
  

Abstract-- Media workloads have been a principal driving 
force behind processor designs for several years. While MPEG 
decoding has been extensively studied in the past, it continues to 
gain importance as a key workload underlying many present and 
emerging applications. Additionally, the emerging video coding 
standard MPEG-4 Part 10, also known as H.264, has some new 
features that impact the whole system performance. In this 
paper, we address the characterization of MPEG as well as H.264 
decoding on current state-of-the-art superscalar and 
simultaneous multithreaded (SMT) micro-architectures, 
discussing both application-level behavior and the key kernels in 
the applications, e.g., variable-length decoding, IDCT, deblocking 
filter, and motion compensation. We also address the 
effectiveness of a number of current micro-architectural 
enhancements for speeding up this workload. 
 

Index Terms—multimedia, video codecs, MPEG, H.264, 
microprocessor, simultaneous multithreading  

I. INTRODUCTION 

As the computing power available to users increases and 
rich content becomes prevalent, multimedia workloads assume 
growing importance during processor design and overall 
system performance assessment. One workload of particular 
importance is MPEG decoding, which is encountered not only 
as the basis of standalone applications such as DVD or HDTV 
playback, but also as a key underlying component in even 
more demanding applications such as interactive video, video 
editing, and so forth [20].  

To date, computational power has typically increased over 
time through the evolution from simple pipelined designs to 
the complex speculation and out-of-order execution of many 
of today’s deeply pipelined superscalar designs. However, 
while single-threaded processors are now much faster than 
they used to be, the rapidly growing complexity of such 
designs also makes achieving significant new gains ever more 
difficult. This work will first describe the workload 
characterization of MPEG decoding on current superscalar 
architectures, and then characterize the same workload on 
simultaneous multi-threading (SMT) architectures [17]. 
Specially, we use Intel® processors with Hyper-Threading 
Technology [14], which is one implementation of the SMT 
architecture. 

The MPEG and H.264 decoders we use as benchmarks are 
heavily optimized using the latest ISA extensions [20][21]. 
For our performance analysis, we use a commercial software 
analysis tool and the performance counters available on 
today's processors [1][3][7]. 

The paper is organized as follows. In Section II, we provide 
a brief review of the basic principles behind most current 
video codecs, describing particularly the well-established 
MPEG-2 standard and the rapidly emerging MPEG-4 part 10 
(also known as H.264) standard. Section III provides an 

overview of the overall application behavior of MPEG-2 and 
H.264 decoding, while Section IV discusses in further detail 
the implications of the key kernels for current and emerging 
architectures, and the impact micro-architectural design 
decisions can expect to have on MPEG decoding performance. 
Section V addresses application-level implications on threaded 
architectures. Finally, Section VI concludes the paper.  

II. OVERVIEW OF MPEG STANDARDS 

The Moving Pictures Expert Group (MPEG) [4][15][16] is 
a standard group established in 1988. Since then, the group 
has defined a number of popular video and audio compression 
standards, including MPEG-1 [10], MPEG-2 [11], MPEG-4 
[12], and H.264 [13]. This work focuses on MPEG-2 and 
MPEG-4 part 10 (H.264) decoding. This section provides a 
high-level overview of these standards. 

A. MPEG-2 
MPEG-2 is a popular video compression standard used in a 

variety of applications, including DVD and HDTV. The 
standard incorporates three major compression techniques: 
predictive coding, transform-based coding, and entropy 
coding. To implement these, the MPEG-2 encoding pipeline 
consists of motion estimation, discrete cosine transform 
(DCT), quantization (Q), and variable-length coding (VLC). 
The MPEG-2 decoding pipeline consists of the counterpart 
operations of variable-length decoding (VLD), inverse 
quantization (IQ), inverse DCT (IDCT), and motion 
compensation (MC). 

Because there is temporal correlation between pixels in 
video sequences, MPEG-2 uses motion-compensated 
prediction, where only the differences between original 
images and motion-compensated prediction images are 
encoded. As all elements in a video scene are approximately 
spatially displaced, the motion between frames can be 
described by a number of motion parameters. Moreover, as the 
spatial correlation between motion vectors is often high, it is 
sometimes assumed that one motion vector is representative 
for the motion of a block of adjacent pixels. In general, in 
MPEG-2, one or two motion vectors are estimated, coded, and 
transmitted for each 16x16 pixels (macroblock). The basic 
operations of motion compensation are load, add, and store---
load the motion-compensated blocks from the reference 
frame(s), add the decoded displaced frame difference, and 
store the decoded blocks back to the frame buffer. The 
prediction may be formed either from the closest preceding 
reference frame, or as the interpolation of the closest reference 
frames in both forward and backward directions. Because the 
motion vector is the same for a macroblock, the above 
equation is very suitable for SIMD operations. 

Roughly speaking, operations in the MPEG-2 motion 
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compensation module are quite simple. Besides additions 
(including the averaging operations required in interpolation), 
most of the operations are memory accesses. 

In transform-based coding, the image is transformed into a 
more compact representation. The most popular 
transformation in current standards is the discrete cosine 
transform (DCT). Because there is some spatial redundancy 
between adjacent pixels, most of the energy of the signals is 
compacted into a few coefficients after the DCT 
transformation. Following this, the number of non-zero 
coefficients is further reduced by quantization, which is the 
lossy part of the compression standard. The quantization 
process projects the continuous values of the resulting 
transformed coefficients into a finite set of symbols, each 
representing an approximation of the coefficient’s value.  

The MPEG standards use an 8x8 DCT/IDCT to transform 
spatial-domain pixels to frequency-domain coefficients or vice 
versa. Because the transform is separable, most 
implementations use two one-dimensional 8-point DCTs (or 
IDCTs), one vertically and one horizontally. The one-
dimensional N-point DCT is given by the following equation:  
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operations in the DCT/IDCT modules are mathematical 
operations.  

In entropy coding, the non-zero coefficients are encoded 
using a variable-length code (VLC), whose length is based on 
its statistical likelihood of occurrence. Normally, a special 
scan order of non-zero coefficients is performed first to better 
exploit the statistical occurrence of zero-valued coefficients in 
an energy-compacting transform. Then, using a combination 
of run-length and entropy coding, the non-zero coefficients are 
encoded into the final bitstream. The key to reducing bit rate is 
to encode the most commonly occurring symbols with the 
fewest number of bits. Given their probabilities of occurrence, 
variable-length coding normally reduces the number of bits 
needed to encode a string of symbols. On the other hand, since 
the number of bits in the coming bitstream is highly variable, 
VLD is inherently serial with substantial data dependency; the 

length of the current codeword is not known until it has 
actually been decoded, so decoding of future codewords in the 
stream is dependent on decoding the current codeword. 

An MPEG-2 decoder implements the reverse operations of 
the preceding, i.e. VLD, IQ, IDCT, and MC. The block 
diagrams of the encoder and corresponding decoder are shown 
in Figure 2.1. 

