

An Evaluation of Memory Compression Alternatives

KRISHNA KANT, Intel Corporation
 (krishna.kant@intel.com)

Abstract: This paper presents a comparative study of three
different memory compression schemes, full memory
compression and two forms of compressed disk cache. The full
memory compression maintains all of the primary storage in
compressed form whereas the compressed disk cache
compresses only the memory pages that would otherwise be
“freed” (and thus the corresponding content retrieved from
disk on a later access). The two forms of the latter scheme
considered are a purely software solution and a hardware
assisted solution. The paper discusses the advantages and
disadvantages of each scheme and evaluates their relative
performance via a detailed platform model for SPECweb99
benchmark. The results indicate that the compressed disk
cache scheme is not only much cheaper than full memory
compression, but can also be quite effective in spite of its
limited scope.

1. Introduction

Memory compression has been considered as a technique
for delivering following potential benefits to the
commercial server segment:

• Significant savings in memory costs for large and
medium servers.

• Savings in physical space, required power, and
thermal dissipation by the memory subsystem for
high-density servers.

• Reliance on lower performance disk subsystems
through the use of the compressed disk cache
technique, significantly lowering total system cost.

• Improved efficiencies through reduced memory
and I/O subsystem BW requirements and costs
from the application of compression end-to-end.

Whether and to what extent these potential benefits are
actually achieved depends on the implementation details,
which are explored in this paper. Two major variants of
memory compression have been explored in the past: (a)
full memory compression (FMC) and compressed disk
cache (CDC). A brief overview of the requirements of
these is included here.

1.1 Full Memory Compression (FMC)

 Full memory compression keeps the entire memory
compressed (with the possible exception of some
specialized regions such as DMA). In order to localize the
changes needed to support compressed memory, the O/S

initializes the system with certain amount of uncompressed
memory (e.g., twice the physical memory) and all accesses
are to this real address space. The accessed addresses are
eventually converted to the compressed space addresses
(physical address space) by the memory controller before
the actual access is initiated. The access would retrieve the
compressed memory block, decompress it and provide it to
the processor. Since decompression is a slow process,
acceptable performance requires a chipset cache that
maintains the recently used uncompressed data. FMC is
best illustrated by IBM’s MXT (memory extension
technology) that includes the following components [ibm-
mxt, pinnacle]:

1. 32 MB of fast (SRAM) chipset cache.
2. Memory compressed in blocks of 1 KB size.

Compressed blocks are stored using 1-4 segments,
each of size 256 bytes.

3. A compressed block is accessed via a header entry
that contains pointers to the 4 segments and other
relevant information. For blocks that compress to
64:1 or better, it also allows for an “immediate
data” type of representation (in which case all 4
segment pointers would be null).

4. The chipset provides a hardware compression-
decompression unit (henceforth called Codec)
based on a variant of the LZ77 compression
algorithm [ibm-lz].

5. The chipset also provides the TLB (similar to
paging TLB) for address translation between real
and physical address spaces.

Since FMC involves “in-line” decompression, low
decompression latency is a lot more important than the
compressibility. A detailed modeling of the FMC scheme
shows that a small compression block size is preferable
from the latency perspective (except that a small size would
lead to larger address translation tables and hence a poorer
TLB hit ratio for the same TLB size). A block size of 256
bytes appears to be near optimal from the performance
perspective. A chipset cache with no-load latencies that are
50-75% of memory access latencies and a size in the range
of 16-32 MB appears essential to mitigate the latencies of
decompression and achieve about the same level of
performance as the case with increased physical memory
(and no compression).

The MXT solution uses a highly parallelized
implementation of the traditional LZ77 file compression
algorithm [ibm-lz, lz-77]. Although a codec based on this

algorithm is expensive, it achieves better compressibility
than other algorithms that are especially designed with
hardware implementation in mind. In particular, the X-
match pro algorithm works with 4 bytes at a time and also
encodes partial matches [x-match]. Furthermore, run-
length encoding is used for repetitive strings. A Codec
based on this algorithm is claimed to provide a similar
decompression rate at a much lower cost, however, the
compression ratio achieved by this algorithm is usually
significantly lower than that achieved by LZ77. In our
performance comparisons in section 2, we assume the use
of X-match-pro algorithm for FMC since the cost of a
highly parallelized LZ77-based Codec would make FMC
unattractive.

As stated above, MXT compresses memory in 1 KB blocks
and stores compressed blocks using up to four 256 byte
segments. These segments could be located anywhere in
the physical memory and are accessed using 4 pointers in
the header part of each block. Although this generality
avoids storage fragmentation, up to 4 separate accesses may
be needed to retrieve the entire block. An alternate scheme
is to attempt to store all segments of a block contiguously.
This allows for a shorter header and more efficient access.
However, the implementation must deal with storage
fragmentation and the cost of fat-writes (i.e., an increase in
compressed block size when it is modified and written
back, thereby requiring reallocation in a different place).

