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Abstract

Recent studies on program execution behavior reveal
that a large amount of execution time is spent in small fre-
quently executed regions of code. Whereas adaptive cache
management systems focus on allocating cache resources
based on execution access patterns, this paper presents a
method of using compiler analysis to manage critical pro-
cessor resources. With the addition of new architecture
techniques to direct the utilization of instruction and data
cache resources, the compiler can guard the most active re-
gions of program execution from cache contention issues.
The effect is that the overall performance of programs can
be improved by either selectively granting each dynamic re-
gion a priority level for using cache and memory resources
or providing active regions with dedicated cache structures.

1. Introduction

Memory access penalties have become a serious imped-
iment to the delivery of increasingly higher performance
microprocessors. The growing disparity between proces-
sor and memory performance will continue to make cache
misses increasingly expensive. Additionally, data caches
are not always used efficiently, resulting in large numbers
of data cache misses. In numeric programs there are sev-
eral known compiler techniques for optimizing data cache
performance [16]. However, integer non-numeric programs
often have irregular access patterns that are more difficult
for the compiler to optimize.

Run-time spatial locality detection and optimization
studies show that run-time adaptive cache management can
significantly improve the overall performance of integer ap-
plications [10][11]. The improvements are due to increased
cache hit rates and reduced cache miss handling latencies.
However, there is still a large amount of potential improve-
ment available for improving cache management and re-
placement policies.

As memory latencies increase, the importance of cache
performance improvements at each level of the memory hi-

erarchy will continue to grow. Rather than solely using
adaptive hardware cache management techniques [10] to
improve memory system efficiency, it follows that compil-
ers should be used to assist with cache management. This
paper focuses on using the compiler to identify frequently
executed code regions, then allowing the memory system
to prioritize access to data and instructions from these re-
gions. The term region, in this paper, is analogous to a su-
perblock [9], a sequence of instructions extending beyond a
basic block boundary having only one entry point and mul-
tiple exit points.

Many performance studies have shown that very small
frequently-executed code regions incur the majority of
cache miss penalties of a program. Most schemes attempt
to aid performance by directing resources based on a single
instruction, even though the result may be to harm a neigh-
boring instruction in the same frequently executed trace.
For EPIC-style architectures that are based on principles
of in-order execution, the overall performance of a region
is more critically dependent on the collective efficiency of
all cache operations within the region. Only by eliminating
all of the cache misses during one invocation of a region
of code on an EPIC-style architecture, can the true perfor-
mance potential of the machine be achieved. At the same
time, compiler-directed EPIC architecture features provide
an appealing facility for improving interaction between the
compiler and the architecture by allowing the compiler to
express code region boundaries to the processor. Super-
scalar architectures may not have as severe of performance
problems since they have an inherent ability to withstand
memory latencies.

The objective of this research is to improve cache effec-
tiveness by utilizing compiler-directed adaptive cache man-
agement techniques, in order to reduce the number of long
memory latencies. Optimizations for both cost and perfor-
mance are explored. Specifically, the aim is to increase data
cache effectiveness for integer programs. The paper pro-
poses a profile guided method for conveying data placement
information to the run time system through compiler-guided
management commands that govern an entire region of pro-
gram code. Caching and guarding decisions of data and in-



structions are thus based on their access frequency and the
presence of closely coupled accesses relationships. As such,
the cache management decisions cause a reduction in cache
misses for the targeted code regions. Overall, the compiler
interacts with the architecture to guide caching decisions
that could not have otherwise been made by hardware-only
management schemes.

2. Motivation and Background

Several empirical studies indicate the presence of high-
frequency code regions during program execution [13][14].
For many of these regions, the dynamic number of taken
branches does not heavily outweigh the number of fall-
through branches. The unpredictable nature of these
branches suggests that these regions are not contained in in-
ner loops. While some regions do contain such loops, many
have acyclic control flow and represent a large portion of
overall execution time. Although current trends in com-
piler technology help optimize the amount of time within
program regions such as loops, even code that is aggres-
sively optimized by modern, state-of-the-art compilers ex-
hibits large portions of execution time in acyclic regions.

There are several sources of execution repetition within
programs. These sources may be based on aspects of the
input data, programming model, application domain, and
the software distribution model. In addition, virtually all
programs go through a series of stages during execution. A
stage is characterized by changes in the execution properties
for the code, the data, or both. The stages of a particular pro-
gram depend upon the problem domain and the implemen-
tation. Similarly, programs such as compilers, interpreters,
and graphics engines exhibit phase behavior, having differ-
ent modes of operation for different inputs [12].