B. H.264 
H.264, also known as MPEG-4 part 10 “Advanced Video 

Coding,” is the latest video coding standard aimed at very low 
bit rate real-time communication with both enhanced coding 
efficiency and low end-to-end delay. Figure 2.2 shows the 
decoder diagram of the standard. The underlying coding 
scheme defined by H.264 is similar to that employed in the 
prior MPEG video coding standards. It includes the use of 
translational block based motion compensation, DCT-like 
residual coding, scalar quantization, zigzag scanning and run-
length VLC entropy coding. However, new concepts and some 
key additional features differentiate H.264 from earlier 
standards. 

First of all, the motion compensation model used in H.264 
is more flexible and efficient than those in previous standards. 
For example, multiple reference frames may be used for 
prediction, allowing motion-compensated predictions to come 
from more than the most recent reference frame(s). Moreover, 
a much larger number of different motion compensation block 
sizes may be used for motion compensation on each 
macroblock (16x16, 16x8, 8x16, 8x8, 8x4, 4x8, 4x4, as 
illustrated in Figure 2.3), for the entire macroblock up to 
sixteen individual motion vectors (one per block of 4x4 pixels) 
could be used in motion estimation, substantially improving 
the motion estimation accuracy, especially in areas with fine 
motion details. 

Higher motion-vector resolution is also specified in the 
motion prediction model. Sub-pixel value interpolation is used 
to provide more precise spatial accuracy at fractional 
positions. Currently, quarter-pixel precision is the default. 
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Figure 2.1. Block diagram of MPEG-2 encoder and decoder 
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Figure 2.2 Decoder diagram of H.264 
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For motion compensation, we can summarize that the new 
methods in H.264 have provided a more precise model, which 
can yield a much higher perceptual quality for the decoded 
video sequences than MPEG-2 at the same bitrate. 

Second, another difference is that the DCT transform was 
replaced by a DCT-like integer transform in the H.264 
standard, as shown below: 
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The transform has a significant computational advantage 
compared with DCT transforms. Also, the small size helps to 
reduce the blocking and ringing artifacts. The precise integer 
transform eliminates any mismatch between the encoder and 
the decoder as well. 

Third, while in previous standards, a deblocking filter is 
optional and thus out of the motion compensation loop, in 
H.264, a deblocking filter is required within the motion 
compensation loop. The use of deblocking filter within the 
motion compensation loop not only reduces visual artifacts but 
also improves the final video coding efficiency.  

Fourth, the standard also implements a more complex and 
efficient entropy coding method: the context-based adaptive 
binary arithmetic coding (CABAC). Instead of using a 
universal coding table, the probability model of this coding 
method is adaptive to the changing statistics of incoming data; 
therefore it can offer better coding efficiency. The normally 
used VLC scheme is still reserved in the system and serves as 
an alternative method.  

III. HIGH LEVEL WORKLOAD ANALYSIS 

This section describes the overall application behavior of 
optimized MPEG-2 and H.264 decoders. The MPEG-2 
decoder used in the study is part of the Intel Media Processing 
Library [20], which was developed and highly optimized for 
Pentium® 4 processors by Intel Labs; the H.264 decoder is 
heavily optimized as well [21]. The software was analyzed 
using the Intel Tune™ Performance Analyzer [1][3][7] on an 
Intel® Pentium® 4 processor with a 533MHz system bus, 8 
KB L1 data cache, 512 KB L2 shared instruction/data cache, 
845 chipset and 512 MB of 333MHz DDR main memory. To 
investigate frequency scaling effects, we varied clock 

frequency of the Pentium® 4 processor between 1.6GHz and 
3.06GHz; however, for most of the study, we ran at 3.06GHz. 

A. MPEG-2 application behavior 
The video sequences used in MPEG-2 study are 3Mb/s, 

6Mb/s and 9Mb/s versions of DVD resolution (720x480) 
MPEG-2 sequence and a 1920x1024 high-definition (HD) 
MPEG-2 sequence (17 Mb/s); for H.264 we use 1.5Mb/s and 
5.6Mb/s of a 720x480 sequence, as well as 0.4Mb/s and 
1.5Mb/s CIF resolution sequences. Each was chosen as being 
representative of a larger set of video sequences that we have 
used in our studies. 

As Table 3.1 suggests, the behavior of the MPEG decoder is 
highly dependent on the characteristics of the video stream 
being decoded. H.264 is more complicated than MPEG-2. The 
1.5Mb/s DVD-resolution H.264 sequence takes about the 
same CPU time to decode as a high-definition MPEG-2 
sequence. 

 Figure 3.1 compares the relative breakdown of the decoder 
performance for a 3Mb/s and 9Mb/s version of the same 
content. For the 3Mb/s case, motion compensation is the most 
expensive module, followed by the inverse DCT. DCT 
coefficient decoding and inverse quantization (block-level 
VLD) takes around 16% of total time, with the rest of the time 
distributed amongst high-level bitstream parsing (picture 
header processing, macroblock-level VLD, etc.), motion 
vector prediction, IDCT address calculations, and other 
decoding overhead.  

When looking at the 9Mb/s stream, a different picture 
emerges. The absolute time spent on motion compensation is 
effectively unchanged; however, IDCT becomes a larger 
contributor (28% overall), as fewer blocks are skipped at this 

TABLE 3.1. OVERALL DECODING PERFORMANCE USING VARIOUS 
CONFIGURATIONS  ON 3.06GHZ PENTIUM® 4 

Format Sequence Frames/sec 
3Mb/s 315.6 
6Mb/s 238.9 

 
720x480 

9Mb/s 202.7 

 
MPEG-2 

1920x1024 17Mb/s 48.4 
0.4Mb/s 149.2 352x288 
1.5Mb/s 94.2 
1.5Mb/s 40.1 

 
H.264 

720x480 
5.6Mb/s 27.3 
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Figure 3.1. MPEG-2 decoding breakdown by time on 3.06GHz 
Pentium® 4 (720x480; left, 3Mb/s, and right, 9Mb/s). 
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bitrate, and VLD/IQ emerges to become a more prominent 
bottleneck, now taking 27% of the total decoding time. 

B. H.264 application behavior 
This section describes the overall application behavior of 

optimized H.264 decoder. Figure 3.2 compares the relative 
breakdown of the decoder performance for 1.5Mb/s and 
5.6Mb/s versions of the same content. 

For the 1.5Mb/s bitstream, motion compensation is the most 
time-consuming module, taking over 40% of the total CPU 
time. VLD takes about 22% of the total CPU time, whereas 
the DCT-like integer transform takes only 7%. The deblocking 
filter introduced in the H.264 decoder requires a large amount 
of computation as well, taking the remaining 20% of 
processing time. 

For the 5.6Mb/s bitstream, even at 3.06GHz we can only 
decode 27 frames/s. The absolute time spent on motion 
compensation and inverse integer transform only slightly 
increase. Meanwhile, the proportion of time spent in the VLD 
kernel dramatically increases, taking now about 42% of the 
total decoding time. 

Another interesting observation from the H.264 breakdown 
is importance of memory operations in the decoder. H.264 
uses a 4x4 block size as its basic operation unit, which results 
in much larger buffers being required for motion vector and 
coefficient predictions. For each decoding frame, the H.264 
decoder has to reset these buffers to zero, placing intensive 
demands on the memory subsystem. For example, for a high 
definition video sequence, the action of zeroing out these 
buffers takes nearly 20% of the total decoder time. 

