Impact of JIT /JVM Optimizations on Java Application Performance

K. Shiv*, R. lyert, C. Newburnt, J. Dahlstedt, M. Lagegrert andO. Lindholm*
*Intel Corporation
*BEA Systems

Abstract

With the promise of madine independenceand effi-
cient portability, JAVA has gained widespead popular
ity in the industry Along with this promise comesthe
needfor designingan efficient runtime ervironmentthat
can provide high-end performancefor Java-basedappli-
cations. In other words, the performanceof Java appli-
cationsdependsheavily on the designand optimizationof
the Java Virtual Machine (JVM). In this paper we start by
evaluating the performanceof a Java serverapplication
(SPECjbb2009M) on an Intel platform running a rudi-
mentaryJVM. We presenta measuement-basecdethodol-
ogy for identifyingareasof potentialimprovementandsub-
sequentlyevaluating the effect of JVM optimizationsand
other platform optimizations. The compiler optimizations
presentedinddiscussedn this paperincludepeepholeop-
timizationsand Javaspecificoptimizations.In addition,we
also studythe effect of optimizingthe garbage collection
medanismand the effect of improved locking strategies.
Theidentificationand analysisof theseoptimizationsare
guidedby the detailedknowledg@ of the micro-architecture
andtheuseof performanceneasuementndprofiling tools
(EMONandVTune)on Intel platforms.

1 Intr oduction

The performanceof Java client/sener applicationshas
beenthe topic of significantinterestin the recentyears.
The attractionthat Java offers is the promiseof portabil-
ity acrossall hardwareplatforms. This is accomplishedby
usingamanageduntimeenginecalledthe Java Virtual Ma-
chine (JVM) that runs a machine-independemepresenta-
tion of Java applicationscalledbytecodes.The mostcom-
mon mode of applicationexecutionis basedon a Just-In-
Time (JIT) compilerthatcompilesthebytecodesnto native
machindnstructions.Thesenative machinenstructionsare
alsocachedn orderto allow for fastre-useof thefrequently
executedcodesequencesApart from the JIT compilation,
the JVM also performsseveral functionsincluding thread
managemenand garbagecollection. This bringsusto the
reasorfor our studyi.e. Java applicationperformanceale-
pendsvery heaily on the efficient executionof the Java

Virtual Machine(JVM). Our goalin this paperis to charac-
terize,optimizeandevaluatea JVM while runningarepre-
sentatve Java application.

Overthelastfew years several projects(from academia
aswell asin the industry) [1,2,4,7,8,9,10,%,16,21] have
studiedvariousaspectof Java applicationscompilersand
interpreters. We found that R. Radhakrishnaret al. [16]
cover a brief descriptionof much of the recentwork on
this subject. In addition, they alsoprovide insightson ar-
chitecturalimplicationsof Java client workloadsbasedon
SPECjvm9g18]. Overall, the publishedwork canbe clas-
sifiedinto thefollowing generaklreasof focus: (1) present-
ing the designof a compiler, JVM or interpreter (2) opti-
mizing a certainaspecbf Java codeexecution,and(3) dis-
cussingthe applicationperformanceandarchitecturathar
acterization. In this paper we take a somavhat different
approachtouchinguponall the threeaspectdisted above.
We presenthesoftwarearchitectureof acommercialVM,
identify several optimizationsand characterizeahe perfor
manceof a representatie Java sener benchmarkthrough
severalphase®f codegeneratioroptimizationscarriedout
onaJVM.

Our contrikutionsin this paperareasfollows. We start
by characterizingsPECjbb200¢17] performanceon Intel
platformsrunningan early versionof BEA's JRockitJVM
[3]. We thenidentify variouspossibleoptimizations(bor-
rowing ideasfrom literaturewherever possible) presenthe
implementationdetailsof theseoptimizationsin the JVM
and analyzethe effect of eachoptimization on the exe-
cution characteristiceand overall performance. Our per
formancecharacterizatiorand evaluation methodologyis
baseddn hardwaremeasurementsn Intel platforms- using
performanceounterdEMON) anda sophisticategrofiler
(VTune[11]) thatallows usto characterizerariousregions
of software execution. The codegeneratiorenhancements
that we implementand evaluateinclude (1) code quality
improvementsuchaspeepholeoptimizations(2) dynamic
codeoptimizations,(3) parallelgarbagecollectionand (4)
fine-grainedocks. The outcomeof ourwork is thedetailed
analysisandbreakdavn of benefitsbasedon theseindivid-
ual optimizationsaddedo the JVM.

The restof this paperis organizedasfollows. Section
2 coversa detailedoverview of the BEA JRockitJVM, the
measurement-baseaxharacterizatioomethodologyand the
SPEC|jbb200enchmark. Section3 discusseghe opti-

mizations- how they wereidentified,implementedandtheir
performancesvaluation. Section4 summarizeghe break-
down of the performancebenefitsand where they came
from. Section5 concludeghis paperwith somedirection
onfuturework in this area.

2 Background and Methodology

In this sectionwe presentidetailedoverview of JRockit
(the commercialJVM used)[3], SPECjbb200(Qthe Java
sener benchmark)[17] and the optimization and perfor
manceevaluationmethodologyandtools.

2.1 Architecture of the JRockit JVM

The goal of the JRockit projectis to build a fastand
efficient JVM for sener applications. The virtual ma-
chine should be madeas platform independents possi-
ble without sacrificingplatform specificadvantages Some
of the considerationsncludedreliability, scalability non-
disruptivenesandof course high performance.

