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Abstract: This paper presents a comparative study of three 
different memory compression schemes, full memory 
compression and two forms of compressed disk cache. The full 
memory compression maintains all of the primary storage in 
compressed form whereas the compressed disk cache 
compresses only the memory pages that would otherwise be 
“freed” (and thus the corresponding content retrieved from 
disk on a later access). The two forms of the latter scheme 
considered are a purely software solution and a hardware 
assisted solution.  The paper discusses the advantages and 
disadvantages of each scheme and evaluates their relative 
performance via a detailed platform model for SPECweb99 
benchmark. The results indicate that the compressed disk 
cache scheme is not only much cheaper than full memory 
compression, but can also be quite effective in spite of its 
limited scope. 
 
 

1. Introduction 
 
Memory compression has been considered as a technique 
for delivering following potential benefits to the 
commercial server segment: 

• Significant savings in memory costs for large and 
medium servers. 

• Savings in physical space, required power, and 
thermal dissipation by the memory subsystem for 
high-density servers. 

• Reliance on lower performance disk subsystems 
through the use of the compressed disk cache 
technique, significantly lowering total system cost. 

• Improved efficiencies through reduced memory 
and I/O subsystem BW requirements and costs 
from the application of compression end-to-end. 

 
Whether and to what extent these potential benefits are 
actually achieved depends on the implementation details, 
which are explored in this paper. Two major variants of 
memory compression have been explored in the past: (a) 
full memory compression (FMC) and compressed disk 
cache (CDC).  A brief overview of the requirements of 
these is included here.  
 
 
1.1    Full Memory Compression (FMC) 
 
 Full memory compression keeps the entire memory 
compressed (with the possible exception of some 
specialized regions such as DMA). In order to localize the 
changes needed to support compressed memory, the O/S 

initializes the system with certain amount of uncompressed 
memory (e.g., twice the physical memory) and all accesses 
are to this real address space.  The accessed addresses are 
eventually converted to the compressed space addresses 
(physical address space) by the memory controller before 
the actual access is initiated. The access would retrieve the 
compressed memory block, decompress it and provide it to 
the processor. Since decompression is a slow process, 
acceptable performance requires a chipset cache that 
maintains the recently used uncompressed data. FMC is 
best illustrated by IBM’s MXT (memory extension 
technology) that includes the following components [ibm-
mxt, pinnacle]: 

1. 32 MB of fast (SRAM) chipset cache. 
2. Memory compressed in blocks of 1 KB size. 

Compressed blocks are stored using 1-4 segments, 
each of size 256 bytes. 

3. A compressed block is accessed via a header entry 
that contains pointers to the 4 segments and other 
relevant information. For blocks that compress to 
64:1 or better, it also allows for an “immediate 
data” type of representation (in which case all 4 
segment pointers would be null). 

4. The chipset provides a hardware compression-
decompression unit (henceforth called Codec) 
based on a variant of the LZ77 compression 
algorithm [ibm-lz]. 

5. The chipset also provides the TLB (similar to 
paging TLB) for address translation between real 
and physical address spaces. 

 
Since FMC involves “in-line” decompression, low 
decompression latency is a lot more important than the 
compressibility. A detailed modeling of the FMC scheme 
shows that a small compression block size is preferable 
from the latency perspective (except that a small size would 
lead to larger address translation tables and hence a poorer 
TLB hit ratio for the same TLB size). A block size of 256 
bytes appears to be near optimal from the performance 
perspective.  A chipset cache with no-load latencies that are 
50-75% of memory access latencies and a size in the range 
of 16-32 MB appears essential to mitigate the latencies of 
decompression and achieve about the same level of 
performance as the case with increased physical memory 
(and no compression). 
 
The MXT solution uses a highly parallelized 
implementation of the traditional LZ77 file compression 
algorithm [ibm-lz, lz-77].  Although a codec based on this 



 

algorithm is expensive, it achieves better compressibility 
than other algorithms that are especially designed with 
hardware implementation in mind. In particular, the X-
match pro  algorithm works with 4 bytes at a time and also 
encodes partial matches [x-match].  Furthermore, run-
length encoding is used for repetitive strings. A Codec 
based on this algorithm is claimed to provide a similar 
decompression rate at a much lower cost, however, the 
compression ratio achieved by this algorithm is usually 
significantly lower than that achieved by LZ77. In our 
performance comparisons in section 2, we assume the use 
of  X-match-pro algorithm for FMC since the cost of a 
highly parallelized LZ77-based Codec would make FMC 
unattractive.   
 
