

Abstract-- Media workloads have been a principal driving
force behind processor designs for several years. While MPEG
decoding has been extensively studied in the past, it continues to
gain importance as a key workload underlying many present and
emerging applications. Additionally, the emerging video coding
standard MPEG-4 Part 10, also known as H.264, has some new
features that impact the whole system performance. In this
paper, we address the characterization of MPEG as well as H.264
decoding on current state-of-the-art superscalar and
simultaneous multithreaded (SMT) micro-architectures,
discussing both application-level behavior and the key kernels in
the applications, e.g., variable-length decoding, IDCT, deblocking
filter, and motion compensation. We also address the
effectiveness of a number of current micro-architectural
enhancements for speeding up this workload.

Index Terms—multimedia, video codecs, MPEG, H.264,
microprocessor, simultaneous multithreading

I. INTRODUCTION

As the computing power available to users increases and
rich content becomes prevalent, multimedia workloads assume
growing importance during processor design and overall
system performance assessment. One workload of particular
importance is MPEG decoding, which is encountered not only
as the basis of standalone applications such as DVD or HDTV
playback, but also as a key underlying component in even
more demanding applications such as interactive video, video
editing, and so forth [20].

To date, computational power has typically increased over
time through the evolution from simple pipelined designs to
the complex speculation and out-of-order execution of many
of today’s deeply pipelined superscalar designs. However,
while single-threaded processors are now much faster than
they used to be, the rapidly growing complexity of such
designs also makes achieving significant new gains ever more
difficult. This work will first describe the workload
characterization of MPEG decoding on current superscalar
architectures, and then characterize the same workload on
simultaneous multi-threading (SMT) architectures [17].
Specially, we use Intel® processors with Hyper-Threading
Technology [14], which is one implementation of the SMT
architecture.

The MPEG and H.264 decoders we use as benchmarks are
heavily optimized using the latest ISA extensions [20][21].
For our performance analysis, we use a commercial software
analysis tool and the performance counters available on
today's processors [1][3][7].

The paper is organized as follows. In Section II, we provide
a brief review of the basic principles behind most current
video codecs, describing particularly the well-established
MPEG-2 standard and the rapidly emerging MPEG-4 part 10
(also known as H.264) standard. Section III provides an

overview of the overall application behavior of MPEG-2 and
H.264 decoding, while Section IV discusses in further detail
the implications of the key kernels for current and emerging
architectures, and the impact micro-architectural design
decisions can expect to have on MPEG decoding performance.
Section V addresses application-level implications on threaded
architectures. Finally, Section VI concludes the paper.

II. OVERVIEW OF MPEG STANDARDS

The Moving Pictures Expert Group (MPEG) [4][15][16] is
a standard group established in 1988. Since then, the group
has defined a number of popular video and audio compression
standards, including MPEG-1 [10], MPEG-2 [11], MPEG-4
[12], and H.264 [13]. This work focuses on MPEG-2 and
MPEG-4 part 10 (H.264) decoding. This section provides a
high-level overview of these standards.

A. MPEG-2
MPEG-2 is a popular video compression standard used in a

variety of applications, including DVD and HDTV. The
standard incorporates three major compression techniques:
predictive coding, transform-based coding, and entropy
coding. To implement these, the MPEG-2 encoding pipeline
consists of motion estimation, discrete cosine transform
(DCT), quantization (Q), and variable-length coding (VLC).
The MPEG-2 decoding pipeline consists of the counterpart
operations of variable-length decoding (VLD), inverse
quantization (IQ), inverse DCT (IDCT), and motion
compensation (MC).

Because there is temporal correlation between pixels in
video sequences, MPEG-2 uses motion-compensated
prediction, where only the differences between original
images and motion-compensated prediction images are
encoded. As all elements in a video scene are approximately
spatially displaced, the motion between frames can be
described by a number of motion parameters. Moreover, as the
spatial correlation between motion vectors is often high, it is
sometimes assumed that one motion vector is representative
for the motion of a block of adjacent pixels. In general, in
MPEG-2, one or two motion vectors are estimated, coded, and
transmitted for each 16x16 pixels (macroblock). The basic
operations of motion compensation are load, add, and store---
load the motion-compensated blocks from the reference
frame(s), add the decoded displaced frame difference, and
store the decoded blocks back to the frame buffer. The
prediction may be formed either from the closest preceding
reference frame, or as the interpolation of the closest reference
frames in both forward and backward directions. Because the
motion vector is the same for a macroblock, the above
equation is very suitable for SIMD operations.

Roughly speaking, operations in the MPEG-2 motion

MPEG Decoding Workload Characterization
Matthew J. HOLLIMAN, Eric Q. LI, and Yen-Kuang CHEN

compensation module are quite simple. Besides additions
(including the averaging operations required in interpolation),
most of the operations are memory accesses.

In transform-based coding, the image is transformed into a
more compact representation. The most popular
transformation in current standards is the discrete cosine
transform (DCT). Because there is some spatial redundancy
between adjacent pixels, most of the energy of the signals is
compacted into a few coefficients after the DCT
transformation. Following this, the number of non-zero
coefficients is further reduced by quantization, which is the
lossy part of the compression standard. The quantization
process projects the continuous values of the resulting
transformed coefficients into a finite set of symbols, each
representing an approximation of the coefficient’s value.

The MPEG standards use an 8x8 DCT/IDCT to transform
spatial-domain pixels to frequency-domain coefficients or vice
versa. Because the transform is separable, most
implementations use two one-dimensional 8-point DCTs (or
IDCTs), one vertically and one horizontally. The one-
dimensional N-point DCT is given by the following equation:

∑
−

=

+
=

1

0

)
2

)12(
cos(

N

k
knn x

N
kn

cy π

where
N

c
1

0 = and
N

cn
2

= for n=1, …, N-1. Thus, most

operations in the DCT/IDCT modules are mathematical
operations.

In entropy coding, the non-zero coefficients are encoded
using a variable-length code (VLC), whose length is based on
its statistical likelihood of occurrence. Normally, a special
scan order of non-zero coefficients is performed first to better
exploit the statistical occurrence of zero-valued coefficients in
an energy-compacting transform. Then, using a combination
of run-length and entropy coding, the non-zero coefficients are
encoded into the final bitstream. The key to reducing bit rate is
to encode the most commonly occurring symbols with the
fewest number of bits. Given their probabilities of occurrence,
variable-length coding normally reduces the number of bits
needed to encode a string of symbols. On the other hand, since
the number of bits in the coming bitstream is highly variable,
VLD is inherently serial with substantial data dependency; the

length of the current codeword is not known until it has
actually been decoded, so decoding of future codewords in the
stream is dependent on decoding the current codeword.

An MPEG-2 decoder implements the reverse operations of
the preceding, i.e. VLD, IQ, IDCT, and MC. The block
diagrams of the encoder and corresponding decoder are shown
in Figure 2.1.

B. H.264
H.264, also known as MPEG-4 part 10 “Advanced Video

Coding,” is the latest video coding standard aimed at very low
bit rate real-time communication with both enhanced coding
efficiency and low end-to-end delay. Figure 2.2 shows the
decoder diagram of the standard. The underlying coding
scheme defined by H.264 is similar to that employed in the
prior MPEG video coding standards. It includes the use of
translational block based motion compensation, DCT-like
residual coding, scalar quantization, zigzag scanning and run-
length VLC entropy coding. However, new concepts and some
key additional features differentiate H.264 from earlier
standards.

