A Portable Client/Server Communication
Middleware over SANs: Design and Performance
Evaluation with Virtual Interface and InfiniBand!

J. Liu M. Banikazemif

Dept. of Computer and Information Science

The Ohio State University
Columbus, OH 43210

email: {liuj, panda}@cis.ohio-state.edu

Abstract— In this paper, we address the problem of
using high performance SAN technologies to provide
efficient communication support in client/server type of
environments. Our objective is to build a portable sub-
strate which not only bridges the functionality gap between
applications and SAN networks and preserves the perfor-
mance of the underlying communication layer, but also
provides the required flexibility for analyzing the impact of
various modern communication techniques. \WWe propose an
architecture which exposes a simple queue based interface
to applications. We take advantage of the features of
modern SANSs (such as OS bypass, zero copy, and RDMA)
and use several techniques to improve the performance of
our communication protocol. We have implemented our
design for both InfiniBand and Virtual Interface Archi-
tecture (VIA). Our performance evaluation shows that the
protocol processing overhead is low and the underlying
communication performance can be preserved. We also
discuss the performance impact of various communication
techniques.

I. INTRODUCTION

During the last ten years, the research and in-
dustry communities have been proposing and im-
plementing user-level communication systems to
address some of the problems associated with tra-
ditional networking protocols [1]-[3]. These com-
munication subsystems form System Area Networks
(SANSs) that provide very high communication per-
formance and very low host CPU overhead. The Vir-

1The research was started during Jiuxing Liu’s visit to IBM T. J.
Watson Research Center as a summer intern. It is supported in part
by DOE grant #DEFC02-01ER25506, Sandia National Laboratory
contract #30505 and NSF grants #E1A-9986052 and #CCR-0204429.

B. Abaif D. K. Panda

fServer Technology
IBM T.J. Watson Research Center
Yorktown Heights, NY 10598
email: {mb, abali } @us.ibm.com

tual Interface Architecture (VIA) [4] was proposed
to standardize these efforts. Recently, InfiniBand
Architecture (IBA) [5] has been introduced which
combines storage 1/0 with Inter-Process Communi-
cation (IPC).

Although SAN networks such as those connected
by InfiniBand offer superior raw performance, for
using them many communication issues such as
descriptor management, buffer registration and flow
control should be dealt with. Furthermore, different
SANs have different programming interfaces, mak-
ing it difficult to write portable software. There are
ongoing efforts [6], [7] trying to address the porta-
bility problem by providing unified programming
APIs, but the APIs such as those defined in DAT [6]
still present a low level interface and the users have
to take care of the communication details. Several
groups in academia and industry have addressed
this problem by implementing well known standards
and APIs [8], [9] and developing new middleware
[10]. Furtheremore, several standards [11], [12] are
being developed in order to take advantage of fea-
tures provided in modern SANs. There are also a
few applications that have been developed directly
over the system area communication protocols. This
approach has been used to construct web servers
and database storage systems [13], [14]. In this ap-
proach, more development effort is needed to handle
all the communication details and the software may
not be portable.

As we can see, it would be beneficial if we

can provide a portable communication middleware
which hides the communication details. Many SANs
offer features such as OS bypass, zero copy, and
Remote Direct Memory Access (RDMA). In this
paper, we explore how to use these features to
provide efficient communication support for cluster-
based database and web servers systems. Our ob-
jective is to build a portable substrate which not
only bridges the functionality gap between vari-
ous applications and SAN networks and preserves
the performance of the underlying communication
layer, but also provides the required flexibility for
analyzing the impact of various modern communi-
cation techniques. By design and implementation of
such a communication system we can evaluate the
performance of SANs in a more realistic way.

We propose an architecture which exposes a
simple but flexible communication interface to ap-
plications. In designing this architecture, we use
client/server type of environments as our primary
target environments. In such systems, communica-
tion operations are primarily used for transferring
request and response messages between clients and
servers. Besides hiding communication details and
providing flexibility, the proposed architecture also
achieves high performance. It does so by using the
following:

« Carefully designed interfaces. Our design con-
sists of two interfaces, which provide both
required functionality and portability.

« Communication protocol optimization. We use
many techniques, such as Eager Write and
Pin-down Cache, to improve communication
performance.

« Flexible mechanisms to ensure communica-
tion progress. Instead of forcing one particular
progress method, we have provided a mecha-
nism upon which multiple ways can be imple-
mented to make communication progress.

