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Abstract 
 

We developed a 1.3-GHz SPARC-V9 processor: the 
SPARC64 V. This processor is designed to address 
requirements for enterprise servers and high-performance 
computing. Processing speed under multi-user interactive 
workloads is very sensitive to system balance because of 
the large number of memory requests included. From 
many years of experience with such workloads in 
mainframe system developments, we give importance to 
design a well-balanced communication structure. To 
accomplish this task, a system-level performance study 
must begin at an early phase. Therefore we developed a 
performance model, which consists of a detailed 
processor model and detailed memory model, before 
hardware design was started. We updated it continuously. 
Once a logic simulator became available, we used it to 
verify the performance model for improving its accuracy. 
The model quite effectively enabled us to achieve 
performance goals and finish development quickly. This 
paper describes the SPARC64 V microarchitecture and 
performance analyses for hardware design.  

 
 

1. Introduction 
 
The enterprise server system (EPS) market had been 

dominated by mainframe servers for many years. The 
situation changed because of the explosive growth of 
information technology. These days, open server system 
vendors are targeting the EPS market, and this seems to 
be part of a growing trend in the market. The primary EPS 
operations are database processing and online transaction 
processing. They require computer systems that provide 
both high reliability and high performance. Mainframes 
have been known as systems that satisfy these 
requirements. However, with the widening use of Internet 

technology, demand from end users for non-stop 
processing on Internet servers is increasing. This demand 
led to development of open servers with a guaranteed 
availability of 99.999 percent. Mainframes have been also 
capable of achieving this high level of availability. 

We have conducted many experiments as part of 
mainframe development [8]. Using our mainframe 
expertise while aiming for high reliability, high 
availability, and high performance, we developed a 
SPARC1 V9 [9] processor that is called SPARC64 V. The 
processor is designed to address requirements for 
enterprise servers and high-performance computing. We 
designed it from scratch because we decided to make 
good use of mainframe thinking and needed to avoid 
inheriting any limitation. But then this disable to estimate 
final performance based on an existing machine. 

The SPARC64 V operates at a frequency of 1.3 GHz 
and uses 0.13-µm CMOS technology. The first of these 
silicon processors was manufactured in December 2001.  

The key features are throughput, multiprocessor 
performance and RAS (reliability, availability and 
serviceability.) 

We use a software performance simulator 
(performance model) for the performance estimation and 
performance studies. We develop a performance model 
before hardware design is started and we use it until the 
end of the project. We continuously improve its rigidity 
concurrent with hardware development moreover we use 
verification results which from execution of performance 
test programs on logic simulator for improving the model 
accuracy. Using a single performance model throughout 
the project results in evaluation data consistency and the 
consistency is effective for architects when they verify 
model data. Result of these works, in the end of the 
project, the accuracy of the performance model can be a 
quite high.  

1 SPARC is a registered trademark of SPARC International, Inc. 



 

Section 2 covers the hardware development strategy 
and performance model features. Section 3 describes the 
SPARC64 V microarchitecture. Section 4 explains some 
of our performance analyses on the performance model. 
Performance model accuracy is discussed in section 5.  

 
2. Strategy 
 

We devised a strategy to achieve performance goals 
and finish this development in a short and limited period. 
We realize it by a close use of such performance model 
and such steady efforts for accuracy improvement as we 
describe below.  
• The performance model consists of detailed processor 

model and detailed memory system mode because we 
emphasize well-balanced communication structures on 
our hardware design.  

• At an early stage, we carry the accuracy improvement 
out by continuous rigidity of the performance model. 
And once a logic simulator is available, we use it to 
verify the performance model for improving its 
accuracy, iteratively. 

This aims that hardware architects can be confirm 
their decisions as needed during design development and 
fix performance bugs before an actual machine is built by 
estimating final system-level performance. 

This section explains how the proposed strategy was 
executed. Figure 1 outlines development of the 
performance model and the hardware design. A close 
relationship between them is essential and the “Mutual 
feedback”  arrow in Figure 1 indicates it. The horizontal 
axis is the time scale. 
• Hardware development begins with a basic design phase, 

moves to a detailed design phase, and then moves to a 
verification phase. 

• An initial performance model is available at the 
beginning of the basic design phase. We developed the 
model according to fundamental specifications. 

• During hardware development, performance architects 
carry out performance studies, discuss the results with 
hardware architects, and update the performance model 
for subsequent studies. In parallel, hardware architects 
combine information from performance studies and 
from other examinations. They then update the 
hardware design accordingly. Experimental ideas are 
implemented in the model whenever necessary. In 
parallel with the studies, as hardware architects fix parts 
of the design, performance architects are informed 
about the choice and implement the specifications as 
precisely as necessary to improve performance model 
accuracy. The performance model is updated iteratively 
and continuously because the hardware design is 
improved step by step.  

