Combining Software and Hardware Monitoring for Improved Power and
Performance Tuning

Eric Chi, A. Michael Salem, R. Iris Bahar
Brown University, Division of Engineering
Providence, Rl 02912

Abstract

By anticipating when resources will be idle, it is possible
to reconfigure the hardware to reduce power consumption
without significantly reducing performance. This requires
predicting what the resource requirements will be for an
application. In the past, researchers have taken one of two
approaches: design hardware monitors that can measure
recent performance, or profile the application to determine
the most likely behavior for each block of code. This pa-
per explores a third option which is to combine hardware
monitoring with software profiling to achieve lower power
utilization than either method alone. We demonstrate the
potential for this approach in two ways. First, we compare
hardware monitoring and software profiling of IPC for code
blocks and show that they capture different information. By
combining them, we can control issue width and ALU us-
age more effectively to save more power. Second, we show
that anticipating stalls due to critical load misses in the L2
cache can enable fetch halting. However, hardware moni-
toring and software profiling must be used together to effec-
tively predict misses and criticality of loads.

1 Introduction

Although the main driving force in high-end micropro-
cessor design is performance, power consumption is of
great concern. These general-purpose processors include
many complex architectural features in order to achieve
high performance for the broadest set of applications. How-
ever, applications vary widely in their degree of instruction-
level parallelism (ILP) and execution behavior. As a result,
the datapath resources required to implement these complex
features may not be optimally utilized by all applications;
however, some power will be dissipated by these resources
regardless of utilization.

To better address power concerns, a good design strat-
egy should be flexible enough to dynamically reconfigure

Richard Weiss

Hampshire College, School of Cognitive Science

Amherst, MA 01002

available resources according to the program’s needs. How-
ever, in order to determine when and how to reconfigure the
machine, some appropriate means of monitoring the appli-
cation is needed. Current techniques tend to be based on
simple hardware monitoring or software profiling, but not
both. While either technique may be effective in determin-
ing a good configuration, both have drawbacks.

Hardware monitoring itself can encompass a variety of
features. Perhaps the simplest technique one can use is to
monitor throughput in instructions per cycle (IPC) and im-
plement a control strategy based on monitoring windows
and thresholds. The underlying assumption behind this is
that current measurements are indicative of future behav-
ior. For example, low IPC might suggest that the instruc-
tion queue size can be reduced along with the fetch rate and
issue width since the pipeline already has more instructions
than it can execute. However, hardware approaches cannot
sample multiple configurations easily to determine the best
option.

In practice, hardware monitoring must first establish a
pattern or determine a specific behavior (such as low IPC)
for some interval of execution and then react to this new
behavior after it has already been established. The fact that
the hardware must first detect a change in behavior means
that there will always be a lag in optimal machine config-
uration at which point it may have lost a key window of
opportunity. Although smaller sampling windows may help
to reduce this lag, it may also lead to spurious changes in
machine configuration. Furthermore, the optimal sampling
window size may vary from application to application or
even inside an application.

Software profiling can identify specific behavior for a
short sample run of a program and then annotate instruc-
tions appropriately to identify this behavior for future exe-
cutions of this code. In this way, software profiling allows
processor resources to be adjusted in anticipation of chang-
ing processor requirements. Since annotations are set for
static rather than dynamic instructions, only instructions or
subroutines with very deterministic behavior should be used
to trigger a reconfiguration. This may lead to lost opportu-

nities in saving power and/or performance losses if behavior
from the sample run does not closely match the actual run.

In this paper we aim to better exploit the anticipation
principle, in order to better configure a processor for per-
formance and energy savings. That is, if it is known in
advance what the processing requirements will be, proces-
sor resources can be shut down and re-enabled more effec-
tively. For example, knowing in advance that a section of
executing code has little instruction-level parallelism (ILP)
and thereby low IPC, we can save power by instructing the
processor to disable the instruction fetch unit, reduce the
size of the instruction queue, and disable some of the in-
struction issue arbiters. Without the anticipation principle,
the instruction queue will eventually fill up and shut down
the fetch unit, at which point it is not possible to reduce
the size of the issue queue until it is sufficiently drained.
Furthermore, the instructions in the queue have a high de-
gree of dependence, so that they issue serially, and it takes a
long time to drain the instruction queue. Several researchers
have noted that anticipatory fetch throttling can actually im-
prove performance as well as power consumption by avoid-
ing fetching instructions down a mispredicted branch.

