PAP: Power-Aware Partitioning of Reconfigurab le Systems

Vijay Kappagantula
Texas A&M University
College Station, Texas 77843

kpramod@ee.tamu.edu

ABSTRACT

Existing approaches in hardware-software partitioning do
not consider the maximum available system power while
making the partitioning decision. Such a decision is sen-
sitive to design efficiency when the target system is recon-
figurable and supports multiple applications. Since parti-
tioning and scheduling are interdependent, neglecting the
available system power could result in a infeasible schedule.
In this paper, we present a power-aware partitioning tech-
nique for reconfigurable systems that could support a set
of applications. The applications specified at a task level
of granularity are partitioned and scheduled such that tim-
ing and maximum available system power constraints are
satisfied with minimum reconfigurable logic.

Keywords

Partitioning, scheduling, codesign, multifunction, power-aware

1. INTRODUCTION

Today’s system architects adopt heterogeneous architec-
tures as design paradigms for high performance and con-
figurable devices as components for cost effective solutions.
The HW-SW codesign methodology helps designers to em-
brace complex designs by reusing the IP’s and shorten the
time market gap. A generic system consists of one or more
CPUs (software processing entity), reconfigurable hardware
(FPGA) and/or hardware/ASIC processing elements. In
HW-SW codesign, applications are usually specified at task
level granularity. The key issues involve in codesign are
partitioning, synthesis and cosimulation before final imple-
mentation. The task partitioning is a critical design step
that entails appropriate mapping (hardware or software) and
scheduling of tasks on the processing elements such that the
timing constraints of applications are met with minimum
cost (hardware area and/or power). Partitioning problem
is non-trivial since its solution space increases exponentially
with number of tasks and their implementation techniques.

Permissionto malke digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationonthefirst page.To copy otherwiseto
republisho poston senersor to redistrituteto lists, requiresprior specific
permissiorand/orafee.

SSRS’'03 Anaheim,CaliforniaUSA

Copyright 2002ACM X-XXXXX-XX-XIXX/XX ...$5.00.

Rabi N. Mahapatra
Texas A&M University
College Station, Texas 77843

rabi@cs.tamu.edu

An efficient partitioning strategy is always in demand to
reduce the design time while satisfying the performance.
Although most attention is focused on design speed and
accuracy while partitioning and scheduling, power consump-
tion is becoming more dominant in complex system design.
Therefore, the system architects need to make the design

power-aware. An efficient power-aware design could be achieved

by integrating task level power consumptions during the par-
titioning stage of codesign.

The reconfigurable components in a system offer signif-
icant benefits in terms of handling design variations. A
complex system can be spatially decomposed into simpler
functions (tasks) and appropriately scheduled for execution.
Similarly, multiple functions can be integrated into a single
system (multifunctional) by sharing some of the hardware
modules (when possible) for cost effective design.

The power-performance trade-off is critical to successful
system design. In a reconfigurable system, tasks could be
swapped between the components (CPUs and FPGA) to
meet different performance goals. Based on the power bud-
get of a system, more tasks could be executed on the hard-
ware (FPGA) to enhance the processing speed. Similarly,
new tasks may be admitted in a multifunctional system if
the power consumptions of incoming tasks meet the avail-
able power at that instant. New research opportunities in
system architecture are evident due to synergism of codesign
methodology and advent of reconfigurable architectures.

In this paper, a power aware partitioning (PAP) heuris-
tic algorithm has been proposed for single functional sys-
tems. The algorithm has been extended to consider multi-
functional system that includes sharing of common tasks be-
tween applications (if any) to provide cost effective solution.
Through case studies, the efficacy of proposed approach has
been demonstrated.

The rest of the paper is organized as follows. Section 2 de-
fines the problem formally. Section 3 analyzes the work that
has already been done in this area. We present the power-
aware partitioning algorithm for single functional systems in
Section 4 and extend it to multifunctional systems in Section
5. We discuss the experimental results in Section 6.

2. PROBLEM DEFINITION

We assume a HW/SW co-design architecture model that
consists of a single programmable processor (CPU), a recon-
figurable hardware (FPGA) and an underlying communica-
tion architecture (shared bus) between them. Though it is
possible to consider certain tasks mapped only to hardware
or software, the CPU and the reconfigurable hardware are

assumed to be able to execute all the tasks in the set of
applications independently. The architecture is constrained
by the maximum power rating Pp,q. of the non-rechargeable
battery source and the total available hardware area Ahtotal
(total number of logic gates/CLB’s/slices of the reconfig-
urable hardware).

