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Abstract 
This paper introduces a method for improving 

program run-time performance by gathering work in 
an application and executing it efficiently in an 
integrated thread. Our methods extend whole-program 
optimization by expanding the scope of the compiler 
through a combination of software thread integration 
and procedure cloning. In each experiment we 
integrate a frequently executed procedure with itself 
twice or thrice, creating two clones. Then, based on 
profile data we select at compile time the fastest 
version (original or clone) and modify call sites as 
needed.  These techniques convert parallelism at the 
procedure level to the instruction level, improving 
performance on ILP uniprocessors. This is quite useful 
for media-processing applications that feature large 
amounts of such parallelism. 

We demonstrate our technique by cloning and 
integrating three procedures from cjpeg and djpeg at 
the C source code level, compiling with four compilers 
for the Itanium EPIC architecture and measuring the 
performance with the on-chip performance 
measurement units. Detailed performance analysis 
shows the primary bottleneck to be the Itanium’s 16K 
instruction cache, which has limited room for the code 
expansion introduced by thread integration. For cjpeg, 
which is not significantly constrained by the i-cache, 
we find integration consistently improves code 
generated by all compilers but one, with a mean 
program speedup of 11.9%. 

1 Introduction 
Makers of high-performance embedded systems are 

increasingly using digital signal processors with VLIW 
and EPIC architectures to maximize processing 
bandwidth. However, this speed is a fraction of what it 
could be; it is limited by the difficulty of finding 
enough independent instructions to keep all of the 
processor’s functional units busy. Extensive research is 
being performed to extract additional independent 
instructions from within a thread to increase 
throughput. Software thread integration can be used to 
merge multiple threads or procedures into one, 

allowing the compiler to look among multiple 
procedures within the application to find independent 
instructions and create highly efficient integrated 
versions. We present an approach of integrating 
multiple procedures in an embedded system for 
maximum utilization 

Whole-program (or interprocedural) optimization 
methods extend the compiler’s scope beyond the call 
boundaries defined by the programmer to potentially 
encompass the entire program. These methods include 
interprocedural data-flow analysis, procedure inlining 
and procedure cloning.  

Procedure cloning consists of creating multiple 
versions of an individual procedure based upon similar 
call parameters or profiling information. Each version 
can then be optimized as needed, with improved data-
flow analysis precision resulting in better 
interprocedural analysis. The call sites are then 
modified to call the appropriately optimized version of 
the procedure. Cooper and Hall [CHK93] [Hall91] 
used procedure cloning to enable improved 
interprocedural constant propagation analysis in the 
matrix300 from SPEC89. Selective specialization for 
object-oriented languages corresponds to procedure 
cloning. [DC94] uses static analysis and profile data to 
select procedures to specialize. Procedure cloning is an 
alternative to inlining; a single optimized clone handles 
similar calls, reducing code expansion. Cloning also 
reduces compile time requirements for interprocedural 
data-flow analysis by focusing efforts on the most 
critical clones. Cloning is used in Trimaran [NTGR98], 
FIAT [CHMR95], Parascope, and SUIF [HMA95]. 

Region-based compilation [Hank96] allows the 
compiler to determine the appropriate unit of 
compilation, rather than being bound to the 
programmer-defined procedures, which are influenced 
more by software engineering principles than program 
performance. Adapting the region size as needed 
simplifies the tasks of optimization, register allocation 
and instruction scheduling. Using profile information 
to help guide the region selection and optimizations 
leads to more efficient compilation and execution. Way 
[Way02] extends region-based compilation to perform 



 

inlining and cloning based on demand and run-time 
profile information (path spectra) rather than by 
default. 

Software thread integration [Dean02] [Dean00] is a 
method for interleaving procedures implementing 
multiple threads of control together into a single 
implicitly multithreaded procedure. STI fuses entire 
procedures together, removing the loop-boundary 
constraint of loop jamming or fusion [Ersh66]. It uses 
code replication and other transformations as needed to 
reconcile control-flow differences.  Only data-
independent procedures are integrated; the remaining 
data-flow conflicts (false data dependences) are 
resolved through register file partitioning or register 
coloring. Past work used STI to interleave procedures 
at the assembly language level and perform fine-grain 
real-time instruction scheduling to share a uniprocessor 
more efficiently, enabling hardware-to-software 
migration for embedded systems. The present work 
uses STI to increase the instruction-level parallelism 
within a procedure, enabling the compiler to create a 
more efficient execution schedule and reduce run time. 

