

Procedure Cloning and Integration for
Converting Parallelism from Coarse to Fine Grain

Won So and Alex Dean

Center for Embedded Systems Research
Department of Electrical and Computer Engineering

NC State University
Raleigh, NC 27695

alex_dean@ncsu.edu

Abstract
This paper introduces a method for improving

program run-time performance by gathering work in
an application and executing it efficiently in an
integrated thread. Our methods extend whole-program
optimization by expanding the scope of the compiler
through a combination of software thread integration
and procedure cloning. In each experiment we
integrate a frequently executed procedure with itself
twice or thrice, creating two clones. Then, based on
profile data we select at compile time the fastest
version (original or clone) and modify call sites as
needed. These techniques convert parallelism at the
procedure level to the instruction level, improving
performance on ILP uniprocessors. This is quite useful
for media-processing applications that feature large
amounts of such parallelism.

We demonstrate our technique by cloning and
integrating three procedures from cjpeg and djpeg at
the C source code level, compiling with four compilers
for the Itanium EPIC architecture and measuring the
performance with the on-chip performance
measurement units. Detailed performance analysis
shows the primary bottleneck to be the Itanium’s 16K
instruction cache, which has limited room for the code
expansion introduced by thread integration. For cjpeg,
which is not significantly constrained by the i-cache,
we find integration consistently improves code
generated by all compilers but one, with a mean
program speedup of 11.9%.

1 Introduction
Makers of high-performance embedded systems are

increasingly using digital signal processors with VLIW
and EPIC architectures to maximize processing
bandwidth. However, this speed is a fraction of what it
could be; it is limited by the difficulty of finding
enough independent instructions to keep all of the
processor’s functional units busy. Extensive research is
being performed to extract additional independent
instructions from within a thread to increase
throughput. Software thread integration can be used to
merge multiple threads or procedures into one,

allowing the compiler to look among multiple
procedures within the application to find independent
instructions and create highly efficient integrated
versions. We present an approach of integrating
multiple procedures in an embedded system for
maximum utilization

Whole-program (or interprocedural) optimization
methods extend the compiler’s scope beyond the call
boundaries defined by the programmer to potentially
encompass the entire program. These methods include
interprocedural data-flow analysis, procedure inlining
and procedure cloning.

Procedure cloning consists of creating multiple
versions of an individual procedure based upon similar
call parameters or profiling information. Each version
can then be optimized as needed, with improved data-
flow analysis precision resulting in better
interprocedural analysis. The call sites are then
modified to call the appropriately optimized version of
the procedure. Cooper and Hall [CHK93] [Hall91]
used procedure cloning to enable improved
interprocedural constant propagation analysis in the
matrix300 from SPEC89. Selective specialization for
object-oriented languages corresponds to procedure
cloning. [DC94] uses static analysis and profile data to
select procedures to specialize. Procedure cloning is an
alternative to inlining; a single optimized clone handles
similar calls, reducing code expansion. Cloning also
reduces compile time requirements for interprocedural
data-flow analysis by focusing efforts on the most
critical clones. Cloning is used in Trimaran [NTGR98],
FIAT [CHMR95], Parascope, and SUIF [HMA95].

Region-based compilation [Hank96] allows the
compiler to determine the appropriate unit of
compilation, rather than being bound to the
programmer-defined procedures, which are influenced
more by software engineering principles than program
performance. Adapting the region size as needed
simplifies the tasks of optimization, register allocation
and instruction scheduling. Using profile information
to help guide the region selection and optimizations
leads to more efficient compilation and execution. Way
[Way02] extends region-based compilation to perform

inlining and cloning based on demand and run-time
profile information (path spectra) rather than by
default.

Software thread integration [Dean02] [Dean00] is a
method for interleaving procedures implementing
multiple threads of control together into a single
implicitly multithreaded procedure. STI fuses entire
procedures together, removing the loop-boundary
constraint of loop jamming or fusion [Ersh66]. It uses
code replication and other transformations as needed to
reconcile control-flow differences. Only data-
independent procedures are integrated; the remaining
data-flow conflicts (false data dependences) are
resolved through register file partitioning or register
coloring. Past work used STI to interleave procedures
at the assembly language level and perform fine-grain
real-time instruction scheduling to share a uniprocessor
more efficiently, enabling hardware-to-software
migration for embedded systems. The present work
uses STI to increase the instruction-level parallelism
within a procedure, enabling the compiler to create a
more efficient execution schedule and reduce run time.

In this paper we present methods to clone and
integrate procedures to improve run-time performance
and evaluate their impact. The novelty is in providing
clone procedures that do the work of two or three
procedures concurrently (“conjoined clones”) through
software thread integration. This enables work to be
gathered for efficient execution by the clones. We
compile the programs with the cloned and integrated
procedures with four different compilers (gcc, ORCC,
Pro64 and Intel C++) and evaluate performance in
detail.

This paper provides an initial look at the
performance impact of cloning procedures in a media
processing application. Although this paper describes
programs in which independent procedure calls were
manually identified, this is not a requirement for using
the methods presented. Instead, a smart scheduler can
be used in a system with multiple processes to select at
run-time which procedure calls can be “shared” and
executed with an efficient integrated procedure clone.

The eventual goal of this work is to automate the
process of cloning and integrating procedures for
VLIW/EPIC processors. We focus upon these
processors because they give much more predictable
performance than superscalars; this is needed for the
real-time embedded applications we seek to target in
future work. This present work evaluates manually
transformed procedures in order to determine whether
the automation would be worth the effort. We have not
examined the performance impact of these methods on
superscalar processors but leave this for future work.