1.2 Compressed Disk Cache (CDC)

Compressed disk cache is intended to act as a buffer
between the main memory and the disk. A portion of the
main memory is designated as a CDC, and memory pages
evicted from the regular memory are compressed and stored
in the CDC so that future accesses to these pages can avoid
disk I/O (so long as these pages have not been evicted out
of CDC). Thus, only the misses out of CDC require disk
I/O. Generally, evicted dirty pages are not written to CDC
directly; instead such pages are queued up for writing to
disk and thereby made “clean”. This avoids a direct IO
to/from the CDC space.

Several flavors of CDC have been examined in the past
[page-cache1, page-cache2]. The most limited use is in
form of a compressed swap cache, where hard page faults
are intercepted to look for the required page in the cache,
and freed clean pages are posted into the cache. Such an
approach may be useful for workstation applications under
severe memory limitations, but is generally not useful for
server applications that typically manage their paging
activity carefully. A more general use of CDC involves
storing not only the pages freed by the paging activity but
also the files evicted out of the OS file cache. In Microsoft
Windows, the swap file is cached like an ordinary file in the
file cache, so a compressed file cache can easily hold pages
evicted by both the memory manager and the file cache
manager (FCM). In general, a compressed disk cache

should be able to hold pages evicted from any of the IO
buffering agents including the buffer cache manager (BCM)
of a DBMS, web cache manager (WCM) of a web server,
OS file cache manager (FCM), etc. In any case, due to a
large space needed for the compressed disk cache, a
dynamic cache size adjustment is necessary to ensure that
the CDC does not starve the caches maintained by OS or
application.

It is clear from the above that in order to be universally
useful, the CDC must be usable by not only the OS but also
any application that does large scale IO caching. This
implies the need for a uniform API for invoking the CDC
functionality. For simplicity, from now on we only speak of
CDC used to maintained pages evicted from the OS file
cache; however, the need for a general interface must be
kept in mind.

It should be clear that CDC would be a worthwhile
approach only if (a) a substantial portion of the main
memory is occupied by some kind of IO cache, and (b) the
workload can benefit from the availability of extra memory.
Both of these conditions are generally true for servers. If
the memory manager led page evictions are also covered by
the CDC (as would be the case in MS Windows), these
conditions also apply whenever the workload requires huge
amounts of memory that causes substantial paging. In other
cases, CDC wouldn’t be very useful. Note that FMC could
be beneficial for a wider spectrum of applications since it
requires condition (b) only.

CDC helps improve performance in two ways: (a)
Significantly lower latency associated with page retrieval
from CDC, and (b) Reduced path-length associated with
this retrieval. With respect to (b), it is possible to consider
two variants of CDC:

1. CDC-FD: In this case, CDC is implemented
purely as a “filter driver”, i.e., it intercepts the IO
requests and satisfies them out of the CDC w/o
explicit knowledge of the OS. The
compression/decompression is assumed to be
implemented in hardware and is treated like a
DMA capable IO device. All management of the
compressed address space is done in software.

2. CDC-OPT: This is an optimized version of CDC-
FD where (a) Lookup & address translation are
accelerated via extra hardware, and (b) File cache
manager (FCM) is aware of the CDC and thus can
work with it directly.

For convenience, all hardware associated with
compression/decompression (Codec, address translator,
buffers, etc.) is referred to as compression decompression
engine (CDE) . The basic motivation for considering CDC-
OPT is to minimize the path-length and MPI impact
associated with accessing the compressed cache. The
latency reduction over CDC-FD is not expected to yield any
measurable benefit (since the access latency of a DMA
capable CDC-FD implementation is already in several
microsecond range, which is far smaller than the IO

latency). A possible implementation of CDC-OPT has been
worked out but not included here for brevity.

1.3 Relative merits and architectural options

It is instructive to do a gross comparison of the 3 techniques
introduced above. The major points regarding full memory
compression are as follows:

+ Can double or triple available memory =>
Significant memory savings.
− Very expensive to implement

• A large and fast chipset cache.
• In-line operation => Needs very fast Codec
• Fast address translation paraphernalia (TLB,

translation tables, etc.)
− Latency considerations favor small block sizes

• Small block size => poorer compressibility
(e.g., 3X @ 4 KB vs. 2X @ 128B).

• Large space requirements for address
translation tables.

The major points regarding either form of disk compression
are as follows:

+ No chipset cache is required (large savings in
gates) => Relatively inexpensive hardware.
+ Software is straightforward for CDC-FD (disk IO
request interceptor, no O/S impact).
− Significant O/S impact of CDC-OPT (change in
file-caching component of the OS, etc.).
+ Accessed on a miss in regular memory =>

• Use of a large compression block size (e.g.,
memory page size) is okay.

