Performance Enhancement Techniques for InfiniBand™ Architecture *

Eun Jung Kim* Ki Hwan Yum'

*Department of Computer Science and Engineering

The Pennsylvania State University
University Park, PA 16802
{ejkim,das} @cse.psu.edu

t Advanced Component Division
Intel Corporation
Hillsboro, OR 97124
mazin.s.yousif @intel.com

Abstract

InﬁniBandTM Architecture (IBA) is envisioned to be the
default communication fabric for future system area net-
works (SANs). However; the released IBA specification out-
lines only higher level functionalities, leaving it open for
exploring various design alternatives. In this paper, we
investigate four co-related techniques to provide high and
predictable performance in IBA. These are: (i) using the
Shortest Path First (SPF) algorithm for deterministic packet
routing; (ii) developing a multipath routing mechanism for
minimizing congestion, (iii) developing a selective packet
dropping scheme to handle deadlock and congestion; and
(iv) providing multicasting support for customized appli-
cations. These designs are evaluated using an integrated
workload on a versatile IBA simulation testbed.

Simulation results indicate that the SPF routing, multi-
path routing, packet dropping, and multicasting schemes
are quite effective in delivering high and assured perfor-
mance in clusters. One of the major contributions of this
research is the IBA simulation testbed, which is an essential
tool to evaluate various design tradeoffs.

1 Introduction

InfiniBand Architecture (IBA) has been proposed as a
new communication standard to design SANs for scalable,
high performance clusters. IBA is expected to revolu-
tionize the future communication paradigm by solving the
bandwidth, scalability, reliability, and standardization is-
sues under one unifying design. The IBA Trade Associa-

*This research was supported in part by NSF grants CCR-9900701,
CCR-0098149, CCR-0208734 and EIA-0202007, and Spanish CICYT
grant TIC2000-1151.

Chita R. Das*

Mazin Yousiff José Duato®

fDepartment of Computer Science
University of Texas at San Antonio
San Antnoio, TX 78249
yum@cs.utsa.edu

YDepartment de Informética de Sistemas y Computadores
Universidad Politécnica de Valencia

46071- Valencia, Spain
jduato @ gap.upv.es

tion (IBTA) consisting of more than 220 industry leaders
has released the first IBA specification [1] and is currently
augmenting it with enhanced features such as Congestion
Management, Quality of Service (QoS) provisioning, and
Router Management. QoS is becoming an essential part of
the IBA framework [2] because of the sophistication of ser-
vices that will be supported by clusters connected through
SANS.

IBA could use either packet switching or virtual cut-
through (VCT) switching technology to connect processors
and I/O devices. The specification supports any topology to
facilitate ease of expansion and to build large networks con-
sisting of smaller subnets. It outlines only the functionali-
ties without any constraints on the actual design. Therefore,
it is conceivable to have multiple design alternatives for the
same set of high-level requirements, thus making the design
space very complex.

An IBA testbed is, therefore, essential to investigate var-
ious design options for satisfying the performance and QoS
requirements. However, there is no such simulation plat-
form available now, and as we understand, the IBTA is plan-
ning to develop such a platform with help from academia.

The main motivation of this paper is to investigate the
following design issues for providing improved and pre-
dictable performance in IBA. First, it is not clear what is
a good routing algorithm for IBA considering the fact that
the interconnect could be an irregular topology. Second, the
IBA specification supports multipathing to facilitate Auto-
matic Path Migration (APM) between a source and desti-
nation pair to provide fault-tolerance. However, the actual
path set up in the routing/forwarding table is left open for
the designers. Moreover, we believe that the multipathing
mechanism can be used not only for fault-tolerance, but for

congestion avoidance to improve performance. Therefore,
it is essential to understand the design and performance im-
plications of multipathing. Third, packet dropping is al-
lowed under the IBA framework to limit the life time of
a packet in a network. Packet dropping can also be used
for deadlock avoidance. Thus, instead of using a com-
plex deadlock-free algorithm, we can use a simple routing
scheme with packet dropping to provide competitive perfor-
mance. Finally, multicasting is a desirable feature in IBA to
efficiently support various applications in clusters. Multi-
cast design comes with various flavors and needs a compar-
ative evaluation for selecting the most effective design.

We address these design issues by developing a compre-
hensive simulation testbed for IBA. For the first issue, we
examine two deterministic routing algorithms, called Short-
est Path First (SPF) and Up/Down [3], that are suitable for
irregular networks. Since the SPF scheme is used for Inter-
net routing, for interoperability, it would be nice if we could
adopt this protocol for IBA as well. For the second issue on
multipathing, we first present a graph theoretic analysis to
determine the number of alternate paths between two nodes
in an irregular network, and formulate the forwarding table
construction to specify the alternate paths. We also demon-
strate how the forwarding table can be populated to im-
plement a multipath routing algorithm using two different
path selection heuristics; Least Frequently Used (LFU) and
Max-Credit [4]. We then extend these algorithms to include
a selective packet dropping scheme to handle deadlock and
congestion. Finally, for the fourth issue on multicasting, we
examine the implementation complexities of synchronous
and asynchronous multicasts, and three bandwidth alloca-
tion schemes.

We have developed a detailed simulator for a pipelined
IBA switch and a Host Channel Adaptor (HCA)/Network
Interface Card (NIC) to construct any arbitrary size net-
work. We use a mixed workload consisting of three types
of traffic — short control messages, best-effort traffic, and
MPEG-2 streams to evaluate the effectiveness of various
designs. We conduct an in-depth performance analysis us-
ing average packet latency, Deadline Missing Probability
(DMP) and average Deadline Missing Time (DMT) as the
performance metrics. The first parameter quantifies perfor-
mance implications for all kinds of traffic, while the other
two parameters are QoS indicators of real-time traffic.

