
 1

Compiler Support for Dynamic Speculative Pre-Execution

Won W. Ro and Jean-Luc Gaudiot†

Department of Electrical Engineering
University of Southern California

wro@usc.edu

†Department of Electrical Engineering
and Computer Science

University of California, Irvine
gaudiot@uci.edu

Abstract

Speculative pre-execution is a promising prefetching
technique which uses an auxiliary assisting thread in
addition to the main program flow. A prefetching thread
(p-thread), which contains the future probable cache miss
instructions and backward slice, can run on the spare
hardware context for data prefetching. Recently, various
forms of speculative pre-execution have been developed,
including hardware-based and software-based
approaches. The hardware-based approach has the
advantage to use runtime information dynamically.
However, it requires a complex implementation and also
lacks global information such as data and control flow.
On the other hand, the software-oriented approach
cannot cope with dynamic events and imposes additional
software overhead. As a compromise, this paper
introduces a hybrid model enhanced with novel compiler
support for the dynamic pre-execution of a p-thread.

1. Introduction
 Today’s processor performance is strongly limited by

the data access latencies upon cache misses. Truly, the
speed-gap between processor and main memory
continues to grow and increases the impact of miss
penalties. Chances to execute many hundreds of
instructions can easily disappear due to unexpected
pipeline stalling. As a result, latency hiding becomes an
important technique to avoid performance degradation
upon cache misses. Basically, hiding the access latency
has been pursued by using various forms of data
prefetching. However, previous approaches have
strongly depended on the predictability of future memory

 This paper is based upon work supported in part by DARPA grant
F30602-98-2-0180 and by NSF grants CSA-0073527 and INT-9815742.
Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect
the views of DARPA or NSF.

accesses and have often failed upon encountering
irregular memory accesses such as pointer chasing.
Those characteristics are common features of today’s
popular memory-bound or data-intensive applications.

Recently, other data prefetching approaches, which do
not depend on predictability but rather on executing
future access instructions, have been proposed
[1][7][8][12][15][17][18][21][25]. Those approaches
extract the future probable cache miss slice from the
original code and execute it as an additional helping
thread in a multithreading hardware. The cache miss
thread (often called p-thread or p-slice) is lightweight and
can run faster than the main program thread. Therefore,
as long as the cache miss thread is executed early enough,
timely prefetching can be achieved. This thread-based
prefetching is often called speculative pre-execution or
speculative precomputation. The parallel execution of
the p-thread and the main program thread is made
possible by the multithreading features of SMT
(Simultaneous Multi-Threading) [10] or CMP (Chip
Multi-Processor) [13] architectures.

Previous research on speculative pre-execution falls
into two distinct categories. In the first group, all the
procedures are handled by additional hardware
implementations [1][8][18]. Since both p-thread
construction and execution (often called triggering) are
handled at runtime by hardwired circuit, the legacy binary
code can still be used in this approach. However, this
requires additional hardware circuitry. On the other
hand, the second group strongly depends on a static
analysis by the compiler to extract the p-thread either
from the high level language [12][17] or at the binary
level [15]. The static analysis can provide global
program flow information. However, some software
interaction to trigger p-thread is required and an
additional overhead is unavoidable.

This paper proposes Compiler Assisted Speculative
Pre-execution (CASP) as a compromise technique.
Indeed, the CASP is a hybrid model of the two above
approaches. Our design principle aims at bringing out
the respective merits from the two camps. For that

 2

purpose, we divide the speculative pre-execution into two
distinct operations: p-thread construction and p-thread
triggering. In our approach, the first step, p-thread
construction, is handled by the compiler in a static way
and the second step, p-thread triggering, is controlled
dynamically by the hardware. Therefore, the global
program information can be considered for the effective
construction of the p-thread, and the fast triggering of the
p-thread is made possible by hardware-controlled
spawning. In other words, compile time information is
delivered to accelerate hardware triggering, lowering the
hardware complexity. Indeed, Compiler Assisted
Speculative Pre-execution (CASP) provides effective data
prefetching along with a novel hardware and software
design.

This paper is organized as follows: Section 2 reviews
the background research. Section 3 describes the
detailed hardware and software design characteristics of
the proposed architecture. Section 4 includes the
experimental results and thorough analysis. Finally,
conclusions and future work are included towards the end.

2. Background Research

Our architecture model is strongly motivated by
previous research on speculative pre-execution. In this
section, the general concepts and the execution
mechanism of the speculative pre-execution are explained
in detail. In addition to that, a thorough survey for the
recent related work is given in the second half of the
section.

