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Abstract— Recent work in low-latency, high-bandwidth com-
munication systems has resulted in building user–level Network
Interface Controllers (NICs) and communication abstractions
that support direct access from the NIC to applications vir-
tual memory to avoid both data copies and operating system
intervention. Such mechanisms require the ability to directly
manipulate user–level communication buffers for delivering data
and achieving protection. To provide such abilities, NICs must
maintain appropriate translation data structures. Most user–level
NICs manage these data structures statically which results both
in high memory requirements for the NIC and limitations on the
total size and number of communication buffers that a NIC can
handle.

In this paper, we categorize the types of data structures used
by NICs and propose dynamic handle lookup as a mechanism to
manage such data structures dynamically. We implement our
approach in a modern, user–level communication system, we
evaluate our design with both micro-benchmarks and real ap-
plications, and we study the impact of various cache parameters
on system performance. In this work we focus mostly on the
results of our work. We find that, with appropriate cache tuning,
our approach reduces the amount of NIC memory required in
our system by a factor of two for the total NIC memory and
by more than 80% for the lookup data structures. For larger
system configurations the gains can be even more significant.
Moreover, our approach eliminates the limitations imposed by
current NICs on the amount of host memory that can be used
for communication buffers. Our approach increases execution
time by at most 3% for all but one applications we examine.

I. INTRODUCTION

Recent work in improving the performance of intercon-
nection networks in scalable servers and storage systems
has resulted in new network interface controllers (NICs) that
support user–level communication [1], [2], [3]. The main
capabilities of these NICs are: (i) the ability for user programs
to directly access the network in a protected manner for
sending and receiving data and (ii) data transfer directly to-
and from program virtual memory without OS intervention.
These capabilities are now part of industry standards that are
in use today or are being proposed for future interconnects [4],
[5], [6]. However, modern NICs require certain extensions to
provide these capabilities.

First, they require efficient support for translating between
virtual and physical memory addresses. NICs usually perform
DMA transfers only to and from physical host memory.
However, user programs usually employ virtual addresses to

specify communication buffers. Therefore, most user–level
communication standards [4], [5] and NICs [3], [2] require
efficient address translation by the NIC.

Second, to allow user programs to directly access the
network without OS intervention, NICs must be able to verify
user requests. For this purpose, the virtual memory regions
used as communication buffers must be registered with the
NIC prior to the actual communication operations. Registration
implies that the NIC is aware of virtual memory regions
that can be used for direct data transfer. Therefore, NICs
must maintain information about registered communication
buffers [7]. Also, such systems require a mechanism to au-
thenticate remote programs. This requires NICs to maintain
authentication information for point–to–point communication
connections. Finally, given that most servers today are re-
quired to support multi–programmed workloads, NICs must
handle requests of multiple user processes simultaneously. For
protection purposes, NICs must directly identify local user
processes by some handle that is used to retrieve user-specific
communication contexts.

Therefore, NICs must lookup at least three different types
of resources during their operation: (i) address translation
information (ii) registered communication buffers and au-
thentication information, and (iii) processes communication
context information. The solution employed in most NICs is to
use static lookup tables in NIC memory. The user applications
must provide all lookup entries required for the NIC operation
prior to any communication operation. This static method for
management of NIC memory has two major implications.

First, it requires modern NICs to support large amounts of
on-board memory at significant cost. For instance, Myrinet
NICs are priced as shown in Table I [8]. We see that increasing
the amount of memory by 2 MBytes increases the NIC cost
by more than 30% whereas increasing memory by 6 MBytes
increases the NIC cost by more than 60%. Other products, such
as the VI/IP and iSCSI NICs by Emulex [9] employ higher
amounts of on-board memory at higher costs. Generally, in
many modern clusters the cost of the system area network
(including switch costs) that interconnects the nodes of the
system is about the same as the cost of the system nodes.

Second, and more importantly, all modern NICs impose
static limits on the amount of host memory that can be used



NIC Memory Size (MBytes) 2 4 8
NIC Price (USD) 995 1,295 1,595

TABLE I

MEMORY CONFIGURATION AND PRICE INFORMATION FOR THE MYRINET

NICS.

for communication buffers. In all cases the user is able to
only use a subset of the host memory for communication.
This is a severe limitation for application servers in various
domains, such as compute servers [7] or database storage
servers [10], especially as application needs change over time
and among applications in multiprogrammed workloads. The
solution that has been employed in these cases is some type
of application level management of communication buffers,
which is cumbersome, complex, and sometimes not even
possible due to OS restrictions. The easier approach is to
further increase the amount of NIC memory. However, this
only postpones the problem until application working sets
increase further and unnecessarily increases the cost of the
base system.

In this paper, we evaluate the performance implications
of a generic scheme, called dynamic handle lookup [11]
that maintains all important lookup tables in the larger host
memory and uses parts of NIC memory as a cache. Dynamic
handle lookup eliminates the limitations of most user–level
communication systems due to the limited size of NIC mem-
ory. Such limitations are in particular imposed on the total size
of the communication virtual address space, the total number
of communication buffers and connections, and the number of
processes that use the system concurrently. In our evaluation
we use both synthetic micro–benchmark and real applications
from the SPLASH-2 [12] suite.