Simulation results with 15-node and 30-node irregular
networks indicate that the SPF routing can provide better
performance than the deadlock-free Up/Down routing and
thus, is a good candidate for implementation. The mul-
tipath routing, packet dropping, and multicasting schemes
are quite effective in delivering high and predictable perfor-
mance in SANs. Specifically, the multipath routing with
packet dropping can lower DMP and DMT for MPEG-2
streams by about 50% compared to a deterministic rout-

ing scheme. For the best-effort and control traffic, these
congestion avoidance schemes minimize the average packet
latency up to 90% at higher load. The synchronous and
asynchronous replication schemes are equally competitive
in delivering better performance compared to a switch with-
out any hardware support for multicasting. However, the
synchronous replication is a better choice for less hardware
complexity.

The rest of the paper is organized as follows. In Sec-
tion 2, the switch architecture and the HCA design are dis-
cussed. Section 3 presents the proposed performance en-
hancement techniques. In Section 4, we discuss the exper-
imental platform. The performance results are presented in
Section 5, followed by the concluding remarks in Section 6.

2 System Architecture

In this section, we summarize the IBA framework, fol-
lowed by our design details for the switch and the HCA
architectures.

2.1 InfiniBand Architecture (IBA)

An InfiniBand fabric includes a number of subnets con-
nected through routers. Within a subnet, switches connect
processors and I/O nodes. Processing nodes are attached
to an IBA network through Host Channel Adaptors (HCAs)
and I/O nodes can be attached to a network through Target
Channel Adaptors (TCAs).

Virtual Lanes (VLs)/Virtual Channels (VCs) [5] provide
a mechanism to implement multiple logical flows over a sin-
gle physical link. A port must support at least 2 VLs and at
most 16 VLs. All ports must use VL5 for subnet man-
agement traffic. VL arbitration means selection of a VL to
push data to an outgoing link in a switch, router, or Chan-
nel Adaptor (CA). IBA specifies a two-level scheme for VL
arbitration. First, applications are assigned different Ser-
vice Levels (SLs) — an SL could refer to a different priority
level, and a scheduling priority is adopted for different SLs.
Next, a Weighted Round Robin (WRR) scheduling is used
to schedule packets of the same class.

2.2 Switch Architecture

The switch used in this paper adopts a five-stage
pipelined packet-switched model, as shown in Figure 1. At
the first stage, the arriving packets are mapped into one of
the C' VLs using the SL information in the packet header.
The header of the queued packet is extracted and sent to
Stages 2 and 3, the forwarding table unit and the crossbar
arbitration unit, respectively. After reserving the crossbar,
in Stage 4, the packet is forwarded from the input port VL to
the crossbar. Note that WRR scheduling is used to service
packets arriving at Stage 4. In the last stage, VL arbitration
using WRR, as specified in the IBA specification, selects
one packet from the VLs to transfer to the following switch
or CA.

Switch Core

VL Select VL Arbitration

Packet

PORT 0

13|Npayos
Hdm

Crossbar
Control

Packe
[

Header

=
Forwarding I
Table . Arbitration

Stage1 Stage 2 Stage3 Stage 4 Stage 5

Figure 1. A 5-Stage Pipelined Switch Model

2.3 HCA Architecture

HCAs are used for attaching processing nodes to an IBA
SAN. Recent studies have shown that QoS provisioning in
the NIC is critical for supporting integrated traffic [6, 7]. A
QoS-capable HCA is here a natural choice.

Figure 2 shows a modified HCA architecture for QoS
support [7]. To send packets, a consumer creates one or
more Queue Pairs (QP) in an HCA. A QP consists of two
work queues: one for send operations and the other for re-
ceive operations.

We extend the original HCA design to include a priori-
tized QP scheduling structure to support customized traffic
transfer. The structure has a queue for each traffic class.
The HCA firmware decides which QP to service in FCFS
order based on their priority, and programs the host DMA
engine to transfer the packet to the appropriate VL in the
HCA port (The HCA also has 16 VLs.). This helps in trans-
ferring higher priority packets first to the VLs, where they
are scheduled using the WRR scheme to be pushed to the
network.

T
DMA Priority 1] LS
T W
Controller 5T
[Priority 2 ge
[Priority 3|

°
c
;@‘”
]
>

°
;[D]]&

Queue Pair

|t Physical
N\—/| Channel

VL Arbitration

JL
E E
Recv Send

= e
S

Queue Pair Port
Host Channel Adaptor |

Figure 2. InfiniBand HCA with QoS Support

3 Performance Enhancement Techniques

In this section, we first discuss two deterministic rout-
ing algorithms, SPF and Up/Down [3], as the basic packet
forwarding scheme in IBA. Then three different approaches
to improving the performance of IB-based SANs are pre-
sented: multipathing, packet dropping, and multicasting.

3.1 Deterministic Routing Algorithm

IBA specifies the use of forwarding tables in switches
to route packets. Each entry in the forwarding table has
a destination ID and a corresponding output port number.
The construction of the forwarding table is left to design-
ers. We study two routing algorithms for table construction.
The first one is called the Shortest Path First (SPF) algo-
rithm; also known as the Dijkstra’s algorithm. SPF is used
in the Open Shortest Path First (OSPF) protocol for the In-
ternet [8], and is suitable for irregular topologies. In SPF,
each switch/router maintains an identical database describ-
ing the topology of the network. From this database, a for-
warding table is constructed by calculating a shortest path
tree. SPF recalculates routes quickly whenever the topology
changes.

Next, we consider Up/Down routing [3]. Up/Down rout-
ing can be used as a basis of various deadlock-free routing
algorithms in irregular networks. This scheme needs con-
struction of a spanning tree with up and down channels.
When the destination node is a descendant node, a packet
is forwarded using down channels. Otherwise, a packet al-
ways traverses using the up channels first. Once a down
channel is selected, an up channel cannot be used for for-
warding the packet. Since the original Up/Down routing
algorithm allows to use channels in a spanning tree only
for routing, the other channels in the network are forbidden
to route packets. Several studies [9, 10] have attempted to
solve this problem.