First of all, the motion compensation model used in H.264
is more flexible and efficient than those in previous standards.
For example, multiple reference frames may be used for
prediction, allowing motion-compensated predictions to come
from more than the most recent reference frame(s). Moreover,
a much larger number of different motion compensation block
sizes may be used for motion compensation on each
macroblock (16x16, 16x8, 8x16, 8x8, 8x4, 4x8, 4x4, as
illustrated in Figure 2.3), for the entire macroblock up to
sixteen individual motion vectors (one per block of 4x4 pixels)
could be used in motion estimation, substantially improving
the motion estimation accuracy, especially in areas with fine
motion details.

Higher motion-vector resolution is also specified in the
motion prediction model. Sub-pixel value interpolation is used
to provide more precise spatial accuracy at fractional
positions. Currently, quarter-pixel precision is the default.

DCT & Q VLC

Reference
frames

Pictures

Motion
Comp.

Bitstream+

IQ &
IDCT

-

Motion
Estimation

DCT & Q VLC

Reference
frames

Pictures

Motion
Comp.

Bitstream+

IQ &
IDCT

-

Motion
Estimation

IDCT
VLD &

IQ

Reference
frames

Pictures
Motion
Comp.Bitstream IDCT

VLD &
IQ

Reference
frames

Pictures
Motion
Comp.Bitstream

Figure 2.1. Block diagram of MPEG-2 encoder and decoder

Entropy
Decoding

NA
L

Inverse
Quantization

Inverse
Transform

Motion
Compensation

Frame
Store

Sub-pel
Interpolation

Deblocking
output

input

In-loop
Deblocking1/4 pel resolution

Figure 2.2 Decoder diagram of H.264

0 0 1
0 1

2 3

16x16 16x8 8x16 8x8

8x8 8x4 4x8

0 0 1

1

0

0 1

2 3

4x4

1

0

MB-Modes

8x8-Modes

Figure 2.3 Block Models

For motion compensation, we can summarize that the new
methods in H.264 have provided a more precise model, which
can yield a much higher perceptual quality for the decoded
video sequences than MPEG-2 at the same bitrate.

Second, another difference is that the DCT transform was
replaced by a DCT-like integer transform in the H.264
standard, as shown below:

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

1 1 1 1 1 2 1 1
2 1 1 2 1 1 1 2
1 1 1 1 1 1 1 2
1 2 2 1 1 2 1 1

    
    − − − −    =
    − − − −
    − − − −        

x x x x
x x x x

Y
x x x x
x x x x

The transform has a significant computational advantage
compared with DCT transforms. Also, the small size helps to
reduce the blocking and ringing artifacts. The precise integer
transform eliminates any mismatch between the encoder and
the decoder as well.

Third, while in previous standards, a deblocking filter is
optional and thus out of the motion compensation loop, in
H.264, a deblocking filter is required within the motion
compensation loop. The use of deblocking filter within the
motion compensation loop not only reduces visual artifacts but
also improves the final video coding efficiency.

Fourth, the standard also implements a more complex and
efficient entropy coding method: the context-based adaptive
binary arithmetic coding (CABAC). Instead of using a
universal coding table, the probability model of this coding
method is adaptive to the changing statistics of incoming data;
therefore it can offer better coding efficiency. The normally
used VLC scheme is still reserved in the system and serves as
an alternative method.

III. HIGH LEVEL WORKLOAD ANALYSIS

This section describes the overall application behavior of
optimized MPEG-2 and H.264 decoders. The MPEG-2
decoder used in the study is part of the Intel Media Processing
Library [20], which was developed and highly optimized for
Pentium® 4 processors by Intel Labs; the H.264 decoder is
heavily optimized as well [21]. The software was analyzed
using the Intel Tune™ Performance Analyzer [1][3][7] on an
Intel® Pentium® 4 processor with a 533MHz system bus, 8
KB L1 data cache, 512 KB L2 shared instruction/data cache,
845 chipset and 512 MB of 333MHz DDR main memory. To
investigate frequency scaling effects, we varied clock

frequency of the Pentium® 4 processor between 1.6GHz and
3.06GHz; however, for most of the study, we ran at 3.06GHz.

A. MPEG-2 application behavior
The video sequences used in MPEG-2 study are 3Mb/s,

6Mb/s and 9Mb/s versions of DVD resolution (720x480)
MPEG-2 sequence and a 1920x1024 high-definition (HD)
MPEG-2 sequence (17 Mb/s); for H.264 we use 1.5Mb/s and
5.6Mb/s of a 720x480 sequence, as well as 0.4Mb/s and
1.5Mb/s CIF resolution sequences. Each was chosen as being
representative of a larger set of video sequences that we have
used in our studies.

As Table 3.1 suggests, the behavior of the MPEG decoder is
highly dependent on the characteristics of the video stream
being decoded. H.264 is more complicated than MPEG-2. The
1.5Mb/s DVD-resolution H.264 sequence takes about the
same CPU time to decode as a high-definition MPEG-2
sequence.

 Figure 3.1 compares the relative breakdown of the decoder
performance for a 3Mb/s and 9Mb/s version of the same
content. For the 3Mb/s case, motion compensation is the most
expensive module, followed by the inverse DCT. DCT
coefficient decoding and inverse quantization (block-level
VLD) takes around 16% of total time, with the rest of the time
distributed amongst high-level bitstream parsing (picture
header processing, macroblock-level VLD, etc.), motion
vector prediction, IDCT address calculations, and other
decoding overhead.

When looking at the 9Mb/s stream, a different picture
emerges. The absolute time spent on motion compensation is
effectively unchanged; however, IDCT becomes a larger
contributor (28% overall), as fewer blocks are skipped at this

TABLE 3.1. OVERALL DECODING PERFORMANCE USING VARIOUS
CONFIGURATIONS ON 3.06GHZ PENTIUM® 4

Format Sequence Frames/sec
3Mb/s 315.6
6Mb/s 238.9

720x480

9Mb/s 202.7

MPEG-2

1920x1024 17Mb/s 48.4
0.4Mb/s 149.2 352x288
1.5Mb/s 94.2
1.5Mb/s 40.1

H.264

720x480
5.6Mb/s 27.3

MC
34%

Block-
level VLD

16%

Bitstream
I/O
9%

Header
parsing

9%

Others
6%

Stream
demuxing

4%

IDCT
22%

MC
23%

Block-
level VLD

27%

IDCT
29%

Stream
demuxing

5%

Others
4%

Header
parsing

6%

Bitstream
I/O
6%

Figure 3.1. MPEG-2 decoding breakdown by time on 3.06GHz
Pentium® 4 (720x480; left, 3Mb/s, and right, 9Mb/s).

MC
41%

DF
20%

Integer
Transform

7%

Others
2%Mem ops

8%

VLD
22%

MC
26%

DF
18%

VLD
42%

Mem ops
6%

Others
3%

Integer
Transform

5%

Figure 3.2. H.264 decoding breakdown by time on 3.06GHz Pentium®
4 (720x480; left, 1.5Mb/s, and right, 5.6Mb/s)

bitrate, and VLD/IQ emerges to become a more prominent
bottleneck, now taking 27% of the total decoding time.

B. H.264 application behavior
This section describes the overall application behavior of

optimized H.264 decoder. Figure 3.2 compares the relative
breakdown of the decoder performance for 1.5Mb/s and
5.6Mb/s versions of the same content.

For the 1.5Mb/s bitstream, motion compensation is the most
time-consuming module, taking over 40% of the total CPU
time. VLD takes about 22% of the total CPU time, whereas
the DCT-like integer transform takes only 7%. The deblocking
filter introduced in the H.264 decoder requires a large amount
of computation as well, taking the remaining 20% of
processing time.

For the 5.6Mb/s bitstream, even at 3.06GHz we can only
decode 27 frames/s. The absolute time spent on motion
compensation and inverse integer transform only slightly
increase. Meanwhile, the proportion of time spent in the VLD
kernel dramatically increases, taking now about 42% of the
total decoding time.