As stated above, MXT compresses memory in 1 KB blocks 
and stores compressed blocks using up to four 256 byte 
segments.  These segments could be located anywhere in 
the physical memory and are accessed using 4 pointers in 
the header part of each block.  Although this generality 
avoids storage fragmentation, up to 4 separate accesses may 
be needed to retrieve the entire block. An alternate scheme 
is to attempt to store all segments of a block contiguously. 
This allows for a shorter header and more efficient access.  
However, the implementation must deal with storage 
fragmentation and the cost of fat-writes (i.e., an increase in 
compressed block size when it is modified and written 
back, thereby requiring reallocation in a different place).  
 
 
1.2  Compressed Disk Cache (CDC) 
 
Compressed disk cache is intended to act as a buffer 
between the main memory and the disk.  A portion of the 
main memory is designated as a CDC, and memory pages 
evicted from the regular memory are compressed and stored 
in the CDC so that future accesses to these pages can avoid 
disk I/O (so long as these pages have not been evicted out 
of CDC).  Thus, only the misses out of CDC require disk 
I/O. Generally, evicted dirty pages are not written to CDC 
directly; instead such pages are queued up for writing to 
disk and thereby made “clean”. This avoids a direct IO 
to/from the CDC space.  
 
Several flavors of CDC have been examined in the past 
[page-cache1, page-cache2].  The most limited use is in 
form of a compressed swap cache, where hard page faults 
are intercepted to look for the required page in the cache, 
and freed clean pages are posted into the cache.  Such an 
approach may be useful for workstation applications under 
severe memory limitations, but is generally not useful for 
server applications that typically manage their paging 
activity carefully.  A more general use of CDC involves 
storing not only the pages freed by the paging activity but 
also the files evicted out of the OS file cache. In Microsoft 
Windows, the swap file is cached like an ordinary file in the 
file cache, so a compressed file cache can easily hold pages 
evicted by both the memory manager and the file cache 
manager (FCM).  In general, a compressed disk cache 

should be able to hold pages evicted from any of the IO 
buffering agents including the buffer cache manager (BCM) 
of a DBMS, web cache manager (WCM) of a web server, 
OS file cache manager (FCM), etc.  In any case, due to a 
large space needed for the compressed disk cache, a 
dynamic cache size adjustment is necessary to ensure that 
the CDC does not starve the caches maintained by OS or 
application.    
 
It is clear from the above that in order to be universally 
useful, the CDC must be usable by not only the OS but also 
any application that does large scale IO caching. This 
implies the need for a uniform API for invoking the CDC 
functionality. For simplicity, from now on we only speak of 
CDC used to maintained pages evicted from the OS file 
cache; however, the need for a general interface must be 
kept in mind. 
 
It should be clear that CDC would be a worthwhile 
approach only if (a) a substantial portion of the main 
memory is occupied by some kind of IO cache, and (b) the 
workload can benefit from the availability of extra memory.  
Both of these conditions are generally true for servers. If 
the memory manager led page evictions are also covered by 
the CDC (as would be the case in MS Windows), these 
conditions also apply whenever the workload requires huge 
amounts of memory that causes substantial paging. In other 
cases, CDC wouldn’t be very useful. Note that FMC could 
be beneficial for a wider spectrum of applications since it 
requires condition (b) only. 
  
CDC helps improve performance in two ways: (a) 
Significantly lower latency associated with page retrieval 
from CDC, and (b) Reduced path-length associated with 
this retrieval. With respect to (b), it is possible to consider 
two variants of CDC: 

1. CDC-FD: In this case, CDC is implemented 
purely as a “filter driver”, i.e., it intercepts the IO 
requests and satisfies them out of the CDC w/o 
explicit knowledge of the OS. The 
compression/decompression is assumed to be 
implemented in hardware and is treated like a 
DMA capable IO device. All management of the 
compressed address space is done in software. 

2. CDC-OPT: This is an optimized version of CDC-
FD where (a) Lookup & address translation are 
accelerated via extra hardware, and (b) File cache 
manager (FCM) is aware of the CDC and thus can 
work with it directly. 

 
For convenience, all hardware associated with 
compression/decompression (Codec, address translator, 
buffers, etc.) is referred to as compression decompression 
engine (CDE) . The basic motivation for considering CDC-
OPT is to minimize the path-length and MPI impact 
associated with accessing the compressed cache. The 
latency reduction over CDC-FD is not expected to yield any 
measurable benefit (since the access latency of a DMA 
capable CDC-FD implementation is already in several 
microsecond range, which is far smaller than the IO 



 

latency). A possible implementation of CDC-OPT has been 
worked out but not included here for brevity.  
 
