
 

Abstract-- This is a report on understanding how varying the 
configuration parameters affects the behavior of an online 
transaction processing (OLTP) workload. In particular, this 
paper uses four important parameters, namely, number of 
processors (P), number of disks (D), number of warehouses (W), 
and number of concurrent client processes (C) to represent an 
OLTP configuration, and analyzes how these four parameters 
affect performance. We use the notation <P, D, W, C> to 
represent an OLTP configuration. Our goal is to study the effects 
of scaling <P, D, W, C> and formulate empirical relationships 
among the four parameters. We analyze both cached as well as 
partially cached setups and use linear interpolation to show how 
varying the four parameters changes critical workload behaviors. 
We use a small-scale shared memory multiprocessor (4-way) 
system with a small number of SCSI drives (4 drives) to build and 
explore a variety of OLTP configurations. 
 

Index Terms—Online Transaction Processing, Performance 
Characterization, Workload Behavior.  

I. INTRODUCTION 

NLINE transaction processing benchmarks are important 
workloads for the design and performance analysis of 

microprocessors and computer systems targeting the server 
market. Setting up and configuring an OLTP workload are 
nontrivial due to the complex interactions among the myriad of 
configuration parameters that need to be properly tuned for 
achieving good performance. Furthermore, the hardware costs 
of building a computer system with sufficient amount of 
system memory and disk I/O bandwidth can be substantial. 
Typically, researchers employ two types of setups for 
characterizing OLTP workloads: scaled or cached. 

Scaled setups are large-scale OLTP systems typically set up 
by OEM system vendors and are intended to reflect the 
production environments of large enterprises. Scaled setups 
are used to showcase world-record TPM (transaction per 
minute) scores with a goal of pushing the limits of transaction 
processing throughput. These setups must comply with the 
Transaction Processing Council (TPC) specifications for TPC-
C [11] to be certified. However, setting up an audit-sized TPC-
C workload used for reporting TPM-C scores is both 
challenging and costly. OEM system vendors use expensive 
setups with large number of disks to achieve a high level of 
concurrency so that other independent transactions can be 
processed while those waiting for disk I/O are stalled. On a 
balanced system, these workloads with a database size of 
thousands of warehouses are dominated by disk I/O activities 

and a working set size that far exceeds the capacity of the 
cache memory hierarchy and even system memory. 
Researchers use performance counters to monitor the behavior 
of these systems to identify performance bottlenecks 
[1][2][3][4][5].  

Cached setups significantly scale down the database size 
(typically to 10 warehouses) so that the working set fits well in 
system memory. Once the most commonly accessed data 
blocks are brought into the system memory from disks, cached 
setups have negligible disk I/O reads. Studying cached-setup 
workloads is made more feasible because the bulk of the 
system behavior is on the interaction between CPUs and the 
memory subsystem with less dependence on the disk I/O 
subsystem. This reduction in scale permits the simulation of 
cached workloads to be more tractable with full-system 
simulators. Hence, cached setups are more widely used in 
research studies to assess architectural features 
[5][6][7][9][10]. These setups do not comply with the TPC-C 
specifications but allow researchers to explore new 
architectural features that are not currently implemented. 
Previous work [5] claimed that the behavior of a cached 
workload is a reasonable representation of a scaled workload. 
This paper is an initial study on understanding how varying the 
configuration parameters affects the behavior of an OLTP 
workload. In particular, this paper uses four important 
parameters, namely, number of processors (P), number of 
disks (D), number of warehouses (W), and number of 
concurrent client processes (C) to represent an OLTP 
configuration, and analyzes how these four parameters affect 
performance. We use the notation <P, D, W, C> to represent 
an OLTP configuration. Even though W and C can be 
dependent on each other, we treat them as independent 
variables by making C less than W. 

