An Adiabatic Framework for a Low Energy p-Architecture & Compiler

PRAMOD RAMARAO, AKHILESH TYAGI
Computer Architecture Lab,
Department of Electrical & Computer Engineering,
Iowa State University, Ames, IA.
{pramod, tyagi} @iastate.edu

Abstract

Adiabatic process in thermodynamics transfers energy
across zero temperature difference. The adiabatic CMOS
design style attempts to switch a transistor to transfer en-
ergy across its source and drain while the voltage differ-
ence is zero. We define an adiabatic microarchitecture that
pushes instructions across zero IPC gradient. The IPC
gradient can be zero across time: for the same stage IPC
over time does not vary, or across space: adjacent pipeline
stages have zero variance. The reason to consider adia-
batic microarchitectures is that the energy for a given com-
putation can be shown to be minimum for an adiabatic mi-
croarchitecture. An adiabatic compiler, really a backend, is
defined to be a compiler to support an adiabatic microar-
chitecture achieve its goals. The minimal support provided
by an adiabatic compiler includes a static estimation of
program ILP. We add new passes to the MachSUIF com-
piler; to flag instruction groups that can potentially walk
through a superscalar pipeline as a group. Hence, these in-
struction groups offer a fairly robust model of superscalar
microarchitecture ILP. A compile time scheduling analy-
sis can also generate instruction slack values. The slack
indicates the program region within which an instruction
can be scheduled. We also present a dispatch stage dy-
namic scheduling algorithm that utilizes the compiler an-
notated slacks to reschedule instructions with the explicit
objective of minimizing the dispatch stage IPC variance.
In other words, the proposed dispatch stage is adiabatic.
Preliminary experimental results demonstrate an average
reduction of 4.16% in IPC variance over SPEC2000 bench-
marks with the adiabatic compiler and microarchitecture.
The preliminary evaluation also shows the average pro-
cessor dispatch stage energy reduction of 3.9% over the
same SPEC2000 benchmarks. We expect to add similar
IPC smoothening control knobs at instruction fetch and is-

sue stages as well in the future, which should result in a
more significant energy reduction.

1. Introduction

Energy consumption and power dissipation are consid-
ered to be major limitations for both high performance
and portable processor design. The International Tech-
nology Roadmap for Semiconductors (ITRS) expects the
processor power needs to scale over next 10 years to out-
strip the package dissipation limits by a factor of 25x [8].
Only radical changes in microarchitecture and program-
ming paradigms can help meet this tremendous gap. Sev-
eral research thrusts have addressed the processor energy
and power reduction. Many techniques have been pro-
posed to handle energy and power issues at various ab-
straction levels. At circuit level, these include voltage scal-
ing [18], clock gating [4] and multi-threshold CMOS [15].
Some of the microarchitecture level techniques are pipeline
gating [12], branch prediction confidence [17], segmented
pipeline components [11], [10], selective cache way shut-
down [19] and fetch throttle [22]. Compiler level optimiza-
tions to reduce energy have also been considered [9].

The energy reduction technique identified in this paper
is more of a global optimality criterion for the program ex-
ecution. In a nutshell, this criterion states that the IPC (in-
structions per cycle) of a computation should not vary over
time. A more practical statement might be that the IPC
should vary as little as possible. The intuitive reasoning
behind this is as follows. Whenever a system admits high
variance in its workload, it is forced to design its compo-
nents for the peak needs. Invariably, this ends up creat-
ing system components that punish the average workloads
by allocating peak resources. This scenario arises in a mi-
croarchitecture in the following way. A microarchitecture

is responsible for supporting all the inter-instruction com-
munication. A microarchitecture designed to support in-
struction level parallelism (ILP) of k£ will incorporate all of
the interconnection needed to sustain the inter-instruction
communication for a group of up to k instructions. Even
when only k' < k instructions go through the microarchi-
tecture, they are forced to communicate through a struc-
ture designed to support a much higher number of instruc-
tions. Hence, the capacitance switched to support k' in-
structions ends up being proportional to the peak capaci-
tance switched to support k instructions. Herein lies the
crux of the problem.