2.1. Overview of Speculative Pre-execution

In the speculative pre-execution model, timely data
prefetching is achieved by the pre-execution of the p-
thread. To better understand the concept, an example
with Lawrence Livermore Loop 1 (lll1) is shown in
Figure 1. Figure 1-(a) shows the source code written in
a high-level language and Figure 1-(b) shows the
dynamic instruction stream at iteration i and iteration i+1
for the innermost loop. In the analysis, we assumed that
frequent cache misses occur at the last instruction, which
is labeled ①. Then, the instruction is defined as a
delinquent load. Indeed, delinquent loads are candidate
instructions for speculative prefetching. The
corresponding operation of the delinquent load is loading
the y[k] value in the high-level language code (Figure 1-
(a)).

After uncovering the delinquent load, the backward
slice is constructed based on the data dependencies. The
backward slice includes all the previous instructions on
which the delinquent load has a data dependency.
Usually, the address calculation instructions are included
in the backward slice. In the example code in Figure 1-
(b), the instructions shaded in grey show the backward
slice of the delinquent load. Indeed, the corresponding

operation of the backward slice is the address calculation
of y[k]. After figuring out the backward slice, the p-
thread can be constructed together with the delinquent
load and the backward slice. All this procedure for p-
thread construction can be handled by hardware at
runtime or software at compile time.

To execute the prepared p-thread, a trigger instruction
needs to be defined inside the main program flow.
When the main program detects the trigger instruction,
the p-thread is spawned on any available hardware
context. Once initiated, the p-thread can run faster than
the main program thread since it is lightweight. In
Figure 1, the instruction labeled ② indicates the trigger
instruction of our example code. The proper choice for
the trigger instruction is very important since the
triggering point decides the size of the p-thread as well as
the prefetching distance. Since the dynamic behavior of
the current superscalar architecture is very hard to predict,
all previous research strongly depends on heuristic
methods to determine the trigger instruction. A more
quantitative analysis on the trigger instruction might
improve the performance of speculative prefetching.

iteration i+1

Lawrence Livermore Loop 1

lw $24, 24($sp)

mul $25, $24, 8

la $8, z

addu $9, $25, $8

l.d $f16, 88($9)

l.d $f18, 0($sp)

mul.d $f4, $f16, $f18

l.d $f6, 8($sp)

l.d $f8, 80($9)

mul.d $f10, $f6, $f8

add.d $f16, $f4, $f10

la $10, y

addu $11, $25, $10

l.d $f18, 0($11)

mul.d $f6, $f16, $f18

l.d $f8, 16($sp)

add.d $f4, $f6, $f8

la $12, x

addu $13, $25, $12

s.d $f4, 0($13)

lw $14, 24($sp)

addu $15, $14, 1

sw $15, 24($sp)

blt $15, 1024, $33

#define N 1024

#define LOOP 100

double x[N];

double y[N];

double z[N+11];

main ()

{

int l, k;

double q;

double r = 10.0;

double t = 20.0;

for (l=1 ; l<=LOOP ; l++)

{

 q = (double) l;

 for (k=0 ; k<N ; k++)

 {

 x[k] = q + y[k]*(r*z[k+10] + t*z[k+11]);

 }

}

(b) Dynamic instruction
stream for the main program

lw $24, 24($sp)

mul $25, $24, 8

la $10, y

addu $11, $25, $10

l.d $f18, 0($11)

lw $14, 24($sp)

addu $15, $14, 1

sw $15, 24($sp)

lw $24, 24($sp)

mul $25, $24, 8
la $10, y
addu $11, $25, $10

l.d $f18, 0($11)

②Trigger
p-thread

(c) Dynamic instruction
stream for the p-thread

Backward slice

Prefetching occurs

(a) High level language code

① Delinquent load

lw $24, 24($sp)

mul $25, $24, 8

la $8, z

addu $9, $25, $8
 l.d $f16, 88($9)

l.d $f18, 0($sp)

mul.d $f4, $f16, $f18

l.d $f6, 8($sp)

l.d $f8, 80($9)

mul.d $f10, $f6, $f8

add.d $f16, $f4, $f10

la $10, y

addu $11, $25, $10

l.d $f18, 0($11)

iteration i

Figure 1: Speculative pre-execution example

The p-thread runs on another hardware context and
only updates the cache status without store operations.
Therefore, it does not affect the program state. For the
multithreaded execution of the p-thread, previous
research projects use either SMT architecture
[7][8][12][15][17][21] or the additional pipeline for p-
thread [1]. Indeed, the second method can be considered
an extension of the CMP architecture. In the SMT

 3

model, the resources can be shared between the main
program thread and the p-thread. Therefore, high
utilization can be achieved. On the contrary, in the
dedicated prefetching pipeline model, more dedicated
resources are given to prefetching thread.

2.2. Related Work

Various versions of data prefetching using speculative
pre-execution have been proposed recently. Depending on
the hardware/software implementation, there have been
several approaches. Roth and Sohi proposed Speculative
Data-Driven Multithreading (DDMT) [20][21]. In their
approach, the miss stream called performance degrading
slice or data-driven thread (DDT) includes the future
cache miss instructions (critical instructions in [21]) and
their backward slice. The miss stream is executed in a
multithreaded manner using another spare context of
Simultaneous Multithreading. The concept of
performance degrading slice was originally introduced by
Zilles and Sohi in [24].