Our goal is to study the effects of scaling <P, D, W, C> and 
formulate empirical relationships among the four parameters. 
This paper is a first step towards achieving that goal by 
focusing on a subspace of this huge cross-product space. We 
analyze both cached as well as partially cached setups and use 
linear interpolation to show how varying the four parameters 
changes critical workload behaviors. We use a small-scale 
shared memory multiprocessor (4-way) system with a small 
number of SCSI drives (4 drives) to build and explore a 
variety of OLTP configurations. 

While a large setup is needed to achieve record-breaking 
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transaction throughput and to comply with TPC-C 
requirements, our research is focused primarily on small-scale 
SMP systems. As processor performance continues to improve 
along with better memory and disk technologies, developing a 
better understanding of the multi-dimensional configuration 
space of OLTP workloads on small-scale SMP systems is 
important towards the exploration of future CMP (chip 
multiprocessor) designs for OLTP workloads, and this is the 
aim of our research. 

In [12], they used a scaled OLTP workload and studied the 
workload behavior by varying the amount of memory and the 
number of warehouses. Using examples, they demonstrated 
that the configuration of the OLTP system could impact 
several key architectural and operating system characteristics, 
such as the breakdown of user and kernel time, the disk I/O 
rates, and the cycles per instruction (CPI) of the processors. 
They concluded that departures from a well-balanced scaled 
system can adversely affect the workload behavior and can 
mislead designers down the wrong path. In this paper, we 
analyze cached and partially cached setups and present 
detailed sensitivity analysis, supported by quantitative results, 
showing trends, similarities and differences between the two 
setups. 

The key results of this paper are summarized below. (1) 
This paper presents a quantitative analysis of the OLTP 
configuration space of an Oracle-based OLTP workload, 
Oracle Database Benchmark (ODB), running on an SMP 
system with IA-32 processors. We use the terms scaled, 
cached, partially cached setups to describe the different types 
of workloads. (2) We show that the transaction throughput can 
be higher for a partially cached setup than that of a cached 
setup by increasing the number of warehouses from ten to 
twenty. Even though more disk I/O reads are made, the 
partially cached workload has sufficient work to tolerate the 
misses to the database buffer cache. (3) Using performance 
counters to monitor cached and partially cached OLTP 
workloads, we show how kernel and user execution times 
exhibit radically different trends relative to the transaction 
throughput. The kernel code has much worse instruction-level 
parallelism than user code; hence, the CPI (Cycles Per 
Instruction) of kernel code is higher than user code. We 
analyze the reasons for the CPI difference and show that the 
MPI (Cache Misses Per Instruction) is worse for kernel than 
the user code.  

II. EXPERIMENTAL APPROACH 
In our research, we use the Oracle database server as our 

experimental vehicle. We configure and run this workload on a 
small-scale multiprocessor system employing the Intel Xeon 
MP processors. The performance counters in the Xeon 
processors are used to collect our experimental data. 

A. Oracle Database Benchmark 
In this study, we use the Oracle Database Benchmark 

(ODB), which is derived from an internal OLTP benchmark 
using Oracle RDBMS 8.1.6. ODB simulates an order-entry 

business where terminal operators (or clients) execute 
transactions against a database. The database is made up of a 
number of warehouses. Each warehouse supplies items to ten 
sales districts, and each district serves three thousand 
customers. Typical transactions include entering and 
delivering customer orders, recording payments received from 
customer, checking status of a previously placed order, and 
querying the system to check inventory levels at a warehouse. 

When ODB starts execution, the underlying Oracle database 
spawns two types of processes: user processes and Oracle 
processes. A user process executes a client’s application code. 
Oracle processes can be either server processes that perform 
the actual database work on behalf of the user or background 
processes that perform maintenance work. Two background 
processes of note are the database writer and the log writer. 
The database writer updates the modified database blocks to 
the disk in order to free the dirty buffers in memory, while the 
log writer records the log entries that describe the changes 
made to the database. As long as the log writer is proceeding 
faster than the rate at which the log buffers are being filled, the 
disk I/O impact from the log writer is usually small. 
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Figure 1: Overview of Oracle Database Server Processes. 