1.3  Relative merits and architectural options  

 
It is instructive to do a gross comparison of the 3 techniques 
introduced above. The major points regarding full memory 
compression are as follows: 

+ Can double or triple available memory => 
Significant memory savings. 
− Very expensive to implement  

• A large and fast chipset cache. 
• In-line operation => Needs very fast Codec  
• Fast address translation paraphernalia (TLB, 

translation tables, etc.) 
− Latency considerations favor small block sizes 

• Small block size => poorer compressibility 
(e.g., 3X @ 4 KB vs. 2X @ 128B). 

• Large space requirements for address 
translation tables. 

 
The major points regarding either form of disk compression 
are as follows: 

+ No chipset cache is required (large savings in 
gates) => Relatively inexpensive hardware. 
+ Software is straightforward for CDC-FD (disk IO 
request interceptor, no O/S impact). 
− Significant O/S impact of CDC-OPT (change in 
file-caching component of the OS, etc.). 
+ Accessed on a miss in regular memory => 

• Use of a large compression block size (e.g., 
memory page size) is okay. 

• Slower but more effective compression 
algorithms (LZ77 vs. X-match-pro) okay. 

+ Large compression block size => Good 
compressibility & easier space management. 
-? Less savings in memory & power and 
correspondingly less performance than FMC. 

 
The reason for a question mark on the last item is that our 
study indicates that it not always the case that CDC 
performs poorer than FMC. In fact, as shown in the 
following, CDC-OPT can actually do better than  FMC in 
certain situations. 
 
With both memory compression techniques, there are 
several implementation variants that one could consider. 
For example, with full memory compression, there are 
multiple choices relative to the location of the chipset cache 
(embedded in memory controller vs. external), location of 
CDE (embedded in memory controller vs. on DIMM), 
storage schemes for compressed segments (contiguous vs. 
non-contiguous allocation), and chipset cache management 
granularity (in terms of simply the compression block size, 
or the finer processor cacheline size).  One could also 
consider speculative decompression schemes in order to 
reduce access latency at the cost of greater complexity.  

CDC has similar choices including location of CDE 
(integrated with memory controller, integrated with DIMM, 
integrated with an IO bridge, or as a separate device), and 
different schemes for data transfer between compressor 
input/output buffer & normal memory. Two possibilities in 
the latter case are: (a) Copying under processor control 
(programmed I/O model), and (b) Specialized DMA engine 
for data transfer. 
 
 

2. SPECweb99 performance modeling 
results 
 
The performance of MXT has been reported in several 
research publications [ibm-mxt, pinnacle]. They report 
results from experiments conducted on dual-processor 
systems w/ and w/o MXT running database workloads and 
using estimation tools on live production servers running 
web server workloads. They report a compressibility of 
2.68 for their database workload (running an insurance 
company schema on a DB2 database) and an estimated 
compressibility of 2.1 (for a live web server workload). In 
overall performance, they show that their database 
workload runs 25% (1GB memory size) and 66% (512MB 
memory size) faster w/ MXT enabled. However, they also 
mention that in these cases the system was memory starved. 
They also report observing similar memory-dependent 
performance benefits with the SPECweb99 benchmark 
(45% performance improvement when increasing memory 
from 256MB to 512MB).  In this paper, we concentrate 
only on SPECweb99, although we did obtain some rather 
simplistic results on TPC-C like database which show about 
6.5% performance improvement for 4GB system, and 3.5% 
for 16 GB system. 
 
2.1 SPECweb99 Performance Model 
 
The results in this section are based on a detailed model of 
SPECweb99 benchmark that includes support for both 
FMC and both versions of CDC. The model is based on a 
number of measurements on both Intel Pentium\TM III and 
IV systems using Microsoft IIS5 as the web server. The 
model includes the impact of disk I/O both in terms of path 
length and the IO latency based on a set of measurements 
with different amounts of installed main memory. The basic 
model, similar to the one in [kant-sweb96], includes CPUs, 
processor bus, memory channels, IO busses (chip-to-chip 
interconnects and PCI), network and disk adapters. The 
internals of the CPU and the processors caches are not 
modeled; instead, a high level model coupled with the 
explicit calculation of MPIs and bus coherence traffic is 
used. The compression support includes compressor & 
decompressor units , chipset (or “L3” cache) and memory 
and bus traffic & latency impact of these resources. It is 
assumed that the L3 cache is dual-ported thereby allowing 
lookup and retrieval to progress in parallel. The L3 cache is 
also assumed to have mixed granularity, i.e., on a miss, a 
complete block is brought and installed into the cache, 



 

however, lookups and retrieval can occur in the units of 
processor cacheline size.  
 
In the following we briefly discuss some major points 
regarding the model. A comprehensive discussion of the 
model is beyond the scope of the paper.  
 
