
Evaluating the Impact of Communication Architecture on the
Performability of Cluster-Based Services∗

Kiran Nagaraja, Neeraj Krishnan, Ricardo Bianchini, Richard P. Martin, Thu D. Nguyen
{knagaraj, neerajk, ricardob, rmartin, tdnguyen}@cs.rutgers.edu

Department of Computer Science, Rutgers University
110 Frelinghuysen Rd, Piscataway, NJ 08854

Abstract. We consider the impact of different communication
architectures on the performability (performance + availability)
of cluster-based servers. In particular, we use a combination of
fault-injection experiments and analytic modeling to evaluate the
performability of two popular communication protocols, TCP and
VIA, as the intra-cluster communication substrate of a sophisti-
cated Web server. Our analysis leads to several interesting conclu-
sions, the most surprising of which is, under the same fault load,
VIA-based servers deliver greater availability than TCP-based
servers. If we assume higher fault rates for VIA-based servers be-
cause the underlying technology is more immature and program-
ming model more complex, we find that packet errors or applica-
tion faults would have to occur at approximately 4 times the rate in
TCP-based servers before their performabilities equalize. We use
our results from the study to suggest that high-performance and
robust communication layers for highly available cluster-based
servers should preserve message boundaries, as opposed to using
byte streams, use single-copy transfers, pre-allocate channel re-
sources, and report errors in manner consistent with the network
fabric’s fault model.

1. Introduction

Popular Internet services frequently rely on clusters of com-
modity computers as their computing platform [7]. The perfor-
mance and scalability of cluster-based servers have been studied
extensively [1, 7, 9]. However, understanding designs for avail-
ability, behavior during component failures, and the relationship
between performance and availability (and combined performa-
bility) of these servers has received much less attention.

In this paper, we seek to understand the impact of differ-
ent communication architectures on the performability of cluster-
based servers in the presence of communication-related faults. In
particular, our goal is to assess server performability when using
two common communication subtrates: the kernel-based Trans-
mission Control Protocol (TCP) and the user-level Virtual Inter-
face Architecture (VIA) [18]. These substrates have been studied
extensively in terms of their achievable performance [10, 14], but
their availability has not been addressed.

We seek to understand how the interplay between the applica-
tion, operating system, and communication stack affects availabil-
ity. This approach stands in contrast to the rich body of existing
work that examines faults arising from noise and packet loss. This
line of research has produced results ranging from fundamental

∗This work was supported in part by NSF grants EIA-0103722 and
EIA-9986046

limits on encoding in the presence of noise [32] to sophisticated
time-out and retry algorithms [6, 19]. However, all the studies fail
to address the effect of channel faults on entities outside of the
communication systems, e.g., the operating system and applica-
tions.

Along the same lines, little is understood about the effect of
communication-related resource exhaustion and application faults
on server performance and availability. An example of such faults
is when the operating system denies memory for the communi-
cation layer to use as buffer space, as is possible in TCP. From
the perspective of the communication stack, this failure originates
from the top of the stack rather than the bottom, as in the case
of the channel faults. Understanding the overall system reaction
to these non-channel faults is also critical to increasing the avail-
ability of next-generation systems. Returning to our example, a
communication substrate robust to memory allocation faults al-
lows the service designer to have a memory-stressed node send
load-shedding messages. On the other hand, if the communication
breaks down because of memory allocation faults, the faulty node
must be able to relieve the memory pressure without communicat-
ing.

Based on these observations, in this paper we examine the im-
pact of communication hardware, resource exhaustion, and appli-
cation faults on the availability, performance, and performability
of PRESS, a cluster-based locality-conscious Web server [9]. The
study relies on our own fault-injection and analysis methodology
[26] to examine the differences between TCP and VIA, according
to their implementations over the Giganet cLAN network.

Our study illustrates several performance vs. robustness trade-
offs. We show that TCP, in spite of its sophisticated time out and
retry, does not provide greater availability than a user-level com-
munication protocol such as VIA in the context of cluster-based
services. TCP has two features that limit its applicability in this
context: it assumes that packet drops are a sign of transient prob-
lems, and it uses a byte-stream abstraction in messaging. The for-
mer makes TCP fault detection too slow to be useful, whereas the
latter makes the server vulnerable to bad parameters, because a
bad offset or pointer corrupts the entire byte stream after the fault.

We also found that pre-allocation of resources, in particular for
memory, can affect the robustness of cluster-based servers. Pre-
allocation of buffers and VIA descriptors is essential to maintain-
ing communication during resource stress periods. For VIA, this
suggests that dynamic pinning and un-pinning of memory regions
exposes servers to resource exhaustion faults.

The benefits of using a user-level communication system such
as VIA over TCP ultimately depend on the real fault load. If the
designers of a cluster-based server believe that the fault load re-

1



mains the same regardless of which communication substrate is
used, then clearly user-level communication systems provide bet-
ter performance and higher availability. On the other hand, if their
instincts are that a user-level communication substrate might be
subjected to a more stressful fault load, because the technology
is less mature and the programming model more complex, then a
TCP-based implementation may be more desirable. By studying a
range of fault loads, we determine the circumstances under which
one protocol is preferable over the other.

Given our experience with TCP and VIA substrates, we sug-
gest directions for the design of future communication layers. For
example, we believe that a high-performance, robust communica-
tion layer should be message-based, single-copy, and pre-allocate
all resources.

2. Methodology

We will use the two-phase methodology proposed in [26] to
evaluate the performability of PRESS in the presence of faults. In
the first phase, the evaluator defines the set of all possible faults,
then injects them (and the subsequent recovery) one at a time
into a running system. During the fault and recovery periods, the
evaluator must quantify performance and availability as a func-
tion of time. We currently equate performance with throughput,
the number of requests successfully served per second, and define
availability as the percentage of requests served successfully. In
the second phase, the evaluator uses an analytical model to com-
pute the expected average throughput and availability, combining
the server’s behavior under normal operation, the behavior during
component faults, and the rates of fault and repair of each compo-
nent.

2.1. Phase 1: Measuring Performance Under
Single-Fault Fault Loads

There are two tricky issues when injecting faults. First, when
measuring the server’s performance in the presence of a particular
fault, the fault must last long enough to allow all stages in the
model of phase 2 to be observed and measured. The one exception
to this guideline is that a server may not exhibit all model stages
under certain faults. In these cases, the evaluator must use his
understanding of the server to correctly determine which stages are
missing (and later setting the time of the stage in the abstract model
to 0). Second, a benchmark must be chosen to drive the server
such that the delivered throughput is relatively stable throughout
the observation period (except for transient warm up effects). This
is necessary to decouple measured performance from the injection
time of a fault.

2.2. Phase 2: Modeling Server’s Performability Un-
der Expected Fault Loads

Our model for describing average performance and availability
is built in two parts. The first part of the model describes the sys-
tem’s response to a single fault in a 7-stage model. The second part
of the model combines the effects of each fault, as described in the

Throughput

CBAPhase

1. Component fails

2. Detect failure

(not detected)

5. Server stabilizes

6. Operator Reset

4. Component recovers

Events

3. Server stabilizes

7. All components back up

Time

8. Normal operation

D E F G

5 6 71 2 3 4 8

Figure 1. The 7-stage piece-wise linear model speci-
fied by our methodology for evaluating the performa-
bility of cluster-based servers.

first part, along with the MTTR and MTTF of each component to
arrive at an overall average availability and performance.