Lopez, et al. [11] suggested using a deadlock-free
Up/Down routing in irregular networks to build forward-
ing tables compatible with the IBA specification. Unfor-
tunately, the proposed scheme is sub-optimal in finding a
path between a source and a destination. In this paper, we
compare both these schemes.

3.2 Multipathing

The IBA specification outlines using alternate paths for
a given source-destination pair to improve path availability.
For connected transport services, IBA supports Automatic
Path Migration (APM), where a channel’s traffic may move
to a pre-determined alternate path in the presence of faults
in the original path. The initial alternate path is established
at the connection setup, and if a migration occurs to this
path due to any fault, an additional alternate path needs to
be specified before enabling the migration. This implies

that an alternate path should always be stored for an out-
going connection. APM should be supported by the verb
layer' in HCAs and TCAs for Reliable Datagram and Reli-
able/Unreliable Connection services [1]. In this paper, we
show that the multipathing concept can be used for perfor-
mance improvement by reducing network congestion.

Multipathing in IBA is provided by the low-order bits of
the DLID (Destination Local ID) field, referred to as Path
Bits, which determine the path taken through the fabric. The
number of path bits to identify multiple paths is topology
dependent. Also, it is not clear how these bits are assigned.
In the following, we use a graph theoretic analysis to de-
termine the number of path bits and to assign path bits to
alternate paths. This is used to construct the multipath for-
warding table.

To describe a network as a graph, the terms and the no-
tations used in [12] are adopted in this paper. Let a network
G = (V, E) be a connected and undirected graph, where V'
is the set of vertices and F is the set of edges consisting of
unordered pairs of vertices?. Note that |E| > |V| — 1 for
any connected and undirected graph.

We start with a well known theorem [12] in graph theory
to determine if a graph has multiple paths between some
source and destinations pairs that would need path bits.
Theorem 1 If a connected, undirected graph G is acyclic,
any two vertices in G are connected by a unique simple
path.

If a graph is acyclic, |[E| = |V| — 1. This implies that if
|E| > |V| — 1, the graph contains multiple paths for some
pair of vertices. So, by simply counting the number of ver-
tices and edges, we can know whether there are multiple
paths in a graph. If a graph is not acyclic, the number of
bits (p) required to express N alternate paths will be: p =
[log, N']. Although the number of multiple paths between
any pair of vertices can be different, it is complex to imple-
ment variable length path bits in the DLID. Therefore, we
fix the length of path bits (p) as p = [log,(maxy; ;N; ;)],
where N; ; denotes the number of multiple paths between
vertices ¢ and j.

The following theorem shows the relationship between
the number of minimal cycles in a graph and the maximum
number of multiple paths. The proof for the theorem can be
foundin [13].

Theorem 2 If there are C' minimal cycles in a connected
and undirected graph G, there exists at least one pair of
vertices that has 2€ paths.

Theorem 2 shows that we can compute the length of path
bits in the DLID field if we know the number of minimal
cycles in a network GG. The number of minimal cycles in
G = (V. E) can be obtained using algorithm 1.

'TBA describes the service interface between an HCA and the operating
system by a set of semantics called verbs.

%In this paper, we assume that all graphs are simple graphs, which
means at most one edge connects any two vertices directly.

(1) Construct a BFS (or DFS) tree T = (V, E;) of G,
where F; is the set of edges in the tree.

(2) Let E¢ = E — E, where E° is the set of back edges.

(3) Then, | E°| is the number of cycles in G.

Algorithm 1. Finding the Number of Cycles in a Graph

From Algorithm 1, we also get the set of back edges® E¢ =
{(v1,w1), (v2,w2), ..., (Um,wn)}, which will be used in
the next algorithm that enumerates all cycles in a graph G.

(1) For each (v;,w;) € E°, 1 <4 <m,where |E°| =m,
construct a path tree T from G as follows.

(a) The root of 1" is v;.

(b) The child of v; is w; only.

(c) From w;, find all neighboring vertices except v;
and they become the children of w;.

(d) Repeat (c) for each child u of w; recursively
until the same vertex appears twice in the path
from the root to itself or the parent of the
vertex is the only neighbor.

(2) From T, find the shortest path from the root v; to the
leaf v; (v;w; - - - v;).
(3) Assign C; = v;w; - - - v; as the ith cycle.

Algorithm 2. Finding All Cycles in a Graph

Figure 3(c) shows an example of building the path tree with
the back edge (a, ¢), where the cycle is acba.

(b) After
Algorithm 1

(c) After
Algorithm 2

(a) Original
Graph

Figure 3. A Path Tree Construction Example

After finding the cycles in a graph, we need to as-
sign path bits to different paths. This is done by consid-
ering both the clockwise and counterclockwise directions
in a cycle. Let the order in C; = vjvy - vgp_1v,v1 be
clockwise. Then C; represents a counterclockwise cycle
V1 ULVE_1 '+ * U2v1. Note that@ =C;.

Before presenting the algorithm to assign the path bits,
we need the following two definitions.
Definition 1 The cycle list « of a path vw is the set of cy-
cles which contain the path vw.
For the example in Figure 3 (a), if C1 = acba and Cy =
cdbe, the cycle list a of be is {C1,Cy}. If a path does not
belong to either C; or C; for 1 < i < C, its cycle list will be
an empty set. Usually the size of a cycle list is one, implying
that the path belongs to only one of the cycles.

3 A back edge is one that does not belong to the tree.

Definition 2 The cycle list union (LI) of two cycle lists o
and s is the set obtained by combining the members, after
eliminating the contradicting members such as a and a. If
a € ay and a € as for some cycle a,

o Ua2_{ava}7 |Otl|>].,|012|>].

_ aanz—{a}, |Otl|>]_,|012|:].
MU2=9 0 Uy — {a}, Jau|=1|on] > 1
not defined, o] =1, |as| =1

If there is no such a, ay U as = a3 U as. The cycle list
union of sets ay, s, . . ., uy, is denoted by |_|?:1 Q;.

