

Microarchitecture and Per formance Analysis of a
SPARC-V9 Microprocessor for Enterpr ise Server Systems

Mariko Sakamoto†, Akira Katsuno†, Aiichiro Inoue‡, Takeo Asakawa‡,
Haruhiko Ueno‡, Kuniki Morita‡, and Yasunori Kimura†

† FUJITSU LABORATORIES LTD.
{s.mariko, katsuno.akir-02,
 ykimura}@jp.fujitsu.com

‡ FUJITSU LIMITED
{inoue.aiichiro, asakawa.takeo,
ueno.haruhiko, morita.kuniki}

@jp.fujitsu.com

Abstract

We developed a 1.3-GHz SPARC-V9 processor: the
SPARC64 V. This processor is designed to address
requirements for enterprise servers and high-performance
computing. Processing speed under multi-user interactive
workloads is very sensitive to system balance because of
the large number of memory requests included. From
many years of experience with such workloads in
mainframe system developments, we give importance to
design a well-balanced communication structure. To
accomplish this task, a system-level performance study
must begin at an early phase. Therefore we developed a
performance model, which consists of a detailed
processor model and detailed memory model, before
hardware design was started. We updated it continuously.
Once a logic simulator became available, we used it to
verify the performance model for improving its accuracy.
The model quite effectively enabled us to achieve
performance goals and finish development quickly. This
paper describes the SPARC64 V microarchitecture and
performance analyses for hardware design.

1. Introduction

The enterprise server system (EPS) market had been

dominated by mainframe servers for many years. The
situation changed because of the explosive growth of
information technology. These days, open server system
vendors are targeting the EPS market, and this seems to
be part of a growing trend in the market. The primary EPS
operations are database processing and online transaction
processing. They require computer systems that provide
both high reliability and high performance. Mainframes
have been known as systems that satisfy these
requirements. However, with the widening use of Internet

technology, demand from end users for non-stop
processing on Internet servers is increasing. This demand
led to development of open servers with a guaranteed
availability of 99.999 percent. Mainframes have been also
capable of achieving this high level of availability.

We have conducted many experiments as part of
mainframe development [8]. Using our mainframe
expertise while aiming for high reliability, high
availability, and high performance, we developed a
SPARC1 V9 [9] processor that is called SPARC64 V. The
processor is designed to address requirements for
enterprise servers and high-performance computing. We
designed it from scratch because we decided to make
good use of mainframe thinking and needed to avoid
inheriting any limitation. But then this disable to estimate
final performance based on an existing machine.

The SPARC64 V operates at a frequency of 1.3 GHz
and uses 0.13-µm CMOS technology. The first of these
silicon processors was manufactured in December 2001.

The key features are throughput, multiprocessor
performance and RAS (reliability, availability and
serviceability.)

We use a software performance simulator
(performance model) for the performance estimation and
performance studies. We develop a performance model
before hardware design is started and we use it until the
end of the project. We continuously improve its rigidity
concurrent with hardware development moreover we use
verification results which from execution of performance
test programs on logic simulator for improving the model
accuracy. Using a single performance model throughout
the project results in evaluation data consistency and the
consistency is effective for architects when they verify
model data. Result of these works, in the end of the
project, the accuracy of the performance model can be a
quite high.

1 SPARC is a registered trademark of SPARC International, Inc.

Section 2 covers the hardware development strategy
and performance model features. Section 3 describes the
SPARC64 V microarchitecture. Section 4 explains some
of our performance analyses on the performance model.
Performance model accuracy is discussed in section 5.

2. Strategy

We devised a strategy to achieve performance goals
and finish this development in a short and limited period.
We realize it by a close use of such performance model
and such steady efforts for accuracy improvement as we
describe below.
• The performance model consists of detailed processor

model and detailed memory system mode because we
emphasize well-balanced communication structures on
our hardware design.

• At an early stage, we carry the accuracy improvement
out by continuous rigidity of the performance model.
And once a logic simulator is available, we use it to
verify the performance model for improving its
accuracy, iteratively.

This aims that hardware architects can be confirm
their decisions as needed during design development and
fix performance bugs before an actual machine is built by
estimating final system-level performance.

This section explains how the proposed strategy was
executed. Figure 1 outlines development of the
performance model and the hardware design. A close
relationship between them is essential and the “Mutual
feedback” arrow in Figure 1 indicates it. The horizontal
axis is the time scale.
• Hardware development begins with a basic design phase,

moves to a detailed design phase, and then moves to a
verification phase.

• An initial performance model is available at the
beginning of the basic design phase. We developed the
model according to fundamental specifications.

