
A Methodology for Designing Efficient On-Chip Interconnects on
Well-Behaved Communication Patterns

Wai Hong Ho and Timothy Mark Pinkston∗

SMART Interconnects Group
University of Southern California

Abstract

As the level of chip integration continues to advance
at a fast pace, the desire for efficient interconnects—
whether on-chip or off-chip—is rapidly increasing. Tra-
ditional interconnects like buses, point-to-point wires and
regular topologies may suffer from poor resource shar-
ing in the time and space domains, leading to high con-
tention or low resource utilization. In this paper, we
propose a design methodology for constructing networks
for special-purpose computer systems with well-behaved
(known) communication characterictics. A temporal and
spatial model is proposed to define the sufficient condi-
tion for contention-free communication. Based upon this
model, a design methodology using a recursive bisection
technique is applied to systematically partition a paral-
lel system such that the required number of links and
switches is minimized while achieving low contention.
Results show that the design methodology can generate
more optimized on-chip networks with up to 60% fewer
resources than meshes or tori while providing blocking
performance closer to that of a fully connected crossbar.

Keywords: On-chip Interconnects, Communication
Model, Low-Contention Communication, Network Parti-
tioning, Irregular Topology

1 Introduction

Many parallel computers deployed today have special-
purpose use, e.g., weather forecast systems, radar signal
processing systems, database systems, web servers and
data centers, etc. These systems oftentimes run a specific
set of characterizable applications during their lifetime.
By taking advantage of the known application commu-
nication behavior, special-purpose networks may be de-
signed for well-behaved communication requirements, re-
sulting in networks that are more resource/performance-
effective. Traditionally, regular topologies have been
widely used, but irregular/arbitrary topologies are in-
creasingly being considered these days as switch-based

∗This research is supported partly by NSF grant CCR-0209234.

networks are becoming more popular for better support
of flexibility, reliability and reconfigurability. Therefore,
a systematic way of designing networks with possibly ar-
bitrary topology is gaining importance.

In addition to the system level, specialized network
design is also becoming increasingly important at the on-
chip level [1]. Many embedded systems consist of one or
more application-specific integrated circuits [2], designed
for a single or narrow set of applications with highly
characterizable (i.e., well-behaved) communication. En-
cryption systems based on bit permutation, for exam-
ple, may benefit from specially designed networks [3].
Many researchers are working on automatic synthesis of
such systems on a single chip [4] using vendor-provided
processing cores with customized placement and route.
This system-on-chip (SoC) design concept is becoming
more realistic as the size of transistors continues to scale
down and the level of integration on a single IC chip
increases. Given the current rate of advancement, pro-
cessing cores on a single chip may number well into the
high tens within the next decade. Interconnection net-
works in such an environment are, therefore, becoming
more and more important as they provide connectivity
among the processing cores as well as transportation of
data from off-chip I/O to the processing cores [5].

Currently, on-chip interconnection networks are
mostly implemented using buses and, occassionally, dedi-
cated wire connections. The main limitations of such net-
works are scalability and restricted sharing of resources
between communicating entities. For bus networks, the
whole bus is occupied by a single communication even if
multiple communications could operate simultaneously
on different portions of the bus. For dedicated wire net-
works, routability and routing area limits the scalability;
moreover, connections not overlapping in time still use
separate wires, which is an inefficient use of resources.
For example, in [4], the interconnection network between
cores is generated by considering a simple cost function
for each communication between processing cores with-
out analyzing any timing information. There are cases
where communications can share a connection because
they occur at different times, but they are not combined

because the timing information is not considered. This
can result in low resource utilization.

Another way to satisfy on-chip as well as off-chip com-
munication is with switched networks. The more com-
monly used topologies are k-ary n-cubes and fat trees,
which are regular. For example, in RAW [6], tiles of
processing elements are connected on-chip with a mesh
network, which may not match well the needs of target
applications. If the provided network has insufficient re-
sources to handle the communication requirements, ap-
plications could suffer poor performance. On the other
hand, if the network has much more bandwidth than that
which is required, chip area for implementing the network
(i.e., switches and routing of wires) is wasted. Therefore,
it is important to find design solutions based on the com-
munication requirements of the target application(s) to
best optimize performance and cost tradeoffs/objectives.
Minimizing the required resources is very important for
on-chip networks since switches and links may take up a
large portion of area, e.g., the new RAW prototype has
allocated nearly 50% of the area to the on-chip network.

Some studies suggest that many scientific applications
show similar communication characteristics [7, 8]. A
large portion of the communication is done via point-to-
point communications with large payload sizes upwards
of thousands of bytes. The communication patterns are
mostly static; each process regularly communicates with
a small, fixed subset of other processes. Under such con-
ditions, optimizing the network to support application
specific communication patterns is highly possible.

To achieve the best potential performance, one could
design the network to support a set of target applications
relatively contention-free. Contention in the network in-
creases the latency and decreases the bandwidth substan-
tially, especially for long messages [9]. Some applications
(e.g., scientific) have large payload size for point-to-point
communications and are highly susceptible to network
contention. If not well controlled, contention could have
a large negative impact on the performance of parallel
programs even if it occurs only in small portions of the
network. This is because a stalled process may slow down
others that are communicating with it in lock-step fash-
ion. It has been shown that this could account for as
much as a 30% degradation in performance [9].

Conflict-free networks (a.k.a., non-blocking networks)
have been extensively researched in the past. However,
these networks are designed for general-purpose process-
ing; that is, they allow all permutations to be realized
between communicating end-nodes in a conflict-free man-
ner. However, this capability may not be necessary for
a large cross-section of the target application set and,
thus, may employ excessive resources. Extensive research
has also been done on supporting conflict-free communi-
cation for specific patterns like multicast and all-to-all
personalized/non-personalized broadcast. For example,
a way of supporting all permutations based on dividing

a message into smaller fragments and distributing them
according to a routing matrix (i.e., in the form of a Latin
square) in two passes through the network is described
in [10]. A problem with this approach and others like it
is scalability, since the number of fragments grows with
the size of the network and extra passes are required.
Although a spate of such schemes have been proposed in
the past, thus far few have considered application-specific
permutations consisting of a combination of full or possi-
bly only partial permutations, i.e., permutations in which
some source to destination combinations are don’t cares.

What’s more, in addition to static networks, it may
also be of interest to allow the network to be reconfig-
urable, at run-time [11]. For example, reconfigurable
computing paradigms (e.g., FPGAs) have increasingly
become more practical alternatives recently [12, 13]. A
large portion of the reconfigurable fabric’s area is dedi-
cated to routing connections since existing synthesis tools
only consider dedicated point-to-point connections. The
area may be reduced considerably if the sharing of re-
sources over both the time and space domains is bet-
ter addressed. Optical networks also have the potential
for reconfiguration. Whether free-space or guided-wave
(WDM), the physical or logical topology of the network
may be made to match the requirements of a particular
application/algorithm platform [14, 15].