Overall, we find that by using dynamic handle lookup NIC
memory size can be reduced substantially by as much as 50%
for the total amount of memory and up to 75% for lookup
data structures. The overhead of using more complex dynamic
lookup structures is at most 3% across all but one applications
we examine.

The rest of the paper is organized as follows. Section II
provides the necessary background on user–level communica-
tion systems. Section III discusses related work. Section IV
summarizes the design of dynamic lookup mechanisms. Sec-
tion V presents the results of our performance evaluation
and analysis, both with synthetic micro-benchmarks and real
applications. Finally, Section VI draws our conclusions.

II. USER–LEVEL COMMUNICATION

User–level comunication systems support direct user access
to network resources and data transfer operations to local
and remote virtual memory without host processor and OS
intervention [13], [14], [2]. They use the capabilities of modern
NICs to reduce communication overheads. Modern NICs usu-
ally employ a communication assist, which can be a special–
purpose network processor or a general–purpose processor and

usually few MBytes of static or dynamic memory. NICs also
have one or more DMA engines for transferring data between
the host memory and the NIC buffers and also between the
NIC buffers and the network link. The firmware runs on
the communication assist and implements the communication
protocol by managing NIC resources, mainly controlling the
DMA engines and responding to system events.

User–level communication systems usually consist of three
major components: (i) A kernel–level device driver that is
responsible for initializing the NIC and performing trusted
functions that cannot be performed directly by the user. (ii)
A network control program (NCP) that runs on the NIC
and performs all protocol processing tasks. The NCP usually
implements a set of state machines that handle all system
events. (iii) A lightweight user–level library to provide the
communication API for user programs.

The user–level library in co-operation with the NCP man-
ages per-process, memory-mapped, send, receive, and com-
pletion queues on NIC memory. The path in which data is
transferred from host memory to NIC memory and then to the
network link is called send path. The path in which data is
transferred from the network link to NIC memory and then to
host memory is called receive path.

User–level communication systems provide two major types
of communication operations, connection establishment and
data transfer operations. In general, NIC memory is divided
into three regions:

NCP code: This region contains the firmware code that runs
on the communication assist and handles all system events. It
usually varies between 50-150 KBytes.

Send and receive data buffers: Data that is being received
or sent is first transfered to buffers on the NIC. Such buffers
are short-lived and usually a small number is adequate for
good performance [15]. Furthermore, they are always managed
dynamically and their number can be adjusted based on the
available NIC memory.

Lookup data structures: This region contains all data
structures needed for lookup operations. The most important
types of such lookup data structures are used to maintain
information for address translation, registered communication
buffers, connections, and process communication contexts.

Unlike the NCP code and the data buffers, the size of the
lookup data structures grow with the application communica-
tion working set size. Given the current trend for increasing
application working set sizes, applications that use user-
level communication to improve the cost of communication
operations require large numbers of communication buffers
with a corresponding increase in the size of lookup data
structures. For instance, application servers with 64 GBytes
of main memory would require approximately 64 MBytes of
memory only for virtual address translation, which exceeds
by far the capabilities of modern NICs used in system area
networks. Furthermore, building NICs with similar capabilities
increases the NIC cost significantly. In summary, in cluster
configurations where communication among nodes is intense,
the lookup data structures currently constitue the largest com-



ponent of NIC memory.

III. RELATED WORK

The design and implementation of dynamic handle lookup
is presented in more detail in [11]. In this work we focus on
the performance implications of these mechanisms.

The authors in [16] propose a User-managed Translation
Look-aside Buffer (UTLB) to dynamically manage translations
for virtual memory used as send communication buffers.
UTLB is implemented as a per-process two-level custom page
table in the host memory. A shared TLB cache resides in NIC
memory and caches the most popular entries of the driver-level
tables. On a miss the NIC fetches the appropriate table entry
using DMA. However, UTLB’s dyanmic approach is only
applicable to the send path of the NIC. Address translation
on the receive path is static, which means that all translation
entries for registered communication buffers reside in the NIC
memory throughout program execution. This results in high
memory requirements and limitations on the total size as well
as the number of the registered communication buffers. The
limitations of this approach have motivated to a large extent
our work.

The authors in [17] propose the concept of virtual networks
to address the issue of supporting large numbers of users
over fast, user-level communication systems. The main goal
of the work is to efficiently multiplex the system resources
among multiple applications with different demands. The main
abstraction is the network endpoint that consists of the process
send and receive queue and the address translation information
of the static buffers involved in the communication. Endpoints
reside in the host memory and are cached on NIC memory.
Unlike many user–level communication systems, the virtual
networks abstraction does not support RDMA operations to
arbitrary memory locations, which eliminates the need for
permanent lookup entries in the NIC memory.

U-Net/MM [18] is an extension of the U-Net [19] system
that also uses endpoints as the main communication facility.
Each endpoint is associated with a buffer area that is pinned to
contiguous physical memory and holds all buffers used with
that endpoint. The U-Net/MM incorporates a TLB structure, in
order to handle arbitrary user-space virtual addresses. Similar
to our work, U-Net/MM uses an interrupt-based mechanism
for handling TLB misses. However, U-Net/MM does not
support RDMA operations. Thus, applications can provide
the NIC with address translation information upon posting
send and receive requests, whereas with RDMA operations,
data transfer occurs asynchronously. Moreover, in U-Net/MM,
whenever there is an eviction from the TLB, the OS has to
be notified to unpin the corresponding pages. In contrast, in
miNI there is no need to notify the host system in the case
of an eviction. Furthmore, U-Net/MM does not deal with the
protection issues of communication buffers. Finally, UNet/MM
is only evaluated with micro-benchmarks, and therefore, there
is little evidence how different communication working set
size of the real applications affects its performance.