• Slower but more effective compression
algorithms (LZ77 vs. X-match-pro) okay.

+ Large compression block size => Good
compressibility & easier space management.
-? Less savings in memory & power and
correspondingly less performance than FMC.

The reason for a question mark on the last item is that our
study indicates that it not always the case that CDC
performs poorer than FMC. In fact, as shown in the
following, CDC-OPT can actually do better than FMC in
certain situations.

With both memory compression techniques, there are
several implementation variants that one could consider.
For example, with full memory compression, there are
multiple choices relative to the location of the chipset cache
(embedded in memory controller vs. external), location of
CDE (embedded in memory controller vs. on DIMM),
storage schemes for compressed segments (contiguous vs.
non-contiguous allocation), and chipset cache management
granularity (in terms of simply the compression block size,
or the finer processor cacheline size). One could also
consider speculative decompression schemes in order to
reduce access latency at the cost of greater complexity.

CDC has similar choices including location of CDE
(integrated with memory controller, integrated with DIMM,
integrated with an IO bridge, or as a separate device), and
different schemes for data transfer between compressor
input/output buffer & normal memory. Two possibilities in
the latter case are: (a) Copying under processor control
(programmed I/O model), and (b) Specialized DMA engine
for data transfer.

2. SPECweb99 performance modeling
results

The performance of MXT has been reported in several
research publications [ibm-mxt, pinnacle]. They report
results from experiments conducted on dual-processor
systems w/ and w/o MXT running database workloads and
using estimation tools on live production servers running
web server workloads. They report a compressibility of
2.68 for their database workload (running an insurance
company schema on a DB2 database) and an estimated
compressibility of 2.1 (for a live web server workload). In
overall performance, they show that their database
workload runs 25% (1GB memory size) and 66% (512MB
memory size) faster w/ MXT enabled. However, they also
mention that in these cases the system was memory starved.
They also report observing similar memory-dependent
performance benefits with the SPECweb99 benchmark
(45% performance improvement when increasing memory
from 256MB to 512MB). In this paper, we concentrate
only on SPECweb99, although we did obtain some rather
simplistic results on TPC-C like database which show about
6.5% performance improvement for 4GB system, and 3.5%
for 16 GB system.

2.1 SPECweb99 Performance Model

The results in this section are based on a detailed model of
SPECweb99 benchmark that includes support for both
FMC and both versions of CDC. The model is based on a
number of measurements on both Intel Pentium\TM III and
IV systems using Microsoft IIS5 as the web server. The
model includes the impact of disk I/O both in terms of path
length and the IO latency based on a set of measurements
with different amounts of installed main memory. The basic
model, similar to the one in [kant-sweb96], includes CPUs,
processor bus, memory channels, IO busses (chip-to-chip
interconnects and PCI), network and disk adapters. The
internals of the CPU and the processors caches are not
modeled; instead, a high level model coupled with the
explicit calculation of MPIs and bus coherence traffic is
used. The compression support includes compressor &
decompressor units , chipset (or “L3” cache) and memory
and bus traffic & latency impact of these resources. It is
assumed that the L3 cache is dual-ported thereby allowing
lookup and retrieval to progress in parallel. The L3 cache is
also assumed to have mixed granularity, i.e., on a miss, a
complete block is brought and installed into the cache,

however, lookups and retrieval can occur in the units of
processor cacheline size.

In the following we briefly discuss some major points
regarding the model. A comprehensive discussion of the
model is beyond the scope of the paper.

Basically, the model is a transaction level queuing model of
a typical SPECweb99 setup. It assumes a number of client
machines, each represented by a single queue. Each client
runs a number of processes, each of which cycles through
sleeping, generating a request, and waiting for the response
(or file) from the server. The client is connected to the
server via an Ethernet network, which is modeled rather
simplistically in terms of pure delay & queuing delays. On
the server side, each process obtains a thread, performs
request processing, and releases the thread. Processing a
client request involves the following 6 service phases:

• Reception of the client request (including PCI
transfers and memory to memo ry copies).

• Computation: All processing including host-side
memory reads/writes.

• Disk reads and writes (including PCI transfers and
memory to memory copies).

• Sending of response to client (including file-cache
lookup and reading, PCI transfers, memory to
memory copies for dynamic content).

Each phase generates 3 auxiliary transactions in the bus-
memory subsystem:

• Bus invalidation: Required for claiming exclusive
access to a shared cacheline. This transaction goes
through address bus only and dies.

• Implicit Writeback : Generated as a result of a hit-
modified (HITM) situation. In this case, the
original transaction goes through the FSB and the
implicit writeback goes through memory pipeline
and dies.

• Explicit Writeback: Generated as a result of
cache eviction of modified data.

