

Abstract

Scalability of applications on distributed shared-
memory (DSM) multiprocessors is limited by

communication overheads. At some point, using more

processors to increase parallelism yields diminishing
returns or even degrades performance. When increasing

concurrency is futile, we propose an additional mode of

execution, called slipstream mode, that instead enlists

extra processors to assist parallel tasks by reducing

perceived overheads.

We consider DSM multiprocessors built from dual-
processor chip multiprocessor (CMP) nodes with shared

L2 cache. A task is allocated on one processor of each
CMP node. The other processor of each node executes a

reduced version of the same task. The reduced version

skips shared-memory stores and synchronization, running

ahead of the true task. Even with the skipped operations,

the reduced task makes accurate forward progress and

generates an accurate reference stream, because
branches and addresses depend primarily on private data.

Slipstream execution mode yields two benefits. First,
the reduced task prefetches data on behalf of the true

task. Second, reduced tasks provide a detailed picture of

future reference behavior, enabling a number of

optimizations aimed at accelerating coherence events,

e.g., self-invalidation. For multiprocessor systems with
up to 16 CMP nodes, slipstream mode outperforms

running one or two conventional tasks per CMP in 7 out

of 9 parallel scientific benchmarks. Slipstream mode is

12-19% faster with prefetching only and up to 29% faster

with self-invalidation enabled.

1. Introduction

Scalability for many parallel programs is limited by

communication and synchronization overheads. A

performance threshold is reached (for a fixed problem

size), and applying more processors results in little or no

speedup. The only means for moving beyond this
threshold is to increase efficiency – to identify and

remove bottlenecks and overheads and more effectively

use the parallel computing resources.

In this paper, we consider the use of a dual-processor

chip multiprocessor (CMP) [9,18] as the building block of
a distributed shared memory multiprocessor. A conven-

tional way to use such a machine is to assign a parallel

task to each processor. As we approach the performance

threshold, however, increasing concurrency does not help.

Figure 1 shows the relative performance of assigning two
tasks per CMP, compared to assigning only a single task,

leaving one processor idle. Applying the additional

processing power in the “traditional” way – that is, by

increasing the task-level parallelism – does not

necessarily result in large performance gains, especially

as the number of CMPs increases. In fact, for some
applications, performance degrades when using both

processors for parallel tasks. In such a situation, we

propose using the second processor to reduce overhead

and improve the efficiency of execution, rather than to

increase concurrency. Instead of running a separate

parallel task, the second processor runs a reduced version
of the original task. The reduced task constructs an

accurate view of future memory accesses, which is used

to optimize memory requests and coherence actions for

the original task. The resulting gains in efficiency can

result in better performance than using the two processors
for increased parallelism.

This approach is analogous to the uniprocessor

slipstream paradigm, which uses redundant execution to

speed up sequential programs [26]. A slipstream

Khaled Z. Ibrahim, Gregory T. Byrd, and Eric Rotenberg

Dept. of Electrical and Computer Engineering, North Carolina State University

{kzmousta, gbyrd, ericro}@ece.ncsu.edu

Slipstream Execution Mode for CMP-Based Multiprocessors

2 4 6 8 10 12 14 16
0.8

1.0

1.2

1.4

1.6

1.8

2.0

S
p

ee
d

u
p

 o
f

tw
o

 t
as

ks
/C

M
P

 (
D

o
u

b
le

)
re

la
ti

ve
 t

o
 o

n
e

ta
sk

/C
M

P
 (

S
in

g
le

)

CMP Count

 WATER-SP
 MG
 SOR
 CG
 WATER-NS
 OCEAN
 Single

Figure 1. Speedup of two tasks per CMP (double
mode) vs. one task per CMP (single mode).

processor runs two redundant copies of a program on a

dual-processor CMP. A significant number of dynamic

instructions are speculatively removed from one of the
program copies, without sacrificing its ability to make

correct forward progress. In this way, the speculative

reduced program (called the A-stream, or advanced

stream) runs ahead of the unreduced program (called the

R-stream, or redundant stream). The R-stream exploits

the A-stream to get an accurate picture of the future. For
example, the A-stream provides very accurate branch and

value predictions. The predictions are more accurate than

predictions made by conventional history-based

predictors because they are produced by future program

computation. The speculative A-stream occasionally (but

infrequently) goes astray. The R-stream serves as a
checker of the speculative A-stream and redirects it when

needed.

In the multiprocessor setting, we do not need to

remove a large number of dynamic instructions. We find

that simply removing certain long-latency events –

synchronization events and stores to shared memory –
shortens the A-stream version of a task enough to provide

timely and accurate predictions of memory accesses for

the original R-stream task. This simple use of redundant

computation requires very little hardware support; it is a

new mode of execution for multiprocessor systems, rather
than a new architecture.

Figure 2 illustrates three different modes of con-

current execution for a system with n CMPs: double,

single, and slipstream.

(a) In double mode, two parallel tasks are assigned

to each CMP, one per processor, for a total of 2n tasks.
This is the conventional execution model, maximizing the

amount of concurrency applied to the program.

(b) In single mode, only one task is assigned to each

CMP. One processor runs the task, while the other

processor is idle. As shown in Figure 1, this can result in

better performance than double mode when the scalability
limit is approached. A single task means no contention

for L2 cache and network resources on the CMP node.

Also, fewer tasks means larger-grained tasks, which

improves the computation-to-communication ratio.

(c) In slipstream mode, two copies of the same task
are created on each CMP, for a total of n task pairs. One

processor runs the reduced task, or A-stream (short

arrow), and the other runs the full task, or R-stream (long

arrow). The A-stream gets ahead of its R-stream by

skipping synchronization events and stores to shared

memory. Since it runs ahead, the A-stream generates
loads to shared data before they are referenced by the R-

stream, prefetching shared data and reducing memory

latencies for the R-stream.

With some additional support in the memory

subsystem, A-stream accesses can also be used at the

directory as hints of future sharing behavior. These hints

can be used for coherence optimizations, such as self-

invalidation (SI) [12]. To support SI, we introduce the

notion of a transparent load to minimize negative effects

of A-stream prefetches on coherence traffic. A
transparent load, issued by the A-stream, does not cause

the exclusive owner of a cache line to give up ownership

prematurely. The load serves as an indication of future

sharing behavior, and the memory controller uses this

information to send invalidation hints to the exclusive

owner of a cache line. The owner is advised to write back
or invalidate its copy of the cache line when its last store

is complete, so that future reads from other processors

will find the most recent data in memory.