In this paper, we propose a design methodology for
finding minimal topologies that support low contention or
contention-free communication for well-behaved (known)
communication patterns. The proposed design method-
ology addresses the problem of optimizing both the tem-
poral and spatial sharing of communication resources. A
contention model based on the spatial overlap of mes-
sages in time is defined and the communication require-
ments of target applications are characterized with a set
of permutations represented as a set of “cliques.” A net-
work generation algorithm based on a recursive bisection
technique constructs a network topology via systematic
partitioning. In each step, a coloring approach similar to
that used in [16] is used for determining the number of
links required between partitions. The main difference in
our algorithm is that we do not solve the coloring problem
exactly until the network is finalized. Instead, we exploit
knowledge about the set of permutations that character-
izes the communication requirements to obtain a tight
lower bound on the number of colors/links required and,
thus, reduce the complexity of the algorithm. Results
show that the design methodology can produce networks
with up to 60% fewer resources than meshes or tori and
improve performance by up to 18%.

The rest of the paper is organized as follows. Section 2
starts with some preliminaries on modeling contention
and ends with a sufficient condition for contention-free
networks. Based on this modeling, the design methodol-
ogy is proposed in Section 3. An evaluation of network
designs derived from the proposed methodology is given

via simulation and analysis in Section 4. Finally, conclu-
sions are drawn in Section 5.

2 Preliminaries: System, Time and Path
Conflict Models

Simple models used for defining the necessary and suf-
ficient conditions for contention-free communication are
presented in this section. They are applicable to networks
with arbitrary or regular topology. With a contention-
free model, we can better ensure that the communication
bandwidth between processes will be limited only by link
bandwidth, and the latency will be free from any conges-
tion factor. This is especially beneficial when message
size is long or software overhead is small [9]. This model
is used by the methodology described in Section 3 for
determining where and how many resources are needed,
given certain design constraints.

The contention model consists of two major compo-
nents which indicate the conflicts within a communica-
tion pattern and the resource conflicts in the network.
It differs from other similar models in two major ways.
First, the proposed model deals only with contention;
communications that do not create contention are ex-
cluded from the model. Second, both time conflicts and
path (space) conflicts are considered in the model.

2.1 System Model
A simplified system model is assumed in which a single

processor is attached to each network interface forming
an “end-node,” but multiple end-nodes may connect to
each switch. The topology of the network may be arbi-
trary. Parallel applications consisting of one process per
processor is assumed. A formal definition of a system is
given below.

Definition 1 A system is represented by a strongly-
connected directed graph G(N ,L). The vertices of the
graph, N , represent the set of switches and processors.
The set of all processors is defined as P ⊂ N . The edges,
L, represent the set of communication links. A given pair
of switches may be connected by more than one link.

The communication pattern of a system is difficult to
model since it depends heavily on program behavior and
is affected by a variety of factors such as the programming
model, data partitioning, distribution, etc. We assume
that applications running on the system are well-behaved
(i.e., have similar communication patterns on every run)
and data independent (i.e., have similar communication
patterns for any data set). Many applications and algo-
rithms exhibit this behavior (e.g., see Section 4). Given
this, communication patterns can be obtained a num-
ber of ways, including the use of hardware monitoring,
trace profiling, code analysis, data dependence analysis,
and other hardware or compiler techniques. One such

tim
e

p13p8p1 p2 p3 p4 p5 p6 p7 p9 p11 p12
processes

p14 p15 p16p10

cut 1 cut 2

Contention
Period 1

Contention
Period 2

Contention
Period 3

Figure 1. A communication pattern extracted
from the CG benchmark [18]. End-points of the
dashed arrows indicate the starting and finish-
ing times, respectively, of various communica-
tions, i.e., contention periods.

method is assumed to be used to extract message destina-
tion and timing information, both of which are important
since contention is path and timing sensitive. A formal
definition of communication pattern is given below.

Definition 2 The communication pattern of an appli-
cation is characterized by the set of all messages, M,
passed between processes. Each message, m, is charac-
terized by its source, S(m), destination, D(m), starting
time at which it leaves its source, Ts(m), and finishing
time at which it is completely absorbed by its dest, Tf (m).

2.2 Time Conflict Model

Contention occurs when two or more messages com-
pete for the same non-sharable resource at the same time,
i.e., messages overlap in both time and space domains.
This part of the contention model identifies potential con-
tention by considering conflicts in the time domain.

The overlap relation defined below identifies poten-
tially colliding messages that overlap in time based on
the timing information in the communication pattern.
Each pair of potentially colliding messages constitutes a
potential contention that becomes real if the two mes-
sages compete for some common resource, e.g., a link. It
is clear that resolving a potential contention event de-
mands the use of separate resources for routing the two
messages. Thus, such potential contention can be charac-
terized by the source-destination pairs of two potentially
colliding messages. The same potential contention pat-
tern may occur multiple times, especially for programs
written using the phase-parallel model [17] where pro-
gram phases and corresponding communication patterns
are repeated. Since they all represent the same con-
tention pattern, it is beneficial to reduce (compress) the
overlap relation into a distinct set of potential communi-
cation contention events, as defined below.

Definition 3 Two messages are said to be potentially
colliding with one another if they overlap in time, given
by an overlap relation, O, defined as follows:

O := {(m1,m2) ∈ M × M | Ts(m2) ≤ Ts(m1) ≤
Tf (m2) ∨ Ts(m2) ≤ Tf (m1) ≤ Tf (m2) ∨ Ts(m1) ≤
Ts(m2) ≤ Tf (m1) ∨ Ts(m1) ≤ Tf (m2) ≤ Tf (m1)}.

Definition 4 The potential communication contention
set, C, of an application is the set of all potential con-
tentions, each of which is defined by a 4-tuple in P4 rep-
resenting the source-destination pairs of two potentially
colliding messages:
C = {(s1, d1, s2, d2) ∈ P4 | ∃m1,m2 ∈M,

(m1,m2) ∈ O ∧ S(m1) = s1 ∧ D(m1) = d1 ∧
S(m2) = s2 ∧ D(m2) = d2}.

The potential communication contention set gives in-
sight into the complexity of the communication pattern.
A complicated communication pattern has more poten-
tial contentions than a simpler communication pattern
and, therefore, a larger potential communication con-
tention set. In order to study the resource requirements
of a communication pattern, a communication maximum
clique set based on the notion of potential contention pe-
riods should also be defined as given below.

A potential contention period is informally defined as
the time period over which one or more potential con-
tention events occur such that as messages are being
communicated, no message begins or ends before that
period concludes. Each potential contention period rep-
resents a permutation or partial permutation (i.e., some
processors are not communicating) formed by a set of
messages that compete against each other for network
resources. For example, in the communication pattern
shown in Figure 1, the potential contention periods are
shaded. If we consider each message as a vertex and the
overlap relation as an edge between two messages, the
set of messages in a potential contention period forms
a clique—a complete graph where all vertices are mu-
tually adjacent. For example, the potential Contention
Period 3 of Figure 1 is represented by the clique {(2,5),
(5,2), (3,9), (9,3), (4,13), (13,4), (7,10), (10,7), (8,14),
(14,8), (12,15), (15,12)}. We define the communication
clique set as the set of all such cliques representing the
potential contention periods.

Definition 5 The communication clique set, K, is the
set of all cliques representing the potential contention pe-
riods in the communication pattern:
K := {k : ((s1, d1), (s2, d2), . . . , (sj , dj)) | ∃t ∈

<, ∃m1,m2, . . . , mj ∈ M, ∀i ∈ [1, j], S(mi) = si ∧
D(mi) = di ∧ Ts(mi) ≤ t ≤ Tf (mi)}.

