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ABSTRACT

Advances in program profiling techniques have led to advances in compiler optimiza-
tion techniques, and wvice versa. This dissertation makes contributions in the areas
of program profiling as well as profile guided optimizations. More specifically, it de-
signs and evaluates a new compressed representation for profile data such that profile
guided optimizations can benefit from it. A type-based value profiling technique is
also developed such that new data compression techniques can be designed to exploit
value redundancy present in program data.

A timestamped whole program path (TWPP+) representation is proposed to
compress program traces which contain both control flow and memory address infor-
mation. Instead of considering a trace as a stream of symbols, TWPP+ divides a
complete trace into a control flow trace part and a memory dependence trace part;
each part is then reorganized to allow fast retrieval of information during data flow
analyses. Execution profiles can thus be integrated to help a broad range of compiler
analyses and optimizations. Three different applications are shown to demonstrate
the strength of this new representation.

A type-based value profiling framework is developed to help identify redundancy in
data values and thus design new data compression techniques for improving memory
behavior. Two types of redundancies are identified in representations of small values
and pointer addresses respectively. Both software and hardware approaches are pro-
posed and evaluated to exploit these opportunities. The software approach through
data compression transformations greatly reduces the memory footprint and speeds
up the program executions with the help of six specially designed data compression
instructions. The hardware approach employs compression to enable partial cache
line prefetching resulting in consistent improvements in the program’s execution time

and reduction in memory traffic.



13

CHAPTER 1
INTRODUCTION

Traditionally compile-time optimization algorithms are applied only in situations
where it is known that the optimization is definitely applicable and will generate
beneficial results. However, such a conservative approach fails to exploit many valu-
able optimization opportunities. A profile-guided optimizer uses the information of
a program’s past executions in two ways to aggressively optimize the program. First
the profiles can be used to identify new optimization opportunities that are frequently
observed during program execution but are not detected by static analyses. Second
the profiles can be used to carry out sophisticated cost-benefit analysis to apply trans-
formations that improve the performance of one part of the program at the expense

of a performance loss in another part of the program.

optimization

) ’ q instrumented instrumented
c fles |nstrurtr:)irl1tat|on »  cfiles > compiler »| object code
\_/—\ collecting profiles
L program N pégge
execution d profile-guide optimized -
optimizing »| object code profile-guided
compiler

L program execution > result
' real execution
dynamic
data

F1GURE 1.1. Overview of profile-guided compilation.

Figure 1.1 summarizes the steps of a typical profile-guided compilation. Before

performing any optimization, an instrumented version of the program is generated.
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The instrumented program is executed on one or more sets of representative inputs
and the profiles for these executions are collected. With the help of profiles, an op-
timizing compiler recompiles the program and generates the optimized object code.
The optimized object code is then used in all future executions with real inputs. Typ-
ically, stmple representative sets of inputs are used in collecting profiles and profiling
executions are much shorter than real executions. During the execution, the amount
of profile data that is generated from a profiling execution is significantly less than

that from a real execution.

1.1 Program profiling and profile guided optimizations

There is a close interaction between the research in program profiling and the research
in the development of new profile guided optimization techniques. Advances in one
area help create advances in the other, and vice versa.

On the one hand, one research trend in profiling is to collect more kinds of detailed
and accurate profiling information from which more optimization opportunities can be
discovered. Powerful optimization algorithms can then be developed to exploit these
opportunities. On the other hand, with the rapid advances in computer architecture
and system designs, many kinds of optimization opportunities are known to exist in
many programs. However, profiling techniques are needed to collect information that
can guide the design of cost-benefit analyses to effectively exploit these opportunities.

Let us consider the situations where profiling research has greatly influenced opti-
mization research. Simple profiles were collected in earlier days and they worked well
in finding more optimization opportunities than static analyses. For example node
profiles consisting of execution frequencies of basic blocks in a control flow graph
were collected. Compilers could be directed to optimize most frequently executed
regions so that for a given fixed amount of compilation time, the improvement in

program performance could be maximized. Slightly more complicated edge profiles,
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which count the execution frequencies of each edge in a control flow graph, can be
used to enable more complex optimizations (e.g., Young et al. [62] proposed the use
of edge profiles for interprocedural branch alignment). More complex path profiles
[4], which consist of execution frequencies of acyclic sequences of basic blocks are
also collected. Gupta et al. [22, 24, 23] used path profiles to enhance traditional
optimization techniques as well as develop new ones.

Now let us consider some situations in which optimization research has driven
research into new profiling techniques. Programs and architectures are increasing in
complexity and creating new challenges for developing optimizing compilers. Dynam-
ically allocated data objects are frequently used and they often lead to poor cache
performance. A better data layout scheme could greatly reduce the number of cache
misses and improve the overall performance. However, to assist the design of different
memory layout optimizations, new types of profiling techniques are needed. Calder
et al. [13] suggested to collect a temporal relation graph (TRG) which summarizes
the usage relationship between different objects. New memory allocation policy can
then be designed to allocate affiliated objects close to each other. Recent research re-
veals that dynamic optimizations, which optimize the program during the execution,
have many advantages. However, given the restricted runtime constraints, there is
demand for new profiling techniques which are cheap and yet sufficiently accurate. To
support optimization in a dynamic optimization environment, Arnold [2] proposed a

counter-based sampling technique that can perform effective runtime profiling.

1.2 Overview of the research

This dissertation further illustrates the close interaction between research in profiling
techniques and profile-guided optimization opportunities. It designs and evaluates
compressed representation for profiling data allowing profile-guided optimizations to

benefit from this advance in program profiling. The newly developed representation
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is demonstrated to help in the design of new optimization algorithms. A type-based
value profiling technique is also developed such that new data compression techniques

can be designed to exploit value redundancy present in program data.

1.2.1 Representation of profiling data

Traditional compiler optimizations perform data flow analyses based on program con-
trol flow graphs. A recent advance in profiling proposed collection of the whole pro-
gram path (WPP) profiles [32] which is a compressed form of the program’s control
flow trace. Although WPP contains complete and accurate dynamic control flow
information, it can be up to several gigabytes in uncompressed form and hundreds
of megabytes in compressed form. Information retrieval is very slow using WPP.
As a result, it is difficult for compiler optimizations to take advantage of this new
advance in program profiling. Moreover, data dependence information is needed for
inferring certain data flow facts. In this dissertation, a new representation TWPP—+
is proposed to address these problems. Given a complete program trace that contains
control flow trace and address trace, TWPP+ explicitly separates the control flow
and memory dependence information from each other. Each type of information is
organized in a way that assists later compiler analyses and optimizations. Figure 1.2
compares this new representation with the whole program path (WPP) technique.
While the WPP representation tries to achieve the highest possible compression ra-
tio, the new representation puts more emphasis on accessibility, that is, the ease
use of the information. Besides, the WPP representation does not consider dynamic
memory dependence information which is also very important for some analyses and

optimizations.
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memory
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€, = )
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compaction construction

FI1GURE 1.2. Comparison with whole program path.
1.2.2 Profiling for value redundancy detection

Over the last decade, while the processor speed has been improved 55% each year, the
memory speed has been improved only 7% each year [43]. As a result, the memory
system has become a major bottleneck in improving system performance. The situ-
ation is worsened by the fact that machine word size has increased from 8 bits to 64
bits. Recent research [64, 61] has found that there is a significant level of redundancy
in dynamic value representation. Figure 1.3 shows that for a 32-bit machine, and for
a spectrum of benchmark programs, on an average 59% of all accessed 32-bit values

can be effectively represented by half of their original size, that is, using 16 bits.
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FIGURE 1.3. Values compressible to half of their size.

By removing redundancy through dynamic data compression, cache performance
could be greatly improved. However, there are no available profiling techniques aimed

at catching this type of optimization opportunity. Moreover, critical runtime con-
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straints restrict the runtime application of traditional compression techniques. In
this dissertation, a new type-based profiling technique is developed to assist in the
design of new dynamic data compression techniques. The potential of the new com-

pression is further exploited through both software and hardware techniques.

1.3 Organization

The rest of this dissertation is organized as follows. Background research on program
profiles and profile-guided optimizations is presented in Chapter 2. A timestamped
whole program path (TWPP+) representation for compressing program profiles is de-
veloped and evaluated in Chapters 3, 4 and 5. Chapter 3 discusses how to compress
control flow traces into TWPP. Chapter 4 enhances TWPP to include compressed
memory dependence profiles. Three applications are discussed in Chapter 5 to illus-
trate the use of information contained in a TWPP+ representation.

A type-based profiling technique for finding value representation redundancy is
proposed in Chapter 6. Using the data collected from profiling, both software and
hardware data compression techniques are developed to exploit the opportunities in
removing value representation redundancy. The software approach based upon data
compression transformations, is discussed in Chapter 7. The hardware approach that
employs compression to enable partial cache line prefetching, is discussed in Chapter

8. Conclusions and future research are discussed in Chapter 9.
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CHAPTER 2
BACKGROUND

In this chapter, an overview of program profiling and profile-guided optimization is
given. Section 2.1 reviews the types of program profiles and the commonly used tech-
niques to collect program profiles. In section 2.2 different profile-guided optimization

techniques using these profiles are briefly reviewed.

2.1 Program profiles

Program profiles provide summary information on past program executions. In prac-
tice, different types of profiles are collected at different levels of granularity and used

to guide different program optimizations.

2.1.1 Type of profiles

Three types of profiles are usually used in practice: control flow profiles, value profiles

and address profiles.

Control flow profiles. Programs are usually represented by their control flow graphs

(CFGs) during compiler analyses and optimizations. A control flow trace (CFT) re-
members, in their execution order, all visited basic blocks in the CFG. By examining
a CFT we can compute the execution frequency of any given program subpath. As
expected CFTs can be extremely large in size and a number of approximations of
CFT have been proposed and used to directly measure the execution frequencies of
selected program subpaths. These profiles differ in the degree of approximation in-
volved and the costs for collecting them. The proposed approximations of control

flow profiles include the following:
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- Node profiles provide the execution frequencies of the basic blocks in the control

flow graph. Such profiles are adequate for some optimizations.

- Edge profiles provide the execution frequencies of each edge in the control flow
graph. The overhead for collecting edge profiles is comparable to node profiles.
However, edge profiles are superior to node profiles because edge profiles can-
not always be computed from node profiles while node profiles can always be

computed from edge profiles. Edges profiles are widely used.

- Two-edge profiles [36] provide the execution frequencies of each pair of consec-
utive edges in the control flow graph. Edge profiles can always be computed
from two-edge profiles but the reverse is not true. Two-edge profiles derive their
increased power from their ability to capture the correlation between the exe-
cutions of consecutive conditional branches and they are used in a probabilistic

data flow analysis framework [36] for computing frequencies of data flow facts.

- Path profiles [4] provide the execution frequencies of subpaths in the control
flow graph that are acyclic and intraprocedural. Since a path is acyclic, it does
not include a loop back edge and since it is intraprocedural, it terminates if
an entry or an exit node of a procedure is reached. Path profiles are more
precise than two-edge profiles for acyclic components of a control flow graph
because they capture correlation across multiple conditional branches within
an acyclic graph. However, two-edge profiles can capture correlation among a
pair of conditional branches along a cyclic and interprocedural paths while path

profiles cannot do so.

Since all of above profiles are approximations of original traces, some research
has been done to evaluate how they differ from each other. Ball et al. [5] gave an
algorithm to estimate the lower and upper bounds of path frequencies from edge

profiles. Their results show that if a large percentage of a program’s total flows are
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definite, the estimated path frequencies from edge profiles can still identify hot paths.
Otherwise more powerful path profiles should be used to identify hot paths.
Approximations are used in above profiles because the complete trace is large and
it was believed to be too expensive to collect and use. This problem was addressed by
Larus in [32]. He proposed to collect and compress the complete control flow graph
trace using the Sequitur [40] algorithm. The compression result, identified as the
whole program path, is a context free grammar that generates a single string which is
the original control flow trace for the program. The redundancy in the original trace
comes from frequently executed subpaths and it is removed by creating and reusing

production rules.

Value profiles. Value profiles identify the specific values encountered as operands

of an instruction and the frequencies with which these values are encountered. The

example in Figure 2.1 illustrates the form of these profiles.

Code: Value profile:
(instruction, register) | Profiles (value,freq)
1: load R3, 0(R4) (11,R3) (0xb8d003400,10) ...
12: R2 € R3 & Oxff
(11,R2) (0,1000)
(12,R3) (0,100),(0x8900,200),....,(0x2900,100)

FIGURE 2.1. Value profiles.

Since the number of instructions in a program is large, and each operand of an
instruction may potentially hold a very large number of values, collection of complete
value profiles is not practical. Therefore to reduce the size of the profile data and the
execution time overhead of profiling, the following two steps are taken.

First only the most frequently appearing N values are collected for a given operand.
Calder et al.[11] have proposed maintaining a top-n-value table (TNV) for a register

being written by an instruction. Each TNV table entry contains a pair of values:
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the value and the frequency with which that value is encountered. A least frequently
used (LFU) replacement policy is used to choose an entry for replacement when the
table is full. If we exclusively use the LFU policy for updating the TNV, the values
that are encountered later in the execution may not be able to reside in the table
even if they are frequently encountered. This is because they may be repeatedly
replaced. To avoid this situation, at regular intervals the bottom half of the table
is cleared. By clearing part of the table, free entries are created that can be used
by values encountered later in the program. Both the number of entries in the table
and clearing interval are carefully tuned to get good results. Collecting only the top
N values not only reduces the profiling overhead, but also makes convergence to a
steady state faster.

The second complimentary approach in reducing profiling overhead is to collect
value profiles for only interesting instructions. Watterson and Debray [58] use a cost-
benefit model to identify interesting instructions. The cost is that to test whether a
register has a special value; the benefit is the direct and indirect instruction savings
that can be achieved by optimizing the program with this information. Control flow
profiles are collected first to carry out cost-benefit analysis and to identify candidates

for value profiles.

Address profiles. Address profiles can be collected in the form of a stream of

memory addresses that are referenced by a program. These profiles are usually used
to apply data layout and placement transformations for improving the performance
of the memory hierarchy. Depending upon the optimization, the address traces can
be collected at different levels of granularity. At the finest level of granularity, each
memory address can be traced. Coarser level traces record references to individual
objects rather than individual addresses.

A complete address trace of a program run can be extremely large. In order to

compress the size of the address trace, Chilimbi [15] has proposed using the Sequitur
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algorithm to generate a compressed whole program stream (WPS) representation of
the address trace in much the same way as Sequitur is used to compress a program’s
control trace. To guide the application of data layout and placement transformations,
the WPS representation is analyzed to identify hot address streams. These streams
represent subsequences of addresses that are encountered very frequently during the

program run.

Declarations: Sample code: Address profile:
int flag; for(i=0;i<2000;i++) { Relationship |Profiles(frequency)
int *pa,*pb,*pc,*pd; swtich (flag) { A A
int buf[2000]; case 1: (Alxa)Alpa)) 500
Xa = *pa; ... break; (A(xb),A(pb)) 20
int xa,xb,xc,xd; case 2: (A(xc),A(pc)) 2
xb = *pb; ... ; break;
case 3: (A(xd),A(pd)) 10
XC = *pc; ... ; break;
case 4:
xd =*pd; ... ; break; (Alpa)A(buf)) 2000
}
pa = buffi]
}

FIGURE 2.2. Address profiles.

While the above approach first collects complete address profiles and then pro-
cesses them to identify information useful in guiding data layout and placement trans-
formations, another approach is to directly identify the useful information. Calder
et al. [13] have proposed an algorithm based upon such an approach. The infor-
mation that they collect is represented by a graph named the temporal relationship
graph (TRG). The nodes in this graph are data items of interest. Weighted links are
established between pairs of nodes. If references to a pair of data items are sepa-
rated by fewer than a threshold number (say N) of other data references, then the
weight associated with the link between the two items is incremented. To maintain

the weights of all the links, an N-entry queue is maintained which records the latest
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N data items that are referenced by the program. The weights on the links at the end
of the program run can be used by the compiler to identify data items that should
be placed close to each other for achieving good cache behavior. Figure 2.2 shows an

example of the information collected using this approach.

2.1.2 Collecting profiles

Programs have to be executed in order to collect the program profiles. Three ap-
proaches are commonly used in practice for collecting profiles.

Instrumentation of the original program with new code to generate the profile
data is the most widely used method. The introduced instrumentation code depends
upon the types of profiles being collected. There are two possible ways to insert
the instrumentation code. One way is to instrument at source or intermediate code
level by modifying compilers [54, 55|. The instrumented source programs are then
compiled normally to generate the executable code. The other way is to use a binary
level instrumentation tool [19, 51| and insert the code directly into the executable
code. While high level instrumentation can trace semantic information more easily,
lower level instrumentation is sometimes easier to use and flexible.

The instrumented program is slower than the original version. While usually, the
overhead of instrumented code is linear in the length of the execution, techniques have
been proposed to reduce its overhead. Sarkar [48] proposed a technique to reduce the
overhead in collecting control flow profiles. A counter is introduced for each control
dependence region in the program; since they are far fewer than the basic blocks, the
profiling overhead is reduced. Ball et al. [4] presented an algorithm to reduce the
number of profiling points during the collection of path profiles.

Hardware profiling collects execution profiles with hardware support. Most mod-
ern processors [37, 26, 27| provide some hardware mechanisms for counting various

types of dynamic information, such as cache misses, memory coherence operations,



25

branch mispredictions, and issued and committed instructions. MIPS R10000 [37]
provides two 32-bit counters which can be used by the user to monitor 30 different
events. Similarly, the event monitoring mechanism in the Intel Pentium 4 and Xeon
processors [27] provides the flexibility to use 18 performance counters and to select
45 different events to be monitored. Hardware profiling is easy to use and incurs the
least overhead. However, the counter based hardware profiling approaches lack the
flexibility to monitor new events.

Simulation is another widely used approach in collecting and studying program
profiles. It is especially important if we are studying the software and hardware in-
teractions or if the target architecture does not exist. For example, Simplescalar [10],
FAST [41] and RSIM [42] are cycle level architectural simulators; they provide ways
to specify the features of simulated architectures. The advantage of this approach is
that we can run the same program many times with different hardware configurations
and study software and hardware interactions. The disadvantage is that it is very

slow.

2.2 Profile guided optimizations

Different types of profiles are used to expose different optimization opportunities and
assist in the development of different optimization techniques. These opportunities
become available because of the dynamic inequality characteristics, e.g. some paths
are executed more frequently than others, some variables are nearly constant, some
data objects are referenced together, etc. A more precise cost-benefit model could
be set up to evaluate this inequality and optimization transformations could thus
be developed to generate more efficient code. This section reviews the optimization

techniques proposed in the literature.
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2.2.1 Profile guided control flow related optimizations

Control flow profiles are most widely used in optimization. Techniques are designed
through code specialization, a technique that creates both optimized and unoptimized
copies of statements and appropriate copy of the statement is executed depending
upon the conditions that hold. Different code specialization algorithms are catego-
rized primarily into two classes of transformations that are used to carry out code
replication and enable specialization of conditionally optimizable code: code motion
of different types and control flow restructuring with varying scope.

The basic form of code motion, namely safe code motion, in addition to honoring
the program’s data dependences, guarantees that for every execution of a statement
during the execution of the optimized code, there exists a corresponding execution
of the statement during the execution of the unoptimized code. As a consequence, it
must be the case that if an exception occurs during the execution of optimized code,
it would have also occurred during the original execution. Hardware support present
in modern processors such as [A-64 [21] allows relaxation of the above constraint.
In particular, speculative code motion allows the compiler to introduce executions
of a statement in the optimized code that are not present in the unoptimized code.
Predicated code motion [21] creates more opportunities by moving code out of control
structures but still under correct predicates.

Control flow restructuring creates unoptimized and optimized copies of the state-
ment and places them along the incoming edges. The primary cost in restructuring is
the growth of code size. Control flow restructuring can be performed at different con-
trol flow granularities and scopes. Increasing the scope of restructuring also increases
the growth of code size. Function inlining is one way to achieve interprocedural
control flow restructuring. To limit code growth while performing interprocedural
optimizations a couple of alternative techniques have been proposed: partial inlining

of frequently executed paths through a procedure [25] and creating procedures with
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multiple entries and multiple exits [6].

Existing transformations are enhanced and new transformations are developed
to take advantage of profiles. They are used to develop a more precise cost-benefit
model and estimate whether the benefit achieved from a particular transformation
outweighs the cost that it introduced. For example, partial redundancy elimination
(PRE) is traditionally performed using safe code motion [29]. The use of speculation
was first proposed in [24, 23]. A control flow restructuring approach was proposed in
[52]. A combination of all above transformations to achieve greater benefits at lower

cost is discussed in [7].

2.2.2 Profile guided value optimizations

Value profiles can be used to identify almost invariant variables for constant fold-
ing, strength reduction, code specialization, adaptive execution and guiding dynamic
compilation.

Muth, Watterson and Debray [39] introduced a value profile based code special-
ization technique which has in three steps. First, using basic block profiles, program
points and registers are identified where specialization might be profitable. Second
value and expression profiles are obtained for these program points. Third, these
collected profiles are used to carry out specialization for those program points that
are deemed profitable.

Dynamic optimization [3] and adaptive execution [28] generate specialized code
either from scratch or from a statically generated template. Value profiles can help
to identify the semi-invariant variables statically and reduce greatly the optimization
cost at runtime.

Calder and Feller et al. [12] discussed different computer architecture components
that can benefit from value profiles. Hardware value predictors [34], for example,

can benefit in several ways from value profiles. By classifying instructions into pre-
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dictable, not predictable, or hard to predict, one can determine which instructions
to statically predict or not to predict. Value profiling can even be used to classify
instructions indicating which type of predictor would better predict the instruction in
a hybrid predictor. This increases the prediction accuracy and decreases the conflicts

or aliasing in a prediction table.

2.2.3 Profile guided memory optimizations

Over the past decade, while the processor speed have risen by 55% each year, the
memory speeds have only improved by 7% each year. As a result, the memory becomes
a major bottleneck in performance improvement and so has drawn a lot of attention.
The techniques proposed to optimize memory performance span a wide range of

categories.

e Object placement. This type of technique determines a better placement

scheme of data objects to improve cache behavior. Memory forwarding pro-
posed by Luk and Mowry [35] attached one bit to each word in the memory.
An object can be migrated dynamically according to its runtime behavior. After
its migration, the memory address where it previously resided saves an indirect
pointer to the new address. The additional bit is set to indicate that the ob-
ject has moved. Other approaches try to place an object in a desired places.
Ccemalloc [17] for example enhanced the system memory allocator by one more
parameter used as its parent pointer. Whenever possible, the new object is
placed into the same cache block as the existing object. The address profiles

can be used to identify objects that are accessed contemporaneously.

e Object layout. This type of technique determines a layout of fields within a

large data object to improve cache locality. A data structure is often defined
by the programmer to support code readability. The compiler simply uses a

memory layout for the fields which mirror the order they are declared. However,
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FIGURE 2.3. A ccmalloc example.

this order may not be consistent with the order that incurs fewer cache misses.
Truong et al. [56] evaluated an approach to reorder the fields and showed that a
node that spans several cache blocks can take advantage of cache line prefetching

and reduce cache pollution, thus improving cache performance.