We [21] have argued that optimal VLSI computations
neither overdesign nor underdesign the wire lengths for a
given algorithm. This is only achievable when each wire
and gate is kept busy for each unit of time. This leads to op-
timal packing of logic gates resulting in minimum possible
average wire length for the required communication topol-
ogy. The overall energy is minimized in this fashion. This
observation is stated as a Principle of Least Computational
Action [21] motivated by a similar principle of least action
in physics. The computational action can be defined as the
product of overall energy and time. From various perspec-
tives, a computation that minimizes the computational ac-
tion is an optimal one — not necessarily the fastest one. In
this paper, we project this principle into the domain of su-
perscalar microarchitectures. The resulting optimality cri-
terion appears to be that the IPC variance delivered by the
microarchitecture should be minimized. A program that is
able to deliver uniform IPC across all computation cycles
for a given microarchitecture consumes the same amount
of energy each cycle. That is one extreme operating point
which would rarely be achievable for most interesting pro-
grams. The natural, base IPC of each program varies over
different parts of the program as different algorithms are
activated, or within the same algorithm, a different com-
putational phase is initiated. The objective of this work is
to explore the possibility of maintaining the uniform IPC
within the program epochs where a natural uniform IPC
level exists. We also strive to quantify the benefits of such
a strategy.

The methodology explored in this paper uses a com-
piler to estimate the natural program IPC in small granu-
larity chunks, typically a basic block. However, the com-
piler does not reschedule instructions to generate uniform
IPC packets. The assumption is that the IPC model of the
compiler is not fully accurate given the traditional run-time
uncertainties resulting from not knowing the program in-
put. Hence, the instruction rescheduling is still delegated
to the dispatch stage to exploit the benefits of a dynamic
scheduling scheme. The compiler generated information,

however, ensures that the cycle time is not stretched be-
yond the existing critical paths in the dispatch stage. Uni-
form IPC would be of little help if the microarchitecture is
not designed to deliver IPC level [, for 1 <[< k, with the
energy needs of an /-wide microarchitecture. The energy
consumption, e(k), of a superscalar microarchitecture to
support peak issue width of k has been shown to be super-
linear: e(k) = ck® by Palacharla [16], e(k) = ck® for
a > 2 by Zyuban et al. [23]. We call a microarchitecture
decouplable if it can deliver IPC [with energy equivalent
to e(l) for 1 < I < k where k is the peak issue width sup-
ported by the microarchitecture. Zyuban et al. [23] have
considered several microarchitectural components for a de-
coupled design: ROB, issue queue. Pipeline balancing [3]
is also an effort in this direction for FU allocation. This
still leaves several microarchitectural components whose
designs are tightly coupled (in the sense that switched ca-
pacitance cannot be reduced below the peak for a lower
delivered IPC). We are investigating decoupled designs for
these components.

The term adiabatic in thermodynamics refers to a pro-
cess where no heat is gained or lost. Adiabatic switching
[2] was developed with the same intuitive objective. In adi-
abatic CMOS, the charge is transferred across as low a volt-
age difference as possible — zero asymptotically. We view
the temporal IPC gradient (IPC differences at the same
stage over two consecutive cycles) or the spatial IPC gradi-
ent (IPC differences between two adjacent pipeline stages)
to serve the same role as voltage or pressure gradient at the
algorithmic and microarchitectural levels. Hence, an adi-
abatic algorithm or a microarchitectural orchestration of it
should exhibit as low an IPC gradient as possible for all
the instruction flows. This reasoning leads us to call the
proposed microarchitecture adiabatic.

The paper is organized as follows. We specialize the
principle of least computation action to superscalar mi-
croarchitectures in Section 2. The compiler scheduling
and annotations are described in Section 3. The dy-
namic dispatch stage scheduling to even the IPC variance
is described in Section 4. The concept of decouplable,
segmented microarchitecture components is introduced in
Section 5. We present our implementation framework in
Section 6. We conclude the paper in Section 7.

