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Abstract

Due to cost, time, and flexibility constraints, simulators
are often used to explore the design space when
developing new processor architectures, as well as when
evaluating the performance of new processor
enhancements. However, despite this dependence on
simulators, statistically rigorous simulation methodologies
are not typically used in computer architecture research.
A formal methodology can provide a sound basis for
drawing conclusions gathered from simulation results by
adding statistical rigor, and consequently, can increase
confidence in the simulation results. This paper
demonstrates the application of a rigorous statistical
technique to the setup and analysis phases of the
simulation process. Specifically, we apply a Plackett and
Burman design to: 1) identify key processor parameters,
2) classify benchmarks based on how they affect the
processor, and 3) analyze the effect of processor
performance enhancements. Our technique expands on
previous work by applying a statistical method to improve
the simulation methodology instead of applying a
statistical model to estimate the performance of the
processor.

1. Introduction

Simulators are an extremely valuable tool for computer
architects. They reduce the cost and time of a project by
allowing the architect to quickly evaluate different
processor implementations. Additionally, they allow the
architect to quickly determine the expected performance
improvement of a new processor enhancement.

Despite this dependence on simulators, architects often
approach the simulation process in an ad-hoc manner. For
example, when performing a sensitivity analysis, the
architect will hold most of the processor parameters
constant while varying the values of a select group.
However, there are several questions that must be
addressed regarding the simulation setup. For instance,

which parameters should be held constant? What values
should be used for those parameters? Do any of the
constant parameters interact with the variable ones? What
is the magnitude of the effects for those interactions? How
much impact do the specific values for the constant
parameters have? What range of values should be used to
test the effects of the variable parameters?

Since it is impossible to separate out the effect of the
interactions and constant parameters after performing the
simulations, the architect must answer these questions
before starting the simulations. Due to the sheer
computational cost, however, it is virtually impossible to
simulate all possible combinations of parameters. This
situation illustrates the need for a statistically-based
methodology to answer these types of questions.

While using such a methodology may require some
additional simulations, it also has the following
advantages:

1) It decreases the number of errors that are
present in the simulation process and helps the
computer architect detect errors more quickly.
Errors include, but are not limited to, simulator
modeling errors, user implementation errors, and
simulation setup errors [2, 4, 5, 8, 10].

2) It gives more insight into what is occurring inside
the processor or the actual effect of a processor
enhancement.

3) It gives objective confidence to the results and
provides statistical support regarding the
observed behavior.

While the first and third advantages are self-
explanatory, it is not obvious from the second advantage
how a statistically-based methodology could improve the
quality of the analysis. However, since simulators are
complex, it is very difficult to fully understand the effect
that a design change or an enhancement may have on the
processor. As a result, architects use high-level metrics,
such as speedup, to understand the “big-picture” effects.
However, analyzing the processor from a statistical point-
of-view can help the architect quantify the effects that all



components have on the performance and on other
important design metrics (e.g. power consumption, etc.).

Therefore, as a first step in developing a formal
methodology, this paper makes specific suggestions on
how to improve the simulation setup process and the
analysis of results. The suggestions include methods for
identifying the key processor parameters, for classifying
benchmarks based on how they affect the processor, and
for analyzing the effect of a processor enhancement.

The contributions of this paper are as follows:

1) This paper demonstrates the need for
methodological improvement in computer
architecture research and the efficacy of a
particular statistical method to accomplish that.

2) This paper makes specific recommendations on
how to improve the simulation methodology. In
particular, the recommendations include how to:
A) choose the processor parameter values, B)
classify benchmarks, and C) analyze the effect that
an enhancement has on the processor.
Collectively, these recommendations can improve
the simulation methodology, decrease the total
number of simulations, quickly determine the
processor’s bottlenecks, and provide analytical
insights into the impact of processor
enhancements.

3) This paper, by way of illustrating the second
contribution, determines the most important
machine parameters in the commonly used
SimpleScalar superscalar simulator [3].

The remainder of this paper is organized as follows:
Section 2 describes the statistical Plackett and Burman
design. Sections 3 and 4 describe the experimental setup
and the results, respectively, while Section 5 discusses
some related work. Section 6 concludes.

2. Plackett and Burman Designs

In this paper, we used a Plackett and Burman (PB)
design [23] to determine the effect that a parameter has on
the processor’s performance. While we could have used
one of several other statistical techniques, we chose the PB
design because it required only about N simulations
(where N is the number of parameters) to produce the
desired level of information. The other approaches that we
considered using were the “one-at-a-time” technique and
the ANOVA technique [17]. However, these two
techniques did not produce the desired level of information
(one-at-a-time) or required 2N simulations (ANOVA). A
detailed comparison of these three techniques can be found
in [33].

Saturated designs, such as the PB design, are recipes
that vary all N parameters simultaneously over N+1

simulations. They provide the logically minimal number of
simulations required to estimate the effect of each of the N
parameters. An improvement on the basic PB design is the
“foldover” PB design [19]. This requires approximately
2N simulations. With this experimental design, the user
can determine the effects of all of the main parameters and
selected interactions. Since PB designs exist only in sizes
that are multiples of 4, the base PB design requires X
simulations, where X is the next multiple of four that is
greater than N (including if N is a multiple of 4), while the
foldover PB design requires 2X simulations.

However, the downside of the PB design is that it
cannot quantify the effects of all of the interactions.
Therefore, it is possible that unknown, but significant,
interactions may alter the apparent effect of any of the
parameters. Fortunately for computer architects, this
situation probably does not occur for processor
parameters. The results in [32] show that if an interaction
between parameters was significant, it was significant only
because each of its constituent parameters was
individually significant. Additionally, the effects of the
most significant interactions were relatively small
compared to the effects of the most significant parameters.
As a result, using a PB design with foldover to analyze the
effects of the processor parameters does not compromise
the results.

