
Inter-cluster Communication Models for Clustered VLIW Processors

Andrei Terechko1, Erwan Le Thenaff 1, Manish Garg1, Jos van Eijndhoven1, Henk Corporaal2

1 - Philips Research, Eindhoven, The Netherlands
2 - IMEC, Leuven, Belgium; TUE, Eindhoven, The Netherlands

andrei.terechko@philips.com

Abstract

Clustering is a well-known technique to improve the
implementation of single register file VLIW processors.
Many previous studies in clustering adhere to an inter-
cluster communication means in the form of copy opera-
tions. This paper, however, identifies and evaluates five
different inter-cluster communication models, including
copy operations, dedicated issue slots, extended operands,
extended results, and broadcasting. Our study reveals that
these models have a major impact on performance and
implementation of the clustered VLIW. We found that copy
operations executed in regular VLIW issue slots signifi-
cantly constrain the scheduling freedom of regular opera-
tions. For example, in the dense code for our four cluster
machine the total cycle count overhead reached 46.8%
with respect to the unicluster architecture, 56% of which
are caused by the copy operation constraint. Therefore,
we propose to use other models (e.g. extended results or
broadcasting), which deliver higher performance than the
copy operation model at the same hardware cost.

1 Introduction

Convergence of different media in modern consumer
electronic devices demands high performance at low cost.
Moreover, keeping pace with constantly emerging content
standards and dynamic reconfiguration of these devices
requires flexibility of these products. To satisfy these mar-
ket demands, media processors capable of handling multi-
ple media streams in software have been devised. Media
processors are used, for example, in high-definition digital
TV, videophones, and 3D video games. These applications
require thousands lines of high-level language code, char-
acterized by high Instruction-Level Parallelism (ILP) and
numerous operations on low-precision data of 8 and 16
bits. To exploit these features, media processors exten-
sively use parallel hardware, for example, in the VLIW
and/or SIMD fashion. Obviously, efficient exploitation of

these parallel resources and interactive design of large
software demand a fast parallelizing compiler.

Many existing media processor cores have a VLIW ar-
chitecture [1][7][9]. The classical VLIW data-path con-
tains a number of parallel function units (FUs), a multi-
ported register file (RF) and a bypass network, see Figure
1. The single uniform RF simplifies code compilation for
the processor, while the bypass network enables fast for-
warding of the produced results to the operations in the
earlier pipeline stages. However, the large multi-ported
register file and bypass network hamper scalability of the
processor, which only aggravates with advance of VLSI
technologies [15][5].

b
y
p
a
s
s

single RF (128 registers)

FU FUFUFU

single RF (128 registers)

FU FUFUFU

Figure 1. Unicluster architecture

This paper explores clustered data-paths of VLIW ar-
chitectures, which resolve these two bottlenecks. In a
clustered VLIW, see Figure 2, the RF is split in several
RFs with fewer registers and ports.

RF2 (64 registers)RF1 (64 registers)

FU FUFU FU

cluster 1 cluster 2

RF2 (64 registers)RF1 (64 registers)

FU FUFU FU

cluster 1 cluster 2

Figure 2. Two-cluster architecture

The partitioned RFs have lower access time, occupy
smaller area and dissipate less power [2][3]. However, the
compiler for such architectures has to schedule operations
addressing multiple register files. The bypass network of a
clustered VLIW is partitioned too. Therefore, the number
of inputs of the multiplexer network decreases, and the
wiring gets shorter.

Currently, there exist diverse inter-cluster communica-
tion models [6][7][8][10][16][17]. For example, we can
differentiate between fully and partially connected net-
works of VLIW clusters. In the fully connected network
[7][6] each cluster has a direct connection to all others.
Although partial interconnects promise better scalability,
the instruction scheduler for such architectures has to deal
with a complex problem of avoiding deadlock (when a
copy path can not be scheduled) [16]. This paper focuses
only on fully connected deadlock-free networks. We also
discriminate two inter-cluster connectivity types: the
point-to-point network presented in Figure 2 and the bus-
based interconnect presented in Figure 3. Although we
concentrate on the point-to-point type, our results are also
applicable to the bus-based inter-cluster communication.

RF2 (64 registers)RF1 (64 registers)

cFU FUFU cFU

inter-cluster bus(es)

Figure 3. Bus-based two-cluster architecture

In this study we address the taxonomy of inter-cluster
communication options and evaluate them based on the
cycle count and implementation complexity. The remain-
der of the paper is organized as follows. First, we define
five inter-cluster communication models in Section 2 and
analyze them from the implementation point of view. Sec-
ond, the composition of the cycle count overhead is evalu-
ated for all the models in Section 3. Third, we compare
our research to other state-of-the-art studies and, finally,
sum up the comparison of the models.

2 Inter-cluster communication models

The inter-cluster data transports have to satisfy con-
straints of the implementation of a clustered VLIW. In the
VLIW tradition, mapping of operations to time slots and
function units is visible in the code. Hence, the number of
time slots between data-dependent operations scheduled in
different clusters must increase by the latency of inter-
cluster data transfers. Moreover, the number of inter-

cluster transports per instruction should not exceed the
inter-cluster bandwidth. These hardware restrictions re-
quire explicit specification of the inter-cluster communi-
cation in the VLIW code.

There exist numerous ways to add inter-cluster com-
munication (ICC) in the instruction set architecture (ISA).
As this paper shows, the ICC model to a large extent de-
termines the cycle count overhead, the code size, and the
implementation complexity of the clustered processor. In
this section we define and analyze five models of ICC in
terms of implementation complexity. Table 1 summarizes
the complexity characteristics of the considered models.