As illustrated in Figure 1, all Oracle processes share a 
common large shared memory segment called the System 
Global Area (SGA). The SGA is a region of memory that is 
allocated when an Oracle database is started. The SGA is 
shared by the server processes as well as the background 
processes. For the purpose of this paper, there are four main 
areas within the SGA. The first area, usually the largest, is 
devoted to the database buffer cache, which holds parts of a 
database in memory. The database buffer cache tracks the 
usage of the database blocks so that it can keep the most 
recently and frequently used blocks in memory. The second 
area of interest is the redo log buffer. This is a circular buffer 



 

that sequentially logs all relevant changes to the database. The 
third area is called the fixed SGA. It contains control block 
information that includes items such as the head of all lists, 
pointers to the heads of lists, and descriptors for the buffer 
cache. There are no user data in the fixed SGA. The last area, 
referred to as the SGA heap, has the remaining data structures 
in the SGA. The SGA heap contains shareable state of 
connected Oracle users as well as the execution state of SQL 
statements and bytecode for Oracle-implemented procedural 
languages (e.g., PL/SQL, Java). 

Each server process has a private data segment called the 
Process Global Area (PGA). The PGA holds the data and 
control information and is allocated when a server process is 
spawned. The PGA is not shared with other processes and is 
divided into two parts: the fixed PGA and the PGA heap. The 
stack used by the process is part of the process’ private 
memory. 

B. Database Server Configurations 
The Oracle RDBMS has numerous parameters in its 

configuration. For this study, the most important parameter is 
the size of the database buffer cache allocated in the SGA. The 
database buffer cache is intended to hold as much of the 
database working set as allowed in memory. 750K cache 
blocks, each with a size of 2KB, are allocated. The total 
amount of memory that is allocated to the buffer cache is 1.5 
GB. Including other data structures, the total SGA size 
consumes about 1.8 GB of memory.  Another 1 GB of memory 
is allocated to the OS kernel.  This leaves about 1.2 GB of 
memory for the server processes and their corresponding PGA 
data structures. We do not use the large memory support in 
Oracle databases or the Intel physical addressing extensions to 
go beyond 4 GB of virtual memory space. 

C. Linux OS and SMP Configurations 
Measurement data are gathered on a 4-way SMP system 

running Red Hat Linux 7.2 using the kernel 2.4.9-34smp. The 
Intel Xeon MP processors operate at 1.6 GHz and have three 
levels of caches. The first level has an execution trace cache, 
while the second and third levels have unified instruction and 
data caches of 256 KB and 1 MB, respectively. The Xeon MP 
processors are based on the NetBurst microarchitecture and 
are capable of running with hyper-threading technology [13]. 
For the purpose of this study, we do not enable the hyper-
threading technology. The system under study is populated 
with 4 GB of PC200 DDR memory using the ServerWorks 
Grand Champion HE chipset and has 4 Ultra160 SCSI drives, 
each with 73 GB of capacity.  

D. EMON Performance Counters 
The Xeon MP processor provides a comprehensive list of 

performance-monitoring events [14]. There are 18 
performance counters grouped into 9 pairs, with each pair 
associated to a particular subset of events. The particular 
counters can be selected by specifying the counter 
configuration control registers. The main benefit to this type of 

performance monitoring is that it is completely noninvasive 
and does not in anyway affect the actual execution of ODB. 

III. CACHED SETUP MEASUREMENT DATA 

We begin our exploration of the multi-dimensional 
configuration space of OLTP workloads by first looking at 
cached setups. We fix the number of warehouses at 10 (W=10) 
and vary the number of clients (C={1, 5, 10}), processors 
(P={1, 2, 4}) and disks (D={1, 2}). Such cached setups are 
similar to those assumed in most published research papers. In 
Section 4, we expand this subspace to include more 
warehouses and clients when we explore partially cached 
setups.  