The parameters’ configuration for each simulation run
is given by the PB design matrix which, for most values of
X, is simple to construct. The rows of the design matrix
correspond to different configurations while the columns
correspond to the parameters’ values in each
configuration. When there are more columns than
parameters (i.e. N < X – 1), then the extra columns are
simply “dummy parameters” and have no effect on the
simulation results. For these values of X, the first row of
the design matrix is given in [23]. The next X – 2 rows are
formed by performing a circular right shift on the
preceding row. The last line of the design matrix is a row
of minus ones. The gray-shaded portion of Table 1
illustrates the construction of the PB design matrix for
X=8, a design appropriate for investigating 7 (or fewer)
parameters. When using foldover, X additional rows are
added to the matrix. The signs in each entry of the
additional rows are the opposite of the corresponding
entries in the original matrix. Table 1 shows the complete
PB design matrix with foldover. Note that rows 10-17
specifically show the additional foldover rows.

A “+1”, or high value, for a parameter represents a
value that is higher than the range of normal values for
that parameter while a “-1”, or low value, represents a
value that is lower than the range of normal values. It is
important to note that the high and low values are not
restricted to only numerical values. For example, in the
case of branch prediction, the high and low values could
be perfect and 2-level branch prediction, respectively. It is



also important to note that choosing high and low values
that yield too large a range can artificially inflate the
parameter’s apparent effect; too small a range has the
opposite result. Therefore, the user should exercise some
caution when choosing each value. Ideally, the high and
low values for each parameter should be just outside of the
“normal” range of values.

Table 1. Plackett and Burman design matrix
with foldover (X=8).

A B C D E F G Exec. Time
+1 +1 +1 -1 +1 -1 -1 9
-1 +1 +1 +1 -1 +1 -1 11
-1 -1 +1 +1 +1 -1 +1 2
+1 -1 -1 +1 +1 +1 -1 1
-1 +1 -1 -1 +1 +1 +1 9
+1 -1 +1 -1 -1 +1 +1 74
+1 +1 -1 +1 -1 -1 +1 7
-1 -1 -1 -1 -1 -1 -1 4
-1 -1 -1 +1 -1 +1 +1 17
+1 -1 -1 -1 +1 -1 +1 76
+1 +1 -1 -1 -1 +1 -1 6
-1 +1 +1 -1 -1 -1 +1 31
+1 -1 +1 +1 -1 -1 -1 19
-1 +1 -1 +1 +1 -1 -1 33
-1 -1 +1 -1 +1 +1 -1 6
+1 +1 +1 +1 +1 +1 +1 112

191 19 111 -13 79 55 239

After determining the configurations and performing
the simulations, the effect of each parameter is computed
by the multiplying the parameter’s PB value for a
configuration by the result (e.g. execution time) for that
configuration and summing the resulting products across
all configurations. For example, the effect of parameter A
from Table 1 is computed as follows:

EffA = (1 * 9) + (-1 * 11) + … + (-1 * 6) + (1 * 112) = 191

For the example in Table 1, the parameters with the most
effect are G, A, and C, in order of their overall impact on
performance. Only the magnitude of the effect is
important; the sign of the effect is meaningless.

3. Simulator, Benchmarks, and Parameters

In the remainder of the paper, we show how a PB
design can be used to select parameter values and
benchmark programs for simulations, and how it can
provide insights into the impact of a processor
enhancement. The base simulator, sim-outorder, is from
the SimpleScalar tool suite [3] and models a superscalar
processor. We modified sim-outorder to include user

configurable instruction latencies and throughputs.
The benchmarks that were used in this paper, shown in

Table 2, were selected from the SPEC 2000 benchmark
suite. We chose these benchmarks because they were the
only ones that had MinneSPEC [14] reduced input sets
available at the time. All benchmarks were compiled at
optimization level O3 using the SimpleScalar version of
the gcc compiler and were run to completion.

Table 2. Selected benchmarks from the SPEC
2000 benchmark suite used in this paper.

Benchmark Type Dynamic Instr. (M)

gzip Integer 1364.2
vpr-Place Integer 1521.7
vpr-Route Integer 881.1

gcc Integer 4040.7
mesa Floating-Point 1217.9
art Floating-Point 2181.1
mcf Integer 601.2

equake Floating-Point 713.7
ammp Floating-Point 1228.1
parser Integer 2721.6
vortex Integer 1050.2
bzip2 Integer 2467.7
twolf Integer 764.6

Table 3. Processor core parameters and their
Plackett and Burman values.

Parameter Low Value High Value

Fetch Queue Entries 4 32
Branch Predictor 2-Level Perfect

Branch MPred Penalty 10 Cycles 2 Cycles
RAS Entries 4 64
BTB Entries 16 512
BTB Assoc 2-Way Fully-Assoc

Spec Branch Update In Commit In Decode
Decode/Issue Width 4-Way

ROB Entries 8 64
LSQ Entries 0.25 * ROB 1.0 * ROB

Memory Ports 1 4

As described in the Section 2, the parameter values
should be chosen to be slightly too low and too high – with
respect to the normal range – to allow the PB design to
more accurately determine the effect of each parameter.
As a result, the final values that we chose for each
parameter are not values that would be actually present in
commercial processors nor are they values that should be
used in the simulations. Rather, the values were
deliberately chosen to be slightly higher and lower than
the range of “normal” values. We based our parameter



Table 4. Functional unit parameters and their
Plackett and Burman values.