In this paper we present methods to clone and 
integrate procedures to improve run-time performance 
and evaluate their impact. The novelty is in providing 
clone procedures that do the work of two or three 
procedures concurrently (“conjoined clones”) through 
software thread integration. This enables work to be 
gathered for efficient execution by the clones. We 
compile the programs with the cloned and integrated 
procedures with four different compilers (gcc, ORCC, 
Pro64 and Intel C++) and evaluate performance in 
detail. 

This paper provides an initial look at the 
performance impact of cloning procedures in a media 
processing application. Although this paper describes 
programs in which independent procedure calls were 
manually identified, this is not a requirement for using 
the methods presented. Instead, a smart scheduler can 
be used in a system with multiple processes to select at 
run-time which procedure calls can be “shared” and 
executed with an efficient integrated procedure clone.  

The eventual goal of this work is to automate the 
process of cloning and integrating procedures for 
VLIW/EPIC processors. We focus upon these 
processors because they give much more predictable 
performance than superscalars; this is needed for the 
real-time embedded applications we seek to target in 
future work. This present work evaluates manually 
transformed procedures in order to determine whether 
the automation would be worth the effort. We have not 
examined the performance impact of these methods on 
superscalar processors but leave this for future work. 

This paper is organized as follows. Section 2 
describes the techniques used to determine which 
procedures to clone, how to integrate them, how to 

modify the call sites, and then finally how to select the 
best clone based on performance data. Section 3 
presents the experimental method: analysis and 
integration of the cjpeg and djpeg programs, compilers 
used, execution environment and profiling methods. 
Section 4 presents and analyzes the experimental 
results. Section 5 summarizes the findings. 

2 Integration Methods 
Planning and performing cloning and integration 

require several steps. We choose the candidate 
procedures to clone from the application and examine 
the applicability of STI. Then we perform integration 
to create the integrated clone versions of procedures 
and insert those in the applications. These five steps are 
presented in detail below.  
 

2.1 Identifying the candidate procedures for 
integration 

The first stage of integration is to choose the 
candidate procedures for integration from the 
application. The candidate procedures are simply those 
that consume a significant amount of the program’s run 
time. These can be easily identified by profiling, which 
is supported by most compilers (e.g. gprof in gnu 
tools).  For multimedia applications, those procedures 
usually include compute intensive code fragments, 
which most DSP benchmark suites call DSP-Kernels 
such as filter operations (FIR/IIR), and frequency-time 
transformations (FFT, DCT) [ZVSM94]. Those 
routines have more loop-intensive structures and 
handle larger data sets, which require more memory 
bandwidth than normal applications. [FWL99]  

2.2 System Architecture Options 
Two methods for invoking integrated procedures 

are directly calling them in the source code or 
indirectly calling them by requesting a thread fork from 
the operating system. In both the programmer identifies 
work which can be parallelized 

The first option speeds a single thread by 
integrating multiple procedure calls which can execute 
in parallel. The second option, when used with a 
multithreaded application, loosens this constraint by 
gathering procedure calls from separate threads. 

2.3 Examining parallelism in the candidate 
procedure  

The second step is to examine parallelism in the 
candidate procedure because integration requires 
parallel execution of procedures. Various levels of 
parallelism exist, from instruction to loop and 
procedure, based on the distribution of the independent 
instructions. The method proposed here is a software 



 

technique to use STI for converting existing procedure-
level parallelism to ILP. Though there are other levels 
of parallelism in the application we only focus on this 
type. Multimedia applications tend to spend most of 
their execution time running compute intensive 
routines iteratively on large independent data sets in 
memory. For example, FDCT/IDCT (forward/inverse 
discrete cosine transform), a common process in image 
applications, handles an 8x8 independent block of 
pixels; these procedures are called many times in the 
applications like JPEG and MPEG. We use this purely 
independent procedure-level data parallelism: 1) Each 
procedure call handles its own data set, input and 
output. 2) Those data sets are purely independent of 
each other, requiring no synchronization between calls. 
Our strategy for STI is to rewrite the target procedure 
to handle multiple sets of data at once. An integrated 
procedure joins multiple independent instruction 
streams and can offer more ILP than the original 
procedure. Figure 1 shows the existing parallel threads 
and strategy for integration. 
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Figure 1 Parallel threads and strategy for integration 

Detecting this parallelism within a single program 
is not an easy task; much work has been done to 
automatically extract multiple threads out of a single 
program for execution on processors with multiple 
instruction streams [BCGH] [Fran93] [SBV95] 
[Newb97] [WS91]. We are not trying to solve this 
problem. Instead, we assume that application 
developers will extract threads whether automatically 
or manually. We present a method to execute the 
parallel functions more efficiently on a single 
instruction stream processor. However, [So02] presents 
details on how to identify and group independent 
procedure calls within cjpeg and djpeg. 

