

Abstract— The InfiniBand architecture is a new standard for

high-speed I/O and interprocessor communication, suitable for
clusters and high-end servers executing distributed applications.
Its specification is open to further enhancements by
manufacturers and researchers. This paper presents an OPNET
model of IBA. It can serve as a starting point for helping SAN
designers evaluate the performance trade-offs of this new
interconnection standard and locate its potential bottlenecks.
Moreover, our model is a suitable platform on which to develop
new proposals that may extend the functionality and
performance of IBA.

Index Terms—InfiniBand architecture, network modeling and
simulation, OPNET.

I. INTRODUCTION
HE InfiniBand architecture (IBA) [5][3] is a new standard
for high-speed I/O and interprocessor communication. It

as been developed by the InfiniBand Trade Association
(IBTA) [5]. Founded in 1999, this association includes over
200 leading companies, including IBM, Intel, Microsoft,
Compaq, HP, Sun, Dell, and Cisco. The result is a fast, highly
scalable interconnect technology suitable for clusters and
high-end servers executing distributed applications. The IBA
specification—though an emerging standard—is open to
further enhancements by manufacturers and researchers.
Recently, the first commercial IBA-compliant products have
started to appear in the marketplace [8][4].

This paper presents a model which embodies key physical
and link layer features of IBA, which allows simulation of
various IBA-compliant network designs. We have used the
OPNET Modeler [9] simulation software. OPNET is a useful
engineering and research tool for streamlining the design and
performance analysis of communication systems and
protocols. Our model can serve as a starting point (basis) for

Manuscript received December 5, 2002. This work was supported in part

by the Spanish CICYT under Grant TIC2000-1151-C07-02, and the National
Science Foundation under Grant CCR-0209234.

A. Bermúdez, R. Casado, and F. J. Quiles are with the University of
Castilla–La Mancha, Department of Computer Science, 02071 Albacete,
Spain (phone: 34-967-599200-2484; fax: 34-967-599224; e-mail:
{aurelio.bermudez, rafael.casado, francisco.quiles}@uclm.es).

T. M. Pinkston is with the Department of Electrical Engineering/Systems,
University of Southern California, Los Angeles, CA 90089 USA. (e-mail:
tpink@charity.usc.edu).

J. Duato is with the Department of Systems Engineering, Computers and
Automation, Technical University of Valencia, 46071 Valencia, Spain (e-mail:
jduato@gap.upv.es).

helping SAN designers evaluate the performance trade-offs of
this new interconnection standard and locate its potential
bottlenecks. Moreover, our model is a suitable platform on
which to develop new proposals that may extend the
functionality and performance of IBA. In this regard, the main
objectives of this research are to develop and evaluate more
efficient subnet management protocols—specifically, network
discovery and reconfiguration techniques.

In Section II, we give an overview of relevant IBA features.
Section III introduces the OPNET Modeler software. Section
IV describes how we have modeled IBA using this tool. In
Section V, we show how we can use this simulation model to
evaluate the performance of any IBA topology and to analyze
subnet management mechanisms. Finally, in Section VI, we
conclude and outline future work.

II. INFINIBAND ARCHITECTURE

A. Overview
IBA defines a system area network (SAN) environment,

where multiple processor nodes and I/O devices are
interconnected using an arbitrary (possibly irregular) switched
point-to-point network, instead of using a shared bus.
Processor nodes can include several CPUs and memory
modules, and they use one or several host channel adapters
(HCAs) to connect to the switch fabric. I/O devices can have
any structure, from a simple console to a RAID subsystem.
These devices use one or several target channel adapters
(TCAs) to connect to the fabric. The fabric is structured in
subnets connected by means of routers, as illustrated in Fig. 1.
The specification allows three different topologies for the

Modeling InfiniBand with OPNET
Aurelio Bermúdez, Student Member, IEEE, Rafael Casado, Member, IEEE, Francisco J. Quiles,

Member, IEEE, Timothy M. Pinkston, Senior Member, IEEE, and José Duato, Senior Member, IEEE

T

Subnet

Node

Node
Node

Node

Node

Node

Switch

Switch

Switch

Switch

Router

CA CA
CA

CA CA

CA

CA CA

CA

Fig. 1. IBA subnet. Each subnet includes a set of switches and point-to-point
links. Several links can be used in parallel to increase the bandwidth, or to
provide redundant paths to increase fault tolerance.

fabric: a direct connection between two end nodes, a single
subnet, and a set of subnets interconnected by routers.

IBA uses copper or optical links. The raw bandwidth of an
IBA 1X link is 2.5 Gbps. Data bandwidth is reduced by
8b/10b encoding to 2.0 Gbps. Therefore, for a full duplex
connection, the data rate is 4 Gbps. Other specified link
bandwidths are 10 and 30 Gbps (named 4X and 12X links,
respectively).

B. Link Layer
The architecture is divided into multiple layers where each

one operates independently of another. IBA is decomposed
into the following layers: physical, link, network, transport,
and upper layers. The link layer (along with the transport
layer) is the heart of the architecture. This layer encompasses
packet layout, point-to-point link operations, and switching
within a local subnet. Next, we briefly describe several link
layer issues. Additional details can be found in the description
of the IBA model.

