
  

  

Abstract 

Scalability of applications on distributed shared-
memory (DSM) multiprocessors is limited by 

communication overheads.  At some point, using more 

processors to increase parallelism yields diminishing 
returns or even degrades performance.  When increasing 

concurrency is futile, we propose an additional mode of 

execution, called slipstream mode, that instead enlists 

extra processors to assist parallel tasks by reducing 

perceived overheads. 

We consider DSM multiprocessors built from dual-
processor chip multiprocessor (CMP) nodes with shared 

L2 cache.  A task is allocated on one processor of each 
CMP node.  The other processor of each node executes a 

reduced version of the same task.  The reduced version 

skips shared-memory stores and synchronization, running 

ahead of the true task. Even with the skipped operations, 

the reduced task makes accurate forward progress and 

generates an accurate reference stream, because 
branches and addresses depend primarily on private data.   

Slipstream execution mode yields two benefits.  First, 
the reduced task prefetches data on behalf of the true 

task.  Second, reduced tasks provide a detailed picture of 

future reference behavior, enabling a number of 

optimizations aimed at accelerating coherence events, 

e.g., self-invalidation.  For multiprocessor systems with 
up to 16 CMP nodes, slipstream mode outperforms 

running one or two conventional tasks per CMP in 7 out 

of 9 parallel scientific benchmarks. Slipstream mode is 

12-19% faster with prefetching only and up to 29% faster 

with self-invalidation enabled.  

1. Introduction 

Scalability for many parallel programs is limited by 

communication and synchronization overheads.  A 

performance threshold is reached (for a fixed problem 

size), and applying more processors results in little or no 

speedup.  The only means for moving beyond this 
threshold is to increase efficiency – to identify and 

remove bottlenecks and overheads and more effectively 

use the parallel computing resources.   

In this paper, we consider the use of a dual-processor 

chip multiprocessor (CMP) [9,18] as the building block of 
a distributed shared memory multiprocessor.  A conven-

tional way to use such a machine is to assign a parallel 

task to each processor.  As we approach the performance 

threshold, however, increasing concurrency does not help.  

Figure 1 shows the relative performance of assigning two 
tasks per CMP, compared to assigning only a single task, 

leaving one processor idle.  Applying the additional 

processing power in the “traditional” way – that is, by 

increasing the task-level parallelism – does not 

necessarily result in large performance gains, especially 

as the number of CMPs increases.  In fact, for some 
applications, performance degrades when using both 

processors for parallel tasks.  In such a situation, we 

propose using the second processor to reduce overhead 

and improve the efficiency of execution, rather than to 

increase concurrency.  Instead of running a separate 

parallel task, the second processor runs a reduced version 
of the original task.  The reduced task constructs an 

accurate view of future memory accesses, which is used 

to optimize memory requests and coherence actions for 

the original task.  The resulting gains in efficiency can 

result in better performance than using the two processors 
for increased parallelism. 

This approach is analogous to the uniprocessor 

slipstream paradigm, which uses redundant execution to 

speed up sequential programs [26]. A slipstream 
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Figure 1.  Speedup of two tasks per CMP (double 
mode) vs. one task per CMP (single mode). 



  

  

processor runs two redundant copies of a program on a 

dual-processor CMP.  A significant number of dynamic 

instructions are speculatively removed from one of the 
program copies, without sacrificing its ability to make 

correct forward progress.  In this way, the speculative 

reduced program (called the A-stream, or advanced 

stream) runs ahead of the unreduced program (called the 

R-stream, or redundant stream).  The R-stream exploits 

the A-stream to get an accurate picture of the future.  For 
example, the A-stream provides very accurate branch and 

value predictions.  The predictions are more accurate than 

predictions made by conventional history-based 

predictors because they are produced by future program 

computation.  The speculative A-stream occasionally (but 

infrequently) goes astray.  The R-stream serves as a 
checker of the speculative A-stream and redirects it when 

needed.  

In the multiprocessor setting, we do not need to 

remove a large number of dynamic instructions.  We find 

that simply removing certain long-latency events – 

synchronization events and stores to shared memory – 
shortens the A-stream version of a task enough to provide 

timely and accurate predictions of memory accesses for 

the original R-stream task.  This simple use of redundant 

computation requires very little hardware support; it is a 

new mode of execution for multiprocessor systems, rather 
than a new architecture. 

Figure 2 illustrates three different modes of con-

current execution for a system with n CMPs: double, 

single, and slipstream. 

(a) In double mode, two parallel tasks are assigned 

to each CMP, one per processor, for a total of 2n tasks.  
This is the conventional execution model, maximizing the 

amount of concurrency applied to the program. 

(b) In single mode, only one task is assigned to each 

CMP.  One processor runs the task, while the other 

processor is idle.  As shown in Figure 1, this can result in 

better performance than double mode when the scalability 
limit is approached.  A single task means no contention 

for  L2 cache and network resources on the CMP node.  

Also, fewer tasks means larger-grained tasks, which 

improves the computation-to-communication ratio. 

(c) In slipstream mode, two copies of the same task 
are created on each CMP, for a total of n task pairs.  One 

processor runs the reduced task, or A-stream (short 

arrow), and the other runs the full task, or R-stream (long 

arrow).  The A-stream gets ahead of its R-stream by 

skipping synchronization events and stores to shared 

memory.  Since it runs ahead, the A-stream generates 
loads to shared data before they are referenced by the R-

stream, prefetching shared data and reducing memory 

latencies for the R-stream.   