Multiple instances of a program operating on 
independent streams of data are independent by 
definition. For example, a cell-phone base station 
performs Viterbi decoding multiple independent data 
streams, as does a streaming video transcoder. To 
gather the work of these data streams we could rely 

upon a smart scheduler in the operating system to 
gather thread fork requests over short periods of time 
from multiple threads and select efficient integrated 
versions. This is discussed in more detail in [So02]. 

2.4 Performing integration 
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Figure 2 Code transformations for STI 

Many cases and corresponding code transform 
techniques for STI have been already demonstrated by 
previous work [DS98] [Dean00] [Dean02]. STI uses 
the control dependence graph (CDG, a subset of the 
program dependence graph) [FOW87] to represent the 
structure of the program, which simplifies analysis and 
transformation. STI interleaves multiple procedures, 
with each implementing part of a thread. For 
consistency with previous work we refer to the separate 
copies of the procedure to be integrated as threads. 
Integration of identical threads is a simple case. Figure 
2 demonstrates the cases and corresponding code 
transformations, which can happen integrating the 
same threads that handle different data sets. These 
transformations can be applied repeatedly and 
hierarchically, enabling code motion into a variety of 
nested control structures. This is the hierarchical 
(control-dependence, rather than control-flow) 
equivalent of a cross-product automaton. Integration of 
basic blocks involves fusing two blocks (case a). To 



 

move code into a conditional it is replicated into each 
case (case b). Code is moved into loops with guarding 
or splitting. Finally, loops are moved into other loops 
through combinations of loop fusion, peeling and 
splitting. These transformations can be seen as a 
superset of loop jamming or fusion. They jam not only 
loops but also all code (including loops and 
conditionals) from multiple procedures or threads, 
greatly increasing its domain.  

Code transformation can be done in two different 
levels: assembly or high-level-language (HLL) level. 
Our past work performs assembly language level 
integration automatically [Dean02]. Although assembly 
level integration offers better control, it also requires a 
scheduler that targets the machine and accurately 
models timing. For a VLIW or EPIC architecture this is 
nontrivial. In this paper we integrate in C and leave 
scheduling and optimization to the four compilers, 
which have much more extensive optimization support 
build in. Our approach is to feed extra instruction-level 
parallelism to the compilers and evaluate their 
performance. 

Whether the integration is done in either assembly 
or HLL level, it requires two steps. The first is to 
duplicate and interleave the code (instructions). The 
second is to rename and allocate new local variables 
and procedure parameters (registers) for the duplicated 
code.  The second step is quite straightforward in HLL 
level integration because the compiler takes care of 
allocating registers. Not all local variables are 
duplicated because there may be some variables shared 
by the threads. 

There are two expected side effects from 
integration. One is a code size increase (code 
expansion), and the other is a register pressure. The 
code size increases due to the multiple threads and 
code replication into conditionals. Code size increase 
has a significant impact on performance if it exceeds a 
threshold determined by instruction cache size and 
levels. The number of registers also increases 
approximately linearly with the number of integrated 
threads.  

2.5 Optimizing the application 
After performing integration, we have multiple 

versions of a specific procedure: the original discrete 
version and integrated versions. There are two 
approaches for invoking those threads in the 
application. The first is to modify the application to 
call integrated threads directly by replacing original 
procedure calls with integrated procedure calls. It is a 
static approach as it requires determining the most 
efficient version before compile time. The second is a 
dynamic approach, using a run-time mechanism to 
choose the most efficient version of thread at run time. 
Work in this area is under way. In this paper, we only 

focus the static approach and optimize the applications 
based on performance analysis. 

After writing the integrated versions of the target 
procedures, we include those in the original source 
code and modify the caller procedure to call the 
specific version of procedure every time. Typically the 
caller procedure is organized to call the target 
procedure a certain number of times with the form of a 
loop.  Since the integrated procedure handles multiple 
calls at once, the caller must delay the calls and store 
the procedure parameters until it has data for all of the 
calls and call the integrated procedure with multiple 
sets of parameters. Some local variables for storing 
parameters for delayed calls and for organizing the 
control flow are allocated to the caller and control flow 
becomes slightly more complicated than before. As a 
result, some overhead is unavoidable from register 
pressure and branch mispredictions.  

