform_SSA(G)
3. calculate_def_use_chains(G)
4. remove_back_edges(G)
5. topological_sort(G)
6. for each node n ∈ Ncfg
7. for each Φ-node Φ ∈ n
8. s ← |Φ.sources |
9. d ← |def_use_chain(Φ.dest)|
10. if s ⋅ d < s + d
11. move_to_spatial_locations(Φ)
12. restore_back_edges(G)

Figure 4: Spatial SSA Algorithm

Theorem 3.1: Given an initially correct placement of a Φ-node,
the functionality of the program remains valid after moving the
Φ-node to the basic block(s) of all the use point(s) of the Φ-
node’s destination value.
Proof: There are two cases to consider. The first case is when the
use point is a normal computation. The second case is when a use
point is Φ-node itself.

We consider the former case first. When we move the Φ-node
from its initial basic block, we move it to the basic blocks of
every use point of the Φ-node’s destination value d. Therefore,
every use of the d can still choose from the same source values.
Hence, if the Φ-node source values were initially correct, the use
points of d remain the same after the movement. We must also
ensure that moving the Φ-node does not cause some other use
point that uses the same name but has a different value. The Φ-
node will not move past another Φ-node that has the same name
because, by

Figure 3a: SSA form and the corresponding floorplan (dotted
edges represent data communication, and grey edges
represent control). Data communication = 4 units.

Figure 3b: SSA form with the Φ-node spatially distributed, as
well as the corresponding floorplan. Data communication = 3
units.

construction of correct initial SSA, that Φ-node must have d as
one of its source values.
The proof of the second case follows similar lines to that of the
first one. The only difference is that instead of moving the initial
Φ-node Φi to that basic block, we add the source values to the Φ-
node Φu that uses d. If we move Φi before Φu, then the
functionality of the program is correct by the same reasoning of
the first part of proof. Assuming that the temporal SSA algorithm
has only one Φ-node per basic block per name, we can add the
source values of Φi to Φu while maintaining the correct program
functionality.

Theorem 3.2: Given a correct initial placement of Φ-nodes, the
spatial SSA algorithm maintains the correct functionality of the
program.

Proof: The algorithm considers the Φ-nodes in a topologically
sorted manner. As a consequence of Theorem 3.1, the movement
of a single Φ-node will not disturb the functionality of the
program hence the Φ-node will not move past another value
definition point with the same name. Since we are considering the
Φ-nodes in forward topologically sorted order, the movement of
any Φ-node will never move past a Φ-node which has yet to be
considered for movement. Also, Φ-node can never move
backwards across an edge (recall that we remove back edges).
Therefore, the algorithm will never move a value definition point
past another value definition point with the same name. Hence
every use preserves the same definition after the algorithm
completes. This maintains the functionality of the program.
Theorem 3.3: Given a floorplan where all wire lengths are unit
length, the Spatial SSA Algorithm provides minimal data
communication.
Proof: The source values of any given phi function are individual
control nodes, and the cardinality of these nodes shall be referred
to as s. Likewise, the destination points of any phi function are
individual control nodes, and their cardinality will be referred to
as d. The number of control nodes which define a given phi
function (i.e. the number of phi nodes for a given phi function)
will be referred to as n. The amount of data communication that
this algorithm can reduce is restricted to the number of data edges
coming into each phi node and the number of data edges coming
out of each phi node. (The other data communication is already
minimized, since SSA variables are actual data values. Therefore,
SSA variables passed between control blocks are actual pieces of
data that must be moved.) If a phi node is coalesced with its use
point, then the number of out degree edges specifically leaving
the phi node can be considered equal to zero. (The phi node's out
degree data edges are now equal to the out degree of the use
point, which cannot be reduced any further by the placement or
removal of the phi node. Therefore the phi node's out degree of
data will be considered equal to zero in this case.)
The total number of data communication points entering and
exiting the phi nodes of a given phi function can be represented
by a cost equation:

∑
Φ

+=
nodes n

)(outinC

where in is the number of inbound edges to each phi node and out
is the number of outbound edges from each phi node.