Per-Fault Seven-Stage Model. Figure 1 illustrates our 7-stage
model of service performance in the presence of a fault. Time is
shown on the X-axis and throughput is shown on the Y-axis. Stage
A models the degraded throughput delivered by the system from
the occurrence of the fault to when the system detects the fault.
Stage B models the transient throughput delivered as the system
reconfigures to account for the fault; the system may take some
time to reach a stable performance regime because of warming
effects. We model the throughput during this transient period as
the average throughput for the period. After the system stabilizes,
throughput will likely remain at a degraded level because the faulty
component has not yet recovered, been repaired or replaced. Stage
C models this degraded performance regime. Stage D models the
transient performance after the component recovers. Stage E mod-
els the stable performance regime achieved by the service after the
component has recovered. This performance may be below that of
normal operation if the service is not able to recover completely,
even after the faulty component has been repaired. Stage F repre-
sents throughput delivered while the server is reset by the operator,
whereas stage G represents the transient throughput immediately
after reset.

For each stage, we need two parameters: (i) the length of
time that the system will remain in that stage, and (ii) the aver-
age throughput delivered during that stage. These parameters are
either measured in phase 1 or an assumed environmental value that
must be supplied by the evaluators. Sometimes stages may not be
present or may be cut short. For example, if there are no warming
effects, then stages B, D, and G would not exist. In practice, we
set the length of time the system is in such a state to zero.

Modeling Overall Availability and Performance. To combine
the effects of a particular fault load, we assume that faults are not
correlated, fault arrivals are exponentially distributed, and faults
queue at the system so that only a single fault is in effect at any
point in time. (We address some of these assumptions and the
potential errors they may introduce in [26].) These assumptions
allow us to add together the various fractions of time spent in de-
graded modes.

In particular, if Tn is the server throughput under normal op-
eration, c the faulty component, T s

c the throughput of each stage
s in Figure 1 when this fault occurs, and Ds

c be the duration of

2



each stage, our model leads to the following equations for average
throughput (AT) and average availability (AA):

AT = (1 −
∑

c

Wc)Tn +
∑

c

G∑

s=A

(
Ds

c

MTTFc
T s

c )

AA =
AT

Tn

where Wc = (
∑G

s=A
Ds

c)/MTTFc
1.

2.3 Performability Metric

We propose a combined performability metric that allows di-
rect comparison of systems using both performance and avail-
ability as input criteria. Our approach is to multiply the average
throughput by an availability factor as follows: P = Tn× log(AI )

log(AA)
,

where Tn is the throughput under normal operation, AI is an ideal
availability (e.g., 0.99999), AA is the average availability, and P is
the performability of the system. This metric is an intuitive mea-
sure for performability because it scales linearly with both per-
formance and unavailability. Obviously, if performance doubles,
our performability metric doubles. On the other hand, if the un-
availability decreases by a factor of 2, then performability also
roughly doubles. (The intuition behind this relationship between
unavailability (u) and performability is that we can approximate
log(1 − u) as −u when u is small.)

3 The PRESS Server

PRESS is a highly optimized yet portable cluster-based
locality-conscious web server that has been shown to provide good
performance in a wide range of scenarios [9, 10]. Like other
locality-conscious servers [1, 4, 27], PRESS is based on the ob-
servation that serving a request from any memory cache, even a
remote cache, is substantially more efficient than serving it from
disk, even a local disk.

In PRESS, any node of the cluster can receive a client request
and becomes the initial node for that request. When the request
arrives at the initial node, the request is parsed and, based on its
content, the node must decide whether to service the request itself
or forward the request to another node, the service node. The ser-
vice node retrieves the file from its cache (or disk) and returns it to
the initial node. Upon receiving the file from the service node, the
initial node sends it to the client.

To intelligently distribute the HTTP requests it receives, each
node needs locality and load information about all the other nodes.
Locality information takes the form of the names of the files that
are currently cached, whereas load information is represented by
the number of open connections handled by each node. To dis-
seminate caching information, each node broadcasts its action to
all other nodes whenever it replaces or starts caching a file. To dis-
seminate load information, each node piggy-backs its current load
onto any intra-cluster message.

1It is interesting that the denominator of Wc is just MTTFc instead of
MTTFc + MTTRc. We refer the reader to [26] for a discussion of why
this is correct.

Communication architecture. PRESS is comprised of one main
coordinating thread and a number of helper threads used to ensure
that the main thread never blocks. The helper threads include
a set of disk threads used to access files on disk and a pair of
send/receive threads for intra-cluster communication.

PRESS can use either TCP or VIA for intra-cluster communi-
cation. The TCP version basically has the same structure of its
VIA counterpart; the main differences are the replacement of the
VI end-points by TCP sockets and the elimination of flow control
messages, which are implemented transparently to the server by
TCP itself.

Reconfiguration. PRESS is often used (as in our experiments)
without a front-end device, relying on round-robin DNS for initial
request distribution to nodes. Some versions of PRESS have been
designed to tolerate node (and application process) crashes, re-
moving the faulty node from the cooperating cluster when the fault
is detected and re-integrating the node when it recovers. Fault de-
tection when VIA is used for intra-cluster communication is sim-
ple. A node assumes that another node has failed if the VIA con-
nection between them is broken.

When TCP is the communication substrate, in addition to de-
tecting failures from broken connections, PRESS can also employ
periodic heartbeat messages. To avoid sending too many mes-
sages, we organize the cluster nodes in a directed ring structure.
A node only sends heartbeats to the node it points to. If a node
does not receive three consecutive heartbeats from its predecessor,
it assumes that the predecessor has failed. (When using VIA, the
nodes are also organized into a directed ring, but only for recovery
purposes.)

In both cases, temporary recovery is implemented by simply
excluding the failed node from the server. Multiple node faults can
occur simultaneously. Every time a fault occurs, the ring structure
is modified to reflect the new configuration.

The second and final step in recovery is to re-integrate a recov-
ered node into the cluster. When using TCP, the rejoining node
broadcasts its IP address to all other nodes. The currently active
node with lowest node identifier (ID) responds by informing the
rejoining node about the current cluster configuration and its ID.
With that information, the rejoining node can reestablish the intra-
cluster connections with the other nodes. After each connection
is reestablished, the rejoining node is sent the caching information
of the respective node. When the intra-cluster communication is
done with VIA, the rejoining node simply tries to reestablish its
connection with all other nodes. As connections are reestablished,
the rejoining node is sent the caching information of the respective
nodes.

Versions. Several versions of PRESS have been developed in or-
der to study the performance impact of different communication
mechanisms [10]. Table 1 lists the versions of PRESS that we
consider in this paper. For each version, we summarize its main
characteristics, their expected impact on performance and avail-
ability, and their near-peak throughputs on our 4 cluster nodes.
The throughputs of the various versions of PRESS will be com-
pared against throughput when various faults are injected into the
cluster.

All PRESS versions cooperate in caching files, but differ in
terms of their approach to detecting failed nodes, and the per-

3



Version Main Features Expected Behavior Throughput

TCP-PRESS TCP used for intra-cluster communication; connec-
tion breaks are used as trigger for reconfiguration

Performance may suffer in the presence of faults
because TCP connection timeouts are typically
lengthy

4965 reqs/sec

TCP-PRESS-HB TCP used for intra-cluster communication; loss of
heartbeat messages are used as trigger for reconfig-
uration

Faster response to faults but may give false posi-
tives if communication of heartbeats is delayed

4965 reqs/sec

VIA-PRESS-0 VIA used for intra-cluster communication; connec-
tion breaks are used as trigger for reconfiguration

Outperforms the TCP versions but may be more
vulnerable to user-level errors

6031 reqs/sec

VIA-PRESS-3 VIA used for intra-cluster communication; remote
memory writes used in all messages; connection
breaks are used as trigger for reconfiguration

Outperforms VIA-PRESS-0, but remote memory
writes can diffuse pointer and message size faults.

