
Dynamic Data Replication: an Approach to Providing Fault-Tolerant Shared
Memory Clusters

Rosalia Christodoulopoulou1, Reza Azimi2, and Angelos Bilas2

1Department of Computer Science,
University of Toronto,

Toronto, Ontario M5S 3G4, Canada
roza@cs.toronto.edu

2Department of Electrical and Computer Engineering,
University of Toronto,

Toronto, Ontario M5S 3G4, Canada
{azimi, bilas}@eecg.toronto.edu

Abstract

A challenging issue in today’s server systems is to trans-
parently deal with failures and application-imposed require-
ments for continuous operation. In this paper we address
this problem in shared virtual memory (SVM) clusters at
the programming abstraction layer. We design extensions
to an existing SVM protocol that has been tuned for low-
latency, high-bandwidth interconnects and SMP nodes and
we achieve reliability through dynamic replication of appli-
cation shared data and protocol information. Our extensions
allow us to tolerate single (or multiple, but not simultane-
ous) node failures. We implement our extensions on a state-
of-the-art cluster and we evaluate the common, failure-free
case. We find that, although the complexity of our protocol
is substantially higher than its failure-free counterpart, by
taking advantage of architectural features of modern systems
our approach imposes low overhead and can be employed
for transparently dealing with system failures.

1. Introduction

Clusters of general purpose, inexpensive machines inter-
connected by high-speed communication networks are cur-
rently widely used for parallel computation and as backend
processing servers for a growing number of commercial ap-
plications. Until recently, the focus of research efforts has
mainly been on two critical issues, namely, programmability
[19, 8, 16] and performance [4, 30]. However, as clusters
become prevalent and larger in size, the focus of attention
moves toward other system characteristics and especially, to-
ward improving the reliability and availability of such sys-
tems. The reason for this renewed interest is that although
system performance has reached levels that are adequate to
serve a number of existing and new applications, system reli-
ability and availability are still not able to satisfy application
requirements in these areas [13, 12].

Overall, the current trend toward using commodity com-
ponents to build larger systems results in systems that are
more prone to faults. Although the cost of the basic equip-
ment in such systems tends to be low and to follow mod-
ern cost curves for commodity components, the total cost
of ownership is still high due to the extensive monitoring,
maintenance, and recovery costs required to provide contin-
uous system operation. Higher latencies and the lack of sin-

gle system image support at the operating system level im-
pose challenges in system monitoring and reconfiguration.
Furthermore, the market-imposed requirements for hetero-
geneity and building open systems seem to be instrumental
in increasing the number of faults. The fact that applications
need to be written in custom ways for these architectures, re-
quires large development and testing cycles for building ro-
bust systems. Moreover, recovery times usually tend to be
longer in such systems due to the extensive human interven-
tion required to discover the nature of the fault, to remedy
the situation, and to restore the system in a consistent state.
Finally, currently, in most clusters used for parallel compu-
tation, since failures are not independent, when even a single
processor fails, the entire computation is either halted and the
system reboots, or the results produced may be incorrect.

In this work we address these issues by providing a reli-
able, shared memory programming abstraction. We believe
that providing such functionality (i.e. dealing with failures)
is best done outside the operating system layer due to com-
plexity reasons and below the application layer due to trans-
parency and cost reasons. Today’s commodity operating sys-
tems have been highly tuned for managing resources within
single nodes and it has taken a large effort to reach the current
levels of reliability and robustness. Adding multi-node func-
tionality in the same layer jeopardizes these achievements.
Instead, the shared memory system we use provides us with
transparent access to application memory and the ability to
manipulate all shared data.

More specifically, our work targets all-software dis-
tributed shared-memory systems and extends a state-of-the-
art shared virtual memory (SVM) protocol to tolerate effi-
ciently single, fail-stop node failures or multiple, successive,
faults. Our approach tries to achieve reliability through dy-
namic data replication, thus exploiting the redundancy that is
inherent in the system due to the presence of multiple pro-
cessing elements. At the same time, it finely integrates the
extensions for supporting fault-tolerance with the existing
SVM protocol in order to incur as little overhead as possi-
ble and thus, retain high performance.

Our approach differs from previous efforts in the follow-
ing three important ways: First, we employ consistent dy-
namic replication of global state to tolerate system failures.
We replicate application shared data and critical protocol in-
formation in the volatile memories of multiple nodes and we
maintain consistency of global state throughout the execu-
tion at synchronization points. Unlike our work, most re-

1



search efforts that address the problem of fault-tolerance in
this context, use logging to stable storage, shared disks, or
non-volatile and persistent memory and require extensive re-
covery actions. With our approach, the system can continue
execution in the presence of failures by simple reconfigura-
tion operations. Thus, not only can our approach tolerate
system failures, but also provides the foundations for contin-
uous system operation, eliminating recovery time.

Second, we take advantage of low-latency remote write
and read operations provided by modern system area net-
works (SANs). Previous work [5, 7, 32] has concluded that
such operations are vital for improving overall system perfor-
mance in scalable servers for various applications. Our work
leverages such operations to reduce overheads incurred by
protocol extensions for supporting reliability. Ignoring such
operations would result in introducing data copies and/or
other operations that have been removed from software lay-
ers with extensive research efforts.

Third, we provide support for SMP nodes and multiple
writers, which has non-trivial implications on protocol de-
sign. Our work is the first (to the best of our knowledge)
to address these issues. The main problem is that the oper-
ation of all threads within each node have to appear atomic
with respect to all other nodes. We achieve this by ordering
appropriately all protocol operations at synchronization and
data transfer points.

Our high-level conclusions are: a) The design and imple-
mentation of protocols that tolerate even simple failure sce-
narios is substantially more complex than their failure-free
counterparts. b) Supporting SMP nodes and multiple writers
has non-trivial implications on protocol design and perfor-
mance. c) Our protocol imposes overheads in memory re-
quirements and system performance. Our extensions require
that the memory for shared data is roughly doubled (slightly
more than this) to accommodate the double copies of all ap-
plication data. On the performance side, our preliminary re-
sults show that in the common, failure-free case, the over-
head varies between 20% and 100% across all applications
and configurations we use.

The rest of the paper is organized as follows. In section 2
we present an overview of related research efforts. Section 3
describes our platform. Section 4 presents our protocol ex-
tensions and modifications. Section 5 provides an analysis
of our experimental results and Section 6 identifies the main
limitations of our work and discusses directions for future re-
search. Section 7 summarizes the major results of this paper.

2. Related Work

Based on the taxonomy presented in [24], our scheme is
a backward error recovery scheme that uses replication to
distinct volatile memories for storage protection, performs
uncoordinated checkpoints across nodes and coordinated in-
side each node, and achieves separation of checkpoint and
working data with full duplication but by partial propagation
of modifications, by means of SVM protocol diffs. In this
section we summarize representative examples of recent re-
search on fault-tolerance that pertains to our work.

The currently renewed interest in improving server relia-
bility is manifested by the emergence of a large number of
commercial cluster management systems, such as Microsoft

MSCS, NCR Lifekeeper and Veritas Firstwatch, that provide
fault-tolerance functionalities. Such products differ from our
approach in that they employ transactional semantics (for
computation and I/O) and failover to backup servers to pro-
vide continuous service operation at the application level.
Our approach is orthogonal and aims to improve the avail-
ability of a single, software shared memory server, by means
of checkpointing and rollback recovery.

Similarly to our work, the authors in [25, 24, 2] address
fault tolerance in the context of distributed shared mem-
ory (DSM) machines but their approach requires somewhat
extensive hardware support. Software-based approaches to
building fault tolerant systems of commodity, off-the-self
components include active replication [3], development of
fault-tolerant management software libraries [14, 29] and
application-transparent techniques, such as our own. Due to
space limitations, we shall next focus on the latter category.

