
Incorporating Predicate Information Into Branch Predictors

Beth Simon† Brad Calder‡ Jeanne Ferrante‡

†Department of Mathematics and Computer Science, University of San Diego
‡ Department of Computer Science and Engineering, University of California, San Diego

{bsimon}@sandiego.edu, {calder,ferrante}@cs.ucsd.edu

Abstract

Predicated Execution can be used to alleviate the costs as-
sociated with frequently mispredicted branches. This is ac-
complished by trading the cost of a mispredicted branch for
execution of both paths following the conditional branch.

In this paper we examine two enhancements for branch pre-
diction in the presence of predicated code. Both of the tech-
niques use recently calculated predicate definitions to provide
a more intelligent branch prediction. The first branch pre-
dictor, called the Squash False Path Filter, recognizes fetched
branches known to be guarded with a false predicate and pre-
dicts them as not-taken with 100% accuracy. The second tech-
nique, called the Predicate Global Update branch predictor, im-
proves prediction by incorporating recent predicate information
into the branch predictor. We use these techniques to aid the
prediction of region-based branches. A region-based branch is
a branch that is left in a predicated region of code. A region-
based branch may be correlated with predicate definitions in the
region in addition to those that define the branch’s guarding
predicate.

1. Introduction
The Explicitly Parallel Instruction Computing (EPIC) ar-

chitecture has been put forth as an architecture for achieving
the instruction level parallelism (ILP) needed to keep increas-
ing future processor performance [6]. The IA-64 Itanium pro-
cessor [7] is an example of an EPIC architecture. An EPIC
architecture issues wide instructions, similar to a VLIW ar-
chitecture, where each instruction contains many operations.
One of the new features of the EPIC architecture is support

for predicated execution [14], where each operation is guarded
by one of the predicate registers available in the architecture.
An operation is committed only if the value of its guarding
predicate is true.
One advantage of predicated execution comes from predi-

cation’s ability to combine several smaller basic blocks into
one larger region. This provides a larger pool from which to
draw instruction level parallelism (ILP) for EPIC architec-
tures. Another advantage of predicated execution is that it
can eliminate hard-to-predict branches by translating them
into predicate defines, which do not need to be predicted.
This comes at the cost of executing both paths following the
branch as if it were a single path.
Choi et al. [5] recently performed a study, where they re-

ported that only 7% of cycles are spent due to branch mis-
predictions for the SPEC 2000 integer benchmarks (without

using if-conversion). This is partially due to the in-order Ita-
nium processor stalling because of memory latencies, which
end up shadowing the stalls due to branch mispredictions. As
this type of EPIC architecture progresses and memory laten-
cies are better hidden, the stalls due to branch mispredictions
may have a much larger impact.
The goal of this paper is to examine advances in branch

prediction for predicated instruction sets, not a new nor an
optimal region formation algorithm. To this end we focused
on a region formation that is aggressive at removing hard-to-
predict branches, and the branch predictors we examine con-
centrate on predicting the remaining branches. In order to
aggressively form predicated regions around hard-to-predict
branches, we had to leave unbiased, but originally predictable,
branches (conditionals, unconditionals, and returns) inside
predicated regions. We call branches left inside predicated
regions region branches.
The creation of predicated sequences (region formation)

based on removing a hard-to-predict branch can have a neg-
ative impact on the predictability of these region branches.
A region branch will now be predicated on a predicate regis-
ter defined by a predicate compare definition that was added
in order to remove the hard-to-predict branch. These region
branches will need to be predicted during fetch more fre-
quently than they were in the original, non-predicated code
(i.e. a region branch will be fetched both when its guard-
ing predicate will be true and when it will be false). This
can cause what we call misprediction migration, where the
poorly predictable pattern of a hard-to-predict branch that
was eliminated due to predication is merely migrated to a re-
gion branch. In addition, direct branches (e.g., uncondition-
als and returns) that are left in the region are also affected
by misprediction migration. Before the region was formed,
these region branches were accurately predictable as taken.
After region formation, they now need to be predicted as ei-
ther taken or not-taken when the guarding predicate is TRUE,
and should always be predicted as not-taken when the guard-
ing predicate is FALSE.
In this paper, we develop two new branch predictor opti-

mizations and evaluate them for an in-order EPIC processor.
First is a new branch prediction optimization called Squash
False Path (Squash-FP) that attempts to know, at fetch, a
branch’s guarding predicate value and, if it is false, the branch
is predicted as not-taken. The goal of this predictor is to cor-
rectly predict region branches that are on the false path as
not-taken.
The second predictor we developed adds predicate informa-

tion into the global history register. We examine the Pred-
icate Global Update Branch Predictor (PGU) architecture to
incorporate predicate information into the global history to
try to improve the performance of region branches that ben-
efit from correlation. The PGU updates the global history
non-speculatively with the predicate result when the predi-
cate defining instruction is resolved. In a PGU predictor, cor-
rect predicate information from true-path predicates is placed
in the GHR. This can allow region branches to benefit from
this history correlation when making their prediction from the
global prediction table. We propose the Deterministic Update
Table (DUT) that provides a reproducible GHR update for
predicate definitions to allow the PGU to achieve a lower miss
rate.
For the non-speculative predicate-aware architectures (Squash-

FP and PGU), region branches only benefit if they are sched-
uled far enough apart from their predicate definitions. There-
fore, we examine the benefit of rescheduling the predicated
region to move the region-based branches as far away as pos-
sible from their predicate defining instructions. This attempts
to increase the cases where a predicate define can be resolved
before the branch is fetched, so it can be used to form the
prediction for the branch.
We compare the performance of Squash-FP and PGU to the

Predicate Enhanced Prediction of August et. al. [1]. Their
predictor incorporates predicate information into local per-
branch predictors. We examine the performance of their pre-
dictor and hybrid combinations of all three techniques. In
addition, we compare the performance of PGU to a branch
predictor that predicts predicates during fetch and inserts the
speculative predicate predictions into the global history reg-
ister. We show that this approach performs worse than just
using the default branch prediction architecture for predicated
code.

2. Prior Work
Previous region formation techniques have focused on us-

ing predicated execution to group basic blocks from various
control flow paths into one region to improve compiler opti-
mization opportunities and scheduling [12, 3, 2]. These hy-
perblocks are typically formed from an inner-most loop body.
Basic blocks are incorporated into a region based on a heuris-
tic function that weighs the block’s frequency of execution
and size in terms of instructions in relation to the main path
of the hyperblock being formed. Hyperblocks target unbi-
ased branches by translating them into predicate defines and
incorporating the subsequent paths in the predicated region.
Hyperblocks only allow heavily biased branches to remain as
predicated branches in the region and incorporate the frequent
path of execution as part of the region.
Mahlke et al. [11] investigated the interaction of predicated

hyperblock region formation and branch prediction using two
branch prediction architectures: a BTB with a 2-bit counter,
and a BTB with profile-based direction prediction. Over a
subset of SPEC92 benchmarks and UNIX utilities, they showed
a reduction in branch mispredict rate of 56% using hyperblock
regions. Their work avoids the issue of having to predict pred-
icated branches in regions by ensuring via hyperblock forma-
tion that only very infrequently taken branches are left in
predicated regions.
Tyson [17] utilizes predicated execution to optimize short

Tag True Hist False Hist P

Predicate
Register File

Pred Value

Pattern History
Table

Branch PredictionBranch Address

PEP Local History BTB

Figure 1: High level design of the Predicate Enhanced
Prediction Architecture.