The Virtual Interface (VI) architecture [4] is an industry
standard for user-level communication. The VI supports both
send and receive operations as well as RDMA operations.
Similar to miNI, communication buffers must be registered
prior to any data transfer. The registration includes both
pinning the virtual region and setting up the protection in-
formation for it. In current VI implementations [20], [21],
[22], [3] all registered regions are statically pinned. This
limits the total size of the registered buffer to a fraction
of the total physical memory available, unless the user pro-
cess dynamically manages registration and deregistration of
communication buffers. For instance, the cLAN NICs [3]
impose 1GByte limit on registered memory, which is very
little for modern applications [10]. Another industry standard
in system area networks is Infiniband [5]. The core operations
and protection model of Infiniband is significantly influenced
by VI. More specifically, it follows the same rules as VI in
registering the communication buffers with small refinements
in the protection model.

Finally authors in [23] present a survey of different mech-
anisms used for address translation in NICs. They define four
requirements for address translation: (i) Flexibility of use for
higher system layers. (ii) The ability to cover all of the user
address space. (iii) The ability to take advantage of locality.
(iv) Graceful degradation when system limits are exceeded.
They evaluate various alternative methods of implementing
address translation in NICs by using simulation. They find
that hardware lookup structures in the NIC are not required
since the software schemes are fast enough. They suggest that
the NIC should handle all address translation misses which
introduces the limitations discussed in this work.

IV. DESIGN OF DYNAMIC HANDLE LOOKUP

In this section we summarize the dynamic handle lookup
mechanisms we evaluate. A more detailed description of
these mechanisms can be found in [11]. However, we first
define some important terms that are used frequently in the
description of our design.

Virtual Memory Handle: It specifies the virtual address in
host memory of the source or destination location for data
transfer operations. VMHs are used for virtual to physical
address translation in the send and receive path of the NIC.
In our current implementation the VMH is 48 bits and is
composed from a virtual address and the process Id.

Communication Buffer Handle: It specifies the communi-
cation buffer used in data transfer operations. CBHs are used
by the receiving NIC to obtain protection information about
a buffer and by the sending NIC to specify a communication
buffer in the cluster. In our current implementation the CBH
is 48 bits and is composed from the 32-bit buffer Id and the
16-bit process Id.

Process Communication Handle (PCH): In multipro-
grammed workloads, it specifies which process is involved In
a communication operation. In our implementation the PCH
is a 16-bit integer.
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A. Basic mechanisms

The main idea in dynamic handle lookup is to move all
lookup tables to the much larger host memory and use the
NIC memory as a cache. On a cache miss, the NCP issues
an interrupt to the host CPU that is handled by the NIC
device driver. The handler fetches the missed entries from
lookup tables in host memory and places them in the cache in
NIC memory. The NIC cache is shared among all processes
that use the communication system. This allows for better
management of the NIC memory. However, the performance
of the communication system might substantially degrade if
many processes compete for the same cache entries.

The two major problems in such a design are: (i) How to
fetch the missed entries from the host memory and (ii) how
should the NCP handle requests that miss.

(i) There are two ways for the NCP to request entries
that miss: To interrupt the host CPU or to DMA the entries
directly from the host memory itself. The latter is faster and
does not impose any overhead on the host CPU. However, it
requires that the host CPU prepares all request entries before
the execution of the communication operation that needs the
entries. This requires a priori knowledge of what operations
are going to take place, which is difficult to obdain for long
RDMA operations. Moreover, with this method the NCP must
be aware of the physical structure of the lookup tables in host
memory, which limits the design of the lookup tables.

Furthermore, handling cache miss interrupts can be done
in two ways: Using an interrupt handler or using a separate
thread running in the kernel. The former is faster since it incurs
no context switch overhead and unpredictable scheduling
delay. However, this approach requires implementing custom
internal kernel functions to provide the necessary functionality.
Moreover, interrupt handlers cannot be blocked in many OSs,
limiting the kernel functions that can be called in the interrupt
handler context.

In this work we choose to handle lookup cache miss
interrupts in a separate thread running in the kernel. Figure 1
shows the cache miss handling path. The NIC issues a miss
interrupt when a lookup in one of the cache data structures
misses. The interrupt handler in the kernel device driver just
prepares a miss event descriptor with the information given by

the NIC and places it in the miss event queue. It then wakes
up the in-kernel miss event thread, which does all processing
and updates the on-NIC cache.

(ii) When a cache miss happens during processing a re-
quest, the NCP blocks the request and processes other active
connections. Meanwhile, the NCP has two ways to handle the
blocked request: To buffer the request in the NIC memory
until the missed entries are fetched from the lookup tables in
the cache or to drop the request and rely on the underlying
transport protocol to retransmit the unacknowledged request.
Buffering requests requires a potentially high amount of NIC
memory, since the miss handling delay from host memory may
be long. Moreover, it complicates the design of the NCP. On
the other hand, dropping a request is simple and requires no
NIC memory. However, it incurs the retransmission overhead.
In miNI, we use the second approach, of dropping requests
that miss, to both minimize NIC memory requirements and
simplify NCP implementation.

