
 

Abstract

Cache replacement algorithms originally developed in
the context of simple uniprocessor systems aim to reduce
the miss count. However, in modern systems, cache misses
have different costs. The cost may be latency, penalty,
power consumption, bandwidth consumption, or any other
ad-hoc numerical property attached to a miss. In many
practical situations, it is desirable to inject the cost of a
miss into the replacement policy.

In this paper, we propose several extensions of LRU
which account for non-uniform miss costs. These LRU
extensions have simple implementations, yet they are very
effective in various situations. We first explore the simple
case of two static miss costs using trace-driven simula-
tions to understand when cost-sensitive replacements are
effective. We show that very large improvements of the
cost function are possible in many practical cases. 

As an example of their effectiveness, we apply the
algorithms to the second-level cache of a multiprocessor
with superscalar processors, using the miss latency as the
cost function. By applying our simple replacement policies
sensitive to the latency of misses we can improve the exe-
cution time of some parallel applications by up to 18%. 

1. Introduction
Cache replacement algorithms widely used in modern

systems aim to reduce the aggregate miss count and thus
assume that miss costs are uniform [19][20]. However, as
the memory hierarchies of modern systems become more
complex, and, as other factors besides performance
become critical, this uniform cost assumption has lost its
validity, especially in the context of multiprocessors. For
instance, the cost of a miss mapping to a remote memory
is generally higher in terms of latency, bandwidth con-
sumption and power consumption than the cost of a miss
mapping to a local memory in a multiprocessor system.
Similarly, a non-critical load miss [21] or a store miss are
not as taxing on performance as a critical load miss in

superscalar processors [18]. Since average memory access
latency and penalty are more directly related to execution
time, we can expect better memory performance by mini-
mizing these metrics instead of the miss count. Thus, in
many situations, it is desirable to inject the actual cost of a
miss into the replacement policy. Replacement algorithms
which aim to reduce the aggregate miss cost in the face of
multiple miss costs have been called cost-sensitive
replacement algorithms [8]. 

In this paper, we extend the LRU replacement algo-
rithm to include cost in the replacement decision. The
basic idea is to explore the option of keeping the block
victimized by LRU in cache until the next reference to it,
if its miss cost is greater than the miss cost of other cached
blocks. We call this option a (block or blockframe) reser-
vation. (The idea of block reservation is inspired from an
efficient algorithm we developed earlier to implement
optimum cost-sensitive replacement algorithms [8].) To
release the reservation we depreciate the cost of the
reserved block over time, according to various algorithms. 

We first consider GreedyDual (GD), a well-known
algorithm for Web caching [3][25]. Then, we introduce
three new algorithms which extend LRU by block reserva-
tions. The first algorithm, called BCL (Basic Cost-sensi-
tive LRU), uses a crude method to depreciate the cost of
reserved blocks. The second algorithm, called DCL
(Dynamic Cost-sensitive LRU), depreciates the cost of a
reserved block with better accuracy. The third algorithm,
called ACL (Adaptive Cost-sensitive LRU), is an adaptive
extension of DCL which dynamically switches back to
LRU in each cache set whenever its cost may become
worse than LRU. 

We evaluate and compare these four algorithms in two
sets of experiments. The first set is a set of controlled
experiments to isolate the effect of the replacement policy
on cost and to facilitate the comparison between policies.
In these experiments, we use trace-driven simulations and
evaluate the aggregate cost of the four replacement poli-
cies in the simple case of two static costs. In this frame-
work, we can vary the costs and the distribution of the cost

Cost-Sensitive Cache Replacement Algorithms

Jaeheon Jeong and Michel Dubois

IBM
Research Triangle Park, NC 27709

jjeong@us.ibm.com

Department of Electrical Engineering - Systems
University of Southern California

Los Angeles, CA90089-2562
dubois@paris.usc.edu



 

among blocks at will. 
In the second set of experiments, we apply the four

replacement algorithms to multiprocessors systems with
superscalar processors, in which the cost function is the
latency of misses. In this case there are many different
costs and the cost associated with each miss of a given
block varies with time and must be predicted. These
experiments demonstrate that our simple latency-sensitive
replacement algorithms can reliably improve execution
times by significant amounts in a realistic situation.

The rest of this paper is organized as follows. Section 2
describes the four replacement algorithms. Section 3
explores these algorithms in the simple case of two static
costs using trace-driven simulations. In Section 4 we apply
our algorithms to multiprocessor systems with superscalar
processors. Section 5 evaluates the hardware complexity
of the schemes. Section 6 overviews related work. Finally
we conclude in Section 7. 

2. Cost-sensitive Replacement Algorithms

2.1. Locality
According to Belady’s MIN algorithm [2][13], the

block with the largest forward distance in the string of
future references made by the processor should be
replaced at the time of a miss. Practical replacement algo-
rithms replace the block with the largest estimated forward
distance. In this paper, we use the term locality to mean an
estimate of the probability that a block will be referenced
in the near future. Typically, a cache replacement algo-
rithm ranks the blocks in a cache set according to their
locality and replaces the block with lowest locality at the
time of a miss. Replacement algorithms based only on
locality try to minimize the number of misses.

In the Least Recently Used (LRU) algorithm, blocks in
each cache set are ranked according to the recency of the
last access to them. The Least Recently Used (LRU) block
has lowest locality and is always selected for replacement.