Each individual application is described as a Directed
Acyclic Graph (DAG) G = (V, E). Node v € V repre-
sents a task and each edge e € E represents data depen-
dence between the connecting task nodes. Each task v is ei-
ther mapped to the CPU or to the reconfigurable hardware.
Each task in the DAG is associated with five parameters
(Tsv, Psv: Execution time and instantaneous power dissi-
pation when mapped to CPU, Thv, Phv: Execution time
and instantaneous power dissipation when mapped to the
FPGA,Ahv: Number of CLB’s used when mapped to the
FPGA). The execution time of a task is assumed to non-
uniform when executed on both the CPU and the FPGA
resource. The instantaneous power dissipation is assumed
to be uniform during the time of execution of a task on a
processing element. An edge u — v in the DAG implies
that task u is a predecessor of task v. The weight of the
edge between two tasks represents the communication time
between the tasks. The weight is determined based on the
underlying communication architecture between the CPU
and the FPGA and the amount of data communicated be-
tween the tasks. The weight of an edge between tasks where
both tasks are mapped to the same resources is assumed to
be negligible.

The problem of power-aware partitioning of multifunc-
tional systems could be formally defined as follows: Given
an application set denoted by {A1, Aa, ..., An}, where each
individual application Aj is specified as a DAG with a peri-
odic deadline Dy, total available hardware Ahiotar and mazx-
imum power rating of the system Pmaz, generate a partition
for each application such that they meet their timing and
mazimum power rating constraints with minimum hardware
cost. More than one application could be active at run time.

3. RELATED WORK

While we are not aware of any partitioning methodology
that concurrently partitions and schedules an application
and takes into account the maximum power rating of the
system while partitioning and scheduling an application, a
number of algorithms have been proposed for partitioning of
single and multifunctional systems such that they meet their
timing requirements only. Some of the works include iter-
ative improvement, heuristics and mathematical program-
ming techniques [1, 2, 3, 4, 5, 6, 7, 8]. In [6], an integrated
partitioning and scheduling algorithm for hardware-software
partitioning is discussed but their work is limited to ap-
plications where tasks have uniform execution times when
mapped to software and negligible execution times when
mapped to hardware. [7] presents two partitioning algo-
rithms for multifunctional systems by modifying the GCLP
algorithm discussed in [5]. These works verify if the ap-
plication meet its timing requirement but do not consider
the power rating while making the partitioning decision. In
[9], a scheduling technique for power critical systems is pre-
sented where tasks are rescheduled using the available slacks
such that the application meets its timing and power require-
ments. Since their approach assumes an initial mapping and
schedule, it leaves little flexibility for rescheduling tasks. In

our approach, concurrent partitioning and scheduling pro-
vides more flexibility in scheduling the tasks and ensures
that the application meets its timing and power require-
ments.

4. PAP : POWER AWARE PARTITIONING
ALGORITHM

In this section, we present the power-aware partitioning
algorithm for single functional systems.

4.1 Algorithm Foundation

Power-aware partitioning algorithm is based on iterative
improvement techniques. The algorithm initially maps all
the tasks in the application to software. The start times of
the tasks on the CPU are determined on the basis of a pri-
ority function. The priority function used ranks the tasks in
the order of decreasing depth in the task graph. One task
per iteration is selected to be moved to hardware based on
the tasks’s mobility indices and a Task Selection Routine.
The start time of the execution of the selected task 7 is de-
termined. The power profile of the schedule representing the
instantaneous power consumption of all tasks is computed
and verified to see if it meets the maximum power rating of
the system. The partitioning process is repeated until the
schedule of the application meets its timing constraint or
until all available hardware logic is exhausted.

4.2 TaskMobility

The mobility of a task in the application provides informa-
tion about the parallelism that could be achieved by moving
the task from software to hardware and executing it in par-
allel with other tasks. The mobility of a task determines
it’s earliest possible start and latest possible finish times.
The mobility indices of the tasks in the application are de-
pendent on the schedule of the application and may change
at each iteration of the partitioning algorithm. A task is
defined as mobile if its latest possible finish time is greater
than its earliest possible start time and tmmobile otherwise.
The following procedure summarizes the computation of the
mobility of a task.

