
Impact of JIT
�
JVM Optimizations on Java Application Performance

K. Shiv � , R. Iyer� , C. Newburn� , J.Dahlstedt� , M. Lagergren� andO. Lindholm�
� Intel Corporation

� BEA Systems

Abstract

With the promise of machine independenceand effi-
cient portability, JAVA has gained widespread popular-
ity in the industry. Along with this promise comesthe
needfor designingan efficient runtime environmentthat
can provide high-endperformancefor Java-basedappli-
cations. In other words, the performanceof Java appli-
cationsdependsheavilyon the designand optimizationof
theJavaVirtual Machine(JVM). In this paper, westart by
evaluating the performanceof a Java server application
(SPECjbb2000���) on an Intel platform running a rudi-
mentaryJVM. We presenta measurement-basedmethodol-
ogy for identifyingareasof potentialimprovementandsub-
sequentlyevaluating the effect of JVM optimizationsand
other platform optimizations. Thecompileroptimizations
presentedanddiscussedin this paperincludepeepholeop-
timizationsandJavaspecificoptimizations.In addition,we
also studythe effect of optimizingthe garbage collection
mechanismand the effect of improved locking strategies.
The identificationand analysisof theseoptimizationsare
guidedby thedetailedknowledge of themicro-architecture
andtheuseof performancemeasurementandprofiling tools
(EMONandVTune)on Intel platforms.

1 Intr oduction

The performanceof Java client/server applicationshas
beenthe topic of significant interest in the recentyears.
The attractionthat Java offers is the promiseof portabil-
ity acrossall hardwareplatforms.This is accomplishedby
usingamanagedruntimeenginecalledtheJavaVirtual Ma-
chine (JVM) that runsa machine-independentrepresenta-
tion of Java applicationscalledbytecodes.Themostcom-
mon modeof applicationexecutionis basedon a Just-In-
Time(JIT) compilerthatcompilesthebytecodesinto native
machineinstructions.Thesenativemachineinstructionsare
alsocachedin orderto allow for fastre-useof thefrequently
executedcodesequences.Apart from theJIT compilation,
the JVM alsoperformsseveral functionsincluding thread
managementandgarbagecollection. This bringsus to the
reasonfor our studyi.e. Java applicationperformancede-
pendsvery heavily on the efficient executionof the Java

Virtual Machine(JVM). Ourgoalin thispaperis to charac-
terize,optimizeandevaluatea JVM while runninga repre-
sentativeJava application.

Over thelastfew years,severalprojects(from academia
as well as in the industry) [1,2,4,7,8,9,10,15,16,21] have
studiedvariousaspectsof Java applications,compilersand
interpreters.We found that R. Radhakrishnanet al. [16]
cover a brief descriptionof much of the recentwork on
this subject. In addition, they alsoprovide insightson ar-
chitecturalimplicationsof Java client workloadsbasedon
SPECjvm98[18]. Overall, thepublishedwork canbeclas-
sifiedinto thefollowing generalareasof focus:(1) present-
ing the designof a compiler, JVM or interpreter, (2) opti-
mizing a certainaspectof Java codeexecution,and(3) dis-
cussingtheapplicationperformanceandarchitecturalchar-
acterization. In this paper, we take a somewhat different
approachtouchinguponall the threeaspectslisted above.
Wepresentthesoftwarearchitectureof acommercialJVM,
identify several optimizationsandcharacterizethe perfor-
manceof a representative Java server benchmarkthrough
severalphasesof codegenerationoptimizationscarriedout
on aJVM.

Our contributionsin this paperareasfollows. We start
by characterizingSPECjbb2000[17] performanceon Intel
platformsrunningan earlyversionof BEA’s JRockitJVM
[3]. We thenidentify variouspossibleoptimizations(bor-
rowing ideasfrom literaturewhereverpossible),presentthe
implementationdetailsof theseoptimizationsin the JVM
and analyzethe effect of eachoptimization on the exe-
cution characteristicsand overall performance. Our per-
formancecharacterizationand evaluationmethodologyis
basedonhardwaremeasurementsonIntel platforms- using
performancecounters(EMON) anda sophisticatedprofiler
(VTune[11]) thatallows usto characterizevariousregions
of softwareexecution. Thecodegenerationenhancements
that we implementand evaluateinclude (1) codequality
improvementssuchaspeepholeoptimizations,(2) dynamic
codeoptimizations,(3) parallelgarbagecollectionand(4)
fine-grainedlocks.Theoutcomeof ourwork is thedetailed
analysisandbreakdown of benefitsbasedon theseindivid-
ualoptimizationsaddedto theJVM.

The restof this paperis organizedas follows. Section
2 coversa detailedoverview of theBEA JRockitJVM, the
measurement-basedcharacterizationmethodologyand the
SPECjbb2000benchmark. Section3 discussesthe opti-

mizations- how they wereidentified,implementedandtheir
performanceevaluation. Section4 summarizesthe break-
down of the performancebenefitsand where they came
from. Section5 concludesthis paperwith somedirection
on futurework in this area.

2 Background and Methodology

In thissection,wepresentadetailedoverview of JRockit
(the commercialJVM used)[3], SPECjbb2000(the Java
server benchmark)[17] and the optimizationand perfor-
manceevaluationmethodologyandtools.

2.1 Ar chitectureof the JRockit JVM

The goal of the JRockit project is to build a fast and
efficient JVM for server applications. The virtual ma-
chine shouldbe madeas platform independentas possi-
ble without sacrificingplatformspecificadvantages.Some
of the considerationsincludedreliability, scalability, non-
disruptivenessandof course,highperformance.

JRockit startsup differently from most ordinary Java
JVMsby first JIT-compilingthemethodsit encountersdur-
ing startup.WhentheJava applicationis running,JRockit
hasa bottleneckdetectoractive in the backgroundto col-
lect runtimestatistics. If a methodis executedfrequently
and found to be a bottleneck,it is sent to the Optimiza-
tion Managersubsystemfor aggressive optimization. The
old methodis replacedby theoptimizedonewhile thepro-
gramis running.In thisway, JRockitis usingadaptiveopti-
mizationto improvecodeperformance.JRockitreliesupon
a fast JIT-compiler for unoptimizedmethods,as opposed
to interpretative byte-codeexecution.OtherJVMs suchas
Jalapeno/Jikes[23] haveusedsimilarapproaches.

