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Abstract 

Speculative pre-execution is a promising prefetching 
technique which uses an auxiliary assisting thread in 
addition to the main program flow. A prefetching thread 
(p-thread), which contains the future probable cache miss 
instructions and backward slice, can run on the spare 
hardware context for data prefetching. Recently, various 
forms of speculative pre-execution have been developed, 
including hardware-based and software-based 
approaches. The hardware-based approach has the 
advantage to use runtime information dynamically. 
However, it requires a complex implementation and also 
lacks global information such as data and control flow. 
On the other hand, the software-oriented approach 
cannot cope with dynamic events and imposes additional 
software overhead. As a compromise, this paper 
introduces a hybrid model enhanced with novel compiler 
support for the dynamic pre-execution of a p-thread. 

 
 

1. Introduction 
 Today’s processor performance is strongly limited by 

the data access latencies upon cache misses.  Truly, the 
speed-gap between processor and main memory 
continues to grow and increases the impact of miss 
penalties.  Chances to execute many hundreds of 
instructions can easily disappear due to unexpected 
pipeline stalling.  As a result, latency hiding becomes an 
important technique to avoid performance degradation 
upon cache misses.  Basically, hiding the access latency 
has been pursued by using various forms of data 
prefetching.  However, previous approaches have 
strongly depended on the predictability of future memory 
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accesses and have often failed upon encountering 
irregular memory accesses such as pointer chasing.  
Those characteristics are common features of today’s 
popular memory-bound or data-intensive applications. 

Recently, other data prefetching approaches, which do 
not depend on predictability but rather on executing 
future access instructions, have been proposed 
[1][7][8][12][15][17][18][21][25].  Those approaches 
extract the future probable cache miss slice from the 
original code and execute it as an additional helping 
thread in a multithreading hardware.  The cache miss 
thread (often called p-thread or p-slice) is lightweight and 
can run faster than the main program thread.  Therefore, 
as long as the cache miss thread is executed early enough, 
timely prefetching can be achieved.  This thread-based 
prefetching is often called speculative pre-execution or 
speculative precomputation.  The parallel execution of 
the p-thread and the main program thread is made 
possible by the multithreading features of SMT 
(Simultaneous Multi-Threading) [10] or CMP (Chip 
Multi-Processor) [13] architectures. 

Previous research on speculative pre-execution falls 
into two distinct categories.  In the first group, all the 
procedures are handled by additional hardware 
implementations [1][8][18].  Since both p-thread 
construction and execution (often called triggering) are 
handled at runtime by hardwired circuit, the legacy binary 
code can still be used in this approach.  However, this 
requires additional hardware circuitry.  On the other 
hand, the second group strongly depends on a static 
analysis by the compiler to extract the p-thread either 
from the high level language [12][17] or at the binary 
level [15].   The static analysis can provide global 
program flow information.  However, some software 
interaction to trigger p-thread is required and an 
additional overhead is unavoidable. 

This paper proposes Compiler Assisted Speculative 
Pre-execution (CASP) as a compromise technique.  
Indeed, the CASP is a hybrid model of the two above 
approaches.  Our design principle aims at bringing out 
the respective merits from the two camps.  For that 
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purpose, we divide the speculative pre-execution into two 
distinct operations: p-thread construction and p-thread 
triggering.  In our approach, the first step, p-thread 
construction, is handled by the compiler in a static way 
and the second step, p-thread triggering, is controlled 
dynamically by the hardware.  Therefore, the global 
program information can be considered for the effective 
construction of the p-thread, and the fast triggering of the 
p-thread is made possible by hardware-controlled 
spawning.  In other words, compile time information is 
delivered to accelerate hardware triggering, lowering the 
hardware complexity. Indeed, Compiler Assisted 
Speculative Pre-execution (CASP) provides effective data 
prefetching along with a novel hardware and software 
design. 

This paper is organized as follows: Section 2 reviews 
the background research.  Section 3 describes the 
detailed hardware and software design characteristics of 
the proposed architecture.  Section 4 includes the 
experimental results and thorough analysis.  Finally, 
conclusions and future work are included towards the end. 

2. Background Research 

Our architecture model is strongly motivated by 
previous research on speculative pre-execution.  In this 
section, the general concepts and the execution 
mechanism of the speculative pre-execution are explained 
in detail.  In addition to that, a thorough survey for the 
recent related work is given in the second half of the 
section.  

