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Abstract

This paper examines the effect of compiler optimizations
on the energy usage and power consumption of the Intel
Pentium 4 processor. We measure the effects of different
levels of general optimization and specific optimization. We
classify general optimizations as those compiler flags which
enable a set of compiler optimizations. Specific optimiza-
tions are those which can be enabled and disabled individ-
ually. The three specific optimizations we study are loop
unrolling, loop vectorization, and function inlining. The bi-
naries used in this study are generated using the Intel C++
compiler, which allows fine-grained control over each of
these specific optimizations.

1. Introduction

The power consumption of general purpose micropro-
cessors has reached a point where the problem has to be
addressed at various levels of system design. Many circuit,
architecture, and software algorithm techniques exist to re-
duce power, but one often overlooked area is the effect of
the program code on power consumption. Some research
has been done studying the effect of compiler optimizations
on power consumption [8, 9]; this work has been generally
limited to using architecture-level power models for power
estimation. In this work we examine the effect of the com-
piler on the energy usage and power consumption of an ac-
tual modern processor, the Intel Pentium 4 processor.

Given a particular architecture, the programs that are run
on it will have a significant effect on the energy usage of the
processor. The manner in which a program exercises par-
ticular parts of the processor will vary the contribution of
individual structures to total energy consumption. For ex-
ample, if the execution of a particular program generates a
significant number of data cache misses, the energy used by
the second level cache will increase, as there will be more
access to the secondary cache.

The relative effects of program behavior on processor en-
ergy and power consumption can be demonstrated in simu-
lation, but not until real systems are tested can the absolute
values be known. There are additional effects that are diffi-
cult to accurately simulate in architecture-level simulation.
One example is the power consumption of clock genera-
tion and distribution. The energy consumed by the clocking
network is a significant one and is difficult to quantify in
architecture-level simulation [2]. An additional source of
energy usage is that of leakage. Leakage exists even when
the processor is not performing any useful computation.
Leakage will be a more significant fraction of overall power
consumption as supply voltages are scaled down [1]. Again,
leakage is a factor that is difficult to quantify in architecture-
level simulation. Given these difficulties, it is necessary to
study the effect of programs on a real processor and not just
in simulation.

In this study, we measure the energy and power con-
sumption of a 2.0 GHz Intel Pentium 4 processor. We run
different benchmarks compiled with various optimizations
and quantify the energy and power differences when run-
ning different binaries. In our experiments we use a mod-
ern compiler, the Intel C++ compiler, to produce the bina-
ries. This compiler contains many optimizations, including
those that specifically target the capabilities and features of
the Pentium 4 processor.

This paper is organized as follows. Section 2 describes
prior research related to this work. Section 3 describes the
power measurement platform along with the benchmarks
tested. Section 4 examines the results of using the various
compiler optimizations. Section 5 describes future work.
Section 6 concludes.

2. Related Work

Most previous work studying compiler optimizations on
power consumption has involved architecture-level power
models coupled with cycle-by-cycle performance simula-
tors. Valluri et al. [9] study the effect of compiler opti-



mizations on the power consumption and energy usage of
an out-of-order superscalar processor. They simulate a pro-
cessor using the SimpleScalar simulator coupled with the
Wattch [5] architecture level power model.

Kandemir et al. [8] study the effect of various compiler
optimizations on the energy and power usage of a proces-
sor core and memory subsystem. The work is targeted to-
wards embedded applications. Their work is based on Sim-
plePower [10], a cycle-by-cycle architecture level power
model. The work does not consider more advanced opti-
mizations available on general purpose processors such as
loop vectorization or interprocedural optimizations.

Chakrapani et al. [6] also present a study into the effect
of compiler optimization on the energy usage of an em-
bedded processor. Their work targets an ARM embedded
core and they use an RTL level model along with Synopsys
Power Compiler to estimate power.

Other prior related work has been done in measuring the
power consumption of processors while a system is running.
Joseph et al. [7] measure the power of Pentium Pro proces-
sor while it is running various benchmarks. In that work, the
entire system power consumption is being measured and not
just the processor power consumption.

3. Methodology

The power measurement platform we use consists of a
2.0 GHz Intel Pentium 4 Processor running on a Gigabyte
GA-8IEXP motherboard. The system is running Redhat
Linux 7.3 with a uniprocessor 2.4.18 kernel. The kernel
is from a stock Redhat installation. The system has 1GB
of PC2100 DDR memory. During power measurement the
operating system is in console mode (i.e. X-windows is not
running) and there are no other actively running processes
on the machine. All results reported are for the energy and
power of the microprocessor alone and for no other compo-
nents.