Basically, the model is a transaction level queuing model of 
a typical SPECweb99 setup. It assumes a number of client 
machines, each represented by a single queue. Each client 
runs a number of processes, each of which cycles through 
sleeping, generating a request, and waiting for the response 
(or file) from the server. The client is connected to the 
server via an Ethernet network, which is modeled rather 
simplistically in terms of pure delay & queuing delays. On 
the server side, each process obtains a thread, performs 
request processing, and releases the thread. Processing a 
client request involves the following 6 service phases: 

• Reception of the client request (including PCI 
transfers and memory to memo ry copies). 

• Computation: All processing including host-side 
memory reads/writes. 

• Disk reads and writes (including PCI transfers and 
memory to memory copies). 

• Sending of response to client (including file-cache 
lookup and reading, PCI transfers, memory to 
memory copies for dynamic content). 

Each phase generates 3 auxiliary transactions in the bus-
memory subsystem: 

• Bus invalidation: Required for claiming exclusive 
access to a shared cacheline. This transaction goes 
through address bus only and dies. 

• Implicit Writeback : Generated as a result of a hit-
modified (HITM) situation. In this case, the 
original transaction goes through the FSB and the 
implicit writeback goes through memory pipeline 
and dies. 

• Explicit Writeback: Generated as a result of 
cache eviction of modified data.  

 
For efficiency, the emulation of bus-memory transactions is 
done in “chunks”, i.e., batches of 10’s of cachelines. A side 
effect of this is some additional traffic burstiness that isn’t 
there in reality.  The disk I/O is modeled in units of 4 KB 
blocks (memory page sizes) and network sends in units of 
packets (1.5 KB). The memory-to-memory copies related 
with IO, memory controller-IO hub transfers, and PCI bus 
transfers are also modeled explicitly. In particular, PCI 
transfers are emulated on a burst-by-burst basis.   
 
The model represents address and data busses (ABUS & 
DBUS) as separate queuing stations and memory as a delay 
station in series with a queuing station. The memory 
stations are calibrated based on a 4-stage memory model 
(e.g., RAS, CAS, data access & bus data transfer in case of 
reads). The dead cycles occurring on memory channels and 
DBUS are also modeled. Every read/write memory 
transaction stays in IOQ (in-order queue) until DBUS 
transfer is completed (or until the end of the snoop phase 

for deferred transactions). Following DBUS transfer, a 
memory write enters MRQ (memory request queue) and 
stays there until completion. Bus invalidations are initiated 
probabilistically and go through the IOQ as well. HITMs 
are also initiated probabilistically and create implicit 
writebacks. The writeback of the modified data to memory 
and its delivery to the processor over proceed in parallel. 
The model also supports deferred bus transactions, but their 
need and treatment is clearly dependent on the platform 
being modeled.  
 
The chipset cache (L3) is accessed via the bus and 
intercepts all processor side accesses to the memory; 
however, the PCI side memory accesses do not go through 
the L3 cache.  Note that the L3 access size is same as the 
compression block size, which can be much larger than the 
processor cacheline size (512 bytes vs. 64 byte 
respectively). It is assumed that the installation of a line in 
L3 cache is in its natural units, but the retrieval from the 
processor side can be in processor cacheline units. Such a 
policy complicates L3 design but minimizes access 
latencies. It is further assumed that the L3 cache is dual 
ported such that all lookups queue up on one port whereas 
data retrievals queue up on another.  The lookup is assumed 
to be completed in one bus cycle.  The L3 peak data rate is 
assumed the same that of the memory, but the overall 
latency will generally be smaller than that of memory 
access.  Note that the introduction of L3 cache introduces a 
synchronization issue since all accesses to it must return 
data in the correct order to the processor. Thus, any hits into 
L3 must wait behind a miss of an earlier transaction.  
 
Next, we briefly describe modeling of compression and 
decompression. We assume that reading compressed data 
from memory and its decompression are pipelined, with 
compressed data put into the input buffer of the 
decompressor one cacheline at a time. The data is made 
available to the processor as soon as the desired cacheline 
has been decompressed. The decompression service time is 
modeled as a fixed overhead plus a per byte decompression 
latency. The assumptions for compression are similar. In 
particular, reading data from L3, compressing it, and 
writing it to memory are all pipelined. As expected, the 
compressed data is put into the memory input buffer one 
cacheline at a time. 
 
The model includes several other details in a manner 
similar to the ones in [sweb96] in order to handle 
performance projections for a variety of configurations. In 
particular, the mo del can automatically scale the misses per 
instruction (MPI) for L2 cache based on the L2 size and the 
throughput level. The scaling allows the MPI’s for the 
baseline configuration to be converted to the appropriate 
MPIs for the configuration of interest. Since this aspect is 
not central to this paper, it is not discussed here. The L3 
cache MPI’s were obtained based on separate simulations 
of chipset cache fed with SPECweb99 traces.  No further 
scaling of these MPI’s is done in the model based on L2 
size, throughput level or other model parameters. This is 
clearly a simplification, but perhaps a reasonable one.  The 



 

model can also do a variety of other scaling to account for 
factors such as prefetching, cacheline size differences, etc., 
but these again are not central to the discussion here. The 
model computes the bus coherence traffic based on a 
Markovian model of the MESI protocol that we have 
developed. 
 
