
Abstract—As network I/O bandwidths scale up to multiple
gigabits per second, the technical challenges of dealing with these
high data rates will become a driving factor in computer system
design. Unfortunately, investigation of network-oriented system
design issues is hampered by a lack of suitable simulation tools.

This paper presents M5, a simulation system targeting net-
work-intensive workloads. M5 is capable of simulating multi-sys-
tem networks within a single process. Within each simulated
system, M5 provides a detailed performance model of the I/O sub-
system, including the bus timing and coherence effects of network
DMA transfers. Because the majority of networking code is in the
operating system, M5 models system hardware faithfully enough
to run an unmodified commercial OS kernel.

We show that to accurately model a network-intensive work-
load, DMA effects must be modeled with detail. Omitting these
effects can lead to inaccuracies of up to 75x for performance sta-
tistics such as cache misses.

I.  INTRODUCTION

The importance of high-bandwidth TCP/IP networking in
modern computer systems is tremendous and continues to
grow. The criticality of networking to conventional web, data-
base, and file servers is obvious. In addition, the rising popu-
larity of packet-switched I/O architectures and network-
attached storage indicates that nearly all I/O on future servers
may take the form of network traffic. General-purpose systems
also play roles as network infrastructure components—e.g.,
routers, firewalls, VPN endpoints, or overlay network nodes—
displacing dedicated networking hardware thanks to their
greater flexibility, relative simplicity of administration, and
potentially lower cost. Efficient networking support is of grow-
ing interest even for end-client systems, given the increasing
popularity of peer-to-peer distributed systems and the potential
demand for high-bandwidth video services.

The technical challenges presented by network I/O are
growing in tandem with its commercial importance. Network
bandwidths have been increasing at a rate outpacing even CPU
performance gains: the high-end Ethernet standard moved
from 100 Mb/s in 1995 to 10 Gb/s in 2002—a hundred-fold
improvement. Even the compounded doubling of CPU perfor-
mance every 18 months provides only a twenty-five-fold
speedup over this same period. Given these trends, support for

high-performance networking must move beyond the bound-
aries of the I/O subsystem and become a system-wide design
consideration. Unfortunately, work in this area is hampered by
the dearth of appropriate tools for analyzing the interaction of
network I/O with overall system architecture. As a result,
researchers have neither a sufficient understanding of how net-
work I/O impacts system performance nor an available vehicle
for evaluating design decisions and architectural enhancements
in the context of network I/O.

To address this situation, we have developed a new simula-
tion system, called M5, which targets network-intensive work-
loads. M5 is capable of simulating multiple systems—e.g., a
server and several clients—plus the network interconnect
within a single process, allowing detailed control over simu-
lated network characteristics such as bandwidth and latency.
Within each simulated system, M5 provides a detailed perfor-
mance model of the I/O subsystem, including the bus timing
and coherence effects of network DMA transfers. Because net-
working applications spend a significant portion of execution
time in the operating system, M5 models system hardware
faithfully enough to run an unmodified commercial OS kernel.
M5 provides numerous other key features, such as a detailed,
execution-driven out-of-order simultaneous multithreading
(SMT) CPU model; an event-driven memory system support-
ing multiple levels of cache hierarchy interconnected with
split-transaction busses; and support for cache-coherent bus-
based multiprocessor systems. Furthermore, M5 is written in a
modular fashion, using C++ objects to encapsulate key abstrac-
tions such as CPUs, caches, busses, I/O devices, etc. A flexible
runtime configuration language allows users to specify the
desired object types and parameters and their interconnection.

Our preliminary results indicate that accurately modeling
network I/O has a significant impact on the memory-system
behavior of SPECweb99.

This paper provides an overview of M5 (Section II), a brief
description of our SPECweb99 workload (Section III), and
preliminary results from M5 on the impact of network I/O on
system performance (Section IV). We finish with related work
(Section V) and conclusions (Section VI).

II.  THE M5 SIMULATOR

M5’s primary goal is to provide a modular, configurable
simulation environment for a wide range of architectural stud-
ies. M5’s object-oriented structure is a key enabler in meeting
this goal. Section II.A discusses the benefits and features of
M5’s object-oriented design in detail. Section II.B discusses
how complex simulated systems are described using M5’s con-

This work was supported in part by the National Science Foundation under
grants CCR-0105503 and CCR-0219640, by gifts from the Intel Corporation,
and by a Sloan Research Fellowship.