With some additional support in the memory 

subsystem, A-stream accesses can also be used at the 

directory as hints of future sharing behavior.  These hints 

can be used for coherence optimizations, such as self-

invalidation (SI) [12].  To support SI, we introduce the 

notion of a transparent load to minimize negative effects 

of A-stream prefetches on coherence traffic.  A 
transparent load, issued by the A-stream, does not cause 

the exclusive owner of a cache line to give up ownership 

prematurely.  The load serves as an indication of future 

sharing behavior, and the memory controller uses this 

information to send invalidation hints to the exclusive 

owner of a cache line.  The owner is advised to write back 
or invalidate its copy of the cache line when its last store 

is complete, so that future reads from other processors 

will find the most recent data in memory. 

Using these two optimizations (prefetching and self-

invalidation), slipstream improves performance for 
applications that have reached their scalability limit.  In 

seven out of nine benchmarks, slipstream mode is faster 

than both single and double mode on systems with up to 

16 CMPs.  Slipstream mode performs 12-29% better than 

the next best mode (single or double).  Because it is 

simply a mode of execution, slipstream can be enabled or 
disabled, according to the needs of particular applications 

or critical application kernels.  It offers a new opportunity 

for programmer-directed optimization. 

Prefetching and SI are only the beginning, however.  

Slipstream mode enables a number of additional 

optimizations that benefit from accurate, dynamic 
prediction of memory accesses.  Examples include barrier 

speculation [22] and migratory sharing optimizations 

[10].  Program-based prediction is potentially more 

accurate than history-based predictors and prefetchers, 

does not require custom auxiliary hardware tables, and 
does not require detailed programmer or compiler 

analysis. Slipstream-mode execution is a general 

program-based prediction mechanism that can enable 
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(a)  Double-mode execution. 
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(b)  Single-mode execution. 
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(c)  Slipstream-mode execution. 

Figure 2.  Execution modes for CMP-based 

multiprocessors. 



  

  

multiple optimization strategies to be applied selectively 

and simultaneously, extending the scalability of programs 

with minimum programmer involvement. 
In Section 2, we describe the simulation framework 

and methodology used for the performance studies in later 

sections.  Section 3 describes the basic slipstream mode, 

including the mechanisms for shortening the A-stream, 

correcting A-stream deviations, and managing local 

synchronization between the A-stream and R-stream.  
This basic mode allows prefetching of shared data based 

on program execution.  Section 4 extends slipstream 

mode to include transparent loads and self-invalidations.  

Related work is discussed in Section 5, and Section 6 

outlines areas for future investigation. 

2. Base Architecture and Simulation 

Methodology 

To explore the performance of slipstream execution 

mode, we simulate a CMP-based multiprocessor. Each 

processing node consists of a CMP and a portion of the 

globally-shared memory.  The CMP includes two 

processors.  Each processor has its own L1 data and 
instruction caches.  The two processors access a common 

unified L2 cache. System-wide coherence of the L2 

caches is maintained by an invalidate-based fully-mapped 

directory protocol.  The processor interconnect is modeled 

as a fixed-delay network.  Contention is modeled at the 
network inputs and outputs, and at the memory controller. 

The system is simulated using SimOS [7,19], with 

IRIX 5.3 and a MIPSY-based CMP model.  Table 1 

shows the memory and network latency parameters, 

which are chosen to approximate the Origin 3000 memory 

system [23].  The minimum latency to bring data into the 
L2 cache on a remote miss is 290 cycles, assuming no 

contention.  A local miss requires 170 cycles.  We 

modified the SimOS L2 cache module to support CMP 

nodes.  The shared L2 cache manages coherence between 

its L1 caches and also merges their requests when 

appropriate. 
Nine benchmarks and their data sizes are shown in 

Table 2, representing kernels of scientific and engineering 

applications.  CG, MG, and SP are shared memory 

versions of benchmarks from the NAS Parallel 

Benchmarks [29]. Except for SOR, the others are taken 
from Splash-2 [27].   

3. Using Slipstream Mode for Prefetching 

In this section, we describe the most basic use of 

slipstream mode, in which the A-stream and the R-stream 

communicate only through their shared L2 cache and 
through a simple local synchronization mechanism.  The 

A-stream acts as a prefetch engine for the R-stream, pre-

loading shared data into the L2 cache.  Using slipstream 

mode for prefetching requires no changes to the memory 

subsystem or to the coherence protocol.   

Section 3.1 describes basic slipstream operation.  The 
A-stream is forked as a copy of the R-stream.  By 

skipping synchronization events and stores to shared data, 

the A-stream runs ahead of the R-stream and prefetches 

shared data.  The reduction of the A-stream is speculative 

and may lead to erroneous computations.  We present 

evidence, however, that errors in local computation have 
minimal effect on the control flow and shared memory 

address calculations of the A-stream, so its predictions 

remain accurate.   

Section 3.2 describes a loose, local synchronization 

mechanism, called A-R synchronization, that constrains 
how far an A-stream may run ahead of its corresponding 

R-stream.  The R-stream also checks for significant 

deviations in the A-stream’s control flow at A-R 

synchronization points and restarts the A-stream, if 

necessary.  Section 3.3 discusses the interaction between 

A-R synchronization and prefetching.  Running far ahead 
hides longer latencies, but it also increases the chance of 

premature migration of data.  Section 3.4 discusses the 

performance of slipstream prefetching. 

3.1 Basic slipstream operation 

To enable the use of slipstream mode, the 
programmer selects slipstream-aware parallel libraries 

that control task creation, synchronization, and so forth.  