Because cache misses result in many cycles of stalling
for main memory, a critical load instruction may lead to
consistently long periods of slow execution. Successful pre-
diction of these cache miss events can provide excellent op-
portunities for applying the anticipation principle in an ef-
fort to save power.

The main contribution of this work is in demonstrating
how hardware and software profiling techniques may be
used together to strengthen the control policies in power-
saving machine reconfigurations. This will lead to more
optimal configurations, better energy savings, and higher
overall performance.

The rest of the paper is organized as follows. Section 2
provides background and discusses related work. Section 3
presents our methods for reconfiguring the processor as well
as the different techniques for hardware and software pro-
filing to drive the reconfiguration. Section 4 describes our
processor model and simulation tools. Results are provided
in section 5. Section 6 offers conclusions.

2 Background and Prior Work

Several approaches have been explored for dynamically
monitoring program behavior and adjusting available re-
sources to better match program requirements. In [15],
Maro et al. proposed selectively disabling part of the in-
teger and/or floating point pipelines during runtime to save
power. Feedback from hardware performance monitors was
used to guide the reconfiguration. A similar approach,
called pipeline balancing (PLB) was used in [2] where is-
sue width was varied to allow disabling of a cluster of func-

tional units. Other works include selectively gating off parts
of the pipeline when branches have a high probability of
mispredicting [14], dynamically reducing the number of ac-
tive entries in the instruction window according to processor
needs in order to save power [5, 8, 16], using dynamic volt-
age scaling on selected regions of the processor [12, 19],
and modifying cache size and associativity [3]. All the
above mentioned approaches use hardware monitoring to
constantly assess the program requirements on the assump-
tion that current behavior is a good predictor of short term
future behavior.

Profiling has also been used for critical path analysis.
In [21], the authors used hardware profiling to analyze
the characteristics of critical and non-critical instructions
and designed a static mixed in-order and out-of-order issue
queue to reduce power consumption in processors. Fields
et. al proposed a similar approach in [7], but with an ac-
curate slack-based predictor. Finally, Semeraro et. al pro-
posed dividing the processor into multiple clock domains
where the clock frequency of each domain could be sepa-
rately tuned to save power [20]. Using an off-line analysis
tool, they constructed a directed acyclic graph (DAG) using
trace information collected over 50K cycle intervals, and
from the DAGS, determined which instructions could be run
at a slower frequency.

There have been more complex hardware monitoring
schemes, such as the one studied by Dhodapkar and
Smith [6]. They addressed three problems for multi-
configuration caches: detecting a change in the working
set, identifying the new working set, and using the work-
ing set size to select the cache configuration. Working set
signatures were stored in a small table. The use of such a
table makes this approach more powerful than the previous
monitoring schemes. The problem of the latency between
a phase change and its detection seems not to have been
an issue, since cache reconfiguration is not something that
would be done more frequently than once in 10,000 cycles.

An approach that combined hardware monitoring with
very simple information from the operating system was pro-
posed in [9]. In this work, the micro-architecture was ad-
justed to meet the desired performance indicated by the op-
erating system. The processor was changed from out-of-
order to in-order according to the program’s needs. The re-
configuration is driven by the operating system rather than
the hardware and as such may only allow for course grain
adjustments.

Other software based approaches that dynamically re-
configuring processors resources include the work of [11]
and [23]. In [11], the most frequently executed functions,
or modules, are identified and then statistics for these mod-
ules are collected during profiling runs of the code. A dif-
ferent profiling run is required for every configuration that
may be applied (e.g., enabling a filter cache [13], reduc-

ing ALUs, or using a phased cache [10]). Once profil-
ing is completed, they use a selection algorithm to choose
the best overall configuration for each module. While this
software profiling approach can lead to good configuration
selection, it requires a significant profiling overhead since
separate runs are required for each low-power configuration
considered. In the work of [23] the authors propose a com-
piler based approach to reduce energy consumption in the
processor. The compiler estimates instructions per clock
(IPC) using dependence-testing-based analysis to guide a
fetch-throttling mechanism. The idea is that by preventing
the fetch unit from running far ahead of the execution unit
with IPC is low, wrong-path instructions may be prevented
from entering the pipeline. We also propose a software-
based scheme to guide fetch-throttling; however, by collect-
ing statistics at the profiling level, we are also able to better
predict dependencies, specifically for non-deterministic la-
tencies such as for load misses.