forward branches, showing that these constitute a significant
percent of both integer and floating point branches and have
relatively poor prediction rates. He shows up to a 30% reduc-
tion in misprediction rate for the SPEC92 benchmark suite
– noting that most of the reduction comes directly from the
branches translated into predicate defines that no longer re-
quire prediction. Tyson presents results for a region formation
method that does not contain any changes in control flow. In
addition, he examines an idealized region formation that al-
lows any type of branch to remain in the predicated region,
but states that it is unclear how to predict them. We assume
for the results in [17], that branches left in these idealized
regions are only predicted when their guarding predicate is
true.
In [1], August et. al. presents a modified branch pre-

diction architecture called the Predicate Enhanced Prediction
(PEP) architecture that incorporates predicate information
into a local per-branch prediction scheme. They elaborate on
one of the problems of region formation by showing how the
transformation of an unbiased branch into a predicate define
could cause a previously predictable branch to become unpre-
dictable. Their technique focuses on exploiting the relation-
ship between a given predicate define and a branch guarded
by that predicate to recover the original prediction pattern
for that branch. This is accomplished by storing the guard-
ing predicate register number of the branch instruction in the
BTB. Additionally, two local histories are stored in the BTB
entry – one associated with the branch behavior when the
guarding predicate is true, and one when it is false. The the-
ory is that “true history” should be used and updated with the
same pattern that the original branch accessed – since it will
be used if the branch’s guarding predicate is true. The “false
history” should be used when the branch’s guarding predicate
is false – hopefully producing a prediction of “not taken”.
However, realistically, whatever value is currently stored in

the predicate register file when a branch is fetched is used to
choose between histories. In cases where the predicate define
guarding a branch has been issued to the pipeline, but not
yet resolved, one may access the “false history” even when
the branch’s guarding predicate eventually resolves to true.
Conversely, one may access the “true history” even when the
branch’ guarding predicate is false if a predicate value from
some previous part of the code set that predicate true and the
predicate define that produces a value for the current branch
has not yet committed.
Figure 1 shows a schematic of the PEP branch prediction

architecture. A branch prediction takes 2 serial table lookups.
The first lookup accesses the BTB providing the guarding
predicate associated with the branch. Then another lookup
is made in the predicate register file to find the currently
available predicate value. The predicate value is then used
to choose between the predictions found by indexing a 2-bit
pattern history table using the two histories from the BTB.
We assume that the local histories are speculatively updated
at fetch and correctly recovered on a branch misprediction.
In other related work, Mahlke et. al [13] examined a new

use of predicate registers for collecting information to assist in
branch prediction via compiler synthesized information. They
proposed new compiler techniques for statically examining
register values to produce a dynamically executed function
that would help guide branch predictions. They store the re-
sult of this function in a predicate register, which is then used
in a modified version of the prepare-to-branch instruction that
precedes a branch in their architecture.

3. Predicated Region Formation
A clear starting point in evaluating the impact of predica-

tion is to form regions starting at the most frequently mispre-
dicted branches, with the hope of greatly reducing the number
of mispredictions. This would result in (1) not having to pre-
dict these very hard-to-predict branches and (2) the removal
of frequent and “poorly behaving” entries from the branch
prediction hardware, which can reduce destructive aliasing
among the remaining branches. However, not all of these im-
portant hard-to-predict branches allow for region formation
as simple as if-then-else-join conversion. For example, when
analyzing branch mispredictions in the SPEC95 benchmark
go we find several issues that complicate region formation.
Most notably, there are several returns that are reached along
frequent paths from the most hard-to-predict branches. We
find the need to include these return statements in predicated
regions if we are to affect any change in the branch mispre-
diction rate of go via predication.

3.1 Our Region Formation Algorithm
The goal of this paper is to examine advances in branch

prediction architecture for predicated instruction sets, not a
new nor optimal region formation algorithm. To this end we
focused on a region formation algorithm that aggressively re-
moves hard-to-predict branches and the branch predictors we
examine concentrate on predicting the remaining branches.
Our region formation algorithm starts from a list of hard-

to-predict branches that we target for translation to predicate
define instructions. For the experiments presented here, we
start from a list of the top 10% most frequently mispredicting
static branches in each benchmark. Original mispredict values

are gathered with a baseline Meta Chooser predictor [9] which
is detailed in Section 4.
For a given hard-to-predict branch, we walk the control flow

graph following the branch incorporating basic blocks into the
predicated region. We continue adding successor blocks in
a breadth-first fashion until we reach a depth of five basic
blocks from the hard-to-predict branch. If, while walking,
we encounter another member on the list of hard-to-predict
branches, the depth count along that path is reset to zero.
This method attempts to target the most frequently mispre-
dicting branches for removal and provides sufficient quantity
of post-branch work to overlap the execution of the branch
converted to a predicate definition in the pipeline. Addition-
ally, this method provided sufficient scope for our scheduler
to investigate a range of region schedules, as will be discussed
in Section 7.8.
If a block in the region originally ended in a branch and both

of its control flow successor blocks have also been included
in the region, then the branch is translated into a predicate
define and the successor blocks are assigned the appropriate
guarding predicates. If either of the block’s successors were
not included in the region, then the branch becomes a region
branch.
There are additional measures we use in controlling region

formation. First any successor block that is reached less than
10% of the time the region is entered is excluded from the
region. This keeps cold blocks from unnecessarily bloating
the region with infrequently useful work. Second, any block
ending in an indirect branch or return automatically stops
region formation along that path. Finally, any branch with
a successor that has already been included in a previously
formed region (such as (c<a) in Figure 2(a)), stops region
formation along that path.

3.2 Issues with Region Branches
Consider the code in Figure 2(a). Assume that the branch

(a>b) is a hard-to-predict branch we would like to replace
with a predicate define. Applying our hard-to-predict region
formation algorithm can produce the region in Figure 2(b).
Statement (b<=0) is translated into a predicate define because
its successors are reached more than 10% of the time we enter
the region.
In our example, branch (c<a) (very predictable in the origi-

nal code) is left as a region branch because its taken successor
was already incorporated into a region. This leaves only the
fall-through successor in the region. Though this is a highly
unbiased branch it is very predictable in the original code be-
cause of its correlation with branch (a>b). One of the most
important aspects of this region is the presence of branches
within it with one or more targets outside the region. These
branches, like all instructions in the region, are tagged with
guarding predicates. These branches will be fetched regard-
less of the value of their guarding predicate, and at commit,
their effect (i.e. whether they are taken or fall-through) is con-
tingent on both their condition (in the case of a conditional
branch) and the value of their guarding predicate. In cases
where the guarding predicate is false, regardless of branch
condition, the branch is not taken.
As can be seen in this example, some always-taken branches

(e.g., return FALSE) are transformed via the predication pro-
cess into branches that must be predicted. Though they are
still the same type of branch, whether or not they should actu-

a = 5
//5 insts
c = z+5
if (a>b)

//5 insts
c+=100

//3 insts
if (b<=0)

return FALSE

//6 insts
if (c<a)