At run time, if the application user chooses slipstream 

mode, then the slipstream library routine creates two 

copies of each task, and assigns one copy to each of the 

processors on a CMP.  Just as in double mode (with 
separate parallel tasks), each task has its own private data, 

Table 1:  SimOS machine parameters. 
CPU: MIPSY-based CMP model, 1 GHz 

L1 Caches (I/D):  
32 KB, 2-way assoc., 1-cycle hit 

L2 Cache (unified):  
1 MB**, 4-way assoc., 10-cycle hit 

Memory (cycles)  Description 

BusTime: 30  transit, L2 to directory controller (DC) 

PILocalDCTime: 60   occupancy of DC on local miss 
PIRemoteDCTime: 10   occupancy of local DC on outgoing miss 

NIRemoteDCTime: 10  occupancy of local DC on incoming miss 

NILocalDCTime: 60 occupancy of remote DC on remote miss 
NetTime: 50 transit, interconnection network 

MemTime: 50 latency, for DC to local memory 

**  A 128-KB cache is used for Water to match its small working set. 

Table 2: Benchmarks and data set sizes. 
Application Size 

FFT 

Ocean 

Water-NS (n-squared) 
Water-SP (spatial) 

SOR 

LU 
CG 

MG 

SP 

64K complex double 

258×258 

512 molecules 
512 molecules 

1024×1024 

512×512 
1400 

32×32×32 

16×16×16 

 



  

  

but shared data are not replicated. 

Each A-stream task must be shortened.  An effective 

approach to reducing an A-stream is to remove its long-
latency communication events.  In shared memory 

multiprocessors, these are synchronizations (barriers, 

locks, and events) and accesses to shared memory (loads 

and stores).  Two of these, synchronization and shared 

memory stores, can be skipped for many programs 

without affecting the control flow or the A-stream’s 
ability to predict access patterns for shared data.  

In order to skip synchronizations, the system-

provided routines for barriers, locks, and events (for 

example, the ANL macros [15] used by the Splash-2 

benchmarks) are modified to support tasks running in 

slipstream mode.  The A-stream tasks do not perform the 
synchronization routine, but the R-stream tasks execute 

them normally. 

Synchronization is used to define dependencies in 

accessing shared variables.  Skipping these routines 

makes the A-stream speculative, since we cannot 

guarantee that the dependencies imposed by the 
synchronization will be met.  We prevent the propagation 

of speculative values produced by the A-stream by 

discarding stores to shared memory.  (The store 

instruction is executed in the processor pipeline, but it is 

not committed.)  The R-streams throughout the system are 
not corrupted by erroneous A-stream values, because 

local changes to shared variables are never stored and 

never made visible to the other tasks.  This shortens the 

A-stream further, since shared memory stores might 

otherwise incur long latencies due to invalidation requests 

and acknowledgements.   
The shared data loaded by the A-stream may be 

incorrect, if the load occurs before the producing task has 

stored the final value.  In the original program, this 

dependency is enforced through synchronization.  Even 

though the A-stream brings this data into the shared L2 

cache prematurely, it will not affect the R-stream’s 
correctness, because the R-stream will observe the 

synchronization before consuming the data.  If the 

producer changes the data before the synchronization, the 

copy loaded by the A-stream is invalidated through the 

normal coherence mechanism, and the R-stream will 
retrieve the correct value when needed.   

Since the role of the A-stream is to collect access 

information and to prefetch shared data, we must be 

confident that using speculative data does not 

significantly affect control flow or address generation.  

Otherwise, the access patterns predicted by the A-stream 
will be inaccurate, and we may add to the memory traffic 

of the system by loading values that are unnecessary. 

Fortunately, many parallel programs are written in 

the SPMD (Single Program, Multiple Data) style, in 

which each task executes the same code but accesses 

different portions of the shared data.  These programs rely 

mostly on local variables for address computation and 

control flow determination.  A unique task ID identifies 

the portion of the shared data accessed by each task.  
Barriers identify phases of execution and guarantee no 

inter-phase dependency violations.  Parallel scientific 

numerical algorithms are good examples of this class of 

applications.  

If shared variables do significantly impact control 

flow, then the A-stream’s execution may diverge from the 
R-stream’s.  If they impact address generation, then the 

cache lines prefetched by the A-stream may be of no use 

to the R-stream.  In either case, the A-stream is not 

beneficial to the R-stream, because its program-based 

predictions are inaccurate.  We have identified only three 

types of shared variables that typically affect control flow 
or address generation: 

• Synchronization variables affect control flow, 

because they grant or deny access to regions of code.  

Variables that are referenced inside system-provided 

synchronization routines are no problem, because those 
routines are modified to skip references to the variables 

for the A-stream task.  A user-defined synchronization 

variable, such as a simple flag variable, may cause a local 

divergence in control flow, because the A-stream might 

wait on the variable, while the R-stream might not.  This 

divergence is only temporary, however.  The A-stream 
may be prevented from moving far ahead of the R-stream, 

but the accuracy of its data accesses is not likely to be 

affected. 

• Reduction variables, used to compute global 

values such as the minimum or maximum of a set of data, 

may affect control flow.  For example, a comparison 
between the task’s local minimum and the global (shared) 

minimum determines whether the task should perform a 

store to the global minimum.  The effect on control flow 

is localized and does not cause a divergence of the A-

stream and R-stream.   

• Dynamic scheduling relies on shared information 

to make a decision about which task or sub-task to 

execute next.  These decisions are time-dependent, so it is 

likely that the A-stream would make a different decision, 

and access different data, than the R-stream that comes 

later.  Dynamic scheduling can be accommodated in 
slipstream mode.  If the scheduling code is identified, the 

A-stream may skip the code and wait for the R-stream to 

catch up (using the A-R synchronization mechanisms 

described below).  Once a scheduling decision is made by 

the R-stream, the A-stream will again run ahead and 

collect data access information.   

3.2 A-R synchronization and recovery 

Synchronization between an R-stream and its 

corresponding A-stream is required for two reasons.  

First, we must correct an A-stream that has taken a 



  

  

completely wrong control path and is generating useless 

data access predictions.  Second, we want to limit how far 

the A-stream gets ahead, so that its prefetches are not 

issued so early that the prefetched lines are often replaced 
or invalidated in the L2 cache before the R-stream uses 

them. 