2.1. Overview of Speculative Pre-execution 

In the speculative pre-execution model, timely data 
prefetching is achieved by the pre-execution of the p-
thread.  To better understand the concept, an example 
with Lawrence Livermore Loop 1 (lll1) is shown in 
Figure 1.  Figure 1-(a) shows the source code written in 
a high-level language and Figure 1-(b) shows the 
dynamic instruction stream at iteration i and iteration i+1 
for the innermost loop.  In the analysis, we assumed that 
frequent cache misses occur at the last instruction, which 
is labeled ①.  Then, the instruction is defined as a 
delinquent load.  Indeed, delinquent loads are candidate 
instructions for speculative prefetching.  The 
corresponding operation of the delinquent load is loading 
the y[k] value in the high-level language code (Figure 1-
(a)). 

After uncovering the delinquent load, the backward 
slice is constructed based on the data dependencies.  The 
backward slice includes all the previous instructions on 
which the delinquent load has a data dependency.  
Usually, the address calculation instructions are included 
in the backward slice.  In the example code in Figure 1-
(b), the instructions shaded in grey show the backward 
slice of the delinquent load.  Indeed, the corresponding 

operation of the backward slice is the address calculation 
of y[k].  After figuring out the backward slice, the p-
thread can be constructed together with the delinquent 
load and the backward slice.  All this procedure for p-
thread construction can be handled by hardware at 
runtime or software at compile time. 

To execute the prepared p-thread, a trigger instruction 
needs to be defined inside the main program flow.  
When the main program detects the trigger instruction, 
the p-thread is spawned on any available hardware 
context.  Once initiated, the p-thread can run faster than 
the main program thread since it is lightweight.  In 
Figure 1, the instruction labeled ② indicates the trigger 
instruction of our example code.  The proper choice for 
the trigger instruction is very important since the 
triggering point decides the size of the p-thread as well as 
the prefetching distance.  Since the dynamic behavior of 
the current superscalar architecture is very hard to predict, 
all previous research strongly depends on heuristic 
methods to determine the trigger instruction.  A more 
quantitative analysis on the trigger instruction might 
improve the performance of speculative prefetching. 

 

iteration i+1 
 

Lawrence Livermore Loop 1 
 

lw $24, 24($sp) 

mul $25, $24, 8 

la $8, z 

addu $9, $25, $8 

l.d $f16, 88($9) 

l.d $f18, 0($sp) 

mul.d $f4, $f16, $f18 

l.d $f6,  8($sp) 

l.d  $f8, 80($9) 

mul.d $f10, $f6, $f8 

add.d $f16, $f4, $f10 

la $10, y 

addu $11, $25, $10 

l.d $f18, 0($11) 

mul.d $f6, $f16, $f18 

l.d $f8, 16($sp) 

add.d $f4, $f6, $f8 

la $12, x 

addu $13, $25, $12 

s.d $f4, 0($13) 
 

lw $14, 24($sp) 

addu $15, $14, 1 

sw $15, 24($sp) 

blt $15, 1024, $33 

  

#define N 1024 

#define LOOP 100 

 

double x[N]; 

double y[N]; 

double z[N+11]; 

 

main ()  

{ 

int l, k; 

double q; 

double r = 10.0; 

double t = 20.0; 

 

for ( l=1 ; l<=LOOP ; l++ )  

{ 

  q = (double) l; 

    for ( k=0 ; k<N ; k++ )  

    { 

     x[k] = q + y[k]*( r*z[k+10] + t*z[k+11] ); 

    } 

}

(b) Dynamic instruction 
stream for the main program 

lw $24, 24($sp) 

mul $25, $24, 8 

la $10, y 

addu $11, $25, $10 

l.d $f18, 0($11) 

lw $14, 24($sp) 

addu $15, $14, 1 

sw $15, 24($sp) 

lw $24, 24($sp) 

mul $25, $24, 8 
la $10, y 
addu $11, $25, $10 

l.d $f18, 0($11) 

  