It is importantto optimizethegarbagecollectionmech-
anismin any JVM in orderto avoid disruptionandprovide
maximumperformanceto theJavaapplication.JRockitpro-
videsseveralalternativesfor garbagecollection. The”par-
allel collector” utilizes all availableprocessorson the host
computerwhendoingagarbagecollection.Thismeansthat
thegarbagecollectorrunsonall processors,but notconcur-
rently with the Java program. JRockitalso hasa concur-
rent collector which is designedto run without ”stopping
theworld”, if non-disruptivenessis themostimportantfac-
tor.

To completetheserversidedesign,JRockitalsocontains
anadvancedthreadmodel,thatmakesit possibleto runsev-
eralthousandsof Javathreadsaslight weighttasksin avery
scalablefashion.

2.2 Overview of the SPECjbb2000Benchmark

SPECjbb2000is Java BusinessBenchmarkfrom SPEC
thatevaluatestheperformanceof Server SideJava. It em-
ulatesa three-tiersystem,with businesslogic and object
manipulation,thework of themiddle layerpredominating.

���
	��
 � ������ � ����� �� 	�� � ������ � ������ ��� ��
���� �
 �	!� � ����� �#"�$���� %��&����� ���' (!) * +!,
-�.
/�0�1!* 23-�4
576� � 8�� � ���9� 	������ ���

�� ��:;� � � � � � < ��= >?���@$�� 8ACB D ��%���E&� �����

Figure 1. The SPECjbb2000 Benc hmark Pro-
cess

Thedatabasecomponentrequirementcommonto three-tier
workloadsis emulatedusingbinary treesof objects. The
clientsaresimilarly replacedby driver threads.Thus, the
whole benchmarkruns on a single computersystem,and
all thethreetiersrunwithin thesameJVM. Thebenchmark
processis illustratedin Figure1.

The SPECjbb2000application is somewhat loosely
basedon the TPC-C [20] specificationfor its schema,
input generation,and operation profile. However, the
SPECjbb2000benchmarkonly stressestheserver-sideJava
executionof incomingrequestsandreplacesall databaseta-
bleswith Javaclassesandall datarecordswith Javaobjects.
Unlike TPC-Cwherethe databaseexecutionrequiresdisk
I/O to retrieve tables, in SPECjbb2000disk I/O is com-
pletely avoided by holding the objectsin memory. Since
usersdo not resideon externalclient systems,thereis no
network IO in SPECjbb2000[17].

SPECjbb2000measuresthe throughputof the underly-
ing Java platform,which is therateat which businessoper-
ationsareperformedpersecond.A full benchmarkruncon-
sistsof a sequenceof measurementpointswith an increas-
ing numberof warehouses(andthusan increasingnumber
of threads),andeachmeasurementpoint is work donedur-
ing a 2-minuterun at a given numberof warehouses.The
numberof warehousesis increasedfrom 1 until at least
8. The throughputsfor all the points from N warehouses
to 2*N inclusive warehousesareaveraged,whereN is the
numberof warehouseswith bestperformance.Thisaverage
is theSPECjbb2000metric.

2.3 Performance Optimization and Evaluation
Methodology

Theapproachthatwe havetakenis evolutionary. Begin-
ningwith anearlyversionof JRockit,performancewasan-
alyzedandpotentialimprovementswereidentified.Appro-
priatechangesweremadeto theJVM andthenew version
of theJVM wasthentestedto verify that themodifications
did deliver the expectedimprovements. The new version
of theJVM wasthenanalyzedin its turn for thenext stage
of performanceoptimizations. The typesof performance
optimizationsthatwe investigatedweretwo-fold. Changes
weremadeto the JIT so that the quality of the generated
codewassuperior, andchangesweremadeto otherpartsof
theJVM, particularlyto theGarbageCollector, ObjectAllo-

catorandsynchronization,to enhancetheprocessorscaling
of thesystem.

Our experimentswereconductedon a 4 processor, 1.6
GHz,Xeonplatformwith 4GB of memory. Theprocessors
hada 1M level-3 cachealongwith a 256K level-2 cache.
The processorsaccessedmemory through a shared100
MHz, quad-pumped,front sidebus. Thenetwork anddisk
I/O componentsof our systemwerenot relevant to study-
ing theperformanceof SPECjbb2000,sincethisbenchmark
doesnotrequireany I/O. Severalperformancetoolsassisted
us in our experiments.Perfmon,a tool suppliedwith Mi-
crosoft’soperatingsystems,wasusefulin identifying prob-
lemsat a higherlevel, andallowedus to look at processor
utilization patterns,context switch rates,frequency of sys-
tem calls andso on. EMON gave us insight into the im-
pactof the workloadon the underlyingmicro-architecture
andinto the typesof processorstalls that wereoccurring,
andthatwe could target for optimizations.VTunepermit-
tedus to dig deeperby identifying preciselythe regionsof
thecodewherevariousprocessormicro-architectureevents
werehappening.This tool wasalsousedto studythegener-
atedassemblycode.Thenext sectiondescribestheperfor-
mancetools– EMON andVTune– in somemoredetail.

2.4 Overview of PerformanceTools- EMON and
VTune

This sectiondescribesthe rich set of event monitoring
facilitiesavailablein many of Intel’sprocessors,commonly
called EMON, and a powerful performanceanalysistool
basedon thosefacilities,calledVTune[11].

2.4.1 EMON Hardwareand EventsUsed

The event monitoring hardware provides several facili-
ties includingsimpleeventcounting,time-basedsampling,
eventsamplingandbranchtracing. A detailedexplanation
of thesetechniquesis not within the scopeof this paper.
Someof th key EMON eventsleveragedin ourperformance
analysisinclude (1) Instructions– the numberof instruc-
tionsarchitecturallyretired,(2) Unhaltedcycles– thenum-
berof processorcyclesthattheapplicationtook to execute,
not countingwhenthatprocessorwashalted,(3) Branches
– the numberof branchesarchitecturallyretiredwhich are
useful for noting reductionsin branchesdue to optimiza-
tions,(4) BranchMispredictions– thenumberof branches
thatexperienceda performancepenaltyon the orderof 50
clocks,due to a misprediction,(5)Locks – the numberof
locked cmpxchginstructions,or instructionswith a lock
prefix and (6) Cachemisses– the numberof missesand
its breakdown at eachlevel of thecachehierarchy.

The readeris referredto the Pentium4 ProcessorOpti-
mizationGuide[24] for moredetailson theseevents.