We couple the A-R synchronization mechanism to 

the barrier and event-wait synchronizations specified in 

the program.  These events typically represent transitions 

between phases of computation, so they are natural points 
at which to manage the interaction between the two 

streams.  Furthermore, the library routines that implement 

these synchronization constructs already require 

modification in order to allow the A-stream to skip them.  

Now we modify them a bit further: when the A-stream 
reaches a barrier or event-wait, it either skips the 

synchronization or it waits for its local R-stream to give 

permission to continue.  We define a session as a 

sequence of instructions that ends with a barrier or event-

wait.  One of the parameters that will be controlled by the 

A-R synchronization mechanism is the number of 
sessions that the A-stream is allowed to run ahead of the 

R-stream. 

We require a single semaphore between each A-

stream/R-stream pair to control their synchronization.  For 

our experiments, we have assumed a shared hardware 

register, but any shared location that supports an atomic 
read-modify-write operation is sufficient.  Using this 

semaphore, we control (a) how many synchronization 

events the A-stream can skip without waiting for the R-

stream, and (b) whether the synchronization is local 

(involving only the companion R-stream) or global 
(involving all R-streams). 

The initial value of the semaphore indicates how 

many sessions the A-stream may proceed ahead of the R-

stream.  This can be viewed as creating an initial pool of 

tokens that are consumed as the A-stream enters a new 

session (Figure 3).  When there are no tokens, the A-
stream may not proceed.  The R-stream issues tokens by 

incrementing the semaphore counter. 

Two different types of synchronization – local and 

global – are enabled by controlling when the R-stream 

inserts a new token.  If the R-stream inserts a token as it 

enters the barrier or wait routine, then the continued 

progress of the A-stream depends only on its local R-

stream.  If the R-stream inserts a token as it leaves the 

barrier or wait routine, then the continued progress of the 
A-stream depends on all of the R-streams participating in 

the synchronization.   

The A-R synchronization points are also used to 

check for a deviating A-stream – that is, one that has 

taken a significantly different control path than the correct 

path, represented by the R-stream.  The checking is very 
simple: if the R-stream reaches the end of a session before 

the A-stream, we assume the A-stream has deviated.  This 

is a software-only check, and it does not include any 

notion of whether the data access predictions from the A-

stream have been accurate or not. 

The recovery mechanism is equally simple: the R-
stream kills the A-stream task and forks a new one.  This 

may be expensive, depending on the task creation model.  

In our experience, however, the benchmarks used do not 

require recovery, as they do not diverge.   

Finally, there is one other need for synchronization 

between the A-stream and R-stream.  Some global 
operations, such as system calls, I/O, and shared memory 

allocations, must only be performed once, since they 

impact global system state.  Except for input operations, 

the A-stream skips these operations.  For input, the A-

stream synchronizes using a local semaphore, similar to 
the one described above.  After the operation is completed 

by the R-stream, its return value is passed to the A-stream 

through a shared memory location.  This implies the need 

for a slipstream-aware system library.     

3.3 Slipstream-based prefetching 

A natural consequence of executing in slipstream 

mode is that the A-stream will prefetch shared data for the 

R-stream.  Because the A-stream is executing the same 

task, it calculates the same addresses for shared data, and 

it loads that data before the R-stream.  If the data is still 

valid when the R-stream reaches its load (i.e., not evicted 
or invalidated), then the R-stream will hit in the shared L2 

cache. 

For coherence misses, prefetching is more likely to 

be effective when the A-stream is in the same session as 

the R-stream.  In this case, loads from the A-stream will 

not violate dependencies imposed by synchronization.  If 
the A-stream loads a line that is in the exclusive state, it 

retrieves the data from the owning cache and places it in 

the local L2 cache.  Since this is a more expensive 

operation than a simple fetch from memory, the latency 

reduction seen by the R-stream is significant. 

If the A-stream is in a different session, it has skipped 
one or more synchronizations, so its load may occur 

before the final store by the producer’s R-stream.  The 

premature load forces a loss of exclusive ownership by 

the producer’s cache.  This may degrade performance, 

 i th barrier 

 n Initial tokens 

Time 

. 

. 

. 

R-stream 

Local: New token is inserted by R-stream 
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Token bucket Token bucket 

Global: New token is inserted by R-stream 
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Figure 3.  A-R synchronization. 



  

  

because the producer must again acquire exclusive 

ownership to complete its stores.  Furthermore, this 

invalidates the copy that was fetched by the A-stream, so 

the R-stream does not benefit.  The same behavior can 
happen within the same session due to false sharing, 

where conflicting (unsynchronized) loads and stores may 

occur to different words in the same cache line. 

The A-stream task converts some skipped stores into 

exclusive prefetches, if it is in the same session as the R-

stream and is not in a critical section.  The prefetch is 
likely to be effective, because the R-stream should be the 

only producer for that session.  If the A-stream is not in 

the same session, or is in a critical section, then an 

exclusive prefetch is more likely to conflict with R-stream 

accesses from the earlier session (or critical section).  For 
this reason, the store is simply skipped. 

Because of the time-sensitive nature of prefetching, 

the choice of A-R synchronization model has a significant 

impact on its effectiveness.  Global synchronization, with 

zero initial tokens, prevents the A-stream from entering 

the next session until all participating R-streams reach the 
barrier/event.  Thus, A-stream loads will not occur until 

all producing R-streams for this session have finished 

writing.  This reduces the number of premature 

prefetches, but it also reduces the opportunity to prefetch 

early enough to fully hide the latency from the R-stream.  

For applications with significant producer-consumer 
dependencies, this will likely be the best approach.  Local 

synchronization allows the A-stream to move further 

ahead, subject to the number of allocated tokens.  This 

more aggressive strategy will be useful for applications in 

which there is little actual sharing, and therefore few 
conflicting accesses.   