• During hardware development, performance architects
carry out performance studies, discuss the results with
hardware architects, and update the performance model
for subsequent studies. In parallel, hardware architects
combine information from performance studies and
from other examinations. They then update the
hardware design accordingly. Experimental ideas are
implemented in the model whenever necessary. In
parallel with the studies, as hardware architects fix parts
of the design, performance architects are informed
about the choice and implement the specifications as
precisely as necessary to improve performance model
accuracy. The performance model is updated iteratively
and continuously because the hardware design is
improved step by step.

• At the end of the detailed design phase, a logic

simulator that is based on the actual hardware logics
available. First, it processes logic verifications. Next, it
starts performance testing. Some of the performance test
programs are generated from instruction traces by
“Reverse Tracer [11].” Each of the original traces can
be an input of the performance model. We know that
individual execution results of each of these programs
on the logic simulator is a detailed match of output from
the performance model that inputs the original trace.
Use of this feature can clarify bugs in the hardware
logic and the performance model.

Figure 1. Development strategy.

Figure 2 illustrates accuracy improvements in the

performance model. The horizontal axis is the time scale,
and the vertical axis is an accuracy scale. The dotted line
represents the performance of a physical machine, and we
obtained this value after a physical machine is available.
• For verification of the initial performance model, we

used a highly accurate performance model for a
mainframe system that had been verified with a physical
machine. We set up the initial model and the mainframe
model with similar structures, and checked whether the
models exhibit similar trends.

• The accuracy of the performance model is verified
based on comparisons with physical machine
performance. So we could not determine the actual
accuracy of the model before a physical machine is
built.

• However, in the later part of the verification phase,
architects can estimate benchmark performance with the
performance model because the model is verified based
on comparisons with the logic simulator which is cycle
accurate. It’ s not practical to estimate multiprocessor
performance with the logic simulator. The performance
model has advantages in flexibility, cost effectiveness,
and portability.

Figure 2. Accuracy improvements.

2.1. Performance model

The performance model was created based on actual

hardware logic. It is a trace-driven software simulator
written in C. Input traces are instruction traces, and some
of them include information from both application
execution and kernel execution. The source size is about
ninety thousand steps. It has about five hundred
parameters.

Requirements for the model are a capability to
estimate system-level performance and multiprocessor
system performance, flexibility for changing the model
structure, and high accuracy.

The performance model consists of a detailed
processor model and detailed memory system model.
Generally, a performance model for performance
evaluations consists of a detailed processor model and a
rather rough memory system model, such as a latency
model. But because of a large frequency gap between
memory systems and processor cores, a system-level
study on such a model would mislead hardware architects
when they design an EPS.

From the beginning until the end of development, we
improved each version of a single performance model
step by step. Such continuity provided consistency of
output from the performance model. In spite of the
iterative improvements, features of different versions
were closer than features of different tools. Once a logic
simulator was available, we started to verify the
performance model by comparing it with output from the
logic simulator, and changed points found to be incorrect
in the model. The verification was iterative.

The final version of the performance model has the
following features. A processor can be modeled in detail
at the register transfer level. Memory access resources
between the CPU and memory, including buffers, queues,
and pipelines, are the same as those in a physical machine.
Moreover, a cache protocol used to access, read, write to,
and invalidate an internal cache can be modeled. A bus

network connecting chips between caches and memory,
and data and request flows can be modeled in detail with
the same concepts as those of actual systems. Such details
include a request queue, bus conflict, bandwidth, and
latency. In addition, requests between L2 caches can be
modeled for MP system performance models.

When we set up the model with UP structure and run
a multi-user interactive workload trace, it operates 7.8 K
instructions per second on the Intel Pentium III processor
which frequency is 1 GHz.

2.2. Evaluation and ver ification environment

Figure 3 illustrates the evaluation and verification
environment.
• “Trace” is created on a physical machine. Using a

workload running in a normal operating system
environment, we wait until it reaches a steady state, and
then start trace.

• Section 2.1 explains the “software performance model
(performance model).”

• Output from the performance model ((1) in Figure 3) is
used to determine hardware specifications.

• The “ logic simulator” is created with hardware logic, so
it is a truly accurate representation of the memory
system and processor core design. We can verify the
logic of both the memory system and microarchitecture.

• Test programs that can run on the logic simulator are
roughly divided into two groups: logic test programs
and performance test programs.

• Performance model accuracy is verified based on
comparisons with output from the logic simulator ((2) in
Figure 3). We execute a test program that is created
from an instruction trace [11]. For the comparisons, we
input the trace to the model.

• The final phase of development is a study of the full
workload-driven performance on a developed machine.
We evaluate performance model accuracy by comparing
physical machine execution output with performance
model output ((3) in Figure 3).

Figure 3. Evaluation and verification environment.

3. Microarchitecture

This section first provides an overview of the

SPARC64 V microarchitecture. That is followed by
detailed descriptions of techniques for improving
throughput. Related basic studies on microarchitecture
design are discussed in section 4.

