NIC-Based Reduction in Myrinet Clusters: Is It Beneficial?

Abstract

Reduction-to-one and reduction-to-all operations are
common operations in parallel and distributed sys-
tems. These operations are collective operations
which can involve many processes. It is therefore im-
portant to make these operations fast and efficient.
Some modern network interface cards (NICs) for sys-
tem area networks (SANs) have programmable proces-
sors which can be used to offload protocol processing
from the host processor. In this paper we investigate
the use of the NIC processor to improve the perfor-
mance of reduction operations. We implemented a
NIC-based reduction-to-one operation which can per-
form integer and floating point operations. The NIC-
based operation performs better than the traditional
host-based approach with up to a 1.19 factor of im-
provement.

1 Introduction

Reduction-to-one and reduction-to-all operations are
common operations in parallel and distributed sys-
tems. These operations are collective operations
which can involve many processes. It is therefore im-
portant to make these operations fast and efficient.
Research has been done to make these operations ef-
ficient by taking advantage of the particular charac-
teristics of the underlying architecture[6][10]. Some
modern network interface cards (NICs) for system
area networks (SANs) have programmable proces-
sors which can be used to offload protocol process-
ing from the host processor. Such implementations
not only allow efficient communication operations,
but also significant potential for overlap of computa-
tion with communication. Programmable NICs have
been used to improve the performance of certain op-
erations, as well as reduce the host involvement in the
operations allowing the host to perform other useful
computation[11][1][3][4][5]. However, none of these
implementations have explored the benefits of NIC-
based implementation for reduction for integer and
floating point data. In this paper we explore the ben-
efits of NIC-based support for reduction operations.
It is worthwhile to note that a large fraction of reduc-
tion operations are performed using small data sizes
of just a few elements. This means that a specialized
reduction operation which can efficiently perform the
operation on a small number of elements would be
useful.

We have implemented a NIC-based reduction-to-
one operation to perform integer and floating-point
operations on single 64 bit elements. In this paper we
describe the design and implementation of this oper-

ation as well as the evaluation of the implementation.
Our implementation achieves a 1.19 factor of improv-
ment over the traditional host-based implementation
when performing integer operations on a 16 node sys-
tem. We show that NIC-based reduction would be
also be beneficial for larger system sizes. Our initial
implementation and evaluation indicates that reduc-
tion operations can benefit by NIC-based implemen-
tations, and that further work should be done to im-
plement a more complete NIC-based reduction-to-one
and reduction-to-all operations.

The rest of this paper is organized as follows. In
the next section, we describe the general concept of
a NIC-based reduction operation. In Section 3 we
describe our design and implementation, followed by
the evaluation of our implementation in Section 4.
Finally we present our conclusions and future work
in Section 5.

2 NIC-Based Reduction

Before we describe the general concept of the NIC-
based reduction, we will briefly describe traditional
host-based reduction. In traditional host-based re-
duction in a message-passing system, messages are
passed between processes running at the host, and
the arithmetic operations are performed by the host
processors. When the operation is complete, the re-
sult of the operation will be located at one of the pro-
cesses. Processes participating in the reduction op-
eration are organized in a logical tree. Each process
receives reduction messages from its children, which
contain a partial result from the subtree of that child.
Next, each process performs the arithmetic operation
on its data and the partial results received from its
children. The process then sends this result to its
parent. Figure 1(a) shows a block diagram of a host-
based reduction operation across four nodes. Node 0
sends its data to Node 1. When Node 1 receives this
message it performs the arithmetic operation on the
data from Node 0 and its data. Node 1 then sends this
result to Node 3. Node 3 receives data from Node 2
and Node 1, and performs the arithmetic operation
on its own data and the data send by Nodes 1 and 2.