Each description of the ICC model is accompanied by a
simple code example to show inter-cluster transport in this
model. Below is an example code showing two instruc-
tions of a four issue slot unclustered VLIW. Semicolons
separate VLIW instructions and symbol | separates opera-
tions within an instruction. Symbol * designates an opera-
tion that is irrelevant for the example. Commas are used to
divide the operands and results, and symbol → separates
operands from the result. Indices in square brackets iden-
tify the cluster. In the examples for the ICC models left-
aligned and right-aligned sequences of operations belong
to different clusters. The latency of the inter-cluster trans-
fers in the examples is one cycle.

2.1 Copy operations

Inter-cluster communication in this model is specified
as copy operations in regular VLIW issue slots. In the ope-
rand read stage of a copy operation the value is read from
the local RF, passed through the bypass network, and
clocked in the inter-cluster pipeline register, see Figure 4.

������

��� ��

���	

�

�� ���

���	

�

Figure 4. Copy operations

In the next cycle in the execute stage of the copy, the
value is sent to the other cluster and fed into the remote
bypass. This model, evidently, requires only one extra
write port on the RFs per inter-cluster path and has a rather
simple bypass network compared to other models, see col-
umns 2,3, and 4 in Table 1.

This encoding of ICC implies that in a number of
VLIW instructions some issue slots will be occupied with

op1 r1,r2→r3 | * | * | * ;
* | * | * | op2 r3,r4→r5;

inter-cluster copy operations. The copy operations will
consequently block scheduling of regular operations,
which evidently increases the schedule length. On the
other hand, this model does not expand the VLIW instruc-
tion, and keeps the instruction decoder simple. However,
in the scheduled code there will be extra operations –
copies enlarging the code size.

An example code with inter-cluster transport by means
of copy operations is presented below. The inter-cluster
data exchange is carried out solely by copy operations. All
other operations access only their local RFs.

A variant of this ICC model is used in the ISA of
STMicroelectronics and Hewlett Packard Lx [8]. In fact,
Lx requires two copy operations per inter-cluster transfer:
send and receive. The send initiates the data transfer in the
source cluster and the receive gets the data in the destina-
tion cluster.

2.2 Dedicated issue slots

In this model inter-cluster communication is executed
in extra dedicated issue slots of the VLIW instruction, see
Figure 5. For example, each processing element (cluster)
of BOPS’s ManArray [6] has a dedicated issue slot to
control the cluster switch that exchanges data among the
processing elements. Inter-cluster transport in the dedi-
cated issue slot model can take place in any VLIW in-
struction between the producer and consumer operations
without blocking regular operations. In fact, this model
provides the highest operation scheduling freedom among
the considered models. Although this model seems similar
to the copy operation model, the dedicated slots have
rather different performance and implementation charac-
teristics.

���

���

���

���

�� ���� ��

���	

� ���	

�

Figure 5. Dedicated issue slots

Implementation of this model is rather expensive. Extra
dedicated issue slots lead to expansion of the VLIW in-
struction, complicating the instruction decoder. Moreover,
this ICC model needs two extra RF ports per dedicated
slot and the number of multiplexers in the bypass network
is comparatively high, see Table 1. Below is the code for
the machine shown in Figure 5 with two dedicated issue

slots for inter-cluster transport in slots 3 and 4. In fact, the
two extra slots make the total slot count equal to six. The
inter-cluster transfer of r3 in cluster 1 to r1 in cluster 2
takes place in slot 3 in the second instruction.

2.3 Extended operands

The source operands in this ICC model are extended
with cluster identification. For example, the Texas Instru-
ments VelociTI architecture [7] extends some of the oper-
ands with cluster id fields. These fields specify the RF
where the values should be read from. VelociTI restricts
the inter-cluster bandwidth to two inter-cluster reads per
instruction. This model allows using a value from a remote
RF without storing it in the local RF, see Figure 6, which
evidently lessens the register pressure. On the other hand,
since the transferred value is immediately consumed by the
operation without being stored in the local RF, “reuse” of
the copied value is rather hard. Note that this model has
more multiplexers in the bypass than the unicluster.

������

�� ���� ��

Figure 6. Extended operands

The code below illustrates the extended operand model.
The first argument of the operations is extended with
specification of the RF. op2 consumes the result of op1
without storing it in RF2. A downside of this ICC model is
that the hardware should detect and initiate the inter-
cluster transfer rather early in the pipeline, which may be
difficult in short pipelines. Moreover, the cluster id exten-
sion is always fixed to the VLIW instruction with the cor-
responding operand, which limits the scheduling freedom
of inter-cluster transfers in time.

2.4 Extended results

An architecture with extended results is presented in
Figure 2. In this model the result of an operation is stored
in the cluster specified by the cluster id bits attached to the
destination register address. Since the operation’s result is

op1 r1,r2→r3 | * | * | * ;
* | copy r3→r1[2] | * | * ;
* | * | * | op2 r1,r2→r3;

op1 r1[1],r2→r3 | * | * | * ;
* | * | * | * ;
* | * | * | op2 r3[1],r1→r2;

op1 r1,r2→r3 | * | * | * | * | * ;
* | * | r3→r1[2] | * | * | * ;
* | * | * | * | * | op2 r1,r2→r3;

not stored locally, this model implements inter-cluster
moves rather than copies. In the code example below the
result of op1 is moved to register r1 in cluster 2 without
being stored in cluster 1.

If the cluster id and an extra destination field were at-
tached to the results, the architecture would implement
multicast – writing the same result to a number of clusters
as the sendb operation from the CRB scheme [18]. In the
code below operation op1 writes its result to the local reg-
ister r1 and to the register r1 in cluster 2. The latency of
transporting the result to the cluster executing op2 is ac-
counted for by delaying op2 till the third instruction. We
used this variant of the extended results model in our per-
formance evaluation in Section 3.

