
Federated DAFS: Scalable Cluster-BasedDirect
AccessFile Servers

Murali Rangarajan, SureshGopalakrishnan,
Ashok Arumugam, RabitaSarker

Departmentof ComputerScience,
RutgersUniversity, Piscataway, NJ 08854-8019�
muralir, gsuresh,ashoka,sarker��� cs.rutgers.edu

Liviu Iftode
Departmentof ComputerScience,

University of Maryland,College Park, MD 20742
iftode� cs.umd.edu

Abstract— Protocols lik e the Dir ect AccessFile System
(DAFS) leverage user-level memory-mapped communica-
tion to enable low overhead accessto network-attached
storage for applications. DAFS offers significant impr ove-
ment in application performance using features lik e dir ect
data transfer and RDMA. Our goal is to build high perfor-
mancenetwork file servers using DAFS. The benefitsof the
DAFS protocol can be extended to cluster-based servers,
using low overhead user-level communication within the
cluster.

In this paper, we present Federated DAFS, a scalable
and efficient cluster-baseddir ect accessfile server. Feder-
ated DAFS combinesan efficient user-spaceDAFS imple-
mentation with a low overhead clustering layer to present
a scalableclustering solution for DAFS servers. Federated
DAFS uses a portable mechanism for distrib ution and
handling of client requests across the servers in the
cluster. Federated DAFS also minimizes the intra-cluster
communication by caching data blocks and by matching
the file placement on the servers with the distrib ution of
requestsfr om the clients.Our resultsshow that reasonable
speedups(2.6on four nodesand 4.5 on eight nodes)can be
achieved using Federated DAFS on server clusters of up
to eight nodes.

I . INTRODUCTION

Network storageneedsare being stretchedas
file volumesgrow andenterprisesdistributestorage
requirementsacrossa wider array of files, web
applicationsand databaseservers. Performanceof
network file servershasbeenlimited by overheads
resultingfrom protocolprocessing,redundantcopy-
ing andothernetworking costs.User-level network-
ing architectures,suchas the Virtual Interface(VI)
Architecture [1], U-Net [2], and Virtual Memory

This work is supportedin partby theNationalScienceFoundation
underthe NSF CAREERCCR 0133366.

Mapped Communication (VMMC) [3], designed
to achieve low-latency and high-bandwidth in a
SAN environment, offer an attractive solution for
reducingcommunication softwareoverheads.

The Direct AccessFile System(DAFS) protocol
[4] exploits user-level memory-mappedcommuni-
cation to help reduce the cost of file accessby
enablingdirect accessto network-attachedstorage
for applications. The DAFS specificationincludes
featuresto improve application performancelike
asynchronousI/O, direct datatransferto and from
applicationbuffers, andscatter/gather I/O.

To build high performancenetwork file servers
with reasonablelevels of service,we needmulti-
processoror distributednetwork servers.Clustersof
commodity computershave the potentialto provide
goodperformancewith scalability, at a low cost.For
cluster-basedservers,user-level communication has
beenshown to provide a low overheadmechanism
for intra-clustercommunication [5]. We are inter-
estedin extending thebenefitsof theDAFS protocol
to cluster-basedservers, using low-overheaduser-
level communication within the cluster.

In this paper, we presentFederatedDAFS, a
scalablecluster-baseddirect accessfile server. Fed-
eratedDAFS extends the benefitsof a direct ac-
cessfile systemto cluster-basedfile servers. Fed-
eratedDAFS takes advantageof low-latency high-
bandwidthuser-level communicationamongservers
in a cluster (i) to presenta consolidatedview of
the storageavailable on all the servers, and (ii)
to distribute file accessrequestsacrossthe servers
in the cluster. FederatedDAFS consists of two
components:

FedFS over SAN

File I/O

DAFS
Server

DAFS
Server

DAFS
Server

DAFS
Server

Fig. 1. FederatedDAFS on a Cluster

1) An implementation of the DAFS protocol: We
have developed a portable DAFS prototype
entirely in user-space.

2) Clustering software to implement naming and
consolidate server storage across the cluster:
The FederatedFile System(FedFS)[6] pro-
vides a thin clustering layer which is used
by theDAFS server implementation to access
server storageacrossthe cluster.

