
Variability in Architectural Simulations of Multi-threaded Workloads

Alaa R. Alameldeen and David A. Wood
Computer Sciences Department, University of Wisconsin-Madison

{alaa, david}@cs.wisc.edu

Abstract

Multi-threaded commercial workloads implement
many important internet services. Consequently, these
workloads are increasingly used to evaluate the perfor-
mance of uniprocessor and multiprocessor system
designs. This paper identifies performance variability as
a potentially major challenge for architectural simula-
tion studies using these workloads. Variability refers to
the differences between multiple estimates of a work-
load’s performance. Time variability occurs when a
workload exhibits different characteristics during differ-
ent phases of a single run. Space variability occurs
when small variations in timing cause runs starting from
the same initial condition to follow widely different exe-
cution paths.

Variability is a well-known phenomenon in real sys-
tems, but is nearly universally ignored in simulation
experiments. In a central result of this paper, we show
that variability in multi-threaded commercial workloads
can lead to incorrect architectural conclusions (e.g.,
31% of the time in one experiment). We propose a meth-
odology, based on multiple simulations and standard
statistical techniques, to compensate for variability. Our
methodology greatly reduces the probability of reaching
incorrect conclusions, while enabling simulations to
finish within reasonable time limits.

1. Introduction
Multi-threaded, throughput-oriented applications—

such as databases and web servers—represent a domi-
nant class of internet service workloads. Current and
future computer architectures (e.g., multi-threaded pro-
cessors [4] and chip multiprocessors [3, 4]) are increas-
ingly designed with these applications in mind.
Standardized multi-threaded benchmarks [34, 35] are
commonly used to evaluate uniprocessor and multipro-
cessor systems, using both measurement of current
systems and simulation of future ones. Execution-driven
evaluation of these workloads requires full-system sim-
ulation, since they spend a significant portion of their
time in the operating system [1, 2, 26].

This paper identifies performance variability as a
potentially major challenge for architectural simulation
studies using multi-threaded workloads. Variability
refers to the differences between performance estimates

obtained from multiple runs of the same workload. Time
variability occurs when a workload exhibits different
performance characteristics during different phases of a
single run. Space variability occurs when small timing
variations cause different runs starting from the same
initial conditions to follow widely different execution
paths from the space of all possible paths.

If unaddressed, both types of variability can lead to
incorrect conclusions being drawn from simulation
experiments. Time variability can cause errors when the
measured program phase does not represent the work-
load’s average behavior. Space variability can cause
errors when minor timing differences between two con-
figurations result in widely divergent execution paths.

We show that time and space variability are real
phenomena that occur in real systems running multi-
threaded workloads (Section 2). Variability is a well-
known phenomenon in measurement studies, and stan-
dard statistical techniques call for taking the mean of
multiple observations. Another common (and roughly
equivalent) alternative is to measure long enough to
minimize the impact of variability. For example, the
TPC-C V5.0 benchmark requires a minimum measure-
ment length of two hours [36].

Conversely, variability has been rarely considered
in architectural simulation studies. This stems, in part,
from the observation that most simulators—including
ours—are deterministic: they produce the same timing
result every time for the same workload and system con-
figuration. However, we find that small changes in
system timing expose the inherent workload variability,
leading to large fluctuations in simulated runtime.

In a central result of this paper, we show that ignor-
ing workload variability may result in incorrect conclu-
sions being drawn from simple simulation experiments.
In one experiment (Section 4.1), we examined the effect
of increasing the cache associativity from 2-way to 4-
way on a 16-processor system running our OLTP work-
load. As expected, this has a small but positive impact
on performance when averaged over twenty runs
(Section 3.3 describes our technique for injecting
random perturbations to create a space of possible runs).
However, if we had randomly picked one run from each
configuration, we would have had a 31% chance of
drawing the wrong conclusion (i.e., that the lower-asso-
ciativity cache performed better).

We further show (Section 4) that time and space
variability pervade full-system simulation. We show that
space variability occurs, in varying degrees, across five

This work is supported in part by the National Science Foundation
with grants EIA-0205286, EIA-9971256 and CDA-9623632, a Wis-
consin Romnes Fellowship (Wood) and donations from IBM, Intel and
Sun Microsystems.

commercial workloads and two scientific benchmarks.
Space variability also decreases for longer simulations.

These results demonstrate that variability has
serious implications for architectural simulation studies
using multi-threaded workloads. Worse, the standard
measurement solution—running long enough—is not
easily applied to simulation because of the orders-of-
magnitude slowdown. Modeling a 16-processor system
with out-of-order processors on a uniprocessor host, our
simulation slowdown is approximately 24,000x com-
pared to the simulated system. This means that simulat-
ing the official two-hour TPC-C benchmark would
require more than five years, and a one-minute run
would require more than 16 days!

To address this problem, we propose a simulation
methodology (Section 5) that combines multiple simula-
tions with standard statistical techniques. This method-
ology greatly reduces the probability of drawing wrong
conclusions. It also permits reasonable simulation times
using coarse-grain parallelism, provided that multiple
simulation hosts are available.

This paper makes two important contributions.
First, we define, analyze and discuss the variability phe-
nomenon in multi-threaded workload simulation.
Second, we propose a statistical methodology that can
be used to obtain more accurate simulation results,
while maintaining short simulation runtimes. Our objec-
tive is to draw the attention of architects to the variabil-
ity phenomenon when designing simulation experiments
to evaluate systems running multi-threaded workloads.

2. The Variability Phenomenon
In this section, we define variability and explore

what causes it in time and space. We demonstrate that
this phenomenon occurs in both real and simulated
systems and motivate why researchers must address it
when performing architectural performance studies.

2.1. What Is Variability?
Variability refers to the differences in performance

estimates obtained from multiple runs of a workload. In
other words, it refers to the sensitivity of a workload’s
performance to the particular execution path it takes.
Time variability describes the phenomenon where a
workload exhibits different performance characteristics
over time. Space variability describes the phenomenon
where two runs exhibit different performance character-
istics, despite starting from the same initial conditions.

Time variability is a well-known phenomenon.
Earlier work has frequently described this phenomenon
as phase behavior, because many workloads exhibit dis-
tinct execution phases with widely different perfor-
mance characteristics [20, 30, 31]. We prefer the more
general name “time variability” because the throughput-
oriented commercial workloads we study have a more
homogeneous behavior1, although the exact mix of
transactions may vary over time.

Space variability is also well-known in the mea-
surement community. Space variability can arise in any

parallel or multi-threaded workload where small timing
variations can result in different execution paths,
perhaps yielding different performance characteristics.

Small-scale variations arise in real systems due to
interrupt timing, bus contention with DMA access, etc.
Variations arise in simulation due to small changes in
system parameters (e.g., cache size, associativity or miss
latency). This small-scale variability can be magnified
for a number of reasons, including:
1) the operating system may make different schedul-

ing decisions (e.g., a scheduling quantum may end
before an I/O event in one run, but not another);

2) locks may be acquired in different orders, resulting
in significant contention in one run, but not another;

3) a transaction may complete during the measure-
ment interval in one run, but not another (see
Section 3.1).
Figure 1 illustrates a snapshot of different OS

scheduling decisions in two simulation runs of our
OLTP workload. Each data point represents a schedul-
ing event. Both runs start from the same initial condi-
tions. Run 1 (bottom) simulates a system with 2-way set
associative caches, while Run 2 simulates a system with
4-way set associative caches. The OS in both runs
scheduled the same threads until about 1,060,000 cycles
(approximately 1 ms of target execution time). After
that point, the behavior in the two runs differs dramati-
cally. The OS scheduled different threads or the same
threads in different orders, leading to two completely
different execution paths.