We measure the performance of various versions of 
the application, varying the level of integration in the 
cloned procedures. We can then select the most 
efficient version. This grows more important if we 
have more than one procedure to be cloned. For 
example, we have three versions – original, 2-thread 
integrated, 3-thread integrated – of FDCT and Encode 
(Huffman encoding) in cjpeg application. From nine 
combinations to invoke those two threads, the best 
combination can be chosen using feedback based on 
the performance of each version of the thread.  

2.6 Automating Integration 
The goal of this work is to determine whether it is 

worthwhile to develop the tools needed to 
automatically clone and integrate procedures for high-
performance embedded systems. Our previous work 
automatically integrates assembly language threads for 
Alpha and AVR architectures. Automated stages in our 
post-pass compiler Thrint include parsing, control flow 
and dependence analysis, data flow analysis, static 
timing analysis, transformation planning and execution, 
register reallocation and code regeneration. Supporting 
the currently presented work requires retargeting to 
support a VLIW/EPIC architecture (including parser, 
machine model and scheduler), a guidance layer which 
determines which procedures to integrate, and a lower 
guidance layer to control how to integrate two 
procedures (based upon processor utilization, code 
explosion, and profiling).  

3 Integration of JPEG Application and 
Overview of the Experiment 

We chose the JPEG application as an example of 
the multimedia workload. We performed STI for the 
JPEG application as presented in Section 2. Three 
target procedures were identified and integrated 



 

manually at the C source code level and executed in 
their programs on an ItaniumTM machine. The objective 
of the experiment is to evaluate the performance 
benefits and bottlenecks of STI of procedure clones. 

3.1 Sample application: JPEG 
JPEG is a standard image compression algorithm 

which is frequently used in multimedia applications. It 
is one of applications in MediaBench, a benchmark 
suite which represents multimedia workloads. 
[LPM97] Source code was obtained from Independent 
JPEG Group. We used 512x512x24bit image lena.ppm 
which is a standard for image compression research. 
JPEG is composed of two programs: djpeg 
(Decompress JPEG) and cjpeg (Compress JPEG).  
Understanding the algorithm of the application helps 
find existing parallelism in the application. The basic 
compress/decompress algorithm is presented in Figure 
3. [Hals01] [Wall91] 
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Figure 3 Algorithms of cjpeg and djpeg 

3.2 Integration method 
Figure 4 shows the execution time and procedure 

breakdown in CPU cycles from gprof compiled by 
GCC with –O2 optimization. djpeg spends most of its 
execution time performing IDCT (Inverse Discrete 
Cosine Transform). cjpeg also spends significant 
amounts of time performing FDCT (Forward DCT) and 
Encoding.  
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Figure 4 Execution time and procedure 
breakdown of cjpeg and djpeg  

FDCT/IDCT is a common tool for compressing an 
image. The existing parallelism is that one procedure 
call performs FDCT/IDCT for an 8x8 pixel macro 

block, and input and output data of every procedure 
call are independent. Similarly, Encode/Decode 
processes a block of data with one procedure call and 
has the same level of parallelism as FDCT/IDCT has.  

We perform the integration of two and three threads 
for IDCT, jpeg_idct_islow (JII), in djpeg and FDCT, 
forward_DCT (FD) and jpeg_fdct_islow (JFI), Encode, 
encode_one_block (EOB), in cjpeg. Decode, 
decode_mcu (DM), in djpeg cannot be parallelized 
because of the data dependencies between the buffer 
position for the blocks. We do not perform the 
integration for other procedures, rgb_ycc_convert 
(RYC) and ycc_rgb_convert (YRC) because their calls 
are too far apart (separated by three levels of calls), 
which lead to too many changes of the source code.  

JFI2()
data1+data2

FD3() EMH()

FD: forward_DCT
JFI: jpeg_fdct_islow
EMH: encode_mcu_huff
EOB: encode_one_block

FD2: forward_DCT_sti2()
JFI2: jpeg_fdct_islow_sti2()
EOB2: encode_one_block_sti2()

JFI2()
dta3+data4

JFI2()
data5+data6

EOB2()
data1+data2

EOB2()
data3+data4

EOB2()
data5+data6

JFI3()
data1+data2+data5

EOB3()
data1+data2+data3

EOB3()
data4+data5+data6

FD3()

JFI3()
data3+data4+data6

FD3: forward_DCT_sti3()
JFI3: jpeg_fdct_islow_sti3()
EOB3: encode_one_block_sti3()

3rd and 4th call

Compress_data()

FD() FD() FD() FD()

1st call 2nd call 3rd call4th call

EMH()

