

Abstract—The User Direct Access Programming Library

(uDAPL) is a gener ic application programming inter face (API)
for network adapters capable of remote direct memory access
(RDMA). The uDAPL inter face allows user space applications
to work with RDMA adapters using a platform and transpor t
independent API . The uDAPL inter face has been proposed for
use in cluster ing, distr ibuted systems, and network file systems.

In this paper we evaluate the uDAPL inter face and share our
exper iences developing an open source implementation using
InfiniBand adapters.

Index Terms—remote memory access, system area network,
memory to memory interconnect.

I. INTRODUCTION

DMA network adapters are characterized by two
important features: allowing user space applications to

directly access hardware and zero-copy data movement. A
combination of hardware and software allows user space
applications to read and write the memory of a remote system
without kernel intervention or unnecessary data copies.

These features result in lower CPU utilization per I/O
operation and more efficient use of machine resources than
typical networking architectures. User space networking
improves performance by eliminating domain crossings
between user space and kernel space when transferring data.
System security is maintained by having the kernel allocate
the system and adapter resources up front. As the cost of a
data copy becomes a larger portion of a complete data
transfer, the need for zero-copy transfers becomes more
important. Zero-copy data transfers are possible within
traditional protocol stacks [1], but generally involve large
modifications and complex interactions with the operating
system’s virtual memory subsystem. Use of RDMA capable

James Lentini, Steven Sears, and Randall Smith are Members of the

Technical Staff at Network Appliance, Inc. 375 Totten Pond Rd., Waltham, MA
02451 USA.

(email : jlentini@netapp.com, sjs@netapp.com, rsmith@netapp.com).
Vu Pham is a Software Development Engineer at Mellanox Technologies Inc.

2900 Stender Way, Santa Clara, CA 95054 USA.
(email: vuhuong@mellanox.com)

1 http://sourceforge.net/projects/dapl

transports directly by an application eliminates these
problems.

A number of applications have been developed that take
advantage these benefits. Research has demonstrated the
feasibility of building high performance clusters using RDMA
interconnects [7]. A number of companies, including Network
Appliance, have sold products that use RDMA interconnects
for clustering. In the area of distributed systems, Software
Distributed Shared Memory has been successfully
implemented upon RDMA interconnects [10]. The Direct
Access File System (DAFS) is a network file system that uses
RDMA technology and has demonstrated performance
improvements over traditional network file systems [8].

In recent years, several network interconnects with RDMA
capabilities have been proposed or developed. These include
the Virtual Interface Architecture (VIA) [2], the InfiniBand
Architecture (IBA) [6], and RDMA over the Internet
protocols [11][12][13] to name a few. Despite sharing similar
capabilities, each technology has required applications to use
a transport or vendor specific programming interface. As a
result, applications have become tied to specific
implementations. These incompatible programming models
have hampered the spread of RDMA technology.

 In an effort to standardize RDMA APIs, the DAT
Collaborative, an industry group focused on RDMA
technologies, developed kernel [3] and user [4] space
specifications in the C programming language for RDMA
transports. The kDAPL and uDAPL APIs are an attempt to
create a portable set of APIs for all RDMA networks. The
relationship between kDAPL, uDAPL, consumer
applications, and RDMA hardware is show in Figure 1. The
APIs will allow applications to utilize the capabilities of both
current and future RDMA networks without becoming tied to
a specific implementation. Since these networks are used for
high performance applications, the interfaces have been
designed to be as efficient as possible. Appendix A is a
listing of the uDAPL API v1.0. The DAT Collaborative is
currently preparing a new version of the specification, which
is anticipated to include a handful of enhancements and
address any errata items discovered in version 1.0.

The authors have developed an open source reference
implementation of the uDAPL v1.0 interface1. The project is

Implementation and Analysis of the User Direct
Access Programming Library

James Lentini, Vu Pham, Steven Sears, and Randall Smith

R

hosted on SourceForge.net, allowing other individuals and
corporations to assist with development. Currently the
reference implementation supports the IBA as the underlying
transport using either an IBM [5] or Mellanox [9] Verbs
interface. Internally, the reference implementation uses an
abstract interface for all platform dependent functions.
Support for Linux and Windows has been implemented.

The design of the uDAPL reference implementation
presented a number of interesting problems. The project
began before stable IBA hardware and software was available.
By beginning early, we were forced to simultaneously
debugged the uDAPL reference implementation, the Verbs,
the adapter’s device driver, and the InfiniBand hardware
itself. As a result, we were compelled to approach problems
from a number of different perspectives to resolve the
underlying problems. Along with the rapidly changing
development environment, we were faced with the challenge
of supporting uDAPL’s semantics with the capabilities
available in the IBA. As a result, the implementation was
forced to use the provided IBA verbs interfaces in creative
ways.

The goal of the reference implementation was to create a
portable code base from which RDMA adapter vendors could
base products supporting the uDAPL API. As a result,
achieving the absolute best possible performance was not our
primary goal. However, after completing the reference
implementation, the authors were able to characterize the
performance using the following metrics: CPU utilization,
operation throughput, bandwidth, and latency. Using these
numbers and measurements of the native RDMA interface,
we were able to quantify the performance penalty imposed by
interposing the reference implementation between consumers
and the native interface.

uDAPL

User Consumer

Kernel

User

Hardware
IA Hardware

IA Driver

kDAPL

Kernel Consumer

Data

Control

Figure 1: DAT Architecture

II. ARCHITECTURE OF UDAPL

A. Handles and Objects

The uDAPL specification represents the various abstract
concepts of RDMA networking as objects. For example, an
Interface Adapter (IA) is the object used to represent a
RDMA network adapter and an Event Dispatcher (EVD) is
the object that queues events for the consumer. These objects
are related to one another in an ownership hierarchy. For
example, an EVD object is created as the child of a specific
IA.

Consumers manipulate these objects through handles. Each
object type has creation and destruction functions to allocate
and deallocate object resources. The creation functions return
a handle with which the consumer can manipulate the object
and associate it with other objects.

B. Registry and Providers

As noted earlier, one of the primary goals of the uDAPL
specification was to provide a standard interface to RDMA
network adapters from multiple vendors. Applications should
only need to link against a standard uDAPL library to
communicate with a RDMA network adapter. However,
vendors require specialized support for their adapter’s
hardware-software interface. Therefore a mechanism was
needed to allow vendors to provide their own architecture
dependent implementations of the uDAPL functions.

The solution was to create a level of indirection in the form
of a registry between the consumer and the vendor specific
software. The later was termed a provider. Providers are
statically registered with uDAPL through a platform specific
mechanism. On UNIX systems, this mechanism is
implemented as a text configuration file. Regardless of the
particular approach used to record this information, the
consumer application need not be aware of the internal
workings of the registry. After opening a provider through the
registry, the consumer communicates directly with the
provider library on subsequent operations.