In short, the cycle list union gives the set of unique cycles
for a given path. The reason for eliminating the contradict-
ing cycles(a,a) is that a path should not belong to both the
clockwise and counterclockwise cycles. The following al-
gorithm uses this to assign the path bits.

For a given path (vj vy ...vp) where for 1 <i,j <p,

v; # v; and vy is the source and vy, is the destination,
(D) For1 <4 <p, a; =acyclelist of (v;v(i1)).
(2) Make the union of cycle lists A = |_|f;11 Q;

(3) Assign path bits (P1 Py ... Py ... Pc) as follows:
1, CreA
P, = 0, C_k €A
X, otherwise

Algorithm 3. Constructing Path Bits

We illustrate the path bit assignment using a small ir-
regular network containing two cycles in Figure 3 (a). To
decide the length of path bits, we construct a BFS tree with
the root b as shown in Figure 3 (b). (a,c) and (d,c) are
the back edges. Algorithm 2 will return the cycles starting
with the back edges. Figure 3 (c) shows the path tree after
executing Algorithm 2 with the back edge (a, ¢). There are
two lists that end with a. Among them, acba is the shortest
cycle, and let us assign this as C';. Repeating the same pro-
cedure with the back edge (¢, d), we can find the other cycle
C5 = cdbe. There is another larger cycle acdba, but since it
can be obtained from the combination of the two smaller cy-
cles, we don’t use it. The following example shows how to
assign path bits for a path bca. For path bea, we need to find
the cycle lists for be and ca, which are {C}, C5} and {C} },
respectively, and the cycle list union is {C;,Cs}. Using
algorithm 3, the path bits of bca are 01.

3.3 Multipath Forwarding Table Construction

From the previous algorithms, we can build the multi-
path forwarding table for any network. Let us illustrate it
using Figure 3 (a). For an entry b in the table for vertex
a, we can find all paths from a to b and decide an output
port number and path bits for each path using Algorithm 3.
There are three paths from a to the destination b: ab, acb
and acdb. Their path bits are 0X, 10 and 11, respectively.

Therefore, the DLIDs for their paths would simply be b0.X,
610 and b11. But since 510 and b11 have the same output
port number 2, after combining them into b1.X, we can have
only two entries for destination b as shown in Figure 4 (c). It
is clear that only the first path bit will be examined in vertex
a. Thus, the number of entries in the multilpath forwarding
table for a vertex n is (2the number of cycles containing n y
the total number of vertices). Note that the size of multi-
path forwarding table is not constant for all nodes since it
depends on the number of cycles containing the vertex. In
Figure 4 (c), the table has 6 (2! x 3) entries, since node a in
Figure 3 (a) belongs to only one cycle.

According to the IBA specification, all zero values in
path bits indicate that the local identifier is equal to the base
LID. But in our scheme, all zero values may designate one
of the paths. For our scheme, we need one additional bit to
indicate whether multipathing is enabled. Instead, we can
use the path bits in SLID (Source Local Identifier) for this
purpose, since a path is defined by the tuple <SLID, DLID,
SL> [1]. In Figure 4 (c), we have two path bits. To indicate
whether multipathing is used, we need 3 path bits, or we
can use the path bits of the corresponding SLID. For exam-
ple, if the indication bit of a packet is zero, its destination is
c and the default routing algorithm is SPF. The output port
number of the packet will be ‘2’ as shown in Figure 4 (c).

In Section 3.1, we examined the SPF and Up/Down rout-
ing algorithms. The corresponding forwarding tables for the
two algorithms are given in Figure 4 (a) and (b) for vertex
a. Since our multipath forwarding table contains all possi-
ble paths in the network, we can also indicate paths, which
are used for each routing algorithm by adding a flag bit in
the forwarding table. Note that we need at least one flag
bit for the default routing algorithm. With multiple flag
bits, we can accommodate different routing algorithms in
one forwarding table by simply changing the flag bits, in-
stead of reconstructing the table, as shown in Figure 4 (c).
This makes the forwarding table more versatile since we
can choose a different routing algorithm depending on the
type of traffic class or network dynamics. We call this rout-
ing scheme that uses the multipath forwarding table as mul-
tipath routing. The following section describes multipath
routing for a mixed type of traffic.

DLID I(,’U‘;‘lPN“L Up/Down| SPE
DLID Output Port No DLID Output Port No b0X 1 v v
b 1 b 1 bIX | 2
c0X 1
¢ 2 ¢ 2 X | 2 | v | v
d 2 d dox | 1 %
! aix | 2 v
(a) SPF Table (b) Up/Down Table (c) Multipath Table

Figure 4. Forwarding Table

3.4 Multipath Routing for Mixed Traffic

IBA specifies four kinds of traffic; Reliable/Unreliable
Connection and Reliable/Unreliable Datagram. Unreliable
connection does not require error-free transmission, while
reliable connection does. But both of connection-based traf-
fic requires in-order delivery. Unreliable datagram does not
need in-order delivery, while reliable datagram does. The
packets of unreliable datagram can be dropped in the net-
works. We will show multipath routing for each traffic in
the following.

There are two ways to facilitate multipathing for Re-
liable/Unreliable Connections. First, a path/connection is
chosen adaptively using a probe packet prior to data trans-
mission, and the remaining data packets use that selected
path. The second option is that a packet in a connection can
choose its own path adaptively (thus packets can be deliv-
ered out-of-order), and the receiver reorders packets using
the sequence number in each packet header. The latter ap-
proach violates the IBA in-order delivery specification and
is not considered here. To use multipathing for connection-
based traffic that requires QoS guarantees, the first option
is the most viable solution. (The criteria for path selection
is a critical issue in QoS routing. Here, we simply use the
number of hops to select the best path.)

