
An Intel IXP1200-based Network Interface
Kenneth Mackenzie, Weidong Shi, Austen McDonald and Ivan Ganev

Center for Experimental Research in Computer Systems (CERCS)
Georgia Institute of Technology
Atlanta, Georgia 30332–0280

f kenmac, shiw, austen, ganevg@cc.gatech.edu

Abstract—We describe and evaluate a quad 100T ethernet
network interface built using an Intel IXP1200 network processor
on a commonly available Radisys ENP2505 PCI board. The
network interface exports a raw ethernet interface either to the
host kernel or to user level for cluster computing applications. We
describe the firmware architecture and internal design decisions,
then evaluate the resulting network interface against 100T and
gigabit network interfaces using CLF, a lightweight reliable
datagram layer.

We find that the new network interface provides full band-
width (196-373Mb/S, depending on packet size) for four 100T
ports and a host-to-host, minimum-size-message latency of 28.3uS
(17.5uS of which is in our ethernet switch). We estimate the design
uses about 40% of the resources of the IXP1200 at 232MHz,
leaving ample headroom for application-specific packet processor
or for additional/faster ports. As a side note, we observe that it
is easy to trunk together multiple 100T links when working with
raw ethernet packets in a cluster, unlike working atop IP.

I. I NTRODUCTION

Network processors are an attractive media for implement-
ing smart network interfaces for cluster computing applica-
tions. We have implemented a baseline network interface on
an IXP1200-based PCI card as part of a larger project for
exploring network interfaces that transform packet data on the
fly. In this paper we detail our firmware architecture and design
tradeoffs, report measured performance in hardware on our
cluster and estimate the headroom left over in the IXP1200 for
additional packet processing or for faster links. We conclude
by summarizing initial results for transforming kernels, work
that we have not yet integrated with the network interface.
We observe that IXP1200 appears most useful for kernels that
perform a small amount of computation, about two operations
per byte transfered.

The IXP1200 [2] forms the core of the network interface
hardware (Figure 1). The IXP1200 chip includes six 4-way-
multithreaded “microengines” for data movement, a Strong-
ARM for management functions, local SRAM and DRAM
and an integral PCI interface with two DMA engines. The
Radisys ENP2505 board [7] includes a 232MHz IXP1200,
256MB DRAM, 8MB SRAM, a 100T MAC with four ports
and a PCI bridge. The StrongARM core runs Linux and in our
design is used only for initialization and debugging.

The rest of the document is organized as follows: Section II
presents the architecture and design decisions. Section III
presents experimental results. Section IV presents a study of
application extensions. Section V presents related work and
Section VI concludes.

P P

host
mem

chip
set

...

ixp
1200

PCI bus
32b/66MHz

IX bus
64b/83MHz

SRAMSDRAM

MAC

4x 100T
ethernet

system bus
64b/400MHz

 64b/
116MHz

Fig. 1. Hardware architecture: the IXP1200 network processor serves
as the bridge between the host and 4x 100T ethernet interfaces using
its built-in PCI bus.

II. A RCHITECTURE AND IMPLEMENTATION

Our design uses host software and network processor
firmware to implement the network interface. In this section,
we describe the hardware and then sketch the key design ele-
ments for the software: the shared memory interface between
the host and the multithreaded firmware on the IXP1200. We
finish by analyzing the amount of IXP1200 resources used and
by showing how we intend to implement user extensions to
the firmware.

In a nutshell: (1) the host and IXP share two queues
in physical memory, one on the host and the other on the
IXP, so that all communication across the PCI bus is in the
form of writes; (2) the firmware includes features to allow
the contiguous sequence of messages from the host to be
processed out of order, to reduce shared queue state variable
writes across the PCI bus and to combine small messages
for better PCI utilization; and (3) the resulting design uses
about 40% of the IXP1200's resources, leaving room to add
application-specific extensions or more/faster ports.

A. Shared Data

Both the IXP1200 and the host have local DRAM visible to
the other. After benchmarking the PCI bus and the IXP1200's
DMA capabilities (section III-A), we settled on a design in
which the host and IXP share two queues in physical memory,
one on the host and the other on the IXP, with state variables
arranged so that all communication across the PCI bus is in
the form of writes.

The IXP1200 and host communicate through two shared
buffers, UP (IXP1200-to-host) and DOWN. Each is a large
(1MB), physically contiguous region of memory treated as a
circular buffer of variable size messages plus shared HEAD
and TAIL indices as state variables. Messages are inserted
at the TAIL and removed at the HEAD. We arrange the state
variables so that they are written remotely and read locally. I.e.
the TAIL on the DOWN buffer is in IXP1200 DRAM: the host
writes TAIL when it inserts a message and firmware on the
IXP1200 reads TAIL when polling to discover the existence
of a new message.

