
 
Abstract—The User  Direct Access Programming Library 

(uDAPL) is a gener ic application programming inter face (API ) 
for  network adapters capable of remote direct memory access 
(RDMA). The uDAPL inter face allows user  space applications 
to work with RDMA adapters using a platform and transpor t 
independent API . The uDAPL inter face has been proposed for  
use in cluster ing, distr ibuted systems, and network file systems.  

In this paper  we evaluate the uDAPL inter face and share our  
exper iences developing an open source implementation using 
InfiniBand adapters.  
 

Index Terms—remote memory access, system area network, 
memory to memory interconnect. 
 

I. INTRODUCTION 

DMA network adapters are characterized by two 
important features: allowing user space applications to 

directly access hardware and zero-copy data movement. A 
combination of hardware and software allows user space 
applications to read and write the memory of a remote system 
without kernel intervention or unnecessary data copies.  

These features result in lower CPU utilization per I/O 
operation and more efficient use of machine resources than 
typical networking architectures. User space networking 
improves performance by eliminating domain crossings 
between user space and kernel space when transferring data. 
System security is maintained by having the kernel allocate 
the system and adapter resources up front. As the cost of a 
data copy becomes a larger portion of a complete data 
transfer, the need for zero-copy transfers becomes more 
important. Zero-copy data transfers are possible within 
traditional protocol stacks [1], but generally involve large 
modifications and complex interactions with the operating 
system’s virtual memory subsystem. Use of RDMA capable 
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transports directly by an application eliminates these 
problems.  

A number of applications have been developed that take 
advantage these benefits. Research has demonstrated the 
feasibility of building high performance clusters using RDMA 
interconnects [7]. A number of companies, including Network 
Appliance, have sold products that use RDMA interconnects 
for clustering. In the area of distributed systems, Software 
Distributed Shared Memory has been successfully 
implemented upon RDMA interconnects [10]. The Direct 
Access File System (DAFS) is a network file system that uses 
RDMA technology and has demonstrated performance 
improvements over traditional network file systems [8]. 

In recent years, several network interconnects with RDMA 
capabilities have been proposed or developed. These include 
the Virtual Interface Architecture (VIA) [2], the InfiniBand 
Architecture (IBA) [6], and RDMA over the Internet 
protocols [11][12][13] to name a few. Despite sharing similar 
capabilities, each technology has required applications to use 
a transport or vendor specific programming interface. As a 
result, applications have become tied to specific 
implementations. These incompatible programming models 
have hampered the spread of RDMA technology. 

 In an effort to standardize RDMA APIs, the DAT 
Collaborative, an industry group focused on RDMA 
technologies, developed kernel [3] and user [4] space 
specifications in the C programming language for RDMA 
transports. The kDAPL and uDAPL APIs are an attempt to 
create a portable set of APIs for all RDMA networks. The 
relationship between kDAPL, uDAPL, consumer 
applications, and RDMA hardware is show in Figure 1. The 
APIs will allow applications to utilize the capabilities of both 
current and future RDMA networks without becoming tied to 
a specific implementation. Since these networks are used for 
high performance applications, the interfaces have been 
designed to be as efficient as possible.  Appendix A is a 
listing of the uDAPL API v1.0. The DAT Collaborative is 
currently preparing a new version of the specification, which 
is anticipated to include a handful of enhancements and 
address any errata items discovered in version 1.0.  

The authors have developed an open source reference 
implementation of the uDAPL v1.0 interface1. The project is 
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hosted on SourceForge.net, allowing other individuals and 
corporations to assist with development. Currently the 
reference implementation supports the IBA as the underlying 
transport using either an IBM [5] or Mellanox [9] Verbs 
interface. Internally, the reference implementation uses an 
abstract interface for all platform dependent functions. 
Support for Linux and Windows has been implemented. 

The design of the uDAPL reference implementation 
presented a number of interesting problems. The project 
began before stable IBA hardware and software was available. 
By beginning early, we were forced to simultaneously 
debugged the uDAPL reference implementation, the Verbs, 
the adapter’s device driver, and the InfiniBand hardware 
itself. As a result, we were compelled to approach problems 
from a number of different perspectives to resolve the 
underlying problems. Along with the rapidly changing 
development environment, we were faced with the challenge 
of supporting uDAPL’s semantics with the capabilities 
available in the IBA. As a result, the implementation was 
forced to use the provided IBA verbs interfaces in creative 
ways. 

The goal of the reference implementation was to create a 
portable code base from which RDMA adapter vendors could 
base products supporting the uDAPL API. As a result, 
achieving the absolute best possible performance was not our 
primary goal. However, after completing the reference 
implementation, the authors were able to characterize the 
performance using the following metrics: CPU utilization, 
operation throughput, bandwidth, and latency. Using these 
numbers and measurements of the native RDMA interface, 
we were able to quantify the performance penalty imposed by 
interposing the reference implementation between consumers 
and the native interface. 
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Figure 1: DAT Architecture 

II. ARCHITECTURE OF UDAPL 

A.  Handles and Objects 

The uDAPL specification represents the various abstract 
concepts of RDMA networking as objects. For example, an 
Interface Adapter (IA) is the object used to represent a 
RDMA network adapter and an Event Dispatcher (EVD) is 
the object that queues events for the consumer. These objects 
are related to one another in an ownership hierarchy. For 
example, an EVD object is created as the child of a specific 
IA.  

Consumers manipulate these objects through handles. Each 
object type has creation and destruction functions to allocate 
and deallocate object resources. The creation functions return 
a handle with which the consumer can manipulate the object 
and associate it with other objects. 

B. Registry and Providers 

As noted earlier, one of the primary goals of the uDAPL 
specification was to provide a standard interface to RDMA 
network adapters from multiple vendors. Applications should 
only need to link against a standard uDAPL library to 
communicate with a RDMA network adapter. However, 
vendors require specialized support for their adapter’s 
hardware-software interface. Therefore a mechanism was 
needed to allow vendors to provide their own architecture 
dependent implementations of the uDAPL functions. 

The solution was to create a level of indirection in the form 
of a registry between the consumer and the vendor specific 
software. The later was termed a provider. Providers are 
statically registered with uDAPL through a platform specific 
mechanism. On UNIX systems, this mechanism is 
implemented as a text configuration file. Regardless of the 
particular approach used to record this information, the 
consumer application need not be aware of the internal 
workings of the registry. After opening a provider through the 
registry, the consumer communicates directly with the 
provider library on subsequent operations. 