Another interesting observation from the H.264 breakdown
is importance of memory operations in the decoder. H.264
uses a 4x4 block size as its basic operation unit, which results
in much larger buffers being required for motion vector and
coefficient predictions. For each decoding frame, the H.264
decoder has to reset these buffers to zero, placing intensive
demands on the memory subsystem. For example, for a high
definition video sequence, the action of zeroing out these
buffers takes nearly 20% of the total decoder time.

IV. KERNEL IMPLICATIONS FOR HIGH-PERFORMANCE
SUPERSCALAR ARCHITECTURES

In this section, we address in greater detail some of the key
kernels found in the MPEG-2 and H.264 decoding pipelines,
paying particular attention to the implications for high-
performance singled-threaded architectures, as are
characterized by typical superscalar machines today [5]. We

also discuss the trends we expect to observe as both decoding
workloads and CPU micro-architectures continue to evolve
over time.

Based on the application breakdowns of the previous
section, the key kernels we discuss here are VLD, inverse
transform (IDCT), MC, and deblocking filter (DF). The first
three stages are common to MPEG-2 and H.264, albeit with
significant differences in algorithms and complexity, but the
last is a new feature in H.264.

The overall kernel characteristics for the H.264 and MPEG-
2 on the 3.06GHz Pentium® 4 are shown in Table 4.1, and the
per-module frequency scaling on Pentium® 4 processors is
compared in Table 4.2. From the 1.60GHz to 3.06GHz scaling
numbers given in Table 4.2, we can observe that both VLD
and IDCT are entirely computation-bound for both MPEG-2
and H.264, showing performance scaling directly with CPU
frequency. Motion compensation is memory intensive in
MPEG-2, as reflected from the bus utilization rate from Table
4.1, showing little speed-up from the increase in clock
frequency in Table 4.2. In comparison, H.264’s motion
compensation is not purely dependent on the memory system,
as computations play a significant role as well. The
deblocking filter is similarly memory intensive, its
performance being co-impacted by computation and the
memory system.

A. Variable-length decoding
As other parts of the video decoding pipeline, such as IDCT

and motion compensation, have been accelerated with the
SIMD-style extensions available in modern instruction sets,
the serial operation of variable-length decoding (VLD) has
assumed increasing importance as a key kernel in video
processing.

VLD for both MPEG-2 and H.264 is characterized by
substantial data dependency, limiting opportunities for
instruction, data, and thread-level parallelism. Furthermore,
both kernels require extensive bit-level manipulations to parse
codewords from the input stream, an operation for which most

Table 4.1. Kernel characterization on 3.06GHz Pentium® 4.

 MPEG-2, 720x480, 9Mb/s H.264, 720x480, 1.5Mb/s
Kernels MC IDCT VLD MC IDCT DF VLD

IPC 0.18 0.65 0.75 0.556 1.163 0.762 0.640
UPC 0.27 1.03 1.03 0.834 1.538 0.989 0.789
MMX/SSE/SSE-2 per 100 instructions 45 91 6 27 30 0 0
Branches per 1000 instructions 64 12 95 47 36 91 117
Mispredict. branches per 1000 cycles 1.2 0.3 4.3 1.0 0.2 5.3 7.2
L1 Hit-rate 70.2% 97.4% 95.5% 92.2% 91.5% 96.1% 95.5%
L2 Hit-rate 77.5% 90.0% 98.2% 90.9% 99.9% 73.5% 96.4%
Front-side bus utilization rate 27.3% 2.4% 3.4% 9.1% 2.7% 14% 7.4%

Table 4.2. MPEG-2 and H.264 frequency scaling for key modules, showing overall percentage of decode time and module speed-up.
 MPEG-2, 720x480, 9Mb/s H.264, 720x480, 1.5Mb/s

CPU Overall Key kernels Overall Key kernels
Frequency Scaling FPS Scaling MC IDCT VLD FPS Scaling MC IDCT DF VLD

1.60GHz 1.0 120 1.0 1.0 1.0 1.0 23.1 1.0 1.0 1.0 1.0 1.0
1.87GHz 1.17 136.7 1.14 1.09 1.16 1.14 26.4 1.14 1.15 1.15 1.12 1.16
2.27GHz 1.42 160.6 1.34 1.18 1.41 1.37 31.1 1.34 1.34 1.39 1.30 1.41
2.67GHz 1.67 182.0 1.52 1.28 1.63 1.64 35.3 1.53 1.55 1.65 1.47 1.63
3.06GHz 1.92 202.7 1.69 1.34 1.84 1.88 40.1 1.72 1.73 1.88 1.63 1.87

general purpose architectures are ill suited.
Showing excellent scaling over different frequencies on

Pentium® 4 processors in Table 4.2 indicates that the kernel is
entirely computation bound.
1) MPEG-2

A breakdown of the MPEG-2 VLD kernel reveals that CPU
time is divided fairly evenly between its three major
components: bit stream input, Huffman table lookups, and
inverse zigzag scan/inverse quantization.

A number of challenges arise in decoding variable-length
symbols from an MPEG-2 bitstream efficiently. First, most
implementations use a lookup table to decide which symbol is
currently being examined. However, there is a trade-off
between the size of the look-up table and the complexity of the
lookup operation. The simplest lookup requires only a single
table; however decoding a possibly 17-bit symbol with one
table lookup requires the decoder to build a table of 217 =
128K entries, which is too large to fit into the first-level cache.
Alternatively, since only a small subset of all of those entries
correspond to valid Huffman codewords, the tables can be
broken into several smaller pieces, so that all can fit into the
L1 cache. In this case, however, it takes extra steps to decide
which table to use. In our implementation, only three tables of
total size 2Kbytes are used in VLD kernel.

Besides deciding which lookup table to use, VLD has a
large number of conditional branches for every DCT
coefficient. Basically, there are four questions to ask for each
coefficient: (a) Are there enough bits remaining in the bit
buffer? (b) Which lookup table should we use? (c) Is it end of
block yet? (d) Is it an escape code (a special fixed-length code
for rarely encountered symbols)?

Memory references throughout the kernel are basically
limited to Huffman table lookups and reading of the bitstream,
and typically hit L1 around 95% of the time; the L2 hit rate is
around 98.2%. A comparison of two different approaches for
reading variable-length bit strings in VLD suggests that the L1
misses in our implementation of the kernel result almost
exclusively from reading of data from the bitstream rather than
from the Huffman lookups. Meanwhile, reading from the
bitstream is a purely sequential operation, and so is very well
suited to the hardware prefetch mechanism in Pentium® 4;
however, such data is prefetched only into L2.

Nonetheless, despite the good scaling on Pentium® 4 and
the heavily scalar code, the IPC of VLD is poor; Table 4.3

shows the performance of VLD for the 9Mb/s MPEG-2 stream
on the Pentium® 4 microarchitecture.

The first observation is that even though the Pentium® 4
processor uses a sophisticated branch predictor, there is still a
relatively high number of mispredicted branches encountered
during VLD. This is consistent with the intuition that many
branches in variable-length decoding are inherently data-
dependent and often essentially random. The Pentium® 4
processor uses a 20-stage pipeline, with a resulting large
branch misprediction penalty. As future CPUs are expected to
further increase the number of pipeline stages, branch
mispredictions in VLD will become increasingly important
limiters to performance in multimedia applications.
2) H.264

Unlike MPEG-2, context-based adaptive binary arithmetic
coding (CABAC) has been employed for variable-length
decoding in H.264, resulting in 5%~20% bitrate savings
compared to the simpler Huffman entropy coding scheme used
in MPEG-2. Although H.264 also supports Huffman coding,
in our workload analysis, we prefer to use CABAC as our
basic entropy-coding tool for its higher coding efficiency.