• At the end of the detailed design phase, a logic 

simulator that is based on the actual hardware logics 
available. First, it processes logic verifications. Next, it 
starts performance testing. Some of the performance test 
programs are generated from instruction traces by 
“Reverse Tracer [11].”  Each of the original traces can 
be an input of the performance model. We know that 
individual execution results of each of these programs 
on the logic simulator is a detailed match of output from 
the performance model that inputs the original trace. 
Use of this feature can clarify bugs in the hardware 
logic and the performance model.  

 

 
Figure 1. Development strategy. 

 
Figure 2 illustrates accuracy improvements in the 

performance model. The horizontal axis is the time scale, 
and the vertical axis is an accuracy scale. The dotted line 
represents the performance of a physical machine, and we 
obtained this value after a physical machine is available. 
• For verification of the initial performance model, we 

used a highly accurate performance model for a 
mainframe system that had been verified with a physical 
machine. We set up the initial model and the mainframe 
model with similar structures, and checked whether the 
models exhibit similar trends.  

• The accuracy of the performance model is verified 
based on comparisons with physical machine 
performance. So we could not determine the actual 
accuracy of the model before a physical machine is 
built. 

• However, in the later part of the verification phase, 
architects can estimate benchmark performance with the 
performance model because the model is verified based 
on comparisons with the logic simulator which is cycle 
accurate. It’ s not practical to estimate multiprocessor 
performance with the logic simulator. The performance 
model has advantages in flexibility, cost effectiveness, 
and portability. 



 

 
Figure 2. Accuracy improvements. 

 
2.1. Performance model 

 
The performance model was created based on actual 

hardware logic. It is a trace-driven software simulator 
written in C. Input traces are instruction traces, and some 
of them include information from both application 
execution and kernel execution. The source size is about 
ninety thousand steps. It has about five hundred 
parameters. 

Requirements for the model are a capability to 
estimate system-level performance and multiprocessor 
system performance, flexibility for changing the model 
structure, and high accuracy. 

The performance model consists of a detailed 
processor model and detailed memory system model. 
Generally, a performance model for performance 
evaluations consists of a detailed processor model and a 
rather rough memory system model, such as a latency 
model. But because of a large frequency gap between 
memory systems and processor cores, a system-level 
study on such a model would mislead hardware architects 
when they design an EPS. 

From the beginning until the end of development, we 
improved each version of a single performance model 
step by step. Such continuity provided consistency of 
output from the performance model. In spite of the 
iterative improvements, features of different versions 
were closer than features of different tools. Once a logic 
simulator was available, we started to verify the 
performance model by comparing it with output from the 
logic simulator, and changed points found to be incorrect 
in the model. The verification was iterative. 

The final version of the performance model has the 
following features. A processor can be modeled in detail 
at the register transfer level. Memory access resources 
between the CPU and memory, including buffers, queues, 
and pipelines, are the same as those in a physical machine. 
Moreover, a cache protocol used to access, read, write to, 
and invalidate an internal cache can be modeled. A bus 

network connecting chips between caches and memory, 
and data and request flows can be modeled in detail with 
the same concepts as those of actual systems. Such details 
include a request queue, bus conflict, bandwidth, and 
latency. In addition, requests between L2 caches can be 
modeled for MP system performance models.  

When we set up the model with UP structure and run 
a multi-user interactive workload trace, it operates 7.8 K 
instructions per second on the Intel Pentium III processor 
which frequency is 1 GHz. 

  
2.2. Evaluation and ver ification environment 
 

Figure 3 illustrates the evaluation and verification 
environment. 
• “Trace”  is created on a physical machine. Using a 

workload running in a normal operating system 
environment, we wait until it reaches a steady state, and 
then start trace.  

• Section 2.1 explains the “software performance model 
(performance model).”  

• Output from the performance model ((1) in Figure 3) is 
used to determine hardware specifications. 

• The “ logic simulator”  is created with hardware logic, so 
it is a truly accurate representation of the memory 
system and processor core design. We can verify the 
logic of both the memory system and microarchitecture. 

• Test programs that can run on the logic simulator are 
roughly divided into two groups: logic test programs 
and performance test programs. 

• Performance model accuracy is verified based on 
comparisons with output from the logic simulator ((2) in 
Figure 3). We execute a test program that is created 
from an instruction trace [11]. For the comparisons, we 
input the trace to the model.  

• The final phase of development is a study of the full 
workload-driven performance on a developed machine. 
We evaluate performance model accuracy by comparing 
physical machine execution output with performance 
model output ((3) in Figure 3). 