JRockit startsup differently from most ordinary Java
JVMs by first JIT-compilingthe methodst encounterslur-
ing startup. Whenthe Java applicationis running, JRockit
hasa bottleneckdetectoractive in the backgroundo col-
lect runtime statistics. If a methodis executedfrequently
and found to be a bottleneck,it is sentto the Optimiza-
tion Managersubsystenfor aggressie optimization. The
old methodis replaceddy the optimizedonewhile the pro-
gramis running.In thisway, JRockitis usingadaptve opti-
mizationto improve codeperformanceJRockitreliesupon
a fast JIT-compiler for unoptimizedmethods,as opposed
to interpretatve byte-codeexecution. OtherJVMs suchas
Jalapeno/Jigs[23] have usedsimilar approaches.

It is importantto optimizethe garbagecollectionmech-
anismin any JVM in orderto avoid disruptionandprovide
maximumperformancéo the Javaapplication.JRockitpro-
videsseveralalternatvesfor garbagecollection. The par-
allel collector” utilizes all available processor®n the host
computewhendoingagarbageollection. This meanghat
thegarbagecollectorrunsonall processorshut notconcur
rently with the Java program. JRockitalso hasa concur
rent collector which is designedto run without "stopping
theworld”, if non-disruptvenesss the mostimportantfac-
tor.

To completehesenersidedesign JRockitalsocontains
anadwancedhreadmodel,thatmakesit possibleto run sev-
eralthousandef Javathreadsaslight weighttasksin avery
scalablefashion.

2.2 Overview of the SPECjbb2000Benchmark

SPECjbb2000s Java BusinessBenchmarkfrom SPEC
thatevaluatesthe performanceof Sener SideJava. It em-
ulatesa three-tiersystem,with businesslogic and object
manipulationthe work of the middle layer predominating.

Emulated
Clients
(using
driver
threads)

Business Logic Engine
(using JRockit JVM)
(system running all 3 tiers)

In-Memory
Object Trees

L

Figure 1. The SPECjbb2000 Benchmark Pro-
cess

Thedatabaseomponentequirementommonto three-tier
workloadsis emulatedusing binary treesof objects. The

clientsare similarly replacedby driver threads. Thus, the

whole benchmarkruns on a single computersystem,and

all thethreetiersrunwithin thesameJVM. Thebenchmark
processs illustratedin Figurel.

The SPECjbb2000application is somavhat loosely
basedon the TPC-C [20] specificationfor its schema,
input generation,and operation profile. However, the
SPEC|jbb200®enchmarlonly stressethesener-sideJava
executionof incomingrequestandreplacesll databaséa-
bleswith Jara classesndall datarecordswith Java objects.
Unlike TPC-Cwherethe databasexecutionrequiresdisk
I/O to retrieve tables,in SPECjbb2000disk 1/0 is com-
pletely avoided by holding the objectsin memory Since
usersdo not resideon external client systemsthereis no
network 10 in SPECjbb200¢17].

SPECjbb2000neasureshe throughputof the underly-
ing Java platform,which is the rateat which businesoper
ationsareperformedpersecondA full benchmarkuncon-
sistsof a sequenc®f measurememointswith anincreas-
ing numberof warehousegandthusanincreasingnumber
of threads)andeachmeasuremerointis work donedur-
ing a 2-minuterun at a given numberof warehousesThe
numberof warehousess increasedfrom 1 until at least
8. The throughputsfor all the pointsfrom N warehouses
to 2*N inclusive warehousesire averagedwhereN is the
numberof warehousewith bestperformanceThisaverage
is the SPECjbb2000netric.

2.3 Performance Optimization and Evaluation
Methodology

Theapproachhatwe have takenis evolutionary Begin-
ning with anearlyversionof JRockit,performancevasan-
alyzedandpotentialimprovementsvereidentified. Appro-
priatechangesveremadeto the JVM andthe new version
of the JVM wasthentestedto verify thatthe modifications
did deliver the expectedimprovements. The new version
of the JVM wasthenanalyzedn its turn for the next stage
of performanceoptimizations. The typesof performance
optimizationsthatwe investigatedveretwo-fold. Changes
were madeto the JIT so that the quality of the generated
codewassuperiorandchangesveremadeto otherpartsof
theJVM, particularlyto theGarbageCollector ObjectAllo-

catorandsynchronizationto enhancehe processoscaling
of thesystem.

Our experimentswere conductedon a 4 processarl.6
GHz, Xeonplatformwith 4GB of memory The processors
hada 1M level-3 cachealongwith a 256K level-2 cache.
The processorsaccessednemory through a shared100
MHz, quad-pumpediront sidebus. The network anddisk
I/O componentof our systemwere not relevantto study-
ing the performancef SPECjbb2000sincethisbenchmark
doesnotrequireary 1/0. Severalperformancédoolsassisted
usin our experiments. Perfmon,a tool suppliedwith Mi-
crosoft's operatingsystemswasusefulin identifying prob-
lemsat a higherlevel, andallowed us to look at processor
utilization patterns contect switch rates,frequeny of sys-
tem calls and so on. EMON gave us insightinto the im-
pactof the workload on the underlyingmicro-architecture
andinto the typesof processostalls that were occurring,
andthatwe could targetfor optimizations.VTune permit-
ted usto dig deepemby identifying preciselythe regionsof
the codewherevariousprocessomicro-architecturevents
werehappeningThistool wasalsousedto studythegener
atedassemblycode. The next sectiondescribeghe perfor
mancetools— EMON andVTune—in somemoredetail.