3.4 Performance of slipstream-based prefetching  

The performance measure for the remainder of the 

paper will be speedup relative to single-mode execution 

(one task per CMP), because we are most interested in the 

region in which increasing concurrency is not an effective 

way to increase performance.  Performance relative to 

single mode will easily show whether increasing 
concurrency (double mode) or increasing efficiency 

(slipstream mode) is more effective.  But first we 

characterize the scalability of single-mode execution for 

our benchmarks.   

Figure 4 shows the speedup for single mode over 

sequential execution for our nine benchmarks on 2, 4, 8, 
and 16 CMPs.  There are three groups of benchmarks: 

those that continue to scale up to 16 tasks (Water-SP, LU, 

SOR), those that show signs of diminishing speedup 

(Water-NS, Ocean, MG, CG, SP), and one that shows 

decreasing performance (FFT).  We expect slipstream 

mode to provide minimal benefit for the first group, since 
increasing concurrency will likely continue to improve 

performance at 16 CMPs.  The second and third groups, 

however, may benefit more from slipstream mode than 

from doubling the number of tasks.  Because of FFT’s 

degrading single-mode performance, we will later only 

compare slipstream-mode performance at 4 CMPs or 
fewer. 

Figure 5 shows the speedup of slipstream and double 

modes over single-mode execution.  (To improve 

readability, double mode is shown only for 8 and 16 

CMPs.)  For slipstream mode, four different types of A-R 
synchronization are shown: (1) one-token local (L1), 

which allows the A-stream to enter the next session when 

its R-stream enters the previous synchronization event; 

(2) zero-token local (L0), which allows the A-stream to 

enter the next session when its R-stream enters the same 

synchronization event; (3) zero-token global (G0), which 
allows the A-stream to enter the next session when its R-

stream exits the same synchronization event; (4) one-

token global (G1), which allows the A-stream to enter the 

next session when its R-stream exits the previous 

synchronization event.  

Consider the first group of benchmarks (LU, Water-
SP, and SOR), which show reasonable scalability.  While 

slipstream shows some improvement over single for LU 

and Water-SP, it is much less effective than double for 

these configurations.  In other words, there is still a 

significant amount of concurrency available at 16 CMPs, 
so slipstream mode is not the best choice.  SOR, on the 

other hand, has apparently reached its scalability limit for 

this problem size, since double provides no benefit over 

single.  Slipstream mode, however, performs 14% better 

than single mode. For the remaining benchmarks, 

slipstream mode outperforms the best of single and 
double, beginning at four (FFT), eight (Ocean, SP), or 16 

CMPs (CG, MG, SOR, Water-NS).  At 16 CMPs, the 

performance improvement over the next best mode ranges 

from 12% (Ocean, MG) to 19% (Water-NS).  For FFT, 

slipstream mode performs 14% better for 4 CMPs; further 

comparison is not shown because the absolute 
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Figure 4. Speedup of single mode. 



  

  

performance of FFT degrades for this data set at 8 CMPs 

and higher. 

There is no consistent winner among the four A-R 

synchronization methods.  In the seven benchmarks where 

slipstream mode delivers better performance, four 

benchmarks favor one-token local (FFT, Water-NS, MG, 
and SOR), two applications favor zero-token global 

(Ocean and SP), and one application favors zero-token 

local (CG). 

Figure 6 shows the average execution time break-

down for single, double, and slipstream modes on a 16-

CMP system.  For slipstream mode, the time breakdown 
is shown for both the R-stream and the A-stream tasks, 

using the best-performing A-R synchronization method 

for each benchmark.  Execution time is plotted relative to 

single mode.  The time categories are busy cycles, 

memory stalls, and three kinds of synchronization waits: 

barrier, lock, and A-R synchronization. Reduction in stall 

time contributes to most of the gain achieved by 
slipstream mode.  LU and Water-SP show little stall time 

(<8%) for single mode, which explains why slipstream 

does not help these applications. For SP and MG, 

slipstream mode decreases barrier time, because it reduces 

the imbalance due to variability of memory access latency 

between barriers.  A-R synchronization time is an 
indication of how much the A-stream is shortened, 

2 4 6 8 10 12 14 16
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

2 4 6 8 10 12 14 16
0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

2 4 6 8 10 12 14 16
0.8

0.9

1.0

1.1

1.2

2 4 6 8 10 12 14 16
0.7

0.8

0.9

1.0

1.1

1.2

2 4 6 8 10 12 14 16
0.7

0.8

0.9

1.0

1.1

1.2

2 4 6 8 10 12 14 16
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

2 4 6 8 10 12 14 16
0.9

1.0

1.1

1.2

1.3

1.4

1.5

2 4 6 8 10 12 14 16
0.9

1.0

1.1

1.2

1.3

2 4 6 8 10 12 14 16

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9MG SOROCEAN

FFT

SP

LU

WATER-NS

CG

 Single
 Double
 One-token Local
 Zero-token Local
 One-token Global
 Zero-token Global

WATER-SP
 

Figure 5. Speedup of slipstream and double modes, relative to single mode. 
For slipstream mode, four different types of A-R synchronization are shown. 

S D R A S D R A S D R A S D R A S D R A S D R A S D R A S D R A S D R A

0

20

40

60

80

100

120

140 S: Single      D: Double
R: R-stream    A: A-stream

 

E
xe

cu
ti

o
n

 T
im

e 
b

re
ak

d
o

w
n

re
la

ti
ve

 t
o

 S
in

g
le

 Busy  Stall  A-R Sync  Barrier  Lock

CG
FFT LU

M
G

OCEAN
SOR SP

W
ATER-N

S

W
ATER-S

P

 

 
Figure 6. Execution time breakdown for single (S), double (D), and slipstream modes (A ,R),   

relative to single mode.  The best A-R synchronization method is used for slipstream mode. 