A. Characteristics of a Cached Setup 
A cached setup is defined as an OLTP setup that has a 

sufficiently large database buffer cache in the SGA to hold the 
working set of database blocks in memory. Because it has 
virtually no disk I/O reads, a cached setup is intended to 
achieve the highest transaction throughput by utilizing 
maximally the CPUs. The database server can execute and 
complete the transactions without relinquishing control and 
awaiting for data from disk I/O to finish. The only exception 
occurs when the data is first brought in from disk to memory, 
and this overhead is amortized over many transactions to be 
effectively insignificant. On average, the number of database 
blocks a transaction typically reads during the lifetime of a 
transaction is in the range of 50 to 60. Of those database 
blocks accessed, a transaction usually incurs about 3 to 4 disk 
I/O reads on average for a scaled setup. In a cached setup, the 
number of disk I/O reads per transaction drops to less than 0.1, 
or over an order of magnitude fewer disk I/O reads per 
transaction. 

B. Impact of Processors and Disk I/O 
Transaction processing throughput of a processor can be 

increased, by increasing the number of clients. A 10-
warehouse database has been commonly used in the database 
research community as a cached setup. As shown in Figure 2, 
the transaction throughput increases with the number of 
concurrent clients accessing the 10-warehouse (10W) database 
on a single-processor (1P) system. More clients can be added 
to increase the amount of concurrency further; however, doing 
so would encounter two problems. The first is that once the 
maximum CPU utilization is reached, adding more clients does 
not increase the overall throughput, unless more CPUs are 
added. The second has to do with internal contention resulting 
from multiple clients accessing and updating the same 
database blocks. To resolve this contention, more warehouses 
will need to be added to support larger number of clients. 
Hence, adding more clients increases the amount of concurrent 
work to be performed and increases the overall transaction-
processing throughput, unless the CPU resources or the 
database become a bottleneck. 
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Figure 2: Transaction throughput for different number of 
clients and processors. 

Employing more CPUs in a multiprocessor system can 
alleviate the CPU resource bottleneck. As can be seen with 1C 
in Figure 2, there is not sufficient amount of work to be 
performed, and there is little advantage for the 2P and 4P 
systems. As the number of clients is increased, the transaction 
throughput increases at rates proportional to the number of 
processors. At 10C, the throughput for a 4P system is about 
2.4 times higher than that of a 1P system. The scaling is not 
linear due to the disk I/O writes made by the log writer.  When 
the disk I/O is improved by striping the log files from 1 drive 
to 2 drives in a RAID0 configuration, the throughput is 
improved by another 16% on a 4P system as shown in Figure 
3. 
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Figure 3: Transaction throughput for the log file with and 
without RAID0. 

C. Impact of Database Buffer Cache Sizes 
The achievable throughput is also influenced by the size of 

the database buffer cache. Figure 4 shows the transaction 
throughput for different database buffer cache sizes in blocks 
from 450K to 750K. The transaction throughput is lower by as 
much as 22% when the buffer cache size is configured to be 
450K with one client active at a time. When the number of 
concurrent clients is increased to ten, the throughput difference 
narrows to about 6%. The improvement is due to the net 
benefits of constructive data sharing among multiple clients 
whereby the positive effects from data prefetching that is 
useful for another client outweigh the negative effects of cache 
pollution. Furthermore, at 600K, the database buffer cache is 

large enough for this database that cache pollution is not a 
problem as seen by the non-increase in throughput for a 750K-
block cache size.  Since we are trying to maximize the 
database buffer cache size, the rest of the data presented in this 
paper are taken with a cache size of 750K blocks. On a system 
that supports 64 bits of address space, the buffer cache size 
can extend another dimension of the configuration space. For 
our case on a 32-bit system, varying the buffer cache size by 
making it smaller is not as interesting. 
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Figure 4: Transaction throughput for different database 
buffer cache sizes. 

IV. PARTIALLY CACHED SETUP MEASUREMENT DATA 
In Section III, the number of warehouses is restricted to ten. 

This section moves beyond cached setups to include partially 
cached setups that involve twenty to forty warehouses. The 
number of clients is expanded to range from one to forty. This 
expands our OLTP configuration subspace being explored to 
<P={1, 2, 4}, D={1, 2}, W={10, 20, 40}, and C={1, 5, 10, 20, 
40}>. 