2.5 Broadcasting

This model can use shared register addresses to com-
municate between clusters. The registers corresponding to
the shared addresses can be both read and written in all
clusters. This naturally suggests a shared resource, which
contradicts to our notion of clustering. However, for ex-
ample, the Sun MAJC architecture [9] avoids the shared
resource by replicating the ‘shared registers’ in all clusters
[10]. The contents of the replicated registers are kept syn-
chronized, see Figure 7.

���	���������������	������������

�� ���� ��

���	

� ���	

�

��	����� ��	�����

Figure 7. Shared register addresses

The FUs always read the ‘shared registers’ from the lo-
cal copy, whereas the writes to the ‘shared registers’ are
broadcasted to all replicas. Consequently, all clusters re-
ceive the values written to the shared RF, but not at the
same time. A remote cluster can only read the broadcasted
value from its copy of the shared registers after the delay
of the inter-cluster transfer. Besides the ‘shared registers’,
this model allows local RFs that are accessible only within

one cluster. The FUs and the local RF of a cluster are fully
connected.

From the implementation point of view, replication of
the registers costs significant area. Moreover, the inter-
cluster write bandwidth, and, consequently, the number of
RF ports is rather high in this model. To lessen the number
of write ports on the replicated RFs we can restrict the
number of writes to the ‘shared registers’ per instruction.
In Figure 7, for example, only one operation per cluster
can write to a 'shared register'. Nevertheless, broadcasting
to all clusters is never power-efficient.

Using the operand and result fields, the inter-cluster
transport can be easily encoded by splitting the register
address space into local and shared registers. For example,
the four-cluster Sun MAJC-5200 has a total of 224 logical
registers using 7 bit operands and results. The 7-bit regis-
ter address space is partitioned into 96 shared registers
accessible by all clusters and 32 registers local for each
cluster.

In the example code below the register address space is
split like in MAJC-5200. Shared register r127 is used to
communicate the result of op1 to op2. The result of op1
arrives in the cluster of op2 one cycle later than in the
cluster of op1, see Figure 7. Op2 is, consequently, delayed
till the third instruction.

Another encoding alternative of the broadcasting ICC
model is to specify with an additional bit whether an op-
eration stores the result locally or broadcasts it to all clus-
ters. In the code example below operation op1 broadcasts
its result to all clusters, which is specified by b after desti-
nation register r3. op2, on the contrary, stores the result
only locally in register r2. Obviously, register r3 must be
made free in all clusters from the cycle with op1.

Note that this encoding does not imply replication of
the registers. We used this variant of the broadcasting
model for our performance evaluation in Section 3.

op1 r1,r2→r127 | * | * | * ;
* | * | * | * ;
* | * | * | op2 r127,r1→r2;

op1 r1,r2→r1,r1[2] | * | * | * ;
* | * | * | * ;
* | * | * | op2 r1,r2→r3;

op1 r1,r2→r1[2] | * | * | * ;
* | * | * | * ;
* | * | * | op2 r1,r2→r3[2];

op1 r1,r2→r3b | * | * | * ;
* | * | * | * ;
* | * | * | op2 r3,r1→r2;

Table 1. Complexity characteristics of the inter-cluster communication models
Inter-cluster
communication model

extra
#read
ports

extra
#write
ports

bypass
(#muxes:
#inputs) *

VLIW instruction size
increase (bits)

total number of registers

Unicluster – – 8:5 0 2Nbits

Copy operations 0 (C-1)Bw 8:5 0 C•2Nbits

Dedicated slots (C-1)Bw (C-1)Bw 10:4 Bw • [log2(C-1) + 2•Nbits] C•2Nbits

Extended operands (C-1)Br 0 10:4 Br • [log2(C-1) + Nbits] C•2Nbits

Extended results 0 (C-1)Bw 8:4 Bw • [log2(C-1) + Nbits] C•2Nbits

Broadcasting 0 (C-1)Bw 8:4 Bw • [log2(C-1) + Nbits] C•2Nbits

C – the number of clusters
Nbits – the number of bits per operand/result field
Nglregs – the number of registers globally accessible
Bw, Br – the number of processor words a cluster can write to or read from the other clusters (bandwidth)
* – for the 4 issue slot two-cluster machine with the inter-cluster bandwidth of 1 inter-cluster transfers per cluster per in-

struction

3 Composition of the cycle count overhead

Although clustering enables higher clock speed, it also
incurs overhead in the number of execution cycles. This
section evaluates the total cycle count overhead for two-
cluster and four-cluster 8-issue slot machines. On top of
that, we identify different factors of this overhead and
quantify their separate contributions.

We distinguish the following factors in the cycle count
overhead:

1. Extra latency of inter-cluster data transfers. Ac-
cording to our notion of clustered VLIWs, obtain-
ing a value from a remote cluster costs one or more
extra cycles.

2. Limited inter-cluster bandwidth. In the clustered
VLIW the reduced number of RF ports limits the
inter-cluster bandwidth. Obviously, the conflicts
on the RF ports will stretch the schedules.

3. Higher register pressure. In the schedules for
clustered VLIWs some data gets replicated in mul-
tiple RFs. This increases the register pressure,
which may lead to spill-code or serialization of the
register live ranges and, hence, extra execution cy-
cles.

4. Inter-cluster communication model constraints.
The encoding of inter-cluster communication in the
ISA may constrain operation scheduling. Most of
the five ICC models described in Section 2 impose
certain scheduling constraints. For example, the
copy operations occupy VLIW issue slots, which
become unavailable for regular operations. This ef-
fect extends the schedules. Yet another example of
an ICC model constraint is present in the extended
operand model, in which inter-cluster transfers are
coupled to the VLIW instruction consuming the
value to be transferred. ICC models free of these

constraints (e.g. dedicated issue slots) avoid the as-
sociated cycle count overhead completely.