Authors are with the Advanced Computer Architecture Laboratory, EECS
Department, University of Michigan, Ann Arbor, MI 48109-2122. (email:
{binkertn,ehallnor,stever}@eecs.umich.edu).

Network-Oriented Full-System Simulation using M5

Nathan L. Binkert, Erik G. Hallnor, and Steven K. Reinhardt



figuration mechanisms. Section II.C gives a brief overview of
the component models currently implemented within M5.
Sections II.D and II.E discuss M5’s support for full-system
simulation and I/O modeling.

A.  Object Orientation

Internally, M5 is written in C++, and all major simulated
structures are implemented as C++ objects. Externally, M5’s
configuration language allows users to instantiate and intercon-
nect these objects flexibly to model a wide variety of system
configurations. This section discusses several synergistic bene-
fits of M5’s object-oriented framework, including object isola-
tion, object interchangeability, component sharing, object
replication, and the simple provision of common object behav-
ior.

1) Object Isolation: One key benefit of object orientation is
compiler-enforced isolation of internal object details. Careful
use of C++’s “private” and “protected” access controls pre-
vents arbitrary interactions between objects, making M5 more
maintainable and flexible. In particular, having a clear interface
between a simulation object and the rest of the system makes it
more likely that researchers can modify a component’s behav-
ior using only localized code changes and without breaking
seemingly unrelated parts of the simulator.

Limiting inter-object communication to well-defined inter-
faces also aids in maintaining realistic simulation models. A
simulation component can export only that functionality which
could be reasonably expected of an actual implementation. An
invocation of a method on another object typically indicates a
physical connection between components. Of course, the flexi-
bility to model unrealistic components or interactions still
remains (e.g., to perform limit studies), but ideally these less
realistic features are clearly indicated as such in the documen-
tation.

2) Object Interchangeability: M5 promotes object inter-
changeability by standardizing object interfaces for key com-
ponent types. Multiple models for a particular component, such
as a CPU, can be substituted easily within a particular configu-
ration without impacting other simulated system components.
These interchangeable models may differ in level of detail
(allowing simulation speed vs. accuracy trade-offs), in the
component’s functional behavior (to study design alternatives),
or both.

Specific component models are selected during a runtime
initialization step using the configuration process described in
Section II.B. Runtime component selection is enabled by using
C++ interface inheritance and virtual functions. A C++ base
class defines a standard interface for a particular type of simu-
lation object, such as a CPU or cache, using virtual functions as
appropriate. Different realizations of these objects all derive
from the base class, and are thus interchangeable within the
simulator. For example, two CPU models—a fast functional
model and a detailed out-of-order timing model—are both
implemented as classes derived from M5’s base CPU class,
and are both compiled into the M5 executable. Either of these

models can be selected at program initialization and plugged in
to an otherwise unmodified system configuration. Incorporat-
ing both models in the same executable is important for net-
work simulation, where the system being studied (e.g., the
server) may require the detailed CPU model, but other systems
(e.g., the clients) can use the fast CPU model to take advantage
of its much greater simulation performance.

3) Component Sharing: One of M5’s long-term goals is to
simplify sharing of component models among researchers in
different groups. A shared simulation infrastructure with shar-
able components would allow innovation to proceed at a
quicker pace by enhancing the repeatability and comparability
of experiments and lowering the barriers to collaboration.

Object isolation and interchangeability contribute directly to
achieving this goal. Ideally, researchers can develop or
enhance models in their area of expertise and distribute them to
other M5 users. Researchers in other areas can plug these
enhanced models directly into their simulations. For example,
a group researching enhanced memory systems might easily
drop in an alternate CPU model from another source.
Researchers in the same area can compare alternatives by eval-
uating various components in an identical environment.

Of course, this ideal scenario exists only to the extent that
innovation can take place within M5’s defined interfaces; we
expect that these interfaces will evolve over time to reach the
desired level of flexibility. However, even for changes which
span multiple objects, M5’s structure should clearly compart-
mentalize the modifications.