2.4 Overview of PerformanceTools- EMON and
VTune

This sectiondescribeghe rich setof event monitoring
facilitiesavailablein mary of Intel’'s processorsjommonly
called EMON, and a powerful performanceanalysistool
baseddn thosefacilities, calledVTune[11].

2.4.1 EMON Hardwareand EventsUsed

The event monitoring hardware provides several facili-
tiesincluding simple eventcounting,time-basedgampling,
eventsamplingandbranchtracing. A detailedexplanation
of thesetechniqueds not within the scopeof this paper
Someof th key EMON eventsleveragedn our performance
analysisinclude (1) Instructions— the numberof instruc-
tionsarchitecturallyretired,(2) Unhaltedcycles— the num-
berof processocyclesthatthe applicationtook to execute,
not countingwhenthat processowashalted,(3) Branches
— the numberof branchesarchitecturallyretiredwhich are
useful for noting reductionsin branchesdue to optimiza-
tions, (4) BranchMispredictions- the numberof branches
that experienceda performancepenaltyon the orderof 50
clocks, dueto a misprediction,(5)Locks — the numberof
locked cmpxchginstructions,or instructionswith a lock
prefix and (6) Cachemisses— the numberof missesand
its breakdevn at eachlevel of the cachehierarchy

Thereaderis referredto the Pentium4 ProcessoOpti-
mizationGuide[24] for moredetailsontheseevents.

Processor Scaling (early_JVM)

1.4

12 —

0.8 —

0.6 —

0.4 —

Relative Performance

0.2 —

Figure 2. Processor
JRockit JVM version

Scaling on an early

2.4.2 VTune PerformanceMonitoring Tool

Intel's VTune performanceools provide a rich setof fea-
turesto aid in performanceanalysisandtuning: (1) Time-
basedand event-basedsampling,(2) Attribution of events
to codelocations,viewed in sourceand/orassembly (3)
Call graphanalysisand(4) Hot spotanalysiswith the AHA

tool, which indicateshow the measuredrangesof event
countvaluescomparewith otherapplications,and which
providessomeguidanceon whatothereventsto collectand
how to addressommonperformancéssues Oneof thekey
tools providesthe meandor providing the percentageon-
tribution of a smallinstructionaddressangeto the overall
programperformanceand for highlighting differencesin

performanceamongversionsof applicationsand different
hardwareplatforms.

3 JVM Optimizations and Performance Im-
pact

In this sectionwe describethe various JVM improve-
mentsthatwe studiedanddocumentheirimpacton perfor
mance.We alsoshav theanalysisof JVM behavior andthe
identificationof performancenhibitors that informed the
improvementghatweremade.

3.1 PerformanceCharacteristicsof an early JVM

The versionof JRockitwith which we beganour exper
imentswasa completeJVM in the sensehatall of there-
quired JVM componentsvere functional. Unlike several
other commercialJVMs though,JRockitdoesnot include
aninterpreter Instead all applicationcodeis compiledbe-
fore execution. This could slow down the startof an ap-
plication slightly, but this approactenablegyreatemperfor
mance. JRockitalsoincludeda selectionof GarbageCol-
lectorsandtwo threadingmodels.

Figure3 shows the performancdor increasingrumbers
of warehouse$or a 1-processoanda 4-processosystem.

[Metric of Interest 1P Avg 1P Max 4P Avg 4P Max
Total Processor % 94.71 100.00 56.25 100.00
Total Privileged % 0.85 13.44 362 7.58
Total User % 93.85 100.00 52.63 100.00
Total Interrupt% 0 0 0 0
JJRockit Thread Count 8 8 18 18
System Calls/sec 340 4686 55100 92530
Context Switches/sec 98 358 20991 23945
Interrupts/sec 93 191 279 382
Processor Queue Length 5.27 9.00 1.14 5.00

Table 1. System Performance Characteristics
for early _JVM

Effects of threads (early_JVM)

1 W\/‘N\-

Relative Performance

1 3 5 7 9
Number of Warehouses

Figure 3. Performance Scaling with Increas-
ing Warehouses

Thereis a markedroll-off in performancdrom the peakat
3warehousem the4-processocase.TheJVM canthusbe
seento be having somedifficulty with increasinghumbers
of threads.

DataobtainedusingPerfmonis shavn in Table1. While
the utilization of the 1 processois quite goodat 94%, the
processoultilization in the4-processocaseis only 56%. It
is clearthatimprovementsare neededo increasethe pro-
cessouutilization. The context switchandsystemcall rates
aretwo ordersof magnituddargerin the4Pthanin the 1P
The small processogueuelengthindicatesthe absencef
work in thesystem.Theseaspectalongwith thesharpper
formanceroll-off with increasedhreadsall pointto aprob-
ableissuerelatedto synchronization It appeardikely that
oneor morelocksarebeinghighly contendedresultingin
alargenumberof thethreadseingin a stateof suspension
waiting for thelock.

While being fully functional, this version of JRockit
(we call it early.JVM) had not beenoptimized for per
formance. It thus sened as an excellenttest-bedfor our
studies. The processorscalingseenwith the initial, non-
optimizedearly. JVM is shavn in Figure 2. It is obvious
that we cando much betteron scaling. Many other stat-
ically compiledworkloadsexhibit scalingof 3X or better
from 1 processoto 4 processordor instance.