In summary, in our design we favor design choices that
lead to a simpler and more portable implementation, despite
the fact that this may increase miss penalties. Our intention is
to not only understand and build systems that perform well,
but systems that are robust and realistic. Performance-wise, as
explained in Section V, our evaluation confirms our intuition
that we can limit the overall performance overhead by reducing
the miss rate with proper cache configuration and tuning.

Although we have implemented dynamic handle lookup for
all important data structures, we only present the detailed
evaluation of dynamic VMH lookup here.

B. VMH Lookup

VMH lookup is required both in the send and the receive
paths. Also, RDMA read and write operations are handled
differently. For RDMA reads, in the send path data is sent as
the result of a remote read request. In this case the RDMA
read request contains the CBH of the communication buffer
and the offset of the data to be read within the buffer. The
CBH is used to lookup the virtual address of the start of the
buffer. The start address is added to the offset to form the
VMH of the area from which the data must be sent. In the
receive path, NIC processing is simpler since the VMH of the
destination of the data on the host memory has already been
posted at the time of issuing the RDMA operation. Conversely,
for RDMA writes, in the receive path data has to be written
into a communication as a result of an RDMA write operation,
issued from a remote node. In this case, the RDMA request
contains the CBH of the communication buffer and the offset
within the buffer. The CBH is used to lookup the starting
virtual address of the communication buffer. This address is
added to the offset to form the VMH of the area to which
the data will be written. For RDMA writes the send path is
simpler since data is sent as a result of an RDMA write request
issued at the local node and the VMH of the source data is in
the request descriptor posted by the user process.

There are two data structures that hold the address trans-
lation information used during VMH lookup: (i) the VMH
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Lookup Table that resides in host memory and (ii) the VMH
Lookup Cache that is located in NIC memory and acts as a
cache for the VMH table.

1) VMH Lookup Table: For each process, there is one VMH
table in the device driver that keeps the virtual–to–physical
address mappings for all pinned pages of the process. When
there is a miss in the VMH cache, the device driver looks for
the missed entries in the VMH table. If they are found, the
driver just updates the VMH cache. Otherwise, it pins all the
pages in the missed address range and updates both the VMH
table and the VMH cache with the physical addresses.

2) VMH Lookup Cache: The send and receive paths of
the NIC use the same cache for uniformity and simplicity.
We use a set-associative cache structure with configurable
associativity, cache line size, and cache size. Figure 2 shows
the structure of the VMH cache. We use the lower bits of the
virtual address in the VMH as the set index and the rest of the
virtual address bits and the process Id as the tag information.
This prevents static partitioning of the cache among processes.
Also, it reduces the chance of conflicts among the addresses
close to each other for which we expect spatial locality of
access. The VMH cache is shared among all processes using
the system.

The VMH cache lines can have multiple entries. The cache
line size can be configured at compile time. Multiple–entry
cache lines allow for a smaller tag-array. For each entry
in a cache line, the full 32-bit word is allocated for the
physical page address, allowing up to 16 TBytes of physical
memory to be used for communication buffers. The cache
line is also the unit of data transfer between the VMH table
and cache. Therefore, when there is a miss for a virtual
address in the cache, the missed virtual address will be aligned
to the cache line boundaries. This may result in effective
prefetching for applications with sufficient spatial locality in
their communication buffer access pattern. However, this also
increases the cache miss penalty, mostly due to larger pinning
costs.

The VMH cache can be configured with different associa-
tivity levels. Although with higher levels of associativity the
number of conflicts may be reduced, the cost of lookup in the
cache tag array increases, which is specially an issue in caches
implemented in software.

The VMH cache uses an LRU replacement policy for the
entries of each set. The cache replacement is implemented
in the NIC. Since the NCP access to the VMH cache is
read–only, the replacement does not include any write–back
operation and the entries to be replaced are simply thrown
away. When an entry is replaced in the VMH cache, it remains
in the host VMH table. Entries in the VMH table are pinned
as well. However, as mentioned above, once a line is evicted
from the VMH cache, it also becomes a candidate for eviction
from the VMH table, in case it reaches the high water mark.
However, VMH table replacement happens periodically with
long intervals. If a page is accessed frequently, it will be
brought back to the VMH cache and thus, will not be evicted
from the VMH table.

V. RESULTS

The goal of our evaluation is twofold: (i) we would like
to tune the lookup cache design parameters in our extensions
so that we both reduce the memory requirements as well as
impose little additional overhead to real applications, and (ii)
we are interested in gaining insight on how the system behaves
as the parameters vary within a wide range of values and
applications.

In this work, we use Virtual Memory Mapped Communi-
cation (VMMC) [14] as the base for implementing our ap-
proach. VMMC provides protected, user–level communication
between the sender’s and the receiver’s virtual address spaces.
VMMC guarantees FIFO message delivery between any two
processes in the system and tolerates transient network errors
by using packet retransmission. More specificlly, VMMC
includes a reliability mechanism [15] that retransmits packets
until they are acknowledged by the peer node.