Sultan et al. [27] follow a log-based approach to tolerate
single node failures in a home-based, lazy release consistent
SVM cluster of PCs. In particular, they use volatile logging
of protocol data combined with independent checkpointing to
stable storage for replaying execution in case of failure. Be-
cause their proposed scheme is log-based, their work focuses
on how to dynamically optimize log trimming and check-
point garbage collection in order to control efficiently the size
of the logs and the number of checkpoints kept. In contrast
to our approach, their scheme does not address the problem
of storage support, while its effectiveness is dependent on the
application running on the SVM system, and specifically on
the checkpointing behavior of the individual processes. This
introduces the additional problems of balancing the amount
of recovery state held across the system, and of implement-
ing specific, application-driven checkpoint policies. On the
other hand, in our scheme, the memory consistency guaran-
tees make possible the recovery of a failed process without
protocol data logging or stable storage support. Essentially
our design replaces logs with independent short checkpoints
at each release.

In [9], Costa et al. have extended Treadmarks [19], a lazy
release consistent, DSM system, to introduce single fault-
tolerance support in a cluster of uniprocessors. Their algo-
rithm is based on logging the data dependencies (due to re-
mote synchronization operations) in the volatile memory of
peer processes and uses independent checkpointing to stable
storage to reduce recovery time. Similarly to the previous
scheme, this algorithm also faces the problem of bounding
the size of checkpoints and logs. This is handled by ex-
ploiting the global garbage collection operation already per-
formed by Treadmarks, however at the cost of efficiency,
since this operation requires global synchronization.

Zhou et al. [33] have investigated how virtual memory-
mapped communication can be used effectively to reduce
the failover time of single nodes on clusters used for run-
ning time–critical applications, like transaction-based ap-
plications. They have implemented two failover protocols
based on a primary-backup node approach: using VMMC,
the primary process transfers directly to the backup process’
volatile memory the modifications of its application data, as
well as periodic checkpoints of its execution environment in
order to enable rollback recovery in case of failure. Although
this work targets application domains different than ours, the

2



experimental results suggest that volatile logging using the
VMMC model can be used on clusters to achieve reliabil-
ity efficiently, as opposed to traditional techniques based on
stable storage support.

Plank et al. [23] have demonstrated that the elimination
of stable storage support offers significant improvements in
checkpointing latency and recovery time. Their technique,
called diskless checkpointing, avoids disk logging by using
memory and processor redundancy and a distributed parity
protection mechanism to tolerate single processor failures.
In contrast to our work, this scheme uses dedicated backup
processors and is based on coordinated checkpointing.

Kermarrec et al. [20] have extended a standard sequential
consistency protocol used by a DSM system with a recov-
ery scheme that avoids stable storage support by maintaining
for each shared page recovery (checkpoint) data and by repli-
cating recovery pages on two distinct node memories. Upon
taking a new checkpoint, atomic updates of recovery data are
performed using a globally coordinated, two-phase commit
protocol. Their performance results have demonstrated that
replication in a DSM system is a promising approach for pro-
viding reliability in an efficient and scalable way.

The authors in [1, 21, 26] investigate various aspects of
fault tolerance in contexts that differ from our work either
in the underlying technology (such as older generation inter-
connection networks), the goals (such as the amount of repli-
cation needed to achieve fault tolerance), or their methodol-
ogy (theoretical analysis and simulation without actual sys-
tem implementation). Finally, a survey of recoverable dis-
tributed shared virtual memory systems is presented in [22].

3. Base system

The system architecture we use for our design and imple-
mentation is a SVM cluster of Intel–based, dual–processor
systems, interconnected with a Myrinet SAN [6]. This sec-
tion describes in more detail the communication layer, and
the base SVM protocol.

3.1. Communication layer

Myrinet is a high–speed system area network with low
bit error rates, very low latency for small messages (less
than 10 µs) and high bandwidth in the order of 100’s of
MBytes/s, limited by PCI bus implementations. Cross-node
SVM communication is based on a user–level communica-
tion library, namely Virtual Memory Mapped Communica-
tion (VMMC) [10]. The most important feature of VMMC is
the remote deposit and remote fetch operations, which allow
for data that is explicitly transferred between two nodes via a
send or receive message, to be deposited in specified virtual
addresses in the destination host’s main memory without in-
terrupting the remote host processor. VMMC also tolerates
transient network errors by using packet retransmission, and
guarantees FIFO message delivery.

3.2. Original SVM protocol

The original SVM protocol, GeNIMA [5] is based on
home–based lazy release consistency (HLRC) [34] and is de-
signed to take advantage of a number of architectural fea-
tures in modern clusters and system area networks. In order

to comply with the partial order requirements of LRC for
shared memory accesses [18], the application execution of
each processor on each node is partitioned into time intervals
that are delimited by consecutive release operations executed
by threads on the same SMP. During each time interval all
local page updates are recorded into a common update-list.

Shared pages in GeNIMA are assigned a home node ac-
cording to HLRC [34], to which writers send their page up-
dates eagerly, upon a release. Nodes propagate page updates
in the form of diffs, which consist of the modifications ap-
plied to the version of the page before its first write (also
called the twin). Diffs address the problem of false sharing
as they allow multiple writers to modify different parts of the
same page without intervening synchronization.

Lock synchronization in GeNIMA, as in many SVM sys-
tems, is based on a queuing lock algorithm. In order to man-
age locks among distinct SMP nodes, each shared lock is as-
signed a home node which handles requests for that lock by
maintaining a virtual queue of the lock’s requesters. In prac-
tice, the home node needs only record the tail of the queue:
when a lock request is sent to the lock’s home, the home for-
wards the request to the latest requester and updates the tail
accordingly. Exchange of locks within an SMP requires no
external or internal message exchange.

In SVM systems, processors cycle through acquire–
compute–release cycles (Fig. 1). When a thread performs
a lock release, it ends the current time interval by committing
all pages updated by any local thread during the past inter-
val in a protocol data structure, indexed by the interval num-
ber. After committing all local updates, the releasing process
releases the corresponding lock to the next requesting node
and then, computes and sends the diffs of the updated pages
to their home nodes. This scheme enables multiple releases
to be performed in parallel by different threads on the same
SMP node.

� �� � ��
application protocol: release protocol: acquire protocol: page fault handling

� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �� � � � � � � � � � t

t

updates to homes

release lock

acquire lock
Node2/

invalidate

fetch p

read(p)

write(p)
commit
all local apply diffs

pages
updated

Thread 1

Thread 1

from home(p)

Node1/

Figure 1. Basic SVM protocol operations.

During an acquire, the acquiring processor must ensure
that all shared accesses that precede the acquire according
to the partial order defined by LRC, have also been per-
formed locally. For this reason, the processor fetches from
each remote node the list of updates which are needed for
this synchronization step and invalidates the corresponding
pages. The way the acquirer determines the pending up-
dates is through comparison of its own and the releaser’s lock
timestamp, a per-node vector indicating the portion of every
node’s updates that have been performed locally. A subse-
quent access to an invalidated page triggers a page fault that
results in remote fetching the latest version of the page from
its home node. Pages are fetched in their entirety.

3



4. Protocol Design

We regard fault tolerance as the twofold problem of a)
maintaining shared memory consistency at synchronization
points in the presence of failures, and b) recovering the failed
processes so that the computation continues and completes
successfully. Replicating protocol state (usually small tables)
is a simpler problem and we comment on it only briefly.

The key idea behind our design is to guarantee that, at all
events, shared memory remains consistent at synchronization
points (both locks and barriers). In the context of our shared
memory protocol this is equivalent to guaranteeing that in
the event of failure of a node F , no shared memory write ex-
ecuted by F since its last successful synchronization point
will be performed at any node other than F . As a result, any
failure between synchronization points will result in restart-
ing the threads of the failed node from the last synchroniza-
tion point in node F. The fact that at that point the memory
is already consistent eliminates the need to restore a coherent
memory state after a failure.

To achieve memory consistency at synchronization points,
our extended protocol dynamically replicates all global appli-
cation state and local thread state in the distributed memory
of the cluster. Global application state is replicated at the
points of update propagation in the SVM protocol, that is, at
lock releases and at barriers. Local thread state is also repli-
cated using uncoordinated (across nodes) checkpointing. In
case of failure of node F, a process running on F is able to
recover as follows.