 Direct communication is achieved through the use of 
function pointer tables and C macros. Each uDAPL function 
other than dat_ia_open() and dat_ia_close() is actually a C 
macro. These macros use their first parameter to retrieve a 
standard function pointer table (implemented as a C structure 
called the DAT_PROVIDER). The macros index into the table 
and call the appropriate function passing the caller’s 
parameters through to the provider. Unlike the other 
functions, the dat_ia_open() and dat_ia_close() functions 
have standard implementations. These functions allow the 
consumer to interact with the uDAPL registry. The 
dat_ia_open() function searches the registry for the provider 
specified by the consumer. If the desired provider is found, 
the registry calls the providers IA open function. If this call 
succeeds, the consumer will be given a DAT_IA_HANDLE 
pointing to one of the function pointer tables described above. 



 
 

 

This design allows applications to use the same symbols to 
invoke different provider implementations at the cost of 
incurring a pointer dereference on each call. As a result of 
this design, every provider’s uDAPL handles must be 
implemented as a pointer to the standard function pointer 
table (see Figure 2).  
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Figure 2: DAT handle design 

 

Consumers identify providers with the IA name string 
passed to dat_ia_open(). If uDAPL naively used the device 
naming conventions available at the IBA Verbs layer, it 
would be possible for vendors to introduce conflicting device 
names. While InfiniBand Verb libraries typically provide an 
interface to open an adapter, separating the user from the file 
system device name, they are not as general as needed by the 
uDAPL interface. For example, the IBM Access API only 
allows an adapter to be named by an ordinal number, 
introducing the possibility that two different vendors utilizing 
this API will have identical device names.  

To avoid name collisions among vendors, uDAPL adapter 
names differ from the names exported by the Verbs library by 
adding a simple prefix to the name. For example if vendor 
Xyz uses a Verbs API that exports adapter names 1, 2, and 3 
and vendor Abc uses a Verbs API that exports adapter names 
1,2, and 3, we have a conflict. uDAPL resolves this by 
allowing a vendor to specify a simple prefix to the device 
name, e.g. xyz-1, xyz-2, abc-1, etc., and provides guarantees 
that each prefix is unique. 

C. Protection Model 

To defend against malicious or faulty applications, RDMA 
adapters typically provide a mechanism to protect resources 
allocated on the adapter. This concept is termed a Protection 
Zone (PZ) in the uDAPL API. PZs are created in the scope of 
a single IA. All uDAPL objects that require IA resources are 
associated with a PZ. To associate a set of such objects with 
one another, a consumer must ensure that all the objects 
belong to the same PZ. This also ensures that the objects are 
only associated with one another if they are located on the 
same IA. 

D. Event Model 

The results of many operations in the uDAPL interface are 
communicated to the consumer through asynchronous events.  

Consumers place an operation on queues for processing and 
either poll or wait on EVD objects for the corresponding 
events signaling the operation’s result. 

E. Connection Model 

uDAPL supports reliable connections using a client-server 
connection model. The passive side of a connection creates a 
service point. Two types of service points are defined: 
reserved service points (RSPs) and public service points 
(PSPs). The active side creates an Endpoint (EP) object and 
sends a connection request to the specified address and 
service point. The remote side is then free to accept or reject 
the connection request. If the request is accepted, an EP is 
created on the remote side and communication continues until 
either party disconnects or the connection is broken due to 
error. 

F. Exchanging Data: Data Transfer Operations 

uDAPL supports four data transfer operations: send, 
receive, RDMA read and RDMA write. Send and receive 
operations are paired with one another; one side of the 
connection posts a receive and the other posts a send. In 
contrast, RDMA operations allow for remote memory to be 
read and written without consuming a  remote operation. 

G. Memory Management 

Before an application buffer may be used as the source or 
destination of an operation, a memory region containing the 
buffer must be registered with the adapter. The virtual page(s) 
in which the memory region lies is pinned into main memory 
to ensure its availability to any operations referencing it. Two 
levels of memory registration are provided: local and remote. 
Local memory regions (LMRs) may be used as the source of a 
send or RDMA write operation, or the destination of a receive 
or RDMA read operation. Remote memory regions (RMRs) 
may be the remote target of a RDMA read or write operation.  

RMRs provide an additional level of protection for 
applications using RDMA operations. To use a RMR, the 
consumer must bind the RMR to an LMR. An arbitrary 
number of RMRs may be bound to a single LMR. The bind 
operation produces a key with which remote nodes may 
identify the region. Only remote operations that specify the 
proper key are allowed to access the region. To revoke the 
key, the consumer can unbind the RMR. Using this 
mechanism, the application can easily restrict remote access 
to a region. 

III. DESIGN OF THE REFERENCE IMPLEMENTATION 

A. Independent Architecture 

1) Platform Independent 
The reference implementation used a platform independent 

interface for all operating system or processor architecture 
functions. Even the standard C runtime routines were 
abstracted out and accessed through the platform independent 



 
 

 

interface. This has resulted in a highly portable 
implementation that may be used in either popular 
environments such as Linux and Windows or more 
specialized embedded operating systems. 

2) Chip Independent 
The implementation was careful not to use any chip 

dependent features of the IBA adapters on which the software 
runs. Rather the implementation can be compiled to work 
with either the IBM or Mellanox Verbs interface. Both of 
these APIs have been released to the public and have become 
the two most popular Verbs interfaces. By not using chip 
specific features, the reference implementation will be 
portable to future generations of adapters providing either 
Verbs interface.  

B. Design of the uDAPL Event Subsystem 

The event system is the heart of the DAT model. Nearly all 
API invocations are asynchronous in nature, the results are 
returned in an event.  Completions are logically grouped into 
Event Streams, which feed into Event Dispatchers. Event 
Stream notifications include data transfer completions, 
connection requests, connection establishment, disconnect 
notifications, memory bind completions, asynchronous errors, 
and software generated events. 

An Event Dispatcher will organize events from one or 
more streams into a single queue; events can be dequeued 
exactly once. Consumers can either poll or wait on an event 
dispatcher. They can also wait on a set of Event Dispatchers 
using a Consumer Notification Object (CNO). A CNO can 
optionally trigger an OS specific synchronization object 
through the mechanism of OS Proxy Wait Objects. 