2.2. Does Variability Matter In Real Systems?
Time and space variability of multi-threaded work-

loads are well-known phenomena in real systems. Mea-
surement experiments generally average multiple
observations or run long enough to minimize variability.

We performed experiments to determine what “long
enough” means for our workloads. These experiments
were conducted on a Sun E5000 multiprocessor
machine with twelve 167 MHz UltraSparcII processors,

1. Many commercial workloads also exhibit distinct phases, e.g., gar-
bage collection in an application server’s JVM or flushing the log in a
DBMS. However, we focus on the more homogenous parts of these
workloads.

900000 1000000 1100000 1200000

cycles

2

4

L2
 S

et
 S

iz
e

Same Threads
Different Threads

Figure 1. Differences in OS-scheduled threads between
two short simulation runs

each with a 512 KB unified L2 cache. UltraSparc pro-
cessors have hardware performance counters that can be
used to measure architectural events on a per-processor
basis. We measured the number of cycles per transaction
for our OLTP benchmark (described in Section 3.1)
emulating 96 users for ten minutes.

Figure 2 demonstrates time variability for one
OLTP run. We measured the number of cycles per trans-
action averaged over intervals of one, ten and sixty sec-
onds. Figures 2a and 2b clearly show that the
benchmark exhibits widely different performance char-
acteristics over time (nearly a factor of three difference
in some cases). The variability is greatly reduced when
the observation interval reaches 60 seconds (Figure 2c is
almost a straight line). Some variability is expected,
because the OLTP workload consists of five different
transaction types. However, the magnitude of variability
is surprising, since this system completes over 350
transactions per second on average.

Figure 3 demonstrates the phenomenon of space
variability for OLTP. This figure shows the mean and
error bars (representing +/- one standard deviation from
the mean) of cycles per transaction for five runs on the

same Sun E5000 system. Each of the five runs was
started from a newly-built database and conducted with
no other user processes running to minimize variability
due to external factors. This figure illustrates that OLTP
exhibits significant space variability even between inter-
vals including over 3,000 transactions (10 seconds). As
with time variability, the magnitude of space variability
is greatly reduced for 60-second intervals (Figure 3c).

2.3. Does Variability Matter for Simulation?
Researchers often use simulation to evaluate the

performance of a design enhancement relative to a base
design. In this case, they care less about absolute perfor-
mance than about the relative performance of a work-
load on two (or more) different system configurations.
Hence space variability is arguably more important for
simulation than time variability.2

We conducted a simple experiment to illustrate that
space variability can affect simulation results enough to
cause incorrect conclusions. Figure 4 shows the effect
on cycles per transaction of changing the DRAM

0 200 400 600

Time(sec)

0

2

4

6

C
y
cl

es
 P

er
 T

ra
n
s.

 (
m

il
li

o
n
s)

0 200 400 600

Time(sec)

0

2

4

6

C
y
cl

es
 P

er
 T

ra
n
s.

 (
m

il
li

o
n
s)

0 200 400 600

Time(sec)

0

2

4

6

C
y
cl

es
 P

er
 T

ra
n
s.

 (
m

il
li

o
n
s)

(a) 1 second b) 10 seconds c) 60 seconds

Figure 2. OLTP time variability in a real system for different observation intervals (one run)

0 200 400 600

Time(sec)

0

2

4

6

C
y
cl

es
 p

er
 T

ra
n
s.

 (
m

il
li

o
n
s)

0 200 400 600

Time(sec)

0

2

4

6

C
y
cl

es
 P

er
 T

ra
n
s.

 (
m

il
li

o
n
s)

0 200 400 600

Time(sec)

0

2

4

6

C
y
cl

es
 P

er
 T

ra
n
s.

 (
m

il
li

o
n
s)

(a) 1 second b) 10 seconds c) 60 seconds

Figure 3. OLTP space variability in a real system for different observation intervals (five runs)

2. A common argument is that while a short workload run may not
accurately represent the whole workload, at least it represents part of a
real workload.

latency from 80 to 90 ns, with all other system parame-
ters fixed. All runs start from the same simulation
checkpoint (Section 3.2) and complete 500 OLTP trans-
actions. The obvious expected result is that cycles per
transaction should increase slightly with the increase in
DRAM latency. Clearly, however, the small differences
in memory system timing can have an impact at a higher
level (e.g., OS scheduling decisions). For example, the
84-ns configuration was 7% faster than the 81-ns config-
uration. In these two simulations, the OS made com-
pletely different scheduling decisions after the first
560,000 cycles (approximately) were completed. While
no one is likely to conclude that slower memory is
better, it is clear that space variability could lead to the
wrong conclusion in other cases.

3. Workloads and Simulation Framework
In this section, we briefly describe the workloads

and the simulation infrastructure we use for evaluation.
We then motivate and discuss the method we use to
introduce variability in simulation runs.

3.1. Workloads
We examine the variability phenomenon using a

diverse set of commercial and scientific benchmarks. In
this paper, we primarily report results for the OLTP
benchmark to facilitate comparisons across experi-
ments. Other commercial benchmarks we study are:
Apache (static web content serving), SPECjbb (a Java
server benchmark, SPECjbb2000 [34]), Slashcode
(dynamic web content serving, used by slashdot.org),
and ECPerf (a 3-tier Java workload). Alameldeen et al.
[1] and Karlsson et al. [15] describe these workloads in
more detail. We also study Barnes-Hut with 16K bodies
and Ocean with a 514x514 grid from the SPLASH-2
benchmark suite [38] as examples of scientific applica-
tions.

OLTP: DB2 with a TPC-C-like workload. Our OLTP
workload is based on the TPC-C v. 3.0 benchmark [35],
using the IBM DB2 v. 7.2 EEE database management
system. The TPC-C benchmark models the activities of

a wholesale supplier, with many concurrent users per-
forming read and write transactions against the data-
base. We used an IBM benchmark kit to build the
database and model users who execute transactions
without keying or think time. Our experiments use a
4000-warehouse database, with districts, items per
warehouse, and customers per district scaled down to
limit overall dataset size. The initial size of the database
is approximately 800 MB, spread across five raw disks
with an additional dedicated database log disk. Simula-
tion experiments emulate 8 users (implying 8 database
threads) per processor, and the database is warmed up
by running for 10,000 transactions before taking the
measurements (unless otherwise specified).

Transaction Quantization Errors. Most commercial
multi-threaded workloads are throughput-oriented.
These workloads are evaluated using metrics such as
transactions per second, calculated by dividing the total
number of completed transactions by the measurement
interval. To facilitate comparison with traditional bench-
marks, we adopt a methodology that measures the (sim-
ulated) time to finish a fixed number of transactions [1].
We use the number of cycles per transaction as our per-
formance metric throughout the paper, even for work-
loads with different types of transactions.