6221 reqs/sec

VIA-PRESS-5 VIA used for intra-cluster communication; remote
memory writes used in all messages; zero-copy
used for data transfers; connection breaks are used
as trigger for reconfiguration

Gives best performance but remote writes can dif-
fuse faults and zero-copy requires dynamic page
pinning, making it more vulnerable to OS faults.

7058 reqs/sec

Table 1. Versions of PRESS available for study, their differences, expected impact on performance and availability,
and throughput when serving our benchmark web trace.

formance of their intra-cluster messaging. TCP-PRESS and the
VIA-PRESS versions use connection breaks to detect node fail-
ures, whereas TCP-PRESS-HB uses heartbeat messages.

PRESS uses intra-cluster messages for request forwarding, dis-
semination of caching information, and transfer of file data. When
using VIA for intra-cluster communication, flow-control messages
are also used. In TCP-PRESS and TCP-PRESS-HB, all message
types involve data copies on both sides and interrupt-driven mes-
sage reception. VIA-PRESS-0 also utilizes regular messages, but
they are sent directly from user-space. To avoid the overhead of re-
ceiver interrupts, VIA-PRESS-3 and VIA-PRESS-5 utilize remote
memory writes and polling in all messages. Remote writes are im-
plemented by allocating buffers at each node for each other node.
Polling is done by looking at message sequence numbers stored at
the last position of each (fixed-size) buffer entry. Processors poll
for messages at the end of the main server loop. VIA-PRESS-
5 improves performance further by avoiding the large copies in-
volved in file data transfers. The copy at the receiver is eliminated
by sending the data to the client right out of the communication
buffer. The copy at the sender is eliminated by transferring the
data directly from the sender’s file cache. For that, all the pages
corresponding to cached files must be pinned in physical memory.

4. Fault Injection and Fault Model

We use Mendosus [23], a cluster-based fault injection and net-
work emulation infrastructure, to study the behavior of PRESS in
the presence of faults. Mendosus is implemented completely in
software, via a set of kernel modules and user-level libraries. The
service being studied runs live on top of Mendosus; faults are in-
jected in real-time in order to measure the service’s live response
to faults.

Mendosus can inject a wide range of faults. The fault model
that we consider for this study includes physical faults in the net-
working hardware, end-node crashes, resource exhaustion faults
within the operating system, and application faults, focusing par-
ticularly on the large class of faults arising from inappropriate
parameters passed to the communication interfaces. We chose

to consider operating system resource exhaustion, in particular,
memory exhaustion, in addition to the hardware faults because
previous studies have shown that memory exhaustion may be a
dominant factor in the “aging” of operating systems [12, 36]. Like-
wise, we chose the specific application-level faults because a pre-
vious study suggests that they are the dominant categories of ap-
plication errors [11]. We could have assumed a completely generic
application fault model, such as the crashing of a process. How-
ever, this would not have brought out the different ways that these
errors propagate through the different communication layers. Ta-
ble 2 lists the specific faults that we consider.

4.1 Network Hardware and Node Faults

We consider fail-stop faults in links and switches, components
that typically comprise the intra-cluster network of today’s server
cluster. (In this study, NIC faults are considered a source of
node faults and are accounted for in node crashes and hangs.)
We only consider fail-stop faults as we are more concerned with
application-level effects, rather than channel errors that are typi-
cally dealt with in the communication substrate or protocol.

Mendosus can inject three types of node faults: hard reboot,
soft reboot, and node freeze. All can be either transient or perma-
nent, depending on the specified fault behavior. The node crash
fault type we study here corresponds to the hard reboot fault. A
detailed description of how Mendosus implements network and
nodes faults is found in [26].

4.2 Resource Exhaustion Faults

Transient situations on a server node running many processes
can at times create a shortage of resources (e.g., memory, disk
space, file descriptors, etc.). This can happen when a buggy pro-
cess asks for too much resource or a bug in the kernel leads to
leakage. In this study, as already mentioned, we only consider
exhaustion of memory.

We implemented two types of memory faults. First, failure to
allocate skbufswithin the kernel for a specified duration of time.

4



Fault Category Faults Example Error Source
Network hardware Link fault Faulty cable, accidental unplugging, mis-configuration

Switch fault Power failure, software bug, mis-configuration
Node Node crash Operator error, OS bug, hardware fault, power failure

Node hang OS bug, OS recovering after killing faulty process
Resource exhaustion Kernel memory allocation fault System low on (kernel) memory / out of virtual address space

Memory locking Out of pinnable physical memory
Application Application hang Application bugs, paging effects

Application crash Application bugs, operator mis-termination
Bad parameters: NULL pointers, off-by-
N data pointer, off-by-N size

Uninitialized pointers, logical error, pointer corruption, stale memory han-
dle (RDMA)

Table 2. Faults to be injected and possible sources of these faults.

This simulates situations when the kernel can no longer allocate
more kernel memory. We implemented this by trapping the calls to
skbuf allocations for intra-cluster communication and returning
an error to the caller.

The second fault involves running out of memory on a pin-
down request. This again simulates situations such as a buggy (or
just greedy) process pinning an unusual amount of memory, caus-
ing shortage of pinnable physical pages for other processes. Ker-
nels usually limit the number of pinnable pages to only a fraction
of the available physical pages (e.g., the Linux 2.2x kernels limit
this amount to half the number of physical pages) to maintain a
safe buffer for possible future allocations. To implement this fault,
we had to modify the cLAN driver since the driver directly manip-
ulates the page table when a client registers some memory with it.
In particular, we modified the cLAN driver to dynamically adjust
the threshold above which requests to lock memory were returned
with error status.

4.3 Application Faults

We implement two classes of application faults. First, generic
errors that we do not model in detail lead to either a process crash
or process hang. These faults are effected by a user-level daemon
running on each node. For our study of PRESS, the server process
on each node is started by the daemon. An application hang fault
is injected by having the daemon send a SIGSTOP to the server
process. The process can be restarted if the fault is transient by
sending a SIGCONT to it. A crash is injected by killing the appli-
cation process.

The next class of faults models actual application level bugs.
Again, we thought that studying actual application bugs would be
more enlightening than just using the above coarse-grain faults be-
cause it would give us insight into the propagation of such errors
through the different communication subsystems.

The class of “real” errors involve bad parameters passed to calls
into the communication subsystem. We implement the injection
of these faults by interposing a software layer between the appli-
cation and the normal communication library. Our layer traps spe-
cific calls, modifies one or more parameters, and then passes the
call to the communication library.

Specifically, we injected faults into the send() and recv()
calls for socket-based communication, and the VipPostSend()
and VipPostRecv() calls to the cLAN VIPL library. For the
VIA calls, the parameters were actually inside VIA descriptors,

and so we modified the corresponding fields within a descriptor
before passing it up to VIPL library. We considered three types
of corrupted parameters: passing of NULL pointers, off-by-N for
data pointers, and off-by-N for buffer sizes. N in all cases were in
the range of 0 to 100 bytes, which was observed in [34] to be the
dominant range for offset errors.