2. Least Computational Action for Microar-
chitecture or Adiabatic Microarchitecture
is Optimal

In this section, we specialize the principle of least ac-
tion [21] to a superscalar microarchitecture. The princi-

ple of least computational action states that a VLSI algo-
rithm that has the least computational action, the product
of energy and time, is the most optimal one for that prob-
lem. The proof of a similar theorem specialized for a su-
perscalar microarchitecture is considerably simplified. It
has been shown previously [23], [16] that the energy con-
sumption of a superscalar microarchitecture scales super-
linearly as a function of n, the dispatch or issue width.
More specifically, the switched capacitance per instruction
in the wakeup logic of issue stage is at least quadratic in
issue width [16] leading to this assertion. This has signif-
icant ramifications on how the instructions of a program
should be distributed over time within the processor. Let
us consider the execution of a program P with dynamic in-
struction count IC. Let IC}; be the number of instructions
executed in cycle ¢. If the execution time of the program
P is T for a specific superscalar microarchitecture, then

th701 IC; = IC. Let e(k) be the energy function to cap-
ture the energy consumption in the given superscalar mi-
croarchitecture as a function of the number of instructions
issued, k for 1 < k < IW with I being the designed
issue width of the processor. Note that Palacharla demon-
strates this energy function to have the profile e(k) = ck®
for some constant ¢. Similarly, Zyuban et al. [23] argue
that e(k) = ck® for a > 2. The following theorem consti-
tutes the heart of the paper.

Theorem 1 (Adiabatic computation theorem) The en-
ergy of the execution of a program P with instruction count
IC taking time T on a superscalar microarchitecture with
a super-linear energy function e is minimized if the number
of instructions issued each cycle is uniformly IC|T.

Proof: Let IC; be the number of instructions issued at
time 0 < ¢ < T — 1. It follows then that IC = EtT:_Ol IC,.
The energy of this computation is Ep = ZtT;Ol e(ICy).
The sum of such super-linear factors under a linear con-
straint of the form IC = ZtT:_Ol IC} is minimized when
each factor has the same value. That occurs when the IPC
is uniform across all the T cycles, ie., Vt : IC; = %
This is true since the derivative of this sum with respect to
any IC; with a super-linear function e(IC;) = ¢ * IC;**
has the form ¢ * (1 + €) = IC§ for € > 0. This says that
the first derivative is a monotonically increasing function
of the IPC I}, or it evaluates to a higher value for a higher
IPC. Any positive departure from the mean, IC/T, in the
kth cycle IPC (IC, = ([IC/T] + A)) will be compen-
sated for by a negative departure in one or more terms.
For the simplicity of the proof, assume that the k'th cy-
cle’s IPC ICy = ([IC/T] — A) is reduced to compen-
sate for the kth cycle’s higher than average IPC. Now con-

sider e(IC}) + e(ICy) which is approximated by Tay-
lor’s series expansion w.r.t. the first derivative only as
e(ICIT] + A) + e([IC/T] — A) =2 xe(IC/T) +

de I1C Se c

A x 516 [+A] — Ax 510, [4£ — A]. Note that
de _ de
SIC, = 10y Moreover, since the first derivative is

monotonically increasing, it evaluates to a higher value at
a higher point, i.e., 586 [4F + A] > 5165;@' [£¢ — A].
Also note that for a uniform IPC, e(IC}) + e(ICy) = 2 %
e(IC/T). Hence, the excess energy due to non-uniformity
A (e (R +4] - e [F-4]) > o0.his
proves the theorem.

3. Static Compiler Models for IPC

We model the superscalar microarchitecture IPC at two
places: dispatch stage and issue stage. The objective is to
have control knobs both at dispatch stage and at issue stage
attempting to even out the variance in IPC. We describe the
compiler models for both dispatch and issue stage IPC.