Similar to Huffman entropy decoding, CABAC is
characterized by substantial data dependency. Whereas in
MPEG-2 we can easily use a look-up table to facilitate the
codeword parsing process, this approach is not feasible for
CABAC in H.264.

In this new entropy decoding model, we find two kernels,
i.e., arithmetic decoding and the codeword parser (NAL
decoding in Table 4.3); a breakdown of time reveals that CPU
time is divided approximately equally between them. Table
4.3 shows some micro-architectural metrics of CABAC.
Mispredicted conditional branches are the major bottleneck in
this kernel. NAL decoding also encounters the same problem.
While MPEG-2 uses only one motion vector and limited
prediction types for each 16x16 macroblock, H.264 allows up
to 16 motion vectors to be used for more precise predictions.
The result is that with more detailed classification information
and the smaller block size in the H.264 coding model, the
kernel needs more conditional checks to identify the
corresponding coding information, such as, prediction type of
each 4x4 block, and so on. Most of these vary on a block-by-
block basis, and so cannot be predicted effectively by the
branch predictor.

B. Inverse transform/inverse quantization
For block-based video coding standards, the inverse

transform is mainly performed on an 8x8 or 4x4 block level
immediately following VLD/IQ. The data is typically in L1,
and thus we expect that the kernel is computationally
intensive. The frequency scaling result confirms this intuition.
1) MPEG-2

IDCT has been frequently targeted for efficient
implementation with SIMD-style instruction sets [8][9].
Indeed, as the kernel is completely computation-bound, it is a
good candidate for speeding up with such approaches.
However, despite the large amount of both data and

TABLE 4.3. VLD MICRO-ARCHITECTURE FOR ON 3.06GHZ PENTIUM-4

H.264 VLD

Statistics

MPEG-2
VLD

CABAC
NAL
decoding

IPC 0.75 0.63 0.67
Branch mispredict. Rate 6% 8.7% 9.6%
Mispredict. branch/inst. 0.6% 1.25% 1.41%
% time lost to branch
mispredictions

9.1% 15.8% 18.9%

L1 Hit-rate 95.5% 96.5% 94.2%
L2 Hit-rate 98.2% 99.3% 95.3%

instruction-level parallelism that can be exploited in this
kernel, the table above reveals that with an IPC of 0.65 on the
Pentium® 4 processor, IDCT actually makes less efficient use
of machine resources than the data-dependent code of VLD.

An examination of the kernel shows that the code is
dominated by general SSE operations (see Table 4.4), with
interspersed register-to-register moves and stores; e.g., a
sequence of movaps, addps, and subps is a typical
recurring theme, corresponding to the well-known butterfly
operation, surrounded by associated prescaling/multiply
operations.

To explain the unexpectedly poor IPC of this kernel, we
turn to the description in [5]. Pentium® 4 processors includes
one full floating-point (FP)/SSE execution unit (port 1), as
well as one additional FP/SSE execution unit that can handle
moves and stores (port 0). We believe that the heavy
MMX/SSE computational demands of the IDCT kernel lead to
contention for these limited resources. Given the instruction
mix shown in Table 4.4, an examination of micro-op
dispatches reveals the expected bias, as shown in Table 4.5.

The throughput for most of the SSE single-precision
arithmetic operations used in the IDCT is one instruction
every two cycles on Pentium® 4, so given IDCT’s IPC of 0.6,
we believe there is little room for improvement in the IDCT
implementation itself in current microarchitectures. From a
hardware perspective, it appears that the inclusion of
additional SSE execution units could substantially improve
performance in this kernel. Alternatively, from a software
perspective, since VLD uses predominantly scalar code and
thus underutilizes the machine’s FP/SSE execution units, we
would expect to see an overall application speed-up if IDCT
calculations were interleaved with VLD. Similarly, since
IDCT makes little use of memory, we believe that motion
compensation address calculations and prefetches could be
effectively interleaved with IDCT computations.
2) H.264

Instead of the traditional DCT/IDCT used in previous
standards, H.264 employs a 4x4 integer transform to transform
spatial-domain signals into a frequency-domain representation

and vice versa.
In [21], Zhou, Li, and Chen demonstrated a fast SIMD

implementation of chained matrix multiplications. While it is
suitable for SIMD-style instruction sets, the SIMD instructions
comprise only 30% of all instructions in the kernel. The
transform kernel in H.264 is based on 4x4 blocks, the size of
which is smaller than MPEG-2. With inverse quantization,
address calculations, and the data load/store operations used in
the kernel, the number of scalar instructions is a larger
proportion. Due to the more balanced and effective utilization
of execution resources, this module has a better IPC than the
MPEG-2 transform, Table 4.5 reveals the micro-op dispatches
in the H.264 integer transform kernel, where the proportion of
SSE-2 instructions is less than MPEG-2, alleviating the heavy
computation burden on Port 1.

As previously illustrated, additional SSE execution units
may significantly improve the whole performance of IDCT in
MPEG-2. However, with the smaller block size and better
balance in resource utilization in the integer transform, we
expect that the H.264 kernel would benefit little from the
additional SSE execution units. Similarly, from a software
perspective, interleaving VLD and IDCT computations would
see less benefit than the MPEG-2 case.

C. Motion compensation

Compared to the other modules in the MPEG decoding
pipeline, motion compensation is memory intensive. For
example, decoding of a 720x480 resolution video sequence
has a working set size of (720×480 pixels/frame) × (1.5
bytes/pixel) × (3 frames) = 1.5 MBytes. This is far larger than
the L2 caches on most of today’s desktop machines. Given
this, there are a number of possible factors that could impact
the whole system performance:

Cache line size. Pentium® 4 processors use 128-byte L2
cache lines. When performing motion compensation on
adjacent macroblocks with correlated motion vectors, we
would expect fewer cache misses on Pentium® 4 than earlier
architectures, since prior reads are more likely to have brought
the required data into the L2 cache already.

Memory bandwidth. At a high level, motion compensation
essentially reads two (or more) buffers, adds them, and writes
them back to memory. With a 533MHz system bus, Pentium®
4 processors support much higher memory bandwidth than
earlier systems (up to 4.26 GBytes/s).

Register size. Motion compensation defined in the MPEG
standards uses integer arithmetic. As motion compensation in
MPEG-2 is performed on a macroblock basis, i.e. 16x16
regions for progressive luma macroblocks, we would expect
some benefit from 128-bit registers (SSE-2 integer instructions
on Pentium® 4 processors) compared to 64-bit registers
(SSE/MMX) for this standard. On the other hand, due to the
use of smaller blocks for motion compensation in H.264, i.e.,
4x4 or 8x8 block size, the benefits from wider registers would
be expected to be less.

Hardware prefetch. Pentium® 4 processors have a
hardware prefetcher, which was designed primarily in the

TABLE 4.4. MPEG-2 IDCT INSTRUCTION MIX

Event Per
instruction

64-bit MMX™ instructions retired 31.8%
128-bit MMX™ instructions retired 0.1%
Packed double-precision SSE inst. retired 44.4%
Packed single-precision SSE inst. retired 13.6%
Scalar instructions retired 10.1%

Table 4.5 MPEG-2 IDCT Pentium® 4 µop dispatches

Per uop Event
MPEG-2 H.264

Port 0 ALU uops retired 19.8% 20%
Port 1 ALU uops retired 2.6% 11%
Port 1 slow ALU uops retired 0.5% 0.6%
Port 1 x87 and SIMD uops retired 58.4% 30%

context of applications that read data sequentially.
We first investigate these parameters in detail for MPEG-2,

before comparing the newer H.264 MC kernel to its MPEG-2
predecessor.
1) MPEG-2

In order to understand the properties of the MPEG-2 motion
compensation module, we have compared the behavior of two
implementations: one using SSE/MMX and the other using
SSE-2, where we turned on/off the hardware prefetcher to see
its effectiveness in MC kernel. All of them run on Pentium® 4
processors. Fundamentally, we are interested in

• Is the kernel computation or memory bound?
• What is the impact of having wider registers, viz. 128-

bit vs. 64-bit?
• How effective is the hardware prefetcher, particularly

the linear predictor in the Pentium® 4 processor, in
motion compensation?