Using these two optimizations (prefetching and self-

invalidation), slipstream improves performance for
applications that have reached their scalability limit. In

seven out of nine benchmarks, slipstream mode is faster

than both single and double mode on systems with up to

16 CMPs. Slipstream mode performs 12-29% better than

the next best mode (single or double). Because it is

simply a mode of execution, slipstream can be enabled or
disabled, according to the needs of particular applications

or critical application kernels. It offers a new opportunity

for programmer-directed optimization.

Prefetching and SI are only the beginning, however.

Slipstream mode enables a number of additional

optimizations that benefit from accurate, dynamic
prediction of memory accesses. Examples include barrier

speculation [22] and migratory sharing optimizations

[10]. Program-based prediction is potentially more

accurate than history-based predictors and prefetchers,

does not require custom auxiliary hardware tables, and
does not require detailed programmer or compiler

analysis. Slipstream-mode execution is a general

program-based prediction mechanism that can enable

CM P 0

Processor 0

Task 0

Processor 1

Task 1

CM P 1

Processor 0

Task 2

Processor 1

Task 3

CM P n-1

Processor 0

Task 2n-2

Processor 1

Task 2n-1...

(a) Double-mode execution.

CM P 0

Processor 0

Task 0

Processor 1

CM P 1

Processor 0

Task 1

Processor 1

CM P n-1

Processor 0

Task -1n

Processor 1

...

(b) Single-mode execution.

CM P 0

Processor 0

Task 0(R)

Processor 1

Task 0(A)

CM P 1

Processor 0

Task 1(R)

Processor 1

Task 1(A)

CM P n-1

Processor 0

Task n-1(R)

Processor 1

Task n-1(A)...

(c) Slipstream-mode execution.

Figure 2. Execution modes for CMP-based

multiprocessors.

multiple optimization strategies to be applied selectively

and simultaneously, extending the scalability of programs

with minimum programmer involvement.
In Section 2, we describe the simulation framework

and methodology used for the performance studies in later

sections. Section 3 describes the basic slipstream mode,

including the mechanisms for shortening the A-stream,

correcting A-stream deviations, and managing local

synchronization between the A-stream and R-stream.
This basic mode allows prefetching of shared data based

on program execution. Section 4 extends slipstream

mode to include transparent loads and self-invalidations.

Related work is discussed in Section 5, and Section 6

outlines areas for future investigation.

2. Base Architecture and Simulation

Methodology

To explore the performance of slipstream execution

mode, we simulate a CMP-based multiprocessor. Each

processing node consists of a CMP and a portion of the

globally-shared memory. The CMP includes two

processors. Each processor has its own L1 data and
instruction caches. The two processors access a common

unified L2 cache. System-wide coherence of the L2

caches is maintained by an invalidate-based fully-mapped

directory protocol. The processor interconnect is modeled

as a fixed-delay network. Contention is modeled at the
network inputs and outputs, and at the memory controller.

The system is simulated using SimOS [7,19], with

IRIX 5.3 and a MIPSY-based CMP model. Table 1

shows the memory and network latency parameters,

which are chosen to approximate the Origin 3000 memory

system [23]. The minimum latency to bring data into the
L2 cache on a remote miss is 290 cycles, assuming no

contention. A local miss requires 170 cycles. We

modified the SimOS L2 cache module to support CMP

nodes. The shared L2 cache manages coherence between

its L1 caches and also merges their requests when

appropriate.
Nine benchmarks and their data sizes are shown in

Table 2, representing kernels of scientific and engineering

applications. CG, MG, and SP are shared memory

versions of benchmarks from the NAS Parallel

Benchmarks [29]. Except for SOR, the others are taken
from Splash-2 [27].

3. Using Slipstream Mode for Prefetching

In this section, we describe the most basic use of

slipstream mode, in which the A-stream and the R-stream

communicate only through their shared L2 cache and
through a simple local synchronization mechanism. The

A-stream acts as a prefetch engine for the R-stream, pre-

loading shared data into the L2 cache. Using slipstream

mode for prefetching requires no changes to the memory

subsystem or to the coherence protocol.

Section 3.1 describes basic slipstream operation. The
A-stream is forked as a copy of the R-stream. By

skipping synchronization events and stores to shared data,

the A-stream runs ahead of the R-stream and prefetches

shared data. The reduction of the A-stream is speculative

and may lead to erroneous computations. We present

evidence, however, that errors in local computation have
minimal effect on the control flow and shared memory

address calculations of the A-stream, so its predictions

remain accurate.

Section 3.2 describes a loose, local synchronization

mechanism, called A-R synchronization, that constrains
how far an A-stream may run ahead of its corresponding

R-stream. The R-stream also checks for significant

deviations in the A-stream’s control flow at A-R

synchronization points and restarts the A-stream, if

necessary. Section 3.3 discusses the interaction between

A-R synchronization and prefetching. Running far ahead
hides longer latencies, but it also increases the chance of

premature migration of data. Section 3.4 discusses the

performance of slipstream prefetching.

3.1 Basic slipstream operation

To enable the use of slipstream mode, the
programmer selects slipstream-aware parallel libraries

that control task creation, synchronization, and so forth.

At run time, if the application user chooses slipstream

mode, then the slipstream library routine creates two

copies of each task, and assigns one copy to each of the

processors on a CMP. Just as in double mode (with
separate parallel tasks), each task has its own private data,

Table 1: SimOS machine parameters.
CPU: MIPSY-based CMP model, 1 GHz

L1 Caches (I/D):
32 KB, 2-way assoc., 1-cycle hit

L2 Cache (unified):
1 MB**, 4-way assoc., 10-cycle hit

Memory (cycles) Description

BusTime: 30 transit, L2 to directory controller (DC)

PILocalDCTime: 60 occupancy of DC on local miss
PIRemoteDCTime: 10 occupancy of local DC on outgoing miss

NIRemoteDCTime: 10 occupancy of local DC on incoming miss

NILocalDCTime: 60 occupancy of remote DC on remote miss
NetTime: 50 transit, interconnection network

MemTime: 50 latency, for DC to local memory

** A 128-KB cache is used for Water to match its small working set.

Table 2: Benchmarks and data set sizes.
Application Size

FFT

Ocean

Water-NS (n-squared)
Water-SP (spatial)

SOR

LU
CG

MG

SP

64K complex double

258×258

512 molecules
512 molecules

1024×1024

512×512
1400

32×32×32

16×16×16

but shared data are not replicated.

