
 

  
Abstract— The InfiniBand architecture is a new standard for 

high-speed I/O and interprocessor communication, suitable for 
clusters and high-end servers executing distributed applications. 
Its specification is open to further enhancements by 
manufacturers and researchers. This paper presents an OPNET 
model of IBA. It can serve as a starting point for helping SAN 
designers evaluate the performance trade-offs of this new 
interconnection standard and locate its potential bottlenecks. 
Moreover, our model is a suitable platform on which to develop 
new proposals that may extend the functionality and 
performance of IBA. 
 

Index Terms—InfiniBand architecture, network modeling and 
simulation, OPNET. 
 

I. INTRODUCTION 
HE InfiniBand architecture (IBA) [5][3] is a new standard 
for high-speed I/O and interprocessor communication. It 

as been developed by the InfiniBand Trade Association 
(IBTA) [5]. Founded in 1999, this association includes over 
200 leading companies, including IBM, Intel, Microsoft, 
Compaq, HP, Sun, Dell, and Cisco. The result is a fast, highly 
scalable interconnect technology suitable for clusters and 
high-end servers executing distributed applications. The IBA 
specification—though an emerging standard—is open to 
further enhancements by manufacturers and researchers. 
Recently, the first commercial IBA-compliant products have 
started to appear in the marketplace [8][4]. 

This paper presents a model which embodies key physical 
and link layer features of IBA, which allows simulation of 
various IBA-compliant network designs. We have used the 
OPNET Modeler [9] simulation software. OPNET is a useful 
engineering and research tool for streamlining the design and 
performance analysis of communication systems and 
protocols. Our model can serve as a starting point (basis) for 
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helping SAN designers evaluate the performance trade-offs of 
this new interconnection standard and locate its potential 
bottlenecks. Moreover, our model is a suitable platform on 
which to develop new proposals that may extend the 
functionality and performance of IBA. In this regard, the main 
objectives of this research are to develop and evaluate more 
efficient subnet management protocols—specifically, network 
discovery and reconfiguration techniques. 

In Section II, we give an overview of relevant IBA features. 
Section III introduces the OPNET Modeler software. Section 
IV describes how we have modeled IBA using this tool. In 
Section V, we show how we can use this simulation model to 
evaluate the performance of any IBA topology and to analyze 
subnet management mechanisms. Finally, in Section VI, we 
conclude and outline future work. 

II. INFINIBAND ARCHITECTURE 

A. Overview 
IBA defines a system area network (SAN) environment, 

where multiple processor nodes and I/O devices are 
interconnected using an arbitrary (possibly irregular) switched 
point-to-point network, instead of using a shared bus. 
Processor nodes can include several CPUs and memory 
modules, and they use one or several host channel adapters 
(HCAs) to connect to the switch fabric. I/O devices can have 
any structure, from a simple console to a RAID subsystem. 
These devices use one or several target channel adapters 
(TCAs) to connect to the fabric. The fabric is structured in 
subnets connected by means of routers, as illustrated in Fig. 1. 
The specification allows three different topologies for the 
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Fig. 1.  IBA subnet. Each subnet includes a set of switches and point-to-point 
links. Several links can be used in parallel to increase the bandwidth, or to 
provide redundant paths to increase fault tolerance. 



 

fabric: a direct connection between two end nodes, a single 
subnet, and a set of subnets interconnected by routers. 

IBA uses copper or optical links. The raw bandwidth of an 
IBA 1X link is 2.5 Gbps. Data bandwidth is reduced by 
8b/10b encoding to 2.0 Gbps. Therefore, for a full duplex 
connection, the data rate is 4 Gbps. Other specified link 
bandwidths are 10 and 30 Gbps (named 4X and 12X links, 
respectively). 

B. Link Layer  
The architecture is divided into multiple layers where each 

one operates independently of another. IBA is decomposed 
into the following layers: physical, link, network, transport, 
and upper layers. The link layer (along with the transport 
layer) is the heart of the architecture. This layer encompasses 
packet layout, point-to-point link operations, and switching 
within a local subnet. Next, we briefly describe several link 
layer issues. Additional details can be found in the description 
of the IBA model. 