• What is the impact of the large memory bandwidth on
the Pentium® 4?

• What role does the large cache line size play in
performance?

• What role does the macroblock coding decision play in
performance? Examples of coding decisions to consider
include the choice of prediction mode (forward,
backward, bi-directionally-predicted).

Impact of prediction direction on temporal locality.
According to Table 4.6, we observe that forward prediction
consistently results in higher bus utilization than backward

prediction. Backward prediction, which is allowed only in B-
frames, always predicts from the most recently decoded
reference picture, whereas forward prediction generally incurs
a greater delay in terms of number of coded pictures from the
reference frame.1 Thus, in general, one would expect fewer
L2 misses in backward prediction compared to forward
prediction, and consequently fewer references to main
memory. This is reflected in the relative performance of the
MC module for the different prediction directions; backward
prediction is on average 20-25% faster than forward prediction
for our sequences, the difference becoming more pronounced
at higher clock speeds.

Impact of register width. Comparing the SSE and SSE-2
implementations in Table 4.6, we see approximately 9%
overall improvement when using SSE-2. At lower clock
speeds, bi-directional prediction gains the most benefit,
improving by 15% with wider registers. This is because this
prediction mode involves more computation than forward or
backward prediction. At higher clock speeds, the benefit is
reduced as memory effects begin to dominate.

Impact of hardware prefetch. The Pentium® 4 introduced
a hardware prefetcher, some of the operating characteristics of
which are described in [6]. The hardware prefetcher attempts
to stay 256 bytes beyond the current data access location, and
follows only one stream per 4K page. Since for a raster scan
memory layout, a macroblock typically crosses approximately
three pages2 at standard definition (720x480) resolution, we
would assume that hardware prefetch would be ineffective at
hiding memory latency in motion compensation, recognizing
and prefetch at best only 3/16ths of all accesses. Indeed, since
the hardware prefetcher in the Pentium® 4 is designed to
handle application scenarios where adjacent data is read
consecutively, it would be somewhat surprising if we saw a
benefit in motion compensation, in which, while predictable in
software, memory access patterns are more irregular. We also
suspect that large cache lines would tend to reduce the
effectiveness of hardware prefetch in this application, as a
cache line size of 128 bytes corresponds to 8 macroblocks. For
many sequences, motion vector correlation decreases
substantially over this number of macroblocks, so read-ahead
prefetching may not necessarily provide the expected gains
compared to other video workloads. Table 4.6 confirms this
intuition; disabling the hardware prefetch, the kernel runs in
almost the same amount of time as with the hardware prefetch
enabled, indicating that the hardware prefetch is of little
benefit for this kernel.

The kernel is not well-suited to the current hardware
prefetch mechanism, which assumes sequential accesses.

1 Consider a standard GOP structure (IBBPBBP…). Ignoring edge

effects at the beginning of the sequence, forward prediction predicts
from the third-most recently decoded frame (in P-frames), or either
the fourth- or fifth-most recently decoded frame (in B-frames). In
contrast, backward prediction always predicts from either the first- or
second-most recently decoded frame.

2 720 bytes/row × 16 rows / 4 KB/page.

TABLE 4.6 MPEG-2 MC CHARACTERIZATION ON 3.06GHZ AND 1.6GHZ
PENTIUM® 4(9MB/S, MPEG-2, 720X480)

3.06GHz Pentium® 4
Average Clocks/

MB (K)
L2 cache
/Instr.

Bus
util.

IPC

Overall 77.5 0.009 27.4% 0.33
Fwd 58.7 0.010 27.3% 0.29

Bwd 44.0 0.008 25.0% 0.35

SSE
(hardware
prefetch)

Bi 318 0.008 28.8% 0.32
Overall 70.4 0.023 27.3% 0.19
Fwd 53.9 0.024 27.3% 0.18
Bwd 39.5 0.018 26.4% 0.23

SSE-2
(hardware
prefetch)

Bi 301 0.027 27.8% 0.18
Overall 69.4 0.024 28.1% 0.19
Fwd 52.0 0.024 28.5% 0.18
Bwd 39.2 0.020 27.0% 0.21

SSE-2
(no
hardware
prefetch) Bi 297 0.029 28.3% 0.18

1.6GHz Pentium® 4
Average Clocks/

MB (K)
L2 cache
/Instr.

Bus
util.

IPC

Overall 54.9 0.008 20.8% 0.50
Fwd 39.2 0.009 22.3% 0.49
Bwd 32.6 0.008 19.7% 0.51

SSE
(hardware
prefetch)

Bi 231 0.008 21.3% 0.50
Overall 46.3 0.022 22.3% 0.30
Fwd 33.0 0.022 23.5% 0.30
Bwd 26.0 0.017 22.0% 0.34

SSE-2
(hardware
prefetch)

Bi 196 0.028 22.0% 0.26

However, it may be a good candidate for future hardware
prefetcher [18]. This is a question for further investigation.

Impact of CPU frequency. Table 4.2 shows the relative
performance scaling of motion compensation vs. CPU
frequency. We can see some speed-up with the increase of
CPU frequency, indicating that the kernel is still partially
computation-bound even when the CPU frequency is as high
as 3.06GHz. However, the acceleration of speed-up decreases
gradually and the amount of time spent on this kernel becomes
relatively stable as we further increase the CPU frequency,
which indicates that the kernel is almost entirely memory-
bound when the CPU frequency is high enough. At that time,
most of the CPU time will be spent on waiting for the memory
accesses, while computations can be accomplished in the
vacant interval time.

Table 4.7 confirms the intuition that the amount of time
spent using the bus should increase with clock frequency. In
these simulations, only CPU frequency was changed on a
single machine, so the front-side bus clock frequency was
fixed at 533MHz. Correspondingly, as table 4.7 shows, IPC
decreases as memory latency begins to dominate.

Impact of execution resources. As the kernel is still
partially compute-bound at today’s clock frequencies, we
examine the breakdown of µops retired in the kernel in Table
4.8. Kernel processing is divided between address calculations
and loop overhead (scalar code, approximately 58% of µops
retired), motion compensation arithmetic itself (i.e. addition of
prediction error and interpolation, approximately 20% of µops
retired), and loads and stores (the majority of the remaining
21% of µops).

Impact of memory bandwidth/cache line size. From
Table 4.1, motion compensation needs 533MB/sec × 8 ×
27.3% = 1164 MB/sec in bandwidth on a 3.06GHz Pentium®
4 system. Higher bandwidth in the Pentium® 4 processor
clearly contributes to the performance improvement over
earlier systems. We probably would not run out of bandwidth

until the CPU is running at 7~8GHz.
Our MPEG decoder interleaves memory accesses with

computation. In forward- or backward-predicted macroblocks,
a row of pixels is loaded from memory, and added to the
current prediction error. In bi-directionally-predicted
macroblocks, a row of pixels is loaded from both reference
frames, and added to the current prediction error. With 128-
byte cache lines, approximately 90% of the time the load will
reference a single cache line. This means that for each
memory transaction in motion compensation, generally at
most one or two cachelines worth of data will be returned
from memory, for unidirectional or bi-directional prediction
respectively. Based on this, one might conclude that,
considered alone, the increased memory bandwidth available
on Pentium® 4 does not provide a direct gain in motion
compensation.