If the reservation is done successfully with the probing
scheme, the destination will send an ACK packet that con-
tains the path bits of the selected path from the source to the
destination. If the probe is rejected at an intermediate node,
it will send a NACK packet back to the source to release the
reserved resources. The back path of a NACK packet can
be decided using the path bits again.

For reliable datagrams, which should be delivered in
order, we can also send a probe packet and setup the
path. However, since datagram traffic usually is short-lived,
probe/ACK packets are unnecessary overheads. There are
two ways we can deliver reliable datagrams in order without
a probe packet. The first one is using a deterministic rout-
ing algorithm. But this may cause congestion by overusing
some links. The other approach is to use the Verb layer to
select one of the alternate paths for a source and a destina-
tion, putting the path bits of the selected path in the DLID,
and enabling the path bits in SLID to indicate that the packet
will traverse through multipath routing. We implement the
latter approach here.

Since unreliable datagrams can be delivered out of order,
a packet can select a path adaptively in each switch. We
need a path selection criteria for both types of datagrams.
If we keep the global network information in each HCA
and switch, we may use them for path selection. But, keep-
ing the global information is expensive. Vaidya, et al.[4]
have presented three traffic-sensitive path selection heuris-
tics (Least Frequently Used (LFU), Least Recently Used
(LRU), Max Credit) for improving performance. Path se-

lections in their work are done by investigating the local
link status. Since LFU and Max Credit are better perform-
ing heuristics over all types of traffic in [4], we have imple-
mented LFU and Max Credit for the path selection criteria
in our study.

3.5 Packet Dropping in a Switch

The IBA specification [1] cites several cases such as de-
tection of a corrupt CRC, expiry of the Switch Lifetime
Limit (SLL) and expiry of the Head of Queue Lifetime
Limit (HLL), when a packet should be dropped in a switch.
SLL is defined as 4.096usec x2"V, where 0 < LV < 19.
If LV > 19, then SLL is to be interpreted as infinite. HLL
is defined as 4.096usec x2HV, where 0 < HV < 19. If
HV > 19, then HLL is to be interpreted as infinite. SLL in-
dicates the time limit of a packet after it arrives at a switch,
implying that if a packet stays in a switch for longer than
SLL, it may be discarded. On the other hand, HLL indi-
cates the time limit of a packet after it arrives at the head of
a queue in a switch.

According to [14], deadlocks in a network rarely occur
if it has sufficient routing freedom and the freedom is fully
exploited by the routing algorithm. Also, deadlock recovery
schemes can show better performance than deadlock avoid-
ance schemes. Therefore, instead of using rather a complex
deadlock detection scheme, we use the deadlock-prone, but
simple SPF algorithm and selectively drop packets that stay
in a queue for a sufficiently long time. The motivation here
is to examine the impact of packet dropping in avoiding
congestion and deadlock.

In this paper, we use the HLL-based packet dropping
scheme. When a packet header arrives at the head of a
queue (VL in IBA term), its current time is recorded in the
storage, called HQLifetime, which is attached to each VL.
Since a VL can contain multiple packets, HQLifetime only
indicates the arrival time of the packet header at the head
of the queue. Thus, whenever a packet is sent to the neigh-
boring switch (or HCA) or dropped, a new arrival value is
stored in HQLifetime. When the sum of the value stored in
HQLifetime and HLL becomes less than the current clock
value, the packet is removed from the queue.

We use selective packet dropping in that only real-time
and best-effort packets can be dropped from the network.
Moreover, I frame packets of MPEG-2 streams are not
dropped to maintain correct/uninterrupted media stream
transfer. For the simulation purpose, the first and last pack-
ets of any MPEG-2 B and P frames are not dropped. For
dropped packets, no further recovery procedure is pursued
at the link layer.

3.6 Multicasting Support

Multicasting is a desired feature and described in details
in the current IBA specification [1]. Three issues need to
be considered to support multicasting. These are building

and maintaining a multicast forwarding table, implementa-
tion of the replication mechanism, and bandwidth alloca-
tion policy for multicast and unicast traffic. In this paper,
we examine the source-based multicasting in contrast to the
core-based scheme since it is more efficient and simpler
for smaller subnets [15, 16]. Thus, the multicast forward-
ing table is obtained from the source-based distribution tree
algorithm assuming static membership groups [15]. Here,
we only focus on the replication mechanisms and the band-
width allocation policies.

We analyze both synchronous and asynchronous repli-
cation mechanisms. Synchronous replication begins when
a multicast packet arrives at Stage 4 in Figure 1. Syn-
chronous Replication requires that multicast packets pro-
ceed in lock-step. If any of the destination ports is not avail-
able, the multicast packet will hold all other output ports
and will wait for the unavailable port. Thus, this replication
is susceptible to deadlocks. We can prevent deadlocks with
synchronous replication by prioritizing the output port as-
signment. Asynchronous Replication, on the other hand,
allows multicast packets to be forwarded to a subset of
the requested output ports [17]. This scheme requires ex-
tra buffers large enough to store the largest packet in the
switch [18], and complex buffer control mechanisms.

Efficient bandwidth allocation to multicast and unicast
traffic is another research issue that needs investigation to
improve performance. Legout, et al. consider three dif-
ferent bandwidth allocation schemes [19]: (i) allocate the
same bandwidth to unicast and multicast flows; (ii) allocate
multicast bandwidth linearly proportional to the number of
destinations; and (iii) allocate multicast bandwidth propor-
tional to the logarithm of the number of destinations. It was
shown that the third scheme performs the best with a mini-
mal impact on unicast traffic. In an IBA-style switch, since
the bandwidth is allocated to each VL, not to each flow,
we need to assign separate VLs to multicast traffic. The
number of VLs assigned for multicast traffic will also affect
the overall performance. We re-examine the three different
bandwidth allocation schemes with respect to the assign-
ment of VLs and study the performance and QoS implica-
tions in Section 5.2.