//100 insts
already in
another
region

//4 insts

50K 50K

50K 49K

1K

25K
26K

a = 5 if T
//5 insts if T
c=z+5 if T
p2,p3 cmp.unc (a>b) if T
//3 insts if p3
p4,p5 cmp.unc (b<=0) if p3
//5 insts if p2
c+=100 if p2
return FALSE if p5
p6 = p2 || p4 if T
//6 insts if p6
branch (c<a) if p6
//4 insts if p6

a = 5 if T
c=z+5 if T
p2,p3 cmp.unc (a>b) if T
p4,p5 cmp.unc (b<=0) if p3
p6 = p2 || p4 if T
//5 insts if T
//3 insts if p3
//5 insts if p2
c+=100 if p2
//6 insts if p6
branch (c<a) if p6
//4 insts if p6
return FALSE if p5

(a) Original Control Flow Graph (c) Predicated Rescheduled Region(b) Predicated Region

Figure 2: Region formation example that leaves unbiased, possibly predictable branches in the region. Solid
boxed basic blocks are formed into a predicated region, the dotted basic block is not included in the region.
In this work, we use abbreviated EPIC branch representation to show the condition evaluation as part of the
branch. In the original code, branch (a>b) is our targeted hard-to-predict branch. Branch (b<=0) is highly
biased and highly predictable. Branch (C<a) is not highly biased, but also originally very predictable given
knowledge of the behavior of branch (a>b).

ally be taken is contingent on whether their guarding predicate
is true or false (i.e. whether their path is live or spurious).
Hence, these branches now need to be predicted similarly to
a conditional branch during fetch. In addition, conditional
region branches are now dependent on a combination of con-
ditions when they are predicted. While the branch condition
still determines when the branch should be taken, if a con-
ditional branch is predicated on false, it will be treated as a
not-taken branch.
In general, all region branches will need to be predicted

more frequently than they were in the original code. When
entering a region of predicated code we fetch all instructions
down all paths, so we will be predicting branches some number
of times more than their actual path of execution is followed.
In Figure 2(b) branch return FALSE will be fetched and have
to be predicted 100K times, approximately twice as frequently
as in the non-predicated code. This impacts the predictability
of these instructions and can significantly increase the number
of accesses to the branch prediction hardware.
All of these issues mean that, when using a traditional

branch prediction architecture, the region branches in Fig-
ure 2(b) suffer from misprediction migration. This is because
branch (c<a) and the return branch are both guarded by pred-
icates defined by what was the unpredictable branch (a>b).
Therefore, these branches ((c<a) and “return FALSE”) are
harder to predict using a traditional branch prediction archi-
tecture. Branches like the return branch should benefit from
a local predicator utilizing predicate information as long as
the define of predicate p5 can be scheduled sufficiently before
the return. Figure 2(c) shows a rescheduling of the code such
that p5 has more time to complete execution before the re-
turn branch is predicted. The branch (c<a) which may be
predictable based on correlation with (a>b) should benefit
from a global history scheme that can incorporate the infor-
mation produced from the predicate definition of (a>b) even
though neither p2 nor p3 is the guarding predicate of (c<a).

4. Baseline Branch Predictor
Our baseline branch predictor is a Meta Chooser [9] style

predictor pictured in Figure 3. For the results in this paper,
we simulated 4K entry local, global, and chooser tables using
a 12 bit global history register. This branch predictor takes
advantage of both per-branch local history as well as recent
path global branch history in making accurate predictions.
This predictor uses the global table to make a prediction in
a single cycle, which is squashed and updated if the local
prediction made in the next cycle is selected by the chooser.

4.1 Baseline Meta Chooser Predictor
When using the baseline Meta Chooser predictor for pred-

icated code, all region branches still speculatively update the
global history register during fetch. One difference in predi-
cated regions is that all direct region branches (e.g., uncondi-
tional, returns, etc.) are now treated as branches that need to
be predicted as taken or not-taken. Therefore, these branches
update the global history register and obtain their direction
prediction from the Meta Chooser predictor. For example, a
predicated return branch instruction inside of a region deter-
mines that the next fetch PC would either be (1) the top of the
return stack (taken), or (2) the fall-through PC (not-taken)
based upon the direction prediction of the Meta Chooser.
Conditional region branches use the Meta Chooser as they
do in non-region code to produce a branch prediction. How-
ever, the Meta Chooser branch prediction really represents
the combination of the guarding predicate and the evaluation
of the conditional expression when predicting a branch.
In the baseline Meta Chooser predictor, all region branches

speculatively update the global history register and the local
history register in fetch. They update the 2-bit state counters
when the branch commits even if guarded on a false predicate.
Falsely guarded branches are treated as if the branch evalu-
ated to not-taken, and the branch state for a branch guarded
on a false predicate will be updated as not-taken.

5. Squashing False Branches
The first predicate aware branch prediction architecture

we propose uses guarding predicate knowledge to completely
squash the prediction of falsely guarded branches. This is a
modification of the use of predicate knowledge as defined by
August et al. [1]. Their Predicate Enhanced Prediction (PEP)
architecture uses the value of a branch’s guarding predicate to
choose one of two local history registers to use in predicting
the branch – channeling branch predictions where the guard-
ing predicate is known to be true to one 2-bit predictor, and
those with false or yet-to-be defined guarding predicates to a
different 2-bit predictor.
The Squash False Path (Squash-FP) architecture we pro-

pose stores the predicate register number that is guarding
each branch in the branch’s BTB entry. During a prediction
the predicate register is looked up in the register table, and the
lookup returns not only the value of the predicate, but also if
the predicate has any outstanding definitions in the pipeline.
A predicate register that has no outstanding definitions in the
pipeline is said to be resolved. If the predicate is resolved and
it evaluates to false, then we accurately predict not-taken for
the branch. If the predicate evaluated to true or it was not re-
solved, then the default 2-bit predictor is used. Not only will
this give 100% prediction accuracy to those falsely guarded
branches whose guarding predicates are resolved by the time
they are fetched, but it will reduce contention in the tables
for the remaining predictions. We use the Squash-FP as a
filter for any type of branch predictor, filtering out branches
with this property at fetch, predicting them as not-taken. A
branch predicted as not-taken this way does not update the
2-bit history table, but it does insert its information into the
global history register.
To provide this prediction, we rely upon the register lookup

to tell us if the latest definition has written to the register,
or whether an instruction in the pipeline has yet to produce
its value. This information is provided in traditional archi-
tectures to determine if a bypassed value from the pipeline
should be used instead of the register file value when exe-
cuting an instruction. We use this same information already
provided by processors to tell if the predicate is resolved or
not as described above.

6. Global Update Predictors
We will now examine incorporating predicate information

into the global history of a branch predictor. In both predicate-
aware architectures presented below, region branches (both
spurious and true-path) update the predictors in exactly the
same fashion as the baseline predicated branch predictor. All
region branches are predicted and speculatively update the
global history register in fetch. In [15], they showed that
the global history should be speculatively updated to achieve
decent performance, and the history is recovered on a mispre-
diction.