 Direct communication is achieved through the use of
function pointer tables and C macros. Each uDAPL function
other than dat_ia_open() and dat_ia_close() is actually a C
macro. These macros use their first parameter to retrieve a
standard function pointer table (implemented as a C structure
called the DAT_PROVIDER). The macros index into the table
and call the appropriate function passing the caller’s
parameters through to the provider. Unlike the other
functions, the dat_ia_open() and dat_ia_close() functions
have standard implementations. These functions allow the
consumer to interact with the uDAPL registry. The
dat_ia_open() function searches the registry for the provider
specified by the consumer. If the desired provider is found,
the registry calls the providers IA open function. If this call
succeeds, the consumer will be given a DAT_IA_HANDLE
pointing to one of the function pointer tables described above.

This design allows applications to use the same symbols to
invoke different provider implementations at the cost of
incurring a pointer dereference on each call. As a result of
this design, every provider’s uDAPL handles must be
implemented as a pointer to the standard function pointer
table (see Figure 2).

DAT_HANDLE

const char * device_name

DAT_PVOID extension
DAT_IA_OPEN_FUNC ia_open_func

DAT_IA_QUERY_FUNC ia_query_func

DAT_IA_CLOSE_FUNC ia_close_func
.
.
.

DAT_PROVIDER structure

provider specific data

DAT_PROVIDER * provider

.

.

.

Figure 2: DAT handle design

Consumers identify providers with the IA name string
passed to dat_ia_open(). If uDAPL naively used the device
naming conventions available at the IBA Verbs layer, it
would be possible for vendors to introduce conflicting device
names. While InfiniBand Verb libraries typically provide an
interface to open an adapter, separating the user from the file
system device name, they are not as general as needed by the
uDAPL interface. For example, the IBM Access API only
allows an adapter to be named by an ordinal number,
introducing the possibility that two different vendors utilizing
this API will have identical device names.

To avoid name collisions among vendors, uDAPL adapter
names differ from the names exported by the Verbs library by
adding a simple prefix to the name. For example if vendor
Xyz uses a Verbs API that exports adapter names 1, 2, and 3
and vendor Abc uses a Verbs API that exports adapter names
1,2, and 3, we have a conflict. uDAPL resolves this by
allowing a vendor to specify a simple prefix to the device
name, e.g. xyz-1, xyz-2, abc-1, etc., and provides guarantees
that each prefix is unique.

C. Protection Model

To defend against malicious or faulty applications, RDMA
adapters typically provide a mechanism to protect resources
allocated on the adapter. This concept is termed a Protection
Zone (PZ) in the uDAPL API. PZs are created in the scope of
a single IA. All uDAPL objects that require IA resources are
associated with a PZ. To associate a set of such objects with
one another, a consumer must ensure that all the objects
belong to the same PZ. This also ensures that the objects are
only associated with one another if they are located on the
same IA.

D. Event Model

The results of many operations in the uDAPL interface are
communicated to the consumer through asynchronous events.

Consumers place an operation on queues for processing and
either poll or wait on EVD objects for the corresponding
events signaling the operation’s result.

E. Connection Model

uDAPL supports reliable connections using a client-server
connection model. The passive side of a connection creates a
service point. Two types of service points are defined:
reserved service points (RSPs) and public service points
(PSPs). The active side creates an Endpoint (EP) object and
sends a connection request to the specified address and
service point. The remote side is then free to accept or reject
the connection request. If the request is accepted, an EP is
created on the remote side and communication continues until
either party disconnects or the connection is broken due to
error.

F. Exchanging Data: Data Transfer Operations

uDAPL supports four data transfer operations: send,
receive, RDMA read and RDMA write. Send and receive
operations are paired with one another; one side of the
connection posts a receive and the other posts a send. In
contrast, RDMA operations allow for remote memory to be
read and written without consuming a remote operation.

G. Memory Management

Before an application buffer may be used as the source or
destination of an operation, a memory region containing the
buffer must be registered with the adapter. The virtual page(s)
in which the memory region lies is pinned into main memory
to ensure its availability to any operations referencing it. Two
levels of memory registration are provided: local and remote.
Local memory regions (LMRs) may be used as the source of a
send or RDMA write operation, or the destination of a receive
or RDMA read operation. Remote memory regions (RMRs)
may be the remote target of a RDMA read or write operation.

RMRs provide an additional level of protection for
applications using RDMA operations. To use a RMR, the
consumer must bind the RMR to an LMR. An arbitrary
number of RMRs may be bound to a single LMR. The bind
operation produces a key with which remote nodes may
identify the region. Only remote operations that specify the
proper key are allowed to access the region. To revoke the
key, the consumer can unbind the RMR. Using this
mechanism, the application can easily restrict remote access
to a region.

III. DESIGN OF THE REFERENCE IMPLEMENTATION

A. Independent Architecture

1) Platform Independent
The reference implementation used a platform independent

interface for all operating system or processor architecture
functions. Even the standard C runtime routines were
abstracted out and accessed through the platform independent

interface. This has resulted in a highly portable
implementation that may be used in either popular
environments such as Linux and Windows or more
specialized embedded operating systems.

2) Chip Independent
The implementation was careful not to use any chip

dependent features of the IBA adapters on which the software
runs. Rather the implementation can be compiled to work
with either the IBM or Mellanox Verbs interface. Both of
these APIs have been released to the public and have become
the two most popular Verbs interfaces. By not using chip
specific features, the reference implementation will be
portable to future generations of adapters providing either
Verbs interface.

B. Design of the uDAPL Event Subsystem

The event system is the heart of the DAT model. Nearly all
API invocations are asynchronous in nature, the results are
returned in an event. Completions are logically grouped into
Event Streams, which feed into Event Dispatchers. Event
Stream notifications include data transfer completions,
connection requests, connection establishment, disconnect
notifications, memory bind completions, asynchronous errors,
and software generated events.

An Event Dispatcher will organize events from one or
more streams into a single queue; events can be dequeued
exactly once. Consumers can either poll or wait on an event
dispatcher. They can also wait on a set of Event Dispatchers
using a Consumer Notification Object (CNO). A CNO can
optionally trigger an OS specific synchronization object
through the mechanism of OS Proxy Wait Objects.