The processor is a 64-bit microprocessor based on the
SPARC-V9 architecture. Its operating frequency is 1.3
GHz, and it contains 191 million transistors fabricated
using 0.13µm CMOS technology with eight-layer copper
metallization. The die size is 18.1 by 16.0 mm.

The microarchitecture of the core has an out-of-order
superscalar execution design. Up to four instructions can
be issued per cycle. There are out-of-order resources,
including a 64-entry instruction window, and renaming
registers. Up to 32 floating-points and 32 integer results
can be kept in the renaming registers. There are four kinds
of reservation stations: RSA, RSE, RSF, and RSBR. Each
RSA and RSBR consists of 10 entries of a buffer. RSA is
for address generation operations, and RSBR is for branch
operations. Each RSE and RSF consists of two sets of
buffers; and eight entries are in each buffer. There are two
sets of integer execution units, two sets of floating-point
execution units, and two sets of address generation units.
Having two set of floating-point multiply-add execution
unit is effective for HPC performance. Accordingly, up to
six instructions can be dispatched in a cycle. A unique
execution unit is connected directly to each RSE and RSF.

The processor cache hierarchy consists of two levels
of a non-blocking cache. There is a level-one (L1)
instruction cache and L1 operand cache. Each type of L1
cache is a 128-KB, 2-way set associative cache. The
instruction fetch width is 32 bytes, from which up to eight
instructions can be fetched. The level-two (L2) cache is a
unified, 2-MB, 4-way set associative, on-chip cache. We
decided to install medium-size L1 caches and a large
on-chip L2 cache in the processor to obtain a performance
advantage in multiprocessor systems.

A 4-way branch history table is used for branch
prediction, and it has 16K entries. To enable non-blocking
memory access operations, the processor core has 16
entries of a load queue and 10 entries of a store queue.
Table 1 itemizes these microarchitecture numbers.

Figure 4 is a high-level block diagram of the
SPARC64 V. The processor consists of four units. Using
information in the branch history table, the instruction
control unit (I-unit) fetches up to eight instructions per
cycle. It also decodes up to four instructions per cycle.
The execution unit (E-unit) consists of out-of-order
execution resources. Up to six instructions per cycle can
be dispatched to execution units, and up to 64 instructions
can be processed at a time. The storage unit (S-unit)
consists of TLB and an L1 cache. The
secondary-cache-and–external-access-unit (SX-unit)

consists of an L2 cache and an external access unit, and it
communicates with other processors and the memory
system through system bus interface. We implement three
techniques for improving throughput. A subsequent part
of this section discusses these techniques.

Figure 4. High-level block diagram of SPARC64 V.

Table 1. Microarchitecture.

Instruction set architecture SPARC-V9
Clock rate 1.3 GHz
LSI technology 0.13 µm, 8 Cu layers
Transistor number 191 millions
Power consumption 57 W @ 1.3 GHz
Chip size 290mm2 (18.1 by 16.0 mm)
LSI signal pin 269
Level 1 cache (I/D) 2-way, 128 KB
Level-2 cache On-chip 4-way 2 MB

Processor core
Execution control method
Issue number

Out-of-order superscalar
4-way

Instruction window 64 instructions
Instruction fetch width 32 bytes
Branch history table 4-way, 16K-entry
Execution unit Fixed-point: 2

 Floating-point: 2 (Multiply-add)
 Address generator: 2

Reservation station RSE: 16(8/8) for fixed-point
 RSF: 16(8/8) for floating-point
 RSA: 10 for address generator
 RSBR: 10 for branch

Reorder buffer Fixed-point: 32
 Floating-point: 32

Load/Store queue 16/10 entries

3.1. Pipelines using speculative dispatch and data

forwarding

The SPARC64 V is designed to support

high-frequency CPUs and provide high throughput via
several deep pipelines. There are 10 pipelines for six
different purposes. Instruction fetch and instruction
control have one pipeline each. Address generation,
integer execution, and floating-point execution have two
pipelines each.

Figure 5. Pipelines and data flow.

Figure 6. Speculative dispatch and data forwarding.

Figure5 shows data flow between units and pipelines.

The instruction fetch pipeline has five stages; that is, one
cycle to obtain priority, three cycles to fetch instructions
from the L1 cache, and one cycle to validate a fetched
value. The number of stages of an execution pipeline
depends on the operation attribute.

The minimum is three stages. In the first stage,
entries in a reservation station are examined, and only one
instruction can be dispatched from a reservation station.
Appropriate register data is read from a register file or
renaming register in the second stage and results are then
executed in the third stage.