For efficiency, the emulation of bus-memory transactions is
done in “chunks”, i.e., batches of 10’s of cachelines. A side
effect of this is some additional traffic burstiness that isn’t
there in reality. The disk I/O is modeled in units of 4 KB
blocks (memory page sizes) and network sends in units of
packets (1.5 KB). The memory-to-memory copies related
with IO, memory controller-IO hub transfers, and PCI bus
transfers are also modeled explicitly. In particular, PCI
transfers are emulated on a burst-by-burst basis.

The model represents address and data busses (ABUS &
DBUS) as separate queuing stations and memory as a delay
station in series with a queuing station. The memory
stations are calibrated based on a 4-stage memory model
(e.g., RAS, CAS, data access & bus data transfer in case of
reads). The dead cycles occurring on memory channels and
DBUS are also modeled. Every read/write memory
transaction stays in IOQ (in-order queue) until DBUS
transfer is completed (or until the end of the snoop phase

for deferred transactions). Following DBUS transfer, a
memory write enters MRQ (memory request queue) and
stays there until completion. Bus invalidations are initiated
probabilistically and go through the IOQ as well. HITMs
are also initiated probabilistically and create implicit
writebacks. The writeback of the modified data to memory
and its delivery to the processor over proceed in parallel.
The model also supports deferred bus transactions, but their
need and treatment is clearly dependent on the platform
being modeled.

The chipset cache (L3) is accessed via the bus and
intercepts all processor side accesses to the memory;
however, the PCI side memory accesses do not go through
the L3 cache. Note that the L3 access size is same as the
compression block size, which can be much larger than the
processor cacheline size (512 bytes vs. 64 byte
respectively). It is assumed that the installation of a line in
L3 cache is in its natural units, but the retrieval from the
processor side can be in processor cacheline units. Such a
policy complicates L3 design but minimizes access
latencies. It is further assumed that the L3 cache is dual
ported such that all lookups queue up on one port whereas
data retrievals queue up on another. The lookup is assumed
to be completed in one bus cycle. The L3 peak data rate is
assumed the same that of the memory, but the overall
latency will generally be smaller than that of memory
access. Note that the introduction of L3 cache introduces a
synchronization issue since all accesses to it must return
data in the correct order to the processor. Thus, any hits into
L3 must wait behind a miss of an earlier transaction.

Next, we briefly describe modeling of compression and
decompression. We assume that reading compressed data
from memory and its decompression are pipelined, with
compressed data put into the input buffer of the
decompressor one cacheline at a time. The data is made
available to the processor as soon as the desired cacheline
has been decompressed. The decompression service time is
modeled as a fixed overhead plus a per byte decompression
latency. The assumptions for compression are similar. In
particular, reading data from L3, compressing it, and
writing it to memory are all pipelined. As expected, the
compressed data is put into the memory input buffer one
cacheline at a time.

The model includes several other details in a manner
similar to the ones in [sweb96] in order to handle
performance projections for a variety of configurations. In
particular, the mo del can automatically scale the misses per
instruction (MPI) for L2 cache based on the L2 size and the
throughput level. The scaling allows the MPI’s for the
baseline configuration to be converted to the appropriate
MPIs for the configuration of interest. Since this aspect is
not central to this paper, it is not discussed here. The L3
cache MPI’s were obtained based on separate simulations
of chipset cache fed with SPECweb99 traces. No further
scaling of these MPI’s is done in the model based on L2
size, throughput level or other model parameters. This is
clearly a simplification, but perhaps a reasonable one. The

model can also do a variety of other scaling to account for
factors such as prefetching, cacheline size differences, etc.,
but these again are not central to the discussion here. The
model computes the bus coherence traffic based on a
Markovian model of the MESI protocol that we have
developed.

The model also attempts to do a rather detailed accounting
of memory requirements and computation of the disk IO
rates. Part of this is based on the file caching study of
SPECweb99 in [sweb99]. (Actually, for computational
efficiency, we use a 2-segment spline fit to the results
quoted in [sweb99]). A somewhat surprising observation
here is that file-caching requirements do not dominate
either the overall memory requirements or the disk IO rates;
instead, the dominant factor is the DLL buffers used by the
ISAPI implementation (and the IO resulting from lack of
buffers). ISAPI is required in SPECweb99 to handle the
dynamic content. Scaling of DLL buffer sizes and the
corresponding change in IO rates are computed based on
simple power-law equations derived from a series of
measurements. The size of the system cache is yet another
variable component of the overall memory requirements,
but its size is usually much smaller than the file -cache and
the DLL buffers.