IBA uses a virtual lane (VL) based mechanism to create 
multiple virtual links within a single physical link. This 
improves link utilization and provides support to prevent 
deadlock. Each port could implement 1 (VL0), 2 (VL0-1), 4 
(VL0-3), 8 (VL0-7), or 15 (VL0-14) data virtual lanes. For 
subnet management purposes, an additional virtual lane 
(VL15) must be implemented. Each VL has a dedicated set of 
transmit/receive packet buffers to store at least one packet. 
Virtual cut-through switching [6] is considered. A credit-
based flow control mechanism acts separately over each data 
VL. Output channels in switches and channel adapters use a 
VL arbitration table defined by the subnet manager to 
determine the next packet to inject into the physical link. This 
table defines the amount of packets to send from each VL, 
allowing traffic prioritization. 

As a packet traverses the subnet, each link along the path 
can support a different number of VLs. Therefore, it is not 
possible to transmit a packet only using a VL specified in its 
header. Instead, IBA uses a more abstract criterion, based on 
the concept of service level (SL). Each switch has a SL to VL 
mapping table (set by the subnet manager) to establish a 
correspondence between the service level of the packet (a 
number from 0 to 15) and the VLs supported by the output 
port assigned to the packet. In this way, IBA can ensure end-
to-end QoS.  

All devices within a subnet have a 16 bit local identifier 
(LID) assigned by the subnet manager. Packets within a 
subnet use the LID for addressing. This value is included in 
the packet header, with the SL. Switches perform the intra-
subnet routing, using the packet’s destination LID. To decide 
the output port for an incoming packet, switches use a 
forwarding table configured by the subnet manager. Each 
switch must support one of two types of forwarding tables, the 
random forwarding table (RFT) and the linear forwarding 
table (LFT). The main difference between them is that each 
entry in the former must include an explicit LID value, 
whereas in the later, the LID value is implicit in the position 

of the entry in the table. 

C. Subnet Management 
IBA subnets are managed in an autonomous way using 

several entities shown in Fig. 2. There is a subnet manager 
(SM) in charge of discovering, configuring, activating, and 
maintaining the subnet. Through the subnet management 
interface (SMI), this entity exchanges control packets with the 
subnet management agents (SMAs) present in every subnet 
device. 

 To guarantee compatibility between different vendor 
implementations, the specification defines the subnet 
management entities describing their functions and the 
structure of the control packets used to exchange information 
among them. However, the exact behavior of these 
management entities has not been detailed. Examples of 
commercial management products can be found in [7][14]. 
Our main goal is the design of efficient subnet management 
protocols such as those in [1][10] that can be applied to IBA. 

III. OPNET MODELER 
OPNET Modeler [9] provides support to model 

communication networks and distributed systems. Network 
engineers use this tool to design and analyze communication 
equipment and protocols. The use of OPNET accelerates the 
design, development and deployment cycle, and improves 
product performance and reliability. 

This tool defines three work domains: network, node, and 
process domain. The node level specifies objects belonging to 
the network level, and the process level specifies objects 
belonging to the node level. 

Network models consist of nodes, links, and subnets. Nodes 
represent network devices. Links represent point-to-point and 
bus connections. Subnets organize network components into a 
single object. Network models are developed using the project 
editor (Fig. 3). This editor allows rapid construction and test 
of various possible network configurations. 

Node models are built using basic OPNET modules and 
specifying the connections between them. In Fig. 4 we can see 
(from left to right) processors, queues, packet streams, statistic 

 
SMI 

Port 

Subnet 
Manager 

 
Port 

SMA 

SMI  
Port 

SMA 

SMI 

 
Fig. 2.  Subnet management model. 



 

wires, logical associations, transceivers (point-to-point, bus, 
and radio links), and antennas. Each module can generate, 
send, and receive packets from other modules to perform its 
function. Modules typically represent applications, protocol 
layers, and physical resources, such as buffers, ports, and 
buses. Packet streams allow the transmission of packets 
among the node modules. Statistic wires are used to exchange 
control information. Node models are developed using the 
node editor. 