Parameter Low Value High Value

Int ALUs 1 4
Int ALU Latency 2 Cycles 1 Cycle

Int ALU Throughput 1
FP ALUs 1 4

FP ALU Latency 5 Cycles 1 Cycle
FP ALU Throughputs 1

Int Mult/Div Units 1 4
Int Mult Latency 15 Cycles 2 Cycles
Int Div Latency 80 Cycles 10 Cycles

Int Mult Throughput 1
Int Div Throughput Equal to Int Div Latency
FP Mult/Div Units 1 4
FP Mult Latency 5 Cycles 2 Cycles
FP Div Latency 35 Cycles 10 Cycles
FP Sqrt Latency 35 Cycles 15 Cycles

FP Mult Throughput Equal to FP Mult Latency
FP Div Throughput Equal to FP Div Latency
FP Sqrt Throughput Equal to FP Sqrt Latency

Table 5. Memory hierarchy parameters and their
Plackett and Burman values.

Parameter Low Value High Value

L1 I-Cache Size 4 KB 128 KB
L1 I-Cache Assoc 1-Way 8-Way

L1 I-Cache Block Size 16 Bytes 64 Bytes
L1 I-Cache Repl Policy Least Recently Used

L1 I-Cache Latency 4 Cycles 1 Cycle
L1 D-Cache Size 4 KB 128 KB

L1 D-Cache Assoc 1-Way 8-Way
L1 D-Cache Block Size 16 Bytes 64 Bytes
L1 D-Cache Repl Policy Least Recently Used

L1 D-Cache Latency 4 Cycles 1 Cycle
L2 Cache Size 256 KB 8192 KB

L2 Cache Assoc 1-Way 8-Way
L2 Cache Block Size 64 Bytes 256 Bytes
L2 Cache Repl Policy Least Recently Used

L2 Cache Latency 20 Cycles 5 Cycles
Mem Latency, First 200 Cycles 50 Cycles
Mem Latency, Next 0.02*Mem Latency, First

Mem Bandwidth 4 Bytes 32 Bytes
I-TLB Size 32 Entries 256 Entries

I-TLB Page Size 4 KB 4096 KB
I-TLB Assoc 2-Way Fully Assoc

I-TLB Latency 80 Cycles 30 Cycles
D-TLB Size 32 Entries 256 Entries

D-TLB Page Size Same as I-TLB Page Size
D-TLB Assoc 2-Way Fully-Assoc

D-TLB Latency Same as I-TLB Latency

values on those found in several commercial processors.
Our list of commercial processors included the Alpha
21164 [1, 6] and 21264 [12, 13, 16, 18]; the UltraSparc I
[29], II [21], and III [11]; the HP PA-8000 [15]; the
PowerPC 604 [28]; and the MIPS R10000 [30]. To fill in
the gaps left by these papers, [24, 25] and several web
searches were also used as references. Tables 3, 4, and 5
show the final values for each of the relevant parameters in
the processor core, the functional units, and the memory
hierarchy, respectively.

A couple of parameters across all three tables are
shaded in gray. For these parameters, the low and high
values cannot be chosen completely independently of the
other parameters due to the mechanics of the PB design.
The problem occurs when one of those parameters is set to
its high value while the parameter it is related to is set to
its low value. That combination of values leads to a
situation that either does not make sense or would not
actually occur in a real processor. For example, if the
number of LSQ entries was chosen independently of the
number of ROB entries, then some of the configurations
could have a 64-entry LSQ and an 8-entry ROB. But since
the total number of in-flight instructions cannot exceed the
number of reorder buffer entries, the maximum number of
filled LSQ entries will never exceed 8. Therefore, to avoid
those types of situations, the values for all gray-shaded
parameters are based on their related parameter.

All parameter values were based on a 4-way issue
processor. While the issue width is a very important
parameter, we fixed the issue width at four for two
reasons. First of all, we fixed the issue width to avoid
having a set of high and low values for each issue width
since almost all of the parameters are related to the issue
width. Having two sets of high and low values could
dramatically affect the results. Second, we fixed issue
width at four to eliminate the guesswork needed to
determine the normal range of parameter values for a
higher issue width processor. Also, there was a lot of
documentation available for several 4-way issue
commercial processors. Note that fixing the issue width
does not affect the conclusions drawn from these
simulations, especially since this is a methodology paper.
Fixing the issue width merely removes it as a variable
parameter.

Finally, we used sim-outorder instead of the validated
Alpha 21264 simulator [5] for three reasons. First, since
this is a methodology paper, the specific simulator used
does not affect the final conclusions since the simulation
results serve only to illustrate certain key points. Second,
since the Alpha simulator has many Alpha-architecture
specific parameters, we used sim-outorder to avoid
producing results that were particular to the 21264. Third,
since sim-outorder is a popular simulator, using this
simulator has the extra benefit of producing results that are
beneficial to the SimpleScalar community.



4. Plackett and Burman Design Results for
the Simulation Setup and Analysis

The three principal phases of the simulation process in
computer architecture research are setup, simulation, and
data analysis. The first phase occurs after the user
determines the initial set of testcases and modifies the
simulator and/or compiler. As a result, in the first phase,
the user determines the values of the processor parameters
and selects the benchmarks that will be simulated. In the
third phase, the user analyzes the results that were
gathered during the simulation phase. Then, depending on
the results, the process may be repeated.

This section focuses on improving the methodology of
the first and third phases. To improve the methodology of
the first phase, we describe a statistically rigorous method
of choosing the processor parameter values. In addition, to
improve the benchmark selection process, we describe a
method of classifying benchmarks based on grouping
together benchmarks that have similar effects on the
processor. To improve the methodology of the third phase,
we describe a method of analyzing the effect that an
enhancement has on the base processor. For each method,
we briefly describe the problem or pitfalls that could result
if that particular method were not employed. Furthermore,
to illustrate the efficacy, utility, and mechanics of each
method, a short example is given. It is important to note
that each example contains general results that can be
considered a contribution to the art.