IV. KERNEL IMPLICATIONS FOR HIGH-PERFORMANCE 
SUPERSCALAR ARCHITECTURES 

In this section, we address in greater detail some of the key 
kernels found in the MPEG-2 and H.264 decoding pipelines, 
paying particular attention to the implications for high-
performance singled-threaded architectures, as are 
characterized by typical superscalar machines today [5]. We 

also discuss the trends we expect to observe as both decoding 
workloads and CPU micro-architectures continue to evolve 
over time.  

Based on the application breakdowns of the previous 
section, the key kernels we discuss here are VLD, inverse 
transform (IDCT), MC, and deblocking filter (DF). The first 
three stages are common to MPEG-2 and H.264, albeit with 
significant differences in algorithms and complexity, but the 
last is a new feature in H.264.  

The overall kernel characteristics for the H.264 and MPEG-
2 on the 3.06GHz Pentium® 4 are shown in Table 4.1, and the 
per-module frequency scaling on Pentium® 4 processors is 
compared in Table 4.2. From the 1.60GHz to 3.06GHz scaling 
numbers given in Table 4.2, we can observe that both VLD 
and IDCT are entirely computation-bound for both MPEG-2 
and H.264, showing performance scaling directly with CPU 
frequency. Motion compensation is memory intensive in 
MPEG-2, as reflected from the bus utilization rate from Table 
4.1, showing little speed-up from the increase in clock 
frequency in Table 4.2. In comparison, H.264’s motion 
compensation is not purely dependent on the memory system, 
as computations play a significant role as well. The 
deblocking filter is similarly memory intensive, its 
performance being co-impacted by computation and the 
memory system. 

A. Variable-length decoding 
As other parts of the video decoding pipeline, such as IDCT 

and motion compensation, have been accelerated with the 
SIMD-style extensions available in modern instruction sets, 
the serial operation of variable-length decoding (VLD) has 
assumed increasing importance as a key kernel in video 
processing. 

VLD for both MPEG-2 and H.264 is characterized by 
substantial data dependency, limiting opportunities for 
instruction, data, and thread-level parallelism. Furthermore, 
both kernels require extensive bit-level manipulations to parse 
codewords from the input stream, an operation for which most 

Table 4.1. Kernel characterization on 3.06GHz Pentium® 4. 

 MPEG-2, 720x480, 9Mb/s H.264, 720x480, 1.5Mb/s 
Kernels MC IDCT VLD MC IDCT DF VLD 

IPC 0.18 0.65 0.75 0.556 1.163 0.762 0.640 
UPC 0.27 1.03 1.03 0.834 1.538 0.989 0.789 
MMX/SSE/SSE-2 per 100 instructions  45   91   6   27   30  0 0 
Branches per 1000 instructions 64 12 95 47 36 91 117 
Mispredict. branches per 1000 cycles  1.2   0.3   4.3   1.0   0.2   5.3   7.2  
L1 Hit-rate 70.2% 97.4% 95.5% 92.2% 91.5% 96.1% 95.5% 
L2 Hit-rate 77.5% 90.0% 98.2% 90.9% 99.9% 73.5% 96.4% 
Front-side bus utilization rate 27.3% 2.4% 3.4% 9.1% 2.7% 14% 7.4% 

 
Table 4.2. MPEG-2 and H.264 frequency scaling for key modules, showing overall percentage of decode time and module speed-up. 
 MPEG-2, 720x480, 9Mb/s  H.264, 720x480, 1.5Mb/s 

CPU Overall Key kernels Overall Key kernels 
Frequency Scaling FPS Scaling MC IDCT VLD FPS Scaling MC IDCT DF VLD 

1.60GHz 1.0 120 1.0 1.0 1.0 1.0 23.1 1.0 1.0 1.0 1.0 1.0 
1.87GHz 1.17 136.7 1.14 1.09 1.16 1.14 26.4 1.14 1.15 1.15 1.12 1.16 
2.27GHz 1.42 160.6 1.34 1.18 1.41 1.37 31.1 1.34 1.34 1.39 1.30 1.41 
2.67GHz 1.67 182.0 1.52 1.28 1.63 1.64 35.3 1.53 1.55 1.65 1.47 1.63 
3.06GHz 1.92 202.7 1.69 1.34 1.84 1.88 40.1 1.72 1.73 1.88 1.63 1.87 



  

general purpose architectures are ill suited. 
Showing excellent scaling over different frequencies on 

Pentium® 4 processors in Table 4.2 indicates that the kernel is 
entirely computation bound.  
1) MPEG-2 

A breakdown of the MPEG-2 VLD kernel reveals that CPU 
time is divided fairly evenly between its three major 
components:  bit stream input, Huffman table lookups, and 
inverse zigzag scan/inverse quantization. 

A number of challenges arise in decoding variable-length 
symbols from an MPEG-2 bitstream efficiently. First, most 
implementations use a lookup table to decide which symbol is 
currently being examined. However, there is a trade-off 
between the size of the look-up table and the complexity of the 
lookup operation. The simplest lookup requires only a single 
table; however decoding a possibly 17-bit symbol with one 
table lookup requires the decoder to build a table of 217 = 
128K entries, which is too large to fit into the first-level cache. 
Alternatively, since only a small subset of all of those entries 
correspond to valid Huffman codewords, the tables can be 
broken into several smaller pieces, so that all can fit into the 
L1 cache. In this case, however, it takes extra steps to decide 
which table to use. In our implementation, only three tables of 
total size 2Kbytes are used in VLD kernel. 

Besides deciding which lookup table to use, VLD has a 
large number of conditional branches for every DCT 
coefficient. Basically, there are four questions to ask for each 
coefficient: (a) Are there enough bits remaining in the bit 
buffer? (b) Which lookup table should we use? (c) Is it end of 
block yet? (d) Is it an escape code (a special fixed-length code 
for rarely encountered symbols)? 

Memory references throughout the kernel are basically 
limited to Huffman table lookups and reading of the bitstream, 
and typically hit L1 around 95% of the time; the L2 hit rate is 
around 98.2%. A comparison of two different approaches for 
reading variable-length bit strings in VLD suggests that the L1 
misses in our implementation of the kernel result almost 
exclusively from reading of data from the bitstream rather than 
from the Huffman lookups. Meanwhile, reading from the 
bitstream is a purely sequential operation, and so is very well 
suited to the hardware prefetch mechanism in Pentium® 4; 
however, such data is prefetched only into L2. 

Nonetheless, despite the good scaling on Pentium® 4 and 
the heavily scalar code, the IPC of VLD is poor; Table 4.3 

shows the performance of VLD for the 9Mb/s MPEG-2 stream 
on the Pentium® 4 microarchitecture. 

The first observation is that even though the Pentium® 4 
processor uses a sophisticated branch predictor, there is still a 
relatively high number of mispredicted branches encountered 
during VLD. This is consistent with the intuition that many 
branches in variable-length decoding are inherently data-
dependent and often essentially random. The Pentium® 4 
processor uses a 20-stage pipeline, with a resulting large 
branch misprediction penalty. As future CPUs are expected to 
further increase the number of pipeline stages, branch 
mispredictions in VLD will become increasingly important 
limiters to performance in multimedia applications. 
2) H.264 

Unlike MPEG-2, context-based adaptive binary arithmetic 
coding (CABAC) has been employed for variable-length 
decoding in H.264, resulting in 5%~20% bitrate savings 
compared to the simpler Huffman entropy coding scheme used 
in MPEG-2. Although H.264 also supports Huffman coding, 
in our workload analysis, we prefer to use CABAC as our 
basic entropy-coding tool for its higher coding efficiency. 