Collins et al. developed Speculative Precomputation
using the SMT features of the Itanium processor in [7].
They also define a small number of static loads as
delinquent loads and include the backward slice as
Precomputation Slices (p-slices) for data prefetching
thread. Notably, their work introduced a new concept
named the chaining trigger mechanism which allows the
speculative thread to trigger another speculative thread.
A hardware approach of Speculative Precomputation can
also be found in [8]. They designed and implemented
additional hardware resources to construct and trigger p-
slices at run time.

Another approach using hardware for prefetching
thread was introduced by Annavaram in [1]. A
Dependence Graph Precomputation scheme (DGP)
dynamically uncovers the prefetching slice for cache miss
instructions. Whenever the Pre-decode stage detects the
load/store instruction which is marked for prefetching
(equivalent to delinquent load), it automatically derives
the Dependence Graph. The instructions waiting in the
Instruction Fetch Queue are chased based on the register
dependencies. In the DGP scheme, the speculative
prefetching slice runs on an additional piece of hardware
called the Precomputation Engine and only updates the
cache status. Another hardware approach is introduced
as the Slice processor [18], which uses an additional
hardware structure called Slicer to construct a p-thread in
the commit stage instead of the fetch queue. The Slice
processor stores the p-thread in the Slice-cache, and the p-
thread is initiated upon detecting a trigger instruction in
the main program flow.

Software controlled construction of the p-thread in a
static way is also proposed in [12][15][17]. Luk
proposed a high level language-based approach for
speculative pre-execution [17]. A manual analysis on

the given C code defines and annotates the prefetching
slice (p-thread). The actual execution of the p-thread is
supported by the SMT features of the architecture.
However, the trigger operation is handled totally in
software. Another approach at the high-level language
can be found in Kim and Yeung’s work [12], which is
closely related to Luk’s work, but it develops automated
compiler algorithms. The last approach [15] is different
from the previous two in the sense that the analysis is
done at the binary level. They also proposed a region-
based slicing method with global program information
such as data flow and control flow analysis. Those
analyses are not possible with hardware based p-thread
construction.

3. Compiler Assisted Speculative Pre-
Execution

Finely tuned speculative pre-execution with intelligent
compiler support can provide an effective data
prefetching method. In the proposed architecture model,
we aim to emphasize the relative merit of the software
approach vs. the hardware approach. Indeed, the
Compiler Assisted Speculative Pre-execution (CASP) is a
hybrid model. In this section, the design motivation and
architecture characteristics are explained in detail. Also,
the detailed software algorithms and hardware design are
presented.

3.1. Overall Design Concepts

The actual design procedure of the speculative pre-
execution is composed of three major steps. The first
step is defining the delinquent loads. It is usually driven
by the cache access-profiling. The second step is the
construction of the p-thread, which includes the
delinquent loads and the backward slice. The final step
is the runtime execution of the p-thread. The three
square boxes in Figure 2 show the three-step procedure of
the speculative pre-execution. The two core operations
of the speculative pre-execution are the construction of
the p-thread and the triggering of the p-thread. Indeed,
our design motivation is located in the proper interaction
between these two steps. The lower box in the Figure 2
shows the design characteristics of the proposed CASP
architecture model.

P-thread

construction
P-thread

triggering
Delinquent

load

CASP design characteristics

Hardware-controlled
triggering

Compiler-based
construction

Figure 2: Procedure of speculative pre-execution

 4

To achieve effective speculative prefetching, the first
important design choice is in constructing the p-thread.
Previous research falls into two distinct categories,
depending on how to construct the p-thread: Compiler-
based construction and Hardware-based construction.
The compiler-based approach extracts the p-thread at
either source code level (for example, C to C
compilation) [12][17] or at the binary level [15]. The
main advantage of the compiler oriented p-thread
construction is the use of global program information.
Also, the complex hardware logic for the p-thread
construction can be eliminated: although the hardware-
based p-thread construction [1][8][18] is fast, it imposes
additional hardware logic.

Another design selection should be made regarding the
triggering method of the p-thread. First, Software-
controlled triggering uses the software code for the
spawning of the p-thread. It is achieved by the
multithreaded hardware and the spawning procedures
(such as searching available context and propagating the
live-in values). Usually, the p-thread constructed by the
compiler is also initiated by the software-controlled
triggering. The second method, Hardware-controlled
triggering, utilizes additional hardware to rapidly spawn
the p-thread. Generally, the p-thread constructed by the
hardware also depends on the hardware for triggering.
The trade-offs between the two approaches are between
software-overhead and hardware-complexity.