Hybrid scheme. This type of technique combines the object placement and

layout approaches to further improve the performance. In [16], object splitting
technique was proposed to split an object into two parts: the hot primary part
and the cold secondary part. Hot fields are accessed directly while the cold ones
are accessed through a pointer stored in the hot part. Locality is improved by

reducing the data object size and benefits most memory accesses for hot fields.
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CHAPTER 3
COMPRESSING THE CONTROL FLOW TRACE

A control flow trace is a sequence of basic block instances in their execution order.
Node, edge or path profiles can be viewed as lossy compressed representations of the
control flow trace. Until recently, it was believed that a complete control flow trace is
too expensive to collect and use. However, Larus [32] recently demonstrated that it is
feasible to effectively collect a whole program path (WPP), which is the compressed
form of a complete control flow trace. By using the Sequitur [40] algorithm, Larus
showed that a control flow trace which is typically very large (100’s of MBytes), can
be compressed (10’s of MBytes) and saved for future analysis.

While the compression algorithm proposed by Larus is highly effective, the com-
pression is accompanied with a loss in ease of accessibility to information. For ex-
ample, path traces pertaining to a particular function cannot generally be obtained
without examining the entire compressed WPP representation. This is a serious
drawback because typically an application using the WPP can be expected to make
a series of requests for profile data for individual functions, that is, each request asks
only for a small subset of the overall information contained in a WPP. Repeated ex-
traction operations to satisfy these requests are likely to result in high analysis time
costs. Therefore it is important to design a representation from which path traces of
individual functions can be rapidly accessed.

The above loss of accessibility is a natural consequence of of treating the entire
control flow trace as a single data stream during compression. As a result the in-
formation corresponding to a given function is scattered throughout the compressed
trace and can in general be located only by examining the entire compressed trace.

In order to solve this problem a new compression approach is proposed in this



31

dissertation which aims at simultaneously reducing the size of the control flow trace
and providing easy access to subsets of information within the compressed trace. The
approach organizes the information contained in a complete trace as follows. The
control flow trace is first broken into path traces corresponding to individual function
calls, and all of the path traces for a given function are stored together as a block.
Therefore information regarding a specific function can be readily accessed. In order
to ensure that the complete control flow can be reconstructed from individual path
traces, a dynamic call graph which links the path traces together is also maintained.
The detailed compression algorithm for control flow traces is presented in this chapter.

The rest of this chapter is organized as follows. Section 3.1 introduces the new
timestamped whole program path (TWPP) representation. The algorithm steps are
given to convert a control flow trace into the final representation. Section 3.2 presents
the experimental results, comparing the compression ratio as well as the access time

using different compression algorithms. Section 3.3 summarizes the chapter.

3.1 TWPP: Timestamped whole program path

As mentioned earlier, a whole program path (WPP) is the compressed form of a
control flow trace from a program execution. Consider the program and a sample
control flow trace shown in Figure 3.1. The trace shows that the loop in main iterates
5 times and in each iteration the function f is called. The loop in function f iterates 3
times for each call. Looking at the WPP for a small program we observe two things:
WPPs for real applications can be expected to be quite large (e.g., 100’s of MBytes)
and in its current linear form WPP is difficult to use (e.g., in order to extract trace
information for a subpath in main or function £, we must examine the entire WPP).
Next we present a step by step transformation of the above WPP to achieve two
goals: compaction of the WPP to reduce memory requirements and organization of

the WPP information for faster access to path traces of individual functions.
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main(1.2.3.(1.2.7.8.9.6.2.7.8.9.6.2.7.8.9.6.10).4.
2.3£(1.2.7.8.9.6.2.7.8.9.6.2.7.8.9.6.10).4.
2.3£(1.2.3.4.5.6.2.3.4.5.6.2.3.4.5.6.10).4.
2.3£(1.2.7.8.9.6.2.7.8.9.6.2.7.8.9.6.10).4.
2.3.4(1.2.3.4.5.6.2.3.4.5.6.2.3.4.5.6.10).4.6)

FIGURE 3.1. An uncompacted control flow trace.

Partitioning WPP into path traces. We partition the WPP into path traces

corresponding to individual function calls and all of the path traces for a given func-
tion are stored together as a block. Therefore information regarding a specific function
can be readily accessed. In order to ensure that the complete WPP can be recon-
structed from individual path traces, a dynamic call graph (DCG) which links the
path traces together is also maintained. Figure 3.2 shows this representation of the
WPP for our example program. Clearly from this representation the WPP form of
Figure 3.1 can be easily constructed. More importantly one can rapidly search for
occurrences of a given path (intraprocedural or interprocedural). The path traces
of interest are located and then examined for desired information. To search for an
occurrence of a path in main we need to only examine one-sixth of the total trace in

Figure 3.2.
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Ficure 3.2. WPP organized using the DCG.
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1.2.3.45.6.2.3.4.5.6.2.3.4.5.6.10
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Ficurre 3.3. WPP after redundant path trace removal.



34

Eliminating redundant path traces. The WPP can be greatly reduced in size

by eliminating duplicate path traces generated by different calls to the same function.
In Figure 3.2, corresponding to the 5 calls to function £, there are only two unique path
traces. Therefore the WPP representation can be transformed to eliminate redundant
path traces as shown in Figure 3.3. This technique is very effective because although
many functions are called numerous times, they tend to follow one of a small subset
of paths through the function body. For example, in a WPP collected from executing
gcc we found that function _rtx_equal_p was called 355189 times but it generated

only 35 unique path traces.

Creating dictionaries of dynamic basic blocks. Another technique that we em-

ploy replaces a sequence of static basic block ids that correspond to a dynamic basic
block by a single id. A dynamic basic block (DBB) belonging to a path trace is a
sequence of static basic blocks that is always entered from the first block and exited
from the last block in the path trace. Since DBBs can often appear inside loops, they
are often repeated many times in a path trace. Thus, replacing them by a single id
can significantly reduce the size of the WPP.

Each path trace is processed as follows: a dictionary of DBBs is created by con-
structing a dynamic control flow graph and finding chains of static blocks representing
DBBs in it. Each DBB is assigned the block id of the first static block in it and ac-
cordingly the path trace is modified by deleting all but the first id in each occurrence
of a DBB. Once all compacted path traces and dictionaries are obtained, duplicate
path traces and dictionaries are also eliminated. In this transformed form, each node
in the dynamic call graph has an associated tuple (¢,d) where ¢ is a path trace and
d is a dictionary. Figure 3.4 shows the chains of static basic blocks that form dy-
namic basic blocks for the three path traces in Figure 3.3. After creating dictionaries
and compacting path traces, we are left with one path trace and two dictionaries for

function f as shown in Figure 3.5.
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FI1GURE 3.5. WPP after creating dictionaries of DBBs.
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Timestamped WPP representation. In the WPP representation described so

far, the execution trace of a given function invocation is represented by a sequence of
basic blocks visited during its execution. While such a path trace representation is
adequate for identifying hot paths through a program, it is not the most appropriate
for performing data flow analysis. Since profile-limited data flow analysis is carried
out from the perspective of basic blocks, it is more appropriate to organize the traces
from the perspective of dynamic basic blocks. Next we describe the timestamped
WPP (TWPP) representation which achieves this goal.

The execution of the function can be viewed from the perspective of time steps,
where each time step corresponds to the execution of a dynamic basic block. There-
fore a path trace for a function call in a WPP representation can be viewed as a
mapping between time steps, or timestamps, and dynamic basic blocks. In contrast,
the TWPPs represent a mapping between dynamic basic blocks and an ordered sets
of timestamps. Let T, B, and P(7) denote the set of timestamps, set of dynamic
basic blocks, and the power set of timestamps associated with the path trace of a
given function call f. A path trace in WPP and TWPP forms is represented by the

following mappings:

WPPPathTraces: T — B
TW PPPathTraces : B— P(T)
Consider the WPP of Figure 3.5. The WPP trace 1.2.2.2.2.2.6 corresponds to the
following 7 — B mapping: {1 - 2,2 52,3 52,4 -2 5—26— 27— 6}.
When transformed to TWPP form it is represented by the following B — P(T)
mapping: {1 — {1}, 2 — {2,3,4,5,6}, 6 — {7}}. The complete uncompacted

TWPP for this example is shown in Figure 3.6.

Compacting TWPP path traces. The path traces in TWPP form can be fur-

ther compacted because often a subsequence of timestamp values corresponding a
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DCG Path Traces DBB Dictionaries

FIGURE 3.6. TWPP form.

dynamic basic block forms an arithmetic series. This situation arises particularly
when the same path within a loop body is traversed repeatedly during different loop
iterations. The subsequences that form arithmetic series are compacted yielding a
sequence of entries which are of the following form: [ (singleton), [ : h ({.I141.142...h,
i.e., series with step 1), or [ : h : s (I.l + s.l + 2s...h, i.e., series with step s). As
we can see, depending upon its form, an entry is represented using one, two or three
positive integer values. We store the timestamps corresponding to a block merely as a
sequence of integers. For correct interpretation of the information we need to encode
the boundaries that separate the variable length entries. This information is encoded
in the signs (4 or -) of the values and therefore it does not require any increase in
the size of the path trace. In particular, the last number in a each entry is stored
as a negative number. By using the sign to encode the end of an entry we limit the
largest timestamp value that is available to us since we can no longer use unsigned
integers. However, our experience with the benchmarks considered shows that the
timestamp value does not overflow because individual path traces are much smaller
than the complete WPP.

Notice that the sequence of timestamps assigned to dynamic basic block 2 in

Figure 3.6 form an arithmetic series since block 2 is executed repeatedly during suc-
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Ficure 3.7. Compacted TWPP.

cessive loop iterations. Therefore the TWPP can be compacted into: {1 — {—1},
2 —{2:—-6},6 — {—T7}}. Notice that the last number in each sequence is a negative
number. The complete compacted form of TWPP for our running example is shown
in Figure 3.7.

It is also possible to increase the compressibility of timestamps associated with
basic blocks using a simple technique. Consider a situation in which different paths
through a loop body of a function contain different numbers of nodes. For example,
in Figure 3.8, there are three paths from A to F: paths ACDF and ACEF contain
three nodes while ABF contains 2 nodes. Even though nodes A and F are executed
along each of these paths, their timestamps are irregular due to the different number
of nodes along the paths. However, if all paths contained the same number of nodes,
then no matter which path is taken during each loop iteration, the nodes A and F
would have had perfectly compressible series of timestamps. To address this problem
we associated weights to edges where the weights are used to generate timestamps.
In particular, the weight of an edge represents the amount by which the timestamp
is incremented when the edge is traversed. By assigning weights to edges such that

sum of weights of edges along each of the paths through the loop is the same, we can
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Node Timestamp Node Timestamp
A 1:-5,8:16:-4,19:-23 A 1:25:-4
B 6:-17,-24 B 6:-18,-26
C 2:-9,13:-20 C 2:-10,14:-22
D 3:-21 D 3:-23
E 10:-14 E 11:-15
F 4:-7,11:-15,18:-22,-25 F 4:28:-4

FIGURE 3.8. Balancing example.

guarantee that nodes that are visited along each path have compressible timestamps.
In our example the edge BF is assigned the weight 2 while all the other edges are as-
signed the weight of 1 in order to balance the paths. The result is that the timestamps
for nodes A and F can now be compressed and the size of TWPP representation of

nodes A and F is further reduced.

Compacting the DCG. The dynamic call graphs resulting from executions of

large application programs can also be quite large. Therefore in addition to com-
pacting the path traces, we also compress the DCG. For this purpose we considered
the popular dictionary based approaches proposed by Ziv and Lempel [65, 66]. In
particular, we used Welch’s variation of Ziv and Lempel’s adaptive dictionary based

technique which is also referred to as the LZW algorithm [60].



3.2 Implementation and experiments

The TWPP algorithm has been implemented and evaluated to compact whole pro-
gram paths for several benchmark programs from the SPECint95 suite [50]. The
original WPPs used in the experiments were generated using the Trimaran compiler
infrastructure [55]. A WPP consists of two parts: the dynamic call graph (DCG)
and the individual traces for function calls (which are collectively referred to as the
WPP traces). The sizes of WPPs used in the experiments are shown in Table 3.1.
The experiments are aimed at studying the effectiveness of our compaction techniques

in reducing memory requirements and the effectiveness of organization of the WPP

information for faster access.

Program DCG WPP Total
(MB) | traces (MB) | size (MB)
099.go 6.0 170.0 176.0
126.gcc 34.7 489.5 524.2
130.11 6.6 78.3 84.9
132.1jpeg | 1.7 266.9 268.6
134 .perl 3.4 41.5 44.9

TABLE 3.1. Sample input traces used in the experiments.

WPP trace after Compacted || OWPP /

Program Redundancy Dictionary TWPP trace | CTWPP
removal - MB | creation - MB - MB

099.go 27.0 (x6.30) 17.1 (x1.58) 17.6 (x0.97) 9.7
126.gcc 86.5 (x5.66) 50.8 (x1.70) 32.9 (x1.54) 14.9
130.1i 8.5 (x9.21) 5.3 (x1.60) 1.1 (x4.81) 71.2
132.ijpeg | 28.1 (x9.50) 20.8 (x1.35) 5.7 (x3.65) 46.8
134 .perl 7.2 (x5.76) 1.7 (x4.24) 0.02 (x85.0) 2075

TABLE 3.2. WPP trace compaction due to various transformations.
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Program Compacted | Compacted TWPP (MB) | Total | Compaction
DCG (MB) | Traces | Dictionaries | (MB) factor

099.go 6.6 17.6 2.3 26.5 7

126.gcc 13.8 32.9 4.9 51.6 10

130.1i 5.3 1.1 0.04 6.4 13

132.1ijpeg 1.0 2.7 0.6 7.3 37

134 .perl 0.7 0.02 0.02 0.7 64

TABLE 3.3. Overall compaction factor.

Compaction study. Table 3.2 shows the sizes of the WPP traces in their various

forms. As we can see, the three compacting transformations, removal of redundant
path traces, creation of DBB dictionaries, and transformation to compacted TWPP
form are all very effective in reducing the WPP trace size. The ratio of the sizes of
original WPP traces (OWPP) and compacted TWPP traces (CTWPP) gives us the
compression factor which varies from 9.7 to 2075 for our sample traces. The sizes of
the WPP traces after each of the three transformations as well as the compression
factors corresponding to each of the transformations are also shown separately in
parenthesis in Table 3.2. The results show that each of the transformations is an
important source of compaction.

A large factor of size reduction comes from removing redundant path traces (5.66
- 9.50). The reason for this large reduction becomes clear when the data in Figure 5.1
is examined. This figure gives the percentage of total function calls (plotted along
Y-axis) that can be attributed to functions with at most N unique path traces (N is
plotted along the X-axis). For 130.1i, 132.ijpeg, and 134.perl programs 57-80%
of all function calls are attributable to functions with at most 5 unique path traces.
For 126.gcc and 099.go over 50% of function calls are attributable to functions with
at most 25 and 50 unique traces respectively. Given that the number of function calls
made during the runs of these benchmarks were in hundreds of thousands, we can see

that the degree of redundancy in path traces is very high.
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FIGURE 3.9. Trace redundancy.

The creation of dictionaries results in compaction of WPP traces by factors rang-
ing from 1.35 to 4.24. The conversion into compacted TWPP form results in further
reductions. For four out of five benchmarks, compacted TWPP traces provide re-
ductions in the sizes of WPP traces by factors ranging from 1.54 to 85. The only
case in which compacted TWPP trace is slightly larger is the 099.go program where
the compacted TWPP trace was 3% larger than the compacted WPP trace prior to
its conversion to TWPP form. These results are very encouraging because not only
is the TWPP representation suitable for profile-limited data flow analysis, it is also
compact.

The compacted sizes at different algorithm steps are plotted in Figure 3.10 which
gives a visual comparison. The step to eliminate redundant path traces is very ef-
fective and the step to convert to TWPP representation also contributes a lot to the
compression.

The breakdown of different components of a WPP and the overall compaction
factors for the complete WPP (DCG + WPP trace) are given in the Table 3.3. For
the sample WPPs used in these experiments the overall WPP compaction factor

ranges from 7 to 64.
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F1Gure 3.10. Compacted size at each TWPP step.

Access time study. To study the impact of reductions in the WPP size on the

speed with which the path traces can be accessed, an experiment was conducted
which measured the time it took to extract the path traces corresponding to a single
function from the complete WPP. The expected speedups result from two sources.
First due to the compaction of the WPP we have to read through a smaller file.
Second the contents of the file are organized to allow faster access. Followed by the
dynamic call graph, the path traces (including dictionaries) of the most frequently
called function are stored first and that of least frequently called function are stored
last. By remembering the position of information for each function in the file, and
storing it as a header in the compacted TWPP file, the path traces for individual
functions are rapidly accessed.

Table 3.4 shows the times taken to extract a function’s trace in the following sce-
narios: extraction from uncompacted file (column U); and extraction from compacted
file (column C). Both the average and maximum times for U and C are given. On

average the access times are reduced by over 3 orders of magnitude.

Larus’s Sequitur based compression algorithm. For comparison Larus’s com-

pression algorithm which is based upon Sequitur [40] was also implemented. This
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Program U (ms) C (ms) Speedup
avg. | max |avg. | max | C/U(avg.)
099.go 0033 | 8383 8 1438 629
126.gcc 22879 1 29672 | 6 028 3813
132.ijpeg || 7615 | 11447 | 6 | 258 | 1269
130.11 2390 | 3263 2 124 1195
134.perl 1303 | 1873 | 0.2 3 434

TABLE 3.4. Extraction times for a single function.

algorithm produces the compressed WPP representation which is in the form of a
grammar that generates a single string - the original trace. The Sequitur generated
grammar representation was compared with the TWPPs generated in two ways: their
sizes and the access times to individual function traces.

The results of this comparison are shown in Table 3.5. On average, the total
size of the grammar produced by Sequitur is smaller than the corresponding size
of the compacted TWPP by a factor of 3.92. Now consider the time it takes to
extract the trace corresponding to a single function from the complete compacted
trace. The extraction of a function’s trace from the Sequitur generated grammar
essentially requires two steps: reading in the grammar and then processing it to
generate a subgrammar corresponding to the functions trace. The total time taken
for extraction, and the times for each of the steps, are shown in Table 3.5. These
numbers represent averages over all functions present in the respective programs.
These times range from 10’s to 1000’s of milliseconds. In contrast, the TWPP is
so organized that we can locate and extract the trace in a few (< 10) milliseconds.
The access times for Sequitur grammars are greater than access times of TWPPs
by factors ranging from 89 to 553. In summary, although TWPPs are larger in size
by an average factor of 3.92, they provide access times that are lower by an average
factor of 309. These experiments show that the two representations embody design

decisions with different space time trade-offs.
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Program Compacted size Extraction time
Sequitur | TWPP Sequitur (ms) TWPP
(MB) (MB) | read+process=total | (ms)
099.go 8.4 26.5 622 + 1315 = 1937 8
126.gcc 11.2 51.6 898 + 2423 = 3321 6
132.1ijpeg 0.7 6.4 544 + 1650 = 2194 6
130.1i 7.8 7.3 47 + 132 = 179 2
134 .perl 0.4 0.7 29 + 30 =59 0.2

TABLE 3.5. Compacted trace sizes and extraction times.

Apart from the different size and access time characteristics, the two represen-
tations also impact on the design of analysis algorithms that will use them. While
Larus’s techniques is suitable for analysis of hot paths (i.e., collection of data flow
facts that hold along frequently executed paths), TWPP representation is suitable
for collecting hot data flow facts (data flow facts that hold frequently at various pro-
gram points). One of the advantages of our approach is that TWPPs are in the form
required for profile-limited analysis. In contrast the compressed WPPs produced
by Sequitur require some amount of preprocessing before they can be used by an

application.

3.3 Conclusion

A new timestamped whole program path representation is proposed in this chapter
to compress the complete control flow trace. Without compromising accessibility, it
achieves effective size compaction. The organization of the trace information based
upon the dynamic call graph and timestamped dynamic basic blocks is particularly
appropriate for performing fast accesses to path traces of a given function. It compacts
the original traces by factors ranging from 7 to 64 and at the same time speedups of
over 3 orders of magnitude were observed in responses to queries requesting all of the

trace information of a given function.
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CHAPTER 4

COMPRESSING THE MEMORY DEPENDENCE
TRACE

In the preceding chapter, a new timestamped whole program path (TWPP) repre-
sentation was proposed to compress a complete control flow trace. Compared to the
original WPP which is compressed by Sequitur, TWPP is more suitable for data flow
analysis. However, control flow information alone is not sufficient for inferring certain
dynamic data flow facts. If the data flow fact is related to dynamically allocated data
structures or depends on the dynamic memory accesses then control flow information
alone is insufficient. For example, Figure 4.1(a) shows the control flow graph of a
small program in which the results from a simple function and a complex function
are assigned to address “p” and “q” respectively. If “p” and “q” almost always point
to the same address, it would be beneficial to transform the code to Figure 4.1(b)
in which the complex function is called only when the result will not be overwritten
later. However, if “p” and “q” rarely point to the same address, this transformation

should not be applied since the overhead introduced due to the additional comparison

would outweigh the benefits.

B1 81 if(p!=q)
* — . : P=g
p = Fcomplex(..); *n = ;
P =Fo _ p = Fcomplex(..);
q = Fsimple(); - *q = Fsimple();

FIGURE 4.1. Importance of data flow information.

The precise dynamic data flow consists of two types of flows: those accessed

through registers and those accessed through memory locations. The compiler will
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translate a high level variable access into one of these two types. Since most instruc-
tions have two or three operands, the size of a precise dynamic data flow tracing would
be about two to three times the execution length. Luckily, the data flows through
registers are easy to determine, since registers are always accessed through their ex-
plicit names and therefore the data flow through registers can be reconstructed easily
from its control flow. Only the data flows through memory locations are implicit,
since the location is decided by the runtime value of the source address register of
a load or the value of the destination address register of a store. Thus, to precisely
trace the dynamic data flow, memory addresses in the memory access instructions,
i.e. the values in the above discussed registers, are traced and saved into a file.