②Trigger 
p-thread 

(c) Dynamic instruction 
stream for the p-thread 

Backward slice 

Prefetching occurs 

(a) High level language code 

① Delinquent load 

lw $24, 24($sp) 

mul $25, $24, 8 

la $8, z 

addu $9, $25, $8 
 l.d $f16, 88($9) 

l.d $f18, 0($sp) 

mul.d $f4, $f16, $f18 

l.d $f6,  8($sp) 

l.d  $f8, 80($9) 

mul.d $f10, $f6, $f8 

add.d $f16, $f4, $f10 

la $10, y 

addu $11, $25, $10 

l.d $f18, 0($11) 

iteration i 
 

 
Figure 1: Speculative pre-execution example 

The p-thread runs on another hardware context and 
only updates the cache status without store operations.  
Therefore, it does not affect the program state.  For the 
multithreaded execution of the p-thread, previous 
research projects use either SMT architecture 
[7][8][12][15][17][21] or the additional pipeline for p-
thread [1].  Indeed, the second method can be considered 
an extension of the CMP architecture.  In the SMT 
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model, the resources can be shared between the main 
program thread and the p-thread.  Therefore, high 
utilization can be achieved.  On the contrary, in the 
dedicated prefetching pipeline model, more dedicated 
resources are given to prefetching thread. 

2.2. Related Work 

Various versions of data prefetching using speculative 
pre-execution have been proposed recently. Depending on 
the hardware/software implementation, there have been 
several approaches. Roth and Sohi proposed Speculative 
Data-Driven Multithreading (DDMT) [20][21].  In their 
approach, the miss stream called performance degrading 
slice or data-driven thread (DDT) includes the future 
cache miss instructions (critical instructions in [21]) and 
their backward slice.  The miss stream is executed in a 
multithreaded manner using another spare context of 
Simultaneous Multithreading.  The concept of 
performance degrading slice was originally introduced by 
Zilles and Sohi in [24]. 

Collins et al. developed Speculative Precomputation 
using the SMT features of the Itanium processor in [7].  
They also define a small number of static loads as 
delinquent loads and include the backward slice as 
Precomputation Slices (p-slices) for data prefetching 
thread.  Notably, their work introduced a new concept 
named the chaining trigger mechanism which allows the 
speculative thread to trigger another speculative thread.  
A hardware approach of Speculative Precomputation can 
also be found in [8].  They designed and implemented 
additional hardware resources to construct and trigger p-
slices at run time. 

Another approach using hardware for prefetching 
thread was introduced by Annavaram in [1].  A 
Dependence Graph Precomputation scheme (DGP) 
dynamically uncovers the prefetching slice for cache miss 
instructions.  Whenever the Pre-decode stage detects the 
load/store instruction which is marked for prefetching 
(equivalent to delinquent load), it automatically derives 
the Dependence Graph.  The instructions waiting in the 
Instruction Fetch Queue are chased based on the register 
dependencies.  In the DGP scheme, the speculative 
prefetching slice runs on an additional piece of hardware 
called the Precomputation Engine and only updates the 
cache status.  Another hardware approach is introduced 
as the Slice processor [18], which uses an additional 
hardware structure called Slicer to construct a p-thread in 
the commit stage instead of the fetch queue.  The Slice 
processor stores the p-thread in the Slice-cache, and the p-
thread is initiated upon detecting a trigger instruction in 
the main program flow.  

Software controlled construction of the p-thread in a 
static way is also proposed in [12][15][17].  Luk 
proposed a high level language-based approach for 
speculative pre-execution [17].  A manual analysis on 

the given C code defines and annotates the prefetching 
slice (p-thread).  The actual execution of the p-thread is 
supported by the SMT features of the architecture.  
However, the trigger operation is handled totally in 
software.  Another approach at the high-level language 
can be found in Kim and Yeung’s work [12], which is 
closely related to Luk’s work, but it develops automated 
compiler algorithms.  The last approach [15] is different 
from the previous two in the sense that the analysis is 
done at the binary level.  They also proposed a region-
based slicing method with global program information 
such as data flow and control flow analysis.  Those 
analyses are not possible with hardware based p-thread 
construction. 

3. Compiler Assisted Speculative Pre-
Execution 

Finely tuned speculative pre-execution with intelligent 
compiler support can provide an effective data 
prefetching method.  In the proposed architecture model, 
we aim to emphasize the relative merit of the software 
approach vs. the hardware approach.  Indeed, the 
Compiler Assisted Speculative Pre-execution (CASP) is a 
hybrid model.  In this section, the design motivation and 
architecture characteristics are explained in detail.  Also, 
the detailed software algorithms and hardware design are 
presented.  