Since uDAPL was implemented upon an IBA Verbs
interface, the reference implementation needed to implement
the abstract objects described in the uDAPL specification with
the resources found in the IBA. Events in IBA are either
delivered through user calls (software generated Events),
through IBA Completion Queues (data transfer completions
and memory bind completions), or through pre-registered
callbacks (everything else). Event Dispatchers in the uDAPL
reference implementation must incorporate all of these event
stream types into a common interface for the user. Issues that
arose in this incorporation include:

• the nature of event storage
• supporting a threshold in dat_evd_wait()
• inter-producer synchronization around event

storage
• "impedance matching" between blocking and

callback models
We discuss each of these in turn.
1) The Nature of Event Storage

The information associated with an event (e.g. the amount
of data received for a receive data transfer operation) must be
stored somewhere between when the event is generated and
when the user retrieves it. For CQ associated events, that

information may in most cases be left on the CQ, and the
operation of dequeueing from the EVD implemented by
polling the CQ. For non-CQ associated events, that
information must be stored in a uDAPL defined structure on
the EVD. Because uDAPL is intended for high-performance
applications, it is important to minimize the synchronization
overhead associated with that structure.

In the reference implementation, that structure is a
producer/consumer circular queue. When an event is
generated (via callback or dat_evd_post_se()) the producer
enqueues it; when an event is requested by the user, it is
dequeued. These queues are implemented directly upon
architecture specific atomic operations, abstracted through
our platform independent layer; no locking is required for
enqueueing or dequeueing an event. The circular queue
avoids the necessity of explicit synchronization between the
event producer and the event consumer. Each may operate
independently unless the queue is empty (no events are
available) or full (an overflow asynchronous error is
generated).

The event consumption operation (dat_evd_dequeue() or
dat_evd_wait()) must check both this internal queue and the
contents of the CQ associated with the EVD. Because
information may sometimes be copied from the CQ to the
EVD's circular queue (see "Supporting a threshold in
dat_evd_wait() below), the EVD storage is checked first to
maintain ordering of completions posted to the CQ.

2) Supporting a threshold in dat_evd_wait()
One important difference in semantics between IBA and

uDAPL are dat_evd_wait()'s arguments threshold and nmore.
The threshold input parameter indicates how many events are
required before the thread blocking in dat_evd_wait() should
be awoken. The nmore output parameter indicates, at function
exit, how many events remain to be dequeued from the EVD.

IBA has no related concepts; either of blocking for a
specified number of events, or of "peeking" at a CQ to
determine how many CQEs are present on it at any given
time. This has two important implications:

1. On IBA the full benefit of thresholding is not
achievable, and

2. any requirement for the number of elements on a
CQ can only be satisfied by dequeueing all
elements from the CQ.

The DAT model requires this information in the
implementation of dat_evd_wait() for two reasons. When a
notification is received that there are completions available on
the CQ, the number of completions is not specified. Hence all
entries must be dequeued from the CQ to determine if the
number of available entries is greater than that of the passed
threshold and thus the dat_evd_wait() call may return.
Additionally, upon return from the dat_evd_wait() call, the
nmore parameter must be filled in with the number of entries
remaining on the EVD. This disallows the obvious
optimization of avoiding the copy when the threshold is equal

to 1.
For these reasons, dat_evd_wait() is implemented as

copying all available data to the internal EVD circular buffer,
and then testing its exit conditions and returning its
information based on that circular buffer.
dat_evd_dequeue(), which does not have dat_evd_wait()'s
event counting requirements, simply checks both the EVD
and the CQ, dequeueing directly from the CQ into the output
data structure if appropriate.

3) Inter-Event Producer Synchronization
Because, unlike CQs, an EVD may have multiple

competing producers for event streams associated with it,
inter-producer synchronization becomes relevant. If multiple
threads may be enqueueing events to the EVD at the same
time, we must synchronize access to the producer side of the
queue. Alternatively, if, because of the nature of the EVD,
only one producer will be acting on it at a time, we may avoid
that synchronization overhead. In the DAT model, the usage
of EVDs is fully specified when they are created. Thus it is
possible to determine, at EVD creation time, whether or not
this synchronization overhead will be required.

The classes of threads that will be delivering events to the
EVD circular queue include callbacks from the IBA Verbs
layer and user threads in dat_evd_wait() copying data as
described above1. In general, the appropriate criteria for
inclusion of the synchronization overhead is whether or not
multiple threads will be delivering events to the EVD circular
queue at the same time. In other words, if callbacks from the
IBA verbs layer may be occurring simultaneously with each
other, or with user threads copying data from CQ to EVD,
producer side locking on the EVD queue should be enforced.

Because the general thread context model for user
callbacks within IBA Verbs implementations is often not
completely specified, and because the non-CQ related event
streams are usually not performance critical, we chose to
enable producer side locking whenever any non-CQ related
event streams are associated with the EVD.

4) “ Impedance Matching” between Blocking and
Callback Models

Most systems for data transmission have some way to yield
the CPU when it is not needed, and reclaim it when an
operation completes. In uDAPL this is done through
blocking; the functions dat_evd_wait() and dat_cno_wait()
take an existing user thread and block it until the next event
arrives. In IBA, a callback is specified, and the IBA verbs
layer calls that callback when the event occurs.

The callback model fits well into the goal of minimizing
context switches in a kernel context. The hardware
mediating the data transmission will interrupt the CPU when
the data transmission completes, and the callback thread may

1 The copying of data from the CQ to the EVD is the responsibility of the user
thread rather than the CQ notification thread to simplify the synchronization
around the CQ because of the exclusionary requirements of the DAT API

be invoked directly from that interrupt thread. In contrast,
the blocking model is better suited to the goal of minimizing
context switches in a user model. At least one context switch
will be required from the hardware interrupt (since interrupt
threads will not call into user space). That context switch
could be to a provider thread, which returns to user space and
does a pre-registered callback, or it could be to a user thread
previously blocked in the kernel. Simplicity of the user
programming model argues in favor of the blocking
approach; all work is done within threads the user controls,
and no extra thread resources need to be managed by the
provider.

The above paragraph describes the ideal implementation,
of a uDAPL provider implemented directly upon the data
transmission hardware. The reference implementation is
implemented on top of the IBA verbs, and hence must
translate between the callback model of IBA and the blocking
model of uDAPL. It does this through internal wait objects
inside of both EVDs and CNOs. These objects are OS-
dependent, and are mediated through our platform
independent layer. The IBA callback wakes up any thread(s)
blocked on the EVD or CNO; those threads then return from
their blocking call to dat_evd_wait() or dat_cno_wait().

For event streams for which these callbacks deliver the data
associated with events (non-CQ affiliated event streams) these
callbacks must be always enabled. If they do not occur, there
is no way for a caller to the EVD to know that an event has
occurred. However, for CQ affiliated event streams, the only
function of these callbacks is waking up blocked user threads,
and if there is no need for this function (because no user
threads are blocked) they should be disabled.