In an effort to better understand the contribution of re-
gions to the total program execution time, Figure 1 ex-
amines the region execution percentage relative to overall
program execution. A number of optimizations have al-
ready been applied to the code in these simulations. Specif-
ically, Superblock Formation [9] (profile-guided code-
straightening optimization) has eliminated many of the
taken conditional branches and removed many of the cold
blocks from the trace. Furthermore, function inlining has
been performed to remove fetch and optimization barriers
caused by calls and returns. The numbers vary consider-
ably across the benchmarks, but in several cases more than
35% of program execution time is spent in regions. This
suggests that a well developed heuristic for identifying re-
gions can prepare the run-time system for optimizing the
most common execution traces.

Aggressive compiler-directed management of programs
may enable more performance in future computer systems
in the presence of diverse workloads. To direct optimization
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Figure 1. Active region execution percentage.

opportunities, it is critical to identify and optimize the ex-
ecution hot spots for the current workload. After program
regions representing substantial execution have been iden-
tified, methods for transforming the selected code region to
execute multiple instructions per cycle can be performed.

Percentage of total region misses
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Figure 2. Cache misses from regions.

The graph of Figure 2 illustrates the impact on mem-
ory latency that can be achieved by reducing the number of
cache misses for a small set of instructions. If the cache sys-
tem can be made aware of frequently executing instructions,



then it can be enabled to keep these instructions and the as-
sociated data in the cache as long as possible. Similarly,
delinquent loads can be marked and treated with this same
priority scheme. Figure 3 examines a similar result concern-
ing region activity in the memory system. The data shows
the percentage of data cache lines associated with high fre-
quency regions that get replaced. Nearly 60% of cache lines
replaced from the first level data cache have been accessed
by one or more regions. This supports the argument that
memory system performance can be improved by enabling
the architecture to provide fine-grain control over cache line
replacement policies.
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Figure 3. Hot cache lines replaced.

2.1. Related Work

Both static and dynamic methods exist to identify the
most frequently executed regions of a program. Methods
which make use of statistical sampling depend on static
analysis to identify active regions of code. Hardware meth-
ods use some form of auxiliary structures to keep track of
dynamic program behavior. Several different works have
explored utilizing execution frequency, gathered either stat-
ically or dynamically, to implement novel optimizations.
The technique developed in this paper relies upon statically
determined execution frequencies. The execution informa-
tion is then utilized by the compiler and conveyed to the
architecture in order to improve the efficiency and perfor-
mance of the memory system.

2.1.1 Hardware

Conte et al [7] uses dedicated hardware for profiling. Their
work is dependent upon branch execution frequencies to
capture frequently occurring regions of code. The major
goal of their work is in improving the accuracy of the pro-
file obtained. Satish Narayanasamy et al [17] uses multiple
hash tables to accurately capture important events occurring
in the lifetime of a program. Hardware counter assisted pro-
filing systems such as DCPI [2] take advantage of the hard-
ware performance monitoring counters to collect profiles.

Merten et al [14] collects dynamic program behavior in-
formation with the help of a set of hardware tables placed
in the retirement stage of the program. The primary pur-
pose of the Merten et al paper [15] was to detect frequently
executing regions of code for the purpose of dynamically
changing the code layout.

The Non-Temporal Streaming (NTS) Cache proposed
by Rivers [18] dynamically identifies loads with a non-
temporal nature. Once identified, values accessed by non-
temporal loads bypass the L1 cache and are placed in a fully
associative buffer accessed in parallel with the L1 cache. By
placing non-temporal values in the buffer rather than the L1
cache, frequently accessed data has a lower probability of
being removed from the cache. The NTS Cache assumes a
direct mapped L1 cache.

2.1.2 Compiler-Directed

Methods of compiler-directed cache management [4] have
been explored in which the compiler interacts with the
cache hardware to manage the cache placement and replace-
ment policy. The generation of appropriate cache hints can
be based on both locality of the instructions and profile in-
formation [1].

Wu et al [19] relies on the compiler to direct intelligent
cache bypassing for high performance EPIC architectures.
Wu’s work uses compile time schedule information to deter-
mine which loads can bypass the lowest-level cache without
sacrificing performance. This information is then conveyed
to the architecture through the load instruction.

Generally, cache management approaches similar to
ours, [19] [4] [18], cannot substantially improve caching
decisions because decisions need to be made based upon
their ability to help an entire region of code. Simply caching
the data accessed by a load operation may not help a section
of code if it forces a transfer of cache misses to another load
in the near vicinity of the original load. Basically, the com-
piler can help in the decision making process of cache man-
agement by deciding to keep a cache block if such a data
item is important to a frequently occurring region of code.
Our goal is to direct memory system management around
entire regions of code, not just single values.