However, since motion compensation is an operation that is
repeated for many macroblocks in a frame, typically
referencing adjacent areas in reference frames due to
correlation between motion vectors, we believe that the larger
data transfer latency is outweighed by the improved cache hit
rates associated with subsequent requests. The evidence thus
suggests that the combination of the increased bandwidth and
larger cache line size is the biggest contributor to the
improvement of motion compensation on the Pentium® 4.
2) H.264

In MPEG-2 decoding, several characteristics have been
demonstrated in motion compensation, where wide registers,
increased memory bandwidth, and large cache line sizes make
great contributions to the whole kernel performance.

While these are not unexpected, different characteristics
have been identified in the H.264 decoder. First, H.264 motion
compensation scales much better with CPU frequency, with
bus utilization around 8%~10% (CIF~DVD resolution
format), 2/3 less than MPEG-2. Second, there is less
opportunity for data-level parallelism, due to the use of
smaller block sizes and more complex coding decisions.

In the motion compensation kernel there are two underlying
differences between H.264 and former video coding standards:
the use of 1/4 pixel motion compensation, and spatial
interpolation for luma/chroma component. Thus, MC in H.264
requires more computation than previous older standards,
which used only simple integer or half-pixel interpolation.

Whereas in MPEG-2, the MC kernel can use the
PAVGB/PAVGW instruction to perform interpolation, H.264
uses a 6-tap filter to precisely interpolate 1/4-pixel values.
While our implementation of 1/4-pixel motion compensation
uses the SSE-2 instruction PMADDWD for the filter
operations, the H.264 MC kernel still requires more complex
manipulations than MPEG-2. Moreover, some performance
penalty is introduced by the 4x4 block size used in MC.
Although a great deal of operations are based on 8x8 blocks,
there still exist 4x4 interpolations that are less effectively
parallelized. In this case, wide SIMD registers can only
partially be utilized.

Due to the heavy computational burden involved in the MC

TABLE 4.7 MPEG-2 BUS UTILIZATION AND IPC VS. FREQUENCY ON
PENTIUM® 4.

SSE SSE-2 CPU
frequency IPC Bus

utilization
IPC Bus

utilization
1.60GHz 0.51 0.21 0.29 0.22
1.87GHz 0.42 0.22 0.26 0.23
2.27GHz 0.41 0.24 0.23 0.24
2.67GHz 0.36 0.25 0.21 0.27
3.06GHz 0.33 0.27 0.19 0.27

TABLE 4.8 MPEG-2 MC UOPS DISPATCHES ON PENTIUM® 4

Event Percentage
Port 0 ALU uops 39.6%
Port 1 ALU uops 15.4%
Port 1 slow ALU uops 3.3%
Port 1 x87 and SIMD instructions 20.4%
X87 and SIMD register and memory moves 21.3%

kernel, the memory subsystem in H.264 decoding faces less
pressure than in MPEG-2. The bus utilization rate is only
8%~10% in the kernel. This corresponds to 4264MB/sec x
9.1% = 388MB/sec in bandwidth, indicating that memory
bandwidth for this kernel is not a major issue currently; we
expect this kernel would not run out of bandwidth until the
CPU is running at 8~10GHz. With the kernel’s increased
computational demands, and the similar memory access
patterns as in MPEG, Table 4.9 indicates that hardware
prefetching is of little benefit in H.264 MC.

As previously illustrated, multi-frame prediction is a major
coding gain in H.264 codec. One might expect that this would
place great demands on the memory subsystem. For example,
with five reference image frames at DVD resolution, the
working set size is 2.5 MB, far exceeding L2 capacity. In fact,
although L2 misses increase (to about one every 230
instructions), bus utilization actually decreases, and IPC
remains relatively unaffected.

D. Deblocking Filtering
Deblocking filtering is found only in H.264. This section of

the pipeline contains two kernels: block strength calculation
and block filtering, the relative times of which are highly
dependent on the inherent characteristics of the input
sequence.

The frequency scaling result of Table 4.2 shows that the
deblocking filter kernel has lower scaling than expected. The
reason for this is evident in Table 4.11, which shows a large

number of L2 cache misses during strength calculation. This is
caused by the working set for this kernel exceeding current
cache sizes. For a 720x480 resolution sequence, taking motion
information and at least 3 frames into consideration, the
minimum working set size is 2.4Mbytes3, far larger than the
L2 cache size on the 3.06GHz Pentium® 4 processor.
Therefore, in the deblocking filter kernel, after motion
compensation, the motion vector information required by the
kernel has already been thrashed out of the L2 cache.

Block filtering shows good IPC, due to heavy scalar
instruction use. SIMD instructions are not easily used in this
kernel due to a couple of reasons: a large number of
conditional operations are required on adjacent pixels and the
smaller block size encumbers use of SIMD operations. The
first problem could be solved according to the probability
model used in the conditioning operations; examining the
statistics of the neighboring pixels distribution, we conclude
that the condition operator has greater than 80% probability of
being true, and can thus use SIMD instructions such as
PCMPGTW to optimize this kernel. The other problem argues
for new approaches to explicitly handling data-level
parallelism.

V. SIMULTANEOUS MULTI-THREADING

In general, multimedia applications exhibit not only data-
level (DLP) and instruction-level parallelism (ILP), but also
the possibility for substantial thread-level parallelism (TLP).
The decoder can divide the picture data into parts and use
multiple threads, each decoding part of the picture in parallel.
Such workloads are good candidates for speeding up on a
number of different multi-threaded architectures. This section
discusses the performance of a threaded MPEG decoder on
several parallel architectures.

Intel Corporation recently introduced Hyper-Threading
Technology, which supports two threads simultaneously on
the same physical processor, in Intel® Xeon™ processors and
3.06GHz Pentium® 4 processors [14]. It is one
implementation of an SMT architecture [17]. The motivation
for SMT is that the performance of many programs is often
limited by a single execution resource, while other resources
tend to be under-utilized. If the CPU can interleave the
execution of different tasks, for example, interleaving
calculations with memory operations, then more execution
resources can be utilized at the same time. To enable this,
Hyper-Threading Technology supports two logical processors
on a single physical processor, so that two different threads
can run simultaneously, yielding more efficient use of
machine resources. In today’s Hyper-Threading Technology,
only a small set of the microarchitecture state is duplicated,
while the front-end logic, execution units, out-of-order
retirement engine, and memory hierarchy are shared. Thus,
compared to processors without Hyper-Threading
Technology, the die-size is increased by less than 5% [14].

3 Considering only frame buffer and motion vector information: (720 x

480pixels/frame)x(1.5bytes/pixel)x(3frames)+(720/4)x(480/4)x2x5x4 bytes =
2.42 Mbytes

TABLE 4.9 H.264 MC CHARACTERIZATIONS ON PENTIUM® 4

Micro-Arch. Hardware
prefetch on

Hardware
prefetch off

L2 misses/Instructions 0.31% 0.32%
Bus utilization 9.0% 9.1%
IPC 0.56 0.55
Clocks (billions) 3.06 2.94

TABLE 4.10 H.264 MC CHARACTERIZATIONS WITH DIFFERENT REFERENCE
FRAME ON PENTIUM® 4

H.264, 720x480

Micro-Arch.
1.5Mb/s
1 Ref frame

1.4Mb/s
5 Ref frame

IPC 0.56 0.50
Branches/ 1000 Instr. 45 45
Branch Mis-predict. Rate 3.5% 3.9%
L1 misses/ 1000 Instr. 32 34
L2 misses/ 1000 Instr. 2.9 4.3
Bus utilization rate 9.0% 7.8%

TABLE 4.11 H.264 DEBLOCKING FILTER KERNEL ON PENTIUM® 4

Micro-Arch.
Strength
Calculation

Block
Filtering

Clockticks (%) 7.5% 14.4%
IPC 0.642 1.11
Branches/ 1000 Instr. 110 132
Branch Mis-predict. rate 5.7% 5.4%
L1 miss rate 4.7% 1.4%
L2 miss rate 25.0% 23.4%

As mentioned earlier, our MPEG-2 and H.264 decoders are
optimized for the Intel® Pentium® 4 processor. Nonetheless,
due to the inherently sequential constitution of the algorithms,
most of the modules in these well-optimized workloads cannot
fully utilize all the execution units available in the
microprocessor. For example, while motion compensation is
memory-intensive, the VLD and IDCT modules are limited by
computation. This makes MPEG decoding a good candidate
for running on SMT machines.