Messages contain a 64-bit header (a message type and
a length in bytes) followed by a variable amount of data
as payload. The payload here is always an ethernet packet
including the 14B ethernet header but without the CRC.
Messages are kept contiguous despite the circular buffer by
using a message with a reserved WRAP type as a noop to fill
the rest of the buffer when the next data message would not
fit in the buffer.

After benchmarking the PCI bus with this hardware, we
made the following additional design decisions:

� The DOWN buffer is located in IXP1200 DRAM and
written via PIOs from the host. Due to a known bug in
the particular chipset we have (Intel 860), the bandwidth
of host PIOs (198MB/S) is roughly double that of DMA
reads (85MB/S) so we stuck with PIOs. The IXP1200
DRAM is not cache coherent to the host – the region
is marked uncached with write-combining enabled. The
microengines on the IXP1200 have nocache.

� The UP buffer is located in host DRAM and written
by DMA initiated by IXP1200 firmware. DMA writes
achieve 204MB/S for large packets. Hostcaches are kept
coherent by the host's chipset.

� The IXP1200 uses polling to discover the arrival of
messages in the DOWN buffer. Since there are many
hardware threads available on the IXP1200, polling has
low overhead.

� We have implemented both polling and interrupts for the
host. We use polling with our user-mode implementation
and we use interrupts (with a tail-polling optimization)
with the in-kernel implementation.

� Messages are aligned on 64-byte boundaries in both
buffers. Both the host and IXP1200 prefer this alignment:
host caches and write-combining buffers use 64B blocks
and the IXP1200 DMA engine prefers 64B alignment for
transfers. Matching the cache block size and alignment
ensures that messages to the UP buffer are transferred

 ether
ingress

 ether
ingress

 ether
ingress

 ether
ingress

head/
tail
mngr.

freelst
 mngr.

ether
egress

ether
egress

ether
egress

ether
egress

 host
egress

 host
ingress

packet
buffer
pool

host−>IXP
buffer
in IXP
SDRAM

packets are
copied to
host memory
by IXP’s DMA

packets are
copied from
host memory
by host PIOs

Fig. 2. Firmware architecture. The ingress and egress sections operate
independently, each with a thread per ethernet port, plus two threads
managing the buffers shared with the host.

efficiently as a sequence of WRITE-INVALIDATE trans-
actions on the PCI bus.

The interface to the two shared buffers described above is
implemented by the host and by firmware on the IXP1200,
described next.

B. IXP Firmware

The 24 threads of the IXP lend themselves naturally to a
multithreaded software architecture. We use 12 threads on four
microengines in the network interface. The thread assignments
are depicted in Figure 2 and correspond more or less to one
thread per I/O device per direction (ethernet port or host).
The threads are coupled by queues kept in SRAM that point
to packet buffers kept in DRAM.

We describe the firmware by following the two major data
paths: host-to-net and net-to-host. A major design issue on
the host-to-net path is permitting the in-order messages in the
DOWN buffer to complete out-of-order when sent to different
interfaces. The major issue on the net-to-host path is the
latency of invoking a DMA operation which initially formed
the bottleneck for small packets.

a) Host-to-Net Path: The host-to-net path uses six
threads (Figure 2). HOSTINGRESS polls for incoming packets
in the DOWN buffer and dispatches them to ethernet ports.
Four ETHEREGRESS threads, one per port, manage the
ethernet ports. Each ETHEREGRESS thread has an associated
queue in SRAM, entries of which point to packets in the
DOWN buffer. Finally, an auxiliary “freelist manager” thread
keeps track of DOWN buffer entries and updates the DOWN
buffer HEAD pointer as needed. An SRAM data structure (the
“freelist”), not shown, is shared by the HOSTINGRESS and
freelist manager threads to track free DOWN buffer entries.

The microengines perform minimal data movement in the
DOWN path because the host plants the packets directly in
IXP1200 DRAM. The host uses PIOs to fill entries in the
DOWN buffer before invoking the HOSTINGRESS thread by
updating the DOWN buffer TAIL index. The HOSTINGRESS

inspects the first few words of the message to check the
message type (for the WRAP case) and to check the ethernet
source MAC address in order to determine to which port it
should forward the message.