The experimental system we use for evaluation is a cluster
of four 2-way PentiumIII nodes. The exact configuration of
each node is shown in Table II. The nodes in the cluster
are interconnected with a Myrinet network [2] through a 16-
port, full crossbar, Myrinet switch. The PCI–based NIC is
composed of a 32–bit, general-purpose processor (LANai9)
with 2 MBytes of SRAM.

Processors 2 x Intel Pentium III, 800 MHz
Cache 32K (L1), 512K (L2)
Memory 512MB SDRAM
OS RedHat Linux Kernel 2.2.16-3smp
PCI buses 32 bits, 33 MHz, 133MBytes/s
NIC Myricom M3M-PCI64B
NIC CPU LANai9, 133 MHz
Network Link Bi-directional, 160MBytes/s/direction

TABLE II

CLUSTER NODE CONFIGURATION.

To evaluate the impact of our approach on the performance
of the system, we use both synthetic micro-benchmarks as
well as real applications. We use micro-benchmarks mainly to
provide basic measurements in uncontended conditions and to
independently stress specific components of the system.



The applications we use are a subset of the SPLASH-2
suite [12] on top of a shared virtual memory (SVM) system
that provides the illusion of a single system image.

The specific applications we use are FFT, WaterNsquared,
WaterSpatial, LUContiguous, Ocean, Volrend, Radix, and
Raytrace. This set of applications covers a wide range of
communication patterns. The SVM protocol we use is GeN-
IMA [24], a home-based, page-level protocol. GeNIMA has
been optimized to be used with system area networks that
support remote RDMA operations.

For the real applications, we use the largest problem set
size permitted by the 2-GByte address space of the 32-bit
Linux OS. Using larger cluster configurations would result
in less stress for the NIC memory subsystem, since the
application working set would be divided among more nodes
and therefore, the communication working set of each node
would be smaller.

In this work we present detailed results for VMH lookup,
since it is more critical to system performance compared to
CBH and PCH lookup. We present statistics on both miss
rates and application speedups. We divide cache misses based
on two factors: (i) the path in which they occur (send or
receive) and (ii) miss type, i.e. cold misses versus capacity
or conflict misses (non-cold) [25]. The first factor tells us
about the communication working sets in either paths for each
application whereas the second helps us understand better the
impact of each cache parameter.

A. NIC Memory Requirements

By using dynamic handle lookup in our system we are
able to reduce the total NIC memory requirements from 800
KBytes to 400 KBytes. In particular, the memory used for
all lookup structures is reduced by about 75% from 520
KBytes to 130 KBytes. Figure 3 summarizes the breakdown
of the memory consumption for the code and various data
structures on the NIC memory in the base system and after our
modifications. More importantly, dynamic handle lookup does
not have any of the constraints on the total size and number
of communication buffers and the total number of connections
of the base system.

Memory saving on larger system configurations can be
even more significant. A system that uses 64 GBytes of host
memory for application communication buffers, as is common
in data-base servers [10], would require about 32 MBytes
of NIC memory for VMH translation, which exceeds the
capabilities of most NICs, even excluding CBH translation.
Extrapolating from our results, our approach would require at
most 8 MBytes of memory (including all NIC data structures),
which is within the capabilities of existing NICs. Moreover,
our approach is able to use all 64 GBytes of host memory for
communication, even with smaller NIC memories, although,
potentially at a higher performance cost.

B. Micro-benchmarks

Figure 4 shows how latency and bandwidth vary as we
change the VMH cache miss ratio. The micro-benchmark we
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use is essentially a ping-pong test, where requests miss on
one of the two nodes only. The micro-benchmark is able to
control the miss rate by using specific source and destina-
tion buffers for communication. We see that the bandwidth
degrades rapidly and the latency increases linearly as the miss
ratio increases. In both cases the negative effect of a miss is
higher for larger message sizes. This is due to the fact that the
cost of dropping and retransmitting on a miss increases with
message size, due to the lack of negative acknowledgments
and receive side buffering in our system.

C. Real Applications

For each application we choose a fairly large problem size to
stress the VMH lookup cache. Due to the importance of VMH
translation for the common communication path we mostly
focus our evaluation with real applications on the VMH cache.

Parameter Values
Cache Size (C) 8K, 16K, 32K entries
Cache Line (L) 8, 16, 64, 128 entries
Associativity (A) 2, 4, 8 lines

TABLE III

THE RANGE OF VALUES FOR EACH OF THE VMH LOOKUP CACHE

PARAMETERS.

We vary each of the three VMH lookup cache design
parameters, cache size (C), line size (L), and associativity
(A) with a wide range, as shown in Table III. We first



examine the impact of each cache parameter on the cache
miss ratio. Figure 5 shows the VMH lookup cache miss ratio
breakdown for each set of parameters. The first observation
is that the number of misses varies greatly, between about 0-
40%, among different configurations. Overall, the miss ratio of
WaterNsquared, WaterSpatial, Ocean, Raytrace, and Volrend is
within the range 0-2% range, whereas for FFT, LUContiguous,
and Radix the miss ratio is much larger. Second, we observe
that all parameters have a significant effect on system miss
rates, as explained next.

Increasing the cache line size results in very effective
prefetching and reduces the number of misses for most appli-
cations even when the cache line size is increased up to 128
entries. However, when increasing the cache line size from 16
to 64 and then to 128 entries, Ocean exhibits a large number
of conflicts with non-cold misses more than doubling when
the cache size is less than 32K entries.