3.1. Overall Design Concepts 

The actual design procedure of the speculative pre-
execution is composed of three major steps.  The first 
step is defining the delinquent loads.  It is usually driven 
by the cache access-profiling.  The second step is the 
construction of the p-thread, which includes the 
delinquent loads and the backward slice.  The final step 
is the runtime execution of the p-thread.  The three 
square boxes in Figure 2 show the three-step procedure of 
the speculative pre-execution.  The two core operations 
of the speculative pre-execution are the construction of 
the p-thread and the triggering of the p-thread.  Indeed, 
our design motivation is located in the proper interaction 
between these two steps.  The lower box in the Figure 2 
shows the design characteristics of the proposed CASP 
architecture model. 

 
P-thread 

construction 
P-thread 

triggering 
Delinquent 

load 

CASP design characteristics 

Hardware-controlled 
triggering 

Compiler-based 
construction 

 
Figure 2: Procedure of speculative pre-execution  
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To achieve effective speculative prefetching, the first 
important design choice is in constructing the p-thread.  
Previous research falls into two distinct categories, 
depending on how to construct the p-thread: Compiler-
based construction and Hardware-based construction.  
The compiler-based approach extracts the p-thread at 
either source code level (for example, C to C 
compilation) [12][17] or at the binary level [15].  The 
main advantage of the compiler oriented p-thread 
construction is the use of global program information.  
Also, the complex hardware logic for the p-thread 
construction can be eliminated:  although the hardware-
based p-thread construction [1][8][18] is fast, it imposes 
additional hardware logic. 

Another design selection should be made regarding the 
triggering method of the p-thread.  First, Software-
controlled triggering uses the software code for the 
spawning of the p-thread.  It is achieved by the 
multithreaded hardware and the spawning procedures 
(such as searching available context and propagating the 
live-in values).  Usually, the p-thread constructed by the 
compiler is also initiated by the software-controlled 
triggering.  The second method, Hardware-controlled 
triggering, utilizes additional hardware to rapidly spawn 
the p-thread.  Generally, the p-thread constructed by the 
hardware also depends on the hardware for triggering.  
The trade-offs between the two approaches are between 
software-overhead and hardware-complexity.   

Our architecture model is motivated by the fact that 
the Compiler-based construction can also potentially 
benefit the Hardware-controlled triggering.  In other 
words, our architecture depends on the compiler analysis 
to construct the p-thread and utilizes the hardware to 
trigger the p-thread at runtime.  It is achieved by 
delivering the p-thread information down to the 
architecture level by annotating each instruction.  Since 
the two steps of p-thread construction and p-thread 
triggering can be separated and are not required to bond 
to the same methodologies, our architecture selects the 
most beneficial design technique at each step.  Therefore, 
we can find a compromise design with synergy effects 
between both designs.  A more detailed description for 
each step is given in the following sections. 

3.2. P-thread Construction with Global Program 
Flow 

In this section, the compiler operation for the p-thread 
construction is discussed in detail.  Our p-thread 
construction tool works at the binary level.  At first, the 
basic blocks are identified and the loop region for the 
delinquent load is defined.  Indeed, the region based p-
thread construction can be achieved with the necessary 
program flow information such as data flow and control 
flow.  For detailed analysis, the Pointer Stressmark, 
which is one of the seven benchmarks in Atlantic 

Aerospace DIS Stressmark Suite [27], is considered as an 
example.  

The source code of the inner loop of the Pointer 
Stressmark is shown in Figure 3.  It is a pointer chasing 
benchmark following the median value of a given size of 
window.  Each pointer chasing is expressed as a hop.  
In the source code, one iteration of the while loop 
corresponds to one hop operation and the outer for-loop 
(with an increment of ll) searches for the median of the 
corresponding hop.  The median value decides the 
starting point of the next hop.  Upon detecting that the 
current index has the median of the current hop, the 
control flow exits the for-loop. 

 while { …. 

partition = field[index]; 

…      

for (ll=0; ll<w; ll++)  

 { 

   x = field[index+ll]; 

    if (x > max) high++; 

   else if (x > min)  

   { 

     partition = x; 

     balance = 0; 

       for (lll=ll+1; lll<w; lll++) { 

  if (field[index+lll] > partition) balance++; }    

  if (balance+high == w/2) break; 

             else if (balance+high > w/2)  