  

  

relative to the R-stream.  If the A-stream is far ahead, then 

it will often wait for the R-stream to end its current 

session. 
Figure 7 shows the breakdown of shared data 

memory requests for slipstream mode with different 

synchronization methods.  Shared memory requests 

generated by the A-stream are divided into three 

categories.  An A-Timely request brings data into the L2 

cache that is later referenced by the R-stream.  For A-
Late, the same data is referenced by the R-stream before 

the A-stream request is satisfied.  If data fetched by the A-

stream is evicted or invalidated without being referenced 

by the R-stream, the reference is labeled as A-Only.  The 

A-Only component is considered harmful, as it reflects an 

unnecessary increase in network traffic and may slow 
down applications due to unneeded data migration.  

Memory requests by the R-stream are divided into similar 

categories: R-Timely, R-Late and R-Only. The top graph 

in Figure 7 shows the breakdown for read requests, and 

the lower graph shows the breakdown for exclusive 

requests.  Exclusive requests by the A-stream are due to 
converting some shared stores into prefetches.   

The request breakdowns highlight the differences 

between tight and loose A-R synchronization.  Zero-token 

global (G0) is the tightest synchronization model, and 

one-token local (L1) is the loosest. 
Zero-token global exhibits the lowest fraction of A-

Timely read requests (22% on average), because the A-

stream is not allowed to run very far ahead of the R-

stream.  This is also reflected in the high rate of A-Late 

requests (27% for reads, 7% for exclusive).  On the other 

hand, it has the largest fraction of A-Timely exclusive 
requests (43%).  The reason is that stores are converted to 

exclusive prefetches when the A-stream is in the same 

session as the R-stream; this is more often the case with 

tight A-R synchronization.   

One-token local, the loosest synchronization, has the 

highest rate of A-Timely read requests (54% on average), 

a low fraction of A-Late requests (4% reads, 1% 
exclusive), and the lowest rate of A-Timely exclusive 

requests (17%).  Because the A-stream is allowed to run 

very far ahead of the R-stream, its read requests are more 

likely to be satisfied before the R-stream needs the data.  

But it is less likely to be in the same session as the R-

stream, so the opportunity for exclusive prefetching is 
lower.  This also results in the highest fraction of 

premature (A-Only) read requests (16% on average). 

Each synchronization method has its good and bad 

attributes, and the resulting performance is application-

dependent. For example, Ocean benefits more from tight 

synchronization (zero-token global), as it has negligible 
premature read requests (A-Only) compared with other 

synchronizations.  The A-stream also provides a higher 

rate of successful (A-Timely) exclusive requests.  FFT 

favors loose synchronization (one-token local), as it 

provides more timely read requests than other methods, 

and nearly as many timely exclusive requests. 
R-stream requests to memory are the result of lines 

that are invalidated or evicted, and lines that are not 

referenced at all by the A-stream.  While R-Timely, R-

Late, and R-Only components do not directly reflect 

performance, they complete the view of how much 
correlation exists between the shared data referenced by 

both streams.  The highest correlation (reflected by small 

R-only and A-only components) is associated with 

tightest synchronization, zero-token global – in this case, 

98% of read requests and 77% of the exclusive requests 

are for data that is referenced by both streams. 
To summarize, slipstream-based prefetching can be 

supported with minimal hardware changes on CMP-based 

multiprocessors.  For seven of the nine benchmarks, 

prefetching alone improves performance by 12-19% over 
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the next best mode (single or double) on a 16-CMP 

system.  However, prefetching is only the simplest 

optimization enabled by slipstream mode. We can use the 
sharing predictions provided by slipstream mode to better 

optimize coherence traffic, as described in the next 

section. 

4. Prefetching with Self-Invalidation 

Coherence traffic is difficult to optimize using 
prefetching alone, because there is a timing component 

that is not easily captured by local access information.  If 

a line is in the exclusive state, prefetching too early will 

cause useless traffic and latency if the producer has not 

yet performed all of its stores. Also, data protected by 

critical sections are difficult to prefetch effectively. When 
it is difficult to guarantee successful prefetches, we can 

utilize the accurate information provided by the A-stream 

about future R-stream accesses to more efficiently 

manage operations on shared data.  There are a number of 

such optimizations that can be implemented using 

slipstream.  In this paper, we investigate self-invalidation 
(SI) [11,12] as a technique to reduce the latency of 

coherence misses. 

Self-invalidation advises a processor to invalidate its 

local copy of a cache line before a conflicting access 

occurs.  When successful, this reduces invalidation 
messages and writeback requests.  A subsequent load 

from another processor will find the data in memory, 

without having to request it from the owning cache.  A 

subsequent store will acquire an exclusive copy from 

memory without having to invalidate copies in other 

caches. 
We introduce a new type of memory operation called 

a transparent load, issued by the A-stream.  A transparent 

load may return a non-coherent copy of the data from 

memory without adding the requester to the sharing list.  

Since the request is from an A-stream, the memory 

controller adds the requesting node to a future sharer list.  
The future sharing information is used to send a self-

invalidation hint to the exclusive owner of the cache line.  

This causes the owning cache to write the data back to 

memory when its last write is complete, moving the data 

closer to the consumers or a new producer. 

4.1 Transparent load  

A transparent load is designed to prevent the 

premature migration of shared data due to an A-stream 

prefetch.  The A-stream uses transparent loads to satisfy a 

read miss if it is one or more sessions ahead of the 

corresponding R-stream or when it is inside a critical 
section.  Under these conditions, it is more likely that an 

A-stream may load data before its final value has been 

written. 