Cache size has a small effect on the number of misses at
small line sizes, but the importance of the cache size increases
for larger line sizes. Doubling the cache size from 16 to 32K
entries more than halves the total number of misses for FFT
and LUContiguous in the L128 configurations (Figure 5).

Finally, cache associativity is important mostly at smaller
cache and line sizes. Increasing associativity from 2 to 4 has
a positive effect on most applications. Increasing the associa-
tivity from 4 to 8 seems to have a smaller effect. Furthermore,
since the VMH lookup cache is implemented in software,
higher associativities result in higher lookup times, e.g. for
Radix C8.L128, Ocean C32.L128, and WaterSpatial C8.L64,
and C8.L128 (Figure 5). For these reasons, an associativity
of 4 seems to be the best compromise between reducing the
number of misses and performance impact.

We also look at the impact of cache configuration on parallel
speedups (Figure 6). There is a close correlation between the
VMH lookup cache miss rates and parallel speedup, even for
the configurations with small miss ratio. Generally we can
divide applications in two categories. In the first category
belong WaterNsquared, WaterSpatial, Volrend, Raytrace, and
Ocean that, except for few configurations, are not very sensi-
tive to the cache configuration due to the small miss rates they
exhibit. Overall, for these applications, a small VMH lookup
cache of 8K entries results in similar performance to the static
system configuration, where the full VMH table is maintained
on NIC memory. The second category includes FFT, Radix,
and LUContiguous that show significant variations in speedups
with cache configurations. For these applications the cache line
size is the most important parameter, resulting in more than
100% in speedup variation.

Figure 7 shows the normalized execution time of each
application in the original VMMC system versus their best
performance with dynamic handle lookup. We observe that
except for Radix, the overhead of dynamic handle lookup is
negligible. For some applications the new system performs
slightly better. We have not investigated this effect completely
yet, but we believe that the changes in the common path due to
the imported CBH table elimination result in somewhat lower
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Fig. 7. Normalized execution time of each application in the original VMMC
system versus dynamic handle lookup for the best VMH and CBH cache
configurations.

system overheads for cases that do not exhibit many VMH
and CBH misses.

We observe that a configuration of (C16, L64, A4) results
in the best tradeoff between performance and NIC memory
requirements. This configuration uses about 75 KBytes of
NIC memory that is a substantial reduction from the original
configuration, which uses more than 256 KBytes for the full
VMH lookup table. Moreover, the current configuration does
not have a limit on the amount of host memory it can support,
although performance tradeoffs may change as application
working set sizes increase.

Another important metric in the system is the miss penalty,
defined as the time between the occurrence of the miss in the
NIC and the time when the missed entries are brought to the
cache on NIC memory. We divide this time into two parts: (i)
miss delay time is the time between the occurrence of a miss
interrupt up to the point when the miss handler in the driver
is scheduled by the OS, and (ii) miss processing time is the
time to service a miss in the device driver and to update the
lookup cache. While both of them depend on various system
parameters, the miss delay time is more unpredictable since it
depends on the OS scheduling delay.

Our results show that the distribution of the miss delay time
and the miss processing time are independent from the lookup
cache configuration. However, they both vary across different
applications.

Overall, the miss processing time incurs high variations,
within the 5-500µs range. This is justified by the fact that
servicing a miss includes expensive OS memory management
functions and the fact that the miss handler has to compete
with the application threads for CPU cycles. The delay miss
time incurs lower variations and is usually within the 0-50µs
range. Misses outside this range are due to the fact that we
use a kernel thread to service the miss requests, that needs to
be scheduled by the OS with no guarantee on the scheduling
delay.

VI. CONCLUSIONS

To improve communication performance modern intercon-
nects used in scalable servers provide user applications with



C
8.L

8.A
2

C
8.L

8.A
4

C
8.L

8.A
8

C
8.L

16.A
2

C
8.L

16.A
4

C
8.L

16.A
8

C
8.L

64.A
2

C
8.L

64.A
4

C
8.L

64.A
8

C
8.L

128.A
2

C
8.L

128.A
4

C
8.L

128.A
8

C
16.L

8.A
2

C
16.L

8.A
4

C
16.L

8.A
8

C
16.L

16.A
2

C
16.L

16.A
4

C
16.L

16.A
8

C
16.L

64.A
2

C
16.L

64.A
4

C
16.L

64.A
8

C
16.L

128.A
2

C
16.L

128.A
4

C
16.L

128.A
8

C
32.L

8.A
2

C
32.L

8.A
4

C
32.L

8.A
8

C
32.L

16.A
2

C
32.L

16.A
4

C
32.L

16.A
8

C
32.L

64.A
2

C
32.L

64.A
4

C
32.L

64.A
8

C
32.L

128.A
2

C
32.L

128.A
4

C
32.L

128.A
8

FFT

0

5

10

15

20

25

30

35

40

M
is

s 
R

at
e 

(p
er

ce
nt

ag
e)

