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Abstract

To continue to improve processor performance, microar-
chitects seek to increase the effective instruction level paral-
lelism (ILP) that can be exploited in applications. A funda-
mental limit to improving ILP is data dependences among
instructions. If data dependence information is available at
run-time, there are many uses to improve ILP. Prior pub-
lished examples include decoupled branch execution archi-
tectures and critical instruction detection.

In this paper, we describe an efficient hardware mecha-
nism to dynamically track the data dependence chains of the
instructions in the pipeline. This information is available on
a cycle-by-cycle basis to the microengine for optimizing its
performance. We then use this design in a new value-based
branch prediction design using Available Register Value In-
formation (ARVI). From the use of data dependence infor-
mation, the ARVI branch predictor has better prediction
accuracy over a comparably sized hybrid branch predic-
tor. With ARVI used as the second-level branch predictor,
the improved prediction accuracy results in a 12.6% perfor-
mance improvement on average across the SPEC95 integer
benchmark suite.

1 Introduction

Much of the effort expended by microprocessor archi-
tects in the last decade has been centered on exploiting
the inherent instruction-level parallelism (ILP) of serial
programs. Examples include dynamic branch prediction,
speculation, out-of-order superscalar execution, and paral-
lel memory access. However, ILP performance gains have
slowed considerably as these techniques have become com-
monplace in 4- and 6-way issue processors. A number of
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program properties, including control dependences, mem-
ory requirements, and data dependences, threaten to limit
further gains. The latter has long been cited in limit stud-
ies, such as the well-known study by Wall [34], as the in-
herent program characteristic that fundamentally limits ILP
gains. Value prediction [22], though a promising approach
for alleviating data dependence barriers, has yet to yield the
cost-performance gains necessary for widespread commer-
cial adoption. For these reasons, the alleviation of data de-
pendences, and the exploitation of data dependence infor-
mation, remain key microarchitectural challenges.

Compilers have long performed static data dependence
analysis for code optimizations. Such information could be
invaluable to microarchitects for many purposes. Yet, such
static information is both unwieldly to pass via instruction
fields and potentially less precise than the dynamic data de-
pendence information that could be gleaned at runtime.

In this paper, we present accurate and efficient hardware-
based mechanisms for cycle-by-cycle tracking of data de-
pendences among all in-flight instructions in a dynamic su-
perscalar microprocessor. We propose schemes appropri-
ate for centralized physical register files (as in the Mips
R10000 [35] and Alpha 21264 [19] microprocessors). A
four-way fetch/issue/commit processor with 80 in-flight in-
structions and 72 physical integer registers requires 730
bytes of RAM with eight read and four write ports and
modest control logic for data dependence tracking. This
complexity compares favorably with that of other on-chip
RAM/CAM structures (e.g., branch predictors, out-of-order
issue queues) that are purely used for performance pur-
poses.

We enumerate some of the many applications for such
on-line data dependence information. These include dy-
namic scheduling, selective value prediction [6], criticality
measures and their application [11, 29, 30], and decoupled
architectures [3, 33] to name a few. We then investigate in
depth how dynamic data dependence information can be ex-
ploited to provide another dimension for branch prediction.
Our approach, called ARVI, bases its prediction on partial



register values along the data dependence chain leading up
to the branch. This is a subtle, but important difference
from approaches that use the branch register values directly
as they are rarely available (and thus, for instance, must be
predicted). We discuss how the correlation between such
register value information and the branch outcome can for
some branches be stronger than either history or path in-
formation. A two-level predictor using ARVI at the sec-
ond level achieves a 12.6% overall IPC improvement for
the SPEC95 integer benchmarks as compared to the state-
of-the-art two-level predictor [26] proposed for the Alpha
EV8.

The rest of this paper is organized as follows. The hard-
ware mechanism for data dependence tracking is described
in Section 2, and potential applications are reviewed in Sec-
tion 3. A novel branch prediction scheme (ARVI) based on
the data dependence information is presented in Section 4.
Our methodology is detailed in Section 5, while results of
using an ARVI predictor on a set of integer benchmarks is
presented in Section 6. Other related work is discussed in
Section 7, and we conclude in Section 8.

