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Some other challenges for System Design
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System Performance Stack

Performance improvements will inereasingly require system level optimization
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Design Productivity Gap Growing
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Thousands

# of Transistors

Billions
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Exponential Design Complexity

Functionality + Testability
Functionality + Testability + Wire Delay
Functionality + Testability + Wire Delay + Power Mgmt

Functionality + Testability + Wire Delay + Power Mgmt
+ Embedded Software

Functionality + Testability + Wire Delay + Power Mgmt +Embedded
Software + Signal Integrity

Functionality + Testability + Wire Delay + Power Mgmt +Embedded
Software + Signal Integrity + Hybrid Chips

Functionality + Testability + Wire Delay + Power Mgmt +Embedded
Software + Signal Integrity + Hybrid Chips + RF

Functionality + Testability + Wire Delay + Power Mgmt +Embedded
Software + Signal Integrity + Hybrid Chips + RF + Packaging

Functionality + Testability + Wire Delay + Power Mgmt +Embedded Software
Signal Integrity + Hybrid Chips + RF + Packaging + Mgmt of Physical Limits

Exponentially growing number of elements (devices & wires)
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Traditional Design Flow
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Co-Design Craze

" Hardware - Software Co-Design
* Driven by SOC opportunities

" Circuits - Technology Co-Design

°* Feedback from Circuit Designers to Semiconductor
Process developers has always been a good practice

°* Becoming a necessity - Driven by need to go beyond
scaling laws
" Technology — Circuit - Microarchitecture
(Architecture?) Co-Design

° Driven by need for lower power — Power Aware
Microarchitecture



“Technology - Circuit - Microarchitecture -

Architecture — Compiler” Co-Design
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Applying “feedback’ to fundamentals

=" Example: Power Management
* Already, chips have temperature sensors that feedback
information to voltage or frequency controllers
* Opportunity:

> Feedback of off chip environmental conditions
= Example: Cycle time
* Dynamic Clock variations, noise and across chip line
variations require (static) require margin in cycle time
* With multi-Ghz frequencies this margin is becoming a non-
trivial part of cycle times
* Opportunity
> High frequency /O links already have dynamic frequency
feedback

> Could we dynamically feed back environmental variations to
control clock behavior, and reduce design margin
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The Memory Wall




The Memory Wall

A pre-historic problem-~that won’t go away soon!

" Memory access times recently quasi-static (~200 n)
* Processor speedup expected ~ 60% p.a.; DRAM speedup ~10% p.a.

* Increasing number of processor cycles as processor speeds have
increased by an order of magnitude

* [mplication is significant increase in CPI

" Finite L2 cache CPI typically greater than 2x infinite
cache performance

" For multiprocessors, inter-cache latencies increase this
degradation to 3x or more for 4 processors and up

* Perfect cache performance worsens because of locking and
synchronization
> Greater path length than on a uniprocessor
> Synchronization operations are slow

* Even single thread performance worsens as the number of
processors increases



Traditional Approaches to break
through the Memory VWall

" Larger caches, deeper cache structures

B Going from 64MB to 512MB, the miss ratio drops to a

third for TPC-C
m Later generations (1GHz+) would see even more benefit
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Cache Size (MBs)
" | atency hiding via prefetching (h/w, s/w, both)
" Qut of Order execution, speculative execution, hardware multithreading

" Special hardware (and new hw algorithms) to support coherency,
partitioning, cache/memory replacement



VWhat else Is needed

Low Hanging Fruit: CPI impact of scaling.can be reduced
by better task scheduling and cache affinity

" Other Opportunities:
°* Machine learning applied to code prefetching and code pre-
positioning
* Self-optimizing cooperation between the hardware and software

directives
> Software support for streamlined or ‘essential’ coherency and synchronizatien

> Gives hints and directives

* Policy manager: Merges software directives with hardware inputs
using run-time mgmt. And adaptation

" New computing paradigms with programming models
designed to better tolerate memory latency



Integrated HW/SW approach to
the Memory Wall

" Traditional SMP Systems

New h/w capabilities: Coherency,
synchronization, partitioning,
cache/memory replacement
algorithms, pre-pushing, access to
control information

Software: supports streamlined or
‘essential’ coherency,
synchronization; gives hints and
directives

