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Abstract— Shared Memory is an attractive and convenient
programming abstraction, and Shared Memory Clusters are a
straighforward and efficient way to provide it. Unfortunately, the
overhead of enforcing consistency to implement shared memory
on such architectures can be prohibitive. Ensuring caches remain
coherent throughout an application’s entire execution, as done
on CC-NUMA architectures, is particularly expensive in terms
of hardware complexity, and scales poorly with system size. For
this reason, most High Performance Compute Clusters are imple-
mented as No-Remote Memory Access (NORMA) architectures
supporting message-passing APIs, thereby avoiding the need for
global memory coherence schemes. Rendering Shared Memory
Clusters more competitive thus requires reducing consistency
overheads.

In this paper, we use the Splash-2 benchmarks to quantify the
potential for reducing these overheads. We evaluate the costs of
several different local consistency schemes, which require neither
global update nor invalidation operations and hence exhibit
greater scalability. Each is compared against a conventional CC–
NUMA and an optimal, false–sharing free model. On average,
we find that invalidating all cache lines and flushing write
buffers to enforce release consistency performs slightly better
than the conventional CC–NUMA scheme, but is burdened by the
overhead caused by extensive cache invalidations. Two novel local
schemes based on selective invalidations, which are introduced
in this work, target this problem and are capable of achieving a
significant speedup within 10% of the optimal coherence behavior
for most applications.

I. MOTIVATION

Clusters built from commodity components and inter-
connected with System Area Networks (SANs) are be-
coming increasingly popular, largely due to their attractive
price/performance ratio. Advances in System Area Network
technology have introduced native support for shared memory
abstractions. These Shared Memory Clusters [1] combine the
cost efficiency and scalability of clusters with the programma-
bility and fast communication support of shared memory
multiprocessors. They thereby form a competitive alternative
to tightly coupled large-scale SMPs or CC-NUMA machines.

These cluster architectures face the challenge of maintaining
memory consistency in a loosely coupled SAN environment.

The I/O bus-based architectures of such SANs prevent access
to the coherence traffic from the SAN NICs. To overcome
this problem, Heinrich et al. [1] maintain consistency via
special hardware coherence controllers on top of an Infiniband-
based scalable SAN fabric. Their scheme supports the same
programming abstraction as the successful CC-NUMA archi-
tectures (e.g., the Origin 2000 [2]), but at a much lower system
cost. Nonetheless, their coherence controller requires complex
hardware additions to current cluster nodes, and the design
assumes access to coherence information, though such access
is not supported in current node architectures. Developing
alternative coherence mechanisms would allow us to exploit
current, commodity architectures to build high-performance
Shared Memory Clusters.

One alternative approach relaxes the consistency of the
system’s shared memory abstraction and restricts coherence
operations to specific application synchronization points. At
these points—and only these points—the system guarantees
that it will maintain a predictable memory state in the presence
of consistency enforcing operations like cache invalidations or
buffer flushes. Since coherence operations execute locally on
a single node, implementing global coherence does not limit
the scalability of the underlying architecture.

We have previously implemented a prototype relaxed con-
sistency system within the SMiLE (Shared Memory in a LAN-
like Environment) project [3]. This SCI-VM [4], [5] system
was built with Dolphin’s Scalable Coherent Interface [6], [7]
on top of a commodity x86 cluster. One difficulty in imple-
menting this approach is the inability of current processors to
selectively invalidate cache blocks. This means that the entire
cache has to be invalidated at every synchronization point,
which leads to additional overhead caused by subsequent cache
line loads.

To reduce these invalidation-induced coherence overheads,
we propose two cache controller extensions. These schemes
have to ability to support the efficient implementation of local
coherence schemes resulting in less coherence overhead. Note



that we advocate adding only small hardware additions of
isolated complexity on the individual nodes; no global, system-
wide component will be added. These extensions allow cache
controllers to transparently and independently track relevant
portions of the cache and selectively invalidate only the nec-
essary blocks. Experiments with five numerical benchmarks
taken from the Splash-2 suite [8] show that local schemes
based on these additions can outperform the conventional CC-
NUMA schemes and can reduce execution time overhead to
within 3% of an optimal consistency scheme in some cases.

The remainder of this paper is organized as follows. Sec-
tion II provides the basis for the discussion of local coher-
ence protocols for Shared Memory Clusters, and Section III
discusses the three schemes studied in this work. Section IV
provides simulation results contrasting the three schemes to a
CC-NUMA and an oracle implementation, Section V discusses
some related work, and Section VI concludes the paper with
some final remarks.

