Federatd DAFS: Scaldle ClusterBasedDirect
AccessFile Seners

Murali Rangargan, SureshGopalakrishnan,

Ashok Arumugam, Rabita Sarlker
Departmeniof ComputerScience,
RutgersUniversity, Piscatavay, NJ 08854-8019

{muralir, gsureshashokasarler}@cs.rutgers.edu

Abstract— Protocols lik e the Direct AccessFile System
(DAFS) leverage userlevel memory-mapped communica-
tion to enable low overhead accessto network-attached
storage for applications. DAFS offers significant impr ove-
ment in application performance using features lik e dir ect
data transfer and RDMA. Our goalis to build high perfor-
mancenetwork file servers using DAFS. The benefitsof the
DAFS protocol can be extendedto cluster-based setvers,
using low overhead userlevel communication within the
cluster.

In this paper, we presentFederated DAFS, a scalable
and efficient cluster-baseddir ect accesdile sewer. Feder
ated DAFS combinesan efficient userspaceDAFS imple-
mentation with a low overhead clustering layer to present
a scalableclustering solution for DAFS sewers. Federaed
DAFS uses a portable mechanism for distribution and
handling of client requests across the sewers in the
cluster. Federated DAFS also minimizes the intra-cluster
communication by caching data blocks and by matching
the file placementon the servers with the distrib ution of
requestsfr om the clients. Our resultsshow that reasmable
speedups(2.6®n four nodesand 4.5 on eight nodes)can be
achieved using Federatedl DAFS on sewer clusters of up
to eight nodes.

|. INTRODUCTION

Network storage needsare being stretchedas
file volumesgrowv andenterpriseslistribute storage
requirementsacrossa wider array of files, web
applicationsand databaseseners. Performanceof
network file seners hasbeenlimited by overheads
resultingfrom protocolprocessingredundantopy-
ing andothernetworking costs.Userlevel network-
ing architecturessuchasthe Virtual Interface (V1)
Architecture [1], U-Net [2], and Virtual Memory

This work is supprtedin partby the National ScienceFoundation
underthe NSF CAREERCCR 01333®.

Liviu Iftode
Departmeniof ComputerScience,
Universty of Maryland, College Park, MD 20742
iftode@cs.und.edu

Mapped Communcation (VMMC) [3], designed
to achiere low-latengy and high-bandwidh in a
SAN environment, offer an attractve solution for
reducingcommunicatn software overheads.

The Direct AccessFile System(DAFS) protocol
[4] exploits userlevel memory-mappeccommuni-
cation to help reducethe cost of file accessby
enablingdirect accessto network-attachedstorage
for applicatiors. The DAFS specificationincludes
featuresto improve application performancelike
asynchronoud/O, direct datatransferto and from
applicationbuffers, and scatter/gatér 1/0.

To build high performancenetwork file seners
with reasonabldevels of service,we need multi-
processoopr distributednetwork seners.Clustersof
commodty computershave the potentialto provide
goodperformancevith scalability atalow cost.For
clusterbasedseners,userlevel communicatio has
beenshowvn to provide a low overheadmechanism
for intra-clustercommurcation [5]. We are inter-
estedn extendirg the benefitsof the DAFS protocol
to clusterbasedseners, using low-overhead user
level communicatio within the cluster

In this paper we presentFederatedDAFS, a
scalableclusterbaseddirect accesdile sener. Fed-
erated DAFS extendsthe benefitsof a direct ac-
cessfile systemto clusterbasedfile seners. Fed-
eratedDAFS takes advantageof low-lateng high-
bandwidthuserlevel commuircationamongseners
in a cluster (i) to presenta consolidatedview of
the storageavailable on all the seners, and (ii)
to distribute file accessequestsacrossthe seners
in the cluster FederatedDAFS consiss of two
components



DAFS
Server

JFie o T L i

Fig. 1. FederatedDAFS on a Cluster

1) Animplementation of the DAFS protocol: We
have developeda portable DAFS prototype
entirely in userspace.

Clustering software to implement naming and
consolidate server storage across the cluster:
The Federatedrile System(FedFS)[6] pro-
vides a thin clustering layer which is used
by the DAFS sener implemenationto access
sener storageacrossthe cluster

Fig. 1 shovs the Federéed DAFS architecturewith
DAFS senersrunningon eachnodeand accessing
the underlying storageusing the FedFSclustering
layer.

