
The Design and Implementation of CompressionTe
hniques for Profile Guided CompilationbyYoutao Zhang

A Dissertation Submitted to the Fa
ulty of theDepartment of Computer S
ien
eIn Partial Ful�llment of the RequirementsFor the Degree ofDo
tor of PhilosophyIn the Graduate CollegeThe University of Arizona2 0 0 2

2

Get the oÆ
ial approval pagefrom the Graduate Collegebefore your �nal defense.

3
Statement by AuthorThis dissertation has been submitted in partial ful�llment of requirements for anadvan
ed degree at The University of Arizona and is deposited in the UniversityLibrary to be made available to borrowers under rules of the Library.Brief quotations from this dissertation are allowable without spe
ial permission,provided that a

urate a
knowledgment of sour
e is made. Requests for permissionfor extended quotation from or reprodu
tion of this manus
ript in whole or in partmay be granted by the head of the major department or the Dean of the GraduateCollege when in his or her judgment the proposed use of the material is in the interestsof s
holarship. In all other instan
es, however, permission must be obtained from theauthor.

Signed:

4

To my parents, Yurong Zhang and Xuexia Yuan.To my wife, Jun Yang.

5A
knowledgementsMy spe
ial thanks are for my advisor Dr. Rajiv Gupta. I thank him for his guidan
ein sele
ting resear
h topi
s and re�ning approa
hes. During the years in pursuingmy degree, he always en
ouraged me and took great patien
e to help me in writingpapers and giving presentations. It is a privilege to have him as my advisor.I feel grateful for my wife, Jun Yang. She gave me huge support in these yearswhile she had to work hard on her Ph.D. dissertation resear
h. I wish her a su

essful
areer.I would also like to take this
han
e to thank other members in my
ommitteeDr. Peter Downey and Dr. Samuya Debray. I also thank Xiangyu Zhang and all thepeople who helped me over the years.

6Table of ContentsList of Figures . 9List of Tables . 11Abstra
t . 12Chapter 1. Introdu
tion . 131.1. Program pro�ling and pro�le guided optimizations 141.2. Overview of the resear
h . 151.2.1. Representation of pro�ling data 161.2.2. Pro�ling for value redundan
y dete
tion 171.3. Organization . 18Chapter 2. Ba
kground . 192.1. Program pro�les . 192.1.1. Type of pro�les . 192.1.2. Colle
ting pro�les . 242.2. Pro�le guided optimizations . 252.2.1. Pro�le guided
ontrol
ow related optimizations 262.2.2. Pro�le guided value optimizations 272.2.3. Pro�le guided memory optimizations 28Chapter 3. Compressing the
ontrol flow tra
e 303.1. TWPP: Timestamped whole program path 313.2. Implementation and experiments . 403.3. Con
lusion . 45Chapter 4. Compressing the memory dependen
e tra
e 464.1. TWPP+: TWPP with memory dependen
e edges 484.2. Implementation and experiments . 534.2.1. Compression results using TWPP+ 534.2.2. Average s
an length . 574.3. Related work . 584.4. Con
lusion . 59Chapter 5. Appli
ations of TWPP+ 605.1. Exploring LOAD/STORE redundan
y 615.1.1. Identifying a redundant LOAD/STORE instru
tion 615.1.2. Identifying redundant loads from TWPP+ 63

Table of Contents|Continued 7
5.1.3. Identifying redundant stores from TWPP+ 655.1.4. Experimental results . 665.2. Frequen
y of data
ow fa
ts . 695.2.1. Timestamp annotated dynami
 CFG 705.2.2. Demand-driven analysis . 715.3. Dynami
 program sli
ing with TWPP 755.3.1. Pre
ise dynami
 sli
ing with TWPP+ 755.3.2. Approximate dynami
 sli
ing with TWPP+ 805.4. Con
lusion . 81Chapter 6. Profiling dynami
ally allo
ated data obje
ts 826.1. Type based pro�ling . 846.2. Experimental framework . 856.3. Sele
ting obje
t types to
ompress . 886.4. Choosing the
ompression s
heme . 896.4.1. Potential savings in spa
e due to redundan
y removal 916.4.2. Potential
osts of redundan
y removal 926.5. Choosing the time for
ompression 966.6. Con
lusion . 98Chapter 7. Profile-guided data
ompression transformations . . 1007.1. Data
ompression transformations . 1017.2. Instru
tion set support . 1047.3. Compiler support . 1097.4. Implementation and experiments . 1117.4.1. Experimental setup . 1117.4.2. Impa
t on storage needs . 1127.4.3. Impa
t on exe
ution time . 1167.4.4. Impa
t on power
onsumption 1177.4.5. Impa
t on
a
he performan
e 1177.5. Related work . 1207.6. Con
lusion . 121Chapter 8. Exploiting value representation redundan
y in hard-ware . 1238.1. Compression enabled partial
a
he line prefet
hing 1258.1.1. Value representation in hardware 1258.1.2. Partial
a
he line prefet
hing 1268.1.3. Ca
he design details . 1298.1.4. Dynami
 value representation 131