Similar to Huffman entropy decoding, CABAC is 
characterized by substantial data dependency. Whereas in 
MPEG-2 we can easily use a look-up table to facilitate the 
codeword parsing process, this approach is not feasible for 
CABAC in H.264.  

In this new entropy decoding model, we find two kernels, 
i.e., arithmetic decoding and the codeword parser (NAL 
decoding in Table 4.3); a breakdown of time reveals that CPU 
time is divided approximately equally between them. Table 
4.3 shows some micro-architectural metrics of CABAC. 
Mispredicted conditional branches are the major bottleneck in 
this kernel. NAL decoding also encounters the same problem. 
While MPEG-2 uses only one motion vector and limited 
prediction types for each 16x16 macroblock, H.264 allows up 
to 16 motion vectors to be used for more precise predictions. 
The result is that with more detailed classification information 
and the smaller block size in the H.264 coding model, the 
kernel needs more conditional checks to identify the 
corresponding coding information, such as, prediction type of 
each 4x4 block, and so on. Most of these vary on a block-by-
block basis, and so cannot be predicted effectively by the 
branch predictor. 

B. Inverse transform/inverse quantization 
For block-based video coding standards, the inverse 

transform is mainly performed on an 8x8 or 4x4 block level 
immediately following VLD/IQ. The data is typically in L1, 
and thus we expect that the kernel is computationally 
intensive. The frequency scaling result confirms this intuition.  
1) MPEG-2 

IDCT has been frequently targeted for efficient 
implementation with SIMD-style instruction sets [8][9]. 
Indeed, as the kernel is completely computation-bound, it is a 
good candidate for speeding up with such approaches. 
However, despite the large amount of both data and 

TABLE 4.3. VLD MICRO-ARCHITECTURE FOR ON 3.06GHZ PENTIUM-4  

H.264 VLD 

Statistics 

MPEG-2 
VLD 

CABAC 
NAL 
decoding 

IPC 0.75 0.63 0.67 
Branch mispredict. Rate 6% 8.7% 9.6% 
Mispredict. branch/inst. 0.6% 1.25% 1.41% 
% time lost to branch 
mispredictions 

9.1% 15.8% 18.9% 

L1 Hit-rate 95.5% 96.5% 94.2% 
L2 Hit-rate 98.2% 99.3% 95.3% 



  

instruction-level parallelism that can be exploited in this 
kernel, the table above reveals that with an IPC of 0.65 on the 
Pentium® 4 processor, IDCT actually makes less efficient use 
of machine resources than the data-dependent code of VLD. 

An examination of the kernel shows that the code is 
dominated by general SSE operations (see Table 4.4), with 
interspersed register-to-register moves and stores; e.g., a 
sequence of movaps, addps, and subps is a typical 
recurring theme, corresponding to the well-known butterfly 
operation, surrounded by associated prescaling/multiply 
operations. 

To explain the unexpectedly poor IPC of this kernel, we 
turn to the description in [5]. Pentium® 4 processors includes 
one full floating-point (FP)/SSE execution unit (port 1), as 
well as one additional FP/SSE execution unit that can handle 
moves and stores (port 0). We believe that the heavy 
MMX/SSE computational demands of the IDCT kernel lead to 
contention for these limited resources. Given the instruction 
mix shown in Table 4.4, an examination of micro-op 
dispatches reveals the expected bias, as shown in Table 4.5. 

The throughput for most of the SSE single-precision 
arithmetic operations used in the IDCT is one instruction 
every two cycles on Pentium® 4, so given IDCT’s IPC of 0.6, 
we believe there is little room for improvement in the IDCT 
implementation itself in current microarchitectures. From a 
hardware perspective, it appears that the inclusion of 
additional SSE execution units could substantially improve 
performance in this kernel. Alternatively, from a software 
perspective, since VLD uses predominantly scalar code and 
thus underutilizes the machine’s FP/SSE execution units, we 
would expect to see an overall application speed-up if IDCT 
calculations were interleaved with VLD. Similarly, since 
IDCT makes little use of memory, we believe that motion 
compensation address calculations and prefetches could be 
effectively interleaved with IDCT computations. 
2) H.264 

Instead of the traditional DCT/IDCT used in previous 
standards, H.264 employs a 4x4 integer transform to transform 
spatial-domain signals into a frequency-domain representation 

and vice versa. 
In [21], Zhou, Li, and Chen demonstrated a fast SIMD 

implementation of chained matrix multiplications. While it is 
suitable for SIMD-style instruction sets, the SIMD instructions 
comprise only 30% of all instructions in the kernel. The 
transform kernel in H.264 is based on 4x4 blocks, the size of 
which is smaller than MPEG-2. With inverse quantization, 
address calculations, and the data load/store operations used in 
the kernel, the number of scalar instructions is a larger 
proportion. Due to the more balanced and effective utilization 
of execution resources, this module has a better IPC than the 
MPEG-2 transform, Table 4.5 reveals the micro-op dispatches 
in the H.264 integer transform kernel, where the proportion of 
SSE-2 instructions is less than MPEG-2, alleviating the heavy 
computation burden on Port 1.  

As previously illustrated, additional SSE execution units 
may significantly improve the whole performance of IDCT in 
MPEG-2. However, with the smaller block size and better 
balance in resource utilization in the integer transform, we 
expect that the H.264 kernel would benefit little from the 
additional SSE execution units. Similarly, from a software 
perspective, interleaving VLD and IDCT computations would 
see less benefit than the MPEG-2 case. 

C. Motion compensation 

Compared to the other modules in the MPEG decoding 
pipeline, motion compensation is memory intensive. For 
example, decoding of a 720x480 resolution video sequence 
has a working set size of (720×480 pixels/frame) × (1.5 
bytes/pixel) × (3 frames) = 1.5 MBytes. This is far larger than 
the L2 caches on most of today’s desktop machines. Given 
this, there are a number of possible factors that could impact 
the whole system performance: 

Cache line size. Pentium® 4 processors use 128-byte L2 
cache lines. When performing motion compensation on 
adjacent macroblocks with correlated motion vectors, we 
would expect fewer cache misses on Pentium® 4 than earlier 
architectures, since prior reads are more likely to have brought 
the required data into the L2 cache already. 

Memory bandwidth. At a high level, motion compensation 
essentially reads two (or more) buffers, adds them, and writes 
them back to memory. With a 533MHz system bus, Pentium® 
4 processors support much higher memory bandwidth than 
earlier systems (up to 4.26 GBytes/s). 