3 Implementation

The goal of our approach is to combine hardware and
software profiling to better react to program changes. This
will allow us to react as quickly as possible to strongly de-
terministic changes while at the same time allow the hard-
ware to handle harder-to-predict cases with the help of hints
from software profiling. Combining the two also may allow
us to select more than one hardware resource to reconfigure,
thereby potentially saving more power.

3.1 Low-Power Configurations

To achieve the highest possible energy savings for a mix
of applications, we would like to have available a variety
of configurations for various hardware components in the
processor. We consider two configurations in our initial ex-
perimental design:

Reducing Issue Width and ALUs: A drop in IPC may
indicate that the issue width and number of functional units
may be reduced without impacting performance. Our pro-
cessor configuration consists of two clusters of integer func-
tional units. We can save power by disabling one of these
clusters and reducing issue width in half (and thereby dis-
abling those issue arbiters).

Fetch Halting: If the processor is stalled for an extended
period of time due to a long latency cache miss, we gate
off fetching until the event has resolved. This may prevent
wrong path instructions from entering the pipeline due to
a mispredicted branch and may reduce occupancy rates in
the fetch and issue queues thereby allowing some portion
of these structures to be disabled.

3.2 Software Profiling

In its most general form, software profiling can provide
information to the compiler for a recompilation phase. Pro-
filing may be either hardware-based, continuous sampling
(DCPI) [1] or involve adding instrumentation code to the
program so that the program actively collects statistics. In
any case, the resulting data can be fed back into the com-
piler/assembler together with the source code or fed into a
post-link optimizer. In our case, it is not necessary to re-
fer back to the high-level source code as it is simpler to
just add annotations to the assembly code produced by the
compiler. There are a few different post-link optimizers that
have been developed to incorporate profile data in this way.
In practice, post-link optimizers are less complex and eas-
ier to modify than highly optimizing compilers. In addition,
post-link optimizers have the advantage that one can opti-
mize programs without having the source code and that op-
timizations are automatically tuned to the actual hardware
even if the compiler has no model of such an architecture.

Since we are conducting our experiments using Sim-
pleScalar, profiling is performed by collecting statistics
such as local IPC and L2 cache misses in the simulator.
From the profiling data we can calculate mean and variance
in IPC and L2 cache miss patterns and criticality and use
this in implementing our reconfiguration control policies.
For example, if the average IPC of a block of code is below
a certain threshold value, we can annotate the instructions
in the block to direct the CPU to reduce issue width mode
and disable functional units.

3.3 Hardware Monitoring

As with software profiling, we can also use hardware
performance monitors to keep track of various statistics
while a program is executing. These statistics are gath-
ered during a fixed-sized sample window. At the end of
each sample period, we determine whether to reconfigure
the processor, or leave it in the current configuration. In
this way, reconfiguration takes place at most once within
a single window. We empirically chose our sample win-
dow size to be 256 cycles such that it is large enough to
obtain meaningful statistics over a reasonable span of time,
but not too large to remain in an inappropriate configura-
tion. Previous work using hardware based profiling pro-
posed monitoring several different statistics such as IPC,
floating point IPC, resource utilization, and instruction de-
pendencies [2, 5, 8, 15, 16, 18, 21]. Although all these
statistics may be useful to varying degrees in determining
how to optimally configure a processor, IPC has been shown
to be a particularly useful statistic to monitor. Therefore, for
now we will limit our hardware profiling analysis to con-
sider only IPC variation.

Low-Power State

Integer ALU
Cluster 1

Integer ALU

Annotation
Decoder

Instruction

Scheduler

Instruction
Decoder

Disable auxiliary

; Cluster 2
functional unit cluster

Instruction
Cache

Register
T I File

Load/Store Unit

Load/Store Unit

Load/Store Unit

Floating Point ALU
Cluster 1

Floating Point ALU
Cluster 2

Figure 1. Pipeline organization.

3.4 Monitoring IPC and Adjusting Issue Width

The low-power state here involves reducing the issue
bandwidth from 8 to 4 and disabling the second integer
ALU cluster. We apply this low-power state with three dif-
ferent control policies based on software profiling (SW),
hardware monitoring (HW), and COMB, which combines
the SW and HW approaches. All of these methods make
their decisions based on integer issue IPC measurements
and thresholds.