Policy manager: Merges software
directives with hardware inputs
using run-time mgt. and adaptation

" Standard HW-based systems

Hardware: commodity processing
nodes, interconnect

Global controller: data placement,
task allocation guidelines, detection
of communication patterns,
recording data location, tracking
health of node, moving/prefetching
data, task allocation, affinity
scheduling, reconfigure around
faulty nodes. Works via distributed
local controllers

Hypervisor

CPU's, Memory System

Storage System

Local
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Thread
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Electrical power consumption for IT is
projected to reach crisis proportions

"What matters most to the computer designers at Google is not
speed, but power -- low power, because data centers can
consume as much electricity as a city:{

= Eric Schmidt, CEO Google (Quoted in NY Times, 9/29/02)

Server farms power consumption increases exponentially, led by
communication equipment

CPU performance will be increasingly limited by power and cooling
Communicating information consumes much more powerthan
processing it - opportunity to optimize

More ....

° On a watts-per-sqg-ft basis server farms use more energy than automobile
plants

e 27 farms proposed for South King County area near Seattle will require as
much energy as the city of Seattle which includes the Boeing factory -
termed as the "2,400 megawatt problem"

* San Jose City Council approved 250 MW power plant for US DataPort server
farm and allows installation of 80 back-up diesel generators at that site'-
political battles to follow

°* 60% of server farm cost is energy needs
°* 40% of power consumption is for air conditioning!



the system size

Physical
Size =
14.5 sq fi

m Service Size
= 25 sq ft

= Floor-Loading
Size = 36 sq ft

m Cooling Size = 190 sq ft
= (@150 W/sq ft, 8% floor utilization)




~ Solutions for High Compute Density

"BlueGene/L

*Use lots of low power low
performance processors
>128 Compute cards

>8 nodes (@2 processors/node)

»>1024 compute nodes (2048
processors)

>2.8TF Peak per Rack
>64 Racks / System

"|ce Cube
. Slot for
°Do not skimp on processor thermal bus
power (or coldrail)

*Water cool instead
>SMP, memory, disk, in 9” cube
>Nearest neighbor coupling

10 Gb/s coupler



Traditional Approaches to Power
Problem

" Design Techniques
* Low power silicon processes e.g. SOI
* Power efficient devices, circuits, latches, arrays
° Multiple voltage islands
* Multiple threshold devices
* Dynamic frequency and voltage scaling
* Dynamic bias control

" Power aware microarchitectures
* Adaptive structures
* Clock gating - coarse and fine grained
* Fine grain control of frequency and voltage scaling
* More intelligent approaches to redundancy and speculation

Approaches are based on power as a hardware design
problem (like chip area)



Opportunities lie beyond the
traditional HW approaches

" Self-optimizing cooperation between the hardware
and software

" Notion of “thermal power” is being redefined
- Frequency/voltage adjusted if chip gets too hot

" Feedback to allow workload management software to take
power into account
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zSeries CPU Fault Tolerance
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How do BlueGene/L and Ice Cube deal with this?

" BlueGene/L — “lower quality” parts — little ECC or
recovery infrastructure

" |ce Cube — components are physically
inaccessible

Solution: Learn to live with it — “Fail in Place”

* Requires SW and system structures to “route around” faulty
components



Ultimately....

= Reliability must be handled as amstem Issue
°* Operating System
°* Middleware
°* “Front” and “Back”-end Applications




Autonomic Computing
Self-configuring Self-healing

Adapt automatically Discover,

to dynamically diagnose, and
changing react to
environments disruptions
Self-optimizing Self-protecting
Monitor and tune Anticipate, detect,
resources Identify, and protect
automatically Against attacks

From anywhere

The evolutionary sequence was rig
We got it backwards !



Why Autonomic Computing?

® Complexity becomes harder to control and
continues to grow

°* Number of environments and systems touched by an application

> Pervasive devices, clients, browsers, web servers, fire walls, application servers, back
end servers, etc.