6.1 Speculative Predicate Update
The most straight-forward way of incorporating predicate

information into a branch prediction scheme is to follow the
same update model as branches – predict the result of predi-
cate definitions and speculatively update the GHR with pred-
icate defines in fetch. In this scheme, called Speculative Pred-
icate Update (SPU), predicate defines must be “predicted”

local
history
table

prediction

global
pattern
history

table

chooser
prediction

history
table

PC global history register

+

local
pattern
history
table

Figure 3: Our baseline Meta Chooser branch predic-
tion architecture. It contains a local history predictor,
global history predictor, and a 2-bit chooser table to
choose between the two predictions.

during fetch and the result of that prediction speculatively
updates the branch predictor structures. However, there is no
penalty for “mispredicted” predicate defines. The predicted
information is only used to feed the branch predictor, not to
control fetch or other pipeline functionality as occurs with
branches.
A negative effect of the prediction of predicate defines at

fetch comes from the need to predict both true-path and false-
path predicate defines. Although predicate defines guarded on
false predicates never set a predicate value to true, the SPU
must make predictions in fetch – before the value of the guard-
ing predicate may be known. This will increase the capacity
concerns of branch prediction structures (as all predicate de-
fines are predicted and update the branch predictor) and may
contribute to dilution of useful information in the GHR in
cases where many false-path predicate defines are fetched.
Our results show that speculatively inserting predicate def-

initions into the GHR has a higher miss rate than not includ-
ing them at all. A similar result was found in [10], where they
dynamically predicated small hammock branches.

6.2 Resolved Predicate Global Update
The goal of our Predicate Global Update (PGU) predictor

architecture is to capture the result of true-path predicate de-
fine statements in the global history. Ideally, we want to do
this after the predicate instruction finishes execution in the
writeback stage as this allows us to avoid the process of pre-
dicting predicate values and enables us to update with only
true-path predicate defines. However, this will cause a “de-
lay” in the update of the global history register – which may
reduce the usefulness of the predicate information. This can
be addressed through code scheduling techniques and is ex-
amined further below.

6.2.1 Basic PGU Example
Combining delayed (non-speculative) GHR update by pred-

icate defines with speculative GHR update by branches will
result in a different ordering of global history information than
in the original non-predicated program. We show how this
“reordering” and the delayed, non-speculative update by pred-

a = 5 if T
//5 insts if T
c=z+5 if T
p2,p3 cmp.unc (a>b) if T
//3 insts if p3
p4,p5 cmp.unc (b<=0) if p3
//5 insts if p2
c+=100 if p2
return FALSE if p5
p6 = p2 || p4 if T
//6 insts if p6
branch (c<a) if p6
//4 insts if p6

(br3)

(cmp1)

(cmp2)

(br4)

(a) Predicated Region

global history register

(b) State of global history register

br3 cmp1 cmp2 br4

br3 cmp1 cmp2

br3

shift in of global history bit from
least significant to most significant bit

19

cycle

26

27

Figure 4: Update of the Meta Chooser global history
register when enabled with predicate update. Note
that branches update the global history register in
fetch, while predicate defining instructions update it
in writeback. This causes a “re-ordering” of informa-
tion in the global history register as compared with
instruction fetch ordering.

icate defines can impact our ability to benefit from predicate
define information.
Figure 4 shows an example of how non-speculative predicate

define update impacts the history stored in the global history
register. Note that the fetch order of instructions doesn’t
match the GHR update order. The GHR is updated by a bit
shift from the right (into the least significant bit). For clarity
in this example, we assume each predicate define doesn’t finish
execution until 12 subsequent instructions are fetched.
Using the predicate update branch predictor, the global his-

tory register is updated with the values of predicate registers
p2 (cmp1) and p4 (cmp2) when they are resolved. The predi-
cate defines formed via our region formation process all define
two complementary predicates, and we model the architecture
such that it updates the global history register with the value
of the first predicate. The IA-64 architecture supports a vari-
ety of predicate define instructions that can define up to two
predicates using many different boolean combinations [8]. Ex-
amining how to use other IA-64 predicate define instructions
and their interaction with the predicate update predictor is
an area for future work.
As can be seen in Figure 4, our predicate update predic-

tor achieves its goal of incorporating the important history of
statement (a>b) into the global history register. When (c<a)

is fetched, the second most recent bit of history in the global
history register (cmp1) helps determine the correct prediction
for (c<a). This alleviates the problem of misprediction mi-
gration that would otherwise manifest for this branch without
a predicate update branch predictor.
However, using the schedule in Figure 4, the region branch

return FALSE is not able to benefit from the predicate infor-
mation in the global history, since global history from neither
of the cmps is updated in time. One solution to the problem
is to schedule predicate defines as early as possible in a re-
gion while also scheduling branches as late as possible in the
region. Figure 2(c) shows a rescheduling of the region in (b)
where the number of intervening instructions between predi-
cate define cmp2 and branch return FALSE is increased from
6 to 21. This allows the update of the global history regis-
ter by the predicate define to complete before we fetch and

Predicate Define ID

Cycle Count Delay

PD1
4

Fetch Decode Ex1 Ex2 Commit

PD2
20

PD3
2

PD1

4

NT

Global History Register
is updated with completed

results of PD1 (taken)

Predicate Define ID

Cycle Count Delay

PD1
4

Fetch Decode Ex1 Ex2 Commit

PD2
20

PD3
2

PD1

0

T

PD2

19

NT

PD3

2

NT

Global History Register
is updated with not taken for PD3

since it has not completed exeuction

Predicate Define ID

Cycle Count Delay

Fetch Decode Ex1 Ex2 Commit

PD2
20

PD3
2

PD2

17

NT

PD3

0

NT

Predicate Define ID

Cycle Count Delay

Fetch Decode Ex1 Ex2 Commit

PD2
20

PD3
2

PD2

16

T

Global History Register
is updated with result of PD2 (taken)
16 cycles after PD2 leaves pipeline

ex
ec

ut
io

n

Value (defaults to NT)

CYCLE
X

CYCLE
X+4

CYCLE
X+6

CYCLE
X+7

Value (defaults to NT)

Value (defaults to NT)

Value (defaults to NT)

Figure 5: A Deterministic Update Table (DUT) to ensure

a deterministic ordering of branch and predicate define

(PD) information seen by the GHR. Each entry contains

a PD ID, delay, and result value. The delay acts as a timer,

and upon reaching zero, the Value entry is inserted into

the GHR. Result values are initialized to not-taken NT and

updated when the PD finishes execution. If a PD’s delay

expires before it finishes execution, the GHR is updated

with the default NT value.

predict the branches that are correlated with it. Using the
region schedule in Figure 2(c) results in a global history reg-
ister of {cmp1, cmp2, br4, br3}, and allows br3 to benefit
from having cmp2 in its global history register during predic-
tion. The optimal schedule would not move predicate defines
as far away from branches as possible, but rather, just far
enough to allow the predicate defines to update the GHR be-
fore the branch is fetched. For example, in the code shown in
Figure 2(c) since we illustrated a 12 instruction delay for pred-
icate defines, the return FALSE instruction would be just as
predictable if scheduled before the instructions from block p6.
This would reduce wasted dynamically executed instructions
in the cases where return FALSE is taken.