II. RELAXING CONSISTENCY

Consistency models provide the shared-memory program-
mer with a safe abstraction with which to reason about the
behavior of the underlying memory system. Models differ
from one another with respect to the rules that govern when
updates become visible by other processors. Existing SMP and
CC-NUMA machines [2], [9], as well as proposed Shared
Memory Clusters [1], provide strong consistency in which
write operations trigger global updates and thereby become
immediately visible to all nodes. These approaches require
many global operations and complex, system-wide hardware
mechanisms. Alternatively, the consistency model can be
relaxed by distinguishing between regular and consistency-
enforcing memory operations. While the former are executed
without global coordination, the latter directly impact the
visibility of all writes previously issued to the memory system.

A. Design Guidelines

Consistency operations are critical to system performance,
and hence need to be designed carefully such that they adhere
to the following guidelines:

Request new data only when required. The system should
only perform invalidations when new data are required by the
application. Current global coherence mechanisms perform up-
dates or invalidations on every write, and hence communicate
information that may never be accessed by remote nodes.

Avoid global consistency operations. Scalability is a
traditional problem of large shared memory machines. One
source of this problem is the frequency of global coherence
operations. By keeping these operations local to a single node,
larger systems become possible.

Limit impact on system design. No new scheme should re-
quire drastic modifications to current processors. While SMP–
based systems can use the standard MESI–like mechanisms
in the processors, CC–NUMA systems require a significant
amount of special hardware in the form of either hardware
maintained directories [10], [2] or sharing lists [6], [11].

Low hardware complexity. To be feasible, new hard-
ware designs should not significantly deviate from current
architectures. For example, the substantial custom hardware
required to realize CC–NUMA machines is a barrier to more
widespread adoption.

B. Relaxed Consistency Models

In order to take effect, applications need to explicitly make
use of consistency enforcing operations. In order to minimize
the obvious impact on the programming model, it is useful
to leverage the concept of relaxed consistency models [12],
which combine synchronization constructs with consistency
enforcing mechanisms. They build on the observation that all
shared memory codes require synchronization and that these
events coincide with consistency requirements. Therefore,
relaxed consistency models can often be introduced without
any or with only minor code changes.

Relaxed consistency models have been extensively re-
searched in the realm of Software Distributed Shared Memory
(SW–DSM) [13], [14], [15] and implemented in the form of
relaxed consistency protocols [16], [17]. While latter ones
are not applicable or necessary in HW–DSM scenarios, the
concept of relaxed consistency models can be applied in a
rather straightforward way. The result for the programmer is
a secure, global memory abstraction.

III. LOCAL CONSISTENCY SCHEMES

Based on these design guidelines, we have developed a
family of three local consistency schemes: Full Invalidation,
Cache Footprint Invalidation, and Dual Scope Invalidation.
While the first one is capable of running on and has been
implemented for today’s commodity hardware, the other two
require minimal changes to the individual local cache con-
troller on each node. All three leverage strictly hardware-based
implementations and hence require neither special software
handlers nor specific network protocols, in contrast to previous
work in SW-DSM systems.

A. Full Invalidation

The first approach investigates mechanisms currently avail-
able in commodity systems, namely Full Cache Invalidation,
to control and enforce consistent cache state. In a typical
Shared Memory Cluster, inconsistent state can appear in any
component along the memory path, including various read and
write buffers, as well as all processor caches. To control these
components, two independent operations can be defined: a) a
write flush of all complete operations in the local write pipeline
including all write buffers, and b) a read invalidation, which
cleans all local read buffers and caches.

Both operations are generally available in some form on any
current system. Cache invalidations are mostly implemented
as full cache invalidations only and are present as special
instructions in the Instruction Set Architecture (ISA). A typical
example of this occurs on the Intel x86 architecture [18]. Write
flushes, which are required not only for the schemes discussed
here, but for any multiprocessor environment, are normally



present less explicitly in CPUs. They are often implicitly trig-
gered by specific fence operations. Shared memory networks
also have to be equipped with such barriers, though often
more explicitly. In summary, these properties make it feasible
to implement such an architecture on commodity components
or clusters and thereby to profit not only from the improved
consistency mechanisms and greater scalability, but also from
the excellent price/performance ratio of such systems.

It should be noted that in most current CPUs, cache in-
validations are total operations in the sense that the entire
cache is invalidated. This is true for both Acquire and Barrier
operations. Both therefore incur additional local cache misses
and performance degradation due to the invalidation of data
that must be reloaded before future reuse.

