Dynamic Optimization of Micro-Operations

Brian Slechta David Crowe Brian Fahs Michael Fertig Gregory Muthler

Justin Quek Francesco Spadini

Sanjay J. Patel Steven S. Lumetta

Center for Reliable and High-Performance Computing
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

Abstract

Inherent within complex instruction set architectures such
as x86 are inefficiencies that do not exist in a simpler ISAs.
Modern x86 implementations decode instructions into one or
more micro-operations in order to deal with the complexity
of the ISA. Since these micro-operations are not visible to the
compiler, the stream of micro-operations can contain redun-
dancies even in statically optimized x86 code. Within a pro-
cessor implementation, however, barriers at the ISA level do
not apply, and these redundancies can be removed by opti-
mizing the micro-operation stream.

In this paper, we explore the opportunities to optimize code
at the micro-operation granularity. We execute these micro-
operation optimizations using the rePLay Framework as a mi-
croarchitectural substrate. Using a simple set of seven opti-
mizations, including two that aggressively and speculatively
attempt to remove redundant load instructions, we examine
the effects of dynamic optimization of micro-operations using
a trace-driven simulation environment.

Simulation reveals that across a sampling of
SPECint 2000 and real x86 applications, rePLay is able to
reduce micro-operation count by 21% and, in particular,
load micro-operation count by 22%. These reductions cor-
respond to a boost in observed instruction-level parallelism
on an 8-wide optimizing rePLay processor by 17% over a
non-optimizing configuration.

1 Introduction

Complex instruction set architectures present significant
design challenges for high-performance implementations.
Variable-length instruction formats and high-granularity in-
structions complicate the decoding and execution processes.
In order to deal with ISA complexities, current implemen-
tations decode instructions into simpler micro-operations.
These micro-operations are essentially control words that
traverse the processor pipeline and perform an equivalent
amount of processing to the instructions of a simple ISA.

As complex instructions are individually decoded into
constituent micro-operations, an opportunity is created to
globally optimize their constituent micro-operations. For ex-
ample, a basic block’s micro-operations, optimized as a unit,
can be more efficient than micro-operations generated one
instruction at a time. For simpler ISAs, such as PowerPC,
SPARC, and MIPS, this type of optimization is performed
during compilation, as the emitted code is effectively at the
same level as the micro-operations of a complex ISA. This
optimization opportunity thus exists with complex ISAs, even
when basic blocks are statically optimized. Leveraging this
opportunity, of course, requires raising the architectural state
boundaries to the basic block level. That is, architectural state
is only guaranteed to correspond at basic block boundaries.

The x86 instruction set architecture in particular can ben-
efit from optimizations at the micro-operation level. The
x86 ISA provides only a few 32-bit registers for storing tem-
porary values, which constrains optimization at compile time.
The ISA’s two-address instruction format, along with the
high-granularity of some common instructions, also increase
the opportunity for micro-operation optimization. Further-
more, non-uniform instruction semantics, such as opcodes
that requires specific source registers (e.g., the x86 DIV in-
struction), limit a compiler’s ability to efficiently allocate reg-
isters. Optimization at the micro-operation level partially al-
leviates these problems because the register assignment is not
restricted to the architectural register space.

In this paper, we evaluate the potential of performing opti-
mizations on regions of Xx86 micro-operations, where the re-
gions are larger than basic blocks. Using the rePLay Frame-
work as our microarchitectural substrate, we evaluate a pro-
cessor architecture that performs micro-operation optimiza-
tion on atomic dynamic instruction traces, or frames. rePLay
contains hardware support for performing optimizations (via
an optimization engine) and hardware support for specula-
tion recovery (enabling speculative optimization). The op-
timizer performs simple optimizations on each frame, such
as dead code elimination, reassociation, and store forward-
ing. We study the effect of optimization using trace-driven

simulation on both SPECint 2000 benchmarks and commer-
cial x86 applications. On average across this spectrum of
applications, we observe that optimization with rePLay re-
duces micro-operation count by 21% and, in particular, load
micro-operation count by 22%. These reductions boost the
instruction-level parallelism of a deeply-pipelined 8-wide op-
timizing rePLay processor by 17% over a non-optimizing
configuration across the applications.

In this paper, we provide two major contributions over the
previous work on rePLay [4, 13]. First, we evaluate the im-
pact of micro-operation-level optimization in the context of
the x86 ISA. Previous work examined hardware-based dy-
namic optimization of Alpha instructions. This distinction is
important: the granularity of the x86 instruction set and its
limited register set create inefficiencies that are more preva-
lent than in binaries of simpler ISAs. The full benefit of
x86 optimization requires dealing with memory dependen-
cies, and we describe our scheme for speculatively optimiz-
ing around them. We present our evaluation on continuous
traces (i.e., including DLL calls and system code) of SPECint
benchmarks and real applications.

Second, we describe the high-level microarchitecture of a
programmable optimization engine datapath that can be used
to perform micro-operation optimizations. The complexity
of the optimization datapath and the optimization software
is reduced by utilizing three properties of frames: (1) they
are atomic, (2) they embody a single control path, and (3)
the register renaming process renders the frames into a form
amenable to optimizations by guaranteeing that each opera-
tion writes to a unique physical register.

The remainder of the paper is organized as follows. The
next section provides an overview of the rePLay microarchi-
tectural substrate. Section 3 contains examples of the micro-
operation optimizations that we evaluate in this paper. Sec-
tion 4 introduces the primitive operations and structure of the
optimization datapath. The experimental infrastructure is de-
scribed in Section 5, and experimental results are presented
in Section 6. Section 7 contains related work. Section 8 pro-
vides conclusions.

2 The rePLay Microarchitecture

In this section we provide an overview of the rePLay
Framework, which is designed to facilitate aggressive dy-
namic optimization with low overhead. To this end, the
framework consists of five key components: (1) a frame con-
structor for creating candidate optimization regions, (2) a pro-
grammable engine for optimizing these regions, (3) a frame
cache for storing these regions on-chip, (4) a component for
sequencing between regions, and (5) a mechanism to recover
architectural state when speculative optimizations prove in-
correct. These components are integrated into a processor’s
fetch and execution engine, as shown in Figure 1.