This paper is organized as follows. Section 2
describes the techniques used to determine which
procedures to clone, how to integrate them, how to

modify the call sites, and then finally how to select the
best clone based on performance data. Section 3
presents the experimental method: analysis and
integration of the cjpeg and djpeg programs, compilers
used, execution environment and profiling methods.
Section 4 presents and analyzes the experimental
results. Section 5 summarizes the findings.

2 Integration Methods
Planning and performing cloning and integration

require several steps. We choose the candidate
procedures to clone from the application and examine
the applicability of STI. Then we perform integration
to create the integrated clone versions of procedures
and insert those in the applications. These five steps are
presented in detail below.

2.1 Identifying the candidate procedures for
integration

The first stage of integration is to choose the
candidate procedures for integration from the
application. The candidate procedures are simply those
that consume a significant amount of the program’s run
time. These can be easily identified by profiling, which
is supported by most compilers (e.g. gprof in gnu
tools). For multimedia applications, those procedures
usually include compute intensive code fragments,
which most DSP benchmark suites call DSP-Kernels
such as filter operations (FIR/IIR), and frequency-time
transformations (FFT, DCT) [ZVSM94]. Those
routines have more loop-intensive structures and
handle larger data sets, which require more memory
bandwidth than normal applications. [FWL99]

2.2 System Architecture Options
Two methods for invoking integrated procedures

are directly calling them in the source code or
indirectly calling them by requesting a thread fork from
the operating system. In both the programmer identifies
work which can be parallelized

The first option speeds a single thread by
integrating multiple procedure calls which can execute
in parallel. The second option, when used with a
multithreaded application, loosens this constraint by
gathering procedure calls from separate threads.

2.3 Examining parallelism in the candidate
procedure

The second step is to examine parallelism in the
candidate procedure because integration requires
parallel execution of procedures. Various levels of
parallelism exist, from instruction to loop and
procedure, based on the distribution of the independent
instructions. The method proposed here is a software

technique to use STI for converting existing procedure-
level parallelism to ILP. Though there are other levels
of parallelism in the application we only focus on this
type. Multimedia applications tend to spend most of
their execution time running compute intensive
routines iteratively on large independent data sets in
memory. For example, FDCT/IDCT (forward/inverse
discrete cosine transform), a common process in image
applications, handles an 8x8 independent block of
pixels; these procedures are called many times in the
applications like JPEG and MPEG. We use this purely
independent procedure-level data parallelism: 1) Each
procedure call handles its own data set, input and
output. 2) Those data sets are purely independent of
each other, requiring no synchronization between calls.
Our strategy for STI is to rewrite the target procedure
to handle multiple sets of data at once. An integrated
procedure joins multiple independent instruction
streams and can offer more ILP than the original
procedure. Figure 1 shows the existing parallel threads
and strategy for integration.

Call 1

Call 2

Call 3

Call 4

o1i1

i2

i3

i4

o2

o3

o4

Original function calls

inputs outputs

Integrating
2 threads

Integrated
Function
Call 1 +
Call 2

Integrated
Function
Call 3 +
Call 4

o1i1

i2

i3

i4

o2

o3

o4

Modified function calls

inputs outputs

..
.

..
.

Figure 1 Parallel threads and strategy for integration

Detecting this parallelism within a single program
is not an easy task; much work has been done to
automatically extract multiple threads out of a single
program for execution on processors with multiple
instruction streams [BCGH] [Fran93] [SBV95]
[Newb97] [WS91]. We are not trying to solve this
problem. Instead, we assume that application
developers will extract threads whether automatically
or manually. We present a method to execute the
parallel functions more efficiently on a single
instruction stream processor. However, [So02] presents
details on how to identify and group independent
procedure calls within cjpeg and djpeg.

Multiple instances of a program operating on
independent streams of data are independent by
definition. For example, a cell-phone base station
performs Viterbi decoding multiple independent data
streams, as does a streaming video transcoder. To
gather the work of these data streams we could rely

upon a smart scheduler in the operating system to
gather thread fork requests over short periods of time
from multiple threads and select efficient integrated
versions. This is discussed in more detail in [So02].

2.4 Performing integration

Code

Predicate

Loop

Thread1

Thread2

Integrated
Thread

Key

1

2 3

4P1 P2

L1

T F

1'

2' 3'

4'P1' P2

L1

T F

1+1' 4+4'P1 P2

L1

T F

2+2' 2+3' 3+2' 3+3'

P1' P1'

T F T F

Thread1

Thread2

1

2 3

4

P1

P2

b. Loop with a conditional (P1 is data-dependent and P2 is not.)

Integrated
thread

CFG

2

1

c. Loop with different iterations (P1 is data-dependent.)

1 2 P1

L1

Thread1

P1 L1Thread2

1' 2'

P1&P2

L1

Integrated
thread

1+1' 2+2'

P1'

CFG

1 2 P1

L1

L1

1' 2' P1'

2

1

a. Function with a loop (P1 is data-independent.)