Since uDAPL was implemented upon an IBA Verbs 
interface, the reference implementation needed to implement 
the abstract objects described in the uDAPL specification with 
the resources found in the IBA.  Events in IBA are either 
delivered through user calls (software generated Events), 
through IBA Completion Queues (data transfer completions 
and memory bind completions), or through pre-registered 
callbacks (everything else).  Event Dispatchers in the uDAPL 
reference implementation must incorporate all of these event 
stream types into a common interface for the user.  Issues that 
arose in this incorporation include: 

• the nature of event storage 
• supporting a threshold in dat_evd_wait() 
• inter-producer synchronization around event 

storage 
• "impedance matching" between blocking and 

callback models 
We discuss each of these in turn. 
1) The Nature of Event Storage 

The information associated with an event (e.g. the amount 
of data received for a receive data transfer operation) must be 
stored somewhere between when the event is generated and 
when the user retrieves it.  For CQ associated events, that 

information may in most cases be left on the CQ, and the 
operation of dequeueing from the EVD implemented by 
polling the CQ.  For non-CQ associated events, that 
information must be stored in a uDAPL defined structure on 
the EVD. Because uDAPL is intended for high-performance 
applications, it is important to minimize the synchronization 
overhead associated with that structure. 

In the reference implementation, that structure is a 
producer/consumer circular queue.  When an event is 
generated (via callback or dat_evd_post_se()) the producer 
enqueues it; when an event is requested by the user, it is 
dequeued. These queues are implemented directly upon 
architecture specific atomic operations, abstracted through 
our platform independent layer; no locking is required for 
enqueueing or dequeueing an event.  The circular queue 
avoids the necessity of explicit synchronization between the 
event producer and the event consumer.  Each may operate 
independently unless the queue is empty (no events are 
available) or full (an overflow asynchronous error is 
generated). 

The event consumption operation (dat_evd_dequeue() or 
dat_evd_wait()) must check both this internal queue and the 
contents of the CQ associated with the EVD.  Because 
information may sometimes be copied from the CQ to the 
EVD's circular queue (see "Supporting a threshold in 
dat_evd_wait() below), the EVD storage is checked first to 
maintain ordering of completions posted to the CQ. 

2) Supporting a threshold in dat_evd_wait() 
One important difference in semantics between IBA and 

uDAPL are dat_evd_wait()'s arguments threshold and nmore.  
The threshold input parameter indicates how many events are 
required before the thread blocking in dat_evd_wait() should 
be awoken.  The nmore output parameter indicates, at function 
exit, how many events remain to be dequeued from the EVD.   

IBA has no related concepts; either of blocking for a 
specified number of events, or of "peeking" at a CQ to 
determine how many CQEs are present on it at any given 
time.  This has two important implications: 

1. On IBA the full benefit of thresholding is not 
achievable, and  

2. any requirement for the number of elements on a 
CQ can only be satisfied by dequeueing all 
elements from the CQ. 

The DAT model requires this information in the 
implementation of dat_evd_wait() for two reasons.  When a 
notification is received that there are completions available on 
the CQ, the number of completions is not specified.  Hence all 
entries must be dequeued from the CQ to determine if the 
number of available entries is greater than that of the passed 
threshold and thus the dat_evd_wait() call may return.  
Additionally, upon return from the dat_evd_wait() call, the  
nmore parameter must be filled in with the number of entries 
remaining on the EVD.  This disallows the obvious 
optimization of avoiding the copy when the threshold is equal 



 
 

 

to 1. 
For these reasons, dat_evd_wait() is implemented as 

copying all available data to the internal EVD circular buffer, 
and then testing its exit conditions and returning its 
information based on that circular buffer.  
dat_evd_dequeue(), which does not have dat_evd_wait()'s 
event counting requirements, simply checks both the EVD 
and the CQ, dequeueing directly from the CQ into the output 
data structure if appropriate. 

3) Inter-Event Producer Synchronization 
Because, unlike CQs, an EVD may have multiple 

competing producers for event streams associated with it, 
inter-producer synchronization becomes relevant.  If multiple 
threads may be enqueueing events to the EVD at the same 
time, we must synchronize access to the producer side of the 
queue.   Alternatively, if, because of the nature of the EVD, 
only one producer will be acting on it at a time, we may avoid 
that synchronization overhead.  In the DAT model, the usage 
of EVDs is fully specified when they are created.  Thus it is 
possible to determine, at EVD creation time, whether or not 
this synchronization overhead will be required. 

The classes of threads that will be delivering events to the 
EVD circular queue include callbacks from the IBA Verbs 
layer and user threads in dat_evd_wait() copying data as 
described above1.  In general, the appropriate criteria for 
inclusion of the synchronization overhead is whether or not 
multiple threads will be delivering events to the EVD circular 
queue at the same time.  In other words, if callbacks from the 
IBA verbs layer may be occurring simultaneously with each 
other, or with user threads copying data from CQ to EVD, 
producer side locking on the EVD queue should be enforced. 

Because the general thread context model for user 
callbacks within IBA Verbs implementations is often not 
completely specified, and because the non-CQ related event 
streams are usually not performance critical, we chose to 
enable producer side locking whenever any non-CQ related 
event streams are associated with the EVD. 

4)  “ Impedance Matching”  between Blocking and 
Callback Models 

Most systems for data transmission have some way to yield 
the CPU when it is not needed, and reclaim it when an 
operation completes.  In uDAPL this is done through 
blocking; the functions dat_evd_wait() and dat_cno_wait() 
take an existing user thread and block it until the next event 
arrives.  In IBA, a callback is specified, and the IBA verbs 
layer calls that callback when the event occurs. 

The callback model fits well into the goal of minimizing 
context switches in a kernel context.  The hardware 
mediating the data transmission will interrupt the CPU when 
the data transmission completes, and the callback thread may 
 

1 The copying of data from the CQ to the EVD is the responsibility of the user 
thread rather than the CQ notification thread to simplify the synchronization 
around the CQ because of the exclusionary requirements of the DAT API 

be invoked directly from that interrupt thread.  In contrast, 
the blocking model is better suited to the goal of minimizing 
context switches in a user model.  At least one context switch 
will be required from the hardware interrupt (since interrupt 
threads will not call into user space).  That context switch 
could be to a provider thread, which returns to user space and 
does a pre-registered callback, or it could be to a user thread 
previously blocked in the kernel.  Simplicity of the user 
programming model argues in favor of the blocking 
approach; all work is done within threads the user controls, 
and no extra thread resources need to be managed by the 
provider.   

The above paragraph describes the ideal implementation, 
of a uDAPL provider implemented directly upon the data 
transmission hardware. The reference implementation is 
implemented on top of the IBA verbs, and hence must 
translate between the callback model of IBA and the blocking 
model of uDAPL.  It does this through internal wait objects 
inside of both EVDs and CNOs.  These objects are OS-
dependent, and are mediated through our platform 
independent layer.  The IBA callback wakes up any thread(s) 
blocked on the EVD or CNO; those threads then return from 
their blocking call to dat_evd_wait() or dat_cno_wait(). 