A central concept of rePLay is the concept of the atomic

Frame | Fetch Engine sequencer
Cache
Optimization L
Recovery
Mechanism

Engine
Execution Engine

f

Frame |1
Constructor

Completing instructions

Figure 1. The rePLay mechanism coupled to a
processor architecture.

region, or frame. A frame is similar to a trace in a trace-
scheduling compiler [5] or a block in the Block-Structured
ISA [8, 11]. All control dependencies within a frame are
removed, ensuring that all instructions within the frame are
mutually control independent. In particular, either all instruc-
tions in a frame commit their results, or none of them do.
This atomicity simplifies the optimization algorithms used
and allows high-bandwidth instruction fetch. To remove con-
trol flow, rePLay’s frame constructor converts dynamically
biased branches into assertions, then merges sequences of
constituent basic blocks into frames. Using frames as an op-
timization entity is of particular importance because precise
architectural state need only be maintained at frame bound-
aries, thus allowing the optimizer more leeway in performing
optimizations. We demonstrate this in Section 3 with an ex-
ample.

An assertion whose condition is not true triggers a hard-
ware recovery event that rolls back architectural state to the
beginning of the frame. A rollback mechanism of this type is
already present in most modern processors to support out-of-
order, speculative execution. This restoration capability im-
plies that any state generated during frame execution must be
buffered until all assertions within the frame have executed
successfully (not fired). Once all assertions within a frame
have been checked and all micro-operations have been exe-
cuted, state changes generated within the frame can be com-
mitted. This atomicity enables the optimizer to make specu-
lative optimizations safely, with the speculative assumptions
enforced by assertions.

With this general design, frame construction can be done
in hardware or by the compiler as a specification of the ISA.
All of our current work has focused on hardware-level frame
construction, but this property is not inherent to rePLay.

3 Micro-operation Optimization

Processors that implement complex ISAs like x86 typ-
ically decode each instruction into simplified, fixed-format
micro-operations. As instructions are decoded independently

; instructions

unoptimized micro-operations

intra-block optimization

PUSH EBP 01 SS:[ESP - 04H] «<— EBP 01
02 ESP < ESP - 04H
PUSH EBX 03 SS:[ESP - 04H] +— EBX 03

MOV ECX,[ESP+0CH]
MOV EBX,[ESP+10H]

04 ESP <— ESP - 04H
05 ECX <« [ESP + 0CH]
06 EBX <« [ESP + 10H]

SS:[ESP - 04H] < EBP
; incorporated into 04’

* SS:[ESP - 08H] <— EBX

ESP < ESP - 08H
ECX < [ESP + 0CH]
EBX < [ESP + 10H]

inter-block optimization

01

SS:[ESP - 04H] <— EBP

SS:[ESP - 08H] <— EBX
ESP < ESP - 08H
ECX < [ESP + 0CH]
EBX < [ESP + 10H]

frame-level optimization

01

03

05"
06’

SS:[ESP - 04H] <— EBP

SS:[ESP - 08H] < EBX
; incorporated into 16’
ECX « [ESP + 04H]
ETO < [ESP + 08H]

XOR EAX,EAX 07 EAX flags < 0 07 EAX.(flags < 0 07 EAX.(flags <0 07 EAX(flags <0
MOV EDX.,ECX 08 EDX + ECX ; reassociated, then removed
OR EDX,EBX 09 EDX.,flags +— EDX | EBX 09’ EDX(flags +~ ECX |EBX 09 EDX,flags - ECX |EBX 09’ EDX.flags +— ECX | ETO
JZ 15H <Block2> 10 if (flags = 0) jump Block2 10 if (flags = 0) jump Block2 10’ if (flags # 0) exit 10’ assert flags=0
; jump is typically taken
Block2:
POP EBX 11 ESP <— ESP + 04H ; incorporated into 16 *
12 EBX < SS:[ESP - 04H] 12’ EBX < SS:[ESP] 12 EBX < SS:[ESP] ; forwarded from 03
POP EBP 13 ESP < ESP + 04H ; incorporated into 16’
14 EBP < SS:[ESP - 04H] 14’ EBP <« SS:[ESP + 04H] ; forwarded from 01
RET 15 ET2 < SS:[ESP] 15/ ET2 <+ SS:[ESP + 08H] 15 ET2+« SS:[ESP+08H] 15’ ET2 < SS:[ESP]
16 ESP «— ESP + 04H 16’ ESP <« ESP+0CH 16 ESP <« ESP+0CH 16’ ESP « ESP +04H
17 jump (ET2) 17 jump (ET2) 17 jump (ET2) 17 jump (ET2)

Figure 2. Impact of optimization scope on a procedure from crafty. The prime notation denotes changes
to sources and/or results relative to the previous level of optimization.

from one another, the resulting micro-operation stream can
contain inefficiencies. For example, an instruction’s micro-
operations might calculate an intermediate value already cal-
culated in a previous instruction’s micro-operations. The ob-
jective of this paper is to identify and remove such inefficien-
cies automatically, and to quantify the resulting benefit to per-
formance. To illustrate the optimization opportunities more
clearly, we now examine the impact of optimizations based
on the scope in which they are applied, using a code example.

The benefit of optimizing micro-operations depends
strongly on the scope of the optimizations. Simple local opti-
mizations, such as elimination of NOPs, can be performed be-
fore filling into a trace cache. The granularity of x86 instruc-
tions prevents a compiler from fully optimizing code, leaving
room for intra-block optimizations across instructions within
a basic block. Considering several blocks creates inter-block
opportunities, as control enters only at the first block, ensur-
ing that early blocks have been executed before later blocks.
Finally, additional optimizations become feasible when the
possibility of early exit is eliminated by treating a sequence
of blocks atomically. In this case, frame-Ilevel optimizations
can assume that subsequent blocks are always executed.

In this section, we describe the optimizations performed
by the rePLay optimization engine and illustrate their im-
pact as a function of scope through the use of a running
example, shown in Figure 2. In Section 4, we describe the
hardware primitives necessary to support these optimizations
and describe the structure of the rePLay optimizer in more
detail. The two basic blocks in the running example form
part of a larger frame from crafty, a chess-playing code from
SPECint 2000. The first column shows x86 instructions, and
the second column shows micro-operations. The remain-
ing columns illustrate the benefits of optimization on micro-
operations.