4) Object Replication: Another advantage of object orienta-
tion is that objects fully encapsulate a component’s state,
allowing easy replication. Given a CPU object class, a basic
multiprocessor can be simulated simply by instantiating multi-
ple CPU objects and connecting them to a common bus. (The
resulting model works, but in a very rudimentary fashion; to
simulate interesting multiprocessors in M5, we also added a
coherence protocol to the caches and bus model.)

This replication capability is critical to our network-oriented
research. Because a simulated system is a collection of objects
(CPUs, caches, memories, etc.) with no global variables, we
can simulate a multi-system network by instantiating multiple
collections and interconnecting them with a network link
object.

5) Common Object Behavior: Object orientation allows M5
to provide common features and behaviors to all simulation
components. All component model objects derive from a com-
mon base class, SimObject. M5 furnishes a significant infra-
structure based on the SimObject class; any class derived from
SimObject inherits common mechanisms for configuration,
naming, instantiation, and parameter handling. Many abstract
entities (e.g., workloads) also inherit from SimObject so that
they can leverage this infrastructure.

SimObject instantiation is managed in part by creating
“builder” (a.k.a. “factory”) objects for each component class.
A builder object maps an external object class name to an inter-
nal C++ class, a set of parameters, and an instance creation



function. A small set of preprocessor macros hides the details
of the internal C++ mechanisms used. Figure 1 shows a simple
example, where the external name “BaseCache” is associated
with the internal Cache class (which inherits from SimObject).
The code defines three integer parameters for the cache, which
control the instance’s capacity, associativity, and block size,
respectively. The fourth parameter is a pointer to another com-
ponent object of class Bus. The system interconnection struc-
ture is built by passing SimObject pointers as parameters to
other SimObjects. The final block of code in Figure 1 is the
creation function, which uses the externally visible parameters
to generate arguments to the Cache object’s constructor.
Although greatly simplified relative to M5’s actual cache
model, this example is complete, excepting the definition of
the Cache class itself. Simply compiling this code and linking
the resulting object into the M5 executable makes the “Base-
Cache” component visible to users. The remainder of the con-
figuration process will be described in more detail in
Section II.B.

M5 also uses inheritance to provide a framework for serial-
ization (checkpointing) of simulation state. An abstract base
class (Serializable) provides a virtual function interface for
saving and restoring internal object state to a file. Object devel-
opers need only implement these local functions to enable
checkpoint and restore capability. M5’s serialization frame-
work automatically saves and restores the overall object struc-
ture, and invokes these methods on every instantiated
Serializable object as appropriate. SimObject derives from
Serializable, so component models automatically have access
to this interface. The Serializable class is separate from SimO-

bject to allow serialization of transient objects, such as sched-
uled events on the event queue, without forcing them to bear
the configuration-related overhead of SimObjects.

B.  Configuration Process

Because M5 is capable of modeling relatively complex net-
works of systems, it requires a powerful method for specifying
simulation configurations. M5 uses a hierarchical specification
language to allow reuse of specification data while maintaining
maximum flexibility.

Raw specification data is provided to M5 using a sec-
tion/keyword/value structure. The bulk of this data is loaded
via “.ini” files, using syntax similar to that in Microsoft Win-
dows configuration files of the same extension. Section names
are enclosed in square brackets. “Keyword=value” lines bind
string values to keywords in the scope of the current section.
The left-hand side of Figure 2 shows an example configuration
file with six sections. Keyword assignments can also be per-
formed on the M5 command line.

Once the raw data is loaded, M5 parses it to create the simu-
lation’s configuration hierarchy. Hierarchy nodes are repre-
sented by data sections. The distinguished section name
“Universe” represents the root of the hierarchy. The value of
the “children” keyword within each section identifies the
node’s children in the hierarchy, represented as a list of
name:section pairs. An optional “{n}” suffix indicates n copies
of a given child. Data sections without a “children=” line rep-
resent leaf nodes. Note that a single data section can be used to
specify several nodes within the hierarchy. The right-hand side

Class Cache : public SimObject { ... }

REGISTER_SIM_OBJECT("BaseCache", Cache)

BEGIN_DECLARE_SIM_OBJECT_PARAMS(Cache)
Param<int> size;
Param<int> assoc;
Param<int> block_size;
SimObjectParam<Bus *> out_bus;

END_DECLARE_SIM_OBJECT_PARAMS(Cache)

BEGIN_INIT_SIM_OBJECT_PARAMS(Cache)
INIT_PARAM(size, "capacity in bytes"),
INIT_PARAM(assoc, "associativity"),
INIT_PARAM(block_size, "block size in bytes"),
INIT_PARAM(out_bus, "bus to next level of memory")

END_INIT_SIM_OBJECT_PARAMS(Cache)

CREATE_SIM_OBJECT(Cache)
{

int nsets = size / (assoc * block_size);

return new Cache(getInstanceName(), nsets, block_size, assoc, out_bus);
}

Fig. 1.  Example SimObject declaration.



of Figure 2 diagrams the configuration hierarchy correspond-
ing to the example file.