4 Experimental Platform

One of the main motivations of our work is to develop
a comprehensive simulation testbed for IBA. Our testbed
includes packet-level switches and HCAs conforming to
the IBA specification. Table 1 shows the main parameters
used for simulation. For our experiments, we simulated 15-
node and 30-node irregular networks designed using 5-port
switches and HCAs. The results with 30-node networks can
be found in [13].

The workload includes packets from real-time VBR traf-
fic, best-effort traffic, and control traffic. The VBR traffic

Physical Link Bandwidth 2.5 Gbps
Number of Physical Links 5
Number of VLs/Physical Link 16
HCA Bufter Size 8 MB
LRH, BTH, and CRC fields 26 bytes
Real-time, Best-effort Traffic MTU | 1024 bytes
Control Traffic MTU 256 bytes
Input VL Buffer Size 4200 bytes
Output VL Buffer Size 4200 bytes

Table 1. IBA Simulation Testbed Parameters

is generated as a stream of packets between a pair of com-
municating (source-destination) processors. The traffic in
each stream is generated from seven MPEG-2 traces [20],
where each trace has different bandwidth requirement. Each
stream generates 30 frames/sec, and each frame is divided
into fixed-size packets, where each packet consists of the
MTU and the header. Once the input VL for a connection
is determined, the destination processor is picked randomly
using a uniform distribution of all nodes, and the destina-
tion VL is also drawn randomly from a uniform distribution
of the VLs available for the VBR traffic.

The best-effort traffic (could be Reliable/Unreliable
Datagram) is generated with a given injection rate A, and
follows the Poisson distribution. The size of best-effort
packets is assumed to be fixed, and a destination is picked
using a uniform distribution. Control traffic, called man-
agement traffic in IBA, is typically used for network con-
figuration, congestion control, and transfer of other control
information. We generate a control packet every 33.3 msec.
This traffic has the highest priority in our model, and always
uses VLis.

The important output parameters measured in our exper-
iment are Deadline Missing Probability (DMP) of delivered
MPEG-2 frames, average Deadline Missing Time (DMT)
of deadline missing frames, and average packet latency for
all types of traffic. The DMP is the ratio of the number of
frames that missed their deadlines to the total number of de-
livered frames. The deadline for each frame is determined
by adding 33.3 msec to the previous deadline. However, if a
previous frame misses its deadline, a new deadline is set by
adding 33.3 msec to the arrival time of the previous frame.

5 Performance Results

We have conducted extensive evaluation of the proposed
designs for different networks and workload conditions.
Here we include only a subset of the results and discuss
them in two main sections due to space limitation. (Ad-
ditional results can be found in [13].) Most of the results
presented here are for real-time to best-effort ratio of 70:30.

5.1 Comparison of Routing Schemes

In this section, we compare the SPF, Up/Down and
the multipath routing algorithms with/without the selec-
tive packet dropping scheme. To construct the multi-
path forwarding table for our 15-node network that has
9 cycles, we use 9 path bits. The number of en-
tries in the forwarding tables is either 30 (= 15 x2!)
or 60 (= 15 x22%) based on (the total number of nodes
« 2(the number of cycles containing the node)).

Figure 5 shows the results from seven different routing
schemes. These are: (i) Up/Down; (ii) SPF; (iii) SPF with
packet dropping (SPF+Drop); (iv) multipath routing using
LFU as the path selection criteria (Multipath+LFU); (v)
multipath routing using LFU and packet dropping (Multi-
path+LFU+Drop); (vi) multipath routing using Max-Credit
as the path selection criteria (Multipath+Credit); and (vii)
multipath routing using Max-Credit and packet dropping
(Multipath+Credit+Drop). The first three experiments use
deterministic routing algorithms for all three types of traf-
fic. The last four experiments use multipath routing. For
real-time traffic, we select the shortest path from among the
available paths. For best-effort traffic (Reliable/Unreliable
Datagrams), a reliable datagram randomly chooses one of
the 2° paths in the verb layer, while an unreliable datagram
selects a path adaptively using LFU or Max-credit. The con-
trol traffic uses the shortest path via VL;5, as required.

Figures 5 (a) and (b) show the DMP and the DMT of
real-time traffic, while Figures 5 (c), (d), and (e) show the
average packet latency for the three types of traffic. All
the graphs indicate that the SPF routing outperforms the
Up/Down routing, because the latter is a suboptimal so-
lIution. In fact, the performance of Up/Down is heavily
swayed by the topology of the Up/Down tree. We have
tested the network with three different roots and chose
the best case results for the Up/Down routing. The pro-
posed congestion avoidance techniques (multipath routing
and packet dropping) do not provide noticeably better per-
formance in terms of the DMP and the DMT at a low injec-
tion rate (up to 40%). However, as the load increases, these
techniques become very effective in reducing those metrics
(50% ~ 65% for the DMP and 30% ~ 55% for the DMT
compared to SPF at the injection rate of 60%). The results
indicate that multipathing and packet dropping help in jitter-
free delivery of media streams at relatively high load.

It is interesting to note that (Multipath+LFU) helps to
improve the performance of real-time and control traffic,
while (Multipath+Credit) aids to reduce the average packet
latency of best-effort traffic. This is because LFU tries to
select the least frequently used path that other higher pri-
ority traffic (real-time and control in our study) does not
use. On the other hand, Max-Credit only checks the buffer
availability of the neighboring switch, and avoids selecting
the path heavily used by best-effort traffic, thereby improv-

ing the average packet latency of best-effort traffic. Both
(Multipath+LFU) and (Multipath+Credit) reduce the aver-
age packet latency by 40% ~ 55% for control traffic, by
40% ~ 65% for real-time, and by 30% ~ 55% for best-
effort traffic, respectively, compared to that of SPF at an in-
jection rate of 50% or higher. With packet dropping, these
reductions increase up to 80% for control, 90% for real-
time, and 60% for best-effort traffic, respectively.