1

2

3

Thread1

P1

Integrated
thread

3

P1

L1

Thread2

P1

L1

P1

L1

1'

2'

3'

1+1'

2+2'

3+3'

CFG

Figure 2 Code transformations for STI

Many cases and corresponding code transform
techniques for STI have been already demonstrated by
previous work [DS98] [Dean00] [Dean02]. STI uses
the control dependence graph (CDG, a subset of the
program dependence graph) [FOW87] to represent the
structure of the program, which simplifies analysis and
transformation. STI interleaves multiple procedures,
with each implementing part of a thread. For
consistency with previous work we refer to the separate
copies of the procedure to be integrated as threads.
Integration of identical threads is a simple case. Figure
2 demonstrates the cases and corresponding code
transformations, which can happen integrating the
same threads that handle different data sets. These
transformations can be applied repeatedly and
hierarchically, enabling code motion into a variety of
nested control structures. This is the hierarchical
(control-dependence, rather than control-flow)
equivalent of a cross-product automaton. Integration of
basic blocks involves fusing two blocks (case a). To

move code into a conditional it is replicated into each
case (case b). Code is moved into loops with guarding
or splitting. Finally, loops are moved into other loops
through combinations of loop fusion, peeling and
splitting. These transformations can be seen as a
superset of loop jamming or fusion. They jam not only
loops but also all code (including loops and
conditionals) from multiple procedures or threads,
greatly increasing its domain.

Code transformation can be done in two different
levels: assembly or high-level-language (HLL) level.
Our past work performs assembly language level
integration automatically [Dean02]. Although assembly
level integration offers better control, it also requires a
scheduler that targets the machine and accurately
models timing. For a VLIW or EPIC architecture this is
nontrivial. In this paper we integrate in C and leave
scheduling and optimization to the four compilers,
which have much more extensive optimization support
build in. Our approach is to feed extra instruction-level
parallelism to the compilers and evaluate their
performance.

Whether the integration is done in either assembly
or HLL level, it requires two steps. The first is to
duplicate and interleave the code (instructions). The
second is to rename and allocate new local variables
and procedure parameters (registers) for the duplicated
code. The second step is quite straightforward in HLL
level integration because the compiler takes care of
allocating registers. Not all local variables are
duplicated because there may be some variables shared
by the threads.

There are two expected side effects from
integration. One is a code size increase (code
expansion), and the other is a register pressure. The
code size increases due to the multiple threads and
code replication into conditionals. Code size increase
has a significant impact on performance if it exceeds a
threshold determined by instruction cache size and
levels. The number of registers also increases
approximately linearly with the number of integrated
threads.

2.5 Optimizing the application
After performing integration, we have multiple

versions of a specific procedure: the original discrete
version and integrated versions. There are two
approaches for invoking those threads in the
application. The first is to modify the application to
call integrated threads directly by replacing original
procedure calls with integrated procedure calls. It is a
static approach as it requires determining the most
efficient version before compile time. The second is a
dynamic approach, using a run-time mechanism to
choose the most efficient version of thread at run time.
Work in this area is under way. In this paper, we only

focus the static approach and optimize the applications
based on performance analysis.

After writing the integrated versions of the target
procedures, we include those in the original source
code and modify the caller procedure to call the
specific version of procedure every time. Typically the
caller procedure is organized to call the target
procedure a certain number of times with the form of a
loop. Since the integrated procedure handles multiple
calls at once, the caller must delay the calls and store
the procedure parameters until it has data for all of the
calls and call the integrated procedure with multiple
sets of parameters. Some local variables for storing
parameters for delayed calls and for organizing the
control flow are allocated to the caller and control flow
becomes slightly more complicated than before. As a
result, some overhead is unavoidable from register
pressure and branch mispredictions.

We measure the performance of various versions of
the application, varying the level of integration in the
cloned procedures. We can then select the most
efficient version. This grows more important if we
have more than one procedure to be cloned. For
example, we have three versions – original, 2-thread
integrated, 3-thread integrated – of FDCT and Encode
(Huffman encoding) in cjpeg application. From nine
combinations to invoke those two threads, the best
combination can be chosen using feedback based on
the performance of each version of the thread.

2.6 Automating Integration
The goal of this work is to determine whether it is

worthwhile to develop the tools needed to
automatically clone and integrate procedures for high-
performance embedded systems. Our previous work
automatically integrates assembly language threads for
Alpha and AVR architectures. Automated stages in our
post-pass compiler Thrint include parsing, control flow
and dependence analysis, data flow analysis, static
timing analysis, transformation planning and execution,
register reallocation and code regeneration. Supporting
the currently presented work requires retargeting to
support a VLIW/EPIC architecture (including parser,
machine model and scheduler), a guidance layer which
determines which procedures to integrate, and a lower
guidance layer to control how to integrate two
procedures (based upon processor utilization, code
explosion, and profiling).

3 Integration of JPEG Application and
Overview of the Experiment

We chose the JPEG application as an example of
the multimedia workload. We performed STI for the
JPEG application as presented in Section 2. Three
target procedures were identified and integrated

manually at the C source code level and executed in
their programs on an ItaniumTM machine. The objective
of the experiment is to evaluate the performance
benefits and bottlenecks of STI of procedure clones.

3.1 Sample application: JPEG
JPEG is a standard image compression algorithm

which is frequently used in multimedia applications. It
is one of applications in MediaBench, a benchmark
suite which represents multimedia workloads.
[LPM97] Source code was obtained from Independent
JPEG Group. We used 512x512x24bit image lena.ppm
which is a standard for image compression research.
JPEG is composed of two programs: djpeg
(Decompress JPEG) and cjpeg (Compress JPEG).
Understanding the algorithm of the application helps
find existing parallelism in the application. The basic
compress/decompress algorithm is presented in Figure
3. [Hals01] [Wall91]

Encoded
image

lena.ppm

[Preoprocess]
Read image

Image preparation
Block preparation

[FDCT]
Forward DCT

Quatize

[Encoding]
Huffman/Differential

Encoding

[Postprocess]
Frame build
Write image

Encoded
image

lena.jpg

Algorithm: CJPEG

Encoded
image

lena.jpg

[Preprocess]
Read image

Frame decode

[Decoding]
Huffman/Differential

Decoding

[IDCT]
Dequatize

Inverse DCT

[Postprocess]
Image build
Write image

Decoded
image

lena.ppm

Algorithm: DJPEG

Figure 3 Algorithms of cjpeg and djpeg

3.2 Integration method
Figure 4 shows the execution time and procedure

breakdown in CPU cycles from gprof compiled by
GCC with –O2 optimization. djpeg spends most of its
execution time performing IDCT (Inverse Discrete
Cosine Transform). cjpeg also spends significant
amounts of time performing FDCT (Forward DCT) and
Encoding.