The model also attempts to do a rather detailed accounting 
of memory requirements and computation of the disk IO 
rates. Part of this is based on the file caching study of 
SPECweb99 in [sweb99].  (Actually, for computational 
efficiency, we use a 2-segment spline fit to the results 
quoted in [sweb99]).  A somewhat surprising observation 
here is that file-caching requirements do not dominate 
either the overall memory requirements or the disk IO rates; 
instead, the dominant factor is the DLL buffers used by the 
ISAPI implementation (and the IO resulting from lack of 
buffers).  ISAPI is required in SPECweb99 to handle the 
dynamic content. Scaling of DLL buffer sizes and the 
corresponding change in IO rates are computed based on 
simple power-law equations derived from a series of 
measurements.  The size of the system cache is yet another 
variable component of the overall memory requirements, 
but its size is usually much smaller than the file -cache and 
the DLL buffers. 
 
One complexity in estimating disk IO requirements is 
“equitable” distribution of available memory between 
various buffers (or caches).  This essentially amounts to a 
proper memory allocation for file-cache and DLL buffers. 
An imbalanced memory allocation would overestimate the 
disk IO requirements and hence will result in suboptimal 
throughput estimate. Based on the measurements, a good 
strategy appears to be to cache about 20% of the file-set and 
about 40% of the total DLL space required. The model 
starts with these as the “claims” and divides the available 
memory weighted by these claims.  The disk-write rate 
estimation also needs to include HTTP log writes and 
POST log writes; these parts are usually fixed and easily 
estimated. 
 
The throughput impact of disk IO is difficult to estimate 
accurately.  The three basic quantities needed in estimating 
workload throughput are path-length, MPI and access 
latencies. Disk I/O may alter all these quantities. In 
particular, a higher disk IO per transaction implies: 

• More I/O management overhead and more threads 
required => Increased path-length. 

• More context switches and cache flushes => 
Higher MPI. 

• Greater chance of not being able to hide the I/O 
latency => Increased CPU stalls. 

 
The path-length impact is relatively straightforward in that 
the path-length can be adjusted linearly based on the 
number of IO’s/transaction and path-length per IO. We 
model the other two impacts indirectly via an increase in 
CPI (cycles/instruction).  In particular, we use the following 
equation: 

CPItot = CPImem +  BFdisk* MPImem* LATdisk 

where 
BFdisk:     Fraction of disk read latency that is visible to 
CPU. 
MPImem:  Memory access MPI (misses out of memory 
resulting in a disk block read). 
LATdisk:   Latency for one disk read operation. 
CPImem : Total CPI assuming infinite memory. 

 
The MPImem is easily estimated from the disk read rate and 
path length and LATdisk is estimated directly from the 
model. Finally, BFmem estimated by matching measured & 
projected throughputs for a set of memory sizes. Because of 
heavy measurement dependencies and inadequate 
validation across more than one IO subsystem, it is not 
clear how generally applicable this CPI estimation approach 
is. However, the projections done for the system under 
measurements estimated the IO impact quite accurately. 
 
Given the overall path-length and CPI, the workload 
throughput can be computed easily. (Note that for 
SPECweb99, the real metric is simultaneous connections, 
which is closely related to the throughput. In particular, we 
consistently found about 2.8 trans/sec per simultaneous 
connection.)  
 
Although the model is built around a simulation package, it 
is primarily solved analytically by assuming product form 
and treating each queue as a GI/D/1 or GI/G/1 queue, as 
appropriate. The blocking delay in IOQ is difficult to 
estimate accurately – a simple Erlang-C type of formula is 
used to estimate the blocking probability and hence the 
additional latency due to IOQ being full. The entire analysis 
requires iteration since most of the parameters (MPIs, 
memory requirements, disk I/O, blocking delays, etc.) 
depend on the throughput (the final outcome of the model).  
We have devised an iterative procedure that has been found 
to converge quickly in all cases except when the bottleneck 
device utilizations reach unsustainable levels.  The entire 
model has been validated using a number of measurements 
available on both Intel Pentium III and 4 platforms.  
 