Ideally, this would mean that CQ callbacks were enabled
upon entry to either dat_evd_wait() or dat_cno_wait() and
disabled upon exit. In the case of EVDs this is in fact exactly
what the reference implementation does. Unfortunately,
because an arbitrarily large, and dynamically varying, number
of EVDs may be associated with a CNO, this algorithm does
not scale very well for CNOs. Thus if an EVD has an
associated CNO, the CQ associated with that EVD has its
callbacks always enabled.

C. Design and Tradeoffs of the Connection Model

An Endpoint (EP) is the fundamental channel abstraction
in the uDAPL API. An application communicates and
exchanges data using an Endpoint. Most of the time
Endpoints are explicitly allocated, but there is an exception
whereby a connection event can yield an Endpoint as a side
effect.

The connection model for uDAPL is strictly a client-server
model. Clients initiate connections using an Endpoint.
Servers advertise connection points using one of two types of
Service Points: a Public Service Point (PSP), or a Reserved

(dat_evd_dequeue() will fail if there is a dat_evd_wait() in progress). As a
result, only a single thread dequeues from the CQ at any given time.

Service Point (RSP). A PSP creates a persistent listener that
can service any number of connections, while a RSP listens
for a single connection and connects the EP when it is
created.

All DAT connections are point to point; there is no notion
of unicast versus multicast addressing in the DAT model.
This may appear in future work as most transports provide
some support for multicast addresses.

1) Mapping an Endpoint to an InfiniBand QP
The properties of a uDAPL EP do not exactly match those

of an IBA QP. The differences introduce constraints that are
not obvious. There are three primary areas of conflict between
the DAT and IBA models:

• EP and QP creation
• Provider created passive side EPs
• Connection timeouts

a) EP and QP creation

The most obvious difference between an EP and a QP is the
presence of a protection handle when an object is created.
IBA requires a Protection Domain be specified when a QP is
created. In uDAPL, a Protection Zone (PZ) maps to an IBA
Protection Domain. uDAPL does not require a PZ to be
present when an EP is created, and that introduces two
problems:

• If the PZ is not provided when an EP is created, a
QP will not be bound to the EP until
dat_ep_modify() is used to assign the PZ. A PZ is
required before RECV requests can be posted and
before a connection can be established.

• If a uDAPL consumer changes the PZ on an EP
before it is connected, uDAPL must release the
current QP and create a new one with a new
Protection Domain.

b) Provider created passive side EPs

The second area where the uDAPL and IBA models
conflict is a direct result of the requirement to specify a
Protection Domain when a QP is created.

uDAPL allows a PSP to be created in such a way that an
EP will automatically be provided to the user when a
connection occurs. This is not critical to the uDAPL model
but in fact does provide some convenience to the user. IBA
provides a similar mechanism, but with an important
difference: IBA requires the user to supply the Protection
Domain for the passive connection point. This Protection
Domain is supplied to all QPs created as a result of
connection requests. In contrast, uDAPL mandates a NULL
PZ and requires the user to change the PZ before using the
EP.

The reference implementation does not use the IBA
mechanism because of the problems cited. When a connection
request arrives, if the PSP has set the appropriate flag to
create an EP upon connection, the connection handler will

create the EP and hand it off to the user process through the
event mechanism. The EP is created without binding it to a
QP. The uDAPL specification requires the user to modify the
EP by binding a PZ to it before dat_cr_accept() can complete
the connection, so a QP will be bound to the EP in a
dat_ep_modify() operation.

c) Connection Timeouts

The third difference between the uDAPL and IBA models
has to do with timeouts on connections. InfiniBand does not
provide a way to specify a connection timeout, it will wait
indefinitely for a connection to occur. This is implemented
using a separate timeout thread that cancels the connection
request and awakens a blocked thread, if there is one waiting.

2) Connecting Endpoints
To help explain the connection model, a description of the

steps taken to establish a connection is given below. This
example will discuss the various EP states and reveal the
mechanisms used when mapping uDAPL semantics to IBA.
The differences between connecting to a PSP and connecting
to a RSP will be noted.

A server application will create a PSP with
dat_psp_create(). The interesting parameters to this function
include: the connection qualifier, which provides a unique
identifier for incoming connections (similar to a
Transmission Control Protocol (TCP) port number), the EVD
handle, where connection events will be reported, and the
PSP flags, indicating if the user or the implementation will
provide EPs for connections. This is an asynchronous call, the
application may poll or block on the connection EVD until a
connection request arrives.

When a connection is made to a RSP service point, the
reception of a connection request will cause it to refuse all
further connections.

A connection request is initiated when the client
application invokes dat_ep_connect(). Like most uDAPL
functions, this is asynchronous and the completion will arrive
as an event on the connection EVD. The EP will be put into
the CONNECTION_PENDING state until the CONNECTED
event arrives.

A connection request will arrive on the server node
resulting in a callback to the PSP connection handler routine.
The request will be verified by the consumer and rejected if a
problem is detected. Otherwise, connection processing begins.

Once a connection request is in progress, a Connection
Request (CR) is created by the uDAPL implementation. A
Service Point is simply a mechanism to receive connection
requests and provide events to the application. The
application will in fact interact with a CR when establishing a
connection. The CR contains the address from which the
request originated along with any private data sent in the
connection request.

If the psp_flags specify DAT_PSP_PROVIDER_FLAG, an EP
will be created and attached to the CR at this time. The CR is

then delivered to the application in an event.
The application will supply an EP, or modify the provided

EP to the correct PZ. It may elect to change other EP
parameters as well. The application will then invoke
dat_cr_accept() to accept the connection.

The accept operation results in a CONNECTED event on
the client node, which in turn will send a message back to the
server verifying the connection and generating a
CONNECTED event on the server. Either side is now free to
send data on the EP.

D. Addressing and Naming

The uDAPL Specification calls for a DAT_IA_ADDRESS_PTR
to be an Internet Protocol (IP) address, either IPv4 or IPv6.
On most systems this is implemented as struct sockaddr. This
discussion focuses on the Linux implementation, and can be
easily adapted to other systems.

InfiniBand addressing uses a dynamically assigned address
called a LID; often referred to SLID for Source LID, and
DLID for Destination LID. LIDs are bound to GIDs, which
are similar to MAC Addresses used by Ethernet adapters.
Using the IBM Access API, the application must know the
remote GID in order to connect. Mapping an IP address to a
GID is necessary to meet the requirements of naming.

 The long-term solution to resolving a uDAPL address,
which is in fact an IP address, to an IBA address (a GID) is to
make use of an IPoIB implementation. The reference
implementation has defined a simple API to access the
mapping information maintained by an IPoIB
implementation. However, IPoIB implementations are not yet
common. Until IPoIB is in widespread use, the uDAPL
implementation provides a simple name service facility. This
depends on two things: valid IP addresses registered and
available to standard name service calls, such as
gethostbyname(), and a name/GID mapping file.