As soon as a node failure is detected by an application
thread, a global synchronization point is performed among
all application threads to exclude the failed node and to per-
form the recovery actions. These actions include reconfigura-
tion of specific protocol data structures, restoration of shared
memory consistency (if the failure occurred during a syn-
chronization operation), and recovery of the failed threads
on the backup node where their state has been saved. After
that, execution can continue immediately.

In summary, our system provides the following consis-
tency guarantees. In a failure-free execution, the extended
SVM protocol guarantees memory consistency at synchro-
nization points. In case of failure, it guarantees that, if a
node F fails, then after all necessary recovery actions are
complete: 1. Shared memory is release consistent. 2. All
shared writes executed by some thread in F before the last
synchronization point of F , have been performed at the cor-
responding home nodes in the system. 3. No shared write
executed by a thread in F after its last synchronization point
has been performed at a node other than F .

4.1. Failure Detection

We assume that nodes are subject to fail-stop failures.
In this work we consider single–node failures only. We
assume that individual process or other software failures
exhibit themselves as failures of their corresponding node.
We do not deal with permanent network failures (in cables,
switches). Transient network error failures are resolved by
VMMC as mentioned above.

We exploit the semantics of the underlying communica-
tion layer as explained later to provide a reliable failure de-

tection mechanism. First, we assume that basic communi-
cation operations that exchange data return an error when
the destination node is unreachable, that the communica-
tion layer deals with transient and permanent network fail-
ures [28], and that the network cannot be partitioned. Thus,
any error returned from communication operations signifies
a remote node failure. These are all realistic assumptions for
most real-life setups. Second, when nodes do not communi-
cate and need to wait for a remote response, they send heart–
beats to detect possible failures. Heart–beats are separated
by a timeout period during which a process that is waiting
for the response spins before attempting the next heart–beat.
This timeout mechanism ensures that failure detection hap-
pens sufficiently soon to prevent processes from long delays
but also, from suspecting nodes too early which could incur
unnecessary communication overhead.

When a failure is detected, that is when a communication
operation to a remote node returns an error, the communi-
cation layer guarantees that any subsequent communication
with this node will not complete and will return an error. For
previous operations to this node there is no guarantee of suc-
cess, unless a response has been received by the remote host.

4.2. Home page replication

In order to guarantee shared memory consistency in the
event of single node failures, we employ duplication of the
application shared data in the distributed volatile memory of
the cluster. Each shared page is replicated at two distinct
nodes and if one copy of the page becomes inaccessible or
corrupted due to a failure, then the other one is used in three
ways: first, to allow the computation to continue by provid-
ing alternative access to critical data residing at the failed
node; second, if needed, to create a new replica of the page
and restore consistency among the two replicas so that any
subsequent failure can be tolerated in a similar fashion; and
third, to support the execution replay of the failed processes.

In this respect, we extend GeNIMA and assign to each
shared page two homes, namely the primary and the sec-
ondary home. Similarly, a page is called a primary (sec-
ondary) home page of node N , if N is the primary (sec-
ondary) home of that page. The assignment of primary
homes to pages is performed by the application in a way that
maximizes parallelism and optimizes performance under the
HLRC memory model. The secondary homes of our scheme
are initially set to be the nodes immediately following the
corresponding primary homes in node order.

In a HLRC protocol, the role of home pages in maintain-
ing memory consistency is crucial. The home copy of a page
contains all of the modifications that have been performed to
the page, up to the last release and therefore, it is the one
fetched upon an acquire. Similarly, in our case, both home
copies of a page contain the latest version of the page and
are kept consistent. During a failure-free execution, it is al-
ways the primary copies that are fetched while the secondary
copies serve to store tentative modifications and are used as
backup in case of failure.

Each home node maintains for every primary home page
p an additional page, called the committed copy, and for ev-
ery secondary page, an additional page called the tentative
copy. During application execution, local modifications of p

4



are performed in the original copy of the page, p, also called
the working copy of p. As part of the SVM protocol, dur-
ing a release operation, any remote modifications of p per-
formed by the releasing node are propagated to the tentative
and committed copies. This is described in more detail next.

Update propagation. Page updates are propagated in the
form of diffs. Home page replication implies that upon a
release, page diffs must be propagated to both home nodes.
Thus, in contrast to the original SVM protocol where home
nodes do not send diffs for their own pages, twins are now
created and diffs for a modified page must be computed and
propagated even for the home pages.

To tolerate single failures and guarantee shared memory
release consistency during diff propagation, we employ the
following two-phase diff propagation scheme (Fig. 2). In the
first phase, the releasing node computes the diffs for each and
every page updated locally, independent of whether this is a
home or non-home page. For each page, the diffs are applied
remotely to the tentative copy of the page at its secondary
home. In the second phase, the same page diffs are applied
to the committed copies of the pages at their primary homes.

� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �

� � �� � �� � �
� �� �� �

t
Thread 1
Node1/

updates homeshomes

commit
all local

apply diffs
to secondary

apply diffs
to primary

save node 
timestamp
remotely

release lock

application
protocol: release operation

Figure 2. Diff propagation in the extended protocol.

The order of propagating updates to the two homes is im-
portant in that it guarantees that home updates are serial-
ized. Given that nodes always fetch pages from their primary
homes which are updated last, a page is fetched after both
home copies have been updated in the same serial order.

The two-phase scheme also guarantees that during a re-
lease operation updates are propagated atomically. That is,
in the event of a node failure during a release, either all up-
dates performed by the releasing node will be propagated or
none. In particular, if a failure occurs during the first phase
of diff propagation, the secondary home pages that have been
modified during the release, can be restored to their state be-
fore the release, using the primary copies. If a failure occurs
during the second phase of diff propagation, then the execu-
tion can roll forward since the primary copies of the modified
pages can be updated using the secondary copies and the re-
lease will complete successfully.

Based on this idea, in case of failure and during recovery,
shared memory consistency can be restored by copying one
home copy to the other. Which copy among the two is the
valid one is determined with the help of the timestamp of
the failed node which was saved remotely by the failed node
at the end of the first phase of diff propagation upon its last
release (Fig. 2).

The atomicity of update propagation is also preserved by
using the additional (tentative and committed) pages to ag-
gregate global page modifications at the home nodes, instead
of using the working copies of the pages as is the case in the
base SVM protocol. Figure 3 illustrates a scenario in which

the use of one single home page receiving both local and re-
mote modifications could lead to violation of atomicity.

� � �
� � �
� � �
� � �

� � �
� � �
	 	 	
	 	 	

primary home P secondary home S

X

2

1

Figure 3. Atomicity violation during update propagation.

Given that our SVM protocol is multi-writer, the same
page p can be modified concurrently by some node X and the
secondary home S of the page (false sharing). When node
X performs a release, it will propagate its diffs to S first and
then to the primary home of the page, P. Similarly, when S
performs a release, it will propagate its own diffs to P. How-
ever, when computing its diffs by comparing the latest ver-
sion of the page with its twin, S has no way to distinguish
between the updates that have been performed locally and
the updates that have been propagated by some remote node.
As a result, if X’s updates have been propagated to S before
S’s release, then these updates will be propagated to P by S
along with any other local updates when S performs its own
release. Thus, if X fails before completing the first phase of
diff propagation, its updates will be partially committed and
atomicity will be violated.

We bypass this problem with the use of the tentative and
committed home copies. Now, all remote updates are ap-
plied to these copies, while local updates are applied to the
local working copies of the pages. Thus, when a home node
computes the diffs for a home page, it only computes and
propagates the diffs that are due to its own modifications.

The new home page layout results in two further protocol
changes related to the way home pages are fetched. First, the
nodes must now fetch the committed page copies and not the
working copies from the pages’ primary homes. The com-
mitted page copies consist the latest version of the pages that
contain all remote and local modifications that are permanent
and remain unaffected in case of failure. Second, the primary
homes no longer view directly the remote modifications per-
formed at their home pages. Upon a page fault, they now
have to fetch the version needed from the local, committed
copy of the home page. The secondary homes fetch pages
from their primary homes, as in the original protocol.