2 Dynamic data dependence tracking

Data dependence analysis is a fundamental technique
employed in compilers to maintain the correctness of code
when performing optimization transformations. A data de-
pendence chain shows ordering relationships between a se-
quence of instructions that must be preserved. A data de-
pendence chain is defined relative to a particular instruction.
Each instruction has its own data dependence chain, though
different chains may share common instructions. In the fol-
lowing sections we describe the Data Dependence Table
(DDT), a hardware method for incrementally maintaining
the data dependence chains for the set of instructions in the
processor pipeline.

2.1 DDT operation

The DDT is implemented as a RAM. The depth of the
RAM is one row for each physical register. The width of
a row is one bit per instruction that can be in flight in the
pipeline, thus, each instruction occupies a column in the
DDT RAM. For clarity, we will refer to data in the row
of the DDT RAM as a DDT register entry or simply as a
register entry. Also, we refer to the instruction information
occupying a column in the RAM as a DDT instruction entry
or as an instruction entry.

The operation of the DDT is best described with an ex-
ample, shown in Figure 1. In this figure, the DDT RAM
is oriented at 90 degrees, i.e., rows of the RAM are shown
as vertical and columns are shown as horizontal. Let us as-
sume the current state as shown in the top table with the

instructions entered into the DDT shown at the right. The
physical register numbers are shown at the top. Entries with
an ’x’ indicate that the bit is set and the physical register de-
pends on that instruction. For example, physical register p5
is data dependent on both instructions 1 and 2. Register p5
is also trivially data dependent on its own instruction (3), so
that entry is marked as well.

The lower table details the actions when a new in-
struction is added. The instruction is an add of registers
p4 and p7 with the result deposited into p8. Since p8
is the target register, we need to set the appropriate bits
in register entry for p8. The instruction is allotted the
next empty instruction entry in the table, instruction en-
try 6. The bit at instruction entry 6, register entry 8 is
set because every register is data dependent upon the in-
struction that updates it. Then register entries associated
with the source registers, p4 and p7, are OR’d and the re-
sult is AND’d with the valid bit vector to limit the result
only to settings from active instructions currently in the
pipeline. The result is then written to the register 8 entry:
DDT[Target] = (DDT[Src1] OR DDT[Src2]) AND Valid-
Vector. The entry for physical register p8 now contains the
data dependence chain consisting of instructions 1, 2, 5, and
6. Instruction entries are allocated in circular FIFO fashion
using head and tail pointers. For each instruction, access to
the DDT occurs after register rename has assigned physical
registers. Once the physical registers are known, two simul-
taneous reads of the source register entries are performed in
one cycle and the result is written to the destination regis-
ter’s entry in the second cycle.

When an instruction commits it must be eliminated from
all dependence chains because its register value is now
ready for immediate use. An instruction is removed from
the DDT by clearing its associated bit in the valid vector.
Since all reads from the DDT are conditioned by the valid
vector, clearing a valid bit immediately removes the associ-
ated instruction from henceforth being included in any de-
pendence chains. Additionally, the tail pointer to the DDT
circular buffer is incremented to free the instruction entry
for reuse. However, before a new instruction reuses an
instruction entry, all bits in the instruction entry must be
cleared.

A branch misprediction requires a rollback of the DDT
information to its state prior to the mispredicted branch.
Since the structure of the DDT is similar to the Reorder
Buffer (ROB), this rollback is achieved in an identical fash-
ion. Just as in the ROB a pointer is decremented to point
to the instruction before the mis-speculated instruction so,
too, is the pointer in the DDT.

In this paper we only consider data dependences involv-
ing integer registers. The number of bits in the DDT is the
number of ROB entries times the number of physical reg-
isters. The Alpha 21264 has 80 ROB entries and 72 phys-
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Figure 1. DDT update example

ical registers; thus, the DDT would contain 5760 bits, or
730 bytes. In an architecture that fetches four instructions
per cycle, the DDT RAM requires eight read ports and four
write ports. The valid vector can be implemented as a set
of JK flip-flops with one flip-flop per ROB entry, each of
which can be set and reset by the rename and commit logic,
respectively. The Alpha 21264 would require 80 bits for the
valid vector.

3 Applications of on-line data dependence
tracking

There are many potential applications of online, cycle-
by-cycle, data dependence tracking. Some examples:

� Dynamic scheduling: Instruction issue priority can be
partially based on data dependence properties. One
possibility is to assign priority to loads partially based
on the length of their dependence chains. It is an in-
cremental addition to the basic DDT design to track the
number of data dependent instructions trailing particu-
lar instructions. By adding a small counter to each row
in the DDT, this information can be updated for each
instruction simultaneously on a cycle-by-cycle basis.