5 PRESS Behavior Under Single-Fault
Loads

We now apply the first phase of our methodology to evaluate
the performability of PRESS. In particular, we measure and ex-
plain the behavior of all 5 versions of PRESS under single faults
injected in isolation.

5.1 Experimental Setup

In all experiments, we run a four-node version of PRESS on
four 800 MHz PIII PCs, each of which is equipped with 206
MByes of memory and 2 10,000 rpm SCSI disks. Nodes are inter-
connected by a 1 Gb/s cLAN network. We can communicate with
TCP or VIA over this network. PRESS was allocated 128 MBytes
on each node for its file cache; the remainder of the memory was
sufficient for the operating system and the server code so that there
were no page faults during the experiments.

The workload for all experiments is generated by a set of clients
running on separate machines. To stress the communication as-
pect of PRESS, our experiments only involve static content and
the entire set of documents is replicated at each node. The client
machines are connected to PRESS by the same cLAN network
that connects the nodes of the cluster. Using a single network for
communication is not at all a problem. The total network traffic
does not saturate any of the cLAN network interfaces, links, or the
switch, and so the interference between the two classes of traffic
is minimal in our setup. Furthermore, our fault-injection infras-
tructure allows us to differentiate between intra-cluster communi-
cation and client-server communication when injecting network-
related faults. Thus, the clients are never disturbed by faults in-
jected into the intra-cluster communication.

Each client generates load by following a trace gathered at Rut-
gers; we chose this trace from several previously used to evalu-
ate the performance of PRESS, because it has the largest working
set [9]. We modified the file set so that all files have the same

5



0

1000

2000

3000

4000

5000

6000

7000

8000

9000

400 500 600 700 800 900 1000 1100 1200

R
eq

ue
st

s/
se

c

Time in secs

TCP-PRESS

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

400 500 600 700 800 900 1000 1100 1200

R
eq

ue
st

s/
se

c

Time in secs

TCP-PRESS-HB

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

400 500 600 700 800 900 1000 1100 1200

R
eq

ue
st

s/
se

c

Time in secs

VIA-PRESS-5

Figure 2. Throughput of PRESS when a transient link failure is injected. The vertical lines indicate when the fault
was injected and when the faulty component recovered.

size (the average size of the original file set). This modification
was necessary to ensure that PRESS delivers a stable throughput
throughout the trace.

To achieve a particular load on the server, each client gener-
ates a stream of requests according to a Poisson process with a
given average arrival rate. Each request is set to time out after 2
seconds if the connection cannot be completed, and to time out af-
ter 6 seconds if, after successful connection, the request cannot be
completed.

5.2 Network Hardware Failures

In this section, we study the behavior of PRESS for faults in the
intra-cluster communication hardware. First we discuss the effects
of the faults on each version, and then draw some conclusions on
the differing behavior. Because of space constraints, we will only
show results for a subset of the faults injected; the reader can find
all our data at our web-site [37].

Figure 2 shows the effects of a single transient link failure.
We do not show the graphs for VIA-PRESS-0 and VIA-PRESS-
3 because they are essentially the same as that of VIA-PRESS-5.
TCP-PRESS exhibits its expected behavior under link failure, by
stalling for the period of the fault. The TCP protocol on the co-
operating nodes keeps trying to re-send packets across the faulty
component, causing the filling up of communication queues on all
nodes, thus dropping the throughput to zero until slightly after the
component recovers and the messages start flowing again. Note
that the fault does not last long enough for TCP to close the con-
nection. These timeouts tend to be very long, on order of 10-15
minutes.

In contrast, TCP-PRESS-HB detects the fault in a very short
time and reconfigures. The reason is that the heartbeat messages
lost over the faulty link cause the other nodes to assume that the
unreachable node is down. This splinters the cluster into 3 cooper-
ating nodes and 1 independent node. The detection and recovery
durations correspond to a failure detection threshold of 15 seconds
(3 heartbeats) used by the heartbeat code.

Similar to TCP-PRESS-HB, the VIA versions detect the failure
almost instantaneously because the connections to the unreachable
node all break. VIA versions splinter into 3 cooperating nodes and
1 independent node just as TCP-PRESS-HB. Interestingly, TCP-
PRESS-HB and the VIA versions do not reconfigure back into a
single cluster once the link returns to normal operation. This sur-
prising behavior arises from a mismatch between the fault model

assumed by PRESS and the actual fault. PRESS assumes that
nodes fail but links and switches do not. Thus, reconfiguration
only occurs at startup and on loss of 3 heartbeats; nodes do not
merge again after partitions. Return to normal operation thus re-
quires the intervention of an administrator to restart all but one of
the sub-clusters. This, in effect, makes these versions less avail-
able than the basic TCP-PRESS in the face of relatively short tran-
sient faults.

5.3 Node Faults

Figure 3 shows the effects of a hard reboot fault, i.e., a node
crash. Again, we do not show the graphs for VIA-PRESS-0 and
VIA-PRESS-3 because they are similar to that of VIA-PRESS-5.

Because it is not capable of immediately detecting node fail-
ures, TCP-PRESS grinds to a halt while the faulty node is down;
all communication queues get filled up with messages for the
crashed node. When the crashed node comes back up, an interest-
ing timing problem develops. The recovered node tries to rejoin
the cluster, as Mendosus starts another PRESS process automati-
cally, but is not able to. The reason is that the other nodes do not
detect the reboot until a little while later. During this period, all
the rejoin messages sent by the recovered node are disregarded by
the rest of the cluster. After the recovered node gives up trying to
rejoin, the other 3 nodes detect the termination of the connections
and form a group of cooperating servers.

TCP-PRESS-HB and the VIA versions behave exactly as ex-
pected and almost identically. In TCP-PRESS-HB the node crash
is detected by the heatbeat protocol, whereas in the VIA versions
the connections to the faulty node break. After detection, the 3
remaining nodes continue cooperation. After the node reboots and
Mendosus restarts the PRESS process, the node is able to rejoin
the cluster and throughput returns to the normal level.

Results for node hangs are similar except that TCP-PRESS cor-
rectly deduce that no fault has occurred (although throughput does
fall to zero while everyone waits for the hung node) while TCP-
PRESS-HB incorrectly decides that a fault has occurred and splin-
ters into two sub-clusters.

5.4 Memory Exhaustion Faults

In this section we consider the effects of communication-
related resource exhaustion, in particular, the memory system.
Figure 4 shows the effect of kernel memory exhaustion, which

6



0

1000

2000

3000

4000

5000

6000

7000

8000

9000

400 500 600 700 800 900 1000 1100 1200

R
eq

ue
st

s/
se

c

Time in secs

TCP-PRESS

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

400 500 600 700 800 900 1000 1100 1200

R
eq

ue
st

s/
se

c

Time in secs

TCP-PRESS-HB

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

400 500 600 700 800 900 1000 1100 1200

R
eq

ue
st

s/
se

c

Time in secs

VIA-PRESS-5

Figure 3. Throughput of PRESS when a node crash is injected.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

400 500 600 700 800 900 1000 1100 1200

R
eq

ue
st

s/
se

c

Time in secs

TCP-PRESS

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

400 500 600 700 800 900 1000 1100 1200

R
eq

ue
st

s/
se

c

Time in secs

TCP-PRESS-HB

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

400 500 600 700 800 900 1000 1100 1200

R
eq

ue
st

s/
se

c

Time in secs

VIA-PRESS-5

Figure 4. Throughput of TCP-PRESS and TCP-PRESS-HB when a kernel memory exhaustion failure is injected and
throughput of VIA-PRESS-5 when a pinnable memory exhaustion failure is injected.

causes failures in the allocation of communication buffers. The
throughput of TCP-PRESS drops to zero during the fault, since
the stalling of communication to the faulty node freezes the entire
cluster. The TCP packets arriving at the faulty node are dropped,
whereas packets leaving the node get queued up within the op-
erating system, waiting for buffer allocations. In contrast, TCP-
PRESS-HB splinters into 3 cooperating nodes and a singleton after
3 heartbeats from the faulty node are not received. The VIA ver-
sions perform pre-allocation of most network resources during ser-
vice initiation. This makes them less vulnerable to dynamic fluc-
tuations in memory resources. Since they did not show any degra-
dation in performance during the fault period, we do not present
their graphs here.