5. Extra cache stall cycles due to code size overhead
and higher register pressure. The code for clus-
tered VLIWs specifies ICC. This may result in the
code size overhead, which can lead to extra in-
struction cache stall cycles. Moreover, the in-
creased requirements on the registers may cause
spilling, and, hence, extra data cache stall cycles.

The contributions of these factors to the cycle count
overhead are not always independent from each other. For
example, the extra inter-cluster latency increases the live
ranges of the local variables and, consequently, increases
the register pressure. Therefore, the extra register pressure
overhead is influenced by the increased inter-cluster la-
tency. Another example is the dependence of the extra
data cache stall cycles on the increased RF pressure. The
higher the RF pressure, the more data cache stalls occur
due to spilling.

Due to the interdependent nature of the factors, the sum
of the individual contributions measured separately will
not be equal to the total cycle count overhead. Therefore,
we decided to evaluate the contributions incrementally,
see Figure 8. First, the baseline cycle count was measured
on the 8-slot unicluster machine. Second, the cycle count
overhead due to extra inter-cluster latency was quantified
on the specially configured architecture latency, which
features only one factor – extra latency. This portion is
caused by the technological trend increasing wire delay
and can hardly be avoided. Second, we evaluated the cycle
count overhead caused by extra latency and limited inter-
cluster bandwidth using architecture bandwidth. The
bandwidth was decreased to 1 inter-cluster transfer per
cluster per VLIW instruction, which significantly contrib-
utes to the overall cycle count overhead. Obviously, the
added contribution of the limited bandwidth can be calcu-

lated by subtracting the overhead of architecture latency
from architecture bandwidth. Third, architecture RFpres-
sure with extra latency, limited bandwidth and 128 regis-
ters gives us the extra overhead caused by the increased
RF pressure. And finally, we evaluated the added contri-
butions of the five ICC models.

unicluster bandwidthlatency
RF

pressure

copy
operation

dedicated
slots

extended
results

extended
operands

broadcast

3 basic factors

Figure 8. Incremental evaluation of the factors

Clustering affects the code size with respect to the uni-
cluster, and, consequently, the instruction cache stall cy-
cles. Smaller partitioned register files obviously require
fewer bits to encode operands and results of the operation.
However, the instruction of a clustered VLIW must in-
clude specification of the inter-cluster communication
(e.g. in the form of the copy operation). Furthermore,
longer schedules for the clustered VLIW require more
instructions to encode a program. This also expands the
code. In our experiments we found that these effects
mostly compensate each other, which leads to the static
code size deviation within +/-5% with respect to the uni-
cluster. Having discovered the small variation of the code
size, we decided to neglect the instruction cache effects.

The design space of data memory hierarchies for clus-
tered processors is huge. One of the major decisions is
whether to distribute the caches among the clusters (and
somehow maintain cache coherence) or have a unified
cache for all clusters. If the caches are distributed, a deci-
sion should be taken whether the cluster blocks on a miss
of the corresponding cache or not, etc. Having considered
this variety of trade-offs, we conclude that evaluation of
data memory for clustered processors deserves a separate
study, and, therefore, we assume ideal memory in the re-
mainder of this paper.

3.1 Benchmarks

We evaluated the cycle count overhead on multimedia
C benchmarks optimized for the TriMedia VLIW with a
rich SIMD operation set [1][11]. To cover a significant
area of the application domain, the benchmarks were cho-
sen from different categories, see Table 2.

Table 2. Optimized benchmarks
Benchmark Category ILP lines of

C code
Viterbi decoder Data communication 4.1 140
Peaking Video processing 2.3 2544
Median filter Video processing 3.3 588
MPEG II encoder Video coding 4.5 12649
Layered Natural
Motion

Video processing 3.2 16025

DVC decoder Video coding 4.3 4491
Renderer 3D graphics 2.8 7159
Transform 3D graphics 3.3 1399

The benchmarks underwent optimizing source-to-
source transformations. Furthermore, the code was en-
hanced with 64-bit SIMD intrinsics, cache prefetch opera-
tions, loop unrolling, software pipelining, function in-
lining, restricted pointers, etc. The presented ILP rates
were measured dynamically in the simulator for the uni-
cluster 8-issue slot machine. Note that SIMD operations
are equivalent to 8-24 RISC operations. This makes the
actual ILP for the optimized code higher than presented in
Table 2. In total, the optimization of these applications
brought 10x-40x speedups with respect to the initial
source code.

3.2 Instruction scheduler

We measured the cycle count overhead using the state-
of-the-art TriMedia C/C++ compiler TCS2.1. For our
study we built an instruction scheduler to schedule the
inter-cluster communication in all five ICC models. The
scheduling unit is the guarded decision tree of basic blocks
[23][24][11]. The guarded decision tree is an acyclic con-
trol flow graph without join point, which is a more general
case than superblocks [21] or traces [22]. Inspired by [18],
[19], and [20], we integrated cluster assignment, instruc-
tion scheduling, and register allocation in a single phase.
Thanks to the integration of the phases our algorithm
avoids the well-known problem of phase coupling
[18][12] and yields a significantly denser code [19].

The core of our scheduling algorithm is outlined in
Figure 9. Register live range information is kept in register
bit vectors per VLIW instruction. The floater operations
are used to shorten register live ranges and are described
in [11]. To efficiently fill in the 3 branch delay slots of the
TriMedia, the scheduler uses backtracking. The jumps are
scheduled optimistically, and if the scheduler does not
manage to fit the remaining operations in the branch delay
slots, it backtracks. Note that spill and restore code is in-
serted on the fly during operation scheduling. Remarkably,
spill and restore operations may trigger scheduling of extra
copy operations.