Our architecture model is motivated by the fact that
the Compiler-based construction can also potentially
benefit the Hardware-controlled triggering. In other
words, our architecture depends on the compiler analysis
to construct the p-thread and utilizes the hardware to
trigger the p-thread at runtime. It is achieved by
delivering the p-thread information down to the
architecture level by annotating each instruction. Since
the two steps of p-thread construction and p-thread
triggering can be separated and are not required to bond
to the same methodologies, our architecture selects the
most beneficial design technique at each step. Therefore,
we can find a compromise design with synergy effects
between both designs. A more detailed description for
each step is given in the following sections.

3.2. P-thread Construction with Global Program
Flow

In this section, the compiler operation for the p-thread
construction is discussed in detail. Our p-thread
construction tool works at the binary level. At first, the
basic blocks are identified and the loop region for the
delinquent load is defined. Indeed, the region based p-
thread construction can be achieved with the necessary
program flow information such as data flow and control
flow. For detailed analysis, the Pointer Stressmark,
which is one of the seven benchmarks in Atlantic

Aerospace DIS Stressmark Suite [27], is considered as an
example.

The source code of the inner loop of the Pointer
Stressmark is shown in Figure 3. It is a pointer chasing
benchmark following the median value of a given size of
window. Each pointer chasing is expressed as a hop.
In the source code, one iteration of the while loop
corresponds to one hop operation and the outer for-loop
(with an increment of ll) searches for the median of the
corresponding hop. The median value decides the
starting point of the next hop. Upon detecting that the
current index has the median of the current hop, the
control flow exits the for-loop.

 while { ….

partition = field[index];

…

for (ll=0; ll<w; ll++)

 {

 x = field[index+ll];

 if (x > max) high++;

 else if (x > min)

 {

 partition = x;

 balance = 0;

 for (lll=ll+1; lll<w; lll++) {

 if (field[index+lll] > partition) balance++; }

 if (balance+high == w/2) break;

 else if (balance+high > w/2)

 { min = partition; }

 else { max = partition;

 high++; }

 }

 if (min == max) break;

 }

index = (partition+hops)%(f-w);

hops++;

}

A

B

C

D

E

Figure 3: Loop operation of the Pointer

Stessmark

The program flow with the basic blocks for the above
source code is depicted in Figure 4. The solid lines with
an arrow indicate the control flow. Each basic block is
named (such as A, B, C, and E) as matching to the
corresponding part of the source code in Figure 3. For
readability, the part to find the median value (named D in
Figure 3) is just combined as one extended block (which
is the square block named D in Figure 4). Although
block D is not a basic block, it is easier to understand to
bind it as a block. In fact, there exist several basic
blocks inside of D.

Upon finding the median value inside block D, the
control flow exits the “C-D-B” loop and moves to the
basic block E (The “C-D-B” loop corresponds to the outer
for-loop with an increment of ll). The index value for
the next hop is calculated at the basic block E, and a new
iteration for the next hop starts. Indeed, the backward
edge from the basic block E to the basic block A
identifies the control flow to the next hop. Since the
value of the index variable is decided by the median of

 5

the random numbers at the previous iteration, the starting
load (which is partition = field [index] in the basic block
A) of each hop is prone to cache misses. In our cache
access-profile, the load instruction for the partition in the
basic block A is found to cause a considerable amount of
cache misses. Therefore, the instruction is defined as a
delinquent load for the analysis. Based on the data
dependencies and the control flow, we can find the
backward slice of the delinquent load, and finally, the p-
thread can be constructed.

x = field [index+ll]

ll++ ; ll<w

Examine if x is a median

value for this hop:

If (x == median)

{ partition = x;

break; }

index =

(partition +hops)%(f-w);

hops++;

while condition;

partition = field [index]

A

C

B

D

E

Speculative

Pre-Execution

partition = x

Delinquent load

Figure 4: Program flow with the basic blocks

In the speculative pre-execution model, the delinquent
loads and the backward slice are extracted from the
original program and executed in a multithreaded manner
for the data prefetching. In our example, the load
instruction in the basic block A is defined as a delinquent
load. The first statement for the backward slice is the
statement for the variable index (which is index =
(partition + hops) % (f-w);) in the basic block E. Then,
the statement for the variable partition in block D (which
is partition = x;) is included as the backward slice.
Finally, the statement for the variable x in the basic block
C is also included (which is x=field [index+ll];). After
defining the backward slice, a p-thread is constructed
together with the delinquent load and the backward slice.

The p-thread is composed of the delinquent load and
minimal instructions required to compute the input value
of the delinquent load. It is executed in parallel with the
main program thread and should be lightweight in order
to run faster than the main program flow. The actual
beauty of speculative pre-execution of this example lies

in skipping some operations in block D and jumping to
the basic block E speculatively. The minimum
necessary instruction is partition = x. The dotted line
from the basic block C to E in Figure 4 shows the
speculative pre-execution path. The final code for the p-
thread is shown in Figure 5-(b).