As discussed above, these consistency enforcing operations
can be combined with synchronization constructs to form con-
sistency models. An example of such a programming interface
is provided by merging the above hardware mechanisms with
lock, unlock, and barrier invocations as follows:

� Acquire

– Perform lock operation
– Perform read invalidation

� Release

– Perform write flush
– Perform unlock operation

� Barrier

– Perform write flush
– Perform barrier operation
– Perform read invalidation

This kind of coherence scheme adheres to the guidelines
above and provides a system with Release Consistency [16],
[19]. Informally, it ensures that data structures are kept
consistent as long as they are correctly protected by locks.
This is generally the case, since virtually all shared memory
programming models, whether they are based on hardware
or software mechanisms, contain some notion of relaxing the
memory system. This is even true for the POSIX memory
model governing the use of POSIX threads on most commod-
ity operating systems [20].

This scheme has the distinct advantage that it relies solely
on commodity components, and can hence be implemented on
today’s hardware. We have done this within the SCI-VM [4],
[5] project on commodity clusters interconnected with SCI [7],
[6]. It has yielded good performance on many benchmarks.
In the following, however, we will not further address this
prototype implementation, but instead use pure simulation to
facilitate the comparison against other schemes.

B. Cache Footprint Invalidation

To reduce cache miss overhead, it is necessary to avoid full
cache invalidations and instead use a more selective scheme.
Most current processors, including the Intel x86 architec-
ture [18], offer no or only very limited support for partial cache
invalidations. Even if processors did offer such a feature, an
implementation with explicitly managed partial invalidations

Read Write
Local Cached, under control Write back

of local MESI into cache
Remote Selective Write through

invalidation into main memory

TABLE I

CLASSIFICATION OF MEMORY ACCESSES AND RESPECTIVE ACTIONS.

would lead to high management overhead in upper layers,
similar to that of Entry Consistency models [21]. We therefore
propose simple additions to the cache controller to enable
implicit tracking of required updates. This, in turn, allows
Cache Footprint Invalidation– invalidating only the cache
footprint contributed by a particular application’s consistency-
constrained remote read accesses, rather than the entire cache.

For this purpose, we distinguish read and write operations
as well as their destination nodes (Table I). This selective
invalidation protocol focuses on remote memory read accesses,
since these are responsible for potential inconsistencies. The
other three classes of accesses can be performed in the same
way as in standard systems since they do not directly introduce
inconsistencies.

During any cache hit on an attempted read of remote data,
the protocol must determine whether the data are potentially
stale and must be invalidated. For this purpose, we introduce
an additional one-bit flag for each cache line indicating
whether it is valid. In brief, this flag is cleared whenever
the application requires up–to–date data and is set when the
corresponding cache line is freshly loaded.

More specifically, during each remote read access resulting
in a cache hit, this flag is read and if not set, the cache line
is immediately invalidated and the read access is treated as a
cache miss. This leads to the request of an up–to–date cache
line from the next level of the memory hierarchy.

These flags are set each time the corresponding cache line
is loaded with the most current value, such as after a cache
line fill following a miss and after a write operation. The reset
of all flags, on the other hand, is carried out each time the
application requires that new data has to be visible at a node.
Like above, this is connected to synchronization constructs
such as barrier and lock operations. At these points, all flags
in all caches on the local processor are reset to zero and hence
trigger a reload on subsequent accesses.

To ensure correctness, we also require write flushes at
unlock operations. Otherwise, new data may be kept in in-
termediate buffers, while read operations (potentially after an
invalidation triggered by a zero flag) return the old data still
present in the physical memory cell.

In summary, this scheme ensures that any remote memory
access delivers a value at least as recent as the preceding
barrier and lock operation. Its consistency model is therefore
equivalent to the full invalidation scheme described above and
only differs in the timing of the invalidation (at the access
instead of at the barrier/lock). Further, this scheme retains the



programming ease and code portability of the full invalidation
approach.

C. Dual Scope Invalidation

The Cache Footprint Invalidation scheme fails to exploit the
semantic differences implied by barriers and locks. Whereas
barriers are used to control access to larger memory regions
and are intended for a loose cooperation between them,
locks usually protect specific data structures during short time
intervals. Dual Scope Invalidation leverages the fact that these
two constructs usually protect different types of resources by
separating memory updates triggered by barriers from those
triggered for critical regions protected by locks.