C
8.L

8.A
2

C
8.L

8.A
4

C
8.L

8.A
8

C
8.L

16.A
2

C
8.L

16.A
4

C
8.L

16.A
8

C
8.L

64.A
2

C
8.L

64.A
4

C
8.L

64.A
8

C
8.L

128.A
2

C
8.L

128.A
4

C
8.L

128.A
8

C
16.L

8.A
2

C
16.L

8.A
4

C
16.L

8.A
8

C
16.L

16.A
2

C
16.L

16.A
4

C
16.L

16.A
8

C
16.L

64.A
2

C
16.L

64.A
4

C
16.L

64.A
8

C
16.L

128.A
2

C
16.L

128.A
4

C
16.L

128.A
8

C
32.L

8.A
2

C
32.L

8.A
4

C
32.L

8.A
8

C
32.L

16.A
2

C
32.L

16.A
4

C
32.L

16.A
8

C
32.L

64.A
2

C
32.L

64.A
4

C
32.L

64.A
8

C
32.L

128.A
2

C
32.L

128.A
4

C
32.L

128.A
8

Radix

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

M
is

s 
R

at
e 

(p
er

ce
nt

ag
e)

C
8.L

8.A
2

C
8.L

8.A
4

C
8.L

8.A
8

C
8.L

16.A
2

C
8.L

16.A
4

C
8.L

16.A
8

C
8.L

64.A
2

C
8.L

64.A
4

C
8.L

64.A
8

C
8.L

128.A
2

C
8.L

128.A
4

C
8.L

128.A
8

C
16.L

8.A
2

C
16.L

8.A
4

C
16.L

8.A
8

C
16.L

16.A
2

C
16.L

16.A
4

C
16.L

16.A
8

C
16.L

64.A
2

C
16.L

64.A
4

C
16.L

64.A
8

C
16.L

128.A
2

C
16.L

128.A
4

C
16.L

128.A
8

C
32.L

8.A
2

C
32.L

8.A
4

C
32.L

8.A
8

C
32.L

16.A
2

C
32.L

16.A
4

C
32.L

16.A
8

C
32.L

64.A
2

C
32.L

64.A
4

C
32.L

64.A
8

C
32.L

128.A
2

C
32.L

128.A
4

C
32.L

128.A
8

WaterNsquared

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

M
is

s 
R

at
e 

(p
er

ce
nt

ag
e)

C
8.L

8.A
2

C
8.L

8.A
4

C
8.L

8.A
8

C
8.L

16.A
2

C
8.L

16.A
4

C
8.L

16.A
8

C
8.L

64.A
2

C
8.L

64.A
4

C
8.L

64.A
8

C
8.L

128.A
2

C
8.L

128.A
4

C
8.L

128.A
8

C
16.L

8.A
2

C
16.L

8.A
4

C
16.L

8.A
8

C
16.L

16.A
2

C
16.L

16.A
4

C
16.L

16.A
8

C
16.L

64.A
2

C
16.L

64.A
4

C
16.L

64.A
8

C
16.L

128.A
2

C
16.L

128.A
4

C
16.L

128.A
8

C
32.L

8.A
2

C
32.L

8.A
4

C
32.L

8.A
8

C
32.L

16.A
2

C
32.L

16.A
4

C
32.L

16.A
8

C
32.L

64.A
2

C
32.L

64.A
4

C
32.L

64.A
8

C
32.L

128.A
2

C
32.L

128.A
4

C
32.L

128.A
8

Raytrace

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

M
is

s 
R

at
e 

(p
er

ce
nt

ag
e)

Non-cold Recv

Non-cold Send

Cold Recv

Cold Send

C
8.L

8.A
2

C
8.L

8.A
4

C
8.L

8.A
8

C
8.L

16.A
2

C
8.L

16.A
4

C
8.L

16.A
8

C
8.L

64.A
2

C
8.L

64.A
4

C
8.L

64.A
8

C
8.L

128.A
2

C
8.L

128.A
4

C
8.L

128.A
8

C
16.L

8.A
2

C
16.L

8.A
4

C
16.L

8.A
8

C
16.L

16.A
2

C
16.L

16.A
4

C
16.L

16.A
8

C
16.L

64.A
2

C
16.L

64.A
4

C
16.L

64.A
8

C
16.L

128.A
2

C
16.L

128.A
4

C
16.L

128.A
8

C
32.L

8.A
2

C
32.L

8.A
4

C
32.L

8.A
8

C
32.L

16.A
2

C
32.L

16.A
4

C
32.L

16.A
8

C
32.L

64.A
2

C
32.L

64.A
4

C
32.L

64.A
8

C
32.L

128.A
2

C
32.L

128.A
4

C
32.L

128.A
8

LUContiguous

0

5

10

15

20

25

30

M
is

s 
R

at
e 

(p
er

ce
nt

ag
e)

C
8.L

8.A
2

C
8.L

8.A
4

C
8.L

8.A
8

C
8.L

16.A
2

C
8.L

16.A
4

C
8.L

16.A
8

C
8.L

64.A
2

C
8.L

64.A
4

C
8.L

64.A
8

C
8.L

128.A
2

C
8.L

128.A
4

C
8.L

128.A
8

C
16.L

8.A
2

C
16.L

8.A
4

C
16.L

8.A
8

C
16.L

16.A
2

C
16.L

16.A
4

C
16.L

16.A
8

C
16.L

64.A
2

C
16.L

64.A
4

C
16.L

64.A
8

C
16.L

128.A
2

C
16.L

128.A
4

C
16.L

128.A
8

C
32.L

8.A
2

C
32.L

8.A
4

C
32.L

8.A
8

C
32.L

16.A
2

C
32.L

16.A
4

C
32.L

16.A
8

C
32.L

64.A
2

C
32.L

64.A
4

C
32.L

64.A
8

C
32.L

128.A
2

C
32.L

128.A
4

C
32.L

128.A
8

Ocean

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

M
is

s 
R

at
e 

(p
er

ce
nt

ag
e)