3.2 Granularity of Heap Locks

The early versionof JRockit performedalmostall ob-
ject allocationglobally with all allocatingthreadsincreas-
ing a pointeratomicallyto allocate. In orderto avoid this
contentionthreadlocal allocationand ThreadLocal Areas
(TLAS) wereintroduced. In that scheme gachthreadhas
its own TLA to allocatefrom andthe atomicoperationfor
increasingthe currentpointer could be removed, only the
allocationof TLAs requiredsynchronizations.

A chainis never strongerthanits wealestlink, oncea
contentionon alock or anatomicoperationis removed,the
problemusuallypopsup someavhereelse. Thenext problem
to solve was the allocation of the TLAs. For eachTLA
thatwasallocatedtheallocatingthreadhadto take a"heap
lock”, find a large enoughblock on a free list andrelease
thelock. The phaseof objectallocationthatrequiresspace
to be allocatedfrom a free list requiresa lock. This lock
acquisitionandreleaseshaved up on all our measurements
with VTuneasa hot spot,markingit asa highly contended
lock.

One attemptwas madeto reducethe contentionof this
lock by letting the allocating threadallocatea couple of
TLAs and putting them in a smaller temporary storage
wherethey couldbeallocatedusingonly atomicoperations
by otherthreads.This attemptwasa deadend. Evenif the
threadthat hadthe heaplock put a large amountof TLAs
in the temporarystorageall threadsstill endedup waiting
mostof thetime, eitherfor the heaplock or thatthe holder
of theheaplock would give away TLAs.

The final solutionwasto createseveral TLA free lists.
Eachthreadhasa randomlyallotted”home” free list from
which to allocatethe TLAs it needs.If the choserlist was
empty the allocatingthreadtried to take the heaplock and
fill that particularfree list with several TLAs. After this,
thethreadwould chooseanother’home” freelist randomly
to allocatefrom. By having severallists, usuallyonly one
threadwould try to take the heaplock atthe sametime and
the contentionof the heaplock wasreduceddramatically
Contentionwasfurtherreducedby providingaTLA cache;
thethreadthatacquireghe heaplock moves1MB of mem-
ory into the cache. A threadthat finds its TLA free list
emptychecksfor TLAs in the cachebeforetakingthe heap
lock.

Figure 4 shavs the marked improvementin processor
scalingin the modified JVM, the JVM with the heaplock
contentiorreduction.Scalingat 2 processorsasincreased
from 1.08Xto 1.70X,andthescalingat4 processorlasim-
provedto 2.46X from 1.29X. The perfmondatawith these
changessinterestingandis shavnin Table2. Theincrease
in processotitilization andthe decreas@n systemcallsand
contet switchesareall very dramatic.

3.3 Garbage Collection Optimizations

The early versionof JRockitincludedboth a singleand
multi generationatoncurrengarbageollector, designedo

Processor Scaling

w

N
13

N

W mold JVM
— 0O new JVM

Relative Performance
N
[3,]

o
o
L

o

Figure 4. Improvement of Processor Scaling
with Heap Lock contention scaling

old JVNI [old JVMI new JVM new JVM
Metrics of Interest (avg) (max) (avg) (max)
Total Processor % 56.25 100.00 81.95 87.50
Total Privileged % 3.62 7.58 0.30 5.70
Total User % 52.63 100.00 81.64 100.00
Total Interrupt% 0 0 0 0
JRockit Thread Count 18 18 10 10
System Calls/sec 55100 92530 470 1853
Context Switches/sec 20991 23945 70 1151
Interrupts/sec 279 382 263 391
Processor Queue Length 1.14 5.00 1.14 3.00

Table 2. System Performance Characteristics
after Heap Lock Improvements

havereally shortpausdimesandfair throughput.Through-
putin aconcurrentollectoris usuallynotaproblemsincea
full collectionis rarely noticed,evenlesson a multiproces-
sorsystem.The problemoccurswhenobjectsareallocated
in suchafastratethatevenif the garbagecollectorcollects
all the time on one processoand letsthe otherprocessors
run the program the collectorstill doesnt manageo keep
upthepace.Thisproblemstartedo hurtperformancéadly
in JRockitwhenrunning8 warehousesn 8-way systems.

To solwe this, the so-called’parallel collector” was de-
veloped.ThebasewasanormalMark and Sweep[13] col-
lectorwith one markingthreadper processar Eachthread
hadits own markingstack,andif astackis emptythethread
could work-stealreferencedrom otherstacks[5]. Normal
pushingandpoppingrequiredno synchronizatioror atomic
operationspnly the work-stealingrequiredoneatomicop-
eration. Eachthreadalsohadan expandabldocal stackto
handleoverflow in the exposedmarkingstack.

Sweepings alsodonein parallelby splitting theheapin
N sectionsandletting eachthreadallocatea section,sweep
it, allocatea new sectionandsoforth until all sectionsvere
swept. The sweepingalgorithm focusedon performance
morethanaccurag, creatingroomfor fragmentationf we
wereunlucky. A partialcompactiorschemevasemployed
to reducethis fragmentation.

TheseGC optimizationgesultedn anincreasen there-

Processor Scaling
35
3 -——{ Oearly JVM
3 EHeap Locks
€ 25— —
g OParallel GC
£
g2 —
&
~ 15 —
2
g ¢ —
Q
14
0.5
0 o
1P 2P 4p

Figure 5. Impact of Parallel Garbage Collec-
tion on Processor Scaling

Effect of Parallel GC

Relative Performance
o = N W b OO O

0 5 10 15 20

Number of Warehouses

Figure 6. Impact of Parallel Garbage Collec-
tion on SPECjbb2000 Performance

ported SPECjbb2000esultin a 4P system,andimproved
processoiscalingfrom 2.46to 2.92, asillustratedin Fig-
ure 5. The benefitsof this were more noticeableat higher
numbersof warehouseandtherefordeadto a muchflatter
roll-off from the peak,asshovn in Figure6.