Using either method, cold-start and end-effects may
bias the results if too few transactions are measured. The
first transaction to complete within the interval will have
started before the interval began. Similarly, when the
Nth (last) transaction completes, the N+1st, N+2nd, etc.
transactions have already started. Simulation runs
should be long enough to mitigate these effects.

3.2. Simulation Infrastructure
This section describes our target system simulation

model, and details of our simulation infrastructure.

3.2.1. Target System Model

We model a 16-node system similar to the Sun
E10000 [6]. Each node contains a processor core, split
L1 instruction and data caches (each is 128 KB 4-way
set associative, using 64-byte blocks), a unified L2
cache (4 MB, 4-way set associative, 64-byte blocks), a
cache controller, and an integrated memory controller
for a portion of the 2 GB shared main memory. System
caches are kept coherent using an MOSI invalidation-
based snooping cache coherence protocol. We assume a
two-level hierarchy of crossbar switches for the inter-
connection network to connect the nodes, with a delay
of 50 ns for each network traversal (which includes wire
propagation, synchronization, and routing). We assume
80 ns for the DRAM access time. When a protocol
request arrives at a processor or at memory, it takes
25 ns or 80 ns, respectively, to provide data to the inter-
connect. These assumed latencies result in a 180 ns
latency to obtain a block from memory and a 125 ns
latency for a cache-to-cache transfer. We assume a
1 GHz system clock (i.e., a 1 ns system cycle).

80 81 82 83 84 85 86 87 88 89 90

DRAM Access latency (ns)

4.0

4.2

4.4

4.6

4.8

5.0
C

yc
le

s
Pe

r
T

ra
ns

. (
m

ill
io

ns
)

Figure 4. Performance of 500-transaction OLTP runs
with different DRAM latencies

3.2.2. Full-System Simulation
We use Simics [22, 37], a full-system multiproces-

sor simulator. Simics is a system-level architectural sim-
ulator developed by Virtutech AB that is capable of
running unmodified commercial operating systems and
applications. We configured Simics to model a SPARC
V9 target system running unmodified Solaris 8. Simics
is only a functional simulator by default, but it can be
extended with detailed processor and memory system
timing models, described in the next two subsections.

Simics has a checkpointing facility that enables us
to capture the full state of the system (including register
state, memory, disks and outstanding interrupts). We use
this checkpointing facility to start simulation runs from
the same initial conditions. We also record multiple
checkpoints over a workload’s execution to allow evalu-
ation of time variability.
3.2.3. Memory System Model

We extend Simics with a memory system simulator
that accurately models the timing of memory requests.
The simulator—described in more detail by Martin et al.
[23, 24] and Alameldeen et al. [1]—supports a broad
range of coherence protocols, specified using a table-
driven specification methodology. It accurately models
state transitions (including transient states) of the coher-
ence protocols in cache and memory controllers. Our
simulations capture timing-dependent race conditions
and lock contention events that cannot be captured using
a trace-driven methodology.
3.2.4. Processor Models

We present results using two different processor
models. For most results, we use a fast but simple block-
ing processor model that would complete one billion
instructions per second at 1 GHz (i.e. an IPC of 1) if the
L1 caches were perfect. We extended this simple timing
model with the Ruby memory hierarchy simulator, to
accurately model the L1 and L2 caches and the remain-
der of the memory system.

For more detailed—but 6–8 times slower—simula-
tions, we use TFsim [25] to model out-of-order proces-
sor cores and L1 caches. TFsim models a four-wide
superscalar processor, with an eleven stage pipeline
(fetch (3), decode (3), schedule (1), execute (1 or more),
and retire (3)). TFsim models a 1-KB YAGS direct
branch predictor [11], a 64-entry cascaded indirect
branch predictor [9], a 64-entry return address stack pre-
dictor [14], and a 64-entry reorder buffer (unless other-
wise specified).

3.3. Introducing Variability
As described in Section 2.1, workloads exhibit

space variability on real systems due to small timing
variations. Our simulator, however, is deterministic: it
produces the same execution path for each workload/
system configuration every time (starting from the same
checkpoint). To evaluate space variability, we must
inject small timing variations to create a space of possi-
ble executions starting from the same initial conditions.

To do this, we artificially introduce small perturba-
tions in memory system timing. On each L2-cache miss,
we added a uniformly distributed pseudo-random
integer between 0 and 4 ns. This increases the average
L2 miss latency by 2 ns. For multiple simulations, each
run uses a unique random seed, leading to a different
sequence of miss latencies. Note that the average miss
latency remains the same for each run. However, the
small perturbations lead to different execution paths and
different runtime results.

In a sensitivity experiment on OLTP, we showed
that the magnitude of the random perturbation did not
have a significant effect on variability. When the uni-
formly-distributed discrete increment was chosen
between 0 and 1 ns (instead of 0-4 ns), the coefficient of
variation of the runtimes (defined as the 100 times the
ratio of the standard deviation to the mean [12]) was not
significantly affected.

This artificial method of introducing timing pertur-
bations is used throughout the next section to produce a
space of runs for our simulation experiments. We use
the mean of these runs as our performance metric.

4. Variability in Simulation Results
This section examines in detail the impact of vari-

ability on simulation results. We first define a metric that
indicates the likelihood of drawing the wrong conclu-
sion if variability is ignored. We then examine the sensi-
tivity of space variability to different benchmarks and
simulation run lengths. We also confirm that time vari-
ability is significant in workload simulation.

4.1. Wrong Conclusion Ratio
Section 2 demonstrated the possibility of drawing

an incorrect conclusion when using single simulation
experiments to compare different system configurations.
To quantify this risk, we define a new metric, the wrong
conclusion ratio (WCR), as the percentage of compari-
son experiment pairs that reach an incorrect conclusion.
For example, when conducting an experiment to
compare the performance of systems A and B, we use N
runs of workload W for each system. The correct con-
clusion is the relationship between the averages of the N
runs on A and the N runs on B (for example, A outper-
forms B). The wrong conclusion ratio is the percentage
of the N2 pairs of runs that lead to the opposite conclu-
sion (in this case, that B outperforms A).

WCR can be used to estimate the wrong conclusion
probability if a researcher ignores variability in multi-
threaded workloads and uses single simulations. We
next present WCR results for two experiments involving
cache and microarchitectural design decisions.
4.1.1. Experiment 1: Cache Design

In this experiment, we simulated twenty 200-trans-
action runs of our OLTP workload using the simple pro-
cessor model. We varied the L2 cache associativities,
while holding the cache hit and miss latencies constant.
We considered direct-mapped, 2-way and 4-way set
associative caches, with cache sizes fixed at 4 MB. The

expected conclusion from this experiment is that
runtime decreases when the associativity increases.

Figure 5 shows the average (with error bars repre-
senting +/- one standard deviation), maximum, and
minimum number of cycles per transaction for the three
L2 cache configurations. The average performance for
these configurations confirms our expected conclusion.
However, the range of results for the three configura-
tions overlap. Clearly, if we performed only one simula-
tion run for each configuration, there is a risk that we
might erroneously conclude that a direct-mapped cache
outperforms a 4-way set associative one.