We evaluated the performance of Federated
DAFS using the postmark file system bench-
mark [7]. Our experimens shov that Federated
DAFS provides reasonablygood speedups.Our
evaluatbns also shav that cachingof datablocks
can be usedto improve performanceby reducing
the intra-clustercommuication. Federéed DAFS
minimizes the intra-clustercommunicationfurther
by matchingthe file placementbon the senerswith
the distribution of requestdrom the clients.

The rest of the paperis organizedas follows.
Section Il describesthe backgroundand related
work. Section Il describesour implementation
of the DAFS protocol in userspace.Section IV
presentsdetails of FedFS our clusteringsolutian,
and Section V describesthe implenmentation of
FedFS. Section VI presentsthe results from our
experimentalevaluaton and Section VIl presents
the conclusims.

2)

II. BACKGROUND AND RELATED WORK
A. Reducing Networking Overheads

Various techniqueshave been used to reduce
the overheadsarising out of copiesin the net-
work data path [8]-[10]. In additionto zero-coy

commuimcation, userlevel networking architectures
[1]-[3] provide a mechanismfor high-bandwidh
andlow-lateny communcationwith minimal over-
heads. The Virtual Interface Architecture (VIA)
[1] is a userlevel memory-mappd communcation
standardior SANs that reducesghe communcation
overheadby providing direct accesgo the network
interfacefor applications.

B. Direct Access File Systems

The DAFS protocol[4], [11] takes advantageof
directaccesdransportgo provide clientswith low-
overheadaccessto network attachedfile storage.
It allows efficient, portableimplementationsof file
systemclients entirely in userspace.Applications
can reap the benefitsof the DAFS protocol from
userspaceby registering the memoryregions used
in commurcation with the OS kernel. The DAFS
protocolalsoallows bettercontrolof datamovement
and cachingby the applications.

The fundamentalperformancecharacteristicoof
a DAFS-baseduserlevel file systemstructurewas
explored in [12]. It was shown that lower client
overheadin the DAFS configurationcan improve
application performanceby up to 40% over opti-
mized NFS when application processingand 1/0
demandsare well-balanced Optimisic DAFS [13]
presentsan enhancemenbf DAFS that enables
clientsto directly accessemotememory pagesof
files presentin the sener cache.

C. Cluster-Based Network Servers

Locality-based schemeshave also been used
to build high performanceclusterbased network
seners[14], [15]. However, the abore schemesise
non-portabletechniquedike TCP handofs to dis-
tribute requestsPrevious studies[5] have revealed
that portability can be achieved without significant
degradationin performanceandthat userlevel net-
working protocolslike VIA are effective for intra-
clustercommunicatn in clusterbasedseners[16].
It was shovn in [16] that userlevel communi-
cation can improve performanceof clusterbased
senersby asmuchas29%, mainly dueto contribu-
tionsfrom low processoobverheadyemotememory
writes and zero-cop.

FederatedDAFS usesa low overheadprotocol
like DAFS for client-sener communicatn and a



lightweight userlevel clustering protocol (FedFS)
for intra-sener communicatn, to build an efficient
clusterbasedfile sener.

I11. IMPLEMENTATION OF DAFS PROTOCOL

In this section,we describeour implementation
of the DAFS protocol. Our client and sener pro-
totypes implenent the DAFS protocol using the
Virtual Interface Architecture[1], entirely in user
spacemakingit portableacrossary POSIX-based
systemlike Linux, FreeB® or Solaris. Both the
DAFS client and sener implementationdollow a
stagedevent driven model [17], with dynamcally
configurable thread pools to service each stage.
Eachthreadpool hasan associatejob queue,the
length of which indicatesthe load at this stage.
Thesethreadpoolscangrow in sizeup to a tunable
maximumto handleincreasedoads.

A. Client and Server Implementations

The DAFS clientis providedto applicationsn the
form of a userlevel library. When the application
invokesa DAFS API primitive, thelibrary translates
this to an RPC requestfor the corresponding/O
operationon the sener. Requestsare sentin the
contet of the application threadwhich invokesthe
DAFS API. Applicationthreadscanchoosebetween
using the asynchronou®AFS API or waiting for
the responseso their requestsproviding the appli-
cation bettercontrol and useof concurreny.