For event streams for which these callbacks deliver the data 
associated with events (non-CQ affiliated event streams) these 
callbacks must be always enabled.  If they do not occur, there 
is no way for a caller to the EVD to know that an event has 
occurred. However, for CQ affiliated event streams, the only 
function of these callbacks is waking up blocked user threads, 
and if there is no need for this function (because no user 
threads are blocked) they should be disabled.  

Ideally, this would mean that CQ callbacks were enabled 
upon entry to either dat_evd_wait() or dat_cno_wait() and 
disabled upon exit.  In the case of EVDs this is in fact exactly 
what the reference implementation does.  Unfortunately, 
because an arbitrarily large, and dynamically varying, number 
of EVDs may be associated with a CNO, this algorithm does 
not scale very well for CNOs.  Thus if an EVD has an 
associated CNO, the CQ associated with that EVD has its 
callbacks always enabled. 

C. Design and Tradeoffs of the Connection Model 

An Endpoint (EP) is the fundamental channel abstraction 
in the uDAPL API. An application communicates and 
exchanges data using an Endpoint. Most of the time 
Endpoints are explicitly allocated, but there is an exception 
whereby a connection event can yield an Endpoint as a side 
effect.  

The connection model for uDAPL is strictly a client-server 
model. Clients initiate connections using an Endpoint. 
Servers advertise connection points using one of two types of 
Service Points: a Public Service Point (PSP), or a Reserved 
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Service Point (RSP). A PSP creates a persistent listener that 
can service any number of connections, while a RSP listens 
for a single connection and connects the EP when it is 
created. 

All DAT connections are point to point; there is no notion 
of unicast versus multicast addressing in the DAT model. 
This may appear in future work as most transports provide 
some support for multicast addresses. 

1) Mapping an Endpoint to an InfiniBand QP 
The properties of a uDAPL EP do not exactly match those 

of an IBA QP. The differences introduce constraints that are 
not obvious. There are three primary areas of conflict between 
the DAT and IBA models: 

• EP and QP creation 
• Provider created passive side EPs 
• Connection timeouts 

a)  EP and QP creation 

The most obvious difference between an EP and a QP is the 
presence of a protection handle when an object is created. 
IBA requires a Protection Domain be specified when a QP is 
created. In uDAPL, a Protection Zone (PZ) maps to an IBA 
Protection Domain. uDAPL does not require a PZ to be 
present when an EP is created, and that introduces two 
problems: 

• If the PZ is not provided when an EP is created, a 
QP will not be bound to the EP until 
dat_ep_modify()  is used to assign the PZ. A PZ is 
required before RECV requests can be posted and 
before a connection can be established. 

• If a uDAPL consumer changes the PZ on an EP 
before it is connected, uDAPL must release the 
current QP and create a new one with a new 
Protection Domain. 

b) Provider created passive side EPs 

The second area where the uDAPL and IBA models 
conflict is a direct result of the requirement to specify a 
Protection Domain when a QP is created. 

uDAPL allows a PSP to be created in such a way that an 
EP will automatically be provided to the user when a 
connection occurs. This is not critical to the uDAPL model 
but in fact does provide some convenience to the user. IBA 
provides a similar mechanism, but with an important 
difference: IBA requires the user to supply the Protection 
Domain for the passive connection point. This Protection 
Domain is supplied to all QPs created as a result of 
connection requests. In contrast, uDAPL mandates a NULL 
PZ and requires the user to change the PZ before using the 
EP. 

The reference implementation does not use the IBA 
mechanism because of the problems cited. When a connection 
request arrives, if the PSP has set the appropriate flag to 
create an EP upon connection, the connection handler will 

create the EP and hand it off to the user process through the 
event mechanism. The EP is created without binding it to a 
QP. The uDAPL specification requires the user to modify the 
EP by binding a PZ to it before dat_cr_accept() can complete 
the connection, so a QP will be bound to the EP in a 
dat_ep_modify() operation. 

c) Connection Timeouts 

The third difference between the uDAPL and IBA models 
has to do with timeouts on connections. InfiniBand does not 
provide a way to specify a connection timeout, it will wait 
indefinitely for a connection to occur. This is implemented 
using a separate timeout thread that cancels the connection 
request and awakens a blocked thread, if there is one waiting. 

2) Connecting Endpoints 
To help explain the connection model, a description of the 

steps taken to establish a connection is given below. This 
example will discuss the various EP states and reveal the 
mechanisms used when mapping uDAPL semantics to IBA. 
The differences between connecting to a PSP and connecting 
to a RSP will be noted. 

A server application will create a PSP with 
dat_psp_create().  The interesting parameters to this function 
include: the connection qualifier, which provides a unique 
identifier for incoming connections (similar to a 
Transmission Control Protocol (TCP) port number), the EVD 
handle, where connection events will be reported, and the 
PSP flags, indicating if the user or the implementation will 
provide EPs for connections. This is an asynchronous call, the 
application may poll or block on the connection EVD until a 
connection request arrives. 

When a connection is made to a RSP service point, the 
reception of a connection request will cause it to refuse all 
further connections. 

A connection request is initiated when the client 
application invokes dat_ep_connect(). Like most uDAPL 
functions, this is asynchronous and the completion will arrive 
as an event on the connection EVD. The EP will be put into 
the CONNECTION_PENDING state until the CONNECTED 
event arrives. 

A connection request will arrive on the server node 
resulting in a callback to the PSP connection handler routine. 
The request will be verified by the consumer and rejected if a 
problem is detected. Otherwise, connection processing begins. 

Once a connection request is in progress, a Connection 
Request (CR) is created by the uDAPL implementation. A 
Service Point is simply a mechanism to receive connection 
requests and provide events to the application. The 
application will in fact interact with a CR when establishing a 
connection. The CR contains the address from which the 
request originated along with any private data sent in the 
connection request. 

If the psp_flags specify DAT_PSP_PROVIDER_FLAG, an EP 
will be created and attached to the CR at this time. The CR is 



 
 

 

then delivered to the application in an event. 
The application will supply an EP, or modify the provided 

EP to the correct PZ. It may elect to change other EP 
parameters as well. The application will then invoke 
dat_cr_accept() to accept the connection. 

The accept operation results in a CONNECTED event on 
the client node, which in turn will send a message back to the 
server verifying the connection and generating a 
CONNECTED event on the server. Either side is now free to 
send data on the EP. 

D. Addressing and Naming 

The uDAPL Specification calls for a DAT_IA_ADDRESS_PTR 
to be an Internet Protocol (IP) address, either IPv4 or IPv6. 
On most systems this is implemented as struct sockaddr. This 
discussion focuses on the Linux implementation, and can be 
easily adapted to other systems. 