FHG�I
J�K�L�LCI@G;MNJPO
Q R S;T�U K�O
G�Q V�W;X�Y?Z\[

]
]3^ _
]3^ `
]3^ a
]3^ b c
c
^ _c
^ `

c�d
_
d

`
d

e fg hij k
fl fm
n omphqr
f

Figure 2. Processor Scaling on an early
JRoc kit JVM version

2.4.2 VTune PerformanceMonitoring Tool

Intel’s VTuneperformancetools provide a rich setof fea-
turesto aid in performanceanalysisandtuning: (1) Time-
basedandevent-basedsampling,(2) Attribution of events
to code locations,viewed in sourceand/orassembly, (3)
Call graphanalysisand(4) Hot spotanalysiswith theAHA
tool, which indicateshow the measuredrangesof event
count valuescomparewith other applications,and which
providessomeguidanceonwhatothereventsto collectand
how to addresscommonperformanceissues.Oneof thekey
toolsprovidesthemeansfor providing thepercentagecon-
tribution of a small instructionaddressrangeto theoverall
programperformance,and for highlighting differencesin
performanceamongversionsof applicationsanddifferent
hardwareplatforms.

3 JVM Optimizations and Performance Im-
pact

In this sectionwe describethe variousJVM improve-
mentsthatwestudiedanddocumenttheir impactonperfor-
mance.Wealsoshow theanalysisof JVM behavior andthe
identificationof performanceinhibitors that informed the
improvementsthatweremade.

3.1 PerformanceCharacteristicsof an early JVM

Theversionof JRockitwith which we beganour exper-
imentswasa completeJVM in thesensethatall of the re-
quired JVM componentswere functional. Unlike several
othercommercialJVMs though,JRockitdoesnot include
aninterpreter. Instead,all applicationcodeis compiledbe-
fore execution. This could slow down the start of an ap-
plicationslightly, but this approachenablesgreaterperfor-
mance.JRockitalsoincludeda selectionof GarbageCol-
lectorsandtwo threadingmodels.

Figure3 shows theperformancefor increasingnumbers
of warehousesfor a 1-processoranda 4-processorsystem.

sutwv x y z|{#};~ �wv t&x tw�wv �w���C��� �w��su�w� �������P� �P��su�!������ �&����� �w���w���!�#�&� ���P� �&� ���3�&� �3� �w��� �#� ���w�&� �w������ �&����� ¡3 � �w¢3�w£¤� �&� ¥3� ��¦&� �w� ¦&� �w� �&� �3¥����� �&��§������#� �w¦&� ¥w� ���3�&� �3� �w��� �#¦ ���w�&� �w������ �&��¨ ©�� ��� � ª!«�� � � � � �¬3­C�w�!®! �3�C¯3� �#�!£|°
�#ª3©�� ¥ ¥ ��¥ ��¥±P² ��� �#³´°
�#� � ��µ ���w� ¦!�#� �3�3¥w� �w�&���w� �!�3�3¦w�°
�#©�� �!¶�� ±�· � �w¯��3��µ ���3� �3¥ ¦w�3¥ �3�w�3�&� �3¦w�!�#�¨ ©�� �&� � ªw«�� ��µ ���#� �3¦ ����� �3�3� ¦w¥w���� �w���3���!�&�3¸Nª��&ª���¹���©�¢!� ¯ �&� �#� ��� �w� �w� �º� �&� �3�

Table 1. System Performance Characteristics
for early JVM

»C¼ ¼ ½�¾&¿ ÀÂÁ�¼P¿�Ã;Ä ½PÅ�Æ�À9Ç ½�Å�Ä�È É&Ê�ËPÌuÍ�Î

Ï
ÏwÐ Ñ Ò
Ò
Ð Ñ
Ó

Ó3Ð Ñ

Ò Ô
Ñ Õ Ö×�ØwÙ¤Ú�Û�Ü&Ý!Þ3ßÂà�Ü Û�á!Ý�Ø�â�Û3â

ã äå æçè é
äê äë
ì íëîæïð
ä

Figure 3. Performance Scaling with Increas-
ing Warehouses

Thereis a markedroll-off in performancefrom thepeakat
3 warehousesin the4-processorcase.TheJVM canthusbe
seento be having somedifficulty with increasingnumbers
of threads.

DataobtainedusingPerfmonis shown in Table1. While
theutilization of the1 processoris quitegoodat 94%, the
processorutilization in the4-processorcaseis only 56%. It
is clearthat improvementsareneededto increasethe pro-
cessorutilization. Thecontext switchandsystemcall rates
aretwo ordersof magnitudelargerin the4Pthanin the1P.
The small processorqueuelengthindicatesthe absenceof
work in thesystem.Theseaspectsalongwith thesharpper-
formanceroll-off with increasedthreads,all pointto aprob-
ableissuerelatedto synchronization.It appearslikely that
oneor morelocksarebeinghighly contended,resultingin
a largenumberof thethreadsbeingin astateof suspension
waiting for thelock.

While being fully functional, this version of JRockit
(we call it early JVM) had not beenoptimized for per-
formance. It thus served as an excellent test-bedfor our
studies. The processorscalingseenwith the initial, non-
optimizedearly JVM is shown in Figure 2. It is obvious
that we can do much betteron scaling. Many other stat-
ically compiledworkloadsexhibit scalingof 3X or better
from 1 processorto 4 processors,for instance.

3.2 Granularity of HeapLocks

The early versionof JRockit performedalmostall ob-
ject allocationglobally with all allocatingthreadsincreas-
ing a pointeratomicallyto allocate. In orderto avoid this
contention,threadlocal allocationandThreadLocal Areas
(TLAs) were introduced. In that scheme,eachthreadhas
its own TLA to allocatefrom andtheatomicoperationfor
increasingthe currentpointercould be removed, only the
allocationof TLAs requiredsynchronizations.

A chain is never strongerthan its weakest link, oncea
contentionona lock or anatomicoperationis removed,the
problemusuallypopsupsomewhereelse.Thenext problem
to solve was the allocationof the TLAs. For eachTLA
thatwasallocated,theallocatingthreadhadto takea ”heap
lock”, find a large enoughblock on a free list andrelease
thelock. Thephaseof objectallocationthatrequiresspace
to be allocatedfrom a free list requiresa lock. This lock
acquisitionandreleaseshowedup on all our measurements
with VTuneasa hot spot,markingit asa highly contended
lock.

Oneattemptwasmadeto reducethe contentionof this
lock by letting the allocating threadallocatea coupleof
TLAs and putting them in a smaller temporarystorage
wherethey couldbeallocatedusingonly atomicoperations
by otherthreads.This attemptwasa deadend. Evenif the
threadthat hadthe heaplock put a large amountof TLAs
in the temporarystorage,all threadsstill endedup waiting
mostof thetime, eitherfor theheaplock or that theholder
of theheaplock would giveawayTLAs.