The sener implemenéation usesa separatecon-
nection managerthread which handlesconnection
requestsrom clients. Once a connectionis estab-
lished with a client, the sener handlesDAFS API
requestsarriving from the client using a receve
thread,and a pool of threadsfor file systempro-
cessing.The responsibity of the receve thread
is to receve DAFS API requestsfrom the client
and passthem on to the file systemthread pool.
Threadsn thefile systempool performtherequired
I/O operation and send the results back to the
client. Using a multithreadedfile systemprocessing
modulehelpsin handlingconcurrentlient requests
efficiently.

B. Communication and RPCs

The DAFS client establishesa VI connection
with the sener on which it sendsDAFS 1/O re-
guestsEachVI connectionis associatedvith a set

of descriptorswhich makes it possble for clients

to submit multiple simultaneos requestswithout

waiting for the completion of previous requests.
Our implementation suppor$ true zero-coy data
transfersbetweenthe DAFS client and sener. For

writes, the datais transferreddirectly from the ap-

plication buffers without any additionalcopy, using

the scatter/gdter sendavailablein VIA. For reads,
the sener usesscatter/gatheRDMA to sendreplies
directly to applicationbuffers without incurring ad-

ditional copies.In both casesthe message&onsists
of multiple segmentswith thefirst segmentcarrying

the headerand the subsequensggmentscarrying

data.

Eachprimitive in the DAFS API is implemented
as an RPC on the sener. The agumentsto the
RPCincludethe agumentsto the DAFS primitive,
an RPC procedureidentifier, and a unique request
identifierthatis generatedy the client. Theseargu-
mentsaremarshallednto arequesheadelusingthe
DAFS RPC stub generatarand sentto the sener.
On the sener, the requestis unmarshaétd and the
requested/O operationis performedby invoking
thehandlercorrespondingo the proceduradentifier
presentin the request.

C. Support for Asynchronous /O

Using an event-drven model makes it easy to
supportthe asynchronoud/O primitives specified
by the DAFS protocol, allowing the applications
to pipelinemultiple 1/0 requestsand achieve better
performanceAn asynchronou§/O operationis de-
scribedby an I/0O descriptor For asynchronous/O
primitives, the API call returnsa requestidentifier
in the 1/O descriptor as soon as the requestis
dispatchedto the sener, without waiting for the
responseThe I/O descriptoralso containsa result
buffer wherethe resultof the asynchronouspera-
tion is storedupon completon. For eachpending
asynchronousrequest,the client saves a request
context thatincludesthe requesidentifier, theresult
buffer and information aboutthe requestinghread.
When the reply for an asynchronou®perationar
rivesat the client, its correspondingequestcontext
is identified, the result storedin the result buffer
andthe contet releasedThe applicationcancheck
the completon statusof ary previoudy submtited
asynchronousequestusingthe I/O descriptors.



virtual directory (/usr)

\\ /
A ousr
filelfile2

________________________________

Fig. 2. FedFSVirtual Directory /usr

V. CLUSTERING USING FEDFS

The DAFS sener implementationuses FedFS
to accessthe sener storagedistributed acrossthe
cluster FedFS[6] is a novel cluster file system
architecturedevelopedby us, that providesa global
name spacein a cluster by aggreating local file
systemsof cluster nodesinto a loose federation.
UsingFedFS stand-alonesenerscanaccesstorage
acrossthe clusterand act as distributed seners. A
copy of the sener running on a node can operate
on files locatedon ary clusternodeby performing
the operationthroughFedFS.

FedFScreatesthe name spacedynamically for
eachdistributed applicationthatrunson the cluster
The namespaceexists only during the lifetime of
thedistributedapplication.Thelocationindependent
global naming allows easy file migration which
could be usedfor balancingload acrossthe cluster
nodes.In the following subsectionswe’ll describe
the global namingschemeprovided by FedFSand
the protocolusedin FedFSfor accessindiles.