3. Approach

3.1. Active Regions Detection

The motivation behind detecting active regions is to en-
able the processor to give priority treatment to selected
instructions. This requires that the region characteristics
should be congenial to handling by the processor. The re-
gion sizes should be small enough so that giving preferential
treatment to these regions would not hurt the program per-
formance but should be large enough to influence the per-
formance when resources are dedicated to them.

3.1.1 Resource Guarding

In order to observe the effects of providing preferred cache
access to instructions or data belonging to regions, two tech-
niques were studied. The first, Resource Guarding, is a way
to modify the cache replacement policy of an associative
cache based upon region information stored in each cache
line. In this case, the Least Recently Used (LRU) replace-
ment algorithm is modified so that cache lines that are as-
sociated with a region are not chosen for replacement. The
exception is when all cache lines in a set are related to a
region, in this case the normal LRU policy is restored. The
goal behind this approach is to keep data or instructions that
account for a dominant percentage of overall execution time
in the highest possible cache levels.

3.1.2 Resource Caches

This approach provides small fully associative caches, Fig-
ure 4, that can store cache lines related to particular regions.
These caches are accessed in parallel to the level one icache
and dcache. A new line is brought in after each level one re-
placement. In this way, the region caches extend the amount
of time select cache lines reside at the first level. The re-
source cache that a cache line is stored in is mapped to the
region id associated with the cache line. Since the size of
each region cache is quite small (2KB), it is feasible to add
several of these to a cache system with little hardware over-
head.

Figure 4 shows the simulated cache hierarchy used for
the experiments. The dcache used was a 16KB 2 way set
associative cache with one port. The icache was the same
configuration as the dcache. Each of these caches were
accessed in parallel to the corresponding victim and re-
source caches. The victim caches were 1KB fully associa-
tive. Each resource cache was 2KB fully associative. The
number of resource caches was changed from for different
experiments. The values tested were: 4, 8, and 16. The sec-
ond level cache was a unified 8 way set associative 256KB
cache, while the third level was a 1MB fully associative.

L2 Shared Cache

L3 Shared Cache

CPU

ICACHE DCACHER1 R0 V V R0 R1

Figure 4. Experimental cache hierarchy.

3.1.3 Case Study

The region formation and its behavior in 099.go is an inter-
esting case to examen. The experiments of Figure 1 show
that the execution of the program inside the regions for
099.go is only about 3%. While the data of Figure 9 shows
that there is a 69% reduction in the data cache misses and
a corresponding performance improvement of 19% (Fig-
ure 8). Although these results are counter-intuitive, close
examination of the source code for 099.go reveals some in-
teresting facts.

The two most active regions discovered by the compiler
occur inside the functionLresurrect. Figure 5 shows that
this function occurs inside a loop in the functionLdndate.
The arrays used across the functions are the same and it
turns out that these arrays are global structures used by
the majority of the program. Normally these arrays get
thrashed from the data caches, as the number of such struc-
tures used across the program is large, making it impossible
for them to be preserved inside the data cache. Being part
of the regions enables them to be protected in the resource
caches. Thus, every access to any of these arrays, region
or non-region, results in a hit at the first level. The pro-
cess of guarding globally accessed arrays within a region
has the added indirect effect of guarding those arrays for
non-regions. This results in the drastic reduction of total
dcache misses. This explains the fact that although the pro-
gram executes only 3% of the time in regions, guarding the
region data inside the resource caches results in a perfor-
mance improvement of 19%. This example also sheds light
on the indirect and unexpected benefits to other parts of the
program from providing the active regions with exclusive
resources.



... = grcolor[];
... = grpieces[];
board[] = ...;

... = grlbp[];

... = grlibs[];

... = grnbp[];

... = grnbp[];

... = grpieces[];

... = grlbp[];

... = board[];

board[s] = ...;

... = grcolor[];

_LRESURRECT

Region 2

Region 1

_LDNATE

Figure 5. Example of 099.go regions.

3.2. Profile-Guided Active Region Formation

By profiling an application on a set of sample inputs,
representative run-time information can be conveyed to the
compiler. This enables an optimizing compiler to increase
application performance by transforming code to achieve
better execution efficiency for sections of the program with
high execution frequency. Optimizations based upon run-
time value invariance [3][5] offer great potential for exploit-
ing run-time behavior. Other dynamic techniques have fo-
cused on discovering invariant relationships between vari-
ables from execution traces [8]. Invariant value profiling
has also been used to improve the effectiveness of compiler-
directed computation reuse [6].