VIA-PRESS-5 is succeptible to pinnable memory exhaustion
faults, however. The zero-copy messaging in this version requires
memory to be registered with the VIA library, which in turn pins
the registered region. Cache replacements cause memory to be
unpinned (file that is being replaced) and later pinned (file that is
entering the cache). When a node in VIA-PRESS-5 is unable to
pin memory, it drops files from its cache to free up memory. The
cache misses arising from these dropped files degrade the through-
put during the fault period, as also shown in Figure 4.

5.5 Application Faults

Figure 5 shows the behavior of PRESS when a null value is
passed as the data pointer to the send API. The TCP versions de-
tect this fault synchronously and return an EFAULT error code to
the invoker. The VIA versions diagnose the error code as a fatal
error, and terminate themselves. The recovery, achieved by restart-
ing the application, reintegrates the faulty server into the cluster. In
VIA-PRESS-0 the asynchronous error reporting through error sta-

tus in completed descriptors achieves the same effect as the TCP
versions. However, in the remote memory write-intensive VIA-
PRESS-3 and VIA-PRESS-5, the error is reported on both nodes
involved in the remote operation. This causes the termination of 2
nodes as per PRESS’s fail-fast approach. However, the restart of
the PRESS processes returns the performance from an extremely
degraded state to a normal throughput.

We also considered off-by-N values for data pointer and the
data size parameters. In these experiments, we observe that either,
only the sender or only the receiver node experience an error as
a result of these incorrect parameters. In contrast, the fault is re-
ported at both ends of the communication in the remote memory
write versions. In fact, remote memory writes poses a greater risk
as “valid” bad parameters result in corruption of data (and pos-
sibly meta-data) on the remote node as well. In our current study
though, we have not quantified this additional risk. We believe that
this demands a deeper statistical study that is beyond the scope of
this paper.

6 Performability of the PRESS Versions

We now proceed to the second phase of our methodology to
evaluate the performability of the different PRESS versions. We
first examine performability assuming the same fault load for all
versions of PRESS. Then, we also consider what happens if we
assume that the VIA versions of PRESS experience more stress-
ful fault loads; there are two reasons why it is interesting to con-
sider this case: (1) programs written on user-level communication
subsystems such as VIA may be more buggy because VIA forces
the programmer to deal with communication issues such as buffer
management and flow control that, in TCP, are implemented by the
communication protocol, and (2) user-level communication sub-

7



0

1000

2000

3000

4000

5000

6000

7000

8000

9000

400 500 600 700 800 900 1000 1100 1200

R
eq

ue
st

s/
se

c

Time in secs

TCP-PRESS

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

400 500 600 700 800 900 1000 1100 1200

R
eq

ue
st

s/
se

c

Time in secs

VIA-PRESS-0

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

400 500 600 700 800 900 1000 1100 1200

R
eq

ue
st

s/
se

c

Time in secs

VIA-PRESS-5

Figure 5. Throughput of PRESS when a NULL pointer fault is injected.

Fault MTTF MTTR
Link down 6 months 3 minutes
Switch down 1 year 1 hour
Node crash 2 weeks 3 minutes
Node freeze 2 weeks 3 minutes
Memory pinning failure 61 days 3 minutes
Memory allocation failure 61 days 3 minutes
Process crash var. 3 minutes
Process hang var. 3 minutes
Bad parameters - null pointer var. 3 minutes
Bad parameters - off-by-N data pointer var. 3 minutes
Bad parameters - off-by-N size var. 3 minutes

Table 3. Failures and their MTTFs and MTTRs.

systems such as VIA are still relatively immature, possibly leading
to a higher fault rate because of hardware and/or firmware bugs.

6.1 Fault Load

Table 3 gives the initial fault load used to compare the per-
formability of the different versions of PRESS. Recall that to make
the modeling tractable, we assume that faults in different compo-
nents are not correlated and all fault arrivals are exponentially dis-
tributed. We have done our best to derive meaningful parameters
from the available data [11, 12, 15, 21, 35, 34, 36]. However, data
is sparse, particularly for application-level errors. Thus, we exam-
ine performability for a range, once per day to once per month, of
MTTFs for application level faults. In addition, because we have
multiple classes of errors, we divided the application fault rate be-
tween these errors according to the distribution observed in [11].
This led to approximately the following ratio: process crash 40%,
process hang 40%, null pointer 8%, off by N data pointer 9%, off
by N size 2%. The 3 minute MTTR for each of the application
errors, considers the time required to restart the application in a
clean state - which may involve rebooting the node.

6.2 Performability Under the Same Fault Load

Figure 6 shows (a) the modeled unavailability and (b) per-
formability of the different versions of PRESS when scaling the
application fault rate from once per day to once per month. Fig-
ure 6(a) also shows the contribution of each fault type to over-
all unavailability. Overall, perhaps surprisingly, the availability of
all three VIA versions is slightly better than that of the two TCP
versions. While non-intuitive, this result arises because the VIA
fault reporting is more accurate for the cluster environment. The

two TCP versions only use end-to-end information to try and de-
tect failures and can be led astray. On the one hand, TCP-PRESS
takes too long to detect a number of the faults because it assumes
that lost packets are due to transient congestion, not component
faults. TCP-PRESS-HB, on the other hand, sometimes concludes
too quickly that lost heartbeat messages translate to faults, rather
than delay because of other reasons.

Of course, the above discussion does not mean that heartbeats
are useless. The reason that heartbeats were less useful than one
might expect is that PRESS does not reconfigure when faults do
not lead to one or more process crashes. To make heartbeats more
effective, one needs to implement a rigorous membership algo-
rithm that can repair the group membership correctly when loss of
heartbeats leads to the incorrect splintering of the cluster.

At low application fault rates, a second reason why the VIA
versions exhibit better availability than the TCP versions is that
they are not vulnerable to operating system resource exhaustion
errors. Since they preallocate resources at startup time, the VIA
versions continue to operate well even when the operating system
runs out of memory.