3.4 CodeQuality Impr ovements

Several code quality improvementswere madeduring
thebenchmarkingrocessA new codegeneratiorpipeline
wasdevelopedand memedinto the product. This enabled
usto do alot moreversatileandlow-level optimizationson
codethanpreviously waspossible Basedon the

SPECjbb200&haracteristicsneasurec@ndanalyzedn
the previous section,we were able to identify several pat-
ternsat the native code level that were suboptimal. The
JRockitteamreplacedhesewith bettercodethroughpeep-
hole optimizations(commonlyusedfor compileroptimiza-
tions as in [6, 14]) or more efficient code generation
methodologiesWhile thecompileroptimizationdisted be-
low arewell-known andunderstoodtherequiremenhereis

mov tmp, [field]
op tmp, operand
mov [field], tmp

op [field], operand

Figure 7. A Simple Example of Peep-Hole Op-
timization

thatthe compiletime overheadekeptto a minimumsince
it is a partof the executiontime; andassuch,notall known
optimizationsandtechniquesouldbe added.Theseareby
no meansa completelist of improvementsput give some
perspectie on thingsthatweredoneto enhancecodequal-

ity.

1. PeepholeOptimizations: The new JRockitcodegen-
eratormadeit possibleto work with native codejust
beforeemission,.e. therewould be IR operationgor
eachnative code operation. Several small peephole
optimizationswere implementedon this. We present
one example of this kind of patternmatchinghere:
Java containsa lot of load/storepatternswhereafield
is loadedfrom memory modified andthenrewritten.
Literal translationof a Java getfield/putfieldsequence
would resultin threeinstructionson IA32 asshovnin
Figure 7(left). 1A32 allows mostoperationgo oper
atedirectly on addressesothe above sequenceould
be collapsedto a single instructionas shawvn in Fig-
ure7(right).

2. Better useof IA32 FPU instructions: Java haspre-
cisefloating-pointsemanticsandworks eitherin 32-
bit or 64-bit precision. This is usually a problemif
onewantsto usefast80-bit floating pointsthat there
is hardwaresupportfor onIA32, butin somecasesve
don't needfp-strict calculationsand can use built in
FPU instructions. JRockitwas modifiedto determine
whenthis is possible.

3. Better SSAreversetransform: Most codeoptimiza-
tionstake placein SSAform. Thereweresomeprob-
lemswith artifactsin the form of uselesscopiesnot
beingremovedfrom the codewhentransformingoack
to normalform. Thetransformwasmodifiedto getrid
of these with goodresults.Registerpressuralropped
significantlyfor optimizedcode.

4. Faster checks: The implementationof several Java
runtime checkswas speededip. SomeJava runtime
checksare quite complicated,suchas the non-trivial
caseof an array storecheck. Thesewere treatedas
specialnative calls,but without usingall availablereg-
isters. Specialinterferenceénformationfor thesesim-
plified methodsvaspassedo theregisterallocator en-
ablinglesssavesandrestoresf volatile registers.

mov ecx, eax
mov [ebx + 4*ecx + 0x10], value
mov eax, ecx

mov ecx, eax
mov [ebx + 4*eax + 0x10], value

Figure 8. An Example of Copy Propagation

Code Generator Improvements
Metric of
Interest Before CGI After CGI % Change
Norm. Perf 1 1.34 34%
CPI 2.65 2.67 1%
Path Length 57940 42128 27%

Table 3. Impact of Better Code Generation on
Application Performance

5. Specializationsfor common operations: Array allo-
cationwasre-implementedvith specializedallocation
policiesfor individual array elementsizes. The Java
"arraycopy” functionwasalsospecializeddepending
onif it wasoperatingon primitivesor referencesnd
on elementsof specificsizes. Othercommonopera-
tionswerealsospecialized.

6. Better Copy Propagation: The copy propagatioral-
gorithm was improved and also changedo work on
thenew low level IR, with all its addressingnodesand
operations.An exampleof bettercopy propagatioris
shovnin Figure8.

Theseimprovementsto the JIT were undertalento re-
duce the code requiredto executean application. It is
possiblethat the techniquesusedto lower the pathlength
couldincreasdahe CPI of theworkload,andendup hurting
throughput. One exampleof this would be the usageof a
comple instructionto replacea setof simplerinstructions.
However, Table3 shawvs thatwhile the efforts to reducethe
pathlengthwerewell rewardedwith a 27% improvement
for SPECjbb2000theseoptimizationsdid not hurt the CPI
in ary significantway. The path lengthimprovementre-
sultedin a 34%boostto thereportedSPECjbb2000esult.

3.5 Dynamic Optimization

The initial compiletime thatis tolerablelimits the ex-
tentto which compileroptimizationscanbe applied. This
implies that while JRockit providesbettercodein general
than an interpretey for the few functionsthat other JITs
do chooseo compile,thereis arisk of underperformance.
JRockithaschoserto handlethis issueby providing a sec-
ondary compilationphasethat caninclude more sophisti-
catedoptimizations,and using this secondarycompilation
duringtheapplicationrunto compileafew frequentlyused
hot functions.

Therearetwo mainissueswith this thatimpactperfor
mance.Sincewe cutinto theapplicationrun-timewhenwe
re-optimizecode, it is essentialto ensurethat the hottest
functions are targeted, so that the performancebenefitis
worthwhile. However, the methodusedto identify the best
targetfunctionsmustnot beveryintrusive andcutinto per
formance.