Fig. 1 shows theFederatedDAFS architecture,with
DAFS servers runningon eachnodeandaccessing
the underlying storageusing the FedFSclustering
layer.

We evaluated the performance of Federated
DAFS using the postmark file system bench-
mark [7]. Our experiments show that Federated
DAFS provides reasonablygood speedups.Our
evaluations also show that cachingof data blocks
can be used to improve performanceby reducing
the intra-clustercommunication. Federated DAFS
minimizes the intra-clustercommunicationfurther
by matchingthe file placementon the serverswith
the distribution of requestsfrom the clients.

The rest of the paper is organizedas follows.
Section II describesthe backgroundand related
work. Section III describesour implementation
of the DAFS protocol in user-space.Section IV
presentsdetails of FedFS, our clusteringsolution,
and Section V describesthe implementation of
FedFS.Section VI presentsthe results from our
experimentalevaluation and Section VII presents
the conclusions.

I I . BACKGROUND AND RELATED WORK

A. Reducing Networking Overheads

Various techniqueshave been used to reduce
the overheadsarising out of copies in the net-
work data path [8]–[10]. In addition to zero-copy

communication,user-level networking architectures
[1]–[3] provide a mechanismfor high-bandwidth
andlow-latency communicationwith minimal over-
heads. The Virtual Interface Architecture (VIA)
[1] is a user-level memory-mapped communication
standardfor SANs that reducesthe communication
overheadby providing direct accessto the network
interfacefor applications.

B. Direct Access File Systems

The DAFS protocol [4], [11] takesadvantageof
direct accesstransportsto provide clientswith low-
overheadaccessto network attachedfile storage.
It allows efficient, portableimplementationsof file
systemclients entirely in user-space.Applications
can reap the benefitsof the DAFS protocol from
user-spaceby registering the memoryregionsused
in communication with the OS kernel. The DAFS
protocolalsoallowsbettercontrolof datamovement
andcachingby the applications.

The fundamentalperformancecharacteristicsof
a DAFS-baseduser-level file systemstructurewas
explored in [12]. It was shown that lower client
overheadin the DAFS configurationcan improve
applicationperformanceby up to 40% over opti-
mized NFS when application processingand I/O
demandsare well-balanced.Optimistic DAFS [13]
presentsan enhancementof DAFS that enables
clients to directly accessremotememorypagesof
files presentin the server cache.

C. Cluster-Based Network Servers

Locality-based schemeshave also been used
to build high performancecluster-basednetwork
servers[14], [15]. However, the above schemesuse
non-portabletechniqueslike TCP handoffs to dis-
tribute requests.Previous studies[5] have revealed
that portability can be achieved without significant
degradationin performanceand that user-level net-
working protocolslike VIA are effective for intra-
clustercommunication in cluster-basedservers[16].
It was shown in [16] that user-level communi-
cation can improve performanceof cluster-based
serversby asmuchas29%,mainly dueto contribu-
tions from low processoroverhead,remotememory
writes andzero-copy.

FederatedDAFS usesa low overheadprotocol
like DAFS for client-server communication and a

lightweight user-level clustering protocol (FedFS)
for intra-server communication, to build anefficient
cluster-basedfile server.

I I I . IMPLEMENTATION OF DAFS PROTOCOL

In this section,we describeour implementation
of the DAFS protocol. Our client and server pro-
totypes implement the DAFS protocol using the
Virtual Interface Architecture[1], entirely in user-
space,making it portableacrossany POSIX-based
systemlike Linux, FreeBSD or Solaris. Both the
DAFS client and server implementationsfollow a
stagedevent driven model [17], with dynamically
configurable thread pools to service each stage.
Eachthreadpool hasan associatedjob queue,the
length of which indicates the load at this stage.
Thesethreadpoolscangrow in sizeup to a tunable
maximumto handleincreasedloads.