If a transparent load finds the line in the exclusive 

state at the memory, the memory sends a transparent 

reply, containing its current (possibly stale) copy of the 
data without requiring a writeback from the owning 

cache.  The load is transparent to other processors in the 

system, because the requester is not added to the 

coherence protocol’s sharing list.  This means that the 

requester’s copy of the cache line will not be invalidated 

due to a store by another processor.  Therefore, when the 
transparent reply arrives, the line is marked as 

“transparent” in the L2 cache.  The data is then visible 

only to the A-stream, not to the R-stream.  This prevents 

the R-stream from reading non-coherent data, yet allows 

the A-stream to continue making forward progress.   

If the line is found in a non-exclusive state (shared or 
idle), the transparent load is upgraded to a normal load, 

and the requesting node is added to the sharing list.  A 

normal reply is sent, and the cached data is available to 

both the A-stream and the R-stream. 

As mentioned earlier, the A-stream issues normal 

loads only if it is in the same session with its R-stream 
and not within critical sections.  In this case, it is 

presumed that the prefetch is not premature, because the 

synchronization dependency has been respected.  Thus, it 

is more beneficial to perform a normal load, to retrieve 

the data from the owning cache and bring it into the local 
cache for the R-stream’s benefit. 

4.2 Future sharers and self-invalidation 

Transparent loads decrease the penalty due to 

premature prefetches of shared data, but they also remove 

one of the benefits of prefetching: forcing the producer to 
write back its cache line in anticipation of a subsequent 

load.  We want to enable a timely writeback, one that 

moves the data closer to the requesting R-stream but that 

does not require the producer to lose ownership until it 

has finished with the line.  For this purpose, we use A-

stream transparent loads as hints of future sharing 
behavior, and we use these hints to implement a 

mechanism for SI.  Our approach is illustrated in Figure 

8.   

In the left half of the figure, the memory directory 
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receives a transparent load request for a line in the 

exclusive state (1).  The directory sends a transparent 

reply to the requester and a self-invalidation hint to the 
cache that owns the exclusive copy (2).  It adds the 

requester to its future sharer list.  

In the right half of Figure 8, the directory receives a 

transparent load request for a line in the shared or idle 

state (1).  An upgraded (normal) copy of the cache line is 

sent (2), and the requester is recorded both as a sharer and 
as a future sharer.  Later, when an R-stream sends a read-

exclusive (or upgrade) request for the line (3), the 

directory invalidates shared copies (4,5) and includes a 

self-invalidation hint with the reply to the requesting R-

stream (6).   

The future sharer bit for a node is reset whenever the 
cache line is evicted from that node, or when any request 

from the R-stream reaches the directory.  This allows the 

future sharing information to be persistent enough to be 

useful for migratory data, which is written by multiple 

nodes, yet not so persistent that it fosters many 

unnecessary self-invalidations. 
Self-invalidation hints are recorded by the owning 

cache.  Following the heuristic of Lebeck and Wood [12], 

lines marked for self-invalidation are processed when the 

R-stream reaches a synchronization point.  Unlike their 

approach, lines are either self-invalidated or just written 
back, based on the code in which they were accessed.  If a 

write access occurs within a critical section, the line is 

invalidated (assumed migratory).  Otherwise, the line is 

just updated in memory, and ownership is downgraded 

from exclusive to shared (assumed producer-consumer).  

Invalidations are performed asynchronously, overlapped 
with barrier or unlock synchronization, and initiated at a 

peak rate of one every four cycles.  Lai and Falsafi [11] 

advocate a more timely self-invalidation, following the 

producer’s predicted last touch of the cache line.  This 

approach can be implemented in slipstream if explicit 

access predictions are passed from the A-stream to its R-
stream.  We will address that capability in future work. 

4.3 Performance of transparent loads and SI 

To evaluate the performance of transparent loads and 

SI, we focus on the 16-CMP configuration for all 

applications except for FFT (4 CMPs).  To achieve a 
balance between accuracy and having a view of the 

distant future, we use one-token global A-R 

synchronization.  We exclude LU and Water-SP, as these 

benchmarks do not have the potential of improving from 

slipstream mode due to their small stall time. 

Figure 9 shows the percentage of A-stream read 
requests issued as transparent loads and the breakdown of 

these transparent loads into those that receive a 

transparent reply and those that are upgraded. For the 

benchmarks tested, 19% to 45% (average 27%) of read 

requests initiated by the A-stream are issued as 

transparent loads. On average, 59% of transparent loads 

receive transparent replies, and the remaining 41% are 

upgraded into normal loads. 
Figure 10 shows the speedup of slipstream mode over 

the best of single and double for three slipstream 

configurations.  The first slipstream configuration does 

only prefetching, as described in the previous section, 

using one-token global synchronization.  Next, 

transparent loads are added, without SI.  In some cases 
(FFT, MG, and SOR), using transparent loads decreases 

performance because of the reduction in prefetching.  For 

CG, Ocean, SP, and Water-NS, however, the elimination 

of premature prefetches results in a 4% increase in 

speedup.  When transparent loads and SI are combined, 
there is an additional speedup of 6% for Ocean, 8% for 

SOR, 9% for FFT, 12% for Water-NS, 14% for CG, and 

15% for SP. There is 4% less speedup for MG compared 

to slipstream with prefetching only.  MG has a low per-

centage (about 4%) of premature read requests (A-Only in 

Figure 7), which indicates there are few dependency 
violations, while about 21% of A-stream requests are 

handled transparently when self-invalidation is enabled 

(Figure 9).  Self-invalidation yields less benefit when 

prefetching works well, because prefetching hides more 

latency by bringing the line into the consumer’s cache. 

The above comparisons considered only one-token 
global synchronization, rather than using the method that 
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results in the best prefetching-only performance.  

Compared to the best prefetching configuration for each 

benchmark (from Section 3), SI provides additional 
speedup for Water-NS (8%), SP (10%), and CG (11%). 