A. Differences in a Partially Cached Setup 
Whereas the database buffer cache in the SGA can hold an 

entire working set in a cached setup, a partially cached setup is 
defined as a setup in which the working set is larger than what 
the database buffer cache can store.  The benefits of caching 
database blocks remain but are diminished by the eviction of 
potentially useful database blocks due to capacity constraints. 
We want to distinguish the partially cached setup from a scaled 
setup in which the working set is much larger than the database 
buffer cache by orders of magnitude.  For our work, a partially 
cached setup involves tens of warehouses whereas a scaled 
setup can have up to thousands of warehouses.  
However, there are significant differences between cached and 
partially cached setups. Instead of averaging less than 0.1 disk 
I/O reads per transaction, partially cached setups average 
between 0.3 to 1.1 disk I/O reads per transaction. This is closer 
to the average of between 3 to 4 disk I/O reads per transaction 
for scaled setups. The resulting effects are that the transaction 
throughputs can be lower with more warehouses and that more 
concurrent clients are needed to mask the disk I/O overhead 
associated with database buffer cache misses. 
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Figure 5: Transaction throughput with different 
warehouse sizes on 1P (top) and 4P (bottom) SMP systems. 

Figure 5 illustrates how the transaction throughput scales 
relative to both the number of clients as well as the number of 
warehouses. The top figure is for the 1P system, and the 
bottom figure is for the 4P system. (In our scaling, we only 
scale the number of clients up to the number of warehouses.) 
We see that increasing the number of warehouses can lower 
the transaction throughput. While increasing from 10W to 
20W, the drop is insignificant. Increasing from 20W to 40W 
produces a significant drop. For 10C, it is about 22% for the 
1P system and 55% for the 4P system. Going from 10W to 
20W, the database buffer cache is still effective at caching the 
database blocks. The number of misses to the database buffer 
cache is still tolerable because there is sufficient work 
available from the other clients to mask the disk I/O read 
latency. An interesting point to note is that the transaction 
throughput for 20W is higher than that of 10W on both 1P and 
4P systems, even though the 20W is only partially cached. 
Because processor performance has improved dramatically, 
the commonly used 10W workload is not sufficient to saturate 
the processors. On the other hand, going to 40W significantly 
increases the working set and the database buffer cache size is 
not big enough to effectively cache the working set. This 
results in more disk I/O activities that are not masked and the 
I/O bandwidth starts to become a bottleneck. In going from 
20W to 40W, we see the difference between cached and 
partially cached setups. 

B. Impact of Processors and Disk I/O 
The transaction throughput for a partially cached setup is much 
more sensitive to the disk I/O bandwidth. While adding more 
processors does improve performance, there is not sufficient 
amount of concurrency to hide latencies of the disk I/O reads 
completely. Figure 6 shows the transaction throughput for a 
20W (top figure) and a 40W (bottom figure) database running 
on 1P, 2P, and 4P systems. As alluded to in the last section, 
the performance of 20W scales similarly to that of the 10W 
(see Figure 2). On the other hand for the 40W database, the 
performance improvement from increasing 1P to 2P is about 
32% at the most, while the improvement from increasing 1 to 4 
processors is about 48%.  These improvements are much 
smaller than those seen for a cached setup. To approach 
comparable speedups, more disk I/O bandwidth is needed to 
improve partially cached setup. As shown in Figure 7 for a 4P, 
merely increasing the number of physical drives from 1 to 2 
disks (1D to 2D) improves the performance by about 30% at 
40C. When enough disks are added to completely mask the 
disk I/O read latency, then the partially cached setup becomes 
similar to a scaled setup. The key observation here is that 
increasing W increases the amount of I/O, which in turn puts 
more pressure on the I/O bandwidth. Hence, increasing D to 
match the increase of W is essential in alleviating the I/O 
bottleneck. 
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Figure 6: Transaction throughput for 20W (top) & 40W 
(bottom) databases on different number of processors. 
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Figure 7: Transaction throughput for a 40W database 
using 1 or 2 disk drives. 