6.3 A Deterministic Predicate Update Architec-
ture

A consistent dynamic ordering of information in the global
history register is paramount for achieving global branch pre-

diction accuracy. PGU’s multiple-pipeline-point update pro-
cedure for the GHR exposes the update reproducibility problem
– even for in-order processors. Between the time a predi-
cate define is fetched and has completed execution, the define
may stall in the pipeline due to system-level effects such as
dependency on a cache miss. If the predicate define is de-
tained from completing execution by a stalling instruction,
fetch can continue, simultaneously filling up the in-order in-
struction window. If, during the stall, a branch is fetched,
it will be predicted and speculatively update the GHR, after
which the predicate define may finish execution and complete
its update of the GHR. On another execution of this same
instruction stream, the predicate define may not be stalled
and will complete execution (and update) before that branch
was fetched. This situation could arise in the code shown in
Figure 4. In the case where one of the 3 instructions guarded
by p3 sometimes causes a pipeline stall, we may get a GHR of
the ordering {br3, cmp1, cmp2, br4} when there is no stall
and one of the ordering {br3, cmp1, br4, cmp2} when an
instruction guarded by p3 stalls the pipeline.
This means that the ordering of information in the global

history register may not be dynamically reproducible with re-
spect to a given branch, because our architecture can update
the GHR from multiple points in the pipeline (fetch and write-
back). To address this problem we present an architecture
that provides a deterministic update to ensure a reproducible
global history register for a given path, while at the same
time trying to update the GHR with results from completed
instructions.
We propose a deterministic predicate update table (DUT) in

the processor architecture to guarantee a dynamically repro-
ducible history in the face of delayed predicate define update
of the global history. Figure 5 shows a schematic of our struc-
ture. With this structure, we fix a delay time for each static
predicate define to update the global history – whether or not
the dynamic occurrence of the predicate define has completed
execution.
This structure is not limited to gathering information from

predicate defines. Any instruction type could be tagged for
update into the DUT with a delay representing when that
information is likely to be available. In this work, we only
examine the use of the DUT for incorporating predicate define
results.
In the DUT we store the following information for each

predicate define as it is fetched: predicate define identifier (PD
ID), delay to update (in cycles), and result value. The pred-
icate define ID is the ID used by the processor to denote the
dynamic definition of the instruction defining that predicate.
Result value is the value used to update the global history for
this predicate define – e.g. the result of the predicate define
instruction. Before the instruction has completed execution,
this is set to a default value of “not-taken”. The delay to up-
date determines when the value stored in result will update the
global history register. This delay is initialized to a particular
value for each predicate define relative to the cycle in which
the predicate define instruction is fetched. Every cycle there-
after, the counter is decremented. When the value reaches
zero, the result value is stored into the global history register
providing a deterministic ordering for the global history. If
a predicate define finishes execution before the delay counter
triggers, the result of the predicate define is stored in the re-

sult field. In this case the update of the global history will
be accurate (i.e., result contains the actual result of the exe-
cution of the predicate define). Either way, this architecture
guarantees a reproducible order of including branch/predicate
define information in the global history.
For a branch to benefit from predicate information stored in

the global history register, predicates with which it correlates
need to update the history before that branch is fetched and
predicted. The delay time used for this architecture can be
implemented in many different ways. Some of the possibilities
include having a fixed time for all predicate defines, calculat-
ing delay via profiling or compiler analysis and, for each in-
struction, specifying the delay in the ISA, or calculating delay
dynamically on the fly. For our simulation results, we profiled
the average delay between fetch and execution completion for
each predicate define instruction using SimpleScalar. We then
used the corresponding delay for each predicate instruction in
our in-order simulator for the DUT.
In Figure 5 we show how the DUT performs when process-

ing three different predicate define instructions. In (a) the
first predicate define, PD1, is fetched and inserted into the
DUT with a delay of four cycles. Next PD2 is inserted with
a delay of 20 cycles. Then, in cycle X+4 PD3 is inserted with
a delay of 2 cycles and the cycle counter for PD1 has been
decremented to zero. At this point, the global history register
is updated with the value stored in PD1’s value entry - which
was updated after PD1 finished execution with the result of
taken. After two more cycles have elapsed, the cycle count
for PD3 reaches zero and it updates the global history register
with the value in the DUT. As PD3 has not finished execution
in the pipeline, the update to the global history register will
be the default of not-taken. There is no other update of the
global history register made when PD3 finishes execution. In
this case, it is possible that we have entered invalid data for
PD3 since we updated the global history before PD3 completed
execution. Finally, even though PD2 commits in the pipeline
in cycle X+7, it will not have its result value inserted into
the global history register until cycle x+23 - 16 cycles after it
leaves the pipeline. The result of its execution is stored in the
DUT’s value entry for PD2 until then and is used in updating
the global history register.

7. Experimental Evaluation

7.1 Methodology
We gather results for a subset of the SPEC95 benchmarks

(go, gcc, m88ksim, and ijpeg), SPEC92 li, as well as two
other benchmarks. Dot is a project from AT&T for plotting
graphs, and gs is a run of ghostscript translating a paper
from postscript to jpeg format. We chose these benchmarks
because they have a reasonable number of mispredictions. We
used the same input to the applications to generate the profile
to guide region formation and to gather the misprediction
results via simulation. To conduct our experiments we used
both ATOM [16] and SimpleScalar 3.0a [4].
To gather our results we use a predicated form of the Alpha

Instruction Set Architecture (ISA). We used the Alpha ISA,
adding a predicate guarding register to every instruction, and
we added predicate compare instructions to the ISA to define
the predicates as shown in the examples earlier in this pa-
per. We used this modified ISA to build predicated regions

and to simulate the predicated, scheduled code. To generate
the predicate regions we used ATOM to profile the entire ex-
ecution of the program to find the hard-to-predict branches.
We then used the program analysis features of ATOM to pro-
vide an intermediate representation of the binary to schedule
the predicated regions. We used SimpleScalar to calculate la-
tencies to create an in-order simulator to simulate our Alpha
predicated code. We did this, because it was easier than modi-
fying SimpleScalar to consume our Alpha predicated binaries.
For the SimpleScalar runs to generate the latencies for our

branch centric ATOM simulator, we simulate an 8-wide issue
machine with a 128-entry RUU. The L1 data cache is 64K 4-
way associative, L1 instruction cache is 32K 2-way associative,
and we use a unified 1 MB 4-way L2 cache. The L1 miss and
L2 hit latency is 12 cycles, with 120 cycle latency for an L1
and L2 miss. The minimum branch misprediction penalty is
eight cycles, and we use a 32-entry return address stack for
predicting return instructions.
We evaluate our architecture by examining the improve-

ments in branch misprediction rates, which are all normalized
to the number of branch mispredictions in the original non-
predicated code. That is, the misprediction “rate” is calcu-
lated as the number of mispredicts divided by the number of
branch predictor accesses in the original execution of the pro-
gram code. This allows us to look at one consistent metric as
the number of branch predictor accesses will change with the
predicated code. In addition, the miss rates we show include
the misprediction rate for all branch types. This includes con-
ditional branches, returns, unconditional, procedure calls, and
indirect branches.
For the Speculative Predictor Update (SPU) (where predi-

cate define instructions are predicted) we do not count predi-
cate define mispredictions in the mispredict rate as their mis-
prediction has no cost (no architectural penalty). In addition,
we show the percent increase in instructions executed for the
hard-to-predict predicate regions formed.