Figure 9. Scheduling algorithm

build_ordered_cluster_list(oper, tree) orders cluster
assignments in cluster_list based on the following cost
function:

C = ccNc + crfNliveregs/Nregs + cslotsNopers/Nslots, (1)

where C is the cost of the cluster assignment,
Nc – number of copies required,
Nliveregs – number of live registers in the cluster,
Nregs – total number of registers in the architecture,
Nopers – number of operations scheduled in the cluster,
Nslots – number of issue slots in the cluster,
cc, crf, cslots – term coefficients, cc>0, crf>0, cslots>0.
The term coefficients were tuned for optimal perform-

ance. Minimization of cluster copies plays the major role
in our cluster assignment. The scheduler assigns an opera-
tion to the cluster that requires the fewest inter-cluster data
transfers by examining predecessors and successors of the
operation. If we considered only predecessors p1 and p2
of operation o1 from Figure 10, assignments of o1 to
cluster 1 and 2 would seem to need only one copy opera-
tion each. However, including successor s1 into consid-
eration indicates that assignment of o1 to cluster 1 will
require later another copy operation from p3. In fact, one
can analyze even bigger neighborhoods of the data flow
graph around the operation being scheduled to count re-
quired copies. However, our experiments showed no sub-
stantial benefit from considering larger neighborhoods.

cluster 2

scheduled
operations

cluster 1

p1 p2 p3

o1

s1

not scheduled
operations

Figure 10. Accounting for future copy operations

As a secondary criterion, the scheduler dynamically
balances the pressure on the RFs and the number of op-
erations in the clusters. In particular, the scheduler tends to
choose the cluster with the smallest ratio of the scheduled
operations to the total number of issue slots in the cluster.
Under these heuristics the scheduler's performance is
rather high, yielding only 5-10% longer schedules than
hand-optimized ones.

Our scheduler performs register allocation within a de-
cision tree of basic blocks. The registers used to transport
values between the decision trees (globals) [11] are allo-
cated prior to instruction scheduling. In our experiments
these global values were distributed among the clusters in
a round-robin fashion. The round-robin distribution
proved to be better than assigning all globals to one clus-
ter, since the latter unbalances cluster assignments of op-
erations towards the cluster with globals. Note that for the
broadcast model our scheduler broadcasts globals such
that they can be read later without penalty in all clusters.
Performing such an optimization for the other ICC models
may result in many ICC operations at the end of decision
trees and, hence, extend the schedule length, especially,
when the global variables have to be sent to many clusters.
Therefore, the optimization of accesses to globals was
implemented only for the broadcast model.

The ICC models supported by the scheduler require
various model-specific optimizations. For example, in the
extended results model a result of an operation besides
being stored in the local RF may also be copied to a re-
mote RF. However, if some consumers of this result reside
in the clusters where the result was not copied to, the
scheduler has to add and schedule an extra operation that
will send the same result to the other cluster(s). Another
important model's peculiarity is present in the extended
operands. In this model “reuse” of inter-cluster transferred
values is quite cumbersome, since the operation being
scheduled immediately consumes the sent value as an op-
erand without storing it locally. Therefore, in this model
our scheduler does not reuse the sent value. On top of that,
if in the extended operand model two operands of the
same operation require inter-cluster transfers from differ-
ent clusters but the inter-cluster bandwidth allows only one

 schedule_operation(oper, tree) {
cluster_list = build_ordered_cluster_list(oper, tree);
for (instr = i_min; instr->cycle <= i_max; instr = instr->next) {

for (cl = cluster_list->head; cl; cl = cl->next) {
if (!assign_oper_to_slot(oper, cl, instr))

continue;
if (!schedule_floaters(oper, cl, instr) {

unschedule_floaters(oper);
continue; }

if (!schedule_copies(oper, cl, instr)) {
unschedule_copies(oper);
unschedule_floaters(oper);
continue; }

if (!assign_register(oper, cl, instr))
if (!schedule_spill_restore(oper, cl, instr)) {

unschedule_copies(oper);
unschedule_floaters(oper);
continue; }

early_jump = too_optimistic_jumps(tree);
if (early_jump)

/* unschedule & restart scheduling from early_jump */
backtrack (early_jump, tree);

return TRUE; /* successfully scheduled operation oper */
}

}
return FALSE; /* failed to schedule operation oper */

 }

transfer, the same technique is used as described above for
the extended result model.

3.3 Measuring the composition of the cycle
count overhead

This section presents the techniques we used to meas-
ure separate contributions of the four major factors (ex-
cluding cache effects) to the cycle count overhead for the
five ICC models. The baseline unicluster architecture is an
8-issue slot VLIW with the TriMedia operation set. All
operations are pipelined and can contain a guard (predi-
cate), two operands and one result. The distribution of the
function units among slots was made such that the derived
clustered architectures contained equal functionality in all
their clusters, see Table 3.

Table 3. Baseline unicluster architecture
Function Units Issue slots Latency
alu, shifter 1,2,3,4,5,6,7,8 1
imul, fmul 1,3,5,7 3
load/store 2,4,6,8 3
branch 1,3,5,7 4

The two-cluster architectures used in our experiments
have slots 1, 2, 3, and 4 in cluster one and slots 5, 6, 7, and
8 in cluster two. Each of the two clusters possesses 64
registers. The four-cluster architectures have slots 1 and 2
in cluster one, slots 3 and 4 in cluster two, slots 5 and 6 in
cluster three, and slots 7 and 8 in cluster four. Each of the
four clusters contains 32 registers.

To incrementally evaluate individual contributions of
the four factors to the total cycle count overhead, we built
specially configured clustered architectures, see Table 4.
Execution of a benchmark on a specially configured ar-
chitecture produces cycle count overhead due to certain
factors only, while the other factors are suppressed by un-
bound resources. For example, the special architecture
latency features a huge RF, unrestricted inter-cluster
bandwidth and no ICC model constraints. Unrestricted

inter-cluster bandwidth is implemented by instantiating
sufficient extra issue slots with copy function units, which
allow each operation to read (with a delay) a guard and
operands from a remote cluster. Besides, the dedicated
issue slots do not constrain scheduling freedom. So, the
only factor contributing to the cycle count overhead of
architecture latency relative to the unicluster is the inter-
cluster transfer’s latency of one cycle. The measured indi-
vidual contributions of the three basic factors are reported
in Table 5 for the two cluster and four cluster machines.