IBA uses a virtual lane (VL) based mechanism to create
multiple virtual links within a single physical link. This
improves link utilization and provides support to prevent
deadlock. Each port could implement 1 (VL0), 2 (VL0-1), 4
(VL0-3), 8 (VL0-7), or 15 (VL0-14) data virtual lanes. For
subnet management purposes, an additional virtual lane
(VL15) must be implemented. Each VL has a dedicated set of
transmit/receive packet buffers to store at least one packet.
Virtual cut-through switching [6] is considered. A credit-
based flow control mechanism acts separately over each data
VL. Output channels in switches and channel adapters use a
VL arbitration table defined by the subnet manager to
determine the next packet to inject into the physical link. This
table defines the amount of packets to send from each VL,
allowing traffic prioritization.

As a packet traverses the subnet, each link along the path
can support a different number of VLs. Therefore, it is not
possible to transmit a packet only using a VL specified in its
header. Instead, IBA uses a more abstract criterion, based on
the concept of service level (SL). Each switch has a SL to VL
mapping table (set by the subnet manager) to establish a
correspondence between the service level of the packet (a
number from 0 to 15) and the VLs supported by the output
port assigned to the packet. In this way, IBA can ensure end-
to-end QoS.

All devices within a subnet have a 16 bit local identifier
(LID) assigned by the subnet manager. Packets within a
subnet use the LID for addressing. This value is included in
the packet header, with the SL. Switches perform the intra-
subnet routing, using the packet’s destination LID. To decide
the output port for an incoming packet, switches use a
forwarding table configured by the subnet manager. Each
switch must support one of two types of forwarding tables, the
random forwarding table (RFT) and the linear forwarding
table (LFT). The main difference between them is that each
entry in the former must include an explicit LID value,
whereas in the later, the LID value is implicit in the position

of the entry in the table.

C. Subnet Management
IBA subnets are managed in an autonomous way using

several entities shown in Fig. 2. There is a subnet manager
(SM) in charge of discovering, configuring, activating, and
maintaining the subnet. Through the subnet management
interface (SMI), this entity exchanges control packets with the
subnet management agents (SMAs) present in every subnet
device.

 To guarantee compatibility between different vendor
implementations, the specification defines the subnet
management entities describing their functions and the
structure of the control packets used to exchange information
among them. However, the exact behavior of these
management entities has not been detailed. Examples of
commercial management products can be found in [7][14].
Our main goal is the design of efficient subnet management
protocols such as those in [1][10] that can be applied to IBA.

III. OPNET MODELER
OPNET Modeler [9] provides support to model

communication networks and distributed systems. Network
engineers use this tool to design and analyze communication
equipment and protocols. The use of OPNET accelerates the
design, development and deployment cycle, and improves
product performance and reliability.

This tool defines three work domains: network, node, and
process domain. The node level specifies objects belonging to
the network level, and the process level specifies objects
belonging to the node level.

Network models consist of nodes, links, and subnets. Nodes
represent network devices. Links represent point-to-point and
bus connections. Subnets organize network components into a
single object. Network models are developed using the project
editor (Fig. 3). This editor allows rapid construction and test
of various possible network configurations.

Node models are built using basic OPNET modules and
specifying the connections between them. In Fig. 4 we can see
(from left to right) processors, queues, packet streams, statistic

SMI

Port

Subnet
Manager

Port

SMA

SMI
Port

SMA

SMI

Fig. 2. Subnet management model.

wires, logical associations, transceivers (point-to-point, bus,
and radio links), and antennas. Each module can generate,
send, and receive packets from other modules to perform its
function. Modules typically represent applications, protocol
layers, and physical resources, such as buffers, ports, and
buses. Packet streams allow the transmission of packets
among the node modules. Statistic wires are used to exchange
control information. Node models are developed using the
node editor.

The behavior of processors and queues are programmable
via their process models. They consist of finite state machines
(FSM) containing blocks of C/C++ code and kernel
procedures (KP). State machines respond to interrupts
generated by the OPNET simulation kernel. The user code is
executed when the machine enters or leaves a state, and it can
also be associated to a transition. Kernel procedures provide
the way to perform common tasks, such as to manipulate
packets, collect statistics, operate with queues, or program
future interrupts. Fig. 5 shows an example of a process model.

Additional OPNET editors allow the design of links,
packets, probability density functions, etc. Using the link

editor, a user can specify bandwidth, bit error rate,
propagation delay, packet types supported by the link, as well
as other attributes of the link. The packet editor allows the
system designer to graphically build packets of the format
desired, naming the packet fields, specifying their size, and
choosing the type for the value stored. It is also possible to
encapsulate in a field a packet from an upper network layer.

OPNET simulations are event-driven. The simulation kernel
handles a single global event list and a shared simulation time
clock. Events are removed from the list and delivered to the
appropriate module in time order. The process associated to
the destination module performs the actions programmed for
the event. These actions may (directly or indirectly) involve
the generation of new events. Then, the simulation kernel
receives requests from processes and inserts new events in the
event list.