Early_JVM, our baselineJRockit,usedMethod Invoca-
tion CountergMIC) to keeptrack of how oftena function
is called.Everytime afunction calledanotherfunction,the
MIC of both functionswere incremented while it is ob-
vious asto why the calleeMIC wasincrementedthe pur-
poseof incrementinghe caller's MIC is to beableto catch
the optimizationat the root functionsratherthanjust at the
leaves. While runningmulti-threadedcode, it is of course
possiblethat the samefunction could be executedon two
separat@rocessorsimultaneouslyBoth processorsvould
thenneedto attemptto incrementhefunction'sMIC. Lock-
ing theincremenbperationwould slow it down andmake it
toointrusive, sothe designdecisionwastakento not do so.
However, evenotherwisethereis asignificantperformance
impactof transferringhe counterfrom cacheto cachethus
decreasingacheperformancendincreasingoustraffic.

Every 3 secondsJRockitwould checkthe MIC andlook
for a target function to optimize. To avoid taking away
too muchtime from the application,only one functionis
targetedat eachtime. Finding the exact functionwith the
highestMIC couldalsogetvery expensve. SPECjbb2000,
for example,hasmorethan2000functions. To frequently
find the maximumof 2000valueswould be significantlyin-
trusive. InsteadJRockitscanghroughthe list of functions
looking for onewhoseMIC is higherthanathreshold tar
getsthatfor optimization,andsetsits MIC to zero.

JRockitprovideda commandine option (-Xnoopt)with
whichthesecondargompilationcanbeturnedoff. JRockit
alsoprovidedacommandine option (-XXoptall originally,
laterremoved)that could be usedto force the optimization
of all functionsat the initial codegenerationphaseitself.
Using just the -XXoptall option doesnot turn off the sec-
ondarycompilationphase Sincethe performancémprove-
mentsdueto re-optimizationrwhentheoriginal codewasal-
readyoptimizedis small,runningwith -XXoptall andcom-
paringthe resultswith -XXoptall -Xnoopt, allows usto get
ameasuref theintrusivenes®f the secondargompilation
phase.Similarly comparinga run with neitherof thesetwo
parameterwith arunthatincludes-Xnooptgivesameasure
of thebenefitsof secondarpptimizedcompilation.We also
usedVTuneto identify the top hot spotsin SPECjbb2000,
andcomparedhat with the list of functionsthat weretar-
getedfor recompilation,with a view towardsstudyingthe
efficiengy of the hot spotidentificationprocess.

Table4 summarize®ur findings. The obsenationfrom
thethroughpumeasurementis thatthisapproactdoespro-
vide a 4% net benefit. However, the techniqueis intrusive
andtakesup 6% of performance.

Optimization may well provide the most benefitwhen
the JIT hasa large block of codeto optimize. However,

Approach Sampling MIC
Performance Benefit due to

better code 17% 10%
Performance Loss due to

intrusiveness 1% 6%

Net Gain 16% 4%
Performance Gained by

Optimizing at Start-up 14% 14%

Percent of execution time spen
in optimized functions 60% 71%

Table 4. Impact of Dynamic Optimization
Strategies

suchlarge methodstendedto be hot spotsnot becauseof
thenumberof timesthey werecalled(whenthe MIC would
incrementput becausef thetime spentin thefunctiondur-
ing thefew timesthatthey werecalled. For instancearel-
atively hot methodTransactionManagegois invoked only
136 times during a run with up to 16 warehousesandis
thereforenever optimized.

Basedon this data,anotherapproachwaspursued.The
Method InvocationCounterswere abandonedandinstead
a samplingthreadwas introduced. The samplingthread
wakes up occasionallyand checkssomeor all of the ap-
plication’s threads.It notesdown which methodsthey are
in, andadditionallyit notesdown theinformationfor every
functionin thethreads calling stack. Thesecountsreplace
thoseprovidedby the MethodInvocationCounters.

On the positive side this removes a lot of instructions
from the applicationcode space,making for both tighter
code and shorterpath lengths. On the negative side the
countsacquiredthroughsamplingmay be more proneto
error. To counteracthis, the samplingtechniqueis more
likely to correctlyrepresenamethodlik e TransactionMan-
agergo,sinceit dependsnoreonthetime spentn amethod
thanthe numberof timesa methodis called.

The datawe have obtainedis compelling. Dynamically
recompilingasfew asa 100functionsduringthelife of the
applicationhasproducedresultsthat are very comparable
to theresultsproducedy optimizingall themethodsatthe
beginning. Using the -Xnoopt flag as the baseline,the -
XXoptall provided a benefitof 14%. Using the sampling
basedoptimization,we noteda performanceémprovement
of 16%. It may be notedthat this approachcan provide
a higher benefitthan by compiling all methodswith opti-
mizations.This is becausehe functionsthatareoptimized
by this methodcover morethan70%of executiontime, and
it is possibleto apply optimizationsbetterdueto the avail-
ablehistoryinformationthat-XXoptall lacks.

It is thus possibleto have both a relatively quick start-
up andexcellentperformanceBasedon theseexperiments,
BEA JRockithasdoneaway with the -XXoptall flag, and
MethodInvocationCounters TheJVM todayuseghesam-
pling approacho identify targetsfor optimization.