A. Global Naming in FedFS

The key componenin FedFSglobal namespace
managemernis thevirtual directory (VD). A virtual
directory in FedFSis the union of all the local
directorieswith the same pathname from all the
sener nodes.For example,if a directory/usr exists
in eachlocal file system,the virtual directory /usr

in the resultingFedFSwill containthe union of all
the /usr directories,asillustratedin Fig. 2.

Thehome of afile is definedto bethesenernode
on which the correspondingpathnameis present
in the local file system FedFSmaintairs informa-
tion aboutthe homesof all files in a directory in
the correspondingirtual directory Eachpathname
(virtual directory or file) in FedFSis associated
with a manager. The managemodeis identified by
applyinga constanthashfunction to the pathname.
For a file, the manageris responsik@ for keeping
informatian about the home nodes. For a direc-
tory, the manageris responsiblefor creating and
maintainng thevirtual directorycontentsDirectory
operationssuchas cr eat e and del et e contact
themanageto updatethe virtual directorycontents.
This ensureghatcollisionsareavoidedin theglobal
namespace.

dirmerge: The virtual directory is constructed
by the managerat the time of the first lookup
involving the directory In order to constructthe
virtual directory the managernode performs a
di r mer ge operation.The di r ner ge operation
involves sendinga requesto the nodeswhich have
a copy of the directory asking for the directory
contentsTo determinethe nodeswhich have a copy
of the directory each node maintainsa summary
informatian of the directorytree of all othernodes.
This summaryinformation, basedon Bloom filters
[18], is generatedby eachnode and sentto other
nodesat the time of initialization. Since Bloom
filters only have falsepositives, no files will be left
out.

The di rmer ge is a potentially expensve op-
eration since it involves communicatio with
all the sener nodes in the worst case. How-
ever, a di rnerge is performedon a directory
only once. The meiged directory information is
cachedin memory and gets updated wheneer
ary metadateoperation(cr eat e or del et e of a
file/subdirectory)is performedon the directory

File lookup/access:For ary operationon a file,
thefirst stepis to identify the homeof thefile. Given
a file pathnamea nodedetermineghe managerof
the file by applying the hashfunction, and sends

ICurrently the implementationdoesnot handle collisions gener
atedby file creationsperformedoutsideFedFsS.



a messageo the managerrequestinginformation  ¢r eat e:

aboutthe home. If the managerdoesnt have the gethone_i nf o from file.manager

information it contactsthe managerof the parent if (file.home== self) {

directory of the file. Thus, a maxinum of three sendadd_ent ry requestto parentdir.manager

other nodesare involved in ary lookup operation, createfile if it doesnt exist already

irrespectve of the numberof nodesin the cluster createentry for file in DT

- the managerof the file, the homeof the file, and } else{

the managerof the parentdirectory Thesenodes sendcreaterequestto file.home

are involved typically only in the first access. cacheDT entry from response
Directory table: FedFS maintainsa directory }

table (DT) on eachnodeto speedup the lookup

processfor files and directories. At the time of

createor first accessthe homeof a file createsan del et e:

entry in its DT. This DT entry is cachedon both  |ookup file.home

the managemode and the node accessinghe file.  if (file.nome== self) {

Oncethe homeinformationis cachedthe homecan deletefile
be contacteddirectly for subsequerdiccesseto the senddel _ent ry requestto parentdir.manager
file. Requestgo opena file are always forwarded deleteDT entry for file
to the homenodeandthe DT entryis updated. } else{
Thedirectorytablessene asa cacheof the global senddel et e requestto file.home

namespacewhich is storedin a distributed manner deletecachedDT entry for file
in themanagenodesof thevirtual directoriesSince  }

directory tablesare storedin volatile memoryand

entries are createdonly on file accessthe name

spacein FedFSis not persistentandis createdon open:

demand. if (file.nomeunknown) {

B. File Access Protocol gethone_i nf o from file.manager

In this section,we explain the protocol for file it (file. home== self) {
accesdn FedFS.Fig. 3 shavs how FedFShandles  gpenfile
file systemAPI calls madeby applications.Fig. 4 registeropenin DT entry
shavs how sener nodeshandle protocol requests 1 gjse {
generatedy othernodes For all requestshavn in sendopenrequestto file.home
thesefigures, the wait for responses implicit. cacheDT entry from response
« Create: Inorderto createafile or directory
a sener nodefirst queriesthe managetto find
the home, and then contactsthe home. The
home node sendsan add_ent ry requestto c¢| ose:
updatethe virtual directory at the managerof  if (file.home== self) {

the parentdirectory and createsthe file if it closefile

doesnt exist already The home node, which registerclosein DT entry

is the physical location of a file, is decided } else{

at the time of creationby the managerof the sendcloserequestto file.home

file. Variouspoliciescouldbe usedto placethe  }
requestedile.