Finally, the OPNET Modeler provides several tools to run
sequences of simulations, and choose and analyze the results.
Some examples are presented in Section V.

IV. IBA MODEL COMPONENTS
Our current IBA model is composed of links, switches, and

end nodes containing a HCA, as described below.

A. Links
We have modeled IBA links starting from the basic OPNET

Fig. 3. Project editor. The window shows an example of a topology composed
of three switches and seven hosts.

Fig. 4. Node domain elements.

Fig. 5. Process editor. The window shows an example of a finite state
machine. The large arrow indicates the initial state.

point-to-point bidirectional link. The specified bandwidth for
1X links is 2.5 Gbps. Fig. 6 shows some results related to the
topology previously shown in Fig. 3. The six end nodes on the
left send packets to the one located on the right. The plot
shows on the vertical axis the amount of traffic injected by
each source, the aggregated traffic injected by the six sources,
and the traffic received at the destination. We can see that the
maximum link bandwidth (2 Gbps) is not exceeded.

As in [11] we consider 20 meter copper cables with a
propagation delay of 5 ns/m; therefore, the flight time has
been set to 100 ns. We have not considered transmission
errors.

Instead of store-and-forward packet switching, the receiver
begins to process the packet when the complete header is
received. In the case of data packets, it requires 20 bytes [5].
In the case of flow control packets, the header matches up
with the entire packet (6 bytes).

B. Switches
Fig. 9 shows the internal structure of a 4-port IBA switch

model. Next, we describe the different blocks that compose
this model.

1) Input Channels
Each input channel contains a point-to-point receiver

connected to the link. A demultiplexer analyzes the header of
incoming packets and delivers them to the corresponding
units. Flow control packets are sent to the flow control unit.
Data packets are sent to the input buffers associated with
virtual lanes. The IBA specification allows up to 15 data VLs.
To this point, we have incorporated only two of them (VL0-1)
in our IBA model. The management virtual lane, VL15, over
which control packets flow is also incorporated in our model.
A notification is sent to the flow control unit each time the
available resources in input buffers vary. Additionally, when a
packet reaches the head of a VL, a notification is issued to the

routing unit. Incoming packets could also be dropped
according to the current port state.

2) Routing Logic
The packet routing logic includes the routing unit and the

service level to virtual lane (SL to VL) mapping unit. The

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
8

0

0.5

1

1.5

2

2.5

3
x 10

9

Traffic Sent (bits/sec/node)

Traffic Sent (bits/sec/node)
Traffic Sent (bits/sec)
Traffic Received (bits/sec)

Fig. 6. Example of validation.

(NEXT==0)

(END_VLOutSize)

(END_VLOutFree)/SetFreeVLOut()

(NEXT==0)

(NEXT==2)

(NEXT==0)
(END_NewPk)

(default)/int_notHand_arb()

(NEXT==3)

(NEXT==3)

(END_SIM)/freemem_arbitration()

(NOTIFICATION)

init idle

1NewPK

2VLConex

3bUpdtSize

3SizeCheck

begin_proc

Fig. 8. Arbitration unit state machine. The begin_proc state models the time
to process an incoming notification. When a notification is received from the
mapping unit, the 1NewPK state is reached. If the output channel is busy, the
machine returns to the idle state; otherwise, the state 2VLConex is reached.
This state is also reached when the channel is released. When the 3SizeCheck
state is reached, the unit checks for resources to allow the entire packet in the
output buffer. If there is enough space, the connection is established. When
buffer space is released, due to the transmission of a packet through the link,
the 3bUpdtSize state is reached, and size is checked again.

(PK_ARRVL_INPUT_CH)/update_waiting()

(default)/intrpt_not_handled_routing()

(TIMEOUT)

(WAITING_PKS)
(!WAITING_PKS)

(UPDATE_FT)/update_ft()

(UPDATE_FT)/update_ft()

(PK_ARRVL_INPUT_CH)/update_waiting()

(CHANGE_DEFAULTPORT)/set_defaultport()

(default)/intrpt_not_handled_routing()

(CHANGE_DEFAULTPORT)/set_defaultport()

(END_SIM)/freemem_routing()

(END_SIM)/freemem_routing()

idle

routing_pk

init

route_pk

pk_routed

Fig. 7. Routing unit state machine. The idle state waits for requests from input
buffers. The routing_pk state models the time to access the routing table. This
process begins and finishes in the route_pk and pk_routed states, respectively.

routing unit assigns an output port to each incoming packet.
The model shown in Fig. 7 processes simultaneous requests in
a sequential and prioritized way. First, it considers packets in
VL15. Then, for data VLs, it applies a round-robin policy.
The routing unit uses a (unicast) forwarding table, configured
by the management protocol. When the forwarding table can
not provide an output port for the packet’s destination, the
provided port is not supported by the switch, or if it is the
same as the input port used by the packet, the routing unit
notifies the input buffer that the packet must be discarded. For
management packets using directed (source) routing, the
routing unit employs the information stored in the packet
instead of looking up routing options in the forwarding table.