7.2 Baseline Prediction Results
We start by examining the percentage of mispredicted branches

without using any predicate information to update the branch
predictor. The first three bars in Figure 6 show the origi-
nal mispredict rates using only local prediction, only global
prediction, and the Meta Chooser (combination of local and
global). We simulated a 4K entry local history, local pattern,
global pattern, and chooser tables using a 12 bit local history
and global history registers.
We show that the original Meta Chooser predictor performs

better than either a predictor using just local (per-branch)
information or one using just global information. The fifth
bar in the graph shows the percent of mispredicted branches
that occur after applying our region formation algorithm and
predicating the hard-to-predict branches.
The results show that substantial reductions in miss rates

are achieved for go (22% down to 15%), ijpeg (8.5% down to
2.5%) and m88ksim (3% down to 1%) using the hard-to-predict
region formation method with a traditional branch predictor.
For the other programs, the results appear to show that

we are not successful in attacking the misprediction problem
with our hard-to-predict region formation approach. In real-
ity (as we’ll see in the detailed breakdown of mispredictions to
follow), we are removing a large percent of mispredictions by
translation of hard-to-predict branches to predicate defines,

but the remaining region branches become much harder to
predict using the baseline predicated Meta Chooser. Mispre-
diction migration leads to disappointingly high misprediction
rates, so much so that in dot and li very little decrease in
overall misprediction rate is seen.

7.3 Speculative Predicate Update Predictor Re-
sults

The fourth bar in the graph shows the effect of speculatively
updating the branch predictor with predicted predicate define
information. For all benchmarks, this results in more branch
mispredictions than the Baseline Predicated Meta Chooser
(fifth bar) which does not attempt to incorporate predicate de-
fine information into the branch predictor. Here, even though
predicate information is updated in a “timely” manner in
fetch, the prediction rate suffers due to two effects. First,
all predicate defines (even spurious predicate defines guarded
by a false predicate) speculatively update the predictor. This
can dilute the GHR in cases where many false path predicate
defines are fetched. Secondly, predicate defines are frequently
hard to predict. Often, this is one of the factors that influ-
enced the decision to translate a branch into a predicate define
in region formation.

7.4 Predicate Update Predictor Results
The last four bars in the Figure 6 examine the various com-

petitive methods of using predicate information in a Meta
Chooser predictor and compare them to an idealized execu-
tion of the predicated code, where only branches executed on
the true paths in regions have to be predicted. The details
of each implementation follow. All predictors use a 4K-entry
local history table to store local histories, a 4K-entry 2-bit
pattern history table for local predictions, a 4K-entry 2-bit
pattern history table and a 12-bit global history register for
global predictions.

• Meta Chooser PEP: One of two local histories stored for
the branch is used, based on the value of the guarding
predicate register. The chosen history is the only one
updated with the result of the branch. This provides
results for the PEP predictor presented in [1].

• Meta Chooser Resolved PEP: We improved the PEP ar-
chitecture to choose between its two local histories based
on (1) knowing if the most recent predicate register def-
inition for the guarding predicate is resolved or not, and
(2) the value of the guarding predicate. If the most re-
cent definition of the guarding predicate register has not
resolved, then the false predicate local history is used to
predict the branch. If it has resolved, than either the
false or true local history is chosen based upon the value
of the guarding predicate. The chosen history is the only
one updated with the result of the branch. The results
show that concentrating the true path local history on
only those branches that have resolved provides a decent
reduction in miss rate for a li.

• Meta Chooser PGU: The predicate define update of the
global history register is delayed using the Determinis-
tic Update Table as described in Section 6.3. When the
delay is triggered its value is entered into the global his-
tory register. Branches fetched later that correlate with

0

5

10

15

20

25

30

go gcc m88ksim ijpeg li dot gs average

P
er

ce
n

t
M

is
p

re
d

ic
ts

 N
o

rm
al

iz
ed

 t
o

 O
ri

g
in

al
Original local only
Original global only
Original Meta Chooser
Meta Chooser with Speculative Predicate Update (SPU)
Baseline Predicated Meta Chooser
Meta Chooser with Predicate Info for Local (PEP)
Meta Chooser with Resolved Predicate Info for Local (PEP)
Meta Chooser with Predicate Info for Global (PGU)
True Path Only

Figure 6: Change in misprediction rate, normalized to the number of predictor accesses in the original
unpredicated code.

this predicate definition will benefit from having it in
the global history register.

• True Path Only: For these results we model an environ-
ment where only those branches whose guarding predi-
cate is true (i.e. whose path is live) are predicted and
update history information. This isolates the effects of
predicting branches guarded on a false predicate and
provides an indication of what mispredict rate would
be expected given the removal of the hard-to-predict
branches via predication.

A Meta Chooser with resolved PEP local predicate update
averages a mispredict rate of 4.5% and one with PGU global
predicate update averages a mispredict rate of 5%. Only hav-
ing to predict branches that are guarded by a TRUE predicate,
even with no predicate update, results in a miss rate of 2.75%
on average.

7.5 The Impact of Falsely Guarded Branches
In Figure 7 we show a more detailed breakdown of the

branch mispredicts in the original code, the code after pred-
ication, using Resolved PEP-style predicate information to
affect local predictions, using the PGU predicate information
to affect global predictions, and an idealized world where only
true path branches have to be predicted.
The top portion of the original bars show the percent of

mispredicts that should be removed by transforming those
branches into predicate define statements when applying our
hard-to-predict region formation algorithm. These results
show that 44% to 91% of the original mispredicts in the pro-
grams are removed by if-converting these hard-to-predict
branches.
The middle section of the original bars (True Path in Re-

gion) shows the mispredicts that come from region branches
whose guarding predicate evaluates to true. The False Path
in Region shows the percent of mispredicts caused by region

branches that are guarded on false. The remaining mispre-
dicts (in black) will lie outside of our predicated regions and
will not be directly impacted by our predictor modifications,
but may be affected by the global history update from predi-
cated regions.
The number of dynamically fetched branches for predicated

code where only the true path branches are fetched is re-
duced between 23% (for li) and 50% (for ijpeg). However,
when considering the spurious (false path) branches that must
be fetched in predicated regions, the number of dynamically
fetched branches is not always reduced compared to the orig-
inal code. Three benchmarks still have overall reductions in
dynamically fetched branches (m88ksim , ijpeg, and dot), two
have almost the same number of predictions as in the original
code (go and gcc), and the rest see an increase in the number
of dynamically fetched branches.
In Figure 7, across all the predicated results, we see little

or no decrease in mispredicts for non-region branches and a
marked increase in the number of mispredicts caused by region
branches. Additionally, while false path mispredictions are
significant in and of themselves, we see that false path (spuri-
ous) predictions and mispredictions also have a marked impact
on the mispredicts caused by true path region branches. This
is shown in the increase of true path mispredictions (striped
bars) in any “realistic” prediction scheme as compared to the
predictions from true path branches in the “true path only”
results.

7.6 Squash-FP to Remove False Branches
In Figure 8 we show various branch prediction schemes used

to minimize the negative impact of falsely guarded branches
on region branch prediction. Squash-FP uses information
from the predicate register file to determine if a branch’s
guarding predicate is false and then effectively squash the
branch by predicting it as “not-taken”. The Squash-FP pre-
diction filter is only used if the most recent definition for the
guarding predicate has resolved. Squash-FP requires know-

0

10

20

30

40

50

60

70

80

90

100

O
rig

i n
al

P
E

P

tr
ue

 p
at

h

P
er

ce
n

t
o

f
O

ri
g

in
al

 M
is

p
re

d
ic

ts
NonRegion True Path in Region False Path in Region Removed via Predicate Defines