4.1. Processor Parameter Selection

Improperly choosing the value of a single parameter
can significantly affect the simulated speedup of a
processor enhancement. For instance, simply increasing
the reorder buffer size can change the speedup of value
reuse [27] from approximately 20% to approximately
30%. However, choosing a “good” set of parameters is
extremely difficult since many of the important parameters
may interact, thereby compounding the error of selecting a
single poor value. Determining which parameters interact
requires performing a sensitivity analysis on all of the
parameters simultaneously or choosing a select few
parameters for detailed study. The problem with the
former approach is that simulating all possible
combinations is a virtual impossibility. And the problem
with the latter approach is that in studying only a few
parameters, the other parameters have to have constant
values. Therefore, if one of the constant parameters
significantly interacts with one of the free parameters, then
the results of the sensitivity analysis will be distorted.
Fortunately, this problem can be solved by using a PB
design to identify the significant parameters.

Table 6 shows the results of a PB design with foldover
(X=44) for the base superscalar processor with the

parameter values shown in Tables 3-5. After simulating all
88 (2X) configurations, the PB design results were
calculated. Then the parameters for each benchmark were
assigned a rank based on the significance of the parameter
(1 = most important). Then the ranks of each parameter
were summed across all benchmarks and the resulting
sums sorted in ascending order. Summing the ranks across
benchmarks reveals the most significant parameters across
all of the benchmarks. The parameters with the lowest
sums represent the parameters that have the most effect
across all benchmarks.

Several key results can be drawn from this table. First,
we see that only the first ten parameters are significant
across all benchmarks. This conclusion is drawn by
examining the large difference between the sum of the
ranks of the tenth parameter (LSQ size) and the sum of the
ranks of the eleventh parameter (Speculative Branch
Update). Furthermore, we see that, while the ranks of the
top ten parameters for each benchmark are completely
different, two parameters (ROB Entries and L2 Cache
Latency) are significant across all of the benchmarks since
those two are almost always one of the most important
parameters for every benchmark. This means that the
Reorder Buffer and the L2 Cache latency are the two
biggest bottlenecks in the processor.

Second, the effect that each benchmark has on the
processor can be clearly seen. For instance, since the ranks
for the L1 I-Cache size, associativity, and block size are
lower than or similar to the ranks for the L1 D-Cache size,
associativity, and block size, respectively, for mesa, we
conclude that mesa stresses the instruction cache more
than the data cache. Table 6 also shows that mesa’s
performance is highly dependent on the branch predictor
and its related parameters (misprediction penalty, BTB
entries and associativity, and the speculative branch
update) since those parameters have relatively low ranks.

Finally, several parameters have surprisingly low
rankings in some benchmarks. For example, the FP square
root latency in art has a rank of 5. Since art does not have
a significant number of FP square root instructions, its
rank does not appear to be consistent with its intuitive
significance. However, what the rank does not show is that
the magnitude of the effect for this parameter is much
smaller than magnitudes of the effects for the four most
significant parameters. Therefore, this example shows that
while the rank is convenient to use, it cannot be used as
the sole arbiter in concluding the significance of a
parameter’s impact.

After determining the critical parameters, the task of
choosing the final parameter values is simplified since
only the values for the critical parameters need to be
chosen carefully. We recommend performing iterative sets
of sensitivity analyses so that the exact interaction between
critical parameters can be accounted for when choosing
the final values of the critical parameters. To summarize,



Table 6. Plackett and Burman design results for all processor parameters; ranked by significance and
sorted by the sum of ranks.

Parameter gzip vpr-Place vpr-Route gcc mesa art mcf equake ammp parser vortex bzip2 twolf Sum

ROB Entries 1 4 1 4 3 2 2 3 6 1 4 1 4 36
L2 Cache Latency 4 2 4 2 2 4 4 2 13 3 2 8 2 52
Branch Predictor 2 5 3 5 5 27 11 6 4 4 16 7 5 100

Int ALUs 3 7 5 8 4 29 8 9 19 6 9 2 9 118
L1 D-Cache Latency 7 6 7 7 12 8 14 5 40 7 5 6 6 130

L1 I-Cache Size 6 1 12 1 1 12 37 1 36 8 1 16 1 133
L2 Cache Size 9 35 2 6 21 1 1 7 2 2 6 3 43 138

L1 I-Cache Block Size 16 3 20 3 16 10 32 4 10 11 3 22 3 153
Mem Latency, First 36 25 6 9 23 3 3 8 1 5 8 5 28 160

LSQ Entries 12 14 9 10 13 39 10 10 17 9 7 4 10 164

Speculative Branch Update 8 17 23 28 7 16 39 12 8 20 22 20 17 237
D-TLB Size 20 28 11 23 29 13 12 11 25 14 25 11 24 246

L1 D-Cache Size 18 8 10 12 39 18 9 36 32 21 12 31 7 253
L1 I-Cache Assoc 5 40 15 29 8 34 23 28 16 17 15 9 21 260
FP Mult Latency 31 12 22 11 19 24 15 23 24 29 14 23 19 266

Memory Bandwidth 37 36 13 14 43 6 6 29 3 12 19 12 38 268
Int ALU Latency 15 15 18 13 41 22 33 14 30 16 41 10 16 284

BTB Entries 10 24 19 20 9 42 31 20 22 19 20 17 34 287
L1 D-Cache Block Size 17 29 34 22 15 9 24 19 28 13 32 28 26 296

Int Div Latency 29 10 26 16 24 32 41 32 20 10 10 43 8 301

Int Mult/Div Units 14 20 29 31 10 23 27 24 33 36 18 26 15 306
L2 Cache Assoc 23 19 14 19 32 28 5 39 37 18 42 21 12 309
I-TLB Latency 33 18 24 18 37 30 30 16 21 32 11 29 18 317