The most interesting part of the host-to-net path is the
freelist which permits packets to be consumed out-of-order
even though the DOWN buffer operates in-order. The freelist
is a circular buffer, sized to be at least as large as the sum of
the ETHEREGRESS SRAM queues, and operates in a manner
analogous to a reorder buffer in a superscalar processor.

� The HOSTINGRESS thread makes a freelist entry for
each message that it forwards to a port and a pointer to
this freelist entry is included in the SRAM queue entry
along with the pointer to the packet in DRAM.

� Each freelist entry contains a HEAD index value (rep-
resenting what HEAD should be when this message is
freed) and a boolean, initially set, indicating whether this
message is in use.

� When an ETHEREGRESS thread finishes sending a
packet, it clears the in-use boolean in the freelist entry
for the message that encapsulated the packet.

� Meanwhile in the background, the freelist manager thread
scans the freelist, copying HEAD values to the host-
visible HEAD variable when it finds them empty. To
reduce the polling implied here, we use an interthread
signal so that the freelist manager only wakes up when
there's potential work for it to do.

The DOWN buffer entries thus “issue” in HOSTINGRESS
in-order, they “execute” in the ETHEREGRESS threads out-
of-order and then they “commit” in the freelist manager in-
order. We use the freelist mechanism to allow messages to
different ports to complete out of order. The mechanism also
could be used to cover long-latency operations in an extended
version of the the network interface as well, e.g. application-
specific operations on messages by spare microengine threads.
Its limitation is that all buffers must eventually be freed to
avoid deadlocking the DOWN buffer.

b) Net-to-Host Path:The net-to-host path also uses six
microengine threads. Four ETHERINGRESS threads are used,
one thread per port, in the style recommended by the IXP1200
documentation and Intel's standard macro package. The four
ETHERINGRESS threads receive into one queue which is then
read by the HOSTEGRESS thread. The HOSTEGRESS thread
schedules the DMA engine on the IXP1200 chip to transfer
data to the UP buffer on the host. An auxiliary “head/tail
manager” thread uses DMA to copy the UP buffer TAIL index
(and, incidentally, the DOWN buffer HEAD index) to host
DRAM.

The major issue for the net-to-host path is providing ac-
ceptable bandwidth for small packets such that the network
interface is not a bottleneck. The DMA engine achieves great
bandwidth for large packets but is slow to start and so is
a challenge for small packets. We use three techniques to
deal with DMA: (1) we pipeline DMA requests to overlap
invocation time, (2) we adaptively reduce the frequency of
HEAD and TAIL updates under load and (3) we combine

small messages under load. Techniques (2) and (3) also serve
to reduce the frequency of host interrupts.

1) DMA invocation is pipelined to overlap invocation
time. Launching a DMA for a minimum-size message
takes three roughly equal-latency actions, allaccesses
to DRAM: (a) microengine thread writes descriptor to
DRAM, (b) DMA engine reads descriptor, (c) DMA
engine copies data from DRAM to PCI bus. We pipeline
(a) with (b)/(c) by using a pair of descriptors in double-
buffer fashion, leading to about 1/3 less time per mes-
sage or 50% more bandwidth. Pipelining all three actions
is conceivable because the IXP1200 has two DMA
engines. However, the bookkeeping is significantly more
complex and we have not yet tried it.

2) We reduce DMA requests for the UP buffer TAIL
index and DOWN buffer HEAD index by generating
fewer requests when under load. These state variables
on the host must be updated by DMA, occupying the
DMA engine when it could be moving data. We assign
management of the state variables to a separate head/tail
manager thread. The HOSTEGRESS and freelist man-
ager threads signal the head/tail manager whenever they
change a state variable. The head/tail manager then
chooses when to perform the DMA. We decide based on
the status of the HOSTEGRESS SRAM queue: if empty,
we DMA immediately on the assumption the load is low.
If full, the head/tail DMA is done periodically, roughly
every 200uS. Avoiding the HEAD/TAIL DMA on every
message roughly doubles the DMA bandwidth for small
messages. Note, though, that for low latency it is crucial
that the UP buffer TAIL be forwarded immediately under
low load. The DOWN buffer HEAD is never critical.

3) Finally and most powerfully, we combine small mes-
sages for DMA. Each ETHERINGRESS thread decides
on a packet-by-packet basis whether to forward its buffer
or add another message to it. The buffers are 2KB and
the maximum message size is 1522B (1514B plus our
8-byte header). After each packet is received, we add
another if (a) another is available and (b) there's room
left for a maximum-size packet. Again, the process must
be adaptive so that packets are forwarded with low
latency under low load.