SMP-specific extensions. Supporting SMP nodes induces
additional modifications in the release operation of the ex-
tended SVM protocol. During diff propagation, GeNIMA
permits the eager propagation of page updates that do not
belong in the view of the currently releasing thread. Such
updates are performed to pages that happen to be com-
monly modified by the releasing thread and other threads on
the same SMP. Fig. 4 depicts an example of this scenario.
Threads 1 and 2 on the same SMP node modify page p (false
sharing). Thread 1 performs a release, commits the updated
pages of the last interval, including p, and propagates the
diffs of all updated pages to their home nodes. For page p in

5



particular, these diffs include the modifications performed by
thread 2. Although in a failure-free execution this eager diff
propagation does not violate correctness, in case of failure it
may lead to violation of the atomicity of diff propagation and
result in incorrect execution replay after recovery. Specifi-
cally, if a failure occurs after thread 1 has completed its first
phase of diff propagation, but before thread 2 has performed
its own release (fig. 4), then page p will contain updates that
will have to be replayed by thread 2 during its rollback.

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� �
� �
� �

� �
� �
� �

Node1/
Thread 1

t

p:=p1
[commit p] [diffs(p) = p2 −p]

apply diffs
to homes 

commit all
local updates

Node1/ t

p:=p2 commit all
local updates

apply diffs
to homes

Thread 2

Node failure

application protocol: release operation

Figure 4. Atomicity violation due to eager diff propagation.

In the extended SVM protocol we prevent this scenario
by: a) locking the updated pages when they are committed
and b) by blocking any page fault handling for locked pages
until they are unlocked. Pages are unlocked after the diff
propagation is complete. Page locking in combination with
blocking the page fault handling for the locked pages guaran-
tee that new writes to pages that belong to the intervals com-
mitted by an outstanding release will be stalled and thus, will
not be recorded in the new list of updates until that release
operation has completed. With page locking, different lock
releases can still be performed concurrently provided that the
set of pages diffed by distinct threads are disjoint.

4.3. Lock synchronization

An important consideration when nodes are subject to
failures is how, in case of failure, the locks being held or
managed by the failed node are managed after the failure.
We have considered two alternative ways of modifying the
lock synchronization scheme of GeNIMA in order to tolerate
single–node failures.

The first option that we designed, implemented, and eval-
uated is based on a primary-secondary home scheme where
the primary home handles lock requests similarly to the base
queuing lock algorithm, while the secondary home is used as
a backup node that takes over the primary in case of failure.
A queue-based lock algorithm like this has many advantages:
it is potentially scalable to large numbers of processors, it
minimizes the memory contention and network load due to
lock requests, it provides low latency and a reasonable degree
of fairness, it prevents starvation, it fits well in multithreaded
environments, and it incurs low storage overhead.

Our experience with developing the above scheme has
shown that its benefits are negated by its main disadvantage:
its excessive complexity to implement in the failure-free case
and the complexity of recovery actions required in case of
failure. We have identified two main reasons for this: first,
the requirement to maintain state information (e.g. the id’s of

last and second to last node in the queue of requesters) and
second, the FIFO processing of lock requests on the primary
home. In the extended version of the algorithm, these re-
quirements increase complexity significantly because of the
need for consistently serializing all lock-related events on the
two homes. The multithreaded and asynchronous nature of
the system introduces further synchronization problems that
in the presence of failures in particular, are hard to resolve.

To simplify the operations needed to resume lock syn-
chronization after a failure, we replace the basic lock syn-
chronization scheme of GeNIMA with an alternative locking
algorithm that replaces interrupts with protocol-level polling
and does not require any synchronization support from the
network interface. Each lock is represented as a vector with
one element for each node in the system and assigned to a
home node. When a node needs to acquire a lock, it performs
a remote write of a non-zero value to its element in the lock
vector and then reads the whole vector. If only its element
is non-zero then it has acquired the lock, otherwise it resets
its element in the lock vector with a remote write operation
and retries. Similarly to the old algorithm, the exchange of
locks within an SMP requires no external or internal message
exchange and is equivalent to a few assembly instructions.
The new scheme is also extended with the use of secondary
homes for the locks in order to tolerate single failures.

The main advantage of the new centralized lock algorithm
is that by being stateless, it greatly simplifies the recovery
actions related to locks. Our evaluation indicates that with
the new locking scheme, lock contention is increased but not
prohibitive, and that livelock can be avoided with the use of
appropriate backoff times. Our results also demonstrate that
the centralized algorithm performs at least as well as the dis-
tributed queuing lock algorithm. All things considered, in
favor of simplicity over network traffic reduction, the cen-
tralized algorithm is our scheme of choice.

4.4. Support for Thread Migration

Our approach in resuming the execution of the failed
threads on a backup node while at the same time preserv-
ing correctness, is based on the observation that between the
completion of the failed node’s last release and the point
of failure, none of its local updates has been performed re-
motely. This implies that the execution of the failed threads
can be safely resumed at the point of their node’s last suc-
cessful release.

To enable this type of migration, threads checkpoint their
local execution state (thread context and stack) at designated
points in the SVM protocol execution and in particular, dur-
ing each release operation. To illustrate this better, let us
consider thread T 1 in Fig. 5 which is performing a release.
Clearly, T 1 must take a checkpoint of its own state as soon
as it completes the first phase of diff propagation (point B).
This is the point where, conceptually, the release operation
completes since all local updates have been propagated to the
first set of homes. Should a failure occur at any time between
this point B and the corresponding point B’ of the succeeding
release, the releasing thread T 1 can safely resume from the
most recently saved checkpoint of its state. All updates that
had been performed and propagated remotely after that point
will be cancelled during recovery and the process of restoring

6



shared memory consistency, as described in section 4.5.2.

t

t

� � � � � �
� � � � � �
� � � � � �
� � � � � � � � � �

� � � �
� � � �
� � � �

commit
updates

apply diffs

homes
to secondary

homes
to primary
apply diffs

Node1/

Node1/
Thread1

Thread2

save
own
stateT2

suspend resume
T2T2

state
save

BA

A

Figure 5. Thread state checkpointing.

The checkpointing scheme as described above applies di-
rectly in the case of a single-threaded environment. The fact
that the nodes are SMPs and that releases are performed at
the node and not at the thread level, introduces additional
overhead. Specifically, suppose that the node of the example
above is a 2-way SMP and there is a second thread T 2 exe-
cuting on the same node. It is now important to note that be-
fore T 1 enters the diff propagation stage, it commits all local
updates including the ones performed so far by T 2. Because
the updates of all threads within a node have to be performed
atomically with respect to all other nodes, the state of T 2
must be saved upon termination of the current interval by T 1
(signified by the commitment of updates), that is, at point A.
Similarly, in the case of more than two threads per node, at
point A, the state of all threads other than the releasing one
must be checkpointed. At both points A and B, the thread
state is saved remotely at a designated backup node, where
the failed threads will be resumed in case of failure.

One clear implication of this type of checkpointing is that
the executions of all local threads become interdependent and
some type of internal synchronization is required to ensure
correctness during checkpointing. In our approach, at point
A of each release, the releasing thread suspends the rest of the
local threads, saves their state remotely, and then resumes the
suspended threads and continues with the release operations.

Another implication due to SMP nodes is that checkpoint-
ing performed by different threads cannot be overlapping.
Unavoidably, this imposes the constraint that simultaneous
lock releases inside each node must now be serialized. Al-
ternative base protocol designs could alleviate such impli-
cations. For instance, using processes in each node as op-
posed to threads that use the same operating system page
table, would eliminate this type of intra-node synchroniza-
tion. However, such protocols have other implications and
the tradeoffs are not clear.

A final issue related to checkpointing is the memory over-
head that it introduces. In our case, checkpoints are com-
pletely independent across nodes and have minimal mem-
ory requirements (the stack is usually a few KBytes). Thus,
they can be saved to the volatile memory of remote nodes
or even to persistent memory. Somewhat more important,
but still, not particularly significant, is the memory overhead
for reserving thread stack space in each node. To deal with
the typical migration problem of stack data pointer resolu-
tion [15, 30], during system initialization, on each and every
node, we create as many threads as the overall number of
compute threads in the system. For the additional (shadow)
threads we reserve thread stack space in a way that the thread
stacks of each compute and its corresponding shadow thread
share exactly the same virtual address space.