                  { min = partition; }  

       else  { max = partition; 

        high++; }  

    }  

 if (min == max) break; 

      } 

index = (partition+hops)%(f-w);  

hops++; 

} 

A 

B 

C 

D 

E 

 
Figure 3: Loop operation of the Pointer 

Stessmark 

The program flow with the basic blocks for the above 
source code is depicted in Figure 4.  The solid lines with 
an arrow indicate the control flow.  Each basic block is 
named (such as A, B, C, and E) as matching to the 
corresponding part of the source code in Figure 3.  For 
readability, the part to find the median value (named D in 
Figure 3) is just combined as one extended block (which 
is the square block named D in Figure 4).  Although 
block D is not a basic block, it is easier to understand to 
bind it as a block.  In fact, there exist several basic 
blocks inside of D.   

Upon finding the median value inside block D, the 
control flow exits the “C-D-B” loop and moves to the 
basic block E (The “C-D-B” loop corresponds to the outer 
for-loop with an increment of ll).  The index value for 
the next hop is calculated at the basic block E, and a new 
iteration for the next hop starts.  Indeed, the backward 
edge from the basic block E to the basic block A 
identifies the control flow to the next hop.  Since the 
value of the index variable is decided by the median of 
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the random numbers at the previous iteration, the starting 
load (which is partition = field [index] in the basic block 
A) of each hop is prone to cache misses.  In our cache 
access-profile, the load instruction for the partition in the 
basic block A is found to cause a considerable amount of 
cache misses.  Therefore, the instruction is defined as a 
delinquent load for the analysis.  Based on the data 
dependencies and the control flow, we can find the 
backward slice of the delinquent load, and finally, the p-
thread can be constructed. 

 

x = field [index+ll] 

ll++ ; ll<w 

 

Examine if x is a median 

value for this hop: 

If (x == median)  

{ partition = x; 

break; } 

 

index =   

(partition +hops)%(f-w); 

hops++; 

while condition; 

partition = field [index] 

A 

C 

B 

D 

E 

Speculative  

Pre-Execution 

partition = x 

Delinquent load 

 
Figure 4: Program flow with the basic blocks 

In the speculative pre-execution model, the delinquent 
loads and the backward slice are extracted from the 
original program and executed in a multithreaded manner 
for the data prefetching.  In our example, the load 
instruction in the basic block A is defined as a delinquent 
load.  The first statement for the backward slice is the 
statement for the variable index (which is index = 
(partition + hops) % (f-w);) in the basic block E.  Then, 
the statement for the variable partition in block D (which 
is partition = x;) is included as the backward slice.  
Finally, the statement for the variable x in the basic block 
C is also included (which is x=field [index+ll];).  After 
defining the backward slice, a p-thread is constructed 
together with the delinquent load and the backward slice. 

The p-thread is composed of the delinquent load and 
minimal instructions required to compute the input value 
of the delinquent load.  It is executed in parallel with the 
main program thread and should be lightweight in order 
to run faster than the main program flow.  The actual 
beauty of speculative pre-execution of this example lies 

in skipping some operations in block D and jumping to 
the basic block E speculatively.  The minimum 
necessary instruction is partition = x.  The dotted line 
from the basic block C to E in Figure 4 shows the 
speculative pre-execution path.  The final code for the p-
thread is shown in Figure 5-(b). 

 
(b) P-thread 

while { …. 

partition = field[index]; 

…      

for (ll=0; ll<w; ll++)  

 { 

   x = field[index+ll]; 

    if (x > max) high++; 

   else if (x > min)  

   { 

     partition = x; 

     balance = 0; 

       for (lll=ll+1; lll<w; lll++) { 

  if (field[index+lll] > partition) balance++; } 

  if (balance+high == w/2) break; 

             else if (balance+high > w/2)  

                  { min = partition; }  

       else  { max = partition; 

        high++; }  

    }  

 if (min == max) break; 

      } 

index = (partition+hops)%(f-w);  

hops++; 

} 

x = field[index+ll]; 

partition = x; 

index = (partition+hops)%(f-w);  

partition = field[index];        

        

x = field[index+ll]; 

partition = x; 

index = (partition+hops)%(f-w);  

partition = field[index];        

        

Basic trigger 

of p-thread 

x = field[index+ll]; 

partition = x; 

index = (partition+hops)%(f-w);  

partition = field[index];        

        

ll++; 

ll++; 

Next iteration 
Trigger instruction 

Next iteration 

(a) Main program thread 

(d)  

(c)  

 
Figure 5: Triggering of the p-thread  

The code in Figure 5-(a) runs as the main program 
flow and triggers the p-thread at runtime.  The arrow 
from Figure 5-(a) to Figure 5-(b) shows the triggering 
operation.  For the speculation of the multiple iterations, 
manipulation to increment variable ll also can be added to 
the p-thread.  Figure 5-(c) and Figure 5-(d) shows the 
speculative pre-execution across the multiple loop 
iterations.  It is a similar operation to the chaining 
trigger [7][8]. 