 IP addresses may be set up by system administrators
simply by editing the values into the /etc/hosts file.

 A simple mapping of names to GIDs is maintained in the
an ibhosts file, currently located at /etc/dapl/ibhosts. The
format of the file is:

 <hostname> 0x<GID Prefix> 0x<GUID>

For example:
 dat-linux3-ib0p0 0xfe800000 0x1730000003d11
 dat-linux3-ib0p1 0xfe800000 0x1730000003d11
 dat-linux3-ib1 0xfe800000 0x1730000003d52
 dat-linux5-ib0 0xfe800000 0x1730000003d91

For each hostname, there must be mapping from hostname

to IP address. We have adopted the convention of naming
each IBA interface using the following format:

 <node_name>-ib<device_number>[port_number]
Such conventions are outside the scope of the uDAPL
standard and are completely up to the local administrator. In

the above example we can see that the machine dat-linux3
has three IBA interfaces with two ports on one HCA and
another port on a second HCA.

E. Design and tradeoffs of Data Transfer Operations

In IBA, operations are termed work request elements, and
vendors are free to implement their own unique formats. The
reference implementation needed to convert from the generic
format of a uDAPL operation to these specialized formats.
The result is a straightforward translation of the
DAT_LMR_TRIPLET to a particular vendor’s work request
format. Slightly different translations are performed
depending upon the Verbs API being used.

To help consumers match completion events to a
corresponding DTO, both uDAPL and the IBA allow
consumers to insert a cookie value into the DTO that is
returned in the subsequent completion event. uDAPL
consumers specify these DAT_DTO_COOKIE values when
posting a DTO. Rather than store the consumer’s
DAT_DTO_COOKIE directly in the work request element, the
uDAPL reference implementation must store a pointer to its
own internal cookie structure, a DAPL_DTO_COOKIE. Different
values will be placed in the cookie, according to the type of
operation and the type of completion data required. This is a
simple scheme to associate uDAPL data with the DTO and
corresponding completion event.

One of the fields held in the DAPL_DTO_COOKIE structure is
a length, necessary to bridge another gap between uDAPL
and IBA. uDAPL specifies that all DTO operations return a
length; IBA only returns a length for receive operations.
Therefore uDAPL must keep track of send and RDMA write
lengths and return them in the appropriate completion events.

At first DAPL_DTO_COOKIE structures were allocated during
the posting of a DTO. An obvious performance improvement
was to create a pre-allocated pool of cookie structures to
minimize the time on the performance critical path for
posting an operation.

F. Memory Management Design

The memory management subsystem allows consumers to
register and unregister memory regions. Registered regions
are needed for DTO operations.

In the reference implementation, uDAPL LMRs are
mapped onto IBA Memory Regions. LMR creation produces
two values: a DAT_LMR_CONTEXT and a DAT_LMR_HANDLE.
The DAT_LMR_CONTEXT value is used to uniquely identify the
LMR when posting a DTO. These DAT_LMR_CONTEXT values
are mapped directly onto IBA L_KEYs. The uDAPL API
exposes these DAT_LMR_CONTEXT values to consumers to
allow sharing of memory registrations between multiple
address spaces (e.g. between processes). The mechanism by
which such a feature would be implemented does not yet
exist. Consumers may be able to take advantage of this
feature on future transports.

Since some uDAPL functions need to translate a

DAT_LMR_CONTEXT value into a DAT_LMR_HANDLE (e.g.
dat_rmr_bind()), a dictionary data structure was used to
associate DAT_LMR_CONTEXT values with their corresponding
DAT_LMR_HANDLE. Each time a new LMR is created, the
DAT_LMR_HANDLE is inserted into the dictionary with the
associated DAT_LMR_CONTEXT as the key.

A hash table was chosen to implement this data structure.
Since the L_KEY values are being used by the RDMA
adapter hardware for indexing purposes, the distribution is
expected to be uniform and hence ideal for hashing.

The reference implementation maps RMR objects onto IBA
Memory Windows. The uDAPL API for binding an LMR to a
RMR is dat_rmr_bind(). Among this functions parameters is
a DAT_LMR_CONTEXT value (this is actually a member of the
DAT_LMR_TRIPLET structure). As described in the IBA
Specification, the Bind Memory Window verb takes both an
L_KEY and Memory Region Handle among other
parameters. Therefore the dictionary data structure described
above must be used to map a DAT_LMR_CONTEXT (L_KEY)
value to a DAPL_LMR so that the needed Memory Region
handle can be retrieved. Binding a RMR to an LMR produces
a DAT_RMR_CONTEXT. DAT_RMR_CONTEXT values are mapped
to IBA R_KEYs.

G. Future Functionality and Optimizations

The uDAPL reference implementation has been provided
in a public repository to enable vendors to adapt this work to
their RDMA capable devices. The reference implementation
is intended for use on multiple operating systems, multiple
Verbs interfaces, and multiple chip sets. As such, it must use
generic and portable techniques that may not always yield the
highest performance implementation.

Part of the reference implementation includes a
documentation repository of design notes, specifications, and
a document advising vendors of functional elements that are
best implemented in a driver and uDAPL optimizations
possible by OS or chip specific functionality which has been
deemed undesirable for the reference implementation. We
divide functionality changes into two categories

• Areas in which functionality is lacking in the
reference implementation.

• Areas in which the functionality is present in the
reference implementation, but needs
improvement.

We divide performance improvements into three types:
• Reducing context switches
• Reducing copying of data1
• Eliminating subroutine calls

An area of missing functionality in the reference
implementation bears mentioning here.

1 Note that the data referred to in "reducing copying of data" is the meta data

describing an operation (e.g. scatter/gather list or event information), not the
actual data to be transferred. No data transfer copies are required within the
uDAPL reference implementation.

The uDAPL share memory model can be characterized as a
peer-to-peer model since the order in which consumers
register a region is not dictated by the programming interface.
When creating a LMR, uDAPL consumers may share
registration resources by setting the memory type parameter
to DAT_MEM_TYPE_SHARED_VIRTUAL and specifying a shared
memory identifier in the region description. If a region with
the given identifier does not exist, one will be created.
Otherwise, the resources used by the existing region will be
shared with the new registration.

In contrast, the IBA shared memory interface requires the
shared region to first be registered using the standard memory
registration verb. All subsequent registrations must use the
shared memory registration verb, and provide to that verb the
memory region handle returned from the initial call. This
means that the first process to register the memory must
communicate the memory region handle it receives to all the
other processes that wish to share this memory. This is a
master-slave model of shared memory registration; the initial
process (the master), is unique in its role, and it must tell the
slaves how to register the memory after it.