We have implemented prototypes of our design on
both InfiniBand and VIA. Our performance evalua-
tion shows that the protocol processing overhead is
low and thus the underlying communication perfor-
mance can be preserved. We have also quantified the
performance impact of several protocol optimiza-
tions and communication progress methods.

The rest of this paper is organized as follows: In
Section Il we describe the basic architecture of our

proposed middleware. Design issues are discussed
in Section Il and performance results are presented
in Section IV. Conclusions are presented in In
Section V.

Il. BASIC ARCHITECTURE

The basic structure of our proposed middleware
is shown in Figure 1. It consists of two software lay-
ers: Message Processing Layer and SAN Adaption
Layer. These two layers together hide the commu-
nication details from the upper layer software. The
communication supported by our middleware can be
one-sided (no reply needed) or client/server type of
messages.

There are two interfaces in the architecture: Mes-
sage Interface and Low Level Communication In-
terface. The Low Level Communication Interface
is a set of well defined functions which provide
functionalities similar to VIA functions and In-
finiBand Verbs. The SAN Adaption Layer makes
our substrate portable among different SAN inter-
faces such as VIA, DAT and InfiniBand by hiding
the difference between them and adapting them to
the common Low Level Communication Interface.
The other interface is the Message Interface. Up-
per layer software submits communication requests
(both one-sided and client/server type of messages)
through the Primary Queues. Unexpected incoming
messages (request coming from other nodes) can be
fetched from Unexpected Queues. In a client/server
environment, Primary Queues are used by clients to
submit requests and Unexpected Queues are used
by servers to process incoming requests. However,
our middleware provides a unified interface for both
cases and therefore can also be used in a peer-to-
peer environment.

Primary and unexpected requests have similar
data structure which is shown in Figure 2. They both
consist of three parts: Control Segment, Request
Data Segments and Reply Data Segments. However,
their Control Segments are different. Both Request
Data Segments and Reply Data Segments may
contain multiple Address Segments. An Address
Segment describes a chunk of contiguous virtual
memory. The memory in an Address Segment can
be at the local host or a remote node. In the later
case, the Address Segment will contain necessary
information for accessing the memory remotely.

For a primary request, the Request Data Segments
describe the locations of request data and the Reply
Data Segments describe where we expect the remote
node (server) to send the respond data to. For
an unexpected request, the Request Data Segments
describe where the request data is (local or remote)
and the Reply Data Segments describe where the
response data should be put.

Upper Layer Software

Primary Queues Unexpected Queues

N N S A 6

Message
Interface

Comm Procotol

Processing

Request
Processing

Buffer Management Connection

Flow Control Management

Message Processing Layer
9Ltay Low Level Comm

Interface

SAN Adaption Layer

SAN Networks

Fig. 1. Basic Architecture

Control Segment
A

ddress Segment Request Data
A

ddress Segment Segments
Address Segment

Reply Data
Address Segment
Segments

Request Data Structure

Fig. 2. Request Data Structure

To use the Message Interface, a client can follow
these steps:
/* build a request */

/* submit the request */

subnmi t request (& equest, &handl e, service.ld);
check the status */

&st at us);

/* later,
check_r equest (handl e,

On the server side, it is slightly more complicated

because the server needs to check if the data is in
local memory or not. Thus, the server will follow
the following steps:

/* get a request */

get _request (& equest i n);

/* check the data */
if (request.in.seg[0].type == REMOTE) {
/* use an RDVA read to fetch request */

/* process request */
/* build reply and submit */

subnmit request (& eply, & handle, client.d);

Most of the functionality provided by our sub-
strate lies in the Message Processing Layer. This
layer consists of several components such as Re-
geust Processing, Communication Protocol Process-
ing, Buffer and Flow Control Management and Con-
nection Management. These components take care
of many communication details and thus the upper
layer software developers do not need to worry
about them. In spite of the functionality provided
by this layer, we can still keep the overhead low by
using a number of techniques such as optimization
for small data segments, pin-down cache, sender
managed RDMA write buffer, etc. These techniques
will be discussed in detail in the next section.

1. DESIGN

In this section we focus on the design issues
related to the communication protocol in Message
Processing Layer. This layer also handles many
other issues including thread safety, locking, queue
management, flow control and connection manage-
ment.

A. Communication Protocols

The most important function of the Message Pro-
cessing Layer is to move data between the request
node and the server node by using the communica-
tion service provided by SAN networks. The basic
idea of our design is to use send/receive operations

for control messages and RDMA read or RDMA
write operations for data transfers. One issue in
zero-copy communication is that communication
buffers must be pinned (registered). To reduce the
overhead for sending and receiving control mes-
sages, we maintain a global pool of buffers which
are already pinned for control messages.