To estimate this risk, Table 1 shows the WCR
values for this experiment, obtained by enumeration of
all possible pairs. The results show, for example, that
31% of the pairwise comparisons would lead to the
wrong conclusion that a 2-way set-associative cache
configuration outperforms a 4-way configuration.

An interesting observation is that single simulations
can result in misleading conclusions either way. For
example, while the average of the 4-way system outper-
forms the average of the direct-mapped system by 6%,
the two opposite extremes lead to completely different

and misleading conclusions. The minimum of the direct-
mapped system outperforms the maximum of the 4-way
system by 5%, whereas the minimum of the 4-way
system outperforms the maximum of the direct-mapped
system by 23%. However, there is a small chance (1 in
400 for our 20-run experiment) that the execution paths
followed by single simulations may lead to one or the
other of these conclusions.

4.1.2. Experiment 2: Microarchitectural Design

In this experiment, we simulated twenty 50-transac-
tion runs for our OLTP workload using TFsim [25] to
compare the performance of microarchitectural configu-
rations that differ only in the reorder buffer size. These
configurations have reorder buffers of 16, 32 and 64
entries, respectively. The expected conclusion from this
experiment is that runtime decreases when the ROB size
increases.

Figure 6 shows the average (with error bars), maxi-
mum, and minimum number of cycles per transaction
for the three microarchitectural configurations. The
averages confirm the expected conclusion3. But again,
the result ranges overlap, leaving the possibility of an
incorrect conclusion. Table 2 presents the WCR values
for single comparison experiments. It shows, for exam-
ple, that 26% of the possible experiment pairs lead to the
wrong conclusion that a 32-entry ROB configuration
outperforms a 64-entry configuration.

4.1.3. Summary

These two simple experiments clearly illustrate that
ignoring variability can lead to erroneous conclusions in
a significant percentage of single-simulation experi-
ments. Note that a high WCR usually implies that two
configurations are close in performance, and that it may
not be possible to conclude that one outperforms the
other. In Section 5, we discuss using standard statistical
techniques, i.e., confidence intervals and hypothesis
testing, to determine when it is safe to draw conclusions.

1 2 4

L2 Set Size

4.2

4.4

4.6

4.8

5.0

5.2

C
yc

le
s

P
er

 T
ra

ns
. (

m
il

li
on

s)

max
avg
min

Figure 5. OLTP performance for different L2 cache
associativities

Table 1. Summary of Experiment 1

Configurations Compared
(Superior Configuration).

WCR (%).

Direct Mapped vs. (2-way SA) 24%

Direct Mapped vs. (4-way SA) 10%

2-way SA vs. (4-way SA) 31%

Table 2. Summary of Experiment 2

Configurations Compared
(Superior Configuration).

WCR (%).

16-entry vs. (32-entry) ROB 18%

16-entry vs. (64-entry) ROB 7.5%

32-entry vs. (64-entry) ROB 26% 3. TFsim models a 4-wide out-of-order superscalar processor, result-
ing in a lower number of cycles per transaction than Experiment 1.

16 32 64

ROB Size

2.5

3.0

3.5

4.0

C
yc

le
s

P
er

 T
ra

ns
. (

m
il

li
on

s)

max
avg
min

Figure 6. OLTP performance for different reorder
buffer sizes

4.2. Simulated Space Variability
To understand the scope of space variability in

multi-threaded workloads, we examine various bench-
marks and simulation run lengths. In this section, twenty
simulation runs were used for each data point, using the
simple processor model. We use the mean of the simu-
lated runtimes as the performance metric, and the coeffi-
cient of variation to estimate the magnitude of space
variability. We define another metric, the range of vari-
ability, as the difference between the maximum and the
minimum runtimes, taken as a percentage of the mean.
The higher the range of variability, the more likely one
is to make an incorrect conclusion.

4.2.1. Space Variability and Different Benchmarks

We compare the space variability across our seven
benchmarks on a 16-processor system. The number of
transactions executed for each benchmark vary from 1
(for Barnes-Hut and Ocean, where the whole benchmark
is viewed as one transaction) to 60,000 for SPECjbb.
The transaction counts were selected to limit the simula-
tion runtime for each benchmark run to less than ten
hours (except ECPerf).

Figure 7 presents the mean, error bars, and
extremes for the seven benchmarks. Table 3 shows the
number of simulated transactions, the coefficient of vari-
ation, and the range of variability for each benchmark.
Table 3 (last row) shows that variability ranges from less
than 1% for Barnes-Hut to more than 14% for Slash-
code. The range of variability exceeds 3% for four out
of the five commercial benchmarks, even for these rela-
tively long runs with the simple processor model. In
addition, these results show that OLTP (which we use
throughout the paper) is not an extreme case in terms of
space variability.

4.2.2. Space Variability and Run Lengths

Experiments on real systems show that space vari-
ability of multi-threaded workloads decreases with an
increase in the observation interval. Table 4 confirms
this result for our simulation experiments. As the
number of simulated OLTP transactions increases from

200 to 1000, the coefficient of variation and the range of
variability decrease, indicating less variability. How-
ever, the decrease in variability comes at the expense of
longer simulation times.

4.3. Simulated Time Variability
Section 2.2 confirmed the well-known result that

multi-threaded workloads running on real systems
exhibit different characteristics over time. To demon-
strate this phenomenon in simulation experiments, we
conducted ten 40,000-transaction OLTP runs (about one
month of simulation time for each run, using the simple
processor model). Partial results were produced every
200 transactions. Figure 8 presents the average and stan-
dard deviation (error bars) for the number of cycles per
transaction, where each data point represents 200 trans-
actions. This figure shows that OLTP exhibits different
characteristics over time, with cycles per transaction
varying by up to 27%.

Figure 9 shows the average (with error bars) for 20
runs starting from ten different starting points in the
workload lifetime of OLTP and SPECjbb. Figure 9a

Table 3. Summary of space variability for different benchmarks

Benchmark. Barnes. Ocean. ECPerf. Slashcode. OLTP. Apache. SPECjbb.

#transactions 1 1 5 30 1000 5000 60,000

Coefficient of Variation 0.16% 0.31% 1.40% 3.60% 0.98% 0.88% 0.26%

Range of Variability 0.59% 1.13% 5.30% 14.45% 3.85% 3.94% 1.10%

Barn
es

-H
ut

Oce
an

ECPerf

Slas
hc

od
e

OLTP

Apa
ch

e

SPECjbb

Benchmark

0.90

0.95

1.00

1.05

1.10

N
or

m
al

iz
ed

 R
un

tim
e

max
avg
min

Figure 7. Variabililty of different benchmarks

Table 4. OLTP space variability for different run lengths

#Simulated Transactions. 200. 400. 600. 800. 1000.