After creating the hierarchy, M5 traverses it to create the
indicated component objects. Each section with a “type” key-
word instantiates a SimObject of the indicated type. Object
parameter values are determined by parsing the values of the
corresponding keywords in the data section. (Note that, in the
“L1Cache” section, the keywords other than “type” correspond
to the cache parameters declared in Figure 1.) Each object is
given a unique name derived from its path from the root of the
hierarchy. For example, the full name of the data cache in sys-
tem “sys1” is “sys1.cpu.dc”. (This name is provided to the
object via the getInstanceName() method in Figure 1.)

Reuse of subtrees within the configuration hierarchy is sup-
ported by M5’s name resolution algorithm for SimObject
pointer parameters. An object name is resolved to a specific
SimObject by looking for a match first at the same tree node as
the referencing object, then, if no match is found, by traversing
up the tree toward the root. Thus a particular object is visible to
all objects below it in the hierarchy, but another object with the
same base name can be used in a disjoint subtree. This algo-
rithm allows detailed control over object replication and shar-
ing. For example, all the caches in Figure 2 refer to “bus” as
the value of their out_bus parameter. For “sys0.cpu.ic” and
“sys0.cpu.dc”, M5 resolves this reference to “sys0.bus”, but
“sys1.cpu.ic” and “sys1.cpu.dc” share “sys1.bus”.

To provide additional flexibility, object parameters can be
specified based on instance names as well as on configuration

hierarchy nodes. This feature allows reuse of configuration
subtrees even when repeated structures are not completely
identical. For example, the two sections at the end of the con-
figuration file in Figure 2 specify different workloads for the
two simulated systems, although their configurations as
described via the hierarchy are otherwise identical.

C.  M5 Simulation Objects

M5 currently contains a variety of component models.
There are two primary CPU models: SimpleCPU, an in-

order, non-pipelined, one-CPI functional model (similar to
SimpleScalar’s sim-safe [4]); and FullCPU, an out-of-order,
superscalar, pipelined, simultaneous multithreading (SMT)
CPU (originally derived from SimpleScalar’s sim-outorder, but
largely rewritten for additional realism and SMT support).
Either of these models can be compiled to emulate the Alpha or
SimpleScalar PISA ISAs. (Although heterogeneous-ISA multi-
processor simulations would not be too difficult to construct
under M5, our build procedure currently does not support that
option.) A third component, MemTest, follows the CPU object
interface but internally generates random read and write
accesses to exercise the memory system. As described in
Section II.A.2, all three of these models are derived from the
abstract base CPU class, and can be used interchangeably.

Although SimpleCPU is a monolithic object, the FullCPU
model is partitioned into additional objects for greater flexibil-
ity. In particular, we have developed a family of instruction
queue (IQ) models to support our research in this area [15].

(root)

sys0

cpu bus mem

dcic

sys1

cpu bus mem

dcic

[Universe]
children=sys:System{2} // creates sys0 & sys1

[System]
children=cpu:CPU bus:MemBus mem:MainMem

[CPU]
type=SimpleCPU
children=ic:L1Cache dc:L1Cache
icache=ic
dcache=dc

[L1Cache]
type=BaseCache
size=64K
assoc=2
block_size=64
out_bus=bus

// MemBus and MainMem sections not shown...

[sys0.cpu]
workload=workload0

[sys1.cpu]
workload=workload1

Fig. 2.  Example configuration file and corresponding hierarchy.



Thanks to M5’s object interchangeability, we can compare con-
ventional IQ designs with more radical proposals simply by
substituting an alternate IQ object in the configuration file.