Execution time of CJPEG and DJPEG and
function breakdown

000.0E+00
20.0E+06
40.0E+06
60.0E+06
80.0E+06

100.0E+06
120.0E+06
140.0E+06

CJPEG DJPEG

C
PU

 C
yc

le
s

Etc.
Pre/Post Process
Encode/Decode
FDCT/IDCT

Figure 4 Execution time and procedure
breakdown of cjpeg and djpeg

FDCT/IDCT is a common tool for compressing an
image. The existing parallelism is that one procedure
call performs FDCT/IDCT for an 8x8 pixel macro

block, and input and output data of every procedure
call are independent. Similarly, Encode/Decode
processes a block of data with one procedure call and
has the same level of parallelism as FDCT/IDCT has.

We perform the integration of two and three threads
for IDCT, jpeg_idct_islow (JII), in djpeg and FDCT,
forward_DCT (FD) and jpeg_fdct_islow (JFI), Encode,
encode_one_block (EOB), in cjpeg. Decode,
decode_mcu (DM), in djpeg cannot be parallelized
because of the data dependencies between the buffer
position for the blocks. We do not perform the
integration for other procedures, rgb_ycc_convert
(RYC) and ycc_rgb_convert (YRC) because their calls
are too far apart (separated by three levels of calls),
which lead to too many changes of the source code.

JFI2()
data1+data2

FD3() EMH()

FD: forward_DCT
JFI: jpeg_fdct_islow
EMH: encode_mcu_huff
EOB: encode_one_block

FD2: forward_DCT_sti2()
JFI2: jpeg_fdct_islow_sti2()
EOB2: encode_one_block_sti2()

JFI2()
dta3+data4

JFI2()
data5+data6

EOB2()
data1+data2

EOB2()
data3+data4

EOB2()
data5+data6

JFI3()
data1+data2+data5

EOB3()
data1+data2+data3

EOB3()
data4+data5+data6

FD3()

JFI3()
data3+data4+data6

FD3: forward_DCT_sti3()
JFI3: jpeg_fdct_islow_sti3()
EOB3: encode_one_block_sti3()

3rd and 4th call

Compress_data()

FD() FD() FD() FD()

1st call 2nd call 3rd call4th call

EMH()

1st call

JFI()
data1

JFI()
data4

JFI()
data3

JFI()
data2

JFI()
data5

JFI()
data6

EOB()
data1

EOB()
data4

EOB()
data3

EOB()
data2

EOB()
data5

EOB()
data6

Compress_data()

FD2() FD2() FD2()

1st call 2nd call

EMH()

1st call

2nd and 4th call

Compress_data()

1st and 3rd call 1st call

NOSTI: Original execution

STI2: Always calls 2-integrated thread

STI3: Always calls 3-integrated thread

Figure 5 Execution behaviors of three versions of
cjpeg application with original function,
duplicated clone and triplicated clone

Code transformation is done at the C source level
using the techniques just presented. IDCT is composed
of two loops with identical control flow and a
conditional which depends on the input data. The
control flow of the integrated procedure is structured to
handle all possible execution paths. (case b in Figure 2)
The control flow of Encode in cjpeg is also similar as it
has a loop with a data-dependent predicate. The
previously mentioned buffering technique is applied to
maintain the write order of codewords during
integration of EOB. FDCT is composed of two
procedures, FD and JFI. Even though there is a nested
call from FD to JFI, the control flow is straightforward,
as it is an extension of a procedure with a loop (case a
in Figure 2). In this case, the intermediate procedure
FD is modified to call JFI properly so that it handles
the correct data sets.

We invoke the integrated threads statically by
binding a specific version explicitly in the application.

Three different versions of caller procedures for the
respective target procedures are written and included in
the original source code, and then are compiled to
different versions of application with conditional
compile flags. Then we measure the performance of the
target procedure with those versions. Finally, we build
the best-optimized version of the application. Original
execution and two implementations (STI2 and STI3)
for FDCT and EOB in cjpeg are shown in Figure 5.