The final solutionwas to createseveral TLA free lists.
Eachthreadhasa randomlyallotted”home” free list from
which to allocatetheTLAs it needs.If thechosenlist was
empty, theallocatingthreadtried to take theheaplock and
fill that particularfree list with several TLAs. After this,
thethreadwould chooseanother”home” freelist randomly
to allocatefrom. By having several lists, usuallyonly one
threadwould try to take theheaplock at thesametime and
the contentionof the heaplock wasreduceddramatically.
Contentionwasfurtherreducedby providing a TLA cache;
thethreadthatacquirestheheaplock moves1MB of mem-
ory into the cache. A threadthat finds its TLA free list
emptychecksfor TLAs in thecachebeforetakingtheheap
lock.

Figure 4 shows the marked improvementin processor
scalingin the modifiedJVM, the JVM with the heaplock
contentionreduction.Scalingat 2 processorshasincreased
from1.08Xto1.70X,andthescalingat4 processorshasim-
provedto 2.46X from 1.29X.Theperfmondatawith these
changesis interesting,andis shown in Table2. Theincrease
in processorutilizationandthedecreasein systemcallsand
context switchesareall verydramatic.

3.3 GarbageCollection Optimizations

Theearlyversionof JRockitincludedbotha singleand
multi generationalconcurrentgarbagecollector, designedto

ñóò ôöõ�÷�ø�ø;ôóò�ùuõ�ú;û ü ý;þ

ÿ
ÿ�� �

�
��� �
�

��� �
�

�	� �
� �
�
�
� �
�� �

�
�� ��
����

��� ��� �"!#	$�%&� �"!

Figure 4. Impr ovement of Processor Scaling
with Heap Loc k contention scaling

'�(�) * + ,.-0/
132 4�) (5* (�-�) /76 809�:"'; <.=5>@? /A6 809�:B'; C0<.D
? 4�(.EF9�:B'; <.=5>@? 4�(.EF9�:B'; C0<.D
?G7H�I J
K	LAM H�N	O�PQPQH
M5R S�T5U V
S WQX�X
U X�X Y5W.U Z�S Y�[
U S�XG7H�I J
K	LAM \]�\ K O�^�O�_`R a
U T�V [
U S�Y X
U a�X S
U [�XG7H�I J
K	bAPQO5M5R S�V5U T
a WQX�X
U X�X Y5W.U T.c WQX�X
U X�XG7H�I J
K	d e	I O5M M f�gQI R X X X Xh�i3H�N.j.\ I�G3k�M O
J._ml"H5f�e	I W	Y W	Y WQX WQXn@o P	I O
pql"J
K K P�r PQO�N S�S5WQX�X Z.V�S�a�X c
[�X W	Y�S�al"H
e	I O.sQI n@t \ I N�k	O�P	r P�O
N V�X�Z�Z5W V�a�ZQc
S [�X W�WQS5Wd e	I O@M M f�gQI P	r P	O�N V�[�Z a�Y.V V�T�a a�Z5WLAM H�N�O�PQPQH5M�uvfQO5f	Oxw	O5e	^�I k W.U Wyc S
U X�X W.U Wyc a
U X�X

Table 2. System Performance Characteristics
after Heap Loc k Impr ovements

havereallyshortpausetimesandfair throughput.Through-
putin aconcurrentcollectoris usuallynotaproblemsincea
full collectionis rarelynoticed,evenlesson a multiproces-
sorsystem.Theproblemoccurswhenobjectsareallocated
in sucha fastratethatevenif thegarbagecollectorcollects
all the time on oneprocessorandlets the otherprocessors
run theprogram,thecollectorstill doesn’t manageto keep
upthepace.Thisproblemstartedto hurtperformancebadly
in JRockitwhenrunning8 warehouseson8-waysystems.

To solve this, the so-called”parallel collector” wasde-
veloped.Thebasewasa normalMark andSweep[13] col-
lectorwith onemarkingthreadperprocessor. Eachthread
hadits own markingstack,andif astackis emptythethread
couldwork-stealreferencesfrom otherstacks[5]. Normal
pushingandpoppingrequirednosynchronizationor atomic
operations,only thework-stealingrequiredoneatomicop-
eration. Eachthreadalsohadanexpandablelocal stackto
handleoverflow in theexposedmarkingstack.

Sweepingis alsodonein parallelby splitting theheapin
N sectionsandlettingeachthreadallocatea section,sweep
it, allocateanew sectionandsoforth until all sectionswere
swept. The sweepingalgorithm focusedon performance
morethanaccuracy, creatingroomfor fragmentationif we
wereunlucky. A partialcompactionschemewasemployed
to reducethis fragmentation.

TheseGCoptimizationsresultedin anincreasein there-

z|{ }�~7�7�A��}�{"�m~@�B� � �3�

�
��� �

�
�	� �
�

�
� �
�

��� �

�Q� �5� �5�

� �� �
�� ��
� ��� ��
���
��

 �¡
¢ £ ¤|¥y¦"§¨ .¡�©mªQ«.¬�­y®� ¡
¢ ¡�£ £
£�¯�°

Figure 5. Impact of Parallel Garbage Collec-
tion on Processor Scaling

±B² ² ³A´5µ�¶3²|·�¸�¹ ¸�º º ³�º5»½¼

¾
¿
À
Á
Â
Ã
Ä

¾ Ã ¿	¾ ¿ Ã À
¾
Å"Æ5Ç½È�É@ÊAË�Ì7Í&Î@Ê É@Ï
ËAÆ�Ð�É�Ð

Ñ ÒÓ Ô
ÕÖ ×Ò
Ø ÒÙÚ ÛÙ
ÜÔÝ
ÞÒ

Figure 6. Impact of Parallel Garbage Collec-
tion on SPECjbb2000 Performance

portedSPECjbb2000result in a 4P system,andimproved
processorscalingfrom 2.46 to 2.92, as illustratedin Fig-
ure 5. The benefitsof this weremorenoticeableat higher
numbersof warehousesandthereforeleadto a muchflatter
roll-off from thepeak,asshown in Figure6.