Each A-stream task must be shortened. An effective

approach to reducing an A-stream is to remove its long-
latency communication events. In shared memory

multiprocessors, these are synchronizations (barriers,

locks, and events) and accesses to shared memory (loads

and stores). Two of these, synchronization and shared

memory stores, can be skipped for many programs

without affecting the control flow or the A-stream’s
ability to predict access patterns for shared data.

In order to skip synchronizations, the system-

provided routines for barriers, locks, and events (for

example, the ANL macros [15] used by the Splash-2

benchmarks) are modified to support tasks running in

slipstream mode. The A-stream tasks do not perform the
synchronization routine, but the R-stream tasks execute

them normally.

Synchronization is used to define dependencies in

accessing shared variables. Skipping these routines

makes the A-stream speculative, since we cannot

guarantee that the dependencies imposed by the
synchronization will be met. We prevent the propagation

of speculative values produced by the A-stream by

discarding stores to shared memory. (The store

instruction is executed in the processor pipeline, but it is

not committed.) The R-streams throughout the system are
not corrupted by erroneous A-stream values, because

local changes to shared variables are never stored and

never made visible to the other tasks. This shortens the

A-stream further, since shared memory stores might

otherwise incur long latencies due to invalidation requests

and acknowledgements.
The shared data loaded by the A-stream may be

incorrect, if the load occurs before the producing task has

stored the final value. In the original program, this

dependency is enforced through synchronization. Even

though the A-stream brings this data into the shared L2

cache prematurely, it will not affect the R-stream’s
correctness, because the R-stream will observe the

synchronization before consuming the data. If the

producer changes the data before the synchronization, the

copy loaded by the A-stream is invalidated through the

normal coherence mechanism, and the R-stream will
retrieve the correct value when needed.

Since the role of the A-stream is to collect access

information and to prefetch shared data, we must be

confident that using speculative data does not

significantly affect control flow or address generation.

Otherwise, the access patterns predicted by the A-stream
will be inaccurate, and we may add to the memory traffic

of the system by loading values that are unnecessary.

Fortunately, many parallel programs are written in

the SPMD (Single Program, Multiple Data) style, in

which each task executes the same code but accesses

different portions of the shared data. These programs rely

mostly on local variables for address computation and

control flow determination. A unique task ID identifies

the portion of the shared data accessed by each task.
Barriers identify phases of execution and guarantee no

inter-phase dependency violations. Parallel scientific

numerical algorithms are good examples of this class of

applications.

If shared variables do significantly impact control

flow, then the A-stream’s execution may diverge from the
R-stream’s. If they impact address generation, then the

cache lines prefetched by the A-stream may be of no use

to the R-stream. In either case, the A-stream is not

beneficial to the R-stream, because its program-based

predictions are inaccurate. We have identified only three

types of shared variables that typically affect control flow
or address generation:

• Synchronization variables affect control flow,

because they grant or deny access to regions of code.

Variables that are referenced inside system-provided

synchronization routines are no problem, because those
routines are modified to skip references to the variables

for the A-stream task. A user-defined synchronization

variable, such as a simple flag variable, may cause a local

divergence in control flow, because the A-stream might

wait on the variable, while the R-stream might not. This

divergence is only temporary, however. The A-stream
may be prevented from moving far ahead of the R-stream,

but the accuracy of its data accesses is not likely to be

affected.

• Reduction variables, used to compute global

values such as the minimum or maximum of a set of data,

may affect control flow. For example, a comparison
between the task’s local minimum and the global (shared)

minimum determines whether the task should perform a

store to the global minimum. The effect on control flow

is localized and does not cause a divergence of the A-

stream and R-stream.

• Dynamic scheduling relies on shared information

to make a decision about which task or sub-task to

execute next. These decisions are time-dependent, so it is

likely that the A-stream would make a different decision,

and access different data, than the R-stream that comes

later. Dynamic scheduling can be accommodated in
slipstream mode. If the scheduling code is identified, the

A-stream may skip the code and wait for the R-stream to

catch up (using the A-R synchronization mechanisms

described below). Once a scheduling decision is made by

the R-stream, the A-stream will again run ahead and

collect data access information.

3.2 A-R synchronization and recovery

Synchronization between an R-stream and its

corresponding A-stream is required for two reasons.

First, we must correct an A-stream that has taken a

completely wrong control path and is generating useless

data access predictions. Second, we want to limit how far

the A-stream gets ahead, so that its prefetches are not

issued so early that the prefetched lines are often replaced
or invalidated in the L2 cache before the R-stream uses

them.

We couple the A-R synchronization mechanism to

the barrier and event-wait synchronizations specified in

the program. These events typically represent transitions

between phases of computation, so they are natural points
at which to manage the interaction between the two

streams. Furthermore, the library routines that implement

these synchronization constructs already require

modification in order to allow the A-stream to skip them.

Now we modify them a bit further: when the A-stream
reaches a barrier or event-wait, it either skips the

synchronization or it waits for its local R-stream to give

permission to continue. We define a session as a

sequence of instructions that ends with a barrier or event-

wait. One of the parameters that will be controlled by the

A-R synchronization mechanism is the number of
sessions that the A-stream is allowed to run ahead of the

R-stream.

We require a single semaphore between each A-

stream/R-stream pair to control their synchronization. For

our experiments, we have assumed a shared hardware

register, but any shared location that supports an atomic
read-modify-write operation is sufficient. Using this

semaphore, we control (a) how many synchronization

events the A-stream can skip without waiting for the R-

stream, and (b) whether the synchronization is local

(involving only the companion R-stream) or global
(involving all R-streams).

The initial value of the semaphore indicates how

many sessions the A-stream may proceed ahead of the R-

stream. This can be viewed as creating an initial pool of

tokens that are consumed as the A-stream enters a new

session (Figure 3). When there are no tokens, the A-
stream may not proceed. The R-stream issues tokens by

incrementing the semaphore counter.

Two different types of synchronization – local and

global – are enabled by controlling when the R-stream

inserts a new token. If the R-stream inserts a token as it

enters the barrier or wait routine, then the continued

progress of the A-stream depends only on its local R-

stream. If the R-stream inserts a token as it leaves the

barrier or wait routine, then the continued progress of the
A-stream depends on all of the R-streams participating in

the synchronization.

The A-R synchronization points are also used to

check for a deviating A-stream – that is, one that has

taken a significantly different control path than the correct

path, represented by the R-stream. The checking is very
simple: if the R-stream reaches the end of a session before

the A-stream, we assume the A-stream has deviated. This

is a software-only check, and it does not include any

notion of whether the data access predictions from the A-

stream have been accurate or not.

The recovery mechanism is equally simple: the R-
stream kills the A-stream task and forks a new one. This

may be expensive, depending on the task creation model.