V. THE COMMON DENOMINATOR: EXECUTION PROFILES 
In the preceding sections, we covered a subspace of the 

OLTP performance space based on the four parameters: <P, D, 
W, C> where P={1, 2, 4}, D={1, 2}, W={10, 20, 40}, and 
C={1, 5, 10, 20, 40}.  We plotted the ODB transaction 
throughputs for numerous points in this four dimensional 
space.  Another parameter, the amount of memory allocated to 
the SGA, is fixed to be at its maximum value for a 32-bit 
virtual address space; i.e., 750K blocks. This section examines 
our experimental data from a slightly different perspective. In 
the previous sections, we vary the scaling parameters <P, D, 
W, C> and look at the resultant transaction throughputs. This 
section scans the range of transaction throughputs (x-axis) and 
analyzes the associated execution attributes (y-axis) of the 
workload. 
One way of finding a relationship among the configuration 
parameters and the transaction throughput is to examine the 
percentage of the execution time spent on user code versus 
kernel code. Figure 8 shows two graphs, one for the user 
execution and the other for the kernel execution. A data point 
in each graph represents a particular <P, D, W, C> 
configuration and is plotted based on its transaction throughput 
(x-axis) and the corresponding user or kernel execution time 
(y-axis), measured in terms of percentage of total execution 
time. Each of the two figures contains many data points 
representing various combinations of P, D, W, and C, as well 
as three trend lines for 1P, 2P, and 4P. Each trend line 
represents the best-fit linear interpolation of the relevant data 
points. The R2 values for the 1P, 2P, and 4P trend lines on the 
user execution graph are 0.95, 0.62, and 0.79, respectively. 
Some of the deviations can be attributed to the inherent 
sampling errors associated with the EMON data gathering. 

We see in Figure 8 that kernel and user execution times 
exhibit radically different trends. The kernel execution time 
includes all CPU cycles that execute in the supervisory mode, 
and generally corresponds to the execution of OS kernel 
instructions and system calls. The rest of the other execution 
times are lumped together and are counted as the user 
execution time. The execution time does not include the actual 
DMA transfers made by the I/O devices. For MP systems, the 

execution time is averaged across multiple processors. Across 
all configurations with different number of clients and 
warehouses, kernel execution times remain within a narrow 
band of 5% to 15%. Looking at the trend lines more carefully, 
kernel execution times do increase slightly with increasing 
throughput. This is due to more context-switching overhead 
from having more transactions completed. Nevertheless, based 
on this sensitivity analysis, the kernel execution time (in 
percentage of total execution time) grows rather slowly and 
that even for scaled setups, it is not unreasonable to expect it 
to remain within the 15% range. 
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Figure 8: User execution (top) and kernel execution 
(bottom) profiles. 

The user execution times exhibit rather different trends than 
the kernel execution times. We see in Figure 8 that as the 
transaction throughput increases, the user execution times 
increase proportionally. The user execution time is a good 
indicator of the overall utilization of the CPUs and of how 
balanced is the configuration. For example, the upper 
rightmost point of the 1P trend line represents the highest 
throughput measured on a 1P system.  This configuration 
(<1P, 1D, 20W, 20C>) achieves a transaction throughput of 
about 10K and consumes about 75% of the available CPU 
utilization.  With the kernel execution taking another 15% of 
the CPU utilization, the total CPU utilization is 90% indicating 
that the maximum possible throughput for an 1P system is at 
best about 10% higher. 



 

 As we move from 1P to 2P and 4P, the trend lines appear to 
be less steep. The reason is that the scaling is plotted on a per-
processor basis. When factoring in the number of processors 
by multiplying the utilization with the number of processors, 
the linear scaling is similar to the 1P trend line but extends 
further out. We see that the CPU is less fully utilized for the 
2P and 4P configurations. The highest user execution time is 
about 65% for 2P and 55% for 4P configurations, resulting in 
total CPU utilization of 80% and 70%, respectively. 
Extrapolating the 4P trend line to about 85% user execution 
time, for a total CPU utilization of 100%, would yield a 
transaction throughput of about 38K. 