Let t; denote the execution time of task i.

ti = ts;taskiis mapped to SW (1)

th;, task i is mapped to HW (2)

Let E; denote the earliest possible start time and L; denote
the latest possible finish time of task i. E; and L; provide

the lower and upper time bound for determining the start
time of the task.

F; = max
kepred(i)

n(k) 3)

where pred(i) denotes the immediate predecessor set of task
i, n(k) denotes the finish time of task k. Similarly

L; = min {n(k)— ti} (4)
kesuce(i)

where succ(i) denotes the immediate successor set of task i,
n(k) denotes the start time of task k. The mobility of a task
i, u(7) is defined as follows:
wi) = LLi> I
0,L; = E; (5)

4.3 Task SelectionRoutine

At every step of the partitioning algorithm, one task is
selected to be moved from software to hardware and exe-
cuted in parallel with other tasks. The task to be moved
is selected on the basis of a priority function. The software
tasks are ranked in the decreasing order of their execution
times and their mobility indices are used to select the task
to be moved to hardware. The following procedure summa-
rizes the Task Selection Routine.

Procedure: Task Selection Routine
Inputs: ts;, for all i € Ns, Ns: Set of software tasks
Output: Selected Task
S.1 Rank the tasks in Ns in the order of decreasing software
execution times ts;
S.2 Compute the mobility u(i) for alli € N,
S.3If u(i) =0 for alli € N;
task 1 with maximum execution time ts; is selected to
be moved to hardware
terminate procedure
Else
task i €ENg with maximum execution time ts; is
considered
If u(@) =1
task i is selected to be moved to hardware
terminate procedure
Else If p(i) = 0
remove task i from N
go to S.3

4.4 Power Characteristic of the Partitioning
Schedule

The embedded system is specified to perform at a max-
imum power rating denoted by Pmaz. The power profile
of the schedule is defined as the instantaneous power con-
sumption of the tasks. The Power profile (Py) is computed
as follows:

Py (t) = Z P(i), for all i € set of tasks (6)

active at time instant t

The schedule is called power-valid if the power profile of
a single iteration of the application is less than or equal
to the maximum power rating of system (Pmaz). If the
power profile of the schedule at any time instant exceeds the
maximum power rating of the system, then the power profile
at that time instant is having a power spike. The schedule
with one or more power spikes is a infeasible schedule. The
power spike could be removed by either rescheduling the
execution or changing the map of one or more tasks active
at that time instant.

The total energy of the schedule (E.) is computed as fol-
lows:

Ts
E, = P,(t)dt, Ty is the finish time (7)
0
of a single iteration of the application

45 Time-Valid Schedule

The finish time of a single iteration of the application
(Tewec) is defined as the time when all the tasks in the ap-

plication finish their execution. It is defined as:

Tezec =
max(n(i) +¢;),for alli € N (8)

where 7(7) is the start time, ¢; is the execution time and N
is the total number of tasks in the application.

The schedule of the application is called Time-valid if Tegzec
is less than or equal to D, where D is the application dead-
line.

4.6 Communication Model for Partitioning

The mapping of tasks in the application to either hard-
ware or software depends on the underlying communication
architecture(bus, protocol) and the communication delay.
The performance gain obtained by moving tasks to hard-
ware could be lost if the communication overhead is too
large or due to non-availability of resources (bus). Thus the
scheduling of tasks and the their communications on the
bus are interdependent. The partitioning algorithm should
also schedule the communication between communicating
components of the system. In order to schedule the com-
munication, we need to estimate the delay between any two
communicating tasks which is presented in the next section.

4.6.1 Calculation of the communication delay

We have used a 32 bit, 33 Mhz PCI architecture bus as
the communication interface between the CPU and the re-
configurable hardware (FPGA). The communication delay
tecomm(u,v) is the weight of the edge between tasks u and
v in the application specified at a task level of granularity.
The communication delay tcomm is assumed to be time re-
quired for the transmission of one sample of data on the
channel(PCI Bus). The communication delay is computed
according to the method in [10] as follows:

tcomm -

ot + AC .

= 9)

where: CC' is 2, the communication cycles required per data

element. Ngampie is the total amount of data being trans-

mitted between the communicating tasks. It is assumed to

be a constant and equal to 1000 (32 bit) words. Npys is

32, the channel bit width. AC is 2, the arbitration cycles
required. F' is 33 MHz, the frequency of the channel.