/I Thin lock:
If (acquire_thin_lock())
return;
1/ Stage2lock:
If (not_thin_lock()) { // checking whether it is a multi-lock
while (('acquire_thin_lock()) && (count3<L3)) {
spin(L1_cycles);
while((lacquire_thin_lock()) && (count2<L2) {
spin(L1_cycles);
count2++;

}
system_yield();
count3++;

wait_and_obtain_thin_lock();
inflate();

Figure 9. Algorithm to Implement Fat Lock De-
ferral

3.6 Lock Inflation Deferral

JRockit definesJava locks as either thin locks or fat
locks. All locksarethin locksinitially. Whenever ary lock
is contendedor it is inflatedto a fatlock. A lock oncein-
flatedis never deflatedbackto a thin lock. Dueto the need
to accesshemthroughextra levelsof indirectionandhash-
ing, thin locksaremuchquickerto acquireandrelease.

Sincefat locks are so expensve, it appearediesirable
to experimentwith approacheso deferringlock inflation.
We took as our modelthe approachimplementecby IBM
with DB2 [8], whichis athree-tietblockinglock algorithm.
Thealgorithmincorporatespinningyieldingandblocking.
Samplecodeto implementthis is shovn in Figure9.

Thelock is initially requestedandif it is not acquired,
the programspinsfor L1 cyclesandtries again. It repeats
this sequenc®f spinningandattemptingto lock L2 times
beforeyielding to the OperatingSystem.Whenthe thread
awakensit repeatshis patternL3 times, beforefinally in-
flating thelock to afatlock.

We experimentedwith several valuesof the parameters
L1, L2 andL3, andwe foundthattherewasa fairly broad
rangeof valuesfor which the scalingof SPECjbb2000s
much improved. While the specific valuesare not very
interesting(sincethey differ basedon platform configura-
tion), Figure10 demonstratesow muchflatterthecurveis,
and how much lessthe performancdoss when the num-
ber of warehousess increased. Specifically our experi-
mentsindicatethat99.7%of fatlocksarenolongerinflated.
While the performancémpactof this approachs modesin
SPEC|bb2000its impactshouldbe muchmoresignificant
in workloadswith higherdegreesof contention.

4 Summary of Optimizations, Performance
Benefitsand Inferences

In the previous section,we discussedhe various op-
timizationsthat we investigatedand incorporatednto the

Relative performance to 1-warchouse
6.00

By s g

—y
500 - =N

LR &

400 - -

3.00 A

—=— original jrockit drop
2.00

3-tier blocking lock ||

1.00 e

000 ——7m————F—F——F—F— T T T T

SPECjbb warehouses

Figure 10. Impact of Fat Lock Deferral

JRockit JVM. We also shaved the impact of the individ-
ual optimizationson the Java applicationperformanceaus-
ing SPECjbb2000neasurementdn this section,we sum-
marizetheoverall performancémprovemenimadepossible
throughthevariousphase®f optimization.

As shawvn in Table5, we basicallyinvestigatedive dif-
ferentareasof optimization- heaplocks, garbagecollec-
tion, code generationdynamicoptimizationand lock de-
ferrals. Of these,the optimizationsto heaplocks and
garbageollectionimprovedprocessoscalingby asubstan-
tial amount. The code generationimprovementsreduced
pathlengthsignificantly therebyaffecting performancee-
ciprocally. We alsodemonstratethatit wasnot necessary
to incur slow start-upin theinterestof performanceasdis-
cussedn Section3.5. In fact,dynamicoptimizationslightly
out-performedpre-optimization. Finally, we also studied
theimpactof deferringcorversionof thin locksto fatlocks,
shawing thatit is possibleto reduceinflation by asmuchas
99.7%. While our optimizationsfocusedprimarily on path
length reductionand processoiscalingimprovements fu-
ture work shouldcenteraroundtechniquego improve CPI
suchascacheconsciousbjectallocation.

5 Conclusionsand Futur e Work

Our aim in this paperwasto characterizelJasa appli-
cation performanceon a JVM asit evolvesin its design.
We startedwith a rudimentaryyet commercial JVM from
BEA (JRockit)andstudiedthe performancecharacteristics
of SPECjbb200®n the JVM. We found that the applica-
tion hadpoor scalingcharacteristicsvith a multiprocessor
(4P vs. 1P) speedupof about1.3. Upon investigation,
we attributed the cause(s)of the poor scalingas well as
poor overall performanceo a numberof potentialareasof
sub-optimaldesign. This wasdoneeffectively throughthe
meansof detailedmeasurementnadepossibleby perfor
mancemonitoringtools suchasEMON andprofiling tools
suchasVTune.

Performance

Areas of Characteristic |Performance
Optimization Affected Benefit Observed

Improved 1P to 4P
Heap Lock Processor performance scaling by
Granularity Scaling 91%

Improved 1P to 4P
Parallel Garbage Processor performance scaling by
Collection Scaling 19%
Code Generation Reduced path length by
Improvements Path Length 27%
Dynamic Application start-|Throughput increased by
Optimization up 3%

Inflation to fat-locks
Lock Deferral Lock Contention |reduced by 99.7%

Table 5. Summary of Optimizations

Having identified the potentialareasfor improvement,
we testedvariousschemesaninplementedsomenew op-
timizationswithin JRockit. Theseoptimizationsincluded
(1) code quality improvementsincluding peepholeopti-
mizations,(2) dynamiccodegeneratioroptimizations,(3)
improved garbagecollectionmechanismand (4) improved
locking strategies. In this paper we shoved the impact
of eachof theseoptimizationson the performanceof the
SPEC|jbb200®enchmarkThe performancemprovements
gainedon the whole were roughly 10X the initial perfor
manceof the rudimentaryJVM. Apart from the perfor
mancegains,we also believe that our measurement-based
methodologyof performanceoptimizationandtuning will
usefulto futureresearcherastho embarkuponsimilar stud-
ies.