1st call

JFI()
data1

JFI()
data4

JFI()
data3

JFI()
data2

JFI()
data5

JFI()
data6

EOB()
data1

EOB()
data4

EOB()
data3

EOB()
data2

EOB()
data5

EOB()
data6

Compress_data()

FD2() FD2() FD2()

1st call 2nd call

EMH()

1st call

2nd and 4th call

Compress_data()

1st and 3rd call 1st call

NOSTI: Original execution

STI2: Always calls 2-integrated thread

STI3: Always calls 3-integrated thread

Figure 5 Execution behaviors of three versions of 
cjpeg application with original function, 
duplicated clone and triplicated clone  

Code transformation is done at the C source level 
using the techniques just presented. IDCT is composed 
of two loops with identical control flow and a 
conditional which depends on the input data. The 
control flow of the integrated procedure is structured to 
handle all possible execution paths. (case b in Figure 2) 
The control flow of Encode in cjpeg is also similar as it 
has a loop with a data-dependent predicate. The 
previously mentioned buffering technique is applied to 
maintain the write order of codewords during 
integration of EOB. FDCT is composed of two 
procedures, FD and JFI. Even though there is a nested 
call from FD to JFI, the control flow is straightforward, 
as it is an extension of a procedure with a loop (case a 
in Figure 2). In this case, the intermediate procedure 
FD is modified to call JFI properly so that it handles 
the correct data sets. 

We invoke the integrated threads statically by 
binding a specific version explicitly in the application. 



 

Three different versions of caller procedures for the 
respective target procedures are written and included in 
the original source code, and then are compiled to 
different versions of application with conditional 
compile flags. Then we measure the performance of the 
target procedure with those versions. Finally, we build 
the best-optimized version of the application. Original 
execution and two implementations (STI2 and STI3) 
for FDCT and EOB in cjpeg are shown in Figure 5. 

3.3 Overview of the Experiment and 
Evaluation Methods 
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Figure 6 Overview of the experiment 

Three versions of source code (1/ NOSTI: original 
discrete (non-integrated) version, 2/ STI2: 2-thread-
integrated, 3/ STI3: 3-thread-integrated) for respective 
target threads (IDCT in djpeg, FDCT and EOB in 
cjpeg) are written and compiled with various compilers 
with different optimization options: GCC –O2, Pro64 –
O2, ORCC –O2 and –O3, Intel –O2, –O3, and –O2u0 
(–O2 without loop unrolling).  GCC is the compiler 
bundled in Linux/IA-64 and Pro64TM is the open source 
compiler developed by SGI. ORCC is Open Research 
Compiler evolved from Pro64 and Intel C++ compiler 
is a commercial compiler released by Intel 
Corporation. Table 1 lists the compilers that we use in 
this experiment. The main reason for using various 
compilers is that the performance of a program varies 
significantly with the compiler in VLIW/EPIC 
architectures because scheduling decisions are made at 
compile time. The second reason is that we try to 
observe the correlation between features of the 

compliers and the performance benefits of STI. Figure 
6 presents the overview of the experiment. 
 
Symbol Name Version License 
GCC GNU C Compiler 

for IA-64 
3.1 GNU, Open 

Source 
Pro64 SGI Pro64TM 

Compiler  
Build 0.01.0-
13 

SGI, Open 
Source 

ORCC Open Research 
Compiler 

Release 1.0.0 Open Source 

Intel Intel C++ 
Compiler 

6.0 Intel, 
Commercial 

TABLE 1 Compilers used in the experiments 

The compiled programs are executed on an Intel 
ItaniumTM processor running Linux for IA-64. The 
processor features EPIC (Explicitly Parallel Instruction 
Computing), predication, and speculation. It can issue a 
maximum of 6 instructions per clock cycle and has 3 
levels of caches, L1 16K data cache, L1 16K 
instruction cache, L2 96K unified cache, L3 2048K 
unified cache. It runs with 800MHz CPU clock rate 
and 200MHz memory bus speed. [Intel00] 

All experimental data are captured during execution 
with the help of the Performance Monitoring Unit 
(PMU) in Itanium processor. The PMU features 
hardware counters, which enable the user to monitor a 
specific set of events. The software tool and library 
pfmon [ME02] use the PMU to measure the 
performance (execution cycles or time), instruction per 
cycle (IPC), and cycle breakdown of the procedures. 
All data are obtained by averaging results from 5 
execution runs; there is little variation among the data.  

4 Experimental Results and Analysis 
Three kinds of data are obtained to observe the 

performance and execution behavior of the integrated 
threads. 