Table of Contents|Continued 8
8.1.5. Ca
he a

ess poli
y . 1328.2. Implementation and experiments . 1338.2.1. Experimental setup . 1338.2.2. Overall performan
e . 1338.2.3. Ca
he miss
omparison . 1348.2.4. Memory traÆ
 . 1388.3. Related work . 1398.4. Con
lusion . 140Chapter 9. Con
lusion and future work 1419.1. Summary of
ontributions . 1419.2. Future work . 144Referen
es . 146

9List of FiguresFigure 1.1. Overview of pro�le-guided
ompilation. 13Figure 1.2. Comparison with whole program path. 17Figure 1.3. Values
ompressible to half of their size. 17Figure 2.1. Value pro�les. 21Figure 2.2. Address pro�les. 23Figure 2.3. A

mallo
 example. 29Figure 3.1. An un
ompa
ted
ontrol
ow tra
e. 32Figure 3.2. WPP organized using the DCG. 33Figure 3.3. WPP after redundant path tra
e removal. 33Figure 3.4. DBBs and dynami

ontrol
ow graphs. 35Figure 3.5. WPP after
reating di
tionaries of DBBs. 35Figure 3.6. TWPP form. 37Figure 3.7. Compa
ted TWPP. 38Figure 3.8. Balan
ing example. 39Figure 3.9. Tra
e redundan
y. 42Figure 3.10. Compa
ted size at ea
h TWPP step. 43Figure 4.1. Importan
e of data
ow information. 46Figure 4.2. An example of a memory dependen
e tra
e. 48Figure 4.3. Eliminating expli
it addresses. 49Figure 4.4. Creating memory a

ess di
tionary. 50Figure 4.5. Representation for timestamped memory dependen
e edges. . . 51Figure 4.6. Compressing ea
h subsequen
e using Sequitur. 52Figure 5.1. Redundant LOAD/STORE instru
tions. 62Figure 5.2. Determining a redundant load. 65Figure 5.3. Determining all redundant stores from TWPP+. 66Figure 5.4. Ideal LOAD redundan
y . 67Figure 5.5. Ideal STORE redundan
y . 68Figure 5.6. Dynami
 sli
ing example. 76Figure 5.7. Pre
ise dynami
 sli
ing algorithm with TWPP+. 77Figure 5.8. Implementing A&H's dynami
 sli
ing algorithm 3. 79Figure 5.9. Implementing A&H's impre
ise dynami
 sli
ing algorithms. . . 80Figure 6.1. Type based pro�ling framework. 85Figure 6.2. A

ess sequen
es with di�erent
ompression s
hemes. 90Figure 6.3. Representing a 32-bit value with fewer than 32 bits. 91Figure 6.4. Required bits with �xed length. 92Figure 6.5. Distribution of values with �xed length. 94

List of Figures|Continued 10
Figure 6.6. Distribution of values with �xed storage. 95Figure 6.7. De
iding the time for
ompression. 97Figure 7.1. Dealing with in
ompressible data. 104Figure 7.2. DCX instru
tions. 106Figure 7.3. An example. 108Figure 7.4. Experimental setup. 112Figure 7.5. Applied transformations. 113Figure 7.6. Impa
t on storage. 114Figure 7.7. Impa
t on obje
t
ode size. 115Figure 7.8. Change in exe
ution time due to data
ompression. 118Figure 7.9. Impa
t on power
onsumption. 119Figure 7.10. Change in
a
he misses -
on�guration 1. 120Figure 8.1. Memory address and
a
he a

ess. 123Figure 8.2. Values en
ountered during program exe
ution. 124Figure 8.3. Representing a 32-bit value with fewer than 32 bits. 125Figure 8.4. Representing
ompressed values in hardware. 126Figure 8.5. Compressing data in the
a
he to hold more words. 127Figure 8.6. Dynami
 data stru
ture de
laration. 128Figure 8.7. Ca
he layout before and after
ompression. 129Figure 8.8. Two level
ompression
a
he design. 129Figure 8.9. Compression
a
he. 131Figure 8.10. Baseline experimental setup. 133Figure 8.11. Performan
e
omparison. 134Figure 8.12. Comparison of L1
a
he misses. 135Figure 8.13. Comparison of L2
a
he misses. 135Figure 8.14. The estimation of
a
he miss importan
e. 137Figure 8.15. Average miss
y
le ready queue length. 138Figure 8.16. Comparison of memory traÆ
. 139