A. Client and Server Implementations

TheDAFSclient is providedto applicationsin the
form of a user-level library. When the application
invokesa DAFS API primitive, thelibrary translates
this to an RPC requestfor the correspondingI/O
operationon the server. Requestsare sent in the
context of the application threadwhich invokesthe
DAFS API. Applicationthreadscanchoosebetween
using the asynchronousDAFS API or waiting for
the responsesto their requests,providing the appli-
cationbettercontrol anduseof concurrency.

The server implementation usesa separatecon-
nection managerthreadwhich handlesconnection
requestsfrom clients. Once a connectionis estab-
lished with a client, the server handlesDAFS API
requestsarriving from the client using a receive
thread,and a pool of threadsfor file systempro-
cessing.The responsibility of the receive thread
is to receive DAFS API requestsfrom the client
and passthem on to the file systemthreadpool.
Threadsin thefile systempool performtherequired
I/O operation and send the results back to the
client. Usinga multithreadedfile systemprocessing
modulehelpsin handlingconcurrentclient requests
efficiently.

B. Communication and RPCs

The DAFS client establishesa VI connection
with the server on which it sendsDAFS I/O re-
quests.EachVI connectionis associatedwith a set

of descriptorswhich makes it possible for clients
to submit multiple simultaneous requestswithout
waiting for the completion of previous requests.
Our implementation supports true zero-copy data
transfersbetweenthe DAFS client and server. For
writes, the datais transferreddirectly from the ap-
plication buffers without any additionalcopy, using
the scatter/gather sendavailable in VIA. For reads,
theserver usesscatter/gatherRDMA to sendreplies
directly to applicationbuffers without incurring ad-
ditional copies.In both cases,the messageconsists
of multiple segmentswith thefirst segmentcarrying
the headerand the subsequentsegmentscarrying
data.

Eachprimitive in the DAFS API is implemented
as an RPC on the server. The argumentsto the
RPCincludethe argumentsto the DAFS primitive,
an RPC procedureidentifier, and a uniquerequest
identifierthat is generatedby theclient.Theseargu-
mentsaremarshalledinto a requestheaderusingthe
DAFS RPC stub generator, and sent to the server.
On the server, the requestis unmarshalled and the
requestedI/O operationis performedby invoking
thehandlercorrespondingto theprocedureidentifier
presentin the request.

C. Support for Asynchronous I/O

Using an event-driven model makes it easy to
support the asynchronousI/O primitives specified
by the DAFS protocol, allowing the applications
to pipelinemultiple I/O requestsandachieve better
performance.An asynchronousI/O operationis de-
scribedby an I/O descriptor. For asynchronousI/O
primitives, the API call returnsa requestidentifier
in the I/O descriptor as soon as the request is
dispatchedto the server, without waiting for the
response.The I/O descriptoralso containsa result
buffer wherethe result of the asynchronousopera-
tion is storedupon completion. For eachpending
asynchronousrequest, the client saves a request
context that includestherequestidentifier, theresult
buffer and information aboutthe requestingthread.
When the reply for an asynchronousoperationar-
rivesat the client, its correspondingrequestcontext
is identified, the result stored in the result buffer
andthe context released.The applicationcancheck
the completion statusof any previously submitted
asynchronousrequestusing the I/O descriptors.

virtual directory (/usr)

usr

file1

usr

file2

/ /

usr

file2file1

/

Fig. 2. FedFSVirtual Directory /usr

IV. CLUSTERING USING FEDFS

The DAFS server implementationuses FedFS
to accessthe server storagedistributed acrossthe
cluster. FedFS [6] is a novel cluster file system
architecturedevelopedby us, that providesa global
namespacein a cluster by aggregating local file
systemsof cluster nodes into a loose federation.
UsingFedFS,stand-aloneserverscanaccessstorage
acrossthe clusterand act as distributed servers.A
copy of the server running on a nodecan operate
on files locatedon any clusternodeby performing
the operationthroughFedFS.

FedFScreatesthe name spacedynamically for
eachdistributed applicationthat runson thecluster.
The namespaceexists only during the lifetime of
thedistributedapplication.Thelocationindependent
global naming allows easy file migration, which
could be usedfor balancingload acrossthe cluster
nodes.In the following subsections,we’ll describe
the global namingschemeprovided by FedFSand
the protocolusedin FedFSfor accessingfiles.