In a NIC-based reduction, each process sends its
data to the NIC. The NIC will then wait for the mes-
sages from its children, perform the arithmetic oper-
ation, and either send a message to its parent, or if
this node is the root of the tree and has no parent, it
will forward the result to the host. Figure 1(b) shows
a block diagram of a NIC-based reduction operation
across four nodes. Here we see each process sending
its data to the NIC. The NICs at Nodes 0 and 2 im-
mediately forward their data to their parents, since

(a) Host-based

(b) NIC-based

Figure 1: Block diagrams of Host-based and NIC-based reductions across four nodes. The circles represent the
host processor of a node and squares represent the NIC of a node.

they are leaf nodes. The NIC at Node 1 receives this
message and performs the arithmetic operation on
the data in the received message and the data sent
from the host. It then sends this result to the NIC
at Node 3. The NIC at Node 3 receives the messages
from the NICs at Nodes 1 and 2, performs the arith-
metic operation on this data and on the data sent
from the host. The NIC at Node 3 then forwards this
result to the host.

Notice that in the host-based reduction, messages
received at intermediate nodes, such as Node 2, are
received by the NIC, forwarded to the host, when
then performs the arithmetic operation and sends
another message which is send down to the NIC to
be transmitted. In the NIC-based case, because the
arithmetic operation is performed at the NIC, such
messages do not have to be passed between the NIC
and the host. Only the initial data needs to be passed
from the host to the NIC.

Another potential benefit of NIC-based reduction
is reduced host involvement in the operation. For
non-root nodes, once the host has sent its data to the
NIC, it no longer has to be involved in the reduction
operation. In the host-based case, the host process
must either wait to receive the messages from its chil-
dren, or it must be interrupted when the messages ar-
rive so that it can perform the arithmetic operation
on them. Since interrupts are time consuming opera-
tions, using these can lead to poor reduction latency,
so this may not be a good option. Waiting for mes-
sages from children may also not be a good option.
If processes are skewed, meaning that some processes
are performing the reduction operation while others
are lagging behind and have not yet started the oper-
ation, then intermediate processes may be waiting for
other processes in their subtree to catch up. This can
lead to poor overall application performance. By us-
ing NIC-based reduction operation the host need only
supply the data to the NIC. It can then proceed on
with other useful computation. This allows greater
overlap of computation and communication opera-
tions. Furthermore, because the host is not involved
in actually performing the operation, NIC-based re-
duction is a non-blocking operation. The root process

need not wait idle for the result after it sends its data
to the NIC. It can proceed with other computation
and only get the result from the NIC when it needs
it.

3 Design and Implementation

We implemented our NIC-based reduction opera-
tion as a modification to the GM message passing
system[9] which uses the Myrinet network|[2], a pop-
ular system area network for clusters. Before we de-
scribe the design and implementation of our NIC-
based reduction, we will give some background on
GM and Myrinet.

Myrinet is a high-performance full-duplex 2Gbps
network which uses NICs with programmable pro-
cessors. GM is a user-level message passing system
which uses the programmable NICs for much of the
protocol processing. GM consists of three compo-
nents: a kernel module, a user-level library, and a
control program which runs on the NIC processor.
When a user application wishes to send a message it
calls the appropriate function from the library. This
function constructs a send descriptor which describes
what data is to be sent and to which process to sent
it to. This descriptor is then written to the NIC us-
ing PIO. The NIC detects that a new descriptor has
been written and processes it, DMAing the data from
the host buffers and transmitting the message. In or-
der to receive a message, the process must provide
memory buffers in host memory into which the NIC
will DMA the message data. This is done by sending
the NIC a receive descriptor which describes such a
buffer. When the NIC receives a message it DMAs
the data into one of the buffers, then DMAs a noti-
fication to the host process that a message has been
received. The host process can either poll for these
notifications, or can block while waiting. In the latter
case the NIC will signal an interrupt after it DMAs
the notification.

We implemented a NIC-based reduction operation
by modifying GM version 1.6.3. Our implementation
can perform binary AND and OR operations, integer
SUM operations, and floating point SUM operations

on a single 64 bit data element. The host process
passes a descriptor to the NIC describing the reduc-
tion operation. As the NIC receives reduction mes-
sages from the network, it performs the arithmetic
operation using the data and stores the result. Once
messages from all of the children have been received
and processed, if the process initiating the reduction
operation is the root, the NIC DMAs a notification
to the host indicating that the reduction has com-
pleted and includes the result. Otherwise, the NIC
transmits the result to the parent NIC.