InfiniBand addressing uses a dynamically assigned address 
called a LID; often referred to SLID for Source LID, and 
DLID for Destination LID. LIDs are bound to GIDs, which 
are similar to MAC Addresses used by Ethernet adapters. 
Using the IBM Access API, the application must know the 
remote GID in order to connect. Mapping an IP address to a 
GID is necessary to meet the requirements of naming. 

   The long-term solution to resolving a uDAPL address, 
which is in fact an IP address, to an IBA address (a GID) is to 
make use of an IPoIB implementation. The reference 
implementation has defined a simple API to access the 
mapping information maintained by an IPoIB 
implementation. However, IPoIB implementations are not yet 
common. Until IPoIB is in widespread use, the uDAPL 
implementation provides a simple name service facility. This 
depends on two things: valid IP addresses registered and 
available to standard name service calls, such as 
gethostbyname(), and a name/GID mapping file. 

   IP addresses may be set up by system administrators 
simply by editing the values into the /etc/hosts file.  

   A simple mapping of names to GIDs is maintained in the 
an ibhosts file, currently located at /etc/dapl/ibhosts. The 
format of the file is: 

   <hostname>       0x<GID Prefix> 0x<GUID> 
 

For example: 
   dat-linux3-ib0p0 0xfe800000   0x1730000003d11 
   dat-linux3-ib0p1  0xfe800000   0x1730000003d11 
   dat-linux3-ib1   0xfe800000   0x1730000003d52 
   dat-linux5-ib0   0xfe800000   0x1730000003d91 
 
For each hostname, there must be mapping from hostname 

to IP address. We have adopted the convention of naming 
each IBA interface using the following format: 

       <node_name>-ib<device_number>[port_number] 
Such conventions are outside the scope of the uDAPL 
standard and are completely up to the local administrator. In 

the above example we can see that the machine dat-linux3 
has three IBA interfaces with two ports on one HCA and 
another port on a second HCA.  

E. Design and tradeoffs of Data Transfer Operations 

In IBA, operations are termed work request elements, and 
vendors are free to implement their own unique formats. The 
reference implementation needed to convert from the generic 
format of a uDAPL operation to these specialized formats. 
The result is a straightforward translation of the 
DAT_LMR_TRIPLET to a particular vendor’s work request 
format. Slightly different translations are performed 
depending upon the Verbs API being used.  

To help consumers match completion events to a 
corresponding DTO, both uDAPL and the IBA allow 
consumers to insert a cookie value into the DTO that is 
returned in the subsequent completion event. uDAPL 
consumers specify these DAT_DTO_COOKIE values when 
posting a DTO. Rather than store the consumer’s 
DAT_DTO_COOKIE directly in the work request element, the 
uDAPL reference implementation must store a pointer to its 
own internal cookie structure, a DAPL_DTO_COOKIE. Different 
values will be placed in the cookie, according to the type of 
operation and the type of completion data required. This is a 
simple scheme to associate uDAPL data with the DTO and 
corresponding completion event.  

One of the fields held in the DAPL_DTO_COOKIE structure is 
a length, necessary to bridge another gap between uDAPL 
and IBA. uDAPL specifies that all DTO operations return a 
length; IBA only returns a length for receive operations. 
Therefore uDAPL must keep track of send and RDMA write 
lengths and return them in the appropriate completion events. 

At first DAPL_DTO_COOKIE structures were allocated during 
the posting of a DTO. An obvious performance improvement 
was to create a pre-allocated pool of cookie structures to 
minimize the time on the performance critical path for 
posting an operation. 

F. Memory Management Design 

The memory management subsystem allows consumers to 
register and unregister memory regions. Registered regions 
are needed for DTO operations. 

In the reference implementation, uDAPL LMRs are 
mapped onto IBA Memory Regions. LMR creation produces 
two values: a DAT_LMR_CONTEXT and a DAT_LMR_HANDLE. 
The DAT_LMR_CONTEXT value is used to uniquely identify the 
LMR when posting a DTO. These DAT_LMR_CONTEXT values 
are mapped directly onto IBA L_KEYs. The uDAPL API 
exposes these DAT_LMR_CONTEXT values to consumers to 
allow sharing of memory registrations between multiple 
address spaces (e.g. between processes). The mechanism by 
which such a feature would be implemented does not yet 
exist. Consumers may be able to take advantage of this 
feature on future transports. 

Since some uDAPL functions need to translate a 



 
 

 

DAT_LMR_CONTEXT value into a DAT_LMR_HANDLE (e.g. 
dat_rmr_bind()), a dictionary data structure was used to 
associate DAT_LMR_CONTEXT values with their corresponding 
DAT_LMR_HANDLE.  Each time a new LMR is created, the 
DAT_LMR_HANDLE is inserted into the dictionary with the 
associated DAT_LMR_CONTEXT as the key. 

A hash table was chosen to implement this data structure. 
Since the L_KEY values are being used by the RDMA 
adapter hardware for indexing purposes, the distribution is 
expected to be uniform and hence ideal for hashing.  

The reference implementation maps RMR objects onto IBA 
Memory Windows. The uDAPL API for binding an LMR to a 
RMR is dat_rmr_bind(). Among this functions parameters is 
a DAT_LMR_CONTEXT value (this is actually a member of the 
DAT_LMR_TRIPLET structure). As described in the IBA 
Specification, the Bind Memory Window verb takes both an 
L_KEY and Memory Region Handle among other 
parameters. Therefore the dictionary data structure described 
above must be used to map a DAT_LMR_CONTEXT (L_KEY) 
value to a DAPL_LMR so that the needed Memory Region 
handle can be retrieved. Binding a RMR to an LMR produces 
a DAT_RMR_CONTEXT. DAT_RMR_CONTEXT values are mapped 
to IBA R_KEYs. 

G. Future Functionality and Optimizations 

The uDAPL reference implementation has been provided 
in a public repository to enable vendors to adapt this work to 
their RDMA capable devices. The reference implementation 
is intended for use on multiple operating systems, multiple 
Verbs interfaces, and multiple chip sets. As such, it must use 
generic and portable techniques that may not always yield the 
highest performance implementation. 

Part of the reference implementation includes a 
documentation repository of design notes, specifications, and 
a document advising vendors of functional elements that are 
best implemented in a driver and uDAPL optimizations 
possible by OS or chip specific functionality which has been 
deemed undesirable for the reference implementation. We 
divide functionality changes into two categories 

• Areas in which functionality is lacking in the 
reference implementation.  

• Areas in which the functionality is present in the 
reference   implementation, but needs 
improvement. 

We divide performance improvements into three types: 
• Reducing context switches 
• Reducing copying of data1 
• Eliminating subroutine calls 

An area of missing functionality in the reference 
implementation bears mentioning here. 