A. Global Naming in FedFS

The key componentin FedFSglobal namespace
managementis thevirtual directory (VD). A virtual
directory in FedFS is the union of all the local
directorieswith the samepathname,from all the
server nodes.For example,if a directory/usr exists
in eachlocal file system,the virtual directory /usr

in the resultingFedFSwill containthe union of all
the /usr directories,as illustratedin Fig. 2.

Thehome of a file is definedto betheservernode
on which the correspondingpathnameis present
in the local file system. FedFSmaintains informa-
tion about the homesof all files in a directory in
the correspondingvirtual directory. Eachpathname
(virtual directory or file) in FedFS is associated
with a manager. The managernodeis identifiedby
applyinga constanthashfunction to the pathname.
For a file, the manageris responsible for keeping
information about the home nodes.For a direc-
tory, the manageris responsiblefor creating and
maintaining thevirtual directorycontents.Directory
operationssuch as create and delete contact
themanagerto updatethevirtual directorycontents.
Thisensuresthatcollisionsareavoidedin theglobal
namespace1.

dirmer ge: The virtual directory is constructed
by the managerat the time of the first lookup
involving the directory. In order to construct the
virtual directory, the manager node performs a
dirmerge operation.The dirmerge operation
involvessendinga requestto the nodeswhich have
a copy of the directory, asking for the directory
contents.To determinethenodeswhich have a copy
of the directory, each node maintainsa summary
information of the directorytreeof all othernodes.
This summaryinformation,basedon Bloom filters
[18], is generatedby eachnode and sent to other
nodes at the time of initialization. Since Bloom
filters only have falsepositives,no files will be left
out.

The dirmerge is a potentially expensive op-
eration since it involves communication with
all the server nodes in the worst case. How-
ever, a dirmerge is performed on a directory
only once. The merged directory information is
cached in memory, and gets updated whenever
any metadataoperation(create or delete of a
file/subdirectory)is performedon the directory.

File lookup/access:For any operationon a file,
thefirst stepis to identify thehomeof thefile. Given
a file pathname,a nodedeterminesthe managerof
the file by applying the hash function, and sends

1Currently, the implementationdoesnot handlecollisions gener-
atedby file creationsperformedoutsideFedFS.

a messageto the managerrequestinginformation
about the home. If the managerdoesn’t have the
information, it contactsthe managerof the parent
directory of the file. Thus, a maximum of three
other nodesare involved in any lookup operation,
irrespective of the numberof nodesin the cluster
- the managerof the file, the homeof the file, and
the managerof the parentdirectory. Thesenodes
are involved typically only in the first access.

Dir ectory table: FedFS maintains a directory
table (DT) on eachnode to speedup the lookup
processfor files and directories.At the time of
createor first access,the homeof a file createsan
entry in its DT. This DT entry is cachedon both
the managernodeand the nodeaccessingthe file.
Oncethehomeinformationis cached,thehomecan
be contacteddirectly for subsequentaccessesto the
file. Requeststo open a file are always forwarded
to the homenodeandthe DT entry is updated.

Thedirectorytablesserveasacacheof theglobal
namespace,which is storedin a distributedmanner
in themanagernodesof thevirtual directories.Since
directory tablesare storedin volatile memoryand
entries are createdonly on file access,the name
spacein FedFSis not persistentand is createdon
demand.

B. File Access Protocol

In this section,we explain the protocol for file
accessin FedFS.Fig. 3 shows how FedFShandles
file systemAPI calls madeby applications.Fig. 4
shows how server nodeshandleprotocol requests
generatedby othernodes.For all requestsshown in
thesefigures,the wait for responseis implicit.