� Instruction fetching in SMT processors: In an SMT
processor, instructions are fetched from the high-

est priority threads according to some criteria. In
Tullsen’s ICOUNT policy [32], for example, prior-
ity is given to those threads that have the fewest in-
structions in the front-end and issue queues. Part of
the rationale is that such threads should be rewarded
for making forward progress. Per-thread data depen-
dence chain information, e.g., the average length of
each chain, can potentially provide a more accurate
measure of the likelihood of a particular thread making
forward progress in the near future. The above counter
mechanism can be used to calculate these values on a
per-thread basis using per-thread DDTs.

� Selected value prediction: In value prediction, the
relatively high cost of a misprediction and the rela-
tively low prediction accuracy (in general) makes it
imperative that it be applied wisely. Calder et al. [6] re-
strict value prediction to instructions whose early res-
olution can have significant impact on overall perfor-
mance. Their heuristic selects as critical instructions
those which have a long data dependence chain wait-
ing on their outcome. However, no mechanism for de-
termining this length is described. Using the mecha-
nism described above, those instructions that exceed a
threshold count may be selected for value prediction.



� Dynamic branch decoupled architectures: In these
designs, the string of instructions comprising the de-
pendence chain to a branch in a loop are segre-
gated and executed in a parallel branch execution unit
(BEX). Since the set of instructions in the dependence
chain is fewer than the full set of instructions in the
loop, the BEX unit will run ahead of the main execu-
tion unit and precompute branch outcomes so that, ide-
ally, the main loop will never mispredict the outcome
of the branch. In the DDT table, the data dependence
chain is immediately available.

� Optimizations driven by parallelism metrics: Bahar
and Manne [2] propose gating off pipeline resources
based on recent IPC performance in order to save
power. Similarly, Folegnani [12] dynamically adapts
the size of the issue queue according to parallelism es-
timates derived from the Reorder Buffer. Dependence
chain information can potentially provide a more ac-
curate parallelism estimate to guide these and other
parallelism-based optimizations.

� Improving the accuracy of criticality measures:
Load criticality was originally investigated by Srini-
vasan and Lebeck [29, 30] in order to improve load
performance. Other researchers, including Bodik [11],
have proposed techniques for identifying critical in-
structions. Cycle-by-cycle dependence chain informa-
tion can potentially improve the accuracy of critical
instruction detection. For instance, Bodik’s random
sampling approach may unintentionally miss critical
sequences. Data dependence information can poten-
tially provide more directed, rather than random, sam-
pling to increase critical instruction detection.

� Dynamic branch prediction: History and path-based
branch prediction can be augmented with a predictor
that correlates the register values of instructions along
the data dependence chain leading up to the branch.
This is a subtle, but important, difference from ap-
proaches that use the branch register values directly
and thereby achieve limited improvements.

In the next section, we describe a branch prediction
mechanism that uses an augmented DDT design to quickly
select the minimum set of registers in the data dependence
chain upon which the branch outcome depends, and uses
partial register values to make the prediction.

4 The ARVI branch predictor

A branch instruction makes a decision based on the re-
lationship between two values. The two values may be val-
ues in registers or one may be in a register and the other a

constant. For a given path to the branch, if all the register
values involved in its resolution have identical values as in
a prior occurrence then the outcome will be the same. If
one can determine the essential values in the data depen-
dence chain that determine the final values at the branch,
and those values have occurred in the past, then the out-
come of the branch will be known. This method is value-
based branch prediction and is the essential idea behind the
ARVI predictor.

Upon fetching a branch instruction, a prediction must be
made based on the available information at that time. Ide-
ally, if the values of the branch registers are available (i.e.,
committed) then a table look up can provide the outcome
of the branch the last time those same values were present.
In practice, the branch register values are rarely available
at the time of the prediction. However, if values are avail-
able for registers along the dependence chain that leads up
to the branch, then the predictor can use these values to in-
dex into a table and recall how the branch behaved the last
time under the same circumstances. If the register set and
value information is precise, then the branch must behave
identically and the prediction can be made with certainty.