Fetch Queue Entries 43 13 27 30 26 20 18 37 9 25 23 34 14 319
Branch MPred Penalty 11 23 42 21 6 43 20 34 11 22 39 37 23 332

FP ALUs 34 11 31 15 34 17 40 22 26 37 13 42 13 335
FP Div Latency 22 9 35 17 30 21 38 15 43 38 17 39 11 335
I-TLB Page Size 42 39 8 37 36 40 7 17 12 26 28 14 39 345

L1 D-Cache Assoc 13 38 17 34 18 41 34 33 14 15 35 15 42 349
I-TLB Assoc 24 27 37 25 17 31 42 13 29 30 21 33 22 351

L2 Cache Block Size 25 43 16 38 31 7 35 27 7 35 38 13 40 355
BTB Assoc 21 21 36 32 11 33 17 31 34 43 27 35 25 366

D-TLB Assoc 40 32 25 26 22 35 26 26 18 33 26 30 35 374
FP ALU Latency 32 16 38 41 38 11 22 30 23 27 30 40 29 377

Memory Ports 39 31 41 24 27 15 16 41 5 42 29 41 27 378

I-TLB Size 35 34 28 35 20 37 19 18 31 34 34 27 31 383
Dummy Parameter #2 27 42 21 39 35 14 13 35 41 28 43 18 30 386

FP Mult/Div Units 41 22 43 40 40 19 28 38 27 31 31 19 20 399
Int Mult Latency 30 41 39 36 14 26 29 21 15 41 37 32 41 402
FP Sqrt Latency 38 30 40 33 33 5 25 42 42 24 24 38 37 411

L1 I-Cache Latency 26 26 32 42 28 38 21 40 38 40 36 25 33 425
RAS Entries 28 33 33 27 42 25 36 25 39 39 33 36 32 428

Dummy Parameter #1 19 37 30 43 25 36 43 43 35 23 40 24 36 434

we recommend the following steps when choosing the
final simulation parameter values:

1) Determine the critical processor parameters using
a Plackett and Burman design.
a) Choose low and high values for each of the

parameters.
b) Run and analyze the PB simulations to

determine the critical parameters.
2) Iteratively perform sensitivity analyses for each

critical parameter using the ANOVA technique.
3) Choose final values for the critical parameters

based on the results of the sensitivity analyses.
4) Choose the final values for the non-critical

parameters based on commercial processor values,
or some other appropriate source.

4.2. Benchmark Selection

Just as a poorly chosen set of parameter values can
drastically affect the performance results, a poorly chosen
set of benchmarks may not accurately depict the true
performance of the processor or enhancement. For
instance, if the set of benchmarks was extremely memory-
intensive, then an optimization to the memory hierarchy
(e.g. prefetching) will overestimate the performance of
that optimization across the range of benchmarks.
However, if the user simply simulates all of the
benchmarks from a benchmark suite, then he/she sacrifices
a more complete exploration of the design space by
simulating redundant benchmarks. Therefore, for accuracy
and efficiency reasons, it is important for the user to
simulate a set of benchmarks that are distinct, but that are



Table 7. Euclidean distance between benchmark vectors, based on parameter ranks in Table 6.

gzip vpr-Place vpr-Route gcc mesa art mcf equake ammp parser vortex bzip2 twolf

gzip 0.0 89.8 81.1 81.9 62.0 113.5 109.6 79.5 111.7 73.6 92.0 78.1 85.5
vpr-Place 89.8 0.0 98.9 63.7 94.0 102.8 110.9 84.7 118.1 89.7 68.5 111.4 35.2
vpr-Route 81.1 98.9 0.0 71.7 98.5 100.4 75.5 73.3 91.7 56.4 79.2 45.7 96.6

gcc 81.9 63.7 71.7 0.0 90.9 92.6 94.5 63.6 98.5 65.0 54.6 88.8 67.3
mesa 62.0 94.0 98.5 90.9 0.0 120.9 109.9 81.8 100.2 88.9 87.8 94.1 91.7
art 113.5 102.8 100.4 92.6 120.9 0.0 98.6 96.3 105.2 94.4 92.7 102.5 105.2
mcf 109.6 110.9 75.5 94.5 109.9 98.6 0.0 104.9 94.8 87.6 101.3 80.0 111.1

equake 79.5 84.7 73.3 63.6 81.8 96.3 104.9 0.0 98.4 77.1 67.8 76.1 86.5
ammp 111.7 118.1 91.7 98.5 100.2 105.2 94.8 98.4 0.0 91.1 98.8 92.7 120.0
parser 73.6 89.7 56.4 65.0 88.9 94.4 87.6 77.1 91.1 0.0 77.4 62.9 89.7
vortex 92.0 68.5 79.2 54.6 87.8 92.7 101.3 67.8 98.8 77.4 0.0 94.8 73.1
bzip2 78.1 111.4 45.7 88.8 94.1 102.5 80.0 76.1 92.7 62.9 94.8 0.0 107.9
twolf 85.5 35.2 96.6 67.3 91.7 105.2 111.1 86.5 120.0 89.7 73.1 107.9 0.0

representative of the range of benchmarks.
However, determining if two benchmarks are similar is

difficult because benchmarks can be classified in many
different ways (by application, by relative use of integer or
floating-point operations, by processing time versus
memory usage, etc.). Therefore, as an alternative
classification that may be more relevant to computer
architects, we propose that benchmarks be classified by
their effect on the processor. Under this method of
classification, two benchmarks are similar if they stress the
same components of the processor to similar degrees.