� create: In orderto createa file or directory,
a server nodefirst queriesthe managerto find
the home, and then contactsthe home. The
home node sendsan add entry requestto
updatethe virtual directory at the managerof
the parentdirectory, and createsthe file if it
doesn’t exist already. The home node, which
is the physical location of a file, is decided
at the time of creationby the managerof the
file. Variouspoliciescouldbeusedto placethe
requestedfile.
In our experiments, we have useda policy of
placingthe file on the managernode.We have
also evaluated a round-robin file placement

create:
get home info from file.manager
if (file.home== self)

�
sendadd entry requestto parentdir.manager
createfile if it doesn’t exist already
createentry for file in DT

� else
�

sendcreaterequestto file.home
cacheDT entry from response

�

delete:
lookup file.home
if (file.home== self)

�
deletefile
senddel entry requestto parentdir.manager
deleteDT entry for file

� else
�

senddelete requestto file.home
deletecachedDT entry for file

�

open:
if (file.homeunknown)

�
get home info from file.manager

�
if (file.home== self)

�
openfile
registeropenin DT entry

� else
�

sendopenrequestto file.home
cacheDT entry from response

�

close:
if (file.home== self)

�
closefile
registerclosein DT entry

� else
�

sendcloserequestto file.home
�

Fig. 3. FedFSAPI Stubs

AT THE HOME OF A FILE
create request:

sendadd entry requestto parentdir.manager
createfile if it doesn’t exist already
createentry for file in DT
sendresponsewith DT entry

delete request:
senddel entry requestto parentdir.manager
deleteentry for file in DT

open request:
openfile
registeropenin DT entry for file
sendresponsewith DT entry

close request:
closefile
registerclosein DT entry for file
sendresponse

AT THE MANAGER OF A FILE
home info request:

determinehomeof file
sendresponsewith homeinfo

AT THE MANAGER OF A DIRECTORY
add entry request:

addentry for file in dir structure
sendresponse

del entry request:
deleteentry for file in dir structure
sendresponse

Fig. 4. FedFSRequestHandlers

policy in which thecreate requestsreceived
at any server node are distributed acrossthe
servers in a round-robinfashion.� delete: A lookup is performedto identify
the homeof the file and the delete request
is forwardedto thehomenode.Thehomenode
deletesthefile andsendsadel entry request
to updatethe virtual directory at the manager
of the parentdirectory.� open: A lookup is performedto identify the
homeof the file and an open requestis sent

to the homenode.The home nodeopensthe
file, updatesthe directory table entry for the
file andreturnsa dummydescriptor.� close: The close requestis sent to the
home of the file. The home node closesthe
file and updatesthe directory table entry for
the file.� read/write: The first accessto any data
block of a file hasto be handledby the home
nodewhere the file residesphysically. FedFS
cachesdata blocks of files located in other
server nodes in the cluster, thus optimizing
subsequentaccessesto the cacheddatablocks.
Theblocksarecachedat thetimeof first access
andanLRU replacementpolicy is usedfor this
data block cache.Writes are performedsyn-
chronouslyusinga write-throughmechanism.

V. FEDFS IMPLEMENTATION

FedFSis implementedas a multithreadeduser
level I/O library andexportsthestandardfile system
API to applications.FedFS uses VIA to imple-
mentlow overheadremotememorycommunication
amongserversandrelieson thelocal file systems to
performfile I/O operations.Linking with theFedFS
library enablesserver applicationsto accessstorage
distributed acrossthe cluster. The communication
model implementedin FedFSis explained in the
next subsection,followed by a separatesectionex-
plainingthereceive processingperformedin FedFS.

A. Communication Model

Oneachservernode,FedFSusesapoolof worker
threadsto handle the communication among the
server nodes. Communication in FedFS involves
two type of messages,requestand reply. Request
messagesare senteither by application threadsor
by worker threadsaspartof thefile accessprotocol.
Reply messagesare sent by worker threadsafter
processingincoming requests.Currently, we usea
synchronousmodelfor processingin theapplication
threadsaswell as the worker threads,i.e., a thread
waits for the reply after sendingout a request.

On eachserver node,at the time of initialization,
a pair of VI channelsis establishedwith every node
in thecluster. OneVI channelis usedexclusively for
datatransfersusingRDMA, andtheotherchannelis

usedfor the restof the request/responsecommuni-
cation.Currently, theRDMA channelis usedonly to
sendtheresponsefor a readrequest.If theresponse
is expectedto include bulk data, a handle to the
reply region is included in the requestheaderso
that the bulk datacanbe transferredusingRDMA.
All othercommunicationusestheVIA send/receive
model.