There are several design issues in this implemen-
tation, namely, dealing with unexpected messages,
dealing with multiple instances of the reduction op-
eration, generating and specifying the tree structure,
and performing floating point operations at the NIC.

Unexpected messages — Because processes are
not always synchronized, it is possible that some pro-
cesses may execute the reduction operation before
others. This means that a NIC may receive reduction
messages from other NICs before the host process has
initiated the reduction operation and send its data.
Since the host has not informed the NIC which pro-
cesses to expect data from, and what arithmetic op-
eration to perform, the NIC cannot process the mes-
sages. Such a message can be handled in one of two
ways. One option is to reject the message and request
that the sender retransmit it later. Another option is
for the NIC to store the data until the host has ini-
tiated that reduction operation. The first option can
lead to high latency because the messages need to be
retransmitted after a delay. While the second option
gives better performance, it requires NIC memory to
be allocated for storing this data. Since NIC memory
is limited, this may limit the number of messages that
can be stored. We used a hybrid approach where we
provided a limited number of buffers to store unex-
pected data, and reject messages once these are full.
When the NIC receives a descriptor from the host for
a reduction operation, it checks the list of unexpected
messages. If it finds any unexpected messages that
match, it performs the operation on that data, and
frees that unexpected message buffer.

Multiple instances of the reduction opera-
tion — When a non-root process initiates a reduc-
tion operation, after it sends the data to the NIC,
it can proceed with its computation. This means
that a process can initiate a second reduction oper-
ation before the NIC has completed the first. The
NIC needs to be able to process multiple instances of
the operations in the correct order. We did this by
keeping a queue of instances of reduction operations
for each host process. When a reduction message is
received from the network for a particular process,
the NIC searches the list of instances for that pro-
cess for a matching instance. If a matching instance
is found, the arithmetic operation is performed for
that instance, otherwise the message is an unexpected
message and is handled as described above.

Generating and specifying the tree structure
— The tree structure can be generated by either the
NIC or the host process. However, because NIC pro-
cessors are typically much slower than host proces-
sors, it would be more efficient to have the host con-
struct the tree and pass a list of children and the
parent to the NIC. We used this option. The send
descriptor was only 64 bytes so we are limited as to
the number of children that can be specified. Four
bytes are needed to specify each child or parent. Since
we also include the eight-byte data in the descriptor,
and 12 more bytes are used in the descriptor for other
fields, there is only room to specify nine children, and
one parent.

The shape of the reduction tree is also an impor-
tant design issue. The latency of the operation in-
creases with each level of the tree, so a very deep
tree may not be desirable. On the other hand, a very
shallow tree increases network contention as many
child nodes transmit their data to one parent node.
The exact shape of the tree depends on the perfor-
mance characteristics of the reduction operation. We
have not fully investigated the optimal tree shape for
NIC-based reduction. For our evaluation we used a
binomial tree because this is the most common tree
used for reduction operations, e.g., MPICH[7] uses a
binomial tree.

Performing floating point operations at the
NIC — The Myrinet NIC processors do not have
floating point units. So in order to be able to perform
floating point operations, we had to use floating point
operations implemented in software. We used the
SoftFloat[8] library for these operations. SoftFloat
is a free software implementation of the IEC/IEEE
Standard for Binary Floating-point Arithmetic, and
supports all functions dictated by the standard for
32, 64, and 128 bit floating point formats. We used
only the 64 bit format in our implementation.

4 Experimental Results

In this section, we evaluate our implementation on a
cluster of 16 quad-SMP 700MHz Pentium-IIT nodes
with 66MHz/64bit PCI. The nodes are connected to
a Myrinet2000 network. The NICs are PCI64B cards
with 2MB or memory and 133MHz LANai 9.1 pro-
cessors and are connected to a 16 ports of a 32 port
switch. We compare our NIC-based reduction im-
plementation, which is based GM version 1.6.3, to a
host-based reduction implementation using the same
version of GM.