3.3. Hardware Description for P-thread 
Triggering 

In the CASP architecture model, several hardware 
implementations are designed to facilitate triggering of 
the p-thread.  Figure 6 shows the detailed hardware 
description of the CASP architecture model.  It is based 
on the Simultaneous Multi-Threading architecture [10].  
The resources, except for the register files and the reorder 
buffers, are shared between the main program thread and 
the p-thread.  Since the p-thread instructions are copied 
from the instruction fetch queue, the additional fetch units 
for the p-thread are not required.  Therefore, the p-thread 
control flow strongly depends on the branch prediction of 
the main program flow.  It is a reasonable assumption 
with the effective branch prediction strategies of the 
current processor architecture.  A similar observation is 
made in [1]. 

The most important structure of our architecture is a 
long-range instruction fetch queue (IFQ). The IFQ 
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identifies the p-thread instructions and supplies those 
identified instructions to the p-thread reorder buffer (p-
ROB) via the decoding logic.  Since the p-thread 
information is annotated with each instruction, a simple 
pre-decoding logic at the IFQ can identify the p-thread.  
It is done at the “detect p-thread” stage among the six 
pipeline stages.  The IFQ is a FIFO queue with one 
additional bit named the p-thread indicator for each entry.  
The p-thread indicator specifies whether the instruction in 
the entry is included as the p-thread or not.  

 

I-cache 

Instruction 
fetch queue 

Reorder 
buffer  

(p-thread)  
 

Reorder 
buffer  

(main thread) 

PC 

Register file 
(p-thread) 

Functional 
Units 

Data-cache 
L2 cache/ 

Main Memory 

Fetch 
Detect  

p-thread Execute Writeback Commit Decode 

Register file 
(main thread) 

Corresponding pipeline stage 

Shared between two threads 

p-thread 
indicator 

 

Figure 6: Hardware description of the CASP 
architecture 

Although an instruction is detected as a p-thread 
instruction, it is dormant in the instruction fetch queue 
until any trigger instruction is found at the decoding stage.  
Upon detecting a trigger instruction, the decode logic 
initiates the triggering state.  Then, the triggering logic 
is activated and waits until all instructions ahead of the 
trigger instruction are committed.  It guarantees the 
deterministic state before copying the live-in values.  
After the trigger instruction becomes the oldest 
instruction in the reorder buffer of the main thread, a 
spawning operation is initiated.  The spawning operation 
copies all the live-in register values of the main thread to 
the p-thread register file.  It also copies the p-thread 
instructions which reside in the main thread reorder 
buffer, to the p-thread reorder buffer. 

After copying the live-in register values and the 
necessary instructions, the p-thread is executed as an 
independent running thread.  Since the processor is now 
running as a multithreaded processor, every operation 
should be accompanied with the thread ID.  We assign 
“0” to the main program thread as a thread ID, and “1” to 
the p-thread.  The IFQ supplies the p-thread instructions 
to the decoding logic based on the p-thread indicator.  
Although the p-thread instruction is sent to the decoding 
logic as an operation of p-thread execution, it should also 
be executed as the main thread.  Indeed, the instructions 
which have a p-thread indicator “on” should be included 
in both threads.  Therefore, every p-thread instruction 
should remain in the IFQ once it is decoded as a part of 
the p-thread.  For that purpose, we can check it as 

“executed as a part of a p-thread” by resetting the p-
thread indicator as “off”.  Therefore, only the 
instructions of which the p-thread indicator is “off”, are 
decoded as the main thread under the triggering state.  
They are entitled to exit the IFQ after decoding.  