> Unknown dependencies

® Pace of change makes continuous/dynamic

optimization essential, but more difficult

° Number of changes of application parameters
* Hardware and software version control

® People Cost becomes a barrier

* Number of support people becomes prohibitive
> Over 50% of total IT costs

e Skills shortage impacts deployment of new projects

> 41% of ebusiness projects delayed because of skills shortfalls
> Skills available to fill roughly half the demand

Autonomic Computing will become a compelling necessity for
businesses — A key to the future of computing



What’s interesting about
autonomic computing?

" Not entirely new —
* Systems management
* A form of process control
* Application of adaptive control

" Can address many of the above themes
* Reliability/Availability (of course)
* Memory Wall
* Power efficiency
* Performance / frequency management

" An attempt to deal with complexity



Complex Systems

" Historically human beings deal with complexity
by abstraction and specialization

* Almost all fields of human endeavor eventually evolve
specialties
> And generalists give way to specialists

* |t's what we do in Mathematics, Science, Engineering, etc.
" From a systems point of view specialization leads
to componentization
* Formal and informal interfaces make this happen
* We need specialists called integrators



Abstraction-and specialization has significantly
advanced the state of the art of computing

Application

* Concept of architecture B iddleware

) SW Development Operating
> Processor architecture Tools System Hypervisor

Microarchitecture

" Computing systems

) SMP SYSTEM STRUCTURE
> System architecture Fabric, Switches, Busses,
Processor, memory, Memory System, Protocols,...
storage, I/0,
communications .
Compilers
[ )
SOftwa re _and. Microprocessor Corg Cache I { t
Communications Layers Microarchilecture, (fache fovels,granulaity, | -1 @ OLL1OC
. . DeSigﬁll(\:/,I ethl(r)(cril(l)llts,gym associativity, latency, I / O
* Computing device types : throughnig SMP
> Handhelds, clients 1/Os, Wgﬁlcglﬁgge}g%ooling, ardware
servers, supercomputers m— System
: Semiconductors
Tiered servers device, process,Interconnect..

"How we think about Computer design
*Semiconductors: Devices, interconnect, lithography
*Chip design: Processors, support chips — logic, circuit, physical design
°Card, Board, Racks — Mechanical, interconnect’
*Power, Packaging Cooling



Advantages of componentized approach

Manages complexity
* Divide and conquer
* We can’t do this without it

Allows focus of intellectual attention
* Deep expertise
Enables institutional and shared learning

Enables Manageable investments
°* Encourages competition

* Generates
> Lower cost
> Greater variety
> Overall better quality



Shortcomings of componentized approach

" Tendency to local optimization
* Centrifugal organizational forces

" Problems / issues that cross boundaries are
poorly attended to or not attended to at all
* Communications even language becomes differentiated
" Bursts of progress occur where distinct
infrastructures, organizations, cultures, etc., are
brought into contact with one another
* New opportunities
* New ideas
* Progress

The term Holistic is frequently used to refer to the
opposite of specialistic



Towards Holistic Design

"Holistic": (Webster's)
Emphasizing the
importance of the whole
and the interdependence
of its parts.

"Holistic Design™: (warren's)
Emphasizing the
importance of the whole
technology stack and the
interdependence of its
components in the design
process.

Application

SW Development Middleware

Tools
Operating .
System Hypervisor

SMP SYSTEM STRUCTURE
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Interconnect

Cache

Cache levels, granularity,
associativity, latency,
throughput

Microprocessor Core
Microarchitecture,
Logic, Circuits,
Design Methodology...

Packaging
I/Os, wiring levels cooling, I /O

“Semiconductors
device, process,Interconnect..

The most competitive solutions going forward will optimize their solution
across the entire technology stack: application software to process technologys



Towards Holistic Design

Consideration of more of the entire design flow at
each stage
* Spanning much earlier and much later in'the design flow at any
particular stage
More “Co-Design”

Longer feedback loops and adaptive control paths

* Longer in the sense of distance in the traditional design
hierarchy

* [nteraction of
> Software and Circuits
> Microarchitecture and device design

It’s not all that easy
* Teams are comfortable with the old process

* May require more people/skills
> Certainly requires different definition of skills



Holistic Design

= Butis it new?
* “System Design”
* “Tall Thin Designers”
* Mead Conway approach to VLSI Design

" On the other hand we may end up with...

* A different picture of how pieces fit together
> A different component taxonomy

* A different way of thinking about the way we do design