With the three techniques the net-to-host path provides
enough bandwidth to sustain 100% packet throughput on all
four ports for all packet sizes (Section III-A).

C. IXP1200 Resources

We estimate the current demand of our design at roughly
40% of the capacity of the chip based on a loose accounting of
the processor, memory bus and PCI bus bandwidths. Table I
breaks down these estimates by thread. First, we use 50%
of the microengine threads. As a capacity, however, this
percentage is high because the microengines are not fully
utilized. Second, we use 23% and 17% of the boilerplate
bandwidth of the SDRAM and SRAM systems, respectively.
We regard these percentages as low based on experiments that

SRAM SDRAM PCI

ETHERINGRESS-0 37Mb/S 112Mb/S –
ETHERINGRESS-1 37Mb/S 112Mb/S –
ETHERINGRESS-2 37Mb/S 112Mb/S –
ETHERINGRESS-3 37Mb/S 112Mb/S –

ETHEREGRESS-0 37Mb/S 112Mb/S –
ETHEREGRESS-1 37Mb/S 112Mb/S –
ETHEREGRESS-2 37Mb/S 112Mb/S –
ETHEREGRESS-3 37Mb/S 112Mb/S –

HOSTEGRESS 150Mb/S 592Mb/S 448Mb/S
head/tail mngr. – – –

HOSTINGRESS 175Mb/S 200Mb/S 448Mb/S
freelist mngr. 25Mb/S – –

——- ——- ——-
646Mb/S 1688Mb/S 896Mb/S

boilerplate 3712Mb/S 7424Mb/S 2112Mb/S
limits: 17% 23% 42%
practical: ???? 4450Mb/S 1600Mb/S
limits: ??% 38% 56%

TABLE I

ESTIMATES OFIXP1200RESOURCE UTILIZATION VERSUS

LIMITS . ALL NUMBERS ARE IN MILLIONS OF BYTES PER SECOND.

suggest it is difficult to exploit more than about 60% of the
SDRAM bandwidth. Finally, the PCI bus imposes the most
serious constraint: we use 42% of the boilerplate bandwidth
(42% of 266MB/S) and 56% of the practical bandwidth we
have been able to demonstrate (56% of 204MB/S). A full-
duplex gigabit interface would push the limits of this chip and
it would be difficult to achieve full bandwidth with this PCI
card and/or host chipset.

III. R ESULTS

In this section, we describe the performance on the network
interface in hardware on microbenchmarks. We performed two
sets of measurements: the first summarize internal experiments
used to tune performance. The second are comparisons to
existing 100T and GbE network interfaces using a lightweight
messaging system, CLF [6], as a common system.

The experimental platform is a Dell 530 host running linux
2.4.18 with a Radisys ENP2505 card containing the IXP1200.
The host has dual 1.7GHz Xeon processors and the Intel 860
chipset. The ENP2505 card has a 64 bit, 66 MHz PCI bus and
is plugged into a 64/66 slot in the Dell. The ENP2505 includes
an Intel 21555 bridge between the 64/66 external PCI bus and
the 32/66 on-card PCI bus of the IXP1200.

A. Internal Experiments

The first set of experiments show internal bandwidth and
latency measurement that drove the tuning of the network
interface. There are three experiments: PCI bandwidth, end-to-
end bandwidth and end-to-end latency. While this chipset and
card uses PCI, old technology at this point, it is important to
note that the main bandwidth problems arise from the startup

0

50

100

150

200

250

1 10 100 1000 10000 100000 1e+06

B
an

dw
id

th
 (

M
B

/s
)

Message size (bytes)

DMA+PIO Bandwidth

PCI 32@66: 266MB/s

PIO asymp. 198MB/s

DMA max 204MB/s

half bw
at 200B

max = 85MB/s

SA->host
host->SA

PIO w/WC

Fig. 3. Bandwidth versus message size for PCI transfers between the
IXP (“SA” for StrongARM) and the host. Numbers are in millions
of bytes per second. The peaks in the PIO bandwidth correspond to
multiples of 64 bytes, the size of the host processor's write-combining
buffer.

latency of the DMA engine, something that would not nec-
essarily change with a newer, higher-bandwidth interconnect.
End-to-end, the host-to-host bandwidth ranges from 93% of
the “boilerplate” network bandwidth of 400Mbps down to 50%
for 64B packets and the latency is28:3�S host-to-host for a
minimum-size packet.