Descriptorsand buffers used in communication
are allocatedand registeredat initialization time,
eliminating this overheadfrom thecritical path.For
thesendoperation,threadsdonotwait in thecritical
path for data transmission to complete.The send
descriptorsarereapedfrom the sendqueueonly on
demandduring a subsequentsend.

B. Receive processing

A receive can be performedonly by a worker
thread whereasa send can be performedby any
threadin thesystem.A worker threadgetsmutually
exclusive accessto the completion queueandwaits
to receivemessagesfrom otherservers.Onreceiving
a message,the worker threadchecksthe message
header to identify the messagetype. A request
messageis processedin thecontext of thereceiving
thread.The requestmessageincludesthe identifier
of the senderthread.The receiving threadcopies
this threadidentifier into thereply message.A reply
messageis dispatchedto the appropriatewaiting
thread using the thread identifier included in the
header.

We also experimented with polling instead of
waiting on the completion queue for the receive
operation.However, the use of polling by the re-
ceiving threadresultedin wastageof CPUtime that
couldhavebeenusedby applicationthreadsor other
worker threads.We also tried using a dedicated
processorfor polling on anSMPsystem,by binding
the worker threadsto a single processor. However,
this did not help since dedicatinga processorto
handlecommunication was an overkill in most of
the scenarioswe studied.

VI . EXPERIMENTAL RESULTS

In this section,we presentperformanceresults
from our experiments using FederatedDAFS on
a cluster of eight PCs. Each server node in the
clusterwas equippedwith dual 300 MHz Pentium

FedFS

DAFS
Server

DAFS
Server

DAFS
Server

DAFS
Server

DAFS ClientDAFS Client DAFS Client

VIA Interconnect1

VIA Interconnect2

Fig. 5. Experimentalsetup

II processors,512 MB SDRAM, a 9 GB 10K RPM
SCSI Quantum hard disk and a GigaNet cLAN
adapter. All the server nodesran the Linux-2.4.16
kernel.

An implementation of VIA over cLAN wasused
for both client-server communication and intra-
server communication. The Linux drivers for Gi-
gaNetcLAN were able to achieve a bandwidthof
105 MB/s anda one-way latency of 8 � s(one-byte
packets). The eight server nodeswere connected
usinga dedicated8-port Emulex switch.The server
nodeswere connectedto the clients using a 32-
port Emulex switchin full bandwidthconfiguration.
Fig. 5 shows the architecturefor client-server com-
munication as well as intra-server communication
usedin our experimentalsetup.We alsoperformed
our experimentsusingan alternateconfigurationin
which thesameVIA interconnectwasusedfor both
client-server communication and intra-server com-
munication. The resultsobtainedwith the alternate
configurationwereidenticalto thosereportedin this
section.

A. Workload

In our experiments, we have usedpostmark[7],
a synthetic benchmarkaimed at measuring file
systemperformanceover a workload composedof
many short-lived, relatively small files. Postmark

TABLE I

DISTRIBUTION OF FILES USING THE HASH FUNCTION

Servers 2 4 8

Clients 6 10 16

Server 1 452 377 287

Server 2 448 363 305
Server 3 - 374 295

Server 4 - 385 311

Server 5 - - 311
Server 6 - - 295

Server 7 - - 307
Server 8 - - 289

workloadsarecharacterized by a mix of metadata-
intensive operations. The benchmark begins by
creating a pool of files, performs a sequenceof
transactionsand concludesby deletingall the files
created.Eachtransactionconsistsof two operations
- a randomlychosencreateor deletepairedwith a
randomlychosenreador write.

In our experiments, each client issued 30000
transactions.Multiple postmarkclients were used
to measuremaximumthroughput sustainedby each
server cluster configuration,with eachclient con-
figured to usea requestset of 150 files. For each
configuration,we measuredthe maximumthrough-
put sustained by the FederatedDAFS server, by
increasingthe number of clients until the server
CPUsreachedsaturation.