2.2. Cost
Belady’s MIN algorithm minimizes the number of

misses. However, it has been recently argued [8] that the
total cost of misses --not just the number of misses--
should be the target of an optimum replacement policy. 

For a given trace of memory references resulting from
an execution, X = x1, x2, ···, xL, let c(xt) be the cost incurred
by the memory reference with block address xt at time t.
Note that c(xt) and c(xt´) may be different even if xt = xt´

because memory management schemes such as dynamic
page migration can dynamically alter the memory map-
ping of a block at different times, or because the cost of a
static memory mapping may vary with time. With no loss

in generality, if xt hits in the cache, then c(xt) = 0. Other-
wise, c(xt) is the cost for the miss, which can be any non-
negative number. Then, the problem is to find a cache
replacement algorithm such that the aggregate cost of the

trace, , is minimized. 

The simplest cost function maps each block statically
to one of two costs. Low-cost misses are assigned a cost of
1 and high-cost misses are assigned a cost r. Then the cost
ratio r is the only parameter related to miss costs through-
out the execution. If xt hits in the cache, c(xt) = 0. Other-
wise, c(xt) = 1 or r. 

2.3. Integrating Locality and Cost
Given a method for measuring locality and a cost func-

tion, there are many possible approaches to integrate both.
A brute-force approach is to keep a block in cache until all
other blocks have equal or higher cost. This approach may
result in high-cost blocks staying in cache for inordinate
amounts of time, possibly forever. Thus a mechanism is
needed to depreciate the cost of high-cost blocks. 

2.3.1. GreedyDual (GD)

GreedyDual was originally developed in the context of
disk paging [25] and, later on, was adapted to Web cach-
ing [3]. GD can be easily adapted to processor caches. In
GD, each block in a cache set is associated with its miss
cost. When a block is replaced, the costs of all blocks
remaining in the set are reduced by the current cost of the
victim. Whenever a block is accessed, its original cost is
restored. The block with lowest cost is always replaced.
Unfortunately, GD does not work well when the cost dif-
ferentials between blocks are small, because it mostly uses
cost information to make decisions.

2.3.2. LRU-based Cost-sensitive Replacement 
Algorithms

To reduce the aggregate miss cost effectively, cost-sen-
sitive replacement algorithms must factor in locality. 

In the context of LRU, we must replace the LRU block
if the cost of the next miss to it is no greater than the cost
of the next miss to any other block in the same set. Other-
wise, we may save some cost by keeping the LRU block
until the next reference to it while replacing non-LRU
blocks with lower miss costs. While we keep a high-cost
block in the LRU position, we say that the block or block-
frame is reserved. We do not limit reservations to the LRU
block. While the blockframe for the LRU block is reserved
in the cache, more reservations for other blocks in other
locality positions are possible except for the MRU (Most
Recently Used) block, which is never reserved, since there
is no block in the set with better locality. 

C X( ) c xt( )
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If a reserved block is never accessed again nor invali-
dated after a long period of time, a blockframe reservation
may become counterproductive, and the resulting cost sav-
ings may become negative. A compromise must be struck
between pursuing as many reservations as possible, while
avoiding fruitless pursuits of misguided reservations. 

Let c[i] be the miss cost of the block which occupies
the i-th position from the top of the LRU stack in a set of
size s. Thus, c[1] is the miss cost of the MRU block, and
c[s] is the miss cost of the LRU block in an s-way associa-
tive cache. Whenever a reservation is active, we selects the
first block in the LRU stack order whose cost is lower than
the cost of the reserved block. Thus there might be lower
cost blocks to replace in the set, but their locality is higher.
We terminate reservations by depreciating the miss costs
of reserved blocks. 

2.3.3. Basic Cost-sensitive LRU Algorithm (BCL)

In the basic cost-sensitive LRU algorithm (BCL), we
depreciate the cost of a reserved LRU block whenever a
(higher locality) block is replaced in its place. Multiple
concurrent reservations are handled in a similar way.
While a primary reservation for the LRU block is in
progress, a secondary reservation can be invoked, if c[s] ≤
c[s-1] and there exists a block i < s-1 whose cost is lower
than c[s-1]. More reservations are possible at following
positions in the LRU stack. The maximum number of
blocks that can be reserved is s-1. When multiple reserva-
tions are active, BCL only depreciates the cost of the
reserved block in the LRU position. 

Figure 1 shows the BCL algorithm in an s-way set-
associative cache. Each blockframe is associated with a
miss cost c[i] which is loaded at the time of miss. As
blocks change their position in the LRU stack, their asso-
ciated miss costs follow them. The blockframe in the LRU
position has one extra field called Acost. Whenever a
block takes the LRU position, Acost is loaded with c[s],
which is the miss cost of the new LRU block. Later Acost
is depreciated upon reservations by the algorithm. To
select a victim, BCL searches for the block position i in
the LRU stack such that c[i] < Acost and i is closest to the

LRU position. If BCL finds one, BCL reserves the LRU
block in the cache by replacing the block in the i-th posi-
tion. Otherwise, the LRU block is replaced. 

We depreciate Acost by twice the amount of the miss
cost of the replaced block, thus interrupting fruitless reser-
vations faster [9]. When Acost reaches zero the reserved
LRU block becomes the prime candidate for replacement. 