In order to measure the current consumed by the run-
ning system, we insert two 5 watt .015 Ohm resistors in-
line with the Vcc trace to the processor core. The voltage
drop across the resistors is measured at run time and the
current to the microprocessor is computed given the known
resistance value. The resistors are connected in parallel al-
lowing for a total power dissipation of 10 W. During our
experiments, the resistors dissipated up to 7 W. Although
there is a voltage drop across the resistors, the voltage to
the processor is regulated by the motherboard to stay at the
required operating voltage. The Vcc trace is from the volt-
age regulator module (VRM) of the motherboard and runs
directly to the processor. This trace is used solely by the
processor (it is not used to power any other components in
the computer). The processor core runs at 1.5 volts. Dur-
ing our experiments, the current through this trace ranged
from 7 to 30 amps. When the processor was completely
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Figure 1. Power measurement platform

idle, the power dissipated was 10.5 watts. We compute the
energy utilized by multiplying the current times the sample
interval time and sum these products over all samples for a
given benchmark run.

Analog to digital conversion is achieved using a Texas
Instruments ADS1210 converter clocked at 10 MHz. We
use this converter to sample the voltage across the resistors
at 100 Hz. When sampling at this rate, the converter pro-
vides 22 bits of resolution. Voltage readings allows us to
compute the current draw of the processor and hence, the
power consumption. A single board computer is used to
transmit the digital values to a data collection computer via
the serial port. A schematic of the measurement setup is
shown in Figure 1.

The benchmarks we use for our experiments are from
the SPEC 2000 benchmark suite. The integer benchmarks
are crafty, bzip2, gcc, mcf, and parser. The
floating point benchmarks are ammp, art, and equake.
Power measurements are taken from the beginning of the
benchmark run to completion. Each result shown represents
an average of 3 consecutive runs of the benchmark. For a
given benchmark, the variation of total energy during the 3
runs ranged from .5% (best case) to 1.0% (worst case).

We use one compiler in this study. The compiler is the
Intel C++ compiler v.6.0.1 for Linux. This is an advanced
compiler featuring many levels of optimization. Each of the
flags used in the study are documented in [4]. The compiler
provides support for the additional x86 instructions avail-
able on the Pentium 4 and contains optimizations targeting
the Pentium 4 pipeline.

4. Results

We categorize the flags controlling the compiler opti-
mizations as either general or specific. The general opti-
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Figure 2. Normalized total energy usage

mization flags are those flags which enable a set of compiler
optimizations. These flags are used to simplify compilation
by enabling a group of optimizations with just one flag. The
specific optimization flags are those which enable or disable
one particular optimization. These flags are included in or-
der to allow the user to selectively turn on or off a particular
optimization, even when other general flags are included.
We study the effect of these two types of flags separately.

4.1. General Optimizations

For the study of the effect of general optimizations, the
following flags are used:

-O0 This flag disables all compiler optimizations.

-O1 This flag enables the following optimizations: global
register allocation, instruction scheduling, register variable
detection, common subexpression elimination, dead-code
elimination, variable renaming, copy propagation, constant
propagation, strength reduction-induction variable, tail re-
cursion elimination, and software pipelining. -O2 enables
the same optimizations as -O1.

-O3 Enables the optimizations in -O1 and adds: prefetch-
ing, scalar replacement, and various loop transformations.

-xW Enables code generation of MMX technology in-
structions, Streaming SIMD Extensions, and Streaming
SIMD Extensions 2. These instructions are SIMD opera-
tions that are available on the Pentium 4 Processor [3].

-ip/-ipo Enables interprocedural optimizations within a
file and across multiple files. These optimizations in-
clude: function inlining, constant propagation, and dead
code elimination.

-prof gen/-prof use The -prof gen flag generates bi-
naries which produce profiling information regarding com-
mon branch targets, function call frequency, and dynamic
number of loop iterations. When the sources for the bench-
marks are recompiled using the -prof use flag, the com-
piler produces optimized binaries given the profiling infor-
mation.

In this section, when a result is given for any one of the
general optimizations, all previous flags are also enabled
(except if -O3 is enabled, -O0 and -O1 are not enabled).
For example, if a result is given for the -xW flag, the -O3
flag is also enabled.

Figure 2 shows the total normalized total energy used by
each of the benchmarks and for the average of the bench-
marks. The results for each of the benchmarks is normal-
ized to the energy used when the benchmark is run with all
optimizations disabled.
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Figure 3. Retired micro-op count

For almost all benchmarks, significantly less energy is
required when optimizations are enabled. For all of the
benchmarks, there is very little energy difference between
the -O1 and -O3 optimization flags. One benchmark, art,
exhibits a behavior different from all the others when the
optimizations are applied. When the first two levels of opti-
mization are applied, the run time of art is almost doubled.
We found that this occurs because of an increased number
of branch mispredictions when the -O1 and -O3 flags are
enabled. The number of branch mispredictions increased
by more than 85% in both cases. The average energy re-
duction across all benchmarks when enabling the -O1 flag
is 15.5%. When art is not included in the average, the
energy reduction is equal to 30.9%.