The deeper the pipeline is, the higher the possibility
of pipeline bubbles is. This might affect the throughput
rate. The SPARC64 V dispatches instructions
speculatively from reservation stations and thereby avoids
the disadvantage of deep pipelines. We name this
technique “speculative dispatch.” An instruction can be
dispatched if source data of the instruction is not ready
but would be ready before the dispatched instruction
reaches the execution stage. The SPARC64 V predicts

that a request of the prior instruction to the L1 operand
cache should hit the cache line. It then speculates about
the cycle number at which the corresponding data loaded
from the L1 operand cache would be ready. Furthermore,
a “data forwarding” technique accelerates the effect of
speculative dispatch. Figure 6 illustrates speculative
dispatch and data forwarding. There are data paths
between each execution unit and every other execution
unit, and also between every execution unit and operand
access pipeline. They can usually make source data
available in the next cycle after execution is completed or
after the L1 operand cache returns it.

If the prediction were unsuccessful because a request
causes a cache miss, all instructions that have
read-after-write dependency must be cancelled at every
stage of the execution pipelines.

3.2. Non-blocking dual operand access

The SPARC64 V can pass up to two requests between

an operand access pipeline and the L1 operand cache.

This communication capability can be considered rather
abundant in proportion to a 4-way issue processor.
However, the processor is primarily targeting for database
and transaction workloads, which generate more memory
access requests than workloads for other purposes.

In an instruction decode stage, every memory access
request is queued sequentially in a load queue or store
queue (load/store queues). Concurrently, the request
enters a reservation station (RSA). Up to two requests can
be sent from RSA to address generation units (EAG) per
cycle, and calculated memory addresses are then sent to
specific load/store queue entries derived from the same
instruction. Unless existing requests in the queues are
passed to the L1 operand cache, the calculated addresses
can be passed directly to the L1 cache.

The processor implements a non-blocking cache
mechanism. The L1 operand cache is organized as eight
banks, each of which is four bytes. Two requests can be
accepted per cycle unless they cause a bank conflict. If
they conflict, execution of a lower priority request is
aborted and retried in a later cycle. However, a request
that causes an L1 operand cache miss stays in load/store
queues until its requested line become ready in the L1
cache.

3.3. Two level cache hierarchy

The cache hierarchy consists of a medium-capacity
level-one (L1) copy-back cache and a large-capacity
on-chip level-two (L2) cache. The cache hierarchy of
many processors currently available on the market
consists of three levels of cache: a small-capacity and
fast-access level-zero (L0) cache, an L1 cache, and an L2
cache. In these processors, a store-through cache is a
popular mechanism; it is also an effective method of
operation for them. In spite of that trend, the SPARC64 V
adopts a two-level cache hierarchy. Because (1)
large-scale of interactive workloads would create a high
rate of L0 cache misses, causing accesses to L1 cache and
thereby deteriorating performance, and because (2) a
deeper hierarchy increases the cost of move-out requests
from other CPUs, two levels of cache are fine for the
processor.

3.4. On-chip secondary cache with hardware

prefetching

The SPARC64 V has a unified, 2-MB, 4-way set
associative, on-chip L2 cache. We design the L2 cache to
have high throughput and high reliability, while
considering the trade-off between on-chip and off-chip
designs. Such considerations include latency, cache size,
and the number of set associativities. An on-chip design
has an advantage in throughput because communication
with an L1 cache is done within a chip. Since we

emphasize high throughput and low latency, we choose an
on-chip design. High reliability is achieved by using
fewer physical parts and interface lines in the on-chip
design.

The size, 2 MB, is a result of discussions about LSI
technology, chip size, and manufacturing cost. We utilized
a hardware prefetching technique to improve the cache-hit
ratio, and determined the size accordingly. The
hardware prefetch provides data in L2 cache for expected
fetch requests in the near future. The prefetch is triggered
by a L1 cache miss that is demanded by a memory request
in a workload.

4. Performance analysis

This section contains information from some

representative performance studies. We used the
information to evaluate trade-offs in the SPARC64 V
microarchitecture. Base model parameters of the studies
are listed in Table 1. Workloads are SPEC CPU95, SPEC
CPU2000, and TPC-C2. We use a uni-processor model to
evaluate the SPEC and TPC-C benchmarks. Otherwise,
we use an SMP model, and the results shown are for
“TPC-C (16P).”

First, we design a data path structure for operation
under specific frequencies. Next, we design cache
structures that have a large influence on chip size. Then,
we design detailed control logic. We show the timing of
the studies in Figure 1.

4.1. Workload and trace generation

We used the SPEC CPU95 and SPEC CPU2000

benchmarks to study the processor and TPC-C workloads
to study system-level behavior.

A Forte compiler and Shade, both of which are
products from Sun Microsystems, Inc., were used to
generate SPEC benchmark traces. The SPEC traces cover
only application code.

We generated TPC-C workload traces by our original
kernel tracer that was involved in kernel debugger and
written by C and machine language. These traces cover
both operating system code and transaction application
code. We followed TPC guidelines during system setup in
order to generate realistic traces and sampled these traces.