To translate between these two models, uDAPL
implementations are required to determine the first
registration of a shared region and map from a shared
memory identifier to a memory region handle across
processes. To satisfy these requirements, uDAPL must
maintain a system wide database to store this information.
Since multiple processes will concurrently access the
database, inter-process synchronization mechanisms are
needed to protect its integrity. If a process exits abnormally,
its memory regions will be deregistered. The database must be
informed of these occurrences and update any relevant
entries.

The appropriate place to store this information is in the IA
hardware’s associated device driver. As part of the operating
system kernel, the driver is well positioned to arbitrate access
to the database between multiple processes. The driver can
also easily track a the existence of processes (a "close()" will
be received when a process exits). Since the reference
implementation was able to implement all other features in
user space, we decided to leave the implementation of shared
memory to the adaptor vendors.

IV. SOURCEFORGE.NET DEVELOPMENT

This was the authors’ first experience setting up and
developing a project on SourceForge.net, the host of many
popular open source projects. Developing on SourceForge.net
has been a worthwhile experience and has clearly benefited a
large number of individuals and companies.

One of the stated goals of the DAT Collaborative was to
provide an interface that would be freely available to anyone
who wanted it and useable in any application or product
without intellectual property concerns or other encumbrances.
The reference implementation is distributed under the IBM

Common Public License (CPL) to provide the most flexibility
for those who wish to incorporate the reference
implementation in their own work. Since the entire project
can be downloaded anonymously at any time, there is no
record of how many people have looked at the code. However,
we have received emails from fifteen different institutions
that are exploring or implementing software based on the
reference implementation. These emails range from questions
on design and implementation to bug fixes and code snippets,
which project members have happily incorporated. The
combination of an amenable licensing policy and transparent
development environment has contributed to uDAPL’s
popularity.

V. PERFORMANCE MEASUREMENTS

Measurements were conducted to gauge the level of
performance achievable using the uDAPL reference
implementation and for comparison to a native Verbs
implementation. We choose to measure the following
performance characteristics:

• CPU utilization: The amount of time necessary to
post a DTO to the hardware and process the
corresponding completion from the hardware.
(units: time/operation)

• operation throughput per physical port: The
number of operations that can be executed in a
given amount of time. (units: operations/time)

• bandwidth per physical port: The amount of data
that can be transferred on a single port in a
given amount of time. (units: data/time)

• latency: The period of time between posting a
DTO and posting the corresponding completion to
an EVD. (units: time)

Two tools were developed to support this effort: one
operating at the uDAPL API level and another operating at
the Mellanox Verbs API level. Both tools were capable of
measuring all of the performance metrics described above
with the exception of operation throughput. In this case, only
the uDAPL test tool was able to gather these measurements.
The test programs were slightly different in other ways due to
semantic differences between the uDAPL API and the
Mellanox Verbs API. Despite these difference, comparisons
between these measurements are still valid because each tool
defined the performance criteria in the same way.

The tests were conducted on
• Two SuperMicro machines each with a

ServerWorks Grand Champion LE chipset, 1.8
Ghz Intel Xeon CPU, and 512 MB RAM

• Two 4x Mellanox HCAs (one in each machine)
connected point to point

• RedHat 7.3 2.4.18-10 UP kernel
The results are shown in the figures below.

0%

20%

40%

60%

80%

100%

0 8192 16384 24576 32768 40960 49152 57344 65536

C
P

U
 U

til
iz

at
io

n
(%

)

Operation Size (bytes)

Key
Blocking RDMA read
Blocking RDMA write
Polling RDMA read

Polling RDMA write
Verbs Polling RDMA write

Figure 3: CPU Utilization

0

50000

100000

150000

200000

250000

300000

0 32768 65536 98304 131072

O
P

S
 (

op
er

at
io

ns
/s

ec
on

d)

Operation Size (bytes)

Key
Blocking RDMA read
Blocking RDMA write

Polling RDMA read
Polling RDMA write

Figure 4: Operations per Second

0

100

200

300

400

500

600

700

800

900

0 131072 262144 393216 524288 655360 786432 917504 1048576

B
an

dw
id

th
 (

M
B

/s
ec

)

Operation Size (bytes)

Key
Blocking RDMA read
Blocking RDMA write
Polling RDMA read

Polling RDMA write
Verbs RDMA write

Figure 5: Bandwidth

0

20

40

60

80

100

120

140

0 8192 16384 24576 32768 40960 49152 57344 65536

La
te

nc
y

(u
s)

Operation Size (bytes)

Key
Blocking RDMA read
Blocking RDMA write
Polling RDMA read

Polling RDMA write
Verbs Polling RDMA write

Figure 6: Latency

These results show that the uDAPL reference
implementation does add some overhead to a native Verbs
interface. However, the overhead is relatively small and we
believe that if the uDAPL API was implemented directly on
the RDMA hardware as described above, this overhead would
be eliminated.

VI. CONCLUSION

The uDAPL API is a vendor independent interface for
RDMA transports. The design of the uDAPL reference
implementation provides interesting lessons on how to
implement a generic API for RDMA networks.

ACKNOWLEDGMENT

The authors would like to thank Arkady Kanevsky and
Anthony Topper for their suggestions and feedback. We
would also like to thank Philip Christopher, Randy Pafford,
Dave Mitchell, and Mark Natale for assisting with the
uDAPL implementation.

REFERENCES
[1] H. J. Chu. ”Zero-Copy TCP in Solaris,” in Proc. of the USENIX

Technical Conference, San Diego, CA, January 1996.
[2] Compaq, Intel, Microsoft. Virtual Interface Architecture Specification,

Version 1.0. December 1997.
[3] DAT Collaborative. kDAPL: Kernel Direct Access Programming

Library, Version 1.0. June 2002. [Online] Available:
http://www.datcollaborative.org/kDAPL_062102.pdf

[4] DAT Collaborative. uDAPL: User Direct Access Programming Library,
Version 1.0. June 2002. [Online] Available:
http://www.datcollaborative.org/uDAPL_062102.pdf

[5] IBM. Access API. October 2002. [Online] Available:
http://www.datcollaborative.org/ibm.html

[6] InfiniBand Trade Association. InfiniBand Architecture Specification,
Release 1.1, November 2002.

[7] J.-S. Kim, K. Kim, S.I. Jung. “Building a High Performance
Communication Layer over Virtual Interface Architecture on Linux
Clusters,” Proc. of the 15th ACM International Conference on
Supercomputing (ICS), pp.335-347, June 2001.

[8] K. Magoutis, S. Addetia, A. Fedorova, M. Seltzer, J. Chase, D. Gallatin, R.
Kisley, R. Wickremesinghe, and E. Gabber. “Structure and Performance of
the Direct Access File System (DAFS),” in Proc. of the USENIX
Technical Conference, Monterrey, CA, June 2002.