 
1 Note that the data referred to in "reducing copying of data" is the meta data 

describing an operation (e.g. scatter/gather list or event information), not the 
actual data to be transferred.  No data transfer copies are required within the 
uDAPL reference implementation. 

The uDAPL share memory model can be characterized as a 
peer-to-peer model since the order in which consumers 
register a region is not dictated by the programming interface. 
When creating a LMR, uDAPL consumers may share 
registration resources by setting the memory type parameter 
to DAT_MEM_TYPE_SHARED_VIRTUAL and specifying a shared 
memory identifier in the region description. If a region with 
the given identifier does not exist, one will be created. 
Otherwise, the resources used by the existing region will be 
shared with the new registration. 

In contrast, the IBA shared memory interface requires the 
shared region to first be registered using the standard memory 
registration verb.  All subsequent registrations must use the 
shared memory registration verb, and provide to that verb the 
memory region handle returned from the initial call.  This 
means that the first process to register the memory must 
communicate the memory region handle it receives to all the 
other processes that wish to share this memory. This is a 
master-slave model of shared memory registration; the initial 
process (the master), is unique in its role, and it must tell the 
slaves how to register the memory after it. 

To translate between these two models, uDAPL 
implementations are required to determine the first 
registration of a shared region and map from a shared 
memory identifier to a memory region handle across 
processes. To satisfy these requirements, uDAPL must 
maintain a system wide database to store this information. 
Since multiple processes will concurrently access the 
database, inter-process synchronization mechanisms are 
needed to protect its integrity. If a process exits abnormally, 
its memory regions will be deregistered. The database must be 
informed of these occurrences and update any relevant 
entries. 

The appropriate place to store this information is in the IA 
hardware’s associated device driver. As part of the operating 
system kernel, the driver is well positioned to arbitrate access 
to the database between multiple processes. The driver can 
also easily track a the existence of processes (a "close()" will 
be received when a process exits). Since the reference 
implementation was able to implement all other features in 
user space, we decided to leave the implementation of shared 
memory to the adaptor vendors.  

IV. SOURCEFORGE.NET DEVELOPMENT 

This was the authors’  first experience setting up and 
developing a project on SourceForge.net, the host of many 
popular open source projects. Developing on SourceForge.net 
has been a worthwhile experience and has clearly benefited a 
large number of individuals and companies. 

One of the stated goals of the DAT Collaborative was to 
provide an interface that would be freely available to anyone 
who wanted it and useable in any application or product 
without intellectual property concerns or other encumbrances. 
The reference implementation is distributed under the IBM 



 
 

 

Common Public License (CPL) to provide the most flexibility 
for those who wish to incorporate the reference 
implementation in their own work. Since the entire project 
can be downloaded anonymously at any time, there is no 
record of how many people have looked at the code. However, 
we have received emails from fifteen different institutions 
that are exploring or implementing software based on the 
reference implementation. These emails range from questions 
on design and implementation to bug fixes and code snippets, 
which project members have happily incorporated. The 
combination of an amenable licensing policy and transparent 
development environment has contributed to uDAPL’s 
popularity. 

V. PERFORMANCE MEASUREMENTS 

Measurements were conducted to gauge the level of 
performance achievable using the uDAPL reference 
implementation and for comparison to a native Verbs 
implementation. We choose to measure the following 
performance characteristics: 

• CPU utilization: The amount of time necessary to 
post a DTO to the hardware and process the 
corresponding completion from the hardware. 
(units: time/operation) 

• operation throughput per physical port: The 
number of operations that can be executed in a 
given amount of time. (units: operations/time) 

• bandwidth per physical port: The amount of data 
that can be transferred on a single port in a         
given amount of time. (units: data/time) 

• latency:  The period of time between posting a 
DTO and posting the corresponding completion to 
an EVD. (units: time) 

Two tools were developed to support this effort: one 
operating at the uDAPL API level and another operating at 
the Mellanox Verbs API level. Both tools were capable of 
measuring all of the performance metrics described above 
with the exception of operation throughput. In this case, only 
the uDAPL test tool was able to gather these measurements. 
The test programs were slightly different in other ways due to 
semantic differences between the uDAPL API and the 
Mellanox Verbs API. Despite these difference, comparisons 
between these measurements are still valid because each tool 
defined the performance criteria in the same way. 

The tests were conducted on  
• Two SuperMicro machines each with a 

ServerWorks Grand Champion LE chipset, 1.8 
Ghz Intel Xeon CPU, and 512 MB RAM 

• Two 4x Mellanox HCAs (one in each machine) 
connected point to point 

• RedHat 7.3 2.4.18-10 UP kernel 
The results are shown in the figures below. 
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Figure 3: CPU Utilization 

 
 

0

50000

100000

150000

200000

250000

300000

0 32768 65536 98304 131072

O
P

S
 (

op
er

at
io

ns
/s

ec
on

d)

Operation Size (bytes)

Key
Blocking RDMA read
Blocking RDMA write

Polling RDMA read
Polling RDMA write  

Figure 4: Operations per Second 
 
 

0

100

200

300

400

500

600

700

800

900

0 131072 262144 393216 524288 655360 786432 917504 1048576

B
an

dw
id

th
 (

M
B

/s
ec

)

Operation Size (bytes)

Key
Blocking RDMA read
Blocking RDMA write
Polling RDMA read

Polling RDMA write
Verbs RDMA write

 
Figure 5: Bandwidth 
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Figure 6: Latency 

 

These results show that the uDAPL reference 
implementation does add some overhead to a native Verbs 
interface. However, the overhead is relatively small and we 
believe that if the uDAPL API was implemented directly on 
the RDMA hardware as described above, this overhead would 
be eliminated.  

VI. CONCLUSION 

The uDAPL API is a vendor independent interface for 
RDMA transports. The design of the uDAPL reference 
implementation provides interesting lessons on how to 
implement a generic API for RDMA networks.  
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VII. APPENDIX A-UDAPL API V1.0 

DAT_RETURN 
dat_ia_open( 

IN const DAT_NAME_PTR     ia_name_ptr, 
IN   DAT_COUNT      async_evd_min_qlen, 
INOUT  DAT_EVD_HANDLE   *async_evd_handle, 
OUT   DAT_IA_HANDLE    *ia_handle ); 

 
DAT_RETURN 
dat_ia_close( 
 IN  DAT_IA_HANDLE     ia_handle, 
 IN  DAT_CLOSE_FLAGS    ia_flags ); 
 
DAT_RETURN 
dat_ia_query( 
 IN  DAT_IA_HANDLE     ia_handle, 
 OUT DAT_EVD_HANDLE    *async_evd_handle, 
 IN  DAT_IA_ATTR_MASK    ia_attr_mask, 
 OUT  DAT_IA_ATTR      ia_attributes, 
 IN  DAT_PROVIDER_ATTR_MASK   provider_attr_mask, 