M5’s memory system is fully event-driven, allowing flexible
and accurate modeling of timing and contention. We currently
implement two cache models: a basic LRU cache and an indi-
rect index cache [7]. The various levels of the memory hierar-
chy are connected by a coherent, split-transaction bus. The bus
model operates in two modes: a “timing” mode, making liberal
use of events to accurately model bus delays and contention;
and a “non-timing” mode, which shortcuts the timing model to
pass requests directly between caches and memory for simula-
tion efficiency. Although either bus model can be used with
any CPU, the former bus model is typically used with the
FullCPU model and the latter with SimpleCPU. The cache
models are oblivious to the bus timing mode.

D.  Full-System Support

Providing full-system simulation in M5 involved imple-
menting the CPU’s privileged instructions and state, virtual
address translation, platform devices such as timers and I/O
bridges, and the I/O devices themselves. Our user-mode CPU
simulators implemented the Alpha ISA (based on SimpleSca-
lar’s Alpha machine.def), which we extended to model the
21164’s privileged state. We used SimOS-Alpha [3] as a refer-
ence for both the 21164’s privileged-mode behavior and the
Turbolaser Alpha server platform, though most of the needed
code was rewritten from scratch or heavily modified to con-
form to M5’s object structure and internal interfaces. Although
SimOS-Alpha is capable of running only Tru64 V4.0, we fur-
ther enhanced the Turbolaser model to allow M5 to boot a
much more recent version of Tru64, V5.1. Tru64 V5.1 is an
industrial-strength OS with a combination of advanced net-
working and multiprocessor support (including NUMA
resource allocation) unmatched by current open-source operat-
ing systems. However, given the announced termination of
Tru64 development, combined with the rapid pace of progress
in the open-source community, Linux and/or a BSD flavor will
eventually approximate Tru64’s capability; at some point, we
will likely switch to one of these more readily available OSes.

To aid in bringing up the system, we incorporated support in
M5 for gdb’s remote debugging feature. A gdb process running
on a real machine can connect to a socket provided by M5, at
which point the gdb process can be used to debug the Tru64
kernel running on the simulated system. In conjunction with a
separate gdb process attached to the simulator itself, a devel-
oper can determine where the kernel is when a particular simu-
lator condition is encountered. This debugging feature has been
invaluable in making full-system simulation work.

E.  I/O Modeling

Because of our focus on networking workloads, we paid par-
ticular attention to the accuracy of our network components.
M5's network adapter device closely mimics the design of a
modern Ethernet adapter. The model uses programmed I/O to

talk to device registers and DMA to copy packets and descrip-
tor data to and from the device. Both the network and disk
devices use a detailed DMA timing model which schedules
individual block transfers across the memory bus, invalidating
the contents of the CPU cache appropriately. The simulated
network interconnect models a fixed-bandwidth link between
adapters. The current model allows us to accurately model
well-designed 100Mb/s and 1Gb/s ethernet adapters. Tests of
two simulated systems attached back-to-back with a 100Mb/s
link have shown >90% link utilization.

III.  EVALUATION WORKLOADS

To do our initial evaluation of M5, we chose netperf [9], a
simple network link utilization microbenchmark, and
SPECweb99 [19], a commonly used web workload bench-
mark.

A.  Netperf

Netperf is a simple networking benchmark tool developed at
Hewlett-Packard that is useful for quickly ascertaining the
maximum bandwidth of a TCP connection between two
machines. Because the tool does little other than generate net-
work traffic, we found this tool to be ideal as a microbench-
mark for M5.

Netperf has two components: netserver and netperf. Net-
server is run on one machine and waits for netperf connections
from another machine. Netperf, the client, connects to a net-
server, does a short handshake, and then sends data to the
server at the highest possible rate sustainable for 10 seconds.
At the end of the 10 second run, netperf calculates the average
bandwidth achieved over that period of time.

The inner loop in netperf is very short, basically filling up a
buffer and calling the write syscall. This benchmark conse-
quently has very little user time, and spends most of its time in
the TCP/IP protocol stack of the kernel or in the idle loop wait-
ing for DMA transactions to complete.

B.  SPECweb

We chose SPECweb99 as a more realistic macrobenchmark
workload. SPECweb99 includes both static and dynamic
HTTP requests, and models a server which uses cookies to pro-
vide user-customized rotating advertisements. We use Apache
2.0.43 [1] as our web server.