To evaluate the performance of our implementa-
tion, we compare the time from when the last leaf
node in the tree initiates the operation until when
the root node receives the result. We performed the
test in the following manner. All of the nodes per-
form the reduction operation. As soon as the root
node completes the operation and receives the result,
it sends a message to the last leaf node of the tree.
Once this node receives the message it takes the time

45
40 r
o 35
(]
]
2 30 ¢
2y
c 25
)
©
- 20 - HB-int ——
NB-int -
15 & HB-float -
NB-float =
10 1 1
2 4 8 16

Number of Nodes
(a) Latency

1.2
1.15
11
1.05

0.95
0.9

0.85
0.8 {

0.75
0.7

Factor of Improvement

Number of Nodes
(b) Factor of Improvement

Figure 2: Comparison of NIC-based reduction (NB) and host-based reduction (HB) for integer (int) and floating-

point (float) operations

between when it initiated the reduction operation and
when it received the message, and subtracts off the
one way latency time. We take the average time over
10,000 iterations.

We performed the evaluation for 2, 4, 8 and 16
nodes using integer operations and floating-point op-
erations. Figure 2 shows the results of this evalu-
ation. The figures show the results for the integer
SUM operation. The results for the binary AND
and OR operations were virtually identical. Notice
also that the results for the host based floating point
and integer operations were very similar, so the two
lines on the graph are on top of one another. The
graphs show that for integer operations, the NIC-
based reduction performs better than the host-based
when the number of nodes is four or greater. We see
that the floating-point operations add some overhead,
but that the NIC-based reduction is still better than
the host based when the number of nodes is eight or
greater. We see up to a 1.19 factor of improvement
for the integer operation, and up to a 1.06 factor of
improvement for floating point operations.

The factor of improvement for the NIC-based re-
duction increases with the number of nodes. This
indicates that for larger system sizes, the NIC-based
reduction operation may be even more beneficial. In
order to investigate how the relative performance of
the NIC-based reduction would change with an in-
crease in system sizes we compared the performance
of the operations using a 1-degree tree, in other words
a chain, and varied the depth of the tree. Figure 3
show the results of this comparison. Notice again in
this graph that the lines for the host-based floating-
point and integer operations overlap. This graphs
shows us that as the depth of the tree increases the
latency of the host-based operation increases faster
than the NIC-based operation. In fact the time for
the host-based integer reduction increases at a rate
of 3.70us per level of depth faster than that for the

NIC-based integer reduction. Similarly, the latency of
the host-based floating-point reduction increases at a
rate of 2.64ps per level of depth faster than that of the
NIC-based floating-point reduction. We see that for
a tree of depth 1 the host-based reductions perform
better than the NIC-based reductions. Similarly, the
host-based floating-point reduction performs better
than the NIC-based floating-point reduction for the
tree of depth 2. We believe that this is because of the
overhead of the more complicated operation at the
slower NIC processor. As the depth increases, the
number of times messages have to be sent between
the NIC and the host at intermediate nodes increases
in the host-based reduction. Since the NIC-based re-
duction avoids this overhead, it performs better for
deeper trees.

As system sizes increase, and trees get larger, the
maximum degree of the tree also increases. To study
the effect of increasing the degree of a tree, we com-

180
160 F
140 |
® 120 t
2]
2 100 -
3
& 8ot
[6)
L HB-int
-int ——
40 NB-int -~
20 ¢ HB-float - |
0 ‘ _ NB-float —=
i1 3 5 7 9 11 13 15

Depth of Tree

Figure 3: Latency of NIC-based reduction (NB) and
host-based reduction (HB) for integer (int) and floating-
point (float) operations using a 1-degree tree (a chain)
of varying depth

180 :

HB-int ——
160 ¢ NB-int -~ 1
I HB-float = |
) 140 NB-float -
@ 120]
0
= 100 t 1
oy
c 807 i
[
T 60 |]
-
40 t]
e
O L L L L L L L

Degree of Tree

Figure 4: Latency of NIC-based reduction (NB) and
host-based reduction (HB) for integer (int) and floating-
point (float) operations using trees of depth 1 with vary-
ing degree

pared the latency of the NIC-based and host-based
reduction operations for trees of depth 1 with vary-
ing degree. Figure 4 shows the results of this test.
Again the host-based floating-point and integer lines
overlap. We see here that the host-based reductions
perform better than the NIC-based for any of the
trees. However the host-based integer reduction per-
forms only about 2.19us better, and the host-based
floating-point reduction performs only 3.63us better.
Furthermore, while there is a slight increase in over-
head for the NIC-based reductions as the degree of
the tree increases, it is quite small, 0.22ps per degree
for the integer reduction, and 0.24ps per degree for
the floating-point reduction. For trees such as bino-
mial trees the depth of the tree increases at the same
rate as the depth of the tree. This indicates that the
NIC-based reduction will continue to perform better
than the host-based reduction for large system sizes.