The behavior of processors and queues are programmable 
via their process models. They consist of finite state machines 
(FSM) containing blocks of C/C++ code and kernel 
procedures (KP). State machines respond to interrupts 
generated by the OPNET simulation kernel. The user code is 
executed when the machine enters or leaves a state, and it can 
also be associated to a transition. Kernel procedures provide 
the way to perform common tasks, such as to manipulate 
packets, collect statistics, operate with queues, or program 
future interrupts. Fig. 5 shows an example of a process model. 

Additional OPNET editors allow the design of links, 
packets, probability density functions, etc. Using the link 

editor, a user can specify bandwidth, bit error rate, 
propagation delay, packet types supported by the link, as well 
as other attributes of the link. The packet editor allows the 
system designer to graphically build packets of the format 
desired, naming the packet fields, specifying their size, and 
choosing the type for the value stored. It is also possible to 
encapsulate in a field a packet from an upper network layer. 

OPNET simulations are event-driven. The simulation kernel 
handles a single global event list and a shared simulation time 
clock. Events are removed from the list and delivered to the 
appropriate module in time order. The process associated to 
the destination module performs the actions programmed for 
the event. These actions may (directly or indirectly) involve 
the generation of new events. Then, the simulation kernel 
receives requests from processes and inserts new events in the 
event list. 

Finally, the OPNET Modeler provides several tools to run 
sequences of simulations, and choose and analyze the results. 
Some examples are presented in Section V. 

IV. IBA MODEL COMPONENTS 
Our current IBA model is composed of links, switches, and 

end nodes containing a HCA, as described below. 

A. Links 
We have modeled IBA links starting from the basic OPNET 

Fig. 3.  Project editor. The window shows an example of a topology composed 
of three switches and seven hosts. 

Fig. 4.  Node domain elements. 

Fig. 5.  Process editor. The window shows an example of a finite state 
machine. The large arrow indicates the initial state. 



 

point-to-point bidirectional link. The specified bandwidth for 
1X links is 2.5 Gbps. Fig. 6 shows some results related to the 
topology previously shown in Fig. 3. The six end nodes on the 
left send packets to the one located on the right. The plot 
shows on the vertical axis the amount of traffic injected by 
each source, the aggregated traffic injected by the six sources, 
and the traffic received at the destination. We can see that the 
maximum link bandwidth (2 Gbps) is not exceeded. 

As in [11] we consider 20 meter copper cables with a 
propagation delay of 5 ns/m; therefore, the flight time has 
been set to 100 ns. We have not considered transmission 
errors. 

Instead of store-and-forward packet switching, the receiver 
begins to process the packet when the complete header is 
received. In the case of data packets, it requires 20 bytes [5]. 
In the case of flow control packets, the header matches up 
with the entire packet (6 bytes). 

B. Switches 
Fig. 9 shows the internal structure of a 4-port IBA switch 

model. Next, we describe the different blocks that compose 
this model. 

1) Input Channels 
Each input channel contains a point-to-point receiver 

connected to the link. A demultiplexer analyzes the header of 
incoming packets and delivers them to the corresponding 
units. Flow control packets are sent to the flow control unit. 
Data packets are sent to the input buffers associated with 
virtual lanes. The IBA specification allows up to 15 data VLs. 
To this point, we have incorporated only two of them (VL0-1) 
in our IBA model. The management virtual lane, VL15, over 
which control packets flow is also incorporated in our model. 
A notification is sent to the flow control unit each time the 
available resources in input buffers vary. Additionally, when a 
packet reaches the head of a VL, a notification is issued to the 

routing unit. Incoming packets could also be dropped 
according to the current port state. 

2) Routing Logic 
The packet routing logic includes the routing unit and the 

service level to virtual lane (SL to VL) mapping unit. The 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
8

0

0.5

1

1.5

2

2.5

3
x 10

9

Traffic Sent (bits/sec/node)

Traffic Sent (bits/sec/node)
Traffic Sent (bits/sec)
Traffic Received (bits/sec)

Fig. 6.  Example of validation. 