11List of TablesTable 3.1. Sample input tra
es used in the experiments. 40Table 3.2. WPP tra
e
ompa
tion due to various transformations. 40Table 3.3. Overall
ompa
tion fa
tor. 41Table 3.4. Extra
tion times for a single fun
tion. 44Table 3.5. Compa
ted tra
e sizes and extra
tion times. 45Table 4.1. Memory tra
e
hara
teristi
s. 53Table 4.2. Distribution of load and store a

esses. 54Table 4.3. Di
tionary size for memory a

ess points. 55Table 4.4. Distribution of stati
 load and store points. 56Table 4.5. Dynami
 behavior and removed edges. 56Table 4.6. Compression results using Sequitur and TWPP+. 57Table 4.7. Average items s
anned before �nding a memory dependen
e edge. 58Table 5.1. Sizes of stati
 and dynami

ow graphs. 71Table 6.1. Olden Ben
hmark Summary. 89

12Abstra
tAdvan
es in program pro�ling te
hniques have led to advan
es in
ompiler optimiza-tion te
hniques, and vi
e versa. This dissertation makes
ontributions in the areasof program pro�ling as well as pro�le guided optimizations. More spe
i�
ally, it de-signs and evaluates a new
ompressed representation for pro�le data su
h that pro�leguided optimizations
an bene�t from it. A type-based value pro�ling te
hnique isalso developed su
h that new data
ompression te
hniques
an be designed to exploitvalue redundan
y present in program data.A timestamped whole program path (TWPP+) representation is proposed to
ompress program tra
es whi
h
ontain both
ontrol
ow and memory address infor-mation. Instead of
onsidering a tra
e as a stream of symbols, TWPP+ divides a
omplete tra
e into a
ontrol
ow tra
e part and a memory dependen
e tra
e part;ea
h part is then reorganized to allow fast retrieval of information during data
owanalyses. Exe
ution pro�les
an thus be integrated to help a broad range of
ompileranalyses and optimizations. Three di�erent appli
ations are shown to demonstratethe strength of this new representation.A type-based value pro�ling framework is developed to help identify redundan
y indata values and thus design new data
ompression te
hniques for improving memorybehavior. Two types of redundan
ies are identi�ed in representations of small valuesand pointer addresses respe
tively. Both software and hardware approa
hes are pro-posed and evaluated to exploit these opportunities. The software approa
h throughdata
ompression transformations greatly redu
es the memory footprint and speedsup the program exe
utions with the help of six spe
ially designed data
ompressioninstru
tions. The hardware approa
h employs
ompression to enable partial
a
heline prefet
hing resulting in
onsistent improvements in the program's exe
ution timeand redu
tion in memory traÆ
.

13
Chapter 1Introdu
tionTraditionally
ompile-time optimization algorithms are applied only in situationswhere it is known that the optimization is de�nitely appli
able and will generatebene�
ial results. However, su
h a
onservative approa
h fails to exploit many valu-able optimization opportunities. A pro�le-guided optimizer uses the information ofa program's past exe
utions in two ways to aggressively optimize the program. Firstthe pro�les
an be used to identify new optimization opportunities that are frequentlyobserved during program exe
ution but are not dete
ted by stati
 analyses. Se
ondthe pro�les
an be used to
arry out sophisti
ated
ost-bene�t analysis to apply trans-formations that improve the performan
e of one part of the program at the expenseof a performan
e loss in another part of the program.

instrumentation

tool
.c files

instrumented

.c files compiler
instrumented

object code

program

execution

profile

data profile-guide

optimizing

compiler

optimized

object code

dynamic

data

program execution
result

collecting profiles

profile-guided

optimization

real execution

Figure 1.1. Overview of pro�le-guided
ompilation.Figure 1.1 summarizes the steps of a typi
al pro�le-guided
ompilation. Beforeperforming any optimization, an instrumented version of the program is generated.