After a packet has been successfully routed, the result is
transferred to the mapping unit, in order to determine an
output VL for the packet. This unit includes a mapping table

defined by the management protocol.
The mapping function is not applicable
to management packets, and it could
also lead to discarding the packet
(when the management VL is provided
by the mapping table). Finally, this unit
provides all this information to the
crossbar arbitration unit.

3) Switching Logic
The switching logic (see center of

Fig. 9) is composed of a fully
demultiplexed crossbar and the
arbitration unit. We have also modeled
a multiplexed crossbar commonly used
in commercial products. The crossbar
unit allows several packets to cross
simultaneously from input buffers to
the corresponding output buffers. The
arbitration unit arbitrates among
concurrent requests and configures the
crossbar. The policy used to establish
crossbar connections satisfies the
following conditions: VL15 has priority
over data VLs and all data VLs have
the same priority. The state machine
associated to this unit is shown in Fig.
8.

4) Output Channels
Crossbar outputs are connected to the

output buffers associated with VLs.
These output buffers are connected to a
multiplexer. This unit receives
management and data packets from the
output buffers, and flow control packets

packet
in head

Routing

config
crossbar

pk routed

Subnet Management

Input Channel 1 Output Channel 1Port 0

send SMP

input
ch

update
FT

update
SLtoVLMT

update VLAT

Crossbar

pk mapped

packet in
head

inject
VL

FC
pk

pk
arrival/deliver

rcv1

arbitration_unit

xmt1buffer_rcv1

rcv2 buffer_rcv2 xmt2

rcv3

rcv4

xmt3

xmt4

buffer_rcv3

buffer_rcv4

crossbar

routing_unit

select_input_vl1

select_input_vl2

select_input_vl3

select_input_vl4

SMI SMASMSA

buffer_port0

SLtoVLmapping_unit

VLarbitration_unit1

VLarbitration_unit2

VLarbitration_unit3

VLarbitration_unit4

buffer_xmt1 select_output_vl1

buffer_xmt2

buffer_xmt3

buffer_xmt4

select_output_vl2

select_output_vl3

select_output_vl4

control_state

flow_ctrl_unit1

flow_ctrl_unit2

flow_ctrl_unit3

flow_ctrl_unit4

Fig. 9. Internal structure of a four port IBA switch model.

(VL_REQUEST)

(ARBIT)

(TIMEOUT)

(PK_DELIVR)

(UPDATE_VLAT)/update_vlat()

(CHANGE_VLHIGHLIMIT)/set_vlhighlimit()

(default)/intrpt_not_handled_VLarbitration()

(FLOWC_PK)

(END_SIM)/freemem_VLarbitration()

init idle

pk_ready

arbitrating

pk_delivered

FC_action

arbitrated

Fig. 10. Channel arbitration unit state machine. The pk_ready state manages
requests from the output buffers. The arbitrating and arbitrated states model
the time to select the next packet to inject into the link. The pk_delivered state
indicates that an entire packet has left the output buffer, and the channel has
been released. The FC_action state is reached when the flow control unit
activates or deactivates the transmission through a VL.

from the flow control unit. According to the current port state,
the multiplexer may drop packets.

The IBA specification defines a credit-based flow control
scheme. Each port incorporates a flow control unit that
enables/disables the transmission from data output buffers,
according to the flow control packets received from the port at
the other end of the physical link. Additionally, the flow
control unit sends flow control packets to stop/restart the
injection of data packets at the other end of the link. The state
machine related to this unit has been shown in Fig. 5.

The channel arbitration unit model is shown in Fig. 10. It
receives requests from the output buffers and the flow control
unit, and it determines the next packet to inject into the
physical link. Management and flow control packets have the
maximum priority. To determine the priority between data
VLs, this unit uses the VL arbitration table provided by the
management protocol.

5) Management Port
Finally, for administration purposes, the switch includes an

internal port (numbered 0) connected to the management
logic. This port implements only a packet buffer associated
with VL15.

C. End Nodes
Fig. 11 shows the end node model implemented, including

a basic processor node and an interface card (HCA).
 The processor node we have modeled is very simple. It

consists of a packet source and a packet consumer. The source
generates link layer data packets according to a probability
density function, and the consumer drops received packets and
updates traffic statistics (packet delay, throughput, etc.). This
model could be extended in the future, considering more
realistic traffic approaches suitable for clusters.

The channel adapter includes a single port. As in the case of
switch ports, it supports VL0-1 and VL15. Transmitter and
receiver modules connect the card to the physical link. Since
there is not a crossbar, the mapping unit is directly connected
to the output buffers associated with the VLs. The behavior of

most of the modules, including the management entities, is the
same as the corresponding modules in the switch model.
Upper level functions considered in the IBA specification (as
queue pairs, service types, verbs, etc.) have not been modeled
yet.

Both types of IBA subnet nodes (switches and end nodes)
have a wide set of configurable attributes. Common node
attributes are the device globally unique ID (GUID), the
number of data VLs and packet maximum transfer unit (MTU)
supported by the physical ports, the size of the buffers

Host Channel Adapter
packet in head

Processor
Node

Subnet Management

update VLAT

update
SLtoVLMT

packet
in head

pk arrival/deliver

inject
VL

FC
pk

src send xmt

rcvreceive buffer_rcv select_input_vl

SMI SMASM

sink

SA

VLarbitration_unit

SLtoVLmapping_unit select_output_vlbuffer_xmt

control_state

flow_ctrl_unit

Fig. 11. Internal structure of the IBA end node model. Fig. 13. Directed routed SMP.