In our experimens, we have useda policy of
placingthe file on the managemode.We have
also evaluated a round-robin file placement

Fig. 3. FedFSAPI Stubs



AT THE HOME OF A FILE
create request:
sendadd_ent r y requestto parentdir.manager
createfile if it doesnt exist already
createentry for file in DT
sendresponseawith DT entry

del et e request:
senddel _ent ry requestto parentdir.manager
deleteentry for file in DT

open request:
openfile
registeropenin DT entry for file
sendresponseawith DT entry

cl ose request:
closefile
registerclosein DT entry for file
sendresponse

AT THE MANAGER OF A FILE
hone_i nfo request:
determinehomeof file

sendresponsevith homeinfo

AT THE MANAGER OF A DIRECTORY
add_entry request:
add entry for file in dir structure
sendresponse
del entry request:
deleteentry for file in dir structure
sendresponse

Fig. 4. FedFSRequestHandles

policy in which the cr eat e requestgeceved
at ary sener node are distributed acrossthe
senersin a round-robinfashion.

« del ete: A lookup is performedto identify
the homeof the file andthe del et e request
is forwardedto the homenode.Thehomenode
deleteghefile andsendsadel _ent ry request
to updatethe virtual directory at the manager
of the parentdirectory

« open: A lookupis performedto identify the
home of the file and an open requestis sent

to the homenode. The home node opensthe
file, updatesthe directory table entry for the
file andreturnsa dummy descriptor

. cl ose: The cl ose requestis sentto the
home of the file. The home node closesthe
file and updatesthe directory table entry for
thefile.

« read/ wite: The first accessto ary data
block of a file hasto be handledby the home
node where the file residesphyscally. FedFS
cachesdata blocks of files located in other
sener nodesin the cluster thus optimizing
subsequenaccesseto the cacheddatablocks.
Theblocksarecachedatthetime of first access
andan LRU replacemenpolicy is usedfor this
data block cache.Writes are performedsyn-
chronouslyusing a write-throughmechanism

V. FEDFS IMPLEMENTATION

FedFSis implementedas a multithreadeduser
level 1/O library andexportsthe standardile system
API to applications.FedFS uses VIA to imple-
mentlow overheadremotememorycommuncation
amongsenersandrelieson thelocal file systens to
performfile I/0O operationsLinking with the FedFS
library enablessener applicationso accesstorage
distributed acrossthe cluster The communcation
model implementedin FedFSis explained in the
next subsectionfollowed by a separatesectionex-
plainingthereceve processingerformedn FedFS.

A. Communication Model

Oneachsenernode,FedFSusesa pool of worker
threadsto handle the communicatbn among the
sener nodes. Communicatio in FedFS involves
two type of messagestequestand reply. Request
messagesre senteither by application threadsor
by worker threadsaspartof thefile accesgprotocol.
Reply messagesre sent by worker threadsafter
processingncoming requestsCurrently we usea
synchronousnodelfor processingn theapplication
threadsas well asthe worker threads,.e., a thread
waits for the reply after sendingout a request.

On eachsener node,at the time of initialization,
a pair of VI channelds establisked with every node
in thecluster OneVI channels usedexclusiely for
datatransferausingRDMA, andtheotherchanneis



usedfor the restof the request/responssommuni-
cation.Currently theRDMA channelis usedonly to
sendtheresponsdor areadrequestlf theresponse
is expectedto include bulk data,a handleto the
reply region is included in the requestheaderso
thatthe bulk datacan be transferredusing RDMA.
All othercommurication usesthe VIA send/receie
model.

Descriptorsand buffers usedin communicatio
are allocatedand registeredat initialization time,
eliminating this overheadrom the critical path.For
the sendoperationthreadsdo notwait in thecritical
path for datatransmisgn to complete.The send
descriptorsare reapedfrom the sendqueueonly on
demandduring a subsequensend.