The most frequently used communication pattern
in our target applications consists of a request
and a reply. Thus we optimize our communication
protocol for handling this case.

1) Basic Protocol: To simplify the explanation,
we assume that the client has submitted a request
which has one request data segment and one reply
data segment. The basic communication protocol to
handle this request is shown in Figure 3. It involves
the following steps:

1) At the client side, the client submits the

request to the Primary Queue.

2) The Message Processing Layer dequeues the
request and begins processing. First, it checks
the request and reply data segments and pins
them down in memory.

3) The Message Processing Layer then builds
a control packet which contains information
about the request, including the request and
reply data segments. It sends out the packet
to the server by using the funtions provided
by the Low Level Communication Interface.

4) The Message Processing Layer at the server
receives the control packet. It builds an unex-
pected request data structure and puts it into
the Unexpected Queue. The address segments
in the packet are translated and copied to the
request data structure. Note that the request
data is still at the client node.

5) The server application, which is upper layer
software with regard to the Message Pro-
cessing Layer, dequeues the request from the
Unexpected Queue and begins serving the
request. First, it checks the address segments
and notices that the data is still at a remote
node.

6) In order to get the request data, the server ap-
plication builds a special RDMA read request
and submits it to the Primary Queue. Before
that, it also allocates a local memory buffer
and specifies it to be the destination of the

RDMA read request.

7) The Message Processing Layer at the server
node processes the RDMA read transaction.
It pins down the local destination buffer and
issues an RDMA read operation through the
Low Level Communication Interface.

8) After the RDMA read operation is finished,
the local destination buffer is unpinned and
the RDMA read request is marked as com-
pleted.

9) The server application processes the original

request. It then submits a reply to the Primary

Queue.

The Message Processing Layer at the server

pins down the reply data buffer and uses

RDMA write operation to transfer data from

the server to the client. Then it sends a control

packet to the client indicating that the original
request is finished.
11) After the RDMA write operation is finished,
the reply data buffer is unpinned at the server.
12) At the client side, the control packet is re-
ceived. The buffers specified in the request
and reply data segments are unpinned, and the
original request is marked as complete.

Our substrate using this basic protocol has several
advantages. First, the upper layer software is not
involved in many communication operations such
as buffer pinning and unpinning. These operations
are carried out in the Message Processing Layer.
Second, there are no extra data copies during the
communication.

However, there are also several disadvantages
in using the above protocol. First, it involves lots
of buffer pinning and unpinning. These operations
go through the kernel and usually involves some
interaction between the host and the NIC. Thus, they
have a quite large overhead. Another problem is that
the server needs to use another RDMA read request
to get the request data explicitly. This increases the
latency in two ways: First, the server has to wait for
the RDMA read request to finish before it can serve
the request; Second, the control must be transfered
between the upper layer software and the Message
Processing Layer. Finally, the basic protocol uses
RDMA read to get the request data. However, this
operation is not available in all SAN networks. VIA,
for example, specifies that RDMA read is optional.

10)

In order to address these issues, we have pro-
posed several enhancements/optimizations to the
basic protocol.

2) Small Data Transfer: As we have mentioned,
it is not efficient to use RDMA operations to transfer
small data because of the buffer pinning and unpin-
ning overhead. To address this problem, we attach
small request data to the end of control packets.
Similarly, the server can attach its reply data with
the reply packet, and the data will be copied to
the reply data buffer when the packet arrives at
the request node (Figure 3). This optimization is
only turned on for small data buffer. Since copying
overhead is negligible in this case, this technique
increases communication performance.

3) Pin-down Cache: Although pinning and un-
pinning overhead for small buffers can be avoided
using the previous technique, for large buffers the
overhead can still be significant. To deal with this,
we use the pin-down cache technique, which was
first proposed in [15]. The main idea is to maintain
a cache of pinned buffers. When a buffer is first
pinned, it enters the cache. When the user wants to
unpin the buffer, the actual unpin operation is not
carried out and the buffer stays in the cache. Thus
the next time when the buffer needs to be pinned, we
need not to do anything because it is already pinned.
A buffer is unpinned only when it is evicted from
the cache.

The effectiveness of pin-down cache depends on
how often buffers are reused. In many applications,
buffer reuse rate is high because of temporal local-
ity. Therefore, we expect that pin-down cache will
improve communication performance in most cases.