Fig. 12. Switch attributes.

associated with the VLs, and the size of the VL arbitration
table used by the channel arbitration unit. Switches include the
size of the forwarding table used by the routing unit (Fig. 12).
Additionally, end nodes need several attributes related to
packet generation (injection rate, start time, etc.).

D. Subnet Management Model
We have modeled the subnet management packets (SMPs)

and the acknowledgment and reinjection protocol defined in
the IBA specification. As an example, Fig. 13 shows the fields
of a directed routed SMP.

Next, we describe the subnet management modules
included in switches (Fig. 9) and end nodes (Fig. 11): SMI,
SMA, and SM.

1) Subnet Manager Interface: Fig. 14 shows the behavior of
the SMI module. It injects SMPs generated by the SM and
SMA into the network. Also, it validates and delivers
incoming SMPs. The destination entity for an arriving SMP

depends on the packet type (request, response, trap, etc.). In
switches, the SMI implements directed routing, updating in
each hop the Return Path and HopPointer SMP fields.

2) Subnet Manager Agent: Fig. 15 shows the state machine
associated to the SMA module. The tasks performed by this
entity include processing received SMPs, responding to the
SM, and configuring local components according to the
management information received. The received SMPs could
contain information related to physical ports, as the assigned
LID, the port state, or the number of operational data VLs.
Other SMPs are used to update the local forwarding table, the
SL to VL mapping table, and the VL arbitration tables. The
SMA is also in charge of updating the state of a port when the
condition of a neighbor device changes.

3) Subnet Manager: The tasks implemented in the SM
model are represented in Fig. 16. Each management task is
modeled with a different state machine. Incoming SMPs are
analyzed and delivered to the corresponding state machine by
a dispatcher process (shown in Fig. 17) associated to the SM
module. The handover task guarantees that only one SM (the
master) manages the subnet at any given time. This master

Subnet
topology

Paths
Computation

Paths
Distribution

Topology
Discovery

Topology
change

Mastership
Handover

New SM
detected

Forwarding
tables

Fig. 16. Tasks performed by the SM.

(SMP_FROM_PORT)

(SMP_TO_PORT)

(default)
(NEW_SMP)

idleinit

recv_SMP

send_SMP

input_ch

Fig. 14. SMI state machine. The input_ch and recv_SMP states manage
incoming SMPs. The send_SMP state delivers outgoing SMPs.

(SMP_ARRVL && !PROCESSING_SMP)

(default)/intrpt_not_handled_sma()

(NODE_CHANGE)
(NEXT_TRAP)

(SMP_ARRVL && PROCESSING_SMP)

(SMP_WAITING)

(END_PROCESSING)

(!SMP_WAITING)(END_SIM)/freemem_sma()

idleinit

begin_proc

change next_trap

proc_smp

Fig. 15. SMA state machine. The begin_proc and proc_smp states model the
time consumed in processing a received SMP sent by the SM. The change
state is reached if a change is detected at any port. The next_trap state
manages trap notifications.

(!HOST_SM)

(END_SIMULATION)

(NODE_DEACTIVATION)

(default)/intrpt_not_handled_sm(SMDISPATCHER)

(NODE_ACTIVATION || NODE_DEACTIVATION || END_SIMULATION)

(HOST_SM)

(NODE_ACTIVATION)

(SMP_ARRVL && !PROCESSING_SMP)

(END_PROCESSING)

(default)/intrpt_not_handled_sm(SMDISPATCHER)

(!SMP_WAITING)

(SMP_ARRVL && PROCESSING_SMP)

(SMP_WAITING)

init

no_sm

idle begin_proc

end_sim

sm_inactive

sm_active

deliver_smp_

Fig. 17. Dispatcher process state machine. The begin_proc and deliver_smp
states model the time to process an incoming SMP sent by another
management entity in the subnet. The deliver_smp state provides the SMP to
the state machine that must manage it. SMPs are sequentially processed.

periodically sweeps the subnet searching for topology
changes. It is also possible that SMAs located in the switches
notify port changes to the master. In either case, the master
performs the topology discovery task shown in Fig. 18. It
includes the assignment of LIDs and the configuration of
other port attributes. After that, routes are computed and
distributed to the forwarding tables. To determine the paths
through the subnet, the master uses the collected topological
information.

In the management mechanism currently implemented, the
above tasks are sequentially executed. After a topology
change is detected, the subnet topology is collected starting
from scratch. The discovery process is centralized in the
master, which performs a propagation-order exploration. To
compute the routes, the master uses the up*/down* routing
algorithm [12]. Finally, in order to prevent deadlock
situations, all subnet ports are deactivated before sending the
new switch forwarding tables. Once the tables are completely
distributed, the subnet is activated again. Hence, static
reconfiguration is assumed.

The SM must receive a response for each request SMP. If
the response is not received after a period of time, the SMP is
injected again. After several injections for the same SMP, the
SM concludes that the destination is either disabled or
unreachable.