(b) P-thread

while { ….

partition = field[index];

…

for (ll=0; ll<w; ll++)

 {

 x = field[index+ll];

 if (x > max) high++;

 else if (x > min)

 {

 partition = x;

 balance = 0;

 for (lll=ll+1; lll<w; lll++) {

 if (field[index+lll] > partition) balance++; }

 if (balance+high == w/2) break;

 else if (balance+high > w/2)

 { min = partition; }

 else { max = partition;

 high++; }

 }

 if (min == max) break;

 }

index = (partition+hops)%(f-w);

hops++;

}

x = field[index+ll];

partition = x;

index = (partition+hops)%(f-w);

partition = field[index];

x = field[index+ll];

partition = x;

index = (partition+hops)%(f-w);

partition = field[index];

Basic trigger

of p-thread

x = field[index+ll];

partition = x;

index = (partition+hops)%(f-w);

partition = field[index];

ll++;

ll++;

Next iteration
Trigger instruction

Next iteration

(a) Main program thread

(d)

(c)

Figure 5: Triggering of the p-thread

The code in Figure 5-(a) runs as the main program
flow and triggers the p-thread at runtime. The arrow
from Figure 5-(a) to Figure 5-(b) shows the triggering
operation. For the speculation of the multiple iterations,
manipulation to increment variable ll also can be added to
the p-thread. Figure 5-(c) and Figure 5-(d) shows the
speculative pre-execution across the multiple loop
iterations. It is a similar operation to the chaining
trigger [7][8].

3.3. Hardware Description for P-thread
Triggering

In the CASP architecture model, several hardware
implementations are designed to facilitate triggering of
the p-thread. Figure 6 shows the detailed hardware
description of the CASP architecture model. It is based
on the Simultaneous Multi-Threading architecture [10].
The resources, except for the register files and the reorder
buffers, are shared between the main program thread and
the p-thread. Since the p-thread instructions are copied
from the instruction fetch queue, the additional fetch units
for the p-thread are not required. Therefore, the p-thread
control flow strongly depends on the branch prediction of
the main program flow. It is a reasonable assumption
with the effective branch prediction strategies of the
current processor architecture. A similar observation is
made in [1].

The most important structure of our architecture is a
long-range instruction fetch queue (IFQ). The IFQ

 6

identifies the p-thread instructions and supplies those
identified instructions to the p-thread reorder buffer (p-
ROB) via the decoding logic. Since the p-thread
information is annotated with each instruction, a simple
pre-decoding logic at the IFQ can identify the p-thread.
It is done at the “detect p-thread” stage among the six
pipeline stages. The IFQ is a FIFO queue with one
additional bit named the p-thread indicator for each entry.
The p-thread indicator specifies whether the instruction in
the entry is included as the p-thread or not.

I-cache

Instruction
fetch queue

Reorder
buffer

(p-thread)

Reorder
buffer

(main thread)

PC

Register file
(p-thread)

Functional
Units

Data-cache
L2 cache/

Main Memory

Fetch
Detect

p-thread Execute Writeback Commit Decode

Register file
(main thread)

Corresponding pipeline stage

Shared between two threads

p-thread
indicator

Figure 6: Hardware description of the CASP
architecture

Although an instruction is detected as a p-thread
instruction, it is dormant in the instruction fetch queue
until any trigger instruction is found at the decoding stage.
Upon detecting a trigger instruction, the decode logic
initiates the triggering state. Then, the triggering logic
is activated and waits until all instructions ahead of the
trigger instruction are committed. It guarantees the
deterministic state before copying the live-in values.
After the trigger instruction becomes the oldest
instruction in the reorder buffer of the main thread, a
spawning operation is initiated. The spawning operation
copies all the live-in register values of the main thread to
the p-thread register file. It also copies the p-thread
instructions which reside in the main thread reorder
buffer, to the p-thread reorder buffer.

After copying the live-in register values and the
necessary instructions, the p-thread is executed as an
independent running thread. Since the processor is now
running as a multithreaded processor, every operation
should be accompanied with the thread ID. We assign
“0” to the main program thread as a thread ID, and “1” to
the p-thread. The IFQ supplies the p-thread instructions
to the decoding logic based on the p-thread indicator.
Although the p-thread instruction is sent to the decoding
logic as an operation of p-thread execution, it should also
be executed as the main thread. Indeed, the instructions
which have a p-thread indicator “on” should be included
in both threads. Therefore, every p-thread instruction
should remain in the IFQ once it is decoded as a part of
the p-thread. For that purpose, we can check it as

“executed as a part of a p-thread” by resetting the p-
thread indicator as “off”. Therefore, only the
instructions of which the p-thread indicator is “off”, are
decoded as the main thread under the triggering state.
They are entitled to exit the IFQ after decoding.

The decoding logic renames the registers and sends
instructions to the corresponding reorder buffer based on
the thread ID. Other operations in the remaining
pipeline stages are very close to the existing SMT
architecture model. The functional units, the cache and
the memory are shared between two threads. After the
delinquent load retires the commit stage, the triggering
operation is finished and the processor returns to the
normal state.