This approach partitions cache block invalidations with
respect to the associated synchronization constructs controlling
them. Under Dual Scope Invalidation, memory operations
that would need to be invalidated under a lock, might not
need an update when accessed outside a critical region, but
rather between two barrier operations. Depending on a code’s
synchronization pattern, this can lead to fewer invalidations
and improved performance.

For the programmer, the result is a slightly more relaxed
consistency model with two consistency scopes [17]. Due to
the inherent separation between locks and barriers in most
shared memory codes, however, it can be expected that the
impact on the programming model will be negligible for most
codes.

This new scheme can be implemented by adding a second
consistency flag to each cache line that mirrors the behavior of
the bit under Cache Footprint Invalidation. Whereas the same
flag under Cache Footprint Invalidation is set and cleared by
both lock and barrier constructs, its use is disambiguated under
Dual Scope Invalidation– one flag governs memory accesses
protected by locks, the second controls accesses within critical
regions.

Such separation allows the coherency controller to en-
force different consistency policies based on the correspond-
ing synchronization mechanism; Dual Scope Invalidation en-
forces lock protected consistency only within critical regions,
whereas access outside these regions may happen in an in-
consistent manner. Similar to above, cache line loads set the
flags and barrier and lock operations again reset them. While
a cache line load always sets both flags (since the cache line is
valid for both scopes following the load), each synchronization
operation only resets one set of flags and thereby achieves
the separation of consistency information between locks and
barriers.

The complete protocol for a remote read operation is shown
in Figure 1. During a remote memory read, the coherency
controller knows whether the current process or thread is exe-
cuting within a critical section. The consistency flag associated
with locks is evaluated and used to guard memory accesses
only within a critical section. As within the Cache Footprint
Scheme, the consistency flag associated with barriers must
always be set to enable a cache hit. If this flag is reset or

if not flag barrier(cache line) then
invalidate line

else
if not flag lock(cache line) and in mutex then

invalidate line
fi

fi

Fig. 1. Dual–Scope: Consistency protocol during a remote read.

the lock flag is reset while the application holds a lock, the
cache invalidates the line and simulates a cache miss.

One of the prerequisites for this scheme is the existence of
a special lock flag within the processor. This flag is set by
the OS when entering a critical region and is zeroed when
performing the corresponding unlock. This flag can then be
used to determine the appropriate action in case of a read
hit. In order to minimize the impact of this flag and to avoid
additional system calls, this lock flag should be part of the
user accessible register set. This will allow each user process
to set or reset this flag directly using user-level synchronization
constructs [22], and will only incur the cost of a single register
access.

The resulting consistency model is slightly more relaxed
than its two predecessors. This stems from the fact that
it separates two different groups of consistency enforcing
operations, whereas all other schemes so far have been based
on a single, global mechanism. These two areas correspond
to consistency scopes [17]. They were originally implemented
in Scope Consistency, a straightforward extension of Release
Consistency utilizing the implicit relationship between barriers
on one side and lock variables on the other. The Dual–
Scope scheme discussed here is therefore similar to Scope
Consistency, but restricts the number of scopes to two.

IV. EXPERIMENTAL EVALUATION

In this section we present performance numbers comparing
all three schemes in terms of number of invalidations and
number of executed cycles. To contrast these numbers to
existing systems, we have included the performance of a
processor consistent CC-NUMA approach and of an oracle
which determines whether accesses to given addresses are
shared, i.e., will be reused by another processor in the near
future, or will not lead to true communication. Only the former
accesses will lead to remote invalidations, while others are
ignored, resulting in the minimal necessary network traffic.

A. Simulation Setup

All simulations in this paper have been done using the
SIMT framework [23], a detailed simulator for shared memory
multiprocessors, which itself is based on Augmint [24], [25].
This system simulates architectures with an arbitrary number
of processors, each with its own multilevel cache hierarchy,
and allows the implementation and evaluation of several cache
consistency schemes.



The machine we model for this work is constructed
of single-processor building blocks based on Intel Pentium
IITMsystems. It employs simple write buffers, separate in-
struction and data L1 caches of 32 KBytes, a unified L2
cache of 512 KBytes, and a local MESI protocol between the
CPU and the network interface. Remote memory accesses are
modeled with 2000 cycles, while local accesses are assumed
to consume 100 cycles. These values have been measured in
the prototype system based on the full invalidation scheme and
hence provide a realistic evaluation scenario.

Due to the hardware implementation of all three schemes,
modeling software components is not required. The only
software mechanisms used by the three approaches are the ma-
nipulation of consistency flags. These are generally assumed
to be one cycle, since they usually just require a flag to be set,
while the ensuing cache invalidation is executed outside of the
critical path. In addition, we model an OS that distributes all
memory pages transparently in a round-robin fashion. During
the SCI-VM experiments this has proven to be useful as the
general distribution.