4.2. Benchmark character istics

We characterize workloads based on a breakdown by

execution time. We modeled a perfect L2 cache, a perfect
L1 cache, perfect TLB, and perfect branch prediction, and

2 TPC-C is a complex on-line transaction processing workload that is
provided by Transaction Processing Performance Council.

then evaluate several models to find out the penalty of
stalls. Figure 7 shows the results, where “sx” is stalls
caused by L2 misses, “ ibs/tlb” is stalls caused by L1
misses and TLB misses, “core” is execution time in the
I-unit and the E-unit, and “branch” is stalls caused by
branch prediction failures.
• SPECint95 spends 30 percent of execution time on

stalls for branch miss prediction. This percentage is
higher than that of SPECfp95 (3 percent). It agrees with
the fact that SPECint95 includes more branch
instructions than SPECfp95 as well as patterns that are
difficult to predict.

• SPECfp95 spends 74 percent of execution time on
execution in the processor core. This might reflect the
depth of the floating-point execution pipeline.

• TPC-C has a large penalty, 35 percent of execution time,
because of stalls caused by L2 misses. We determine
that the L2 cache structure is a key to improving TPC-C
performance.

Figure 7. Benchmark characteristics.

4.3. Data paths

4.3.1. Superscalar. Out-of-order superscalar execution
and deep pipelines are fundamental specifications of the
SPARC64 V microarchitecture. We establish them as the
base of our design. Next, we adopt “speculative dispatch
and data forwarding” (see section 3.1) in the design.
Lastly, we do performance studies to determine an
appropriate instruction issue width because it is strongly
associated with many processor design parameters.

Four-way instruction issue is the maximum setting
that can be adopted in a trade-off between the
fundamental specifications. We have to limit the
complexity of the issue stage because of the high CPU
frequency and because we do not want to divide the issue
process into two stages.

Figure 8 shows the performance impact of 4-way
issue execution compared with 2-way issue execution.
These numbers are the IPC ratio. We infer that the 2-way
issue width is too small, so it must be a performance
bottleneck. SPECint95 and SPECint2000 improve
performance more than the others do because they have

high cache-hit ratios.

Figure 8. Issue width --- 4-way vs. 2-way.

Trade-offs between physical size and performance

improvement are considered. The physical size of 4-way
issue is more than twice that of 2-way issue. We noted
that all earlier generations of SPARC processors accept
4-way issue. Our conclusion is that 4-way issue is better.

4.3.2. Branch prediction. Figure 7 shows that SPECint
and TPC-C spend a lot of execution time on stalls for
branch prediction failures. We therefore study
performance by comparing two branch history tables. One
is a 16K-entry, 4-way set associative, 2-cycle access table
(“16k-4w.2t”), and the other is a 4K-entry, 2-way set
associative, 1-cycle access table (“4k-2w.1t”). These two
table structures are based on the values of fundamental
properties such as RAM size and access latency. There are
trade-offs between “16k-4w.2t” and “4k-2w.1t.”
“4k-2w.1t” has an advantage of fetch latency because it
generates one bubble in a pipeline before it fetches a
target instruction while “16k-4w.2t” generates two
bubbles. In contrast, “16k-4w.2t” has an advantage of
table size. “4k-2w.1t” would be useful for workloads that
include high percentages of taken branch instructions
where all of the taken branches have entries in a branch
history table.

Figure 9. Branch history table --- latency vs. size.

Figure 9 shows the IPC ratio of “16k-4w.2t” to

“4k-2w.1t” as a percentage whose base is “16k-4w.2t.”
Figure 10 shows rates of branch prediction failure. SPEC
benchmark programs benefit slightly from the advantage
provided by “4k-2w.1t,” and they have no difference
between the prediction failures rates of “16k-4w.2t” and
“4k-2w.1t.” In contrast, TPC-C exhibits a different
characteristic in its rates. Its prediction failure rate of
“4k-2w.1t” is 60 percent greater than that of “16k-4w.2t.”
The “4k-2w.1t” IPC ratio shows a decrease of 5.6 percent.
Since we place weight on improving TPC-C performance,
we adopt the “16k-4w.2t” structure.

Figure 10. Branch prediction failures.