Each component (switches and end nodes) in the subnet
contains several configurable management attributes. They
specify if the component hosts a SM, if it supports traps (only
for switches), or the maximum response time for the node
SMA.

Additionally, using profiling techniques, we have measured
the time required to process a SMP by the management
entities, for a wide set of subnet configurations. In this way,
the processing times are dynamically computed according to
the subnet size.

V. EVALUATING IBA PERFORMANCE
The purpose of this section is not to present a detailed

performance evaluation of IBA. Instead, we use some
examples to illustrate the way in which our OPNET IBA
model can be used to analyze different aspects of the
architecture.

A. Building Subnet Topologies
Using the IBA link, switch, and end node models described

before, we may build and evaluate any subnet configuration.
For this work, we have selected a set of randomly generated

irregular topologies. The network size ranges from 8 to 64 4-
port switches. Each switch has connected an end node, if a

switch 0

endnode 1

switch 1

switch 2

switch 3

switch 4

switch 5

switch 6

switch 7

endnode 2

endnode 3

endnode 4

endnode 5

switch 8

switch 9

switch 10

switch 11

endnode 8

endnode 9

endnode 10

endnode 11

endnode 6

switch 12

switch 13

switch 14

switch 15

endnode 13

endnode 14

endnode 15

Fig. 19. Example of a cluster composed of 16 IBA switches and 14 hosts in
an irregular topology.

endnode 0 endnode 3endnode 2endnode 1

switch 0 switch 1

switch 2 switch 3
switch 4

switch 5 switch 6

Fig. 20. Example of a cluster composed of 7 IBA switches and 4 hosts in a
Clos topology (3,1,4).

(SMP_TIMEOUT)

(NEXT_SWEEPING)

(default)

idle

proc_timeout

init

init_sweep

invocation

Fig. 18. Discovery process state machine. The invocation state processes a
SMP received from the dispatcher process. The proc_timeout state is reached
when the timeout associated with a request SMP expires, and the
corresponding response has not been received. The init_sweep state starts the
next subnet sweeping process.

port is available. Fig. 19 presents an example of a 16-switch
topology.

Several studies focus on network topologies applied to
NOW and SAN environments. An example of a more regular
topology is the Clos network [2]. It has excellent properties
such as full bisection, scalability, modularity, and multiple-
path redundancy that make it ideal for cluster networks [13].
Fig. 20 shows an example of Clos topology. At the moment,
we are increasing the amount of ports available in the current
switch model. It would allow the generation of larger Clos
topologies than that shown in the figure.

B. Preparing Simulations
Once we have defined the network topology and attribute

values for each device in the subnet (as shown in Fig. 12), we
must specify the statistics that will be collected during the
simulation and the way they are collected. Fig. 21 shows the
editor used for that purpose. OPNET provides a wide set of
predefined statistics; additionally, the user can customize the
model by adding new ones. Statistics can be collected in
several ways: all values (recording all updates to the statistic),
samples (collecting only certain statistic updates), buckets
(recording a single value from a set of points, for example, the
sample mean), etc. Additionally, for each statistic we can store
an output vector ordered by time, and/or an individual value

that summarizes the behavior of the statistic (the average
value, the maximum value, etc.).

The value of model attributes can be defined before running
the simulations. For the results presented here, we have fixed
some of them, as the duration of the simulation, the
probability density function used by the packet sources, and
the amount of upper-level information contained in these
packets.

We have programmed for all simulation runs a complete
subnet activation at time 10 sec. Sources begin to generate
packets at time 60 sec. To evaluate network performance, we
have considered a transient period of 0.1 sec and, after that, a
useful period of 0.1 sec, obtaining a total duration of 60.2 sec.
During the useful period, statistics are collected. To evaluate
the subnet management mechanism, for each simulation we
have programmed a topology change (activating or
deactivating a switch) after time 60 sec. For these probes, the
duration of the simulation varies according to the topology.

We have considered a uniform distribution for packet
generation, assuming the same generation rate for all sources.
Sources also use a uniform distribution to obtain the packet
destination and service level. As packet length, we have
considered in all cases a MTU of 256 bytes, the minimum
value allowed by the IBA specification.

Other model attributes can be parameterized over a set of
simulations. In this work, we have considered as simulation
parameters the number of packets per second sent by each end
node, the amount of operational VLs in the subnet ports, the
buffer size, and the device internal bandwidth. Fig. 22 shows
the way to specify some of these parameters to create a set of
simulations.

For each topology we have considered packet generation
rates from low load to saturation. For the number of
operational VLs, we have used 1 or 2 data VLs. For buffer
sizes, we have assumed values ranging from 32768 bits (4096

Fig. 21. Probe editor. The window shows the set of customized statistics we
have defined to analyze subnet management protocols, as the amount of time
that the user traffic is stopped, or the time and number of SMPs required by
each management task. They may help us to locate the bottlenecks of a
management mechanism and compare different management policies.