Table 5.1 shows the comparison of our “multi-threaded”
MPEG-2 and H.264 decoders on a single-threaded processor,
on a single processor with Hyper-Threading Technology, and
a dual-processor system. In general, on SMT processors,
kernel characteristics become less important than the overall
application characteristics, because multiple kernels are
typically executing concurrently at a given time. Hence, it is
hard to breakdown the workload characteristics in individual
modules. Rather, we consider here the whole application as a
whole. In the first four columns, the workload is not threaded.
Instead, we run two copies of the same decoder
simultaneously. The copies are not synchronized, so there is
no synchronization overhead and interleaving of different
modules happens naturally. Under these ideal conditions, the
speed-up is a benchmark for the best-case gain achievable in a
threaded decoder.

The first four columns show that we get a very good speed-
up with two copies of the decoder running simultaneously on
Hyper-Threading processors. UPC increases from 0.86 to 1.08
in MPEG-2 decoder, indicating 26% more efficient resource
utilization—an impressive figure given the 5% die-size
increase to support Hyper-Threading Technology [14].

As seen in the first four columns of Table 5.1, on Hyper-
Threading Technology, UPC increases from Hyper-Threading
Technology in two copies of the H.264 decoder are
substantially lower than those in the MPEG-2 decoder (12%
vs. 26%). This is a result of the fact that modules in the
MPEG-2 decoder have more distinct bottlenecks than those in
H.264 decoder, as shown in Table 4.1. For example, the MC
module in MPEG-2 is verging on being memory-bound, while
the MC module in H.264 is both computation- and memory-
bound. Moreover, in the H.264 decoder, many modules use

only scalar instructions, for which they contend for the same
integer computation unit. Therefore, two copies of the H.264
decoder see less speed-up than those of the MPEG-2 decoder
on Hyper-Threading Technology.

In addition to running two unsynchronized copies of the
same decoder, the last three columns of Table 5.1 show a
comparison of a more realistic multi-threaded workload. A
single MPEG-2 decoder partitions its work for two threads.
Pictures can be divided into slices of macroblocks, and each
thread can be assigned to decode some slices of macroblocks,
e.g., as shown in Figure 5.1. In this case, the workload has
more fine-grained scheduling with synchronization overheads
than the two copies of decoders. The workload also has a non-
parallelizable portion, resulting in only 1.58x speed-up on a
dual-processor system and 1.09x speed-ups on Hyper-
Threading Technology.

While the shared cache may be a drawback for some
applications running on processors with Hyper-Threading
Technology, it can also provide better cache locality between
the two logical processors for other applications. For example,
one logical processor can be used to prefetch data into the
shared caches to reduce a substantial amount of the memory
latency of the application in the other logical processors [19].
Similarly, in multimedia applications, a shared cache can be
exploited to reduce the impact of cache misses by scheduling
threads to prefetch data for each other [2].

Our results also demonstrate that an MPEG decoder can
benefit from cache sharing. Figure 5.1 illustrates two different
multi-threading schemes used in our video decoder.

1. Static partitioning: In this method, one thread is
statically assigned the first half of the picture, while
another thread is assigned the other half of the picture
(as shown in Figure 5.1(a)). Assuming that the
complexity of the first half and second half are similar,
these two threads will finish the task at roughly the
same time. However, some areas of the picture may be
easier to decode than others. This may lead to one
thread being idle while the other thread is still busy.

2. Dynamic partitioning: In this method, slices are
dispatched dynamically so as to achieve good load
balance. A new slice is assigned to a thread when the

TABLE 5.1 COMPARISON OF MPEG-2 DECODER ON SINGLE-THREADED, SMT PROCESSOR, AND DUAL-PROCESSOR SYSTEMS.

Two copies of decoders (3.06GHz Pentium®4)
MPEG-2,

720x480, 9Mb/s
H.264,

720x480, 1.5Mb/sec

2-threaded MPEG-2 decoder,
720x480, 9Mb/s

(2.0GHz Xeon™)
 Event

Single-
thread

Hyper-
threading

Single-
thread

Hyper-
threading

Single-
thread

Hyper-
threading

Dual-
processors

Clockticks (millions) 22,587 17,996 14,949 13,265 11,794 10,779 7,452
Instructions retired (millions) 13,984 13,983 9,158 9,155 7,091 7,792 7,713
Uops retired (millions) 19,449 19,414 12,490 12,496 10,292 11,505 11,505
MMX/SIMD instr. (millions) 4,575 4,378 1,218 1,218 2,288 2,288 2,288
IPC 0.62 0.78 0.61 0.69 0.6 0.72 1.04
UPC 0.86 1.08 0.84 0.94 0.87 1.07 1.54
L1 cache misses (millions) 198 357 200 329 107 171 131
Bus utilization rate 10.6% 15.0% 11.6% 16% 9.60% 6.0% 10.6%

thread has finished its previously assigned slice. In this
case, we don’t know which slices will be assigned to
which thread. Instead, the assignment depends on the
complexity of the slices assigned. As a result, one
thread may decode a larger portion of the picture than
the other if its assignments are easier than the other
thread’s. The execution time difference between two
threads in the worst case is the decoding time of the last
slice.

The principle advantage to static task partitioning is its high
cache locality in dual-processor systems. Figure 5.2 illustrates
the cache locality in multiple frames of video. During motion
compensation, the decoder uses part of the previous picture,

the referenced part of which is roughly co-located in the
previous reference frame, to reconstruct the current frame. It is
faster to decode the picture when the co-located part of the
picture is still in the cache. In the case of a dual-processor
system, each thread is running on its own processor, each with
its own cache. If the co-located part of the picture in the
previous frame is decoded by the same thread, it is more likely
that the local cache will have the pictures that we just
decoded. This property makes static partitioning attractive.

While the foremost advantage of the dynamic scheduling
scheme is its good load balance, there may be a drawback to
dynamic partitioning in terms of cache locality on dual-
processor systems. As we mentioned earlier, during motion
compensation, we use part of the co-located previous pictures.
In the case of a dual-processor system, each thread is running
on its own processor (and cache). Since we dynamically
assign slices to different threads, it is more likely that the co-
located portion of the previous picture may not be in the local
cache, as shown in Figure 5.2(c). Thus, dynamic partitioning
incurs 45% more bus transactions on dual-processor systems.

On the other hand, on a processor with Hyper-Threading
Technology, the FSB traffic is within 1% range from the static
partitioning method to the dynamic partitioning method. This
is because the shared cache on Hyper-Threading Technology
can provide better cache locality between the two logical
processors. Because of efficient cache sharing and better load
balancing, the dynamic scheduling has 4% better performance
than the static scheduling on Hyper-Threading Technology.

VI. CONCLUSIONS

In this paper, we have studied the performance of several
highly optimized MPEG and H.264 decoders on state-of-the-
art micro-architectures, describing the key characteristics of
the workload on these systems, and have addressed the impact
that various micro-architectural features can be expected to
have on the workload.

To summarize the workload characteristics, we conclude
the following:
• Application performance. H.264 decoding is much more

demanding than MPEG-2; a 1.5Mb/s DVD-resolution
main profile stream is almost as complex as a 17 Mb/s
1920x1024, HDTV MPEG-2 sequence.