Usually memory address traces are much bigger than control flow traces. It is
harder to compress a memory address trace than it is to compress a control flow
trace. One reason is that the number of accessed memory addresses is larger than the
total number of basic blocks that a program can have. Most compression algorithms,
including Sequitur, are less effective in handling a stream of text over a huge alphabet
and thus do not achieve very good compression ratios in compressing a memory
address trace. Moreover, a basic block id is usually represented by a half-word (16
bits or less), while a memory address is represented by a whole word (32 bits).

This chapter will enhance the timestamped representation from the preceding
chapter to compress memory address traces with the aim of providing data depen-
dence information during data flow analysis. The rest of this chapter is organized
as follows. Section 4.1 discusses the compression steps in constructing the enhanced
timestamped whole program path (TWPP+). The implementation and experimental
results are shown in section 4.2. Section 4.3 discusses the related work. Section 4.4

concludes the chapter.
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4.1 TWPP+: TWPP with memory dependence edges

Given a whole program trace in which the basic block ids as well as memory addresses
accessed within each basic block are represented in their execution order, the enhanced
TWPP representation first separates the control flow trace and the memory address
trace. The control flow trace is represented by the TWPP representation introduced
in the preceding chapter. The memory address trace is handled as described in the

following steps.

Eliminating explicit memory addresses. As discussed above, the purpose of in-

cluding the memory address trace in a whole program path profile is to reconstruct
the precise and complete data flows for a given execution. In such a scenario, the
absolute addresses themselves are not important — only the load/store dependences
instead. Thus the first step is to eliminate the explicit addresses and remember only

dynamic data flows.

B1 \ 4
a =
B2 .  —.B3
b=.. =
S~ B1W(@)B2W(b)  B4R(a)R(b)
B4 —*%, ' B1 W(a) B3 W(b)W(a) B4 R(a) R(b) |
- b ' B1 W(a) B3 W(a)W(c) B4 R(a) R(b) '

(b) Combined control flow and

(a) Sample CFG memory address trace

FIGURE 4.2. An example of a memory dependence trace.

A data flow through a memory location exists from an instance of a store instruc-
tion to an instance of a load instruction, denoted by a memory dependence edge from

the store instance to the load instance. To precisely remember a dynamic data flow
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edge, both the load and store instruction ids as well as their instance counts need
to be remembered. For example, in Figure 4.2, B3 was executed twice during which
it wrote to locations for “b,a” and “a,c” respectively. If we want to set up the data
flow dependence for the load of “b” at the end, we need to indicate that it gets the
value from the first execution instance of basic block Bz and it is the first memory
access instruction in this basic block. Similarly, a function instance count needs to
be remembered as the function might be executed several times. Thus, a dynamic

memory dependence edge is precisely defined by
[< (Fo, F'Cy), (Bo, BCy), Sy >, < (I, FCy), (B, BCh), S1 >]

where F, FC, B, BC, S denote respectively the function id, the call instance count of
the function, the basic block id, the instance count of the basic block, the sequence

index of the memory access inside a basic block.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

[<(F,1),(B4,1),1>,<(F,1),(B1,1),1>] |

[<(F,1),(B4,1),2>,<(F,1),(B2,1),1>] |
- it ‘ | [<(F,1),(B4,2),1>,<(F,1),(B3,1),2>] |
B1 W(a) B2 W(b) B4 R(a) R(b) | [<(F,1),(B4,2),2>,<(F,1),(B3,1),1>] |
' B1W(a) B3 W(b)W(a) B4 R(a) R(b) ! :> ' [<(F.,1).(B4,3),1> <(F,1),(83,2),1>] |
B1 W(a) B3 W(a)W(c) B4 R(a) R(b) ! [<(F,1),(B4,3),2>,<(F,1),(B3,1),1>] |

(a) Combined control flow and (b) After eliminating explicit
memory address trace memory addresses

F1GURE 4.3. Eliminating explicit addresses.

For the sample trace shown in Figure 4.2, after eliminating the explicit addresses,

it can be represented by explicit memory dependence edges shown in Figure 4.3(b).

Identifying the appropriate set to represent. As it was discussed, the data

flows that pass through registers need not traced because they could be reconstructed
from the program’s control flow trace. Similarly, a data flow, even if it passes through
a memory location, could be safely discarded if it can be reconstructed from the pro-

gram’s control flow. Since all data flows are represented as memory dependence edges
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after the first step, an edge could be discarded if the corresponding data flow has this
property. For example, in Figure 4.2, By writes to “b” and the second access of By
reads “b”. If By is executed before B,, there must be a data dependence between
them. This edge < F,1,B4,1,2 >, < F,1,B5,1,1 > can be constructed from the
control flow. On the other hand, the edge < F,1,B4,3,2 >, < F,1,B3,1,1 > cannot
be eliminated because the first store instruction of B; may or may not write to the
address “b”. This edge cannot be recovered from the control flow. Thus, a mem-
ory dependence edge can be removed only if both its load instruction and its store

instruction access only one memory address and this address is statically decidable.

' A1> <F,B1,1> |
i A2-> <F,B2,1> 3
' A3> <F,B3,1> ;
I i s s ' Ad-> <F,B3,2> |
| [<F,1,B4,1,1><F,1,B1,1,1>] ' A5-> <F,B4,1> }
i [<F,1,B4,1,2>,<F,1,B2,1,1>] 3 ' AB> <F,B4,2>

3 [<F,1,B4,2,1><F,1,B3,1,2>] . ; Po<
! [<F,1,B4,2,2>,<F,1,B3,1,1>] 3 |:> 3 [<A5,1,1>,<A1,1,1>] 3
3 [<F,1,B4,3,1><F,1,B3,2,1>] | | [<A5,1,2>,<A4,1,1>]
' [<F,1,B4,3,2>,<F,1,B3,1,1>] . [<AB,1,2>,<A3,1,1>] dependence edges

7777777777777777777777777777 | [<A5,1,3>,<A3,1,2>] |
' [<A6,1,3>,<A3,1,1>]

,,,,,,,,,,,,,,,,,,,,,,,

dictionary

FI1GURE 4.4. Creating memory access dictionary.

Another type of redundancy exists in the representation of each data dependence
edge. Each edge consists of two instruction instances (see Figure 4.3) and each in-
stance is decided by 5 items: the function id, the basic block id of the function, the
instruction index of the basic block, the function instance count and the basic block
instance count. The first three items are statically decidable and thus could be com-
bined. We globally number all load and store instructions and each instruction is

assigned a unique id. Now, an edge can be represented by
[< Gg, FCO, BCy >, < Gl, FCl, BC, >]

where G represents the global unique memory access point, i.e. a load or store
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instruction point. There is a global mapping from each global unique id to a triple
that consists of the function id, the basic block id and the instruction index in the
basic block. This mapping is identified as memory access point dictionary and is
stored aside for future reference.

Figure 4.4 shows the result after removing control flow decidable edges and creat-

ing the memory access point dictionary.

' A1> <FB1,1> | | A1> <FB1,1>
 A2> <F,B2,1> | ' A2 <F,B2,1>
' A3-> <F,B3,1> | ' A3 <F,B3,1>
' Ad> <F,B3,2> : | Ad> <F,B3,2>
| A5-> <F,B4,1> | ' A5-> <F,B4,1>
| A6-> <F,B4,2> |

| A6—> <F,B4,2>

' [<A5,1,1>,<A1,1,1> 1]
' [<A5,1,2>,<A4,1,1> 1]
| [<A5,1,3>,<A3,1,2> 1]
| [<A6,1,2>,<A3,1,1>,1]
' [<A6,1,3>,<A3,1,1>,2]

i [<A5,1,1>,<A1,1,1>]
[<A5,1,2>,<A4,1,1>]
' [<A5,1,3>,<A3,1,2>]

3 [<AB,1,2>,<A3,1,1>]
' [<A6,1,3><A3,1,1>]

(a) regrouping according to (b) adding a number to remember the
access points order to get a store instance

FIGURE 4.5. Representation for timestamped memory dependence edges.

Timestamped memory dependence edges representation. Inthe TWPP rep-

resentation, a function level path is converted to a sequence of timestamps at which it
is executed. Similarly, the sequence of dependence edges are regrouped according to
their global unique ids. There are three reasons why it is organized in this way rather
than grouping them according to individual function calls. First, data dependence
edges are not directly connected with the control flow. Distinct instances of the same
static load instruction might be dependent upon different store instruction instances
within the function or even from other functions. Second, each function has many call

instances. Unlike functional level control flow traces, it is less likely that the edge se-
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quences from two call instances are exactly the same. Grouping edges at the function
level will not lead to the discovery of much redundancy. Third, memory dependence
edges show significant repetition at the same memory access point. Organizing edges
according to memory access points can increase compression opportunities.

After grouping, the relative order of the edges is lost. Although it is possible to
rebuild the order by employing the control flow trace, it is generally too expensive.
Usually, the order between two edges is of interest if they share the same load or
store instruction. If they share the same load instruction, they are grouped in the
same block, and the relative order is determined by their function instance and basic
block instance counts. If they share the same store instruction, their relative order
could be easily determined if they are from different instances. However, in order
to distinguish those that share the same store instance, we remember one additional
number ¢ for each edge which indicates this load instance is the i-th load from that
store instance.

The result after grouping for the previous example is shown in Figure 4.5(a). The
result after adding the extra sequence number is shown in Figure 4.5(b). Three edges

at the fifth access point are organized as size sets of grammars.

,,,,,,,,,,,,,,,,,,,,,,,

' A1> <F,B1,1> :
| A2 <F,B2,1> |
' A3-> <F,B3,1> |
' A4> <F,B3,2> |
. A5> <F,B4,1> |

A6-> <F,B4,2> |

F1GURE 4.6. Compressing each subsequence using Sequitur.
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Compressing the data flow sequence. After organizing the memory dependence

edges according to their unique load instruction ids, all edges at the same point could
be compacted using the Sequitur algorithm. As can be seen from Figure 4.5(b), the
edges in each group share a significant similarity with each item individually. For
this reason, the edges form 7 individual subsequences and get compressed separately.
Moreover, the first subsequence is removed as all edges in the same group share the
same global id. The last 6 subsequences are compressed and the results are shown in

Figure 4.6.

4.2 Implementation and experiments

The TWPP+ algorithm has been implemented and evaluated to compress program
traces for the programs from the SPECint95 benchmark suite [50] used in the pre-
ceding chapter. The original traces used in the experiments were generated using the

Trimaran compiler infrastructure [55].

4.2.1 Compression results using TWPP+

The combined trace with both the control flow and memory address traces is usually
much bigger than the control flow trace itself. Table 4.1 shows the control flow part
and memory address part of the original trace. For 126.gcc and 132.ijpeg, the raw

data is truncated at the upper limit of a file in our system, which is 2 gigabytes.

Program Total control Total data Total trace
trace size (MB) | trace size (MB) | size(MB)
099.go 176.0 555.9 731.9
126.gcc 164.4 687.1 851.1
130.1i 84.9 295.7 380.6
132.ijpeg 130.0 838.0 968.0
134 .perl 44.9 158.0 202.9

TABLE 4.1. Memory trace characteristics.
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From the table, the length of the memory address trace is about four times bigger
than that of the control flow trace. As discussed above, there are two reasons. First, a
word (32 bits) is used to represent a memory address while a half word (16 bits) is used
to represent a basic block id. There is a factor of 2 for this reason. Second, many
basic blocks contain multiple memory accesses and thus each basic block instance
maps to several recorded memory addresses.

The first conducted experiment was aimed at evaluating the effect of eliminating
the explicit memory addresses and converting the trace to memory dependence edges.
Since an edge is recorded at every load instruction but not a store instruction point,
the effect of this conversion is determined by the percentage distribution of load
and store instructions. Table 4.2 shows the static distribution of load and store
instructions, and the dynamic distribution of load and store instances for different
benchmarks.

The results indicate that 63.2% of all memory access instances will generate
memory dependence edges at runtime. However, we know that each edge is indi-
cated by two memory access points, so that without any compression, there are
2%63.2%=126.4% memory access points stored in the edge representation. Compared
to the original memory address trace, the conversion introduces about 26% more

access points.

Program Static Dynamic

load inst. | store inst. | load % || load inst. | store inst. | load %
099.go 11719 6682 63.7 % || 100.5 M 385 M 72.3 %
126.gcc 34474 19649 63.7 % || 108.2 M 63.5 M 63.0 %
130.1i 1564 1396 52.8 % 45.1 M 28.8 M 61.0 %
132.1ijpeg 3704 2840 56.6 % || 141.8 M | 67.9M |67.6%
134 .perl 3548 2862 55.4 % 20.5 M 19.0 M 51.9 %
Average 58.4 % 63.2 %

TABLE 4.2. Distribution of load and store accesses.

The second step of the proposed compression algorithm removes the unnecessary
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memory dependence edges and compact the edge representation. Edge compaction
is done for every edge and an edge is packed into 6 items from its original 10 items,
which means there is a 40% reduction. The dictionary generated is usually very small.

For different benchmarks, their dictionary sizes are shown in Figure 4.3.

Program Memory access point
dictionary size (KB)

099.go 110.4

126.gcc 324.7

130.11 17.8

132.1ijpeg 39.3

134 .perl 38.5

TABLE 4.3. Dictionary size for memory access points.

Data was collected to estimate the percentage of edges that are removed and the
actual percentage of edges removed from the sample traces. Table 4.4 summarizes the
load (store) instructions with single and multiple source (destination) addresses. An
edge, which consists of a load instance and a store instance, is removed only when its
store instruction can only write to one address and its load instruction can only load
from that address. Thus, the probability that we will drop a memory dependence
edge is the product of the probability of a load is a single source load instruction and
the probability of a store is a single destination store instruction. From the table, the
estimation is that on average 24% of total data dependence edges would be removed.

Table 4.5 gives the actual percentage of edges removed from the sample traces.
The total instances of load and stores in each category were collected and the actual
edges removed from the sample traces. Dynamically, if a load instruction from the
single source address category loads a value from an address which was written by
a store instruction from the single destination address category, the corresponding
edge is skipped. The results from the table show that about 17.7% of total memory

dependence edges are removed. After removing these edges, about 53.3% of dynamic
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Load Store Estimation of

Program multiple | single | multiple | single removed

address | address | address | address edges
099.go 9048 2671 4434 2248 77 %
126.gcc 20406 14068 9495 10154 21.1%
130.11 1008 556 859 537 13.7%
132.ijpeg 1181 2523 836 2004 48.1%
134 .perl 1617 1931 1256 1606 30.5%
Average 24.2%

TABLE 4.4. Distribution of static load and store points.

memory access points need to be traced. Since each edge has two points, now we need

to trace about the same number of access points as that in the raw trace (2 x 53.3% =

106.6%).

Program Load Store % of edges | % of dynamic

multiple src. single src. multiple dest. single dest. removed points to trace
instances(MB) | instances(MB) | instances(MB) | instances(MB) % (%)

099.go 92.6 7.9 33.4 5.1 77 % 66.7 %

126.gcc 91.1 17.1 54.4 9.1 13.4 % 54.6 %

130.11 36.9 8.2 25.6 3.2 16.4 % 51.0 %

132.ijpeg 111.8 30.0 41.6 26.3 17.0 % 56.1 %

134 .perl 13.2 7.3 13.7 5.3 34.0 % 34.4 %

Average 17.7 % 53.3 %

TABLE 4.5. Dynamic behavior and removed edges.

After having the edges grouped at each load instruction point, the resulting sub-

sequences are compacted. The results are shown in Table 4.6 with a comparison to

the scheme that applies the Sequitur algorithm directly to the entire trace combined

with control flow and memory address information. For 126.gcc and 132.ijpeg, both

the uncompressed trace and the result contain only part of the control flow trace

discussed in the preceding chapter.
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Program Uncompressed | Sequitur TWPP+

size (MB) size(MB) size(MB)
099.go 731.9 195.2 317.6 + 26.5 = 344.1
126.gcc 851.1 114.0 146.1 + 13.8 = 159.9
130.11 380.6 35.9 24.4 + 6.4 = 30.8
132.1jpeg 968.0 15.8 55.2 + 6.0 = 61.2
134 .perl 202.9 03.3 1.2407=19

TABLE 4.6. Compression results using Sequitur and TWPP+.

4.2.2 Average scan length

The purpose of converting a memory address trace into a new TWPP+ representation
is to help the construction of precise data flow information. Since the load and store
instances of a memory dependence edge are usually separated from each other, we
have to scan the two different representations in order to set up an edge. The next
experiment evaluates the average length to be scanned in order to recover a memory
dependence edge from different representations.

Given a load instance, the store instance of its dependence edge is found in the
raw trace by backward traversal of the trace. In the worst case, the scan length can be
as high as the length of the trace. The results in Figure 4.7 show the average length
over all edges of all load points. In WPP representation, which is compressed by
Sequitur algorithm, the worst-case scan length is up to the length of the compressed
representation. In the WPP representation, the intermediate non-terminal symbols
are merely grammar symbols and thus they cannot help in information retrieval. In
many cases, the whole representation needs to be scanned to find the dependence.
However, the results in Figure 4.7 is the best case estimation which means we need
to just scan the compressed items between the load instance and store instance of
the edge. In the new TWPP+ representation, the memory dependence edges are
explicitly annotated to each load instruction. Once the load instance is found, we

could find the store instance of the edge from searching all edges annotated to this
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load. Since the edges are organized as several grammars, we count the length of these
grammars and the results in Figure 4.7 show the average and maximal length that is

scanned in the TWPP+ representation.

Program Raw Trace | WPP TWPP+
Average | Maximum
099.go 122 M 3.3M | 334K 21 M
126.gcc 23.8 M 32M| 61K 1.4 M
130.11 10.0 M 09 M| 227K 42 M
132.1ijpeg 13.5 M 0.6 M| 28.1 K 24 M
134 .perl 7.8 M 20M | 05K 0.7 M

TABLE 4.7. Average items scanned before finding a memory dependence edge.

From the table, we find it is orders of magnitude faster to find a data dependence

edge using the TWPP+ representation than that using the WPP representation.

4.3 Related work

Chilimbi [15] proposed using the Sequitur [40] algorithm to compress memory ad-
dress traces directly. The lossy compressed result, identified as whole program stream
(WPS) is used to find hot subsequences of data object accesses and to use these sub-
sequences to improve memory reference locality. WPS is not a suitable representation
for memory dependence analysis because of the following reasons. First, the address
abstraction is used before compression. The abstracted data reference trace consists
of units of larger granularity, e.g. object ids instead of field ids. Thus the precise
memory dependence information at word level is lost. Second, the algorithm iterates
several times and infrequently used memory addresses are discarded after each itera-
tion. As a result, the precise memory dependence information is lost even at the large
granularity. In contrast, the TWPP+ representation puts more emphasis on analysis

and keeps the precise memory dependence information. Moreover, as discussed, ex-
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plicit memory addresses are discarded as the goal of TWPP+ is not to improve the

data locality.

4.4 Conclusion

To assist in data flow analysis with precise data and control flow information for a
given execution, a complete whole program path with both control flow profiles and
memory addresses is collected. However, it is observed that the explicit memory
addresses are not necessary for many applications. Following the same design philos-
ophy as the one used in designing TWPP, a new representation was proposed in this
chapter to reorganize the memory address trace into a sequence of memory depen-
dence edges annotated on each load instruction point. While providing more precise
information during data flow analysis, the new representation achieves compression
results comparable to that using Sequitur directly on the combined trace. Moreover,
the estimated speed to determine a memory dependence edge from the TWPP+

representation is orders of magnitude faster than that from the WPP representation.
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CHAPTER 5
APPLICATIONS OF TWPP+

The preceding two chapters introduced the new timestamped whole program path
(TWPP+) representation to compress a complete program trace which contains both
data flow and memory dependence information. The new representation has the
advantage of helping the program analyses and optimizations in several ways. This
chapter introduces three different types of applications using TWPP+-.

In the TWPP representation, all the execution information related to a specific
program entity is organized together. For example, each basic block groups its func-
tion level execution information as a sequence of timestamps; a load instruction groups
all of its memory dependence edges and compresses them together. In such a represen-
tation, summary information with respect to different entities can be easily collected.
By counting the number of items annotated to each entity, simple frequency informa-
tion could be collected and used to find hot program regions. Section 5.1 discusses a
more complex application which uses TWPP+ to decide the percentage distribution
of redundant load and store instructions.

Although the execution information about different program entities has been
separated, TWPP keeps the global timestamps so that the original execution order
could be reconstructed easily. This order is especially helpful in finding whether a
given data flow fact holds at a given program point and with what frequency. Section
5.2 discusses how to collect such information in a demand-driven fashion.

The complete control flow and memory dependence information could also be
used in other applications. In section 5.3, TWPP is used in implementing different
dynamic slicing algorithms with trade off between cost of computing slices and their

accuracy.
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5.1 Exploring LOAD/STORE redundancy

In modern architectures, memory accesses have a long latency and thus a significant
amount of research has been carried out to reduce the number of load and store
instructions. However, before a load or store instruction can be removed, it must be
identified as being redundant. This section will show how to assist in this type of

optimization with memory dependence edges recorded in TWPP.

5.1.1 Identifying a redundant LOAD/STORE instruction

A load instruction of the form “LD R1, off(R2)” loads the value from the memory
address (R2+off) into register R1. A store instruction of the form “ST R1, off (R2)”
stores the value from register R1 into the memory address (R2+off).

Redundant LOAD and STORE instructions are defined as follows. A load instruc-
tion instance [ which loads from a memory address m is identified as a redundant

load if it satisfies the following conditions.

e There is another load instruction instance /" which is executed before [, and [’
loads from the same memory address m. [ and [’ could be the instances of the

same instruction or two different instructions.

e There is no store instruction instance s between I’ and [ such that s writes to

the memory address m.

A store instruction instance s which writes to a memory address m is identified

as a redundant store if it satisfies the following conditions.

e There is another store instruction instance s’ which is executed after s, and s’
stores to the same memory address m. s and s’ could be the instances of the

same instruction or two different instructions.
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e There is no load instruction instance I between s and s’ such that [ loads from

the memory address m.

For example, in Figure 5.1, the load instance L is redundant since load instance L2
gets the value from the same address and the address is not overwritten in between.
The store instance S is redundant since there is no load that gets its value before it

1s overwritten.

L LD R1, 0(R2) S: ST R1, 0(R2)
I [
| 1
... no store to O(R2) ... ... no load from O(R2) ...
\ \
L: LD R4, 0(R2) S* ST R4, 0(R2)
(a) redundant LOAD instance L (b) redundant STORE instance S

F1Gure 5.1. Redundant LOAD/STORE instructions.