Register size. Motion compensation defined in the MPEG 
standards uses integer arithmetic. As motion compensation in 
MPEG-2 is performed on a macroblock basis, i.e. 16x16 
regions for progressive luma macroblocks, we would expect 
some benefit from 128-bit registers (SSE-2 integer instructions 
on Pentium® 4 processors) compared to 64-bit registers 
(SSE/MMX) for this standard. On the other hand, due to the 
use of smaller blocks for motion compensation in H.264, i.e., 
4x4 or 8x8 block size, the benefits from wider registers would 
be expected to be less. 

Hardware prefetch. Pentium® 4 processors have a 
hardware prefetcher, which was designed primarily in the 

TABLE 4.4. MPEG-2 IDCT INSTRUCTION MIX 

Event Per 
instruction 

64-bit MMX™ instructions retired 31.8% 
128-bit MMX™ instructions retired 0.1% 
Packed double-precision SSE inst. retired 44.4% 
Packed single-precision SSE inst. retired 13.6% 
Scalar instructions retired 10.1% 

Table 4.5  MPEG-2 IDCT Pentium® 4 µop dispatches 

Per uop Event 
MPEG-2 H.264 

Port 0 ALU uops retired 19.8% 20% 
Port 1 ALU uops retired 2.6% 11% 
Port 1 slow ALU uops retired 0.5% 0.6% 
Port 1 x87 and SIMD uops retired 58.4%  30% 



  

context of applications that read data sequentially. 
We first investigate these parameters in detail for MPEG-2, 

before comparing the newer H.264 MC kernel to its MPEG-2 
predecessor. 
1) MPEG-2 

In order to understand the properties of the MPEG-2 motion 
compensation module, we have compared the behavior of two 
implementations: one using SSE/MMX and the other using 
SSE-2, where we turned on/off the hardware prefetcher to see 
its effectiveness in MC kernel. All of them run on Pentium® 4 
processors. Fundamentally, we are interested in  

• Is the kernel computation or memory bound? 
• What is the impact of having wider registers, viz. 128-

bit vs. 64-bit? 
• How effective is the hardware prefetcher, particularly 

the linear predictor in the Pentium® 4 processor, in 
motion compensation? 

• What is the impact of the large memory bandwidth on 
the Pentium® 4? 

• What role does the large cache line size play in 
performance? 

• What role does the macroblock coding decision play in 
performance? Examples of coding decisions to consider 
include the choice of prediction mode (forward, 
backward, bi-directionally-predicted). 

Impact of prediction direction on temporal locality. 
According to Table 4.6, we observe that forward prediction 
consistently results in higher bus utilization than backward 

prediction. Backward prediction, which is allowed only in B-
frames, always predicts from the most recently decoded 
reference picture, whereas forward prediction generally incurs 
a greater delay in terms of number of coded pictures from the 
reference frame.1  Thus, in general, one would expect fewer 
L2 misses in backward prediction compared to forward 
prediction, and consequently fewer references to main 
memory. This is reflected in the relative performance of the 
MC module for the different prediction directions; backward 
prediction is on average 20-25% faster than forward prediction 
for our sequences, the difference becoming more pronounced 
at higher clock speeds. 

Impact of register width. Comparing the SSE and SSE-2 
implementations in Table 4.6, we see approximately 9% 
overall improvement when using SSE-2. At lower clock 
speeds, bi-directional prediction gains the most benefit, 
improving by 15% with wider registers. This is because this 
prediction mode involves more computation than forward or 
backward prediction. At higher clock speeds, the benefit is 
reduced as memory effects begin to dominate. 

Impact of hardware prefetch. The Pentium® 4 introduced 
a hardware prefetcher, some of the operating characteristics of 
which are described in [6]. The hardware prefetcher attempts 
to stay 256 bytes beyond the current data access location, and 
follows only one stream per 4K page. Since for a raster scan 
memory layout, a macroblock typically crosses approximately 
three pages2 at standard definition (720x480) resolution, we 
would assume that hardware prefetch would be ineffective at 
hiding memory latency in motion compensation, recognizing 
and prefetch at best only 3/16ths of all accesses. Indeed, since 
the hardware prefetcher in the Pentium® 4 is designed to 
handle application scenarios where adjacent data is read 
consecutively, it would be somewhat surprising if we saw a 
benefit in motion compensation, in which, while predictable in 
software, memory access patterns are more irregular. We also 
suspect that large cache lines would tend to reduce the 
effectiveness of hardware prefetch in this application, as a 
cache line size of 128 bytes corresponds to 8 macroblocks. For 
many sequences, motion vector correlation decreases 
substantially over this number of macroblocks, so read-ahead 
prefetching may not necessarily provide the expected gains 
compared to other video workloads. Table 4.6 confirms this 
intuition; disabling the hardware prefetch, the kernel runs in 
almost the same amount of time as with the hardware prefetch 
enabled, indicating that the hardware prefetch is of little 
benefit for this kernel. 

The kernel is not well-suited to the current hardware 
prefetch mechanism, which assumes sequential accesses. 

                                                           
1 Consider a standard GOP structure (IBBPBBP…). Ignoring edge 

effects at the beginning of the sequence, forward prediction predicts 
from the third-most recently decoded frame (in P-frames), or either 
the fourth- or fifth-most recently decoded frame (in B-frames). In 
contrast, backward prediction always predicts from either the first- or 
second-most recently decoded frame. 

2 720 bytes/row × 16 rows / 4 KB/page. 

TABLE 4.6 MPEG-2 MC CHARACTERIZATION ON 3.06GHZ AND 1.6GHZ 
PENTIUM® 4(9MB/S, MPEG-2, 720X480) 

3.06GHz Pentium® 4 
Average Clocks/

MB (K) 
L2 cache 
/Instr. 

Bus 
util. 

IPC 

Overall 77.5 0.009 27.4% 0.33 
Fwd 58.7 0.010 27.3% 0.29 

Bwd 44.0 0.008 25.0% 0.35 

SSE 
(hardware 
prefetch) 

Bi 318 0.008 28.8% 0.32 
Overall 70.4 0.023 27.3% 0.19 
Fwd 53.9 0.024 27.3% 0.18 
Bwd 39.5 0.018 26.4% 0.23 

SSE-2 
(hardware 
prefetch) 

Bi 301 0.027 27.8% 0.18 
Overall 69.4 0.024 28.1% 0.19 
Fwd 52.0 0.024 28.5% 0.18 
Bwd 39.2 0.020 27.0% 0.21 

SSE-2 
(no 
hardware 
prefetch) Bi 297 0.029 28.3% 0.18 

1.6GHz Pentium® 4 
Average Clocks/

MB (K) 
L2 cache 
/Instr. 

Bus 
util. 

IPC 

Overall 54.9 0.008 20.8% 0.50 
Fwd 39.2 0.009 22.3% 0.49 
Bwd 32.6 0.008 19.7% 0.51 

SSE 
(hardware 
prefetch) 

Bi 231 0.008 21.3% 0.50 
Overall 46.3 0.022 22.3% 0.30 
Fwd 33.0 0.022 23.5% 0.30 
Bwd 26.0 0.017 22.0% 0.34 

SSE-2 
(hardware 
prefetch) 

Bi 196 0.028 22.0% 0.26 



  

However, it may be a good candidate for future hardware 
prefetcher [18]. This is a question for further investigation. 