4) Eager Write for Request Data: Another disad-
vantage in the basic protocol is that the server needs
to get the request data explicitly by using an RDMA
read request and this increases latency. By using
our small buffer optimization, the overhead can be
avoided for small request data. But the problem still
exists if the request data size is large.

To address this problem, we use a sender man-
aged RDMA write buffer pool. This scheme works
as follows: First the receiver allocates a number of
buffers and pins them down. Then the receiver puts
information about the buffer into a control packet
and sends it to the sender. When the packet arrives,
the sender processes it by putting these buffers into

a free list. Later when the sender sends out a request,
it can get a buffer from the free list and use RDMA
write to send the data directly. After the request is
finished (a reply is returned from the server), the
buffer can be returned to the free list. The detailed
steps of the communication protocol are shown in
Figure 4.

By using this technique, the overhead incurred
by the extra RDMA read request can be avoided in
all cases except when we run out of RDMA write
buffers in the free list. If the server can process the
buffer in place, zero copy can still be achieved.

5) Protocol Selection: For sending out a request,
we have three protocols which use small data opti-
mization, eager write and RDMA read, respectively.
If a request contains multiple request data segments,
the protocol is determined separately for each data
segment. The selection of protocols is based on data
size. If data can fit in a control packet, small data
optimization is used. If data size is less than the size
of RDMA write buffer, eager write may be used.
Otherwise, RDMA read is needed to get the request
data segment.

6) RDMA Read Emulation: To address the prob-
lem that some SAN networks do not have RDMA
read support, we introduce a technique called
RDMA Read Emulation in the SAN Adaption
Layer. By doing this in the SAN Adaption Layer, the
Message Processing Layer can always assume that
RDMA read operation is available. The emulation is
done by using control messages and RDMA write
operation. The steps are shown in Figure 4. The
performance of RDMA read emulation is not as
good as native RDMA read. However, we can void
RDMA read by using eager write protocol. Another
point we should note is that the performance of
RDMA read emulation also depends on how fast
the remote side can respond to the RDMA read
request packet. This in turn depends on how fast
the communication can make progress on the remote
side. We will talk about communication progress in
the next subsection.

B. Communication Progress

Communication progress is an important issue in
a communication subsystem. Since the processor
must handle both processing and communication,
care must be taken so that the communication can

Request Request
Submitted = - [~—equest Packet Submitted = -
. Request Request Packet
Received
RDMA R - - - RDMA Read Request
Submitted
Request
[~ ~ Received
|_ . RDMA Read Processin
Finished essing
Processing Reply
F-- Sihmitted
L - - Reply Submitted Reply Packet L - Repl
RDMA Wri Finished
- Reply Finished
Request
Request __ Reply Packet Finished ~~
Finished
Basic Protocol Small Message Optimization
Fig. 3. Basic Protocol and Small Message Optimization
Request Eager RDMA Rseuqt:'aftted . Request Packet
i e TTTT—
- - - Request
Received
\ W ~~ "/RDMA Read
Request Packet |- - - Request P; Submitted
Received DMA Write
m
Processing Read Reply 1-- R’F?n':/lsﬁ‘egead
Processing
. L - - Reply Submitted
L - - Reply Submitted i
W eply W
L - Reply Finished /,, Reply Finished
Request - Reply Packet
Request —__ | = Reply Packet Finished i
Finished

Eager Write Optimization

Fig. 4.

get enough CPU cycles to make progress. SAN
networks make communication progress easier by
offloading some of operations to the NIC. However,
host processing is still needed. Since our target en-
vironments are client/server environments, commu-
nication progress is even more important. Because
it not only affects the local host, but also has an
impact on the performance of the remote nodes
that depend on the local host as the server node.
There are different ways to ensure communication
progress, and different application may prefer one
of them over others. To provide enough flexibility to
the upper layer software, we don’t enforce a single
way to make communication progress. Instead, we
provide a mechanism upon which multiple methods
to make communication progress can be easily
built. We encapsulate all the processing needed for

RDMA Read Emulation

Eager Write Optimization and RDMA Read Emulation

communication into a single function. This progress
function basically polls for events from multiple
event sources as in Figure 5. Based on this progress
function, different approaches can be used to make
communication progress:

« Single thread polling approach. In this ap-
proach, the application is single threaded and it
periodically calls the progress function to make
progress.

« Dedicated communication thread approach. In
this approach, the application is multithreaded.
One of the threads is dedicated to calling the
progress function.

« Multi-thread polling approach. In this ap-
proach, the application is multi-threaded. All
threads can call the progress function to make
communication progress.