Without program profiles, a compiler could remove a redundant load (or store)
instruction only when it is ensured that all of its instances are redundant. However,
in many cases, the memory addresses of different load and store instructions are
statically determined as potentially aliased but dynamically never overlap. Even with
the most advanced aliasing analysis, many fully redundant load and store instructions
cannot be identified as redundant and be removed. In addition, it is desirable to
exploit those instructions each of which has many of its instances as redundant. These
opportunities could be discovered with the help of memory dependence edges stored in
the TWPP+ representation. Next, we study the potential redundant load and store
instances and their distribution. As an ideal study, the following two assumptions

are made.

e There are unlimited number of registers to hold values loaded from the memory.
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e Given a memory address, if its latest copy has been loaded to a register, that

register can always be identified.

5.1.2 Identifying redundant loads from TWPP+

Since there are no explicit memory addresses in a TWPP+ representation, load re-
dundancy is not identified by comparing different load addresses, but instead it is

detected through explicit memory dependence edges.

Handle the discarded memory dependence edges. A TWPP+ representation

discards those edges that can be reconstructed from the control flow trace. From the
preceding chapter, we know these edges are about 18% of total edges. The discarded
edges share one common property, i.e. the load and store instances of these edges
are instances of load and store instructions each can load from or store to only one
statically known address.

There are three possible ways to handle these discarded edges. First, we consider
only the recorded edges and their corresponding instructions. Because of the property
discussed above single memory address that is statically known, the load and store
instructions involved in discarded edges are relatively easy cases to handle. Thus we
can skip processing them. Second, if we can integrate them into the TWPP+ repre-
sentation, as we show in the preceding chapter, it increases about 18% uncompressed
edges. Third, we can recover them from a control flow graph traversal. However,
because we are only interested in recovering these discarded edges, the control flow
graph is significantly simplified.

Here, we give the algorithm to recover these edges before finding load and store
redundancy. First, instructions are selected from the set of all load and store instruc-
tions. Each selected instruction can load from or store to only one memory address
and the address is statically decidable. Second, the control flow graph of a function

is simplified by removing all basic blocks if they do not contain any selected instruc-
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tions or any function calls. A function is discarded if after the above simplification,
it contains nothing. The above process is applied iteratively until the control flow
graph does not change any more. Third, the dynamic call graph, as well as a func-
tion’s control flow graph, are traversed backwards. During the traversal, a memory
dependence edge is set up between a load instance and its immediate preceding store

instance which accesses the same memory address.

Identify redundant loads. As described in the preceding chapter, there is a mem-

ory dependence edge for each load instance and the edge is of the form [< G,, FI;, BI; >
,< Gy, FI,, BI, >, SS] where G,FI,BI denote the global id, function instance id and
basic block instance id and SS denotes this load is the SS-th load of the store value.
The conditions to identify a redundant load can now be restated as follows.

A load instance | denoted by an edge [< Gy, FI,, Bl; >,< Gy, FI,, Bl >,55,]
is redundant if there is another load !" denoted by another edge [< G3, FI3, BI3 >, <
Gy, Fly, BI, >,S55,] and

e [ and !’ load the value from the same memory address and there is no store
instruction in between that writes to this memory address. This means they get

the value from the same store instance, i.e. < Gy, Fly, Bl >=< Gy, Fly, Bl; >.

e [ is executed before I'. This means < G, F'I;, BI; > has a smaller timestamp

than < G3, FI3, BI; >, i.e. SS5; < 55,.

For example, in Figure 5.2(a), the store instruction S1 has been executed 3 times.
For its second instance, there are two load instructions L1 and 1.2 and the second
instance of each load instruction gets the value from it. If the second instance of L1
is executed after that of L2, then it is redundant, otherwise the second instance of L2
is redundant.

We know that memory dependence edges are organized at individual load points

and stored in separated blocks, shown in Figure 5.2(b). According to the conditions
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. L1: | [<x1>, <G1,1, 1>,81]
S1: | store R1, O(R2) [<X2>. < G1. 2. 15.81] R
i i ; [<X3>, < G1, 2, 1>,53] <X1>, <G1, 1, 1>,
tinstt, inst2, inst3) [X4>, < G2, 1, 15511 X6 < G111, 42.52]
[<X2>, < G1, 2, 1>,51]
{.. inst2, ..} L2: | [<X5>, <G1, 1, 1>,52] [<X6><G,2,1>,52]
! [<X6>, < G1, 2, 1>,52] [<X3><G1,2-1>.83}
L1: | load R3, O(R4) ! [<X7>, < G1, 2,2>,51]
G lt2 } [<X8>, < G2, 1, 1>,2] [<X7>, < G1, 2, 2>,81]
..., INSlZ, ...
L2: | load R5, O(R6) [<X8>, < G2,1, 1>,51]

(c) regroup according to their

(a) redundant load instance (b) TWPP+ representation .
store instances

FIGURE 5.2. Determining a redundant load.

discussed above, we can identify redundant loads from TWPP+ representation as
follows. The first step is to recover the dependence edges discarded from the TWPP+
and group them as a block. The second step is combine all edges and regroup them
according to their store instances. For the same store instance, edges are sorted
according to their load timestamps. Finally, we mark all loads except the first load

in each group as redundant load instances and summarize the information (Figure

5.2(c)).
5.1.3 Identifying redundant stores from TWPP+

We can identify redundant stores from TWPP+ similarly. According to the conditions
that identify a redundant store, there is no load instance which gets a value from a
redundant store instance. Thus if an instance is involved in any edge, it is not
redundant. Otherwise it is redundant.

For example, in Figure 5.3(a), the store instruction S1 has been executed 3 times,
both the first and the third instances have their dependent load instruction instances.
There is no load instruction which gets the value from its second instance. The second
instance is a redundant store instance. If the store is writing to an output stream, it

is never marked as being redundant.
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Identifying redundant stores from the TWPP+ representation is similar to iden-
tifying redundant loads. First, discarded edges are recovered. Second, all edges are
grouped and sorted. From the sorted list, all skipped instance number of a store

instruction denotes a redundant instance, shown in Figure 5.3(c). !

[<X1>, < G1, 1, 1>,81]
S1: | store R1, O(R2) [X2>, < G1, 2, 1>.51] [<X1>, < G1, 1, 1>,81]
i [<X3>, < G1, 5, 1>,51] [<X5>, < G1, 1, 2>,S1]
{inst1, inst2, inst3} [<X4>, < G2,1,1>.81] [<X6>, < G1, 1, 3> 81]
g | \\\ < < > —
! [<X5>, < G1, 1, 2>,81] [X2>,<G1,2,1>.81] > it(r)?g:ndant
[<X6>, < G1, 1, 3>,S1] [<X3>, < G1, 5, 1>,81] ¢
‘/ [<X7>, < G1, 9, 2>,81] 3 redundant
& ‘,/ \ [<X8>, < G2, 1, 9>,51] [<X7>, < G1, 9, 2>,51] < stores
v [<X4>, < G2, 1, 1>,81] —
7 redundant
,,,,,,,,,,,,,,,, [<X8>, < G2, 1, 9>,51] < stores
. . (c) regroup according to their
a) redundant store instance b) TWPP+ representation
p

store instances

F1GURE 5.3. Determining all redundant stores from TWPP+.

5.1.4 Experimental results

Redundant load and store instructions for SPECint95 benchmark programs are evalu-
ated using the algorithm described above. Each load and store instruction is uniquely
numbered and individually analyzed.

First we study the distribution of redundant LOAD instances. It is to find for each
given instruction, the percentage of its instances that are redundant. For example,
if 90 out of 100 instances for a load instruction are redundant, it is categorized as a
90% redundant instruction. The first bar in Figure 5.4 shows the distribution of load
instructions for different programs.

Although an instruction has a high percentage of redundancy, it might have only

a small number of instances and thus not be very important. We weighted all instruc-

!To assist analysis, the highest instance number of each store instruction is recorded during
profiling.
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tions by summarizing all instances in each category and the results are shown by the
second bar in Figure 5.4.

From the figure, most load instructions fall in to three categories: “0%”, “90-
100%” or “100%”. If a load belongs to the “0%” category, there is no opportunity
to optimize it; however, it is good to separate them from the rest because we do not
have to invest any compile time on further analyzing them. If a load belongs to the
“90-100%” or “100%” category, it is worthy of further analysis since good benefits
are expected from optimizing it.

The experimental results for STORE redundancy (Figure 5.5) show that most
store instructions are not redundant at all. There are not many opportunities for

optimizing store instructions.

5.2 Frequency of data flow facts

Although TWPP+ reorganizes the complete program trace, it keeps the timestamp
information such that the original execution order could be reconstructed. The exact
execution order is very important in determining if some data flow facts hold and their
frequencies at some points during the execution. During profile guided compile-time
optimization and dynamic optimization of programs, one example could be a query
which looks like: How often does a data flow fact hold at a program point during the
execution captured by the WPP?. 'This query is useful for identifying hot data flow
facts, i.e., data flow facts that hold very often during the execution. Another useful
query is: Does a data flow fact hold at a given program point during the execution
captured by the WPP?. This query is useful during debugging of programs including
during dynamic slice computation which is discussed in the next section.

In this section, a profile-limited data flow analysis approach is introduced to collect
information about data flow facts with respect to a given whole program path (WPP).

The analysis presented in this section can be used to answer the above types of queries.
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For this analysis, there is no need to access the entire TWPP but only a subset
of information corresponding to the function under consideration. In particular, a
timestamp annotated dynamic control flow graph is used for the given path trace

which is described below.

5.2.1 Timestamp annotated dynamic CFG

This representation consists of the dynamic control flow graph in which DBBs are
annotated with timestamp vectors. This representation is quite adequate for data flow
analysis because we can trace the WPP using the timestamp vectors associated with
the dynamic basic blocks and limit the exploration of only those control subpaths that
appear as part of the WPP during data flow analysis. The following characteristics
make this proposed representation particularly attractive for profile-limited data flow
analysis.

First it allows efficient backward and forward traversal of the path trace starting
from any arbitrary point in the path trace. A timestamp and program point pair
(t,n) together specify a particular point in the path trace. The preceding point is
(t — 1,m) where m is the predecessor of n in the dynamic control flow graph labeled
with timestamp ¢— 1. Similarly the succeeding point is (¢+1, s) where s is a successor
of n in the dynamic control flow graph which is labeled with timestamp ¢ + 1.

Second it allows efficient simultaneous traversals of multiple subpaths in the path
trace. A vector of timestamps at a program point (71, n) can be used to represent
multiple traversal points. Each element in the vector can be incremented or decre-
mented and resulting timestamps can be matched with timestamps of predecessors
and successors to continue simultaneous traversal along multiple subpaths. Com-
paction of timestamps directly attributes to the efficiency of traversals. For example
consider a series of timestamps represented by (2:20:2) in our representation. A sim-

ple increment/decrement resulting in (3:21:2)/(1:19:2) corresponds to simultaneous
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forward /backward traversal along 10 subpaths in the path trace.

An indicator of the relative costs of profile-limited analysis and traditional static
analysis are the cumulative sizes of static and dynamic flow graphs (see Table 5.1).
We compared the total number of nodes (N) and edges (E) in the static and dynamic
flow graphs. For a given function multiple dynamic flow graphs can result because of
multiple unique traces associated with it. The nodes and edges in all of these graphs
were counted in computing the cumulative size of the dynamic flow graphs. From the
results in Table 5.1 we can see that the number of nodes and edges in the dynamic
graphs are typically much smaller than those in the static graphs. However, the
cost of profile-limited analysis is also dependent upon the size of timestamp vector
associated with each node. Average size of the timestamp vector is shown in the
last column of Table 5.1 (the value in parenthesis is the size of the vector before
compaction - the results show that timestamp vector is significantly reduced in size
using our compaction technique). In summary, the data in Table 5.1 indicates that
while, as expected, profile-limited analysis is more expensive than static analysis, it

has a reasonable cost.

Program Static FG Dynamic FG
N E |[XN[YE] avg [T] ]
126.gcc 66571 | 104379 | 8838 | 20012 | 14.0 (33.1)
132.1jpeg || 5718 | 8105 | 754 | 1213 | 18.1 (109.7)
099.go 10823 | 16236 | 4739 | 16591 | 11.9 (15.7)
130.11 2701 3536 265 289 | 51.2 (410.3)
134 .perl 13117 | 19539 | 501 674 3.9 (616.8)

TABLE 5.1. Sizes of static and dynamic flow graphs.

5.2.2 Demand-driven analysis

A traditional data flow analysis framework created (GEN) and removed (KILL) data

flow facts at each basic block. The transfer function is used to propagate the data
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flow facts through a basic block and compute the data flow solutions. Generally,
conservative solutions are computed at the meet or split points as well as for loops
whose solutions are computed iteratively. Details about data flow analysis can be
found in [38].

[t is natural to formulate profile-limited analysis in a demand-driven fashion [20,
46]. This is because the applications of profile-limited analysis request information
incrementally. For example, during debugging a user typically makes a request for
the dynamic slice corresponding to only one variable at a fixed program point (i.e., we
only need to compute subset of data flow information for subset of program points).
Similarly during profile-guided or dynamic code optimization, subset of profile-limited
data flow information may be requested by the optimizer for subset of program points

in hot regions of the program [8].

Queries for profile-limited data flow

A profile-limited data flow query is of the form < T ,n >,4, where n is a node, 7T is
a subset of timestamps for n in the path trace, i.e., T C T (n), and d is the data
flow fact of interest. This query represents a request for determining whether or
not d holds true prior to n’s executions corresponding to timestamp values in 7.
Therefore the query < 7T (n),n >, determines the data flow solution corresponding
to all executions of n in a given path trace. The solution to this query allows us to
determine if d always holds true, never holds true, and holds true sometimes for the
given path trace. In fact solving such queries allows us to determine the frequency

with which d holds true with respect to the given path trace [45, 7, 22, 24, 23].

Query propagation

Let us consider profile-limited demand-driven backward propagation of queries for

GEN-KILL problems because they arise both during code optimization and debug-
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ging. For simplicity, the analysis of only intraprocedural paths is considered. How-
ever, in analyzing these paths the effects of any function calls that a path trace may
contain will be taken into account. The technique presented can be easily extended to
handle interprocedural paths by analyzing path traces of multiple functions in concert
and propagating queries along interprocedural paths [20].

The demand-driven propagation begins at a point n when the query < 7,n >, is
raised. For GEN-KILL problems it is appropriate to propagate a timestamp vector, 71,
which contains one slot for every timestamp, or more precisely, for every entry in the
compacted TWPP path trace. The propagation should be viewed as simultaneous
(or parallel) search for data flow solutions corresponding to each timestamp in 7.
Each slot in 7 is initialized to the timestamp value(s) to which it corresponds. The
propagation of this T begins at n.

It must be ensured that query propagation is consistent with the path trace under
consideration. As discussed earlier in this section, this goal is easily accomplished
using the timestamp annotated dynamic control flow graph representation. It is pos-
sible to correctly manipulate the timestamp vector during propagation such that the
timestamps in the vector are propagated only to the appropriate predecessors. When
a node that answers the query (true or false) with respect to a particular times-
tamp is encountered, the propagation on behalf of that timestamp ceases. Otherwise
equivalent queries are generated and propagated along the path trace.

The query < 71,n > represents the search for dynamic GEN-KILL points corre-
sponding to timestamps of n for which slots were created in 7. For carrying out the
propagation first dynamic GEN-KILL sets (i.e, sets w.r.t. to a given TWPP) for a
data flow fact d (which are denoted as DGENZ and DKILL%) must be computed.
Although n is a dynamic basic block, to simplify the presentation it is assumed that
n contains a single statement. If node n contains a call to function f, then the
traces for calls made by the n’s instances corresponding to 7 (n) are examined. The

set GEN{(T (n)) (KILL$(T (n))) contains the subset of timestamps from 7 (n) for
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which call to function f generates (kills) d. If node n simply contains a statement, the
dynamic sets are computed from the static GEN and KILL sets for node n denoted
below as SGEN,, and SKILL,,.

GEN{(T(n)) if ncalls f
DGEN? =< T(n) elseif d € SGEN,
10) otherwise
KILL‘J%(T(n)) if ncalls f
DKILL: =< T(n) elseif d e SKILL,
0] otherwise

Now let us consider query propagation. The timestamp values in T are each
decremented by 1 during every step of backward propagation. Only those result-
ing timestamp values which are present in 7 (m), where m is a predecessor node,
are propagated to m. At m the query for a timestamp may be resolved as true (if
t € DGENY) or as false (if t € DKILL%). 1f it is not resolved, then the above
process is repeated starting with the decrementing of the timestamp and propagation
continues. It should be noted that only a subset of slots may be relevant for a given
predecessor node; thus the other slots will contain a null value denoted by 1. The
above rules are stated precisely below and are further illustrated by example appli-

cations discussed in the subsequent sections.

Propagation of < 71, n >

Notation: 71/7" Is a timestamp vector st
(T/T"); = if (T); € T' then (7); else L.
Slots in 7 resolved as true are slots in vectors
U (T —1)/ DGEN® which do not contain L.

meépred(n)
Slots in 7 resolved as false are slots in vectors
U (T —1)/DKILL? which do not contain L.

meépred(n)
Queries propagated for unresolved slots in T
U < (T-1)/(T(m) - DGENY — DKILLZ). m >

meépred(n)
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5.3 Dynamic program slicing with TWPP

Program slicing is a useful tool in program analysis, understanding and debugging.
Given a program point P of a program S and a variable V, a static slice computes
the set of statements whose execution could possibly affect the value of V in some
executions. Given an execution history, a program point P of a program S and a
variable V, a dynamic slice computes the set of statements whose execution affect the

value of V in this execution history. For example, in Figure 5.6, we have

static slice(Z, (14)) = {1,2,3,4,5,6,7,8,9,10,11,13,14, 15, 16};

dynamic slice(Z, (14),trace) = {2,3,4,6,7,8,9,11,13,14,15,16}.

There are two kinds of dependences: data dependences and control dependences. For
example, in Figure 5.6, variable V is control dependent on statements 6,8 and data
dependent on the rest.

Static backward program slicing was first proposed by Weiser as a debugging
aid [59]. The more precise dynamic slicing was proposed by Korel and Laski [30].
Most recently Agrawal and Horgan [1] developed three dynamic slicing algorithms
which trade-off precision in the computed slice with the time it takes to compute the
slice. Each of these algorithms constructs a different specialized program dependence
graph (PDG) to capture the dependences exercised in a given execution. A backward
traversal over the graph is used to compute the dynamic slice as a transitive closure
over data and control dependences. Each of the above dynamic slicing algorithms can
be implemented using one common representation, the timestamped dynamic control

flow graph, and thus the construction of specialized graphs suggested in [1] is avoided.

5.3.1 Precise dynamic slicing with TWPP+

Three algorithms with different accuracy and costs are presented in [1] to calculate

dynamic slices. The implementation of the precise algorithm with TWPP+ is dis-
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cussed below. The imprecise algorithms 1 and 2, which compromise the accuracy for

speed, will be discussed later.

Sample Program : ! Timestamps :
(1) P[0] =2; 1)~> 1
(2) P[] = 4; 2> 2
1 (3) N = input(); ‘3> 3
L4)1=1; ‘(4)9 4
(5) J=0; (5)~> 5
(6) while (I <=N){ (6)~> 6:30:8
(7) X = input(); 7)~> 7:23:8
L (8) if (X>=0) (8> 8248
9 Y =PIX]; 19> 9,25
else e
(11) Z =13(Y); (N=3, X={0,-1,1}) L(11)> 10:26:8
(12) output(Z); L(12)>  11:27:8
' (13) J=1; ' Trace: ! (13)>  12:28:8
(14) I=1+1; 11.2.3.4.56.7.9.10.11.12.13.14 | | (14> 13:29:8
} 6.8.9.10.11.12.13.14 |
(15)Z2=2+J; 6.7.9.10.11.12.13.14 | | (15)> 31
(16) breakpoint, request slice for Z 6.15.16 ! (16> 32

FIGURE 5.6. Dynamic slicing example.

Precise algorithm: This method duplicates the executed node and its dependence

edges during the execution so that it can distinguish between the instances of a given
statement. The expanded PDG graph is traversed to find the precise dynamic slice.
The backward analysis uses timestamps to find dependences and when a dependence is
found only a single timestamp is added to the newly generated queries. In other words
we identify the precise instance of the assignment (for data dependence) and predicate
(for control dependence) which is the source of the dependence and generate queries
only for the corresponding instances of variables that are read by the assignment or
predicate. In our example, note that although statements 10 and 5 are executed,
they are not included in the slice because the value of Z at 15 depends only upon the
values of Y and J computed by statements 9 and 13.

The implementation of algorithm 3 using TWPP+ is shown in Figure 5.7. It

traverses the TWPP+ representation backwards and includes both control and data
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Dynamic Slicing Algorithm:

) Q={<TSu,S >x};

) WHILE ( Q != NULL)

) item = dequeue (Q);

) IF ( item is “< TS1,S1 >7 )
) IF ( S; is a control statement )
) insert (Sy,7S1) to Dslice;
) FOR each variable Z in Sy
) insert < T'S7,S; > into @;
) ELSE

) FOR each preceding statement S of Sy

) insert <T'S; — 1,55 > into Q;

) IF (item is “<TSy,51 >y” )

) IF ( S is a control statement )

) insert (S1,7'S1) to Dslice;

) FOR each variable Z in S

) insert < T'Sy,S1 >z into Q;

) IF ( Sy writes to V')

) insert (Sy,7'S1) to Dslice;

) FOR each RHS variable Z of S;

) IF ( data dependence edge list contains Z with T'S;)

) edge := (..., < Go, Iy >)

) insert < GG, I, > into Q;

) ELSE

) FOR each preceding statement S of S;

) insert < TSy — 1,59 > into Q;

) IF ( S; writes to some other variable )

) FOR each preceding statement S of Sy

) insert < TS; — 1,55 >y into Q;

) IF ( item is “< Gl,ll >77 )

) find the timestamp T'S; for instance I; at global load point Gy
) find the statement Sy for global load point G

) insert (S2,7'S) to Dslice;

) FOR each RHS variable Z of S,

) insert < T'Sy,S> > into Q;

FIGURE 5.7. Precise dynamic slicing algorithm with TWPP—+.
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dependent statements into the dynamic slice. Control dependent statements are in-
cluded from the backwards traversal of the control flow trace. However, there are two
kinds of data dependent statements. If the load instance has a memory dependence
edge, the algorithm follows this edge directly to its definition point and include the
definition instance into the dynamic slice. Otherwise, it traverses along the control
flow graph with the timestamp until the definition point is found.