In our experience, however, the benchmarks used do not

require recovery, as they do not diverge.

Finally, there is one other need for synchronization

between the A-stream and R-stream. Some global
operations, such as system calls, I/O, and shared memory

allocations, must only be performed once, since they

impact global system state. Except for input operations,

the A-stream skips these operations. For input, the A-

stream synchronizes using a local semaphore, similar to
the one described above. After the operation is completed

by the R-stream, its return value is passed to the A-stream

through a shared memory location. This implies the need

for a slipstream-aware system library.

3.3 Slipstream-based prefetching

A natural consequence of executing in slipstream

mode is that the A-stream will prefetch shared data for the

R-stream. Because the A-stream is executing the same

task, it calculates the same addresses for shared data, and

it loads that data before the R-stream. If the data is still

valid when the R-stream reaches its load (i.e., not evicted
or invalidated), then the R-stream will hit in the shared L2

cache.

For coherence misses, prefetching is more likely to

be effective when the A-stream is in the same session as

the R-stream. In this case, loads from the A-stream will

not violate dependencies imposed by synchronization. If
the A-stream loads a line that is in the exclusive state, it

retrieves the data from the owning cache and places it in

the local L2 cache. Since this is a more expensive

operation than a simple fetch from memory, the latency

reduction seen by the R-stream is significant.

If the A-stream is in a different session, it has skipped
one or more synchronizations, so its load may occur

before the final store by the producer’s R-stream. The

premature load forces a loss of exclusive ownership by

the producer’s cache. This may degrade performance,

 i th barrier

 n Initial tokens

Time

.

.

.

R-stream

Local: New token is inserted by R-stream

before entering barrier synchronization.

Token bucket Token bucket

Global: New token is inserted by R-stream

after exiting barrier synchronization.

(i + n) th barrier

A-stream A-stream R-stream

 n Initial tokens

Figure 3. A-R synchronization.

because the producer must again acquire exclusive

ownership to complete its stores. Furthermore, this

invalidates the copy that was fetched by the A-stream, so

the R-stream does not benefit. The same behavior can
happen within the same session due to false sharing,

where conflicting (unsynchronized) loads and stores may

occur to different words in the same cache line.

The A-stream task converts some skipped stores into

exclusive prefetches, if it is in the same session as the R-

stream and is not in a critical section. The prefetch is
likely to be effective, because the R-stream should be the

only producer for that session. If the A-stream is not in

the same session, or is in a critical section, then an

exclusive prefetch is more likely to conflict with R-stream

accesses from the earlier session (or critical section). For
this reason, the store is simply skipped.

Because of the time-sensitive nature of prefetching,

the choice of A-R synchronization model has a significant

impact on its effectiveness. Global synchronization, with

zero initial tokens, prevents the A-stream from entering

the next session until all participating R-streams reach the
barrier/event. Thus, A-stream loads will not occur until

all producing R-streams for this session have finished

writing. This reduces the number of premature

prefetches, but it also reduces the opportunity to prefetch

early enough to fully hide the latency from the R-stream.

For applications with significant producer-consumer
dependencies, this will likely be the best approach. Local

synchronization allows the A-stream to move further

ahead, subject to the number of allocated tokens. This

more aggressive strategy will be useful for applications in

which there is little actual sharing, and therefore few
conflicting accesses.

3.4 Performance of slipstream-based prefetching

The performance measure for the remainder of the

paper will be speedup relative to single-mode execution

(one task per CMP), because we are most interested in the

region in which increasing concurrency is not an effective

way to increase performance. Performance relative to

single mode will easily show whether increasing
concurrency (double mode) or increasing efficiency

(slipstream mode) is more effective. But first we

characterize the scalability of single-mode execution for

our benchmarks.

Figure 4 shows the speedup for single mode over

sequential execution for our nine benchmarks on 2, 4, 8,
and 16 CMPs. There are three groups of benchmarks:

those that continue to scale up to 16 tasks (Water-SP, LU,

SOR), those that show signs of diminishing speedup

(Water-NS, Ocean, MG, CG, SP), and one that shows

decreasing performance (FFT). We expect slipstream

mode to provide minimal benefit for the first group, since
increasing concurrency will likely continue to improve

performance at 16 CMPs. The second and third groups,

however, may benefit more from slipstream mode than

from doubling the number of tasks. Because of FFT’s

degrading single-mode performance, we will later only

compare slipstream-mode performance at 4 CMPs or
fewer.

Figure 5 shows the speedup of slipstream and double

modes over single-mode execution. (To improve

readability, double mode is shown only for 8 and 16

CMPs.) For slipstream mode, four different types of A-R
synchronization are shown: (1) one-token local (L1),

which allows the A-stream to enter the next session when

its R-stream enters the previous synchronization event;

(2) zero-token local (L0), which allows the A-stream to

enter the next session when its R-stream enters the same

synchronization event; (3) zero-token global (G0), which
allows the A-stream to enter the next session when its R-

stream exits the same synchronization event; (4) one-

token global (G1), which allows the A-stream to enter the

next session when its R-stream exits the previous

synchronization event.

Consider the first group of benchmarks (LU, Water-
SP, and SOR), which show reasonable scalability. While

slipstream shows some improvement over single for LU

and Water-SP, it is much less effective than double for

these configurations. In other words, there is still a

significant amount of concurrency available at 16 CMPs,
so slipstream mode is not the best choice. SOR, on the

other hand, has apparently reached its scalability limit for

this problem size, since double provides no benefit over

single. Slipstream mode, however, performs 14% better

than single mode. For the remaining benchmarks,

slipstream mode outperforms the best of single and
double, beginning at four (FFT), eight (Ocean, SP), or 16

CMPs (CG, MG, SOR, Water-NS). At 16 CMPs, the

performance improvement over the next best mode ranges

from 12% (Ocean, MG) to 19% (Water-NS). For FFT,

slipstream mode performs 14% better for 4 CMPs; further

comparison is not shown because the absolute

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

sp
ee

du
p

CMP Count

 WATER-SP
 LU
 SOR
 WATER-NS
 OCEAN
 MG
 CG
 SP
 FFT

Figure 4. Speedup of single mode.

performance of FFT degrades for this data set at 8 CMPs

and higher.

There is no consistent winner among the four A-R

synchronization methods. In the seven benchmarks where

slipstream mode delivers better performance, four

benchmarks favor one-token local (FFT, Water-NS, MG,
and SOR), two applications favor zero-token global

(Ocean and SP), and one application favors zero-token

local (CG).