The algorithm in Figure 1 is extremely simple. Yet, in
all its simplicity, it incorporates the cost depreciation of
reserved blocks and the handling of one or multiple con-
current reservations as dictated by BCL. 

2.3.4. Dynamic Cost-sensitive LRU Algorithm (DCL)

BCL’s weakness is that it assumes that LRU provides a
perfect estimate of relative forward distances. To correct
for this weakness, the cost of a reserved LRU block in
DCL is depreciated only when the non-LRU blocks vic-
timized in its place are actually accessed before the
reserved LRU block is. To do this, DCL records every
replaced non-LRU blocks in a directory called the
Extended Tag Directory (ETD) similar to the shadow
directory [22]. On a hit in ETD, the cost of the reserved
LRU block is depreciated. For an s-way associative cache,
we only need to keep ETD records for the s-1 most
recently replaced blocks in each set because accesses to
blocks that were replaced before these s-1 most recently
replaced blocks would miss in the cache if the replacement
was LRU. 

Thus, s-1 ETD entries are attached to each set. Each
ETD entry consists of the tag of the block, its miss cost
and a valid bit. Initially, all ETD entries are invalid. When
a non-LRU block is replaced instead of the LRU block, an
ETD entry is allocated, the tag and the miss cost of the
replaced block are stored in the entry, and its valid bit is
set. Entries in ETD are replaced according to LRU. ETD is
checked in parallel with each cache access. If an access
misses in the cache but hits in ETD, then the cost of the
reserved LRU block in the cache is reduced as in BCL and
the matching ETD entry is invalidated. When an access
hits on the LRU block, all ETD entries are invalidated. 

2.3.5. Illustration

To illustrate BCL and DCL, consider a cache of size s
= 3 and a trace X = x1, x2, ···, x9, as shown in Figure 2. The
block addresses are A, B, C and D. For simplicity, we con-
sider the case of two static miss costs, with c(C) = 4, and
c(A) = c(B) = c(D) = 1. The first two rows show the refer-
ence string from the trace. Then we show the cache con-
tents in their stack order for LRU, BCL and DCL along
with c(xt), Acost and ETD. The cache contents, Acost and
ETD are given just before reference xt is made at time t. 

Right before block D is accessed at t = 1, the cache

find_victim()
for (i = s-1 to 1) // from second-LRU toward MRU

if (c[i] < Acost)
Acost ← Acost - c[i]*2
return i

return LRU

upon_entering_LRU_position ()
Acost ← c[s] // assign the cost of new LRU block

Figure 1. BCL algorithm



 

contains blocks A, B and C. At t = 1, block D misses in all
algorithms. BCL reserves high-cost block C and replaces
block B instead; Acost is depreciated by 2. At t = 2, BCL
continues to reserve block C by replacing block A since
Acost is still greater than c(A); Acost is adjusted to 0. At t =
3, BCL hits on block C whereas LRU misses on block C. 

The difference between BCL and DCL is apparent
from t = 6 to t = 9. At t = 6, both algorithms reserve block
C and replace block B. BCL depreciates Acost by 2
whereas ACL puts block B in ETD leaving Acost at 4. At t
= 7, both algorithms continue to reserve block C by replac-
ing block D. Acost in BCL is set to 0 while Acost in DCL
is reduced by 2 since block B hits in ETD. At t = 8, BCL
replaces block C since Acost is 0 whereas DCL continues
to reserve block C. At t = 9, DCL finally hits on block D.
Overall, the total costs by LRU, BCL and DCL are 10, 9
and 5, respectively. 

2.3.6. Adaptive Cost-sensitive LRU Algorithm

Both BCL and DCL pursue reservations of LRU
blocks greedily, whenever a high-cost block is in a low
locality position. Although reservations in these algo-
rithms are terminated quickly if they do not bear fruit, the
wasted cost of these attempted reservations accrues to the
final cost of the algorithm. 

We have observed that, in some applications, the suc-
cess of reservations varies greatly with time and also from
set to set. Reservations yielding cost savings are often
clustered in time, and reservations often go through long
streaks of failure. These observations form the rationale
for ACL.

The adaptive cost-sensitive LRU algorithm (ACL)
implements an adaptive reservation activation scheme
exploiting the history of cost savings in each set. To take
advantage of the clustering in time of reservation suc-
cesses and failures, we associate a counter in each cache
set to enable and disable reservations. Figure 3 shows the
automaton implemented in each set using a two-bit
counter. The counter increments or decrements whenever
a reservation succeeds or fails, respectively. When the
counter value is greater than zero, reservations are
enabled. Initially the counter is set to zero, disabling all
reservations.

To trigger reservations from the disabled state, we use
a simple scheme that utilizes the ETD differently. When
reservations are disabled, an LRU block enters the ETD
upon replacement if another block in the set has lower
cost. An access hit in the ETD strongly indicates that we
might have saved some amount of cost if the block had
been reserved in the cache. Thus upon a hit in ETD, all
ETD entries are invalidated, and reservations are enabled
by setting the counter value to two, with the hope that a
streak of reservation successes has just started. 

3. Static Case with Two Costs
In this section we present the results from trace-driven

simulation experiments that led us to the replacement
algorithms of Section 2. 