In our analysis, we have assumed the communication delay
between any two communicating tasks to be uniform. The
above communication delay estimation could be extended
for communicating tasks where the amount of data being
transmitted is different and results in non-uniform delays.

4.6.2 Power overhead due to communication

The power dissipation for the communication of data is
computed based on the scheme described in [11]. The power
dissipation P, s is estimated as follows:

Pbus:%*cbus*VQ*m*n (10)
where: Chys is assumed to 10pF, the capacitance of the bus.
V' is 3.3 V, the V. voltage. m is the number of words sent
per second which is computed based on the sample data. n
is 32, number of bits per word.

We had defined the power profile at any time instant as
the sum of the instantaneous power consumption of all tasks

active at that time instant. The power profile of the schedule
needs to be modified to include the power dissipation on the
bus. The modified power profile (P,) is defined as:

P, (t) = Z P(i) + Pyys(t), for all i € set of tasks (11)

active at time instant t

4.6.3 Scheduling the communication

In the partitioning process, the mobility of the task defines
the earliest possible start time(lower time bound) and the
latest possible finish time (upper time bound) when the task
could be scheduled. These time bounds define an interval
where the task could be scheduled and executed in hardware.
The communications for the task need to be scheduled on
the underlying architecture (bus) during this time interval.
The scheduling of communication between communicating
tasks i and j where i is mapped to software and j is mapped
to hardware is scheduled such that:

n(2) + t; < n(comm) + tcomm < Lj (12)
Ej <n(j) +t; <L (13)

where (i) and n(j) are the start times of tasks i and j. ¢;
and t; are the execution times of tasks i and j. Ej; be earliest
possible start time and L; be latest possible finish time for
task j. m(comm) is the start time of the communication
between i and j. tcomm (7,) denote the communication time
between tasks i and j.

To ensure a feasible schedule for the application, the com-
munications for a task mapped to hardware are scheduled
such that:

1. There are no resource (bus) conflicts.
2. The execution of the task and its communications lie
within the interval specified by its mobility.

4.7 PAP Algorithm
Algorithm: PAP

Input: Application specified as a task graph (T'G), Task
metrics (ts;, thi, Ps;, Phs, Ah;) for all ¢ € N, N is the
total number of tasks in 7T'G. Communication costs tcomm,
Maximum Power Rating Ppqz. Total Available Hardware
Area Ahtotal, Deadline D
Output : All mapped tasks, Time-Valid and Power-Valid
Schedule
Procedure: While{Schedule is not Time-Valid }
S.1 Initially all tasks € N are mapped to software. Schedule
is assumed to be Power-Valid
S.2 Compute tezec, the finish time of a single iteration for
the application
S.3 If (tegee < D)
Schedule is Time-valid. Terminate Algorithm

S.4 Select task i to be mapped to hardware, ¢ € N using the
Task Selection Routine
S.5 Determine the start time 1(i) for task ¢, ¢ € N using its
mobility (i)
Update the Bus Activity using the communication costs
Reschedule the task graph TG and compute t,,.., the new
finish time of one iteration for the application
Update the total hardware used Ah
S.6 If (thgee < tewec) and If (schedule is Power-Valid) and
If(Ah < Ahtotal)

tezec = t’ezec (Update tezec)

Goto Step S.2

Else If(Ah > Ahtatal)
Invalidate the selection of the current task for hard-
ware
mapping for all future iterations
Goto Step S.4
Else If(Schedule is not Power-Valid)
Invalidate the selection of the current task for hard-
ware
mapping for the next iteration
Goto Step S.4
Else If (togee > tewec)
Invalidate the selection of the current task for hard-

ware
mapping for the next iteration
Goto Step S.4

4.8 Example

Figure 1 shows an example of the PAP algorithm. The
initial all software implementation is shown in Figure 1(a).
Task 1 (shaded gray) is selected to be moved to hardware
(FPGA) in iteration 1. The generated schedule is power-
valid but does not meets the deadline D (Figure 1(b)). In
the second iteration, task 2 (shaded gray) is selected to be
moved to hardware. A possible schedule which meets the
timing deadline but fails to meet the maximum power rat-
ing Ppae is shown in Figure 1(c). The execution and com-
munication (shaded black) for task 2 are rescheduled within
the time interval defined by its mobility such that the new
schedule is both time and power valid (Figure 1(d)).