In a floorplan where each edge has unit cost, this equation
represents the total cost of this phi function in the graph.
In order to maintain correctness in a CDFG, every source value of
a phi function must be coming into all phi nodes defining this
function. (This is the only data that needs to enter a phi node.)
Therefore, for all minimal cost cases, we can say that in = s for
every phi node and the data communication cost of the phi
function can be restated as

∑
Φ

+=
nodes n

 outnsC

since s is constant.
This leaves us with two values we can minimize: n (the number of
total nodes defining a given phi function) and out (the out degree
of a phi node), since s cannot be reduced (for correctness's sake).
The most minimal cost we can have is when n = 1 or out = 0.
(n >= 1, because at least one node must define the phi function.
out = 0 is possible, as stated earlier.)
In the case that out = 0, the phi function will be coalesced with
every use point of that function. That means that the total number
n of nodes defining this function will equal d (the number of use
points of the phi function). Therefore,

ds ⋅=⋅==+= ∑
Φ

sdnsoutnsC
nodes n

(corresponding to spatial placement)
In the case that n = 1, that means that there is only one node
defining a given phi function. This means that either a) there is a
directed edge from this node to every use point or b) there is only
one use point and this node has been coalesced with it.
In the case of part a, the total number of directed edges leaving
the one phi node is equal to d (the number of use points) therefore

ds +=+=+= ∑
Φ

outsoutsC
nodes n

 *1

(corresponding to temporal placement)
Part b is a special case of C = s * d (n = 1, out = 0).

Therefore, we can minimize the total in/out degree of the phi
node(s) by minimizing the equations (C = s + d, C = s * d). This
corresponds to either choosing temporal placement (in the case of
s + d < s * d) or choosing spatial placement (if s + d > s * d).
This minimization of the degree of the phi node(s) leads to
minimal data communication in a CDFG with edges having unit
communication cost.

4. EXPERIMENTAL RESULTS
To measure the effectiveness of using SSA to minimize data
communication between control nodes, we examined a set of DSP
functions. DSP functions typically exhibit a large amount of
parallelism making them ideal for hardware. The DSP functions
were taken from the MediaBench test suite [10]. The files were
compiled into CDFGs using the SUIF compiler infrastructure [11]
and the Machine-SUIF [12] backend. Then, each of the
benchmarks was synthesized using the Synopsys Behavioral

Compiler for architectural synthesis followed by the Synopsys
Design Compiler for logic synthesis.
We performed SSA analysis with the SSA library built into
Machine-SUIF. The library was initially developed at Rice [13]
and recently integrated into the Machine-SUIF compiler.
First, we compare the amount of data flow between the control
nodes using the different SSA algorithms. Given two control
nodes i and j, the edge weight w(i,j) is the amount of data
communicated (in bits) from control node i to control node j. The
total edge weight (TEW) is:

∑∑=
i j

jiwTEW),(

Figure 5 is a comparison of edge weights using three different
algorithms for positioning the Φ-nodes. We compare the minimal,
semi-pruned and pruned algorithms. Recall that the pruned
algorithm is the best algorithm in terms of reducing the number of
Φ-nodes, but worst in runtime. The minimal algorithm produces
many Φ-nodes, but has small runtime. The semi-pruned algorithm
provides a middle ground in terms of runtime and quality of
result.
We divide the TEW of the minimal and semi-pruned algorithm
(respectively) by the TEW of the pruned algorithm. We call this
the TEW ratio. We use the pruned algorithm as a baseline because
it consistently produces the smallest TEW. Referring to Figure 5,
the TEW of the minimal algorithm is much worse than that of the
pruned algorithm. For example, in the benchmark fft2, the TEW
of the minimal algorithm is over 70 times that of the TEW of the
pruned algorithm. The semi-pruned algorithm yields a TEW that
is smaller than that of the minimal algorithm, but still slightly
larger than the TEW of the pruned algorithm. All algorithms have
the same asymptotic runtime and the actual runtimes for all the
algorithms over all the benchmarks were very small (under 1
second). Therefore, we feel that one should use the pruned
algorithm as it minimizes data communication much better than
the other two algorithms. Furthermore, the actual additional
runtime needed to run the pruned algorithm is miniscule.
Each of the algorithms we compared attempt to minimize the
number of Φ-nodes, and not the data communication. There is
obviously a relationship between the number of Φ-nodes and the
amount of data communication. Every Φ-node defines additional
data communication, but there can be inter-node data transfer
without Φ-nodes. Furthermore, as we pointed out in Section 3.2,
minimizing the number of Φ-nodes does not directly correspond
to minimizing the data communication.