Figure 6 shows the average execution time break-

down for single, double, and slipstream modes on a 16-

CMP system. For slipstream mode, the time breakdown
is shown for both the R-stream and the A-stream tasks,

using the best-performing A-R synchronization method

for each benchmark. Execution time is plotted relative to

single mode. The time categories are busy cycles,

memory stalls, and three kinds of synchronization waits:

barrier, lock, and A-R synchronization. Reduction in stall

time contributes to most of the gain achieved by
slipstream mode. LU and Water-SP show little stall time

(<8%) for single mode, which explains why slipstream

does not help these applications. For SP and MG,

slipstream mode decreases barrier time, because it reduces

the imbalance due to variability of memory access latency

between barriers. A-R synchronization time is an
indication of how much the A-stream is shortened,

2 4 6 8 10 12 14 16
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

2 4 6 8 10 12 14 16
0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

2 4 6 8 10 12 14 16
0.8

0.9

1.0

1.1

1.2

2 4 6 8 10 12 14 16
0.7

0.8

0.9

1.0

1.1

1.2

2 4 6 8 10 12 14 16
0.7

0.8

0.9

1.0

1.1

1.2

2 4 6 8 10 12 14 16
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

2 4 6 8 10 12 14 16
0.9

1.0

1.1

1.2

1.3

1.4

1.5

2 4 6 8 10 12 14 16
0.9

1.0

1.1

1.2

1.3

2 4 6 8 10 12 14 16

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9MG SOROCEAN

FFT

SP

LU

WATER-NS

CG

 Single
 Double
 One-token Local
 Zero-token Local
 One-token Global
 Zero-token Global

WATER-SP

Figure 5. Speedup of slipstream and double modes, relative to single mode.
For slipstream mode, four different types of A-R synchronization are shown.

S D R A S D R A S D R A S D R A S D R A S D R A S D R A S D R A S D R A

0

20

40

60

80

100

120

140 S: Single D: Double
R: R-stream A: A-stream

E
xe

cu
ti

o
n

 T
im

e
b

re
ak

d
o

w
n

re
la

ti
ve

 t
o

 S
in

g
le

 Busy Stall A-R Sync Barrier Lock

CG
FFT LU

M
G

OCEAN
SOR SP

W
ATER-N

S

W
ATER-S

P

Figure 6. Execution time breakdown for single (S), double (D), and slipstream modes (A ,R),

relative to single mode. The best A-R synchronization method is used for slipstream mode.

relative to the R-stream. If the A-stream is far ahead, then

it will often wait for the R-stream to end its current

session.
Figure 7 shows the breakdown of shared data

memory requests for slipstream mode with different

synchronization methods. Shared memory requests

generated by the A-stream are divided into three

categories. An A-Timely request brings data into the L2

cache that is later referenced by the R-stream. For A-
Late, the same data is referenced by the R-stream before

the A-stream request is satisfied. If data fetched by the A-

stream is evicted or invalidated without being referenced

by the R-stream, the reference is labeled as A-Only. The

A-Only component is considered harmful, as it reflects an

unnecessary increase in network traffic and may slow
down applications due to unneeded data migration.

Memory requests by the R-stream are divided into similar

categories: R-Timely, R-Late and R-Only. The top graph

in Figure 7 shows the breakdown for read requests, and

the lower graph shows the breakdown for exclusive

requests. Exclusive requests by the A-stream are due to
converting some shared stores into prefetches.

The request breakdowns highlight the differences

between tight and loose A-R synchronization. Zero-token

global (G0) is the tightest synchronization model, and

one-token local (L1) is the loosest.
Zero-token global exhibits the lowest fraction of A-

Timely read requests (22% on average), because the A-

stream is not allowed to run very far ahead of the R-

stream. This is also reflected in the high rate of A-Late

requests (27% for reads, 7% for exclusive). On the other

hand, it has the largest fraction of A-Timely exclusive
requests (43%). The reason is that stores are converted to

exclusive prefetches when the A-stream is in the same

session as the R-stream; this is more often the case with

tight A-R synchronization.

One-token local, the loosest synchronization, has the

highest rate of A-Timely read requests (54% on average),

a low fraction of A-Late requests (4% reads, 1%
exclusive), and the lowest rate of A-Timely exclusive

requests (17%). Because the A-stream is allowed to run

very far ahead of the R-stream, its read requests are more

likely to be satisfied before the R-stream needs the data.

But it is less likely to be in the same session as the R-

stream, so the opportunity for exclusive prefetching is
lower. This also results in the highest fraction of

premature (A-Only) read requests (16% on average).

Each synchronization method has its good and bad

attributes, and the resulting performance is application-

dependent. For example, Ocean benefits more from tight

synchronization (zero-token global), as it has negligible
premature read requests (A-Only) compared with other

synchronizations. The A-stream also provides a higher

rate of successful (A-Timely) exclusive requests. FFT

favors loose synchronization (one-token local), as it

provides more timely read requests than other methods,

and nearly as many timely exclusive requests.
R-stream requests to memory are the result of lines

that are invalidated or evicted, and lines that are not

referenced at all by the A-stream. While R-Timely, R-

Late, and R-Only components do not directly reflect

performance, they complete the view of how much
correlation exists between the shared data referenced by

both streams. The highest correlation (reflected by small

R-only and A-only components) is associated with

tightest synchronization, zero-token global – in this case,

98% of read requests and 77% of the exclusive requests

are for data that is referenced by both streams.
To summarize, slipstream-based prefetching can be

supported with minimal hardware changes on CMP-based

multiprocessors. For seven of the nine benchmarks,

prefetching alone improves performance by 12-19% over

L
1

L
0

G
0

G
1

L
1

L
0

G
0

G
1

L
1

L
0

G
0

G
1

L
1

L
0

G
0

G
1

L
1

L
0

G
0

G
1

L
1

L
0

G
0

G
1

L
1

L
0

G
0

G
1

L
1

L
0

G
0

G
1

L
1

L
0

G
0

G
1

0
10
20
30
40
50
60
70
80
90

100

L1: One-token Local L0: Zero-token Local
G1: One-token Global G0: Zero-token Global

%
 o

f
re

ad
 r

eq
u

es
ts

 A-Timely A-Late A-Only
 R-Timely R-Late R-Only

CG
FFT LU

MG

OCEAN
SOR SP

W
ATER-N

S

W
ATER-S

P

0
10
20
30
40
50
60
70
80
90

100

%
 o

f
ex

cl
u

si
ve

 r
eq

u
es

ts

Figure 7. Breakdown of memory requests for shared data.

the next best mode (single or double) on a 16-CMP

system. However, prefetching is only the simplest

optimization enabled by slipstream mode. We can use the
sharing predictions provided by slipstream mode to better

optimize coherence traffic, as described in the next

section.