Figure 3 shows PCI bandwidths achieved by the IXP1200's
DMA engine in both directions and also programmed I/Os
(PIOs) by the host. The buffers are physically contiguous and
aligned on 64B boundaries in both the IXP SDRAM and host
DRAM. The DMA experiment uses a fixed DMA descriptor
and fixed blocks in memory and issuesdma pci instructions
at maximum rate. The best performance is achieved when the
IXP's DMA engine is programmed for a 64B block size and
minimum interburst time. The performance for DMA writes to
the host is good, 204MB/S out of a maximum 266MB/S, but
the performance for DMA reads from the host is poor, only
85MB/S. This poor block read performance is acknowledged
in the errata sheet for the 860 chipset [4].

The half bandwidth for DMA to the host is at 200B
messages, suggesting that the startup time for DMA is about
1�S per block sent. We experimented with chained DMA de-
scriptors but observed the same performance, suggesting that
the bulk of DMA startup time is in fetching and interpreting
a descriptor.

PIOs from the host work well with write-combining en-
abled. For Figure 3, we measured the bandwidth when trans-
ferring a long sequence of blocks in a range of sizes. Each
block is aligned on 1024B boundaries (the boundary doesn' t
matter as long as it's a multiple of 64B) and we do an
sfence operation after each block to force it out of the write-
combining buffers. There's a large advantage to transferring
blocks that are multiples of 64B – the size of thecache line and
of the write-combining buffers in the Xeon. The bandwidth we
see with large blocks is 198MB/S.

We get the same bandwidth with word, doubleword (MMX)

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200 1400

B
an

dw
id

th
 (

M
bi

t/s
)

Packet size (bytes)

Host-to-Host Bandwidth

Max Wire BW
Synth BW

Fig. 4. Bandwidth versus message size for a processor sending
packets to itself via all four 100T ports through a switch. Numbers are
in millions of bits per second and counts the ethernet packet including
14B header. Peaks occur at multiples of 64 bytes. For reference,
the upper line represents the maximum bandwidth versus packet size
given 802.3 standard interpacket gap and preamble for 100T ethernet.

or quadword (SSE) writes when write-combining is on. Byte
writes, e.g. the standard memcpy, perform poorly. With write-
combining off we observe a single-cycle transaction on the
PCI bus every six PCI bus cycles and correspondingly poor
bandwidth: 11MB/S for byte writes, 44MB/S for word writes
and 88MB/S for doubleword/quadword writes.

Figure 4 shows results for host-to-host bandwidth. The
experiment uses one host and one IXP board sending messages
to itself through all four ports connected to a private 100T
switch. Each port sends messages to (port + 1)mod 4. The
dual-processor host uses two threads: one sending messages
and one receiving and checking messages. There is no relia-
bility protocol but no messages are observed to be dropped or
corrupted during the test.

The results show bandwidth near the limit imposed by the
ethernet protocol, even for small packets. The fact that no
messages are dropped indicates that the remaining bottleneck
is in the transmit path: the PCI bus (unlikely), HOSTINGRESS
or ETHEREGRESS.

Figure 5 shows the host-to-host latency using the same one
host, one IXP board setup as the previous experiment. The
host ping-pongs a message through the switch 10000 times.
We report the time for one round trip – a round-trip in this
case corresponds to one host-to-host hop – as measured via
gettimeofday() on the host. The lower line in the figure shows
the time spent in the MACs and switch as measured via cycle
counts on the IXP1200

Table II breaks down latency for the 64B case using data
from the cycle counter available on the IXP1200. The majority
of the time,17:7�S, is due to the ethernet hardware: the MACs
and the switch (Cisco 3500). The IXP1200 adds9:3�S in two
traversals and the host time is quite small,1:7�S.

One way to characterize the time spent in the IXP1200
is that it's costing about2�S per thread along the path (5
threads). While we have not started tuning for latency, it may

0

50

100

150

200

250

300

350

0 200 400 600 800 1000 1200 1400

La
te

nc
y

(u
S

)

Packet size (bytes)

Host-to-Host Latency

Synth Latency
Min Wire Latency

Fig. 5. Latency versus message size for a processor sending packets
to itself via all four 100T ports through a switch. The upper line
represents user-level host-to-host time. For comparison, the lower line
shows the time in the MACs and switch as measured via timestamps
in the IXP1200.

IXP1200 (send)
HOSTINGRESS 0:9�S
ETHEREGRESS 2:4�S

total 3:3�S
100T MACs + switch 17:7�S
IXP1200 (receive)

ETHERINGRESS 2:6�S
HOSTEGRESS
+ head/tail mngr. 3:4�S

total 6:0�S
Host/PCI (send + receive) 1:7�S

grand total 28:3�S

TABLE II

BREAKDOWN OF ONE-WAY LATENCY FOR A MINIMUM -SIZED

(64B) MESSAGE AS MEASURED VIA CYCLE COUNTERS IN THE

IXP1200.

well be that a lower-latency design will require rethinking the
arrangement of threads.