3.3 Overview of the Experiment and
Evaluation Methods

DJPEGApplications CJPEG

Threads IDCT_NOSTI

IDCT_STI2

IDCT_STI3

FDCT_NOSTI

FDCT_STI2

FDCT_STI3

Encode_NOSTI

Encode_STI2

Encode_STI3

Compilers
and

Optimizations

GCC
-O2

Pro64
-O2

ORCC
-O2 / -O3

Intel
-O2 / -O3
/ -O2u0

Platform
Linux for IA-64

Results Performance / IPC Cycle breakdown

Compile

Run

Measure

ItaniumTM processor

Figure 6 Overview of the experiment

Three versions of source code (1/ NOSTI: original
discrete (non-integrated) version, 2/ STI2: 2-thread-
integrated, 3/ STI3: 3-thread-integrated) for respective
target threads (IDCT in djpeg, FDCT and EOB in
cjpeg) are written and compiled with various compilers
with different optimization options: GCC –O2, Pro64 –
O2, ORCC –O2 and –O3, Intel –O2, –O3, and –O2u0
(–O2 without loop unrolling). GCC is the compiler
bundled in Linux/IA-64 and Pro64TM is the open source
compiler developed by SGI. ORCC is Open Research
Compiler evolved from Pro64 and Intel C++ compiler
is a commercial compiler released by Intel
Corporation. Table 1 lists the compilers that we use in
this experiment. The main reason for using various
compilers is that the performance of a program varies
significantly with the compiler in VLIW/EPIC
architectures because scheduling decisions are made at
compile time. The second reason is that we try to
observe the correlation between features of the

compliers and the performance benefits of STI. Figure
6 presents the overview of the experiment.

Symbol Name Version License
GCC GNU C Compiler

for IA-64
3.1 GNU, Open

Source
Pro64 SGI Pro64TM

Compiler
Build 0.01.0-
13

SGI, Open
Source

ORCC Open Research
Compiler

Release 1.0.0 Open Source

Intel Intel C++
Compiler

6.0 Intel,
Commercial

TABLE 1 Compilers used in the experiments

The compiled programs are executed on an Intel
ItaniumTM processor running Linux for IA-64. The
processor features EPIC (Explicitly Parallel Instruction
Computing), predication, and speculation. It can issue a
maximum of 6 instructions per clock cycle and has 3
levels of caches, L1 16K data cache, L1 16K
instruction cache, L2 96K unified cache, L3 2048K
unified cache. It runs with 800MHz CPU clock rate
and 200MHz memory bus speed. [Intel00]

All experimental data are captured during execution
with the help of the Performance Monitoring Unit
(PMU) in Itanium processor. The PMU features
hardware counters, which enable the user to monitor a
specific set of events. The software tool and library
pfmon [ME02] use the PMU to measure the
performance (execution cycles or time), instruction per
cycle (IPC), and cycle breakdown of the procedures.
All data are obtained by averaging results from 5
execution runs; there is little variation among the data.

4 Experimental Results and Analysis
Three kinds of data are obtained to observe the

performance and execution behavior of the integrated
threads.

1) CPU cycles, speedup by STI, and IPC
CPU (execution) cycles of different versions of the

respective target procedures are measured and
normalized compared with the performance of the
original procedure compiled with GCC-O2 so that it
indicates performance. Percentage performance
improvement is also plotted comparing the
performance of the integrated version with the original
discrete one. We measure IPC for reference.

2) Cycle breakdown and speedup breakdown
Every cycle spent on running program on Itanium

can be separated in two categories: The first is an
‘inherent execution cycle’, a cycle used to do the real
work of the program and the other is a ‘stall’, the
cycles lost waiting for a hardware resource to become
available. The stall can be also subdivided to seven
categories: Data access, dependencies, RSE activities,
Issue limit, Instruction access, Branch re-steers, and

Taken branches. Table 2 shows how each category is
related to the specific pipeline event. [Intel02]
Categories Descriptions
Inh. Exe.
(Inherent execution)

Cycles due to the inherent execution of the
program

Inst. Acc.
(Instruction access)

Instruction fetch stalls due to L1 I-cache or
TLB misses

Data Acc.
(Data access)

Cycles lost when instructions stall waiting for
their source operands from the memory
subsystem, and when memory flushes arise

RSE
(RSE activities)

Stalls due to register stack spills to and fills
from the backing store in memory

Dep.
(Scoreboard
dependencies)

Cycles lost when instructions stall waiting for
their source operands from non-load
instructions

Issue Lim.
(Issue limit)

Dispersal break due to stops, port over-
subscription or asymmetries

Br. Res.
(Branch resteer)

Cycles lost due to branch misperdictions, ALAT
flushes, serialization flushes, failed control
speculation flushes, MMU-IEU bypasses and
other exceptions

Taken Br.
(Taken branches)

Bubbles incurred on correct taken branch
predictions

TABLE 2 ItaniumTM cycle breakdown categories

We measure the cycle breakdown of the each
procedure for identifying the benefits and bottlenecks
of STI. From those data, we also derive and plot
percentage speedup breakdown showing from which
categories a performance increase or decrease occurs.
By adding numbers of bars with the same color in that
chart, we find the overall speedup from STI. The
categories which have positive bars contribute to
speedup, and those with negative bars cause slowdown.

3) Code size
STI causes a code size increase. We measured the

pure code size of the procedure with encoded bundle
size excluding data space. Code size of the application
is measured with the size of the binary executable.

Cycle Breakdown for Non-Integrated Code

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

G
C

C
-O

2
P

ro
64

-O
2

O
R

C
C

-O
2

O
R

C
C

-O
3

In
te

l-O
2

In
te

l-O
3

G
C

C
-O

2
P

ro
64

-O
2

O
R

C
C

-O
2

O
R

C
C

-O
3

In
te

l-O
2

In
te

l-O
3

G
C

C
-O

2
P

ro
64

-O
2

O
R

C
C

-O
2

O
R

C
C

-O
3

In
te

l-O
2

In
te

l-O
3

FDCT EOB IDCT

TakenBr
Br.Res.
IssueLim.
Dep.
RSE
DataAcc
Inst.Acc
Inh.Exe

Figure 7 – Cycle breakdowns for different compilers show
wide variation

Figure 7 shows the breakdown of execution cycles
for each of the compilers and functions before any
integration is performed. This will serve as a reference
to the upcoming analysis.