4.5. Recovery actions

When a node detects a node failure, it broadcasts a failure
notification message which triggers a global recovery phase.
This consists of the following operations:

4.5.1. Reconfiguration of locks and pages

The failure of a node F has a direct impact on system ex-
ecution because of the role of F as primary/secondary home
for a number of pages and locks. Not only are the live nodes
unable to fetch any of F’s primary home pages, but they
are also unable to commit their updates to F and continue
with their execution. Similarly, the locks whose primary or
secondary home was F cannot be acquired, while the locks
owned by F at the point of failure, are not released.

Thus, the first step taken when a failure of a node F is
detected, is to designate a new home for all pages and for
all locks for which F was either a primary or a secondary
home. The assignment of new homes is straightforward and
in both cases, employs a simple mapping scheme that guaran-
tees that under any failure scenario, the two replicas of each
shared page and each lock data structure will always be res-
ident at distinct nodes. Henceforth, the affected home pages
will be fetched from their new primary home and their ten-
tative updates will be sent to the new secondary home. Lock
synchronization can also resume directly by using the two
new lock homes.

4.5.2. Restoring shared memory consistency

In order to determine the recovery actions required to
restore memory consistency, we distinguish two cases of a
node failure. The first case of failure occurs while the node
executes application code or protocol operations, except for
a release. In this case, the node has not yet propagated
any local updates performed after its last release. As a re-
sult, rolling back and replaying its execution from the point
of last release is straightforward: all shared data accessed
from that point until the point of failure is accessible at some
remote node (since data is replicated twice) and still valid
(since no modifications have been propagated). The second
and most interesting case of failure, happens while the failed
node is performing a release and has two important implica-
tions. First, the affected home page replicas must be brought
to a consistent state so that the system can tolerate any sub-
sequent failures. Second, it should be guaranteed that after
the data recovery actions are complete and the failed pro-
cesses resume, their execution satisfies the memory consis-
tency model requirements and produces correct results.

The two replicas of a page might be left inconsistent due
to a failure that occurred while the failed node F was propa-
gating diffs for that page. Clearly, the two replicas become
consistent again by copying one home copy to the other. The
valid replica is identified with the help of the timestamp of
F which had been saved remotely by F at the end of the first
phase of diff propagation upon its last release. In essence,
this timestamp designates the set of updates that have been
propagated to at least their secondary home node as part of
a release that is considered complete. Hence, if a page be-
longs to this set, then it is the tentative copy of the page
that is copied to the committed copy. This is equivalent to

7



rolling the failed node’s execution forward up to the com-
pletion of its interrupted release. Otherwise, the committed
copy is copied to the tentative copy, thus cancelling any up-
dates sent partially by F to the secondary home nodes. This
is equivalent to rolling the failed node’s execution backward
to the point of its last successful release.

To ensure correctness during the page reconstruction de-
scribed above, it must be guaranteed that there are no out-
standing updates being propagated by any node in the sys-
tem other than the failed one. This precondition is imposed
by the possibility of false sharing and guards against the risk
of cancelling or prematurely committing updates performed
concurrently by other nodes. For this reason, we stipulate
that the recovery phase is initiated only after all nodes have
synchronized and that when a node reaches this global bar-
rier, there are no pending releases performed at this node.
This requirement implies that during recovery, the two home
copies of any page will be identical, except perhaps of the
updates applied incompletely by the failed node.

4.5.3. Recovery of failed threads

We now discuss how, in case of failure, the failed threads
are resumed by using their remotely saved state. Again, we
distinguish two cases of a node failure. The first case of fail-
ure occurs while the node executes application code or proto-
col operations, except for a release. More specifically, con-
sider thread T 1 in Fig. 6. If a failure occurs between the two
successive releases, thread T 1 that released last will resume
from point B and will return immediately to the application
(since the corresponding release is complete). For all other
threads, execution will resume from point A, that is the state
that was captured by T 1 and includes all –and only those–
updates that have been performed remotely.

t

t

� �
� �
� �
� �� � �

� � �
� � �
� � � � � �

� � �
� �
� �� �

� �
� �
� �

Node1/

Node1/
Thread1

Thread2

1 2

1 2

1 2

B’ C’A’B CA

A’A

Figure 6. Recovery of failed threads.

The second case of failure, happens while the failed node
is performing a release and more specifically, while it is ex-
ecuting in the diff propagation stage or while checkpointing.
In particular, if the failure occurs during the first phase of
diff propagation or at any time during checkpointing, the ex-
ecution is resumed based on the state of the threads saved
during the previous release, similarly to the aforementioned
case. Fig. 6 depicts the points from which the two threads
are resumed when a failure occurs at any point within the
time interval 1. If the failure occurs during the second phase
of diff propagation (i.e. between points B’ and the end of
release C’ in Fig. 6), the execution is resumed based on the
state of the threads saved during the current release. Fig. 6
depicts the points from which the two threads are resumed
when a failure occurs at any point within the time interval 2.
Thus, in any case, the execution is resumed from the point of
last successful release at the failed node.

From the previous analysis, it becomes clear that the start-
ing point of execution replay varies according to the point
of failure and to tolerate failures even during checkpointing,
two copies of each thread state need be maintained on the
backup node: one copy being updated during the current re-
lease, and the other containing the state saved during the last
successful release. The two copies are updated alternately,
ensuring that a consistent copy of the state that was saved
last is always available in case a failure occurs while check-
pointing is still in progress.

5. Performance evaluation & Discussion

5.1. Experimental Testbed

The system we use in our evaluation is a shared virtual
memory cluster of eight 400MHz, 2-way Pentium-II SMP
nodes running Windows NT and interconnected with a low–
latency, high–bandwidth Myrinet SAN [6]. All eight nodes
are connected directly to an 8-way switch. The communi-
cation library that we use on top of the Myrinet network is
VMMC. In our cluster, VMMC provides a one way, end–
to–end latency of around 8µs, which is among the best per-
forming systems using a Myrinet interconnect.

For our performance evaluation, we use the SPLASH-
2 [31, 17] application suite. The specific applications
and problem sizes that we use are: FFT (1M points),
LU-contiguous (1024×1024 matrix), WaterNsquared (4096
molecules), WaterSpatialFL (4096 molecules), RadixLocal
(4M keys), and Volrend (head).

5.2. Discussion of execution time breakdown

To better evaluate our performance results, we break down
application execution time into the following six compo-
nents: compute time, data wait time, synchronization, diffs,
checkpointing and protocol processing.

Compute time is the time spent for application execution.
This includes stall time to local memory accesses. During
our experimentation, we observe that with our extended pro-
tocol and particular applications, the compute time increases
compared to the compute time observed when running GeN-
IMA, especially as the problem size and the number of pro-
cessors per node increase. We attribute this problem to the
increasing number of data transfers in the extended protocol
that causes higher contention on the SMP memory among the
processors within each SMP node.

Data wait time refers to the time spent in handling page
faults. When a remote page is needed, the local processor
fetches the committed copy of the page from its primary
home node, using a remote fetch operation. In the extended
protocol, there are four extensions that have an impact on
the page fault time. First, the propagation of updates to
two home nodes in combination with the requirement that
the committed copy of the page be updated last, increase the
mean time to update the pages at their primary homes. Sec-
ond, the page fault handling is stalled if the faulting page
is locked until it is unlocked (section 4.2). Third, in con-
trast to the original protocol where home nodes do not create
twins for their own pages, twins must now be created even
for home pages. Finally, if the faulting page is a home page,

8



then the local processor must perform a local fetch of the re-
quired version of the page by copying the committed copy
of the page to the working copy. Therefore the average data
wait time in the extended protocol is expected to increase.

Synchronization time consists of the wait time at syn-
chronization points and more specifically of a) the inter-node
and intra-node synchronization time at the barriers and b) the
wait time at lock acquires. We focus on the second factor
which is directly affected by our protocol extensions.