B
as

el
in

e

P
G

U

O
rig

i n
al

P
E

P

tr
ue

 p
at

h

B
as

el
in

e

P
G

U

O
rig

i n
al

P
E

P

tr
ue

 p
at

h

B
as

el
in

e

P
G

U

O
rig

i n
al

P
E

P

tr
ue

 p
at

h

B
as

el
in

e

P
G

U

O
rig

i n
al

P
E

P

tr
ue

 p
at

h

B
as

el
in

e

P
G

U

O
rig

i n
al

P
E

P

tr
ue

 p
at

h

B
as

el
in

e

P
G

U

O
rig

i n
al

P
E

P

tr
ue

 p
at

h

B
as

el
in

e

P
G

U

go gcc m88ksim ijpeg li dot gs

Figure 7: Comparison of the breakdown of locations of mispredicts in the program, normalized to the original
number of mispredicts per benchmark. In each set of bars we show information (from left to right) for the
original non-predicated code, the baseline Meta Chooser predictor on the predicated code, Meta Chooser
using PEP update for local predictions, Meta Chooser using PGU for global predictions, and an idealized
execution of only the true path of the predicated code.

ing the guarding predicate register for each branch, which we
assume is saved per branch in the BTB.
Figure 8 shows six results – 4 using Squash-FP to first filter

out the branches that are guarded on false predicates, where
the predicates have resolved by the time the branch is pre-
dicted. The implementations shown are:

• Baseline Meta Chooser: Uses no predicate information,
must predict all region branches.

• Squash-FP Baseline Meta Chooser: Uses guarding pred-
icate information as stored per branch in the BTB. Pre-
dict not-taken for branches whose guarding predicate is
resolved and has a value of false.

• Squash-FP PEP Meta Chooser: If Squash-FP does not
apply to the branch, then use the predicate value from
the predicate register file to select between the two per
branch local histories. Use this local history if local his-
tory is chosen by the meta chooser, otherwise use the
default global predictor.

• Squash-FP PGU Meta Chooser: If Squash-FP does not
apply to the branch, then use PGU to predict the branch
if global prediction is chosen by the meta chooser, other-
wise use the default baseline local predictor. All branches
update the global history register.

• PEP+PGU Meta Chooser: Uses PEP-style predicate in-
formation for local predictions and PGU-style for global
predictions.

• Squash-FP PEP+PGU Meta Chooser: If Squash-FP
does not apply to the branch, uses PEP-style predi-
cate information for local predictions and PGU-style for
global predictions.

Each bar in the graph is broken into five sections indicating
the source of the misprediction. The bottom section shows
misses from Non Region areas. The next two show misses from
true path branches in regions - the stripes are from prediction
where the value of the guarding predicate was known to be
true at the time of prediction. The top two show misses from
false path branches - the stripes are from predictions where
the value of the predicate was resolved false (these predictions
are squashed via Squash-FP).
The four implementations of Squash-FP show a clear bene-

fit over the other two in that all misses from resolved false path
predictions (dark stripes) are removed. The results show that
adding the Squash-FP filter to the baseline predictor achieves
the majority of reduction in branch miss rate. Some bench-
marks like gcc and gs do better when incorporating predi-
cate information into the local predictor. Some benchmarks
do better when incorporating predicate information into the
global history register. The latter can be particularly ben-
eficial when the full guarding predicate of a branch is not
resolved at prediction. li shows significant benefit from PGU
update which we attribute to its very low percent of resolved
predicates (as discussed in Section 7.8). In comparing Fig-
ure 6 with Figure 8 PEP sees on average very little improve-
ment with the Squash-FP filter, PGU sees 0.6% improvement
with Squash-FP, and PEP+PGU sees 0.1% improvement. A
Baseline predictor that only uses predicate define information
to implement Squash-FP improves its misprediction rate by a
full 1%.

7.7 Timing Discussion
For the results presented, we examine each architecture us-

ing roughly the same area. Comparing the complexity of the
designs in terms of access time, both the PEP and Squash-

0

2

4

6

8

10

12

14

16
P

er
ce

nt
 M

is
pr

ed
ic

ts
 N

or
m

al
iz

ed
 to

 O
rig

in
al

Non Region Region TP Resolved Region TP Unresolved Region FP Resolved Region FP Unresolved

B
as

el
in

e

S
-F

P
 P

E
P

P
E

P
+

P
G

U
S

-F
P

 P
E

P
+

P
G

U

S
-F

P

S
-F

P
 P

G
U

B
as

el
in

e

S
-F

P
 P

E
P

P
E

P
+

P
G

U
S

-F
P

 P
E

P
+

P
G

U

S
-F

P

S
-F

P
 P

G
U

B
as

el
in

e

S
-F

P
 P

E
P

P
E

P
+

P
G

U
S

-F
P

 P
E

P
+

P
G

U

S
-F

P

S
-F

P
 P

G
U

B
as

el
in

e

S
-F

P
 P

E
P

P
E

P
+

P
G

U
S

-F
P

 P
E

P
+

P
G

U

S
-F

P

S
-F

P
 P

G
U

B
as

el
in

e

S
-F

P
 P

E
P

P
E

P
+

P
G

U
S

-F
P

 P
E

P
+

P
G

U

S
-F

P

S
-F

P
 P

G
U

B
as

el
in

e

S
-F

P
 P

E
P

P
E

P
+

P
G

U
S

-F
P

 P
E

P
+

P
G

U

S
-F

P

S
-F

P
 P

G
U

B
as

el
in

e

S
-F

P
 P

E
P

P
E

P
+

P
G

U
S

-F
P

 P
E

P
+

P
G

U

S
-F

P

S
-F

P
 P

G
U

go gcc m88ksim dotliijpeg gs
40% 43% 100% 24% 7% 47% 38%

Percent
Region
Branches
Resolved

Figure 8: Change in misprediction rate, normalized to the number of predictor accesses in the original
unpredicated code. Columns 1 and 5 of each group are not optimized with Squash-FP, the rest show the
benefit gained by removing resolved false path predictions. The percent of region branches whose guarding
predicate is resolved by branch fetch is shown below each benchmark. PGU can still improve prediction rate
when few branch guarding predicates are resolved.

FP architectures would most like take more than one cycle
for their prediction. If this was the case, they would then act
as a “corrective” predictor correcting the single cycle predic-
tor’s prediction if it disagreed with it. Actually, the correction
could be provided at any stage in the pipeline. For example,
as soon as a branch’s guarding predicate is known to be false,
and if the branch was predicted as taken, we can redirect the
branch down the not-taken path even before the branch has
executed.
The critical path of the PEP and Squash-FP architectures

requires a two table lookup to perform a prediction, whereas
the PGU architecture requires only a one table lookup to per-
form its conditional branch prediction. The PEP architecture
first needs to look into the BTB to find the guarding predi-
cate for the fetched branch along with its two local histories.
It then looks up, in parallel, the predicate register file to ob-
tain the latest value for that predicate and the 2-bit predictors
for the two local histories. Only then can it choose its pre-
diction using the result of the register file lookup. Similarly,
the Squash-FP architecture looks up the guarding predicate of
branch in the BTB, then queries the predicate register file and
pipeline structures to determine if the guarding predicate has
both a false value and has no remaining outstanding defines.
In comparison our PGU architecture performs only one table
lookup by using the global history register to index into a 2-
bit table of counters, similar to existing global history-based
branch prediction architectures.