To calculate the similarity between two benchmarks,
we treat the rank of each parameter as an element of a
vector. Therefore, a benchmark’s vector represents the
ranks of all parameters. To determine how similar two
benchmarks were, we computed the Euclidean distance
between the two vectors as follows:

Dist = [(x1-y1)
2 + (x2-y2)

2 + … + (xn-1-yn-1)
2 + (xn-yn)

2] ½

where n is the number of parameters and X = [x1, x2, … ,
xn-1, xn] and Y = [y1, y2, … , yn-1, yn] are the vectors that
represent ranks of the parameters in benchmarks X and Y,
respectively. The distance between the two vectors
measures how similarly the two benchmarks affect the
processor. Obviously, the smaller the distance between the
vectors, the greater the similarity. For example, the
distance between gzip and vpr-Place, using the ranks from
Table 6, is as follows:

Dist = [(1-4) 2 + (4-2) 2 + … + (28-33)2 + (19-37)2] ½

= [8058] ½ = 89.8

Benchmarks are similar if their distance is below some
user-defined similarity threshold. Therefore, by calculating
the similarity between all pairs of benchmarks in a
benchmark suite and using the similarity threshold, the
user can subjectively decide which benchmarks are
similar. Table 7 shows the result of comparing all pairs of

benchmarks using the ranks from Table 6.
In this example, if the user-defined similarity threshold

was arbitrarily set to 63.2 (i.e. the square root of 4000),
any pair of benchmarks that had a distance less than 63.2
could be considered similar. The bold entries in Table 7
correspond to benchmark pairs whose distances are less
than the similarity threshold. Table 8 groups benchmarks
that are similar together in the same row.

Table 8. Benchmarks grouped by their effect on
the processor for an arbitrary similarity threshold

of 63.2.

Group Benchmarks

I gzip, mesa
II vpr-Place, twolf
III vpr-Route, parser, bzip2
IV gcc, vortex
V art
VI mcf
VII equake
VIII ammp

It is important to note that the classification in Table 8
represents only one possible outcome of classifying these
benchmarks. It is also important to realize that key
metrics, such as IPC and miss rates, could be very
different within a group. However, since the purpose of
this sub-section was to introduce an alternative method of
classifying benchmarks (based on their effect on the
processor), it is left to the user to set the similarity
threshold, to group the benchmarks, and to decide which
benchmarks to select based on this method of
classification and potentially, other metrics.

4.3. Analysis of Processor Enhancements

In many computer architecture papers, analyzing the



Table 9. Plackett and Burman design results for all processor parameters when using Instruction
Precomputation; ranked by significance and sorted by the sum of ranks.

Parameter gzip vpr-Place vpr-Route gcc mesa art mcf equake ammp parser vortex bzip2 twolf Sum

ROB Entries 1 4 1 4 3 2 2 3 6 1 4 1 4 36
L2 Cache Latency 4 2 4 2 2 4 4 2 13 3 2 8 2 52
Branch Predictor 2 5 3 5 5 28 11 8 4 4 16 7 5 103

L1 D-Cache Latency 7 6 5 7 11 8 14 5 40 7 5 4 6 125
L1 I-Cache Size 5 1 12 1 1 12 38 1 36 8 1 15 1 132

Int ALUs 6 8 8 9 8 29 9 13 20 6 9 3 9 137
L2 Cache Size 9 35 2 6 22 1 1 6 2 2 6 2 43 137

L1 I-Cache Block Size 15 3 20 3 14 10 32 4 10 11 3 20 3 148
Mem Latency, First 35 25 6 8 18 3 3 7 1 5 7 6 27 151

LSQ Entries 13 14 9 10 15 40 10 9 17 9 8 5 10 169

D-TLB Size 21 28 11 24 25 13 12 10 25 14 25 10 24 242
Speculative Branch Update 8 20 25 29 7 16 39 11 8 20 21 22 19 245

L1 I-Cache Assoc 3 41 15 28 6 34 23 28 16 17 11 9 21 252
L1 D-Cache Size 18 7 10 12 42 19 8 35 32 21 13 32 7 256
FP Mult Latency 31 12 22 11 19 24 15 22 24 28 14 24 18 264

Memory Bandwidth 33 36 13 14 43 6 6 31 3 12 20 11 38 266
BTB Entries 10 23 19 20 9 41 31 20 22 19 19 16 34 283

Int ALU Latency 16 15 18 13 40 22 33 14 31 16 41 12 16 287
L1 D-Cache Block Size 17 30 34 22 16 9 24 19 26 13 33 25 26 294

Int Div Latency 30 10 26 17 24 33 40 33 19 10 10 41 8 301

L2 Cache Assoc 23 19 14 19 33 27 5 39 37 18 42 21 12 309
Int Mult/Div Units 14 21 30 31 12 23 27 23 33 37 18 27 15 311

I-TLB Latency 32 17 24 18 34 30 30 16 21 33 12 29 17 313
Fetch Queue Entries 43 13 27 30 23 20 19 37 9 25 23 34 14 317

Branch MPred Penalty 11 24 41 21 4 43 20 32 11 22 39 35 23 326

FP Div Latency 20 9 36 16 28 21 37 15 43 38 17 38 11 329
FP ALUs 34 11 31 15 38 17 41 24 27 36 15 43 13 345

I-TLB Page Size 42 38 7 38 39 39 7 17 12 26 28 14 39 346
L1 D-Cache Assoc 12 39 17 35 17 42 34 34 14 15 36 17 42 354

L2 Cache Block Size 25 43 16 37 31 7 35 27 7 35 38 13 40 354

I-TLB Assoc 26 27 38 25 20 31 42 12 29 30 22 33 22 357
BTB Assoc 22 18 35 32 10 32 17 30 34 43 27 36 25 361