[9] Mellanox. Verbs API. July 2002. [Online] Available:
http://www.datcollaborative.org/mellanox.html

[10] M. Rangarajan, L. Iftode. “Software Distributed Shared Memory over
Virtual Interface Architecture: Implementation and Performance,” in Proc.
of 4th Annual Linux Conference, Atlanta, GA, October 2000.

[11] RDDP Working Group. “Remote Direct Data Placement Charter,” Internet
Engineering Task Force. December 2002. [Online] Available:
http://www.ietf.org/html.charters/rddp-charter.html

[12] R. Recio, P. Culley, D. Garcia, J. Hilland. An RDMA Protocol
Specification (Version 1.0). October 2002. [Online]. Available:
http://www.rdmaconsortium.org/home/draft-recio-iwarp-rdmap-v1.0.pdf

[13] H. Shah, J. Pinkerton, R. Recio, P. Culley. Direct Data Placement over
Reliable Transports. October 2002. [Online] Available:
http://www.rdmaconsortium.org/home/draft-shah-iwarp-ddp-v1.0.pdf

VII. APPENDIX A-UDAPL API V1.0

DAT_RETURN
dat_ia_open(

IN const DAT_NAME_PTR ia_name_ptr,
IN DAT_COUNT async_evd_min_qlen,
INOUT DAT_EVD_HANDLE *async_evd_handle,
OUT DAT_IA_HANDLE *ia_handle);

DAT_RETURN
dat_ia_close(
 IN DAT_IA_HANDLE ia_handle,
 IN DAT_CLOSE_FLAGS ia_flags);

DAT_RETURN
dat_ia_query(
 IN DAT_IA_HANDLE ia_handle,
 OUT DAT_EVD_HANDLE *async_evd_handle,
 IN DAT_IA_ATTR_MASK ia_attr_mask,
 OUT DAT_IA_ATTR ia_attributes,
 IN DAT_PROVIDER_ATTR_MASK provider_attr_mask,

OUT DAT_PROVIDER_ATTR provider_attributes);

DAT_RETURN
dat_set_consumer_context(

IN DAT_HANDLE dat_handle,
IN DAT_CONTEXT context);

DAT_RETURN
dat_get_consumer_context(

IN DAT_HANDLE dat_handle,
OUT DAT_CONTEXT *context);

DAT_RETURN
dat_get_handle_type(

IN DAT_HANDLE dat_handle,
OUT DAT_HANDLE_TYPE *handle_type);

DAT_RETURN
dat_cno_create(

IN DAT_IA_HANDLE ia_handle,
IN DAT_OS_WAIT_PROXY_AGENT agent,
OUT DAT_CNO_HANDLE *cno_handle);

DAT_RETURN
dat_cno_free(

IN DAT_CNO_HANDLE cno_handle);

DAT_RETURN
dat_cno_wait(

IN DAT_CNO_HANDLE cno_handle,
IN DAT_TIMEOUT timeout,
OUT DAT_EVD_HANDLE *evd_handle);

DAT_RETURN
dat_cno_modify_agent(

IN DAT_CNO_HANDLE cno_handle,
IN DAT_OS_WAIT_PROXY_AGENT agent);

DAT_RETURN
dat_cno_query(

IN DAT_CNO_HANDLE cno_handle,
IN DAT_CNO_PARAM_MASK cno_param_mask,
OUT DAT_CNO_PARAM *cno_param);

DAT_RETURN
dat_evd_create(

IN DAT_IA_HANDLE ia_handle,
IN DAT_COUNT evd_min_qlen,
IN DAT_CNO_HANDLE cno_handle,
IN DAT_EVD_FLAGS evd_flags,
OUT DAT_EVD_HANDLE *evd_handle);

DAT_RETURN
dat_evd_free(

IN DAT_EVD_HANDLE evd_handle);

DAT_RETURN
dat_evd_query(

IN DAT_EVD_HANDLE evd_handle,
IN DAT_EVD_PARAM_MASK evd_param_mask,
OUT DAT_EVD_PARAM *evd_param);

DAT_RETURN
dat_evd_modify_cno(

IN DAT_EVD_HANDLE evd_handle,
IN DAT_CNO_HANDLE cno_handle);

DAT_RETURN
dat_evd_enable (

IN DAT_EVD_HANDLE evd_handle);

DAT_RETURN
dat_evd_disable (

IN DAT_EVD_HANDLE evd_handle);

DAT_RETURN
dat_evd_resize (

IN DAT_EVD_HANDLE evd_handle,
IN DAT_COUNT evd_min_qlen);

DAT_RETURN
dat_evd_wait (

IN DAT_EVD_HANDLE evd_handle,
IN DAT_TIMEOUT timeout,
IN DAT_COUNT threshold,
OUT DAT_EVENT *event,
OUT DAT_COUNT *nmore);

DAT_RETURN
dat_evd_dequeued(

IN DAT_EVD_HANDLE evd_handle,
OUT DAT_EVENT *event);

DAT_RETURN
dat_evd_post_se(
 IN DAT_EVD_HANDLE evd_handle,
 IN const DAT_EVENT *event);

DAT_RETURN
dat_psp_create(
 IN DAT_IA_HANDLE ia_handle,
 IN DAT_CONN_QUAL conn_qual,
 IN DAT_EVD_HANDLE evd_handle,
 IN DAT_PSP_FLAGS psp_flags,
 OUT DAT_PSP_HANDLE *psp_handle);

DAT_RETURN
dat_psp_free(
 IN DAT_PSP_HANDLE *psp_handle);

DAT_RETURN
dat_psp_query(
 IN DAT_PSP_HANDLE *psp_handle,

IN DAT_PSP_PARAM_MASK psp_param_mask,
OUT DAT_PSP_PARAM *psp_param);

DAT_RETURN
dat_rsp_create(
 IN DAT_IA_HANDLE ia_handle,
 IN DAT_CONN_QUAL conn_qual,
 IN DAT_EP_HANDLE ep_handle,
 IN DAT_EVD_HANDLE evd_handle,
 OUT DAT_RSP_HANDLE *rsp_handle);

DAT_RETURN
dat_rsp_free(
 IN DAT_RSP_HANDLE rsp_handle);

DAT_RETURN
dat_rsp_query(
 IN DAT_RSP_HANDLE rsp_handle,

IN DAT_RSP_PARAM_MASK rsp_param_mask,
OUT DAT_RSP_PARAM *rsp_param);

DAT_RETURN
dat_cr_query(
 IN DAT_CR_HANDLE cr_handle,
 IN DAT_CR_PARAM_MASK cr_param_mask,
 OUT DAT_CR_PARAM *cr_param);