B. Request distribution

FedFSusesa hashfunction on the pathnamesto
identify the managerfor each file. In our exper-
iments, FedFShas been configuredto place files
on the managernode unlessmentionedotherwise.
The clients apply the samehash function on file
pathnamesto distribute requeststo the servers in
the cluster. This makessurethat file requestsfrom
theclientsaresentto theserver on which thefile is
located.Table I shows the distribution of requested
files acrossthe servers, obtainedby applying the
hash function on the requesttrace of pathnames
generatedby the postmarkbenchmark.

C. Throughput and Speedup with Postmark

In Fig. 6, we show the throughputobtainedwith
the postmarkbenchmarkfor file sizesrangingfrom

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5 6 7 8

P
os

tm
ar

k
T

hr
ou

gh
pu

t (
tx

ns
/s

ec
)

Number of Servers

File size 2K
File size 4K
File size 8K
File size 16K

Fig. 6. Postmarkthroughput for various file sizes

2KB to 16KB, for variousclustersizes.In this ex-
periment,eachtransactionperformeda create/delete
coupledwith a file readoperation(no writes). We
see that for larger file sizes (16KB), the perfor-
mancedrops since the latency from client-server
datatransfersdominates.With thehelpof theFedFS
clusteringlayer, we were able to achieve speedups
of 2.6 on a four node cluster and 4.5 on a eight
nodeclusterrelative to throughput on a singlenode.
We arecurrentlyoptimizing the performanceof the
FedFSlayer by usingfile migrationto relocatefiles
basedon load information, andwe believe that this
will help us achieve betterspeedups.

D. File Placement and Caching

In the previous experiment,noneof the requests
arriving at any server node translatedto a remote
file accessacrossthe cluster. This wasachieved by
matchingthe requestdistribution schemeusedby
the clients with the file placementschemeon the
servers. If the above schemesdo not match,client
requestsarriving at a server nodecouldresultin file
accessto a remoteserver node.To studythe impact
of the file placementpolicy on the communication
overhead,we implementeda round-robinpolicy as
an example.When the round-robinpolicy is used,
file createrequestsarriving at any nodeareassigned
home nodes in a round-robin fashion. In such a
scenario,the numberof requestsat any server node
that translateinto local file accessis approximately
1/N of the total, whereN is the sizeof the cluster.
Theremainingrequestsresultin remoterequestsfor
file accessacrossthe cluster. We verify this with
an experimentusing a round-robinpolicy for file

Fig. 7. Communication overhead using round-robin file
placement

Fig. 8. Impactof datablock caching

placementon the servers.Fig. 7 shows the average
numberof client requestson eachserver nodethat
translateinto remotefile accesses.

FedFSusescachingto minimize the communi-
cation overheadresulting from remotefile access.
Using the round-robinpolicy for file placementand
a modified postmarkbenchmark,we evaluate the
effectivenessof cachingin minimizing communica-
tion overhead.In Fig. 8, wepresenttheresultsof our
experimentwith a modified postmark benchmark,
in which all files are createdbefore running the
transactions,and eachtransactionperformsonly a
readoperation.We canseethat thecachinglayer in
FedFShelpsimprove the throughput by about35%
for the scenariostudied.

VI I . CONCLUSIONS

This paperexploresthe issuesrelatedto building
a scalablecluster-baseddirect accessfile server.
Using featureslike direct datatransferandRDMA,

Direct Access File Systemsoffer significant im-
provement in application performanceby reduc-
ing overheads.FedFSexploits low overheaduser-
level networking for intra-cluster communication
to presenta low overheadclustering solution for
servers.FederatedDAFS combinesanefficientuser-
spaceDAFS implementationwith a thin clustering
layer (FedFS)to presenta scalableclusteringso-
lution for DAFS servers. FederatedDAFS usesa
portable mechanismfor distribution and handling
of client requestsacrossthe servers in the cluster.
FederatedDAFS minimizes the intra-clustercom-
munication by cachingdatablocks of remotefiles
and by matchingthe file placementon the servers
with the distribution of requestsfrom the clients.

Our resultsshow thatreasonablespeedupscanbe
achieved using FederatedDAFS on server clusters
of up to eightnodes.FederatedDAFS hasthepoten-
tial to achievebetterperformancethandemonstrated
with theplannedoptimizationsto migratefilesbased
on load information on the servers.