Due to the limited amount of parallelism inherent to ba-
sic blocks within non-numeric programs, compilers must
optimize and schedule instructions across basic block code
boundaries to achieve higher performance. An effective
code structure for instruction-level parallelism compilation
is the superblock [9]. The formation and optimization of
superblocks increases the ILP to the scheduler along impor-
tant execution paths by removing constraints due to infre-
quently executed paths. Superblocks have a single entrance
and represent paths with high potential of reuse behavior.
Since branches are controlled by program data, the nature
of the flow of control through a frequently executed path
directly relates to the cache locality being exercised by the
code’s decision and data access components.

Our initial compiler-based approach selects superblocks
that represent a large portion of overall execution time.
Next, rather than selecting a single load or single instruction
to have better management in the data cache or instruction
cache, our technique guides cache management for an en-
tire active region of code. An active region is defined as an
arbitrary, connected subgraph of the program control flow

graph that has been determined to have execution character-
istics that warrant cache guarding of all data and instruction
contents accessed by the region.

To establish the effectiveness of the proposed approach
to compiler-directed cache management and replacement,
execution profiles were collected for benchmarks from
SPECINT98and SPECINT2000, applications using both
the training and reference input sets. Region formation
steps were applied to programs annotated with execution
frequency information to detect superblocks. Two region
identification methods,execution frequencyandcache ac-
curacy were proposed and investigated. Both techniques
are based on execution profiling, a generally accepted tech-
nique used in modern optimizing compilers. Figure 6 il-
lustrates the percentage of program execution for the train-
ing input attributed to candidate superblocks. Candidate
regions are those superblocks that exhibit at least a mini-
mum selected frequency of execution. Specifically, Figure 6
shows regions selected based upon execution frequencies of
100000 (region1), 50000 (region2), 25000 (region3), and
15000 (region4). These results indicate that a significant
percentage of program execution is attributed to candidate
regions and can be exposed without the aid of significant
profiling.

Percentage of Execution for Region Types
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Figure 6. Percentage of execution spent in re-
gions.

The number of candidate regions increases as the mini-
mum execution threshold for region selection is decreased.
The number of regions selected directly determines the re-
sources required of the cache management system. In sec-
tion 4.2 of this paper, we evaluate the performance increase



while varying the number of superblocks marked as regions.
Similarly, we summarize the results for selecting regions
based upon a high incident of the overall program cache
misses.

4. Experimental Evaluation

4.1. Methodology

The active cache management experiments were imple-
mented on a modified version of the IMPACT EPIC sim-
ulator. The victim and resource caches were included in
the cache hierarchy in parallel with the data and instruction
caches. The simulator’s LRU replacement policy was also
modified in order to activate cache line guarding. Region
collection was implemented as a profile guided optimization
phase of the IMPACT compiler. Candidate region instruc-
tions were marked with attributes, enabling the simulator to
identify regions.

Each cache line was modeled to contain a bit indicating
the presence of region data. After a cache hit, this bit was set
or cleared depending on the requesting instruction’s region
status. In order to perform guarding of region cache lines,
this bit is checked during LRU replacement and if set, the
corresponding cache block is not considered a replacement
candidate. If however, all of the blocks in a set have the
region bit set, then the normal LRU replacement policy is
followed.

A base simulation configuration was established from
which to compare the experiments on active guarding. This
base processor modeled a three level cache hierarchy with
an EPIC-style execution engine, as in Figure 4. The base
EPIC processor modeled can issue in-order six operations
up to the limit of the available functional units: four integer
ALU’s, two memory ports, two floating point ALU’s, and
one branch unit. An LRU replacement algorithm was used
for all set associative caches in the system. In order to mea-
sure the upper bounds of possible performance gains, the
cache system was first modeled as perfect for two different
circumstances. The first experiment treated all caches as
perfect for any accesses. The second only exhibited per-
fect behavior when regions were requested, as shown in
Figure 7. This case provided a more realistic view of the
maximum allowable speedup due to reducing cache misses
associated with regions. An important result shown by the
perfect cache access for regions is that many of the bench-
marks have the potential to achieve performance improve-
ments greater than 10%. Thus, enabling the run time system
to facilitate cache accesses associated with these regions has
the potential to cause significant speedup.