3.1 Intra-block optimization

The third column of Figure 2 illustrates optimization
within a basic block. Within the first block, the stack up-
dates due to the two PUSH instructions can be merged into a
single update. Recall that all optimizations are performed us-
ing renamed registers. First, reassociation replaces the uses
of the result of micro-operation 02 with uses of the live-in
ESP register. The offset in 03’ and the immediate value
in 04’ incorporate the subtraction performed by 02. As the
result produced by 02 is no longer used, and is not a live-
out value of the block, dead code elimination removes the
micro-operation. The same optimizations eliminate micro-
operation 08, which the compiler uses to avoid a second
load of the value in ECX along the non-taken path follow-
ing 10. A three-operand instruction (OR EDX,ECX,EBX)
serves the same purpose, but none is available in the x86 ISA.
The micro-operation format does support three operands, and
the two micro-operations are combined into 09’ by the op-
timizations. The second basic block also allows intra-block
optimization of stack manipulations.

3.2 Inter-block optimization

The fourth column in Figure 2 illustrates optimization
when a single entry point is assumed, as is typically the
case in a trace cache. Multiple exits—after the first basic
block in the figure, for example—are still possible. Store for-
warding associates the load in micro-operation 14 with the
store in 01. As the result of 14 is live-out in EBP, and the
value stored by 01 is live-in in the same register, the load is
eliminated. In contrast, store forwarding does not occur for
EBX, which is modified by the first block and must be cor-
rect should control exit at micro-operation 10’ . The need to
maintain all live-out registers from the first block thus lim-
its inter-block optimization. Some inter-block benefits can
be obtained with a compiler through techniques such as tail

duplication, but instruction sets like the x86 make these tech-
niques less effective.

3.3 Frame-level optimization

The concept of an atomic frame restricts the model com-
monly used in a trace cache by requiring a unique exit point.
This restriction eliminates the need to maintain proper archi-
tectural live-out values for intermediate exits. Effectively, the
entire frame can be optimized as a basic block.

The rightmost column in the example shows optimization
of the blocks as a rePLay frame. Micro-operation 10’ is
changed to an assertion, which allows no exit. Stack up-
dates in the two blocks are merged into a single update.
Store forwarding eliminates 12, and temporary register ET0
is substituted for the intervening use of register EBX in 06’
and 09'. Overall, seven of the seventeen micro-operations
are removed, including two of the five loads.

When this fragment is optimized in the context of a larger
frame, the results are even more impressive. Typically, code
from the procedure’s call site precedes and follows the blocks
shown, allowing the parameter loads in 05 and 06 to be re-
moved. The load of the return address in micro-operation 15
is also eliminated, and the stack update in 16 is folded into
an update outside of the procedure. Finally, constant propa-
gation from the call site identifies the return jump in 17 as a
constant target and removes it, as the target block is included
in the frame. In some cases, constant propagation can also
eliminate micro-operation 07, which places the procedure’s
return value into EAX. The optimizations thus reduce the en-
tire procedure to two stores and a single check (09 and 10)
consisting of an ALU operation and an assertion. While not
all code sequences are so amenable to optimization, the ex-
ample highlights the degree to which code generated for com-
plex ISAs can be optimized by dynamic hardware mecha-
nisms such as rePLay.

3.4 Additional optimizations

Several rePLay optimizations were not mentioned in the
context of our running example. Common subexpression
elimination serves primarily to remove redundant loads,
which often appear when x86 loops are unrolled within a
frame. Value assertion optimization combines the typical x86
sequence of a flag-generating instruction such as CMP (com-
pare two operands) followed by a conditional branch into a
single micro-operation.

Store forwarding and redundant load elimination are also
allowed to occur speculatively within frames. Consider the
case in which a load follows a store to the same address (same
register and offset), but is separated by one or more stores
with different address registers. Only when these stores do
not alias to the store-load pair can the stored value be for-
warded to the load. We record aliasing events during exe-
cution and pass this information to the optimizer. If the in-
tervening stores did not alias during execution, the optimizer

speculates that they never alias, and removes the load. The
intervening stores are marked as unsafe stores. A similar op-
timization is performed when redundant loads are separated
by stores that may alias.

When an unsafe store executes, its address is compared
against all other memory transactions (both loads and stores)
prior to it in the frame. If an unsafe store conflicts with
any other transaction, the frame is aborted and the original
instructions are executed instead. No optimization removes
stores, thus all unsafe stores execute when a frame is fetched.
In practice, loads removed speculatively almost never cause
frames to abort, but represent a substantial fraction of loads in
a dynamic micro-operation stream, as discussed in Section 6.

4 Optimizer Design

In this section, we provide some details on the design of
the rePLay optimizer datapath. Most prior work on optimizer
design has focused on identifying the potential of hardware-
based optimizations. Little has been done on specifying the
design of a hardware optimizer or its interface to the opti-
mization software. Here, we provide a high-level description
of the types of hardware primitives that an optimizer should
support in order to facilitate low-latency optimization.

In our previous work [4], we demonstrated that a pipelined
frame optimizer with a latency of 1K-10K cycles could rea-
sonably match the latency and throughput requirements for a
rePLay system.

In order to achieve such low latency, the optimizer hard-
ware must provide useful primitives that are central to a wide
range of code optimization algorithms. In particular, the hard-
ware optimizer should provide three classes of primitives:
(1) It should provide the ability to quickly retrieve one of an
instruction’s parent instructions (we use the term instruction
in this section as a more general form of micro-operation),
and to retrieve an instruction’s children. That is, the optimizer
should support quick traversal of a frame’s dataflow graph.
(2) The hardware needs to support general field extraction and
bit manipulation operations, for example to isolate an instruc-
tion’s opcode field. Such primitives are useful for testing and
modifying various bits within instructions. (3) The hardware
should support the ability to add and remove instructions in a
frame.

To facilitate the optimizer design, we first render frames
into a form where each operation writes to a renamed reg-
ister. That is, a physical destination is written only once
within a frame. No write-after-write or write-after-read regis-
ter naming conflicts exist in a frame. In this form, an instruc-
tion’s physical source register numbers uniquely identify the
instruction’s parents. It should be noted that a frame whose
instruction register operands have been renamed by the pro-
cessor is already in this form, except for the occasional reuse
of a physical register within a frame.

Figure 3 shows the major components of the optimizer.