 

Figure 3. Evaluation and verification environment. 



 

3. Microarchitecture 
 
This section first provides an overview of the 

SPARC64 V microarchitecture. That is followed by 
detailed descriptions of techniques for improving 
throughput. Related basic studies on microarchitecture 
design are discussed in section 4. 

The processor is a 64-bit microprocessor based on the 
SPARC-V9 architecture. Its operating frequency is 1.3 
GHz, and it contains 191 million transistors fabricated 
using 0.13µm CMOS technology with eight-layer copper 
metallization. The die size is 18.1 by 16.0 mm. 

The microarchitecture of the core has an out-of-order 
superscalar execution design. Up to four instructions can 
be issued per cycle. There are out-of-order resources, 
including a 64-entry instruction window, and renaming 
registers. Up to 32 floating-points and 32 integer results 
can be kept in the renaming registers. There are four kinds 
of reservation stations: RSA, RSE, RSF, and RSBR. Each 
RSA and RSBR consists of 10 entries of a buffer. RSA is 
for address generation operations, and RSBR is for branch 
operations. Each RSE and RSF consists of two sets of 
buffers; and eight entries are in each buffer. There are two 
sets of integer execution units, two sets of floating-point 
execution units, and two sets of address generation units. 
Having two set of floating-point multiply-add execution 
unit is effective for HPC performance. Accordingly, up to 
six instructions can be dispatched in a cycle. A unique 
execution unit is connected directly to each RSE and RSF. 

The processor cache hierarchy consists of two levels 
of a non-blocking cache. There is a level-one (L1) 
instruction cache and L1 operand cache. Each type of L1 
cache is a 128-KB, 2-way set associative cache. The 
instruction fetch width is 32 bytes, from which up to eight 
instructions can be fetched. The level-two (L2) cache is a 
unified, 2-MB, 4-way set associative, on-chip cache. We 
decided to install medium-size L1 caches and a large 
on-chip L2 cache in the processor to obtain a performance 
advantage in multiprocessor systems. 

A 4-way branch history table is used for branch 
prediction, and it has 16K entries. To enable non-blocking 
memory access operations, the processor core has 16 
entries of a load queue and 10 entries of a store queue. 
Table 1 itemizes these microarchitecture numbers. 

Figure 4 is a high-level block diagram of the 
SPARC64 V. The processor consists of four units. Using 
information in the branch history table, the instruction 
control unit (I-unit) fetches up to eight instructions per 
cycle. It also decodes up to four instructions per cycle. 
The execution unit (E-unit) consists of out-of-order 
execution resources. Up to six instructions per cycle can 
be dispatched to execution units, and up to 64 instructions 
can be processed at a time. The storage unit (S-unit) 
consists of TLB and an L1 cache. The 
secondary-cache-and–external-access-unit (SX-unit) 

consists of an L2 cache and an external access unit, and it 
communicates with other processors and the memory 
system through system bus interface. We implement three 
techniques for improving throughput. A subsequent part 
of this section discusses these techniques. 

 
Figure 4. High-level block diagram of SPARC64 V.

 
Table 1. Microarchitecture. 

Instruction set architecture SPARC-V9 
Clock rate 1.3 GHz 
LSI technology 0.13 µm, 8 Cu layers 
Transistor number    191 millions 
Power consumption 57 W @ 1.3 GHz 
Chip size 290mm2  (18.1 by 16.0 mm) 
LSI signal pin 269 
Level 1 cache (I/D) 2-way, 128 KB 
Level-2 cache On-chip 4-way 2 MB 

Processor core 
Execution control method 
Issue number 

 
Out-of-order superscalar 
4-way 

Instruction window 64 instructions 
Instruction fetch width 32 bytes 
Branch history table 4-way, 16K-entry 
Execution unit Fixed-point: 2  

 Floating-point: 2 (Multiply-add) 
 Address generator: 2 

Reservation station RSE: 16(8/8) for fixed-point 
 RSF: 16(8/8) for floating-point 
 RSA: 10 for address generator 
 RSBR: 10 for branch 

Reorder buffer Fixed-point: 32 
 Floating-point: 32 

Load/Store queue 16/10 entries 

 
3.1. Pipelines using speculative dispatch and data 

forwarding 
 
The SPARC64 V is designed to support 

high-frequency CPUs and provide high throughput via 
several deep pipelines. There are 10 pipelines for six 
different purposes. Instruction fetch and instruction 
control have one pipeline each. Address generation, 
integer execution, and floating-point execution have two 
pipelines each. 



 

 
Figure 5. Pipelines and data flow. 