Send/RDMA processing

Recv Processing

\ Progress

Connection Requests = Function
Error Events 7

Upper Layer

Software Events (Request Submitted, etc)

Fig. 5. Progress Function
Later in the performance section we will evaluate
the impact of different progress approaches.

C. Other Issues

In this section we talk about a couple of other is-
sues involved in our design, including thread safety,
gqueue management, flow control and connection
management.

1) Thread Safety and Locking: To take advantage
of SMP machines, many server applications are
multi- threaded. Thus, it is important to provide
thread safety in our Message Processing Layer. In
our design, how this is handled depends on the
method used to make communication progress. If
single thread polling approach is used, we do not
need to worry about thread safety because there is
only one thread. In the dedicated communication
thread approach, the communication thread and
other threads interact through Primary Queues and
Unexpected Queues. So these queues are protected
by locks. In the multi-thread polling approach, Pri-
mary Queues and Unexpected Queues are also pro-
tected by locks. Besides that, the progress function
is also wrapped by a lock because this function
may modify some global communication data struc-
ture which must be protected from simultaneous
accesses.

We should note that locking is provided by the
Message Processing Layer. The upper layer soft-
ware does not need to worry about this when using
our communication service.

2) Queue Management: As mentioned before,
in multi-threaded applications Primary Queues and
Unexpected Queues are protected by locks. Con-
tention exists when more than one thread access
a single queue at the same time. To reduce this

contention, the number of these queues can be
chosen at compile time. For example, if the number
of queues is the same as the number of application
threads, there will be no contention among them if
they access different queues because each queue is
protected by a different lock.

Currently the Primary Queues are processed in
a round-robin fashion. However, the processing can
be easily changed to give priority to certain queues
and thus implement some kind of QoS for message
processing.

3) Flow Control: SAN networks such as VIA or
InfiniBand often require that a receive be posted to a
communication end-point before the other side can
successfully send a message. Since RDMA opera-
tions are one-sided, they do not have this limitation.
In our communication protocol, control packets are
transferred through send/receive operations. Thus,
we have to provide a flow control scheme so that
we do not overrun the receive side with too many
packets.

This task is made easy be observing the fact
that for Primary Queues, each request, including
emulated RDMA read regeusts, will only generate
a limited number of control packets to the server
node. Thus, by limiting the number of outstanding
transactions and reposting receives at the server side
before sending back responses, we can make sure
that buffer overruns will not happen.

4) Connection Management and Name Service:
SAN networks often use connection oriented com-
munication model. (InfiniBand also provides data-
gram services.) Therefore, a connection must first
be established before two nodes can communicate.
This work can be done statically or dynamically. In
the former case, all connections are set up during
the initialization phase. In the latter approach, nodes
can join dynamically and connections are set up on
demand.

In our design, upper layer software uses high level
names (service names or server names) to specify
the target node when accessing our communication
services. The high level names are translated by
our Message Processing Layer to low level names
which can be mapped directly to the communication
end points. Each node provides this service by
maintaining a name translation table. However, it is
possible to use existing directory service to provide

this name service.

IV. PERFORMANCE

We have implemented prototypes of our design
for two SAN networks connected by Giganet cLAN
1000 VIA [16] and Mellanox InfiniHost 4x Infini-
Band [17] cards. Each node of our IBA cluster has
512MB memory and dual Intel Xeon 2.40 GHz
processors with Hyperthreading, giving the illusion
of 4 processors. Each node of our VIA cluster
has 1GB memory and four Intel PIIl 700 MHz
processors. The Linux kernel versions are 2.4.18 for
IBA and 2.2.4 for VIA.

Please note that the IBA performance results
presented here are based on early microcode re-
lease for InfiniHost. The Mellanox InfiniHost HCA
SDK build id is thca-x86-0.0.4-rc4-build-001. The
adapter firmware build id is fw-23108-1.13.1016_2-
build-001. As the InfiniBand products are rapidly
maturing, we expect to see upcoming firmware re-
leases to continue reducing latency and increasing
bandwidth. This will have direct performance im-
pact on our middleware.

A. Base Performance

Figure 6 shows the base latency (one way) for
IBA and VIA. From the figure we can see that for
IBA, RDMA write operation has better latency than
send/receive operation. But for VIA, latencies for
send/receive and RDMA write are almost the same
and thus we only show one line in the figure.