The communication clique set contains the set of all
partial or full permutations required by the target ap-
plication(s). In some cases, some partial permutations
are covered by a larger partial or full permutation in the
set. For example, suppose both cliques {(1, 2), (2, 3)} and
{(1, 2), (2, 3), (3, 4)} are present in the communication

clique set. It is obvious that if a network is contention-
free for the latter clique, it is also contention-free for the
former. Therefore, the former can be removed to reduce
the size of the set. From this observation, a communi-
cation maximum clique set can be used that eliminates
all redundant sub-cliques from the communication clique
set. Although the communication maximum clique set
does not help in defining the contention-free condition,
it is useful in reducing the steps needed by the design
methodology described in Section 3.

2.3 Path Conflict Model
The path conflict model defines the resource conflicts

in the network, i.e., conflicts in the space domain. The
paths between processors are governed by the routing
function, which is assumed to be source-based. Con-
tention is modeled among the links as opposed to the
switches. This is valid, for example, for switches in which
full internal crossbar functionality is supported.

Definition 6 A source-based routing function F : P ×
P → P(L), where P(L) is the power set of all links,
supplies a single ordered path of links to send a message
from source node ns to destination node nd such that
F (ns, nd) = {l0, l1, . . . , lp}, where l0, l1, . . . , lp are links
along a deterministic path from ns to nd.

A path is a set of links supplied by the source-based
routing function over which a message travels from its
source to its destination. The routing path represents
the set of resources the message must occupy. Two paths
are said to be conflicting if one or more of their links
are shared. In this case, messages travelling along the
two paths at the same time result in contention over the
common link(s). These network resource conflicts are
collected in a network resource conflict set defined be-
low. For non-blocking networks (i.e., crossbars) or fully-
connected networks, the network conflict set is empty.
Networks with less resources tend to have larger network
resource conflict sets than networks with more resources
as resource sharing is more common.

Definition 7 The network resource conflict set, R, is
the set of all network resource conflicts among routing
paths. Each conflict is represented by a 4-tuple represent-
ing source-dest node pairs of the two conflicting paths:
R := {(s1, d1, s2, d2) ∈ P4 | ∃p1, p2 ∈ P(L),

F (s1, d1) = p1 ∧ F (s2, d2) = p2 ∧ p1 ∩ p2 6= ∅}.

2.4 Sufficient Condition for Contention Freedom
A sufficient condition for contention-free communica-

tion in a system is derived from the potential communi-
cation contention and network resource conflict sets mod-
eled above. The intersection of these two sets identifies
the set of conflicting paths that are active at the same
time, which should be empty for contention-free commu-
nication.

Theorem 1 An application that maps to a system is
contention-free if the intersection of the potential network
contention set and the network resource conflict set re-
sults in the empty set, i.e.,
C ∩ R = ∅ ⇒ contention-free communication.

Proof: Assume the intersection of the potential network
contention set and network resource conflict set is empty.
If the application is not contention-free, then there must
be two messages transmitting at the same time involved
in the contention. Therefore, the source-destination pairs
of those two messages must be in the potential communi-
cation contention set. Since the two potentially colliding
messages must share some resources for contention to oc-
cur, their paths must share some links. As a result, their
source-destination pairs must also be in the network re-
source conflict set. Hence, the intersection of the two sets
should at least contain the source-dest pairs of the two
messages, which contradicts the initial assumption.

3 The Design Methodology
A design methodology based on a recursive bisection

technique is proposed which allows a network designer
to determine what topology and minimal set of resources
should be used to efficiently support a target application
set. The goal is to provide a systematic way of designing
minimal, low-contention networks for systems exhibiting
well-behaved communication. The methodology makes
use of the contention model described previously, which
characterizes time and path conflicts between messages.

First, the communication behavior of the target ap-
plication(s) is characterized by extracting the potential
contention periods. For example, execution traces which
logues all communication events can be used for this pur-
pose. Some programs, especially those written using the
phase-parallel model, exhibit very well-behaved commu-
nication patterns where each process executes the same
library calls to commuicate with other processes. In this
case, one easy way of extracting the contention period
is to assume that corresponding communication library
calls are synchronized, i.e., the calls start and end at
the same time. In reality, the execution time in between
communication calls is different, resulting in time skew
between processes. This mismatch in alignment may in-
troduce new potential conflicts due to new messages pos-
sibly being sent before messages from previous calls fin-
ishing, creating interaction between adjacent communi-
cation library calls. If the time skew relative to message
length is short, it may suffice to assume that each com-
munication library call represents one contention period
as is assumed here. Redundant communication patterns
are removed from the set of identified contention periods
in creating the potential communication clique set.

Central to the design methodology is the idea of de-
composing a network that meets the communication re-
quirements of the application set into one whose com-

ponents also meet the design constraint requirements of
the target implementation. This is done via recursive
bisection. Initially, a network is created with a single
“megaswitch” (i.e., crossbar) connecting all end-nodes.
Although non-blocking, such a megaswitch would be pro-
hibitively costly, and would likely violate certain design
constraints. Thus, systematically partitioning a larger
switch into smaller ones is key to the design method-
ology. In each partitioning step, a simulated annealing
technique is applied to optimize the network partitions
for both placement of processors in the switches as well as
determining the best routes for messages passing through
the switches. By assigning conflicting communications
(as indicated by the potential communication contention
set) to different links, the intersection of the potential
communication contention set and the network resource
conflict set is ensured to be empty, i.e., the network is
ideally contention-free. A quick way of estimating the
number of links required between partitions based on a
fast coloring algorithm is used to reduce the complexity.

The algorithms needed to carry out this design
methodology are given in the Appendix. Before illus-
trating the design methodology through an example in
Section 3.4, we first discuss some key components: specif-
ically, partitioning, routing, and fast coloring.

3.1 Partitioning
Consider the simple case of partitioning a single switch

into two switches. Associated with each switch is a set
of processors and a set of communications, which in-
cludes messages generated from and destined to the pro-
cessors connected to the switch as well as messages pass-
ing through the switch. The connections between two
switches is represented by a pipe, which is characterized
by two opposing sets of communications that go through
it—one for each direction. The width of the pipe (which
affects contention properties) is determined by coloring
the conflict graphs [14] of the two sets of communica-
tions going through it. The conflict graph is obtained by
assigning the communications passing through the pipe
as nodes and the potential temporal conflicts (from the
potential communication contention set) between com-
munications as edges.

To support contention-free communication between
switches via a pipe, the pipe must supply a sufficient
number of links so that temporal conflicting communi-
cations are handled by separate links. This is to ensure
that the intersection of the network resource conflict set
and the potential communication contention set is empty.
It follows that any adjacent nodes in the conflict graph
of the communication set representing the pipe must not
share the same link; otherwise, the two conflicting com-
munications would cause contention for that link. There-
fore, the problem of finding the minimum number of links
required can be transformed into a problem of finding the
minimum number of colors required to color the conflict

13,4

14,8

9,3

10,7

S0a S0b

S0b’

S0a’

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Original switch

P0a,0b

S0b

S0a

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Original switch

P0a,0b

7,104,13

8,14

9,119,10

S0a’ S0b’

14,813,4

10,7

11,910,9
S0a’ S0b’

Cut 1 Cut 2

3,9

4,137,10

8,14S0a S0b

(a)

(b)

Figure 2. (a) Conflict graphs for the two cuts in
the previous figure. Vertices represent a com-
munication going through the cut, and edges
represent conflicting communications. Com-
munication going in opposite directions are
handled separately. (b) Two different networks
obtained by partitioning the original switch.

graph. Since the communications going along different
directions of the pipe do not interfere with one another
(assuming full-duplex links), the coloring problem of the
conflict graphs for different directions can be treated sep-
arately.1 The overall number of links required is equal
to the maximum cardinality of the two sets of colors ob-
tained by solving the two coloring problems, as illustrated
by the following example.