 
Figure 6. Speculative dispatch and data forwarding. 

 
Figure5 shows data flow between units and pipelines. 

The instruction fetch pipeline has five stages; that is, one 
cycle to obtain priority, three cycles to fetch instructions 
from the L1 cache, and one cycle to validate a fetched 
value. The number of stages of an execution pipeline 
depends on the operation attribute.   

The minimum is three stages. In the first stage, 
entries in a reservation station are examined, and only one 
instruction can be dispatched from a reservation station. 
Appropriate register data is read from a register file or 
renaming register in the second stage and results are then 
executed in the third stage. 

The deeper the pipeline is, the higher the possibility 
of pipeline bubbles is. This might affect the throughput 
rate. The SPARC64 V dispatches instructions 
speculatively from reservation stations and thereby avoids 
the disadvantage of deep pipelines. We name this 
technique “speculative dispatch.”  An instruction can be 
dispatched if source data of the instruction is not ready 
but would be ready before the dispatched instruction 
reaches the execution stage. The SPARC64 V predicts 

that a request of the prior instruction to the L1 operand 
cache should hit the cache line. It then speculates about 
the cycle number at which the corresponding data loaded 
from the L1 operand cache would be ready. Furthermore, 
a “data forwarding”  technique accelerates the effect of 
speculative dispatch. Figure 6 illustrates speculative 
dispatch and data forwarding. There are data paths 
between each execution unit and every other execution 
unit, and also between every execution unit and operand 
access pipeline. They can usually make source data 
available in the next cycle after execution is completed or 
after the L1 operand cache returns it. 

If the prediction were unsuccessful because a request 
causes a cache miss, all instructions that have 
read-after-write dependency must be cancelled at every 
stage of the execution pipelines. 

 
3.2. Non-blocking dual operand access 

 
The SPARC64 V can pass up to two requests between 

an operand access pipeline and the L1 operand cache. 



 

This communication capability can be considered rather 
abundant in proportion to a 4-way issue processor. 
However, the processor is primarily targeting for database 
and transaction workloads, which generate more memory 
access requests than workloads for other purposes. 

In an instruction decode stage, every memory access 
request is queued sequentially in a load queue or store 
queue (load/store queues). Concurrently, the request 
enters a reservation station (RSA). Up to two requests can 
be sent from RSA to address generation units (EAG) per 
cycle, and calculated memory addresses are then sent to 
specific load/store queue entries derived from the same 
instruction. Unless existing requests in the queues are 
passed to the L1 operand cache, the calculated addresses 
can be passed directly to the L1 cache. 

The processor implements a non-blocking cache 
mechanism. The L1 operand cache is organized as eight 
banks, each of which is four bytes. Two requests can be 
accepted per cycle unless they cause a bank conflict. If 
they conflict, execution of a lower priority request is 
aborted and retried in a later cycle. However, a request 
that causes an L1 operand cache miss stays in load/store 
queues until its requested line become ready in the L1 
cache. 
 
3.3. Two level cache hierarchy 
 

The cache hierarchy consists of a medium-capacity 
level-one (L1) copy-back cache and a large-capacity 
on-chip level-two (L2) cache. The cache hierarchy of 
many processors currently available on the market 
consists of three levels of cache: a small-capacity and 
fast-access level-zero (L0) cache, an L1 cache, and an L2 
cache. In these processors, a store-through cache is a 
popular mechanism; it is also an effective method of 
operation for them. In spite of that trend, the SPARC64 V 
adopts a two-level cache hierarchy. Because (1) 
large-scale of interactive workloads would create a high 
rate of L0 cache misses, causing accesses to L1 cache and 
thereby deteriorating performance, and because (2) a 
deeper hierarchy increases the cost of move-out requests 
from other CPUs, two levels of cache are fine for the 
processor. 
 
3.4. On-chip secondary cache with hardware 

prefetching 
 

The SPARC64 V has a unified, 2-MB, 4-way set 
associative, on-chip L2 cache. We design the L2 cache to 
have high throughput and high reliability, while 
considering the trade-off between on-chip and off-chip 
designs. Such considerations include latency, cache size, 
and the number of set associativities. An on-chip design 
has an advantage in throughput because communication 
with an L1 cache is done within a chip. Since we 

emphasize high throughput and low latency, we choose an 
on-chip design. High reliability is achieved by using 
fewer physical parts and interface lines in the on-chip 
design. 

The size, 2 MB, is a result of discussions about LSI 
technology, chip size, and manufacturing cost. We utilized 
a hardware prefetching technique to improve the cache-hit 
ratio, and determined the size accordingly.  The 
hardware prefetch provides data in L2 cache for expected 
fetch requests in the near future. The prefetch is triggered 
by a L1 cache miss that is demanded by a memory request 
in a workload. 
 