4. Prefetching with Self-Invalidation

Coherence traffic is difficult to optimize using
prefetching alone, because there is a timing component

that is not easily captured by local access information. If

a line is in the exclusive state, prefetching too early will

cause useless traffic and latency if the producer has not

yet performed all of its stores. Also, data protected by

critical sections are difficult to prefetch effectively. When
it is difficult to guarantee successful prefetches, we can

utilize the accurate information provided by the A-stream

about future R-stream accesses to more efficiently

manage operations on shared data. There are a number of

such optimizations that can be implemented using

slipstream. In this paper, we investigate self-invalidation
(SI) [11,12] as a technique to reduce the latency of

coherence misses.

Self-invalidation advises a processor to invalidate its

local copy of a cache line before a conflicting access

occurs. When successful, this reduces invalidation
messages and writeback requests. A subsequent load

from another processor will find the data in memory,

without having to request it from the owning cache. A

subsequent store will acquire an exclusive copy from

memory without having to invalidate copies in other

caches.
We introduce a new type of memory operation called

a transparent load, issued by the A-stream. A transparent

load may return a non-coherent copy of the data from

memory without adding the requester to the sharing list.

Since the request is from an A-stream, the memory

controller adds the requesting node to a future sharer list.
The future sharing information is used to send a self-

invalidation hint to the exclusive owner of the cache line.

This causes the owning cache to write the data back to

memory when its last write is complete, moving the data

closer to the consumers or a new producer.

4.1 Transparent load

A transparent load is designed to prevent the

premature migration of shared data due to an A-stream

prefetch. The A-stream uses transparent loads to satisfy a

read miss if it is one or more sessions ahead of the

corresponding R-stream or when it is inside a critical
section. Under these conditions, it is more likely that an

A-stream may load data before its final value has been

written.

If a transparent load finds the line in the exclusive

state at the memory, the memory sends a transparent

reply, containing its current (possibly stale) copy of the
data without requiring a writeback from the owning

cache. The load is transparent to other processors in the

system, because the requester is not added to the

coherence protocol’s sharing list. This means that the

requester’s copy of the cache line will not be invalidated

due to a store by another processor. Therefore, when the
transparent reply arrives, the line is marked as

“transparent” in the L2 cache. The data is then visible

only to the A-stream, not to the R-stream. This prevents

the R-stream from reading non-coherent data, yet allows

the A-stream to continue making forward progress.

If the line is found in a non-exclusive state (shared or
idle), the transparent load is upgraded to a normal load,

and the requesting node is added to the sharing list. A

normal reply is sent, and the cached data is available to

both the A-stream and the R-stream.

As mentioned earlier, the A-stream issues normal

loads only if it is in the same session with its R-stream
and not within critical sections. In this case, it is

presumed that the prefetch is not premature, because the

synchronization dependency has been respected. Thus, it

is more beneficial to perform a normal load, to retrieve

the data from the owning cache and bring it into the local
cache for the R-stream’s benefit.

4.2 Future sharers and self-invalidation

Transparent loads decrease the penalty due to

premature prefetches of shared data, but they also remove

one of the benefits of prefetching: forcing the producer to
write back its cache line in anticipation of a subsequent

load. We want to enable a timely writeback, one that

moves the data closer to the requesting R-stream but that

does not require the producer to lose ownership until it

has finished with the line. For this purpose, we use A-

stream transparent loads as hints of future sharing
behavior, and we use these hints to implement a

mechanism for SI. Our approach is illustrated in Figure

8.

In the left half of the figure, the memory directory

Transparent load of an exclusive line Transparent load of a non−exclusive line

Directory

4. Inv.2.
Se

lf−
In

v.
 H

in
tBarrier

Directory

Barrier

6.
 E

x.
 C

op
y

+
In

v.
 H

in
t.

3.
W

rit
e

R
eq

.

R−streamR−streamR−stream

2.Trans. R
eply

1.Trans. Load
2.Upg. Reply

1.Trans. Load

5. Ack.

R−stream
A−streamA−streamA−stream A−stream

Figure 8. Slipstream-based self-invalidation.

receives a transparent load request for a line in the

exclusive state (1). The directory sends a transparent

reply to the requester and a self-invalidation hint to the
cache that owns the exclusive copy (2). It adds the

requester to its future sharer list.

In the right half of Figure 8, the directory receives a

transparent load request for a line in the shared or idle

state (1). An upgraded (normal) copy of the cache line is

sent (2), and the requester is recorded both as a sharer and
as a future sharer. Later, when an R-stream sends a read-

exclusive (or upgrade) request for the line (3), the

directory invalidates shared copies (4,5) and includes a

self-invalidation hint with the reply to the requesting R-

stream (6).

The future sharer bit for a node is reset whenever the
cache line is evicted from that node, or when any request

from the R-stream reaches the directory. This allows the

future sharing information to be persistent enough to be

useful for migratory data, which is written by multiple

nodes, yet not so persistent that it fosters many

unnecessary self-invalidations.
Self-invalidation hints are recorded by the owning

cache. Following the heuristic of Lebeck and Wood [12],

lines marked for self-invalidation are processed when the

R-stream reaches a synchronization point. Unlike their

approach, lines are either self-invalidated or just written
back, based on the code in which they were accessed. If a

write access occurs within a critical section, the line is

invalidated (assumed migratory). Otherwise, the line is

just updated in memory, and ownership is downgraded

from exclusive to shared (assumed producer-consumer).

Invalidations are performed asynchronously, overlapped
with barrier or unlock synchronization, and initiated at a

peak rate of one every four cycles. Lai and Falsafi [11]

advocate a more timely self-invalidation, following the

producer’s predicted last touch of the cache line. This

approach can be implemented in slipstream if explicit

access predictions are passed from the A-stream to its R-
stream. We will address that capability in future work.

4.3 Performance of transparent loads and SI

To evaluate the performance of transparent loads and

SI, we focus on the 16-CMP configuration for all

applications except for FFT (4 CMPs). To achieve a
balance between accuracy and having a view of the

distant future, we use one-token global A-R

synchronization. We exclude LU and Water-SP, as these

benchmarks do not have the potential of improving from

slipstream mode due to their small stall time.