DAT_RETURN
dat_cr_accept(
 IN DAT_CR_HANDLE cr_handle,
 IN DAT_EP_HANDLE ep_handle,
 IN DAT_COUNT private_data_size,
 IN const DAT_PVOID private_data);

DAT_RETURN
dat_cr_reject(
 IN DAT_CR_HANDLE cr_handle);

DAT_RETURN
dat_cr_handoff(
 IN DAT_CR_HANDLE cr_handle,
 IN DAT_CONN_QUAL handoff);

DAT_RETURN
dat_ep_create(
 IN DAT_IA_HANDLE ia_handle,
 IN DAT_PZ_HANDLE pz_handle,
 IN DAT_EVD_HANDLE recv_evd_handle,
 IN DAT_EVD_HANDLE request_evd_handle,
 IN DAT_EVD_HANDLE connect_evd_handle,
 IN DAT_EVD_HANDLE rmr_bind_evd_handle,
 IN DAT_EP_ATTR *ep_attributes,
 OUT DAT_EP_HANDLE *ep_handle);

DAT_RETURN
dat_ep_free(
 IN DAT_EP_HANDLE ep_handle);

DAT_RETURN
dat_ep_get_status(
 IN DAT_EP_HANDLE ep_handle,

OUT DAT_EP_STATE *ep_state,

OUT DAT_BOOLEAN *recv_idle,
OUT DAT_BOOLEAN *request_idle);

DAT_RETURN
dat_ep_query(
 IN DAT_EP_HANDLE ep_handle,
 IN DAT_EP_PARAM_MASK ep_param_mask,
 OUT DAT_EP_PARAM *ep_param);

DAT_RETURN
dat_ep_modify(
 IN DAT_EP_HANDLE ep_handle,

IN DAT_EP_PARAM_MASK ep_param_mask,
 IN DAT_EP_PARAM *ep_param);

DAT_RETURN
dat_ep_connect(
 IN DAT_EP_HANDLE ep_handle,
 IN DAT_IA_ADDRESS_PTR remote_ia_address,
 IN DAT_CONN_QUAL remote_conn_qual,
 IN DAT_TIMEOUT timeout,
 IN DAT_COUNT private_data_size,
 IN const DAT_PVOID private_data,
 IN DAT_QOS qos,
 IN DAT_CONNECT_FLAGS connect_flags);

DAT_RETURN
dat_ep_dup_connect(
 IN DAT_EP_HANDLE ep_handle,
 IN DAT_EP_HANDLE dup_ep_handle,
 IN DAT_TIMEOUT timeout,
 IN DAT_COUNT private_data_size,
 IN const DAT_PVOID private_data,
 IN DAT_QOS qos);

DAT_RETURN
dat_ep_disconnect(
 IN DAT_EP_HANDLE ep_handle,
 IN DAT_CLOSE_FLAGS disconnect_flags);

DAT_RETURN
dat_ep_post_send(
 IN DAT_EP_HANDLE ep_handle,
 IN DAT_COUNT num_segments,
 IN DAT_LMR_TRIPLET *local_iov,
 IN DAT_DTO_COOKIE user_cookie,
 IN DAT_COMPLERTION_FLAGS completion_flags);

DAT_RETURN
dat_ep_post_recv(
 IN DAT_EP_HANDLE ep_handle,
 IN DAT_COUNT num_segments,
 IN DAT_LMR_TRIPLET *local_iov,
 IN DAT_DTO_COOKIE user_cookie,
 IN DAT_COMPLERTION_FLAGS completion_flags);

DAT_RETURN
dat_ep_post_rdma_read(
 IN DAT_EP_HANDLE ep_handle,
 IN DAT_COUNT num_segments,
 IN DAT_LMR_TRIPLET *local_iov,
 IN DAT_DTO_COOKIE user_cookie,
 IN DAT_RMR_TRIPLET *remote_buffer,
 IN DAT_COMPLERTION_FLAGS completion_flags);

DAT_RETURN
dat_ep_post_rdma_write(
 IN DAT_EP_HANDLE ep_handle,
 IN DAT_COUNT num_segments,
 IN DAT_LMR_TRIPLET *local_iov,

 IN DAT_DTO_COOKIE user_cookie,
 IN DAT_RMR_TRIPLET *remote_buffer,
 IN DAT_COMPLERTION_FLAGS completion_flags);

DAT_RETURN
dat_pz_create(
 IN DAT_IA_HANDLE ia_handle,

OUT DAT_PZ_HANDLE *pz_handle);

DAT_RETURN
dat_pz_free(

IN DAT_PZ_HANDLE pz_handle);

DAT_RETURN
dat_pz_query(

IN DAT_PZ_HANDLE pz_handle,
IN DAT_PZ_PARAM_MASK pz_param_mask,
OUT DAT_PZ_PARAM *pz_param);

DAT_RETURN
dat_lmr_create(

IN DAT_IA_HANDLE ia_handle,
IN DAT_MEM_TYPE mem_type,
IN DAT_REGION_DESCRIPTION region_description,
IN DAT_VLEN length,
IN DAT_PZ_HANDLE pz_handle,
IN DAT_MEM_PRIV_FLAGS mem_privileges,
OUT DAT_LMR_HANDLE *lmr_handle,
OUT DAT_LMR_CONTEXT *lmr_context,
OUT DAT_VLEN *registered_size,
OUT DAT_VADDR *registered_address);

DAT_RETURN
dat_lmr_free(
 IN DAT_LRM_HANDLE lmr_handle);

DAT_RETURN
dat_lmr_query(
 IN DAT_LRM_HANDLE lmr_handle,

IN DAT_LMR_PARAM_MASK lmr_param_mask,
OUT DAT_LMR_PARAM *lmr_param);

DAT_RETURN
dat_rmr_create(

IN DAT_PZ_HANDLE pz_handle,
OUT DAT_RMR_HANDLE *rmr_handle);

DAT_RETURN
dat_rmr_free(

IN DAT_RMR_HANDLE rmr_handle);

DAT_RETURN
dat_rmr_query(

IN DAT_RMR_HANDLE rmr_handle,
IN DAT_RMR_PARAM_MASK rmr_param_mask,
OUT DAT_RMR_PARAM *rmr_param);

DAT_RETURN
dat_rmr_bind(

IN DAT_RMR_HANDLE rmr_handle,
IN DAT_LMR_TRIPLET *lmr_triplet,
IN DAT_MEM_PRIV_FLAGS mem_privileges,
IN DAT_EP_HANDLE ep_handle,
IN DAT_RMR_COOKIE user_cookie,
IN DAT_COMPLETION_FLAGS completion_flags,
OUT DAT_RMR_CONTEXT *rmr_context);