4. Performance analysis 

 
This section contains information from some 

representative performance studies. We used the 
information to evaluate trade-offs in the SPARC64 V 
microarchitecture. Base model parameters of the studies 
are listed in Table 1. Workloads are SPEC CPU95, SPEC 
CPU2000, and TPC-C2. We use a uni-processor model to 
evaluate the SPEC and TPC-C benchmarks. Otherwise, 
we use an SMP model, and the results shown are for 
“TPC-C (16P).”  

First, we design a data path structure for operation 
under specific frequencies. Next, we design cache 
structures that have a large influence on chip size. Then, 
we design detailed control logic. We show the timing of 
the studies in Figure 1. 

 
4.1. Workload and trace generation 

 
We used the SPEC CPU95 and SPEC CPU2000 

benchmarks to study the processor and TPC-C workloads 
to study system-level behavior.  

A Forte compiler and Shade, both of which are 
products from Sun Microsystems, Inc., were used to 
generate SPEC benchmark traces. The SPEC traces cover 
only application code.  

We generated TPC-C workload traces by our original 
kernel tracer that was involved in kernel debugger and 
written by C and machine language. These traces cover 
both operating system code and transaction application 
code. We followed TPC guidelines during system setup in 
order to generate realistic traces and sampled these traces. 
 
4.2. Benchmark character istics 

 
We characterize workloads based on a breakdown by 

execution time. We modeled a perfect L2 cache, a perfect 
L1 cache, perfect TLB, and perfect branch prediction, and 

2 TPC-C is a complex on-line transaction processing workload that is 
provided by Transaction Processing Performance Council.  



 

then evaluate several models to find out the penalty of 
stalls. Figure 7 shows the results, where “sx”  is stalls 
caused by L2 misses, “ ibs/tlb”  is stalls caused by L1 
misses and TLB misses, “core”  is execution time in the 
I-unit and the E-unit, and “branch”  is stalls caused by 
branch prediction failures. 
• SPECint95 spends 30 percent of execution time on 

stalls for branch miss prediction. This percentage is 
higher than that of SPECfp95 (3 percent). It agrees with 
the fact that SPECint95 includes more branch 
instructions than SPECfp95 as well as patterns that are 
difficult to predict. 

• SPECfp95 spends 74 percent of execution time on 
execution in the processor core. This might reflect the 
depth of the floating-point execution pipeline. 

• TPC-C has a large penalty, 35 percent of execution time, 
because of stalls caused by L2 misses. We determine 
that the L2 cache structure is a key to improving TPC-C 
performance. 

 
Figure 7. Benchmark characteristics. 

 
4.3. Data paths 
 
4.3.1. Superscalar. Out-of-order superscalar execution 
and deep pipelines are fundamental specifications of the 
SPARC64 V microarchitecture. We establish them as the 
base of our design. Next, we adopt “speculative dispatch 
and data forwarding”  (see section 3.1) in the design. 
Lastly, we do performance studies to determine an 
appropriate instruction issue width because it is strongly 
associated with many processor design parameters. 

Four-way instruction issue is the maximum setting 
that can be adopted in a trade-off between the 
fundamental specifications. We have to limit the 
complexity of the issue stage because of the high CPU 
frequency and because we do not want to divide the issue 
process into two stages.  

Figure 8 shows the performance impact of 4-way 
issue execution compared with 2-way issue execution. 
These numbers are the IPC ratio. We infer that the 2-way 
issue width is too small, so it must be a performance 
bottleneck. SPECint95 and SPECint2000 improve 
performance more than the others do because they have 

high cache-hit ratios.  

 
Figure 8. Issue width --- 4-way vs. 2-way. 

 
Trade-offs between physical size and performance 

improvement are considered. The physical size of 4-way 
issue is more than twice that of 2-way issue. We noted 
that all earlier generations of SPARC processors accept 
4-way issue. Our conclusion is that 4-way issue is better.  
 
4.3.2. Branch prediction.  Figure 7 shows that SPECint 
and TPC-C spend a lot of execution time on stalls for 
branch prediction failures. We therefore study 
performance by comparing two branch history tables. One 
is a 16K-entry, 4-way set associative, 2-cycle access table 
(“16k-4w.2t” ), and the other is a 4K-entry, 2-way set 
associative, 1-cycle access table (“4k-2w.1t” ). These two 
table structures are based on the values of fundamental 
properties such as RAM size and access latency. There are 
trade-offs between “16k-4w.2t”  and “4k-2w.1t.”  
“4k-2w.1t”  has an advantage of fetch latency because it 
generates one bubble in a pipeline before it fetches a 
target instruction while “16k-4w.2t”  generates two 
bubbles. In contrast, “16k-4w.2t”  has an advantage of 
table size. “4k-2w.1t”  would be useful for workloads that 
include high percentages of taken branch instructions 
where all of the taken branches have entries in a branch 
history table. 
 