 

Impact of CPU frequency. Table 4.2 shows the relative 
performance scaling of motion compensation vs. CPU 
frequency. We can see some speed-up with the increase of 
CPU frequency, indicating that the kernel is still partially 
computation-bound even when the CPU frequency is as high 
as 3.06GHz. However, the acceleration of speed-up decreases 
gradually and the amount of time spent on this kernel becomes 
relatively stable as we further increase the CPU frequency, 
which indicates that the kernel is almost entirely memory-
bound when the CPU frequency is high enough. At that time, 
most of the CPU time will be spent on waiting for the memory 
accesses, while computations can be accomplished in the 
vacant interval time. 

Table 4.7 confirms the intuition that the amount of time 
spent using the bus should increase with clock frequency. In 
these simulations, only CPU frequency was changed on a 
single machine, so the front-side bus clock frequency was 
fixed at 533MHz. Correspondingly, as table 4.7 shows, IPC 
decreases as memory latency begins to dominate. 

Impact of execution resources. As the kernel is still 
partially compute-bound at today’s clock frequencies, we 
examine the breakdown of µops retired in the kernel in Table 
4.8. Kernel processing is divided between address calculations 
and loop overhead (scalar code, approximately 58% of µops 
retired), motion compensation arithmetic itself (i.e. addition of 
prediction error and interpolation, approximately 20% of µops 
retired), and loads and stores (the majority of the remaining 
21% of µops). 

Impact of memory bandwidth/cache line size. From 
Table 4.1, motion compensation needs 533MB/sec × 8 × 
27.3% = 1164 MB/sec in bandwidth on a 3.06GHz Pentium® 
4 system. Higher bandwidth in the Pentium® 4 processor 
clearly contributes to the performance improvement over 
earlier systems. We probably would not run out of bandwidth 

until the CPU is running at 7~8GHz. 
Our MPEG decoder interleaves memory accesses with 

computation. In forward- or backward-predicted macroblocks, 
a row of pixels is loaded from memory, and added to the 
current prediction error. In bi-directionally-predicted 
macroblocks, a row of pixels is loaded from both reference 
frames, and added to the current prediction error. With 128-
byte cache lines, approximately 90% of the time the load will 
reference a single cache line. This means that for each 
memory transaction in motion compensation, generally at 
most one or two cachelines worth of data will be returned 
from memory, for unidirectional or bi-directional prediction 
respectively. Based on this, one might conclude that, 
considered alone, the increased memory bandwidth available 
on Pentium® 4 does not provide a direct gain in motion 
compensation. 

However, since motion compensation is an operation that is 
repeated for many macroblocks in a frame, typically 
referencing adjacent areas in reference frames due to 
correlation between motion vectors, we believe that the larger 
data transfer latency is outweighed by the improved cache hit 
rates associated with subsequent requests. The evidence thus 
suggests that the combination of the increased bandwidth and 
larger cache line size is the biggest contributor to the 
improvement of motion compensation on the Pentium® 4. 
2) H.264 

In MPEG-2 decoding, several characteristics have been 
demonstrated in motion compensation, where wide registers, 
increased memory bandwidth, and large cache line sizes make 
great contributions to the whole kernel performance. 

While these are not unexpected, different characteristics 
have been identified in the H.264 decoder. First, H.264 motion 
compensation scales much better with CPU frequency, with 
bus utilization around 8%~10% (CIF~DVD resolution 
format), 2/3 less than MPEG-2. Second, there is less 
opportunity for data-level parallelism, due to the use of 
smaller block sizes and more complex coding decisions. 

In the motion compensation kernel there are two underlying 
differences between H.264 and former video coding standards: 
the use of 1/4 pixel motion compensation, and spatial 
interpolation for luma/chroma component. Thus, MC in H.264 
requires more computation than previous older standards, 
which used only simple integer or half-pixel interpolation.  

Whereas in MPEG-2, the MC kernel can use the 
PAVGB/PAVGW instruction to perform interpolation, H.264 
uses a 6-tap filter to precisely interpolate 1/4-pixel values. 
While our implementation of 1/4-pixel motion compensation 
uses the SSE-2 instruction PMADDWD for the filter 
operations, the H.264 MC kernel still requires more complex 
manipulations than MPEG-2. Moreover, some performance 
penalty is introduced by the 4x4 block size used in MC. 
Although a great deal of operations are based on 8x8 blocks, 
there still exist 4x4 interpolations that are less effectively 
parallelized. In this case, wide SIMD registers can only 
partially be utilized.  

Due to the heavy computational burden involved in the MC 

TABLE 4.7 MPEG-2  BUS UTILIZATION AND IPC VS. FREQUENCY ON 
PENTIUM® 4. 

SSE SSE-2 CPU 
frequency IPC Bus 

utilization 
IPC Bus 

utilization 
1.60GHz  0.51 0.21 0.29 0.22 
1.87GHz  0.42 0.22 0.26 0.23 
2.27GHz  0.41 0.24 0.23 0.24 
2.67GHz  0.36 0.25 0.21 0.27 
3.06GHz  0.33 0.27 0.19 0.27 

TABLE 4.8 MPEG-2 MC UOPS DISPATCHES ON PENTIUM® 4 

Event Percentage 
Port 0 ALU uops 39.6% 
Port 1 ALU uops 15.4% 
Port 1 slow ALU uops 3.3% 
Port 1 x87 and SIMD instructions 20.4% 
X87 and SIMD register and memory moves  21.3% 



  

kernel, the memory subsystem in H.264 decoding faces less 
pressure than in MPEG-2. The bus utilization rate is only 
8%~10% in the kernel. This corresponds to 4264MB/sec x 
9.1% = 388MB/sec in bandwidth, indicating that memory 
bandwidth for this kernel is not a major issue currently; we 
expect this kernel would not run out of bandwidth until the 
CPU is running at 8~10GHz. With the kernel’s increased 
computational demands, and the similar memory access 
patterns as in MPEG, Table 4.9 indicates that hardware 
prefetching is of little benefit in H.264 MC. 

As previously illustrated, multi-frame prediction is a major 
coding gain in H.264 codec. One might expect that this would 
place great demands on the memory subsystem. For example, 
with five reference image frames at DVD resolution, the 
working set size is 2.5 MB, far exceeding L2 capacity. In fact, 
although L2 misses increase (to about one every 230 
instructions), bus utilization actually decreases, and IPC 
remains relatively unaffected. 

D. Deblocking Filtering 
Deblocking filtering is found only in H.264. This section of 

the pipeline contains two kernels:  block strength calculation 
and block filtering, the relative times of which are highly 
dependent on the inherent characteristics of the input 
sequence. 

The frequency scaling result of Table 4.2 shows that the 
deblocking filter kernel has lower scaling than expected. The 
reason for this is evident in Table 4.11, which shows a large 

number of L2 cache misses during strength calculation. This is 
caused by the working set for this kernel exceeding current 
cache sizes. For a 720x480 resolution sequence, taking motion 
information and at least 3 frames into consideration, the 
minimum working set size is 2.4Mbytes3, far larger than the 
L2 cache size on the 3.06GHz Pentium® 4 processor. 
Therefore, in the deblocking filter kernel, after motion 
compensation, the motion vector information required by the 
kernel has already been thrashed out of the L2 cache. 