Suppose each process in the sample communication
pattern shown in Figure 1 is mapped to one end-node.
Consider two different ways of partitioning the initial sin-
gle switch S0 that connects all end-nodes—namely, Cut 1
and Cut 2. Cut 1 divides the end-nodes into two sets,
Nodes 1 thru 8 and Nodes 9 thru 16 connected by two
switches S0a and S0b, respectively. Eight messages from
Contention Period 4 pass through the cut, characterized
by the conflict graphs as shown in Figure 2(a). From the

1Unidirectional links may also be assumed if the communication
pattern is asymmetric; however, connectivity needs to be consid-
ered, which requires extra steps to ensure that the resulting network
is strongly connected.

Before partitioning

P
P

P0,k
0,2

0,1

S0

After partitioning

S2 SkS1

P0a,1
P0a,2

P0b,1

P
P0b,2

0b,k

P0a,0b

S0a S0b

S1 S2 Sk

P0a,k

Figure 3. The general case for partitioning a
switch. Connections and other switches not
related to Switch S0 are not shown.

S0a S0b
P 0a,0b

Sm

P 0a,m

P 0b,m

direct
path

indirect
path

Figure 4. Two possible paths for communica-
tion between Switch S0a and Switch Sm.

conflict graphs, the number of colors required to color
the graph is four for both directions. Therefore, four
links are required between the partitions in order to en-
sure contention-freedom. For Cut 2, ten messages pass
through the intersection. Despite the fact that there are
more messages crossing this intersection than for Cut 1,
the number of links required is only three, which is one
less than Cut 1 as shown in Figure 2(b). Consequently,
the total number of messages between the two partitions
is not an accurate measurement of the number of links
required for contention-free communication; rather, the
maximum number of conflicting communications over all
contention periods gives a better estimate.

Extending this simple partitioning example to the gen-
eral case of partitioning, consider a switch S0 is parti-
tioned into two switches S0a and S0b. Before switch S0

is partitioned, it is connected to k other switches S1, S2,
. . ., Sk. Figure 3 shows the topologies before and after
the partitioning. A pipe P0,m connecting S0 to another
switch Sm is split into two pipes P0a,m and P0b,m connect-
ing S0a and S0b to Sm, respectively. A new pipe P0a,0b

is introduced between S0a and S0b. The set of end-nodes
connected to S0 is distributed to S0a and S0b.

3.2 Routing
Routing of messages is handled by distributing the set

of communications of S0 to S0a and S0b. Figure 4 shows
two possible routes for communication between S0a and
Sm. The route can be different for messages going in dif-
ferent directions, i.e., messages going from S0a to Sm and
messages going from Sm to S0a may take different routes.

A straightforward way of distributing the communication
is to choose the direct path for all communications, i.e.,
choosing the link from S0a to Sm instead of the path
through S0b. However, this is not necessarily the optimal
way of routing the communication when optimality of
partitioning is taken into account. Instead, our method-
ology considers each communication in P0a,m (which in-
herits all communications from P0,m) and tries to move
it to P0b,m via P0a,0b. A simulated annealing technique
is applied to minimize the total number of links required
by P0a,m, P0b,m and P0a,0b. This is repeated for all the
pipes that connect the original switch S0.

3.3 Fast Coloring and Complexity Analysis
Finding the minimum number of links required by a

pipe is critical in determining the quality of a partitioned
configuration. A way of solving the coloring problem of
the conflict graphs with minimal complexity is therefore
needed. Although the coloring problem is NP-hard [19], a
fast way of obtaining a close lower bound (i.e., estimate)
on the number of colors needed can be done heuristically
by comparing the communication maximum clique set
against the communications that pass through a pipe (see
the Fast Color procedure in the Appendix).

Each clique in the communication maximum clique
set contains a set of communications that are potentially
conflicting with each other in time. The communications
that are in common for both the clique and the pipe
will form a clique in the conflict graph as well. In the
CG example in Figure 1, the maximum communication
clique set contains three cliques representing the three
contention periods, respectively. Consider the five com-
munications, (9, 10), (9, 11), (8, 14), (4, 13) and (7, 10),
that go from switch S′0a to S′0b in Cut 2. Communica-
tion (9, 10) belongs to the first contention period, com-
munication (9, 11) belongs to the second period, and the
rest belong to the third period. Therefore, the maxi-
mum number of common communications between the
pipe and the maximum communication clique set is three
for the clique representing the third contention period.
In this case, this number is exactly the number of col-
ors required to color the conflict graph. In general, this
maximum number represents a close lower bound on the
number of colors needed to color the conflict graph.

As the partitioning goes on, communication is spread
across the network, and the number of communications
passing through a pipe decreases. The number of poten-
tial conflicts in the pipe will also decrease. This leads
to a decrease in the number of links required by the
pipe. When the number of links required drops below
three, the coloring problem becomes solvable in polyno-
mial time [19]. This is important since formal (not fast)
coloring must be done in the final step of the partitioning
algorithm to find the exact number of required links.

The fast coloring algorithm runs in O(KL) time,
where K is the number of different contention periods

(communication cliques) and L is the size of the cliques.
The main partitioning algorithm bisects the network
O(N) times. For each bisection, our simulated annealing
technique only considers a constant number of moves be-
tween partitions. Each move takes O(NKL) time to up-
date the estimated number of links for all the pipes con-
nected to the two involved partitions. After that, routes
will be optimized the O(N) number of pipes, each taking
a O(KL) amount of time assuming a constant number
of moves are considered between them. At the finaliza-
tion of the topology we need to run the true coloring
algorithm to find out the exact number of links between
partitions. We assume that the number of links are less
than or equal to 2 between any pair of partitions so that
the final coloring is done in polynomial time or o(KL).
Therefore, the overall complexity of the algorithm, dom-
inated by the main partitioning algorithm, is O(N2KL).

3.4 Illustration Through a Design Example
The main partitioning algorithm given in the Ap-

pendix uses a simulated annealing technique. The initial
network constructed from a single switch connecting all
processors is partitioned recursively until specified design
constraints are met by all switches. A number of different
design constraints can be used. One of the simpler ones
used in this example is maximum node degree, which lim-
its the number of inputs and outputs of each switch to
be less than some constant.

When the main partitioning algorithm partitions a
switch, it first creates a new switch and automatically
moves half of the processors in the original switch to the
new switch. The number of links required is then esti-
mated by applying fast coloring on the pipe connecting
the original switch and the new switch and also on the
pipes connecting them to other switches. Communica-
tions that use the two switches are then assigned a rout-
ing path using the simulated annealing technique given
by the Best Route procedure in the Appendix.