Table 4. Specially configured architectures
special

 architecture
ICC

latency
(cycles)

ICC band-
width*

total
regis-

ters

ICC model

latency 1 unbound 1024 Dedicated slots
bandwidth 1 1 1024 Dedicated slots
RFpressure 1 1 128 Dedicated slots
copy 1 1 128 Copy operations
dedslots 1 1 128 Dedicated slots
extresults 1 1 128 Extended results
extoperands 1 1 128 Extended operands
broadcast 1 1 128 Broadcasting

* - per cluster

The contributions of the five ICC encoding models
were evaluated on the special architecture dedslots, copy,
extoperands, extresults, and broadcast. Each of these ar-
chitectures has the three basic factors and implements a
corresponding ICC model. The measured contributions of
the model constraints are presented in Table 6 for the two
cluster machine and Table 7 for the four cluster machine.
In our experiments the copy architecture requires one copy
operation per inter-cluster transfer. In architecture extre-
sults one operation per cluster per VLIW instruction can
send a value to a remote cluster, and in architecture ex-
toperands one operation per cluster can read from a re-
mote RF. In architecture broadcast one operation per
cluster per VLIW instruction can broadcast its result to all
clusters.

Table 5. Three basic contributions for the two and four cluster machines
2 cluster 8 issue slot machine 4 cluster 8 issue slot machine

latency bandwidth RF pressure latency bandwidth RF pressure
viterbi 6.0% 5.8% 0.0% 23.5% 0.0% 0.0%
peaking 6.8% 0.1% 0.0% 11.4% 1.3% 0.0%
median 7.4% 7.1% 0.0% 14.2% 13.4% 0.0%
mpeg2enc 1.2% 5.1% 5.1% 7.6% 7.7% 10.4%
natmot 8.1% 3.3% 0.9% 12.2% 6.4% 4.5%
dvc_dec 3.6% 3.0% 0.1% 7.1% 4.4% 3.2%
renderer 5.3% 0.9% 0.0% 8.8% 3.3% 0.0%
transform 3.9% 7.0% 0.0% 9.1% 6.6% 2.5%
average 5.3% 4.0% 0.8% 11.7% 5.4% 2.6%

Table 6. Added contributions and the total cycle count overhead of the ICC models, 2 clusters
dedicated slots copy operations extend. operand extended results broadcast
added total added total added total added total added total

viterbi 0.0% 11.8% 11.8% 23.6% 5.9% 17.7% 0.0% 11.8% -11.7% 0.1%
peaking 0.0% 6.9% 0.2% 7.1% 0.9% 7.7% 0.0% 6.9% -1.6% 5.3%
median 0.0% 14.4% 16.5% 30.9% 16.7% 31.2% 6.6% 21.1% -3.8% 10.6%
mpeg2enc 0.0% 11.4% 4.5% 15.8% 0.9% 12.2% 1.4% 12.8% -6.9% 4.4%
natmot 0.0% 12.2% 2.3% 14.5% 8.8% 21.0% 0.7% 12.9% -7.1% 5.1%
dvc_dec 0.0% 6.7% 11.0% 17.7% 5.4% 12.1% 2.0% 8.7% -2.2% 4.6%
renderer 0.0% 6.2% 1.2% 7.4% 2.5% 8.7% -0.1% 6.1% -4.7% 1.5%
transform 0.0% 10.9% 1.9% 12.8% 6.0% 16.9% -0.3% 10.5% -8.7% 2.2%
average 0.0% 10.1% 6.2% 16.2% 5.9% 15.9% 1.3% 11.4% -5.8% 4.2%

Table 7. Added contributions and the total cycle count overhead of the ICC models, 4 clusters
dedicated slots copy operations extend. operand extended results broadcast
added total added total added total added total added total

viterbi 0.0% 23.5% 35.1% 58.6% 5.9% 29.4% 5.8% 29.4% -5.91% 17.6%
peaking 0.0% 12.6% 3.5% 16.1% 3.8% 16.4% 0.0% 12.6% -7.14% 5.5%
median 0.0% 27.6% 46.5% 74.0% 23.8% 51.4% 3.3% 30.9% -13.43% 14.1%
mpeg2enc 0.0% 25.7% 27.9% 53.6% 9.4% 35.1% 6.9% 32.6% -19.41% 6.3%
natmot 0.0% 23.1% 17.9% 41.0% 9.4% 32.5% 1.8% 24.9% -15.73% 7.4%
dvc_dec 0.0% 14.6% 64.7% 79.4% 14.0% 28.6% 16.0% 30.7% -6.77% 7.9%
renderer 0.0% 12.2% 12.0% 24.2% 2.7% 14.9% -0.5% 11.7% -8.67% 3.5%
transform 0.0% 18.3% 9.0% 27.3% 3.3% 21.6% 1.1% 19.4% -9.93% 8.4%
average 0.0% 19.7% 27.1% 46.8% 9.0% 28.7% 4.3% 24.0% -10.87% 8.8%

To illustrate how the total cycle count is composed of
the individual contributions consider execution of bench-
mark mpeg2enc on the two-cluster machine. Extra latency,
limited bandwidth and increased register pressure over-
heads sum up to 1.2%+5.1%+5.1%=11.4%, see Table 5.
Suppose we compile this benchmark for the extended re-
sult model, then the model’s overhead will be 1.4%, see
Table 6. So, the total cycle count overhead comes to
11.4%+1.4%=12.8% relative to the unicluster.