We first built our workload on a testbed consisting of two
Alpha systems, a 600 MHz 21164 for the server and a 500 Mhz
21264 for the client, directly connected by a 100Mb Ethernet
link. Both systems ran Compaq Tru64 V5.1. We installed
Apache using the worker multi-processing module (MPM) and
with support for dynamic shared objects (DSO) enabled. We
also turned off the access log to decrease the disk storage
required.

The performance of the sample Perl CGI script included
with SPECweb99 proved to be inadequate to drive the network
link at sufficient bandwidth for a valid run. To remedy this, we
modified a native Apache script, written by IBM for a



SPECweb99/Apache submission on an IBM eServer, to work
under our environment.1 We compiled this script as a dynamic
shared object and loaded it in to the web server at runtime.
After additional tuning of Tru64 shared memory and file
descriptor limits, this script enabled us to complete a valid
SPECweb99 run of 190 simultaneous connections.

Once the workload was debugged and tuned, we transferred
the Apache and SPECweb99 directory trees onto disk image
files where they could be mounted from within an M5 simula-
tion. The workload then came up under M5 on the simulated
network without modification.

IV.  PRELIMINARY RESULTS

We performed preliminary simulations of the workloads on
M5, configuring the server and client systems to approximate
the characteristics of our testbed’s 600 MHz Alpha 21164 plat-
form, including an 8 KB direct-mapped L1 data cache, an on-
chip 96KB 3-way associative L2 cache, and an 8MB off-chip
L3 cache (known as the Dcache, Scache, and Bcache in Alpha
terminology). The network simulated is similar to that of a
modern gigabit Ethernet connection between the simulated
systems.

For each workload, we ran four experiments in which we
varied the extent to which DMA traffic was modeled on the
bus. In the base case, both disk and network DMA transfers
were hidden from the timing simulation, neither occupying bus
bandwidth nor invalidating cache state. We then selectively
modeled either disk and/or network DMA traffic. For DMA
traffic that was not modeled explicitly, we use an approximate
DMA latency based on the memory latency, transfer size, and
bus bandwidth.

Since accurate DMA modeling changes cache miss patterns
and I/O delays, modifying the execution path, we needed a

method to accurately compare corresponding portions of the
various runs. We defined a dummy instructions (using a
reserved opcodes) that signal a particular point in the workload
to the simulator. We then inserted these instructions into each
of the workloads at various points in their execution, and col-
lected statistics for the intervals between these marker instruc-
tions. Thus while the number of simulated cycles is different
between runs for a given interval, the amount of work accom-
plished is the same.

For the netperf simulations, we took performance snapshots
of the Bcache during four distinct intervals: the initial boot
phase, two separate full 10 second netperf runs, and from the
end of the second run to system shutdown. Figure 3 plots the
number of Bcache misses observed in each interval for the var-
ious models. The Run 1 and Run 2 data points show a large
disparity between the simulations that do and those that do not
include network device DMA. Netperf has a very small mem-
ory footprint, but streams large amount of data through the
memory system to the network interface. As DMA transfers
move the received data into memory, they invalidate blocks in
the cache hierarchy, resulting in a higher miss rate. Run 2
shows a higher number of Bcache misses than Run 1 because
the Dcache is warmed up with netperf’s instructions and data
structures. As a result, there are fewer Dcache misses and the
benchmark can achieve a higher bandwidth, causing more data
to be streamed through the memory hierarchy.

For the SPECweb benchmark, we ran each simulation for 30
billion cycles starting at system boot. The boot process occu-
pies approximately the first 100 million cycles at which point
the workloads are started automatically. Our first measurement
interval includes this boot time plus the time to configure the
network interface, mount filesystems, and load the web server.
The second interval covers the initial SPECweb99 warm-up
phase, which largely consists of the webserver waiting for the
clients to start issuing requests. The final interval is a section of
the first set of web transactions between clients and the server.

1. We downloaded this code from the SPEC web site, at
http://www.spec.org/web99/results/api-src/IBM-20020819-API.zip.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Boot Run 1 Run 2 Halt

M
is

se
s 

(m
ill

io
n

s)

All DMA

Disk Only

Netw ork Only

No DMA

Fig. 3.  Effect of DMA modeling on the number of Bcache misses for the netperf server.