OUT  DAT_PROVIDER_ATTR   provider_attributes ); 
 

DAT_RETURN 
dat_set_consumer_context( 

IN  DAT_HANDLE      dat_handle, 
IN  DAT_CONTEXT      context ); 
 

DAT_RETURN 
dat_get_consumer_context( 

IN  DAT_HANDLE      dat_handle, 
OUT DAT_CONTEXT      *context ); 
 

DAT_RETURN 
dat_get_handle_type( 

IN  DAT_HANDLE      dat_handle, 
OUT DAT_HANDLE_TYPE    *handle_type );  
 

DAT_RETURN 
dat_cno_create( 

IN  DAT_IA_HANDLE     ia_handle, 
IN  DAT_OS_WAIT_PROXY_AGENT agent, 
OUT DAT_CNO_HANDLE    *cno_handle ); 
 

DAT_RETURN 
dat_cno_free( 

IN  DAT_CNO_HANDLE    cno_handle ); 
 

DAT_RETURN 
dat_cno_wait( 

IN  DAT_CNO_HANDLE    cno_handle, 
IN  DAT_TIMEOUT      timeout, 
OUT DAT_EVD_HANDLE    *evd_handle ); 
 

DAT_RETURN 
dat_cno_modify_agent( 



 
 

 

IN  DAT_CNO_HANDLE    cno_handle, 
IN  DAT_OS_WAIT_PROXY_AGENT  agent ); 
 

DAT_RETURN 
dat_cno_query( 

IN  DAT_CNO_HANDLE    cno_handle, 
IN  DAT_CNO_PARAM_MASK   cno_param_mask, 
OUT DAT_CNO_PARAM    *cno_param ); 
 

DAT_RETURN 
dat_evd_create( 

IN  DAT_IA_HANDLE     ia_handle, 
IN  DAT_COUNT       evd_min_qlen, 
IN  DAT_CNO_HANDLE    cno_handle, 
IN  DAT_EVD_FLAGS     evd_flags, 
OUT DAT_EVD_HANDLE    *evd_handle ); 
 

DAT_RETURN 
dat_evd_free( 

IN  DAT_EVD_HANDLE    evd_handle ); 
 

DAT_RETURN 
dat_evd_query( 

IN  DAT_EVD_HANDLE    evd_handle, 
IN  DAT_EVD_PARAM_MASK  evd_param_mask, 
OUT DAT_EVD_PARAM     *evd_param ); 
 

DAT_RETURN 
dat_evd_modify_cno( 

IN  DAT_EVD_HANDLE    evd_handle, 
IN  DAT_CNO_HANDLE    cno_handle ); 
 

DAT_RETURN 
dat_evd_enable ( 

IN  DAT_EVD_HANDLE    evd_handle ); 
 

DAT_RETURN 
dat_evd_disable ( 

IN  DAT_EVD_HANDLE    evd_handle ); 
 

DAT_RETURN 
dat_evd_resize ( 

IN  DAT_EVD_HANDLE    evd_handle, 
IN  DAT_COUNT       evd_min_qlen ); 

 
DAT_RETURN 
dat_evd_wait ( 

IN  DAT_EVD_HANDLE    evd_handle, 
IN  DAT_TIMEOUT      timeout, 
IN  DAT_COUNT       threshold, 
OUT DAT_EVENT       *event, 
OUT DAT_COUNT       *nmore ); 
 

DAT_RETURN 
dat_evd_dequeued( 

IN  DAT_EVD_HANDLE    evd_handle, 
OUT DAT_EVENT       *event ); 

 
DAT_RETURN 
dat_evd_post_se( 
 IN  DAT_EVD_HANDLE    evd_handle, 
 IN const DAT_EVENT      *event ); 
 
DAT_RETURN 
dat_psp_create( 
 IN  DAT_IA_HANDLE     ia_handle, 
 IN  DAT_CONN_QUAL     conn_qual, 
 IN  DAT_EVD_HANDLE    evd_handle, 
 IN  DAT_PSP_FLAGS     psp_flags, 
 OUT DAT_PSP_HANDLE    *psp_handle ); 

 
DAT_RETURN 
dat_psp_free( 
 IN  DAT_PSP_HANDLE    *psp_handle ); 
 
DAT_RETURN 
dat_psp_query( 
 IN  DAT_PSP_HANDLE     *psp_handle, 

IN  DAT_PSP_PARAM_MASK   psp_param_mask, 
OUT DAT_PSP_PARAM      *psp_param ); 

 
DAT_RETURN 
dat_rsp_create( 
 IN  DAT_IA_HANDLE      ia_handle, 
 IN  DAT_CONN_QUAL      conn_qual, 
 IN  DAT_EP_HANDLE      ep_handle, 
 IN  DAT_EVD_HANDLE     evd_handle, 
 OUT DAT_RSP_HANDLE     *rsp_handle ); 
 
DAT_RETURN 
dat_rsp_free( 
 IN  DAT_RSP_HANDLE     rsp_handle ); 
 
DAT_RETURN 
dat_rsp_query( 
 IN  DAT_RSP_HANDLE     rsp_handle, 

IN  DAT_RSP_PARAM_MASK   rsp_param_mask, 
OUT DAT_RSP_PARAM      *rsp_param ); 

 
DAT_RETURN 
dat_cr_query( 
 IN  DAT_CR_HANDLE      cr_handle, 
 IN  DAT_CR_PARAM_MASK    cr_param_mask, 
 OUT DAT_CR_PARAM      *cr_param ); 
 
DAT_RETURN 
dat_cr_accept( 
 IN  DAT_CR_HANDLE      cr_handle, 
 IN  DAT_EP_HANDLE      ep_handle, 
 IN  DAT_COUNT        private_data_size, 
 IN const DAT_PVOID       private_data ); 
 
DAT_RETURN 
dat_cr_reject( 
 IN  DAT_CR_HANDLE      cr_handle ); 
 
DAT_RETURN 
dat_cr_handoff( 
 IN  DAT_CR_HANDLE      cr_handle, 
 IN  DAT_CONN_QUAL      handoff ); 
 
DAT_RETURN 
dat_ep_create( 
 IN  DAT_IA_HANDLE      ia_handle, 
 IN  DAT_PZ_HANDLE      pz_handle, 
 IN  DAT_EVD_HANDLE     recv_evd_handle, 
 IN  DAT_EVD_HANDLE     request_evd_handle, 
 IN  DAT_EVD_HANDLE     connect_evd_handle, 
 IN  DAT_EVD_HANDLE     rmr_bind_evd_handle, 
 IN  DAT_EP_ATTR       *ep_attributes, 
 OUT DAT_EP_HANDLE      *ep_handle ); 
 