4. Experimental Results

The performance of the proposed architecture is
accurately evaluated with a number of data intensive
benchmark programs. We performed a deterministic
simulation on the CASP architecture and analyzed it
based on the performance results.

4.1. Benchmark Descriptions

Table 1: Benchmarks Description

Benchmark Problem Characteristic

Data
Management

Traditional
DBMS
processing

Index algorithms and
ad hoc query
processing

SAR Ray
Tracing

SAR image
simulation

Utilizes Image-
domain approach

Pointer Pointer following

Small blocks at
unpredictable
locations. Can be
parallelized

Update
Pointer following
with memory
update

Small blocks at
unpredictable
locations

Field
Collect statistics
on large field of
words

Regular, with little
re-use

Neighborhood

Calculate image
texture measures
by finding sum
and difference
histograms

Regular access to
pairs of words at
arbitrary distances

Transitive
Closure

Find all-pairs-
shortest-path
solution for a
directed graph

Dependent on matrix
representation, but
requires reads and
writes to different
matrices concurrently

 7

The target applications of our architecture are
memory-bound applications. Applications causing large
amounts of data traffic are also called as data-intensive
applications. We chose two applications from the
Atlantic Aerospace Data-Intensive Systems Benchmarks
Suite [26] and five applications from the Atlantic
Aerospace Stressmark Suite [27]. Table 1 shows the
characteristics of the seven benchmarks. The detailed
descriptions have been obtained from [26][27].

Indeed, today’s popular applications such as database
management and image processing often experience non-
contiguous memory access patterns. Therefore,
processor stalling is easily caused by data starvation.
These applications are more stream-based and result in
more cache misses due to the lack of locality. Moreover,
the increasing use of the Object-Oriented Programming
model correspondingly increases the underlying use of
the pointers. Due to the serial nature of the pointer
processing, memory accesses become a severe
performance bottleneck in existing computer systems.

4.2. Simulation Environments

Our simulator is based on the SimpleScalar 3.0 tool set
[2]. The p-thread construction is implemented by
modifying the sim-safe.c module. The architectural
simulator, which models the CASP architecture in
Section 3.3, is implemented based on the sim-outorder.c
module. It models the detailed pipeline operation as
well as architectural delays. The parameters are
summarized in Table 2.

Table 2: Simulation parameters

Branch predict mode Bimodal
Branch table size 2048
Issue width 8

Commit width 8
Instruction fetch queue
size

various (128, 256, 512, and
1024)

Reorder buffer size 64 instructions
Integer functional units ALU(x 4), MUL/DIV
Floating point functional
units

ALU(x 4), MUL/DIV

Number of memory ports 2

Data L1 cache
configuration

256 sets, 32 block, 4 -way set
associative , LRU

Data L1 cache latency 1 CPU clock cycle
Unified L2 cache
configuration

1024 sets, 64 block, 4 – way set
associative, LRU

Unified L2 cache latency 12 CPU clock cycles
Memory access latency 120 CPU clock cycles

The configurations we have tested are the baseline
superscalar architecture with a 64 entry reorder buffer and
the CASP architectures with various sizes of IFQ. Since
the IFQ size is believed to affect the prefetching
capability of the p-thread, we simulated various IFQ
sizes: 128, 256, 512 and 1024. The results are presented
in the next section.

4.3. Results and Analysis

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

DM RayTray Pointer Update Field NB TC

Superscalar CASP-128 CASP-256 CASP-512 CASP-1024
Figure 7: Performance comparison to the

baseline superscalar architecture

Figure 7 shows the performance results of the CASP
architecture. Five architecture models including the
baseline superscalar architecture have been simulated
with each benchmark. For each benchmark, the far left
bar corresponds to the normalized performance of the
baseline superscalar architecture. The remaining four
bars show the CASP architecture with four different IFQ
sizes (128, 256, 512, and 1024 respectively). The
original performance is measured by instruction per cycle
(IPC). For demonstration purposes, the diagram shows
the normalized performance based on the baseline
superscalar architecture.

The best result reaches a 17.3% performance
improvement, which is achieved with the Update
Stressmark under the 1024-entry IFQ configuration.
Indeed, the six benchmarks show better performance of
the CASP over the baseline superscalar architecture.
Only the Field Stressmark experienced performance
degradation with all four CASP models. It is because
the Field Stressmark contains a relatively small number
of cache misses and therefore cannot benefit much from
the speculative pre-execution feature of the CASP.

Regarding the IFQ size, three benchmarks (Data
Management, Update, and Neighborhood) show
performance enhancement with an increase of the IFQ.
However, other benchmarks do not show any benefit
from the long range IFQ. It is due to the fact that the
long range IFQ also suffers from mispredicted branches.