The -xW and -ip/-ipo optimizations each provide
additional energy savings. Again, the art benchmark be-
haves in an anomalous manner, with increasing energy as
the optimizations are applied. When art is not considered
in the average, the -xW and -ip/-ipo flags reduce energy
by an additional 0.7% and 2.2%, respectively.

The average energy reduction with profiling information
and full optimizations is 32.3%, compared to binaries with
no optimization. The profiling optimization is quite benefi-
cial to gcc and vortex. Compared to -ip/-ipo, those
benchmarks produced with the profiling information incur
fewer branch mispredictions (3.4% for gcc and 9.3% for
vortex). Additionally, figure 3 shows the normalized re-
tired micro-op count for each of the benchmarks. The re-
tired micro-op count for the profiled binaries is 3.3% and
27.1% less than -ip/-ipo for gcc and vortex, respec-
tively.

A comparison of the total energy used and the micro-op
count show that the two are highly correlated. The two cases
where there is not a strong correlation is with art (previ-
ously discussed) and mcf. Although the retired micro-op
count for -ip/-ipo and prof gen/use for mcf is re-
duced in each case by over 20% compared to -xW, the run
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Figure 4. Average processor power

time is reduced only by 1%. The run time of mcf is dom-
inated by cache misses and we find that the latter two op-
timization flags reduce cache misses by only 0.1% (over -
xW).

Although this data demonstrates that each of these op-
timizations reduces the total energy used by the processor,
we find that the energy used by the program is even more
closely correlated with run time. When comparing the run
time of the benchmarks with the total energy used, we find
that there is a nearly linearly correlation with energy con-
sumption. In addition, over 10 watts of power is dissipated
when the processor is idle. This power is dissipated in part
because of the factors discussed earlier, clocking and leak-
age. Given that an idle processor dissipates this power,
the energy differences seen because of code sequences is
greatly reduced. Because of these factors, for the Pentium
4 processor, we conclude that compiling for the best perfor-
mance leads to the most energy-efficient binaries.

Figure 4 shows the average power consumption of the
processor when running each of the benchmarks. The re-
sults shown are for all optimizations disabled, the default
optimizations enabled, and all optimizations enabled (in-
cluding interprocedural and profiling optimizations). The
average power consumption of the benchmarks ranges from
32 watts to 41 watts. Although the optimized binaries per-
form a similar amount of work to the unoptimized binaries
and in a shorter period of time, the average power consump-
tion of the optimized binaries is typically lower. Executing
the optimized binaries often results in executing fewer in-
structions overall. Optimizations such as loop vectorization
while using functional units which consume more power,
actually reduce the number of instructions required to do
the same computation. This leads to reduced power of the
units throughout the machine, such as the fetch unit and is-
sue mechanism.



4.2. Specific Optimizations

We categorize specific compiler optimizations as those
optimizations which can be enabled and disabled individ-
ually via command line flags (without affecting the status
of other optimizations). An analysis of these optimizations
allows us to study the effect of particular code generation
techniques on energy and power consumption. The specific
compiler optimizations studied are the following: loop un-
rolling, loop vectorization, and function inlining. We list
the name of the optimization along with the flags that the
compiler accepts in order to disable the particular optimiza-
tion.

loop unrolling (-unroll0) By default the loop unrolling
optimization is enabled during compilation. Heuristics are
used by the compiler to determine when to perform loop un-
rolling and the number of times to unroll a loop. Although
the various parameters for loop unrolling can be specified at
compile time, we use the default heuristics when unrolling
is enabled. The benefit of loop unrolling is that the gen-
erated code generally requires fewer dynamic instructions;
the trade-off is that the code size is generally larger (for the
average of the benchmarks examined, the size increase is
1.5%) and possibly additional instruction cache misses.

loop vectorization (-vec-) Loop vectorization is an opti-
mization where the code generated for loops use the MMX,
SSE, and SSE2 instructions. The compiler detects when
loops can be parallelized via these SIMD instructions.

function inlining (-ip no inlining/-ip no pinlining/-
no lib inline) These flags when used with the -ip flag
disable inlining of functions. The function inlining opti-
mizations insert the actual code sequences of function calls
instead of performing the function call.

In order to quantify the results of a particular optimiza-
tion, we compare the energy, power, and execution time of
a binary with the optimization disabled with that of a binary
produced using the -O3. This optimization flag produces
optimized binaries using all of the optimizations we study.
The reference binary for the function inlining experiment is
compiled with the -ip and -ipo flags enabled.

Figure 5 shows the results for the average of the bench-
marks when each of the optimizations is enabled. The data
represents the percentage reduction for the metric when the
optimization is applied. The data for each of the individual
benchmarks is shown in Table 1. Negative values indicate
an increase in the metric.