(NEXT==0)

(END_VLOutSize)

(END_VLOutFree)/SetFreeVLOut()

(NEXT==0)

(NEXT==2)

(NEXT==0)
(END_NewPk)

(default)/int_notHand_arb()

(NEXT==3)

(NEXT==3)

(END_SIM)/freemem_arbitration()

(NOTIFICATION)

init idle

1NewPK

2VLConex

3bUpdtSize

3SizeCheck

begin_proc

Fig. 8.  Arbitration unit state machine. The begin_proc state models the time 
to process an incoming notification. When a notification is received from the 
mapping unit, the 1NewPK state is reached. If the output channel is busy, the 
machine returns to the idle state; otherwise, the state 2VLConex is reached. 
This state is also reached when the channel is released. When the 3SizeCheck 
state is reached, the unit checks for resources to allow the entire packet in the 
output buffer. If there is enough space, the connection is established. When 
buffer space is released, due to the transmission of a packet through the link, 
the 3bUpdtSize state is reached, and size is checked again. 
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Fig. 7.  Routing unit state machine. The idle state waits for requests from input 
buffers. The routing_pk state models the time to access the routing table. This 
process begins and finishes in the route_pk and pk_routed states, respectively. 



 

routing unit assigns an output port to each incoming packet. 
The model shown in Fig. 7 processes simultaneous requests in 
a sequential and prioritized way. First, it considers packets in 
VL15. Then, for data VLs, it applies a round-robin policy. 
The routing unit uses a (unicast) forwarding table, configured 
by the management protocol. When the forwarding table can 
not provide an output port for the packet’s destination, the 
provided port is not supported by the switch, or if it is the 
same as the input port used by the packet, the routing unit 
notifies the input buffer that the packet must be discarded. For 
management packets using directed (source) routing, the 
routing unit employs the information stored in the packet 
instead of looking up routing options in the forwarding table. 

After a packet has been successfully routed, the result is 
transferred to the mapping unit, in order to determine an 
output VL for the packet. This unit includes a mapping table 

defined by the management protocol. 
The mapping function is not applicable 
to management packets, and it could 
also lead to discarding the packet 
(when the management VL is provided 
by the mapping table). Finally, this unit 
provides all this information to the 
crossbar arbitration unit. 

3) Switching Logic 
The switching logic (see center of 

Fig. 9) is composed of a fully 
demultiplexed crossbar and the 
arbitration unit. We have also modeled 
a multiplexed crossbar commonly used 
in commercial products. The crossbar 
unit allows several packets to cross 
simultaneously from input buffers to 
the corresponding output buffers. The 
arbitration unit arbitrates among 
concurrent requests and configures the 
crossbar. The policy used to establish 
crossbar connections satisfies the 
following conditions: VL15 has priority 
over data VLs and all data VLs have 
the same priority. The state machine 
associated to this unit is shown in Fig. 
8. 

4) Output Channels 
Crossbar outputs are connected to the 

output buffers associated with VLs. 
These output buffers are connected to a 
multiplexer. This unit receives 
management and data packets from the 
output buffers, and flow control packets 
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Fig. 9.  Internal structure of a four port IBA switch model. 
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Fig. 10.  Channel arbitration unit state machine. The pk_ready state manages 
requests from the output buffers. The arbitrating and arbitrated states model 
the time to select the next packet to inject into the link. The pk_delivered state 
indicates that an entire packet has left the output buffer, and the channel has 
been released. The FC_action state is reached when the flow control unit 
activates or deactivates the transmission through a VL. 



 

from the flow control unit. According to the current port state, 
the multiplexer may drop packets. 

The IBA specification defines a credit-based flow control 
scheme. Each port incorporates a flow control unit that 
enables/disables the transmission from data output buffers, 
according to the flow control packets received from the port at 
the other end of the physical link. Additionally, the flow 
control unit sends flow control packets to stop/restart the 
injection of data packets at the other end of the link. The state 
machine related to this unit has been shown in Fig. 5. 

The channel arbitration unit model is shown in Fig. 10. It 
receives requests from the output buffers and the flow control 
unit, and it determines the next packet to inject into the 
physical link. Management and flow control packets have the 
maximum priority. To determine the priority between data 
VLs, this unit uses the VL arbitration table provided by the 
management protocol. 