Outgoing Frame

Clean Up

Optimization Memory

Optimization Datapath

Optimization
Buffer <—>{ Current Instr Register
IOptBuffer Index
Next Child Parent
Logic Logic
Dependency
List

f

Remapper

A

Incoming Frame

Figure 3. The rePLay Optimizer.

An unoptimized frame is added to the optimizer’s optimiza-
tion buffer. Each instruction in the frame has its destination
register remapped such that an instruction placed in location
m of the buffer will write physical register m. With this prop-
erty, given an instruction, retrieving the parent instruction
that produced its SourceA, for example, is a trivial lookup.
This remapping also alleviates any reuses of physical regis-
ters. Depending on the physical register allocation strategy
of the processor, this Remapping can be a modification of the
physical register assignment done by the Register Alias Table
(RAT) prior to execution. In the worst case, the Remapping
process is the same as the register renaming process, except
that it need not operate at the same high bandwidth. A remap-
ping bandwidth of one or two instructions per cycle is likely
to be sufficient.

Once Remapped, a frame resides in the optimization buffer
until the optimization process is complete. If a frame arrives
while another is being optimized, the arriving frame must
be buffered or dropped. Alternatively, the optimizer can be
pipelined to permit optimization of frames concurrently. (We
model a variable optimization latency of 10 cycles per in-
struction in a pipelined optimizer. Simulation results show
that a pipeline depth of 3 is sufficient to sustain the through-
out of our rePLay model.) The OptBufferIndex is used to
select an instruction to read out of the buffer. Due to the
Remapping policy, reading the buffer at index m provides the
micro-operation that generates physical register m.

The format of the optimization instruction (or in this case,
micro-operation) is provided in Figure 4. The Remapping
process provides each instruction with new source physical
registers and a new destination. Instructions that produce a

Arch Arch Physical ;.
‘ ‘ Opcode I Dest Reg I SrcA Reg SreA Regl eee | Immediates
uop valid Is Live Out " Is Live In

Figure 4. The optimizer’s micro-operation for-
mat.

live-out value, or use a live-in, are marked explicitly. This
explicit renaming of internal values within a frame can fa-
cilitate high-speed instruction renaming when the frame is
fetched [15, 16]. When the frame is fetched, only the in-
structions that require live-in values need to read the RAT,
and only those instructions that produce live-outs need to up-
date the RAT. Physical register assignment for values internal
to the frame can then be done without a table lookup.

Many optimization algorithms require traversing though a
dataflow graph in order to identify optimization opportunities.
To support this process without requiring the software com-
ponent of the optimizer to build and maintain the dataflow
flow graph for every new frame, the optimizer hardware sup-
ports traversal via the logic in the shaded region of the Fig-
ure 3. The Parent Logic and Next Child Logic enable the
optimizer to move from an instruction to its parents or chil-
dren. Moving from an instruction to the parent that produced
its SourceB input, for example, is trivial. The SourceB phys-
ical source register number is the producer’s index. Mov-
ing from an instruction to its children is trickier, as an in-
struction can have many children. This operation requires
maintaining a hardware Dependency List structure that asso-
ciates an instruction with its children. This structure enables
the Next Child Logic to iterate over the list of children, en-
abling optimizations that require visiting all children of an
operation. Also, the traversal logic can increment and decre-
ment the OptBufferIndex to support simple iterations through
a frame’s micro-operations.

Bit manipulations and field extractions are provided by the
simple optimization datapath, which contains an ALU and a
load/store port to the optimization memory. This hardware is
useful for recalculating immediate values for the reassocia-
tion optimization, or for comparing base registers and offsets
for memory optimizations such as store forwarding. The soft-
ware portion of the optimizer itself resides in the optimiza-
tion memory and is activated by the arrival of a new frame.
In Figure 3, we show only one current instruction register
for simplicity. Implementations may have several instruction
registers that are directly accessible by the datapath, for ex-
ample to access both a micro-operation and one of its parents
simultaneously.

The third set of primitive operations is that of
adding/removing instructions from the optimization buffer.
To remove an instruction, the instruction is simply marked in-
valid and the instruction is removed from its parents’ lists in
the Dependency List structure. Adding an instruction is more
involved (and less frequently needed): the new instruction is

written into a spare instruction slot at the end of the frame,
and the parents’ dependency lists are updated. By construc-
tion, the instructions of a frame are explicitly in renamed form
and can be arbitrarily reordered—an instruction can appear
before its parents. But this end-of-frame insertion cannot be
done when memory operations are involved because mem-
ory ordering must be preserved. The optimizer is therefore
prohibited from inserting new loads and stores (in particular
those micro-operations that affect memory ordering).
Rescheduling or repositioning code is accomplished in the
final stage using the Cleanup Logic. During the optimization
process, a position field encoded with the micro-operation
is used to identify the micro-operation’s final position in the
completed frame. By default, the frame remains in the order
it appears in the buffer. However the optimization algorithms
can use the position field to adjust the frame’s schedule. The
Cleanup Logic can use associative lookups to read the frame
out of the Optimization Buffer in the specified order. At this
point, any invalidated instructions are deleted from the frame.

5 Experimental Setup

In this section, we describe the experimental setup used to
evaluate our mechanism for dynamic optimization of micro-
operations. First, we describe the trace-driven simulation en-
vironment. Second, we describe the experimental workload
set. Finally, we present and motivate our baseline processor
architecture.

5.1 Simulation Environment

Our simulation environment is trace-driven with limited
wrong-path support (wrong-path behavior is only modeled
on asserting frames). The environment consists of four com-
ponents: the Micro-operation Injector, Timing Model, State
Verifier, and the rePLay Engine, as shown in Figure 5.

5.1.1 Micro-Op Injector

The Micro-Op Injector consists of a trace reader, which reads
x86 trace files, and an x86-to-rePLay micro-operation trans-
lator.

The trace reader reads and disassembles the raw instruc-
tion data from a hardware-generated trace file. The trace files
were generated on a Windows NT-based platform, and were
provided by Advanced Micro Devices. Each trace record con-
tains instruction data, register state changes, memory trans-
actions, and interrupt information for each x86 instruction
throughout a span of execution of an application. Each trace
represents a particular “hot spot.”” That is, it is the dynamic
trace of a code segment that ultimately accounts for a large
amount of execution time.

The second stage of the Micro-Op Injector is the transla-
tor. The role of the translator is to convert the disassembled
x86 instructions into our processor’s native micro-operation
format. We refer to this internal format as the rePLay ISA.