VI. CORRELATIONS BETWEEN CPI AND L3 MPI 
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Figure 9: Correlation of CPI to throughput for 1P (top) 
and 4P (bottom) systems. 

This section uses a similar approach of linear interpolation 
of trend lines to examine the average cycles per instruction 
(CPI) for the CPUs and the average misses per instruction 
(MPI) for the L3 cache. Figure 9 plots CPI versus transaction 
throughput for the 1P and the 4P systems in two separate 
figures. Each figure shows how the kernel CPI and the user 
CPI scale relative to transaction throughput. Separate trend 
lines are shown for 10W, 20W, and 40W configurations for 
both kernel and user CPI. The kernel CPIs, ranging from 10 to 
20, are substantially higher than their corresponding user CPIs, 
which has a range of 4 to 8. There are several reasons to 

account for this difference. OS code tends to be more branch 
intensive and have fewer instructions executed within a 
context. The combination of frequent context switches and the 
poor locality in OS code result in a relatively high cost of 
instruction execution for the OS kernel. The lower user CPIs 
indicate the CPUs are relatively more effective in executing 
user code. 
An interesting observation of the trend lines indicates that as 
transaction throughput increases, the higher costs of kernel 
execution can be amortized to lead to lower kernel CPIs. For a 
specific warehouse configuration, the kernel CPIs decrease 
with higher transaction throughputs; i.e., each of the kernel 
CPI trend lines slopes downward. With more clients 
concurrently active, the likelihood of sharing resources for 
instructions and data between contexts increases and improves 
the spatial and temporal locality of the kernel code execution. 
In addition, the dynamic code paths in a higher transaction 
throughput become longer with more occurrences of spin locks 
as a result of more contention among the active processes. 
Therefore, this lowers the average cost of kernel execution as 
measured by CPI even though the total kernel execution time 
increases with more transaction throughput. 

We see similar trending of the kernel CPI for both the 1P 
and 4P systems, but with some differences. First, because the 
transaction throughput levels for the 4P system are higher than 
those for the 1P system, the kernel CPIs are correspondingly 
lower due to the amortization and better locality. Second, the 
downward slope of the kernel CPI trend lines is less steep for 
the 4P system, and this is due to the inefficiency of having 
multiple dedicated caches. As shown in Figure 10, the L3 
misses per instruction (MPI) trend lines correlate extremely 
well with the CPI trend lines. Comparing the results in Figure 
9 and Figure 10, we can conclude that the kernel CPIs and the 
user CPIs are strongly dictated by their corresponding L3 
MPIs. The steepness of the L3 MPI trend lines is greater for 
the 1P system than on the 4P system. This change in steepness 
is more apparent for the user MPI trend lines. On the 1P 
system, both the user CPI (Figure 9) and MPI (Figure 10) 
trend lines are relatively flat and are relatively independent of 
the number of warehouses and clients. For those same 
workload configurations running on a 4P system, both the user 
CPI (Figure 9) and MPI (Figure 10) trend lines actually 
increase with increasing transaction throughput. When there 
are more clients active at the same time, there are more 
opportunities for the processors to share and update the same 
cachelines. This behavior, which is common for semaphores 
and other synchronization variables, can result in many write 
invalidations as required to maintain coherence by the 
distributed caches. Another reason that the MPI increases in an 
4P system is due to the data and process migration from one 
processor to another. Despite the increase in user CPIs, the net 
result of higher transaction throughput is made possible by the 
larger decrease in the corresponding kernel CPIs. We are 
conjecturing that the transaction throughput can be pushed 
higher by improving the user L3 cache misses on an MP 



 

system. There appears to be an opportunity for CMP designers 
to improve on the cache organization on multiple processors. 
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Figure 10: Correlation of L3 MPI to throughput for 1P 
(top) and 4P (bottom) systems. 