4.3.3. Level-one cache. We study the performance
impact between a 32-KB, direct mapped, 3-cycle access
L1 cache (“32k-1w.3c”) and a 128-KB, 2-way set
associative, 4-cycle access L1 cache (“128k-2w.4c” .)
Figure 11 shows the IPC ratio of “32k-1w.3cw.4c” to
“128k-2w.4cw.3c” as a percentage whose base is
“128k-2w.4c,” and Figure 12 and Figure 13 show related
cache miss ratios. For a TPC-C workload, the instruction
miss rate of “32k-1w.3c” is 99 percent greater than that of
“128k-2w.4c,” and the operand miss rate of “32k-1w.3c”
is 64 percent greater. This results in an IPC ratio decrease
of 2.0 percent. A point of consideration is whether a
two-percent advantage in the IPC ratio balances a
fourfold increase in cache size. We conclude that it is
worth having a larger L1 cache because the two percent
does not provide the maximum possible benefits. We have
fundamental understandings that EPS workload capacity
would increase and L1 cache would become a bottleneck.
Therefore, the number of benefits resulting from our
TPC-C traces, which are a good reflection of real world
behavior, can be considered a conservative number.
Moreover, we predict that the direct mapped cache would
easily cause thrashing during its processing of large
workloads.

Figure 11. L1 cache --- latency vs. volume.

Figure 12. L1 instruction cache miss.

Figure 13. L1 operand cache miss.

4.3.4. On-chip level-two cache. We started design with
the idea to use an off-chip 8-MB L2 cache because an
earlier processor in the same series had an off-chip L2
cache. Then, the design changed to an on-chip design
based on consideration of a speed gap between intra-chip
communication and inter-chip communication. Since the
processor being designed has a frequency of more than 1
GHz, the gap becomes unacceptable large. An MCM
structure could reduce the gap, but is quite expensive.

We study on-chip L2 cache performance by
comparing it with off-chip L2 cache performance. The
on-chip L2 cache is a 2-MB, 4-way set associative cache

(“on.2m-4w”.) Due to limitations on chip size, 2 MB is
the maximum size that can be adopted. The L2 off-chip
models are of an 8-MB, 2-way set associative cache
(“off.8m-2w”) and an 8-MB, direct mapped cache
(“off.8m-1w”.) Access latency is derived from CPU
frequency. We estimate the cost of communication
between chips and we add 10� to the latency of off-chip.
The number of set associative is derived from the number
of pins.

Figure 14 shows the IPC ratios among “on.2m-4w”,
“off.8m-2w” and “off.8m-1w”. The ratios are expressed
as percentages whose base is “on.2m-4w”. TPC-C (16P)
is a 16 SMP model. Figure 15 shows the L2 cache miss
ratio. Compared with “on.2m-4w”, “off.8m-1w” has IPC
ratio decreases of 14 percent for TPC-C (UP) and 12.4
percent for TPC-C (16P). Thereby, we concluded that
“off.8m-1w” offers no advantage over “on.2m-4w”. In
comparison, “off.8m-2w” has a slight IPC ratio increase.

Physical implementation of the on-chip cache of
“on.2m-4w” requires about 270 signal pins. The off-chip
cache of “off.8m-2w” requires about 560 signal pins. That
is an approximate difference of two times, and it results in
differences in signal switching noise level that cannot be
ignored. “on.2m-4w” has an advantage of less noise.
Moreover, since chip connections with signal wires have
a higher chance of causing malfunction, “on.2m-4w” has
an advantage in reliability.

After examining this trade-off, we adopt “on.2m-4w”
in our design.

Figure 14. L2 cache --- latency vs. volume.

Figure 15. L2 cache miss.

4.3.5. Hardware prefetching. Because we realized that
an L2 cache size of 2 MB is too small, we needed to find
some way to compensate for it. We started studying
hardware prefetch algorithms. It’s not preferable to
increase the number of pipeline stages for the prefetching.
We decided against using a buffer that stores data from a
fetched line temporarily.

From our study of hardware prefetching (see section
3.3), Figure 16 shows the performance effect of prefetch
compared with performance in a non-prefetch model.
Results for SPECfp benchmarks indicate the IPC ratio
improved by more than 13 percent. We find that our
prefetch algorithm fits the chain access pattern of memory
addresses. Figure 17 shows the L2 cache miss ratio. The
left-side bar with the tag name of “with” is for a model
with prefetching, and the ratio reflects all kinds of
requests. The center bar with the tag name of
“with-Demand” is for a prefetch model, but the ratio
reflects only requests that are in the original workload; in
other words, the ratio does not reflect prefetch requests.
The right bar with the tag name of “without” is for a
model without prefetching. We can determine the prefetch
effect from a comparison between “with-Demand” and
“without” . Use of prefetch result in fewer cache misses.
Differences between “with” and “with-Demand” indicate
the negative effect of unnecessary prefetch requests. We
find that FP programs receive a good degree of prefetch
benefits.

Figure 16. Hardware prefetching impact.

Figure 17. Hardware prefetching --- L2 cache miss.