Micro-Op Injector

| [|

x86 —> rePLay
Translator
——

Timing Model

R R “| Frame /
Cache Cache

Sequencer

Decode

\

rePLay|Engine

Optimization
Engine

f Execute

Frame
Constructor Retire
A |

1 |

Figure 5. Simulation Environment

Since x86 micro-operations and x86-to-micro-operation de-
code flows of real implementations are kept proprietary, we
modeled our ISA to be close to a generic RISC ISA. Our de-
code flows are fairly efficient, and in the end we attain an av-
erage micro-operation-to-x86 instruction ratio of 1.4, which
is close to our estimates of what is achieved on real x86 im-
plementations.

While the use of trace-driven simulation can be criticized
for its lack of wrong-path effects, our traces allow us to in-
clude the effects of interrupts, system calls, and dynamically-
linked libraries. We use the information contained in the trace
to validate our execution environment and to handle very rare
x86 instructions that might otherwise require substantial ef-
fort to implement (for example, modifiers of segment de-
scriptors, call gates, etc. On such instructions, we flush the
processor pipeline). Such long-flow instructions account for
a very small portion of the dynamic instruction stream (less
than 0.05% on the traces we evaluate).

5.1.2 Timing Model

The Timing Model contains models of the caches, memory
system, branch predictors, and pipeline, and is used to deter-
mine the number of cycles needed to execute the sequence of
continuous micro-operations provided by the Injector. When
simulating a standard processor (without rePLay features),
the micro-operation stream comes directly from the Injector.
With rePLay features enabled, the micro-operations (possibly
in optimized form) for a particular sequence of x86 instruc-
tions can also come directly from the frame cache.

The configuration of the timing model is parameterized,
and for the experiments provided in this paper, we have cho-
sen an 8-wide pipeline whose specific configuration is de-
scribed in Section 5.3

5.1.3 State Verifier

In order to verify that the optimizations that are performed
on the micro-operation stream are valid, we employ a state
verifier. This checker is used to ensure that the state transfor-
mations (architectural register state and memory) made by an
optimized frame are equivalent to those of the actual, unmod-
ified instruction stream. The checker is valuable for testing
the validity of our micro-operation decoder and optimizer.

In order to properly verify the execution of our micro-
operations, the state verifier’s job is two-fold. First, each x86
instruction that is emitted from the trace carries register state
changes and any memory transactions associated with that
instruction. Additionally, there is a memory address and a
memory data field associated with each load and store. The
load data is used by the verifier to perform the load operations
while the store data is used solely to verify the stores that are
performed by our micro-operations. After each x86 instruc-
tion is decoded and executed, the resulting state is compared
to the trace.

The second role of the state verifier is to validate the func-
tionality of the optimizer. This role is essential in preventing
flaws in the optimization algorithms. Each frame is executed
using the architectural state and memory state when the frame
is fetched. The memory state consists of two maps, an initial
memory map and a final memory map. Both maps are gener-
ated by first executing the corresponding original instructions
from the trace. Since all loads within a frame are a subset
of those loads that would be performed by the original in-
struction stream, we commit to the initial map the first load
and store transactions from each live memory location in the
trace. All store transactions in the trace are committed to the
final map which is used to compare the memory state at the
frame boundary. The frame is considered valid only if exe-
cution satisfies these requirements: (1) all loads can be found
in the initial memory map, (2) all memory state affected by
the trace is equivalently affected by the frame at the frame
boundary, and (3) all architectural register state is equivalent
at the frame boundary.

5.1.4 rePLay Engine

The last major component in the simulation environment is
the rePLay Engine. Retired instructions from the processor
pipeline flow into the frame constructor, which dynamically
synthesizes long regions of code into atomic frames. Opti-
mizations are then applied to these frames by the optimiza-
tion engine before they are deposited into the frame cache.
We model the optimization engine abstractly in this study—
each frame is optimized with a variable latency of 10 cycles
per instruction, and the optimizer is pipelined. Simulations
show that a pipeline depth of 3 is sufficient to obtain the re-
sults we report.

5.2 Benchmarks

Our selection of benchmarks was driven primarily by
availability. AMD graciously provided a set of traces, from

Type of Total x86 | Number of

Name App. Insts. Traces
bzip2 | SPECint 50M 1
gzip | SPECint 50M 1
crafty | SPECint 50M 1
eon | SPECint 50M 1
parser | SPECint 50M 1
twolf | SPECint 50M 1
vortex | SPECint 50M 1
Access | Business 200M 2
DreamWeaver | Content 200M 2
Excel | Business 300M 3
LotusNotes | Business 200M 2
PhotoShop | Content 200M 2
PowerPoint | Business 300M 3
SoundForge | Content 300M 3

Table 1. Experimental Workload

which we selected the application set listed in Table 1. The
set consists of 7 SPECint 2000 benchmarks and 7 desktop ap-
plications (all of which were executed as part of the Winstone
benchmark suite). Some of the applications we examine actu-
ally consist of multiple trace files, each representing a differ-
ent portion of execution of the application. The table above
indicates the number of x86 instructions and the number of
different traces a particular test application constitutes.

5.3 Processor Configurations

We evaluate several configurations based on a common
processor pipeline. The pipeline is an 8-wide fetch, issue,
retire pipeline (the width refers to micro-operations). The
pipeline models 15 cycles between the fetch of a branch
and the earliest possible point of its execution. Because the
pipeline is deep, we model a speculative wakeup/scheduling
that occasionally requires instructions to be rescheduled if a
result is not ready when expected (applies primarily to de-
pendent operations on data cache misses). The scheduling
window is 512 micro-operations. The various properties of
the processor appear in Table 2.

The major experiments that we report in the following sec-
tion are based on a rePLay processor configuration consist-
ing of a frame cache that can store 16k micro-operations (ap-
proximately equivalent to a 64kB ICache) and a 8kB ICache.
When fetching from the ICache, the maximum rate through
the x86 decoder is four x86 instructions per cycle. The re-
PLay frame constructor creates frames between 8 and 256
original micro-operations.