For the average of the benchmarks, loop unrolling
proved to have little effect in terms of program execution
time. Some benchmark performance was particularly aided

crafty energy time power
unrolling 1.68 0.39 1.29

vectorization 6.94 6.99 -0.05
inlining 6.33 4.77 1.49
parser energy time power

unrolling 0.45 0.46 -0.01
vectorization 0.12 0.08 0.04

inlining 8.50 8.85 -0.32
mcf energy time power

unrolling -0.23 -0.18 -0.05
vectorization 0.58 0.63 -0.05

inlining 1.36 1.07 0.29
vortex energy time power

unrolling 2.66 2.45 0.21
vectorization -3.72 -3.25 -0.49

inlining 3.98 4.57 -0.56
gcc energy time power

unrolling -2.45 -2.97 0.53
vectorization -1.17 -1.51 0.34

inlining 4.01 4.39 -0.36
bzip2 energy time power

unrolling 0.61 -0.01 0.62
vectorization -2.34 -1.82 -0.53

inlining 1.33 1.19 0.14
art energy time power

unrolling -2.24 -1.95 -0.29
vectorization 0.66 0.68 -0.02

inlining 0.29 0.42 -0.14
ammp energy time power

unrolling 1.79 1.61 0.18
vectorization -0.13 -0.03 -0.10

inlining 16.80 14.89 1.66
equake energy time power

unrolling 0.67 0.15 0.52
vectorization -0.01 -0.94 0.94

inlining 1.96 1.28 0.66

Table 1. Percent reduction when optimization is en-
abled.

by unrolling while for others performance was reduced. The
optimization was most beneficial for vortex and ammp.
When applying loop unrolling, there is a slight measurable
reduction in energy, for little or no effect on performance.
For the binaries where loop unrolling enabled, the total en-
ergy is reduced as well as the power consumption. The dif-
ference in terms of energy and power is very small, though.
When compiling for low energy, whether or not loop un-
rolling should be enabled depends specifically on the pro-
gram.

Loop vectorization and function inlining behave simi-
larly. On the average, both optimizations reduce total en-
ergy consumption, but with a corresponding reduction in
execution time. Each optimization provides benefits on cer-
tain benchmarks, but degrades the performance of others.
Loop vectorization does well on crafty (6.94% reduc-
tion in energy) and function inlining does particular well
on ammp (16.80% reduction in energy). As power and per-
formance optimizations, neither optimization demonstrates
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Figure 5. Average percentage reduction for indi-
vidual compiler optimizations.

any sort of positive trade-off between providing high per-
formance and low energy usage.

Of these optimizations, one cannot conclude that there
is any which can be classified as an optimization specific
to compiling for energy/power minimization. We find that
similar to the general optimizations, compiling for the low-
est energy usage involved selecting the flags which pro-
vide the shortest execution time. Additionally, compiling
for low power consumption also generally means compil-
ing for shortest execution time. A few benchmarks, such as
parser and vortex with inlining, consume more power
with optimizations enabled; but the effects on power are
negligible. In general though, the effect on power consump-
tion follows that of energy and execution time.

5. Future Work

Additional work that we would like to perform would be
to analyze what type of instructions or instruction sequences
lead to increased power consumption. Future work would
involve quantifying the effect of particular instruction se-
quences on energy and power consumption. We would also
like to examine the effect of compiler optimizations on var-
ious other processors, such as RISC or VLIW processors.

We found that for the processor we studied, there were
no individual optimizations which provided significant en-
ergy/power savings without reducing program run time. We
believe that given an architecture which exposes more archi-
tecture control to the software, opportunities will exist for
more power/performance optimizations.

6. Conclusion

In this work, we measure the effect of various compiler
optimizations on the Intel Pentium 4 processor. We use a
modified motherboard to measure the current draw of a mi-
croprocessor running binaries compiled with various opti-
mizations. The compiler used in this study is the Intel C++
compiler v.6.0.1.

We find that enabling various general compiler optimiza-
tions leads to significantly reduced energy consumption of
the processor. Although the reduction in energy is signifi-
cant, the reduction comes primarily from a reduction is pro-
gram execution time.

Additionally, we examine the effect of individual opti-
mizations on energy usage and power consumption. The
optimizations studied are loop unrolling, loop vectorization,
and function inlining. For the benchmarks studied, loop
unrolling provides a very minor benefit in terms of reduc-
ing energy; loop vectorization and function inlining demon-
strate no advantage for performance to power optimization.

We find that for the Pentium 4 processor, the most effec-
tive approach to compiling for low energy and power is to
compile for the highest performance. We find that this is
true when the goal is either to minimize energy or minimize
power consumption.
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