Possible moves between the partitions are then con-
sidered. The expected number of links required after
the move is estimated by the fast coloring algorithm, as-
suming the use of direct paths. Only those moves that
give a less expected (estimated) number of required links
that do not make the partition unbalanced are consid-
ered. The difference between the number of processors
on the original and new switches are limited to two in
order to allow balanced movement of a node from one
switch to another to be simplified. If no such moves are
found, the algorithm proceeds to check the design con-
straints and partition another switch, if required.

A step-by-step illustration of the design methodology
applied to the CG benchmark of Figure 1 is given be-
low. A design constraint which limits the maximum node
degree to five is imposed. This allows straightforward
comparison of the generated network to mesh and torus.
The initial switch is partitioned using Cut 1 shown in

1 2 3 4

5 6 7 9

8 10 11 12

13 14 1615

S0,0

S0,1

1 2 5

4 9 6 7

8 10 11 12

13 14 1615

3

 (2,4), (4,2) }
{ (1,2), (2,1),

 (4,13), (13,4) }
 (9,11), (11,9),
{ (9,10), (10, 9),

 (7,10), (10,7) }
 (6,8), (8,6),
{ (7,8), (8,7),

S1,1S1,0

S0,1

1 2

3 4 7 9

8 10 11 12

13 14 1615

5 6

S1,0 S1,1

{ (2,5), (5,2), (3,9), (9,3) }

{ (4,13), (13,4) }

 (7,10), (10,7) }
 (9,11), (11,9), (6,8), (8,6),
{ (9,10), (10,9), (7,8), (8,7),

S0,1

(e)

1 2 5

3 9 6 7

8 10 11 12

13 14 1615

4

{ (7,8), (8,7),
 (6,8), (8,6),
 (7,10), (10,7) }

{ (1,2), (2,1),
 (2,4), (4,2) }

{ (9,10), (10, 9),
 (9,11), (11,9),
 (4,13), (13,4) }

S2,0

S2,1

S1,1

S0,1

{ (3,4), (4,3),
 (1,3), (3,1),

 (4,13), (13,4) }

(a)

1 2 3 4

5 6 7 9

8 10 11 12

13 14 1615

 (7,10), (10,7), (4,13), (13,4) }

(a)

{ (9,10), (10, 9), (7,8), (8,7),
 (9,11), (11, 9), (6,8), (8,6),

(d)(c)

(f)

1 4 2 5

3 9 6 7

10 11 8 14

12 15 13 16

Figure 5. Partitioning in progress. Communica-
tions that go across switches are represented
by the ordered pairs enclosed by curly brack-
ets; communications in different contention pe-
riods are listed in different rows. The dotted
lines in (e) indicate empty pipes between the
switches. The final network is shown in (f).

Figures 1 and 2. The eight communications between the
two switches all belong to the third contention period.
Four of the communications go in the forward direction
of the pipe and the other four go in the backward direc-
tion. Therefore, the fast coloring algorithm returns four
as the number of bidirectional links required. After that,
possible moves between the switches are considered. In
this case, Processor 9 is selected since the estimated num-
ber of required links is only three by moving it to form
Cut 2. Finally, Processor 8 is moved to form the network
in Figure 5(b). The number of links required is only two
after the move. No further moves are considered because
none decrease the expected number of required links.

The two resulting switches, however, still violate the
design constraint. The algorithm therefore selects S0,0

to form switch S1,0 and S1,1 as shown in Figure 5(c).
Processor 9 is moved from S1,1 to S1,0 and, next, Pro-
cessor 2 is moved from S1,0 to S1,1 to form the network
in Figure 5(d). So far, only direct paths are used in the
network because the number of links required does not
change even if the indirect paths are considered in these
steps. Next, S1,0 is selected for partitioning. The result-
ing network is shown in Figure 5(e). Communications
(4,13) and (13,4) are redirected via S2,1 (i.e., indirect
path is used) to decrease the number of links required.

The rest of the network is systemically partitioned in a
similar way to form the final network configuration shown
in Figure 5(f). The main algorithm finalizes the number
of links between the switches by executing graph color-
ing (not fast coloring) on each pipe. At this point, this is
trivial because the number of links between switches is at
most one. The partitioning algorithm terminates at this
point since all the switches satisfy the design constraint,
i.e., node degree is less than or equal to five. Clearly,
the generated network requires far fewer resources than
a mesh for this application. The link utilization, layout
area and performance of a cross-section of networks gen-
erated by our design methodology are further analyzed
and compared with other networks in the next section.

4 Evaluation and Preliminary Results

In this section, we evaluate the usefulness of our pro-
posed design methodology using five benchmark pro-
grams, most of which exhibit well-behaved communi-
cation. Execution traces are obtained by running the
benchmark programs and analyzed to extract the com-
munication pattern. The communication pattern is then
fed into a topology generator written in C++. The
design methodology is applied by the topology gener-
ator in constructing minimal, low-contention networks
for the communication patterns. The generated topolo-
gies are compared with other networks in terms of re-
source usage by devising possible floorplans for each. For
performance comparisons, trace driven simulation using
IRFlexSim [20]—a flit-level network simulator—is per-
formed on the generated topology. The performance is
compared to a fully-connected crossbar, mesh and torus.

The parallel benchmark suite is composed of a set
of pseudo applications and kernel codes which repre-
sent typical scientific workload. We have chosen five
benchmarks in our study for their well-behaved char-
acteristics and simple programming model which enable
us to straightforwardly extract their communication pat-
terns. The five benchmarks used are BT (Block Tridi-
agonal solver), CG (Conjugate Gradient), FFT (3-D
Fast Fourier Transform), MG (Multi-Grid solver) and SP
(Scalar Pentadiagonal solver) taken from NAS [18]. The
BT and SP benchmarks exhibit very similar communi-
cation patterns which consists mostly of point-to-point
communications (both are based on a similar algorithm).

The CG benchmark’s communication behavior is domi-
nated by reduction and matrix transpose communication
in the main loop. The FFT benchmark is implemented by
a 2-D blocking algorithm, the communication of which is
mainly all-to-all communication within a row or column.
Finally, MG consists mainly of reduction to all nodes and
broadcast communication of short messages.

The communication patterns of the five benchmarks
are characterized by compiling the benchmark programs
with the MPE profiling library included in the MPICH
library [21]. The programs were executed on a PC-cluster
with 8-node and 16-node configurations, except for the
BT and SP benchmark on which a 9-node configuration is
used since these benchmarks require a number of proces-
sors equal to a perfect square. An execution trace which
consists of a logue of all communication events and the
parameters passed to communication library calls is ob-
tained. The communication pattern analyzer, written in
C++, locates calls to the same communication library
function across all the processors from the communica-
tion event logue. The communications from the same
communication library call are consider to be a part of
the same contention period, potentially overlapping in
time ideally if there is no time skew between processors.

The communication patterns are extracted as a set
of distinct contention periods represented by commu-
nication cliques. The contention periods obtained by
this method do not take into account any unpredictable
interaction that might occur between consecutive com-
munication library calls across all processors. Networks
generated by applying the design methodology on these
contention periods, as we assume, would be contention-
free in the ideal case of there being no time skew be-
tween processors. However, as spurious time skew could
cause partial overlap at the edges of consecutive “dis-
tinct” contention periods (creating additional contention
periods not accounted for), the above assumption trades
off potential blocking for added simplicity and reduced
resources in the generated networks. Results in the fol-
lowing sections confirm the validity of this tradeoff.