In some experiments we also compare to a Trace Cache
configuration (16k micro-op Trace Cache/8kB ICache) in
which the fill unit continuously creates traces with up to three
branch micro-operations. We also provide, as a reference, a
64kB ICache configuration. In addition, in both the Trace-
Cache and rePLay configurations, we model an idle cycle

Pipeline | 8-wide fetch/issue/retire
x86 decoders: 4 per cycle
15 cycles (min) for BR resolution
Predictor | 18-bit gshare
Inst Window | 512 instructions
ExeUnits | 6 simple ALU
2 complex ALU
3 FPUs
4 load/store units
Frame/Trace | 16k micro-operations
Cache | (approximately 64kB)
L1 DCache | 32kB, 2 cycle hit
4 read and 4 write ports
L2 Cache | 512kB, 10 cycle hit
Memory | 50 cycles

Table 2. Configuration of Processor.

when switching between caches. We denote these cycles as
Wait cycles.

6 Performance Evaluation

In this section, we evaluate the performance of the proces-
sor configurations described in the previous section. In par-
ticular, we investigate the impact of dynamic optimizations
using the rePLay framework.

6.1 Basic evaluation

Figure 6 contains a simulation-based performance estima-
tion of four configurations: ICache (IC), Trace Cache (TC),
basic rePLay (RP), and rePLay with Optimization (RPQ) all
operating on a deeply pipelined 8-wide processor. The data is
plotted in terms of average x86 instructions retired by the pro-
cessor per cycle (IPC). For the RPO configuration, we plot the
effective IPC which takes into account the number of original
x86 instructions retired by the processor.

For all but one application, gzip, the optimizing rePLay
configuration outperforms all others. The percentage increase
in IPC over a non-optimizing configuration (RP) induced by
the optimizer is shown on the graph near the individual bars
representing RPO. On average, there is a 17% increase in IPC
due to optimizations, but this increase is highly variable from
application to application.

Even though the SPEC benchmarks were aggressively pro-
filed and compiled with the Intel Proton Compiler, the av-
erage increase in parallelism across SPEC benchmarks is
slightly higher than in the desktop applications. Despite ag-
gressive static compilation, opportunity still exists for opti-
mizing the micro-operation stream. This difference in paral-
lelism is largely due to the difference in the dynamic coverage
of frames over the original micro-operation stream from these
benchmark suites. SPEC benchmarks exhibit about 86% cov-
erage while the desktop applications only show about 72%

28%

% |31C
|TC
BRP
ERPO

X86 Instuctions Per Cycle
N
(5,

Figure 6. Estimated x86 Instructions Retire Per
Cycle for the ICache, Trace Cache, rePLay,
and rePLay+Optimization processor configura-
tions. All configurations were evaluated in the
context of an deeply pipelined 8-wide proces-
sor with 15 cycles (min) for branch resolution.

coverage. Higher coverage leads to a greater opportunity for
dynamic optimizations.

The rePLay optimizations offer two main sources of bene-
fit: they reduce micro-operation count, and they reduce com-
putation tree height. In subsequent experiments in this sec-
tion, we try to isolate some of the individual effects that en-
able the optimizations to be effective.

Figures 7 and 8 show a cycle-by-cycle breakdown of the
RP and RPO configurations. The breakdown is done from the
perspective of the instruction fetch stage: if a cycle is spent
fetching from the Icache, the cycle is tallied as an ICache cy-
cle. If the fetch comes from the Frame Cache, it is a Frame
cycle. Each cycle is uniquely categorized into one of seven
bins, in the following order of priority: Assert: we fetched a
frame with a firing assert—all cycles until assertion recovery
are tallied as Assert cycles; Mispredict: we fetched a mispre-
dicted branch that has not yet resolved, or have encountered
a BTB miss; Miss: FCache/ICache miss; Stall: some down-
stream execution buffer, such as the scheduling window, is
full; Wait: turnaround cycles going from FCache to ICache
fetch; Frame; or ICache.

The major impact of the micro-operation optimizer is a re-
duction in the number of cycles in the Frame category. The
optimizer reduces the micro-operation count per frame, al-
lowing the frame to be fetched in fewer cycles. The average
net reduction in Frame cycles between the RP and RPO con-
figurations is about 21%. This reduction also increases Frame
Cache efficiency, as fewer slots are required to contain the
same number of original micro-operations.

30 4

25 4

N}
1S}

frame
B wait
stall
Emiss

M assert
| mispred
[icache

%‘

Millions of Cycles
=

Figure 7. Per-benchmark execution cycles for
the RP and RPO configurations. Each cycle is
classified by the type of fetch event that oc-
curred during that cycle.

200

frame
B wait
stall
Emiss

M assert
M mispred
/ [icache

Millions of Cycles

sound

excel

dream

access

photo power

Figure 8. Per-benchmark execution cycles for
the RP and RPO configurations. Each cycle is
classified by the type of fetch event that oc-
curred during that cycle.

In addition to a reduction in Frame cycles, there are other
benefits to optimization. Some applications demonstrate
fewer Stall cycles, such as DreamWeaver and eon. Here, the
ability to represent computations more compactly results in
fewer micro-operations in flight, and therefore uses fewer re-
sources. There is also a reduction in branch resolution time,
partly due to micro-operation reduction and partly due to tree
height reduction. With the optimizer enabled, the branch res-
olution time drops by 4% and 9% on DreamWeaver and eon

Micro-ops Loads Increase

Application Removed | Removed in IPC
bzip2 23% 30% 28%
crafty 16% 11% 10%
eon 25% 18% 31%
gzip 13% 10% 6%

parser 21% 14% 8%

twolf 14% 15% 13%
vortex 24% 34% 33%
Access 22% 20% 21%
DreamWeaver 28% 30% 26%
Excel 21% 21% 13%
LotusNotes 22% 26% 11%
PhotoShop 15% 19% 30%
PowerPoint 32% 34% 6%

SoundForge 22% 23% 6%

Average 21% 22% 17%

Table 3. The percentage of micro-operations
and LOADs removed by the rePLay optimizer.

respectively. (keep in mind that the fetch-to-execute pipe
length for branches is 15 cycles minimum). Also, it should
be noted that in all benchmarks, there is a reduction in Miss
cycles which accounts for an effective increase in fetch band-
width.