The main data structure in this algorithm is a global queue which holds the items
needed to be checked for further dependence. The queue could contain a mixed of

three types of nodes and the algorithm is to handle them accordingly.

e < TS S >x. It means the algorithm needs to find both the data and control
dependent edges for a access point of variable X. If S is a control block, the
statement is found which the access of variable is control dependent on. If S
writes to X, the definition of X is found, the algorithm can then start to resolve
the dependence of its RHS variables. If S writes to a memory location other

than X, the algorithm will skip this statement and go backwards further.

e < TS5, S >. It means the data dependency has been resolved. The algorithm

just need to go backwards and find the control dependency.

e < G, I >. It denotes that a recorded data dependence edge has been found and
< (G, I > is the definition point of this edge. The instruction should be included
into the sliced and data and control dependence should go further from that

point.

The detailed propagation of queries for this algorithms is shown in Figure 5.8.
The queries of the form < 7,n >y where T is the timestamp vector, n is the node
at which the query is to be evaluated, and V' is the variable whose definition is to be
found. Therefore, a request for a slice on Z at line 16 is translated into the query

< [32],16 >z. The updated slice after the processing of a query is given in the
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corresponding entry of the second column and the type of dependence (control or

data) that caused the addition of a statement to the slice is also indicated.

Approach 3: Slicing request: < [32],14 >
Query Slice Dependence
< [32],16 > {16}
< [31],15 >4< [31],15 >, {15,16} data
< [30],6 >z< [30],15 > ;< [30],6 >r< [30],6 >N {6,15,16} control
<[29],14 >,< [29],14 > ;< [29],14 >;< [29],14 > | {6,14,15,16} data
< [28],13 > < [28],13 >;< [28],13 >N {6,13,14,15,16} data
< [27],12 > z< [27],12 >1< [27],12 >N {6,13,14,15,16} data
< [26],11 >y < [26],11 >7< [26],11 >N {6,11,13,14,15,16} data
<[25],9 >x < [25],9 >7< [25],9 >N < [25],9 >pp; {6,9,11,13,14,15,16} data
< [25],9 >x< [25],9 >1< [25],9 >N {2,6,9,11,13,14,15,16} memory
< [24],8 >x< [24],8 >r< [24],8 >n {2,6,8,9,11,13,14,15,16} control
< [5],5 >1< [5],5 >N {2,4,6,7,8,9,11,13,14,15,16} data
< [4],4 >n {2,3,4,6,7,8,9,11,13,14,15,16} | data

FiGURrE 5.8. Implementing A&H’s dynamic slicing algorithm 3.

The worst case time complexity of the implementation using TWPP is the same
as that of Agrawal and Horgan’s algorithm. The primary cost of both algorithms
comes from processing the control flow trace. The new algorithm must examine the
entire trace to compute the TWPP path trace representation while their algorithm
must examine the trace to construct a dynamic dependence graph. The main differ-
ence between the two approaches is as follows. Agrawal et al. compute all dynamic
dependences first and construct a graph using which any dynamic slice request can
be processed using a simple traversal. In contrast TWPP—+ based approach com-
putes relevant dependences for slicing requests upon demand (like Weiser’s algorithm
[59]). Since the same dependences may be relevant to different slicing requests, their
recomputation must be avoided by caching the computed dependences. In other

words TWPP+ based approach builds the dynamic dependence graph incrementally

as slicing requests are processed.
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Approach 1:Slicing request: < %,16 >z

Query Slice Dependence
< %,16 >4 {16}
< #,15 >z< x,15 > {15,16} data
<#,6>7<#,6 >7< %6 >7<%,6 >y {6,15,16} control
<#, D5 >Sz< 5 >I< 5 SN *, 14 >p< k14 > <, 14 >1< #,14 >y {5,6,13,14,16} data
<#,4>7< %, 4 >5y< *, 13 >2< %, 13 >1< %, 13 >y {4,5,6,13,14,15,16} data
<H,3>7< %, 12 >7< 5,12 >7< %,12 >y {3,4.5,6,13,14,15,16} data
<#,2>7< %, 11 >y <+, 11 >7<#, 11 >n {3,4.5,6,11,13,14,15,16} data
<H, 1 >7<#,10 >x <, 10 >7< #,10 >N < %9 S pg < #,9 >x< #,9 >1< %, 9 > {3,4,5,6,9,10,11,13,14,15,16} data
<#,10 >x<#,10 >7< %, 10 >n< #,9 >x< #,9 >7< *,9 >N {1,2.3,4,5,6,9.10,11,13,14,15,16} memory
< #,8>x< #,8 >;< #,8 Sy {1,2,3,4,5,6,8.9,10,11,13,14,15,16} data,control
<%,5>< %5 >y {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16} | data
<#,4>r< x4 >N {1,2,3,4,5,6,7.8,9,10,11,13,14,15,16} | solved queries

Approach 2: Slicing request: < [32],16 >,
Query Slice Dependence
<[32],16 > {16}
< [31].15 >, < [31],15 >, {15,16} data
< [30].6 >2< [30],6 >;< [6:30:8],6 >;<[6:30:8].6 >y {6,15,16} control
< [29].14 >7< [29],14 > ;< [5].5 >;< [13:29:8],14 >;< [5],56 >n< [13:29: 8,14 >n {6,14,15,16} data
< [28],13 >,< [12:28 :8],13 >;< [4],4 >y < [12: 28 : 8], 13 >x {4,6.13,14,15,16} data
< (27,12 > < [11:27:8],12 >;< [11:27: 8], 12 >y {3,4.6,13,14,15,16} data
<[10:26:8],11 >y < [10:26:8],11 >;< [10:26: 8,11 > {3,4,6,11,13,14,15,16} data
<19,25],9 >pio,pp< [9,25,9 >x< [17],10 >x< [9,25],9 >;< [17],10 >7< [9,25],9 >n< [17],10 >n | {3,4,6,9,10,11,13,14,15,16} data
< [9,25],9 >x < [17],10 >x< [9,25],9 >,;< [17],10 >,;< [9,25].9 >y < [17],10 > {1,2,3,4,6,9,10,11,13,14,15,16} memory
<[8:24:8],8>x<[8:24:8],8>;<[8:24:8],8 >y {1,2.3,4,6,8,9.10,11,13,14,15,16} data,control
<[7:23:8],7>;<[7:23:8],7>n {1,2,3,4,6,7,8.9,8,10,13,14,15,16} data
<[6:30:8],6>,<[6:30:8],6 >y {1,2,3,4,6,7,8,9,8,10,13,14,15,16} solved queries

FI1GURE 5.9. Implementing A&H’s imprecise dynamic slicing algorithms.
5.3.2 Approximate dynamic slicing with TWPP+
In this subsection, we use TWPP+ representation to implement the approximate

algorithms proposed in [1], identified as approach 1 and 2.

Imprecise algorithm 1: This method marks all executed nodes in the PDG during

the execution. The backward traversal to identify the statements in the dynamic slice
is allowed to visit only the marked nodes. These marked nodes are essentially the
nodes with non-empty timestamp sets in our TWPP representation. Therefore in our
implementation the backward traversal of a query through the timestamp annotated
CFG is allowed to traverse only nodes that have a non-empty timestamp set. When
a dependence is identified under such a traversal, the statement at which the depen-
dence originates is added to the dynamic slice. In our example, all statements are
executed. Therefore the dynamic slice is the same as a static slice, which contains all
nodes except node 12.

Imprecise algorithm 2: This method marks all executed edges in the PDG during

the execution. The backward traversal to identify the statements in the dynamic slice
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is allowed to only traverse marked edges. The backward analysis uses timestamps to
find dependences can carry out a similar traversal by ensuring that an edge from
node n to node m is traversed only if the query at node m contains timestamp t
and the timestamp ¢ — 1 is associated with node n. To find the memory dependence,
all edges kept at a load instruction point are traversed back to include new nodes
into the slice. Moreover since this algorithm does not distinguish between different
timestamps corresponding to a node, when a dependence is found, and new queries are
generated at a node, all timestamps of that node are included in the newly generated
query for further propagation. In the example, we will be able to get the dynamic

slice which includes all nodes except node 5 and 12.

5.4 Conclusion

As demonstrated by the three applications discussed in this chapter, the timestamped
whole program path representation can be used in a wide range of areas. It is orga-
nized at different level such that different applications can find the required informa-
tion more conveniently.

TWPP+ can be used to study the overall behavior of a program execution. By
regrouping and sorting the memory dependence edges, redundant load and store in-
stances are identified. A significant percentage of load instructions are highly redun-
dant and could be further optimized to improve performance. With the timestamps,
the exact execution order is maintained in the TWPP+ such that it is much faster to
identify the frequency of some data flow facts at some program points with respect
to the given whole program path. The TWPP+ representation can also be used as
debug tool to create dynamic slices at any program execution point. Different slic-
ing algorithms are simulated using this representation with different cost and slice

accuracy tradeoff.



82

CHAPTER 6

PROFILING DYNAMICALLY ALLOCATED DATA
OBJECTS

In the preceding chapters, a new representation was developed to compress both con-
trol flow and memory address profiles. It enables the application of whole program
path in profile guided optimizations by speeding up the information retrieval at the
analysis stage. On the other hand, with the rapid advances in both computer archi-
tecture and programming practice, new types of profiles are needed to explore new
optimization opportunities and develop new types of optimization techniques. In the
following three chapters, a new profiling framework is developed to discover runtime
compression opportunities. Both software and hardware techniques are developed to
exploit these opportunities.

Over the last decade, the memory and CPU performance gap has become a major
performance bottleneck in modern computer architectures. Cache has been proposed
as an effective component to bridge this gap. Since cache is usually much smaller
than the main memory and the user space, it is very important to make good use of
the cache memory in order to achieve good performance. Traditional approaches to
improve cache performance such as doubling the size, increasing the associativity from
hardware, or rearranging data objects or data fields within objects by compilers, do
not change the data density in the cache. However, as we will see, a large percentage
of the bits stored in both the cache and the main memory are redundant. By removing
these redundant bits, more data items can be kept in a cache of given size and alleviate
the memory bottleneck by reducing the number of cache misses.

The user space is divided into three areas: stack, globals and heap. The data

structures allocated in different areas show different cache and memory accessing
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behavior. Those allocated in stack usually have much better performance than the
rest. Data layout optimizations can be used to optimize the behavior of global and
heap data accesses. Those allocated in the global data space, even if they have bad
performance, can be optimized well by existing compilers. However, those allocated in
the heap have bad cache behavior and they are hard to optimize at compile time since
they are allocated dynamically. The focus of this research is mainly on the dynamic
data structures. In particular, new data compression techniques are designed to
compress dynamically allocated data structures.

Before the design of a dynamic and effective data compression technique, we need
to profile programs and collect information that would guide us in the development
of new compression techniques. In this chapter, such a framework is presented for
profiling dynamically allocated data objects. The framework allows us to analyze
the value characteristics and lifetime of the dynamically allocated objects. More

specifically, the framework allows us to carry out and answer the following questions.

e What data structures should be compressed?
e How should they be compressed?

e When should they be compressed?

The subsequent chapters present detailed software and hardware schemes respec-
tively to remove redundancy in dynamically allocated heap data objects. While the
software technique uses data compression transformations for redundancy removal,
the hardware technique removes redundancy through a novel data cache design.

The rest of this chapter is organized as follows. The type based profiling technique
is introduced in section 6.1. The experimental framework is presented in section 6.2.
Results of studies aimed at answering the three questions listed above are presented

in sections 6.3, 6.4 and 6.5 respectively. Section 6.6 concludes the chapter.
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6.1 Type based profiling

Usually, a program contains a large number of objects of a given type and there are a
number of fields within the given type. For example, all the nodes of a linked list are
of the same structure with several fields: a pointer field to link the nodes together and
some other data fields. Often there exists a significant degree of value similarity across
the same fields from different nodes. Space requirements could be reduced by taking
advantage of this similarity. However, a compression strategy that treats uniformly
all fields in a type is too coarse and would miss many opportunities in practice. A new
type-based profiling technique which collects the following information is proposed to

solve this problem.

e The lifetime of each object and the total number of load and store accesses to
this object are found through profiling. This information identifies the overall

behavior of each dynamically allocated object.

e The value characteristics for each field of each type in the program are deter-
mined. This information is organized as the value range summary of all field
instances. Value characteristic information can be collected at different granu-
larity and it is possible to keep an additional list of most frequently use N values

and their access frequencies.

To collect the above information, a straightforward approach is a complete instru-
mentation of all access points including the creation point at malloc(), the deletion
point at free() and all load and store accesses. Although it is easy to trace at the high
level the type information of objects through malloc() and free() function call points,
a high level variable access can be translated to either a register access and a memory
access. Since we are only interested in memory accesses, instrumentation at a high
level is thus insufficient. One possible approach is to trace the load and store accesses

by modifying the code generation part of the compiler but it is too expensive. To
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minimize effort in modifying the compiler, a type-based profiling framework is pro-
posed in this chapter with a combined approach of using high level instrumentation

and lower level simulation.

6.2 Experimental framework

. ) instrumented

instrumented
.c files

y

o | object code Modified =
o g 7| Simplescalar »/  results

" O

\ 4

FIGURE 6.1. Type based profiling framework.

Figure 6.1 shows the framework which combines the use of SUIF 1.0 compiler
[54] and Simplescalar simulator [10]. The original C programs are first converted to
SUIF intermediate representations (IRs) by sce. A new pass is written to instrument
these IRs and high level type of information is inserted into the instrumented code.
The results of the new pass are still IRs and they are converted back to C programs
by s2¢ (a conversion tool in SUIF). Then the instrumented version of C programs
are compiled by gee provided in Simplescalar and the MIPS-like executable code is
generated. The Simplescalar simulator, which has been modified to process high level
type information, is used to simulate the execution and collect profiles.

At the high level, the new SUIF pass instruments two kinds of program points

and generates a type list for later reference.

e At each memory allocation point, a dummy instruction “asm(“lw $0, T($26)”)”
is inserted before the function call malloc. Here the parameter “T” indicates

the type index of the return memory address and two registers $0 and $26 are
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explicitly used. $0 is a constant zero register and $26 is an operating system

reserved register.

e At each type casting point, two dummy instructions “asm(“lw $0, T1($26)”)”
and “asm(“lw $0, T2($26)”)” are inserted to indicate the types before and after

casting.

e A type list records all types declared in the program. The mapping from each
offset to its corresponding field is kept for each type. Given an offset for a type,
it is possible to find its corresponding field and the type of the field.

The register “$26” is safe to use because as an operating system reserved register,
the object code generated from a compiler such as geec does not use this register.
Since the object code is to be simulated rather than executed on a real machine,
the simulator can catch these dummy instructions, nullify their effects except for
extracting the type information they carry from the high level instrumentation. As a
result, these dummy instructions have no effect on the program execution except the
slots they take from the instruction cache. Because it is the lower level simulator that
traces memory accesses, the high level code is inserted only at the malloc and type
casting points. The number of these points is significantly smaller than the number
of memory accesses. In this way the program’s behavior is minimally affected by the
instrumentation.

At the lower level, the simulator is modified to instrument one kind of program

point and maintain two profiling data structures.

e Memory access point. Each memory access point, either a load or a store
instruction, is traced but only the accesses to the interesting heap objects are

further processed.

e A B+ tree. The simulator maintains a B+ tree to keep all nodes dynamically

allocated from system malloc. When a new memory chunk is allocated, a new
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record that contains the starting address, the size, and the result type of the
memory chunk is inserted into this B+ tree. The starting address is gotten from
the result of the call to malloc. The size and type information is obtained from

the high level dummy instructions.

e Field level compressibility list for each type. The simulator maintains a
list for each type. The field level compressibility information is maintained in

this list to summarize the value properties for all instances.

Since nearly all data items are accessed at word level, an assumption is made to
consider only the accesses at word size level from now on. Although there are accesses
to fetch double precision floating point values, double word-sized values, or subword
level values, the overall percentage of such accesses is usually very small. It is also
possible to approximate each double-word access by two consecutive word accesses
and each subword access by one word-sized access plus a subsequent bit extraction.

Once a memory access is traced by the simulator at runtime, a series of checks are
performed as follows. First, the simulator searches the B+ tree and finds the record
containing the address. Second, the offset is computed from the node’s starting ad-
dress. With simple calculation from the information in the type list, this memory
address is mapped to a field and the corresponding field type information is deter-
mined. For example, suppose we are checking a memory address “0x10000108” and
there is a node which indicates an array type with starting address “0x10000000”.

Furthermore, each item is 0x100 bytes long and is of the following type.

struct list_node {
int value;
struct list_node *prev,

struct list_node *next;

bt
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The field being accessed is then mapped to the third field of the second item in
the array. Finally, the value itself is checked to evaluate its compressibility and the
field compressibility list is updated accordingly.

Next, let us discuss the experiments and their results in answering the what, when

and how questions of data compression using this framework.

6.3 Selecting object types to compress

A program may contain multiple data types, each exhibiting different access patterns
and different compressibility. The data types that an optimizing compiler should
compress are those, by transforming which, positive impact on performance is ex-
pected. The fields in a data type should also be considered separately with the aim
of maximizing benefit. Since different compression schemes might group fields dif-
ferently, and thus affect the overall compressibility, this section will discuss how to
separate and pick out different data structures for compression. The compression of
different fields is left to subsequent sections.

As described, the collected profiles provide the information about the number of
objects for each type and the information about the value ranges for all fields of a
given type. Potential space savings can thus be calculated from this information.
Experiments have been done to identify the appropriate data types to compress in
SPEC95int benchmark suite. Most programs from this benchmark suite have at least

one of the following properties.

e There are a set of similar types and a generic type. The generic type is used to
build up the data structure but each node is of a specific type. Object instances
are accessed by type casting to a specific type. Programs 130.li and 126.gcc,
which themselves are compilers, exhibit this property. These programs build
up a syntax tree for each function and each node in the tree could be of a specific

type (e.g., for an expression, a FOR statement, or an IF statement, etc).
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e The program first allocates a large chunk and starting address of the node is re-

calculated (aligned) to a special address. Because of implicit address arithmetic,

the compiler has difficulty in remapping the fields and their offsets. Program

124.m88ksim exhibits this property.

The above identified properties block further processing of SPEC95int benchmarks

and we conclude that they are not good for automatic compression transformations.

The programs from Olden benchmark suites were further studied. Olden is a

pointer intensive benchmark suite (Table 6.1). Although the types of a program

are divided into several groups, each group has only one type. The clear type iso-

lation provides good opportunities for compiler-based compression. The main data

structures that were considered for compression are given in Table 6.1.

H Program H Application

Main data structure H

bh Barnes & Hut N-body force computation al- | Heterogeneous tree
gorithm

bisort Bitonic Sorting Binary Tree

health Columbian health care simulation Doubly- linked lists

mst Minimum spanning tree of a graph Heterogeneous tree

perimeter || Perimeter of regions in images

Quad-tree

treeadd Recursive sum of values in a balanced B-tree | Binary tree

tsp Traveling salesman problem Balanced binary tree

voronoi Computes the voronoi diagram of a set of | Balanced binary tree
points

TABLE 6.1. Olden Benchmark Summary.

6.4 Choosing the compression scheme

A major challenge in the design of a compression scheme is to balance the dynamic

compression costs and the benefits of compression. A dynamic compression scheme

should be simple and fast for most if not all of the accesses. If applying traditional

compression techniques (e.g., a dictionary based approach or Huffman coding), there
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are at least two memory accesses: one to fetch the encoded data and the other to fetch
the decoded data. As the cache and memory accesses are already the bottleneck and
the major focus of applying compression dynamically is to reduce the total number
of these accesses, these techniques are not appealing for dynamic compression. The
new compression scheme that would be suitable to have in a dynamic environment
should get all information about a value in one access for most if not all of the data
accesses. Of course, subsequent computation to extract the decoded value might be
inevitable. A logical comparison of the traditional and new compression schemes is
shown in Figure 6.2.

(a) using a traditional compression scheme

access access
» encoded > decode >
value table

(b) using a desired new compression scheme

access compute
» encoded » decoded >
value value

FIGURE 6.2. Access sequences with different compression schemes.

To design a compression scheme that can get all information from one memory
access, no complicated encoding scheme should be used but rather we should discard
directly the redundant bits from original word representation. The following two types

of redundancy are identified (also see Figure 6.3).

e If a pointer is saved in a place that is close to the place it points to, the value of
the pointer and the address of the pointer share the same prefix. Since the value
is accessed always from its address, the prefix of the value can be considered

as redundant as it can be constructed from its address easily. In this case, the



91

P same chunk
L ——— 1 ——— ]
a > _ 23141 ‘," 0 A 231_1
[11... 1] xxx | [00...0 | xxx |
prefix(P) = prefix(Q) ¥ )
(a) pointer addresses share the same prefix (b) small positive or negative values

FIGURE 6.3. Representing a 32-bit value with fewer than 32 bits.

prefix bits of the pointer can be safely discarded.

e If a value is close to zero, the higher order bits are sign extensions and they
are either all Os or all 1s. In either case, there is no need to remember all these
identical bits and thus the prefix bits are considered as redundant. Only the

sign bit should be remembered and the rest can be safely discarded.

With the compression opportunities identified, one could dynamically discard all
redundant bits and use the least possible bits to represent a value, or discard some
redundant bits but use fixed number of bits to represent a value. Since data values
change dynamically, the former strategy would bring too much complexity to dynamic
memory management and thus is not used. For the latter, we need to choose the fixed
number of bits based upon the cost-benefit analysis of using this fixed number of bits

to carry out compression.

6.4.1 Potential savings in space due to redundancy removal

The benefits of a dynamic compression scheme come from the space savings and the
corresponding cache miss reduction due to the space savings. As a result, the benefits
estimation is based upon space savings and the experiment is designed as follows. The

original scheme always represents a word-sized value with 32 bits. The new scheme
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uses a fixed bit width L and if after removing the redundant prefix bits from a value’s
representation, the required number of bits is less that L, L bits are used to represent
this value; otherwise, 32 bits are used to represent the value. The total number of
bits required for representing values involved in all accesses for different values of L

were collected.

100

ffffff bisort
———- health
—-—-— mst
—— perimeter
------ treeadd
——=-=tsp
=-=== VOronoi

Normalized Required Bits

2 L L L L L L
ql bits 8 bits 12 bits 16 bits 20 bits 24 bits 28 bits 32 bits

FIGURE 6.4. Required bits with fixed length.