5) Management Port 
Finally, for administration purposes, the switch includes an 

internal port (numbered 0) connected to the management 
logic. This port implements only a packet buffer associated 
with VL15. 

C. End Nodes 
Fig. 11 shows the end node model implemented, including 

a basic processor node and an interface card (HCA). 
 The processor node we have modeled is very simple. It 

consists of a packet source and a packet consumer. The source 
generates link layer data packets according to a probability 
density function, and the consumer drops received packets and 
updates traffic statistics (packet delay, throughput, etc.). This 
model could be extended in the future, considering more 
realistic traffic approaches suitable for clusters. 

The channel adapter includes a single port. As in the case of 
switch ports, it supports VL0-1 and VL15. Transmitter and 
receiver modules connect the card to the physical link. Since 
there is not a crossbar, the mapping unit is directly connected 
to the output buffers associated with the VLs. The behavior of 

most of the modules, including the management entities, is the 
same as the corresponding modules in the switch model. 
Upper level functions considered in the IBA specification (as 
queue pairs, service types, verbs, etc.) have not been modeled 
yet. 

Both types of IBA subnet nodes (switches and end nodes) 
have a wide set of configurable attributes. Common node 
attributes are the device globally unique ID (GUID), the 
number of data VLs and packet maximum transfer unit (MTU) 
supported by the physical ports, the size of the buffers 
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associated with the VLs, and the size of the VL arbitration 
table used by the channel arbitration unit. Switches include the 
size of the forwarding table used by the routing unit (Fig. 12). 
Additionally, end nodes need several attributes related to 
packet generation (injection rate, start time, etc.). 

D. Subnet Management Model 
We have modeled the subnet management packets (SMPs) 

and the acknowledgment and reinjection protocol defined in 
the IBA specification. As an example, Fig. 13 shows the fields 
of a directed routed SMP. 

Next, we describe the subnet management modules 
included in switches (Fig. 9) and end nodes (Fig. 11): SMI, 
SMA, and SM. 

1) Subnet Manager Interface: Fig. 14 shows the behavior of 
the SMI module. It injects SMPs generated by the SM and 
SMA into the network. Also, it validates and delivers 
incoming SMPs. The destination entity for an arriving SMP 

depends on the packet type (request, response, trap, etc.). In 
switches, the SMI implements directed routing, updating in 
each hop the Return Path and HopPointer SMP fields. 

2) Subnet Manager Agent: Fig. 15 shows the state machine 
associated to the SMA module. The tasks performed by this 
entity include processing received SMPs, responding to the 
SM, and configuring local components according to the 
management information received. The received SMPs could 
contain information related to physical ports, as the assigned 
LID, the port state, or the number of operational data VLs. 
Other SMPs are used to update the local forwarding table, the 
SL to VL mapping table, and the VL arbitration tables. The 
SMA is also in charge of updating the state of a port when the 
condition of a neighbor device changes. 

3) Subnet Manager: The tasks implemented in the SM 
model are represented in Fig. 16. Each management task is 
modeled with a different state machine. Incoming SMPs are 
analyzed and delivered to the corresponding state machine by 
a dispatcher process (shown in Fig. 17) associated to the SM 
module. The handover task guarantees that only one SM (the 
master) manages the subnet at any given time. This master 
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Fig. 14.  SMI state machine. The input_ch and recv_SMP states manage 
incoming SMPs. The send_SMP state delivers outgoing SMPs. 
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Fig. 15.  SMA state machine. The begin_proc and proc_smp states model the 
time consumed in processing a received SMP sent by the SM. The change 
state is reached if a change is detected at any port. The next_trap state 
manages trap notifications. 
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Fig. 17.  Dispatcher process state machine. The begin_proc and deliver_smp 
states model the time to process an incoming SMP sent by another 
management entity in the subnet. The deliver_smp state provides the SMP to 
the state machine that must manage it. SMPs are sequentially processed. 