The SW approach profiles application performance
based on a sample run from the train dataset. It then an-
notates blocks of instructions that have low IPC. These an-
notations direct the CPU to enter or exit the low power state.

The HW method is akin to [2] and measures IPC over
fixed instruction windows of 256 cycles. The processor en-
ters the low-power state if the IPC is measured to be below
a certain threshold (1.25, in our case).

We also combined these two control policies hoping
to maximize their unique advantages. In this combined
method, we applied the SW policy to those instruction
blocks which exhibited consistently low or high perfor-
mance. We utilized the dynamic HW policy for those
remaining blocks that demonstrated unpredictable perfor-
mance.

3.5 Monitoring Loads for Fetch Halting

Fetch halting results in power savings from the potential
reduction in fetching and executing wrong path instructions
and from the reduction in fetch and issue queue occupancy.

With reduced occupancy rates, these processor resources
may be dynamically resized more effectively to save power.
In this work we concentrate specifically on identifying load
instructions that miss to main memory as trigger points for
fetch halting.

Fetch halting requires a combination of software profil-
ing and hardware monitoring in order to predict which loads
will miss to main memory (i.e. miss in the L2 cache), as
well as to predict the criticality of a particular load. We de-
fine critical load as one that would prevent new instructions
from issuing if its data was not available in the L1 or L2
caches. Stated another way, if the load that misses to main
memory is not critical, then halting the fetch unit may pre-
vent early issue of instructions not dependent on the load,
thereby leading to a performance loss.

Software profiling is used to identify load instructions
that have a high likelihood of becoming critical misses to
main memory. We also gather various statistics for these
load instructions such as IPC and queue occupancy rates
while the miss is serviced, number of instructions depen-
dent on the load, and number of hits between each miss
(i.e., the miss stride).

Based on this profile data, we annotate load instructions
that have both a high likelihood of missing as well as a high
probability of being critical. Miss strides are also annotated
in these instructions to help the hardware monitoring pre-
dict when the load will actually miss. These software hints
are essential in aiding the load-miss predictor detect miss
patterns early enough to act on. We have found that by the
time a purely hardware-based miss predictor detected a miss
pattern, this pattern will already have disappeared.

4 Experimental Methodology

The simulator we used in this study is derived from the
SIMPLESCALAR tool suite [4]. We have added several
modifications to SIMPLESCALAR to better model our re-
configurable processor. Specifically, we

e modeled single and multi-pipelined issue and execu-
tion clusters;

o added a prediction table for keeping track of load miss
stride;

e added support hardware for decoding and interpreting
reconfiguration annotation bits added to instructions.

Table 1. Processor resources
Parameter | Configuration |
Inst. Window 128-entry RUU
Machine Width | 8-wide fetch, issue, commit
Fetch Queue 32
FUs 2 Int clusters of 3 add + 1 mult/div
2 FP clusters of 2 add + 1 mult/div/sqrt
3 Load/Store units

L1 Icache 128KB 4-way; 64B line; 2 cycle
L1 Dcache 64KB 4-way; 64B line; 2 cycle
L2 Cache 512KB 16-way; 64B line; 7 cycle
Memory 64-bit wide; 100-cycle latency

Branch Pred. 2k 2lev + 2k bimodal + 2k meta

3 cycle mispred. penalty

BTB 2K entry 4-way set assoc.
RAS 32 entry queue

ITLB 256 entry 8-way set assoc.
DTLB 256 entry 8-way set assoc.

Table 1 shows the complete configuration of the proces-
sor model. Note that the base case assumes a issue width
of 8 and a unified 128-entry out-of-order issue queue. All
comparisons in Section 5 are made to this case.

Table 2. Benchmark Fast-Forwarding
Benchmark | Train Input | Ref Input |

gzip (source) | 40M 40M
mgrid 400M 400M
vpr (routing) | 46.1M 222M
gcc 500 500
mcf 1.5B 1.5B
equake 259M 1.15B
ammp 2B 2B
vortex 500K 500K

Our simulations were performed on a subset of the
SPEC2000 integer and floating point benchmarks. The

SPEC2000 benchmarks used in this study, as well as fast
forwarding instruction counts (for both train and ref data
sets) are given in Table 2 and are partially based on results
from [17, 22]. Each benchmark was simulated for 100M
instructions. These benchmarks were originally compiled
using a re-targeted version of the GNU gcc compiler with
full optimization. During software profiling on a sample
run, various statistics were gathered using either the train
or ref input set. We analyzed these statistics and, using
automated rules-based tools, annotated instructions appro-
priately. These annotations, when decoded by the hard-
ware, indicated specific reconfiguration trigger points for
the hardware. In addition, an annotation may be inter-
preted as an absolute trigger, or as a hint to aid the hardware
monitors in selecting an appropriate configuration.