5. PARTITIONING OFMULTIFUNCTION AL
SYSTEMS

In multifunctional partitioning, the set of applications ac-
tive at run time are analyzed to determine the similar tasks
across the set of applications. The applications which are
specified at the task level of granularity are combined into
a single task graph. The power-aware partitioning (PAP)
algorithm is then applied to the combined task graph. The
partitioning algorithm uses the information about similar
tasks and hardware re-usability to map and schedule the
tasks of each individual application.

All the tasks belonging to set of active applications are
initially mapped to software. The tasks are referenced by
their application name to distinguish similar tasks. Our ap-
proach assumes the similar tasks to be identical but could be
extended to other forms of similarities between tasks across
the set of applications. During each iteration, one task of
each application is considered for hardware mapping. The
order in which the applications are considered is based on
their criticality’s and is significant because the mapping in-
formation of tasks is propagated between applications in the
current and successive iterations.

5.1 Ciriticality of Applications

At each step of the partitioning algorithm for multifunc-
tional systems, the set of active applications { A1, Aa, ..., An}
are ordered based on their criticality’s. The set of active
applications are combined into a single task graph (CTG).
The criticality of an application (AC) is a measure of its

¢. Schedule during iteration? (Time-valid, Power-invalid)

\ No Power Spike

d. Schedule after iteration? (Time-valid, Power-valid)

Figure 1: A example of the PAP algorithm

computational complexity and is described as:

Tera

AC; = D;

(14)

where: AC; is the application criticality of A;, A;€ {A1, A, ..., An}.

D; is the deadline of A;.Tcrq is the finish time of one iter-
ation of CTG .

When a task of the C'T'G is moved from software to hard-
ware, the finish time of one iteration (Tcre) is modified.
Therefore the application criticality’s need to be computed
at the beginning of each iteration of the partitioning algo-
rithm. The application with maximum criticality is consid-
ered first and a task from this application is selected to be
moved from software to hardware using the Modified Task
Selection Routine.

5.2 Modified Task SelectionRoutine

The set of active applications specified at a task level of
granularity are combined into a single task graph. All the
tasks are initially mapped to software. During each step of
the partitioning algorithm, one task of each application be-
longing to the set of active applications is moved from soft-
ware to hardware and executed in parallel with other tasks.
The priority function used to move a task from software to
hardware for single functional systems has been described

in Section 4.3. In the case of multifunctional systems, the
information about similar tasks across the set of active ap-
plications and hardware re-usability is used to select the task
to be moved from software to hardware. Thus, the combined
priority function to move a task of one application from soft-
ware to hardware uses information about its execution time,
mobility within the application (self priority) and informa-
tion about similar tasks and hardware availability for re-use
across the set of applications (shared priority) The combined
priority (CP) of a task is defined as:

CP(i) = SeP(i) + ShP(i) (15)

where SeP(i) and ShP(i) are the self and shared priorities
of task i.

Next we present the computation of the Self Priority of all
the software tasks of an application which is part of the com-
bined task graph.

Procedure:Self Priority of software tasks in an Ap-
plication
Inputs: Ak, Ar€ {A1, Aa, ..., An}
Output: Self Priority of all software tasks
S.1 Initialize counter Count = 0
S.2 Compute the mobility u(i) for all i € Ns. N, is set of
software tasks in Ay,
S.3 Determine N1 € N, set of all software tasks with non-
zero mobility and N € N, set of all software tasks with
zero mobility.
S.5 Sort all tasks € N1 in non-increasing order based on
their execution times.
S.6 Sort all tasks € Ns2 in non-increasing order based on
their execution times.
S.7 Extract task i, i € Ns1 with maximum execution time
tSi

S.7.1 Compute Self Priority as follows

Ns — Count

SeP(i) = ~

S.7.2 Increment Count

S.7.3 Remove task i from Ngp

S.7.4 Goto Step S.7
S.8 Extract task i, i € Nga with maximum execution time
tSi
S.8.1 Computer Self Priority as follows:

SeP(i) = N —]\?’ount

S.8.2 Increment Count
S.8.3 Remove task i from Nga
S.8.4 Goto Step S.8

The self priority SeP(7) of software task 1 is computed
based on its execution time and its mobility with respect to
other tasks in the same application. By moving a software
task with highest self priority to hardware, a greater perfor-
mance gain could be achieved but it results in an increase
in the total hardware area. Moving a task which is repeated
across the set of applications such that the hardware imple-
mentation could be reused and results in a reduction in the
total hardware cost.