B. CLF Comparisons

In the second set of experiments, we compare the IXP-
based network interface to 100T and gigabit interfaces using a
lightweight message system, CLF, as a common user interface.
We do four experiments as tabulated in Table III: CLF over
100T ethernet, CLF over gigabit ethernet, CLF over the
IXP1200 set up to look like a standard ethernet device to the
kernel and finally CLF using the IXP1200 NI directly from
user mode. When the NI is used with the kernel, we enable
interrupts in the firmware. The firmware generates an interrupt
every time the head/tail manager thread updates the shared
buffer state.

Figure 6 shows the results for latency in the four configura-
tions. The experiment is to ping-pong a message 10000 times
between two machines and report half a round-trip-time as the
latency. The IXP1200 under CLF achieves38:6�S latency,

messages driver card medium
CLF UDP eepro100 Intel Pro 100 100T
CLF UDP (ours) IXP1200 100T
CLF raw 802.3 – Intel Pro 100 4x 100T
CLF UDP e1000 Intel Pro 1000 1000F

TABLE III

CLF EXPERIMENTS.

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400

La
te

nc
y

(u
S

)

Message size (bytes)

CLF Latencies from ping-pong test

minimum 38.6uS

constant 30uS diff.

UDP GBE
UDP IXP 100T

UDP 100T
raw IXP 100T

Fig. 6. Latency versus message size between two machines for the
four CLF configurations. Numbers are in microseconds.

about 10�S more than the standalone test in the previous
section. However, this mode is about30�S better across the
board than the nearest competitor, UDP over 100T ethernet.
Using the IXP1200 as a standard ethernet device is worse (no
doubt due to our driver) and gigabit ethernet is worst of all.
The gigabit path uses a different switch (a Cisco 6500) that
we have not yet measured.

Figure 7 shows the results for bandwidth in the four
configurations. At the time of writing, they are all similar and
quite low. The measured bandwidths correspond closely to
an extra5�S/message for every system, something that likely

0

10

20

30

40

50

60

10 100 1000 10000

B
an

dw
id

th
 (

M
B

yt
es

/S
)

Message size (bytes)

CLF bandwidth test

raw IXP 100T
UDP GBE
UDP 100T

UDP IXP 100T

Fig. 7. Bandwidth versus message size between two machines for
the four CLF configurations. Numbers are in millions of bytes per
second.

represents a bug in our version of CLF. However, the results
for the raw IXP1200 interface is encouraging: it tracks the
gigabit performance, slightly exceeding it for small packets.

IV. A PPLICATION EXTENSIONS

An eventual goal of our project is to incorporate application
extensions into the network interface via microengine code
and external coprocessors. This section characterizes several
network stream oriented applications then characterizes the
computation kernels that would execute on the network proces-
sor to support those applications. We conclude by discussing
where we would implement these extensions in the IXP1200
firmware.

A. Application Scenarios

The target applications share the attributes that they com-
municate significant amounts of data in small messages and
that they require relatively small numbers of operations per
byte of data. Consequently, the advantage of performing these
computations in the network interface is magnified, since the
cost of staging the data through the memory hierarchy would
be amortized over relatively few main CPU operations.

Processing on streams at the network interface can reduce
work for the host in three ways: byaggregatingsmall blocks
into larger blocks to reduce per-block overhead, byclassifying
blocks (e.g. to filter out irrelevant messages or to demultiplex
messages into classes) and byreorganizingdata. Reorganizing
is open-ended, ranging from simple things like byte-swapping
a few fields to the full computation required for that message.
We stick with the term “reorganizing” to emphasize the small
amounts of computation that are extensions of data move-
ment operations but within the packet. In our system, more
ambitious computations are envisioned for the reconfigurable
logic component that serves as a coprocessor to the network
processor but that is outside this present work.

Finally, there is a fourth opportunity in the network interface
and that is toschedulemessages with sensitivity to the current
environment.

The following five applications we have worked with serve
as examples of systems that demand small amounts of com-
putation on large numbers of small packets.

1) An information system receives many smallupdate
messages from widely distributed sources. The NI can
first aggregate these small messages into larger chunks
of work to be placed in the server's memory. Second,
it can reorganize the messages by stripping headers,
correcting byte-ordering or floating-point formats in the
payload, uncompressing bitfields, etc.