3.1. Dispatch Stage IPC Model

The dispatch stage in a superscalar microarchitecture is
designed to dispatch all the available instructions within
the dispatch window. Even the instructions that are depen-
dent can be dispatched simultaneously through renaming
of the dependence operand. The IPC limiting events at dis-
patch stage are as follows. All the instruction fetch inef-
ficiencies get reflected in reduced number of instructions
in the dispatch window, and hence limit the dispatch IPC
as well. These factors include I-cache block fragmentation
whenever the target of a branch is in the middle of a cache
block. The branch misprediction is another major cause
of instruction fetch inefficiency limiting the dispatch IPC.
Other causes of dispatch IPC variation include structural
hazards on reservation stations and reorder buffer (ROB).

It is easiest to model the branch misprediction at com-
pile time among these factors. One simple way to model
the dispatch IPC independently from the microarchitecture
design parameters would be to measure the number of in-
structions between two control instructions. These instruc-
tions can be considered to be dispatchable simultaneously.
This model can be refined further if the target description
for the compiler can include some of the microarchitecture
parameters such as branch prediction accuracy bp, cache
block size B, instruction fetch width I F'WW. These will al-
low the dispatch IPC to reflect cache block fragmentation
effect and branch misprediction effect. This still leaves

out reservation station and ROB structural hazards based
IPC loss. We believe that a fairly detailed microarchitec-
ture modeling would have to be incorporated into the com-
piler to account for structural hazard induced IPC loss. In
the first phase of this work, we have chosen to omit this
factor from the dispatch stage IPC model. We have imple-
mented the branch-to-branch instruction count as the dis-
patch IPC model currently. Future extensions will bring in
cache block size and branch misprediction rates.

3.2. Issue Stage IPC Model

We build on the static IPC prediction model developed
by [22]. This model is a compiler based static prediction
scheme which gives an aggregate measure (average over
thousands of cycles) of the commit stage ILP. It is a depen-
dence driven model in which the instruction stream is ana-
lyzed only for true data dependences (Read-after-Write). It
is assumed that named dependences are eliminated by the
hardware through renaming as superscalar processors have
sufficient resources for renaming. The rename space is as-
sumed to be large enough not to affect the IPC. Note that
the IPC loss from issue stage to commit stage is very low
(as has been observed in several papers [6]). A group of
instructions without a true dependence ought to be able to
issue simultaneously (assuming their producer instructions
all belong to the same preceding issue group(s), or are far
ahead enough not to cause delays at issue stage). This is
why we believe that a true dependence driven IPC model
captures IPC at the issue stage well.

The instruction stream is divided into annotation blocks
wherein each block contains instructions that can be typ-
ically issued together. True dependences serve as the
boundaries of these blocks. The model is a fairly accurate
prediction of the actual IPC.

In order to allow for the dynamic scheduling of instruc-
tions, we use the notion of slack defined by Fields et al. [7].
They define local slack as the number of execution cycles
between a producer and its consumers. The producer can
be delayed by the local slack available so that there is no
impact on the execution of the consumers. They also define
a variant called Global Slack of an instruction, which is the
sum of its local slack and the minimum global slack of its
consumers. They show that approximately 20% of the in-
structions have local slack greater than five cycles. On the
other hand, they observe that 40% of the instructions have
global slack of more than 50 cycles.

In addition to considering local slack to delay instruc-
tions at dispatch, we also consider slack as the number of
cycles that an instruction ¢ can be pushed forward in an in-
struction stream. Considering the slacks of an instruction

in both directions (delay as well as push forward) provides
the dispatch stage scheduling algorithm more flexibility to
choose instructions to issue together in order to establish a
uniform IPC rate.

We estimate the local slack of each instruction in the
instruction stream at the compiler-level. Dependency anal-
ysis is performed to predict the IPC at the compiler-level.
The dependency analysis is performed on both register and
memory accesses using a monotone data flow analysis [13]
Register dependences are established using the reaching
uses algorithm [1]. For memory accesses, we follow the
model of [22] and perform alias analysis by instruction in-
spection. This analysis distinguishes between memory ac-
cesses to different regions. Accesses which use the base-
displacement modes are also considered. Accesses with
the same base register but different displacements are iden-
tified as having no true data dependence between them-
selves.