Prior work has shown that the path leading to a branch
provides important information with which to classify in-
stances of a branch. Behavior of a branch within a particu-
lar class (path) generally exhibits consistent behavior that a
two bit saturating counter quickly learns. Instead of relying
solely on branch history or a hash of branch PC addresses to
identify the particular path, ARVI includes the data depen-
dent register set as part of the signature and uses a hash of
the register identifiers and the PC as an index into a table.
The values in each of the registers in the set are likewise
hashed together and used as a tag to disambiguate between
occurrences of the same path but having different values in
the registers. A distinguishing feature of the ARVI design is
that it uses both path- and value-based information to clas-
sify branch instances.

Loops present an additional challenge in creating a
unique path signature. In a heavily pipelined superscalar
processor (20+ stages and 200+ instructions in flight simul-
taneously), the data dependence chain can span many itera-
tions of a loop. In such circumstances, the data dependent
register set may be the same in each iteration and make the
path information ambiguous. A simple technique to dis-
ambiguate between iterations – without actually identifying
loop constructs – is to include distance information between
the instance of the register set whose values are used and
the branch instruction. The ARVI design records as part of
a tag the maximum number of instructions spanned by the
dependence chain.



4.1 ARVI implementation details

ARVI uses the DDT to extract the set of registers cor-
responding to instructions along the data dependence chain
leading up to the branch. A table look up indexed by a com-
bination of the branch PC and the values in the register set
returns information describing past branch behavior. Tag
checks ensure that the entry corresponds to a prior, simi-
lar occurrence of the branch. If the tags match, then the
prior outcome is used as the prediction. Since ARVI re-
quires the physical register mappings, register rename must
occur early in the pipeline. RISC instruction set architec-
tures with highly regular instruction encodings permit this
early register rename at fetch time. However, early rename
requires additional physical registers because more mapped
instructions can be in flight in the pipeline.

The details to generate a prediction in the ARVI predic-
tor are listed in Table 1 and their staging is shown in Fig-
ure 2. To make a prediction, the data dependence chain
for the branch register is read from the DDT. This vector is
fed to a filter called the Register Set Extractor (RSE) which
forms the set of active registers that generate the value(s)
being compared in the branch. From the PC and values in
the register set, the index into the Branch Value Informa-
tion Table (BVIT) is generated. The BVIT holds tags and
information regarding prior branch occurrences. The read
of the BVIT returns one tag based on the sum of the regis-
ter identifiers, a second tag based on the length of the data
dependence chain, a performance counter to aid in set re-
placement, and the prediction.

Table 1. ARVI access details
Step Action

1. Read the data dependence chain from the DDT for the branch
2. Generate the register set from the dependence chain (RSE)
3. In parallel, generate the index and tag

a. Form a BVIT index from the XOR hash of register values
b. Form a sum of the register set identifiers

4. Index the BVIT, compare the ID and depth tags, return a prediction

Four-way set associativity in the BVIT helps minimize
the thrashing that often occurs in direct-mapped buffers.
A 3-bit performance counter based on Heil’s design [17]
tracks the effectiveness of each entry and is used to select
which entry to replace when a new entry is added.

If all the values of the required registers in the depen-
dence chain are available at the time of the prediction then
the input state precisely defines the outcome and we call
this instance of the branch a calculated branch. If a value
is not available at the time of the prediction then by neces-
sity the data dependence chain has values that depend on
outstanding load instructions and the current machine state
does not precisely define the branch outcome. We call this
type of branch a load branch.

We estimate that the ARVI predictor requires six cycles

to make a prediction. The breakdown of the latency for
each action is shown in Figure 2. The long latency for the
ARVI predictor necessitates a fast one cycle first level pre-
dictor to make an initial prediction that the ARVI predictor
may override when its prediction is available. In addition to
providing a fast initial prediction, the small first level pre-
dictor acts to filter easily predicted branches which results
in dedicating ARVI resources to difficult branches.

4.2 Selecting the branch register set from the DDT

The set of registers that generate the value for the branch
comparison are available in the data dependence chain for
the branch instruction’s operand registers. The DDT has
this information, but a complementary circuit, the RSE, is
needed to extract it efficiently.

The operation of the RSE is shown in Figure 3. The left
hand table is the DDT in the same state as in the prior DDT
example of Figure 1. The RSE table on the right has the
same identical dimensions as the DDT but each location
contains 2 bits instead of one. When an instruction is in-
serted into the DDT (in stage 2, after the dependence chain
information is read in stage 1), the source and destination
registers for the instruction are marked in the correspond-
ing entry in the RSE. A source register is marked in the
example as S but is encoded as 01. The target register T is
encoded as 10. Because the ARVI predictor treats load in-
structions as termination points in the chain, we do not set
the source and target registers for loads (marked with ’*’ in
the figure for this discussion).