After establishing the boundary conditions for the exper-
imental model, a number of tests were performed in order
to deduce the best method for optimizing cache requests re-
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Figure 7. Perfect cache accesses for regions.

lated to regions. First, victim caches were introduced to the
base system, then region caches with and with out the victim
caches. Next, the cache line guarding technique was em-
ployed as a basis for comparison against the region caches.
Lastly, the number of resource caches used was varied in or-
der to identify the cost to performance ratio associated with
region caches.

4.2. Results and Analysis

Figure 8 shows the speedup from each of the active cache
management techniques relative to the base memory organi-
zation. For these tests it appears that region caches make the
most significant contribution to performance. Upon com-
parison between the case of using victim caches only and
using both resource and victim caches, one can see that the
contributions from the victim caches are minimal. Also,
the performance graph closely maps to the data cache miss
reduction graph of Figure 9. The performance improve-
ments can thus be attributed to the corresponding reduction
in cache misses that result from reducing the number of re-
placements to higher cache levels.

Figure 9 displays the percentage of data cache reductions
realized when using a set of cache management techniques.
The variations in data cache misses map closely to the per-
formance improvements for each of the benchmarks. The
average miss reduction across the benchmarks is roughly
20%, this corresponds to a 10% execution speedup. Thus
it appears that for most benchmarks, improvements in data
cache performance for regions significantly affect overall
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Figure 8. Performance gains of compiler-
directed cache management.
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Figure 9. Data cache miss reduction for cache
management approach.

performance. The benchmark 099.go has very large data
cache miss reductions, the details of which are described
in section 3.1.3. Overall the configuration with 16 resource
caches appears to outperform the other cache organizations

Figure 10 shows the percentage of instruction cache

Icache Miss Reduction
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Figure 10. Instruction cache miss reduction
for cache management approach.

misses that are reduced after employing the set of cache
management techniques. The vertical axis corresponds to
the percentage of miss reductions relative to the base model
of a simple 2 way 16KB set associative instruction cache us-
ing a normal LRU replacement policy. Each of the vertical
bars represents a different configuration of resource caches,
victim caches, and active guarding. It is interesting to note
that the benchmarks 134.perl, 254.gap, and 175.vpr experi-
ence very large reductions in icache misses, roughly 90%,
but comparatively small increases in both data cache and
system performance. This indicates that the overall system
performance is heavily dependent upon data cache perfor-
mance.

Although not reported in the above graphs, the results
based on cache line guarding were shown to produce an av-
erage data cache miss reduction of roughly 5% across the
benchmarks. The effect of cache line guarding proved to be
relatively insignificant when contrasted against the effects
of using region caches.

The graph of Figure 11 measures the difference in perfor-
mance based upon region creation criteria. For each of the
test cases, both the region caches and the victim caches were
enabled. The performance numbers are relative to the base
cache system of section 3.1.2. Each bar in the graph corre-
sponds to a method of region generation, all of which are
based upon profiled execution frequency. The results sug-
gest that rather than searching for an optimal execution fre-
quency as a criteria for region creation, different heuristics
should be explored. In addition to the regions selected by
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Figure 11. Performance comparison of region
types against base architecture.

execution frequency, we also simulated regions which were
selected based on the occurrence of a high number of cache
misses. Generally the results of these regions performed
worse than the execution frequency-selected regions. It ap-
pears that cache management performs better for highly ex-
ecuting regions because several different data items are in-
herently cached by their selection. By caching several dif-
ferent data items, other regions that operate on the same
data items can also be improved.

5. Summary

Whereas traditional hardware and compiler techniques
provide hints for guiding cache management based on indi-
vidual instruction behavior, this paper illustrates the initial
rationale for further increasing the interaction between com-
pilers and architectures. We present an approach to improv-
ing cache effectiveness, taking advantage of the growing
chip area, utilizing compiler-directed adaptive cache man-
agement techniques. By selecting regions with high execu-
tion potential and collectively guarding all of the instruction
and data elements used by such regions, the cache effec-
tiveness for integer programs can be significantly improved.
This paper examines the initial rational of the compiler-
directed region management and found an average of 10-
12% performance improvement with some integer applica-
tions approving by as much as 25%.

This scheme is compatible with existing schemes of lo-
cating hotspots in hardware at run time. In future work,
a run-time selection mechanism for deciding which region
caching decision have the highest priority will be consid-
ered. Likewise, similar techniques can be used to manage
resources wisely in complex execution environment, such

as multithreading and multiprocessors. Hardware profiling
technique may provide additional opportunities for hard-
ware, OS, and compiler working together to achieve the op-
timal solution on run-time performance tradeoffs.
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