D-TLB Assoc 40 32 23 26 27 35 25 26 18 32 26 28 35 373
Memory Ports 39 31 39 23 26 15 16 40 5 42 30 40 29 375

FP ALU Latency 37 16 37 41 37 11 21 29 23 27 29 42 28 378

I-TLB Size 36 34 28 34 21 37 18 18 30 34 34 30 32 386
Dummy Parameter #2 28 42 21 39 32 14 13 36 42 29 43 18 30 387

Int Mult Latency 29 40 42 36 13 26 29 21 15 41 35 31 41 399
FP Mult/Div Units 41 22 43 40 41 18 28 38 28 31 31 19 20 400
FP Sqrt Latency 38 29 40 33 35 5 26 43 41 24 24 39 37 414

RAS Entries 27 33 33 27 36 25 36 25 39 40 32 37 31 421
L1 I-Cache Latency 24 26 32 42 29 38 22 41 38 39 37 26 33 427

Dummy Parameter #1 19 37 29 43 30 36 43 42 35 23 40 23 36 436

effect of a processor enhancement involves examining
only individual metrics (e.g. speedup, miss rate, etc.).
While these metrics may provide some insight into the
effect of the enhancement on key hardware structures,
identifying all of the important metrics and trying to piece
them back together to form the big picture as to how the
enhancement actually affects the processor is extremely
difficult, if not impossible. Therefore, to improve the data
analysis methodology, we describe a method that
simultaneously considers the effect of an enhancement on
all of the processor’s parameters, thereby analyzing the
enhancement’s effect at a higher-level.

Our proposed method uses the PB design to analyze
the effect on the processor’s parameters before and after
the application of the enhancement. By using this method,
the user can determine the enhancement’s effect on the

processor’s parameters and/or determine the significance
of the enhancement’s parameters.

By comparing the sum-of-ranks for each parameter
before and after the application of the enhancement, the
user can determine how the enhancement actually affects
the processor. For example, if the L1 D-Cache size and
associativity sharply drop in significance due to an
enhancement (i.e. those two parameters are less of a
bottleneck with the enhancement than without it), it is
reasonable to conclude that that particular enhancement
does a good job of improving memory performance.
However, the particular enhancement also may cause a
sharp rise in the significance of the memory ports and the
number of LSQ entries. Therefore, it also would be
reasonable to conclude that this particular enhancement
improves the memory performance at the cost of increased



pressure on the memory ports and the LSQ.
To illustrate the efficacy, utility, and mechanics of this

method, we analyze the effect that instruction
precomputation [31] has on the processor. Instruction
precomputation is similar to value reuse [27] in that it
dynamically removes redundant computations from the
pipeline by using a cached output value instead of
computing the result. The key difference between the two
techniques is that instruction precomputation uses
profiling to statically identify the highest frequency
redundant computations instead of identifying them at run-
time. In instruction precomputation, the redundant
computations are loaded into the precomputation table
before the program begins and are never updated. By
contrast, value reuse continually updates the value reuse
table with the most current computations.

Table 9 shows the effect of instruction precomputation
with a 128-entry precomputation table on the processor.
While Table 9 represents the “after” case, Table 6
represents the “before” case.

A comparison of the two tables yields two conclusions
about the effect that instruction precomputation has on the
processor. First of all, the same parameters that were
significant for the base processor are also significant for
the processor with instruction precomputation. Instruction
precomputation changes only the relative ordering of the
significant parameters, but does not change which
parameters have the greatest significance. Secondly, of the
significant parameters, the parameter that has the biggest
change in its overall effect (i.e. biggest change in the sum
of ranks) is the number of integer ALUs. This result is
expected since most of the instructions that instruction
precomputation eliminates would have executed on an
integer ALU. In other words, by using instruction
precomputation, the impact of the number of integer ALUs
on the processor’s performance decreases in significance.

In conclusion, this method of analyzing simulation
results has a few advantages over commonly-used
approaches that only look at a single metric. First, the
exact effect that an enhancement has on the parameters
can be determined. This information is especially useful in
finding parameters that would seem to be unaffected by an
enhancement, but are in actuality significantly affected.
This information also can point the user to areas in the
processor that may require a more detailed analysis.
Second, the user can determine the most significant
enhancement parameters and how their ranks compare to
ranks of the processor parameters. This comparison allows
the user to make design decisions as to how to maximize
the performance while minimizing the enhancement’s
cost. Finally, using this method gives the analysis a
statistically solid foundation that improves the overall
quality of the analysis, in addition to improving the
confidence in the final results and conclusions.

5. Related Work

While there are several studies that are related to this
work, we did not find any that directly focused on
simulation methodology. Most of the related work focused
on either simulator validation, decreasing the simulation
time by modeling the processor’s performance with
statistical methods, or improving the accuracy and
precision of simulation results. Other previous work
performed sensitivity analyses of key processor parameters
or described a method for classifying benchmarks. This
paper builds upon previous work by adding statistical rigor
to the simulation setup and analysis phases.

Simulator Validation, Processor Modeling, and
Improving Simulator Accuracy – The authors of several
papers described their simulator validation experiences.
Black and Shen [2] described a method of validation that
iteratively improves the cycle count accuracy of the
performance model, as compared to the actual processor.
Their results show that errors were still present in their
simulation model, even after a long period of debugging,
and that those errors could be revealed only after
comparing the performance model to the actual processor.
Desikan et al [5] measured the difference in the execution
times between the Alpha version of the SimpleScalar
simulator and the Alpha 21264. They found that
simulators that model a generic machine (such as
SimpleScalar) generally reported higher IPCs than
simulators that were validated against a real machine. On
the other hand, unvalidated simulators that targeted a
specific machine usually underestimated the
performance. Gibson et al [8] described the types of errors
that were present in the FLASH simulator when compared
to the implemented FLASH processor. Their results
showed that most simulators can accurately predict the
architectural trends if all of the important components
have been accurately modeled. Their results also showed
that the margin of error (the percentage difference in the
execution time) of some simulators was more than 30%,
which is higher than the speedups that are often reported
for architectural enhancements.