[EOB/CJPEG] Speedup by STI

0%

5%

10%

15%

20%

GCC-O2 Pro64-O2 ORCC-O2 ORCC-O3 Intel-O2 Intel-O3

%
 S

pe
ed

up

NOSTI STI2 STI3

[FDCT/CJPEG] Speedup by STI

-20%

-10%

0%

10%

20%

30%

40%

50%

GCC-O2 Pro64-
O2

ORCC-
O2

ORCC-
O3

Intel-O2 Intel-O3 Intel-
O2-u0

%
 S

pe
ed

u
p

NOSTI STI2 STI3

[IDCT/DJPEG] Speedup by STI

-100%
-80%
-60%
-40%
-20%

0%
20%
40%
60%

GCC-
O2

Pro64-
O2

ORCC-
O2

ORCC-
O3

Intel-
O2

Intel-
O3

Intel-
O2-u0

%
 S

pe
ed

up

NOSTI STI2 STI3

Figure 8 – Performance of integrated clones normalized
to original code shows speedup and slowdown

Figure 8 shows the performance of the three
integrated procedures, normalized to the performance
of the original code without integration. This shows the
variation in performance across all the compilers.
Integrated procedure clones increase performance in all
but one case for the first two experiments (FDCT and
EOB). For EOB the “sweet spot” in thread count
(number of procedure copies in a clone) is two, while
for FDCT it is three for compilers other than the Intel
compiler. The FDCT Pro64 case is interesting, as its
base performance is the worst of all compilers, yet
thread integration enables the compiler to bring it up to
be the second best. IDCT shows a performance penalty
for clone integration with ORCC and the Intel
compiler, while showing a speedup for GCC and
Pro64. Figure 9 shows the instructions completed per
cycle for each case.

[EOB/CJPEG] IPC Variations

1

1.2

1.4

1.6

1.8

2

2.2

2.4

GCC-O2 Pro64-
O2

ORCC-
O2

ORCC-
O3

Intel-O2 Intel-O3

In
st

ru
ct

io
n

s
/

C
yc

le

NOSTI STI2 STI3

[FDCT/CJPEG] IPC Variations

1

1.5

2

2.5

3

3.5

4

GCC-O2 Pro64-
O2

ORCC-
O2

ORCC-
O3

Intel-
O2

Intel-
O3

Intel-
O2-u0

In
st

ru
ct

io
n

s
/

C
yc

le NOSTI STI2 STI3

[IDCT/DJPEG] IPC Variations

0

0.5

1

1.5

2

2.5

3

3.5

GCC-O2 Pro64-
O2

ORCC-
O2

ORCC-
O3

Intel-O2 Intel-O3 Intel-
O2-u0

In
st

ru
ct

io
n

s
/

C
yc

le

NOSTI STI2 STI3

Figure 9 – Impact of procedure clone integration on
instructions per cycle

Figure 10 shows the sources of speedup (bars above
the centerline) and slowdown (below it) for each
function. Cycle categories are listed from left to right
as ordered in Table 2. Most of the performance
enhancement results from reducing issue-limited
cycles, showing how the compilers are able to generate
better schedules when given more independent
instructions. Some improvement comes from data
cache access as well. The major source of slowdown
for IDCT is instruction access due to code explosion,
which exceeds the limits of the instruction cache (16
kbytes). In fact, code expansion limits performance for
all procedures; code size should be considered when
selecting procedures to clone and integrate.

EOB

-10%

-5%

0%

5%

10%

15%

Inh.Exe Inst.Acc DataAcc RSE Dep. IssueLim. Br.Res. TakenBr

Cycle Category

Sp
ee

d-
U

p

GCC-O2 STI2 GCC-O2 STI3 Pro64-O2 STI2 Pro64-O2 STI3
ORCC-O2 STI2 ORCC-O2 STI3 ORCC-O3 STI2 ORCC-O3 STI3
Intel-O2 STI2 Intel-O2 STI3 Intel-O3 STI2 Intel-O3 STI3

FDCT

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

Inh.Exe Inst.Acc DataAcc RSE Dep. IssueLim. Br.Res. TakenBr

Cycle Category

Sp
ee

d-
U

p

GCC-O2 STI2 GCC-O2 STI3 Pro64-O2 STI2 Pro64-O2 STI3
ORCC-O2 STI2 ORCC-O2 STI3 ORCC-O3 STI2 ORCC-O3 STI3
Intel-O2 STI2 Intel-O2 STI3 Intel-O3 STI2 Intel-O3 STI3
Intel-O2-u0 STI2 Intel-O2-u0 STI3

IDCT

-100%

-80%

-60%

-40%

-20%

0%

20%

Inh.Exe Inst.Acc DataAcc RSE Dep. IssueLim. Br.Res. TakenBr

Cycle Category

Sp
ee

d-
U

p

GCC-O2 STI2 GCC-O2 STI3 Pro64-O2 STI2 Pro64-O2 STI3
ORCC-O2 STI2 ORCC-O2 STI3 ORCC-O3 STI2 ORCC-O3 STI3
Intel-O2 STI2 Intel-O3 STI2 Intel-O2-u0 STI2 Intel-O2-u0 STI3

Figure 10 – Breakdown of speedup/slowdown for
integrated clones shows speedup comes primarily from
reducing issue limited cycles and data access while
slowdown comes from instruction access.