B. Receive processing

A receve can be performedonly by a worker
thread whereasa send can be performedby ary
threadin the system A worker threadgetsmutually
exclusive accesdo the completion queueandwaits
to receve messagegom otherseners.Onreceving

DAFS
Server

VIA Interconnect2

Fig. 5. Experimentalsetup

Il processors512MB SDRAM, a9 GB 10K RPM
SCSI Quantum hard disk and a GigaNet cLAN

a messagethe worker thread checksthe message adapter All the sener nodesran the Linux-2.4.16

headerto identify the messagetype. A request
messagés processedn the context of thereceving
thread.The requestmessagencludesthe identifier
of the senderthread. The receving thread copies
this threadidentifierinto the reply messageA reply
messages dispatchedto the appropriatewaiting
thread using the thread identifier included in the
header

We also experimented with polling instead of
waiting on the completon queuefor the receve
operation.However, the use of polling by the re-
ceving threadresultedin wastageof CPU time that
could have beenusedby applicationthreadsor other
worker threads.We also tried using a dedicated
processofor polling on an SMP systempy binding
the worker threadsto a single processarHowever,
this did not help since dedicatinga processorto
handlecommuncation was an overkill in most of
the scenariosve studied.

V1. EXPERIMENTAL RESULTS

In this section,we presentperformanceresults
from our experimens using FederatedDAFS on
a cluster of eight PCs. Each sener node in the
clusterwas equippedwith dual 300 MHz Pentium

kernel.

An implementaton of VIA over cLAN wasused
for both client-serer communicaton and intra-
sener communicatn. The Linux drivers for Gi-
gaNetcLAN were able to achieve a bandwidthof
105 MB/s and a one-way lateng of 8 us(one-byte
paclets). The eight sener nodeswere connected
usinga dedicated-port Emulex switch. The sener
nodeswere connectedto the clients using a 32-
port Emulex switchin full bandwidthconfiguration.
Fig. 5 shows the architecturefor client-sener com-
municaton as well as intra-sener communcation
usedin our experimentalsetup.We also performed
our experimentsusing an alternateconfigurationin
which the sameVIA interconnectvasusedfor both
client-sener communication and intra-sener com-
municaton. The resultsobtainedwith the alternate
configuratiorwereidenticalto thosereportedn this
section.

A. Workload

In our experimens, we have usedpostmark]7],
a syntheic benchmarkaimed at measuringfile
systemperformanceover a workload composedof
mary short-lived, relatively small files. Postmark



TABLE |
DISTRIBUTION OF FILES USING THE HASH FUNCTION

# Seners | 2 4 8

#Clients | 6 10 16
Senerl | 452 | 377 | 287
Sener2 | 448 | 363 | 305
Sener 3 - 374 | 295
Sener 4 385 | 311
Sener 5 - 311
Sener 6 295
Sener 7 307
Sener 8 289

workloadsare characterizé by a mix of metadata-
intensve operations. The benchmark begins by
creating a pool of files, performs a sequenceof
transactionsand concludesby deletingall the files
created Eachtransactiorconsistsof two operations
- arandomlychosencreateor deletepairedwith a
randomlychosenreador write.

In our experiments each client issued 30000
transactionsMultiple postmarkclients were used
to measurenaximumthroughpt sustainedy each
sener cluster configuration,with eachclient con-
figured to use a requestset of 150 files. For each
configuration,we measured¢he maximumthrough-
put sustaired by the FederatedDAFS sener, by
increasingthe number of clients until the sener
CPUsreachedsaturation.

B. Request distribution

FedFSusesa hashfunction on the pathnamego
identify the managerfor eachfile. In our exper
iments, FedFS has been configuredto place files
on the managemode unlessmentionedotherwise.
The clients apply the samehashfunction on file
pathnamedo distribute requeststo the seners in
the cluster This makes surethat file requestdrom
the clientsaresentto the sener on which thefile is
located.Tablel shaws the distribution of requested
files acrossthe seners, obtainedby applying the
hash function on the requesttrace of pathnames
generatedy the postmarkbenchmark.