Finally, Glamm and Lilja [10] verified the functional
correctness of a simulated ISA by comparing the simulated
and actual processor states after each instruction. A
difference in the states revealed the presence of an error.

A few papers described statistical methods for reducing
the complexity of a simulator and, thereby, the resulting
simulation time. Noonburg and Shen [20] described a
method that uses a program trace along with probabilistic
models to estimate the performance of the processor given
a particular processor configuration. By using probabilities
to account for how long the instructions are in a particular
state, they were able to achieve estimates of performance
ranging from 1% to 10% of the processor’s actual
performance (as measured by the IPC) in a fraction of the



time. The HLS simulator [22] uses statistical profiles and
symbolic execution to estimate processor performance.
The statistical profile stores program statistics (basic block
sizes, etc.) while the symbolic code transforms the
instruction stream into a control-flow graph of blocks that
contain the necessary resource requirements to execute
that block. The HLS simulator estimates the execution
time to within 10% of SimpleScalar’s execution time.

Cain et al [4] measured the effects of the operating
system and I/O on the simulator’s accuracy. They
integrated SimOS-PPC with SimMP, a multiprocessor
simulator. Their results showed that not including an
operating system could introduce errors as high as 100%
in the simulated performance. Generally, their results
demonstrated the need to integrate an operating system
into the simulator for increased accuracy and precision.

Effect of Key Processor Parameters – Skadron et al
[26] analyzed the trade-offs between the instruction-
window size, branch prediction accuracy, and the sizes of
the L1 caches. Their paper performed a set of detailed
sensitivity analyses that examined the IPC for different
instruction-window sizes, data and instruction cache sizes,
and different branch prediction accuracies using the
integer benchmarks of the SPEC 95 benchmark suite.
While their results were very detailed and had several
meaningful conclusions, they did not determine the
important parameters and interactions before they
performed their sensitivity analyses. As a result, without
first quantifying the effect of the most significant
interactions, the conclusions that were drawn from these
results cannot be taken completely at face value.

Benchmark Classification – Eeckhout et al [7] used
statistical data analysis techniques such as principal
component analysis and cluster analysis to determine the
statistical similarity of benchmark and input set pairs. To
quantify the similarity, they used metrics such as the
instruction mix, the branch prediction accuracy, the data
and instruction cache miss rates, the number of
instructions in a basic block, and the maximum amount of
parallelism inherent to the benchmark. The key difference
between their method of grouping benchmarks and our
method is that their method is predicated on defining a set
of metrics that encompasses all of the key factors that
affect the performance. The deficiency of this approach is
that it assumes that all significant metrics have been
incorporated into the statistical design without the benefit
of simulations. However, since it is possible for two
unrelated processor parameters to interact, picking metrics
to identify the effect of either parameter does not
necessarily cover the effect of their interaction. Our
approach, on the other hand, does not make that
assumption; instead, all parameters are weighted equally.
Finally, our method can seamlessly classify benchmarks
based on other metrics, such as the power consumption,
for instance, while their method requires a redefinition of

the metrics.
Giladi and Ahituv [9] identified the redundant

benchmarks in the SPEC 92 benchmark suite. A redundant
benchmark is one that, if removed, does not significantly
change the SPEC number for that benchmark suite. Their
results show that 13 of the 20 benchmarks in the SPEC 92
suite were redundant. Their method of determining
redundant benchmarks is significantly different from our
method for at least two reasons. First of all, their method is
completely based on approximating the SPEC number.
Secondly, since the SPEC number is calculated by
normalizing the execution times to a base system, there is
no direct connection to the effect that each benchmark has
on the processor. By contrast, our method focuses
exclusively on the benchmark’s effect on the processor.

6. Conclusion

Computer architects heavily rely on simulators when
designing processor architectures or when evaluating the
performance of processor enhancements. However, due to
a lack of a formalized methodology, most current methods
approach simulation methodology in an ad-hoc fashion. As
a result, unnecessary errors arise, such as using poorly
chosen processor parameter values or sets of benchmark
programs. Furthermore, without a formalized
methodology, computer architects may not glean as much
information as possible from their simulation results.
Finally, by adding statistical rigor to their methodology,
computer architects can have more confidence in their
simulation results.

As a first step in developing a formalized simulation
methodology, this paper describes three methods of
improving the simulation methodology in computer
architecture research. The first two methods seek to
improve the simulation setup while the third seeks to
improve the data analysis. The first method focuses on
how the processor parameter values are chosen. In
particular, this method advocates using a Plackett and
Burman (PB) design to determine the most important
parameters. The values for these key parameters need to be
chosen with care since the specific value chosen can
seriously affect the performance results.

The second method focuses on benchmark selection.
Our proposed method groups benchmarks together if they
have a similar effect on the processor. Two benchmarks
have similar effects on the processor if their processor
parameters have similar ranks. As with the processor
parameter selection, a PB design is used to determine the
effect that a benchmark has on the processor.

Finally, the last method focuses on improving the data
analysis in the post-simulation phase. This method uses a
PB design to rank the parameters before and after an
enhancement is added to the processor. By comparing the
before and after ranks, the effect that the enhancement has



on the processor can be readily determined.
In conclusion, there is plenty of room for improvement

with the current simulation methodology. Adopting some
or all of the methods described in this paper can
significantly improve the quality of, and confidence in,
simulation results.
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