 
Figure 9. Branch history table --- latency vs. size. 

Figure 9 shows the IPC ratio of “16k-4w.2t”  to 



 

“4k-2w.1t”  as a percentage whose base is “16k-4w.2t.”  
Figure 10 shows rates of branch prediction failure. SPEC 
benchmark programs benefit slightly from the advantage 
provided by “4k-2w.1t,”  and they have no difference 
between the prediction failures rates of “16k-4w.2t”  and 
“4k-2w.1t.”  In contrast, TPC-C exhibits a different 
characteristic in its rates. Its prediction failure rate of 
“4k-2w.1t”  is 60 percent greater than that of “16k-4w.2t.”  
The “4k-2w.1t”  IPC ratio shows a decrease of 5.6 percent. 
Since we place weight on improving TPC-C performance, 
we adopt the “16k-4w.2t”  structure. 

 

 
Figure 10. Branch prediction failures. 

 
4.3.3. Level-one cache.  We study the performance 
impact between a 32-KB, direct mapped, 3-cycle access  
L1 cache (“32k-1w.3c” ) and a 128-KB, 2-way set 
associative, 4-cycle access L1 cache (“128k-2w.4c” .)  
Figure 11 shows the IPC ratio of “32k-1w.3cw.4c”  to 
“128k-2w.4cw.3c”  as a percentage whose base is 
“128k-2w.4c,”  and Figure 12 and Figure 13 show related 
cache miss ratios. For a TPC-C workload, the instruction 
miss rate of “32k-1w.3c”  is 99 percent greater than that of 
“128k-2w.4c,”  and the operand miss rate of “32k-1w.3c”  
is 64 percent greater. This results in an IPC ratio decrease 
of 2.0 percent. A point of consideration is whether a 
two-percent advantage in the IPC ratio balances a 
fourfold increase in cache size. We conclude that it is 
worth having a larger L1 cache because the two percent 
does not provide the maximum possible benefits. We have 
fundamental understandings that EPS workload capacity 
would increase and L1 cache would become a bottleneck. 
Therefore, the number of benefits resulting from our 
TPC-C traces, which are a good reflection of real world 
behavior, can be considered a conservative number. 
Moreover, we predict that the direct mapped cache would 
easily cause thrashing during its processing of large 
workloads. 
 
 

 
 

 
Figure 11. L1 cache --- latency vs. volume. 

 

 
Figure 12. L1 instruction cache miss. 

 

Figure 13. L1 operand cache miss. 
 
4.3.4. On-chip level-two cache.  We started design with 
the idea to use an off-chip 8-MB L2 cache because an 
earlier processor in the same series had an off-chip L2 
cache. Then, the design changed to an on-chip design 
based on consideration of a speed gap between intra-chip 
communication and inter-chip communication. Since the 
processor being designed has a frequency of more than 1 
GHz, the gap becomes unacceptable large. An MCM 
structure could reduce the gap, but is quite expensive. 

We study on-chip L2 cache performance by 
comparing it with off-chip L2 cache performance. The 
on-chip L2 cache is a 2-MB, 4-way set associative cache 



 

(“on.2m-4w”.) Due to limitations on chip size, 2 MB is 
the maximum size that can be adopted. The L2 off-chip 
models are of an 8-MB, 2-way set associative cache 
(“off.8m-2w”) and an 8-MB, direct mapped cache 
(“off.8m-1w”.) Access latency is derived from CPU 
frequency. We estimate the cost of communication 
between chips and we add 10�  to the latency of off-chip. 
The number of set associative is derived from the number 
of pins. 

Figure 14 shows the IPC ratios among “on.2m-4w”, 
“off.8m-2w” and “off.8m-1w”. The ratios are expressed 
as percentages whose base is “on.2m-4w”. TPC-C (16P) 
is a 16 SMP model. Figure 15 shows the L2 cache miss 
ratio. Compared with “on.2m-4w”, “off.8m-1w” has IPC 
ratio decreases of 14 percent for TPC-C (UP) and 12.4 
percent for TPC-C (16P). Thereby, we concluded that 
“off.8m-1w” offers no advantage over “on.2m-4w”. In 
comparison, “off.8m-2w” has a slight IPC ratio increase. 