We also observe that there is little difference in the availabil-
ity of the VIA versions. This is perhaps not unexpected because,
for the vast majority of application errors, the effect of the fault
is the same: the hanging or crashing of an process. This is also
true of the node faults. It is interesting to note, however, that there
are noticeable differences in the contribution to unavailability of
the different specific application fault types at high application
fault rates. The reason is that these faults lead to a few differ-
ences in the behavior of the different versions. At lower applica-
tion fault rates, careful analysis shows that VIA-PRESS-5 gives
the worst availability because the dynamic pinning of memory
makes it slightly vulnerable to resource exhaustion faults. How-
ever, since the VIA versions manage their own communication re-
sources, VIA-PRESS-5 is able to adapt to the resource exhaustion
faults better than the TCP versions; in particular, it releases some
of the memory that it had previously pinned to free up the needed
resources. These observations lead us to surmise that different de-
pendency on user-level communication mechanisms would likely
lead to different availability if only we could more accurately em-
ulate real application and operating system faults, allowing them
to propagate through the communication subsystem.

Finally, while the above differences are interesting, perhaps the
most significant conclusion is that availability is uniformly terri-
ble. With an application fault rate of once per day, availability
is only in the 99% range, and of course, the effect of application
crashes dominate. Even at a fault rate of once per month, avail-

8



Unavailability by Component

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

TCP TCP-HB VIA-0 VIA-3 VIA-5

PRESS Versions

%
 U

n
a

v
a

il
a

b
il
it

y
 

app-offbyNsize

app-offbyNpointer

app-nullpointer

application hang

application crash

os-sk-buf-no-mem

os-mem-no-locking

node freeze

node crash

internal switch 

internal link

Performability

0

5

10

15

20

25

30

TCP TCP-HB VIA-0 VIA-3 VIA-5

PRESS Versions

P
e
rf
o
rm

a
b
il
it
y

(a) (b)

Figure 6. The modeled (a) unavailability and (b) performability of the 5 versions of PRESS. For each group of 2 bars,
the left is for an application fault rate of 1 per day and the right is for a rate of 1 per month.

ability does not reach 99.9%. Since the differences in availability
are relatively small, the performability graphs show the expected
results: the highest performing version of PRESS leads to the best
performability.

6.3 Pessimistic Fault Loads for VIA Versions

Transient Packet Drops

0

5

10

15

20

25

TCP TCP-HB VIA-0 VIA-3 VIA-5 VIA-0 VIA-3 VIA-5 VIA-0 VIA-3 VIA-5

PRESS Versions

P
e
rf
o
rm

a
b
il
it
y

Figure 7. Comparison of performability in the pres-
ence of transient packet drops. For TCP, we model
no effect. For VIA we show the impact of packet drop
rates, which re-set the channel, of 1 per day (left), 1
per week (center), 1 per month (right)

We now examine a number of scenarios with a more pes-
simistic fault load for the VIA versions than the TCP versions. The
purpose of these sensitivity experiments is to show our methodol-
ogy can aid designers in reasoning about the fault-rates where var-
ious performance vs. availability trade-offs make sense or are ill-
advised. For example, using our method an architect could quan-
tify at what fault rates switching from TCP to VIA is justified even
though it may introduce bugs, and thus increase the observed fault
rate.

We first look at transient packet loss. While the VIA specifi-
cation states that transient packet loss should be extremely rare,
in practice, it may occur more often because of hardware and/or
software bugs [38]. Thus, we model transient packet loss as ap-
plication process crashes, assuming that the packet loss would be
reported as an error, leading to the process terminating itself. On
the other hand, since much of TCP’s robustness comes from tol-
erating transient packet drops, we assume that such faults have no

effect on the TCP versions of PRESS.
Figure 7 compares the performability of the different versions

as the transient packet loss rate is varied from 1 per day to 1 per
month. These faults are in addition to the fault rates in Table 3.
Observe that the performability of the TCP versions are roughly
comparable to those of the VIA versions when the packet loss rate
is about 1 per week; TCP wins if the packet loss rate is greater
than 1 per week and loses if the rate is less than 1 per week. These
results imply that if the designer believes that the LAN/SAN is
relatively immature, then it is perhaps better to use TCP and sac-
rifice some performance. On the other hand, if the LAN/SAN is
relatively mature technology with little reason to suspect a high
rate of packet loss, then it is worthwhile to bypass the software
overhead of TCP.

We next consider a scenario where a server using VIA contains
more bugs due to VIA’s more complex and unfamiliar program-
ming model. Figure 8 compares the performability of the different
PRESS versions as the VIA versions are subjected to increasing
rates of application faults. These results show that the performa-
bility is comparable when the additional application fault load on
the VIA versions is around 1 per week. Again, the implication is
that if a designer is confident that his programming team can deal
well with the additional complexity of programming directly on
VIA, leading to little additional software bugs, then choosing VIA
would give the best performance and performability. On the other
hand, if the implementation team is inexperienced or just does not
have enough time, using TCP might be the best option.

Finally, we consider what happens when there are occasional
system crashes in the VIA networking subsystem due to hardware
or firmware bugs2. This is a plausible scenario, because leading
edge technologies, such as VIA, are often less mature, and so
more likely contain bugs, than standard technologies with large
user bases. We model these system bugs as switch crashes. Fig-
ure 9 shows the impact of adding on failures due to system bugs.

2Note that while we are running the TCP versions over the same hard-
ware as the VIA versions, what we are assuming here is that there is an
alternative networking technology, Gigabit Ethernet, that would be more
reliable than the VIA hardware and yet would perform approximately as
well.

9



Unavailability by Component

0

0.001

0.002

0.003

0.004

0.005

0.006

TCP TCP-HB VIA-0 VIA-3 VIA-5

PRESS Versions

%
 U

n
a

v
a

il
a

b
il

it
y

 

bleeding edge complexity
transient n/w errrors
app-offbyNsize
app-offbyNpointer
app-nullpointer
application hang
application crash
os-sk-buf-no-mem
os-mem-no-locking
node freeze
node crash
internal switch 
internal link

Performability

0

5

10

15

20

TCP TCP-HB VIA-0 VIA-3 VIA-5

PRESS Versions

P
e
rf
o
rm

a
b
il
it
y

Figure 10. Comparison of performability assuming a more pessimistic fault load for VIA.

Program Robustness

0

5

10

15

20

25

30

TCP TCP-HB VIA-0 VIA-3 VIA-5 VIA-0 VIA-3 VIA-5 VIA-0 VIA-3 VIA-5

PRESS Versions

P
e
rf
o
rm

a
b
il
it
y

Figure 8. Comparison of performability in the pres-
ence of software bugs. For TCP we model 1 fault per
month. The VIA fault rates scale from 1 per day (left),
1 per week (center), 1 per month (right)

Bleeding Edge Complexity

0

5

10

15

20

25

TCP TCP-HB VIA-0 VIA-3 VIA-5 VIA-0 VIA-3 VIA-5 VIA-0 VIA-3 VIA-5

PRESS Versions

P
e
rf
o
rm

a
b
il
it
y

Figure 9. Comparison of performability in the pres-
ence of system faults due to immaturity of communi-
cation substrate. For TCP, we model no errors. The
VIA rates are 1 per week (left), 1 per month (center),
1 per 3 months (right)

The tradeoffs here are similar to the previous variations.

Figure 10 compares the performability of the different versions
of PRESS assuming a combination of added faults for the VIA ver-
sions: a packet drop rate of 1 per month, added application fault
rate of 1 per every 2 weeks, and system failure of 1 per month.
Observe that under this fault load, the performability of two of the
three VIA versions are below that of the TCP-HB version. Thus,
we conclude that the performance advantage of a user-level net-
work such as VIA really depends on how mature the product is
and whether the programmer can use the exported API without
introducing additional software bugs.