2.2 Sample Results from the Model 
 
For generating the results quoted in this section, an 
important parameter is the CDC access path-length for 
retrieving a disk block as opposed to doing an actual IO.  
We assume that this path-length is 30% that of disk IO 
path-length based on some prototype implementations of 
ram-disk type of capability; however,  a better estimate is 
necessary to be sure. With the CDC-OPT implementation, 
access to the data in the CDC involves much fewer 
instructions (basically 2 DMA setups/completions plus 
lookup in translation tables in case of a TLB miss).  Data 
writes into the CDC also involves very few instructions.  
The precise instruction count has not been determined for 
these results, instead, the minimum possible instructions 
were assumed. Thus, the improvement shown here by CDC-
OPT over CDC-FD may be somewhat overstated. Latency 



 

implications of CDC access are also accounted for in the 
model, but the latency impact on CPI turns out to be very 
small in almost all the cases.  
 
Tables 1-3 show some sample results obtained from this 
model w/ and w/o compression.  Instead of considering a 
current platform for this evaluation, we thought that might 
be more useful to consider a more futuristic platform.  
Accordingly we considered a hypothetical Intel 
Pentium\TM IV based platform with a 6.0 GHz processor, 1 
MB second-level (L2) cache, 266 MHz bus and a DDR 533 
memory.  These numbers are essentially double of current 
values -- they are not based on any actual future platform 
and no effort was made to account for architectural 
differences from current platforms. The disk subsystem is 
also assumed to be twice as fast as the system on which 
model calibration is based both in seek/rotation delays and 
data transfer rate. 
 
As stated earlier, we assume the use of X-match-pro 
algorithm for FMC for reasons of much lower 
cost/complexity. For CDC, LZ77 is a better choice, 
however, in order to show a side-by-side comparison with 
the same algorithm, we show the performance with X-
match-pro as well. The used compression algorithm is 
shown in the Tables within parenthesis as “X” or “L” in the 
compression ratio column. 
 
The columns and values listed in the following tables are as 
follows: 

• Compression technique: Following possibilities 
are examined 
1. Base: Baseline case (no compression, 1 MB 

L2 cache). 
2. Large L2: Baseline case with 2 MB L2 cache.  

This situation quantifies L2 related 
performance delta as compared to 
compression related delta. 

3. CDC-OPT: CDC-OPT implementation with 
the given main memory cache size. 

4. CDC-FD: CDC-FD implementation with the 
given main memory cache size. 

5. FMC: FMC implementation with the given 
chipset cache size and latency. 

6. None: No compression but with the given 
chipset cache size and latency.  This situation 
quantifies pure chipset cache related 
performance delta as opposed to the 
compression related delta.  

• Memory size: Total physical memory in MB (held 
constant for all variants). 

• Block size: Compression block size (same as 
chipset cache line size for FMC). 

• Compression ratio: Achieved average 
compression ratio. 

• Cache size: This refers to the size of disk cache for 
CDC and chipset cache size for FMC.  Each CDC 
scenario considers two cache sizes: (a) Max cache 
size that yields the peak performance, and (b) Max 

size such that the performance drops only about 
0.5% below the peak. The motivation for (b) is to 
maximize the compressed memory w/o hurting the 
performance. 

• Cache latency: This refers to the disk cache (i.e., 
main memory) latency for CDC and to chipset 
cache latency for FMC. Also, this represents only 
the pure-delay component of the latency in 
memory clocks.  The queuing part (which 
determines the bandwidth) is 2 memory clocks per 
processor cacheline. This part, along with memory 
dead clocks, address & data bus latencies, and 
queuing latencies make up the total memory 
access latency, but that is not reported here. 

• SWEB99 opcount : Estimated ops/sec from the 
model. (The real SPECweb99 performance metric 
is simultaneous connections; generally one gets 
very close to 2.8 ops/sec per connection.) 

• Real memory: Total memory that the system sees 
(including the effect of compression). 

• Memory savings: Computed as real_memory/ 
physical_memory - 1 

• Perf delta wrt base: Percentage performance delta 
over the base case (no compression, no chipset 
cache). 

 
In the following, 3 cases are shown to exhibit the impact of 
memory size and memory channel bandwidth.  

Case 1:  Small memory size (4 GB) and limited 
memory bandwidth (1 channel1). 

Case 2: “Reasonable” memory size (8 GB) but limited 
memory bandwidth (1 channel).    

Case 3: “Reasonable” memory size (8 GB) and 
adequate memory bandwidth (2 channels).    

 
Major observations for Table 1 :  

1. FMC wins hands down in this scenario (but it 
requires a CDE 2-4 times as fast as the other 
techniques).  With a slower CDE, the performance 
advantage will go down.   

2. Since CDC works with much larger compression 
block size (4KB vs 256B) it enjoys better 
compressibility and hence can match the memory 
saving achieved by FMC. 

3. Since CDC can easily use the LZ77 compression 
algorithm (which is quite expensive to implement 
in FMC context), CDC can actually beat FMC in 
terms of memory savings! 