Lock wait time is the time between the issue of a lock re-
quest and the actual acquire of that lock. Lock wait time is
clearly affected by the lock synchronization algorithm used.
However simple, the polling-based algorithm used in the ex-
tended protocol increases the load at the network interface
on each node and the network traffic as compared to the orig-
inal protocol where the critical path to acquire a lock is only
2 hops. The actual impact of the new lock synchronization
scheme on wait time depends on the number of locks used,
the number of processors in the system, and the lock con-
tention induced by the application.

Lock wait time in the extended protocol is further in-
creased due to replication. Lock-related data structures
(namely, the buffers used for polling and the lock times-
tamps) are now replicated to two homes and all lock syn-
chronization data must be updated consistently to both homes
upon each lock acquire and each lock release. For fairness in
our performance comparison between GeNIMA and our ex-
tended protocol, we employ the same lock algorithm based
on polling in both protocols. However, the former uses the
basic version of the algorithm, while the latter uses the fault-
tolerant version, that supports duplication of lock homes and
replication of lock-related protocol data.

Finally, the lock wait time is indirectly affected by the se-
rialization of releases. Unlike GeNIMA that enables multiple
releases to be performed in parallel by different threads on
the same SMP node, our initial design of the extended proto-
col does not support parallel releases, thus limiting concur-
rency and introducing delays in the exchange of locks.

Diffs have a significant impact on the performance of the
extended SVM protocol. First, the replication of shared data
updates and protocol information to two distinct homes (in-
stead of one) results, in the general case, in a twofold increase
of messages sent during the diff propagation stage. Second,
the fact that diffs must now be computed and propagated
for home pages introduces computational and communica-
tion overhead that was not present in the original protocol.
This suggests that the extended protocol’s overhead due to
diff operations is expected to be pronounced in the case of
applications like FFT, where each processor processes data
that belong, exclusively or primarily, to its home pages.

This increase in the amount of data exchanged during diff
propagation is critical for the system performance. On each
node, as the number of messages posted in the queue be-
tween the processors grows, the network interface becomes
more loaded. If the number of send messages grows be-
yond the size of the post queue then the network interface be-
comes full, and, although messages are sent asynchronously,
the sending processor is blocked waiting for the queue to be
drained before new requests can be posted. Noticeably, our
SVM protocol favors the occurrence of this scenario because
the diff computation is performed eagerly at release points

and hence diff messages are clustered at releases.
Another implication of the new, two-phase diff propaga-

tion scheme is that diffs must be saved locally. In GeNIMA,
when a processor computes a diff, it sends the diff directly to
the home, using a remote deposit operation. In contrast, in
the extended protocol, the computed diffs must be stored in
a local data structure so that they need not be recomputed in
the second phase of diff propagation. Hence, while we still
use the asynchronous send mechanism with remote deposit to
update the shared application data pages at the home nodes,
our scheme requires some local processing of the diffs.

Checkpointing introduces a new component in the exe-
cution. In our system, a thread’s context and stack are suffi-
cient to migrate that thread between nodes. There are no open
files or other resources allocated from the operating system
that need to be handled, and all global data resides in shared
memory. The impact of checkpointing varies across applica-
tions and mainly depends on the following parameters: the
number of checkpoints taken that is proportional to the total
number of releases, the size of the thread stack, and the num-
ber of threads executing concurrently on each SMP node.

Protocol processing refers to the aggregate execution
time excluding all of the components explained above. The
two dominating factors of protocol processing time are the
cost for page invalidations and communication. Protocol pro-
cessing time can be reduced by applying protocol level opti-
mizations or by using faster communication primitives. Pro-
tocol level optimizations have been the focus of past research
efforts [11]. Our actual communication costs are relatively
low and are not an important bottleneck in our work.

5.3. Preliminary Results

To evaluate our system we run our application suite using
both the original and the extended version of the SVM pro-
tocol. The latter contains all of our protocol modifications
and extensions. We also use two different configurations: 8
nodes with 1 compute thread per node and 8 nodes with 2
compute threads per node.

In order to better analyze our performance results we
break down the application execution in two different for-
mats. The first divides the execution time into four com-
ponents (shown from bottom to top in Figure 7): compute
time, data wait time, lock time, and barrier time. The sec-
ond format divides the execution time into six components
(shown from bottom to top in Figure 8): compute time, data
wait time, synchronization time, diffs, protocol processing
and checkpointing. For each application we show two bars:
the program execution using the original SVM protocol (0)
and the program execution using the extended SVM protocol
(1). All times are given in milliseconds.

5.3.1. Uniprocessor nodes

Figure 7 shows the execution times of our application
suite on 8 nodes with 1 compute thread per node. We ob-
serve that the overall execution overhead ranges across ap-
plications between 20% (Radix) and 67% (WaterSpFL).

Let us first examine the effect of computing the diffs of
home pages on performance. As already mentioned, while
originally the diff processing of home pages was completely
absent, in the extended protocol, not only are diffs sent for

9



0 1

FFT

0

500

1000

1500

T
im

e 
(m

s)
 

Barrier

Lock

Data wait 

Compute

0 1

LU

0

500

1000

1500

2000

2500

0 1

WaterNsq

0

5000

10000

15000

20000

25000

0 1

WaterSpFL

0

2000

4000

6000

0 1

Radix

0

500

1000

1500

0 1

Volrend

0

1000

2000

3000

4000

Figure 7. Execution breakdown: 8 nodes, 1 thread/node.

0 1

FFT

0

500

1000

1500

T
im

e 
(m

s)
 Checkpointing

Ptcl processing

Diffs

Synch Time

Data wait 

Compute

0 1

LU

0

500

1000

1500

2000

2500

0 1

WaterNsq

0

5000

10000

15000

20000

25000

0 1

WaterSpFL

0

2000

4000

6000

0 1

Radix

0

500

1000

1500

0 1

Volrend

0

1000

2000

3000

4000

Figure 8. Overhead breakdown: 8 nodes, 1 thread/node.

home pages but also all diffs are propagated twice. For FFT
and LU, diff processing is the factor that contributes the most
to the observed overhead. This is an expected outcome since
data sets in FFT and LU are partitioned so that data are only
updated by their home nodes. Specifically, in the extended
case, the diffing of home pages introduces 20% and 24%
overhead respectively, which constitutes approximately half
of the total execution overhead in both applications. The diff
processing overhead is also significant in the case of Wa-
terSpatialFL where the pages diffed throughout the execution
are dominated by home pages (more than 99% out of the total
number of pages diffed). Hence, the associated overhead is
again 20%. In the case of WaterNsquared around one fourth
of the pages diffed are home pages and hence the overhead
is less pronounced. In RadixLocal, the numbers of pages
diffed in the original and extended case are comparable, with
the percentage of pages diffed in the latter case being only
around 12% of the total number of pages diffed. As a result,
the contribution of the additional diff processing to the over-
all overhead is the least significant among all applications.

Synchronization time in the extended case also increases
although, in general, to a smaller degree than diff process-
ing time. For FFT and LU, lock synchronization is absent
and hence, synchronization time is dominated by the all-
to-all internode synchronization at the barriers. The syn-
chronization overhead is especially pronounced in WaterN-
squared, increasing the execution time by 20%. WaterN-
squared uses 4105 locks (one lock per molecule plus 9 ad-
ditional locks used for synchronization variables). Despite
the large number of locks used, the lock wait time presents
more than a two-fold increase which is mainly attributed to
the inherent lock synchronization in WaterNsquared. Also,
WaterNsquared, as opposed to WaterSpatialFL and RadixLo-
cal, is characterized by a high frequency of releases result-
ing in higher communication traffic which has a negative im-
pact on the polling-based lock acquires. WaterSpatialFL and
RadixLocal use a much smaller number of locks (518 and
66 respectively). However, for these applications, the av-
erage lock wait times in the original and extended case are
practically the same. As a result, the overall synchronization
overhead is not significant (6% and 1% respectively ) and
the overall synchronization overhead is primarily due to the
internode synchronization overhead.

Data wait time in the extended case presents an expected

increase due to the fact that a modified page must be up-
dated to both of its homes before it can be fetched. Although
the number of page faults when using the extended protocol
changes only slightly in some cases and remains unchanged
in the rest, the average wait time per page increases and the
data wait time overhead across all applications ranges be-
tween 3% and 15%. The largest overhead is observed in
the case of FFT and LU, for which originally, there were no
home page updates propagated and no associated stalls.