C. Throughput and Speedup with Postmark

In Fig. 6, we shawv the throughputobtainedwith
the postmarkbenchmarkor file sizesrangingfrom

5000

File'size 2K ———
File size 4K ===#===

4500 - File size 8K ..

File size 16K

IS
I}
S
S

3500 -

3000 -

2500 -

2000 -

Postmark Throughput (txns/sec)

1500

1000 #55

500

Number of Servers

Fig. 6. Postmarkthroughpu for various file sizes

2KB to 16KB, for variousclustersizes.In this ex-
periment.eachtransactiorperformeda create/delete
coupledwith a file read operation(no writes). We
see that for larger file sizes (16KB), the perfor
mance drops since the lateny from client-sener
datatransferddomiates With the helpof the FedFS
clusteringlayer, we were able to achieve speedups
of 2.6 on a four node clusterand 4.5 on a eight
nodeclusterrelative to throughpti on a singlenode.
We are currently optimizing the performanceof the
FedFSlayer by usingfile migrationto relocatefiles
basedon load information andwe believe that this
will help us achieve betterspeedups.

D. File Placement and Caching

In the previous experiment,noneof the requests
arriving at ary sener node translatedto a remote
file accessacrossthe cluster This wasachieved by
matchingthe requestdistribution schemeused by
the clients with the file placementschemeon the
seners. If the above schemego not match,client
requestsrriving at a sener nodecouldresultin file
accesgo aremotesener node.To studythe impact
of the file placementpolicy on the communcation
overheadwe implementeda round-robinpolicy as
an example.When the round-robinpolicy is used,
file createrequestsarriving at any nodeareassigned
home nodesin a round-robin fashion. In such a
scenariothe numberof requestsat ary sener node
thattranslateinto local file accesss approximately
1/N of the total, whereN is the size of the cluster
Theremainingrequestsesultin remoterequestgor
file accessacrossthe cluster We verify this with
an experimentusing a round-robinpolicy for file



100,000 -
[ Remote File Access B Total \
90000

90,000
80,000 75000
70,000
60,000 56530
50,000 45,050
40,000
30,000

20,000

Number of Requests from Clients (per node)

10,000

0

Number of Servers

Fig. 7.
placemen

Commurication overhead using rourd-rokin file

12000

[ RoundRobin - Cached
B RoundRobin - Uncached

10000 -
8000

6000 [

Read Throughput (txns/sec)

4000 r

2000

Number of Servers

Fig. 8. Impactof datablock caching

placemenibn the seners. Fig. 7 shavs the average

numberof client requeston eachsener nodethat

translateinto remotefile accesses.
FedFSusescachingto minimize the communi-

cation overheadresultirg from remotefile access.

Usingthe round-robinpolicy for file placemenand
a modified postmarkbenchmark,we evaluate the
effectivenessof cachingin minimizing communica-
tion overheadIn Fig. 8, we presentheresultsof our

experimentwith a modified postmark benchmark,
in which all files are createdbefore running the
transactionsand eachtransactionperformsonly a
readoperation We canseethatthe cachinglayerin

FedFShelpsimprove the throughpt by about35%
for the scenariostudied.

VII. CONCLUSIONS

This paperexploresthe issuesrelatedto building
a scalableclusterbaseddirect accessfile sener.
Using featuredlik e direct datatransferand RDMA,

Direct AccessFile Systemsoffer significant im-
provement in application performanceby reduc-
ing overheadsFedFSexploits low overhead user
level networking for intra-cluster communcation
to presenta low overheadclustering soluion for
seners.FederatedAFS combinesanefficientuser
spaceDAFS implenmentationwith a thin clustering
layer (FedFS)to presenta scalableclusteringso-
lution for DAFS seners. FederatedDAFS usesa
portable mechanismfor distribution and handling
of client requestsacrossthe senersin the cluster
FederatedDAFS minimizes the intra-clustercom-
municaton by cachingdatablocks of remotefiles
and by matchingthe file placementon the seners
with the distribution of requestdrom the clients.

Our resultsshav thatreasonablespeedupsanbe
achieved using FederatedDAFS on sener clusters
of upto eightnodesFederatedAFS hasthe poten-
tial to achieve betterperformancehandemonstrated
with the plannedoptimizationsto migratefiles based
on load informatian on the seners.