Physical implementation of the on-chip cache of 
“on.2m-4w” requires about 270 signal pins. The off-chip 
cache of “off.8m-2w” requires about 560 signal pins. That 
is an approximate difference of two times, and it results in 
differences in signal switching noise level that cannot be 
ignored. “on.2m-4w” has an advantage of less noise. 
Moreover, since chip connections with signal wires have 
a higher chance of causing malfunction, “on.2m-4w” has 
an advantage in reliability. 

After examining this trade-off, we adopt “on.2m-4w”  
in our design. 

Figure 14. L2 cache --- latency vs. volume.  

Figure 15. L2 cache miss. 

4.3.5. Hardware prefetching.  Because we realized that 
an L2 cache size of 2 MB is too small, we needed to find 
some way to compensate for it. We started studying 
hardware prefetch algorithms. It’s not preferable to 
increase the number of pipeline stages for the prefetching. 
We decided against using a buffer that stores data from a 
fetched line temporarily.  

From our study of hardware prefetching (see section 
3.3), Figure 16 shows the performance effect of prefetch 
compared with performance in a non-prefetch model. 
Results for SPECfp benchmarks indicate the IPC ratio 
improved by more than 13 percent. We find that our 
prefetch algorithm fits the chain access pattern of memory 
addresses. Figure 17 shows the L2 cache miss ratio. The 
left-side bar with the tag name of “with”  is for a model 
with prefetching, and the ratio reflects all kinds of 
requests. The center bar with the tag name of 
“with-Demand”  is for a prefetch model, but the ratio 
reflects only requests that are in the original workload; in 
other words, the ratio does not reflect prefetch requests. 
The right bar with the tag name of “without”  is for a 
model without prefetching. We can determine the prefetch 
effect from a comparison between “with-Demand”  and 
“without” . Use of prefetch result in fewer cache misses. 
Differences between “with”  and “with-Demand”  indicate 
the negative effect of unnecessary prefetch requests. We 
find that FP programs receive a good degree of prefetch 
benefits. 

 

Figure 16. Hardware prefetching impact. 

Figure 17. Hardware prefetching --- L2 cache miss. 



 

4.4. Control logic 
 
4.4.1. Reservation stations.  To improve instruction 
execution parallelism, there are two sets of integer 
execution units and two sets of floating-point execution 
units. The SPARC64 V gains the greatest benefit from the 
dual execution units if it has one reservation station and 
dispatches up to two requests per cycle, because this 
would realize flexible out-of-order dispatch. However, it 
would increase implementation complexity compared 
with a structure where two reservation stations are 
connected to a unique execution unit and only one request 
can be dispatched respectively from each reservation 
station per cycle. To take full advantage of two dispatches 
from a single reservation station, we cannot set the two 
dispatch operations to run in parallel because the second 
selection may depend on the former operand. We must 
limit the complexity of the dispatch stage to keep 
consistency for high-frequency CPUs. 

We study performance effects by comparing a 
structure having one reservation station (“1RS”) with a 
structure having two reservation stations (“2RS”). “1RS”  
dispatches up to two operations per cycle from one 
reservation station. “2RS” dispatches up to one operation 
per cycle from a reservation station that is connected to a 
unique execution unit. Figure 18 shows the IPC ratio of 
“2RS” to “1RS” as a percentage whose base is “1RS.”  
Use of “2RS” results in a slightly decrease IPC ratio. 
After examining the trade-off between IPC benefits and 
the complexity involved, we adopted “2RS” in our 
design. 

 

 
Figure 18. Reservation station --- 1RS vs. 2RS. 

 
5. Performance model accuracy 

 
The two graphs in Figure 19 show the accuracy of our 

performance model. During the verification phase, 
architects clarified and fixed logic bugs and performance 
bugs in their design ((2) in Figure 3). Concurrently, the 
accuracy of the performance model rose because 
hardware design was reflected more precisely on the 
model. The horizontal axis in the figure is a time scale. At 

“A”  in the figure, performance tests began on the logic 
simulator. There was a time lag between memory system 
design completion and processor design completion. This 
is shown by A, B and C in Figure 19. We worked on 
processor validation mostly between A and B, and we 
worked on memory system validation mostly between B 
and C. Before B, we finished creating an accurate 
processor model. Before C, we updated the memory 
system model. The A in Figure 19 represents the same 
time as “A”  in Figure 2. 

Each graph has a different time scale, so we indicated 
the same time in the two graphs by using a dotted line to 
connect corresponding points. 