The number of cycles lost due to assertions accounts for
less than 3% of execution cycles for the average benchmark,
largely due to the infrequency of assertions firing or misspec-
ulation around an unsafe store. The number of lost cycles is
small despite a long assertion resolution latency. For simplic-
ity of simulation, we only initiate recovery after all instruc-
tions in a frame are ready for retirement. This pessimistic
model differs from branch recovery in modern processors,
which is triggered when a branch executes.

6.2 Reduction in micro-operations

Table 3 shows the fraction of all dynamic micro-operations
that are removed with the optimizer. On average, 21% of dy-
namic operations are removed. The optimizer removes 22%
of all dynamic loads through the store forwarding, redundant
load elimination, and dead code elimination optimizations.
This result is significant both for performance and for the im-
plications on power. As can be seen in the correlation be-
tween dynamic micro-operations removed and IPC, removing
micro-operations boosts performance. Depending strongly
on the construction of the optimizer, the reduction in switch-
ing activity resulting from not having to execute the removed
micro-operations may also reduce power requirements.

The reduction in load micro-operations is potentially even
more significant. The loads that are removed are not long-
latency loads; they are likely to hit in the L1 cache because
they are covered by another load or store. But those loads

35% 1
30% -
25% -
20% -

15% A

M@ Block
M Frame

% IPC Speedup

10% A

5% -

0% 1

-5%

Figure 9. The percent increase in IPC when
frames are optimized only within individual ba-
sic blocks versus when they are optimized as
a unit.

that are removed because of store forwarding are expensive
because they require a store-buffer bypass. The reduction
in bandwidth with fewer loads also means that the underly-
ing pipeline can potentially be designed with fewer L1 data
cache read ports or associative store buffer ports. Removing
loads can have a compounded effect on power: fewer L1 data
cache ports are required to sustain performance with fewer
total port accesses of both the data cache and the associative
store buffer.

6.3 Intra-block optimization

In order to further discern the necessary components of
effective micro-operation optimization, we limited optimiza-
tions to the intra-block level on the basic blocks that consti-
tute each frame. For example, if a frame consists of blocks A,
B, and C, the optimizer optimizes A individually from B in-
dividually from C. The example in Figure 2 of Section 3 il-
lustrates the differences with frame-level optimization.

The chart in Figure 9 contains the results of a simple ex-
periment: measure the increase in IPC due to intra-block op-
timizations versus frame-level optimizations, as measured on
a select group of traces from our trace set. Block-level opti-
mizations offer some benefit, but it is not surprising to see that
frame-level optimizations yield more substantial gains.The
nature of the x86 ISA provides opportunities for block-level
optimization even if the compiled binary is aggressively opti-
mized by the compiler.

In the case of basic rePLay(RP), frames are immediately
deposited in the frame cache upon leaving the frame construc-
tor. If the benefit of optimizations do not outweigh the cost
of delaying frames in the optimizer, then basic rePLay can

RPO 14

0.8

Eno ASST
#Zno CP
HEno CSE
B no NOP
Hno RA
Sno SF

0.6 4

Relative IPC

0.4 4

0.2 4

RP 0

-0.2 -

Figure 10. The performance impact of individ-
ual optimizations.

outperform rePLay with optimizations. This is evident in the
block-level optimization of Soundforge in Figure 9.

6.4 Impact of individual optimizations

In our final analysis, we attempt to isolate the contribu-
tions of the individual optimizations on overall performance.
The optimizations individually provide little benefit, but their
synergistic actions enable effective transformations.

For example, many of the optimizations leave dead code.
Reassociation can change the parent of an instruction to the
grandparent, potentially removing the need to execute the par-
ent and allowing it to be removed as dead.

In this experiment, we disabled each optimization individ-
ually. That is, starting from a baseline of all optimizations en-
abled, we ran six different trials with one of the optimizations
turned off. Figure 10 plots the resulting performance relative
to the RP and RPO configurations. That is, O on the vertical
scale corresponds to performance without optimizations (RP)
and 1 on the scale corresponds to performance with all opti-
mizations enabled (RPO). We disable, in sequence: (1) value
ASSerTion optimization, which combines comparisons with
assertions; (2) Constant Propagation; (3) Common Subex-
pression Elimination; (4) NOP removal, which includes re-
moval of unconditional branches within a frame; (5) ReAs-
sociation; and (6) Store Forwarding. As all other optimiza-
tions rely on dead code elimination, it is enabled in all runs.
For clarity, we include only those applications for which op-
timization provides a significant performance advantage.

There is one clear trend: reassociation is a significant op-
timization. On DreamWeaver and Excel, IPC is nearly re-
duced to that of RP when reassociation is disabled. Re-
association is a gateway optimization that not only reduces
tree height, but enables Common Subexpression Elimination

(CSE) to detect redundant loads and Store Forwarding (SF)
to detect forwarded loads. For example, stack pointer ma-
nipulations within a frame often prevent memory optimiza-
tions from detecting equivalent addresses (during optimiza-
tion two memory instructions are deemed equivalent only if
their base registers are symbolically the same and their im-
mediates and scales are literally the same). It is only after the
stack manipulations have been flattened by RA that redundant
and forwarded loads are detected. On the bzip2 benchmark,
the effect of CSE is dominant. Here, CSE is able to detect
and remove redundant loads from a critical loop within the
benchmark.

Aggressive speculation during optimization can decrease
potential IPC. For example, in Figure 10, Excel exhibits an in-
crease in effective IPC when the Store Forwarding optimiza-
tion is disabled. This optimization can create unsafe stores
that can alias during execution. In Excel, there are many
aliasing events among unsafe stores, which cause the rate of
asserting frames to increase. This increase accounts for the
effective IPC difference.

7 Related Work

As discussed in Section 1, this paper differs from the pre-
vious rePLay work mainly in that this work deals with the
ramifications of rePLay-style optimizations for an x86 mi-
croarchitecture. We also present a detailed overview of the
design of an optimization datapath. Previous rePLay work
dealt with Frame Construction [13] and the application of re-
PLay optimizations at the Alpha ISA level.

The concept of hardware assisted dynamic optimization
has evolved out of work on trace caches. The initial work
on trace optimization [6, 9] dealt with simple microarchitec-
tural optimizations (instruction fusion, instruction routing) on
small trace fragments. The small trace lengths rendered com-
piler optimizations such as the ones considered in this pa-
per largely ineffective for boosting performance. Subsequent
work generalized the construction and optimization hardware
with a separate co-processor to deal with traces [2]. The re-
PLay framework pushes in the direction of aggressive trace
optimization by providing support for speculative optimiza-
tions on long, atomic instruction traces.