Figures 7 and 8 show the base latency for our
implementation and Figures 9 and 10 show the base
throughput. All tests were carried out between two
nodes: a client and a server. In the latency tests, the
client sends out a request and wait for it to finish
(until the corresponding reply has arrived). In the
throughput tests, the client sends out requests as fast
as it can and the server measures how fast it can han-
dle the requests. The requests consist of one request
data segment and one reply data segment. We have
used two methods to make communication progress:
single thread polling and dedicated communication
thread. From the figures we can see that by using
polling, the roundtrip latency for small request and
reply messages is around 24 microseconds for IBA
and around 28 microseconds for VIA. The roundtrip
overhead of the implemented middleware is around

4 microseconds for IBA and around 8 microseconds
for VIA. How to make communication progress
also has an impact on throughput, especially for
small messages. From Figures 9 and 10 we can
observe that using communication thread degrades
performance for small messages significantly. For
large messages the performance is almost the same
for both cases.

To get more insight into where the time has
been spent, we provide latency timing breakdowns
for requests with 8 byte request and reply data in
Tables | and 1. We have broken up the latency into
five major parts. Base overhead refers to the IBA or
VIA latency for 0 byte messages. Header overhead
refers to the time added by sending packets with a
control header. Protocol processing overhead is the
time spent in our Message Processing Layer. This
overhead should be the same for both IBA and VIA.
However, the actual time is different due to the fact
that the nodes in our IBA cluster testbed are much
faster. SAN adaption overhead is the time spent in
the SAN Adaption Layer. From the tables we notice
that IBA has larger overhead. This is due to the fact
the current microcode release fro IBA is prelimilary.
If we use a dedicated communication thread, the
extra locking and context switching overhead is
around 3 microseconds for the IBA cluster and
around 6 microseconds for the VIA cluster.

B. Eager Write and Pin-down Cache Impact

Figures 11 and 12 show the latency for two cases:
one always using eager write optimization and one
always using RDMA read to get request data. Small
message optimization is used in both cases. We
can see that for large messages eager write opti-
mization can reduce the latency. Figures 13 and
14 show the impact of pin-down cache on latency.
Figures 15 and 16 show the impact of pin-down
cache on throughput. In these tests, the request
message size is such that it cannot use the small
message optimization. From the figures we can see
that using pin-down cache can significantly improve
both latency and throughput for IBA. Buffer pinning
and unpinning in cLAN VIA are quite efficient.
Nevertheless, pin-down cache still brings noticeable
performance improvements.

C. Impact of Service Time

In the previous tests, we have conducted the
experiments in such a way that the server always
replies immediately to any incoming requests. To
better understand the interaction between service
time (time spent processing the requests) and the
way communication progress is made, we have
conducted tests by simulating the service time. Two
nodes were used in these tests: a server and a
client. The client sends out requests as fast as it
can. The server consists of one or more worker
threads. Each worker thread tries to get an incoming
thread, processes it for a certain time, and sends a
reply. The processing is simulated by just keeping
incrementing a counter for a certain period of time.
The results are shown in Figures 17 and 18. We
compared two methods for making communica-
tion progress: polling and dedicated communication
thread. In the polling approach, there was only one
thread while in the dedicated communication thread
approach one communication thread and multiple
worker threads were used. From the figures we can
see that if service time is small, the overhead of ex-
ecuting multiple threads dominates and the polling
approach performs better. However, as the service
time increases, the multiple server threads approach
is able to use multiple CPUs to process requests
simultaneously and gives a better performance.

IBA Send/Recy. *——
IBA RDMA Write —x—
W

One Way Latency (Microseconds)
@
3
T
I

o 2000 4000 6000 8000 10000 12000 14000 16000 18000
Message Size (Bytes)

Fig. 6. Base Latency for IBA and VIA

In Figures 19 and 20, we show the results us-
ing dedicated communication threads with 3 and
4 worker threads. From the figures we notice that
when the total number of threads exceeds the num-
ber of CPUs (the case with 4 worker threads and
one communication thread), the throughput drops
because the communication thread has to compete
with worker threads for CPU time.

Latency (Request Size = 8 Bytes)

90

80

70

60

50

Latency (Microseconds)

40

30 b

20

o 5000 10000 15000 20000 25000 30000 35000
Reply Message Size (Bytes)

Fig. 7. Latency (Roundtrip) of the Proposed Middleware with
IBA

Latency (Request Size = 8 Bytes)

Polling —+—
d

Latency (Microseconds)

o 5000 10000 15000 20000 25000 30000 35000
Reply Message Size (Bytes)

Fig. 8. Latency (Roundtrip) of the Proposed Middleware with
VIA

Throughput (Request Size = 8 Bytes)
180000 T T

Polling —+—
mm Thread --->---

160000
140000
120000 |- |

100000 [| /T

80000

Throughput (Transactions/Second)