The upper graph in Figure 19 shows estimated 
performance changes related to model rigidity.  The 
horizontal axis of the figure is a time scale, and the 
vertical axis denotes the performance ratio. Labels such as 
“v1”  and “v2”  on the horizontal axis are version names of 
the performance model. We labeled the model to indicate 
major updates, so they do not represent equal time 
intervals. For each execution, we set up the model with 
the same parameters except for any parameters that were 
newly added before the execution, and the model used the 
same input traces generated from SPEC CPU2000 
benchmark suits. We compared performance results based 
on “v8”  performance values. Except for those of “v5,”  the 
performance estimates were always decreasing. There is 
no problem with this downward trend: a performance 
model generally has decreasing performance estimates as 
model rigidity improves. The exception at “v5”  is the 
result of more-precise modeling of special instructions. 
Until “v4,”  we set an experimental penalty to each special 
instruction instead of modeling it in detail. 

The lower graph in Figure 19 shows performance 
model accuracy based on a comparison with execution 
results on a physical machine. The horizontal axis of the 
figure is a time scale, and the vertical axis denotes the 
performance ratio. The time scale is uniform. The 
performance results reflect both a difference in the model 
version and a difference in the parameters. At the same 
time as hardware design parameters were being updated, 
we were reflecting the updated parameters to the 
performance model. Differing from lines in the upper 
graph, lines in the lower graph have many abrupt upward 
and downward changes. Many of these remarkable 
changes in tendency were the result of changes in 
memory system parameters such as memory access 
latency, bus width, and outstanding numbers. After C, we 
continued validation by changing the compiler 
optimization level. The final accuracy figure for 
SPECfp2000 is 3.9 percent, and it is 4.2 percent for 
SPECint2000. 

 
 
 



 

  
Figure 19. Performance model accuracy. 

  
6. Related work 

 
In this section, we discuss about related works that 

mention relations between processor development and 
performance evaluations.  

For surviving marketplace competition, architects use 
performance evaluation models of a proposed processor 
to design new processor. Techniques to deal with 
problems in the performance evaluation are discussed in 
[12]. Performance works for commercial server design is 
focused in [13]. Design issues that relate to optimizing the 
performance of processor, I/O subsystems and software 
are described. In [14], a performance model that guides a 
processor design project is described. How Digital’s 
architects did and what they learned related to their 
performance works are reported. In [15], a real system 
performance-tuning project across several generations of 
product line is described. Discussions are focused on 
system software tunings for large online transaction 
processing workloads at post-hardware phase. 

There are no reports of performance models that 
consisted of detailed processor model and detailed 
memory system model, that were developed for using in a 
real processor development project, and that could be 
used to evaluate multiprocessor system.  

7. Conclusion 
 
We have developed a SPARC-V9 processor called 

SPARC64 V that is designed to address requirements for 
enterprise servers and high-performance computing. The 
processor operates at a frequency of 1.3 GHz and uses 
0.13-µm CMOS technology. The first of these silicon 
processors was manufactured in December 2001. 

The enterprise server system market had been 
dominated by mainframe servers for many years, and we 
conducted many experiments as part of mainframe 
development activities. Using our EPS expertise, we 
designed the processor from scratch since we recognized 
that the execution speed of multi-user interactive 
workloads is very sensitive to system balance; 
furthermore, we had to avoid any limitation that might be 
inherited from past designs.  

Key features for addressing EPS requirements were 
throughput, MP performance, and RAS. Additionally, a 
key for HPC performance was instruction execution 
capability. To satisfy those requirements, our design had 
pipelines using speculative dispatch and data forwarding, 
non-blocking dual operand access, an on-chip secondary 
cache with hardware prefetch, a two-level hierarchy cache, 
and an increase in the number of execution units. 



 

We needed to check what our EPS expertise acquired 
from work in mainframe development were common to 
the SPARC V9 platform and to enhance ideas. We 
developed a software performance simulator before the 
actual start of design. We emphasized system-level 
performance evaluation; therefore, in spite of using a 
latency model for the memory system, we created a 
memory model and processor model that were equally 
detailed. For the same reason, we made the performance 
model so that it could be used to evaluate multiprocessor 
systems.  

We updated the performance model continuously 
during development. That is, we added experimental ideas 
for subsequent studies and described fixed specifications 
in greater detail to improve accuracy. Once a logic 
simulator was available, we started comparing output 
from the simulator with output from the performance 
model. This gave us remarkable opportunities to make the 
model highly accurate. At the end of development of the 
processor, we verified the accuracy of the model by 
running SPEC CPU2000 benchmark suits. The error rate 
was less than five percent. 

Throughout development, hardware architects and 
performance architects worked closely with one another. 
As a result, we completed SPARC64 V development 
quickly, and the processor can be utilized in 
high-performance enterprise server systems. 
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