5 Experimental Results

We now present experimental findings comparing per-
formance and power results when using hardware and/or
software profiling. All performance results are presented
relative to the baseline processor without any power saving
techniques applied. The percentage of execution time spent
in a power-saving state is used as the metric for quantifying
power savings.

5.1 Reducing Issue Width and Execution Units

We present results for issue width reduction (discussed
in section with 3.4) with seven benchmarks: gzip, mgrid,
vpr, gce, mcf, equake and vortex.

Figure 2 shows the performance impact of the software
profiling, hardware monitoring, and combined software-
hardware schemes The performance loss ranges from neg-
ligible to roughly 4% with an average performance loss of
2% for the individual SW and HW control policies. Com-
bining the two approaches results in an additive effect on
performance and yields an average 4% performance hit.

We can see the time spent in the low power state in Fig-
ure 3. The software and hardware methods are comparably
matched and spend about 35% of the overall time in the re-
duced issue width mode. Combining the two approaches
increases the overall time spent in the low power state to
47%.

A rough measure of energy savings is presented in Ta-
ble 3—calculated as the product of percentage time in low-
power state and performance. As can be seen in the ta-
ble, energy savings between the two individual control poli-
cies are roughly equivalent, with the software profiling ap-
proach generally returning slightly better results. The com-
bined SW+HW results yields significantly greater energy
savings across the board at the expense of additional per-
formance loss. This shows that the software profiling and

Figure 2. Performance impact of reduced is-
sue width from software and hardware control
policies.

Performance w/ Reduced Issue Width

100% 1

99% - —‘

98% 1 —|

97% 1 asw
EHW

96% 1| ocoms

95% -

94%

93% +—

gzip mgrid vpr gce mcf equake vortex Average

Figure 3. Time spent in reduced issue width
mode.

% Time w/ Reduced Issue Width

100%

90%

80%

70%

60%
’* osw

B HW
0O COMB

50%

40%

30% ——

20%
= w
0% - T T T

gzip mgrid vpr gce mcf equake vortex Average

hardware monitoring approaches identify different oppor-
tunities for saving power. Our combined approach used
the same threshold levels for software annotations and hard-
ware monitoring as our individual SW and HW implemen-
tations, and this resulted in increased performance loss as
well as increased power savings. Other approaches to com-
bining SW and HW control policies may alter the threshold
levels to target different performance goals.

In practice, hardware monitoring schemes generally
must choose a single threshold value to apply to all appli-
cations. This single threshold works well on average, but it
cannot match the performance characteristics of each pro-
gram equally well. Our results show that this single thresh-
old leads to inconsistent results among the various bench-
marks. Performance-wise, the SW results are more consis-

Table 3. Power-performance products

| Benchmark | SW HW COMB |
9zip 238 183 331
mgrid 327 28.0 47.8
vpr 448 454 54.2
gce 144 125 22.5
mcf 84.4 89.2 89.7

equake 340 304 494
vortex 125 6.7 16.4
Average 352 329 44.7

tent because the threshold can be tuned on a per-application
basis for a target performance level. By combining the SW
and HW approaches, we can select the best control policy
(which we have shown to differ) that is best suited for any
section of code.

5.2 Fetch Halting

Unlike the fetch throttling demonstrated in [23], our ap-
proach intends to attain greater power savings by disabling
the entire fetch unit for a prolonged period of time. We
have modified SimpleScalar to begin fetch halting when an
annotated LOAD instruction issues; the processor resumes
fetching when that LOAD instruction has completed (i.e.,
obtained data from main memory).

5.2.1 “Perfect” Fetch Halting

Effective fetch halting is based on two factors. The LOAD
must miss to memory, and it must be on the critical path.
For the purpose of simulation, we can determine whether
any given instance of a load will miss, which allows us to
have a “perfect” miss predictor. Table 4 shows the overall
data access behavior for the test benchmarks. The level 1
and level 2 data miss rates are shown. The product of these
two values yields the memory access rate for load instruc-
tions. With the exception of gcc, most benchmarks’ mem-
ory access rates are fairly sizable. This indicates that most
of these applications have the potential to significantly save
power from fetch halting. On the other hand, gcc seldom
accesses main memory, so it will not see any benefit, nor
detriment, from our fetch halting approach.