Along with rePLay, there have been other recent proposals
for hardware-assisted dynamic optimization, all of which of-
fer different perspectives on attacking similar opportunities.
ROAR [12] is a run-time optimization architecture that iden-
tifies and optimizes hot regions of execution via a combined
hardware and software mechanism. ROAR uses a rolling
commit speculation model (rePLay uses hardware rollback)
that supports interruption within an optimized region. A sec-
ond approach is that of Approximate Code [17]. With this ap-
proach, executables are made up of two parts: distilled code
that is optimized using assumptions about execution values,
paths, etc., and the original, unmodified code. The original

code executes as a separate thread to verify that the distilled
code is operating correctly.

Moving upwards in abstraction layers, there have been
multiple approaches to software-based dynamic optimiza-
tion [1, 3, 7, 10]. For many schemes, such as Dynamo [1]
and Transmeta’s Code Morphing System [10], the original
program runs under control of a software interpreter. The
interpreter gathers information about the program’s run-time
behavior and builds optimized regions. When a PC is en-
countered for which an optimized region exists, the optimized
code is directly executed.

Perhaps the most similar approach to the work described in
this paper is Transmeta’s Code Morphing System [10]. Trans-
meta’s morpher is a system that transforms x86 instructions
into optimized VLIW operations, similar to optimized micro-
operation frames in this study. While many aspects of Trans-
meta’s system have not been publicly disclosed, the system
described in [10] is a software system that pushes the x86 ar-
chitectural boundary to the basic block level, allowing intra-
block optimizations. This approach thus has higher overhead
and performs less aggressive optimization than is possible
with rePLay, as illustrated by the example in Section 3.

8 Conclusion

In this paper we demonstrate that complex instruction set
architectures contain inefficiencies that do not exist in sim-
pler ISAs. Using the rePLay Framework as the architec-
tural substrate, we were able to execute a series of optimiza-
tions that exploit those opportunities that a compiler can-
not take advantage of due to ISA barriers. Simulation re-
sults reveal that these optimizations drastically reduce both
the total number of micro-operations and the number of load
micro-operations across a set of representative benchmarks
from both SPECint 2000 and desktop applications. These re-
ductions contribute to a boost in performance on a rePLay-
enabled superscalar processor.

9 Acknowledgments

We thank the other members of the Advanced Computing
Systems group, as well as Stephan Jourdan, Ben Sander, and
Jared Stark for providing feedback during various stages of
this work. This material is based upon work supported by
the National Science Foundation under Grant Nos. 0092740
and 9984492 and the C2S2 Marco Center, with very gracious
support from AMD, Intel, and Sun.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

V. Bala, E. Duesterwald, and S. Banerjia. Transparent dy-
namic optimization: The design and implementation of Dy-
namo. Technical Report HPL-1999-78, Hewlett-Packard Lab-
oratories, June 1999.

Y. Chou and J. P. Shen. Instruction path coprocessors. In
Proceedings of the 27th Annual International Symposium on
Computer Architecture, 2000.

K. Ebcioglu and E. R. Altman. Daisy: Dynamic compilation
for 100% architectural compatibility. In Proceedings of the
24th Annual International Symposium on Computer Architec-
ture, 1997.

B. Fahs, S. Bose, M. Crum, B. Slechta, F. Spadini, T. Tung,
S.J. Patel, and S. S. Lumetta. Performance Characterization
of a Hardware Framework for Dynamic Optimization. In Pro-
ceedings of the 34th Annual International Symposium on Mi-
croarchitecture, 2001.

J. A. Fisher. Trace scheduling: A technique for global mi-
crocode compaction. [EEE Transactions on Computers, C-
30(7):478-490, July 1981.

D. H. Friendly, S. J. Patel, and Y. N. Patt. Putting the fill
unit to work: Dynamic optimizations for trace cache micro-
processors. In Proceedings of the 31th Annual International
Symposium on Microarchitecture, 1998.

M. Gschwind, E. R. Altman, S. Sathaye, P. Ledak, and D. Ap-
penzeller. Dynamic and transparent binary translation. /EEE
Computer, 33:54 — 59, Mar. 2000.

E. Hao, P-Y. Chang, M. Evers, and Y. N. Patt. Increasing
the instruction fetch rate via block-structured instruction set
architectures. International Journal of Parallel Programming,
26(4):449-478, Aug. 1998.

(9]

[10]

(11]

[12]

(13]

[14]

(15]

[16]

(17]

Q. Jacobson and J. E. Smith. Instruction pre-processing in
trace processors. In Proceedings of the 5th International Sym-
posium on High Performance Computer Architecture, 1999.
A. Klaiber. The technology behind Crusoe processors. Tech-
nical report, Transmeta Corporation, Jan. 2000.

S. Melvin and Y. Patt. Enhancing instruction scheduling with
a block-structured ISA. International Journal of Parallel Pro-
gramming, 23(3):221-243, June 1995.

M. C. Merten, A. R. Trick, C. N. George, J. C. Gyllenhaal,
and W. mei W. Hwu. A hardware-driven profiling scheme for
identifying program hot spots to support runtime optimization.
In Proceedings of the 26th Annual International Symposium
on Computer Architecture, 1999.

S. J. Patel, T. Tung, S. Bose, and M. M. Crum. Increasing the
size of atomic instruction blocks using control flow assertions.
In Proceedings of the 33th Annual International Symposium
on Microarchitecture, 2000.

B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global Value
Numbers and Redundant Computations. In Proceedings of
the 15th ACM Symposium on Principles of Programming Lan-
guages, pages 12-27, San Diego, California, 1988.

E. Sprangle and Y. Patt. Facilitating superscalar processing
via a combined static/dynamic register renaming scheme. In
Proceedings of the 27th Annual International Symposium on
Microarchitecture, pages 143-147, 1994.

S. Vajapeyam and T. Mitra. Improving superscalar instruction
dispatch and issue by exploiting dynamic code sequences. In
Proceedings of the 24th Annual International Symposium on
Computer Architecture, pages 1-12, 1997.

C. Zilles and G. Sohi. Master/slave speculative paralleliza-
tion with distilled programs. In Wisconsin Madison Technical
Report TR-1438, 2002.