Figure 4 shows the total number of Bcache misses for the
three intervals described above. DMA has a negligible impact
for the first two intervals because very little DMA is occurring.
This effect is similar to what is happening during the boot and
halt intervals of the netperf benchmark. 

The Run interval shows a small but measurable impact from
modeling DMA. Network-only DMA modeling leads to the
highest number of Bcache missed, followed by the full DMA
case. The no-DMA and disk-only cases have about the same
impact on Bcache misses. It seems counter-intuitive that the
network-only number is higher than the all DMA number. We
believe that modeling disk DMA causes the network DMA to
become less frequent, in turn causing the workload to actually
do less work during the interval. This causal relationship is
similar how the Dcache miss rate affects the performance of
the two netperf runs. Thus the all-DMA case achieves lower
total network bandwidth than in network-only DMA, causing
less work to get done during the Run interval.

V.  RELATED WORK

The original MIPS/IRIX SimOS [8, 17] is, to our knowl-
edge, the only simulator other than M5 that supports all of the
features necessary for studying network-oriented workloads:
full-system simulation including OS code; a detailed, coherent
memory system model; a detailed timing model of network
DMA activity; and the ability to simulate multiple networked
systems and their interconnect within a single simulator
instance. However, we are unaware of any published studies
which use SimOS to analyze the impact of network I/O on sys-
tem performance.

Although the original SimOS and M5 share similar capabili-
ties, SimOS places much heavier emphasis on simulation per-
formance, including a high-speed emulation mode using binary
rewriting. In contrast, M5 emphasizes modularity and model-
ing flexibility, with the hope of providing a more broadly reus-
able infrastructure. Thanks to several years of processor

performance improvements since the development of SimOS,
significant simulations are feasible under M5 without heroic
levels of optimization.

Later derivatives of SimOS, including SimOS-Alpha [3],
SimOS-PPC [10], and PHARMsim [5], do not include a timing
model for the network interface. In one study using a
SPECweb96 workload on SimOS-Alpha [16], researchers did
not simulate the effects of network DMA, and loosely approxi-
mated network timing by running the client and server system
simulations in separate processes on the same physical host so
that they would progress at similar rates. Other full-system
simulators, such as TFSim [12] (based on Simics [11]) and
ML-RSIM [18], also neglect to model network I/O in detail.

Because of the lack of available tools, researchers investi-
gating the architectural impact of networking workloads have
used measurements of real systems [6, 14, 2] or simulations of
small subsets of the workload (e.g., the TCP stack [13] or the
dominant functions of the Apache web server [20]) run as user-
level code. The former approach limits research to analysis of
existing machines, without providing a path for evaluating pro-
posed enhancements or future systems. The latter approach,
while potentially providing interesting insights, cannot conclu-
sively identify which portions of the system comprise the fun-
damental bottlenecks, or indicate the impact of proposed
enhancements on overall system performance.

VI.  CONCLUSIONS AND FUTURE WORK

As we demonstrated in Section IV, network I/O has a mea-
surable impact on system performance of network-oriented
workloads. As these workloads grow in importance, simulators
must provide detailed models of network I/O paths, along with
full simulation of OS code, to properly analyze and evaluate
future architectures. M5 provides a flexible and effective solu-
tion to meet this requirement.

In the immediate future we will further integrate existing M5
features into full-system mode, including support for multi-

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Boot Warmup Run

M
is

se
s 

(m
ill

io
n

s)
All DMA

Disk Only

Network Only

No DMA

Fig. 4.  Effect of DMA modeling on the number of Bcache misses for Apache running SPECweb99.



threaded/multiprocessor systems and the detailed out-of-order
CPU model. We will then extend our analysis by varying dif-
ferent parameters of the CPU (issue widths, frequency), cache
hierarchy (sizes, bus bandwidth, associativities), and network
(bandwidth, latency).

In the longer term, our goal is not only to understand the
interaction of network I/O with current and future system
architectures, but to propose and analyze architectural and/or
OS enhancements which address the key bottlenecks. M5 will
be a necessary tool in this research.

To spur further investigation of network-oriented workloads
in the architecture community, we are committed to making a
public release of M5 in the summer of 2003.

ACKNOWLEDGMENT

Many thanks to Steve Raasch and Dave Greene for their
contributions to M5. This work was supported by the National
Science Foundation under grants CCR-0105503 and CCR-
0219640, by gifts from the Intel Corporation, and by a Sloan
Research Fellowship.