14The instrumented program is exe
uted on one or more sets of representative inputsand the pro�les for these exe
utions are
olle
ted. With the help of pro�les, an op-timizing
ompiler re
ompiles the program and generates the optimized obje
t
ode.The optimized obje
t
ode is then used in all future exe
utions with real inputs. Typ-i
ally, simple representative sets of inputs are used in
olle
ting pro�les and pro�lingexe
utions are mu
h shorter than real exe
utions. During the exe
ution, the amountof pro�le data that is generated from a pro�ling exe
ution is signi�
antly less thanthat from a real exe
ution.1.1 Program pro�ling and pro�le guided optimizationsThere is a
lose intera
tion between the resear
h in program pro�ling and the resear
hin the development of new pro�le guided optimization te
hniques. Advan
es in onearea help
reate advan
es in the other, and vi
e versa.On the one hand, one resear
h trend in pro�ling is to
olle
t more kinds of detailedand a

urate pro�ling information from whi
h more optimization opportunities
an bedis
overed. Powerful optimization algorithms
an then be developed to exploit theseopportunities. On the other hand, with the rapid advan
es in
omputer ar
hite
tureand system designs, many kinds of optimization opportunities are known to exist inmany programs. However, pro�ling te
hniques are needed to
olle
t information that
an guide the design of
ost-bene�t analyses to e�e
tively exploit these opportunities.Let us
onsider the situations where pro�ling resear
h has greatly in
uen
ed opti-mization resear
h. Simple pro�les were
olle
ted in earlier days and they worked wellin �nding more optimization opportunities than stati
 analyses. For example nodepro�les
onsisting of exe
ution frequen
ies of basi
 blo
ks in a
ontrol
ow graphwere
olle
ted. Compilers
ould be dire
ted to optimize most frequently exe
utedregions so that for a given �xed amount of
ompilation time, the improvement inprogram performan
e
ould be maximized. Slightly more
ompli
ated edge pro�les,

15whi
h
ount the exe
ution frequen
ies of ea
h edge in a
ontrol
ow graph,
an beused to enable more
omplex optimizations (e.g., Young et al. [62℄ proposed the useof edge pro�les for interpro
edural bran
h alignment). More
omplex path pro�les[4℄, whi
h
onsist of exe
ution frequen
ies of a
y
li
 sequen
es of basi
 blo
ks arealso
olle
ted. Gupta et al. [22, 24, 23℄ used path pro�les to enhan
e traditionaloptimization te
hniques as well as develop new ones.Now let us
onsider some situations in whi
h optimization resear
h has drivenresear
h into new pro�ling te
hniques. Programs and ar
hite
tures are in
reasing in
omplexity and
reating new
hallenges for developing optimizing
ompilers. Dynam-i
ally allo
ated data obje
ts are frequently used and they often lead to poor
a
heperforman
e. A better data layout s
heme
ould greatly redu
e the number of
a
hemisses and improve the overall performan
e. However, to assist the design of di�erentmemory layout optimizations, new types of pro�ling te
hniques are needed. Calderet al. [13℄ suggested to
olle
t a temporal relation graph (TRG) whi
h summarizesthe usage relationship between di�erent obje
ts. New memory allo
ation poli
y
anthen be designed to allo
ate aÆliated obje
ts
lose to ea
h other. Re
ent resear
h re-veals that dynami
 optimizations, whi
h optimize the program during the exe
ution,have many advantages. However, given the restri
ted runtime
onstraints, there isdemand for new pro�ling te
hniques whi
h are
heap and yet suÆ
iently a

urate. Tosupport optimization in a dynami
 optimization environment, Arnold [2℄ proposed a
ounter-based sampling te
hnique that
an perform e�e
tive runtime pro�ling.1.2 Overview of the resear
hThis dissertation further illustrates the
lose intera
tion between resear
h in pro�lingte
hniques and pro�le-guided optimization opportunities. It designs and evaluates
ompressed representation for pro�ling data allowing pro�le-guided optimizations tobene�t from this advan
e in program pro�ling. The newly developed representation