3.4 CodeQuality Impr ovements

Several codequality improvementswere madeduring
thebenchmarkingprocess.A new codegenerationpipeline
wasdevelopedandmergedinto the product. This enabled
usto do a lot moreversatileandlow-level optimizationson
codethanpreviouslywaspossible.Basedon the

SPECjbb2000characteristicsmeasuredandanalyzedin
the previous section,we wereableto identify several pat-
ternsat the native code level that were suboptimal. The
JRockitteamreplacedthesewith bettercodethroughpeep-
holeoptimizations(commonlyusedfor compileroptimiza-
tions as in [6, 14]) or more efficient code generation
methodologies.While thecompileroptimizationslistedbe-
low arewell-knownandunderstood,therequirementhereis

ßáà�â ã ßFä�å�æ çyè é@ê ëBìà3ä ã ßíä�å�à3ä�é
î	ï5ð"ë
ßáà�âñæ çyè é@ê ëBì	å ã ßòä ó�ôöõø÷Qù ú�û ü|ý.þ�ó�ô�ú7ÿ�����ü

Figure 7. A Simple Example of Peep-Hole Op-
timization

thatthecompiletime overheadbekeptto a minimumsince
it is apartof theexecutiontime; andassuch,notall known
optimizationsandtechniquescouldbeadded.Theseareby
no meansa completelist of improvements,but give some
perspectiveon thingsthatweredoneto enhancecodequal-
ity.

1. PeepholeOptimizations: Thenew JRockitcodegen-
eratormadeit possibleto work with native codejust
beforeemission,i.e. therewould beIR operationsfor
eachnative codeoperation. Several small peephole
optimizationswereimplementedon this. We present
one example of this kind of patternmatchinghere:
Java containsa lot of load/storepatterns,wherea field
is loadedfrom memory, modifiedandthenrewritten.
Literal translationof a Java getfield/putfieldsequence
would resultin threeinstructionson IA32 asshown in
Figure7(left). IA32 allows mostoperationsto oper-
atedirectly on addresses,sotheabovesequencecould
be collapsedto a single instructionasshown in Fig-
ure7(right).

2. Better useof IA32 FPU instructions: Java haspre-
cisefloating-pointsemantics,andworks either in 32-
bit or 64-bit precision. This is usually a problemif
onewantsto usefast80-bit floating points that there
is hardwaresupportfor on IA32, but in somecaseswe
don’t needfp-strict calculationsand can usebuilt in
FPU instructions.JRockitwasmodifiedto determine
whenthis is possible.

3. Better SSAreversetransform: Most codeoptimiza-
tionstake placein SSAform. Thereweresomeprob-
lems with artifactsin the form of uselesscopiesnot
beingremovedfrom thecodewhentransformingback
to normalform. Thetransformwasmodifiedto getrid
of these,with goodresults.Registerpressuredropped
significantlyfor optimizedcode.

4. Faster checks: The implementationof several Java
runtimecheckswasspeededup. SomeJava runtime
checksare quite complicated,suchas the non-trivial
caseof an array storecheck. Thesewere treatedas
specialnativecalls,but withoutusingall availablereg-
isters.Specialinterferenceinformationfor thesesim-
plifiedmethodswaspassedto theregisterallocator, en-
ablinglesssavesandrestoresof volatile registers.

����� 	�

��� 	����������� 	�����������	�
�������������� ��� ��! "�	
����� 	��
��� 	�
��

�#��� 	�
�� � 	����
�#����� 	�����������	���������������� ���$��! " 	

Figure 8. An Example of Copy Propagation

%'&�(
)
* +-,�.
/ 0�(&1) &324(5 &�.6,7) &98;:</ =#. (&1)>8?:@/ AB8;CED10�FG&
HJI1K�LNMEO�PEK�Q R R3S T�U TEU A
V O�W X S Y7Z X S YG[\�R A
O#]7^ _a`bPEc1d#^ _ Z3[Ge�U1f U X R X7g X [A

8�,3hG&i:J&70E&1) DE(,>)j/ kilG) ,�m�&1k<&>0�(2

Table 3. Impact of Better Code Generation on
Application Performance

5. Specializationsfor commonoperations: Array allo-
cationwasre-implementedwith specializedallocation
policies for individual arrayelementsizes. The Java
”arraycopy” functionwasalsospecialized,depending
on if it wasoperatingon primitivesor referencesand
on elementsof specificsizes. Othercommonopera-
tionswerealsospecialized.

6. Better Copy Propagation: Thecopy propagational-
gorithm was improved and also changedto work on
thenew low level IR, with all its addressingmodesand
operations.An exampleof bettercopy propagationis
shown in Figure8.

Theseimprovementsto the JIT wereundertaken to re-
duce the code required to executean application. It is
possiblethat the techniquesusedto lower the path length
couldincreasetheCPI of theworkload,andendup hurting
throughput.Oneexampleof this would be the usageof a
complex instructionto replacea setof simplerinstructions.
However, Table3 shows thatwhile theefforts to reducethe
path lengthwerewell rewardedwith a 27% improvement
for SPECjbb2000,theseoptimizationsdid not hurt theCPI
in any significantway. The path length improvementre-
sultedin a 34%boostto thereportedSPECjbb2000result.

3.5 Dynamic Optimization

The initial compile time that is tolerablelimits the ex-
tent to which compileroptimizationscanbe applied. This
implies that while JRockitprovidesbettercodein general
than an interpreter, for the few functions that other JITs
do chooseto compile,thereis a risk of under-performance.
JRockithaschosento handlethis issueby providing a sec-
ondarycompilationphasethat can include more sophisti-
catedoptimizations,andusingthis secondarycompilation
duringtheapplicationrun to compilea few frequentlyused
hot functions.

Therearetwo main issueswith this that impactperfor-
mance.Sincewecut into theapplicationrun-timewhenwe
re-optimizecode, it is essentialto ensurethat the hottest
functionsare targeted,so that the performancebenefit is
worthwhile. However, themethodusedto identify thebest
targetfunctionsmustnot bevery intrusiveandcut into per-
formance.

Early JVM, our baselineJRockit,usedMethodInvoca-
tion Counters(MIC) to keeptrackof how oftena function
is called.Every timea functioncalledanotherfunction,the
MIC of both functionswere incremented- while it is ob-
vious asto why the calleeMIC wasincremented,the pur-
poseof incrementingthecaller’sMIC is to beableto catch
theoptimizationat theroot functionsratherthanjust at the
leaves. While runningmulti-threadedcode,it is of course
possiblethat the samefunction could be executedon two
separateprocessorssimultaneously. Bothprocessorswould
thenneedto attemptto incrementthefunction’sMIC. Lock-
ing theincrementoperationwouldslow it down andmakeit
too intrusive,sothedesigndecisionwastakento not do so.
However, evenotherwise,thereis asignificantperformance
impactof transferringthecounterfrom cacheto cache,thus
decreasingcacheperformanceandincreasingbustraffic.