One complexity in estimating disk IO requirements is
“equitable” distribution of available memory between
various buffers (or caches). This essentially amounts to a
proper memory allocation for file-cache and DLL buffers.
An imbalanced memory allocation would overestimate the
disk IO requirements and hence will result in suboptimal
throughput estimate. Based on the measurements, a good
strategy appears to be to cache about 20% of the file-set and
about 40% of the total DLL space required. The model
starts with these as the “claims” and divides the available
memory weighted by these claims. The disk-write rate
estimation also needs to include HTTP log writes and
POST log writes; these parts are usually fixed and easily
estimated.

The throughput impact of disk IO is difficult to estimate
accurately. The three basic quantities needed in estimating
workload throughput are path-length, MPI and access
latencies. Disk I/O may alter all these quantities. In
particular, a higher disk IO per transaction implies:

• More I/O management overhead and more threads
required => Increased path-length.

• More context switches and cache flushes =>
Higher MPI.

• Greater chance of not being able to hide the I/O
latency => Increased CPU stalls.

The path-length impact is relatively straightforward in that
the path-length can be adjusted linearly based on the
number of IO’s/transaction and path-length per IO. We
model the other two impacts indirectly via an increase in
CPI (cycles/instruction). In particular, we use the following
equation:

CPItot = CPImem + BFdisk* MPImem* LATdisk

where
BFdisk: Fraction of disk read latency that is visible to
CPU.
MPImem: Memory access MPI (misses out of memory
resulting in a disk block read).
LATdisk: Latency for one disk read operation.
CPImem : Total CPI assuming infinite memory.

The MPImem is easily estimated from the disk read rate and
path length and LATdisk is estimated directly from the
model. Finally, BFmem estimated by matching measured &
projected throughputs for a set of memory sizes. Because of
heavy measurement dependencies and inadequate
validation across more than one IO subsystem, it is not
clear how generally applicable this CPI estimation approach
is. However, the projections done for the system under
measurements estimated the IO impact quite accurately.

Given the overall path-length and CPI, the workload
throughput can be computed easily. (Note that for
SPECweb99, the real metric is simultaneous connections,
which is closely related to the throughput. In particular, we
consistently found about 2.8 trans/sec per simultaneous
connection.)

Although the model is built around a simulation package, it
is primarily solved analytically by assuming product form
and treating each queue as a GI/D/1 or GI/G/1 queue, as
appropriate. The blocking delay in IOQ is difficult to
estimate accurately – a simple Erlang-C type of formula is
used to estimate the blocking probability and hence the
additional latency due to IOQ being full. The entire analysis
requires iteration since most of the parameters (MPIs,
memory requirements, disk I/O, blocking delays, etc.)
depend on the throughput (the final outcome of the model).
We have devised an iterative procedure that has been found
to converge quickly in all cases except when the bottleneck
device utilizations reach unsustainable levels. The entire
model has been validated using a number of measurements
available on both Intel Pentium III and 4 platforms.

2.2 Sample Results from the Model

For generating the results quoted in this section, an
important parameter is the CDC access path-length for
retrieving a disk block as opposed to doing an actual IO.
We assume that this path-length is 30% that of disk IO
path-length based on some prototype implementations of
ram-disk type of capability; however, a better estimate is
necessary to be sure. With the CDC-OPT implementation,
access to the data in the CDC involves much fewer
instructions (basically 2 DMA setups/completions plus
lookup in translation tables in case of a TLB miss). Data
writes into the CDC also involves very few instructions.
The precise instruction count has not been determined for
these results, instead, the minimum possible instructions
were assumed. Thus, the improvement shown here by CDC-
OPT over CDC-FD may be somewhat overstated. Latency

implications of CDC access are also accounted for in the
model, but the latency impact on CPI turns out to be very
small in almost all the cases.

Tables 1-3 show some sample results obtained from this
model w/ and w/o compression. Instead of considering a
current platform for this evaluation, we thought that might
be more useful to consider a more futuristic platform.
Accordingly we considered a hypothetical Intel
Pentium\TM IV based platform with a 6.0 GHz processor, 1
MB second-level (L2) cache, 266 MHz bus and a DDR 533
memory. These numbers are essentially double of current
values -- they are not based on any actual future platform
and no effort was made to account for architectural
differences from current platforms. The disk subsystem is
also assumed to be twice as fast as the system on which
model calibration is based both in seek/rotation delays and
data transfer rate.

As stated earlier, we assume the use of X-match-pro
algorithm for FMC for reasons of much lower
cost/complexity. For CDC, LZ77 is a better choice,
however, in order to show a side-by-side comparison with
the same algorithm, we show the performance with X-
match-pro as well. The used compression algorithm is
shown in the Tables within parenthesis as “X” or “L” in the
compression ratio column.

The columns and values listed in the following tables are as
follows:

• Compression technique: Following possibilities
are examined
1. Base: Baseline case (no compression, 1 MB

L2 cache).
2. Large L2: Baseline case with 2 MB L2 cache.

This situation quantifies L2 related
performance delta as compared to
compression related delta.