4.1 Resource Comparison
On-chip networks must satisfy 2-D planar layout con-

straints. Therefore, instead of comparing the number of
links and switches directly, we find a possible floorplan
for each generated network manually and compare the
amount of area dedicated to switches and links to that
of a corresponding standard mesh network. The chip is
assumed to be composed of processor tiles (à la the MIT
RAW [6]), each consisting of a single processor and a
network interface at the corner of the tile. Space is re-
served at the corner for the switch and at the border for
possible links that go across the tile. Figure 6(a) illus-
trates this for a mesh network. To increase the flexibility
in constructing different topologies, we also assume the
layout of tiles are such that they can take on different

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�������������
�������������
�������������
�������������

�������������
�������������
�������������
������������� �����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������

	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������

���������������
���������������
���������������
���������������

���������������
���������������
���������������

���������������
���������������
���������������

�����������������������������������
�����������������������������������
�����������������������������������

���������������������������������
���������������������������������
���������������������������������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����������������������������������
�����������������������������������
�����������������������������������

���������������������������������
���������������������������������
���������������������������������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������

�����
�����
�����
�����
�����
�����
�����

 � �
 � �
 � �
 � �
 � �
 � �
 � �

!�!�!�!�!�!�!
!�!�!�!�!�!�!
!�!�!�!�!�!�!

"�"�"�"�"�"�"
"�"�"�"�"�"�"
"�"�"�"�"�"�"

#�#�#
#�#�#
#�#�#
#�#�#
#�#�#
#�#�#
#�#�#
#�#�#

$�$�$
$�$�$
$�$�$
$�$�$
$�$�$
$�$�$
$�$�$
$�$�$

%�%�%�%�%�%�%
%�%�%�%�%�%�%
%�%�%�%�%�%�%
%�%�%�%�%�%�%

&�&�&�&�&�&�&
&�&�&�&�&�&�&
&�&�&�&�&�&�&
&�&�&�&�&�&�&

'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'

(�(�(
(�(�(
(�(�(
(�(�(
(�(�(
(�(�(
(�(�(

)�)�)�)�)�)�)
)�)�)�)�)�)�)
)�)�)�)�)�)�)

��*�*�*�*�*
��*�*�*�*�*
��*�*�*�*�*

+�+�+
+�+�+
+�+�+
+�+�+
+�+�+
+�+�+
+�+�+
+�+�+

,�,�,
,�,�,
,�,�,
,�,�,
,�,�,
,�,�,
,�,�,
,�,�,

-�-�-�-�-�-�-�-
-�-�-�-�-�-�-�-
-�-�-�-�-�-�-�-
-�-�-�-�-�-�-�-

.�.�.�.�.�.�.�.
.�.�.�.�.�.�.�.
.�.�.�.�.�.�.�.
.�.�.�.�.�.�.�.

/�/�/
/�/�/
/�/�/
/�/�/
/�/�/
/�/�/
/�/�/

0�0�0
0�0�0
0�0�0
0�0�0
0�0�0
0�0�0
0�0�0

1�1�1�1�1�1�1�1
1�1�1�1�1�1�1�1
1�1�1�1�1�1�1�1

2�2�2�2�2�2�2�2
2�2�2�2�2�2�2�2
2�2�2�2�2�2�2�2

3�3�3
3�3�3
3�3�3
3�3�3
3�3�3
3�3�3
3�3�3
3�3�3
3�3�3
3�3�3
3�3�3
3�3�3
3�3�3

4�4�4
4�4�4
4�4�4
4�4�4
4�4�4
4�4�4
4�4�4
4�4�4
4�4�4
4�4�4
4�4�4
4�4�4
4�4�4

5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5

6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6

7�7�7�7�7�7�7
7�7�7�7�7�7�7
7�7�7�7�7�7�7

8�8�8�8�8�8�8
8�8�8�8�8�8�8
8�8�8�8�8�8�8

9�9�9
9�9�9
9�9�9
9�9�9
9�9�9
9�9�9
9�9�9

:�:�:
:�:�:
:�:�:
:�:�:
:�:�:
:�:�:
:�:�:

linkProcessor

Processor

link

linkProcessor

link

Processor

link

linkProcessor

link

Processor

link

linkProcessor

link

Processor

Processor

Processor Processor

Processor

Processor Processor

Processor
Processor

link

link

link

link

Processor

ProcessorProcessor

Processor Processor

ProcessorProcessor

Processor

(b)

linkProcessor

linkProcessor

link

linkProcessor

link

linkProcessor

link

linkProcessor

link

linkProcessor

link

linkProcessor

link

linkProcessor

link

switch

switch

switch

switch

switch switch

switch

switchswitchswitch

switch switch switch

switch switch

switchswitch

switch switch

switchswitch

(a)

switch

switch

switch

Figure 6. Floorplans for: (a) original mesh net-
work and (b) generated network for CG.

orientations and can share reserved space at the corners
of adjacent tiles. This allows a reduction in the amount
of reserved space at tile corners if it can be determined
that multiple tiles need to connect to a given switch. For
example, Figure 6(b) shows the generated network for
the CG benchmark, which consists of rotated tiles shar-
ing switch ports with their neighbors. Compared with
the regular fixed tile approach, this variable orientation
approach may support topologies other than meshes but
with a more complicated tiling design.

The area used by switches and links are modeled as-
suming the following design contraints. The number of
ports for all switches are assumed to be five and, thus,
each individual switch consumes the same area irrespec-
tive of topology. The links between physically adjacent
switches (see Figure 6(b)) are assumed to consume zero
area, but the other links are assumed to take up an
amount of area proportional to the “manhattan” dis-
tances between the switches they connect. For simplicity,
it is assumed to be equal to the number of tiles crossed,
i.e., one for Figure 6(a) but as much as two for links
between non-adjacent switches in Figure 6(b).

A comparison of switch and link areas for the gen-
erated networks and meshes is shown in Figure 7. For
torus networks, we can easily know that the same total
switch area as that in a mesh is needed, but double the
total link area is required. For 8-node or 9-node config-
urations shown in Figure 7(a), the reduction in area by
the generated network versus the others is significant for
the CG, FFT and MG benchmarks. They consume only
50% switch area and 40% link area compared to the mesh
network (20% link area compared to the torus). The BT
and SP benchmarks have more complicated communi-
cation patterns which leads to a higher requirement on
network resources. However, the reduction is still sub-
stantial: switch and link area are reduced for the mesh
by 45% and 23%, respectively (62% less link area as com-
pared to the torus). Results are similar for 16-node con-
figurations shown in Figure 7(b). The CG benchmark
achieves the best resource reduction ratio with a 50% and
58% savings in switch and link area for the mesh, respec-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BT9 CG8 FFT8 MG8 SP9

Benchmark

R
el

at
iv

e
A

m
o

u
n

t
o

f
R

es
o

u
rc

e switches

links

mesh

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BT16 CG16 FFT16 MG16 SP16

Benchmark

R
el

at
iv

e
A

m
o

u
n

t
o

f
R

es
o

u
rc

e

switches

links

mesh

(b)

Figure 7. Resources for generated networks
normalized with respect to a mesh: (a) 8 or
9-node configurations and (b) 16-node config-
urations.

tively (79% savings in link area for the torus). The other
generated networks are very similar with approximately
40-50% reduction in switch area and 25% reduction in
link area as compared to the mesh (63% reduction in link
area as compared to the torus). Clearly, the reduction in
resources depends on the complexity of the communica-
tion pattern. The CG benchmark has the simpliest com-
munication patterns of the five benchmarks. However,
complexity in communication patterns may change with
the number of nodes. For example, the relative amount
of resources required by the FFT and MG benchmarks
increases from 8-node configurations to 16-node configu-
rations due to the increase in complexity of the collective
communications dominating the two benchmarks.