Coefficient of Variation 3.27% 2.87% 2.16% 1.53% 0.98%

Range of Variability 12.72% 10.40% 7.65% 5.47% 3.86%

Average Runtime (1 simulation) in hrs. 1.79 3.62 5.48 7.36 9.26

Total Runtime (20 simulations) in hrs. 35.82 72.35 109.64 147.13 185.11

shows results for 200-transaction OLTP runs, and
Figure 9b shows results for 5,000-transaction SPECjbb
runs. The OLTP results show that performance depends
critically on which checkpoint is used to start the simu-
lation. The difference between the average cycles per
transaction of runs starting from the 30K and 40K
checkpoints is more than 16%. For SPECjbb, which
showed almost no space variability (standard deviation
of runs starting from the same checkpoint is negligible),
the difference between runs starting from the 100K and
400K checkpoints is more than 36%. This shows that
time variability can be an issue even for benchmarks
with almost no space variability.

For workloads that exhibit this behavior, time-sam-
pling approaches are necessary to decrease the probabil-
ity of reaching incorrect conclusions, while enabling
architectural studies to be completed within reasonable
simulation time limits [17,21]. Section 5 discusses using
short runs from multiple checkpoints to estimate the
average workload performance on a given configuration.

5. Statistical Simulation Methodology
Classical statistics provides a wealth of techniques

for coping with variability. In this section, we apply a

few of those methods to account for variability while
keeping simulation time within reasonable bounds.

5.1. Accounting for Space Variability
Averaging the results of multiple trials forms the

basis of classical experiment designs. The intuition
behind this approach is that the coefficient of variation
(our estimate of space variability) decreases when the
sample size (number of runs) increases. To account for
space variability, we need to obtain enough runs to
increase confidence in our conclusions, i.e., to decrease
the probability of drawing wrong conclusions.

We apply two standard statistical techniques—con-
fidence intervals and hypothesis testing—to estimate the
probability of drawing wrong conclusions when com-
paring two configurations. Two types of errors exist in
such conclusions: errors concerning the direction of the
relationship (i.e., which configuration performs better);
and errors related to the magnitude of the difference
(i.e., speedup of one configuration over the other). The
wrong conclusion probability estimates the probability
of drawing wrong conclusions about the direction of the
relationship, which is our focus in this paper. Confi-
dence intervals place a conservative upper bound on the
wrong conclusion probability, but it can also help estab-

0 10000 20000 30000 40000

#transactions

4

5

C
yc

le
s

Pe
r T

ra
ns

. (
m

ill
io

ns
)

Figure 8. Time variability for different phases of long OLTP runs

100 200 300 400 500 600 700 800 900 1000

#Warmup Transactions (thousands)

110

120

130

140

150

C
yc

le
s

Pe
r

T
ra

ns
. (

th
ou

sa
nd

s)

max
avg
min

10 20 30 40 50 60 70 80 90 100

#Warmup Transactions (thousands)

4.0

4.5

5.0

5.5

C
yc

le
s

Pe
r

T
ra

ns
. (

M
ill

io
ns

)

max
avg
min

(a) OLTP

Figure 9. OLTP and SPECjbb performance from multiple starting points

(b) SPECjbb

lish approximate bounds on the magnitude of the differ-
ence (not discussed here). Hypothesis testing, on the
other hand, provides a tighter, more accurate estimate of
the wrong conclusion probability, but does not help—in
the simple form described in this section—in establish-
ing the magnitude of the difference.

5.1.1. Confidence Intervals
A confidence interval (CI) is defined as the range of

values that is expected to include a population parameter
(e.g., mean) [12]. The confidence probability is the
probability that the true population parameter will fall
inside the confidence interval. For example, if the mean
cycles per transaction for OLTP lies in the interval
between 4 and 5.5 million with confidence probability
99%, we are 99% certain that the true mean lies within
that interval. The confidence interval for the mean of a
normally distributed infinite population is given by [7]:

where y is the sample mean, s is the sample standard
deviation, n is the sample size, and t is the value of the
normal deviate corresponding to the desired confidence
probability (obtained from the student’s t-distribution
with (n-1) degrees of freedom if the sample size is less
than 50, and from the normal distribution otherwise).
Values for t can be obtained from standard statistical
tables. We can reach a tighter confidence interval by
increasing the sample size, n, or decreasing the confi-
dence probability, thus decreasing t.

Confidence intervals can be used to estimate an
upper bound on the wrong conclusion probability when
comparing two alternatives. If the confidence intervals
of the two alternatives do not overlap, the probability of
reaching a wrong conclusion will be at most (1-p),
where p is the confidence probability4. Figure 10 shows
the 95% confidence intervals for the data in Experiment

2 (Section 4.1.2). As expected, the confidence intervals
get tighter as the sample size increases. Confidence
intervals for 20 runs do not overlap, which implies that
the probability of reaching a wrong conclusion is less
than 5% (compared to the 26% WCR for single experi-
ments). For the smaller sample sizes, the results are not
statistically significant (at the 95% confidence level),
because the confidence intervals overlap. Note that if we
reduce the confidence probability to 90%, a sample size
of 15 becomes statistically significant, but there remains
(at most) a 10% chance of reaching a wrong conclusion.

Estimating the Sample Size. When we design a simu-
lation experiment, we need to estimate the number of
runs needed to obtain statistically significant results.
Assuming an infinite population, the sample size can be
estimated according to population parameters and the
desired level of precision (or maximum allowed error)
of the results. For example, if we want to limit the rela-
tive error of the estimated population mean to r (com-
pared to the true mean), the sample size required is
estimated using:

where Y and S are the true population mean and standard
deviation, and t is the normal deviate corresponding to
the desired confidence probability [7]. Since the true
values of Y and S are not known beforehand, an approxi-
mation for their values can be used from prior knowl-
edge about the same population. The confidence
probability is chosen according to be the desired bound
on the wrong conclusion probability.

As an example, if we require the relative error in the
number of cycles per transaction to be less than 4% (r =
0.04) with a confidence probability of 95% (t ≅ 2), and
using an estimate of S/Y = 9% (0.09) (which is the
approximate coefficient of variation we observed for 50-
transaction OLTP runs), the number of runs required for
our OLTP benchmark is (2*0.09/0.04)2 ≅ 20. In compar-
ison simulation experiments, r should be selected to be
less than half the expected performance improvement
between the configurations being compared, in order to
avoid overlap in confidence intervals.
5.1.2. Hypothesis Testing

Hypothesis testing is another statistical technique
that we can use to evaluate conclusions of simulation
experiments. Hypothesis testing has a variety of forms
that depend on the parameter under investigation and its
distribution. In this section, we describe testing a
hypothesis about the relationship between two means of
a normally-distributed population [12]. We next illus-
trate the use of hypothesis testing in simulation experi-
ments to determine a tighter upper bound on the wrong
conclusion probability.