Block filtering shows good IPC, due to heavy scalar 
instruction use. SIMD instructions are not easily used in this 
kernel due to a couple of reasons: a large number of 
conditional operations are required on adjacent pixels and the 
smaller block size encumbers use of SIMD operations. The 
first problem could be solved according to the probability 
model used in the conditioning operations; examining the 
statistics of the neighboring pixels distribution, we conclude 
that the condition operator has greater than 80% probability of 
being true, and can thus use SIMD instructions such as 
PCMPGTW to optimize this kernel. The other problem argues 
for new approaches to explicitly handling data-level 
parallelism. 

V. SIMULTANEOUS MULTI-THREADING 

In general, multimedia applications exhibit not only data-
level (DLP) and instruction-level parallelism (ILP), but also 
the possibility for substantial thread-level parallelism (TLP). 
The decoder can divide the picture data into parts and use 
multiple threads, each decoding part of the picture in parallel. 
Such workloads are good candidates for speeding up on a 
number of different multi-threaded architectures. This section 
discusses the performance of a threaded MPEG decoder on 
several parallel architectures.  

Intel Corporation recently introduced Hyper-Threading 
Technology, which supports two threads simultaneously on 
the same physical processor, in Intel® Xeon™ processors and 
3.06GHz Pentium® 4 processors [14]. It is one 
implementation of an SMT architecture [17]. The motivation 
for SMT is that the performance of many programs is often 
limited by a single execution resource, while other resources 
tend to be under-utilized. If the CPU can interleave the 
execution of different tasks, for example, interleaving 
calculations with memory operations, then more execution 
resources can be utilized at the same time. To enable this, 
Hyper-Threading Technology supports two logical processors 
on a single physical processor, so that two different threads 
can run simultaneously, yielding more efficient use of 
machine resources. In today’s Hyper-Threading Technology, 
only a small set of the microarchitecture state is duplicated, 
while the front-end logic, execution units, out-of-order 
retirement engine, and memory hierarchy are shared. Thus, 
compared to processors without Hyper-Threading 
Technology, the die-size is increased by less than 5% [14].  

                                                           
3 Considering only frame buffer and motion vector information: (720 x 

480pixels/frame)x(1.5bytes/pixel)x(3frames)+(720/4)x(480/4)x2x5x4 bytes = 
2.42 Mbytes 

TABLE 4.9 H.264 MC CHARACTERIZATIONS ON PENTIUM® 4 

Micro-Arch. Hardware 
prefetch on 

Hardware 
prefetch off 

L2 misses/Instructions 0.31% 0.32% 
Bus utilization 9.0% 9.1% 
IPC 0.56 0.55 
Clocks (billions) 3.06 2.94 

TABLE 4.10 H.264 MC CHARACTERIZATIONS WITH DIFFERENT REFERENCE 
FRAME ON PENTIUM® 4 

H.264, 720x480 

Micro-Arch. 
1.5Mb/s 
1 Ref frame 

1.4Mb/s 
5 Ref frame 

IPC 0.56 0.50 
Branches/ 1000 Instr. 45 45 
Branch Mis-predict. Rate 3.5% 3.9% 
L1 misses/ 1000 Instr. 32 34 
L2 misses/ 1000 Instr. 2.9 4.3 
Bus utilization rate 9.0% 7.8% 

TABLE 4.11 H.264 DEBLOCKING FILTER KERNEL ON PENTIUM® 4  

Micro-Arch. 
Strength 
Calculation 

Block 
Filtering 

Clockticks (%) 7.5% 14.4% 
IPC 0.642 1.11 
Branches/ 1000 Instr. 110 132 
Branch Mis-predict. rate 5.7% 5.4% 
L1 miss rate 4.7% 1.4% 
L2 miss rate 25.0% 23.4% 



  

As mentioned earlier, our MPEG-2 and H.264 decoders are 
optimized for the Intel® Pentium® 4 processor. Nonetheless, 
due to the inherently sequential constitution of the algorithms, 
most of the modules in these well-optimized workloads cannot 
fully utilize all the execution units available in the 
microprocessor. For example, while motion compensation is 
memory-intensive, the VLD and IDCT modules are limited by 
computation. This makes MPEG decoding a good candidate 
for running on SMT machines. 

Table 5.1 shows the comparison of our “multi-threaded” 
MPEG-2 and H.264 decoders on a single-threaded processor, 
on a single processor with Hyper-Threading Technology, and 
a dual-processor system. In general, on SMT processors, 
kernel characteristics become less important than the overall 
application characteristics, because multiple kernels are 
typically executing concurrently at a given time. Hence, it is 
hard to breakdown the workload characteristics in individual 
modules. Rather, we consider here the whole application as a 
whole. In the first four columns, the workload is not threaded. 
Instead, we run two copies of the same decoder 
simultaneously. The copies are not synchronized, so there is 
no synchronization overhead and interleaving of different 
modules happens naturally. Under these ideal conditions, the 
speed-up is a benchmark for the best-case gain achievable in a 
threaded decoder. 

The first four columns show that we get a very good speed-
up with two copies of the decoder running simultaneously on 
Hyper-Threading processors. UPC increases from 0.86 to 1.08 
in MPEG-2 decoder, indicating 26% more efficient resource 
utilization—an impressive figure given the 5% die-size 
increase to support Hyper-Threading Technology [14]. 

As seen in the first four columns of Table 5.1, on Hyper-
Threading Technology, UPC increases from Hyper-Threading 
Technology in two copies of the H.264 decoder are 
substantially lower than those in the MPEG-2 decoder (12% 
vs. 26%). This is a result of the fact that modules in the 
MPEG-2 decoder have more distinct bottlenecks than those in 
H.264 decoder, as shown in Table 4.1. For example, the MC 
module in MPEG-2 is verging on being memory-bound, while 
the MC module in H.264 is both computation- and memory-
bound. Moreover, in the H.264 decoder, many modules use 

only scalar instructions, for which they contend for the same 
integer computation unit. Therefore, two copies of the H.264 
decoder see less speed-up than those of the MPEG-2 decoder 
on Hyper-Threading Technology.  

In addition to running two unsynchronized copies of the 
same decoder, the last three columns of Table 5.1 show a 
comparison of a more realistic multi-threaded workload. A 
single MPEG-2 decoder partitions its work for two threads. 
Pictures can be divided into slices of macroblocks, and each 
thread can be assigned to decode some slices of macroblocks, 
e.g., as shown in Figure 5.1. In this case, the workload has 
more fine-grained scheduling with synchronization overheads 
than the two copies of decoders. The workload also has a non-
parallelizable portion, resulting in only 1.58x speed-up on a 
dual-processor system and 1.09x speed-ups on Hyper-
Threading Technology.  

While the shared cache may be a drawback for some 
applications running on processors with Hyper-Threading 
Technology, it can also provide better cache locality between 
the two logical processors for other applications. For example, 
one logical processor can be used to prefetch data into the 
shared caches to reduce a substantial amount of the memory 
latency of the application in the other logical processors [19]. 
Similarly, in multimedia applications, a shared cache can be 
exploited to reduce the impact of cache misses by scheduling 
threads to prefetch data for each other [2].  