 

periodically sweeps the subnet searching for topology 
changes. It is also possible that SMAs located in the switches 
notify port changes to the master. In either case, the master 
performs the topology discovery task shown in Fig. 18. It 
includes the assignment of LIDs and the configuration of 
other port attributes. After that, routes are computed and 
distributed to the forwarding tables. To determine the paths 
through the subnet, the master uses the collected topological 
information. 

In the management mechanism currently implemented, the 
above tasks are sequentially executed. After a topology 
change is detected, the subnet topology is collected starting 
from scratch. The discovery process is centralized in the 
master, which performs a propagation-order exploration. To 
compute the routes, the master uses the up*/down* routing 
algorithm [12]. Finally, in order to prevent deadlock 
situations, all subnet ports are deactivated before sending the 
new switch forwarding tables. Once the tables are completely 
distributed, the subnet is activated again. Hence, static 
reconfiguration is assumed. 

The SM must receive a response for each request SMP. If 
the response is not received after a period of time, the SMP is 
injected again. After several injections for the same SMP, the 
SM concludes that the destination is either disabled or 
unreachable. 

Each component (switches and end nodes) in the subnet 
contains several configurable management attributes. They 
specify if the component hosts a SM, if it supports traps (only 
for switches), or the maximum response time for the node 
SMA. 

Additionally, using profiling techniques, we have measured 
the time required to process a SMP by the management 
entities, for a wide set of subnet configurations. In this way, 
the processing times are dynamically computed according to 
the subnet size. 

V. EVALUATING IBA PERFORMANCE 
The purpose of this section is not to present a detailed 

performance evaluation of IBA. Instead, we use some 
examples to illustrate the way in which our OPNET IBA 
model can be used to analyze different aspects of the 
architecture. 

A. Building Subnet Topologies  
Using the IBA link, switch, and end node models described 

before, we may build and evaluate any subnet configuration. 
For this work, we have selected a set of randomly generated 

irregular topologies. The network size ranges from 8 to 64 4-
port switches. Each switch has connected an end node, if a 
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Fig. 19.  Example of a cluster composed of 16 IBA switches and 14 hosts in 
an irregular topology. 
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Fig. 20.  Example of a cluster composed of 7 IBA switches and 4 hosts in a 
Clos topology (3,1,4). 
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Fig. 18.  Discovery process state machine. The invocation state processes a 
SMP received from the dispatcher process. The proc_timeout state is reached 
when the timeout associated with a request SMP expires, and the 
corresponding response has not been received. The init_sweep state starts the 
next subnet sweeping process. 



 

port is available. Fig. 19 presents an example of a 16-switch 
topology. 

Several studies focus on network topologies applied to  
NOW and SAN environments. An example of a more regular 
topology is the Clos network [2]. It has excellent properties 
such as full bisection, scalability, modularity, and multiple-
path redundancy that make it ideal for cluster networks [13]. 
Fig. 20 shows an example of Clos topology. At the moment, 
we are increasing the amount of ports available in the current 
switch model. It would allow the generation of larger Clos 
topologies than that shown in the figure. 

B. Preparing Simulations  
Once we have defined the network topology and attribute 

values for each device in the subnet (as shown in Fig. 12), we 
must specify the statistics that will be collected during the 
simulation and the way they are collected. Fig. 21 shows the 
editor used for that purpose. OPNET provides a wide set of 
predefined statistics; additionally, the user can customize the 
model by adding new ones. Statistics can be collected in 
several ways: all values (recording all updates to the statistic), 
samples (collecting only certain statistic updates), buckets 
(recording a single value from a set of points, for example, the 
sample mean), etc. Additionally, for each statistic we can store 
an output vector ordered by time, and/or an individual value 

that summarizes the behavior of the statistic (the average 
value, the maximum value, etc.). 

The value of model attributes can be defined before running 
the simulations. For the results presented here, we have fixed 
some of them, as the duration of the simulation, the 
probability density function used by the packet sources, and 
the amount of upper-level information contained in these 
packets. 