4.4. Control logic

4.4.1. Reservation stations. To improve instruction
execution parallelism, there are two sets of integer
execution units and two sets of floating-point execution
units. The SPARC64 V gains the greatest benefit from the
dual execution units if it has one reservation station and
dispatches up to two requests per cycle, because this
would realize flexible out-of-order dispatch. However, it
would increase implementation complexity compared
with a structure where two reservation stations are
connected to a unique execution unit and only one request
can be dispatched respectively from each reservation
station per cycle. To take full advantage of two dispatches
from a single reservation station, we cannot set the two
dispatch operations to run in parallel because the second
selection may depend on the former operand. We must
limit the complexity of the dispatch stage to keep
consistency for high-frequency CPUs.

We study performance effects by comparing a
structure having one reservation station (“1RS”) with a
structure having two reservation stations (“2RS”). “1RS”
dispatches up to two operations per cycle from one
reservation station. “2RS” dispatches up to one operation
per cycle from a reservation station that is connected to a
unique execution unit. Figure 18 shows the IPC ratio of
“2RS” to “1RS” as a percentage whose base is “1RS.”
Use of “2RS” results in a slightly decrease IPC ratio.
After examining the trade-off between IPC benefits and
the complexity involved, we adopted “2RS” in our
design.

Figure 18. Reservation station --- 1RS vs. 2RS.

5. Performance model accuracy

The two graphs in Figure 19 show the accuracy of our

performance model. During the verification phase,
architects clarified and fixed logic bugs and performance
bugs in their design ((2) in Figure 3). Concurrently, the
accuracy of the performance model rose because
hardware design was reflected more precisely on the
model. The horizontal axis in the figure is a time scale. At

“A” in the figure, performance tests began on the logic
simulator. There was a time lag between memory system
design completion and processor design completion. This
is shown by A, B and C in Figure 19. We worked on
processor validation mostly between A and B, and we
worked on memory system validation mostly between B
and C. Before B, we finished creating an accurate
processor model. Before C, we updated the memory
system model. The A in Figure 19 represents the same
time as “A” in Figure 2.

Each graph has a different time scale, so we indicated
the same time in the two graphs by using a dotted line to
connect corresponding points.

The upper graph in Figure 19 shows estimated
performance changes related to model rigidity. The
horizontal axis of the figure is a time scale, and the
vertical axis denotes the performance ratio. Labels such as
“v1” and “v2” on the horizontal axis are version names of
the performance model. We labeled the model to indicate
major updates, so they do not represent equal time
intervals. For each execution, we set up the model with
the same parameters except for any parameters that were
newly added before the execution, and the model used the
same input traces generated from SPEC CPU2000
benchmark suits. We compared performance results based
on “v8” performance values. Except for those of “v5,” the
performance estimates were always decreasing. There is
no problem with this downward trend: a performance
model generally has decreasing performance estimates as
model rigidity improves. The exception at “v5” is the
result of more-precise modeling of special instructions.
Until “v4,” we set an experimental penalty to each special
instruction instead of modeling it in detail.

The lower graph in Figure 19 shows performance
model accuracy based on a comparison with execution
results on a physical machine. The horizontal axis of the
figure is a time scale, and the vertical axis denotes the
performance ratio. The time scale is uniform. The
performance results reflect both a difference in the model
version and a difference in the parameters. At the same
time as hardware design parameters were being updated,
we were reflecting the updated parameters to the
performance model. Differing from lines in the upper
graph, lines in the lower graph have many abrupt upward
and downward changes. Many of these remarkable
changes in tendency were the result of changes in
memory system parameters such as memory access
latency, bus width, and outstanding numbers. After C, we
continued validation by changing the compiler
optimization level. The final accuracy figure for
SPECfp2000 is 3.9 percent, and it is 4.2 percent for
SPECint2000.

Figure 19. Performance model accuracy.

6. Related work

In this section, we discuss about related works that

mention relations between processor development and
performance evaluations.

For surviving marketplace competition, architects use
performance evaluation models of a proposed processor
to design new processor. Techniques to deal with
problems in the performance evaluation are discussed in
[12]. Performance works for commercial server design is
focused in [13]. Design issues that relate to optimizing the
performance of processor, I/O subsystems and software
are described. In [14], a performance model that guides a
processor design project is described. How Digital’s
architects did and what they learned related to their
performance works are reported. In [15], a real system
performance-tuning project across several generations of
product line is described. Discussions are focused on
system software tunings for large online transaction
processing workloads at post-hardware phase.

There are no reports of performance models that
consisted of detailed processor model and detailed
memory system model, that were developed for using in a
real processor development project, and that could be
used to evaluate multiprocessor system.

7. Conclusion

We have developed a SPARC-V9 processor called

SPARC64 V that is designed to address requirements for
enterprise servers and high-performance computing. The
processor operates at a frequency of 1.3 GHz and uses
0.13-µm CMOS technology. The first of these silicon
processors was manufactured in December 2001.

The enterprise server system market had been
dominated by mainframe servers for many years, and we
conducted many experiments as part of mainframe
development activities. Using our EPS expertise, we
designed the processor from scratch since we recognized
that the execution speed of multi-user interactive
workloads is very sensitive to system balance;
furthermore, we had to avoid any limitation that might be
inherited from past designs.