The baseline architecture is a CC-NUMA multiproces-
sor system in which cache coherence is maintained by
invalidations [5]. The memory hierarchy in each processor
node is made of a direct-mapped L1 cache, an L2 cache to
which we apply cost-sensitive replacement algorithms,
and a share of the distributed memory. The cost of a block
is purely determined by the physical address mapping in
main memory and this mapping does not change during
the entire execution. Based on the address of the block in
memory, misses to the block are assigned a low cost of 1
or a high cost of r. 

In a first set of experiments we assign costs to blocks
randomly, based on each block address. This approach
gives us maximum flexibility since the fraction of high-

Time (t) 1 2 3 4 5 6 7 8 9
xt D B C B D A B D C

LRU
LRU
stack

A D B C B D A B D C
B A D B C B D A B D
C B A D D C B D A B

c(xt) 1 0 4 0 0 1 0 0 4

BCL

BCL
stack

A D B C B D A B D C
B A D B C B D A B D
C C C D D C C C A B

c(xt) 1 1 0 0 0 1 1 1 4
Acost 4 2 0 1 1 4 2 0 1 1

DCL

DCL
stack

A D B C B D A B D C
B A D B C B D A B D
C C C D D C C C C B

c(xt) 1 1 0 0 0 1 1 1 0
Acost 4 4 2 1 1 4 4 2 0 1

ETD
- B A - - - B D A -
- - - - - - - - -

Figure 2. Illustration of LRU, BCL and DCL

Figure 3. ACL automaton in each set
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cost blocks can be modified at will. In practical situations,
however, costs are not assigned randomly and so costs are
not distributed uniformly among sets and in time. To eval-
uate this effect we have run a set of experiment in which
blocks are allocated in memory according to the first-
touch policy, i.e., a block is allocated to the memory of the
processor that first accesses it. 

3.1. Methodology
Traces are gathered from an execution-driven simula-

tion assuming an ideal memory system with no cache. We
pick one trace among the traces of all processors [4]. The
trace of the selected processor is gathered in the parallel
section of the benchmarks. To correctly account for cache
invalidations, writes from all processors are included in
the trace. The trace excludes private data and instruction
accesses. 

The main features of four benchmarks selected from

the SPLASH-2 suite [24] are in Table 11. Table 1 also
shows the fraction of remote accesses measured in one
processor using a per-block first-touch placement policy. 

The most important parameters are the cost ratio r, the
cache associativity s and the cache size. We vary r from 1
to 32 to cover a wide range of cost ratios. We also consider
an infinite cost ratio by setting the low cost to 0 and the
high cost to 1. In the case of r infinite, the replacements of
low-cost blocks are free, and a cost-sensitive replacement
algorithm systematically replaces low-cost blocks when-
ever low-cost blocks are in the cache. A practical example
of infinite cost ratio is bandwidth consumption in the
interconnection network connecting the processors. The
infinite cost ratio experiments also give the maximum pos-
sible cost savings for all cost ratios above 32. The cache
block size is 64 bytes throughout our evaluations.

To scale the cache size, we first looked at the miss rates
for cache sizes from 2 Kbytes to 512 Kbytes. To avoid
unrealistic situations while at the same time having
enough cache replacements, we first investigated cache
sizes such that the primary working sets start to fit in the
cache. Overall, this occurs when the cache is 8 Kbytes in

Barnes and LU. We also examined a cache such that the
secondary working sets fit in the cache. Overall, the knee
is at 64 Kbytes. We selected a 16-Kbyte L2 cache, 4-way
set-associative with 64-byte blocks. The L1 cache is
4Kbytes and direct-mapped. For Ocean and Raytrace, in
which the miss rates are inversely proportional to the
cache size, the same sizes are used.

3.2. Random Cost Mapping
Although random cost mapping is not truly realistic, it

allows us to easily vary the high-cost access fraction
(HAF) in a trace. Figure 4 shows the relative cost savings
gained by the four cost-sensitive algorithms over LRU.
The relative cost savings is the ratio between the cost sav-
ings obtained by the replacement algorithm as compared
to LRU, and the aggregate cost of LRU. The table attached
to Figure 4 displays actual numbers. We vary the cost ratio
r from 2 to infinite and HAF from 0 to 1 with a step of 0.1.
We add two more fractions at 0.01 and 0.05 to see the
detailed behavior between HAF = 0 and HAF = 0.1.

As HAF varies from 0 to 1, the relative cost savings
quickly increases and consistently peaks between HAF =
0.1 and 0.3; then it slowly decreases as HAF reaches 1.
Clearly it is easier to benefit from a cost-sensitive replace-
ment algorithm when HAF < 0.5. When HAF > 0.5, there
are just not enough low-cost blocks in cache to victimize.

The relative cost savings increases with r, but for large
values of r, it tapers off. The cost savings increases lin-
early with r in absolute terms, but not in relative terms, as
the aggregate cost of LRU also increases with r. The sav-
ings of ACL is slightly lower than the savings of DCL in
practically all situations.

Overall the results show that the relative cost savings
by DCL is significant and is consistent across all bench-
marks. We observe a “sweet spot” for the relative cost sav-
ings with respect to HAF and the cost ratio. 

3.3. First-Touch Cost Mapping
Under the random cost distribution across block

addresses, low-cost and high-cost blocks are homoge-
neously spread in time and across cache sets. However, in
a realistic situation, cost assignments may be highly corre-
lated. For example, an HAF of 0.5 over the entire execu-
tion could result from an HAF of 0 for half of the
execution and of 1 for the other half. Or it could be that
HAF is 0 for half of the sets and 1 for the other half. In
both cases, the gains from DCL are expected to be dismal,
if not negative.