When a branch arrives (instruction 7), we read the ap-
propriate register entries from the DDT for the branch’s
operand registers (only p8 in the example). The marks in-
dicating the data dependence chain form a bit vector that is
used as enables to activate instruction entries in the RSE.
If the branch instruction has two source operands then the
bit vector for the enables is the OR of the two DDT entries.
Each register entry in the RSE (the vertical dimension of
the RSE in the figure) is spanned by two bit-lines to sup-
port the three encodings fUnused=’11’, Source=’10’, Tar-
get=’01’g. We create the register set by precharging these
bit-lines and then enabling the RSE instruction entries with
the DDT data dependence chain bit vector. Any element
in the RSE that is set to ’S’ in the selected rows will dis-
charge the low order bit-line (bit[0]). Similarly, any ele-
ment set to ’T’ will discharge the high order bit-line (bit[1]).
The resulting 2-bit value is consolidated to a single bit via
the function result = bit [1 ]&bit [0 ]. The result is ’1’ if
and only if one of the selected instructions uses the regis-
ter as a source and none use it as a target. This function
removes registers from the chain whose values are calcu-
lated by other instructions in the chain. Such registers are
redundant. In our example, the final set of registers is fp1,
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p3g. Notice that p4 and p7 are eliminated since their values
are determined from p1 and p3. The register p1 is included
because with ARVI loads are terminators of the DD chain.
The register p3 is in the set because its value is currently
available (thus, the instruction that set p3 has been commit-
ted and removed from the ROB and DDT).

4.3 Forming the index into the BVIT

The index into the BVIT is the XOR of the low order
N bits of the values in the registers specified by the RSE
register set bit vector. For our study, we configure the BVIT
table as 2K entries with 4-way set associativity, thus, N =
11 bits. To avoid additional register file ports, a shadow set
of the registers is kept but only the low order 11 bits of the
value, as is shown in Figure 4(a). A shadow register file for
an Alpha 21264 with 72 physical integer registers would
require 792 bits. Updates to the register file also update our
duplicate set one cycle later. As shown in Figure 4a, the low
order bits of the branch address and the 11-bit values of the
shadow registers selected by the RSE register set bit vector
are XOR’d to form the BVIT index. A microarchitecture
with R physical registers requires (11 � R) XOR gates in

a tree (log
2
R) deep.

4.4 Forming the register set tag

Differentiating paths to a branch can improve prediction
accuracy [24]. ARVI uses the set of registers from the RSE
as a path differentiator. Since a full concatenation of the
register IDs is impractical, we have discovered that a simple
3-bit sum of the low order logical branch IDs is sufficient.

The tag formation is shown in Figure 4(b). The logical
branch IDs are used because the physical register assign-
ments are likely to vary between occurrences. Thus, we
keep a shadow table of the register map table and update it
whenever a register is allocated. We need only store the low
order 3 bits of the logical register ID in the shadow map ta-
ble and structure it as a vector of 96 bits (assuming the ISA
defines a set of 32 logical registers). The summation is lim-
ited to a width of 3 bits. Since the result is used as a tag to
verify a hit in ARVI, this addition tree can have a multiple
cycle latency and be pipelined. The tag calculation must
complete within the time for the XOR tree hash plus the ac-
cess time to the BVIT table. The pipeline timing is shown
in Figure 2.
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4.5 Forming the DD chain depth key

Tight loops can experience identical paths to a branch on
successive iterations. We find it is important to differenti-
ate these occurrences; however, because the logical set of
registers involved are identical in each iteration, we need an
additional tag. In experimenting with various metrics, we
found that a simple but useful choice is the maximum num-
ber of instructions spanned by the dependence chain. We
maintain a 5-bit value for this distance. This distance is cal-
culated by subtracting the indices for the head pointer and
the furthest instruction back in the dependence chain. De-
tecting the furthest instruction requires detecting the lead-
ing ’1’ in the DDT bit vector for the particular DDT regis-
ter entry, while considering that the DDT buffer may have
wrapped around the end of the RAM. This problem is sim-
ilar to that in [5] and can be solved with two priority en-
coders: one for the a non-wrapping chain and another for
the case where the chain does wrap around the end of the
RAM. The timing to generate this information is not critical

and can be pipelined (see Figure 2).