In Experiment 2 (Section 4.1.2), our conclusion
was that the 64-entry ROB configuration is better than
the 32-entry configuration, i.e., the mean runtime for a
32-entry ROB is greater than the mean runtime for a 64-
entry ROB. Since this conclusion was based on the

4. Comparison conclusions are correct only if both means were inside
their respective CIs (p2 probability), or if one mean was inside its CI
and the other was outside but in the opposite direction to the first
mean’s CI (p(1-p)). Thus, the probability of reaching a wrong conclu-
sion is bounded by: 1-(p2+p(1-p)) = 1-p. We ignore the case where
both means are outside their CIs due to its small probability.

y
ts

n
------- mean y

ts

n
-------+≤ ≤–

5 10 15 20

Sample Size (number of runs)

2.6

2.8

3.0

3.2

3.4

C
yc

le
s

Pe
r T

ra
ns

. (
m

ill
io

ns
)

32
64

Figure 10. 95% confidence intervals using different
sample sizes for 32 and 64-entry ROBs

n
tS
rY

 2
=

sample means of runs, we want to test the hypothesis
that there is actually no significant difference between
the two true means5. The test hypothesis in this case is:

H0: µ32 – µ64 = 0 (or µ32 = µ64)
where µ32 and µ64 are the true mean runtimes of the 32-
entry and 64-entry ROB, respectively. If we reject the
test hypothesis, this means we accept the alternative
hypothesis that µ32 is greater than µ64. The significance
level of the test (α) is determined by the error probabil-
ity we can tolerate. In this setting, we want to avoid a
type I error, defined as the probability of rejecting the
test hypothesis when it is correct. This is equivalent to
the probability that our conclusion (i.e., accepting the
alternative hypothesis) is wrong.

If we assume that the runtimes for the two configu-
rations are independent, normally distributed random
variables with unknown variances, and we collect an
equal number of runs (n) from both configurations, the
test statistic to test the hypothesis (H0) is given by [12]:

where , are the sample mean runtimes for the
32-entry and 64-entry configurations; s32

2 and s64
2 are

their sample variances. If the test statistic lies in the
upper tail of the t-distribution with (2n-2) degrees of
freedom at a certain significance level α, we reject the
test hypothesis (i.e., accept the alternative hypothesis) at
this level (Figure 11). In that case, the probability of
drawing a wrong simulation conclusion—obtained from
sample means—is less than α.

Using this method, we can estimate the probability
of reaching a wrong conclusion for a certain simulation
experiment. We calculate the test statistic and compare
it against critical values of the t-distribution at various
significance levels. The wrong conclusion probability
will be bounded by the smallest significance level at
which the test hypothesis is rejected.
Estimating the Sample Size. We can estimate the
number of runs necessary to achieve a certain signifi-
cance level by evaluating the test statistic for different
numbers of runs, and selecting the minimum number
required to reject the test hypothesis. Table 5 presents
the necessary number of runs for the ROB experiment to

achieve a certain upper bound on the wrong conclusion
probability. Nine runs are necessary to limit the proba-
bility of drawing wrong conclusions to 0.05, and sixteen
runs limit this probability to 0.005 (compared to the
conservative 0.05 limit obtained from confidence inter-
vals for twenty runs).

5.2. Accounting for Time Variability
In order to account for time variability, the sample

should include runs from multiple starting points dis-
tributed throughout the program runtime. However,
determining the starting points for our sample in the
workload’s runtime is a challenge, since many work-
loads exhibit substantial time variability (Figures 8 and
9). While some methods have been developed to deter-
mine representative samples in single-threaded applica-
tions [32], these methods are not directly applicable to
multi-threaded applications. Fortunately, sampling
theory provides a broad array of techniques for selecting
samples [7]. We focus on systematic sampling, where
starting points are taken at fixed time intervals, and then
apply techniques of Section 5.1 to estimate the wrong
conclusion probability for a certain sample size.

In workloads that exhibit only one type of variabil-
ity (e.g., SPECjbb exhibits only time variability), using
the techniques in Section 5.1 is straightforward. How-
ever, if we need to account for both space and time vari-
ability, we have to determine which type is the greater
source of error. The analysis of variance (ANOVA) [12]
is a technique that can be used to estimate whether aver-
ages of runs from different groups are (statistically) the
same. If averages are the same, variability between dif-
ferent groups can be attributed to the same effects
causing variability within each group. Otherwise, there
is a significant variability between averages of different
groups (i.e., time variability) that cannot be attributed to
the within-group variability (i.e., space variability). In
other words, ANOVA tells us whether it is sufficient to
use runs from a single starting point, or whether the
sample should contain runs from many starting points.

We performed an ANOVA study on the groups of
data points of OLTP and SPECjbb summarized in
Figure 9. We considered different numbers of groups,
group sizes and significance levels (0.1, 0.05 and 0.01).
Our results, for both workloads, show that between-
group variability is significant and cannot be attributed
to the within-group variability. For both of these work-

5. The true mean here is the average runtime of all possible runs of a
particular configuration. Since the number of runs is practically infi-
nite, the average runtime for a sample of runs (sample mean) is used as
an estimate of the true mean.

t
y32 y64–

s32
2

s64
2

+

n

------------------------------=

y32 y64

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���
���
���
���

���
���
���
���

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

0

Critical t−value
(from t−distribution table)

Area = 1−significance level

t

Test statistic values to accept test
hypothesis (Acceptance Region)

Rejection
Region

p
ro

b
ab

il
it

y

Figure 11. Acceptance and rejection regions for the t-test

Table 5. Number of runs needed for
different significance levels

Significance Level (Wrong
Conclusion probability).

#Runs
Needed.

10%. 6.

5%. 9.

2.5%. 11.

1%. 13.

0.5%. 16.

loads, time variability is significant, and simulations
should be performed from different starting points. The
number of different starting points should be selected in
a similar manner to what was outlined in Section 5.1.

Our methodology can be improved in several direc-
tions. Given a fixed simulation budget (time allowed for
all simulations), a tradeoff must be made between the
length of each simulation and the number of simulations
required to maximize the confidence probability (and
minimize cold-start bias [17]). If the simulated system
configuration has an impact on variability, ANOVA can
be performed for different workload/system configura-
tion combinations. Sampling techniques other than sys-
tematic sampling can be used to select representative
time samples. These issues are left for future work.

6. Related Work
This work builds on Alameldeen et al. [1], a paper

that identified commercial workload variability and
solution directions. Some studies have evaluated com-
mercial workloads performance on real systems using
hardware counters [2, 16] or hardware emulation tools
[28]. Prior simulation studies have evaluated multipro-
cessor system performance using execution-driven sim-
ulation of scientific applications [10, 38] and
commercial workloads [27], or full system simulation of
commercial workloads [2]. Other studies have evaluated
the fidelity of simulation results for uniprocessors [8]
and multiprocessors [13] compared to the actual hard-
ware being modeled. Krishnan and Torrellas examined
experimental errors in multiprocessor simulations due to
simple processor models [18]. Cain et al. [5] discussed
issues related to simulation precision and accuracy. In
our infrastructure, we use TFsim to increase the simula-
tion precision, and commercial workloads to increase
accuracy.

Our work distinguishes itself from other studies by
focussing on the variability phenomenon in simulation
and providing a methodology to address it. Very few
previous studies report results from multiple simulation
runs to account for space variability [23, 24, 33].
Changes in program phase behavior were explored for
SPEC benchmarks [20, 30]. Simulation errors intro-
duced by selecting particular program phases were
investigated by Sherwood et al. [31]. Statistical simula-
tion based on program traces was used by Oskin et al.
[29]. Some architectural studies used sampling tech-
niques to estimate values of architectural parameters
(e.g. [17, 21]), but not in the context of multi-threaded
commercial workloads. Kuck et al. [19] defined a stabil-
ity metric for the performance of different computa-
tional kernels running simultaneously on a multi-
processor, but did not discuss instability due to a single
multi-threaded workload.