Every3 seconds,JRockitwouldchecktheMIC andlook
for a target function to optimize. To avoid taking away
too much time from the application,only one function is
targetedat eachtime. Finding the exact function with the
highestMIC couldalsogetvery expensive. SPECjbb2000,
for example,hasmorethan2000functions. To frequently
find themaximumof 2000valueswouldbesignificantlyin-
trusive. InsteadJRockitscansthroughthe list of functions
looking for onewhoseMIC is higherthana threshold,tar-
getsthatfor optimization,andsetsits MIC to zero.

JRockitprovidedacommandline option(-Xnoopt)with
whichthesecondarycompilationcanbeturnedoff. JRockit
alsoprovidedacommandline option(-XXoptall originally,
laterremoved)thatcouldbeusedto forcetheoptimization
of all functionsat the initial codegenerationphaseitself.
Using just the -XXoptall option doesnot turn off the sec-
ondarycompilationphase.Sincetheperformanceimprove-
mentsdueto re-optimizationwhentheoriginalcodewasal-
readyoptimizedis small,runningwith -XXoptall andcom-
paringtheresultswith -XXoptall -Xnoopt,allows usto get
ameasureof theintrusivenessof thesecondarycompilation
phase.Similarly comparinga run with neitherof thesetwo
parameterswith arunthatincludes-Xnooptgivesameasure
of thebenefitsof secondaryoptimizedcompilation.Wealso
usedVTuneto identify the top hot spotsin SPECjbb2000,
andcomparedthat with the list of functionsthat weretar-
getedfor recompilation,with a view towardsstudyingthe
efficiency of thehotspotidentificationprocess.

Table4 summarizesour findings. Theobservationfrom
thethroughputmeasurementsis thatthisapproachdoespro-
vide a 4% net benefit. However, the techniqueis intrusive
andtakesup 6%of performance.

Optimizationmay well provide the most benefitwhen
the JIT hasa large block of codeto optimize. However,

n<o�o�p�q�rtsbu v?rjwxo#y z {�| }�~ �
���j�
�
�j�����b�1�G���?�b�7�1��� �#�b�7�N�
�

�1�1�6�
�b�#�3�t�t� ���j� �3�t�
���b�6�
�b�����b�1�3���7�t�G�����1�a���

� �3�����7�1� �G�b�1�t�G� �E� �b�
���1�����b� � ���b� ���

���b�6�
�b�����b�1�3�����b� �1�t���G
¡£¢ ��� ��� ¤>� �7¥��1��¦��
�b� �
§�� ¢ �¨��� �����

���j���3�b�G�#�1�#�7©t�t�1�3��� �b����� �a��� ¢ �b�3�
� �a� ¢ ��� ��� ¤G�t�a���t�1�3��� �b�1� �j�t� ���3�

Table 4. Impact of Dynamic Optimization
Strategies

suchlarge methodstendedto be hot spotsnot becauseof
thenumberof timesthey werecalled(whentheMIC would
increment)but becauseof thetimespentin thefunctiondur-
ing thefew timesthat they werecalled.For instance,a rel-
atively hot methodTransactionManager.gois invokedonly
136 times during a run with up to 16 warehouses,and is
thereforeneveroptimized.

Basedon this data,anotherapproachwaspursued.The
MethodInvocationCounterswereabandoned,andinstead
a samplingthreadwas introduced. The samplingthread
wakes up occasionallyand checkssomeor all of the ap-
plication’s threads.It notesdown which methodsthey are
in, andadditionallyit notesdown theinformationfor every
functionin thethread’scalling stack.Thesecountsreplace
thoseprovidedby theMethodInvocationCounters.

On the positive side this removes a lot of instructions
from the applicationcodespace,making for both tighter
codeand shorterpath lengths. On the negative side the
countsacquiredthroughsamplingmay be more proneto
error. To counteractthis, the samplingtechniqueis more
likely to correctlyrepresentamethodlikeTransactionMan-
ager.go,sinceit dependsmoreonthetimespentin amethod
thanthenumberof timesamethodis called.

Thedatawe have obtainedis compelling. Dynamically
recompilingasfew asa 100functionsduringthelife of the
applicationhasproducedresultsthat arevery comparable
to theresultsproducedby optimizingall themethodsat the
beginning. Using the -Xnoopt flag as the baseline,the -
XXoptall provided a benefitof 14%. Using the sampling
basedoptimization,we noteda performanceimprovement
of 16%. It may be notedthat this approachcan provide
a higherbenefitthanby compiling all methodswith opti-
mizations.This is becausethefunctionsthatareoptimized
by thismethodcovermorethan70%of executiontime,and
it is possibleto applyoptimizationsbetterdueto theavail-
ablehistoryinformationthat-XXoptall lacks.

It is thuspossibleto have both a relatively quick start-
upandexcellentperformance.Basedon theseexperiments,
BEA JRockithasdoneaway with the -XXoptall flag, and
MethodInvocationCounters.TheJVM todayusesthesam-
pling approachto identify targetsfor optimization.

ª ª «E¬ ­ ®�¯ °�±�² ³´ µ�¶ ·$±�¸4¹ ­ º »�¼�½ ¬$­ ®�¼�¯ °$±$²�¶ ¾ ¾º »$½ ¹ º ®�¿ª ª4À�½ ·�Á » Â4¯ °$±�² ³´ µ�¶ ®$°�½ ¼ ½ ¬�­ ®�¼�¯ ° ±�²�¶ ¾ ¾4ÃÄª ª4±�¬�»$±�²�­ ®$ÁbÅt¬$»$½ ¬�»4º¨­ ½�­ Æb·�Ç�¹ ¯ ½ ­ È ¯ °$±�²Åj¬ ­ ¯ »�¶ ¶ É · ±�¸4¹ ­ º »�¼ ½ ¬ ­ ®�¼�¯ °$±�²�¶ ¾ ¾�Ê3Ê-¶ ±�°�¹ ®�½ Ë�Ì¨Í�Ë�¾ ¾¨ÃÆ Î ­ ® ¶ Í�Ï�¼4±�Ð�±$¯ »$Æ�¾ ¿Åj¬ ­ ¯ »4¶ ¶ É ·$±�¸�¹�­ º »�¼ ½ ¬ ­ ®�¼�¯ °$±$²�¶ ¾ ¾¨ÊGÊJ¶ ±�° ¹ ®�½ Â4Ì¨Í�Â ¾4ÃÆ Î ­ ® ¶ Í�Ï�¼¨±�Ð�±$¯ »$Æ�¾6¿±�°�¹$®�½ Â�Ñ�Ñ�¿ÒÆ�Ð�Æ�½ »4Çt¼�Ð$­ »4¯ Ó4¶ ¾6¿±�°�¹$®�½ Ë Ñ4Ñ�¿ÒÅt·�­ ½ ¼¨· ®�Ó�¼¨°�Ô�½ ·�­ ®�¼�½ ¬ ­ ®�¼�¯ °$±�²�¶ ¾6¿­ ®�µ ¯ ·�½ »¨¶ ¾ ¿Ò