16is demonstrated to help in the design of new optimization algorithms. A type-basedvalue pro�ling te
hnique is also developed su
h that new data
ompression te
hniques
an be designed to exploit value redundan
y present in program data.1.2.1 Representation of pro�ling dataTraditional
ompiler optimizations perform data
ow analyses based on program
on-trol
ow graphs. A re
ent advan
e in pro�ling proposed
olle
tion of the whole pro-gram path (WPP) pro�les [32℄ whi
h is a
ompressed form of the program's
ontrol
ow tra
e. Although WPP
ontains
omplete and a

urate dynami

ontrol
owinformation, it
an be up to several gigabytes in un
ompressed form and hundredsof megabytes in
ompressed form. Information retrieval is very slow using WPP.As a result, it is diÆ
ult for
ompiler optimizations to take advantage of this newadvan
e in program pro�ling. Moreover, data dependen
e information is needed forinferring
ertain data
ow fa
ts. In this dissertation, a new representation TWPP+is proposed to address these problems. Given a
omplete program tra
e that
ontains
ontrol
ow tra
e and address tra
e, TWPP+ expli
itly separates the
ontrol
owand memory dependen
e information from ea
h other. Ea
h type of information isorganized in a way that assists later
ompiler analyses and optimizations. Figure 1.2
ompares this new representation with the whole program path (WPP) te
hnique.While the WPP representation tries to a
hieve the highest possible
ompression ra-tio, the new representation puts more emphasis on a

essibility, that is, the easeuse of the information. Besides, the WPP representation does not
onsider dynami
memory dependen
e information whi
h is also very important for some analyses andoptimizations.

17
size

compaction

accessibility

online

construction

WPP

TWPP+

memory

dependences

Figure 1.2. Comparison with whole program path.1.2.2 Pro�ling for value redundan
y dete
tionOver the last de
ade, while the pro
essor speed has been improved 55% ea
h year, thememory speed has been improved only 7% ea
h year [43℄. As a result, the memorysystem has be
ome a major bottlene
k in improving system performan
e. The situ-ation is worsened by the fa
t that ma
hine word size has in
reased from 8 bits to 64bits. Re
ent resear
h [64, 61℄ has found that there is a signi�
ant level of redundan
yin dynami
 value representation. Figure 1.3 shows that for a 32-bit ma
hine, and fora spe
trum of ben
hmark programs, on an average 59% of all a

essed 32-bit values
an be e�e
tively represented by half of their original size, that is, using 16 bits.
olden.bisort

olden.health

olden.mst

olden.perimeter

olden.treeadd
olden.tsp

olden.voronoi

spec2000.176.gcc

spec2000.181.mcf

spec2000.300.twolf

spec95.099.go

spec95.124.m88ksim

spec95.126.gcc

spec95.130.li

spec95.132.ijpeg
Average

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 A

pp
ea

re
d

V
al

ue
s

compressible values
incompressible values

Figure 1.3. Values
ompressible to half of their size.By removing redundan
y through dynami
 data
ompression,
a
he performan
e
ould be greatly improved. However, there are no available pro�ling te
hniques aimedat
at
hing this type of optimization opportunity. Moreover,
riti
al runtime
on-

18straints restri
t the runtime appli
ation of traditional
ompression te
hniques. Inthis dissertation, a new type-based pro�ling te
hnique is developed to assist in thedesign of new dynami
 data
ompression te
hniques. The potential of the new
om-pression is further exploited through both software and hardware te
hniques.1.3 OrganizationThe rest of this dissertation is organized as follows. Ba
kground resear
h on programpro�les and pro�le-guided optimizations is presented in Chapter 2. A timestampedwhole program path (TWPP+) representation for
ompressing program pro�les is de-veloped and evaluated in Chapters 3, 4 and 5. Chapter 3 dis
usses how to
ompress
ontrol
ow tra
es into TWPP. Chapter 4 enhan
es TWPP to in
lude
ompressedmemory dependen
e pro�les. Three appli
ations are dis
ussed in Chapter 5 to illus-trate the use of information
ontained in a TWPP+ representation.A type-based pro�ling te
hnique for �nding value representation redundan
y isproposed in Chapter 6. Using the data
olle
ted from pro�ling, both software andhardware data
ompression te
hniques are developed to exploit the opportunities inremoving value representation redundan
y. The software approa
h based upon data
ompression transformations, is dis
ussed in Chapter 7. The hardware approa
h thatemploys
ompression to enable partial
a
he line prefet
hing, is dis
ussed in Chapter8. Con
lusions and future resear
h are dis
ussed in Chapter 9.