Protocol processing introduces minor overhead (less than
5% across all applications). In the case of one compute
thread per node we attribute this increase of protocol over-
head to the new page layout that distinguishes between the
working and the home copies of the pages and thus requires
processing of additional coherence information.

Checkpointing, in all applications but WaterSpatialFL,
constitutes less that 10% of the original execution time. The
checkpointing overhead is proportional to the average size of
the thread stack and to the number of checkpoints through-
out the execution. For all applications the average stack size
varies between 2 and 2.8 KBytes, while in all cases except for
WaterNsquared the number of checkpoints is relatively small
(4 − 311). In WaterNsquared, the total number of check-
points is 10, 277 and as a result, the associated overhead is
more significant, introducing 20% overhead.

Finally, compute time presents slight changes among the
original and extended executions of all applications. The
change ranges between −5% and 6% of the original execu-
tion time. Such fluctuations are acceptable, and are mainly
due to changes in the memory bus contention resulting from
the variations in message traffic and the associated demand
for DMA transfers.

5.3.2. SMP nodes

Figure 9 depicts the execution times of our application
set on 8 nodes with 2 compute threads per node. The over-
all execution overhead due to the SVM protocol extensions
ranges between 24% (Radix) and 100% (LU, WaterSpFL).
For all applications (except for volrend), the overall overhead
increases relatively to the single-threaded case. The largest
overhead increase compared with the single-threaded case is
observed for LU 1024 and the smallest for RadixLocal 4M.

More specifically, for all applications except for WaterN-
squared, barrier time is the component that is mostly affected
by the use of multiple threads per node. Lock releases and
in particular diff propagation consist again the major perfor-
mance bottleneck, which is now more pronounced than in
the single-threaded setup. The largest barrier overhead is ob-
served for LU 1024 since the updates of all home pages are
now propagated due to data replication and is as high as 86%.

In general, using more than one compute threads per node
causes the number of messages sent during diff propagation
(including both messages containing shared data updates and
messages with protocol data) to grow significantly. In the
extended protocol in particular, the increase in system traf-
fic is even greater due to replication and most important, it
is concentrated at synchronization points rather than spread
over large time intervals, thus developing high contention at
the network interface and the network. This effect is mani-
fested in the high latencies observed despite the use of asyn-
chronous communication operations and implicitly affects

10



the rest of the execution components. In the case of mul-
tiple compute threads per node, additional overhead is also
expected due to the serialization of releases. The particularly
high synchronization overhead in WaterNsquared is indica-
tive of the effect of release serialization.

0 1

FFT

0

500

1000

1500

T
im

e 
(m

s)
 

Barrier

Lock

Data wait 

Compute

0 1

LU

0

500

1000

1500

2000

0 1

WaterNsq

0

5000

10000

15000

20000

0 1

WaterSpFL

0

1000

2000

3000

4000

0 1

Radix

0

500

1000

0 1

Volrend

0

500

1000

1500

2000

Figure 9. Execution breakdown: 8 nodes, 2 threads/node.

0 1

FFT

0

500

1000

1500

T
im

e 
(m

s)
 Checkpointing

Ptcl processing

Diffs

Synch Time

Data wait 

Compute

0 1

LU

0

500

1000

1500

2000

0 1

WaterNsq

0

5000

10000

15000

20000

0 1

WaterSpFL

0

1000

2000

3000

4000

0 1

Radix

0

500

1000

0 1

Volrend

0

500

1000

1500

2000

Figure 10. Overhead breakdown: 8 nodes, 2 threads/ node.

The overhead in data wait time as compared to the single-
threaded case decreases. Due to multiprocessing within each
SMP node the average number of page faults per thread is
now reduced by as much as 50% and hence, data wait time
does not consist a major bottleneck despite the fact that the
average data wait time per page fault is slightly increased.

Our results also show that the synchronization time over-
head generally increases with multithreading. Because lock
synchronization in the extended protocol is based on polling,
its communication cost is particularly high under conditions
of high lock contention and the lock-related messages are
stalled in the already overloaded queues at the network in-
terface. As a result, the average lock wait time is now depen-
dent on the overall communication traffic and is expected to
grow as the latter increases. Finally, the checkpointing over-
head remains reasonable, being for most applications less
than 15%. WaterNsquared consists an exception. The cost
of checkpointing in WaterNsquared is much larger (almost
30% overhead) and is related to the excessively larger num-
ber of checkpoints taken (18,362 over 216 in the worst case
for the rest of the applications ).

During this preliminary evaluation we have found that cer-
tain communication layer parameters affect the system per-
formance significantly. The most important aspect in our im-
plementation is the fact that at synchronization points the ex-
tended protocol induces increased traffic, compared to the
base protocol. To alleviate the related overheads we take ad-
vantage of asynchronous operations present in the commu-
nication layer we use. In our experiments we have found
that specific NIC parameters have a critical impact on sys-
tem performance. These are mainly the size of the post queue
for asynchronous messages and the priorities with which the
NIC handles different types of events [10]. Although our re-
sults presented here include preliminary tuning of these pa-
rameters, further investigation of these issues is necessary.

6. Limitations and Future Work

Our system at its current stage has certain limitations,
which we aim at addressing in future work. We design and
implement one possible set of SVM protocol extensions se-
lected out of a broad configuration space. In this respect, our
study sheds light on some of the underlying tradeoffs in sup-
porting fault tolerance through data replication, identifies key
optimizations and architectural enhancements that are neces-
sary for achieving higher performance, and demonstrates the
large variety of protocol design alternatives. All of these is-
sues require further examination.

Our preliminary performance evaluation is restricted to
relatively small problem sizes and a small number of appli-
cations. Experimenting with larger problem sizes that are
representative of realistic situations is necessary for a mean-
ingful evaluation of our system.

Our evaluation has suggested several potential directions
for improving performance. More specifically, our protocol
prototype can be enhanced with optimizations such as em-
ploying a more efficient way of propagating diffs at the bar-
riers, decreasing contention at the network interface by send-
ing fewer and larger messages, stabilizing our lock synchro-
nization algorithm by fine tuning critical parameters or us-
ing NIC synchronization operations as opposed to protocol-
based locks, and reducing the number of execution points
where shared data is maintained consistent.

Finally, the SPLASH-2 applications form our basis for un-
derstanding the underlying tradeoffs in employing data repli-
cation for supporting fault tolerance and in certain respects,
the design of our protocol extensions relies on these applica-
tions’ characteristics. It is interesting to investigate how well
our approach can perform in a broader application domain
that includes server and other non-scientific applications.

7. Conclusions

In this work we present the design, implementation and
preliminary evaluation of a shared memory protocol that uses
dynamic data replication to tolerate single-node failures in
modern SVM clusters. Multiple failures can also be tolerated
provided they are not simultaneous and the system is able to
recover between successive failures.

There are two key ideas behind our protocol design. First,
we exploit the inherent redundancy of the system to dynam-
ically replicate application shared data and coherence infor-
mation in the distributed memory of the cluster. Second, we
rely on the low-overhead direct remote memory operations
available in modern system area networks to maintain data
coherency for all copies of global and local system state at
synchronization points and to reduce the protocol overhead
in the common, failure-free case. Our approach also em-
ploys an efficient uncoordinated (across nodes) checkpoint-
ing scheme which, in case of failure, permits the rollback re-
covery of the failed node alone, leaving the remaining nodes
practically unaffected, and minimizes recovery time. In addi-
tion, our scheme does not require non-volatile storage (mem-
ory or disk) and supports SMP nodes.

We implement our protocol on a state-of-the-art clus-
ter of dual-processor, x86-based systems, interconnected
with a low-latency, high-bandwidth Myrinet network. We

11



evaluate the performance implications of our extensions in
the common, failure free case, using six applications from
the SPLASH-2 application suite, on both single and multi-
threaded SMP configurations. Our performance results show
that the impact of our SVM protocol extensions on applica-
tion performance varies between 20% and 67% across ap-
plications in the single-threaded setup and between 24% and
100% in the multi-threaded setup. Our results indicate that
in most cases, the cost of replication for supporting fault tol-
erance is not prohibitively expensive and that our approach is
viable in the context of state-of-the-art SVM clusters. How-
ever, further investigation is needed to better understand the
implications of our protocol extensions.