The shared priority of a software task i is computed as the
total number of times a similar task across the set of appli-
cations has been mapped to hardware Num;. The measure
is normalized across all the software tasks of the application

N,. The shared priority (ShP(i)) of a software task i is
described as:

Numg;

ShP(i) = for allj € Ns (16)

max Num;
As described in Equation 15, each software task of an ap-
plication is assigned an combined priority based on its self
priority and shared priority. The combined priority is used
to bias similar tasks for hardware mapping which could re-
sult in reduction in the total hardware used.

5.3 Partitioning of Multiple Applications
Algorithm: MPAP

Input: Application A;, Deadline D; for all A; € {A1, Aa, ..., An}
Total Available Hardware Area Ahiotar
Maximum Power Rating of the system Ppax
Output: Time and Power valid schedules for the set of ap-
plications.
Procedure: While the schedules for the set of applications
are not time and power valid
S.1 Set of applications are combined to form a single task
graph CTG. All tasks are initially mapped to software.
Schedule is assumed to be Power-Valid.
S.2 The Application Criticality AC; for application A; is
computed, for all A€ {A1, A, ..., An}.
S.3 The applications are ranked by the criticality’s such that
the one with maximum application criticality is considered
first.
S.4 A task of the application is selected for hardware map-
ping using the modified task selection routine and using
steps S.5 and S.6 of the PAP algorithm. Repeat for other
applications in the ordered set {41, A, ..., An}.
S.5 For all A; € {Al,AQ, ,An}
If (Schedule is both time and power valid)

Remove A; from {A1, Aa, ..., An}

End algorithm if schedules of all applications are

time and power valid.

Else
Repeat from step S.2

5.4 Time complexity of the MPAP algorithm

In each iteration, for an combined task graph (C'T'G) con-
taining N tasks, the tasks’s mobility indices are computed in
O(N) time and the tasks are sorted in O(NlogN) time. The
self and combined priorities of the tasks can be computed
in O(N) time. Therefore the modified task selection rou-
tine takes O(NlogN) time. The rescheduling during each
iteration takes O(N) time. Since there can be at most N
iterations and the initial all software implementation on a
single CPU takes O(N?), the time complexity of the MPAP
algorithm is O(NZ2logN).

6. CASE STUDIES

We consider practical signal processing applications with
periodic timing constraints. Two examples used are: 8 Khz
16-QAM Modem and DTMF Codec. These applications
are specified in CGC domain of the Ptolemy system[12].
The tasks/blocks in the applications are generated in C lan-
guage. The software time (¢s;) and software power estimates
(Ps;) for each task i are obtained on the StrongARM SA-
1100 processor (operating at 206 MHz) using JouleTrack
[13]. For the hardware implementations, VHDL RTL was

Table 1: Results from the PAP algorithm and Ex-
tensive Search

Example | Method Power(W)| Finish Simulation
Time(ps) Time(s)
16-QAM | PAP 8 773 0.7
6 780 0.7
2 903 0.7
Ext. 8 671 15310
Search
DTMF PAP 8 791 0.8
6 791 0.8
2 966 0.8
Ext. 8 685 22160
Search

developed for all the functional blocks. The target reconfig-
urable hardware resource in our study is the Xilinz- Virtezr2
(XCV4000). The hardware execution time (7'h;) is com-
puted as the worst case propagation delay after Place and
Route (PAR) on the FPGA using the Xilinx ISE 4.2 simu-
lator. The hardware power dissipation (Ph;) for each task i
in the application is obtained using the Xpower tool which
is part of the Xilinx ISE 4.2 simulator. The underlying bus
architecture between the software processor and the FPGA
is assumed to be the 33 MHz PCI bus.

Next we present two experiments. In the first experi-
ment described, the PAP algorithm is independently applied
to the two applications. The partitioning and scheduling
results are compared with results obtained from extensive
search. In the second experiment, the MPAP algorithm is
applied to the modem and codec applications running con-
currently as a multifunctional system. The results are com-
pared with two single function implementations using the
PAP algorithm.

6.1 Experiment: PAP vs Extensive Search

We assume that the incoming data for both the examples
are periodic with a deadline of 800us. The PAP algorithm
was applied to both the cases with three different power
constraints (8W, 6W, 2W) to see if the results meet the
prescribed deadlines. In order to compare the performance
of the PAP algorithm, we applied the extensive search tech-
nique to partitioning. To be fair, we considered equal FPGA
areas (# of slices used as obtained from the PAP algorithm)
in addition to the given power and deadline constraints for
both cases. We found that the extensive search algorithm
takes about four to six hours compared to the less than a sec-
ond for PAP when simulated using a UltraSPARC5. From
Table 1, it is also observed that the finish times of both the
modem and codec implementations obtained using the PAP
algorithm are comparable to extensive search results for the

same power and FPGA resources. For an available power of

2W, both applications fail to meet the deadline requirement.