60000

40000

20000
o

5000 10000 15000 20000 25000 30000 35000
Reply Message Size (Bytes)

Fig. 9. Throughput of the Proposed Middleware with IBA

Throughput (Request Size = 8 Bytes)
120000 T T

Polling —+—
Comm Thread ---3---

100000 -
80000

60000 |-

40000

Throughput (Transactions/Second)

20000

o

o 5000 10000 15000 20000 25000 30000 35000
Reply Message Size (Bytes)

Fig. 10. Throughput of the Proposed Middleware with VIA

TABLE |
ROUNDTRIP LATENCY BREAKDOWN OF THE PROPOSED
MIDDLEWARE FOR 8 BYTES REQUEST/REPLY WITH IBA

Components

Time (Microseconds)

Base Overhead

20.56

Header Overhead

0.70

SAN Adaption Overhead

241

Protocol Processing Overhead

0.77

Threading Overhead (Optional)

3.08

TABLE I
ROUNDTRIP LATENCY BREAKDOWN OF THE PROPOSED
MIDDLEWARE FOR 8 BYTES REQUEST/REPLY WITH VIA

Components

Time (Microseconds)

Base Overhead

21.28

Header Overhead

4.86

SAN Adaption Overhead

0.41

Protocol Processing Overhead

1.30

Threading Overhead (Optional)

6.16

Latency (Reply Size = 8 Bytes)

110 T
Eager Write
RDMA Read o=
100 - s B
e
90 |- -

Latency (Microseconds)

o 5000 10000 15000

20000 25000 30000 35000

Request Message Size (Bytes)

Latency for Eager Write and RDMA Read with IBA

Latency (Microseconds)

o 5000 10000 15000

20000 25000 30000 35000

Request Message Size (Bytes)

Fig. 12.

Latency for Eager Write and RDMA Read with VIA

Latency (Request Size = 1024 Bytes)

800 | |

Pindown Cache —+—

No Pindown Cache ---»---

U
ol SO O i
e
,,,,,,,,,,,, ORI
ORIV emnmmmee 3.

600 | ¥]

Latency (Microseconds)
N
<]
3
T

15000 20000
Reply Message Size (Bytes)

o 5000 10000

Latency (Request Size = 1024 Bytes)

25000 30000

35000

Pin-down Cache Impact on Latency with IBA

Pindown Cache ——
No Pindown Cache --¢---

15000 20000
Reply Message Size (Bytes)

o 5000 10000

Throughput (Request Size = 1024 Byt

25000 30000

es)

35000

Pin-down Cache Impact on Latency with VIA

25000

20000

15000

10000 |

5000 L

Pindown Cache ——
No Pindown Cache ---3---

15000 20000
Reply Message Size (Bytes)

10000

25000

35000

Fig.

Throughput (Transactions/Second)

Fig.

15.

25000

20000

15000

10000

5000

16.

Pin-down Cache Impact on Throughput with IBA

Throughput (Request Size = 1024 Bytes)

Pindown Cache ——
No Pindown Cache ——

15000 20000 25000

Reply Message Size (Bytes)

Pin-down Cache Impact on Throughput with VIA

5000 10000 35000

Throughput (Request Size = 8 Bytes, Reply Size = 256 Byles)
80000 T T T T T
%

p ad x
70000 5 1 Comm Thread/3 Server Thread o |
60000 H }
50000 -

40000 |-

30000
El

Throughput (Transactions/Second)

20000 -

10000 |

B T St o
o 100 200 300 400 500 600 700 800 900 1000
Service Time (Microseconds)

Fig. 17. Impact of Service Time on Throughput with IBA
(1-3 Worker Threads)

Throughput (Request Size = 8 Bytes, Reply Size = 256 Bytes)
60000 T T T T T

ad ----x-
1 Comm Thread/3 Server Thread -
50000

40000 ||/
30000 || %

20000 *

Throughput (Transactions/Second)

10000 |

% gk
800

900 1000

o
O by
S

o 100 200 300 400 500 600 7
Service Time (Microseconds)

Fig. 18. Impact of Service Time on Throughput with VIA
(1-3 Worker Threads)

Throughput (Request Size = 8 Bytes, Reply Size = 256 Bytes)
70000 T T T

1 Comm Thread/3 Server Thrs ead —
1 Comm Thread/a Server Thread --->---

60000 -
50000 [| 1
40000

30000

Throughput (Transactions/Second)