DAT_RETURN 
dat_ep_free( 
 IN  DAT_EP_HANDLE      ep_handle ); 
 
DAT_RETURN 
dat_ep_get_status( 
 IN  DAT_EP_HANDLE      ep_handle, 

OUT DAT_EP_STATE      *ep_state, 



 
 

 

OUT DAT_BOOLEAN       *recv_idle, 
OUT DAT_BOOLEAN       *request_idle ); 

 
DAT_RETURN 
dat_ep_query( 
 IN  DAT_EP_HANDLE      ep_handle, 
 IN  DAT_EP_PARAM_MASK    ep_param_mask, 
 OUT DAT_EP_PARAM      *ep_param ); 
 
DAT_RETURN 
dat_ep_modify( 
 IN  DAT_EP_HANDLE      ep_handle, 

IN  DAT_EP_PARAM_MASK    ep_param_mask, 
 IN  DAT_EP_PARAM      *ep_param ); 
 
DAT_RETURN 
dat_ep_connect( 
 IN  DAT_EP_HANDLE      ep_handle, 
 IN  DAT_IA_ADDRESS_PTR    remote_ia_address, 
 IN  DAT_CONN_QUAL      remote_conn_qual, 
 IN  DAT_TIMEOUT       timeout, 
 IN  DAT_COUNT        private_data_size, 
 IN const DAT_PVOID       private_data, 
 IN  DAT_QOS         qos, 
 IN  DAT_CONNECT_FLAGS    connect_flags ); 
 
DAT_RETURN 
dat_ep_dup_connect( 
 IN  DAT_EP_HANDLE      ep_handle, 
 IN  DAT_EP_HANDLE      dup_ep_handle, 
 IN  DAT_TIMEOUT       timeout, 
 IN  DAT_COUNT        private_data_size, 
 IN const DAT_PVOID       private_data, 
 IN  DAT_QOS         qos ); 
 
DAT_RETURN 
dat_ep_disconnect( 
 IN  DAT_EP_HANDLE      ep_handle, 
 IN  DAT_CLOSE_FLAGS     disconnect_flags ); 
 
DAT_RETURN 
dat_ep_post_send( 
 IN  DAT_EP_HANDLE      ep_handle, 
 IN  DAT_COUNT        num_segments, 
 IN  DAT_LMR_TRIPLET     *local_iov, 
 IN  DAT_DTO_COOKIE     user_cookie, 
 IN  DAT_COMPLERTION_FLAGS  completion_flags ); 
 
DAT_RETURN 
dat_ep_post_recv( 
 IN  DAT_EP_HANDLE      ep_handle, 
 IN  DAT_COUNT        num_segments, 
 IN  DAT_LMR_TRIPLET     *local_iov, 
 IN  DAT_DTO_COOKIE     user_cookie, 
 IN  DAT_COMPLERTION_FLAGS  completion_flags ); 
 
DAT_RETURN 
dat_ep_post_rdma_read( 
 IN  DAT_EP_HANDLE      ep_handle, 
 IN  DAT_COUNT        num_segments, 
 IN  DAT_LMR_TRIPLET     *local_iov, 
 IN  DAT_DTO_COOKIE     user_cookie, 
 IN  DAT_RMR_TRIPLET     *remote_buffer, 
 IN  DAT_COMPLERTION_FLAGS  completion_flags ); 
 
DAT_RETURN 
dat_ep_post_rdma_write( 
 IN  DAT_EP_HANDLE      ep_handle, 
 IN  DAT_COUNT        num_segments, 
 IN  DAT_LMR_TRIPLET     *local_iov, 

 IN  DAT_DTO_COOKIE     user_cookie, 
 IN  DAT_RMR_TRIPLET     *remote_buffer, 
 IN  DAT_COMPLERTION_FLAGS  completion_flags ); 
 
DAT_RETURN 
dat_pz_create( 
 IN  DAT_IA_HANDLE      ia_handle, 

OUT DAT_PZ_HANDLE      *pz_handle ); 
 
DAT_RETURN 
dat_pz_free( 

IN  DAT_PZ_HANDLE      pz_handle ); 
 
DAT_RETURN 
dat_pz_query( 

IN  DAT_PZ_HANDLE      pz_handle, 
IN  DAT_PZ_PARAM_MASK    pz_param_mask, 
OUT DAT_PZ_PARAM      *pz_param ); 

 
DAT_RETURN 
dat_lmr_create( 

IN  DAT_IA_HANDLE      ia_handle, 
IN  DAT_MEM_TYPE      mem_type, 
IN  DAT_REGION_DESCRIPTION  region_description,  
IN  DAT_VLEN        length, 
IN  DAT_PZ_HANDLE      pz_handle, 
IN  DAT_MEM_PRIV_FLAGS    mem_privileges, 
OUT DAT_LMR_HANDLE     *lmr_handle, 
OUT DAT_LMR_CONTEXT     *lmr_context,  
OUT DAT_VLEN        *registered_size, 
OUT DAT_VADDR        *registered_address ); 

 
DAT_RETURN 
dat_lmr_free( 
 IN  DAT_LRM_HANDLE     lmr_handle ); 
 
DAT_RETURN 
dat_lmr_query( 
 IN  DAT_LRM_HANDLE     lmr_handle, 

IN  DAT_LMR_PARAM_MASK    lmr_param_mask, 
OUT DAT_LMR_PARAM      *lmr_param ); 

 
DAT_RETURN 
dat_rmr_create( 

IN  DAT_PZ_HANDLE      pz_handle, 
OUT DAT_RMR_HANDLE     *rmr_handle ); 

 
DAT_RETURN 
dat_rmr_free( 

IN DAT_RMR_HANDLE      rmr_handle ); 
 
DAT_RETURN 
dat_rmr_query( 

IN  DAT_RMR_HANDLE     rmr_handle, 
IN  DAT_RMR_PARAM_MASK    rmr_param_mask, 
OUT DAT_RMR_PARAM     *rmr_param ); 

 
DAT_RETURN 
dat_rmr_bind( 

IN  DAT_RMR_HANDLE     rmr_handle, 
IN  DAT_LMR_TRIPLET     *lmr_triplet, 
IN  DAT_MEM_PRIV_FLAGS   mem_privileges, 
IN  DAT_EP_HANDLE      ep_handle, 
IN  DAT_RMR_COOKIE     user_cookie, 
IN  DAT_COMPLETION_FLAGS  completion_flags, 
OUT DAT_RMR_CONTEXT    *rmr_context ); 