Figure 9 shows the percentage of A-stream read
requests issued as transparent loads and the breakdown of

these transparent loads into those that receive a

transparent reply and those that are upgraded. For the

benchmarks tested, 19% to 45% (average 27%) of read

requests initiated by the A-stream are issued as

transparent loads. On average, 59% of transparent loads

receive transparent replies, and the remaining 41% are

upgraded into normal loads.
Figure 10 shows the speedup of slipstream mode over

the best of single and double for three slipstream

configurations. The first slipstream configuration does

only prefetching, as described in the previous section,

using one-token global synchronization. Next,

transparent loads are added, without SI. In some cases
(FFT, MG, and SOR), using transparent loads decreases

performance because of the reduction in prefetching. For

CG, Ocean, SP, and Water-NS, however, the elimination

of premature prefetches results in a 4% increase in

speedup. When transparent loads and SI are combined,
there is an additional speedup of 6% for Ocean, 8% for

SOR, 9% for FFT, 12% for Water-NS, 14% for CG, and

15% for SP. There is 4% less speedup for MG compared

to slipstream with prefetching only. MG has a low per-

centage (about 4%) of premature read requests (A-Only in

Figure 7), which indicates there are few dependency
violations, while about 21% of A-stream requests are

handled transparently when self-invalidation is enabled

(Figure 9). Self-invalidation yields less benefit when

prefetching works well, because prefetching hides more

latency by bringing the line into the consumer’s cache.

The above comparisons considered only one-token
global synchronization, rather than using the method that

CG
FFT

M
G

OCEAN
SOR SP

W
ATER-N

S

0

10

20

30

40

50

%
 r

el
at

iv
e

to
 A

-s
tr

ea
m

re
ad

 r
eq

u
es

ts

 Transparent Replies
 Upgraded Replies

Figure 9. Transparent load breakdown.

CG FFT MG OCEAN SOR SP WATER-NS

0.9

1

1.1

1.2

1.3

1.4

S
p

ee
d

u
p

 r
el

at
iv

e
to

 t
h

e
b

es
t

o
f

S
in

g
le

 a
n

d
 D

o
u

b
le

 m
o

d
es

 Pref. (One-token Global)
 Pref. + Transparent Load
 Pref. + Transparent Load + Self Invalidation

Figure 10. Performance with transparent

loads and SI.

results in the best prefetching-only performance.

Compared to the best prefetching configuration for each

benchmark (from Section 3), SI provides additional
speedup for Water-NS (8%), SP (10%), and CG (11%).

For SOR, FFT and Ocean, SI does not provide a

significant improvement over the best slipstream

prefetching-only method.

5. Related Work

Prefetching is a technique that reduces perceived

memory latency by requesting cache lines before they are

needed by the program. Prefetching may be guided by

hardware prediction tables [3], by the programmer or

compiler [13,16], or by pre-computation [1,2,4,6,14,20,

21,25,28]. Slipstream does not require customized
hardware tables to guide prefetching. Instead, it harnesses

existing processors if increasing the number of parallel

tasks is ineffective. It also does not require major

programming effort, and exploits run-time information

that compilers cannot.

Pre-computation uses helper threads to compute the
addresses of problem loads (loads that frequently miss in

the cache) ahead of the full program [1,2,4,14,20,

21,25,28]. Problem loads are explicitly identified and

targeted, through profiling [21,28] or dynamic

identification mechanisms [5,20]. Then, the computation
slices that generate the addresses of problem loads are

extracted from the full program either manually [28], by

the compiler [14], or by hardware mechanisms [5].

Finally, microarchitectural threads are forked as needed to

remove long latency operations from the critical path of

the program, paying special attention to timely forking
[5]. In contrast, slipstream only requires executing a

redundant copy of each task (A-stream). A processor

running an A-stream does not explicitly pinpoint problem

loads, extract their pre-computation slices, continuously

fork threads, or micro-manage timing. Timing is

managed at a high level, via a one-time choice of A-R
synchronization method. An A-stream “gets ahead”

simply by skipping synchronization and by not

committing shared-memory stores, which does not

generally affect forward progress and address generation

in parallel scientific applications.
The decoupled access/execute (DAE) architecture

[24] decomposes a program into two separate streams. A

memory access stream slips ahead of an execution stream,

and supplies data to it. DAE relies on finding decoupled

instruction streams either at run-time or with the support

of a compiler.
Both DAE and helper threads operate in the context

of sequential programs. Therefore, these forms of pre-

fetching specialize in moving data between a single

processor and main memory. They are not tailored to

coordinating communication among distributed processor

caches. Reducing memory latency in a multiprocessor

setting requires new mechanisms like slipstream’s trans-

parent load for conveying hints among distributed tasks.
Dynamic self-invalidation (DSI) [12] describes two

methods for identifying lines for self-invalidation. One

uses extra coherence states and the other uses version

numbers to remember past conflicts. Past conflicts are

used to infer future conflicts. Lines are self-invalidated at

synchronization points, an aspect this paper borrows
from. Last-touch prediction [11] improves on SI by more

precisely identifying the last touch to a cache line, so that

self-invalidation is done as early as possible. This also

reduces self-invalidation bursts at synchronization points.

However, history-based last-touch prediction may require

large hardware prediction tables because they are indexed
by line address and must accommodate large working set

sizes. DSI [12], last-touch prediction for SI [11], and

other methods for accelerating communication [10,17] all

use history to predict future sharing patterns. Slipstream

execution mode enables the use of program computation

to predict future sharing patterns.
This paper borrows from the slipstream paradigm

[26]. Slipstream in a uniprocessor context targets

different types of programs and overheads than in a

multiprocessor context. In both cases, a persistent

redundant copy of the program or task (respectively) is
utilized, but A-stream creation, shortening, and recovery,

as well as A-stream to R-stream information passing,

differ in fundamental ways due to the different target

architectures.

6. Conclusions and Future Work

Slipstream execution mode in a CMP-based multi-

processor enables the construction of a program-based

view of the future to attack coherence, communication,

and synchronization overheads. Slipstream mode uses the

additional processing power of a CMP node to more

efficiently communicate among parallel tasks, rather than
increase task-level concurrency. In this paper, we have

introduced a method for creating a shortened A-stream by

skipping synchronization and shared memory stores. We

also describe mechanisms for locally synchronizing the

A-stream and R-stream as needed, and for recovering a
deviating A-stream. This basic model allows the A-

stream to run ahead and generate prefetches to shared data

that benefit the R-stream. Slipstream-based prefetching

performs up to 19% better than the best of running one or

two tasks per CMP on systems with 16 CMPs. Slipstream

execution mode requires only moderate, uncomplicated
changes to hardware and software. It is selectively

applied (used only when needed) and does not inhibit

conventional modes of execution.