Figure 4 displays our fetch halting results using a per-
fect load-miss predictor. The thick bars show the perfor-
mance relative to the baseline processor; the thin bars show
the corresponding percent time with the fetch unit disabled.
For each benchmark, we show results from using a perfect
load-miss predictor with and without applying a criticality
predictor to restrict fetch halting. The figure shows that for
some benchmarks the processor may disable the front end
fetch unit for significant periods of time and have only a

Table 4. Benchmark memory access rates

DL1 missrate L2 missrate | mem access rate
mgrid 3.94% 22.75% 0.90%
vpr 4.50% 24.67% 1.11%
gcc 0.50% 12.77% 0.06%
mcf 23.78% 48.03% 11.42%
twolf 6.42% 20.08% 1.29%

Figure 4. Fetch halting performance impact
and halting time.

Fetch Halting Performance and Percent Time Halting
100% 100%
90% - - 90%
80% - r 80%
70% r 70%
60% - r 60%
50% 1 b 50%
40% A L 40%
30% - r 30%
20% - r 20%
10% - r 10%
0% - — 0%

mgrid vpr gce mcf twolf

H Perfect w/o Crit Performance O Perfect w/ Crit Performance

M Perfect w/o Crit Halting Time B Perfect w/ Crit Halting Time

modest effect on performance. However, the results also
show that not all load misses necessarily stall the processor.
For example, mgrid suffers a severe 24% slowdown when
halting on every miss. By restricting fetch halting to only
critical loads, we are able halt the front end and save power
without slowing down execution. When we incorporate our
static criticality prediction with the perfect load-miss pre-
dictor, we recover most of the performance loss in mgrid,
vpr, and twolf. However, our criticality predictor can still
use some tuning as mgrid has a 9% performance drops even
with the criticality information.

Even if fetch halting does not reduce the number of
wrong path instructions fetched, disabling the fetch unit can
still be advantageous in reducing the occupancy rate of var-
ious queues within the machine. For instance, with mcf, the
average fetch and RUU occupancies dropped by 40% and
10%, respectively. Figure 5 shows fetch halting’s effect on

various queue occupancies in our benchmarks using the per-
fect miss predictor with criticalit information. By disabling
the fetch unit early on when the stalling load just becomes
ready to issue, we are able to maximally reduce the fetch,
RUU, and load/store queue sizes and save power.

Figure 5. Fetch halting reduces occupancy
rates in the fetch, issue, and load/store
queues.

Fetch Halting's Effect on Queue Occupancy

100%
90% A [

80% -

to B:

70% -

BIFQ
50% — |BRUU
oLsQ

40% -

10% -

0% -

mgrid vpr gcc mcf twolf

5.2.2 Future work

In practice, load instructions for real-world applications do
not have stall behavior that can be easily predicted stat-
ically, and in the case of loads, those that do can often
be prefetched. We have seen that although most load in-
structions exhibit some type of deterministic behavior (e.g.,
missing every 8th iteration), different load instructions may
exhibit different cache-miss behavior. In the profiling phase
each load can be categorized by behavior type and anno-
tated appropriately. We then propose using a small hard-
ware predictor table in conjunction with these behavior an-
notations to predict load stalls. The CPU can then halt the
fetch unit while executing load instructions that are pre-
dicted to stall.

6 Conclusion

This paper has shown the potential for using a combined
software and hardware approach to controlling processor re-
configuration for optimizing power-performance efficiency.
Although software profiling and hardware monitoring both
provide comparable results in our issue width reduction
tests, we have shown that the two methods capture differ-
ent information and may be even more effective when com-
bined.

Our fetch halting results demonstrate the potential for
large power savings in some applications. We have shown
that in order for fetch halting to be effective, we must com-
bine our criticality information gathered from software pro-
filing with dynamic load-miss prediction.

References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

(9]

[10]

[11]

[12]

J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger,
S.-T. Leung, R. Sites, M. Vandevoorde, C. Waldspurger, and
W. Weihl. Continuous profiling: Where have all the cycles
gone? In Proceeding of the Symposiumon Operating System
Principles, October 1997.