7 Discussion

In the course of our study, we uncovered a number of important
performance vs. reliability tradeoffs in communication stacks of
high availability systems. In this section, we discuss some of these
lessons and speculate on the features a communication layer ori-
ented toward both high performance and high availability systems
should have.

A transport stack must match the underlying fault model with
the class of faults that occur in the network fabric. Our results
show that a mismatch between the stack and fabric fault models
has a tremendous impact on overall system availability. When
running over fabrics that drop packets in the face of queue over-
runs, and in environments with otherwise uncontrolled bandwidth
usage, TCP-style timeout and retry is appropriate. On the other
hand, when running over SAN-style networks with hop-by-hop
flow control, where packet loss signals more serious problems than
transient congestion, a VIA fail-stop model is appropriate. Future
protocol stacks may be able to determine which fault-model to use
dynamically, but in the near future designers should pick a trans-
port layer that best maps to the fabric’s actual fault characteristics.

We also found it useful for each component in the communica-
tion path to report errors immediately and all the way to endpoints.
In the cluster context, LANs that discard bad packets are undesir-
able because they inhibit early fault detection. Some SANs do
forward bad packets to the final endpoint [5, 17], but this infor-
mation is often not used by the transport protocols to initiate er-
ror recovery. Turning to congestion, using packet drops to signal
congestion, while increasing network throughput, is a very slow
method of fault detection. In a LAN that drops packets, schemes
that actively signal congestion [29] may result in higher availabil-
ity.

We found that copying can be a critical fault-containment point
for communication layers. While our rates of corrupted packets
due to overruns was low, we also note that we could not detect
overruns for VIA-PRESS-3 and VIA-PRESS-5.

Our last lesson concerns the pre-allocation of memory re-
sources. In general, if there are enough resources these should be
pre-allocated during channel set-up. While this increases overall
memory usage, such a pre-allocation strategy gives the designer
more flexibility in recovering from periods of memory stress.

Finally, we observe that in order to better compare systems,
much more empirical measurement of actual MTTR and MTTF of

10



real systems is needed. While we did base many of our modeled
MTTFs and MTTRs on measured systems, data were quite sparse
and it was unclear how general they were.

8 Related Work

There has been much work on examining the robustness of
communication protocols, mostly in the context of packet loss. A
seminal work on the subject [30] makes the argument that only
the endpoints have enough semantic information to handle faults.
However, the work does not discuss the appropriate error recovery
mechanisms needed upon a fault, nor does it address how inter-
mediate nodes of the system should report faulty conditions to the
endpoints. Indeed, our experience hints that a conclusion often
drawn from this work—that intermediate nodes should do very lit-
tle error detection and recovery—is mistaken. Intermediate nodes
should rather provide fast, accurate error reporting to endpoints.

There is an enormous volume of work on TCP’s tolerating of
transient packet loss and probing the network for bandwidth (e.g.,
[6, 16, 19]). All these works, however, assume that packet loss
is due to congestion, where retransmission has a likely probabil-
ity of success. Two areas where the fault model implicit in TCP
breaks down are in the wireless networks and System Area Net-
works (SANs). In wireless networking, packet loss often implies
channel degradation, so the recovery actions for TCP should be re-
transmit quickly [3]. In the SAN context, researchers argued that
faults signal catastrophic failure [5, 31, 39], requiring human inter-
vention. However, they also argue the fault rates of these networks
are very low.

The LAN and WAN networking communities have recognized
that byte stream abstraction is not always appropriate and so
have proposed many alternative messaging based protocols, e.g.,
[28, 33]. The key difference from the MPP and SAN networks
is that like TCP, these protocols viewed packet loss as signaling
congestion.

There has been extensive work in analysing faults and how they
impact systems [13, 22, 34]. However, the focus of these studies
was not on the communication system. Studies benchmarking sys-
tem behavior under fault loads include [20, 24]. However, these
works do not provide a good understanding of how one would es-
timate overall system availability under a given fault load. System
availability studies such as [2, 25] are works in this direction. An
interesting paper is [8], which outlines a methodology for bench-
marking systems’ availability. Our work here focuses more closely
on cluster-based servers, and in particular the impact of faults af-
fecting the communication system on service performability.

9 Conclusions

We have studied the impact of TCP and VIA on the availabil-
ity and performance of cluster-based servers using a combination
of fault-injection and analytic modeling. Surprisingly, the results
show that, under our estimated fault load, a VIA-based server
delivered better availability than a TCP-based server. We found
the single most important factor to be how well the internal fault
model of the communication substrate matches the actual faults.
In a SAN context, the transient fault model used by TCP reduced

overall performability, because of the lengthy time for TCP to re-
port failures. VIA, with its fail-stop model, was much more ap-
propriate for many faults because it allowed higher-level recovery
to be initiated quickly. We also found that the use of a heart-
beat protocol can mitigate the impact of TCP’s inaccurate fault-
model; however, the heartbeat protocol must be accompanied by
a robust membership protocol since the heartbeat protocol can be
led astray by lengthy communication delays. Finally, we found
the pre-allocation of memory made VIA immune to resource allo-
cation failures, whereas the implementation of TCP required dy-
namic memory resources.

We have also considered the case in which VIA-based systems
may experience more stressful fault loads because the underly-
ing technology is less mature and the programming model more
complex. By varying the fault rates, we were able to quantify the
cross-over point at which it may be advisable to use a more tested
protocol such as TCP. We found that faults in a VIA-based server,
such as switch, link, and application errors, would have to occur
at approximately 4 times the rate of a TCP-based system for the
performability of VIA and TCP systems to be equal.

We speculated how a communication layer which addressed
availability and performance might be structured. We argue that
it should use messaging (not a byte stream), single-copy transfers,
pre-allocated channel resources, and match the network fabric’s
fault model.

Finally, in spite of the significant fault detection and recovery
actions taken by both TCP and VIA, we expect overall system
availability to remain between 99% and 99.8%, implying cluster-
based systems will be unavailable for several days a year. There is
much work to be done to make these systems utterly transparent
to everyday users.

References

[1] M. Aron, D. Sanders, P. Druschel, and W. Zwaenepoel. Scal-
able Content-Aware Request Distribution in Cluster-Based
Network Servers. In Proceedings of the 2000 USENIX An-
nual Technical Conference, San Diego, CA, June 2000.

[2] S. Asami. Reducing the Cost of System Administration of a
Disk Storage System Built from Commodity Components.
Technical Report CSD-00-1100, University of California,
Berkeley, June 2000.

[3] H. Balakrishnan, S. Seshan, E. Amir, and R. Katz. Improving
TCP/IP Performance Over Wireless Networks. In Proceed-
ings of MOBICOM ’95, Berkeley, CA, Nov. 1995.

[4] R. Bianchini and E. V. Carrera. Analytical and Experimen-
tal Evaluation of Cluster-Based WWW Servers. World Wide
Web Journal, 3(4):215–229, December 2000.

[5] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W.-K. Su. Myrinet–
A Gigabit-per-Second Local-Area Network. IEEE Micro,
15(1):29–38, Feb. 1995.

[6] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP Ve-
gas: New Techniques for Congestion Detection and Avoid-
ance. In Proceedings of SIGCOMM’94, pages 24–35, Au-
gust/September 1994.

[7] E. Brewer. Lessons from Giant-Scale Services. IEEE Inter-
net Computing, July/August 2001.