The decoding logic renames the registers and sends 
instructions to the corresponding reorder buffer based on 
the thread ID.  Other operations in the remaining 
pipeline stages are very close to the existing SMT 
architecture model.  The functional units, the cache and 
the memory are shared between two threads.  After the 
delinquent load retires the commit stage, the triggering 
operation is finished and the processor returns to the 
normal state. 

4. Experimental Results 

The performance of the proposed architecture is 
accurately evaluated with a number of data intensive 
benchmark programs.  We performed a deterministic 
simulation on the CASP architecture and analyzed it 
based on the performance results.    

4.1. Benchmark Descriptions 

Table 1: Benchmarks Description 

Benchmark Problem Characteristic 

Data 
Management 

Traditional 
DBMS 
processing 

Index algorithms and 
ad hoc query 
processing 

SAR Ray 
Tracing 

SAR image 
simulation 

Utilizes Image-
domain approach 

Pointer Pointer following 

Small blocks at 
unpredictable 
locations. Can be 
parallelized 

Update 
Pointer following 
with memory 
update 

Small blocks at 
unpredictable 
locations 

Field 
Collect statistics 
on large field of 
words 

Regular, with little 
re-use 

Neighborhood 

Calculate image 
texture measures 
by finding sum 
and difference 
histograms 

Regular access to 
pairs of words at 
arbitrary distances 

Transitive 
Closure 

Find all-pairs-
shortest-path 
solution for a 
directed graph 

Dependent on matrix 
representation, but 
requires reads and 
writes to different 
matrices concurrently 
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The target applications of our architecture are 
memory-bound applications.  Applications causing large 
amounts of data traffic are also called as data-intensive 
applications.  We chose two applications from the 
Atlantic Aerospace Data-Intensive Systems Benchmarks 
Suite [26] and five applications from the Atlantic 
Aerospace Stressmark Suite [27].  Table 1 shows the 
characteristics of the seven benchmarks.  The detailed 
descriptions have been obtained from [26][27]. 

Indeed, today’s popular applications such as database 
management and image processing often experience non-
contiguous memory access patterns.  Therefore, 
processor stalling is easily caused by data starvation.  
These applications are more stream-based and result in 
more cache misses due to the lack of locality.  Moreover, 
the increasing use of the Object-Oriented Programming 
model correspondingly increases the underlying use of 
the pointers.  Due to the serial nature of the pointer 
processing, memory accesses become a severe 
performance bottleneck in existing computer systems. 

4.2. Simulation Environments 

Our simulator is based on the SimpleScalar 3.0 tool set 
[2].  The p-thread construction is implemented by 
modifying the sim-safe.c module.  The architectural 
simulator, which models the CASP architecture in 
Section 3.3, is implemented based on the sim-outorder.c 
module.  It models the detailed pipeline operation as 
well as architectural delays.  The parameters are 
summarized in Table 2. 

 

Table 2: Simulation parameters 

Branch predict mode Bimodal 
Branch table size 2048 
Issue width 8 

Commit width 8 
Instruction fetch queue 
size  

various (128, 256, 512, and 
1024) 

Reorder buffer size 64 instructions 
Integer functional units ALU( x 4), MUL/DIV   
Floating point functional 
units 

ALU( x 4), MUL/DIV   

Number of memory ports 2  

Data L1 cache 
configuration 

256 sets, 32 block, 4 -way set 
associative , LRU 

Data L1 cache latency 1 CPU clock cycle 
Unified L2 cache 
configuration 

1024 sets, 64 block, 4 – way set 
associative, LRU 

Unified L2 cache latency 12 CPU clock cycles 
Memory access latency 120 CPU clock cycles 

 

The configurations we have tested are the baseline 
superscalar architecture with a 64 entry reorder buffer and 
the CASP architectures with various sizes of IFQ.  Since 
the IFQ size is believed to affect the prefetching 
capability of the p-thread, we simulated various IFQ 
sizes: 128, 256, 512 and 1024.  The results are presented 
in the next section. 

4.3. Results and Analysis 
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Figure 7: Performance comparison to the 

baseline superscalar architecture 

Figure 7 shows the performance results of the CASP 
architecture.  Five architecture models including the 
baseline superscalar architecture have been simulated 
with each benchmark.  For each benchmark, the far left 
bar corresponds to the normalized performance of the 
baseline superscalar architecture.  The remaining four 
bars show the CASP architecture with four different IFQ 
sizes (128, 256, 512, and 1024 respectively).  The 
original performance is measured by instruction per cycle 
(IPC).  For demonstration purposes, the diagram shows 
the normalized performance based on the baseline 
superscalar architecture. 