Key features for addressing EPS requirements were
throughput, MP performance, and RAS. Additionally, a
key for HPC performance was instruction execution
capability. To satisfy those requirements, our design had
pipelines using speculative dispatch and data forwarding,
non-blocking dual operand access, an on-chip secondary
cache with hardware prefetch, a two-level hierarchy cache,
and an increase in the number of execution units.

We needed to check what our EPS expertise acquired
from work in mainframe development were common to
the SPARC V9 platform and to enhance ideas. We
developed a software performance simulator before the
actual start of design. We emphasized system-level
performance evaluation; therefore, in spite of using a
latency model for the memory system, we created a
memory model and processor model that were equally
detailed. For the same reason, we made the performance
model so that it could be used to evaluate multiprocessor
systems.

We updated the performance model continuously
during development. That is, we added experimental ideas
for subsequent studies and described fixed specifications
in greater detail to improve accuracy. Once a logic
simulator was available, we started comparing output
from the simulator with output from the performance
model. This gave us remarkable opportunities to make the
model highly accurate. At the end of development of the
processor, we verified the accuracy of the model by
running SPEC CPU2000 benchmark suits. The error rate
was less than five percent.

Throughout development, hardware architects and
performance architects worked closely with one another.
As a result, we completed SPARC64 V development
quickly, and the processor can be utilized in
high-performance enterprise server systems.

8. Acknowledgements

Many people have been involved in the development
of the SPARC64 V and the authors would like to thank all
of them for the tremendous efforts they have put in to
make this processor possible. We also wish to thank
Yoshiro Ikeda and Masazumi Matsubara for working with
us to develop the performance model; Masahiro
Doteguchi and his colleagues for their commitment to the
performance studies; Akira Asato and his staff for
generating the performance test programs; and Noriyuki
Toyoki, Yuuji Oinaga, Eizo Ninoi, Kimio Miyazawa, and
Hiroshi Muramatsu for their support of this research. We
would also like to thank our colleagues for their many
insightful comments on this work.

9. References

[1] Gene Shen et.al., “A 64-bit 4-Issue Out-or-Order
Execution RISC Processor,” In Proceedings of the ISSCC
1995.

[2] FUJITSU LIMITED, “FUJITSU/HAL SPARC64-III User's
Guide,” http://www.sparc.com/standards.html.

[3] FUJITSU LIMITED, “SPARC64 GP,”
http://primepower.fujitsu.com/en/sparc64.html.

[4] Tim Horel, and Gary Lauterbach, “UltraSPARC-III:
Designing Third-Generation 64-Bit Performance,” IEEE
Micro May/June 1999, pp. 73-85.

[5] Sun microsystems, Inc., “UltraSPARC III Cu User's
Manual,”
http://www.sun.com/processors/manuals/usIII_um.pdf,
May 2002.

[6] Joel M. Tendler, Steve Dodson, Steve Fields, Hung Le, and
Balaram Sinharoy, “POWER4 System Microarchitecture,”
Technical White Paper, October 2001.

[7] R. E. Kessler, “The Alpha 21264 Microprocessor,” IEEE
Micro March/April 1999, pp. 24-36.

[8] Fujitsu Technology Solutions, Inc., “Millennium Family of
Servers,”
http://www.ftsi.fujitsu.com/services/products/compat/mille
nnium/index.html.

[9] David L. Weaver, and Tom Germond editors, “The SPARC
Architecture Manual, Version 9,” Prentice Hall, ISBN
0-13-099227-5, 1994.

[10] Eric Sprangle, and Doug Carmean, “ Increasing Processor
Performance by Implementing Deeper Pipelines,” In
Proceedings of ISCA 2002.

[11] Mariko Sakamoto, Larry Brisson, Akira Katsuno, Aiichiro
Inoue, and Yasunori Kimura, “Reverse Tracer: A Software
Tool for Generating Realistic Performance Test Programs,”
In Proceedings of the HPCA8, pp. 81-91, 2002.

[12] Pradip Bose, and Thomas M. Conte, “Performance
Analysis and Its Impact on Design,” IEEE Computer May
1998, pp. 41-49.

[13] S.R.Kunkel et al., “A performance methodology for
commercial servers,” IBM J. Res. & DEV. VOL. 44 NO. 6,
pp. 851-872, Nov. 2000.

[14] Matt Reilly, and John Edmondson, “Performance
Simulation of an Alpha Microprocessor,” IEEE Computer
May 1998, pp. 50-58.

[15] Steven Kunkel, Bill Armstrong, and Philip Vitale, “System
Optimization for OLTP Workloads,” IEEE Micro
May/June 1999, pp. 56-64.