Based on our experience with our system so far, we find
that protocols based on data replication are able to transpar-
ently support continuous system operation in the presence of
failures, without the need for extensive recovery overheads.
Our work also indicates that building robust systems involves
complications not obvious when designing or simulating pro-
tocol extensions. Overall, our results suggest that despite the
underlying complexity, research in this direction is highly
promising in building reliable and highly-available comput-
ing infrastructures and as such, it should be pursued further.

Acknowledgments
We would like to thank the members of the ATHLOS

project for the useful discussions during the course of this
work. We thankfully acknowledge the support of Natu-
ral Sciences and Engineering Research Council of Canada,
Canada Foundation for Innovation, Ontario Innovation Trust,
the Nortel Institute of Technology, Communications and In-
formation Technology Ontario, and Nortel Networks.

References

[1] C. Amza, A. L. Cox, and W. Zwaenepoel. Data replication strategies
for fault tolerance and availability on commodity clusters. In Proc. of
the Int’l Conference on Dependable Systems and Networks, 2000.

[2] J. Bartlett, W. Bartlett, R. Carr, D. Garcia, J. G. R. Horst, R. Jardine,
D. Lenoski, and D. McGuire. Fault tolerance in tandem computer
systems. Technical Report TR-90.5, Tandem, 1990.

[3] C. Basile, Z. Kalbarczyk, K. Whisnant, and R. Iyer. Active replication
of multithreaded applications. Technical Report CRHC-02-01, Uni-
versity of Illinois at Urbana-Champaign, 2002.

[4] A. Bilas, D. Jiang, and J. P. Singh. Accelerating shared virtual memory
via general-purpose network interface support. ACM Transactions on
Computer Systems, 19(1):1–35, 2001.

[5] A. Bilas, C. Liao, and J. P. Singh. Accelerating shared virtual memory
using commodity ni support to avoid asynchronous message handling.
In The 26th Int’l Symposium on Computer Architecture, May 1999.

[6] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz,
J. N. Seizovic, and W. Su. Myrinet: A gigabit-per-second local area
network. IEEE Micro, 15(1):29–36, Feb. 1995.

[7] E. V. Carrera, S. Rao, L. Iftode, and R. Bianchini. User-level commu-
nication in cluster-based servers. In Proceedings of the 8th IEEE Int’l
Symposium on High-Performance Computer Architecture (HPCA 8),
February 2002.

[8] D. Chen, S. Dwarkadas, S. Parthasarathy, E. Pinheiro, and M. L. Scott.
Interweave: A middleware system for distributed shared state. In Lan-
guages, Compilers, and Run-Time Systems for Scalable Computers,
pages 207–220, 2000.

[9] M. Costa, P. Guedes, M. Sequeira, N. Neves, and M. Castro.
Lightweight logging for lazy release consistent distributed shared
memory. In Proc. of the Operating Systems Design and Implemen-
tation Conference, pages 59–73, Oct. 1996.

[10] C. Dubnicki, A. Bilas, Y. Chen, S. Damianakis, and K. Li. Vmmc-2:
Efficient support for reliable, connection-oriented communication. In
Proc. of the Hot Interconnects Symposium V, Aug. 1997.

[11] C. Gibson and A. Bilas. Shared virtual memory clusters with next-
generation interconnection networks and wide compute nodes. In 8th
Int’l Conference on High Performance Computing (HiPC01), 2001.

[12] J. Gray. What next? a dozen remaining it problems (turing lecture). In
The ACM Federated Computer Research Conference in Atlanta, Geor-
gia, May 1999.

[13] J. Hennessy. Back to the future: Time to return to some long standing
problems in computer systems? (keynote talk). In The ACM Federated
Computer Research Conference in Atlanta, Georgia, May 1999.

[14] Y. Huang, P. Chung, C. Kintala, C. Wang, and D. Liang. Nt-swift:
Software implemented fault-tolerance on windows-nt. In 2nd USENIX
WindowsNT Symposium, pages 3–5, August 1998.

[15] A. Itzkovitz, A. Schuster, and L. Shalev. Thread migration and its
applications in distributed shared memory systems. The Journal of
Systems and Software, 42(1):71–87, 1998.

[16] P. Jamieson and A. Bilas. CableS : Thread control and memory sys-
tem extensions for shared virtual memory clusters. Lecture Notes In
Computer Science, 2104:170–181, 2001.

[17] D. Jiang, H. Shan, and J. P. Singh. Application restructuring and
performance portability across shared virtual memory and hardware-
coherent multiprocessors. In proceedings of the 6th ACM Symposium
on Principles and Practice of Parallel Programming, June 1997.

[18] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy release consistency
for software distributed shared memory. In Proc. of the 19th Annual
Int’l Symp. on Computer Architecture (ISCA’92), pages 13–21, 1992.

[19] P. Keleher, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. Tread-
marks: Distributed shared memory on standard workstations and op-
erating systems. In Proc. of the 1994 USENIX Conference, 1994.

[20] A.-M. Kermarrec, G. Cabillic, A. Gefflaut, C. Morin, and I. Puaut. A
recoverable distributed shared memory integrating coherence and re-
coverability. In Proc. of the 25th Annual Int’l Symp. on Fault-Tolerant
Computing (FTCS-25), pages 289–298, 1995.

[21] J. Kim and N. Vaidya. Analysis of failure recovery schemes for dis-
tributed shared-memory systems. IEE Computers and Digital Tech-
niques, 146(3), May 1999.

[22] C. Morin and I. Puaut. A survey of recoverable distributed shared vir-
tual memory systems. IEEE Transactions on Parallel and Distributed
Systems, 8(9):959–969, 1997.

[23] J. S. Plank, K. Li, and M. A. Puening. Diskless checkpointing. IEEE
Transactions on Parallel and Distributed Systems, 9(10):972–1001,
1998.

[24] M. Prvulovic, Z. Zhang, and J. Torrellas. Revive: Cost-effective ar-
chitectural support for rollback recovery in shared-memory multipro-
cessors. In Proceedings of the 29th Int’l Symposium on Computer
Architecture, May 2002.

[25] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood. Safe-
tynet: Improving the availability of shared memory multiprocessors
with global checkpoint/recovery. In Proceedings of the 29th Int’l Sym-
posium on Computer Architecture, May 2002.

[26] M. Stumm and S. Zhou. Fault tolerant distributed shared memory
algorithms. In Proc. of the 2nd IEEE Symposium on Parallel and Dis-
tributed Processing, pages 719–724, December 1990.

[27] F. Sultan, T. D. Nguyen, and L. Iftode. Scalable fault-tolerant dis-
tributed shared memory. In Proc. of Supercomputing, 2000.

[28] J. Tang and A. Bilas. Tolerating network failures in system area net-
works. Aug. 2002.

[29] L. Technologies. Aurora management software. http://www.bell-
labs.com/project/aurora, 1999.

[30] K. Thitikamol and P. Keleher. Thread migration and communication
minimization in DSM systems. The Proceedings of the IEEE, 87:487–
497, March 1999.

[31] S. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. Method-
ological considerations and characterization of the SPLASH-2 paral-
lel application suite. In Proceedings of the 23rd Int’l Symposium on
Computer Architecture, May 1995.

[32] Y.Zhou, A. Bilas, S. Jagannathan, C. Dubnicki, J. Philbin, and K. Li.
Experiences with vi communication for database storage. In Proceed-
ings of the 29th Int’l Symposium on Computer Architecture, May 2002.

[33] Y. Zhou, P. Chen, and K. Li. Fast cluster failover using virtual
memory-mapped communication. In Proc. of the Int’l Conference on
Supercomputing, June 1999.

[34] Y. Zhou, L. Iftode, and K. Li. Performance evaluation of two home-
based lazy release consistency protocols for shared virtual memory
systems. In Proc. of the 2nd Symp. on Operating Systems Design and
Implementation, pages 75–88, 1996.

12