In Figure 6, we compare the ratio of Φ-nodes and the ratio of
TEW using the minimal and pruned algorithms. Evidently, the
number of Φ-nodes is highly related to the amount of data
communication. As the Φ-node ratio increases, the TEW ratio
increases. Correspondingly, a large Φ-node ratio corresponds to a
large TEW ratio. This lends validation to using SSA algorithms to
first minimize inter-node communication and then using the
spatial Φ-node repositioning to further reduce the data
communication. In other words, minimizing the number of Φ-
nodes is a good objective function to initially minimize data
communication.

Our next set of experiments focus on using spatial SSA Φ-node
distribution to further minimize the amount of data
communication. Figure 7 shows the number of Φ-nodes that are
spatially distributed by the spatial SSA algorithm. We can see

0.1

1

10

100

adpcm1 convolve2 getblk2 fft2
benchmark

TE
W

 ra
tio

 (v
s.

 p
ru

ne
d)

Minimal

Semi-pruned

Figure 5: Comparison of total edge weight (TEW) between the
minimal and semi-pruned TEW and the pruned TEW

that these Φ-nodes are fairly common; in some of the
benchmarks, over 35% of the Φ-nodes are spatially moved. The
average number of distributed Φ-nodes over all the benchmarks is
11.65%, 18.21% and 13.56%3 for the pruned, semi-pruned and
minimal algorithms, respectively.
Figure 8 gives the percentage of TEW improvement we achieve
by spatially distributing the nodes. By spatially distributing the
Φ-nodes, we reduce the TEW by 1.80%, 4.77% and 8.16% in the
pruned, semi-pruned and minimal algorithms, respectively. We
believe the small amount of improvement in TEW can be
attributed to two things. First of all, the TEW contributed by the
Φ-nodes is only a small portion of the total TEW. Also, when the
number of Φ-nodes is small, the number of Φ-nodes to distribute
is also small. This is apparent in the increasing trend seen by the
pruned, semi-pruned and minimal algorithms. There are many Φ-
nodes when we use the minimal algorithm and correspondingly,
there TEW improvement of the minimal algorithm is the 8.16%.
Conversely, the number of Φ-nodes in the pruned algorithm is
small and the TEW improvement is also small.
We ran the spatial algorithm through our system framework to
determine the actual area improvements achieved by performing
the Spatial SSA Algorithm to distribute the phi-nodes. The results
are shown in Figure 9. The results are mixed and mostly negative.
The chart plots the total area of the temporal (original) phi node
placement divided by the total area of our algorithm’s phi node
placement. A result above 1 denotes that the temporal area is
larger than the spatial area, meaning that our spatial phi node
placement algorithm is beneficial. The benchmarks getblk1 and
getblk2 benefit immensely from the spatial phi node placement.

3 Not all of the benchmarks are included in Figures 7 and 8; the

omitted benchmarks have 0 Φ-nodes that should be distributed,
but these benchmarks are included in the averages.

The other benchmarks either exhibit higher total area due to
spatial placement or the total area is approximately the same (i.e.
the total area ratio is approximately equal to 1).
We believe that the results are somewhat negative for two
reasons. First, as stated previously, the TEW reduction when
using the spatial algorithm is not that large. The TEW reduction
was 1.80%, 4.77% and 8.16% using the pruned, semi-pruned and
minimal algorithms. Second, and more importantly, we have
assumed that all wires are of unit length, which is a naïve
estimation of circuit characteristics. Thus, the TEW is a flawed
model, as it does not take into account the actual cost of
communication between control nodes. (In Section 6, we
conclude with future work intended to enhance this model.)

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

moti
on

no
ise

_e
st2

ad
pc

m2

ad
pc

m1

ge
tbl

k1

ge
tbl

k2

co
nv

olv
e1

no
ise

_e
st1

jct
ran

s fft2

b e n c h m a r k

ra
tio

 (T
EW

 o
r #

 P
hi

 n
od

e)

T EW r a t io

Ph i n o d e r a t io

Figure 6: A comparison of total edge weight (TEW) and the
number of Φ-nodes using the minimal and pruned algorithms.