The dedicated slot model yields always 0.0% overhead
because it introduces no additional overhead beyond the
three basic factors. Therefore, negative numbers for other
models merely mean better performance than the dedi-
cated slot model. Remarkably, the scheduler found a better
schedule for benchmarks renderer and transform in the
extended result model than in the dedicated slot model.
We attribute that to the shortcoming of the cluster assign-
ment that has a relatively narrow view on the data flow
graph, considering only direct successors and predecessors
of the operation being scheduled.

Note that the benchmarks with high ILP, for example,
DVC decoder and Viterbi suffered from the constraints of
the copy operation the most. Apparently, occupation of
valuable issue slots by copy operations in these bench-
marks severely constraints scheduling of dense code.

4 Discussion of the results

Figure 11 and Figure 12 show the cycle count overhead
of the considered ICC models averaged among the
benchmarks and the contributions of the four factors to the
total cycle count overhead.

Our results clearly demonstrate that the encoding of
ICC in the ISA strongly influences performance of the
clustered VLIW processors. For example, the broadcast
model, especially, in the four-cluster architecture, utilizes
the inter-cluster bandwidth better than the other models.
Indeed, in our four-cluster machine four broadcasts to all
RFs may take place, whereas the other models require four
times three inter-cluster copies for the same transfer.
Moreover, broadcasting can escape high penalty from the
copies to and from globals as explained in Section 3.2,
which significantly reduces the number of copies at the
beginning and the end of decision trees. Evidently, this
effect drastically decreases the contributions of the basic
factors latency and bandwidth. Therefore, in our experi-
ments the broadcast model outperforms other ICC models,
see Figure 11 and Figure 12. Nevertheless, the higher RF
pressure of the broadcast model may compromise its high
performance by extra data cache stalls due to spilling.

0%

2%
4%

6%
8%

10%
12%

14%
16%

18%

de
dic

at
ed

 sl
ots

co
py

 op
er

at
ion

s

ex
te

nd
ed

 o
pe

ra
nd

s

ex
te

nd
ed

 re
su

lts

br
oa

dc
as

t

encoding

regpressure

bandwidth

latency

Figure 11. Total cycle overhead, 2 clusters

0%
5%

10%
15%

20%
25%

30%
35%

40%
45%

50%

de
dic

at
ed

 sl
ots

co
py

 op
er

at
ion

s

ex
te

nd
ed

 o
pe

ra
nd

s

ex
te

nd
ed

 re
su

lts

br
oa

dc
as

t

encoding

regpressure

bandwidth

latency

Figure 12. Total cycle overhead, 4 clusters

The copy operation model yields the highest cycle
count overhead. In the dense code for our four cluster ma-
chine the total cycle count overhead reached 46.8% with
respect to the unicluster architecture, 56% of which are
caused by the copy operation constraint. Therefore, other
ICC models (i.e. the extended results model) outperform
the copy operation model at the same hardware cost.
Hence, we doubt efficiency of the send-receive model de-
scribed in Section 2.1 for high ILP code. Interestingly, the
extended operands model substantially suffers from ab-
sence of copy “reuse”, because, evidently, many copies
have to be duplicated for different consumers of the same
value. Although the dedicated issue slots model has com-
paratively high implementation complexity, see columns 2,
3, and 4 in Table 1, from a cycle count point of view it
performs very well. If the instruction scheduler can not
properly handle increased register pressure in the broad-
cast model, the dedicated slots model may deliver better
performance. Note that in the two-cluster machine the ex-
tended results model could have comparable performance
to broadcasting, if we would implement the optimization
for global variables described in Section 3.2. Furthermore,
our compiler heuristics for formation of decision trees
could be adapted for the non-broadcasting models to de-
crease the number of globals, which may reduce the per-
formance advantage of the broadcast model.

The contribution of the extra inter-cluster latency in the
total cycle count overhead was significant in all our ex-
periments. Therefore, further pipelining the ICC with in-
ter-cluster latency of more than one cycle can become ad-
vantageous only in some distant future IC technologies, if
the wire delays become totally overwhelming. Moreover,
inter-cluster pipelining may be beneficial to exclude com-
pletely for processors that run at lower clock speed and
need fewer registers than media processors. In all our
clustered machines inter-cluster bandwidth was reduced to
the minimum of one transfer per cluster per VLIW in-
struction. Hence, increasing the bandwidth may help re-
duce the large contribution of the limited bandwidth, un-
less the consequently increased number of RF ports limits
the RF access delay.

5 Related work

Many prior studies in clustered VLIW architectures
based their research on one inter-cluster communication
model in the form of copy operations. This paper, how-
ever, analyzes several inter-cluster communication models
in terms of the cycle count and implementation complex-
ity. A significant amount of research was put in improving
the scheduling algorithms for clustered VLIWs
[12][13][14]. According to our study, though, choosing a
proper ICC model can eliminate the constraint of the copy
operation ISA, which considerably helps operation sched-
uling. This in turn can decrease the execution cycle count
overhead by up to 56% or more if the application contains
higher ILP than our benchmarks.

A similar discrimination and evaluation of the factors
of the cycle count overhead was carried out for clustered
Transport Triggered Architectures [16]. However, due to
differences between the TTA and VLIW architectures they
did not measure the ICC model overheads, which accord-
ing to our research can dominate in VLIWs.

In the ICC model proposed in [17] a small Caching
Register Buffer (CRB) is attached to the register file of
each cluster to store copies of remote registers. ICC in the
CRB scheme is carried out by the special broadcast opera-
tion sendb. According to our study this operation would
block scheduling of regular operation in dense code just as
the copy operation. Of course, the frequency of sendb op-
erations will be much lower than copies, since one sendb
operation implements a number of copies. On top of that,
as proved by our broadcasting model, broadcasting fea-
tures better utilization of the inter-cluster bandwidth than
other models. Nevertheless, the CRB model decreases the
register pressure on the architecture-visible registers,
which in our experiments did not dominate the total over-
head. Furthermore, implementation of a small inter-RF
cache is costly in hardware.