Figure 11 shows the impact of clone integration on
code size. Here we see that not only does integration
push IDCT up to or over the I-cache limit for all cases,
but also that the Intel C++ compiler increases code size
dramatically. This is due to loop unrolling. When loop
unrolling is disabled for this compiler (-u0 switch), the
code size becomes much more reasonable and
performance recovers.

F D C T

0

1 00 0 0

2 00 0 0

3 00 0 0

4 00 0 0

5 00 0 0

6 00 0 0

7 00 0 0

G C C -O 2 P ro64 -O 2 O R C C -O 2 O R C C -O 3 In te l-O 2 In tel-O 3 In te l-O 2 -u0

C o m p ilers

B
yt

es

N O S T I S T I2 S T I3

Ica ch e :1 6 K

E O B

0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0

1 2 0 0 0

1 4 0 0 0

1 6 0 0 0

G C C -O 2 P ro 6 4 -O 2 O R C C -O 2 O R C C -O 3 In te l-O 2 In te l-O 3

C o m p i le r s

B
yt

es

N O S T I S T I2 S T I3

Ic a c h e :1 6 K

ID C T

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

G C C -O 2 P ro 64-O 2 O R C C -O 2 O R C C -O 3 Inte l-O 2 In te l-O 3 In te l-O 2 -u 0

C om p ile rs

B
yt

es

N O S T I S T I2 S T I3

Ica ch e:16K

Figure 11 Impact of integration on code size compared
with the 16 kByte I-Cache size

Figure 12 examines application performance for
cjpeg and djpeg for various levels of clone integration
for the FDCT and EOB procedures normalized to GCC
–O2. The first bar indicates baseline (non-integrated)
performance; the next two bars show performance for
the procedures with two and three threads integrated in
the clones. For the CJPEG program the “Best Combo”
bar indicates performance when the best clone (with 2
or 3 threads integrated) is selected for each procedure
based on measured performance, allowing the
integration level to vary based on the thread count
“sweet spot”. It is interesting to note that integration
improves performance 9% over the best compiler (intel
–O2 –u0), and brings the performance of the worst
(Pro64 -O2) to nearly that level (4% over intel –O2 –
u0). However, the DJPEG program suffers because of
the previously mentioned code expansion and limited
instruction cache.

Figure 13 shows the overall cjpeg program speedup
relative to the no integration case. It demonstrates that
for this application, all compilers but the Intel –O3 are
able to benefit from procedure cloning and integration.
Also, integrating procedure clones provides nearly the
same speedup to the Intel –O2 compiler, regardless of
whether loop unrolling is used. The harmonic mean of

speedup is 8.3% for two threads, 7.6% for three
threads, and 11.9% for the best combination of thread
integration levels. This shows the benefit of selecting
the best number of threads per clone.

Performance of CJPEG

0.2

0.4

0.6

0.8

1

1.2

1.4

GCC-O2 Pro64-O2 ORCC-O2 ORCC-O3 Intel-O2 Intel-O3 Intel-O2-u0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

NOSTI STI2 STI3 BestCombo

Performance of DJPEG

0.2

0.4

0.6

0.8

1

1.2

1.4

GCC-O2 Pro64-O2 ORCC-O2 ORCC-O3 Intel-O2 Intel-O3 Intel-O2-u0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

NOSTI STI2 STI3

Figure 12 Overall application performance

C JP E G S peedup P er C om piler F rom In tegration

0.8

0.9

1.0

1.1

1.2

1.3

1.4

GCC-O
2

Pro6
4-O

2

ORCC-O
2

ORCC-O
3

Int
el-

O2

Int
el-

O3

Int
el-

O2-u
0

Harm
on

ic
Mea

nPe
rf

or
m

an
ce

 R
el

at
iv

e
to

 N
o

In
te

gr
at

io
n

N O S TI
ST I2
ST I3
Bes tC om bo

DJPEG Speedup per Compiler from Integration

0.2

0.4

0.6

0.8

1.0

1.2

1.4

GCC-O
2

Pro6
4-O

2

ORCC-O
2

ORCC-O
3

Int
el-

O2

Int
el-

O3

Int
el-

O2-u
0

Harm
on

ic
Mea

nPe
rf

or
m

an
ce

 R
el

at
iv

e
to

 N
o

In
te

gr
at

io
n

NOSTI
STI2
STI3

Figure 13 Overall cjpeg program performance per
compiler shows integration yields speedup for nearly all
compilers, yet djpeg results are mixed

Figure 12 also shows the overall speedup for djpeg.
Integration provides speedups for four cases and
slowdowns for three, leading to overall harmonic

means of speedups of –6.5% for two threads and –
34.2% for three threads. Clearly thread integration
must be applied when code expansion will not burst the
instruction cache.

5 Conclusions
This paper introduces a method for improving

program run-time performance by gathering work in an
application and executing it efficiently in an integrated
thread. Our methods extend whole-program
optimization by expanding the scope of the compiler
through a combination of software thread integration
and procedure cloning. These techniques convert
parallelism at the procedure level to the instruction
level, improving performance on ILP uniprocessors.
This is quite useful for media-processing applications
which feature large amounts of parallelism.

We demonstrate our technique by cloning and
integrating three procedures from cjpeg and djpeg at
the C source code level, compiling with four compilers
for the Itanium EPIC architecture and measuring the
performance with the on-chip performance
measurement units. When compared with optimized
code generated by the best compiler without our
methods, we find procedure speedups of up to 18% and
program speedup up to 9%. Detailed performance
analysis shows the primary bottleneck to be the
Itanium’s 16K instruction cache, which has limited
room for the code expansion introduced by thread
integration.