Therefore, the cost savings are not as impressive in
actual situations as Figure 4 would let us believe. Table 2
shows the relative cost savings as r varies from 2 to 32
under first-touch mapping. The high-cost access fraction1. Other SPLASH benchmarks including Water, MP3D, FFT and

Radix were run as well but yielded no additional insight.

Table 1. Characteristics of the benchm arks

Bench-
mark

Problem
size

Mem. usage
(MB)

Reference
count

Remote access frac-
tion (first touch)

Barnes 64K 11.3 34.2M 44.8%

LU 512 x 512 2.0 12.7M 19.1%

Ocean 258 x 258 15.0 15.6M 7.4%

Raytrace car 32.0 14.0M 29.6%



 

(HAF) in each benchmark is shown in Table 1. 
Overall, we observe that the differences in the cost sav-

ings achieved under the random cost mapping and the
first-touch cost mapping (corresponding to the vertical
lines in Figure 4) are moderate except for LU. In LU, the
savings under the first-touch policy is very poor. It even
turns negative in BCL and DCL although the high-cost
fraction falls in the “sweet spot”. Accesses in LU have

high locality and their behavior varies significantly across
cache sets. In some cache sets, no reservations succeed. 

LU takes advantage of ACL, and even shows small
positive savings in ACL. Although ACL does not always
reap the best cost savings, its cost savings is always very
close to the best one among the four algorithms. More-
over, ACL is more reliable across the board as its cost is
never worse than LRU’s.

Figure 4. Relative cost savings with random cost mapping in 16KB, 4-way L2 cache (% )

High-cost Access Fraction = 0.2 High-cost Access Fraction = 0.6

r = 2 r = 32 r = 2 r = 32

GD BCL DCL ACL GD BCL DCL ACL GD BCL DCL ACL GD BCL DCL ACL

Barnes 8.82 4.69 24.64 23.75 71.10 72.63 74.18 71.43 6.36 10.09 18.16 16.36 19.94 26.65 26.70 23.30

LU 1.17 0.88 24.02 22.36 64.00 66.37 66.07 62.02 0.72 1.20 9.78 9.09 9.24 14.48 14.49 12.38

Ocean 1.84 0.77 7.32 5.39 30.32 31.00 32.24 23.06 0.70 0.87 0.96 1.55 4.55 6.06 6.11 4.18

Raytrace 1.03 0.84 2.38 3.48 32.87 34.22 36.00 25.85 0.68 0.82 0.43 2.15 6.28 8.49 8.50 4.72
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4. Application to CC-NUMA Multiprocessors
In this section, we show that a cost sensitive replace-

ment policy in the second-level caches can improve the
performance of a CC-NUMA multiprocessors. 

4.1. Miss Cost Prediction
In this application, the cost is the miss latency, which is

dynamic and depends on the type of access and the global
state of the block. The future miss cost of a cached block
refers to the miss cost at the next reference to it if the block
is victimized. In general, the prediction of the future miss
cost cannot be verified. 

To approach this problem, we compare the average

absolute difference in latencies between two consecutive
misses in our four SPLASH-2 benchmarks for a MESI
protocol without replacement hints [10] and LRU replace-
ment, shown in Table 3. Table 3 is a two-dimensional
matrix indexed by the attributes of the last miss and the
current miss to the same block by the same processor. The
attributes are the request type (read or read-exclusive) and
the memory block state (Uncached, Shared, or Exclusive).

The table shows that a read miss followed by another
read miss to the same block by the same processor while
the block is in memory state Shared makes up about 54%
of all misses. Overall the table shows that 93% of misses
are such that their latency is the same as the latency of the
preceding miss by the same processor to the same block.
In the remaining 7%, the average difference between past
and present latencies varies widely, but remains much
smaller than the local latency (60 cycles). 

In our simulations, we augment each miss request mes-
sage with a timestamp. When the reply is returned to the
requester, the miss latency is measured as the difference
between the current time and the timestamp. In the case
that a request receives many replies, the latency is mea-
sured at the time when the requested block becomes avail-
able. If a nacked request is reissued, the original
timestamp is re-used. 

4.2. Evaluation Approach and Setup
RSIM [16] models processor, memory system and

interconnection network in detail. We have implemented
the four cost-sensitive replacement algorithms as well as
LRU in the second-level caches in RSIM. Table 4 summa-
rizes our target system configuration consisting of 16 pro-
cessors. Data is placed in main memory using the first-
touch policy. We consider 500MHz and 1GHz processors. 