5 Conclusions and Future
Work

We have presented an initial implementation of a
NIC-based reduction operation, and evaluated it. We
found up to a 1.19 factor of improvement for integer
reduction and 1.06 factor of improvement for floating-
point reduction. Though this improvement is not
very large, the fact that the operation does not in-
volve the host allows useful computation at the host
can be overlapped with the reduction operation at
the NIC. We also give evidence that the NIC-based
reduction will perform better than host-based reduc-
tion in larger systems. These results indicate that
NIC-based reduction is feasible and that further work
should be performed to make these operations more
complete.

We intend to improve the NIC-based reduction op-
eration to allow for multiple elements, up to 64 el-
ements of 64 bits. We also intend to increase the

maximum number number of children. The current
limit is nine children. Another issue that needs to be
addressed is the order in which the arithmetic opera-
tions are performed. Currently the arithmetic opera-
tions are performed on the data in the order in which
the messages arrive at the NIC. This may change
from one run to the next. Because of the potential of
rounding errors, overflow and underflow in floating-
point operations, this could lead to the reduction op-
eration giving different results for the same input. By
fixing the order in which the operations are applied
to the data, the result will be deterministic. We also
intend to support more arithmetic operations, such
as MAX and MIN. Finally, we intend to implement
a NIC-based reduction-to-all operation.

References

[1] R. A. F. Bhoedjang, T. Ruhl, and H. E. Bal. Ef-
ficient Multicast on Myrinet Using Link-Level Flow
Control. In Proceedings of the 27th International
Conference on Parallel Processing (ICPP ’98), pages
381-390, August 1998.

[2] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Ku-
lawik, C. L. Seitz, J. Seizovic, and W. Su. Myrinet
- a gigabit per second local area network. In IEEE
Micro, February 1995.

[3] D. Buntinas, D. K. Panda, J. Duato, and P. Sa-
dayappan. Broadcast/Multicast over Myrinet us-
ing NIC-Assisted Multidestination Messages. In
Proceedings of Int’l Workshop on Communication
and Architectural Support for Network-Based Par-
allel Computing (CANPCQC), pages 115-129, 2000.

[4] D. Buntinas, D. K. Panda, and P. Sadayappan. Fast
NIC-based barrier over Myrinet/GM. In Proceedings
of the International Parallel and Distributed Process-
ing Symposium 2001, (IPDPS), April 2001.

[6] D.Buntinas, D.K. Panda, and W. Gropp. NIC-based
atomic remote memory operations in Myrinet/GM.
In Workshop on Nove Uses of System Area Networks
(SAN-1), February 2002.

[6] R. A. Van de Geijn. On Global Combine Opera-
tions. Jowrnal of Parallel and Distributed Comput-
ing, 22:324-328, 1994.

[7] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A
high-performance, portable implementation of the
MPI message passing interface standard. Parallel
Computing, 22(6):789-828, September 1996.

[8] John Hauser. SoftFloat. http://www.cs.berkeley.
edu/~jhauser/arithmetic/SoftFloat.html.

[9] Myricom. Myricom GM myrinet software and doc-

umentation. http://www.myri.com/scs/GM/doc/

gm _toc.html, 2000.

D. K. Panda. Global Reduction in Wormhole k-ary

n-cube Networks with Multidestination Exchange

Worms. In International Parallel Processing Sym-

posium, pages 652659, Apr 1995.

K. Verstoep, K. Langendoen, and H. Bal. Efficient

Reliable Multicast on Myrinet. In Proceedings of

the International Conference on Parallel Processing,

pages II1:156-165, Aug 1996.

[10]

[11]