C
8.L

8.A
2

C
8.L

8.A
4

C
8.L

8.A
8

C
8.L

16.A
2

C
8.L

16.A
4

C
8.L

16.A
8

C
8.L

64.A
2

C
8.L

64.A
4

C
8.L

64.A
8

C
8.L

128.A
2

C
8.L

128.A
4

C
8.L

128.A
8

C
16.L

8.A
2

C
16.L

8.A
4

C
16.L

8.A
8

C
16.L

16.A
2

C
16.L

16.A
4

C
16.L

16.A
8

C
16.L

64.A
2

C
16.L

64.A
4

C
16.L

64.A
8

C
16.L

128.A
2

C
16.L

128.A
4

C
16.L

128.A
8

C
32.L

8.A
2

C
32.L

8.A
4

C
32.L

8.A
8

C
32.L

16.A
2

C
32.L

16.A
4

C
32.L

16.A
8

C
32.L

64.A
2

C
32.L

64.A
4

C
32.L

64.A
8

C
32.L

128.A
2

C
32.L

128.A
4

C
32.L

128.A
8

Volrend

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

M
is

s 
R

at
e 

(p
er

ce
nt

ag
e)

C
8.L

8.A
2

C
8.L

8.A
4

C
8.L

8.A
8

C
8.L

16.A
2

C
8.L

16.A
4

C
8.L

16.A
8

C
8.L

64.A
2

C
8.L

64.A
4

C
8.L

64.A
8

C
8.L

128.A
2

C
8.L

128.A
4

C
8.L

128.A
8

C
16.L

8.A
2

C
16.L

8.A
4

C
16.L

8.A
8

C
16.L

16.A
2

C
16.L

16.A
4

C
16.L

16.A
8

C
16.L

64.A
2

C
16.L

64.A
4

C
16.L

64.A
8

C
16.L

128.A
2

C
16.L

128.A
4

C
16.L

128.A
8

C
32.L

8.A
2

C
32.L

8.A
4

C
32.L

8.A
8

C
32.L

16.A
2

C
32.L

16.A
4

C
32.L

16.A
8

C
32.L

64.A
2

C
32.L

64.A
4

C
32.L

64.A
8

C
32.L

128.A
2

C
32.L

128.A
4

C
32.L

128.A
8

WaterSpatial

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0

M
is

s 
R

at
e 

(p
er

ce
nt

ag
e)

Fig. 5. VMH lookup cache miss breakdown of the SPLASH-2 applications.

the ability to directly transfer data between application virtual
address spaces in different nodes. To support such data transfer
operations, NICs need to translate between virtual and physical

addresses as well as between other types of user and system
handles. In most current user–level communication systems
the mechanisms used for address translation are static. With
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Fig. 6. Parallel speedup for the SPLASH-2 applications in different VMH lookup cache configurations (8 processors used).

increasing host memory sizes, this approach requires large
on-NIC memory to maintain various mappings and, more
importantly, it imposes limitations on the amount of host
memory that can be used for communication buffers.

Dynamic handle lookup [11] deals with these shortcomings
by extending a user–level communication system to use the

NIC memory only as a cache for the larger host memory. In
this work we evaluate the impact of dynamic handle lookup
on system performance with both micro-benchmarks and real
applications.

Dynamic handle lookup on the NIC results in significant
reductions in memory requirements with a small impact on



system performance for the configurations we examine. Total
NIC memory requirements are reduced by about 50%, whereas
memory requirements for lookup operations are reduced by as
much as 75% in our prototype, with negligible performance
penalty. The overhead of using more complex dynamic lookup
structures relative to the static data structures is at most
3% across all but one applications we examine. In larger
system configurations, memory savings can be even more
significant. Furthermore, our extensions eliminate any NIC-
imposed restrictions on how much host memory can be used
for communication buffers, an important problem in scalable
storage, database, and application servers.

We find that the communication working sets of many
realistic applications are in many cases small and that small
on-NIC lookup caches have almost no impact on performance.
This indicates that for many classes of applications large-
memory NICs are not necessary. However, there are appli-
cations where larger caches are required. Moreover, in most
cases the cache configuration parameters have a large impact
both on the number of cache misses and the overall system
performance. We find that there is considerable spatial locality
in the communication access pattern of most applications and
prefetching with large cache lines is effective and overshadows
the increased miss penalty costs, due to the larger cache line
size. Finally, in our system design we avoid unnecessary com-
plexity. This makes our approach appropriate for incorporating
in NICs that use general purpose processors with firmware as
well as more aggressive, hardware implementations.

Overall, our results show that techniques similar to dy-
namic handle lookup can be very useful in building the next-
generation NICs for modern application and storage servers,
where application requirements on communication buffers
exceed by far the static capabilities of today’s NICs as well as
smaller system configurations where NIC cost is an important
factor.
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