Fig. 22. Specifying simulation parameters. In the example of the window, the
104 simulations are obtained as combination of 13 traffic rate values (20E3,
40E3, 60E3, 80E3, 100E3, 120E3, 140E3, 160E3, 180E3, 200E3, 220E3, 240E3,
and 260E3 packets/sec), 4 buffer sizes (32768, 65536, 131072, and 262144
bits), and 2 different numbers of operational data VLs (1 and 2).

bytes) to 524288 bits (65536 bytes). Finally, we have used a
factor (ranging from 1 to 2) to specify different internal
bandwidths for the subnet devices. This factor is applied to the
bandwidth for the IBA 1X link.

C. Evaluating Design Parameters
In this section, we show several examples of utilization of

our model to analyze the impact of some architecture
parameters on network performance. The parameters we have
varied are the number of VLs per channel, the size of their
associated buffers, and the device internal bandwidth.

Fig. 23 shows the simulation results obtained for the subnet
topology presented in Fig. 19. The top plot represents network
throughput versus network load. Load is expressed using the
number of packets per second send by all the subnet end
nodes; throughput is expressed using the number of packets
per second received by all the subnet end nodes. The bottom
plot represents packet latency versus network throughput.

Each point in this plot indicates the average end to end delay
obtained in the corresponding simulation. We have obtained
these results for 1 and 2 operational data VLs per port. As
shown in [11], we can clearly appreciate the increment in
performance using virtual lanes.

Fig. 24 shows the same statistics as Fig. 23, obtained for the
Clos topology shown in Fig. 20. The parameter we have
analyzed is the size of the packet buffers associated to the VLs
in the subnet switch ports. We can see that in this case buffer
size does not contribute as much to increased network
throughput.

Finally, Fig. 25 analyses the impact of device internal
bandwidth on network performance. Results correspond to an
irregular topology with 8 switches and 7 end nodes. Again,
there are not significant increments in performance for factor
values of 1.5 and 2.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
6

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

Traffic Sent (packets/sec)

T
ra

ffi
c

R
ec

ei
ve

d
(p

ac
ke

ts
/s

ec
)

1 VL
2 VL

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
6

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Traffic Received (packets/sec)

E
nd

−
to

−
en

d
de

la
y

(s
ec

)

1 VL
2 VL

Fig. 23. Influence of the amount of VLs on performance (assuming a buffer
size of 32768 bits).

2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

x 10
6

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3
x 10

6

Traffic Sent (packets/sec)

T
ra

ffi
c

R
ec

ei
ve

d
(p

ac
ke

ts
/s

ec
)

32768 bits
65536 bits
131072 bits
262144 bits
524288 bits

2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3

x 10
6

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Traffic Received (packets/sec)

E
nd

−
to

−
en

d
de

la
y

(s
ec

)

32768 bits
65536 bits
131072 bits
262144 bits
524288 bits

Fig. 24. Influence of VL buffer size on performance (assuming 2 data VLs
per port).

D. Evaluating the Subnet Management Mechanism
Fig. 26 shows an example of how our OPNET model could

be used in the analysis of new IBA subnet management
protocols. Plots represent some statistics added to the IBA
model in order to evaluate management mechanisms (see Fig.
21).

The results correspond to the topology shown in Fig. 19, in
which switch 15 has been deactivated. The traffic load applied
is very low, to avoid network saturation during the time that
the change is being assimilated.

The upper plot shows the aggregate amount of SMPs
exchanged by the management entities. Approximately 2700
SMPs (corresponding to the transient period) have been
delivered before the period of time shown in the figure.

The second plot represents the percentage of updated
forwarding tables during the process. It allows us to locate the
distribution phase in time.

The last two plots show the effect of the topology change
(and its assimilation) over the application traffic. The third
plot shows transmission delay for application packets. There
is a point in the plot for each packet received. The X-axis
represents the time the packet is received, and the Y-axis
represents its latency from generation.

The fourth plot represents the aggregate amount of
discarded packets. At 61 seconds of simulation the topology
change is produced. The deactivation implies that data packets
begin to be discarded. Logically, the amount of discarded
packets has a direct relationship with network load.

We can appreciate a long period of time (0.17 seconds
approx.) between when the change is produced and when the
next sweeping process detects it. To reduce this time, it could
be useful to conduct a deeper study to tune the sweeping rate
according to the topology characteristics. The benefits
obtained using a detection mechanism based on traps could
also be explored.

Once the change is detected, the topology discovery process
involves 200 SMPs during a period of time of 0.01 seconds
(see in the figure). After that, subnet routes are computed
according to the new topology. This process takes more than
0.1 seconds. The graph clearly shows that one of the most
important bottlenecks of this mechanism is the paths
computation process. A possible optimization could be to
reduce the complexity of the algorithm, taking advantage of
previous information, or overlapping it with the other tasks.

Finally, the path distribution task (see in the figure)
implies the distribution of 360 SMPs during a period of time
of 0.0067 seconds (faster than the discovery process). During
this time, subnet ports are deactivated to avoid deadlock. The
consequence is that application traffic delivery is stopped. We
can see a gap in the latency plot and an increment of discarded
packets in the bottom plot. The final amount of discarded
packets (applying a low traffic rate) is greater than 600

Fig. 26. Effect of SM tasks on user traffic.