We also introduce the concept of a transparent load,

which allows the A-stream to make correct forward

progress while minimizing premature migration of

exclusively owned cache lines. Transparent loads are also

used as hints of future sharing behavior, and we describe
a form of self-invalidation that exploits these hints. When

transparent loads and SI are added to prefetching,

slipstream mode is up to 29% faster than the best of

running one or two tasks per CMP.

One of our future goals is to create development and

run-time environments that allow users to choose the best
mode to efficiently utilize system resources. We are also

interested in extending the analysis to recommend an A-R

synchronization scheme for a given program, or varying

the scheme dynamically during program execution.

For the slipstream-based optimizations presented in

this paper, information from the A-stream is conveyed to
the R-stream through the shared L2 cache and indirectly

through memory directories. Further optimizations are

possible if the A-stream is able to pass more explicit

information about patterns of access to shared data. We

view slipstream as a unifying prediction methodology that

can address many optimizations. In future work, we will
complete the design of an efficient mechanism to

explicitly convey access pattern information from the A-

stream to the R-stream, and we will apply that mechanism

to a variety of multiprocessor optimizations.

7. References

[1] M. Annavaram, J. Patel, and E. Davidson. “Data

Prefetching by Dependence Graph Precomputation,” 28th

Int'l Symp. on Computer Architecture, July 2001.

[2] R. Balasubramonian, S. Dwarkadas, and D. H. Albonesi.

“Dynamically Allocating Processor Resources Between

Nearby and Distant ILP,” 28th Int'l Symp. on Computer

Architecture, July 2001.

[3] T.-F. Chen and J.-L. Baer. “Effective Hardware-Based Data

Prefetching for High-Performance Processors,” IEEE

Transactions on Computers, 44(5), 1995.

[4] J. Collins, et al. “Speculative Precomputation: Long-range

Prefetching of Delinquent Loads,” 28th Int'l Symp. on

Computer Architecture, July 2001.

[5] J. Collins, et al. “Dynamic Speculative Precomputation,”

34th Int’l Symp. on Microarchitecture, Dec. 2001.

[6] J. Dundas and T. Mudge. “Improving Data Cache

Performance by Pre-executing Instructions Under a Cache

Miss,” Int’l Conference on Supercomputing, July 1997.

[7] S. Herrod, et al. The SimOS Simulation Environment.

http://simos.stanford.edu/userguide/, Feb. 1998.

[8] K. Z. Ibrahim and G. T. Byrd. “On the Exploitation of

Value Prediction and Producer Identification to Reduce

Barrier Synchronization Time,” Int’l Parallel and

Distributed Processing Symp., April 2001.

[9] J. Kahle. “Power4: A Dual-CPU Processor Chip,”

Microprocessor Forum, Oct. 1999.

[10] S. Kaxiras and J. R. Goodman. “Improving CC-NUMA

Performance Using Instruction-Based Prediction,” 5th Int’l

Symp. On High-Performance Computer Architecture, Jan.

1999.

[11] A. Lai and B. Falsafi. “Selective, Accurate, and Timely

Self-Invalidation Using Last-Touch Prediction,” 27th Int’l

Symp. on Computer Architecture, June 2000.

[12] A. R. Lebeck and D. A. Wood. “Dynamic Self-

Invalidation: Reducing Coherence Overhead in Shared

Memory Multiprocessors,” 22nd Int’l Symp. on Computer

Architecture, June 1995.

[13] C.-K. Luk and T. C. Mowry. “Compiler-Based Prefetching

for Recursive Data Structures,” 7th Int’l Conf. on Arch.

Support for Prog. Lang. and Operating Systems, Oct. 1996.

[14] C.-K. Luk. “Tolerating Memory Latency through Software-

Controlled Pre-Execution in Simultaneous Multithreading

Processors,” 28th Int'l Symp. on Computer Architecture,

June 2001.

[15] E. Lusk, et al. Portable Programs for Parallel Processors.

Holt, Rinehart and Winston, New York. 1987.

[16] T. C. Mowry and A. Gupta. “Tolerating Latency through

Software-Controlled Prefetching in Shared-Memory

Multiprocessors,” Journal of Parallel and Distributed

Processing, 12(2), June 1991.

[17] S. S. Mukherjee and M. D. Hill. “Using Prediction to

Accelerate Coherence Protocols,” 25th Int’l Symp. on

Computer Architecture, June 1998.

[18] K. Olukotun, et al. “The Case for a Single-Chip

Multiprocessor,” 7th Int'l Conf. on Arch. Support for Prog.

Lang. and Operating Systems, Oct. 1996.

[19] M. Rosenblum, E. Bugnion, S. Devine, and S. Herrod.

“Using the SimOS Machine Simulator to Study Complex

Computer Systems,” ACM Trans. on Modeling and

Computer Simulation, 7(1), Jan. 1997.

[20] A. Roth, A. Moshovos, and G. S. Sohi. “Dependence-

Based Prefetching for Linked Data Structures,” 8th Int’l

Conf. on Arch. Support for Prog. Lang. and Op. Systems,

Oct. 1998.

[21] A. Roth and G. S. Sohi. “Speculative Data-Driven

Multithreading,” 7th Int’l Conf. on High-Performance

Computer Architecture, Jan. 2001.

[22] T. Sato, K. Ohno, and H. Nakashima. “A Mechanism for

Speculative Memory Access following Synchronization

Operations,” 14th Int’l Parallel and Distributed Processing

Symp., April 2000.

[23] Silicon Graphics, Inc. SGI 3000 Family Reference Guide,

http://www.sgi.com/origin/3000/3000_ref.pdf, 2000.

[24] J. Smith. “Decoupled Access/Execute Computer Arch-

itecture,” 9th Int’l Symp. on Computer Architecture, July

1982.

[25] Y. H. Song and M. Dubois. “Assisted Execution,” Tech.

Report CENG-98-25, Department of EE Systems,

University of Southern California, Oct. 1998.

[26] K. Sundaramoorthy, Z. Purser, and E. Rotenberg.

“Slipstream Processors: Improving both Performance and

Fault Tolerance,” 9th Int’l Conf. on Arch. Support for Prog.

Lang. and Operating Systems, Nov. 2000.

[27] S. Woo, et al. “The SPLASH-2 Programs: Characterization

and Methodological Considerations,” 22nd Int’l Symp. on

Computer Architecture, June 1995.

[28] C. Zilles and G. Sohi. “Execution-based Prediction Using

Speculative Slices,” 28th Int'l Symp. on Computer

Architecture, July 2001.

[29] http://www.nas.nasa.gov/NAS/NPB/