Due to the slow simulation speed of RSIM, the prob-
lem size of the four benchmarks in Table 1 are further
reduced. We execute Barnes with 4K particles, LU with

Table 2. Relative cost savings with first-touch 
cost m apping (%)

r=2 r=4 r=8 r=16 r=32

Barnes

GD 7.99 20.62 29.14 32.31 33.94

BCL 9.98 24.61 36.40 41.11 43.17

DCL 25.86 33.10 38.18 41.42 43.31

ACL 24.59 31.48 36.28 39.29 41.02

LU

GD -0.02 0.30 0.27 0.19 0.47

BCL 0.04 -0.03 -0.32 -0.65 -0.76

DCL -0.37 -0.58 -0.87 -1.19 -1.24

ACL 0.24 0.42 0.67 0.97 1.48

Ocean

GD -1.51 2.86 14.99 26.08 35.13

BCL -1.08 -0.94 0.99 12.98 35.32

DCL 6.24 12.40 20.88 29.23 36.03

ACL 6.21 12.43 20.65 28.49 34.81

Raytrace

GD 0.57 3.83 8.91 13.82 17.25

BCL 0.16 2.78 7.86 14.59 20.00

DCL 2.35 7.15 12.68 17.52 20.94

ACL 3.11 6.67 10.80 14.53 17.17

Table 3. Latency variation in protocol without replacem ent hints

current miss

read rd-excl

occurrence (%) mismatch (%) avg. lat. error occurrence (%) mismatch (%) avg. lat. error

U S E U S E U S E U S E U S E U S E

last 
miss

read

U 22.1 1.5 0.1 0 0 83 0.0 0.0 25.5 2.2 0.1 1.9 0 59 67 0.0 27.6 70.3

S 0.2 53.8 0.1 0 0 83 0.0 0.0 17.8 0.0 0.3 0.0 0 68 58 0.0 31.2 26.3

E 0.0 1.2 0.2 67 100 12 19.8 21.1 28.8 0.0 0.1 0.0 42 67 10 33.3 15.6 28.0

rd-excl

U 4.6 0.1 0.1 0 0 67 0.0 0.0 38.1 8.9 0.0 0.0 0 57 58 0.0 33.8 40.5

S 0.2 0.0 0.1 68 70 67 27.3 43.0 17.3 0.1 0.0 0.0 44 34 58 33.1 26.0 18.3

E 1.9 0.0 0.0 75 67 21 57.4 38.0 33.0 0.3 0.0 0.0 50 57 14 5.2 27.4 30.8



 

256x256 matrix, Ocean with 130x130 array and Raytrace
with teapot scene. 

4.3. Execution Times
Table 5 shows the reduction of the execution time (rel-

ative to LRU) for the four cost-sensitive replacement algo-
rithms with processors clocked at 500MHz and 1GHz.
Explaining the difference in execution times is much more
difficult than for trace-driven simulations, as other effects
such as superscalar execution and memory conflicts may
play a significant role. Nevertheless, we observe that the
execution time results are broadly consistent with the
observations made previously.

The results for GD, as compared to BCL, are rather
mixed. GD slightly outperforms BCL in Ocean and Ray-
trace whereas BCL outperforms GD in Barnes and LU.
The execution times in LU by GD and BCL are slightly
increased. Overall BCL yields more reliable improve-
ments than GD for both processors. However, the differ-
ences between BCL and GD are quite small, as compared
to the differences between BCL and DCL/ACL. DCL
yields reliable and significant improvements of execution
times in every situation. The improvements by DCL over
BCL are large in Barnes and Raytrace. 

As compared to DCL, the execution times in ACL are
slightly longer except in a few cases. This indicates that
ACL is rather slow in adapting to the rapid changes of the
savings pattern. In LU, the streak of reservation failures is
extremely long in some cache sets and ACL effectively fil-
ters these unnecessary reservations. In Raytrace with
500MHz processors, the large improvement by ACL over
DCL mainly comes from the reduction of synchronization
overhead and load imbalance. 

To reduce the size of ETD, we have the option to store
a few bits of the tag instead of the whole tag. Table 5
shows the results with tag aliasing in ETD. We reduce the
tag sizes to 4 bits. This tag aliasing practically saves 40%
to 60% of the tag storage in ETD depending on the data
address space in each benchmark. The fraction of false
match upon cache misses due to aliasing are 45%, 43%,
30% and 27% for Barnes, LU, Ocean and Raytrace,
respectively. False matches result in a more aggressive
depreciation of the cost of a reserved block, which seems
to benefit LU. The results show that the effect on the exe-
cution time due to ETD tag aliasing is very marginal.

Overall the improvements on the execution time by
DCL is significant. The performance of ACL is often
slightly lower than DCL, but ACL gives more reliable per-
formance across various applications, and protects against
misbehaving applications. 

Table 6 shows the reduction of the execution time with
500MHz processors as we vary the sizes of L1 and L2
caches. The reduction of the execution time by DCL and
ACL decreases with bigger caches. With the selected

Table 4. Baseline system  configuration

Processor Architecture

Clock 500 MHz or 1 GHz

Active List 64 entries

Functional 
Units

2 integer units, 2 FP units, 2 address generation 
units, 32-entry address queue

Memory Hierarchy and Interconnection Network

L1 Cache
4 Kbytes, direct-mapped, write-back, 2 ports, 8 

MSHRs, 64-byte block, 1clock access

L2 Cache
16 Kbytes, 4-way associative, write-back, 8 

MSHRs, 64-byte block, 6 clocks access

Main Memory 4-way interleaved, 60 ns access time

Unloaded Min-
imum Latency

Local clean: 120ns, Remote clean: 380ns, 
Remote dirty: 480ns

Cache Coher-
ence Protocol

MESI protocol with replacement hints

Interconnec-
tion Network

4x4 mesh, 64-bit link, 6ns flit delay, 64-flit 
switch buffer

Table 5. Reduction of execution time over LRU (% )