7. Conclusions
In this paper, we show that time and space variabil-

ity are important phenomena that must be addressed in
architectural simulation studies of multi-threaded work-

loads. We demonstrate that these phenomena exist in
both real machine and simulation experiments, and
provide evidence that operating system scheduling deci-
sions are one significant source. We further show that
the standard practice of ignoring variability in simula-
tion can lead to incorrect conclusions in a significant
percentage of microarchitectural and system design
experiments.

We describe a simple methodology to compensate
for variability, that combines pseudo-random perturba-
tions, multiple simulations and standard statistical tech-
niques. This methodology is intended to help architects
determine when it is safe to draw conclusions from sim-
ulation experiments.

Acknowledgments
We thank Milo Martin and Dan Sorin who were the

first to advocate multiple simulations to deal with vari-
ability. This work builds on the Multifacet simulation
infrastructure, whose creators include Milo Martin and
Dan Sorin (memory system simulator), Carl Mauer
(TFsim), Ross Dickson, Pacia Harper, Kevin Moore,
and Min Xu. We also thank Virtutech AB, the Wiscon-
sin Condor group, the Wisconsin computer systems lab
staff, David DeWitt, and Anastassia Ailamaki for their
help and support. Thanks to Brad Beckmann, Mark Hill,
Mikko Lipasti, Milo Martin, Carl Mauer, Min Xu and
our anonymous reviewers for their suggestions.

References

[1] Alaa R. Alameldeen, Carl J. Mauer, Min Xu, Pacia J.
Harper, Milo M.K. Martin, Daniel J. Sorin, Mark D. Hill, and
David A. Wood. Evaluating Non-deterministic Multi-threaded
Commercial Workloads. In Proceedings of the Fifth Workshop
on Computer Architecture Evaluation Using Commercial
Workloads, pp. 30–38, February 2002.
[2] Luiz A. Barroso, Kourosh Gharachorloo, and Edouard
Bugnion. Memory System Characterization of Commercial
Workloads. In Proceedings of the 25th Annual International
Symposium on Computer Architecture, pp. 3–14, June 1998.
[3] Luiz Andre Barroso, Kourosh Gharachorloo, Robert
McNamara, Andreas Nowatzyk, Shaz Qadeer, Barton Sano,
Scott Smith, Robert Stets, and Ben Verghese. Piranha: A
Scalable Architecture Based on Single-Chip Multiprocessing.
In Proceedings of the 27th Annual International Symposium
on Computer Architecture, pp. 282–293, June 2000.
[4] J. M. Borkenhagen, R. J. Eickemeyer, R. N. Kalla, and
S. R. Kunkel. A Multithreaded PowerPC Processor for
Commercial Servers. IBM Journal of Research and
Development, 44(6):885–898, November 2000.
[5] Harold W. Cain, Kevin M. Lepak, Brandon A. Schwartz,
and Mikko H. Lipasti. Precise and Accurate Processor
Simulation. In Proceedings of the Fifth Workshop on
Computer Architecture Evaluation Using Commercial
Workloads, pp. 13–22, February 2002.
[6] Alan Charlesworth. Starfire: Extending the SMP
Envelope. IEEE Micro, 18(1):39–49, Jan/Feb 1998.
[7] William G. Cochran. Sampling Techniques. John Wiley &
Sons, third edition, 1977.
[8] Rajagopalan Desikan, Doug Burger, and Stephen W.
Keckler. Measuring Experimental Error in Microprocessor
Simulation. In Proceedings of the 28th Annual International
Symposium on Computer Architecture, pp. 266–277, July
2001.

[9] Karel Driesen and Urs Holzle. Accurate Indirect Branch
Prediction. In Proceedings of the 25th Annual International
Symposium on Computer Architecture, pp. 167–178, June
1998.
[10] S. Dwarkadas, J. R. Jump, and J. B. Sinclair. Execution-
Driven Simulation of Multiprocessors: Address and Timing
Analysis. ACM Transactions on Modeling and Computer
Simulation, 4(4):314–338, 1994.
[11] Avinoam Nomik Eden and Trevor Mudge. The YAGS
Branch Prediction Scheme. In Proceedings of the 25th Annual
International Symposium on Computer Architecture, pp. 69–
77, June 1998.
[12] Harry Frank and Steven G. Althoen. Statistics: Concepts
and Applications. Cambridge University Press, first edition,
1994.
[13] Jeff Gibson, Robert Kunz, David Ofelt, Mark Horowitz,
John Hennessy, and Mark Heinrich. Flash vs. (Simulated)
Flash: Closing the Simulation Loop. In Proceedings of the
Ninth International Conference on Architectural Support for
Programming Languages and Operating Systems, November
2000.
[14] Stephan Jourdan, Tse-Hao Hsing, Jared Stark, and
Yale N. Patt. The Effects of Mispredicted-Path Execution on
Branch Prediction Structures. In Proceedings of the
International Conference on Parallel Architectures and
Compilation Techniques, pp. 58–67, October 1996.
[15] Martin Karlsson, Kevin E. Moore, Erik Hagersten, and
David A. Wood. Memory Characterization of the ECperf
Benchmark. In Second Annual Workshop on Memory
Performance Issues (WMPI), in conjunction with ISCA-29,
2002.
[16] Kimberly Keeton, David A. Patterson, Yong Qiang He,
Roger C. Raphael, and Walter E. Baker. Performance
Characterization of a Quad Pentium Pro SMP using OLTP
Workloads. In Proceedings of the 25th Annual International
Symposium on Computer Architecture, pp. 15–26, June 1998.
[17] R. E. Kessler, Mark D. Hill, and David A. Wood. A
Comparison of Trace-Sampling Techniques for Multi-
Megabyte Caches. IEEE Transactions on Computers,
43(6):664–675, 1994.
[18] Venkata Krishnan and Josep Torrellas. A Direct-
Execution Framework for Fast and Accurate Simulation of
Superscalar Processors. In Proceedings of the International
Conference on Parallel Architectures and Compilation
Techniques, pp. 286–293, October 1998.
[19] D. Kuck, E. Davidson, D. Lawrie, A. Sameh, C. Q. Zhu,
A. Veidenbaum, J. Konicek, P. Yew, K. Gallivan, W. Jalby,
H. Wijshoff, R. Bramley, U. M. Yang, D. Padua P. Emrath,
R.Eigenmann, J. Hoeflinger, G. Jaxon, Z. Li, T. Murphy, and
J. Andrews. The Cedar System and an Initial Performance
Study. In Proceedings of the 20th Annual International
Symposium on Computer Architecture, pp. 213–223, May
1993.
[20] Thierry Lafage and Andre Seznec. Choosing
Representative Slices of Program Execution for
Microarchitecture Simulations: A Preliminary Application to
the Data Stream. In 3rd Annual Workshop on Workload
Characterization, September 2000.
[21] Subhasis Laha, Janak H. Patel, and Ravishankar K. Iyer.
Accurate Low-Cost Methods for Performance Evaluation of
Cache Memory Systems. IEEE Transactions on Computers,
37(11):1325–1336, 1988.
[22] Peter S. Magnusson et al. Simics: A Full System
Simulation Platform. IEEE Computer, 35(2):50–58, February
2002.
[23] Milo M. K. Martin, Daniel J. Sorin, Anastassia Ailamaki,
Alaa R. Alameldeen, Ross M. Dickson, Carl J. Mauer,
Kevin E. Moore, Manoj Plakal, Mark D. Hill, and David A.
Wood. Timestamp Snooping: An Approach for Extending
SMPs. In Proceedings of the Ninth International Conference
on Architectural Support for Programming Languages and
Operating Systems, pp. 25–36, November 2000.