Figure 9. Algorithm to Implement Fat Loc k De-
ferral

3.6 Lock Inflation Deferral

JRockit definesJava locks as either thin locks or fat
locks. All locksarethin locksinitially. Wheneverany lock
is contendedfor it is inflatedto a fat lock. A lock oncein-
flatedis neverdeflatedbackto a thin lock. Dueto theneed
to accessthemthroughextra levelsof indirectionandhash-
ing, thin locksaremuchquicker to acquireandrelease.

Sincefat locks are so expensive, it appeareddesirable
to experimentwith approachesto deferringlock inflation.
We took asour model the approachimplementedby IBM
with DB2 [8], whichis athree-tierblockinglock algorithm.
Thealgorithmincorporatesspinning,yieldingandblocking.
Samplecodeto implementthis is shown in Figure9.

The lock is initially requested,andif it is not acquired,
the programspinsfor L1 cyclesandtriesagain. It repeats
this sequenceof spinningandattemptingto lock L2 times
beforeyielding to theOperatingSystem.Whenthe thread
awakensit repeatsthis patternL3 times,beforefinally in-
flating thelock to a fat lock.

We experimentedwith several valuesof the parameters
L1, L2 andL3, andwe foundthat therewasa fairly broad
rangeof valuesfor which the scalingof SPECjbb2000is
much improved. While the specific valuesare not very
interesting(sincethey differ basedon platform configura-
tion), Figure10demonstrateshow muchflatterthecurveis,
and how much lessthe performanceloss when the num-
ber of warehousesis increased. Specifically, our experi-
mentsindicatethat99.7%of fat locksarenolongerinflated.
While theperformanceimpactof thisapproachis modestin
SPECjbb2000,its impactshouldbemuchmoresignificant
in workloadswith higherdegreesof contention.

4 Summary of Optimizations, Performance
Benefitsand Inferences

In the previous section,we discussedthe various op-
timizationsthat we investigatedand incorporatedinto the

Õ�Ö Õ�Õ
×�Ö Õ�Õ
Ø�Ö Õ�Õ
Ù�Ö Õ�Õ

Ú4Ö Õ�Õ
Û�Ö Õ�Õ
Ü�Ö Õ�Õ

× Ø Ù Ú Û Ü Ý Þ ß ×�Õ ×�× ×�Ø ×�Ù ×�Ú ×�Û ×�Ü
à�á�â�ã�ä å�åbæ>ç�è é ê$ë4ì�í$é�í

î�ï�ð ñ�ð ò>ó#ô$õ�ï
îbö7÷>ð ø�ù�ï6î�ú
û ü ø�ð ý�ï�þ�ô îtö>÷1ð ò ñÿô îbö1÷

����� ��� � 	
���
��� � ��� ����������� ����� ����� ���
���
���

Figure 10. Impact of Fat Loc k Deferral

JRockit JVM. We also showed the impact of the individ-
ual optimizationson the Java applicationperformanceus-
ing SPECjbb2000measurements.In this section,we sum-
marizetheoverallperformanceimprovementmadepossible
throughthevariousphasesof optimization.

As shown in Table5, we basicallyinvestigatedfive dif-
ferent areasof optimization- heaplocks, garbagecollec-
tion, codegeneration,dynamicoptimizationand lock de-
ferrals. Of these, the optimizationsto heap locks and
garbagecollectionimprovedprocessorscalingbyasubstan-
tial amount. The codegenerationimprovementsreduced
pathlengthsignificantly, therebyaffectingperformancere-
ciprocally. We alsodemonstratedthat it wasnot necessary
to incur slow start-upin the interestof performanceasdis-
cussedin Section3.5. In fact,dynamicoptimizationslightly
out-performedpre-optimization. Finally, we also studied
theimpactof deferringconversionof thin locksto fat locks,
showing thatit is possibleto reduceinflationby asmuchas
99.7%.While our optimizationsfocusedprimarily on path
length reductionandprocessorscalingimprovements,fu-
turework shouldcenteraroundtechniquesto improve CPI
suchascacheconsciousobjectallocation.

5 Conclusionsand Future Work

Our aim in this paperwas to characterizeJava appli-
cation performanceon a JVM as it evolves in its design.
We startedwith a rudimentary, yet commercial,JVM from
BEA (JRockit)andstudiedtheperformancecharacteristics
of SPECjbb2000on the JVM. We found that the applica-
tion hadpoor scalingcharacteristicswith a multiprocessor
(4P vs. 1P) speedupof about 1.3. Upon investigation,
we attributed the cause(s)of the poor scaling as well as
pooroverall performanceto a numberof potentialareasof
sub-optimaldesign.This wasdoneeffectively throughthe
meansof detailedmeasurementmadepossibleby perfor-
mancemonitoringtoolssuchasEMON andprofiling tools
suchasVTune.

 "!$#&%('*)�+
,.-0/�1 231 4 % /�1)65

7�#8! +�)9! 2 %85�:&#
;=< %�!�%&: / #8! 1 ' /�1 :
 �+$+�#&: / #&>

7?#8! +�)9! 2 %85�:&#
@A#�5�#B+ 1 /9,DC '�#8! E8#&>

FHG0IKJML&N&OQP
RTS I0U�VBW I S$X Y Z

[9\]&^K_&`K`K]8\
a ^Kb8c d eBf

g hAi�j kml�n
o=pmq�r k9sKq
imntj u k�j h6vtwmxynAzmx�vt{ | w�}�~��
�Kpy�

�6I S IBW W G(W R I S$� I(��G
� NBW W G&O Y X N0U

[9\]&^K_&`K`K]8\
a ^Kb8c d eBf

g hAi�j kml�n
o=pmq�r k9sKq
imntj u k�j h6vtwmxynAzmx�vt{ | w�}�~��
py�
�

� N0�&G R G0U&G S I Y X N0U
� ��J S N8��G0��G0U Y � [?b0�����K_8eBf(�$� � n
oQ�mxyn
o�i
vmr �6{ ntw�}
r �9~�����
�
� Z U&I0� X O
� J Y X � X � I Y X N(U