ACKNOWLEDGMENT

Theauthorswould like to thankFlorin Sultanand
AniruddhaBohrafor theirhelpin preparingthefinal
versionof this manuscript.

REFERENCES

[1] D. Dunning,G. Regnier, G. McAlpine, D. Cameron,B. Shubert,
F. Berry, A. M. Merritt, E. Gronke, andC. Dodd, “The Virtual
InterfaceArchitecture,” IEEE Micro, vol. 18, no. 2, 1998.

[2] A. Basu, V. Buch, W. Vogels, and T. von Eicken, “U-Net:
A User-Level Network Interface for Parallel and Distributed
Computing,” in Proceedings of the 15th ACM Symposium on
Operating Systems Principles, December1995.

[3] M. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. Felten, and
J. Sandberg, “A Virtual Memory Mapped Network Interface
for the SHRIMP Multicomputer,” in Proceedings of the 21st
Annual Symposium on Computer Architecture, Apr. 1994, pp.
142–153.

[4] J. KatcherandS. Kleiman, “An Introduction to the Direct Ac-
cessFile System,” in Whitepaper (www.dafscollaborative.org),
Jun2000.

[5] E.V. Carreraand R. Bianchini, “Efficiency vs. Portability in
Cluster-BasedNetwork Servers,” in 8th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming
(PPoPP), 2001.

[6] S.Gopalakrishnan, A. ArumugamandL. Iftode,“FederatedFile
Systemsfor Clusterswith RemoteMemory Communication,”
in FAST (Work in Progress Session), 2002.

[7] J. Katcher,“Postmark:A New File SystemBenchmark,” Net-
work Appliance,Tech.Rep.3022, October1997.

[8] J. Chase,K. Yocum,and A. Gallatin, “End-SystemOptimiza-
tions for High-SpeedTCP,” IEEE Communications, special
issueon TCPPerformancein FutureNetworking Environments,
vol. 39 no. 4, April 2001,2001.

[9] M. Thadani and Y. Khalidi, “An Efficient Zero-Copy I/O
Framework for UNIX,” 1995.

[10] V. S. Pai, P. Druschel,andW. Zwaenepoel, “IO-Lite: A Unified
I/O Buffering and Caching System,” ACM Transactions on
Computer Systems, vol. 18, no. 1, pp. 37–66, 2000.

[11] Matt DeBergalis, PeterCorbett,Steve Kleiman, Arthur Lent,
Dave Noveck, Tom Talpey, and Mark Wittle, “The Direct Ac-
cessFile System,” in Proceedings of the 2nd Usenix Conference
on File Storage and Technologies, 2003.

[12] K. Magoutis, S. Addetia,A. Fedorova, M.I. Seltzer, J.S.Chase,
A.J. Gallatin,R. Kisley, R.G. Wickremesinghe,andE. Gabber,
“StructureandPerformanceof the Direct AccessFile System,”
in USENIX Annual Technical Conference, 2002.

[13] KostasMagoutis, “Optimistic Direct AccessFile System,” in
Proceedings of the 1st Workshop on Novel Uses of System Area
Networks, 2002.

[14] M. Aron, D. Sanders,P. Druschel,andW. Zwaenepoel,“Scal-
able Content-Aware RequestDistribution,” in USENIX Annual
Technical Conference, June2000.

[15] V. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, andE. Nahum,“Locality-AwareRequestDis-
tribution in Cluster-basedNetwork Servers,” in Proceedings of
the 8th International Conference on Architectural Support for
Programming Languages and Operating Systems, 1998.

[16] E.V. Carrera, S. Rao, L. Iftode, and R. Bianchini, “User-
Level Communicationin Cluster-BasedServers,” in 8th ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), 2001.

[17] M. Welsh,D. Culler, andE. Brewer, “SEDA: An Architecture
for Well-Conditioned,ScalableInternetServices,” in Proceed-
ings of the Eighteenth Symposium on Operating Systems Prin-
ciples, October2001.

[18] B. Bloom, “Space/timetradeoffs in hashcodingwith allowable
errors,” CACM, vol. 13, no. 7, pp. 422–426, 1970.