5 Methodology

Our evaluation methodology uses Simplescalar [4] for
the PISA instruction set. Table 2 lists the microarchitectural
parameters and Table 3 lists the benchmark suite. We se-
lected the SPEC95 integer benchmarks because their branch
behavior has been extensively studied which permits com-
parisons to be made across studies.

The purpose of the branch predictor is to improve the
IPC performance of the microprocessor. Since the branch
penalty for a mispredicted branch is directly related to the
length of the processor pipeline (fetch through execute), we
compare results for three different pipeline depths: 20-, 40-,
and 60-cycle pipelines. These depths were selected because
20-cycles matches Intel’s Pentium 4 design [13] and higher
clock rates will likely continue to increase the number of
stages in future designs [16, 28].

Table 2. Architectural parameters

Fetch queue 4 entries
Fetch, decode width 4 instructions
ROB entries 256
Load/Store queue entries 32
Integer units 4 ALUs, 1 mult/div
Floating point units 4 ALUs, 1 mult/div
Instruction TLB 64 (16 � 4-way) 8K pages, 30 cycle miss
Data TLB 128 (32 � 4-way) 8K pages, 30 cycle miss
L1 I-cache 64 KB, 4-way, 32B line, f2; 4; 6g� cycles
L1 D-cache 64 KB, 4-way, 32B line, f2; 4; 6g� cycles
L2 unified 512 KB, 4-way, 64B line, f12; 18; 24g� cycles
Memory latency f60; 80; 100g� cycles initial
� latencies depend on pipeline length

We have extended the base simulator to support two lev-
els of branch prediction. In all configurations, the first level
of branch prediction is a hybrid predictor based on the Al-
pha EV8 branch predictor design called 2Bc-gskew [26].
There are three predictor tables and one table that controls
which table provides the prediction. Each table is 1 KB in
size for a total of 4 KB for the level one predictor and mod-
eled as having single cycle access. Future technology esti-
mates from [18] suggest that modest size predictor RAMs
will be required for single cycle access times.

Table 3. SPEC95 Integer Benchmarks
Benchmark Data set Inst. Window
gcc ref 200M-300M
compress ref 3000M-3100M
go ref 900M-1000M
ijpeg ref 700M-800M
li ref 400M-500M
m88ksim ref 150M-250M
perl ref 700M-800M
vortex ref 2400M-2500M



The Level-2 predictor is modeled as having a multicycle
access time and is either a larger version of the base hy-
brid predictor (8 KB for each of the four RAMs for a total
of 32 KB) or a comparably sized ARVI predictor (32 KB
including the dependence tracking hardware). Upon detect-
ing a branch, the first-level predictor returns an immediate
prediction to direct the fetch unit. A number of cycles later
(the number depending on the Level-2 predictor in use) the
result from the larger Level-2 predictor is ready. If the sec-
ond prediction agrees with the first then instruction fetching
continues uninterrupted. In the hybrid L2, if the two predic-
tions differ then the level 2 prediction is used. For the ARVI
predictor, since the L1 hybrid is used to filter easily pre-
dicted highly biased branches, a confidence estimator [14]
indicates whether the branch is more difficult to predict and
that the ARVI predictor should be used. We explore the
performance for pipeline latencies of 20, 40, and 60 cycles
(stages). The access latencies for the caches and main mem-
ory shown in Table 2 vary with pipeline length. The values
chosen are motivated by the results on future technology
trends in [1].

In the ARVI design, we assume the BVIT RAM (32 KB
4-way) access requires 2, 4, and 6 cycles for each of the
pipeline lengths, respectively. We use the BVIT RAM la-
tency as the access time for the larger base hybrid predictor
since the structure is similar to a 4-way RAM. Thus, in our
model, the baseline Level-2 hybrid predictor is significantly
faster than ARVI. The access latencies are listed in Table 4.

Table 4. Predictor access latencies
Predictor Size Access time (cycles)

(bytes) 20-cycle 40-cycle 60-cycle

Level-1 hybrid 4 KB 1 1 1
Level-2 hybrid 32 KB 2 4 6
Level-2 ARVI 32 KB 6 12 18

We simulate four configurations. The baseline config-
uration uses the hybrid predictor 2Bc-gskew both for the
Level-1 and for the Level-2 predictors. The other three
configurations use the same 2Bc-gskew predictor as the fast
Level-1 predictor but use the ARVI predictor for the larger
Level-2 predictor.