Our measurements of the cycle count overhead were

based on the execution cycle count, not on the schedule
length like in [13][14]. Furthermore, we experimented
with optimized full applications with high ILP rates. We
believe that the dense code reflects the preferred high
utilization of the machine and, hence, should be used for
design space explorations of microprocessors.

6 Conclusions

This paper analyzes five inter-cluster communication
models for clustered VLIWs, including copy operations,
dedicated issue slots, extended results, extended operands,
and broadcasting. On top of that, we identify and evaluate
different factors of the cycle count overhead of clustered
VLIW architectures. This evaluation reveals that encoding
inter-cluster communication as copy operations causes up
to 56% of the total cycle count overhead in our four clus-
ter 8 issue slot VLIW. Therefore, some models free of the
copy operation constraint (e.g. extended results) outper-
form the copy operation model at the same hardware cost.
In our experiments broadcasting outperformed the other
models, bringing the cycle count overhead of a two-cluster
machine down to 4.2% with respect to the unicluster, due
to efficient inter-cluster bandwidth utilization and cluster
assignment of global variables.

References

[1] S. Rathnam, G. Slavenburg, “An architectural over-
view of the programmable multimedia processor, TM-
1”, 41st IEEE International Computer Conference, pp.
319-326, Santa Clara CA, 1996.

[2] S. Rixner, W.J. Dally, et al. “Register organization for
media processing”, 6th International Symposium on
High-Performance Computer Architecture, 8-12
January 2000, Toulouse, France, 1999.

[3] V. Zyuban, P.M. Kogge, “The Energy Complexity of
Register Files”, International Symposium on Low-
Power Electronics and Design, pp. 305-310, Mon-
terey, USA, August 1998.

[4] J. Janssen, H. Corporaal, “Partitioned Register Files
for TTAs”, 28th Annual International Symposium on
Microarchitectures, Michigan, November 1995.

[5] R. Ho, K. Mai, and M. Horowitz, “The Future of
Wires”, Proceedings of the IEEE, April 2001.

[6] M. Levy, “ManArray devours DSP code”, Micro-
processor report, October 2001.

[7] TI TMS320C64xx DSPs. http://www.ti.com.
[8] P. Faraboschi, G. Desoli, et al. “Lx: A technology

platform for customizable VLIW embedded process-
ing”, 27th Annual International Symposium on Com-
puter Architecture, Vancouver Canada, June 2000.

[9] S. Sudharsanan, P. Sriram, et al. “Image And Video
Processing Using Majc 5200”, International Confer-

ence on Image Processing, Vancouver Canada, 2000.
[10] http://www.sun.com/microelectronics/MAJC.
[11] J. Hoogerbrugge, L. Augusteijn, “Instruction sched-

uling for TriMedia”, The Journal of Instruction-Level
Parallelism, February 1999.

[12] E. Ozer, S. Banerjia and T. Conte, “Unified assign
and schedule: a new approach to scheduling for clus-
tered register file microarchitectures”, 31st Annual
International Symposium on Microarchitectures, pp.
308-315, Dallas Texas, November 1998.

[13] V. S. Lapinskii, M.F. Jacome, and G.A. de Veciana,
“High-Quality Operation Binding for Clustered VLIW
Datapaths”, Design and Automation Conference, Las
Vegas USA, June 2001.

[14] P. Mattson, W.J. Dally, et al. "Communication
Scheduling", International Conference on Architec-
tural Support for Programming Languages and Op-
erating Systems, Cambridge, MA, USA, 2000.

[15] http://public.itrs.net. ITRS roadmap.
[16] S. Roos, H. Corporaal, et al., “Clustering on the

Move”, 4th International Conference on Massively
Parallel Computing Systems, Ischia Italy, April 2002.

[17] K. Kalias, M. Franklin, K. Ebcioglu, “A Register File
Architecture and Compilation Scheme for Clustered
ILP Processors”, International Conference Euro-Par,
Paderborn, Germany, 27-30 August 2002.

[18] K. Kailas, K. Ebcioglu, et al., “CARS: A New Code
Generation Framework for Clustered ILP processors”,
7th International Symposium on High Performance
Computer Architecture, pp. 133-134, Nuevo Leone
Mexico, January 2001.

[19] J. Janssen, “Compiler Strategies for Transport Trig-
gered Architecture”, PhD thesis, 2001, TU Deflt, The
Netherlands.

[20] J. M. Codina, J. Sanchez, et al., “A Unified Modulo
Scheduling and Register Allocation Technique for
Clustered Processors”, International Conference on
Parallel Architecture and Compilation Techniques
(PACT), Barcelona, Spain, September 2001.

[21] W.W. Hwu, S.A. Mahlke, et al., “The Superblock: an
Effective Technique for VLIW and Superscalar Com-
pilation”, The Journal of Supercomputing, vol. 7, pp.
229-249, May 1993.

[22] J.A. Fisher, “Trace Scheduling: a Technique for
Global Microcode Compaction“, IEEE Transactions
on Computers, vol. C-30, pp. 478-490, July 1981.

[23] P. Y. T. Hsu, E. S. Davidson, "Highly Concurrent
Scalar Processing," 13th Annual International Sym-
posium on Computer Architecture, pp. 386-395, To-
kyo, Japan, June 1986.

[24] W.A. Havanki, S. Banerjia, T. M. Conte, “Treegion
scheduling for wide-issue processors”, 4th Interna-
tional Symposium on High-Performance Computer
Architecture, Las Vegas, USA, February 1998.