19
Chapter 2Ba
kgroundIn this
hapter, an overview of program pro�ling and pro�le-guided optimization isgiven. Se
tion 2.1 reviews the types of program pro�les and the
ommonly used te
h-niques to
olle
t program pro�les. In se
tion 2.2 di�erent pro�le-guided optimizationte
hniques using these pro�les are brie
y reviewed.2.1 Program pro�lesProgram pro�les provide summary information on past program exe
utions. In pra
-ti
e, di�erent types of pro�les are
olle
ted at di�erent levels of granularity and usedto guide di�erent program optimizations.2.1.1 Type of pro�lesThree types of pro�les are usually used in pra
ti
e:
ontrol
ow pro�les, value pro�lesand address pro�les.Control
ow pro�les. Programs are usually represented by their
ontrol
ow graphs(CFGs) during
ompiler analyses and optimizations. A
ontrol
ow tra
e (CFT) re-members, in their exe
ution order, all visited basi
 blo
ks in the CFG. By examininga CFT we
an
ompute the exe
ution frequen
y of any given program subpath. Asexpe
ted CFTs
an be extremely large in size and a number of approximations ofCFT have been proposed and used to dire
tly measure the exe
ution frequen
ies ofsele
ted program subpaths. These pro�les di�er in the degree of approximation in-volved and the
osts for
olle
ting them. The proposed approximations of
ontrol
ow pro�les in
lude the following:

20- Node pro�les provide the exe
ution frequen
ies of the basi
 blo
ks in the
ontrol
ow graph. Su
h pro�les are adequate for some optimizations.- Edge pro�les provide the exe
ution frequen
ies of ea
h edge in the
ontrol
owgraph. The overhead for
olle
ting edge pro�les is
omparable to node pro�les.However, edge pro�les are superior to node pro�les be
ause edge pro�les
an-not always be
omputed from node pro�les while node pro�les
an always be
omputed from edge pro�les. Edges pro�les are widely used.- Two-edge pro�les [36℄ provide the exe
ution frequen
ies of ea
h pair of
onse
-utive edges in the
ontrol
ow graph. Edge pro�les
an always be
omputedfrom two-edge pro�les but the reverse is not true. Two-edge pro�les derive theirin
reased power from their ability to
apture the
orrelation between the exe-
utions of
onse
utive
onditional bran
hes and they are used in a probabilisti
data
ow analysis framework [36℄ for
omputing frequen
ies of data
ow fa
ts.- Path pro�les [4℄ provide the exe
ution frequen
ies of subpaths in the
ontrol
ow graph that are a
y
li
 and intrapro
edural. Sin
e a path is a
y
li
, it doesnot in
lude a loop ba
k edge and sin
e it is intrapro
edural, it terminates ifan entry or an exit node of a pro
edure is rea
hed. Path pro�les are morepre
ise than two-edge pro�les for a
y
li

omponents of a
ontrol
ow graphbe
ause they
apture
orrelation a
ross multiple
onditional bran
hes withinan a
y
li
 graph. However, two-edge pro�les
an
apture
orrelation among apair of
onditional bran
hes along a
y
li
 and interpro
edural paths while pathpro�les
annot do so.Sin
e all of above pro�les are approximations of original tra
es, some resear
hhas been done to evaluate how they di�er from ea
h other. Ball et al. [5℄ gave analgorithm to estimate the lower and upper bounds of path frequen
ies from edgepro�les. Their results show that if a large per
entage of a program's total
ows are

21de�nite, the estimated path frequen
ies from edge pro�les
an still identify hot paths.Otherwise more powerful path pro�les should be used to identify hot paths.Approximations are used in above pro�les be
ause the
omplete tra
e is large andit was believed to be too expensive to
olle
t and use. This problem was addressed byLarus in [32℄. He proposed to
olle
t and
ompress the
omplete
ontrol
ow graphtra
e using the Sequitur [40℄ algorithm. The
ompression result, identi�ed as thewhole program path, is a
ontext free grammar that generates a single string whi
h isthe original
ontrol
ow tra
e for the program. The redundan
y in the original tra
e
omes from frequently exe
uted subpaths and it is removed by
reating and reusingprodu
tion rules.Value pro�les. Value pro�les identify the spe
i�
 values en
ountered as operandsof an instru
tion and the frequen
ies with whi
h these values are en
ountered. Theexample in Figure 2.1 illustrates the form of these pro�les.
Code:

…...

I1: load R3, 0(R4)

I2: R2 R3 & 0xff

(instruction, register) Profiles (value,freq)

(I1,R2) (0,1000)

(I2,R3) (0,100),(0x8900,200),…,(0x2900,100)

(I1,R3) (0xb8d003400,10) ...

... ...