REFERENCES

[1] Apache Software Foundation. HTTP server project.
http://www.apache.org.

[2] Remzi H. Arpaci-Dusseau, Andrea C. Arpaci-Dusseau, David E. Culler,
Joseph M. Hellerstein, and David A. Patterson. The architectural costs of
streaming I/O: A comparison of workstations, clusters, and SMPs. In
Proceedings of the 4th International Symposium on High-Performance
Computer Architecture (HPCA), pages 90–101, January 1998.

[3] Luiz André Barroso, Kourosh Gharachorloo, and Edouard Bugnion.
Memory system characterization of commercial workloads. In Proceed-
ings of the 25th Annual International Symposium on Computer Architec-
ture, pages 3–14, June 1998.

[4] Doug Burger, Todd M. Austin, and Steve Bennett. Evaluating future
microprocessors: the SimpleScalar tool set. Technical Report 1308, Com-
puter Sciences Department, University of Wisconsin–Madison, July
1996.

[5] Harold W. Cain, Kevin M. Lepak, Brandon A. Schwartz, and Mikko H.
Lipasti. Precise and accurate processor simulation. In Proceedings of the
Fifth Workshop on Computer Architecture Evaluation using Commercial
Workloads, February 2002.

[6] Peter Druschel, Mark B. Abbott, Michael Pagels, and Larry L. Peterson.
Network subsystem design. IEEE Network (Special Issue on End-System
Support for High Speed Networks), 7(4):8–17, July 1993.

[7] Erik G. Hallnor and Steven K. Reinhardt. A fully associative software-
managed cache design. In Proceedings of the 27th Annual International
Symposium on Computer Architecture, pages 107–116, June 2000.

[8] Stephen A. Herrod. Using Complete Machine Simulation to Understand
Computer System Behavior. PhD thesis, Stanford University, February
1998.

[9] Hewlett-Packard Company. Netperf: A network performance benchmark.
http://www.netperf.org.

[10] IBM Austin Research Lab. SimOS PowerPC web page.
http://www.research.ibm.com/arl/projects/SimOSppc.html.

[11] Peter S. Magnusson et al. Simics: A full system simulation platform.
IEEE Computer, 35(2):50–58, February 2002.

[12] Carl J. Mauer, Mark D. Hill, and David A. Wood. Full-system timing-
first simulation. In Proceedings of the 2002 ACM SIGMETRICS Confer-
ence on Measurement and Modeling of Computer Systems, pages 108–
116, 2002.

[13] Erich M. Nahum, David J. Yates, James F. Kurose, and Don Towsley.
Cache behavior of network protocols. In Proceedings of the 1997 ACM
SIGMETRICS Conference on Measurement and Modeling of Computer
Systems, pages 169–180, June 1997.

[14] Michael A. Pagels, Peter Druschel, and Larry L. Peterson. Cache and
TLB effectiveness in processing network I/O. Technical Report 94-08,
Department of Computer Science, University of Arizona, March 1994.

[15] Steven E. Raasch, Nathan L. Binkert, and Steven K. Reinhardt. A scal-
able instruction queue design using dependence chains. In Proceedings of
the 29th Annual International Symposium on Computer Architecture,
pages 318–329, May 2002.

[16] Joshua A. Redstone, Susan J. Eggers, and Henry M. Levy. An analysis of
operating system behavior on a simultaneous multithreaded architecture.
In Proceedings of the Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
IX), pages 245–256, November 2000.

[17] Mendel Rosenblum, Edouard Bugnion, Scott Devine, and Stephen A.
Herrod. Using the SimOS machine simulator to study complex computer
systems. ACM Transactions on Modeling and Computer Simulation,
7(1):78–103, January 1997.

[18] Lambert Schaelicke and Mike Parker. ML-RSIM home page.
http://www.cse.nd.edu/ mlrsim.

[19] Standard Performance Evaluation Corporation. SPECweb99 design doc-
ument. http://www.spec.org/ web99/docs/whitepaper.html.

[20] Haiyong Xie, Laxmi Bhuyan, and Yeim-Kuan Chang. Benchmarking
web server architectures: A simulation study on micro performance. In
Proceedings of the Fifth Workshop on Computer Architecture Evaluation
using Commercial Workloads, February 2002.