[24] Milo M. K. Martin, Daniel J. Sorin, Mark D. Hill, and
David A. Wood. Bandwidth Adaptive Snooping. In
Proceedings of the Eighth IEEE Symposium on High-
Performance Computer Architecture, pp. 251–262, January
2002.
[25] Carl J. Mauer, Mark D. Hill, and David A. Wood. Full
System Timing-First Simulation. In Proceedings of the 2002
ACM Sigmetrics Conference on Measurement and Modeling of
Computer Systems, pp. 108–116, June 2002.
[26] Ann Marie Grizzaffi Maynard, Coletter M. Donnelly, and
Bret R. Olszewski. Contrasting Characteristics and Cache
Performance of Technical and Multi-User Commercial
Workloads. In Proceedings of the Sixth International
Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 145–156, October
1994.
[27] Ashwini Nanda, Yiming Hu, Moriyoshi Ohara,
Caroline D. Benveniste, Mark E. Giampapa, and Maged
Michael. The Design of COMPASS: An Execution Driven
Simulator for Commercial Applications Running on Shared
Memory Multiprocessors. In Proceedings of the 12th
International Parallel Processing Symposium, March 1998.
[28] Ashwini Nanda, Kwok-Ken Mak, Krishnan Sugavanam,
Ramendra K. Sahoo, Vijayaraghavan Soundararajan, and
T. Basil Smith. MemorIES: A Programmable, Real-Time
Hardware Emulation Tool for Multiprocessor Server Design.
In Proceedings of the Ninth International Conference on
Architectural Support for Programming Languages and
Operating Systems, November 2000.
[29] Mark Oskin, Frederic T. Chong, and Matthew Farrens.
HLS: Combining Statistical and Symbolic Simulation to
Guide Microprocessor Designs. In Proceedings of the 27th
Annual International Symposium on Computer Architecture,
pp. 71–82, June 2000.
[30] Timothy Sherwood and Brad Calder. Time Varying
Behavior of Programs. Technical report, UC San Diego
Technical Report UCSD-CS99-630, August 1999.
[31] Timothy Sherwood, Erez Perelman, and Brad Calder.
Basic Block Distribution Analysis to Find Periodic Behavior
and Simulation Points in Applications. In Proceedings of the
International Conference on Parallel Architectures and
Compilation Techniques, pp. 3–14, September 2001.
[32] Timothy Sherwood, Erez Perelman, Greg Hamerly, and
Brad Calder. Automatically Characterizing Large Scale
Program Behavior. In Proceedings of the Tenth International
Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 45–57, October 2000.
[33] Daniel J. Sorin, Milo M.K. Martin, Mark D. Hill, and
David A. Wood. SafetyNet: Improving the Availability of
Shared Memory Multiprocessors with Global
Checkpoint/Recovery. In Proceedings of the 29th Annual
International Symposium on Computer Architecture, pp. 123–
134, May 2002.
[34] Systems Performance Evaluation Cooperation. SPEC
Benchmarks. http://www.spec.org.
[35] Transaction Processing Performance Council. TPC-C.
http://www.tpc.org/tpcc/.
[36] Transaction Processing Performance Council. TPC
Benchmark C, Standard Specification, Revision 5.0, February
2001.
[37] Virtutech AB. Simics Full System Simulator.
http://www.simics.com/.
[38] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie,
Jaswinder Pal Singh, and Anoop Gupta. The SPLASH-2
Programs: Characterization and Methodological
Considerations. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture, pp. 24–
37, June 1995.

	Variability in Architectural Simulations of Multi-threaded Workloads
	Alaa R. Alameldeen and David A. Wood Computer Sciences Department, University of Wisconsin-Madiso...
	1 . Introduction
	2 . The Variability Phenomenon
	2.1 . What Is Variability?
	Figure 1. Differences in OS-scheduled threads between two short simulation runs

	2.2 . Does Variability Matter In Real Systems?
	Figure 2. OLTP time variability in a real system for different observation intervals (one run)
	Figure 3. OLTP space variability in a real system for different observation intervals (five runs)

	2.3 . Does Variability Matter for Simulation?
	Figure 4. Performance of 500-transaction OLTP runs with different DRAM latencies

	3 . Workloads and Simulation Framework
	3.1 . Workloads
	3.2 . Simulation Infrastructure
	3.2.1 . Target System Model
	3.2.2 . Full-System Simulation
	3.2.3 . Memory System Model
	3.2.4 . Processor Models

	3.3 . Introducing Variability

	4 . Variability in Simulation Results
	4.1 . Wrong Conclusion Ratio
	4.1.1 . Experiment 1: Cache Design
	Figure 5. OLTP performance for different L2 cache associativities
	Table 1. Summary of Experiment 1
	Configurations Compared (Superior Configuration)
	WCR (%)
	Table 2. Summary of Experiment 2

	Configurations Compared (Superior Configuration)
	WCR (%)

	4.1.2 . Experiment 2: Microarchitectural Design
	Figure 6. OLTP performance for different reorder buffer sizes

	4.1.3 . Summary

	4.2 . Simulated Space Variability
	4.2.1 . Space Variability and Different Benchmarks
	Figure 7. Variabililty of different benchmarks
	Table 3. Summary of space variability for different benchmarks
	Benchmark
	Barnes
	Ocean
	ECPerf
	Slashcode
	OLTP
	Apache
	SPECjbb

	4.2.2 . Space Variability and Run Lengths
	Table 4. OLTP space variability for different run lengths
	#Simulated Transactions
	200
	400
	600
	800
	1000

	4.3 . Simulated Time Variability
	Figure 8. Time variability for different phases of long OLTP runs
	Figure 9. OLTP and SPECjbb performance from multiple starting points

	5 . Statistical Simulation Methodology
	5.1 . Accounting for Space Variability
	5.1.1 . Confidence Intervals
	Figure 10. 95% confidence intervals using different sample sizes for 32 and 64-entry ROBs

	5.1.2 . Hypothesis Testing
	Figure 11. Acceptance and rejection regions for the t-test
	Table 5. Number of runs needed for different significance levels
	Significance Level (Wrong Conclusion probability)
	#Runs Needed
	10%
	6
	5%
	9
	2.5%
	11
	1%
	13
	0.5%
	16

	5.2 . Accounting for Time Variability

	6 . Related Work
	7 . Conclusions