The slack values for the instructions are also computed
in an analogous manner. Once the true dependences are es-
tablished between instructions through the data flow anal-
ysis, the slack value is then the distance between the pro-
ducer and the consumer. The instructions are then anno-
tated with these values.

Another model we propose for the issue stage IPC is de-
rived from the dataflow graph of a basic block. The DFG
is levelled through breadth-first search (BFS) starting at the
root node. All the nodes at the same level represent inde-
pendent instructions. These instructions (within the same
level) can be issued at the same time and form a single
producer group as well as consumer group with respect to
issue stage operand garnering. This model leaves out the
dependences coming in from the preceding blocks. We
assume their effect to be minimal for issue stage model-
ing. The compiler then needs to annotate instructions in
the same level of the BFS by a level number, which will
identify them as a producer and/or consumer group to the
dispatch and issue stages.

4. IPC Smoothening Dispatch & Issue Stages
4.1. Dispatch Stage

The dispatch stage is responsible for reducing the vari-
ance of IPC of the instructions moving from the dispatch
stage to issue stage. Each fetched instruction has an as-
sociated slack amount annotated by the compiler. These
slack values allow the dispatch stage to smoothen the IPC
variance without having to stretch its critical path. Figure
1 shows the basic dispatch stage schema.

Instruction Fetch Order

10 I 12 I3
50 sl 52 53
begin-packet

14 I5 I6 17

4 55 56 57

Slack increment/IPC tag chain

IPC History

Figure 1. Dispatch Stage Schema.

The dispatch stage maintains a history of dispatch IPC
for one or more cycles, IPCj,s;. Currently we assume a
history of one cycle. We use a Percolation Algorithm to
percolate instructions from one dispatch packet to another.
Based on the history of the IPC, instructions can be de-
layed at the dispatch stage thereby allowing them to prop-
agate to following packets. If the current dispatch packet
size is more than the IPC history, one or more instructions
are selected to propagate in order to reduce IPC variation.
The decision of selecting instructions to propagate could
be based on their slack values, which would allow multiple
instructions to be delayed at dispatch. We follow the sim-
ple model of delaying the last instruction of every dispatch
packet. The Percolation algorithm is as shown below.

for (every cycle of dispatch stage)

{
if (0oldIPC < size of dispatch packet)

{

Initialize count =

(size of dispatch packet - 1);

Repeat {
while (reservation station

available/ reorder buffer not full/

fetch queue not empty)
{
Dispatch instruction at head of
fetch queue;
count = count - 1;
}
}

Until (count reaches zero);

Place the delayed instruction at head of
fetch queue to be dispatched in the

next cycle;

}
Store oldIPC = IPC of this cycle;

Advancing an instruction based on its slack is another
option to provide another degree of freedom to the dispatch
stage. This would be useful if the number of dispatchable
instructions is at least two fewer than I PC},4;. The causes
for lack of dispatchable instructions are: (/) too few in-
structions in the instruction window, (2) structural hazards
such as ROB or reservation station non-availability. So-
lution to the first cause requires fetch enhancements. The
second cause can only be alleviated by altering the ROB
size and/or number of reservation stations dynamically. In
this case, some instructions might be able to move ahead to
increase the current cycle IPC.

The dispatch stage is responsible for reducing the vari-
ance of IPC of the instructions moving from the dispatch
stage to issue stage.

4.2, Issue Stage

The issue stage provides the second major juncture in
the microarchitecture to control the IPC variance. The in-
structions that were in-order at the dispatch stage appear in
an out-of-order sequence at issue stage. The instructions
that were identified to be in a single issue IPC group by
the compiler were in adjacent instruction slots in the dis-
patch window. However, at issue stage, they are dispersed.
The compiler tags the lead instruction of a simultaneously

issuable group of instructions by begin-packet anno-
tation (as shown in Figure 1).