 8

The same observation is made in [1]. The average
performance enhancement over the baseline superscalar
architectures for each IFQ configuration is shown in
Figure 8. The average performance enhancement is
calculated with all seven benchmarks.

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

128 256 512 1024

IFQ size

P
e
rf
o
rm
c
e
 E
n
h
a
n
c
e
m
e
n
t

Figure 8: Average performance improvement

with various IFQ sizes

To show the effectiveness of the prefetching of the
CASP architecture, the number of level 1 cache misses
has also been calculated. Figure 9 shows the reduction
of the total cache misses of the CASP (with 512 IFQ), as
compared to the baseline superscalar architecture. As
the results indicate, the number of cache misses is
considerably reduced by the speculative pre-execution of
the CASP architecture. The best result is achieved by
the Transitive Closure Stressmark, which reduces 22% of
the cache misses. On the average, cache misses are
reduced by 14.2% in the CASP (with 512 IFQ)
architecture.

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

DM RayTray Pointer Update Field NB TC

N
o
rm
a
li
z
e
d
 c
a
c
h
e
-
m
is
s
 n
u
m
b
e
r
(D
L
1
)

Superscalar CASP-512

Figure 9: Reduction of cache miss rate
compared to the baseline architecture

Although the Data Management, Ray Tracing, and
Field Stressmark reduce the cache misses considerably,
the performance improvement (which is demonstrated in

Figure 7) of the three benchmarks is not extensive. It is
due to the fact that the total number of cache misses is
relatively small in these three benchmarks. Therefore,
the reduction of the cache misses has less impact on the
performance than the other four benchmarks.

To demonstrate how well the CASP would tolerate a
long memory latency, the benchmarks are simulated
under various memory latencies. The performance
results with four benchmarks (Data management, Pointer,
Update, and Neighborhood) are depicted in Figure 10.
The longest latency configuration we considered is:
memory access latency = 160 and L2 cache access
latency = 16. The shortest case is: memory access
latency = 40 and L2 cache access latency = 4. Two
more cases are designed between the above two cases.

The prefetching capability of the CASP architecture
provides robust performance at the long latency
configurations compared to the baseline superscalar
architecture. As the results indicate, the performance of
the CMAS is fairly stable at the long latencies. Only the
Data Management, which showed relatively small
performance enhancement in Figure 7, experienced
performance degradation at the long latencies. On the
contrary, the performance of the superscalar architecture
drops severely when all four benchmarks are faced with
long memory latencies.

5. Conclusions

It has been a truism that the memory access regularity
is diminishing in today’s popular applications. Hence,
the traditional data prefetching methods, which strongly
depend on the memory address predictions, often fail.
As a result, there is a strong need for new data prefetching
methods in the modern processor architecture field. As
one possible solution, we have presented the new data
prefetching method named CASP (Compiler Assisted
Speculative Pre-execution).

The CASP architecture is a hybrid model of the two
previous approaches (software-based and hardware-
based) for the speculative pre-execution method. We
demonstrated the performance results of the proposed
architecture with seven data intensive benchmarks. The
compiler assisted p-thread construction and the hardware
supported triggering of the p-thread coordinate quite well
and yield good performance results.

Future work could investigate more on the effect of the
IFQ size for the effective speculative prefetching. The
IFQ size also can affect the prefetching distance as well
as the definition of the triggering instructions. Also, the
relationship between the various branch prediction
schemes and the speculative prefetching capability will be
further investigated. In addition to that, more compiler
algorithms for the automated p-thread construction will
be followed.

 9

Neighborhood

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

4/40 8/80 12/120 16/160

L2 Cache/Memory Latency

IP
C

Superscalar CASP-512

Update

1

1.2

1.4

1.6

1.8

2

2.2

2.4

4/40 8/80 12/120 16/160

L2 Cache/Memory Latency

IP
C

Superscalar CASP-512

Pointer

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

4/40 8/80 12/120 16/160

L2 Cache/Memory Latency

IP
C

Superscalar CASP-512

Data Management

1.2

1.3

1.4

1.5

1.6

1.7

1.8

4/40 8/80 12/120 16/160

L2 Cache/Memory Latency

IP
C

Superscalar CASP-512

Figure 10: Latency tolerance for various memory latencies

References

[1] M. Annavaram, J. M. Patel, and E. S. Davidson, Data

Prefetching by Dependence Graph Precoumputation. In
Proceedings of the 28th International Symposium on
Computer Architecture, June 2001.

[2] D. Burger and T. Austin. The SimpleScalar Tool Set.
Version 2.0. Technical Report CS-TR-97-1342, University
of Wisconsin-Madison, June 1997.

[3] J. Burns and J.-L. Gaudiot. SMT Layout Overhead and
Scalability. IEEE Transactions on Parallel and Distributed
Processing Systems, Volume 13, Number 2, Feb. 2002.