The best result reaches a 17.3% performance 
improvement, which is achieved with the Update 
Stressmark under the 1024-entry IFQ configuration.  
Indeed, the six benchmarks show better performance of 
the CASP over the baseline superscalar architecture.  
Only the Field Stressmark experienced performance 
degradation with all four CASP models.  It is because 
the Field Stressmark contains a relatively small number 
of cache misses and therefore cannot benefit much from 
the speculative pre-execution feature of the CASP. 

Regarding the IFQ size, three benchmarks (Data 
Management, Update, and Neighborhood) show 
performance enhancement with an increase of the IFQ.  
However, other benchmarks do not show any benefit 
from the long range IFQ.  It is due to the fact that the 
long range IFQ also suffers from mispredicted branches.  
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The same observation is made in [1].  The average 
performance enhancement over the baseline superscalar 
architectures for each IFQ configuration is shown in 
Figure 8.  The average performance enhancement is 
calculated with all seven benchmarks. 
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Figure 8: Average performance improvement 

with various IFQ sizes 

To show the effectiveness of the prefetching of the 
CASP architecture, the number of level 1 cache misses 
has also been calculated.  Figure 9 shows the reduction 
of the total cache misses of the CASP (with 512 IFQ), as 
compared to the baseline superscalar architecture.  As 
the results indicate, the number of cache misses is 
considerably reduced by the speculative pre-execution of 
the CASP architecture.  The best result is achieved by 
the Transitive Closure Stressmark, which reduces 22% of 
the cache misses.  On the average, cache misses are 
reduced by 14.2% in the CASP (with 512 IFQ) 
architecture. 
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Figure 9: Reduction of cache miss rate 
compared to the baseline architecture 

Although the Data Management, Ray Tracing, and 
Field Stressmark reduce the cache misses considerably, 
the performance improvement (which is demonstrated in 

Figure 7) of the three benchmarks is not extensive.  It is 
due to the fact that the total number of cache misses is 
relatively small in these three benchmarks.  Therefore, 
the reduction of the cache misses has less impact on the 
performance than the other four benchmarks. 

To demonstrate how well the CASP would tolerate a 
long memory latency, the benchmarks are simulated 
under various memory latencies.  The performance 
results with four benchmarks (Data management, Pointer, 
Update, and Neighborhood) are depicted in Figure 10.  
The longest latency configuration we considered is: 
memory access latency = 160 and L2 cache access 
latency = 16.  The shortest case is: memory access 
latency = 40 and L2 cache access latency = 4.  Two 
more cases are designed between the above two cases.  

The prefetching capability of the CASP architecture 
provides robust performance at the long latency 
configurations compared to the baseline superscalar 
architecture.  As the results indicate, the performance of 
the CMAS is fairly stable at the long latencies.  Only the 
Data Management, which showed relatively small 
performance enhancement in Figure 7, experienced 
performance degradation at the long latencies.  On the 
contrary, the performance of the superscalar architecture 
drops severely when all four benchmarks are faced with 
long memory latencies. 

5. Conclusions 

It has been a truism that the memory access regularity 
is diminishing in today’s popular applications.  Hence, 
the traditional data prefetching methods, which strongly 
depend on the memory address predictions, often fail.  
As a result, there is a strong need for new data prefetching 
methods in the modern processor architecture field.  As 
one possible solution, we have presented the new data 
prefetching method named CASP (Compiler Assisted 
Speculative Pre-execution). 

The CASP architecture is a hybrid model of the two 
previous approaches (software-based and hardware-
based) for the speculative pre-execution method.  We 
demonstrated the performance results of the proposed 
architecture with seven data intensive benchmarks.  The 
compiler assisted p-thread construction and the hardware 
supported triggering of the p-thread coordinate quite well 
and yield good performance results. 

Future work could investigate more on the effect of the 
IFQ size for the effective speculative prefetching.  The 
IFQ size also can affect the prefetching distance as well 
as the definition of the triggering instructions.  Also, the 
relationship between the various branch prediction 
schemes and the speculative prefetching capability will be 
further investigated.  In addition to that, more compiler 
algorithms for the automated p-thread construction will 
be followed. 
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Figure 10: Latency tolerance for various memory latencies
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