The dispatch stage needs to assign identical tags to all
the instructions between two begin-packet tags. This
tag space is orthogonal to the rename space. The logic
chain at the bottom of Figure 1 helps with an efficient as-
signment of this tag. The transmission gate driven by the
begin-packet signal of each instruction is cut off for
the instruction packet leader instructions (the transmission
gate is driven by beginpacket signal). All the instructions
in the same issuable packet are connected by a single seg-
ment of the increment/decrement or IPC-tag control signal.

The compiler estimated issue IPC value is attached to all
of these instructions. The wakeup logic of issue stage gen-
erates a set of issuable instructions. The select logic selects
from these instructions through arbitration. Now the select
logic will also take into consideration IPC smoothening. A
history of last few issue-IPC values can be maintained. As-
sume that the history is a single value i ssue-IPC-last
in order to simplify the discussion. If all the awakened in-
structions are from the same issuable group (with the same
IPC-tag), the select logic will attempt to issue as many in-
structions as i ssue—-IPC-last=1. If the size of the is-
suable group (also annotated with the instructions) exceeds
this number (issue-IPC-last=+l), the issue of some
instructions will be deferred. We have not yet implemented
the issue IPC control knob.

5. Segmented Microarchitecture Components

In order to derive energy benefits from the uniform IPC
at dispatch and issue stages, the microarchitecture com-
ponents have to be designed in a certain way. Consider
the energy equations in Theorem 1. The energy is lower
for an adiabatic IPC distribution since the microarchitec-
ture energy is super-linear in the number of processed in-
structions. For a given microarchitecture component C, let
ec(n) signify the energy consumption in processing 7 in-
structions. The traditional way of designing the microar-
chitecture is to exercise the entire component C' designed
for a peak instruction width IW even if k& < I instruc-
tions are processed. In other words, energy consumed by
a microarchitecture component C' is always ec(IW) for
any 0 < k < IW processed instructions. In order to ben-
efit from the reduced variance, C needs to consume en-
ergy ec(k) to process k < IW instructions. Ghose et al.
[11], [10] have developed segmented versions of several
microarchitecture components such as ROB which have
this property. For a lower IPC, only one segment is acti-
vated. Another segment kicks in when the IPC exceeds cer-
tain threshold, and yet another segment is activated when

Issue 4-way Out-of-order
Fetch Queue Size 4

Branch Prediction 2K entry bimodal
Int. Functional Units | 4 ALUs, 1 Mult./Div.
FP Functional Units | 4 ALUs, 1 Mult./Div.
L1 D- and I-cache Each: 16Kb, 4-way
Combined L2 cache 256Kb, 4-way

Table 1. Baseline Parameters

IPC exceeds some other threshold and so on. We assume
that the underlying microarchitecture is designed with such
segmented components to provide the desired energy pro-
file.

6. Experimental Methodology

We implemented the static /PC prediction model devel-
oped by [22] and the static slack estimation using the Ma-
chineSUIF [20] compiler framework. New compiler passes
were developed which are applied just before the Alpha as-
sembly code generation pass is invoked. The passes also
implement the data flow and slack estimation techniques
outlined previously. The passes are applied before the as-
sembly code is generated so that no other compiler opti-
mization pass is invoked later. The estimated IPC and slack
values are placed as annotations to the instruction. The an-
notations are preserved in the final binary generated.

In order to implement the dynamic dispatch scheduling
algorithm, we use the SimpleScalar simulation toolset [5].
The dispatch stage is modified to control the issue of in-
structions from the dispatch window to the reservation sta-
tions based on the IPC and slack information annotated by
the compiler. The system model is a typical out-of-order
superscalar processor. Table 1 describes the baseline pa-
rameters used.