2) An airline global information system receives a con-
tinuous stream of small messages as above from all
airports, ticket agents, baggage handlers and the FAA.
Many of these messages can be dropped while some
are crucially important and deserve to be replicated for
high availability. The NI can classify packets using load-
sensitive rules to drop messages and to replicate selected
messages.

3) A scientific simulation application runs on a server
while scientists elsewhere want to visualize results of
the simulation in real time as they are generated. The
visualization requires a subset of the simulation data.
The NI can classify data packets passing through the
network and replicate ones of interest to the simulation,
then reorganize the data, e.g. by averaging or decima-
tion, before passing it along to the visualization engine.

4) A distributed simulation system such as a distributed
interactive game or training environment has the data
distribution problem: the problem that each site must
multicast information about local events to distant par-
ticipants. The problem is that the multicast set is both
fine-grain and dynamic. In practice the data must be
delivered to a superset of recipients which then discard
unneeded elements. The network processor can imple-
ment classification at both senders and receivers where
the filtering rules are updated dynamically.

5) Network monitoring, network statistics collection and
intrusion detection all must classify incoming network
packets. For instance, consider a network interface that
passively detects SYN-flood distributed denial of service
attacks on the host computer by continuously estimating
the difference between the number of SYN packets
received and the number of SYNACKs sent.

From the applications above we see a few kernel operations
are implemented repeatedly in the network interface: aggrega-
tion, classification, reorganization and scheduling.

B. Results for Kernels

We characterized instances of each type of kernel as they
would be implemented in the network interface. These are
all data-intensive operations on streams that flow through the
network interface in a cluster computer. The instances are
not exhaustive but are intended to establish that there are
a number of useful operations on streams that require only
a few operations per byte of data. While these operations
are reminiscent of networking operations (which is part of
the reason they are well suited to execution on a network
processor), they differ from network operations in that they
are invoked from the application level.

Except as noted, the kernels were implemented on the
IXP1200 microengines in hand-coded assembly and evaluated
using the simulator in Intel's IXP1200 Software Development
Kit v1.2 [2] by measuring cycles per iteration for a large
number of iterations. The simulator is claimed to be cycle-
accurate to within 2%.

1) Message Filtering.A message filter evaluates a predi-
cate on a message to determine a course of action for this
message. For instance, a visualization application may
want to keep only the packets for which the predicate
is true or a fault-tolerance application may want to
make duplicates of packets for which the predicate
is true. We use the visualization scenario as a driver
for a representative filter: assume a packet contains an
array of 32-bit floating point numbers and define a

predicate that is true if a fractionf of the numbers are
above a thresholdt. The core of this predicate is three
instructions (a compare, a branch and an increment) per
32-bit number leading to a computational requirement of
0.75 ops/byte. This kernel was handcoded in IXP1200
assembly and executes at full memory bandwidth on the
IXP1200.

2) Image Downsampling by Averaging.A video stream
can be displayed on a low-performance device if the
image is reduced in size and/or framerate. Reducing the
framerate is a filtering problem but doing a good job
of reducing size requires averaging adjacent pixels. We
implement a 4-to-1 reduction for an image encoded as in
a 24-bit RGB format. This kernel was not implemented
on the IXP but was coded in C using 32-bit operations
on a workstation (Sun UltraSPARC using Sun's SPRO
6.1 compiler) so the number of operations should be
similar or better for the 32-bit IXP1200 which has
more registers and fused ALU-shift instructions. The
algorithm converts 24 to six pixels at a time requiring
(from inspection of the assembly) 69 operations per 48
input bytes or about 1.5 ops/byte.

3) Image Depth Reduction. An alternative method to
reduce image size is to reduce the depth per pixel. A
24-bit RGB to 12-bit (4/4/4) RGB reduction requires
unpacking and repacking pixels. We handcoded this ker-
nel in IXP1200 assembly and observed that it required
about two operations/byte (shift-and-mask, or).

4) Real-Time Scheduling.A scheduler must update some
form of priority queue for each packet processed and
then select the best candidate packet from the queue.
The worst case for scheduling is when all packets are
minimum-sized. We implemented a Dynamic Window
Constrained Scheduler (DWCS) algorithm in assembly
on the IXP1200 and observed a cost of about 100
operations per packet. If we assume a minimum packet
size of 64 bytes, that's about 1.6 ops/byte.

The kernels above perform useful tasks but require only
small amounts of processing ranging from 0.75 to two
ops/byte.