B. Benchmarks

All benchmarks were taken from the SPLASH-2 parallel
benchmark suite [8] as they provide a large range of different
memory access patterns. To reduce simulation time, we reduce
the input dataset for Barnes from 32K to 4K bodies. We
increase the work for FFT from

�����
to

�����
complex numbers.

For all other benchmarks we use the standard inputs as given
in the original SPLASH-2 distribution.

C. Results

All codes have been simulated with a configuration of 8
and 32 nodes using the three consistency schemes introduced
above. Figure 2 shows these results in terms of executed
cycles in relation to the optimal oracle scheme. In all cases,
the new local coherence schemes outperform the conventional
CC-NUMA scheme, as they are able to reduce the number
required remote memory accesses due to less invalidations
and less coherence traffic. Note, however, that this is done
at the expense of a more relaxed consistency model. It hence
forms a tradeoff between ease of use for the programming and
performance. This is, however, often not a problem, since most
programming models do already have a relaxed consistency
model as the base system (even if the host architecture would
support more).

Comparing the three local schemes, the full invalidation is
outperformed by the two other schemes and the Dual Scope
Invalidation further improves performance in all codes, which
include both barrier and lock constructs. In codes that just
deploy barriers for synchronization, however, Dual Scope and
Cache Footprint Invalidation behave equally, since the second
scope remains unused.

Figure 3 shows the number of cache line invalidations
incurred during the execution of the various schemes. This
is an indicator of the amount of traffic caused by coherence
operations in the system. The graph shows that the two partial

schemes, Cache Footprint and Dual Scope Invalidation, can
significantly reduce the number of invalidations compared to
the Full Invalidation, but that even those schemes still perform
a large number of wasted invalidations compared to the oracle
scheme. This leaves room for further optimizations.

V. RELATED WORK

Software controlled cache coherence in HW-DSM architec-
tures with NUMA characteristics has already been investigated
in a few projects. Within Platinum [26] a coherent memory
abstraction for a NUMA architecture is created using the
virtual memory management system. Using this mechanism in
coordination with global page state information, read or write
accesses, which cause potential cache inconsistencies, can be
detected and handled. Similar approaches are taken in [27] and
[28]. All three, however, are limited by the granularity of the
virtual memory system.

A different approach to deal with potential cache incon-
sistencies has been undertaken within the Shared Regions
project [29], which defines a high–level abstraction to group
and manipulate memory regions. Based on this abstraction, it
provides mechanisms to invalidate or flush remote memory
regions and uses these mechanisms in coordination with
synchronization primitives to guarantee a safe and reliable
memory abstraction [30]. This approach avoids additional
overhead for maintenance and hence represents a lean and
easy–to–implement solution. This scheme is very similar to
Full Invalidation, but has not been put in the context of
Relaxed Consistency Models since it predated the formal
introduction of relaxed memory consistency models to SW-
DSM systems.

Several research projects have investigated opportunities of
reducing coherence related overhead without influencing the
consistency model of the end-user application. Examples of
such work are the Cashier system [31], which is capable of in-
troducing coherence annotations using a compiler framework,
and the use of speculative self–invalidations of unused data
in DSM systems [32]. Both of these approaches, even though
they initially target a different domain due to their premise
of maintaining consistency transparently, might be able to
complement our schemes. The use of an annotating compiler
framework can alleviate some burden from the programmer,
while speculative (non-)invalidations have the potential to
further increase the performance. In future work we will look
in these directions.

VI. CONCLUSIONS

Shared Memory Clusters offer a cost efficient alternative to
current shared memory multiprocessors. However, maintaining
memory coherence in such architectures is challenging. Cur-
rent approaches use coherence mechanisms similar to those
in modern CC-NUMA machines. This has the drawback of
relying on global coherence mechanisms, which restrict scal-
ability, and requiring access to intra–node coherence traffic,
which is not possible in current node architectures.
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As an alternative, we have proposed the use of local
consistency schemes and relaxed consistency models. We have
introduced three different schemes, one which can be imple-
mented using current SAN technology, and two which are built
on top of small, local extensions in the cache controller. None
of the schemes rely on any global hardware component and
hence each maintains the scalability of cluster architectures.
Experiments with several numerical benchmarks have shown
that these schemes can outperform conventional CC-NUMA
machines and can reduce the overhead to within 3% of an
optimal oracle scheme in some cases.
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