The programs from the Olden suite with small inputs were executed to collect the
profiling information. The results are shown in Figure 6.4 with the original required
bits normalized as 100%. A smaller fixed length saves greater number of bits for each
compressible value. However, if L is too small, the probability that a value will be
represented using 32 bits is high. From the results in Figure 6.4, it can be seen that
find some benchmarks achieve the best profiling results at the point with fixed 4 bits
while some achieve the best results with 8 or 16 bits. However, if the fixed length is

bigger than 16 bits, the required bits increase almost linearly for all benchmarks.

6.4.2 Potential costs of redundancy removal

Let us now study the cost of dynamic compression. The real cost is implementation
dependent and a precise estimation can only be done when both the compression

scheme and the lower level architecture are all well defined. A coarse estimation is
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presented instead and it is sufficient to guide the design of the compression scheme.
Since the benefits come from the compression of fields whose majority instances are
compressible values, a successful compression scheme should speedup the accesses of
compressible values; otherwise, the slowdown of majority accesses will downgrade sig-
nificantly the overall performance. On the other hand, the accesses of incompressible
values could be slower than those of compressible ones. Thus, the cost estimation
is performed by answering the following question. If only accesses of incompressible
values are slowed down, would the cost from accessing incompressible values be offset
by the benefit obtained from accesses of compressible values? This in turn depends
on the distribution of compressible and incompressible values. The results for Olden
benchmark programs are shown in Figure 6.5. A memory access is considered to be
a fitting access if its value can be represented by fixed 4, 8, 16 bits respectively. The
results in Figure 6.5 show that more than half of the accesses could be expensive non-
fitting accesses if using 4 bits. While with 16 bits, the percentages of fitting accesses
are between 69% and 99%. As a result, 16-bit is a cost-effective point and a good
candidate to use.

Dynamic values change frequently and it is usually more expensive to convert a
compressible value to an incompressible one, or vice versa. With dynamic expansion
of values considered, a study of the benchmarks has been done from the storage point
of view and the results are shown in Figure 6.6. All values are initially allocated
with fixed lengths, 4 bits, 8 bits and 16 bits respectively. If a value changes from
compressible to incompressible, it gets expanded and stays as an incompressible value
from then onwards. Therefore later accesses will be fitting-accesses even if they
are accessing the incompressible value. The results show that with a fixed 16-bit
representation, the majority memory accesses fit this length and dynamic conversion
is very infrequent.

From the above analysis and the results in estimated costs and benefits, we con-

clude that a well-balanced compression scheme should represent a 32 bits value with
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fixed 16 bits, allow dynamic expansion, but not allow dynamic shrinking.

6.5 Choosing the time for compression

The next problem to be considered is that of determining when these types should be

compressed. The following three possible schemes are studied.

e Complete compression at the beginning. The simplest scheme is to compress all

fields of a type at the beginning. If implementing in a compiler, it means that
the memory layout of the type is reduced to half of its original size at compile
time. It has the simplicity that the offset of each fields is known at compile

time and code generation is therefore simplified.

e Selective compression at the beginning. Since different fields exhibit different

compression opportunities and some fields such as floating point value fields
are general hard to compress. Consider the cost the program has to pay at
runtime to access incompressible fields, it is more preferable to compress only
those highly compressible fields and leave the rest as they are. This scheme still

has the property that the offsets of the fields are known at compile time.

e Compression after last write. Since the compressibility of a value can only be

changed by a write operation, after the last write of a field, its representation is
fixed and more aggressive compression scheme can be used and we do not have
to worry that the values might change later. This completely eliminates the cost
that a compression scheme has to pay to handle conversions from compressible

values to incompressible ones.

Figure 6.7 shows the experimental results in studying the Olden benchmark pro-
grams under different compression time. For the selective compression scheme at the

beginning, a field is chosen if 80% of its instances are compressible. The x axis of
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the figure shows the execution time which has been normalized to 5000 units. The y
axis shows the required heap space during the execution. “free()” is not considered
during program execution and thus the memory requirements increase continuously
and decrease to zero at the end of the execution.

The scheme that compresses an object after its last write can remove the dynamic
conversion cost from compressible values to incompressible ones. It can also achieve
best space savings for 4 out of 8 programs. Although it looks like an appealing
approach, it is difficult to apply in practice. Usually at some program point, only a
small number of nodes in a data structure are modified. However, the whole data
structure might be traversed and nodes are dynamically selected for modification. It
would be very expensive, and sometimes impossible, to predict the last write to a
particular node.

Comparing the two schemes that compress data items at the beginning, the re-
sults show that although compressing all the fields achieves more space reduction
at the beginning, it requires more data expansion during program execution. Thus
eventually, it requires more space than the selective compression scheme. Moreover,
the results show that selecing only highly compressible data fields for compression
reduces both the space requirements and dynamic costs of accessing incompressible
values. Overall, the scheme that compresses selected fields at the beginning achieves

the best result for 5 out of 8 programs and almost the best for another 2 programs.

6.6 Conclusion

A type-based profiling framework is introduced in this chapter to explore the runtime
value representation redundancy for Olden benchmark suites. It profiles each type in
the program at field level and all object instances are checked to set up a cost-benefit
model. The model is used in the design of new compression schemes. In particular,

three important questions were answered. We decided to compress all objects of a
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given type if there was no address arithmetic and no type casting. Promising fields
were selected for compression at the beginning of the execution. A 32-bit value
is represented using fixed 16 bits and while dynamic expansion is allowed, dynamic
shrinking is not allowed. This chapter also identified two types of value representation
redundancy from common prefix of pointer addresses and sign extensions of small

values.
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CHAPTER 7

PROFILE-GUIDED DATA COMPRESSION
TRANSFORMATIONS

In the preceding chapter, a type based profiling framework was introduced to iden-
tify opportunities for reducing redundancy in the dynamic representation of values.
Results of studies conducted using the profiling framework have identified the most
important characteristics of a suitable compression scheme by answering the what,
how and when questions. In this chapter, a concrete compiler based compression
scheme will be introduced. The design details are consistent with the characteristics
discussed in the preceding chapter.

A compiler based approach exploits the compression optimization opportunities
through transformation. First, the data structures and types with compression oppor-
tunities are identified. Fields are packed in a way to achieve better cost-benefit ratio.
Before code generation, the original memory layouts of these types are changed to
compressed forms such that each node takes less space than before. Second, the orig-
inal code sequence that accesses the compressed fields is converted to a new sequence
to access the modified type with compression and decompression done dynamically.
By reducing the value representation redundancy, dynamic resources such as cache
and main memory space, memory bandwidth are utilized more effectively.

The rest of this chapter is organized as follows. The data compression transfor-
mations are introduced in section 7.1. The instruction and compiler support needed
to perform these transformations are discussed in sections 7.2 and 7.3 respectively.
Experimental results are shown in section 7.4. Finally, section 7.5 concludes the

chapter.
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7.1 Data compression transformations

From the discussion in the preceding chapter, it is known that many dynamic values
exhibit value representation redundancy and the maximal cost-benefit ratio appears
at about the point to represent values with fixed 16 bits. Therefore, employing a
compiler transformation that replaces a 32-bit variable by a 16-bit variable and packs
two variables into a single word is the logical choice. In the example below, a pointer

field and a small value field are packed into a single 32-bit field value_next.

Original Structure: Transformed Structure:
struct list_node { struct list_node {
int value; int value_next;
struct list_node *next; +*;
P

In this way, 4 bytes are saved from each node in the linked list. Although indicated
by a type redeclaration, this transformation is not done at the source level and there is
no need to generate the new declaration at source code level. Instead the optimizing
compiler will change the memory layout before code generation and then generate
new code sequences accordingly. As we see, there are two types of fields: pointer
addresses and small value fields. They are handled differently through two types of

data compression transformations.

Common-prefix transformation for pointer data. The pointer contained in the

next field of the link list can be compressed under certain conditions. In particular,
consider the addresses corresponding to an instance of list_node (addr1) and the next
field in that node (addr2). If the two addresses share a common 17 bit prefix because
they are located fairly close in memory, the next pointer is classified as compressible.
In this case the common prefix from address addr2 which is stored in the next pointer
field is eliminated. The lower order 15 bits from addr2 represent the representation

of the pointer in compressed form. The 32 bit representation of a next field can be



102

reconstructed when required by obtaining the prefix from the pointer to the list_node

instance to which the next field belongs.

Narrow data transformation for non-pointer data. Now let us consider the

compression of the narrow width integer value in the value field. If the 18 higher
order bits of this value are identical, that is, they are either all 0’s or all 1’s, it is
classified as compressible. The 17 higher order bits are discarded and leaving a 15
bit entity. Since the 17 bits discarded are identical to the most significant order bit
of the 15 bit entity, the 32 bit representation can be easily derived when needed by

replicating the most significant bit.

Packing together compressed fields. The value and next fields of a node be-

longing to an instance of list_node can be packed together into a single 32 bit word as
they are simply 15 bit entities in their compressed form. Together they are stored in
value_next field of the transformed structure. The 32 bits of value_next are divided
into two half words. Each compressed field is stored in the lower order 15 bits of the
corresponding half word. According to the above strategy, bits 15 and 31 are not
used by the compressed fields. Next the handling of incompressible data in partially
compressible data structures is described. The implementation of partially compress-
ible data structures requires an additional bit for encoding information. This is why

fields are compressed down to 15 bit entities and not into 16 bit entities.

Partial compressibility. The basic approach is to allocate only enough storage to

accommodate a compressed node when a new node in the data structure is created.
Later, as the pointer fields are assigned values, it is checked to see if the fields are
compressible. If they are, they can be accommodated in the allocated space; otherwise
additional storage is allocated to hold the fields in uncompressed form. The previously

allocated location is now used to hold a pointer to this additional storage. Therefore
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for accessing incompressible fields the approach has to go through an extra step of
indirection.

If the incompressible data stored in the fields is modified, it is possible that the
fields may now become compressible. However, such checks are not carried out and
instead the fields in such cases are left in uncompressed form. This is because ex-
ploitation of such compression opportunities can lead to repeated allocation and deal-
location of extra locations if data values repeatedly keep oscillating between the com-
pressible and incompressible kind. To avoid repeated allocation and deallocation of
extra locations the approach is simplified so that once a field is assigned an incom-
pressible value, from then on wards, the data in the field is always maintained in
uncompressed form.

The most significant bit (bit 31) in the word is used to indicate whether or not
the data stored in the word is compressed or not. It contains a 0 to indicate that
the word contains compressed values. If it contains a 1, it means that one or both
of values were not compressible and instead the word contains a pointer to an extra
pair of dynamically allocated locations which contain the values of the two fields in
uncompressed form. While bit 31 is used to encode extra information, bit 15 is never
used for any purpose.

The example in Figure 7.1 illustrates the above method using an example in which
an instance of list_node is allocated and then the value and next fields are set up one
at a time. As we can see first storage is allocated to accommodate the two fields in
compressed form. As soon as the first incompressible field is encountered additional
storage is allocated to hold the two fields in uncompressed form. Under this scheme
there are three possibilities which are illustrated in Figure 7.3. In the first case both
fields are found to be compressible and therefore no extra locations are allocated. In
the second case the value field, which is accessed first, is compressible but the next
field is not. Thus, initially value field is stored in compressed form but later when

the next field is found to be compressible, extra locations are allocated and both
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fields are store in uncompressed form. Finally in the third case the value field is not
compressible and therefore extra locations are allocated right away and none of the

two fields are ever stored in compressed form.

Original : Create left link and then right.

addrl addrl
t —> addr2 t — addr2
left — = left —> _add3
right —> nil right ——>|
Transformed: Both left and right links are compressible.
addrl addrl
t —> t —>
d gl = d g |
v v v v
nil addr21 addr31 addr21
Transformed: left link is compressible and right is not.
addrl addrl
t —> t —>
d |'r '| | = ]_I Ir |
v v v addr21
nil addr21 __,| addr3l
Transformed: left link is uncompressible.
addrl addrl
t—> t —>
]J Ir | = ]_I Ir |
v addr21 L Z addr21
_"| —-)I addr31

— B nil

——

FIGURE 7.1. Dealing with incompressible data.

7.2 Instruction set support

Compression reduces the amount of heap allocated storage used by the program which
typically improves the data cache behavior. Also if both the fields need to be read in
tandem, a single load is enough to read both the fields. However, the manipulation

of the fields also creates additional overhead. To minimize this overhead new RISC-
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style instructions are designed. Six simple instructions have been designed of which
three each are for pointer and non-pointer data respectively that efficiently implement
common-prefix and narrow-data transformations. The semantics of the these instruc-
tions are summarized in Figure 7.2. These instructions are RISC-style instructions
with complexity comparable to existing branch and integer ALU instructions. Let us

discuss these instructions in greater detail.

Checking compressibility. Since we would like to handle partially compressible

data, before actually compressing a data item at runtime, first a check is made to
determine whether the data item is compressible. Therefore the first instruction
type that is introduced allows efficient checking of data compressibility. Two new
instructions have been designed and they are described below. The first checks the

compressibility of pointer data and the second does the same for non-pointer data.

bneh17 R1, R2, L1 — is used to check if the higher order 17 bits of R1 and R2
are the same. If they are the same, the execution continues and the field held
in R2 can be compressed; otherwise the branch is taken to a point where we
handle the situation, by allocating additional storage, in which the address
in R2 is not compressible. The instruction also handles the case where R2
contains a nil pointer which is represented by the value 0 both in compressed
and uncompressed forms. Since 0 represents a nil pointer, the lower order 17
bits of an allocated address should never be all zeroes - to correctly handle this
situation we have modified our malloc routine so that it never allocates storage

locations with such addresses.

bneh18 R1, L1 is used to check if the higher order 18 bits of R1 are identical (i.e.,
all 0’s or all 1’s). If they are the same, the execution continues and the value
held in R1 is compressed; otherwise the value in R1 is not compressible and

the branch is taken to a point where we place code to handle this situation by
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BNEH17 R1,R2,L1
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BNEH18 R1,L1

if (R21=0) && (Rl 14 '=R2 1) if(Rly 4, =0) && (Rly 4, 1= 0x3ff)
goto L1 - - goto L1
31 15 14 . 0
r
o
XTRHL R1,R2,R3 XTRL R1,R2
if(R3,,!= 0 ) /* Non-NULL case */ if,f R=21)

R 1 = 0x1ffff R 2
else

R1 =,
31 30..16 1514 13..0

R 1L x000000000000000¢

XTRHH R1,R2,R3 XTRH Rl,RZ
if( 30 ) /* Non-NULL case */ if(=R=21 )
R1 = RRB3 15 R 1 = 0xLffffcR 2
else N else
R1 =0 R1 =R %

3130 29..16 15 14..0

R L x00000000(XXXXXX

FIGURE 7.2. DCX instructions.

Extract-and-expand. If a pointer is stored in compressed form, before it can

be dereferenced, its 32-bit representation must be reconstructed. Compressed non-

pointer data should be handled similarly before its use. Therefore the second instruc-

tion type that is introduced carries out extract-and-expand operations. There are

four new instructions that we describe below. The first two instructions are used to

extract-and-expand compressed pointer fields from lower and upper halves of a 32-bit

word respectively. The next two instructions do the same for non-pointer data.

xtrhl R1, R2, R3 extracts the compressed pointer field stored in lower order bits

(0 through 14) of register R3 and appends it to the common-prefix contained in
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higher order bits (15 through 31) of R2 to construct the uncompressed pointer
which is then made available in R1. The case when R3 contains a nil pointer is

also handled. If the compressed field is a nil pointer, R1 is set to nil.

xtrhh R1, R2, R3 — extracts the compressed pointer field stored in the higher or-
der bits (16 through 30) of register R3 and appends it to the common-prefix
contained in higher order bits (15 through 31) of R2 to construct the uncom-
pressed pointer which is then made available in R1. If the compressed field is a
nil pointer, R1 is set to nil.
The instructions xtrhl and xtrhh can also be used to compress two fields to-
gether. However, they are not essential for this purpose because typically there
are existing instructions which can perform this operation. In the MIPS like

instruction set that was used in this work this was indeed the case.

xtrl R1, R2 extracts the field stored in lower half of the R2, expands it, and then

stores the resulting 32 bit value in R1.

xtrh R1, R2 extracts the field stored in the higher order bits of R2, expands it,

and then stores the resulting 32 bit value in R1.

Next a simple example is given to illustrate the use of the above instructions. Let
us assume that an integer field ¢ — value and a pointer field ¢ — next are compressed
together into a single field t — value_next. In Figure 7.3(a) it is shown how compress-
ibility checks are used prior to appropriately storing newvalue and newnext values
in to the compressed fields. In Figure 7.3(b) we illustrate the extract and expand

instructions by extracting the compressed values stored in t — value_next.
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; $16 @ &t— > wvalue_next
; $18 : newvalue
; $19 : newnext

; branch if newvalue is not compressible
bneh18 $18, $L1

; branch if newnext is not compressible
bneh17 $16, $19, $L1

; store compressed data in t— > value_next

ori $19, $19, Ox7fff

SWT $18, 0($16)

SWT $19, 2($16)

J $L2
$L1:

; allocate extra locations and store pointer

; to extra locations in ¢t— > walue_next

; store uncompressed data in extra locations
$L2:

(a) Illustration of compressibility checks.

; $16: & (t— > value_next)
; $17: uncompressed integer {— > value
; $18: uncompressed pointer t— > mext

; load contents of t— > wvalue_next

lw  $3,0($16)

; branch if $3 is a pointer to extra locations
bltz $3, $L1

; extract and expand t— > value

xtrl $17, $3

; extract and expand t— > next

xtrhh$18, $16, $3

J $L2

; load values from extra locations

(b) Illustration of extract and expand instructions.

FIGURE 7.3. An example.
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7.3 Compiler support

Similar to object layout optimization techniques, data compression transformations
need to rearrange the fields in an object. A basic assumption of object layout trans-
formations states that it is ensured by the programmer that application of layout
transformations are safe (program correctness is ensured). Generally, if there is no
address arithmetic and fields are accessed from their names, the assumption can be
satisfied. Starting from this assumption, the optimizing compiler automatically trans-
form the data types and generate corresponding code. The key aspects of the compiler

transformation are discussed as follows.

Identifying fields for compression and packing. The candidate fields are clas-

sified from the type-based profiling described in the previous chapter. A field is iden-
tified to be highly compressible if 90% of the fields instances are compressible. A
pointer value is considered as compressible if it shares the 17 bits prefix with its ad-
dress and a small value is considered as compressible if the higher order 18 bits are
the same.

The most critical issue is that of pairing compressed fields for packing into a single
word. Based on the profiling information, fields are further categorized into hot fields
and cold fields. With all categorized fields, there are two choices in packing. It is
possible to pack two hot fields together if they are typically accessed in tandem. This
is because in this situation a single load can be shared while reading the two values. It
is also useful to compress any two cold fields even if they are not accessed in tandem.
This is because even though they cannot share the same load, they are not accessed
frequently. In all other situations it is not as useful to pack data together because

even though space savings will be obtained, execution time will be adversely affected.

Ccmalloc vs malloc. Ccmalloc [17], a modified version of malloc, is used to carry

out storage allocation. This form of storage allocation was developed by Chilimbi et
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al. [17] and as described earlier it improves the locality of dynamic data structures
by allocating the linked nodes of the data structure as close to each other as possible
in the heap. Compared to system malloc, it has one more pointer parameter which
indicates the parent node of the new node. The new node is allocated in the same
cache line chunk as it parent node if there are still enough space to hold the new one.
Otherwise, a new chunk is allocated. As a consequence, this technique increases the
likelihood that the pointer fields in a given node will be compressible. Therefore it
makes sense to use ccmalloc in order to exploit the synergy between ccmalloc and

data compression.

Register pressure. Another issue that we consider in our implementation is that

of potential increase in register pressure. The code executed when the pointer fields
are found to be incompressible is substantial and therefore it can increase register
pressure significantly causing a loss in performance. However, we know that this code
is executed very infrequently since very few fields are incompressible. Therefore, in
this piece of code we first free registers by saving values and then after executing
the code the values are restored in registers. In other words, the increase in register

pressure does not have an adverse effect on frequently executed code.

Instruction cache behavior and code size. The additional instructions gener-

ated for implementing compression can lead to an increase in code size which can
further impact the instruction cache behavior. It is important to note however that
a large part of the code size increase is due to the handling of the infrequent case in
which the data is found not to be compressible. In order to minimize the impact on
the code size we can share the code for handling the above infrequent case across all
the updates corresponding to a given data field. To minimize the impact of the per-
formance on the instruction cache, we can employ a code layout strategy which places

the above infrequently executed code elsewhere and create branches to it and back so
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that the instruction cache behavior for more frequently executed code is minimally
affected. Our implementation currently does not support the above techniques and
therefore we observed code size increase and degraded instruction cache behavior in

our experiments.

Code generation. The remainder of the code generation details for implementing

data compression are in most part quite straightforward. Once the fields have been
selected for compression and packing together, whenever a use of a value of any of
the fields is encountered, the load is followed by an extract-and expand instruction.
If the value of any of compressed fields is to be updated, the compressibility check is
performed before storing the value. When two hot fields that are packed together are
to be read/updated, initially we generate separate loads/stores for them. Later in a

separate pass, the later of the two loads/stores is eliminated whenever possible.

7.4 Implementation and experiments
7.4.1 Experimental setup

Techniques described have been implemented to evaluate their performance. The
transformations have been implemented as part of the gcc compiler and the DCX in-
structions have been incorporated in the MIPS like instruction set of the superscalar
processor simulated by simplescalar [10]. The evaluation is based upon six bench-
marks taken from the Olden test suite which contains pointer intensive programs that
make extensive use of dynamically allocated data structures.

In order to study the impact of memory performance we varied the input sizes
of the programs and also varied the L2 cache latency. The programs were run for
three input sizes — small (this is the standard input that is typically used to run
the benchmark), medium and large (see Figure 8.10(a)). The cache organization of

simplescalar is shown in Figure 8.10(b). There are first level separate instruction
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and data caches (I-cache and D- cache). The lower level cache is a unified-cache for
instructions and data. The L1 cache used was a 16K direct mapped cache with 9
cycle miss latency while the unified L2 cache is 256K with 100/200/400 cycle miss
latencies. Our experiments are for an out-of-order issue superscalar with issue width

of 4 instructions and the Bimod branch predictor.

|| Program | Application ‘ small input | medium input | large input H
treeadd Recursive sum of values in a B-tree | 20 1 211 22 1
bisort Bitonic Sorting 32768 1 128000 1 312000 1
tsp Traveling salesman problem 65536 1 131072 1 262144 1
perimeter | Perimeters of regions in images 121 131 141
health Columbian health care simulation 32000 1 3 3000 1 34000 1
mst Minimum Spanning tree of a graph | 512 1 1024 1 2048 1

(a) Benchmarks and inputs used.