We studied the effect of the dispatch stage percolation
algorithm. We performed experiments with programs from
the SPEC2000 CPU benchmark suite. We fast forward the
simulation by 200 million instructions. The next one mil-
lion cycles are simulated and the resulting IPC values are
noted. We examined the standard deviation of the new IPC
values against those generated using a baseline model.

Figure 2 shows the IPC variation over these bench-
marks. Using this algorithm, we obtained a reduction in the
IPC variation for all the programs. The reduction ranges
from 2.56% to 8.72% with the average around 4.16%. Us-
ing a more sophisticated dispatch algorithm, we expect to
extract more reduction in the dispatch IPC.

Variation

1.65
1.6
1.55 4
1.5 i
B SD-Mod
14
1.35 1
1.3 1
1.25 4

vpr twolf mcf equake mesa gzip gce

Figure 2. Dispatch Stage IPC Variance.

In order to evaluate the effect of this IPC reduction on
the dispatch stage energy, we used the following empirical
and analytical hybrid model. The energy of the dispatch
stage (of rename map table instance) varies as n? for n
instructions in the dispatch window. We calculate the sum
Zf;o(DWt)z where DW, is the observed dispatch width
at time ¢ for both the original dispatch scheme and the IPC
smoothening dispatch scheme.

Average Energy

O Energy-Orig
34 M Energy-Mod

vpr twolf mcf equake mesa gce gzip

Figure 3. Dispatch Stage Quadratic Model
Energy Comparison.

The results are shown in Figure 3. We obtained a de-
crease in the dispatch stage energy ranging from 3.05% to
6.31% with the average around 3.9%.

7. Conclusions & Future Work

We presented a concept — adiabatic microarchitecture,
as an energy reduction technique. The adiabatic microar-
chitecture strives to maintain low IPC variance so that the
instructions flow through as low an IPC gradient as possi-
ble. This kind of adiabatic flow is shown to have minimum

switching energy for a microarchitecture with components
whose energy needs grow super-linearly with the number
of supported instructions (instruction width). Hence, the
concept is applicable to commonly employed superscalar
microarchitecture. We present a preliminary evaluation of
the concept. The three key places where a control knob
to smoothen the IPC variance can be placed are instruction
fetch, dispatch and issue stages, since the largest IPC losses
occur at these stages. This paper presents a greedy heuris-
tic based compiler support and dynamic dispatch stage sup-
port for smoothening the IPC variation only at the dispatch
stage. A preliminary scheme for issue stage IPC smoothen-
ing is also presented, but has not been implemented yet.
We also anticipate adapting some of the recent work on
fetch throttling [22] or instruction fetch deferral [14] for
fetch IPC smoothening. The compiler uses a dispatch IPC
model to mark instructions into dispatchable packets. It
also explicitly annotates the dispatch IPC for each of these
packets. The dispatch IPC control knob uses a percolation
based instruction deferral mechanism to even the dispatch
IPC. The dispatch IPC variance decreased by about 4.16%
over seven SPEC2000 CPU benchmark programs. Assum-
ing a quadratic energy model, the dispatch energy is pre-
dicted to decrease by 4% from this IPC smoothening. We
expect the energy reductions to be more significant once
the instruction fetch and issue stage IPC control knobs are
in place.

References

[1] A. Aho, R. Sethi, and J. Ullmann. Compilers: Principles,
techniques and tools. Addison-Wesley Publishing Com-
pany, 1985.

[2] W. Athas, L. Svensson, J. Koller, N. Tzartzanis, and

E. Chou. A framework for practical low-power digital cmos

systems using adiabatic-switching principles. International

Workshop on Low Power Design, pages 189—194, 1994.

R. Bahar and S. Manne. Power and energy reduction via

pipeline balancing. Proceedings of the 28th Annual Inter-

national Symposium on Computer Architecture, 2001.

L. Benini, G. D. Micheli, E. Macii, M. Poncino, and

R. Scarsi. Symbolic synthesis of clock-gating logic for

power optimization of synchronous controllers. ACM

Transactions on Design Automation of Electronic Systems

(TODAES), pages 4(4):351-375, 1999.