�H�&�&c d ^Bb(�$d]8e�`Q� b8\ � �
� � � �
j kt��}Q�
i
�yrB| wmx
j n�v
z�n
o�~y����

L&N&OQP��HG&� G S$S I(W �K]&^0�¡ �]�eK� _�eK�$d]8e g w¢u { v�r | ktw�r k£u vmr ¤ { k
xm¥yz
j n
oQ�mxyn
o�~��9�
�Q¦ ���

Table 5. Summar y of Optimizations

Having identified the potentialareasfor improvement,
we testedvariousschemesandimplementedsomenew op-
timizationswithin JRockit. Theseoptimizationsincluded
(1) code quality improvementsincluding peepholeopti-
mizations,(2) dynamiccodegenerationoptimizations,(3)
improvedgarbagecollectionmechanismand(4) improved
locking strategies. In this paper, we showed the impact
of eachof theseoptimizationson the performanceof the
SPECjbb2000benchmark.Theperformanceimprovements
gainedon the whole were roughly 10X the initial perfor-
manceof the rudimentaryJVM. Apart from the perfor-
mancegains,we alsobelieve that our measurement-based
methodologyof performanceoptimizationandtuning will
usefulto futureresearcherswho embarkuponsimilar stud-
ies.

In the future, we will continueto investigatepotential
JVM optimizationsto improve SPECjbb2000benchmark
performance.In addition,we alsoplan to studyupcoming
benchmarksthat may better representapplicationservers
such as SPECjAppServer2002 [19]. Areas of research
would includecapturingmoreprofile informationthrough
samplingandtheusageof thatinformationto generatebet-
ter code. SinceJava codetendsto have many small meth-
odsandlargercodesegmentsmayoffer betteroptimization
possibilities,investigationinto variousinlining techniques
[2, 12,22] would bedesirable.

Acknowledgements
We would like to thankour colleaguesfrom the MRTE

teamat Intel Corporationandthe JVM developmentteam
atBEA Systemsfor their supportduringthis project.

References

[1] A. Adl-Tabatabaiet al., “Fast Effective Code Generation
in a Just-in-Time Java Compiler,” Proceedingsof theACM
SIGPLAN’98 conferenceon ProgrammingLanguageDe-
signandImplementation,1998.

[2] M. Arnold, S. Fink, V. Sarkar, and P. Sweeney, “A com-
parative studyof staticanddynamicheuristicsfor inlining,”

ACM SIGPLANWorkshoponDynamicandAdaptiveCom-
pilationandOptimization,2000.

[3] BEA Systems, “Weblogic JRockit: The Server JVM,”
http://www.bea.com/products/weblogic/jrockit/

[4] A. Barisone,F. Bellotti, R. Berta, and A. De Gloria, “In-
struction Level Characterizationof Java Virtual Machine
Workload,” Workload Characterizationfor ComputerSys-
temDesign,L. JohnandA. Maynard,eds.,pp.1-24,1999.

[5] R. D. Blumofe and C. E. Leiserson,“Scheduling multi-
threadedcomputationsby work stealing”,Journalof ACM,
46(5):720-748,1999.

[6] J.W. DavidsonandD. B. Whalley, “Quick compilersusing
peepholeoptimization,” SoftwarePracticeandExperience,
19(1):79–97,January1989.

[7] S. Deickmannand U. Holzle, “A Study of the Allocation
Behavior of theSPECjvm98JavaBenchmarks,” Proc.Euro-
peanConf.ObjectOrientedProgramming,July1999.

[8] R. Dimpsey, et al., “Java Server Performance:A caseof
building efficient, scalableJVMs,” IBM SystemsJournal,
vol. 39,no.1, pp151-174,2000.

[9] M. Gupta,“Optimizing Java Programs:ChallengesandOp-
portunities,” Proc.SecondAnn. WorkshopHardwareSup-
port for ObjectsandMicroarchitecturesfor Java,Sept.2000.

[10] C.A. Hsieh,M.T. Conte,T.L. Johnson,J.C.Gyllenhaal,and
W.W. Hwu, “A Studyof theCacheandBranchPerformance
Issueswith RunningJava on CurrentHardwarePlatforms,”
Proc.IEEE Compcon’97, pp.211-216,1997.

[11] “VTune: Visual Tuning Environment,” Available at
http://developer.intel.com/design/perftools/vtune/,2002.

[12] S. Jagannathanand A. Wright, “Flow-directed inlining,”
Proceedingsof theACM SIGPLAN’96 ConferenceonPro-
grammingLanguageDesignandImplementation,pp. 193–
205,1996.

[13] R.E. Jonesand R. Lins “GarbageCollection: Algorithms
for AutomaticDynamicMemoryManagement,” Wiley, July
1996.

[14] S. Montanaro,“A PeepholeOptimizerfor Python”,7th In-
ternationalPythonConference,Nov 1998.

[15] T. Newhall and B. Miller, “PerformanceMeasurementof
DynamicallyCompiledJava Executions,” Proc.1999ACM
Java GrandeConference,June1999.

[16] R. Radhakrishnan,N. Vijaykrishnan,et al., “Java Runtime
Systems:CharacterizationandArchitecturalImplications,”
IEEE Transactionson Computers,pages131-146,vol. 50,
issue2, February, 2001.

[17] “SPECJBB2000,” http://www.spec.org/osg/jbb2000/.
[18] “SPECJVM98,” http://www.spec.org/osg/jvm98/.
[19] “SPECjAppServer2002,”

http://www.spec.org/jAppServer2002/
[20] “TPC-CBenchmarkSpecification,” http://www.tpc.org/.
[21] N. Vijaykrishnan, N. Ranganathan,and R. Gadekarla,

“Object- OrientedArchitecturalSupportfor a Java Proces-
sor,” Proc.12th EuropeanConf. Object-OrientedProgram-
ming,pp.430-455,July1998.

[22] O. Waddell andR. K. Dybvig, “FastandEffective Proce-
dureInlining”, Proc.1997StaticAnalysisSymposium(SAS
’97), Sept.1997,pp. 35–52.Springer-VerlagLectureNotes
in ComputerSciencevol.1302.

[23] M. Arnold, et al., “Adaptive Optimizationin the Jalapeno
JVM,” ACM SIGPLAN Conferenceon Object-Oriented
ProgrammingSystems,Languages,andApplications(OOP-
SLA 2000),Minnesota,October15-19,2000.

[24] “Pentium 4 Proc Optimization Guide,”
http://developer.intel.com/design/pentium4/manuals/