7.8 Region Formation to Study Branch Predic-
tion

The goal of this work was to develop new branch prediction
architectures that improve the accuracy of predicting branches

in the presence of predication. In particular we concentrate on
improving branches guarded by a predicate register. This in-
cludes conditional, unconditional jumps, procedure calls, and
returns when they are left inside of a predicated region. To
this end, we follow a region formation technique focussed on
the elimination of branch mispredictions.
We applied our region formation algorithm in section 3 to

form predicated regions for the top 10% most frequently mis-
predicting branches in each benchmark. For the SPEC95 pro-
gram go, 87% of all mispredicts in the program can be at-
tributed to the top 10% most frequently mispredicting static
branches. Additionally, we aggressively scheduled predicated
regions trying to separate predicate defines and branches at
the cost of execution of extra code. Figure 9 shows the percent
increase in instructions fetched due to our region formation.
This is the percent increase of falsely guarded instructions that
are fetched and passed through the pipeline. The percent in-
crease of falsely guarded instructions for m88ksim, ijpeg, and
dot is small. From our experience with these programs, they
should result in reasonable speedups using the predicated re-
gions we formed. This is because of the significant decrease in
branch miss rates shown for these programs in Figure 6 when
using these predicated regions. The regions we examine for
go, gcc and gs need to be more conservative to reduce the
number of false path instructions, or we need to reduce the
number of regions predicated.

8. Summary
Predication allows hard-to-predict branches to be removed

and replaced with predicate defines, which do not have to be
predicted. In order to effectively reduce branch predictions,

go gcc m88ksim ijpeg li dot gs average

94% 50% 20% 11% 24% 10% 77% 41%

Figure 9: Increase in dynamic instructions fetched for
our hard-to-predict predicate region formation and
scheduling techniques.

we focused region formation on the hard-to-predict branches.
To do this we found that we had to allow unbiased, though
originally predictable, branches to reside in predicated re-
gions. On average, predicate region formation reduced the
branch mispredict rate from 8% to 5.5% across the bench-
marks when using our hard-to-predict region formation.
Without any modification to branch prediction hardware,

region branches become a major problem in achieving the re-
duced branch misprediction rates we expect from predicated
codes. The ability to accurately predict these region branches
is hindered by their increased dynamic occurrence, their new
prediction pattern based on their guarding predicate depen-
dences, and the fact that information from predicate defines
is no longer available in the global history register.
The first technique we examine is to concentrate on branches

whose guarding predicate is false using the Squash-FP Fil-
ter. Squash-FP achieves 100% prediction accuracy for region
branches whose guarding predicate definitions have resolved
by the time the branch is fetched. These falsely guarded
branches should always predict “not-taken”. We show that,
even alone, the Squash-FP method of utilizing predicate define
information achieves a sizable reduction in branch mispredic-
tions (ranging from 0.5% to 4.3%). This method is arguably
the simplest predicate update modification to current branch
prediction architectures. Squash-FP can also be employed
with PEP, PGU, or a Meta Chooser predictor utilizing both
PEP and PGU. The benefit measured with these techniques is
modest on the average, but individual benchmarks experience
important improvements.
The second approach we examine is a Predicate Global Up-

date Branch Predictor architecture to improve the prediction
of region branches with the goal of reducing misprediction
migration. Our Predicate Global Update Branch Predictor
allows predicate define statements to provide correlative infor-
mation to the branch predictor state by updating the global
history register using our deterministic update table. We up-
date the global history register in a dynamically reproducible
manner with a deterministic update table triggering predicate
define updates of the global history register.
The benefits of a deterministic update branch architecture

have potential outside the application for which it was used
in this work. Previously, branch predictors have only incorpo-
rated instruction information available in fetch (traditionally
the direction of other branches). Our deterministic update
architecture provides a deterministic mechanism for incorpo-
rating information from execution into the branch predictor.
This can include instructions immediately before the branch
is fetched, from any type of instruction, and any type of in-
formation (e.g., if a load missed or hit in the cache).

Acknowledgments
We would like to thank the anonymous reviewers for providing
useful comments on this paper. This work was funded by NSF

grant No. CCR-0073551, and a grant and equipment donation
from Intel Corporation.

9. REFERENCES
[1] D. I. August, D. A. Connors, J. C. Gyllenhaal, and W. Hwu.

Architectural support for compiler-synthesized dynamic
branch prediction strategies: Rationale and initial results. In
The 3rd Intl. Symp. on High-Performance Computer
Architecture, pages 84–93, 1997.

[2] D. I. August, D. A. Connors, S. A. Mahlke, J. W. Sias, K. M.
Crozier, B. Cheng, P. R. Eaton, Q. B. Olaniran, and W. W.
Hwu. Integrated predicated and speculative execution in the
IMPACT EPIC architecture. In Proc. of the 25th Intl. Symp.
on Computer Architecture, July 1998.

[3] D. I. August, W. Hwu, and S. A. Mahlke. A framework for
balancing control flow and predication. In 30th Annual Intl.
Symp. on Microarchitecture, December 1997.

[4] D. C. Burger and T. M. Austin. The simplescalar tool set,
version 2.0. Technical Report CS-TR-97-1342, University of
Wisconsin, Madison, June 1997.

[5] Y. Choi, A. Knies, L. Gerke, and T.F. Ngai. The impact of
if-conversion and branch prediction on program execution on
the intel itanium processor. In Proc. of the 34th Annual Intl.
Symp. on Microarchitecture, December 2001.

[6] L. Gwennap. Intel, HP make EPIC disclosure.
Microprocessor Report, 11(14):1–9, October 1997.

[7] Intel. Intel Corporation: Itanium Processor Architecture.
http://www.intel.com/design/ia-64/index.htm.

[8] Intel. Intel IA-64 Architecture Software Developer’s Manual,
Volume 3: Instruction Set Reference. Intel, January 2000.

[9] R.E. Kessler, E.J. McLellan, and D.A. Webb. The alpha
21264 microprosessor architecture. In Intl. Conference on
Computer Design, December 1998.

[10] A. Klauser, T. Austin, D. Grunwald, and B. Calder. Dynamic
hammock predication for non-predicated instruction set
architectures. In Proc. of the 18th Annual Intl. Conference
on Parallel Architectures and Compilation Techniques, pages
278–285, 1998.

[11] S. A. Mahlke, R. E. Hank, R. A. Bringmann, J. C.
Gyllenhaal, D. M. Gallagher, and W. W. Hwu.
Characterizing the impact of predicated execution on branch
prediction. In Proc. of the 27th Annual Intl. Symp. on
Microarchitecture, pages 217–227, December 1994.

[12] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A.
Bringmann. Effective compiler support for predicated
execution using the hyperblock. In Proc. of the 25th Annual
Intl. Symp. on Microarchitecture, pages 45–54, December
1992.

[13] S. A. Mahlke and B. K. Natarajan. Compiler synthesized
dynamic branch prediction. In Proc. of the 29th Annual Intl.
Symp. on Microarchitecture, pages 153–164, 1996.

[14] J. C. H. Park and M. Schlansker. On Predicated Execution.
Technical Report HPL-91-58, HP Labs, May 1991.

[15] K. Skadron, M. Martonosi, and D. Clark. Speculative updates
of local and global branch history: A quantitative analysis.
Journal of Instruction Level Parallelism, January 2000.

[16] A. Srivastava and A. Eustace. ATOM: A system for building
customized program analysis tools. In Proc. of the Conference
on Programming Language Design and Implementation,
pages 196–205. Association for Computing Machinery, 1994.

[17] G. S. Tyson. The effects of predicated execution on branch
prediction. In Proc. of the 27th Annual Intl. Symp. on
Microarchitecture, pages 196–206, November 30–December 2,
1994.