The base ARVI configuration is the current value config-
uration which makes predictions as described in Section 4.
We also attempt to increase the distance between a branch
and a dependent load. The purpose is to increase the per-
centage of calculate branches, which are easier to predict
as we show in the next section. We simulate moving load
instructions back as far as possible while respecting all data
dependences. We aggressively compare addresses at run-
time to disambiguate memory references, which is an op-
timization a compiler can often not perform. We call this
version load back. As a bound on performance, we also
simulate a perfect value configuration that uses the true reg-
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Figure 5. Breakdown of calculate and load
branches and prediction accuracy for each

ister values even if they would not be available at the time
of the prediction.

6 Results

Figure 5(a) shows the fraction of load branches in each
application using current value. The remaining fraction are
calculate branches. The large fraction of load branches –
branches whose dependence chain requires values not yet
available due to pending loads – is due to the fact that a
large number of SPEC95 integer program branches are of
the type load-evaluate-branch. Increasing pipeline depth
increases the number of instructions in flight, which in-
creases the probability that the branch dependence chain
terminates in a non-committed load. Thus, a small number
of calculate branches become load branches with increasing
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Figure 6. Prediction accuracy and IPC results



pipeline depth as indicated by the slight increase in the load
branch percentage.

Figure 5(b) compares the prediction rates of the two
classes. In general, load branches are more difficult to
predict, particularly those loads whose values are not con-
sistent when repeatedly encountered. Developing methods
that move loads back in order to convert a load branch into a
calculated branch, such as we model with load back, should
help improve the overall prediction accuracy.

Figure 6 compares the prediction accuracy of the two-
level hybrid and the two-level ARVI predictors (using cur-
rent value, load back, and perfect value information) for
different pipeline depths. The figures at the right compare
the IPC for the various two level predictor configurations.

The first observation is that ARVI achieves a consider-
able boost in prediction accuracy, even with the current
value scheme. For the 20-stage pipeline, near-perfect ac-
curacy is achieved with m88ksim compared to 95% for the
conventional hybrid. The result is a 75% improvement in
IPC. Non-trivial prediction accuracy improvements are also
realized for compress (93% for ARVI versus 90.5% for the
hybrid) and li (95.5% to 93%). Compress achieves roughly
a 8% IPC gain with ARVI and li achieves 16% improve-
ment. Overall, a 12.6% IPC improvement is achieved with
current value for a 20-stage pipeline.

The result for m88ksim highlights the special capability
of ARVI. The improvement is due to a single branch in the
routine lookupdisasm. The code (shown in Figure 7) takes
a key and finds the corresponding opcode information. The
opcode is found by hashing into an array and traversing the
associated linked list. Manual inspection reveals that the
contents of the hash table do not vary, so the number of
iterations to traverse the linked list is fully defined by the
value of the key. With the values of the register set that gen-
erate the value for key known when the branch is fetched,
ARVI is able to make perfect predictions on when to exit
the while loop. The while loop iteration count is embodied
in the dependence chain depth tag. In contrast, the history-
based hybrid predictor has difficulty in predicting the exit
because the condition is not strongly correlated with his-
tory.

With the exception of ijpeg, the load back scheme only
slightly increases predictor accuracy, as there are few op-
portunities for moving loads a sufficient distance to convert
the branch to a calculate branch. The results for perfect
value show the potential for ARVI when all load branches
are essentially treated as calculate branches. Recall from
Figure 5 that the prediction accuracy for ARVI is much
higher for calculate branches than for load branches. The
impact is most pronounced for go and ijpeg which have
particularly poor load branch mispredict rates. The result-
ing 25.1% increase in IPC for the 20-stage pipeline shows
the potential for ARVI if more aggressive on-line load back

....

INSTAB *lookupdisasm(UINT key)
{

INSTAB *ptr = hashtab[key % HASHVAL];

while (ptr != NULL && ptr−>opcode != key )
ptr = ptr−>next;

Figure 7. m88ksim value-based branch instance

schemes can be implemented.
Increasing the pipeline depth increases the mis-

speculation penalty, which improves ARVI’s relative per-
formance. For a 60-stage pipeline, ARVI achieves a 7%
IPC improvement for go, 16% for compress, 18% for li, and
80% for m88ksim. The overall IPC improvement of 15.6%
demonstrates the potential for the use of data dependence
information coupled with register values to reduce branch
prediction penalties in future processors.