4. The performance boost due to just a large L2 is 
muted by the fact that the system is disk IO 
bandwidth limited and large L2 only serves to 
increase the IO traffic.  Consequently, 

                                                 
1 Depending on the chipset architecture, a “channel” may 
retrieve only a portion of a cacheline. Here by channel, we 
mean a “parallel server”, i.e., all physical channels that 
collectively deliver one cacheline are considered to form 
one logical channel. 



 

compression can yield better performance than a 
large L2. 

5. FMC yields better performance than just the 
chipset cache because the compression decreases 
the disk BW requirements. 

 

 
Table 1 Relative performance of various techniques w/ limited memory size & BW 
 

Case1: 4 GB physical memory, 1 channel 
Comp Memory block comp cache cache SWEB99 Real Memory Perf delta 
tech. size (MB) size (B) ratio size (MB) latency opcount mem (MB) savings wrt base 
Base 4096 64 1(none) 0 10clks 10986 4096 0% 0.0% 
Large L2 4096 64 1(none) 0 10clks 12581 4096 0% 14.5% 
CDC-OPT 4096 4096 3.33(X) 2400 10clks 12416 9688 137% 13.0% 
CDC-OPT 4096 4096 3.33(X) 2600 10clks 12350 10154 148% 12.4% 
CDC-OPT 4096 4096 4.76(L) 2100 10clks 12725 11992 193% 15.8% 
CDC-OPT 4096 4096 4.76(L) 2500 10clks 12569 13496 229% 14.4% 
CDC-FD 4096 4096 3.33(X) 2300 10clks 11831 9455 131% 7.7% 
CDC-FD 4096 4096 3.33(X) 2600 10clks 11770 10154 148% 7.1% 
CDC-FD 4096 4096 4.76(L) 1600 10clks 12107 10112 147% 10.2% 
CDC-FD 4096 4096 4.76(L) 2100 10clks 12035 11992 193% 9.5% 
FMC 4096 256 2.33(X) 16 4clks 14044 9544 133% 27.8% 
FMC 4096 256 2.33(X) 32 4clks 14629 9544 133% 33.2% 
FMC 4096 256 2.33(X) 32 8clks 14052 9544 133% 27.9% 
None 4096 256 2.33(X) 16 4clks 12299 4096 0% 12.0% 
None 4096 256 2.33(X) 32 4clks 12345 4096 0% 12.4% 
None 4096 256 2.33(X) 32 8clks 12072 4096 0% 9.9% 

 
 
 
Table 2 Relative performance of various techniques w/ limited memory BW 
 

Case2: 8 GB physical memory, 1 channel   
Comp Memory block comp cache cache SWEB99 Real Memory Perf delta 
tech. size (MB) size (B) ratio size (MB) latency opcount mem (MB) savings wrt base 

Base 8192 64 1(none) 0 10clks 13528 8192 0% 0.0% 
Large L2 8192 64 1(none) 0 10clks 16653 8192 0% 23.1% 
CDC-OPT 8192 4096 3.33(X) 5000 10clks 14363 19842 142% 6.2% 
CDC-OPT 8192 4096 3.33(X) 6200 10clks 14280 22638 176% 5.6% 
CDC-OPT 8192 4096 4.76(L) 4500 10clks 14456 25112 207% 6.9% 
CDC-OPT 8192 4096 4.76(L) 5600 10clks 14382 29248 257% 6.3% 
CDC-FD 8192 4096 3.33(X) 2600 10clks 14037 14250 74% 3.8% 
CDC-FD 8192 4096 3.33(X) 4000 10clks 13966 17512 114% 3.2% 
CDC-FD 8192 4096 4.76(L) 2500 10clks 14113 17592 115% 4.3% 
CDC-FD 8192 4096 4.76(L) 4000 10clks 14036 23232 184% 3.8% 
FMC 8192 256 2.33(X) 16 4clks 14800 19087 133% 9.4% 
FMC 8192 256 2.33(X) 32 4clks 15527 19087 133% 14.8% 
FMC 8192 256 2.33(X) 32 8clks 14834 19087 133% 9.7% 
None 8192 256 2.33(X) 16 4clks 15240 8192 0% 12.7% 
None 8192 256 2.33(X) 32 4clks 15384 8192 0% 13.7% 
None 8192 256 2.33(X) 32 8clks 14699 8192 0% 8.7% 

 



 

 
Major observations for Table 2 :  

1. FMC again shows better performance than CDC, 
however, FMC performance is mostly a result of the 
chipset cache.  Note that unlike case1, the decrease in 
disk BW requirements because of FMC no longer 
yields any significant benefit. Consequently, a system 
with just the chipset cache does almost as well or 
better as FMC. 