5.2 Multicast Results

Figure 6 shows the simulation results of four multicast-
ing schemes in a 15-node irregular network. These are: (i)
Replicated Unicast without any hardware support for mul-
ticasting; (ii) Synchronous Replication; (iii) Asynchronous
Replication without Central Buffer; and (iv) Asynchronous
Replication with Central Buffer. In this experiment, 20%
of the real-time traffic has multi-destinations. We imple-
mented the source-based tree algorithm, which has 3 x 15
entries in the multicast forwarding table of each node.(We
have 3 groups each with two or four multicast members.)

Figures 6 (a) and (b) show the DMP and DMT of real-
time traffic. Replicated Unicast has the worst performance
as expected. All these replication schemes provide much
better performance than the Replicated Unicast in terms of
DMP and DMT for real-time traffic. The average packet la-
tencies of all three kinds of traffic also benefit due to repli-
cation (Figures 6 (c), (d), and (e)). Asynchronous Repli-
cation with a central buffer provides slightly better perfor-
mance over the other two replication schemes. But this im-
provement comes with the overhead of a large buffer and
complex control circuitry. We did not observe deadlocks
with the Synchronous Replication because preemption be-
tween multicast packets is resolved in the FCFS order. By
reducing the real-time traffic load, the replication schemes
also help control and best-effort traffic latencies as shown
in Figures 6 (d) and (e)*.

Next, we experiment with the three bandwidth allocation
schemes discussed in Section 3.6 with the asynchronous
replication. We show results for four different bandwidth al-
location schemes in Figure 6 (f): (i) the same bandwidth to
unicast and multicast without VL separation; (ii) the same
bandwidth to unicast and multicast with separate VLs; (iii)
bandwidth linearly proportional to the number of destina-
tions; and (iv) bandwidth proportional to the logarithm of
the number of destinations. For (iii) and (iv), which allo-
cate more bandwidth to multicast traffic, we also allocate
separate VLs for multicast traffic.

To examine the effect of bandwidth allocation on both of
multicast and unicast traffic, we plot the results of multicast
and unicast separately in Figure 6 (f). The first four bars are
the average packet latencies of multicast traffic with differ-
ent bandwidth allocation policies, while the other four are

4We have used a logarithmic scale in Figure 6 (d) and (e).

0.80 - [6—@ Up/Down
G—8 SPF

©— SPF+Drop

%—X Multipath+LFU

L |#—s% Multipath+LFU+Drop
&—A Multipath+Credit
+—+ Multipath+Credit+Drop|

o
@
3

0.40

Deadline Missing Probability

30 40 50

Injection Rate (%)

(a) Deadline Missing Probability

15000.0

2500.0

G—=o Up/Down

E—& SPF

©— SPF+Drop

*—x Multipath+LFU
#— Multipath+LFU+Drop

| |&—A Multipath+Credit
+—t Mu\tlpalh+Cred\HDmp/a

N
14
o

14
o

Deadline Missing Time (msec)

0.0
40 50

Injection Rate (%)

60

(b) Deadline Missing Time

Up/Down
SPF
SPF+Drop
Multipath+LFU
Multipath+LFU+Drop
Multipath+Credit
Multipath+Credit+Drop

12000.0 2000.0 -

9000.0 - 1500.0

Up/Down
SPF

SPF+Drop
Multipath+LFU

6000.0 1000.0

3000.0 - 500.0

Average Packet Latency (microsec)
Average Packet Latency (microsec)

Multipath+Crex

Multipath+LFU+Drop
Multipath+Credit

+Drop

0.0 0.0

60000.0

Up/Down
SPF
SPF+Drop
Multipath+LFU
Multipath+LFU+Drop
Multipath+Credit
Multipath+Credit+Drop

50000.0

40000.0

30000.0

20000.0

Average Packet Latency (microsec)

10000.0 -

1.

40 50
Injection Rate (%)

60

(c) Real-Time Traffic

40

Injection Rate (%)

(d) Control Traffic

0.0
40 50

Injection Rate (%)

50 60 60

(e) Best-Effort Traffic

Figure 5. Comparison of Various Routing Algorithms in a 15-Node Irregular Network

those for unicast traffic.

With a low load, the three bandwidth allocation schemes
((i1), (iii) and (iv)) provide almost the same performance.
But at higher load, the performance of these schemes are
worse compared to the first scheme, although the logarith-
mic allocation (iv) provides the best performance among the
three schemes. For the replication scheme (i), we give mul-
ticast traffic higher priority over unicast traffic in reserving
the output VLs. Without separation of VLs, multicast traf-
fic can preempt all unicast traffic, while with separate VLs,
multicast traffic uses the limited number of VLs. There-
fore, the first scheme (i) results in better performance. The
results bring in an interesting observation that giving a sep-
arate Service Level (separate VLs) to multicast traffic may
not be a good idea in an IBA-style switch.

6 Concluding Remarks

We have presented a comprehensive simulation testbed
along with several performance enhancement techniques
for IB-based SANs. These techniques include exploiting
the SPF routing algorithm as the default packet forward-
ing scheme, adopting a novel and practical multipathing
scheme to choose alternate paths, implementing a selec-
tive packet dropping mechanism in a switch/router, and im-

plementing several hardware supported multicasting tech-
niques. Although the packet dropping and multicasting con-
cepts are not new, the motivation here is to quantify their
contributions to performance enhancement by integrating
with suitable routing techniques.

The important conclusions of this work are the follow-
ing: First, the SPF routing algorithm seems to be a better
choice for IBA-style SANs compared to Up/Down routing.
SPF routing may lead to deadlocks, but when it is cou-
pled with the packet dropping mechanism, deadlocks can
be avoided. Second, the multipath routing using LFU or
Max Credit as the path selection criteria along with selec-
tive packet dropping provides the best performance for in-
tegrated traffic. Finally, the hardware support for multicas-
ting is necessary to assure QoS delivery of real-time traffic
and to reduce the network load. While asynchronous and
synchronous replication schemes are equally competitive,
synchronous replication may be a better solution since it
doesn’t require large buffers.