VII. EMPIRICAL MODEL 
In the preceding sections, linear interpolation is used to plot 

the trending seen for multiple <P,D,W,C> data points between 
their corresponding ODB throughputs and the underlying 
performance characteristics, be it the CPI or the MPI. Good 
correlation is observed by interpolating one variable at a time 
and by grouping them with respect to the number of processors 
and warehouses. Another use of linear interpolation is to apply 
across all <P, D, W, C> data points as a five-dimension space, 
where four axes correspond to the four input parameters and 
the fifth axis is the performance metric such as CPI, as shown 
in the following equation,  

(),fCdWcDbPa =•+•+•+•  

where P  is a vector of processor parameters, D  is a vector 
of disk parameters, W is a vector of warehouse parameters, 

C is a vector of client parameters, and ()f  is a vector of 
CPIs. The size of each vector is equal to the total number of 
data points of the cross product <P,D,W,C> space, so that the 
matrix [ ]CWDP ,,,  would represent the input parameters 
of the entire configuration space used. The resulting 
multivariate linear interpolation for CPIUser and CPIKernel has 
the following coefficients. 
 

f=CPIUser f=CPIKernel

a 0.2165 0.0189
b 2.3340 8.9799
c 0.0431 0.1694
d 0.0212 -0.1157  

The linear interpolation equation above is a very crude 
empirical model for characterizing ODB performance based 
on the four configuration parameters of P, D, W, and C. The 
coefficients, a, b, c, and d, indicate the relative sensitivity of 
the resultant CPI performance to the four configuration 
parameters of P, D, W and C, respectively. A number of 
speculative observations can be made based on the coefficients 
of this model. For both kernel CPI and user CPI, the 
coefficient b has the largest value among the four coefficients, 
indicating that the CPI is strongly influenced by the parameter 
D, the number of disks. Comparing the coefficients for kernel 
CPI vs. user CPI, we see that kernel coefficients tend to be 
higher due to the higher CPI of kernel execution. The one 
exception is that the coefficient a for the kernel CPI is 
significantly less than for the user CPI. This is an indication 
that user execution is more strongly correlated to the parameter 
P, the number of CPUs, because user execution constitute a 
larger percentage of the total execution as compared to kernel 
execution. 

VIII. SUMMARY AND CONCLUSIONS 
Cached setups, which scale down the database size to tens 

of warehouses, have working sets that fit well in system 
memory. The reduction in scale, which makes analyzing and 
simulating OLTP workloads more tractable, is one reason why 
cached setups are widely used in the research community. This 
paper is a quantitative analysis of the configuration space of 
the cached and partially cached OLTP workloads by exploring 
four parameters: number of processors (P), number of disks 
(D), number of warehouses (W), and number of concurrent 
client processes (C). Our goal is to study the effects of scaling 
<P, D, W, C> on performance and to formulate empirical 
relationship of workload behavior among the four parameters.  
In this paper, we show that to increase overall transaction 
throughput, there must be enough clients to generate the work 
to be done, enough CPU resources to process the transactions, 
and enough warehouses to avoid internal database contention. 
With current processor speeds, the 10-warehouse workload is 
found to be not sufficient to saturate current processors. 
However, adding more warehouses increases more disk I/O 
activities and requires more disks to alleviate the I/O 
bottleneck. When the balance between more concurrency with 
more warehouses and sufficient clients to tolerate the disk I/O 
read latency is achieved, we show that a partially cached setup 
of twenty warehouses can produce a higher transaction 
throughput than a cached setup of ten warehouses. By 
employing linear interpolation to produce trend lines across 
multiple <P, D, W, C> data points, we also show how kernel 
and user execution times exhibit radically different trends 
relative to the transaction throughput. The kernel code has 
much worse instruction-level parallelism, but kernel CPIs 



 

decrease with higher transaction throughput. On the other 
hand, in an MP system, the user CPIs actually increase with 
higher transaction throughput and is directly correlated to the 
increasing user MPIs. This appears to be an opportunity for 
CMP designers to improve on the multiprocessor cache 
organization to push the transaction throughput higher. 
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