H Parameter ‘ Value H
Issue Width 4 issue, out of order
Instruction cache 16K direct map
Icache miss latency 9 cycles
Level 1 data cache 16K direct map
Level 1 data cache miss latency | 9 cycles
Level 2 unified cache 256K 2-way asso.
Memory latency Configuration 1/2/3 =
(level 2 cache miss latency) 100/200/400 cycles

(b) Cache configurations used.

FIGURE 7.4. Experimental setup.

7.4.2 Impact on storage needs

The transformations applied for each program and their impacts on node sizes are
shown in Figure 7.5. In the first four benchmarks (treeadd, bisort, tsp, and
perimeter), node sizes are reduced by storing pairs of compressed pointers in a
single word. In the health benchmark a pair of small values are compressed together

and stored in a single word. Finally, in the mst benchmark a compressed pointer and
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H Program ‘ Transformation Applied ‘ Node Size Change (bytes) H
treeadd CommonPrefix/CommonPrefix | from 28 to 20
bisort CommonPrefix/CommonPrefix | from 12 to 8
tsp CommonPrefix/CommonPrefix | from 36 to 32
perimeter | CommonPrefix/CommonPrefix | from 12 to 8
health NarrowData/NarrowData from 16 to 12
mst CommonPrefix/NarrowData from 16 to 12

FIGURE 7.5. Applied transformations.

a compressed small value are stored together in a single word. The changes in node
sizes range from 25% to 33% for five of the benchmarks. Only in case of tsp is the
reduction smaller — just over 10%.

The runtime savings in heap allocated storage are measured for each of the three
program inputs. The results are given in Figures 7.6(a-c). The average savings are
nearly 25% while they range from 10% to 33% across different benchmarks. Even
more importantly these savings represent significant levels of heap storage — typically
in megabytes. For example, the 33% storage savings for treeadd represents 4.2
Mbytes, 8.3 Mbytes, and 17 Mbytes of heap storage savings for small, medium and
large program inputs respectively. It should also be noted that such savings cannot be
obtained by other locality improving techniques described earlier [56, 35, 13, 17, 16].

From the results in Figure 7.6(a-c) another very important observation is made.
The extra locations allocated when non-compressible data is encountered is non-zero
for all of the benchmarks. In other words we observe that for none of the data struc-
tures to which our compression transformations were applied, were all of the instances
of the data encountered at runtime actually compressible. A small amount of addi-
tional locations were allocated to hold a small number of incompressible pointers and
small values in each case. Therefore the generality of our transformation which al-
lows handling of partially compressible data structures is extremely important. If the

application of compression was restricted to data fields that are always guaranteed



Storage (bytes)
Program Original | Compressed nodes + Space
Extra locations = Total savings
treeadd 12582900 | 8388600 + 13440 = 8402040 | 33.2 %
bisort 786420 524280 + 25600 = 549880 30.1 %
tsp 5242840 | 4194272 4+ 6080 = 4200352 | 19.9 %
perimeter | 4564364 | 3260260 + 5120 = 3265380 | 28.5 %
health 566872 509952 + 320 = 510272 10.0 %
mst 3414020 | 2367492 + 320 = 2367812 30.6 %
average 25.4 %
(a) Reduction in heap storage for small input.
Storage (bytes)
Program Original | Compressed nodes + Space
Extra locations = Total savings
treeadd 25165812 | 16777208 + 26560 = 16803768 | 33.2 %
bisort 3145716 | 2097144 + 136320 = 2233464 | 29.0 %
tsp 10485720 | 8388576 + 12160 = 8400736 19.9 %
perimeter | 9322572 | 6658980 + 10560 = 6669540 28.5 %
health 847584 762348 + 320 = 762668 10.0 %
mst 13643780 | 9453572 + 320 = 9453892 30.7 %
average 25.2 %
(b) Reduction in heap storage for medium input.
Storage (bytes)
Program Original | Compressed nodes + Space
Extra locations = Total savings
treeadd 50331636 | 33554424 + 51260 = 33605684 | 33.2 %
bisort 3145716 | 2097144 + 204160 = 2301304 | 26.8 %
tsp 20971480 | 16777184 + 23040 = 16800224 | 19.9 %
perimeter | 20332620 | 14523300 + 23680 = 14546980 | 28.5 %
health 1128240 | 1014804 + 320 = 1015124 10.0 %
mst 54550532 | 37781508 + 320 = 37781828 30.7 %
average 24.9 %

(¢) Reduction in heap storage for large input.

FIGURE 7.6. Impact on storage.
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to be compressible, no compression would have been achieved and therefore no space

savings would have resulted.

Code Size (bytes)
Program Original ‘ Transformed ‘ Increase ‘
treeadd 5480 6376 16.4%
bisort 11944 16720 40.0%
tsp 18280 19172 4.9%
perimeter | 14976 18160 21.3%
health 15952 21324 33.7%
mst 12768 14136 10.7%
average 21.1%

(a) Code size before linking.

Code Size (bytes)
Program Original ‘ Transformed ‘ Increase ‘
treeadd 228360 | 228444 0.04%
bisort 257552 | 257572 0.01%
tsp 238004 | 238448 0.18%
perimeter | 233736 | 238340 1.97%
health 256608 | 257200 0.23%
mst 232296 | 232440 0.06%
average 0.41%

(b) Code size after linking.

F1GURE 7.7. Impact on object code size.

The increase in code size caused by compression transformations was also mea-
sured (see Figures 7.7). The increase in code size prior to linking is significant while
after linking the increase is very small since the user code is small part of the bina-
ries. However, the reason for significant increase in user code is because each time
a compressed field is updated, our current implementation generates a new copy of
the additional code for handling the case where the data being stored may not be

compressible. In practice it is possible to share this code across multiple updates.
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Once such sharing has been implemented, the increase in the size of user code will

also be quite small.

7.4.3 Impact on execution time

Based upon the cycle counts provided by the simplescalar simulator we studied the
changes in execution times resulting from compression transformations. The impact
of input size and L2 latency on execution times was also studied. Let us examine
the results in Figure 7.8(a) these results are for L2 cache latency of 100 cycles.
The reduction in execution times in comparison to the original programs which use
malloc range from 3% to 64% while on an average the reduction in execution time
is around 30%. The reductions in execution times increase gradually with the input
size.

The execution times are compared with versions of the programs that use ccmalloc.
The new approach outperforms ccmalloc in five out of the six benchmarks (our ver-
sion of mst runs slightly slower than the ccmalloc version). On an average it outper-
forms ccmalloc by nearly 10%. Our approach outperforms ccmalloc because once
the node sizes are reduced, typically greater number of nodes fit into a single cache
line leading to a low number of cache misses. Additional runtime overhead is incurred
in form of extra instructions needed to carry out compression and extraction of com-
pressed values. However, this additional execution time is more than offset by the
time savings resulting from reduced cache misses; thus leading to overall reduction in
execution time.

It should be pointed out that the use of special DCX instructions was critical in
reducing the overhead of compression and extraction. Without DCX instructions the
programs would have ran significantly slower. The average reduction in execution
times, in comparison to original programs, dropped from 30% to 12.5%. Instead of

an average reduction in execution times of 10% in comparison to ccmalloc versions
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of the program we observed an average increase of 9% in execution times.

The experiments of Figure 7.8(a) were also repeated for higher L2 cache laten-
cies. The results are presented in Figures 7.8(b-c). As the latency of L2 cache is
increased, compression outperforms ccmalloc by a greater extent. The graph in Fig-
ure 7.8(d) plots the average reduction in execution time that compression provides
over ccmalloc for the different cache latencies. As it can be seen, on an average, com-
pression reduces the execution times by 10%, 15%, and 20% over ccmalloc for .2
cache latencies of 100, 200, and 400 cycles respectively. These numbers also improve
gradually with input size. In summary our approach provides large storage savings

and significant execution time reductions over ccmalloc.

7.4.4 Impact on power consumption

Experiments have also been done to compared the power consumption for the com-
pression based programs with that of the original programs and ccmalloc based
programs (see Figures 7.9(a-d)). These measurements are based upon the Wattch [9]
system which is built on top of the simplescalar simulator. These results track the
execution time results quite closely. The average reduction in power consumption
over the original programs is around 30% which increases gradually with the size of
the input. The graph in Figure 7.8(d) plots the average reduction in power dissipation
that compression provides over ccmalloc for the different cache latencies. As we can
see, on an average, compression reduces the power dissipation by 5%, 10%, and 15%
over ccmalloc for L2 cache latencies of 100, 200, and 400 cycles respectively. These

numbers further improve gradually as the input size is increased.

7.4.5 Impact on cache performance

Finally, Figure 7.10 presents the impact of compression on cache behavior, including I-

cache, D-cache and unified L2 cache behaviors. As expected, the I-cache performance



Program Input Size Configuration 1 Configuration 2 Configuration 3
Comp. Comp. Comp. Comp. Comp. Comp.
Orig. cemalloc Orig. cemalloc Orig. cemalloc
small 58.8 % 81.0 % | 62.1 % 732 % | 66.6 % 65.4 %
treeadd medium 588 % | 81.0% || 62.0 % 732 % | 66.6 % 65.4 %
large 58.7 % 81.0% || 62.0 % 732 % | 66.5 % 65.4 %
small 75.3 % 73.9% || 62.8 % 58.6 % || 48.6 % 42.9 %
bisort medium 69.3 % 69.5 % || 54.8 % 53.4 % || 40.7 % 38.7 %
large 67.7 % 64.9 % || 51.9 % 481 % || 36.5 % 328 %
small 97.3 % 99.7 % || 96.5 % 99.7 % || 95.3 % 99.8 %
tsp medium 97.0 % 99.7 % || 96.2 % 99.7 % || 94.9 % 99.8 %
large 96.8 % 995 % || 95.9 % 99.6 % || 94.5 % 99.6 %
small 751 % 91.8% || 73.8% 871 % || 722 % 81.6 %
perimeter | medium 76.3% | 923% || 748 % | 87T % || 29% | 821 %
large 77.6 % 93.1% || 76.0 % 885 % || 73.9% 829 %
small 83.4 % 94.6 % || 83.6 % 91.3 % || 83.7 % 89.3 %
health medium 68.1 % 95.5 % || 66.3 % 931 % || 65.3 % 91.8 %
large 62.1 % 95.8 % || 60.0 % 93.8% || 58.8 % 92.6 %
small 35.7% | 1022 % || 283 % | 101.7% || 23.2 % | 101.2 %
mst medium 37.8% | 1021 % || 31.2% | 101.6 % || 26.8 % | 101.0 %
large 36.6 % | 1022 % || 30.7% | 101.6 % | 26.6 % | 101.0 %
small 70.9 % 90.5% || 67.9 % 85.3 % || 64.9 % 80.0 %
average medium 67.9 % 90.0 % || 64.2 % 84.8 % || 61.2 % 798 %
large 66.6 % 89.4 % | 62.7 % 84.1% || 59.5 % 79.0 %
(a) Change in cycle counts
Total Cycles Comparison
25
G—>©O MemLatency 400 cycle
G—=¢ MemLatency 200 cycle
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Input Size
(b) Compression vs ccmalloc.
Ficure 7.8. Change in execution time due to data compression.
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Program Input Size Configuration 1 Configuration 2 Configuration 3
Comp. Comp. Comp. Comp. Comp. Comp.

Orig. ccmalloc Orig. ccmalloc Orig. ccmalloc

small 60.9 % 89.7 % || 62.5 % 83.4 % || 65.0% 75.5 %

treeadd medium 60.9% | 89.7% || 625 % | 834 % || 65.0% | 755 %
large 60.9 % 89.7 % || 62.5 % 83.4% || 65.0% 75.5 %

small 77.9 % 792 % || 67.6 % 66.0 % || 54.9 % 51.1 %

bisort medium 73.7 % 75.9 % || 61.3 % 61.6 % || 47.9 % 46.8 %
large 73.3 % 721 % || 59.5 % 56.9 % || 445 % 41.3 %

small 97.1 % 99.8 % || 96.5 % 99.9 % || 95.6 % 99.9 %

tsp medium 96.7 % 99.8 % | 96.1 % 99.8 % || 95.1 % 99.9 %
large 96.7 % 99.7 % || 96.0 % 99.7 % || 94.9 % 99.7 %

small 75.9 % 95.1 % || 74.7 % 91.6 % || 73.1 % 86.8 %

perimeter | medium 771 % 95.6 % || 75.8 % 922 % || 741 % 87.4 %
large 78.6 % 96.4 % || 77.2 % 93.1% || 75.2 % 88.2 %

small 90.0% | 1014 % || 87.8 % 95.9 % || 86.2 % 92.1 %

health medium 735 % | 101.1 % || 69.5 % 96.6 % || 67.1 % 93.8 %
large 66.8 % | 100.9 % || 62.7 % 96.8 % || 60.2 % 94.3 %

small 389% | 104.5% || 31.5% | 103.8 % || 25.7 % | 102.9 %

mst medium 405 % | 1042 % || 33.9% | 103.4% || 28.9 % | 102.5 %
large 39.7% | 1042 % || 33.5% | 1034 % || 28.7 % | 102.5 %

small 73.4 % 95.0% | 70.1 % 90.1 % || 66.7 % 84.7 %

average medium 70.4 % 94.4 % | 66.5 % 89.5 % || 63.0 % 84.3 %
large 69.3 % 93.8% | 65.2 % 88.9 % || 61.4 % 83.6 %

a) Change in power consumption.
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(b) Compression vs ccmalloc.

Ficure 7.9. Impact on power consumption.

119



120

is degraded due to increase in code size caused by our current implementation of
compression. However, the performances of D-cache and unified cache are significantly

improved. This improvement in data cache performance is a direct consequence of

compression.
I-cache D-cache Unified-cache
Program | Input Size | ZEP= | ZomE || G | 0 | Ghl | cemeltes
small 105.2 % | 104.8 % || 62.2 % 60.4 % || 85.1 % 49.7 %
treeadd medium 106.4 % | 105.5 % || 61.5 % 59.7 % || 85.0% | 49.7 %
large 107.3% | 104.7% || 60.0 % 59.8% || 84.9 % 49.7 %
small 153.3 % | 155.9 % || 65.0 % 58.7% || 16.2 % 16.8 %
bisort medium 2282 % | 234.1 % || 68.7 % 63.1% || 15.5 % 16.6 %
large 2282 % | 234.1 % || 47.3 % 38.3 % 7.4 % 7.0 %
small 5.0% | 120.5 % || 70.1 % 90.3% || 84.1 % | 100.1 %
tsp medium 40% | 1221 % || 66.0 % | 94.0 % | 84.4 % | 100.1 %
large 3.6 % | 1249 % || 624 % 843 % || 84.4 % | 100.1 %
small 145.1 % 86.0 % || 69.1 % 71.3% || 67.1 % 67.0 %
perimeter | medium 2051 % | 835 % || 689% | 709% || 67.0% | 668 %
large 321.8 % 78.0 % || 69.1 % 70.3 % || 67.0 % 66.8 %
small 1222 % | 1121 % || 82.2 % 96.2 % || 41.6 % 62.3 %
health medium 133.8% | 116.6 % || 822 % | 978 % | 464 % | 67.3 %
large 144.8 % | 120.7 % || 82.1 % 986 % || 51.9 % 1.1 %
small 26.6 % 61.6 % || 41.0 % | 100.9 % | 16.2 % | 100.0 %
mst medium 16.8 % 482 % |1 490 % | 96.3% || 21.3% | 100.0 %
large 13.8 % 4227 % || 33.2 % 948 % || 21.5 % | 100.0 %
small 929 % | 106.8% || 64.9 % 79.6 % || 51.7 % 66.0 %
average medium 1157 % | 1183 % || 66.0 % 80.3 % || 53.3 % 66.8 %
large 136.6 % | 117.5 % || 59.0 % 743 % || 52.8 % 65.8 %

FIGURE 7.10. Change in cache misses - configuration 1.

7.5 Related work

Recently there has been a lot of interests in exploiting narrow width values to improve
program performance [9, 64, 61]. However, our work focuses on pointer intensive
applications for which it is important to also handle pointer data. A lot of research has
been conducted on development of locality improving transformations for dynamically

allocated data structures. These transformations alter object layout and placement
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to improve cache performance [56, 17, 13]. However, none of these transformations
result in space savings.

Existing compression transformations [53, 18] rely upon compile time analysis to
prove that certain data items do not require a complete word of memory. They are
applicable only when the compiler can determine that the data being compressed is
fully compressible and they only apply to narrow width non-pointer data. In contrast,
our compression transformations apply to partially compressible data and, in addition
to handling narrow width non-pointer data, they also apply to pointer data. The
approach introduced in this chapter is not only more general but also simpler in one
respect. It does not require compile-time analysis to prove that the data is always
compressible. Instead simple compile-time heuristics are sufficient to determine that
the data is likely to be compressible.

ISA extensions have been developed to efficiently process narrow width data in-
cluding Intel’s MMX [44] and Motorola’s AltiVec [57]. Compiler techniques are also
being developed to exploit such instruction sets [31]. However, the instructions in-
troduced in this chapter are quite different from MMX instructions because both

partially compressible data structures and pointer data must be handled.

7.6 Conclusion

In this chapter, two types of data compression transformations are introduced to
apply data compression techniques to compact the sizes of dynamically allocated
data structures. These transformations result in large space savings and also result
in significant reductions in program execution times and power dissipation due to
improved memory performance.

An attractive property of these transformations is that they are applicable to
partially compressible data structures. This is extremely important because accord-

ing to our experiments, while the data structures in all of the benchmarks studied
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in this chapter are very highly compressible, they always contain small amounts of
incompressible data.

This approach is applicable to a more general class of programs than existing
compression techniques: it can compress pointers as well as non-pointer data; and it
can compress partially compressible data structures. Finally the DCX ISA extensions
have been designed to enable efficient manipulation of compressed data. The same
task cannot be carried using MMX type instructions. The main contribution of this
work is that data compression techniques can now be used to improve performance
of general purpose programs and therefore it takes the utility of compression beyond

the realm of multimedia applications.
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CHAPTER 8

EXPLOITING VALUE REPRESENTATION
REDUNDANCY IN HARDWARE

Data compression transformations were introduced in the preceding chapter to ex-
ploit the value representation redundancy which was discovered from the type based
profiling framework introduced in chapter 6. Both profiles and semantic information
are used to select the fields for compression and pack them together. Cache perfor-
mance is improved due to improved data locality. However, the approach also has
some limitations. Source code has to be available in order to perform profiling, anal-
yses and transformations. Thus, it is not applicable if only binary code is available.
Moreover, restrictions such as address arithmetic and type casting may prohibit the
application of these transformations (e.g., for SPEC benchmarks). In order to over-
come the above drawbacks, a hardware-based approach for exploiting compression is
considered in this chapter. This hardware approach does not analyze or transform the
program and thus is applicable to all programs, including SPEC benchmarks which
could not be handled by the data compression transformations.

Address:

| tag | index | offset |

Tag: Data:

> tag, ‘L | | |
A
? [

FIGURE 8.1. Memory address and cache access.

To study the potential of this approach, the characteristics of values involved
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in word-sized accesses from the cache (Figure 8.1) were studied for programs from
Olden, SPEC 95int, and SPEC 2000int benchmark suites. These values are divided
into three categories: compressible small values these are values whose higher order
18 bits are all zeros or all ones; compressible address values these are values that
share the same 17-bit prefix with their addresses; and incompressible values — these
are all remaining values that are accessed. The results are summarized in Figure
8.2. On an average, 59% of dynamic appeared values are compressible and can be
represented by less than or equal to 16 bits. Note that even though compiler based
approach could not handle SPEC benchmarks, the data belonging to these programs
is still highly compressible.

compressible addresses

100 compressible small values|
uncompressible values
80
60
40
20
0
ot o o . 200 “ %%V*

0o w“ 0 9°
R \;1 _\,e A0 509
et ‘)207_00“ 1300 0@&\ ‘)ec‘?‘
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Percentage of Appeared Values

¥ o gt Q;L.\\vz‘z e
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FIGURE 8.2. Values encountered during program execution.

Given the fact that the value representation redundancy exists uniformly across a
spectrum of benchmark programs, it is useful to design a hardware approach which
skips the complexity of compile-time analysis and transformation, and takes advan-
tage of the value representation redundancy observed through profiling directly. In
this chapter, a new cache design is proposed to exploit value representation redun-
dancy. Values are stored in compressed form and the storage that is freed by this
process is used to enable a novel style of cache line prefetching.

The rest of the chapter is organized as follows. The compression cache design is
discussed in section 8.1. The implementation and experimental results are given in

section 8.2. Related work will be discussed in section 8.3. Section 8.4 summarizes the
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chapter.

8.1 Compression enabled partial cache line prefetching

First the representation of compressible values in hardware is given and then it is
shown how the cache performance can be improved by enabling prefetching of partial
caches lines. The description of how the cache is accessed and maintained dynamically

is also given.

8.1.1 Value representation in hardware

As already discussed, in many cases, values can be represented by their lower order
16 bits as shown in Figure 8.3(a)(b). Figure 8.3(a) shows that the prefix of a pointer
value could be discarded if it shares the same prefix with the memory address where
the value is stored. Figure 8.3(b) shows that the prefix of a small value could be

discarded if these bits are sign extensions.

P same chunk
L | —— — ]
> - 23141 S0 2311
Q 11...1 ] xxx 00...0 | xxx
prefix(P) = prefix(Q) ) v
O] xxx_|]
(a) pointer addresses share the same prefix (b) small positive or negative values

FIGURE 8.3. Representing a 32-bit value with fewer than 32 bits.

Since dynamically, both compressible and incompressible values will be encoun-
tered. When compressible values are represented in their compressed formats, a
method is required to distinguish compressible values from incompressible ones. In
addition, to reconstruct the original values at runtime, we must know whether they

represent, compressed addresses or compressed small values.
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To help distinguish these cases, we have a 32-bit value compressed to 15 bits
instead and use the 16th bit to tells its type (shown by “VT” in Figure 8.4). Similarly,
we need one more bit to tell whether the word contains compressed or uncompressed
values (shown by “VC” in Figure 8.4). However this bit is not stored as part of the
value representation but stored in the cache as flags and will be discussed in more

detail in cache design section.

vc=0’_’| |
VT=1f—>| prefix(P) | \% |
[
R A [ 2
\
VT=0__f signv) | v |
16 bits
32 bits

FIGURE 8.4. Representing compressed values in hardware.