1) CPU cycles, speedup by STI, and IPC 
CPU (execution) cycles of different versions of the 

respective target procedures are measured and 
normalized compared with the performance of the 
original procedure compiled with GCC-O2 so that it 
indicates performance. Percentage performance 
improvement is also plotted comparing the 
performance of the integrated version with the original 
discrete one. We measure IPC for reference. 

2) Cycle breakdown and speedup breakdown 
Every cycle spent on running program on Itanium 

can be separated in two categories: The first is an 
‘inherent execution cycle’, a cycle used to do the real 
work of the program and the other is a ‘stall’, the 
cycles lost waiting for a hardware resource to become 
available. The stall can be also subdivided to seven 
categories: Data access, dependencies, RSE activities, 
Issue limit, Instruction access, Branch re-steers, and 



 

Taken branches. Table 2 shows how each category is 
related to the specific pipeline event. [Intel02] 
Categories Descriptions 
Inh. Exe. 
(Inherent execution) 

Cycles due to the inherent execution of the 
program 

Inst. Acc. 
(Instruction access) 

Instruction fetch stalls due to L1 I-cache or 
TLB misses 

Data Acc. 
(Data access) 

Cycles lost when instructions stall waiting for 
their source operands from the memory 
subsystem, and when memory flushes arise 

RSE 
(RSE activities) 

Stalls due to register stack spills to and fills 
from the backing store in memory 

Dep. 
(Scoreboard 
dependencies) 

Cycles lost when instructions stall waiting for 
their source operands from  non-load 
instructions 

Issue Lim. 
(Issue limit) 

Dispersal break due to stops, port over-
subscription or asymmetries 

Br. Res. 
(Branch resteer) 

Cycles lost due to branch misperdictions, ALAT 
flushes, serialization flushes, failed control 
speculation flushes, MMU-IEU bypasses and 
other exceptions 

Taken Br. 
(Taken branches) 

Bubbles incurred on correct taken branch 
predictions 

TABLE 2 ItaniumTM cycle breakdown categories  

We measure the cycle breakdown of the each 
procedure for identifying the benefits and bottlenecks 
of STI. From those data, we also derive and plot 
percentage speedup breakdown showing from which 
categories a performance increase or decrease occurs. 
By adding numbers of bars with the same color in that 
chart, we find the overall speedup from STI. The 
categories which have positive bars contribute to 
speedup, and those with negative bars cause slowdown. 

3) Code size 
STI causes a code size increase. We measured the 

pure code size of the procedure with encoded bundle 
size excluding data space. Code size of the application 
is measured with the size of the binary executable.  
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Figure 7 – Cycle breakdowns for different compilers show 
wide variation  

Figure 7 shows the breakdown of execution cycles 
for each of the compilers and functions before any 
integration is performed. This will serve as a reference 
to the upcoming analysis.  
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Figure 8 – Performance of integrated clones normalized 
to original code shows speedup and slowdown 

Figure 8 shows the performance of the three 
integrated procedures, normalized to the performance 
of the original code without integration. This shows the 
variation in performance across all the compilers. 
Integrated procedure clones increase performance in all 
but one case for the first two experiments (FDCT and 
EOB). For EOB the “sweet spot” in thread count 
(number of procedure copies in a clone) is two, while 
for FDCT it is three for compilers other than the Intel 
compiler. The FDCT Pro64 case is interesting, as its 
base performance is the worst of all compilers, yet 
thread integration enables the compiler to bring it up to 
be the second best. IDCT shows a performance penalty 
for clone integration with ORCC and the Intel 
compiler, while showing a speedup for GCC and 
Pro64.  Figure 9 shows the instructions completed per 
cycle for each case. 
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Figure 9 – Impact of procedure clone integration on 
instructions per cycle 
 

Figure 10 shows the sources of speedup (bars above 
the centerline) and slowdown (below it) for each 
function. Cycle categories are listed from left to right 
as ordered in Table 2. Most of the performance 
enhancement results from reducing issue-limited 
cycles, showing how the compilers are able to generate 
better schedules when given more independent 
instructions. Some improvement comes from data 
cache access as well. The major source of slowdown 
for IDCT is instruction access due to code explosion, 
which exceeds the limits of the instruction cache (16 
kbytes). In fact, code expansion limits performance for 
all procedures; code size should be considered when 
selecting procedures to clone and integrate. 
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Figure 10 – Breakdown of speedup/slowdown for 
integrated clones shows speedup comes primarily from 
reducing issue limited cycles and data access while 
slowdown comes from instruction access. 