ACKNOWLEDGMENT

Theauthorswould lik e to thankFlorin Sultanand
AniruddhaBohrafor their helpin preparinghefinal
versionof this manuscript.

REFERENCES
[1] D.Dunning,G. Reaynier, G. McAlpine, D. CameronB. Shubert,
F. Berry, A. M. Merritt, E. Gronke, and C. Dodd, “The Virtual
Interface Architecture’, IEEE Micro, vol. 18, no. 2, 1998
A. Basu, V. Buch, W. Vogels, and T. von Eicken, “U-Net:
A UserLevel Network Interface for Parallel and Distributed
Computing; in Proceedings of the 15th ACM Symposium on
Operating Systems Principles, Decemberl995
M. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. Felten, and
J. Sandbeg, “A Virtual Memory Mapped Network Interface
for the SHRIMP Multicomputer; in Proceedings of the 21st
Annual Symposium on Computer Architecture, Apr. 1994 pp.
142-153.
J. Katcherand S. Kleiman, “An Introdudion to the Direct Ac-
cessFile Systent, in Whitepaper (www.dafscollaborative.org),
Jun 2000.
E.V. Carreraand R. Bianchini, “Efficiency vs. Portability in
ClusterBasedNetwork Seners; in 8th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming
(PPoPP), 2001.
S.Gopalakrishna, A. ArumugamandL. Iftode, “Federated-ile
Systemsfor Clusterswith RemoteMemary Communicatior,
in FAST (Work in Progress Session), 2002
J. Katcher,“Postmark: A New File SystemBenchmark, Net-
work Appliance, Tech.Rep.3022 October1997.

(2]

(3]

[4]

[5]

(6]

[7]



(8]

9]
(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

J. Chase K. Yocum, and A. Gallatin, “End-SystemOptimiza-
tions for High-SpeedTCP; |IEEE Communicdions, special
issueon TCPPerformancén FutureNetworking Ervironmerts,
vol. 39 no. 4, April 2001,2001.

M. Thadani and Y. Khalidi, “An Efficient Zero-Copy 1/0
Framevork for UNIX,” 1995

V. S. Pai, P. Druschel,andW. Zwaenepel, “|O-Lite: A Unified
I/0O Buffering and Caching Systeni, ACM Transactions on
Computer Systems, vol. 18, no. 1, pp. 37-65, 2000.

Matt DeBegalis, Peter Corbett, Steve Kleiman, Arthur Lent,
Dave Noveck Tom Talpey, and Mark Wittle, “The Direct Ac-
cessFile Systent, in Proceedings of the 2nd Usenix Conference
on File Sorage and Technologies, 2003

K. Magotis, S. Addetia,A. Fedorwa, M.I. Seltzer J.S.Chase,
A.J. Gallatin, R. Kisley, R.G. Wickremesingheand E. Gabber,
“Structureand Performanceof the Direct AccessFile Systen,
in USENIX Annual Technical Conference, 2002.
KostasMagoutis, “Optimistic Direct AccessFile Systent, in
Proceedings of the 1st Workshop on Novel Uses of System Area
Networks, 2002

M. Aron, D. SandersP. Druschel,andW. Zwaenepoel;Scal-
able Content-Avare RequestDistribution; in USENIX Annual
Technical Conference, June2000.

V. Pai, M. Aron, G. Banga, M. Swendsen,P. Druschel,
W. Zwaenepel, and E. Nahum,“Locality-Aware RequesDis-
tribution in ClusterbasedNetwork Seners; in Proceedings of
the 8th International Conference on Architectural Support for
Programming Languages and Operating Systems, 1998.

E.V. Carrera, S. Rao, L. Iftode, and R. Bianchini, “User-
Level Communicationin ClusterBasedSeners] in 8th ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), 2001.

M. Welsh,D. Culler, and E. Brewer, “SEDA: An Architecture
for Well-Conditioned,ScalablelnternetServices, in Proceed-
ings of the Eighteenth Symposium on Operating Systems Prin-
ciples, October2001

B. Bloom, “Space/timetradeofs in hashcodingwith allowable
errors; CACM, vol. 13, no. 7, pp. 422-426, 1970.