3. CDC-OPT: CDC-OPT implementation with
the given main memory cache size.

4. CDC-FD: CDC-FD implementation with the
given main memory cache size.

5. FMC: FMC implementation with the given
chipset cache size and latency.

6. None: No compression but with the given
chipset cache size and latency. This situation
quantifies pure chipset cache related
performance delta as opposed to the
compression related delta.

• Memory size: Total physical memory in MB (held
constant for all variants).

• Block size: Compression block size (same as
chipset cache line size for FMC).

• Compression ratio: Achieved average
compression ratio.

• Cache size: This refers to the size of disk cache for
CDC and chipset cache size for FMC. Each CDC
scenario considers two cache sizes: (a) Max cache
size that yields the peak performance, and (b) Max

size such that the performance drops only about
0.5% below the peak. The motivation for (b) is to
maximize the compressed memory w/o hurting the
performance.

• Cache latency: This refers to the disk cache (i.e.,
main memory) latency for CDC and to chipset
cache latency for FMC. Also, this represents only
the pure-delay component of the latency in
memory clocks. The queuing part (which
determines the bandwidth) is 2 memory clocks per
processor cacheline. This part, along with memory
dead clocks, address & data bus latencies, and
queuing latencies make up the total memory
access latency, but that is not reported here.

• SWEB99 opcount : Estimated ops/sec from the
model. (The real SPECweb99 performance metric
is simultaneous connections; generally one gets
very close to 2.8 ops/sec per connection.)

• Real memory: Total memory that the system sees
(including the effect of compression).

• Memory savings: Computed as real_memory/
physical_memory - 1

• Perf delta wrt base: Percentage performance delta
over the base case (no compression, no chipset
cache).

In the following, 3 cases are shown to exhibit the impact of
memory size and memory channel bandwidth.

Case 1: Small memory size (4 GB) and limited
memory bandwidth (1 channel1).

Case 2: “Reasonable” memory size (8 GB) but limited
memory bandwidth (1 channel).

Case 3: “Reasonable” memory size (8 GB) and
adequate memory bandwidth (2 channels).

Major observations for Table 1 :

1. FMC wins hands down in this scenario (but it
requires a CDE 2-4 times as fast as the other
techniques). With a slower CDE, the performance
advantage will go down.

2. Since CDC works with much larger compression
block size (4KB vs 256B) it enjoys better
compressibility and hence can match the memory
saving achieved by FMC.

3. Since CDC can easily use the LZ77 compression
algorithm (which is quite expensive to implement
in FMC context), CDC can actually beat FMC in
terms of memory savings!

4. The performance boost due to just a large L2 is
muted by the fact that the system is disk IO
bandwidth limited and large L2 only serves to
increase the IO traffic. Consequently,

1 Depending on the chipset architecture, a “channel” may
retrieve only a portion of a cacheline. Here by channel, we
mean a “parallel server”, i.e., all physical channels that
collectively deliver one cacheline are considered to form
one logical channel.

compression can yield better performance than a
large L2.

5. FMC yields better performance than just the
chipset cache because the compression decreases
the disk BW requirements.

Table 1 Relative performance of various techniques w/ limited memory size & BW

Case1: 4 GB physical memory, 1 channel
Comp Memory block comp cache cache SWEB99 Real Memory Perf delta
tech. size (MB) size (B) ratio size (MB) latency opcount mem (MB) savings wrt base
Base 4096 64 1(none) 0 10clks 10986 4096 0% 0.0%
Large L2 4096 64 1(none) 0 10clks 12581 4096 0% 14.5%
CDC-OPT 4096 4096 3.33(X) 2400 10clks 12416 9688 137% 13.0%
CDC-OPT 4096 4096 3.33(X) 2600 10clks 12350 10154 148% 12.4%
CDC-OPT 4096 4096 4.76(L) 2100 10clks 12725 11992 193% 15.8%
CDC-OPT 4096 4096 4.76(L) 2500 10clks 12569 13496 229% 14.4%
CDC-FD 4096 4096 3.33(X) 2300 10clks 11831 9455 131% 7.7%
CDC-FD 4096 4096 3.33(X) 2600 10clks 11770 10154 148% 7.1%
CDC-FD 4096 4096 4.76(L) 1600 10clks 12107 10112 147% 10.2%
CDC-FD 4096 4096 4.76(L) 2100 10clks 12035 11992 193% 9.5%
FMC 4096 256 2.33(X) 16 4clks 14044 9544 133% 27.8%
FMC 4096 256 2.33(X) 32 4clks 14629 9544 133% 33.2%
FMC 4096 256 2.33(X) 32 8clks 14052 9544 133% 27.9%
None 4096 256 2.33(X) 16 4clks 12299 4096 0% 12.0%
None 4096 256 2.33(X) 32 4clks 12345 4096 0% 12.4%
None 4096 256 2.33(X) 32 8clks 12072 4096 0% 9.9%