Figure 11 shows the impact of clone integration on 
code size. Here we see that not only does integration 
push IDCT up to or over the I-cache limit for all cases, 
but also that the Intel C++ compiler increases code size 
dramatically. This is due to loop unrolling. When loop 
unrolling is disabled for this compiler (-u0 switch), the 
code size becomes much more reasonable and 
performance recovers. 
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Figure 11 Impact of integration on code size compared 
with the 16 kByte I-Cache size 

Figure 12 examines application performance for 
cjpeg and djpeg for various levels of clone integration 
for the FDCT and EOB procedures normalized to GCC 
–O2. The first bar indicates baseline (non-integrated) 
performance; the next two bars show performance for 
the procedures with two and three threads integrated in 
the clones. For the CJPEG program the “Best Combo” 
bar indicates performance when the best clone (with 2 
or 3 threads integrated) is selected for each procedure 
based on measured performance, allowing the 
integration level to vary based on the thread count 
“sweet spot”. It is interesting to note that integration 
improves performance 9% over the best compiler (intel 
–O2 –u0), and brings the performance of the worst 
(Pro64 -O2) to nearly that level (4% over intel –O2 –
u0). However, the DJPEG program suffers because of 
the previously mentioned code expansion and limited 
instruction cache. 

Figure 13 shows the overall cjpeg program speedup 
relative to the no integration case. It demonstrates that 
for this application, all compilers but the Intel –O3 are 
able to benefit from procedure cloning and integration. 
Also, integrating procedure clones provides nearly the 
same speedup to the Intel –O2 compiler, regardless of 
whether loop unrolling is used. The harmonic mean of 

speedup is 8.3% for two threads, 7.6% for three 
threads, and 11.9% for the best combination of thread 
integration levels. This shows the benefit of selecting 
the best number of threads per clone.  
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Figure 12 Overall application performance  
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DJPEG Speedup per Compiler from Integration
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Figure 13 Overall cjpeg program performance per 
compiler shows integration yields speedup for nearly all 
compilers, yet djpeg results are mixed 

Figure 12 also shows the overall speedup for djpeg. 
Integration provides speedups for four cases and 
slowdowns for three, leading to overall harmonic 



 

means of speedups of –6.5% for two threads and –
34.2% for three threads. Clearly thread integration 
must be applied when code expansion will not burst the 
instruction cache. 

5  Conclusions 
This paper introduces a method for improving 

program run-time performance by gathering work in an 
application and executing it efficiently in an integrated 
thread. Our methods extend whole-program 
optimization by expanding the scope of the compiler 
through a combination of software thread integration 
and procedure cloning. These techniques convert 
parallelism at the procedure level to the instruction 
level, improving performance on ILP uniprocessors. 
This is quite useful for media-processing applications 
which feature large amounts of parallelism. 

We demonstrate our technique by cloning and 
integrating three procedures from cjpeg and djpeg at 
the C source code level, compiling with four compilers 
for the Itanium EPIC architecture and measuring the 
performance with the on-chip performance 
measurement units. When compared with optimized 
code generated by the best compiler without our 
methods, we find procedure speedups of up to 18% and 
program speedup up to 9%. Detailed performance 
analysis shows the primary bottleneck to be the 
Itanium’s 16K instruction cache, which has limited 
room for the code expansion introduced by thread 
integration. 

Acknowledgements 
This material is based upon work supported by the 

National Science Foundation under Grant No. 
0133690. 

References 
[BCGH] Prithviraj Banerjee, John A. Chandy, Manish Gupta, 

Eugene W. Hodges IV  et al. “An Overview of the 
PARADIGM Compiler for Distributed-Memory 
Multicomputers” IEEE Computer 28(10) 

[CHK93] K. D. Cooper, M.W. Hall, K. Kennedy. A methodology 
for procedure cloning. Computer Languages, 19(2):105-
117, Feb. 1993 

[CHMR95]Alan Carle, Mary Hall, John Mellor-Crummey, Ren 
Rodriguez, FIAT: A Framework for Interprocedural 
Analysis and Transformation, Rice University CRPC-
TR95522-S, 1995. 

[DCG94] J. Dean, C. Chambers and D. Grove. Selective 
specialization for object-oriented languages. In ACM 
SIGPLAN Conference on Programming Language Design 
and Implementation, pp 93-102, June 1995. 

[Dean00]  Alexander G. Dean, “Software Thread Integration for 
Hardware to Software Migration,” Doctoral Thesis, 
Carnegie Mellon University, Pittsburgh, PA, May 2000. 