4.2 Performance Comparison
The performance of the generated networks are mea-

sured via trace-driven simulation using execution traces
obtained from the aforementioned benchmarks. IR-
FlexSim allows the use of different topologies on the same
trace file to facilitate performance comparisons. For each
benchmark, a fully-connected nonblocking crossbar net-
work, a mesh, a torus and the generated topology are
used for both an 8 or 9-node configuration and a 16-node
configuration. Each processor is assumed to be attached
to the network via one physical link to a switch. Switches
are connected by one or more physical links according to
the topology generated. Each physical link is assumed

0

0.2

0.4

0.6

0.8

1

1.2

ge
ne

ra
te

d

m
es

h

to
ru

s

ge
ne

ra
te

d

m
es

h

to
ru

s

ge
ne

ra
te

d

m
es

h

to
ru

s

ge
ne

ra
te

d

m
es

h

to
ru

s

ge
ne

ra
te

d

m
es

h

to
ru

s

Network Configuration

R
el

at
iv

e
E

xe
cu

ti
o

n
 T

im
e

Communication
Computation

BT9 CG8 FFT8 MG8 SP9

cr
os

sb
ar

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ge
ne

ra
te

d

m
es

h

to
ru

s

ge
ne

ra
te

d

m
es

h

to
ru

s

ge
ne

ra
te

d

m
es

h

to
ru

s

ge
ne

ra
te

d

m
es

h

to
ru

s

ge
ne

ra
te

d

m
es

h

to
ru

s

Network Configuration

R
el

at
iv

e
E

xe
cu

ti
o

n
 T

im
e

Communication
Computation

BT16 CG16 FFT16 MG16 SP16

cr
os

sb
ar

(b)

Figure 8. Performance of generated networks,
mesh and torus normalized with respect to a
crossbar network: (a) 8 or 9-node configuration
and (b) 16-node configuration.

to have 3 virtual channels. This helps to alleviate con-
tention problems for the mesh and torus. It may also help
the generated network since contention may occur due to
the simplifying assumption we have taken in determin-
ing the contention periods as described earlier. Physical
links and flit sizes are assumed to be 32-bits and oper-
ate at 800 MHz. These parameters are similar to those
used for the on-chip router of the Alpha 21364 [22]. De-
lay through a physical link is assumed to be equal to its
length in number of tiles, with a minimum of one clock.
Send and receive overhead of ten cycles is assumed [23].

Dimension-order routing (DOR) is assumed on the
mesh and true fully-adaptive routing (TFAR) is assumed
on the torus. Source routing is used for the generate
topology to give the necessary flexibility to assign com-
munications to different routes and minimize contention.
Deadlocks in the torus and generated networks, if oc-
cur, are handled by detection and regressive recovery, i.e.,
deadlocked messages are killed and retransmitted. For all
execution traces simulated on all of the above networks
and configurations, no deadlocks were detected. This re-
sult is consistent with prior observations [20].

The total execution time and communication time (in-
cluding waiting time and overhead) for the five bench-

marks on various topologies are measured and plotted in
Figure 8. For 8-node or 9-node configurations, the dif-
ferences in performance between the generated networks
and the other networks are small. For the CG bench-
mark, the mesh network is already contention-free for
the 8-node configuration, so there is no improvement in
performance using the generated topology, torus or non-
blocking crossbar. For the FFT and MG benchmarks, the
communication to computation ratio is small for the 8-
node configurations. This results in very little difference
in performance for the various topologies. The BT and
SP benchmarks have more complicated communication
patterns for the 9-node configurations compared to the
other benchmarks. The performance for the generated
network is better for these two benchmarks. Communi-
cation time is approximately reduced by 8%, resulting in
a overall improvement in execution time of 5%.

For 16-node configurations, the improvement of the
generated network over the mesh and torus is more
prominent. The communication to computation ratio
is generally higher in 16-node configurations. The CG
benchmark shows the best improvement in performance.
The generated network reduces the communication time
by about 26% compared to the mesh and by about 10%
compared to the torus. The overall improvement in
performance is about 18% compared to the mesh and
8% compared to the torus. The BT, FFT and SP
benchmarks also show some improvement in performance
(about 6–10% for the generated networks). There is no
significant difference in performance for MG, partly due
to the relatively small communication to computation ra-
tio and partly due to the small message size which makes
the program more sensitive to latency than contention.

In general, the generated networks perform very well
compared with the prohibitively expensive non-blocking
crossbar, which is the ideal case. The difference in perfor-
mance between the generated network and the crossbar
is less than 4% for all the benchmarks and configurations.
We believe this difference exists due to the time skew be-
tween processes, which creates interaction between con-
secutive potential contention periods. Tori, on the other
hand, only show significant improvement in performance
over the mesh network on the CG benchmark with 16-
node configuration. Since a torus requires two times the
link resources compared to a mesh network due to the
wrap-around links and the 2-D constraint of a chip, it is
not a very cost-efficient on-chip network.

We have also run the execution traces from BT and
FFT benchmarks on the network generated for the CG
benchmark to see the ability of the generated networks
in handling communication patterns other than the one
for which it is specifically designed. This, in effect, shows
sensitivity of the generated networks to possibly varying
communication patterns of applications in a workload.
Results show that FFT runs fine on the network gen-
erated for CG. Although not plotted due to space limi-

tations, the degradation in performance as compared to
the network generated for FFT is less than 2%. This
is because FFT’s communication consisting of all-to-all
communications among rows and columns of a 2-D ar-
ray is similar to the reduction communication pattern
which dominates in the CG benchmark. However, the
BT benchmark suffers an approximate 20% degradation
in performance when run on the CG network as compared
to the network generated especially for BT, e.g., only
slightly worse than mesh. Hence, generated networks are
still applicable under moderate changes in communica-
tion patterns.

Judging from the above results, the design methodol-
ogy is especially suitable for applications that are com-
munication bound (high communication to computation
ratio) and have characterizable communication (balanced
and well-behaved workload). In this case, both signifi-
cant improvement in performance and reduction in net-
work resources are highly possible. Although the perfor-
mance may not improve by applying the design method-
ology to applications that have a low communication to
computation ratio or characterizable communication, the
methodology can still generate a network that uses sig-
nificantly fewer resources than mesh on-chip networks
without significantly degrading the relative performance.
This is attractive for on-chip networks where resources
or power maybe are limited.