[4] R. Chappell, J. Stark, S. Kim, S. Reinhardt, and Y. Patt,
Simultaneous Subordinate Microthreading (SSMT). In
Proceedings of the 26th Annual International Symposium
on Computer Architecture, May 1999.

[5] T.-F. Chen and J.-L. Baer. Effective Hardware-Based Data
Prefetching for High-Performance Processors. IEEE
Transactions on Computers, 44(5):609--623, May 1995.

[6] S. Crago, A. Despain, J.-L. Gaudiot, M. Makhija, W. Ro,
and A. Srivastava. A High-Performance, Hierarchical

Decoupled Architecture, In Proceedings of MEDEA
Workshop, Oct. 2000.

[7] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F.
Lee, D. Lavery, and J. P. Shen. Speculative
Precomputation: Long-range Prefetching of Delinquent
Loads, In Proceedings of the 28th International Symposium
on Computer Architecture, June 2001.

[8] J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen.
Dynamic speculative precomputation. In Proceedings of
the 34th Annual International Symposium on
Microarchitecture, Dec. 2001.

[9] M. Dubois and Y. Song. Assisted execution. Technical
Report CENG #98-25, Department of EE-Systems,
University of Southern California, Oct. 1998.

[10] S. Eggers, J. Emer, H. Levy, J. Lo, R. Stamm, and D.
Tullsen. Simultaneous Multithreading: A Platform for
Next-generation Processors, IEEE Micro, Sep./Oct. 1997.

[11] S.I. Hong, S.A. McKee, M.H. Salinas, R.H. Klenke, J.H.
Aylor, and W.A. Wulf, Access Order and Effective
Bandwidth for Streams on a Direct Rambus Memory. In
Proceedings of the 5th International Symposium on High-
Performance Computer Architecture, Jan. 1999.

 10

[12] Dongkeun Kim and Donald Yeung. Design and Evaluation
of Compiler Algorithms for Pre-Execution., In Proceedings
of the 10th International Conference on Architectural
Support for Programming Languages and Operating
Systems. San Jose, CA, October 2002.

[13] V. Krishnan and J. Torrellas. A Chip-Multiprocessor
Architecture with Speculative Multithreading. IEEE
Transactions on Computers, Vol. 48, No. 9, Sep. 1999.

[14] L. Kurian, P. T. Hulina, and L. D. Coraor, Memory
Latency Effects in Decoupled Architectures. IEEE
Transactions on Computers, vol. 43, no. 10, Oct. 1994.

[15] Steve S.W. Liao, Perry H. Wang, Hong Wang, Gerolf
Hoflehner, Daniel Lavery, and John P. Shen. Post-Pass
Binary Adaptation for Software-Based Speculative
Precomputation, In Proceeding of the ACM SIGPLAN 2002
Conference on Programming Language Design and
Implementation, Jun, 2002.

[16] C.-K. Luk and T. C. Mowry. Compiler Based Prefetching
for Recursive Data Structures. In Proceedings of the 7th
International Conference on Architectural Support for
Programming Languages and Operating Systems, Oct.
1996.

[17] C.-K. Luk. Tolerating Memory Latency through Software-
Controlled Pre-Execution in Simultaneous Multithreading
Processor, In Proceedings of the 28th International
Symposium on Computer Architecture, June 2001.

[18] Andreas Moshovos, Dionisios N. Pnevmatikatos, and
Amirali Baniasadi, Slice-Processors: An Implementation of
Operation-Based Prediction, In Proceedings of the 15th
international conference on Supercomputing, June 2001.

[19] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K.
Keeton, C. Kozyrakis, R. Thomas, and K. Yelick. A Case
for Intelligent DRAM: IRAM. IEEE Micro, April, 1997.

[20] A. Roth, C. B. Zilles, and G. S. Sohi, Speculative
Miss/Execute Decoupling. In Proceedings of MEDEA
Workshop, Oct. 2000.

[21] A. Roth and G. S. Sohi, Speculative Data-Driven
Multithreading, In Proceedings of the 7th International
Symposium on High-Performance Computer Architecture,
Jan. 2001.

[22] J. Smith. Decoupled Access/Execute Computer
Architecture. In Proceedings of the 9th International
Symposium on Computer Architecture, Jul. 1982.

[23] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar.
Multiscalar processors. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture, June
1995.

[24] C. B. Zilles and G. S. Sohi, Understanding the Backward
Slices of Performance Degrading Instructions. In
Proceedings of the 27h International Symposium on
Computer Architecture, June 2000.

[25] C. Zilles and G. Sohi. Execution-based prediction using
speculative slices. In Proceedings of the 28th Annual
International Symposium on Computer Architecture, June
2001.

[26] Data-Intensive Systems Benchmarks Suite Analysis and
Specification , http://www.aaec.com/projectweb/dis/

[27] DIS Stressmark Suite,
http://www.aaec.com/projectweb/dis/DIS_Stressmarks_v1
_0.pdf