7 Related work

In [15, 20], limited data dependence information is used
to reduce the wakeup time of the issue queue. In [15], for
each instruction in the issue queue, a matrix tracks only the
instructions immediately dependent upon it. In [20], a stan-
dard issue queue is backed by a large buffer where instruc-
tions waiting on a load miss are stored. In both designs,
only dependence information to the next instruction in the
chain is used. The design in [20] does construct longer de-
pendence chains, but it does so over multiple clock cycles
by following one step in the chain each cycle.

In contrast, our design maintains the full data depen-
dence chain cycle-by-cycle at register rename. This pro-
vides the dependence information earlier in the pipeline
which is required for branch prediction. A subtle, but im-
portant difference is that our design constructs the data de-
pendence chains for all instructions as they are renamed and
does not require an associative search to detect dependences
incrementally.

Predication to convert IF clauses into conditionally exe-
cuted statements as supported by Intel’s IA64 processor can
result in false dependences between uses of a logical regis-
ter along mutually exclusive paths. A hardware mechanism
is proposed in [7] to track data dependences between pred-
icates and reveal predicates that are in fact disjoint and can
be executed in parallel.

A predicated branch (a branch within a predicated
clause) has an implied data dependency with the predicate
register guarding the branch. If the value of the predicate
register is resolved to false then all branches predicated
upon that condition can be squashed (and trivially predicted
as not taken). The Predicate Enhanced Prediction (PEP) ar-
chitecture proposed in [27] records the predicate register in



order to perform a look up of its value as part of the branch
prediction. For an instruction set that supports predication,
the DDT would include the predicate register as an explicit
data dependence.

Most current dynamic branch predictors use some com-
bination of the branch address, path information [24], and
the local/global history [26, 36] of branch outcomes to
make the prediction. Despite many attempts to improve
predictor mechanisms and eliminate aliasing [9, 21, 23, 25,
31], only small incremental improvements have been real-
ized with these approaches. There is still a large number of
dynamic branches that are mispredicted, e.g., for go. Cur-
rent branch predictor designs appear to be reaching the limit
relative to the type of input information provided [8].

Related approaches that include additional information
into the branch prediction process involve correlating the
actual branch register values with the branch outcome [14]
using a conventional value predictor. The authors of the
study acknowledge that the accuracy of value prediction is
low. ARVI attempts to predict values based on the current
state along the data dependence chain. If the generating
values are present then ARVI’s predictions are near perfect.
Heil [17] proposed another approach that correlates on the
differences between branch source operand values. We con-
sider this approach an application using a limited amount
of data dependence information. The DDT circuit provides
ARVI with more complete data dependence information.

Branch decoupled architectures [3, 10, 33] execute
branch-related instructions on a branch processor and feed
the control flow result to the main processor. By execut-
ing the few instructions leading to branches on a seperate
engine, outcomes can be computed before the main thread
encounters the branch, thus, eliminating prediction of these
branches all together. In [10], instruction tagging by the
compiler was proposed to select the data dependence chains
for branches. The dynamic design in [33] separated the
branch execution stream at run-time but a hardware design
to discover the data dependence chain was not proposed.
Our DDT design could be employed to select the set of in-
structions to run in the separate branch engine.

8 Conclusions

Much of the work in microarchitecture research has been
to improve the effective ILP that the processor can exploit.
Data dependence information infers the true ILP of a se-
quence of instructions. In this paper, we present a practi-
cal hardware design, the DDT, for maintaining precise data
dependence information between the in-flight instructions.
Practical access to accurate dependence data suggests many
possible uses from instruction scheduling to instruction fil-
tering.

We demonstrate one application of the DDT in the

branch predictor ARVI. ARVI makes predictions based on
values in registers in the dependence chain. This highly se-
lective use of information leverages the key feature of data
dependence information: only information directly related
to the outcome of the branch is used in the prediction table.
The improved prediction accuracy results in IPC improve-
ments of 12.6% in a 20-stage pipeline and 15.6% in a longer
60-stage pipeline. In future work, we plan to explore other
uses of the data dependence tracking hardware and to refine
its design.
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