3 4 5 6 7 8 9 10

x 10
6

3.9

4

4.1

4.2

4.3

4.4

4.5

4.6
x 10

6

Traffic Sent (packets/sec)

T
ra

ffi
c

R
ec

ei
ve

d
(p

ac
ke

ts
/s

ec
)

bandwidth = 1X x 1
bandwidth = 1X x 1.5
bandwidth = 1X x 2

3.9 4 4.1 4.2 4.3 4.4 4.5 4.6

x 10
6

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Traffic Received (packets/sec)

E
nd

−
to

−
en

d
de

la
y

(s
ec

)

bandwidth = 1X x 1
bandwidth = 1X x 1.5
bandwidth = 1X x 2

Fig. 25. Influence of internal bandwidth on performance (assuming 2 data
VLs per port and a buffer size of 32768 bits).

packets. This negative effect could be reduced by the
utilization of dynamic reconfiguration techniques as presented
in [1][10].

Using additional management statistics, we could analyze
in detail the behavior of each management task. As an
example, Fig. 27 represents the number of SMPs (top plot)
and the time (bottom plot) required by the paths distribution
task. In the plots, the simulation parameter is the network size.
In this case, for each topology (with 8, 16, 24, and 32
switches) and simulation run, we have programmed the
activation of a different switch. The corresponding device
identifier (GUID) is represented on the horizontal axis. Again,
injection rates are very low, in order to prevent network
saturation.

We can see that the amount of SMPs required to distribute
the new forwarding tables increases with the network size.
Similarly, the time spent by the distribution process has a
direct relationship with the network size.

VI. CONCLUSION
In this paper, we present a way of modeling IBA that is

amenable to simulation using OPNET. This provides a useful
tool that enables designers of InfiniBand networks to evaluate
at the physical and link levels various performance trade-offs
of key design parameters. We have shown how this model can
be used specifically as a means for designing and evaluating
subnet management mechanisms which meet IBA
specifications. Thus far, we have modeled a completely
functional prototype of IBA’s subnet management protocol.
Preliminary results provide insight into the overheads
resulting from non-optimized implementations and what
techniques might be useful in reducing them.

ACKNOWLEDGMENT
The authors thank Pablo E. García for his collaboration in

modeling many aspects of the architecture.

REFERENCES
[1] R. Casado, A. Bermúdez, F. J. Quiles, J. L. Sánchez, and J. Duato, “A

protocol for deadlock-free dynamic reconfiguration in high-speed local
area networks,” Special Issue on Dependable Network Computing, IEEE
Transactions on Parallel and Distributed Systems, vol. 12, no. 2,
February 2001.

[2] C. Clos, “A study of non-blocking switching networks,” Bell System
Technical Journal, no. 32, pp. 406-424, March 1953.

[3] W. T. Futral, InfiniBand Architecture. Development and Deployment,
Intel Press, August 2001.

[4] IBM InfiniBand products.
http://www-3.ibm.com/chips/products/infiniband/

[5] InfiniBand Architecture Specification (1.0.a), June 2001, InfiniBand
Trade Association. Available: http://www.infinibandta.com/

[6] P. Kermani, and L. Kleinrock, “Virtual cut-though: A new computer
communication switching technique,” Computer Networks, vol. 3, pp.
267-286. 1979.

[7] Lane15 Software, Inc. Austin, TX (USA). http://www.lane15.com/
[8] Mellanox Technologies. Santa Clara, CA (USA).

http://www.mellanox.com/
[9] OPNET Modeler documentation, OPNET Technologies, Inc.

http://www.opnet.com/
[10] R. Pang, T. M. Pinkston, and J. Duato, “The Double Scheme: deadlock-

free dynamic reconfiguration of cut-through networks,” in Proc.
International Conference on Parallel Processing, pp 439-448, Aug. 2000.

[11] J. C. Sancho, J. Flich, A. Robles, P. López, and J. Duato, “Analyzing the
influence of virtual lanes on the performance of InfiniBand networks,”
in Proc. workshop on Communication Architecture for Clusters (held in
conjunction with IPDPS '02), April 2002.

[12] M. D. Schroeder, A. D. Birrell, M. Burrows, H. Murray, R. M.
Needham, T. L. Rodeheffer, E. H. Satterthwate, C. P. Thacker, “Autonet:
a high-speed, self-configuring local area net-work using point-to-point
links,” IEEE Journal on Selected Areas in Communications, vol. 9, no.
8, October 1991.

[13] C. L. Seitz, “Recent advances in cluster networks,” Cluster2001,
Newport Beach CA, October 2001.

[14] VIEO, Inc. Austin, TX (USA). http://www.vieo.com/

100 105 110 115 120 125 130 135
100

200

300

400

500

600

700

800

Switch Activated (GUID)

D
is

tr
ib

ut
io

n
S

M
P

s

8 switches
16 switches
24 switches
32 switches

100 105 110 115 120 125 130 135
6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

8
x 10

−3

Switch Activated (GUID)

D
is

tr
ib

ut
io

n
T

im
e

(s
ec

)

8 switches
16 switches
24 switches
32 switches

Fig. 27. Analysis of the paths distribution process.