One of the major contributions of this research is the IBA
simulation testbed, which is an essential tool to evaluate var-
ious design tradeoffs. To the best of our knowledge, there is
no such platform available at present. We plan to make our
simulator publicly available for the research community.

0.50

o
Y
3

»—x Replicated Unicast
©—= Synchronous Replication

L |@—-© Asyn. Multicast (No Buffer)
*—% Asyn. Multicast (Buffer)

100.0 g

,X\x’/dx’/’x,

7000 -

6000

Replicated Unicast
[| Synchronous Replication
5000 | || Asyn. Multicast (No Buffer)
Asyn. Multicast (Buffer)

4000

Deadline Missing Probability

2500.0

Average Packet Latency (microsec)

2000.0 -

1500.0

1000.0

500.0

g 100 : .
2 »—=x Replicated Unicast
Y ©»—= Synchronous Replication
0.30 E G-—-© Asyn. Multicast (No Buffer)
g 1.0 b [X—* Asyn. Multicast (Buffer)
3
0.20 =
o
£
3
e o01f
0.10 | ZZ e
_=Z
Y
hd ‘ =
0.00 0.0
20 30 40 50 20 30 40

3000

2000 -

Average Packet Latency (microsec)

1000

Injection Rate (%)

(a) Deadline Missing Probability

Injection Rate (%)

(b) Deadline Missing Time

50 20 30 40 50
Injection Rate (%)

(c) Multicast Traffic

50000.0

40000.0

30000.0

[l Replicated Unicast
- Synchronous Replication
[| Asyn. Multicast (No Buffer)
[Asyn. Multicast (Buffer)

20000.0

Average Packet Latency (microsec)

10000.0

0.0 0.0

20 30 40 50 20
Injection Rate (%)

(d) Control Traffic

Replicated Unicast

Synchronous Replication
rl Asyn. Multicast (No Buffer)

Asyn. Multicast (Buffer)

40
Injection Rate (%)

(e) Best-Effort Traffic

8000

7000 -

6000

5000

4000

3000

2000

Average Packet Latency (microsec)

1000

50

Injection Rate (%)

(f) Different Bandwidth Allocations

Figure 6. Evaluation of Multicasting in a 15-Node Irregular Network

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(81
[91

[10]

InfiniBand Trade Association, “InfiniBand Architecture Specifi-
cation, Volume 1, Release 1.0,” October 2000. Available from
http://www.infinibandta.org.

J. Pelissier, “Providing Quality of Service over InfiniBand Architec-
ture Fabric,” in Proc. of Hot Interconnects, August 2000.

M. D. Schroeder, et al., “Autonet: A High-Speed, Self-Configuring
Local Area Network Using Point-to-Point Links,” Tech. Rep. SRC
research report 59, DEC, 1990.

A. S. Vaidya, A. Sivasubramaniam, and C. R. Das, “LAPSES: A
Recipe for High Performance Adaptive Router Design,” in Proc. of
HPCA, pp. 236243, January 1999.

W. J. Dally, “Virtual-Channel Flow Control,” IEEE TPDS, vol. 3,
pp. 194-205, May 1992.

S. S. Mukherjee and M. D. Hill, “A Survey of User-level Network
Interfaces for Systems Area Networks,” Tech. Rep. 1340, Computer
Science Dept., Univ. of Wisconsin-Madison, February 1997.

K. H. Yum, E. J. Kim, and C. R. Das, “QoS Provisioning in Clus-
ters: An Investigation of Router and NIC Design,” in Proc. of ISCA,
pp. 120-129, June 2001.

J. Moy, OSPF Version 2. The Internet Society, 1998. RFC 2328.

J. Wuand L. Sheng, “Deadlock-Free Rrouting in Irregular Networks
Using Prefix Routing,” Tech. Rep. 99-19, DIMACS, April 1999.

F. Silla and J. Duato, “Efficient Adaptive Routing in Networks
of Workstations with Irregular Topology,” in Proc. of CANPC’97,
February 1997.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

P. Lépez, J. Flich, and J. Duato, “Deadlock-Free Routing in Infini-
Band through Destination Renaming,” in Proc. of ICPP, pp. 427—
434, September 2001.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms. Cambridge, MA: The MIT Press, 1999.

E. J. Kim, et al., “Performance Enhancement Techniques for QoS
Provisioning in InfiniBandt™ Architecture,” Tech. Rep. CSE-02-
005, Pennsylvania State University, University Park, PA, February
2002.

T. M. Pinkston and S. Warnakulasuriya, “On Deadlocks in Intercon-
nection Networks,” in Proc. of ISCA, pp. 38—49, June 1997.

J. E. Klinker, “Multicast Tree Construction in Directed Networks,”
in Proc. of IEEE Military Comm. Conf., pp. 496-500, October 1996.

T. Billhartz, et al., “Performance and Resource Cost Comparisons
for the CBT and PIM Multicast Routing Protocols,” IEEE JSAC,
vol. 15, pp. 304-315, April 1997.

C. B. Stunkel, R. Sivaram, and D. K. Panda, “Implementing Multi-
destination Worms in Switch-Based Parallel Systems: Architectural
Alternatives and their Impact,” in Proc. of ISCA, pp. 50-61, June
1997.

C. B. Stunkel, et al., “The SP2 High-Performance Switch,” IBM
Systems Journal, vol. 34, no. 2, pp. 185-204, 1995.

A. Legout, J. Nonnenmacher, and E. W. Biersack, “Bandwidth-
Allocation Policies for Unicast and Multicast Flows,” IEEE/ACM
Trans. on Networking, vol. 9, pp. 464-478, August 2001.

M. B. Caminero, et al., “Performance Evaluation of the Multime-
dia Router with MPEG-2 Video Traffic,” in Proc. of CANPC’99,
pp. 62-76, January 1999.