We have programmed for all simulation runs a complete 
subnet activation at time 10 sec. Sources begin to generate 
packets at time 60 sec. To evaluate network performance, we 
have considered a transient period of 0.1 sec and, after that, a 
useful period of 0.1 sec, obtaining a total duration of 60.2 sec. 
During the useful period, statistics are collected. To evaluate 
the subnet management mechanism, for each simulation we 
have programmed a topology change (activating or 
deactivating a switch) after time 60 sec. For these probes, the 
duration of the simulation varies according to the topology. 

We have considered a uniform distribution for packet 
generation, assuming the same generation rate for all sources. 
Sources also use a uniform distribution to obtain the packet 
destination and service level. As packet length, we have 
considered in all cases a MTU of 256 bytes, the minimum 
value allowed by the IBA specification. 

Other model attributes can be parameterized over a set of 
simulations. In this work, we have considered as simulation 
parameters the number of packets per second sent by each end 
node, the amount of operational VLs in the subnet ports, the 
buffer size, and the device internal bandwidth. Fig. 22 shows 
the way to specify some of these parameters to create a set of 
simulations. 

For each topology we have considered packet generation 
rates from low load to saturation. For the number of 
operational VLs, we have used 1 or 2 data VLs. For buffer 
sizes, we have assumed values ranging from 32768 bits (4096 

Fig. 21.  Probe editor. The window shows the set of customized statistics we 
have defined to analyze subnet management protocols, as the amount of time 
that the user traffic is stopped, or the time and number of SMPs required by 
each management task. They may help us to locate the bottlenecks of a 
management mechanism and compare different management policies.

Fig. 22.  Specifying simulation parameters. In the example of the window, the 
104 simulations are obtained as combination of 13 traffic rate values (20E3, 
40E3, 60E3, 80E3, 100E3, 120E3, 140E3, 160E3, 180E3, 200E3, 220E3, 240E3, 
and 260E3 packets/sec), 4 buffer sizes (32768, 65536, 131072, and 262144 
bits), and 2 different numbers of operational data VLs (1 and 2). 



 

bytes) to 524288 bits (65536 bytes). Finally, we have used a 
factor (ranging from 1 to 2) to specify different internal 
bandwidths for the subnet devices. This factor is applied to the 
bandwidth for the IBA 1X link. 

C. Evaluating Design Parameters  
In this section, we show several examples of utilization of 

our model to analyze the impact of some architecture 
parameters on network performance. The parameters we have 
varied are the number of VLs per channel, the size of their 
associated buffers, and the device internal bandwidth. 

Fig. 23 shows the simulation results obtained for the subnet 
topology presented in Fig. 19. The top plot represents network 
throughput versus network load. Load is expressed using the 
number of packets per second send by all the subnet end 
nodes; throughput is expressed using the number of packets 
per second received by all the subnet end nodes. The bottom 
plot represents packet latency versus network throughput. 

Each point in this plot indicates the average end to end delay 
obtained in the corresponding simulation. We have obtained 
these results for 1 and 2 operational data VLs per port. As 
shown in [11], we can clearly appreciate the increment in 
performance using virtual lanes. 

Fig. 24 shows the same statistics as Fig. 23, obtained for the 
Clos topology shown in Fig. 20. The parameter we have 
analyzed is the size of the packet buffers associated to the VLs 
in the subnet switch ports. We can see that in this case buffer 
size does not contribute as much to increased network 
throughput. 

Finally, Fig. 25 analyses the impact of device internal 
bandwidth on network performance. Results correspond to an 
irregular topology with 8 switches and 7 end nodes. Again, 
there are not significant increments in performance for factor 
values of 1.5 and 2. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
6

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

Traffic Sent (packets/sec)

T
ra

ffi
c 

R
ec

ei
ve

d 
(p

ac
ke

ts
/s

ec
)

1 VL
2 VL

 

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
6

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Traffic Received (packets/sec)

E
nd

−
to

−
en

d 
de

la
y 

(s
ec

)

1 VL
2 VL

Fig. 23.  Influence of the amount of VLs on performance (assuming a buffer 
size of 32768 bits). 
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Fig. 24.  Influence of VL buffer size on performance (assuming 2 data VLs 
per port). 