Table 2 Relative performance of various techniques w/ limited memory BW

Case2: 8 GB physical memory, 1 channel
Comp Memory block comp cache cache SWEB99 Real Memory Perf delta
tech. size (MB) size (B) ratio size (MB) latency opcount mem (MB) savings wrt base

Base 8192 64 1(none) 0 10clks 13528 8192 0% 0.0%
Large L2 8192 64 1(none) 0 10clks 16653 8192 0% 23.1%
CDC-OPT 8192 4096 3.33(X) 5000 10clks 14363 19842 142% 6.2%
CDC-OPT 8192 4096 3.33(X) 6200 10clks 14280 22638 176% 5.6%
CDC-OPT 8192 4096 4.76(L) 4500 10clks 14456 25112 207% 6.9%
CDC-OPT 8192 4096 4.76(L) 5600 10clks 14382 29248 257% 6.3%
CDC-FD 8192 4096 3.33(X) 2600 10clks 14037 14250 74% 3.8%
CDC-FD 8192 4096 3.33(X) 4000 10clks 13966 17512 114% 3.2%
CDC-FD 8192 4096 4.76(L) 2500 10clks 14113 17592 115% 4.3%
CDC-FD 8192 4096 4.76(L) 4000 10clks 14036 23232 184% 3.8%
FMC 8192 256 2.33(X) 16 4clks 14800 19087 133% 9.4%
FMC 8192 256 2.33(X) 32 4clks 15527 19087 133% 14.8%
FMC 8192 256 2.33(X) 32 8clks 14834 19087 133% 9.7%
None 8192 256 2.33(X) 16 4clks 15240 8192 0% 12.7%
None 8192 256 2.33(X) 32 4clks 15384 8192 0% 13.7%
None 8192 256 2.33(X) 32 8clks 14699 8192 0% 8.7%

Major observations for Table 2 :

1. FMC again shows better performance than CDC,
however, FMC performance is mostly a result of the
chipset cache. Note that unlike case1, the decrease in
disk BW requirements because of FMC no longer
yields any significant benefit. Consequently, a system
with just the chipset cache does almost as well or
better as FMC.

2. A large L2 gives a huge performance boost since IO
is no longer a limitation and the memory BW
bottleneck is eased by the large L2. The performance
with large L2 is better than that obtained by any kind
of compression.

3. CDC again yields excellent memory savings and
beats out FMC in this regard if LZ77 compression
algorithm is considered.

Table 3 Relative performance of various techniques w/ adequate memory size & BW

Case3: 8 GB physical memory, 2 channels
Comp Memory block comp cache cache SWEB99 Real Memory Perf delta
tech. size (MB) size (B) ratio size (MB) latency opcount mem (MB) savings wrt base

Base 8192 64 1(none) 0 10clks 14559 8192 0% 0.0%
Large L2 8192 64 1(none) 0 10clks 17075 8192 0% 17.3%
CDC-OPT 8192 4096 3.33(X) 4800 10clks 15699 19376 137% 7.8%
CDC-OPT 8192 4096 3.33(X) 6000 10clks 15615 22172 171% 7.3%
CDC-OPT 8192 4096 4.76(L) 4300 10clks 15823 24360 197% 8.7%
CDC-OPT 8192 4096 4.76(L) 5600 10clks 15739 29248 257% 8.1%
CDC-FD 8192 4096 3.33(X) 2400 10clks 15381 13784 68% 5.6%
CDC-FD 8192 4096 3.33(X) 4000 10clks 15296 17512 114% 5.1%
CDC-FD 8192 4096 4.76(L) 2800 10clks 15472 18720 129% 6.3%
CDC-FD 8192 4096 4.76(L) 4000 10clks 15389 23232 184% 5.7%
FMC 8192 256 2.33(X) 16 4clks 13742 19087 133% -5.6%
FMC 8192 256 2.33(X) 32 4clks 14283 19087 133% -1.9%
FMC 8192 256 2.33(X) 32 8clks 13729 19087 133% -5.7%
None 8192 256 2.33(X) 16 4clks 15281 8192 0% 5.0%
None 8192 256 2.33(X) 32 4clks 15406 8192 0% 5.8%
None 8192 256 2.33(X) 32 8clks 14719 8192 0% 1.1%

Major observations for Table 3 :

1. Since there is no memory size or BW shortage in this
case, FMC has little to exploit and actually gives
performance worse than the base case!

2. CDC still provides a moderate gain because of its
ability to further reduce IO without too much
overhead.

3. CDC once again saves more memory than FMC. This
indicates that compressing the entire memory is not
essential for achieving a good memory savings.