Acknowledgements
This material is based upon work supported by the

National Science Foundation under Grant No.
0133690.

References
[BCGH] Prithviraj Banerjee, John A. Chandy, Manish Gupta,

Eugene W. Hodges IV et al. “An Overview of the
PARADIGM Compiler for Distributed-Memory
Multicomputers” IEEE Computer 28(10)

[CHK93] K. D. Cooper, M.W. Hall, K. Kennedy. A methodology
for procedure cloning. Computer Languages, 19(2):105-
117, Feb. 1993

[CHMR95]Alan Carle, Mary Hall, John Mellor-Crummey, Ren
Rodriguez, FIAT: A Framework for Interprocedural
Analysis and Transformation, Rice University CRPC-
TR95522-S, 1995.

[DCG94] J. Dean, C. Chambers and D. Grove. Selective
specialization for object-oriented languages. In ACM
SIGPLAN Conference on Programming Language Design
and Implementation, pp 93-102, June 1995.

[Dean00] Alexander G. Dean, “Software Thread Integration for
Hardware to Software Migration,” Doctoral Thesis,
Carnegie Mellon University, Pittsburgh, PA, May 2000.

[Dean02] Alexander G. Dean, “Compiling for Fine-Grain
Concurrency: Planning and Performing Software Thread
Integration”, 6th Annual Workshop on Interaction
between Compilers and Computer Architectures
(INTERACT-6, in conjunction with HPCA 8), Feb. 2002.

[DS98] Alexander G. Dean and John Paul Shen, “Techniques for
Software Thread Integration in Real-Time Embedded

Systems,” Proceedings of the 24th EUROMICRO
Conference, Aug. 1998.

[Ersh66] A.P. Ershov, ALPHA – An Automatic Programming
System of High Efficiency. J. ACM, 13, 1 (Jan.), 17-24

[FOW87] Jeanne Ferrante, Karl J. Ottenstein and Joe D. Warren,
“The Program Dependence Graph and Its Use in
Optimization," ACM Transactions on Programming
Languages, 9(3), July 1987, pp. 319-349.

[Fran93] M. Franklin. The Multiscalar Architecture. PhD Thesis,
University of Wisconsin -Madison, November 1993.

[FWL99] J. Fritts, W. Wolf and B. Liu, “Understanding multimedia
application characteristics for designing programmable
media processors,” Proceedings of SPIE, vol. 3655, pp. 2-
13, Jan. 1999.

[Hall91] M. W. Hall. Managing Interprocedural Optimization.
Ph.D. thesis, Rice University, Apr. 1991

[Hals01] Fred Halsall, Multimedia communications: Applications,
Networks, Protocols and Standards, Pearson Education
Limited, 2001

[Hank96] R.E. Hank, Region-Based Compilation. Ph.D. thesis,
University of Illinois at Urbana-Champaign, 1996.

[HMA95] Mary W. Hall, Brian R. Murphy, and Saman P.
Amarasinghe. Interprocedural analysis for parallelization:
Design and experience. In Proceedings of the Seventh
SIAM Conference on Parallel Processing for Scientific
Computing, pages 650--655. SIAM, February 1995.

[Intel00] Intel IA-64 Architecture SoftwareDeveloper’s Manual,
Vols. I-IV, Rev. 1.1, Intel Corp., July 2000;
http://developer.intel.com.

[Intel01] Intel IA-64 Architecture SoftwareDeveloper’s Manual
Specification Update, Intel Corp., Aug 2001;
http://developer.intel.com.

[LPM97] Chunho Lee, Miodrag Potkonjak, and William H.
Mangione-Smith. “Mediabench: a tool for evaluating and
synthesizing multimedia and communications systems,”
Proceedings of 30th annual ACM/IEEE international
symposium on Microarchitecture, Dec. 1997.

[ME02] David Mosberger and Stephane Eranian, IA-64 Linux
Kernel: Design and Implementation, Prentice Hall PTR,
2002.

[Newb97] Chris J. Newburn, "Exploiting Multi-Grained Parallelism
for Multiple-Instruction Stream Architectures," Ph.D.
Thesis, CMµART-97-04, Electrical and Computer
Engineering Department, Carnegie Mellon University,
November 1997

[NTGR98] A. Nene, S. Talla, B. Goldberg and R.M. Rabbah –
Trimaran – an infrastructure for compiler research in
instruction-level parallelism – user manual, 1998.
http://www.trimaran.org. New York University

[SBV95] G. S. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar
Processors. 22nd International Symposium on Computer
Architecture, pp. 414–425, June 1995.

[So02] W. So, “Software Thread Integration For Converting TLP
To ILP On VLIW/EPIC Architectures,” Masters Thesis,
Department of Electrical and Computer Engineering, NC
State University, 2002

[Wall91] Gregory K. Wallace, “The JPEG Still Picture
Compression standard,” IEEE Transactions on Consumer
Electronics, 1991.

[Way02] T.P. Way, Procedure Restructuring for Ambitious
Optimization, Ph.D. thesis, University of Delaware, 2002.

[WS91] Andrew Wolfe and John P. Shen, "A variable instruction
stream extension to the VLIW architecture," in
Proceedings of the Fourth International Conference on
Architectural Support for Programming Languages and
Operating Systems, April 8-11, 1991, pp. 2--14.

[ZVSM94] V. Zivojnovi'c, J. Martinez, C. Schlager, and H. Meyr,
“DSPstone: A DSP-oriented benchmarking
methodology,” Proceedings of ICSPAT'94, Oct. 1994.