8.1.2 Partial cache line prefetching

Hardware techniques for prefetching cache lines [49, 47] have been proposed to im-
prove cache performance in high performance systems. If a cache line [ is not in the
cache, a memory access m for a word in [ results in a cache miss. Prefetching loads
the line [ into the cache before m is encountered. By the time m is encountered later,
[ is already in the cache and there is no cache miss. In this way, prefetching hides the
long cache miss latency. The problem with prefetching is that it greatly increases the
memory traffic. Although it is a very effective technique for high performance systems
with big memory bandwidth, the significant increase in memory traffic restricts its
application to other systems such as embedded systems.

By exploiting the dynamic value representation redundancy, we can perform hard-
ware prefetching with no increase in memory traffic. Our method fetches compressible

values into the cache and stores the values in the cache in compressed formats. By
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having a compressible word represented by 16 bits, a significant part of the cache
space is spared. Let us consider the example shown in Figure 8.5 where it is assumed
three out of four words are compressible in each cache line. The saved space in each
cache line (0.5 x 4 bytes/word x 3 words = 6 bytes) is not enough to hold another

cache line. Therefore, we choose to prefetch only part of another line.

(a) before compression

X1 I I I

(b) after compression (c) combine another line

X1IIIIII’I,:’:X2

Ficure 8.5. Compressing data in the cache to hold more words.

Let us consider the situation shown in Figure 8.5. If the compressible words from
another cache line with corresponding offsets are prefetched, then three additional
compressible words can be stored which covers 7 out of 8 words from two cache lines.
On the other hand, if the incompressible words are fetched, we need two unused half-
word-sized spots to store all bits of a prefetched word and some indexing space to
indicate its order. The 6 bytes of available space can only store one more word from
the prefetched line. Therefore a design is developed to only prefetch compressible
values from another line.

The example in Figure 8.6 illustrates how compression enabled prefetching can
enhance performance. Figure 8.6(b) shows a code fragment that traverses a link list
whose node structure is shown in Figure 8.6(a). The memory allocator would align
the address allocation and each node takes one cache line (we assume 16 bytes per

line cache). There are 4 fields among which two are pointer addresses, one is a type
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struct node o
int info; (2) if (p>type == T)
struct node *prev; Ei; i SU_)rrrlI;;tpemfo,
struct node *next; P=p ;

g }

(a) node declaration (b) sample code

FI1GURE 8.6. Dynamic data structure declaration.

field and the other one contains a large value. Except this large information value
field, the other three fields are identified as highly compressible fields. The sample
code shown in Figure 8.6(b) calculates the sum of the information field for all nodes of
type T. Without cache line compression, each node takes one cache line. To traverse
the list, the next field is followed and a new node is accessed.

A typical access sequence for this piece of code would generate a new cache miss
at statement (2) for every iteration of the loop (see Figure 8.7(a)). All compression
accesses to other fields in the same node fall into the same cache line and thus are
all cache hits as shown in Figure 8.7(b). However, if all compressible fields are com-
pressed, a cache line would be able to hold one complete node and three fields from
another node. Now an access sequence will have cache hits at statements (2) and
(4) plus a possible cache miss at statement (3). The partial cache line prefetching
can improve performance in two folds. First, if the node is not of the type T, we
do not need to access the large information field. This saves a cache miss. Second,
even in the case we do need to access it, the cache miss happens at statement (3).
Although the new and old scheme generate the same number of cache misses, the miss
at statement (3) is not on the critical program execution path which is “(1)(2)(4)”

and it has less impact on the performance.
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typical access behavior:

‘ type, ‘ info, ‘ prev, ‘ next, ‘

(a) cache layout before compression

tZ‘t1‘ i1 ‘pZ‘p1‘n2‘n1

(b) cache layout after compression

(2) ... cache miss
(3) ... cache hit
(4) ... cache hit

typical access behavior:

(2) ... cache hit
(3) ... cache miss
(4) ... cache hit

F1GurE 8.7. Cache layout before and after compression.

8.1.3 Cache design details

The new cache design can be implemented in either a single or a multiple level cache

hierarchy. A two level cache hierarchy shown in Figure 8.8 is used and the compression

enabled partial cache line prefetching is employed in both caches.

CPU

C:> Level 1

Cache

chip boundary

=

Level 2
Cache

P

Memory

FIGURE 8.8. Two level compression cache design.

The compression scheme used is described as before. A value is compressible if it

satisfies either of the following two conditions.

e [f the 18 higher order bits are all ones or all zeros, the 17 higher order bits are

discarded.
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e [f the 17 higher order bits are the same as those of the value’s address, the 17

higher order bits are discarded.

The physical cache line at each level can potentially hold the contents from two
lines, identified as the primary cache line and the affiliated line. The primary cache
line is defined as the line mapped to this set in a normal cache of the same size and
associativity. Its affiliated cache line is the unique line that is calculated through a

single operation as shown below.
< Tagaffiliated; Setaffiliated >=< Tagprimary; Setprimary > D mask

where the mask is a predefined value. The mask is chosen to be 0x1 which means
the primary and affiliated cache lines are consecutive lines of data. Thus, given a
cache line, it has two possible places to stay in the cache, its primary location and an
affiliated location. Our cache access and replacement policy described later ensure
that at most one copy of a cache line is kept in the cache at any time.

In a standard two level cache hierarchy, the requests from the upper level are
cache line based. For example, if there is a miss at the first level cache, a request for
the whole line is issued to the second level cache. In the compression cache design,
the requested line might stay as an affiliated one in the second level cache and thus
contains only partial data. To maximize the benefits from partially prefetched cache
line, there is no need to get a complete line as long as the requested data item can
be found. So the compression cache design still keeps the requests to the second level
cache as word based and a cache hit at the second level cache only returns a partial
cache line. The returned line might be placed as a primary line or an affiliated line. In
either case, flags are needed to indicate whether a word is available in the cache line
or not. A flag PA (Primary Availability) for the primary cache line is associated with
one bit for each word and another flag AA (Affiliated Availability) for the affiliated
cache line is provided. As discussed, a value compressibility flag (VC) is used to

identify if a value is compressible or not. For the values stored in the primary line,
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a one-bit VCP flag is associated for each word. On the other hand, if a value can
appear in the affiliated line, it must be compressible and thus no extra flag is needed
for these values. The design details of the first level compression cache are shown in

Figure 8.9.
Address:

| tag I index | offset I

Tag: Data: Availability: Compressed:

tag, 4 | : | | : PAO | | AA0 VCP,

tag, | | | PA1 | | AAt VCP,

? LJT
»(?

v

FiGure 8.9. Compression cache.

8.1.4 Dynamic value representation

It happens only in the best case that both the primary and the affiliated lines are
fully compressible. Normally, some words from one or both lines are not compressible.
In those cases, priority is given to hold the words from the primary line. Thus, the
primary line can always find the place to save the value while the affiliated line only
keeps a word, if this word is compressible, and the word at the same offset from the
primary line is also compressible.

At runtime, if a value changes from compressible to incompressible, a place to
store the value must be found. There are two possibilities. If the value is to be stored

in a primary cache line, the corresponding word from the affiliated cache line is kicked
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out. The affiliated line is written back to lower level memory hierarchy if it is dirty.
If the value is to be stored in an affiliated cache line, the affiliated line is moved to
its primary place. The other line which stays in its primary place is kicked out and

written back if that line is dirty.

8.1.5 Cache access policy

There are three cache interfaces to consider: CPU/L1 cache, L1/L2 cache and L2
cache/Memory. For a cache access from CPU to L1 cache, the set index of its primary
cache line is extracted, the least significant bit is flipped to access its affiliated line.
Both lines are accessed simultaneously. If the tag matches either of them, and its
corresponding availability bit is set, the word is extracted, extended and returned
to the CPU. For a cache access from L1 cache to L2 cache, if the accessed word
is available in L2, it is a cache hit and only the available words are returned. For
an access from L2 cache to memory, both the primary and the affiliated lines are
fetched. However, before returning the data, the cache lines are compressed and only
available places from the primary line are used to store the compressible items from
the affiliated line. The memory bandwidth is still the same as before.

For both L1 and L2 cache, when a new cache line arrives, the prefetched affiliated
line is discarded if it is already in the cache (it must be in its primary place in this
situation). When a new cache line replaces an existing cache line, the affiliated place
of the existing cache line is checked to see if the tag matches. If yes, the compressible
words are filled into the available spots of its affiliated place. However, if the line is
dirty, we still write back the content and only keep a clean partial copy in its affiliated

place.
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8.2 Implementation and experiments
8.2.1 Experimental setup

The compression enabled partial cache line prefetching has been implemented and
evaluated using Simplescalar 3.0 [10]. We use a two level cache hierarchy: separate
8K first level data and instruction caches and a unified 64K level two cache. For
the baseline configuration, L.1 data cache is direct mapped and unified L2 cache is
two-way set associative. Our compression cache is designed on top of the baseline
configuration, with the ability to match its affiliated cache line. Since the proposed
cache design doubles the number of lines searched in comparison to the baseline
configuration, comparison is also made to a cache of higher associativity: a 2-way
set associative L1 cache plus a unified 4-way set associative L2 cache. They are of
the same size as the baseline configuration. Other parameters are all the same and
summarized in Figure 8.10. A spectrum of programs from Olden [14], SPEC95, and
SPEC2000 [50] benchmark suites are used.

H Parameter ‘ Value H
Issue Width 4 issue, out of order
I cache 8K direct mapped (64 bytes/line)
I cache miss latency 10 cycles
L1 data cache 8K direct mapped
L1 data cache miss latency | 10 cycles
L2 unified cache 64K 2-way (128 bytes/line)
Memory latency 100 cycles (L2 cache miss latency)

FI1GURE 8.10. Baseline experimental setup.

8.2.2 Overall performance

Figure 8.11 shows the overall performance comparison with the baseline and the

higher associativity cache configurations. The results are normalized with respect to
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the baseline cache performance. Smaller numbers mean better results.
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FIGURE 8.11. Performance comparison.

The newly designed cache gives consistently better results than the baseline cache.
On an average, programs run about 7% faster. Speedup comes from the fact that
unlike many other prefetching schemes which save the prefetched data into the cache
and have the possibility of polluting the cache line, the compression cache never kicks
out a cache line if the baseline cache does not have to replace it with the same access
sequence. As a result, the cache miss rate can reduce but never increase. In many
cases, the new design even outperforms the higher associativity cache configuration.
The reason is that although higher associativity cache has a better replacement policy,
the proposed cache can keep more data. For example, in a two-way set associative
cache, 2 cache lines form one set can hold the contents from two lines at most while
in the compressed directed mapped cache, two cache lines can potentially hold the
contents of 4 lines. While the proposed design may have higher number of conflict
misses, than the higher associativity cache, it may have fewer capacity misses if the
data items are highly compressible. On an average, execution time is 2% faster than

that of a higher associativity cache.

8.2.3 Cache miss comparison

The comparison results of L1 and L2 cache misses for different configurations are

shown in Figure 8.12 and Figure 8.13 respectively. As we can see, through prefetching,
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the compression cache greatly reduces the cache misses compared to the baseline

configuration.
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F1GURE 8.12. Comparison of L1 cache misses.
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FiGURE 8.13. Comparison of L2 cache misses.

An interesting phenomenon observed is that although in many cases the compres-
sion cache has more 1.1 cache misses than the higher associativity cache configuration,
it still achieves better overall performance. For example, for 130.1i from SPECint95,
although the new cache design has more .1 and L2 cache misses than the higher as-
sociativity cache, 6% improvement in performance over the higher associativity cache
is observed. As was mentioned in the previous sections, this suggests that different
cache misses have different performance impacts, i.e. some cache misses hurt the
performance more than other cache misses.

To further analyze this phenomenon, we carried out additional experiments. Given

a set of memory access instructions m, the importance of this set is defined as the
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percentage of total executed instructions that directly depend on m. In case that m
is the set of all cache miss instructions from a program execution, its importance pa-
rameter indicates how many dependent instructions are blocked by the cache misses.
A higher number means that the cache misses block more instructions and thus hurt
the performance more. The method to approximately compute this percentage is

shown as follows. According to Amdahl’s law, we have

Executiongy
Speed?tpouemll Toormtion.
Execution, ey,
1
= (1= Fraction ) + Fractionephanced
enhanced Speedupenhanced
1
. Speedupenhanced(l - W)
. overall
o Fractionephanced

Speedupenhanced — 1

In the Simplescalar simulator, without speculative execution, the memory address
generated and their accesses are affected by the following factors: the executable
program, the input, the seed for the random generator. If all these factors are fixed,
two runs with different cache configurations will generate exactly the same instruction
execution sequence as well as the memory address access sequence. Thus, by varying
only the cache miss penalty and running the program twice, we would observe the
same number of cache misses happen at the same instructions. Moreover, given this
fixed set of instructions that have cache misses, their directly dependent instructions
are also fixed. As we know, by shortening the miss penalty, the main change to
the execution is the reduced dependence length from a cache miss instruction to its
directly dependent instructions, the enhanced fraction could thus be considered as
the percentage of the instruction that are directly depending on these cache misses.

Now, for different cache configurations, this fraction is computed as follows. First,
the cache miss latency is reduced in half, which means Speedupennancea =2. Second,

the overall performance speedup is measured, which is Speedupyyerqn. It is computed
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from the total number of cycles before and after changing the miss penalty. Now, the

value of Fractione,pancea can be obtained. The results are plotted in Figure 8.14.
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FI1GURE 8.14. The estimation of cache miss importance.

From the comparison results for different benchmark programs shown in Fig-
ure 8.14, it can be seen that the compression cache reduces the importance of the
cache misses for most benchmarks. For the benchmarks that are slower than the
higher associative cache, it is seen that they have larger importance parameters. For
the benchmarks with significant importance reduction, further study of the average
ready queue length, when there is at least one outstanding cache miss, was carried
out. The queue length increase of our compression cache over the higher associativity
cache was studied. The results are shown in Figure 8.15. The results indicate that
the average queue length is improved by up to 78% for these benchmarks. This pa-
rameter tells us when there is a cache miss in the new cache design, the pipeline still
has a lot of work to do.

In summary, the cache misses that are encountered in the proposed compression
cache design are less important in comparison to both the baseline and the higher

associativity cache configurations.
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FIGURE 8.15. Average miss cycle ready queue length.
8.2.4 Memory traffic

The partial prefetching of the next cache line is enabled only in the case that there are
available spots in the primary cache line and the corresponding affiliated words are
also compressible. By combining the lower order bits from two words, and using the
same memory bandwidth, more data items are effectively transmitted. So the memory
traffic is not increased. Actually, the overall memory traffic is reduced because of
the reduction in the second level cache misses. The only situation that may cause
increased memory traffic happens if a store instruction writes to the primary place
or the affiliated place changes a compressible value to an incompressible one. Either
it will generate a cache miss if writing to the affiliated place, or kick out a (dirty)
affiliated line. In either cases, the memory traffic would increase. However, since
this happens infrequently, a net reduction in memory traffic is observed. Figure 8.16
summarizes all these impacts and shows the final results. Thus it is observed that the
new cache design consistently performs better than the baseline configuration and in

some cases, it can even outperform the higher associativity cache configuration.
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FIGURE 8.16. Comparison of memory traffic.

8.3 Related work

A number of different designs have been proposed to perform hardware and/or soft-
ware prefetching to improve cache performance [49, 47]. Since prefetching might
fetch unnecessary blocks or fetch blocks at the wrong time, it has the potential prob-
lem of wasting valuable memory bandwidth and polluting the cache. However, the
new cache does not increase the memory traffic and a cache line is never replaced just
to hold prefetched words. It also effectively transmits more words and reduces the
memory traffic.

Some compression cache designs [33, 61] have been proposed to improve the data
density inside the cache. In [33] a cache design is proposed that compresses two con-
secutive lines using a complex compression algorithm, both the compression and the
decompression are expensive. As a result, it cannot meet the critical time constraints
of a level one cache and is used at a lower level in the hierarchy. In [61] data is
compressed using frequent values found from programs. If two conflicting cache lines
can be compressed, both are stored within the cache; otherwise, only one of them
is stored. Both of the above designs do not distinguish between the importance of
different words within a cache line and a partially compressible cache lines cannot be
exploited.

The pseudo associative cache [43] also has a primary cache line and a secondary
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cache line. However, if a cache line enters its secondary place, it has to kick out the
original line and hence there is a danger of converting a fast hit to a slow hit or even
a cache miss. On the contrary, proposed compression cache design only stores a cache
line to its secondary place if there are free spots. Neither will it pollute the cache line

nor will it degrade the original cache performance.

8.4 Conclusion

A novel cache design is developed in this chapter to remove the value representation
redundancy which was found in chapter 6. It partially prefetches the compressible
words from the next cache line and stores these words in the cache. It removes the
prefetch buffer and thus minimizes the cache size increase. Unlike other prefetching
schemes that save the words in the cache, it never pollutes the cache line. On an
average, the new cache improves the overall performance 7% over the baseline cache
and 2% over the higher associativity cache configuration. The new design adopts the
positive aspects of hardware prefetching and eliminates the problems it has, especially,
it makes better use of both memory bandwidth and cache space. In this way, this
design opens the way to apply hardware prefetching to more restricted environments

such as embedded systems.
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CHAPTER 9
CONCLUSION AND FUTURE WORK

This dissertation makes contributions in the areas of program profiling and profile-
guided compiler optimizations. While profile-guided optimizations can greatly im-
prove program performance over the traditional ones, recent advances in profiling
collect huge amount of profiling data and make information retrieval at analysis stage
a bottleneck. On the other hand, due to the increasing performance gap between
CPU and memory, new optimization opportunities arise from the fact that a signifi-
cant percentage of the space stores redundant data. New type of profiles and profiling
techniques are needed in the design of new optimization techniques. In this disser-
tation, these problems are solved through the design and application of new data
compression techniques. In particular, the contributions are summarized in section

9.1. Section 9.2 discusses directions for further research.

9.1 Summary of contributions

TWPP+ representation. A new representation is proposed to compress whole

program path profiles including both control flow and memory address infor-
mation. While prior work aimed at compressing the profiles to achieve maximal
compression ratio, the proposed timestamped whole program path representa-
tion puts more emphasis on organization and speed up the information retrieval
in compiler analysis and optimization. Control flow and memory addresses are
explicitly separated from each other. The complete control flow is represented
by a two levels organization. A global call graph is kept to remember the calling
context information. At the function level, a sequence of timestamps is attached

to each basic block in the control flow graph to indicate when it is executed.
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Memory address trace is explicitly represented as dependence edges and reor-
ganized as a sequence of dependence edges attached at each load instruction

point in the control flow graph.

Applications of TWPP+. Instead of considering a trace as a stream of symbols,

TWPP+ divides a complete trace into a control flow trace part and a memory
dependence trace part; each part is then reorganized to allow fast retrieval of
information during data flow analyses. Common queries in data flow analyses
could be processed much faster and thus could be used to integrate the exe-
cution information into a broad range of data flow analyses and optimizations.
Three applications are demostrated in this dissertation to use the information
contained in TWPP+ representation. It could be used to study the overall
behavior of a program execution. By regrouping and sorting the memory de-
pendence edges, redundant load and store instances are identified. A significant
percentage of load instructions are highly redundant and could be further op-
timized to improve performance. With the timestamps, the exact execution
order is maintained in the TWPP+ such that it is much faster to identify the
frequency of some data flow facts at some program points with respect to the
given whole program path. The TWPP+ representation can also be use as
debug tool to create dynamic slices at any program execution point. Different
slicing algorithms are simulated using this representation with different cost and

slice accuracy tradeoff.

Type-based profiling for identifying value redundancy. A type-based profiling

framework is proposed to profile the programs with respect to both high-level
type information as well as value characteristics. It is implemented with a
combination of instrumentation and simulation using SUIF compiler [54] and
Simplescalar simulator [10]. In this framework, data types are profiled at field

level; value range summaries are collected for each field. With this information,
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candidate types for compression could be identified. A benefit-cost model based
on profiles is used in the framework to assist the design and application of the

new compression techniques.

Applications of value redundancy. Two new types of value representation redun-

dancy are identified for small values and pointer addresses respectively. Those
types of redundancy exist widely in a spectrum of programs. They are simple
in logic and easy to explore in practice. Moreover, this dissertation proposed

both software and hardware approaches to explore them.

Data compression transformations are proposed and implemented as a compiler
approach. Code are transformed according to access pattern of the candidate
data fields. To further reduce the runtime overhead, data compression instruc-
tion extensions are designed and evaluated. With the help of six new simple
RISC- style instructions, the memory footprints are greatly reduced and the
overall performance is improved on top of existing memory locality enhance-

ment techniques.

A novel hardware cache design is proposed and evaluated to improve the pro-
gram performance by reducing the number of cache misses. Compressible values
are transmitted from the memory and stored in the cache in compressed for-
mats. By removing value representation redundancy, the compression cache can
effectively fetch and store more data items with the given memory bandwidth
and the given cache size. The experiments further identified that in many pro-
grams, the prefetched compressed data items are more important for program
execution. The overall performance is greatly improved from the compression

with reduced cache misses and memory traffic.
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9.2 Future work

Profile database. With the increasing program complexity, advances in program

profiling tend to collect a huge amount of profiling data. This could be the
result from collecting whole program paths, or from the iterative collections
with different inputs. The former is discussed in this dissertation, the later has
been employed in profiling complicated commercial programs. In all these cases,
it would be helpful to design a unified interface for stored profiles. The profiles
could be organized as an independent subsystem — a special database. Different
analyses and optimizations could issue different queries to this subsystem and

the queris are processed similar to that of SQL queries.

New optimizations. Compared to prior profiles, a whole program path provides

accurate execution information. Especially, it keeps the information across the
loop boundaries and procedural scopes. Reorganizing the whole program path
at multiple semantic levels, TWPP+ can be used to enhance existing data
flow analysis techniques as well as design new optimization passes. It would
be very interesting to explore additional optimization opportunities using the

information provided by TWPP+.

Dynamic slicing. Dynamic slicing is used as an example to illustrate the strength

of the new timestamped whole program path representation. Although it is
beyond the scope of this dissertation to fully explore dynamic slicing, it would
be an interesting topic to evaluate different dynamic slicing algorithms with
the presence of pointers and arrays in real C programs. The experience in our
research group [63] showed that the memory requirement is extremely large if
dynamically maintaining the data dependence edges. Since the accurate slic-
ing algorithm could also be implemented by backward scan of the trace, it is

more realistic to compare the implementations of the accurate slicing algorithm
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using different representations and then choose the right representation to use
in practice. While an accurate algorithm might execute longer, its memory

requirement is well controlled.
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