11



[8] A. Brown and D. A. Patterson. Towards Availability Bench-
marks: A Case Study of Software RAID Systems. In Pro-
ceedings of the 2000 USENIX Annual Technical Conference,
San Diego, CA, June 2000.

[9] E. V. Carrera and R. Bianchini. Efficiency vs. Portability in
Cluster-Based Network Servers. In Proceedings of the 8th
Symposium on Principles and Practice of Parallel Program-
ming, Snowbird, UT, June 2001.

[10] E. V. Carrera, S.Rao, L.Iftode, and R. Bianchini. User-Level
Communication in Cluster-Based Servers. In Proceedings of
the 8th IEEE International Symposium on High-Performance
Computer Architecture (HPCA 8), February 2002.

[11] R. Chillarege, S. Biyani, and J. Rosenthal. Measurement
of Failure Rate in Widely Distributed Software. 25th Int.
Symp. on Fault-Tolerant Computing (FTCS-25), pages 424–
433, June 1995.

[12] S. Garg, A. van Moorsel, K. Vaidyanathan, and K. S. Trivedi.
A Methodology for Detection and Estimation of Software
Aging. In Proceedings of International Symposium on Soft-
ware Reliability Engineering (ISSRE 1998), Nov. 1998.

[13] J. Gray. A Census of Tandem System Availability Be-
tween 1985 and 1990. IEEE Transactions on Reliability,
39(4):409–418, Oct. 1990.

[14] T. Heath, S. Kaur, R. P. Martin, and T. D. Nguyen. Quan-
tifying the Impact of Architectural Scaling on Communica-
tion. In Proceedings of the 7th Symposium on High Perfor-
mance Computer Architecture (HPCA-7), Monterrey, MX,
Jan. 2001.

[15] T. Heath, R. Martin, and T. D. Nguyen. Improving Cluster
Availability Using Workstation Validation. In Proceedings
of the ACM SIGMETRICS 2002, Marina Del Rey, CA, June
2002.

[16] J. C. Hoe. Improving the Start-up Behavior of a Congestion
Control Scheme for TCP. In Proceedings of the ACM SIG-
COMM ’96 Conference on Communications Architectures
and Protocols, pages 270–280, Stanford, CA, Aug. 1996.

[17] R. Horst. TNet: A Reliable System Area Nework. IEEE
Micro, 15(1):37–45, Feb. 1995.

[18] Intel Architecture and Microsoft Corporation. Virtual In-
terface Architecture Specification, Oct. 2002. Available at
http://www.vidf.org.

[19] V. Jacobson. Congestion Avoidance and Control. In Pro-
ceedings of the ACM SIGCOMM ’88 Conference on Commu-
nications Architectures and Protocols, pages 314–329, Stan-
ford, CA, Aug. 1988.

[20] P. J. K. Jr., J. Sung, C. P. Dingman, D. P. Siewiorek, and
T. Marz. Comparing Operating Systems Using Robustness
Benchmarks. In Proceedings of the Symposium on Reliable
Distributed Systems (SRDS’97), pages 72–79, 1997.

[21] M. Kalyanakrishnam, Z. Kalbarczyk, and R. Iyer. Failure
Data Analysis of a LAN of Windows NT Based Computers.
In Proceedings of the 18th Symposium on Reliable and Dis-
tributed Systems (SRDS ’99), 1999.

[22] I. Lee and R. Iyer. Faults, Symptoms, and Software Fault
Tolerance in the Tandem GUARDIAN90 Operating Sys-
tem. In Proceedings of International Symposium on Fault-
Tolerant Computing (FTCS-23), pages 20–29, 1993.

[23] X. Li, R. P. Martin, K. Nagaraja, T. D. Nguyen, and
B. Zhang. Mendosus: A SAN-Based Fault-Injection Test-
Bed for the Construction of Highly Available Network Ser-
vices. In Proceedings of the 1st Workshop on Novel Uses of
System Area Networks (SAN-1), Cambridge, MA, Jan. 2002.

[24] T. Liu, Z. Kalbarczyk, and R. Iyer. A Software, Multilevel
Fault Injection Mechanism: Case Study Evaluating the Vir-
tual Interface Architecture. In Proceedings of the Sympo-
sium on Reliable Distributed Systems (SRDS’99), Lausanne,
Switzerland, 1999.

[25] B. Murphy and T. Gent. Measuring System and Software Re-
liability using an Automated Data Collection Process. Qual-
ity and Reliability Engineering International, pages 341–
353, 1995.

[26] K. Nagaraja, X. Li, B. Zhang, R. Bianchini, R. P. Martin,
and T. D. Nguyen. Using Fault Injection to Evaluate the
Performability of Cluster-Based Services. Technical Re-
port DCS-TR-491, Department of Computer Science, Rut-
gers University, May (Revised August) 2002.

[27] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. Nahum. Locality-Aware Request
Distribution in Cluster-based Network Servers. In Proceed-
ings of the 8th ACM Conference on Architectural Support
for Programming Languages and Operating Systems, pages
205–216, San Jose, CA, October 1998.

[28] C. Partridge. Implementing the Reliable Data Protocol
(RDP). In Proceedings of the 1987 USENIX Summer Con-
ference, pages 367–380, Phoenix, AZ, June 1987.

[29] K. K. Ramakrishnan, R. Jain, and D.-M. Chu. Conges-
tion Avoidance in Computer Networks with A Connection-
less Network Layer: Part IV: A Selective Binary Feedback
Scheme for General Topologies. Technical Report DEC-TR-
510, Digital Equipment Corp., Aug. 1987.

[30] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-To-End Ar-
guments in System Design. ACM Transactions on Computer
Systems, 2(4):277–288, Nov. 1984.

[31] C. Seitz. Myrinet–A Gigabit-per-Second Local-Area Net-
work. Talk presented at Hot Interconnects-II, Aug. 1994.

[32] C. E. Shannon. A Mathematical Theory of Communication.
Bell System Technical Journal, 27:379–423,63–656, July and
October 1948.

[33] W. Strayer, B. Dempsey, and A. Weaver. XTP: The Xpress
Transfer Protocol. Addison-Wesley, 1992.

[34] M. Sullivan and R. Chillarege. Software Defects and their
Impact on System Availability - A Study of Field Failures in
Operating Systems. In Proceedings of the 21st International
Symposium on Fault-Tolerant Computing (FTCS-21), pages
2–9, Montreal, Canada, 1991.

[35] N. Talagala and D. Patterson. An Analysis of Error Be-
haviour in a Large Storage System. In Proceedings of the
Annual IEEE Workshop on Fault Tolerance in Parallel and
Distributed Systems, April 1999.

[36] K. S. Trivedi, K. Vaidyanathan, and K. Goseva-
Popstojanova. Modeling and Analysis of Software
Aging and Rejuvenation. In Proceedings of the IEEE
Annual Simulation Symposium, April 2000.

[37] Vivo:A Systematic Approach to Improving the Availability
of Cluster-Based Internet Services, Oct. 2002. Available at
http://www.panic-lab.rutgers.edu/Research/vivo.

[38] T. M. Warschko, J. M. Blum, and W. F. Tichy. A Reliable
Transmission Protocol for Myrinet. In Proceedings of the
2nd Workshop on Cluster-Computing, pages 135–144, Karl-
sruhe, Germany, March 1999.

[39] J. Wilkes. Hamlyn - An Interface for Sender-Based Com-
munication. Technical Report HPL-OSR-92-13, Hewlett-
Packard Research Laboratory, Nov. 1992.

12