5. RELATED WORK
The idea of hardware compilation has been discussed since the
1980s. At that time, it was researched under the guise of silicon
compilation and related closely to what is referred to as
behavioral synthesis nowadays.
The past 15 years have brought about a number of platforms that
take high-level code and generate a hardware configuration for
that platform. The PRISM project [14] took functions
implemented in a subset of C and compiled them to their FPGA-
like architecture. The Garp compiler [4] automatically maps C
code to their MIPS + FPGA architecture. The DeepC compiler
[15] is the most similar to our work, as it synthesizes Verilog
from C or Fortran. These are some of the more prevalent
academic works in hardware compilation. The SystemC [16] and
SpecC [17] languages have created much industrial interest in
hardware compilation. Many companies including Synopsis and
Cadence are exploring hardware compilation from these two
languages.
Many compiler techniques use SSA for analysis or transformation
[18,19,20]. To the best of our knowledge, this is the first work
that considers SSA form for hardware compilation.

6. CONCLUSION
In this work, we presented methods needed for hardware
compilation. First, we described a framework for compiling a
high-level application to an HDL. The framework includes
methods for transforming a traditional compiler IR to an RTL-
level HDL. We illustrated how to transform the IR into a CDFG

form. Using the CDFG form, we explained methods to control the
path of execution. Furthermore, we provided methods for
communicating data between the control nodes of the CDFG.
We examined the use of SSA to minimize the amount of data
communication between control nodes. We showed a shortcoming
of SSA when it is applied to minimizing data communication. The
temporal positioning of the Φ-node is not optimal in terms of data
communication. We formulated an algorithm to spatially
distribute the Φ-node to minimize the amount of data
communication. We showed that this spatial distribution can
decrease the data communication (measured as TEW) by 20% for
some DSP functions. Additionally, we proved that if all data
communication wire-lengths are of unit cost, the Spatial SSA
Algorithm provides minimal data communication.
In practice, we found that our algorithm frequently increases total
area of the circuit, which is a negative result. As future work, we
plan to use a feedback mechanism from the hardware floorplanner
to the compiler to incrementally derive more optimal results. This
will enable us to annotate the CDFG with better wire length
estimates (obtained during placement), rather than using the naïve
unit wire length approximation assumed in this work. Presently,
we only consider temporal and spatial placement of Φ- nodes (at
the IDF or at use points), but frequently there is an intermediate
range of possible placements between these two locations. We
intend to explore the possibilities for Φ- node distribution across
this range, while using more realistic wire lengths for higher
accuracy. Additionally, we plan to account for the size of
duplicated multiplexors. Placement of Φ- nodes will become an
algorithmically harder problem, but will yield higher performance
through further reduced data communication.

7. REFERENCES
[1] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman and F.

K. Zadek, “An Efficient Method of Computing Static Single
Assignment”, Proceedings of ACM Symposium on Principles
of Programming Languages, January 1989.

[2] P. Briggs, K. Cooper, T. Harvey and L. Simpson, “Practical
Improvements to the Construction and Destruction of Static
Single Assignment Form”, Software Practice and
Experience, vol. 28, no. 8, pp. 859-881, July 1998.

[3] E. Waingold et al, “Baring it all to Software: The Raw
Machine,” IEEE Computer, Sep 1997.

[4] T. J. Callahan, J. R. Hauser and J. Wawrzynek, “The Garp
Architecture and C Compiler”, IEEE Computer, vol. 33, no.
4, April, 2000.

[5] M. Hall, P. Diniz, K. Bondalapati, H. Ziegler, P. Duncan, R.
Jain and J. Granacki, "DEFACTO: A Design Environment
for Adaptive Computing Technology", Proceedings of the
6th Reconfigurable Architectures Workshop, Springer-
Verlag, 1999.

[6] R. Kastner, Synthesis Techniques and Optimizations for
Reconfigurable Systems, PhD thesis, University of
California, Los Angeles, 2002.