R. I. Bahar and S. Manne. Power and energy reduction via
pipeline balancing. In Proceedings of the International Sym-
posium on Computer Architecture, July 2001.

R. Balasubramonian, D. Albonesi, and A. Buyuktosunoglu.
Memory hierarchy reconfiguration for energy and perfor-
mance in general-purpose processor architectures. In Pro-
ceeding of International Symposium on Microarchitecture,
December 2000.

D. Burger and T.Austin. The simplescalar tool set. Tech-
nical report, University of Wisconsin—-Madison, Computer
Sciences Department, 1999. Version 3.0.

A. Buyuktosunoglu, S. Schuster, D. Brooks, P. Bose,
P. Cook, and D. Albonesi. An adaptive issue queue for re-
duced power and high performance. In Workshop on Power-
Aware Computer Systems, November 2000. Held in con-
junction with the International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems (ASPLOS).

A. S. Dhodapkar and J. E. Smith. Managing multi-
configuration hardware via dynamic working set analysis. In
Proceedings of the International Symposium on Computer
Architecture, May 2002.

B. Fields, R. Bodik, and M. D. Hill. Slack: Maximizing per-
formance under technological constraints. In Proceedings
of the International Symposium on Computer Architecture,
May 2002.

D. Folegnani and A. Gonzalez. Energy-effective issue logic.
In 28th International Symposium on Computer Architecture,
July 2001.

S. Ghiasi, J. Casmira, and D. Grunwald. Using IPC variation
in workloads with externally specified rates to reduce power
consumption. In Workshop on Complexity-Effective Design,
June 2000. Held in conjunction with the International Sym-
posium on Computer Architecture.

A. Hasegawa et al. Sh3: High code density, low power.
IEEE Micro, pages 11-19, December 1995.

M. Huang, J. Renau, and J. Torrellas. Profile-based energy
reduction for high-performance processors. In 4th Workshop
on Feedback-Directed and Dynamic Optimization (FDDO-
4), December 2001.

A. lyer and D. Marculescu. Power efficiency of voltage scal-
ing in multiple clock, multiple voltage cores. In Proceedings
of the International Conference on Computer-Aided Design,
pages 379-386, November 2002.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

J. Kin, M. Gupta, and W. Mangione-Smith. The filter cache:
An energy efficient memory structure. In International Sym-
posium on Microarchitecture, December 1997.

S. Manne, A. Klauser, and D. Grunwald. Pipeline gating:
Speculation control for energy reduction. In Proceedings
of the International Symposium on Computer Architecture,
June 1998.

R. Maro, Y. Bai, and R. I. Bahar. Dynamically reconfig-
uring processor resources to reduce power consumption in
high-performance processors. In Workshop on Power-Aware
Computer Systems, November 2000. Held in conjunction
with the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASP-
LOS).

D. Ponomarev, G. Kucuk, and K. Ghose. Reducing power
requirements of instruction scheduling through dynamic al-
location of multiple datapath resources. In International
Symposium on Microarchitecture, December 2001.

S. Sair and M. Charney. Memory behavior of the spec2000
benchmark suite. Technical report, IBM T. J. Watson Re-
search Center, October 2000.

R. Sasanka, C. J. Hughes, and S. V. Adve. Joint local and
global hardware adaptations for energy. In Proceedings of
the International Conference on Architectural Support for
Programming Languages and Operating Systems, October
2002.

G. Semeraro, D. H. Albonesi, S. G. Dropsho, G. Magk-
lis, S. Dwarkadas, and M. L. Scott. Dynamic frequency
and voltage control for a multiple clock domain microarchi-
tecture. In International Symposium on Microarchitecture,
November 2002.

G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Al-
bonesi, S. Dwarkadas, and M. L. Scott. Energy-efficient pro-
cessor design using multiple clock domains with dynamic
voltage and frequency scaling. In International Sympo-
sium on High-Performance Computer Architecture, Febru-
ary 2002.

J. S. Seng, E. S. Tune, and D. M. Tullsen. Reducing power
with dynamic critical path information. In International
Symposium on Microarchitecture, December 2001.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Au-
tomatically characterizing large scale program behavior. In
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS),
October 2002.

O. S. Unsal, 1. Koren, C. M. Krishnan, and C. A. Moritz.
Cool-fetch: Compiler-enabled power-aware fetch throttling.
In Computer Architecture News. ACM SIGARCH, April
2002.