500MHz Processor

GD BCL DCL ACL
DCL 

aliasing
ACL 

aliasing

Barnes 4.94 7.36 16.92 16.15 15.90 15.14

LU -0.62 -0.40 3.50 3.93 4.46 5.07

Ocean 6.28 5.99 8.29 7.35 7.65 6.84

Raytrace 3.50 2.75 7.19 13.44 5.61 14.56

1GHz Processor

GD BCL DCL ACL
DCL 

aliasing
ACL 

aliasing

Barnes 6.88 8.51 18.12 17.37 18.41 17.20

LU -0.44 -0.29 3.59 4.20 4.75 5.38

Ocean 6.45 6.18 8.46 7.94 8.00 7.12

Raytrace 3.59 2.30 7.82 7.55 6.70 5.68

Table 6. Reduction of execution time over LRU 
with different L1/L2 cache sizes (%)

4KB/32KB 8KB/64KB 16KB/128KB

DCL ACL DCL ACL DCL ACL

Barnes 16.17 17.34 3.28 3.39 -0.67 -0.20

LU 11.87 13.15 0.31 0.11 0.99 0.57

Ocean 3.40 3.10 -0.46 0.29 0.25 0.31

Raytrace 4.93 6.67 5.95 6.80 -2.21 4.34



 

problem sizes, the miss rates in L1 and L2 caches are too
low in the bigger caches, and the replacement algorithm
does not affect performance much. Moreover, as cache
sizes increase, the local miss rate in L1 tends to improve
faster than the remote miss rate due to higher locality on
local accesses, and thus the HAF to L2 cache increases.

5. Implementation Considerations
In this section we evaluate the hardware overhead

required by the four cost-sensitive algorithms over LRU,
in terms of hardware complexity and of the effect on cycle
time. 

In all four algorithms, tag and cost fields are needed.
There are two types of cost fields: fixed cost fields, which
store the predicted cost of the next miss, and computed
(depreciated) cost fields, which store the cost of a block
while it is depreciated.

We first consider the hardware storage needed for each
cache set. In an s-way associative cache, BCL requires s+1
cost fields (one fixed cost for each block in the set and one
computed cost for Acost). GD requires 2s cost fields (one
fixed cost and one computed cost for each block in the
set). DCL requires 2s cost fields (s fixed costs and 1 com-
puted cost in cache and s-1 fixed cost in ETD) and s-1 tag

fields, and ACL adds a two-bit counter plus one bit field2

to DCL. All these additional fields can be part of the direc-
tory entries which are fetched in the indexing phase of the
cache access, with little access overhead.

In a four-way associative cache with 25-bit tags, 8-bit
cost fields and 64-byte blocks, the added hardware costs
over LRU algorithm are around 1.9%, 2.7%, 6.6% and
6.7% for BCL, GD, DCL and ACL, respectively. If the
target cost function is static and associated with the
address, a simple table lookup can be used to find the miss
cost. In this case, the algorithms do not require the fixed
cost fields and the added hardware costs are 0.4%, 1.5%,
4.0% and 4.1%, respectively. The hardware requirement
of DCL and ACL can be further reduced if we allow tag
aliasing in ETD. 

Even if the costs are dynamic, it is possible to cut down
on the number of bits required by the fixed cost fields. For
example, instead of measuring accurate latencies as we
have done in Section 4, we can use the approximate,
unloaded latencies given in Table 4, which can be looked
up in a table. In general the number of bits required by the
fixed cost fields is then equal to the logarithm base 2 of the
number of costs. In the example of Table 4 we would need
2 bits for fixed miss cost fields.

On the other hand, the computed cost fields must have

enough bits to represents latencies after they have been
depreciated. Let’s assume that the greatest common divi-
sor (GCD) of all possible miss costs is G. Then G can be
the unit of cost. Let’s assume that the largest possible cost
is KxG. Then we need log2 K bits for the computed
(depreciated) cost field. For example, from Table 4, we
can use G=60nsec and K=8 (the only problem is the
380nsec latency which would be encoded as 360nsec, a
minor discrepancy). Thus 3 bits will be sufficient for the
computed cost fields. In this case, with 5 bits for the tags
and the valid bit in each ETD entry, the hardware over-
head per set over LRU is 11 bits in BCL, 20 bits in GD, 32
bits in DCL and 35 bits in ACL, which means a memory
overhead of 0.5%, 0.9%, 1.5%, and 1.6%.

Although timing is not a critical issue for second-level
caches, our algorithms affect the cache hit time minimally,
if any. The additional operations on a hit are restoring the
miss cost of the MRU block in GD, setting Acost for the
LRU block in BCL, DCL and ACL, and looking up and
invalidating ETD entries for DCL and ACL. These opera-
tions are trivial, given the number of bits involved. ETD
lookup is not required to detect a cache hit. The major
work is done at miss time when blocks are victimized and
the amount of work is very marginal, compared to the
complexity of operation of a lockup-free cache. 

6. Related Work
Replacement algorithms to minimize the miss count in

finite-size storage systems have been extensively studied
in the past. A variety of replacement algorithms have been
proposed and a few of them, such as LRU or an approxi-
mation to LRU, are widely adopted in caches [19][20].
Lately several cache replacement algorithms (e.g.,
[11][17][23]) have been proposed to further reduce the
miss count in LRU. These proposals are motivated by the
performance gap between LRU and OPT [2], and often
require large amounts of hardware to keep track of long
access history. Mounes-Toussi and Lilja [15] evaluated
state-based replacement policies, in which the random
replacement policy is modified by several static replace-
ment priority schemes based on cache coherence states.
Under the MESI protocol they observed marginal miss
rate improvements over the random policy.