0%
5%

10%
15%
20%

25%
30%

35%
40%

ad
pc

m1

co
nv

olv
e1

co
nv

olv
e2

jct
ran

s

ge
tbl

k1

ge
tbl

k2

no
ise

_e
st1 fft1 fft2

benchmark

%
 (s

pa
tia

l p
hi

-n
od

es
/to

ta
l p

hi
no

de
s)

pruned

semi-pruned

minimal

Figure 7: Comparison of the number of spatially distributed
Φ-nodes and the total number of Φ-nodes using the three SSA
algorithms.

0%

5%

10%

15%

20%

25%

ad
pc

m1

co
nv

olv
e1

co
nv

olv
e2

jct
ran

s

ge
tbl

k1

ge
tbl

k2 fft1 fft2

no
ise

_e
st1

benchmarks

%
 c

ha
ng

e
in

 T
EW

 th
ro

ug
h

sp
at

ia
l p

hi
-n

od
e

di
st

rib
ut

io
n

pruned

semi-pruned

minimal

Figure 8: The percentage change in total edge weight when we
distribute the Φ-nodes using the three SSA algorithms.

[7] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman and F.
K. Zadek, “Efficiently Computing Φ-nodes On-the-Fly”,
ACM Transactions on Programming Languages and
Systems, October 1991.

[8] K. Kennedy. “A Survey of Data Flow Analysis Techniques”,
Program Flow Analysis: Theory and Applications, Prentice-
Hall, 1981.

[9] S. S. Muchnick, Advanced Compiler Design and
Implementation, Morgan Kaufmann Publishers, San
Francisco, 1997.

[10] C. Lee, M. Potkonjak and W. H. Maggione-Smith,
“MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems”, Proceedings of
IEEE/ACM International Symposium on Microarchitecture,
1997.

0

0.5

1

1.5

2

2.5

ad
pc

m1

ad
pc

m2

co
nv

olv
e1

co
nv

olv
e2

jct
ran

s

ge
tbl

k1

ge
tbl

k2

moti
on fft1 fft2

no
ise

_e
st2

benchmark

to
ta

l a
re

a
(t

em
p

o
ra

l/s
p

at
ia

l)

pruned
semipruned
minimal

Figure 9: Comparison of the total area of the temporal versus
spatial phi node placement for the three SSA algorithms.
(Omitted benchmarks too large to synthesize.)

[11] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B.R.
Murphy, S.-W. Liao, E. Bugnion and M. S. Lam,
“Maximizing Multiprocessor Performance with the SUIF
Compiler”, IEEE Computer, December 1996.

[12] M. D. Smith and G. Holloway, An Introduction to Machine
SUIF and its Portable Libraries for Analysis and
Optimization, Division of Engineering and Applied Sciences,
Harvard University, http://www.eecs.harvard.edu/machsuif/

[13] P. Briggs, T. Harvey and L. Simpson, Static Single
Assignment Construction, Implementation documentation,
1996. Available at
ftp://ftp.cs.rice.edu/public/compilers/ai/SSA.ps.

[14] A. Smith, M. Wazlowski, L. Agarwal, T. Lee, E. Lam, P.
Athans, H. Silverman and S. Ghosh, ”PRISM II Compiler
and Architecture”, Proceedings of IEEE Workshop on
FPGA-based Custom Computing Machines, April, 1993.

[15] J. Babb, M. Rinard, C. A. Moritz, W. Lee, M. Frank, R.
Barua and S. Amarasinghe, “Parallelizing Applications into
Silicon”, Proceedings of Field-Programmable Custom
Computing Machines, 1999.

[16] Open SystemC Initiative, http://www.systemc.org.

[17] D. D. Gajski, J. Zhu, R. Dömer, A. Gerstlauser, S. Zhoa,
SpecC: Specification Language and Methodology, Kluwer
Academic Publishers, Boston, 2000.

[18] B. Alpern, M. N. Wegman and F. K. Zadeck, “Detecting
Equality of Variables in Programs”, Proceedings of
Principals of Programming Languages, Jan. 1988.

[19] P. Briggs and K. D. Cooper, “Effective Partial Redundancy
Elimination”, Proceedings of Programming Language
Design and Implementation, June 1994.

[20] P. Briggs, K. D. Cooper and L. T. Simpson, “Value
Numbering”, Software – Practice and Experience, vol. 27,
no. 6, June 1997.