6.2 Experiment: SinglevsMultifunctional Par-
titioning

Here, we first partition the two applications separately us-

ing the PAP algorithm assuming system power rating of 8W.
The Table 2 lists the total reconfigurable logic (# of slices
used) for each example. A hybrid system running both the

Table 2: Total Hardware Area for the PAP and
MPAP algorithms when applied to the 16-QAM Mo-
dem and DTMF Codec

Application/s | Algorithm # of Slices
16-QAM and | PAP 842
DTMF

MPAP 803

modem and codec applications without sharing the FPGA
resources would consume 842 slices of FPGA. When MPAP
is applied to the multifunctional system sharing the FPGA
resources with the same power constraint, we found a 5%
saving in the FPGA slices. Depending on the set of appli-
cations and shared tasks, the saving could be significant.

7. CONCLUSION

In this paper, an efficient power-aware partitioning heuris-
tic is proposed for reconfigurable systems. Using power con-
straint as input, the algorithm concurrently partitions and
schedules tasks in a application to meet the deadline. The
algorithm has been applied to both single and multiple func-
tion systems using two case studies. The multifunctional
partitioning algorithm shares resources between functions
and proves to be an area efficient solution. Since the pro-
posed PAP/MPAP algorithm’s run time is low, several utili-
ties can be addressed when applied to hybrid system design.
For example, various tasks/functions in an application can
be swapped between processor and reconfigurable fabrics to
meet different power-performance goals as needed. As our
future research, we plan to extend the scheme to distributed
embedded systems and adopt voltage scaling selectively.

8. REFERENCES

[1] F. Vahid, J. Gong, and D. Gajski. A binary-constrained
search algorithm for minimizing hardware during
hardware-software partitioning. In Furopean Design
Automation Conference, pages 214-219, 1994.

[2] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli.
Hardware/software partitioning with iterative
improvement heuristics. In 9th International
Symposium on System Synthesis, pages 71 76, 1996.

[3] R. Niemann and P. Marwedel. An algorithm for
hardware /software partitioning using mixed integer
linear programming. In ED&TC, 1996.

[4] R. K. Gupta and G. De Michelli. Hardware-software
cosynthesis for digital systems. IEEE Trans. Design
and Test of Computers, 10(3):29-41, Sept. 1993.

[5] A. Kalavade and E. A. Lee. The extended partitioning
problem: Hardware/software mapping and
implementation-bin selection. In Sizth International
Workshop on Rapid Systems Prototyping, pages 12-18,
1995.

[6] H. Liu and D. F. Wong. Integrated partitioning and
scheduling for hardware/software co-design. In
International Conference on Computer Design, pages
609-614, 1998.

[7] A. Kalavade and P. A. Subrahmanyam.
Hardware/software partitioning for multifunction
systems. IEEE Trans. Comput.-Aided Des. Integrated
Circuits Syst., 17(9):819-837, Sept. 1998.

[8] M. Potkonjak and W. Wolf. Cost optimization in asic
implementation of periodic hard-real time systems
using behavioral synthesis techniques. In International
Conference on Computer Aided Design, pages 446—451,
1995.

[9] J. Liu, P. H. Chou, N. Bagherzadeh, and F. Kurdahi.
Power-aware scheduling under timing constraints for
mission-critical embedded systems. In Design
Automation Conference, pages 840-845, 2001.

[10] P. V. Knudsen and J. Madsen. Integrating
communication protocol selection with partitioning in
hardware/software codesign. In 11th International
Symposium on System Synthesis, pages 111-116, 1998.

[11] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmit.
Ptolemy: A framework for simulating and prototyping
heterogenous systems. International Journal of
Computer Simulation, 4(2):155-182, April 1994.

[12] The Almagest: Manual for Ptolemy Version 0.7.
Department of EECS, University of California,
Berkeley, California, 1988.

[13] A. Sinha and A. P. Chandrakasan. Jouletrack-a web
based tool for software energy profiling. In Design
Automation Conference, pages 220—-225, 2001.