Recently, the problem of replacement algorithms has
been revisited in the context of emerging applications and
systems with variable miss costs. Albers et al. [1] classi-
fied general caching problems into four models in which
the size and/or the latency of data can vary. They proposed
several approximate solutions to these problems. Greedy-
Dual was first proposed by Young [25] later refined by
Cao and Irani [3] in the context of Web caching to reduce
the miss cost. They found that size considerations play a

2. This bit is associated with the LRU blockframe and indicates
whether or not the block is currently reserved so that the counter
of successful/failed reservations can be updated.



 

more important role than locality in reducing miss cost.
However when applied to processor caches with small,
constant data transfer sizes, our results show that Greedy-
Dual is far less efficient than other algorithms, especially
when the cost ratio is small. 

The original idea behind the shadow directory [22] was
to keep extended locality information for blocks already
replaced from cache. This information is then used for
smart prefetching or replacement decisions. In our algo-
rithms, the extended tag directory used to depreciate the
cost of reserved blocks is similar to the shadow directory. 

Srinivasan et al. [21] addressed the performance issues
caused by critical loads in superscalar processors. Critical
loads are loads that have a large miss penalty in supersca-
lar processors. They proposed schemes to identify blocks
accessed by critical loads. Once detected such critical
blocks are stored in a special cache upon cache replace-
ment or their stay in caches is extended. 

7. Conclusion
In this paper we have introduced new on-line cost-sen-

sitive cache replacement algorithms extended from LRU
whose goal is to minimize the aggregate miss cost rather
than the aggregate miss count.

From trace-driven simulations we observe that our
cost-sensitive algorithms yield large cost savings over
LRU across various cost ranges and cache configurations.
Execution-driven simulations of a multiprocessor with
superscalar processors show significant reduction of exe-
cution time when cache replacements vie to minimize miss
latency instead of miss count.

Our algorithms are readily applicable to the manage-
ment of various kinds of storage where various kinds of
non-uniform cost functions are involved. By contrast to
approaches partitioning the cache or adding special-pur-
pose buffers to treat blocks in different ways [21][7][6],
cost-sensitive replacement algorithms with properly
defined cost functions can maximize cache utilization.

There are many open questions left to research. In the
arena of multiprocessor memory systems, we can imagine
more dynamic situations than the ones evaluated here.
First the memory mapping of blocks may vary with time,
adapting dynamically to the reference patterns of pro-
cesses in the application, such as is the case in page migra-
tion and COMAs [5]. Second, we could imagine that node
bottlenecks and hot spots in multiprocessors could be
adaptively avoided by dynamically assigning very high
costs to blocks accessible in congested nodes. Other areas
of application are power optimization in embedded sys-
tems or bus bandwidth optimization in bus-based systems.
The memory performance of CC-NUMA multiprocessors
may be further enhanced if we can measure memory

access penalty instead of latency and use the penalty as the
target cost function.

Single superscalar processor systems may also benefit
from cost-sensitive replacements. It is well-known that
stores can be easily buffered whereas loads are more criti-
cal to performance. Even among loads, some loads are
more critical than others [21]. Thus if we could predict the
nature of the next access to a cached block, we could
assign a high cost to critical load misses and low cost to
store misses and non-critical load misses, based on a mea-
sure of their penalty. Of course, the combination of super-
scalar processors and multiprocessor environment
provides richer optimization opportunities for cost-sensi-
tive replacements.

Although our evaluations have focused on second-
level caches, latency and penalty sensitive algorithms may
be useful at every level of the memory hierarchy, includ-
ing the first-level cache, both in multiprocessor and uni-
processors. The general approach of pursuing high-cost
block reservation and of depreciating their cost to take
care of locality effects could also be applied to other
replacement algorithms besides LRU. 

It would also be interesting to evaluate the interaction
between our replacement algorithms and prefetching.
Prefetching may change the HAF and the dynamic distri-
bution of costs, which would affect the multiprocessor
simulation results. Prefetching also reduces the effect of
memory penalties, and so it may reduce the benefits of
cost-sensitive algorithms relative to LRU. However,
prefetching only helps execution time if it is done care-
fully. It is costly in terms of bandwidth and power con-
sumption. In some sense cost-sensitive algorithms tend to
have a similar effect as prefetching, but, instead of replac-
ing high-cost blocks and then prefetching them before
their next access, we keep them in cache, thus saving the
power and bandwidth to prefetch them.

Finally another approach to cut down on the perfor-
mance effects of remote capacity misses in multiprocessor
systems is to add a large DRAM or a smaller SRAM
remote data cache [14] in each processor node. For exam-
ple, in NUMA-Q, each node has a 32Mbyte DRAM
remote data cache [5] so that, when the remote data cache
hits, the latency of a remote capacity miss is similar to the
latency of a local miss. Of course the cost of such caches is
much higher than the cost of applying cost-sensitive
replacement policies to the second-level caches. It would
seem useful to compare the cost-effectiveness of these var-
ious solutions.
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