 

D. Evaluating the Subnet Management Mechanism 
Fig. 26 shows an example of how our OPNET model could 

be used in the analysis of new IBA subnet management 
protocols. Plots represent some statistics added to the IBA 
model in order to evaluate management mechanisms (see Fig. 
21). 

The results correspond to the topology shown in Fig. 19, in 
which switch 15 has been deactivated. The traffic load applied 
is very low, to avoid network saturation during the time that 
the change is being assimilated. 

The upper plot shows the aggregate amount of SMPs 
exchanged by the management entities. Approximately 2700 
SMPs (corresponding to the transient period) have been 
delivered before the period of time shown in the figure. 

The second plot represents the percentage of updated 
forwarding tables during the process. It allows us to locate the 
distribution phase in time. 

The last two plots show the effect of the topology change 
(and its assimilation) over the application traffic. The third 
plot shows transmission delay for application packets. There 
is a point in the plot for each packet received. The X-axis 
represents the time the packet is received, and the Y-axis 
represents its latency from generation. 

The fourth plot represents the aggregate amount of 
discarded packets. At 61 seconds of simulation the topology 
change is produced. The deactivation implies that data packets 
begin to be discarded. Logically, the amount of discarded 
packets has a direct relationship with network load. 

We can appreciate a long period of time (0.17 seconds 
approx.) between when the change is produced and when the 
next sweeping process detects it. To reduce this time, it could 
be useful to conduct a deeper study to tune the sweeping rate 
according to the topology characteristics. The benefits 
obtained using a detection mechanism based on traps could 
also be explored. 

Once the change is detected, the topology discovery process 
involves 200 SMPs during a period of time of 0.01 seconds 
(see  in the figure).  After that, subnet routes are computed 
according to the new topology. This process takes more than 
0.1 seconds. The graph clearly shows that one of the most 
important bottlenecks of this mechanism is the paths 
computation process. A possible optimization could be to 
reduce the complexity of the algorithm, taking advantage of 
previous information, or overlapping it with the other tasks. 

Finally, the path distribution task (see  in the figure) 
implies the distribution of 360 SMPs during a period of time 
of 0.0067 seconds (faster than the discovery process). During 
this time, subnet ports are deactivated to avoid deadlock. The 
consequence is that application traffic delivery is stopped. We 
can see a gap in the latency plot and an increment of discarded 
packets in the bottom plot. The final amount of discarded 
packets (applying a low traffic rate) is greater than 600 

 

 

Fig. 26.  Effect of SM tasks on user traffic. 
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Fig. 25.  Influence of internal bandwidth on performance (assuming 2 data 
VLs per port and a buffer size of 32768 bits). 



 

packets. This negative effect could be reduced by the 
utilization of dynamic reconfiguration techniques as presented 
in [1][10]. 

Using additional management statistics, we could analyze 
in detail the behavior of each management task. As an 
example, Fig. 27 represents the number of SMPs (top plot) 
and the time (bottom plot) required by the paths distribution 
task. In the plots, the simulation parameter is the network size. 
In this case, for each topology (with 8, 16, 24, and 32 
switches) and simulation run, we have programmed the 
activation of a different switch. The corresponding device 
identifier (GUID) is represented on the horizontal axis. Again, 
injection rates are very low, in order to prevent network 
saturation. 

We can see that the amount of SMPs required to distribute 
the new forwarding tables increases with the network size. 
Similarly, the time spent by the distribution process has a 
direct relationship with the network size.  

VI. CONCLUSION 
In this paper, we present a way of modeling IBA that is 

amenable to simulation using OPNET. This provides a useful 
tool that enables designers of InfiniBand networks to evaluate 
at the physical and link levels various performance trade-offs 
of key design parameters. We have shown how this model can 
be used specifically as a means for designing and evaluating 
subnet management mechanisms which meet IBA 
specifications. Thus far, we have modeled a completely 
functional prototype of IBA’s subnet management protocol. 
Preliminary results provide insight into the overheads 
resulting from non-optimized implementations and what 
techniques might be useful in reducing them. 
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Fig. 27.  Analysis of the paths distribution process. 