C. Implementation of Extensions

The firmware described in Section II permits application
code to be attached in any of several possible places: as
separate threads, colocated with ETHERINGRESS or colo-
cated with ETHEREGRESS (X-, RxX- or XTx-handlers in the
parlance of [3]). Colocating with ingress/egress is desirable for
performance but is challenging to program:

� Colocating with ingress/egress can avoid a memory copy.
For instance, in a user fragmentation scheme, ETHER-
INGRESS could determine exactly where in memory to
place an incoming packet.

� ETHERINGRESS/ETHEREGRESS operate under hard
real time constraints. User code implemented in these
threads would be under the same constraints, a significant
programming problem.

� Colocating in any particular spot limits functionality.
For instance, user code to perform customized multicast
(sending slightly different versions of a message) cannot
be colocated with reception.

The experiments in [3] suggest that for the IXP1200 it
is best to colocate user code with ETHEREGRESS when
possible.

V. RELATED WORK

Many network interfaces for clusters and multiprocessors
have been built but this is the first we are aware of using
emerging network processors. Network processors offer the
new possibility of operating on data as it passes through the
network interface, not just headers. Network processor work
has focused on forwarding in the network, not on network
interfaces. Using a network processor as a network interface
makes sense for clusters where the bulk of communication
problems are at the endpoints.

Processor-based LAN interface cards such as the Myrinet
LANai card [5], Alteon AceNIC card [1], Intel I2O card,
etc. and network interface coprocessors in multiprocessors,
e.g. the Intel Delta/Paragon [8], Meiko CS-2 [9], etc. have
been user-reprogrammable but the processors are notably slow
compared to the data rates. Network processors are provi-
sioned to operate at line rate on minimum-sized packets and
thus offer the opportunity to operate on more than just packet
headers. We measure the headroom on the IXP1200 at about
three 32-bit ops/byte when moving data unidirectionally at
gigabit speed. The extensive multithreading on the IXP1200
and other network processors offers new design opportunities
and challenges as well. Network processor work has focussed
on traditional uses in networking, e.g. forwarding [10], [11].

VI. CONCLUSION

We have presented a network interface based on an Intel
IXP1200 network processor, described the design and pre-

sented performance measurements based on microbenchmarks.
The IXP1200 is on a commercially available PCI card. Our
microbenchmark performance is near hardware limits and CLF
performance is encouraging.

ACKNOWLEDGMENT

The authors would like to thank the rest of the ASAN group
for many useful ideas and feedback. This work was funded in
part by the National Science Foundation under grant # ANI-
9876573, in part by the U.S. Department of Energy under
contract # DE-FC02-99ER25402 and in part by the State of
Georgia's Yamacraw Mission. Equipment used in this work
was donated by Intel Corporation.

REFERENCES

[1] Alteon Web Systems.http://www.alteonwebsystems.com/-
products/acenic/ .

[2] Intel Corportation. IXP1200 Software Development Kit, v2.0, March
2001. http://developer.intel.com/design/network/-
products/npfamily/ .

[3] Ada Gavrilovska, Kenneth Mackenzie, Karsten Schwan, and Austen
McDonald. Stream Handlers: Application-specific Message Services on
Attached Network Processors. InHot Interconnets: 10th International
Symposium on High Performance Interconnects, August 2002.

[4] Intel. Intel 860 Chipset: 82860 Memory Controller Hub (MCH) –
Specification Update, May 2001.

[5] Myricom Inc. http://www.myri.com/ .
[6] Rishiyur Nikhil. Cluster Language Framework (CLF) Version 2.10. DEC

CRL, November 1997.
[7] Radisys.ENP-2505 Hardware Reference, November 2001.
[8] Rolf Riesen, Arthur B. Maccabe, and Stephen R. Wheat. Split-C and

Active Messages under SUNMOS on the Intel Paragon. Unpublished,
April 1994.

[9] Klaus E. Schauser and Chris J. Scheiman. Experience with Active
Messages on the Meiko CS-2. InProceedings of the 9th International
Symposium on Parallel Processing, 1995.

[10] Tammo Spalink, Scott Karlin, and Larry Peterson. Evaluating Network
Processors in IP Forwarding. Technical Report TR-626-00, Department
of Computer Science, Princeton University, November 2000.

[11] Tammo Spalink, Scott Karlin, Larry L. Peterson, and Yitzchak Gottlieb.
Building a Robust Software-Based Router Using Network Processors.
In Eighteenth ACM Symposium on Operating Systems Principles, De-
cember 2001.