Value profile:

Figure 2.1. Value pro�les.Sin
e the number of instru
tions in a program is large, and ea
h operand of aninstru
tion may potentially hold a very large number of values,
olle
tion of
ompletevalue pro�les is not pra
ti
al. Therefore to redu
e the size of the pro�le data and theexe
ution time overhead of pro�ling, the following two steps are taken.First only the most frequently appearing N values are
olle
ted for a given operand.Calder et al.[11℄ have proposed maintaining a top-n-value table (TNV) for a registerbeing written by an instru
tion. Ea
h TNV table entry
ontains a pair of values:

22the value and the frequen
y with whi
h that value is en
ountered. A least frequentlyused (LFU) repla
ement poli
y is used to
hoose an entry for repla
ement when thetable is full. If we ex
lusively use the LFU poli
y for updating the TNV, the valuesthat are en
ountered later in the exe
ution may not be able to reside in the tableeven if they are frequently en
ountered. This is be
ause they may be repeatedlyrepla
ed. To avoid this situation, at regular intervals the bottom half of the tableis
leared. By
learing part of the table, free entries are
reated that
an be usedby values en
ountered later in the program. Both the number of entries in the tableand
learing interval are
arefully tuned to get good results. Colle
ting only the topN values not only redu
es the pro�ling overhead, but also makes
onvergen
e to asteady state faster.The se
ond
omplimentary approa
h in redu
ing pro�ling overhead is to
olle
tvalue pro�les for only interesting instru
tions. Watterson and Debray [58℄ use a
ost-bene�t model to identify interesting instru
tions. The
ost is that to test whether aregister has a spe
ial value; the bene�t is the dire
t and indire
t instru
tion savingsthat
an be a
hieved by optimizing the program with this information. Control
owpro�les are
olle
ted �rst to
arry out
ost-bene�t analysis and to identify
andidatesfor value pro�les.Address pro�les. Address pro�les
an be
olle
ted in the form of a stream ofmemory addresses that are referen
ed by a program. These pro�les are usually usedto apply data layout and pla
ement transformations for improving the performan
eof the memory hierar
hy. Depending upon the optimization, the address tra
es
anbe
olle
ted at di�erent levels of granularity. At the �nest level of granularity, ea
hmemory address
an be tra
ed. Coarser level tra
es re
ord referen
es to individualobje
ts rather than individual addresses.A
omplete address tra
e of a program run
an be extremely large. In order to
ompress the size of the address tra
e, Chilimbi [15℄ has proposed using the Sequitur

23algorithm to generate a
ompressed whole program stream (WPS) representation ofthe address tra
e in mu
h the same way as Sequitur is used to
ompress a program's
ontrol tra
e. To guide the appli
ation of data layout and pla
ement transformations,the WPS representation is analyzed to identify hot address streams. These streamsrepresent subsequen
es of addresses that are en
ountered very frequently during theprogram run.
Declarations:

int flag;

int *pa,*pb,*pc,*pd;

int buf[2000];

…

int xa,xb,xc,xd;

Sample code:

for(i=0;i<2000;i++) {

 swtich (flag) {

 case 1:

 xa = *pa; … ; break;

 case 2:

 xb = *pb; … ; break;

 case 3:

 xc = *pc; … ; break;

 case 4:

 xd = *pd; … ; break;

 }

 ….

 pa = buf[i]

 ….

}

Relationship Profiles(frequency)

(A(xa),A(pa)) 500

(A(xb),A(pb)) 20

(A(xc),A(pc)) 2

(A(xd),A(pd)) 10

…. ….

(A(pa),A(buf)) 2000

Address profile:

Figure 2.2. Address pro�les.While the above approa
h �rst
olle
ts
omplete address pro�les and then pro-
esses them to identify information useful in guiding data layout and pla
ement trans-formations, another approa
h is to dire
tly identify the useful information. Calderet al. [13℄ have proposed an algorithm based upon su
h an approa
h. The infor-mation that they
olle
t is represented by a graph named the temporal relationshipgraph (TRG). The nodes in this graph are data items of interest. Weighted links areestablished between pairs of nodes. If referen
es to a pair of data items are sepa-rated by fewer than a threshold number (say N) of other data referen
es, then theweight asso
iated with the link between the two items is in
remented. To maintainthe weights of all the links, an N-entry queue is maintained whi
h re
ords the latest