D. Burger, T. Austin, and S. Bennett. Evaluating future mi-

croprocessors: The simplescalar tool set. Technical Report

CS-TR-96-1308, University of Wisconsin, Madison, 1996.

T. Diep, C. Nelson, and J. Shen. Performance evaluation

of the powerpc 620 microarchitecture. Proceedings of the

22nd Annual International Symposium on Computer Archi-

tecture, pages 163-175, 1995.

3

—

[4

—

[5

—

[6

—

(7]

8]

(9]

(10]

(11]

[12]

(13]

[14]

(15]

(16]

(17]

(18]

(19]

(20]

[21]

(22]

B. Fields, R. Bodik, and M. Hill. Slack: Maximizing per-
formance under technological constraints. Proceedings of
the 29th Annual International Symposium on Computer Ar-
chitecture, 2002.

ITRS. International technology roadmap for semiconduc-
tors. http://public.itrs.net, 2001.

M. Kandemir, N. Vijaykrishnan, M. Irwin, and W. Ye. In-
fluence of compiler optimizations on system power. /[EEE
Transactions on VLSI Systems, pages 801-804, 2000.

G. Kucuk, K. Ghose, D. Ponomareyv, and P. Kogge. Energy-
efficient instruction dispatch buffer design for superscalar
processors. IEEE/ACM International Symposium on Low
Power Electronics and Design, 2001.

G. Kucuk, D. Ponomarev, and K. Ghose. Low-complexity
reorder buffer architecture. Proceedings of the 16th ACM
International Conference on Supercomputing, 2002.

S. Manne, A. Klauser, and D. Grunwald. Pipeline gating:
Speculation control for energy reduction. Proceedings of
the 25th Annual International Symposium on Computer Ar-
chitecture, 1998.

S. Muchnick. Advanced compiler design and implementa-
tion. Morgan Kaufmann Publishers, 1997.

G. Muthler, D. Crowe, S. Patel, and S. Lumetta. Instruction
fetch deferral using static slack. Proceedings of the 35th
International Symposium on Microarchitecture, 2002.

K. Nii, H. Makino, Y. Tujihashi, C. Morishima,
Y. Hayakawa, H. Nunogami, T. Arakawa, and H. Hamano.
A low power sram using auto-backgate-controlled mt-
cmos. IEEE/ACM International Symposium on Low Power
Electronics and Design, 1998.

S. Palacharla, N. Jouppi, and J. Smith. Complexity-
effective superscalar processors. Proceedings of the 24th
Annual International Symposium on Computer Architec-
ture, pages 206-218, 1997.

D. Parikh, K. Skadron, Y. Zhang, M. Barcella, and M. Stan.
Power issues related to branch prediction. Proceedings
of the 8th International Symposium on High Performance
Computer Architecture, 2002.

T. Pering, T. Burd, and R. Brodersen. Dynamic voltage
scaling and the design of a low-power microprocessor sys-
tem. Proceedings of the 7th Annual International Confer-
ence on Mobile Computing and Networking, pages 251—
259, 2001.

M. Powell, A. Agarwal, T. Vijaykumar, B. Falsafi, and
K. Roy. Reducing set-associative cache energy via way-
prediction and selective direct-mapping. Proceedings of the
34th International Symposium on Microarchitecture, 2001.
M. Smith. Extending suif for machine-dependent optimiza-
tions. Proceedings of First SUIF Compiler Workshop, Stan-
ford, CA, pages 14-25, 1996.

A. Tyagi. A principle of least computational action. Pro-
ceedings of IEEE Workshop on Phyics and Computation,
pages 262-266, 1992.

O. Unsal, I. Koren, C. Krishna, and C. Moritz. Cool-fetch:
Compiler-enabled power-aware fetch throttling. Computer
Architecture Letters, pages 610, 2002.

[23] V. Zyuban and P. Kogge. Inherently lower-power high-

performance superscalar architectures. IEEE Transactions
on Computers, pages 268-285, 2001.