For SOR, FFT and Ocean, SI does not provide a 

significant improvement over the best slipstream 

prefetching-only method. 

5. Related Work 

Prefetching is a technique that reduces perceived 

memory latency by requesting cache lines before they are 

needed by the program. Prefetching may be guided by 

hardware prediction tables [3], by the programmer or 

compiler [13,16], or by pre-computation [1,2,4,6,14,20, 

21,25,28]. Slipstream does not require customized 
hardware tables to guide prefetching. Instead, it harnesses 

existing processors if increasing the number of parallel 

tasks is ineffective. It also does not require major 

programming effort, and exploits run-time information 

that compilers cannot. 

Pre-computation uses helper threads to compute the 
addresses of problem loads (loads that frequently miss in 

the cache) ahead of the full program [1,2,4,14,20, 

21,25,28]. Problem loads are explicitly identified and 

targeted, through profiling [21,28] or dynamic 

identification mechanisms [5,20].  Then, the computation 
slices that generate the addresses of problem loads are 

extracted from the full program either manually [28], by 

the compiler [14], or by hardware mechanisms [5]. 

Finally, microarchitectural threads are forked as needed to 

remove long latency operations from the critical path of 

the program, paying special attention to timely forking 
[5].  In contrast, slipstream only requires executing a 

redundant copy of each task (A-stream).  A processor 

running an A-stream does not explicitly pinpoint problem 

loads, extract their pre-computation slices, continuously 

fork threads, or micro-manage timing.  Timing is 

managed at a high level, via a one-time choice of A-R 
synchronization method.  An A-stream “gets ahead” 

simply by skipping synchronization and by not 

committing shared-memory stores, which does not 

generally affect forward progress and address generation 

in parallel scientific applications. 
The decoupled access/execute (DAE) architecture 

[24] decomposes a program into two separate streams.  A 

memory access stream slips ahead of an execution stream, 

and supplies data to it.  DAE relies on finding decoupled 

instruction streams either at run-time or with the support 

of a compiler. 
Both DAE and helper threads operate in the context 

of sequential programs.  Therefore, these forms of pre-

fetching specialize in moving data between a single 

processor and main memory. They are not tailored to 

coordinating communication among distributed processor 

caches. Reducing memory latency in a multiprocessor 

setting requires new mechanisms like slipstream’s trans-

parent load for conveying hints among distributed tasks. 
Dynamic self-invalidation (DSI) [12] describes two 

methods for identifying lines for self-invalidation. One 

uses extra coherence states and the other uses version 

numbers to remember past conflicts. Past conflicts are 

used to infer future conflicts.  Lines are self-invalidated at 

synchronization points, an aspect this paper borrows 
from. Last-touch prediction [11] improves on SI by more 

precisely identifying the last touch to a cache line, so that 

self-invalidation is done as early as possible. This also 

reduces self-invalidation bursts at synchronization points. 

However, history-based last-touch prediction may require 

large hardware prediction tables because they are indexed 
by line address and must accommodate large working set 

sizes. DSI [12], last-touch prediction for SI [11], and 

other methods for accelerating communication [10,17] all 

use history to predict future sharing patterns. Slipstream 

execution mode enables the use of program computation 

to predict future sharing patterns. 
This paper borrows from the slipstream paradigm 

[26].  Slipstream in a uniprocessor context targets 

different types of programs and overheads than in a 

multiprocessor context.  In both cases, a persistent 

redundant copy of the program or task (respectively) is 
utilized, but A-stream creation, shortening, and recovery, 

as well as A-stream to R-stream information passing, 

differ in fundamental ways due to the different target 

architectures. 

6. Conclusions and Future Work 

Slipstream execution mode in a CMP-based multi-

processor enables the construction of a program-based 

view of the future to attack coherence, communication, 

and synchronization overheads.  Slipstream mode uses the 

additional processing power of a CMP node to more 

efficiently communicate among parallel tasks, rather than 
increase task-level concurrency.  In this paper, we have 

introduced a method for creating a shortened A-stream by 

skipping synchronization and shared memory stores.  We 

also describe mechanisms for locally synchronizing the 

A-stream and R-stream as needed, and for recovering a 
deviating A-stream.  This basic model allows the A-

stream to run ahead and generate prefetches to shared data 

that benefit the R-stream.  Slipstream-based prefetching 

performs up to 19% better than the best of running one or 

two tasks per CMP on systems with 16 CMPs.  Slipstream 

execution mode requires only moderate, uncomplicated 
changes to hardware and software.  It is selectively 

applied (used only when needed) and does not inhibit 

conventional modes of execution. 

We also introduce the concept of a transparent load, 

which allows the A-stream to make correct forward 



  

  

progress while minimizing premature migration of 

exclusively owned cache lines.  Transparent loads are also 

used as hints of future sharing behavior, and we describe 
a form of self-invalidation that exploits these hints.  When 

transparent loads and SI are added to prefetching, 

slipstream mode is up to 29% faster than the best of 

running one or two tasks per CMP. 

One of our future goals is to create development and 

run-time environments that allow users to choose the best 
mode to efficiently utilize system resources.  We are also 

interested in extending the analysis to recommend an A-R 

synchronization scheme for a given program, or varying 

the scheme dynamically during program execution. 

For the slipstream-based optimizations presented in 

this paper, information from the A-stream is conveyed to 
the R-stream through the shared L2 cache and indirectly 

through memory directories.  Further optimizations are 

possible if the A-stream is able to pass more explicit 

information about patterns of access to shared data.  We 

view slipstream as a unifying prediction methodology that 

can address many optimizations.  In future work, we will 
complete the design of an efficient mechanism to 

explicitly convey access pattern information from the A-

stream to the R-stream, and we will apply that mechanism 

to a variety of multiprocessor optimizations. 
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