4. A large L2 gives much better performance than any
of the compression schemes .

The last observation implies that if there are no significant
memory or IO BW limitations to exploit, a large processor
cache works provides a better way of boosting performance
than memory compression. However, the memory cost and
power saving potential of memory compression still remains.

3. Conclusions and Discussion

With FMC, the CDE (Codec + MMU) must necessarily be
located close to the memory since the latencies associated with
other locations would be highly detrimental to performance.
Two possible locations in these cases are the memory
controller or right on the DIMM. However, with CDC, the
decompression is needed only on a miss in regular memory,
which makes it far less latency sensitive. In this case, it is not
critical to locate CDE close to memory controller; instead, it
could either be implemented inside an IO bridge. Assuming a
2 GB/sec IO interface between the memory controller and the
IO bridge and fully pipelined DMA capability, the round-trip
latency for a processor cacheline would be in a few hundred
nanosecond range (this includes queuing delays on the IO bus
and the chipset). Such a latency addition is much smaller than
the base latency (in several µs range) and appears to have a

negligible performance impact.2 However, if the
implementation requires a complete disk block to be
transferred across the wire at any point before processing can
start, the latency addition may be too much.

Implementing the CDE as a discrete device hanging off an IO
bridge will experience another few hundred ns latency, but it
opens up CDE for easy enhancements and innovations
including running multiple algorithms in parallel, streaming
buffers, speculative decompression, larger buffers for
translation tables, more sophisticated storage management,
etc.

Disk compression opens up the possibility of supporting end-
to-end compression in a very flexible way. For example data
on the disk and data arriving into the NIC may or may not be
in the compressed form; the CDE can compress/decompress it
as needed. The same holds for data being written to disk or
being sent out on the network. If much of the disk and network
I/O is in compressed form, the scheme enables increased I/O
BW (or alternately, cost and power savings by allowing the
use of lower BW I/O subsystems).

Acknowledgements : Ravi Iyer performed detailed chipset-
cache simulations with SPECweb99 traces in order to generate
miss-ratio and coherence data necessary for the modeling
presented in this paper. Raed Kanjo The author would like to
express his appreciation for feedback on this work from
Warren Morrow, Yamada Koichi, Ravi Iyer and Nitin Singhvi.

4. References

[ibm-mxt] B. Abali, H. Franke, S. Xiaowei, et.al.,

``Performance of hardware compressed main memory'',
The Seventh International Symposium on High-
Performance Computer Architecture, 2001, (HPCA2001),
pp. 73 -81

[ibm-lz] D.J. Craft, “A fast hardware data compression
algorithm and some algorithmic extensions”', IBM
Journal of R\&D, Vol 42, No 6.

[sweb99] K. Kant and Y. Won, ``Performance Impact of
Uncached File Accesses in SPECweb99'', Proceedings of
2nd IEEE Workshop on workload characterization,
Austin TX, Oct 1999. (Published by Kluver).

[sweb96] K. Kant and C.R.M. Sundaram, ``A Server
Performance Model for Static Web Workloads'',
Proceedings of International Symposium on Performance
Analysis of Systems and Software (ISPASS 2000), April
2000.

2 The main performance advantage of CDC-OPT comes from
the reduced path length and far lower latency than disk
accesses; a small increase in latency (a few hundred ns on top
of a base latency of several microseconds) has little impact on
performance.

[charac] M. Kjelso, M. Gooch, S. Jones, ``Empirical study of
memory-data: characteristics and compressibility'', IEE
Proceedings on Computers and Digital Techniques, Vol
145, No 1, Jan. 1998, pp. 63 –67

[x-match] M. Kjelso, M. Gooch, S. Jones, `` Design and
performance of a main memory hardware data
compressor'', Proceedings of the 22nd EUROMICRO
Conference, Beyond 2000: Hardware and Software
Design Strategies, 1995, pp. 423 -430

[selective] Jang-Soo Lee, Won-Kee Hong, Shin-Dug Kim,
``An on-chip cache compression technique to reduce
decompression overhead and design complexity'', Journal
of systems Architecture, Vol 46, 2000, pp 1365-1382.

[page-cache1] S. Roy, R. Kumar, M. Prvulovic, ``Improving
system performance with compressed memory'',
Proceedings 15th International Parallel and Distributed
Processing Symposium, Apr 2001, pp. 630 -636

[pinnacle] R.B. Tremaine, T.B. Smith, et. al., ``Pinnacle: IBM
MXT in a memory controller chip'', IEEE Micro, March-
April 2001, pp 56-68.

[page-cache2] P.R. Wilson, S.F. Kaplan and Y. Smaragdakis,
``The case for compressed cache in virtual memory
systems'', Proc. USENIX 1999.

[lz-77] J. Ziv and A. Lempel, ``A universal algorithm for data
compression'', IEEE trans. on information theory, Vol IT-
23, No 3, pp 337-343, May 1977.