2. A large L2 gives a huge performance boost since IO 
is no longer a limitation and the memory BW 
bottleneck is eased by the large L2.  The performance 
with large L2 is better than that obtained by any kind 
of compression. 

3. CDC again yields excellent memory savings and 
beats out FMC in this regard if LZ77 compression 
algorithm is considered. 

 
 
 
Table 3 Relative performance of various techniques w/ adequate memory size & BW 
 

Case3: 8 GB physical memory, 2 channels     
Comp Memory block comp cache cache SWEB99 Real Memory Perf delta 
tech. size (MB) size (B) ratio size (MB) latency opcount mem (MB) savings wrt base 

Base 8192 64 1(none) 0 10clks 14559 8192 0% 0.0% 
Large L2 8192 64 1(none) 0 10clks 17075 8192 0% 17.3% 
CDC-OPT 8192 4096 3.33(X) 4800 10clks 15699 19376 137% 7.8% 
CDC-OPT 8192 4096 3.33(X) 6000 10clks 15615 22172 171% 7.3% 
CDC-OPT 8192 4096 4.76(L) 4300 10clks 15823 24360 197% 8.7% 
CDC-OPT 8192 4096 4.76(L) 5600 10clks 15739 29248 257% 8.1% 
CDC-FD 8192 4096 3.33(X) 2400 10clks 15381 13784 68% 5.6% 
CDC-FD 8192 4096 3.33(X) 4000 10clks 15296 17512 114% 5.1% 
CDC-FD 8192 4096 4.76(L) 2800 10clks 15472 18720 129% 6.3% 
CDC-FD 8192 4096 4.76(L) 4000 10clks 15389 23232 184% 5.7% 
FMC 8192 256 2.33(X) 16 4clks 13742 19087 133% -5.6% 
FMC 8192 256 2.33(X) 32 4clks 14283 19087 133% -1.9% 
FMC 8192 256 2.33(X) 32 8clks 13729 19087 133% -5.7% 
None 8192 256 2.33(X) 16 4clks 15281 8192 0% 5.0% 
None 8192 256 2.33(X) 32 4clks 15406 8192 0% 5.8% 
None 8192 256 2.33(X) 32 8clks 14719 8192 0% 1.1% 

 
 
 
Major observations for Table 3 :  

1. Since there is no memory size or BW shortage in this 
case, FMC has little to exploit and actually gives 
performance worse than the base case! 

2. CDC still provides a moderate gain because of its 
ability to further reduce IO without too much 
overhead. 

3. CDC once again saves more memory than FMC. This 
indicates that compressing the entire memory is not 
essential for achieving a good memory savings. 

4. A large L2 gives much better performance than any 
of the compression schemes .  

 
The last observation implies that if there are no significant 
memory or IO BW limitations to exploit, a large processor 
cache works provides a better way of boosting performance 
than memory compression. However, the memory cost and 
power saving potential of memory compression still remains. 

 

 
3. Conclusions and Discussion 
 
With FMC, the CDE (Codec + MMU) must necessarily be 
located close to the memory since the latencies associated with 
other locations would be highly detrimental to performance. 
Two possible locations in these cases are the memory 
controller or right on the DIMM. However, with CDC, the 
decompression is needed only on a miss in regular memory, 
which makes it far less latency sensitive. In this case, it is not 
critical to locate CDE close to memory controller; instead, it 
could either be implemented inside an IO bridge. Assuming a 
2 GB/sec IO interface between the memory controller and the 
IO bridge and fully pipelined DMA capability, the round-trip 
latency for a processor cacheline would be in a few hundred 
nanosecond range (this includes queuing delays on the IO bus 
and the chipset). Such a latency addition is much smaller than 
the base latency (in several µs range) and appears to have a 



 

negligible performance impact.2  However, if the 
implementation requires a complete disk block to be 
transferred across the wire at any point before processing can 
start, the latency addition may be too much.  
 
Implementing the CDE as a discrete device hanging off an IO 
bridge will experience another few hundred ns latency, but it 
opens up CDE for easy enhancements and innovations 
including running multiple algorithms in parallel, streaming 
buffers, speculative decompression, larger buffers for 
translation tables, more sophisticated storage management, 
etc. 
 
Disk compression opens up the possibility of supporting end-
to-end compression in a very flexible way. For example data 
on the disk and data arriving into the NIC may or may not be 
in the compressed form; the CDE can compress/decompress it 
as needed.  The same holds for data being written to disk or 
being sent out on the network. If much of the disk and network 
I/O is in compressed form, the scheme enables increased I/O 
BW (or alternately, cost and power savings by allowing the 
use of lower BW I/O subsystems).  
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