[Dean02]  Alexander G. Dean, “Compiling for Fine-Grain 
Concurrency: Planning and Performing Software Thread 
Integration”, 6th Annual Workshop on Interaction 
between Compilers and Computer Architectures 
(INTERACT-6, in conjunction with HPCA 8), Feb. 2002. 

[DS98]  Alexander G. Dean and John Paul Shen, “Techniques for 
Software Thread Integration in Real-Time Embedded 

Systems,” Proceedings of the 24th EUROMICRO 
Conference, Aug. 1998. 

[Ersh66] A.P. Ershov, ALPHA – An Automatic Programming 
System of High Efficiency. J. ACM, 13, 1 (Jan.), 17-24 

[FOW87] Jeanne Ferrante, Karl J. Ottenstein and Joe D. Warren, 
“The Program Dependence Graph and Its Use in 
Optimization," ACM Transactions on Programming 
Languages, 9(3), July 1987, pp. 319-349. 

[Fran93] M. Franklin. The Multiscalar Architecture. PhD Thesis, 
University of Wisconsin -Madison, November 1993. 

[FWL99]  J. Fritts, W. Wolf and B. Liu, “Understanding multimedia 
application characteristics for designing programmable 
media processors,” Proceedings of SPIE, vol. 3655, pp. 2-
13, Jan. 1999. 

[Hall91] M. W. Hall. Managing Interprocedural Optimization. 
Ph.D. thesis, Rice University, Apr. 1991 

[Hals01] Fred Halsall, Multimedia communications: Applications, 
Networks, Protocols and Standards, Pearson Education 
Limited, 2001 

[Hank96] R.E. Hank, Region-Based Compilation. Ph.D. thesis, 
University of Illinois at Urbana-Champaign, 1996. 

[HMA95] Mary W. Hall, Brian R. Murphy, and Saman P. 
Amarasinghe. Interprocedural analysis for parallelization: 
Design and experience. In Proceedings of the Seventh 
SIAM Conference on Parallel Processing for Scientific 
Computing, pages 650--655. SIAM, February 1995. 

[Intel00]  Intel IA-64 Architecture SoftwareDeveloper’s Manual, 
Vols. I-IV, Rev. 1.1, Intel Corp., July 2000; 
http://developer.intel.com. 

[Intel01]  Intel IA-64 Architecture SoftwareDeveloper’s Manual 
Specification Update, Intel Corp., Aug 2001; 
http://developer.intel.com. 

[LPM97]  Chunho Lee, Miodrag Potkonjak, and William H. 
Mangione-Smith. “Mediabench: a tool for evaluating and 
synthesizing multimedia and communications systems,” 
Proceedings of 30th annual ACM/IEEE international 
symposium on Microarchitecture, Dec. 1997. 

[ME02] David Mosberger and Stephane Eranian, IA-64 Linux 
Kernel: Design and Implementation, Prentice Hall PTR, 
2002. 

[Newb97]  Chris J. Newburn, "Exploiting Multi-Grained Parallelism 
for Multiple-Instruction Stream Architectures," Ph.D. 
Thesis, CMµART-97-04, Electrical and Computer 
Engineering Department, Carnegie Mellon University, 
November 1997  

[NTGR98] A. Nene, S. Talla, B. Goldberg and R.M. Rabbah – 
Trimaran – an infrastructure for compiler research in 
instruction-level parallelism – user manual, 1998. 
http://www.trimaran.org. New York University 

[SBV95] G. S. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar 
Processors. 22nd International Symposium on Computer 
Architecture, pp. 414–425, June 1995. 

[So02] W. So, “Software Thread Integration For Converting TLP 
To ILP On VLIW/EPIC Architectures,” Masters Thesis, 
Department of Electrical and Computer Engineering, NC 
State University, 2002 

[Wall91]  Gregory K. Wallace, “The JPEG Still Picture 
Compression standard,” IEEE Transactions on Consumer 
Electronics, 1991. 

[Way02] T.P. Way, Procedure Restructuring for Ambitious 
Optimization, Ph.D. thesis, University of Delaware, 2002. 

[WS91]  Andrew Wolfe and John P. Shen, "A variable instruction 
stream extension to the VLIW architecture," in 
Proceedings of the Fourth International Conference on 
Architectural Support for Programming Languages and 
Operating Systems, April 8-11, 1991, pp. 2--14. 

[ZVSM94] V. Zivojnovi'c, J. Martinez, C. Schlager, and H. Meyr, 
“DSPstone: A DSP-oriented benchmarking 
methodology,” Proceedings of ICSPAT'94, Oct. 1994. 