20000

10000 [

Fig. 19. Impact of Service Time on Throughput with IBA
(3-4 Worker Threads)

Throughput (Request Size = 8 Bytes, Reply Size = 256 Bytes)
35000 T T

1 Comm Thread/3 Server Thr ead —
1 Comm Thread/a Server Thread ---»---

30000 -

25000 -

20000

15000 |

Throughput (Transactions/Second)

10000 |- |

5000 -

o 100 200 300 400 500 600 700 800 900 1000
Service Time (Microseconds)

Fig. 20. Impact of Service Time on Throughput with VIA
(3-4 Worker Threads)

V. CONCLUSIONS

In this paper, we proposed a middleware layer to
provide efficient communication support for cluster-
based applications on SANs. We used various
techniques such as carefully designed interfaces,
communication protocol optimization and flexible
mechanisms to ensure communication progress. \We
have implemented our design for two platforms:
VIA and InfiniBand. Our performance evaluation
shows that the protocol processing overhead is low
and our proposed middleware largely preserves the
performance of underlying communication layer.

Although we have evaluated our system using
various micro-benchmarks, many design alternatives
in our system can be best evaluated using real
applications. Currently, we are working along this
direction, and our target applications are database
applications and cluster-based service systems such
as cluster-based web servers.

Acknowledgments

We would like to thank Craig Stunkel of IBM
Research for valuable discussions and his support.

REFERENCES

[1] T.von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser,
“Active Messages: A Mechanism for Integrated Communication
and Computation,” in International Symposium on Computer
Architecture, 1992, pp. 256-266.

[2] S. Pakin, M. Lauria, and A. Chien, “High Performance Mes-
saging on Workstations: Illinois Fast Messages (FM),” in Pro-
ceedings of the Supercomputing, 1995.

[3] T. von Eicken, A. Basu, V. Buch, and W. Vogels, “U-Net: A
User-level Network Interface for Parallel and Distributed Com-
puting,” in ACM Symposium on Operating Systems Principles,
1995.

[4] D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shubert,
F. Berry, A. Merritt, E. Gronke, and C. Dodd, “The Virtual
Interface Architecture,” |[EEE Micro, pp. 66-76, March/April
1998.

[5] InfiniBand Trade Association, “InfiniBand Architecture Speci-
fication, Release 1.0,” October 24 2000.

[6] DAT Collaborative, “uDAPL and kDAPL API Specification
V1.0,” June 2002.

[7] The Open Group, “The Interconnect Software Consortium.”
[Online]. Available: http://www.opengroup.org/icsc/

[8] Lawrence Livermore National Laboratory, “MVICH: MPI
for Virtual Interface Architecture,” August 2001. [Online].
Available: http://www.nersc.gov/research/FTG/mvich/

[9] H. V. Shah and R. S. Madukkarumukumana, “Design and
Implementation of Efficeint Communication Abstractions on
the Virtual Interface Architecture: Stream Sockets and RPC
Experience,” Software-Practice and Experience, vol. 31, pp.
1043-1065, 2001.

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

M. Banikazemi, J. Liu, D. K. Panda, and P. Sadayappan,
“Implementing TreadMarks over VIA on Myrinet and Gigabit
Ethernet: Challenges, Design Experience, and Performance
Evaluation,” in Proceedings of International Conference on
Parallel Processing, 2001.

InfiniBand Trade Association, “Socket Direct Protocol Specifi-
cation V1.0,” 2002.

Technical Committee T10, “SCSI RDMA Protocol,” 2002.

Y. Zhou, A. Bilas, S. Jagannathan, C. Dubnicki, J. F. Philbin,
and K. Li, “Expericences with VI Communication for Database
Storage,” in In Proceedings of International Symposium on
Computer Architecture’ 02, 2002.

E. V. Carrera, S. Rao, L. Iftode, and R. Bianchini, “User-
Level Communication in Cluster-Based Servers,” in Proceed-
ings of the Eighth Symposium on High-Performance Architec-
ture (HPCA' 02), February 2002.

H. Tezuka and F. O’Carroll and A. Hori and Y. Ishikawa, “Pin-
down Cache: A Virtual Memory Management Technique for
Zero-copy Communication,” In Proceedings of 12th Interna-
tional Parallel Processing Symposium, April 1998.

Emulex Corporation, “cLAN: High Performance Host
Bus Adapter,” September 2000. [Online]. Available:
http://www.emulex.com/products/legacy.html

Mellanox Technologies, “Mellanox InfiniBand Infini-
Host Adapters,” July 2002. [Online]. Available:
http://www.mellanox.com