• VLD/CABAC. VLD/CABAC is heavily data-dependent,
uses predominantly scalar code, and is entirely
computation-bound, scaling directly with frequency on
Pentium® 4.

• IDCT/Inverse Integer Transform. IDCT and Inverse
Integer Transform can be fully optimized with SIMD
instructions, and are entirely compute-bound, also scaling
directly with frequency on Pentium® 4.

• Motion Compensation. MPEG-2 motion compensation is
mostly memory bound. In contrast, H.264 motion
compensation is more computationally demanding.
Neither version of the kernel is well-suited to current
hardware prefetch mechanisms that assume sequential
accesses.

(b) Dynamic
scheduling

(a) Static
scheduling

picture
slices

Assigned
slices

Thread 1 Thread 2

Thread 1

Thread 2

(b) Dynamic
scheduling

(a) Static
scheduling

picture
slices

Assigned
slices

Thread 1 Thread 2

Thread 1

Thread 2

Figure 5.1. Two slice-based task partitioning schemes between two threads:

(a) static scheduling and (b) dynamic scheduling.

Frame t Frame t+1Frame t Frame t+1
(a)

Frame t Frame t+1

All local
cache hits

Frame t Frame t+1

All local
cache hits

(b)

Frame t Frame t+1

Some local
cache misses

Frame t Frame t+1

Some local
cache misses

(c)

Figure 5.2. Cache localities, during (a) motion compensation, in (b) static
partitioning, and in (c) dynamic partitioning.

• Deblocking Filter. Unlike previous video coding
standards, a deblocking filter becomes a necessary
component in H.264 decoders. The kernel is memory- and
branch-intensive.

From a microarchitectural perspective, we conclude the
following for the workload:
• Branch prediction. The majority of conditional branches

in MPEG and H.264 decoding occur during
VLD/CABAC, many of which are inherently data-
dependent and difficult to predict. Branch mispredictions
in other key kernels result in very little lost CPU time.
Improving the sophistication of branch predictors can be
expected to provide relatively little improvement in
MPEG decoding performance.

• Memory subsystem. The performance of the memory
subsystem has a dramatic impact on motion compensation
in MPEG-2. Motion compensation seems to benefit most
from the combination of the higher bandwidth and longer
L2 cachelines used by the Netburst™ microarchitecture.
On the other hand, the sequential hardware prefetcher of
Pentium® 4 appears to provide little benefit in motion
compensation.

• Wider registers. Increasing the size of SIMD registers
from 64-bits to 128-bits results in 9% improvement in
MPEG-2 motion compensation. However, these registers
are underutilized in H.264, because most prediction in this
standard is limited to regions at most 4 and 8 pixels wide.

• Execution resources. The performance of IDCT in
MPEG-2, and to a lesser extent motion compensation, is
bounded by the number of SIMD execution units
available on the Pentium® 4.

Extending the current work, there are a number of possible
issues to address, e.g., the characterization of MPEG encoders,
and the impact of multi-threading. There should be more work
to study future multi-threaded media workloads and their
implications to future multi-threaded microarchitectures.

ACKNOWLEDGMENT

We wish to acknowledge the exceptional efforts of Intel
Nizhny Novgorod Lab in developing the MPEG-2 decoders
used in this study, especially Valery Kuriakin, Sergey Zheltov,
Roman Belenov, and Alexander Knyazev. We also would like
to thank Steven Ge and Justin Song for their assistance in
some performance measurements. Finally, we thank Jih-Kwon
Peir, Anwar Rohillah, and Ronak Singhal for the constructive
comments that allowed us to improve our manuscript.

REFERENCES
[1] M. Atkins and R. Subramanism, "PC Software Performance

Tuning," IEEE Computer, vol. 29, no. 9, pp. 47-54, Aug. 1996.
[2] Y.-K. Chen, E. Debes, R. Lienhart, M. Holliman, and M. Yeung,

"Evaluating Performance of Multimedia Application on
Simultaneous Multi-Threading," in Proc. of Int'l Conf. on
Parallel and Distributed Systems, pp. 529-534, Dec. 2002.

[3] R. Coelho and M. Hawash, DirectX®, RDX, RSX, and MMX™
Technology: a Jumpstart Guide to High Performance APIs,
MA: Addison-Wesley, April 1998.

[4] B. G. Haskell, A. Puri, and A. N.Netravali, Digital Video: An
Introduction to MPEG-2, MA: Kluwer, 1997.

[5] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A.
Kyker, and P. Roussel, "The Microarchitecture of the Pentium®
4 Processor,” Intel Technology Journal, Q1 2001.

[6] Intel Corp., Intel® Pentium® 4 Processor Optimization
Reference Manual, Order number: 248966, (available on-line:
http://developer.intel.com/design/Pentium4/manuals/248966.ht
m).

[7] Intel Corp., Intel® Vtune™ Performance Analyzer, (available
on-line: http://developer.intel.com/software/products/vtune/).

[8] Intel Corp., "A Fast Precise Implementation of 8x8 Discrete
Cosine Transform Using the Streaming SIMD Extensions and
MMX Instructions," Intel Application Notes AP-922 (available
on-line: http://developer.intel.com/vtune/cbts/strmsimd/
appnotes/ap922/ap922.pdf), Apr. 1999.

[9] Intel Corp., "Using MMX Instructions in a Fast iDCT Algorithm
for MPEG Decoding," Intel Application Notes AP-528,
(available on-line: http://developer.intel.com/software/idap/
resources/technical_collateral/mmx/AP528.HTM).

[10] International Standard Organization, " Information Technology-
-Coding of Moving Pictures and Associated Audio for Digital
Storage Media at up to About 1,5 Mbit/s---Part 2: Video,"
ISO/IEC 11172-2.

[11] International Standard Organization, "Information Technology--
Generic Coding of Moving Pictures and Associated Audio
Information---Part 2: Video," ISO/IEC 13818-2.

[12] International Standard Organization, "Information Technology–
Coding of Audio-Visual Objects, Part 2---Visual,"
ISO/IEC 14496-2.

[13] ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC, Document JVT-
D157, 4th Meeting: Klagenfurt, Austria, July 2002.

[14] D. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A.
Miller, and M. Upton, “Hyper-Threading Technology
Microarchitecture and Architecture,” Intel Technology Journal,
Vol. 6, Q1, 2002.

[15] J. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J. LeGall,
MPEG Video Compression Standard, NY: Chapman & Hall,
1997.

[16] T. Sikora, “MPEG Digital Video-Coding Standards,” IEEE
Signal Processing Magazine, vol. 14, no. 5, pp. 82—100, Sept.
1997.

[17] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous
Multithreading: Maximizing On-Chip Parallelism,” in Proc. of
Int’l Symp. on Computer Architecture, pp. 392--403, June 1995.

[18] S. P. Vanderwiel and D. J. Lilja, "Data Prefetch Mechanisms,"
ACM Computing Surveys, Vol. 32, No. 2, pp. 174-199, June
2000.

[19] H. Wang, P. Wang, R. D. Weldon, S. Ettinger, H. Saito, M.
Girkar, S. Liao, and J. Shen,, “Speculative Precomputation:
Exploring the Use of Multithreading Technology for Latency,”
Intel Technology Journal, vol. 6, no. 1, pp. 22-35, Feb. 2002.

[20] M. M. Yeung, "MPL: MPEG Processing Library---Tools and
Advanced Technology for Video-Centric Applications," Intel
Developer Forum, (Palm Spring, CA), Sept. 1999.

[21] X. Zhou, E. Q. Li and Y.-K. Chen, “Implementation of H.264
Decoder on General-Purpose Processors with Media
Instructions”, in Proc. of SPIE Conf. on Image and Video
Communications and Processing, vol. 5022, Jan. 2003.