Our results also demonstrate that an MPEG decoder can 
benefit from cache sharing. Figure 5.1 illustrates two different 
multi-threading schemes used in our video decoder.  

1. Static partitioning:  In this method, one thread is 
statically assigned the first half of the picture, while 
another thread is assigned the other half of the picture 
(as shown in Figure 5.1(a)). Assuming that the 
complexity of the first half and second half are similar, 
these two threads will finish the task at roughly the 
same time. However, some areas of the picture may be 
easier to decode than others. This may lead to one 
thread being idle while the other thread is still busy. 

2. Dynamic partitioning: In this method, slices are 
dispatched dynamically so as to achieve good load 
balance. A new slice is assigned to a thread when the 

TABLE 5.1 COMPARISON OF MPEG-2 DECODER ON SINGLE-THREADED, SMT PROCESSOR, AND DUAL-PROCESSOR SYSTEMS. 

Two copies of decoders (3.06GHz Pentium®4) 
MPEG-2,  

720x480, 9Mb/s 
H.264,  

720x480, 1.5Mb/sec 

2-threaded MPEG-2 decoder, 
720x480, 9Mb/s  

(2.0GHz Xeon™) 
 Event 

Single-
thread 

Hyper-
threading 

Single-
thread 

Hyper-
threading 

Single-
thread 

Hyper-
threading 

Dual-
processors 

Clockticks (millions) 22,587 17,996 14,949 13,265 11,794 10,779 7,452 
Instructions retired (millions) 13,984 13,983 9,158 9,155 7,091 7,792 7,713 
Uops retired  (millions) 19,449 19,414 12,490 12,496 10,292 11,505 11,505 
MMX/SIMD instr. (millions) 4,575 4,378 1,218 1,218 2,288 2,288 2,288 
IPC 0.62 0.78 0.61 0.69 0.6 0.72 1.04 
UPC 0.86 1.08 0.84 0.94 0.87 1.07 1.54 
L1 cache misses (millions) 198 357 200 329 107 171 131 
Bus utilization rate 10.6% 15.0% 11.6% 16% 9.60% 6.0% 10.6% 



  

thread has finished its previously assigned slice. In this 
case, we don’t know which slices will be assigned to 
which thread. Instead, the assignment depends on the 
complexity of the slices assigned. As a result, one 
thread may decode a larger portion of the picture than 
the other if its assignments are easier than the other 
thread’s. The execution time difference between two 
threads in the worst case is the decoding time of the last 
slice.  

The principle advantage to static task partitioning is its high 
cache locality in dual-processor systems. Figure 5.2 illustrates 
the cache locality in multiple frames of video. During motion 
compensation, the decoder uses part of the previous picture, 

the referenced part of which is roughly co-located in the 
previous reference frame, to reconstruct the current frame. It is 
faster to decode the picture when the co-located part of the 
picture is still in the cache. In the case of a dual-processor 
system, each thread is running on its own processor, each with 
its own cache. If the co-located part of the picture in the 
previous frame is decoded by the same thread, it is more likely 
that the local cache will have the pictures that we just 
decoded. This property makes static partitioning attractive. 

While the foremost advantage of the dynamic scheduling 
scheme is its good load balance, there may be a drawback to 
dynamic partitioning in terms of cache locality on dual-
processor systems. As we mentioned earlier, during motion 
compensation, we use part of the co-located previous pictures. 
In the case of a dual-processor system, each thread is running 
on its own processor (and cache). Since we dynamically 
assign slices to different threads, it is more likely that the co-
located portion of the previous picture may not be in the local 
cache, as shown in Figure 5.2(c). Thus, dynamic partitioning 
incurs 45% more bus transactions on dual-processor systems. 

On the other hand, on a processor with Hyper-Threading 
Technology, the FSB traffic is within 1% range from the static 
partitioning method to the dynamic partitioning method. This 
is because the shared cache on Hyper-Threading Technology 
can provide better cache locality between the two logical 
processors. Because of efficient cache sharing and better load 
balancing, the dynamic scheduling has 4% better performance 
than the static scheduling on Hyper-Threading Technology. 

VI. CONCLUSIONS 

In this paper, we have studied the performance of several 
highly optimized MPEG and H.264 decoders on state-of-the-
art micro-architectures, describing the key characteristics of 
the workload on these systems, and have addressed the impact 
that various micro-architectural features can be expected to 
have on the workload. 

To summarize the workload characteristics, we conclude 
the following: 
• Application performance. H.264 decoding is much more 

demanding than MPEG-2; a 1.5Mb/s DVD-resolution 
main profile stream is almost as complex as a 17 Mb/s 
1920x1024, HDTV MPEG-2 sequence. 

• VLD/CABAC. VLD/CABAC is heavily data-dependent, 
uses predominantly scalar code, and is entirely 
computation-bound, scaling directly with frequency on 
Pentium® 4. 

• IDCT/Inverse Integer Transform. IDCT and Inverse 
Integer Transform can be fully optimized with SIMD 
instructions, and are entirely compute-bound, also scaling 
directly with frequency on Pentium® 4. 

• Motion Compensation. MPEG-2 motion compensation is 
mostly memory bound. In contrast, H.264 motion 
compensation is more computationally demanding. 
Neither version of the kernel is well-suited to current 
hardware prefetch mechanisms that assume sequential 
accesses. 
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Figure 5.1. Two slice-based task partitioning schemes between two threads: 

(a) static scheduling and (b) dynamic scheduling. 
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Figure 5.2. Cache localities, during (a) motion compensation, in (b) static 
partitioning, and in (c) dynamic partitioning. 



  

• Deblocking Filter. Unlike previous video coding 
standards, a deblocking filter becomes a necessary 
component in H.264 decoders. The kernel is memory- and 
branch-intensive. 

From a microarchitectural perspective, we conclude the 
following for the workload: 
• Branch prediction. The majority of conditional branches 

in MPEG and H.264 decoding occur during 
VLD/CABAC, many of which are inherently data-
dependent and difficult to predict. Branch mispredictions 
in other key kernels result in very little lost CPU time. 
Improving the sophistication of branch predictors can be 
expected to provide relatively little improvement in 
MPEG decoding performance. 

• Memory subsystem. The performance of the memory 
subsystem has a dramatic impact on motion compensation 
in MPEG-2. Motion compensation seems to benefit most 
from the combination of the higher bandwidth and longer 
L2 cachelines used by the Netburst™ microarchitecture. 
On the other hand, the sequential hardware prefetcher of 
Pentium® 4 appears to provide little benefit in motion 
compensation. 

• Wider registers. Increasing the size of SIMD registers 
from 64-bits to 128-bits results in 9% improvement in 
MPEG-2 motion compensation. However, these registers 
are underutilized in H.264, because most prediction in this 
standard is limited to regions at most 4 and 8 pixels wide. 

• Execution resources. The performance of IDCT in 
MPEG-2, and to a lesser extent motion compensation, is 
bounded by the number of SIMD execution units 
available on the Pentium® 4.  

Extending the current work, there are a number of possible 
issues to address, e.g., the characterization of MPEG encoders, 
and the impact of multi-threading. There should be more work 
to study future multi-threaded media workloads and their 
implications to future multi-threaded microarchitectures. 
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