5 Conclusion and Future Work

In this paper, a sufficient conditions for contention-
free comunication based on the notion of both tempo-
ral and spatial resource sharing is introduced. A de-
sign methodology based on this model is proposed for
generating minimal, low-contention networks for appli-
cations with well-behaved communication patterns. We
apply our methodology to the communication patterns
extracted from five parallel benchmarks. The resulting
networks uses up to 60% fewer resources than meshes
and tori, while providing performance closer to that of
a fully-connected non-blocking crossbar. The generated
networks also show significant improvement in perfor-
mance (up to 18%) over mesh networks for well-behaved
applications that have a high communication to compu-
tation ratio. In the near future, the design methodology
will be extended to shared memory programs with well-
behaved memory access patterns. We believe that au-
tomated design of interconnection networks for special-
purpose computing systems such as can be done using
our proposed design methodology will become increas-
ingly important as the level of chip integration continues
to advance. Although we have only considered reduction
of resources in this paper, this work can be extended
to include other important optimization criteria such as
power to produce power-efficient on-chip networks and
optimization over multiple objectives.

Acknowledgements

We are grateful for the insightful comments and sugges-
tions made by Yuanyuan Yang and the anonymous reviewers.

Appendix

Main Partitioning Algorithm:

1. Form an initial network with a single “mega” switch con-
necting all processors.

2. If some switch does not satisfy the design constraints,
then goto 4.

3. Finalize the number of links in the switches by running
the formal coloring algorithm. If the all switches satisfy
the design constraints, then End.

4. Randomly select a switch Si that violates the design con-
straints.

5. Create a new switch Sj and randomly move half of the
processors attached to Si to Sj . Create a new pipe, Pi,j ,
between Si and Sj . For each switch to which Si connects,
create a new pipe between that switch and Sj .

6. Calculate the best route for communications through the
two switches using Best Route(Si, Sj).

7. Using Fast Color(Pipe P) on the pipes connected to
Si and Sj , get the expected number of links required
for each possible move of processors between the two
switches assuming direct routes.

8. If no move with less expected number of required links
is found, goto 2. If the moves with less expected number
of required links make the number of processors between
Si and Sj unbalanced by more than 2, goto 2.

9. Select a processor to move between Si and Sj which has
the best expected number of required links and does not
make the number of processors between Si and Sj un-
balanced by more than 2. Goto 6.

Procedure Best Route(Si, Sj):

1. Mark all pipes connecting to Si as unoptimized.
2. Select an unoptimized pipe Pi,k which connects Si to Sk.

3. For each communication in the Pi,k, try the indirect
route which passes through Pi,j and Pj,k to find moves
that can decrease the number of links required. Commit
all such moves. Mark Pi,j to be optimized.

4. If there are more unoptimized pipes connectd to Si, goto
2, else return.

Procedure Fast Color(Pipe P):

1. Find two sets of communications, Cf and Cb, through
the pipe for the forward direction and the backward di-
rection, respectively.

2. For each clique K in the communication maximum clique
set, the number of common communications with the
sets Cf and Cb is calculated, i.e., ‖K∩Cf‖ and ‖K∩Cb‖.
The maximum of these is returned.

References

[1] W. Dally and B. Towles. Route Packets, Not Wires: On-Chip
Interconnection Networks. In Proc. of the Design Automation
Conference, pp. 684–689, June 2001.

[2] W.H. Wolf. “Hardware-software Codesign of Embedded Sys-
tems”. Proc. of IEEE, 82(7):967–989, July 1994.

[3] R.B. Lee, Z. Shi, and X. Yang. “Efficient Permutation Instruc-
tions for Fast Software Cryptography”. IEEE Micro, 21(6):56–
69, Nov.-Dec. 2001.

[4] R.P. Dick and N.K. Jha. “MOGAC: a multiobjective genetic
algorithm for hardware-software cosynthesis of distributed em-
bedded systems”. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 17(10):920–935, Oc-
tober 1998.

[5] “What will have the greatest impact in 2010:
The processor, the memory, or the inter-
connect?” Panel Discussion at HPCA8,
www.usc.edu/dept/ceng/pinkston/presentations/statistics.html.

[6] M.B. Taylor et. al. “The Raw Processor - A Scalable 32-bit
Fabric for Embedded and General Purpose Computing”. In
Proceedings of Hotchips XIII, August 2001.

[7] J.S. Vetter and F. Mueller. “Communication Characteristics of
Large-Scale Scientific Applications for Contemporary Cluster
Architectures”. In Proceedings of the IPDPS 2002, April 2002.

[8] D. Gautier de Lahaut and C. Germain. “Static Communica-
tions in Parallel Scientific Programs”. PARLE’94.

[9] S.Q. Moore and L.M. Ni. “The Effects of Network Contention
on Processor Allocation Strategies”. In Proceedings of the
10th International Parallel Processing Symposium, pp. 268–
273, 1996.

[10] Y. Yang. “Routing Permutations with Link-Disjoint and
Node-Disjoint Paths in a Class of Self-Routable Networks”.
Proceedings of the International Conference on Parallel Pro-
cessing, pp. 239–246, August 2002.

[11] Timothy Mark Pinkston. Theoretical support for deadlock-
free dynamic network reconfiguration. In Workshop on Self-
Healing, Adaptive, and self-MANaged systems (SHAMAN)
with ICS, June 2002.

[12] J. Rose and S. Brown. “Flexibility of Interconnection Struc-
tures for Field-Programmable Gate Arrays”. IEEE J. of Solid-
State Circuits, 26(3):277–282, March 1991.

[13] K. Compton and S. Hauck. “Reconfigurable Computing: A
Survey of Systems and Software”. ACM Computing Surveys,
34(2):171–210, June 2002.

[14] X. Qin and Y. Yang. “Nonblocking WDM Switching Networks
with Full and Limited Wavelength Conversion”. In Proc. of the
10th Int. Conf. on Comp. Comm. and Networks (IC3N’01),
pp. 48–54, October 2001.

[15] M. Raksapatcharawong and T.M. Pinkston. “Design Issues
for Core-based Optoelectronic Chips: A Case Study of the
WARRP Network Router”. IEEE JSTQE, Special Issue on
Smart Photonics, 5(2):330–339, March 1999.

[16] Q.P. Gu and S. Peng. “Wavelengths Requirement for Permu-
tation Routing in All-optical Multistage Interconnection Net-
works”. In Proc. of the 14th IPDPS 2000, pp. 761–768, May
2000.

[17] D. Hwang and Z. Xu. In Scalable Parallel Computing.
WCB/McGraw Hill, 1997.

[18] “The NAS Parallel Benchmark”.
http://www.nas.nasa.gov/Software/NPB.

[19] T. Coremen, C. Leiserson, and R. Rivest. In Introduction to
Algorithms. McGraw-Hill, 1997.

[20] Sugath Warnakulasuriya and Timothy Mark Pinkston. Char-
acterization of Deadlocks in Irregular Networks. J. of Par.
and Dist. Comp., 62(1):61–84, Jan 2002.

[21] “MPICH: A Portable Implementation of MPI”. http://www-
unix.mcs.anl.gov/mpi/mpich/.

[22] S. Mukherjee et al. The Alpha 21364 Network Architecture.
In Symposium on HOT Interconnects 9, pp. 113–117, August
2001.

[23] D.E. Culler et al. “LogP: A Practical Model of Parallel
Computation”. Communications of the ACM, 39(11):78–85,
November 1996.