In the future, we will continueto investigatepotential
JVM optimizationsto improve SPECjbb200henchmark
performance.n addition,we alsoplanto studyupcoming
benchmarkghat may betterrepresentapplicationseners
such as SPECjAppSerer2002[19]. Areas of research
would include capturingmore profile informationthrough
samplingandthe usageof thatinformationto generatédet-
ter code. SinceJava codetendsto have mary small meth-
odsandlargercodesegmentsmay offer betteroptimization
possibilities,investigationinto variousinlining techniques
[2,12,22] would bedesirable.

Acknowledgements

We would like to thankour colleaguegrom the MRTE
teamat Intel Corporationandthe JVM developmentteam
atBEA Systemdor their supportduringthis project.

References

[1] A. Adl-Tabatabaiet al., “Fast Effective Code Generation
in a Just-in-ime Java Compiler” Proceeding®f the ACM
SIGPLAN’98 conferenceon ProgrammingLanguageDe-
signandimplementation;1998.

[2] M. Arnold, S. Fink, V. Sarkar and P. Sweeng, “A com-
paratve studyof staticanddynamicheuristicsfor inlining,”

ACM SIGPLANWorkshopon DynamicandAdaptive Com-
pilation andOptimization,2000.

[3] BEA Systems, “Weblogic JRockit: The Sener JVM,”
http://www.bea.com/products/weblogic/jrockit/

[4] A. Barisone,F. Bellotti, R. Berta,and A. De Gloria, “In-
struction Level Characterizatiorof Java Virtual Machine
Workload; Workload Characterizatiorfor ComputerSys-
temDesign,L. JohnandA. Maynard,eds. pp. 1-24,1999.

[5] R. D. Blumofe and C. E. Leiserson,“Scheduling multi-
threadeccomputationsy work stealing”,Journalof ACM,
46(5): 720-748,1999.

[6] J.W. DavidsonandD. B. Whalley, “Quick compilersusing
peepholeoptimization’; Software Practiceand Experience,
19(1): 79-97,Januaryl989.

[7] S. Deickmannand U. Holzle, “A Study of the Allocation
Behavior of the SPECjvm98JasaBenchmarks,Proc.Euro-
peanConf. ObjectOrientedProgrammingJuly 1999.

[8] R. Dimpsgy, et al., “Java Sener Performance:A caseof
building efficient, scalableJVMs; IBM SystemsJournal,
vol. 39,n0.1, pp151-174,2000.

[9] M. Gupta,“Optimizing Java ProgramsChallengegandOp-
portunities, Proc. SecondAnn. WorkshopHardware Sup-
portfor ObjectsandMicroarchitectureor Java, Sept.2000.

[10] C.A.Hsieh,M.T. Conte,T.L. Johnson,J.C.Gyllenhaal,and
W.W. Hwu, “A Studyof the CacheandBranchPerformance
Issueswith RunningJava on CurrentHardware Platforms,
Proc.IEEE Compcon97, pp.211-216,1997.

[11] “VTune: Visual Tuning Ervironment; Available at
http://developerintel.com/design/perftools/vtune/,2002.

[12] S. Jagannatharand A. Wright, “Flow-directedinlining,”
Proceedingsf the ACM SIGPLAN'96 Conferencen Pro-
grammingLanguageDesignand Implementationpp. 193—
205,1996.

[13] R.E.JonesandR. Lins “GarbageCollection: Algorithms
for AutomaticDynamicMemory Managemerit,Wiley, July
1996.

[14] S.Montanaro,”A PeepholeOptimizerfor Python”, 7th In-
ternationaPythonConferenceNov 1998.

[15] T. Newhall and B. Miller, “PerformanceMeasuremenbf
Dynamically CompiledJava Executions, Proc.1999ACM
Java GrandeConferenceJunel999.

[16] R. RadhakrishnanN. Vijaykrishnan,et al., “Java Runtime
Systems:Characterizatiomnd Architecturallmplications,
IEEE Transaction®on Computerspagesl31-146,vol. 50,
issue2, February2001.

[17] “SPECJBB2000; http://www.spec.og/osg/jbb2000/.

[18] “SPECJVM98; http://www.spec.og/osg/jvm98/.

[19] “SPECjAppSerer2002,
http://wwwspec.og/jAppSener2002/

[20] “TPC-CBenchmarkSpecificatiori, http://www.tpc.og/.

[21] N. Vijaykrishnan, N. Ranganathan,and R. Gadekarla,
“Object- OrientedArchitecturalSupportfor a Java Proces-
sor” Proc.12th EuropeanConf. Object-OrientedProgram-
ming, pp.430-455 July 1998.

[22] O. WaddellandR. K. Dybvig, “Fastand Effective Proce-
durelnlining”, Proc.1997StaticAnalysisSymposiun(SAS
'97), Sept.1997,pp. 35-52.SpringerVerlagLectureNotes
in ComputerSciencevol.1302.

[23] M. Arnold, et al., “Adaptive Optimizationin the Jalapeno
JVM,;” ACM SIGPLAN Conferenceon Object-Oriented
Programmingsystemsl.anguagesandApplications(OOP-
SLA 2000),MinnesotaOctoberl5-19,2000.

[24] “Pentium 4 Proc Optimization Guide]
http://developerintel.com/design/pentium4/manuals/