24N data items that are referen
ed by the program. The weights on the links at the endof the program run
an be used by the
ompiler to identify data items that shouldbe pla
ed
lose to ea
h other for a
hieving good
a
he behavior. Figure 2.2 shows anexample of the information
olle
ted using this approa
h.2.1.2 Colle
ting pro�lesPrograms have to be exe
uted in order to
olle
t the program pro�les. Three ap-proa
hes are
ommonly used in pra
ti
e for
olle
ting pro�les.Instrumentation of the original program with new
ode to generate the pro�ledata is the most widely used method. The introdu
ed instrumentation
ode dependsupon the types of pro�les being
olle
ted. There are two possible ways to insertthe instrumentation
ode. One way is to instrument at sour
e or intermediate
odelevel by modifying
ompilers [54, 55℄. The instrumented sour
e programs are then
ompiled normally to generate the exe
utable
ode. The other way is to use a binarylevel instrumentation tool [19, 51℄ and insert the
ode dire
tly into the exe
utable
ode. While high level instrumentation
an tra
e semanti
 information more easily,lower level instrumentation is sometimes easier to use and
exible.The instrumented program is slower than the original version. While usually, theoverhead of instrumented
ode is linear in the length of the exe
ution, te
hniques havebeen proposed to redu
e its overhead. Sarkar [48℄ proposed a te
hnique to redu
e theoverhead in
olle
ting
ontrol
ow pro�les. A
ounter is introdu
ed for ea
h
ontroldependen
e region in the program; sin
e they are far fewer than the basi
 blo
ks, thepro�ling overhead is redu
ed. Ball et al. [4℄ presented an algorithm to redu
e thenumber of pro�ling points during the
olle
tion of path pro�les.Hardware pro�ling
olle
ts exe
ution pro�les with hardware support. Most mod-ern pro
essors [37, 26, 27℄ provide some hardware me
hanisms for
ounting varioustypes of dynami
 information, su
h as
a
he misses, memory
oheren
e operations,

25bran
h mispredi
tions, and issued and
ommitted instru
tions. MIPS R10000 [37℄provides two 32-bit
ounters whi
h
an be used by the user to monitor 30 di�erentevents. Similarly, the event monitoring me
hanism in the Intel Pentium 4 and Xeonpro
essors [27℄ provides the
exibility to use 18 performan
e
ounters and to sele
t45 di�erent events to be monitored. Hardware pro�ling is easy to use and in
urs theleast overhead. However, the
ounter based hardware pro�ling approa
hes la
k the
exibility to monitor new events.Simulation is another widely used approa
h in
olle
ting and studying programpro�les. It is espe
ially important if we are studying the software and hardware in-tera
tions or if the target ar
hite
ture does not exist. For example, Simples
alar [10℄,FAST [41℄ and RSIM [42℄ are
y
le level ar
hite
tural simulators; they provide waysto spe
ify the features of simulated ar
hite
tures. The advantage of this approa
h isthat we
an run the same program many times with di�erent hardware
on�gurationsand study software and hardware intera
tions. The disadvantage is that it is veryslow.2.2 Pro�le guided optimizationsDi�erent types of pro�les are used to expose di�erent optimization opportunities andassist in the development of di�erent optimization te
hniques. These opportunitiesbe
ome available be
ause of the dynami
 inequality
hara
teristi
s, e.g. some pathsare exe
uted more frequently than others, some variables are nearly
onstant, somedata obje
ts are referen
ed together, et
. A more pre
ise
ost-bene�t model
ouldbe set up to evaluate this inequality and optimization transformations
ould thusbe developed to generate more eÆ
ient
ode. This se
tion reviews the optimizationte
hniques proposed in the literature.

262.2.1 Pro�le guided
ontrol
ow related optimizationsControl
ow pro�les are most widely used in optimization. Te
hniques are designedthrough
ode spe
ialization, a te
hnique that
reates both optimized and unoptimized
opies of statements and appropriate
opy of the statement is exe
uted dependingupon the
onditions that hold. Di�erent
ode spe
ialization algorithms are
atego-rized primarily into two
lasses of transformations that are used to
arry out
oderepli
ation and enable spe
ialization of
onditionally optimizable
ode:
ode motionof di�erent types and
ontrol
ow restru
turing with varying s
ope.The basi
 form of
ode motion, namely safe
ode motion, in addition to honoringthe program's data dependen
es, guarantees that for every exe
ution of a statementduring the exe
ution of the optimized
ode, there exists a
orresponding exe
utionof the statement during the exe
ution of the unoptimized
ode. As a
onsequen
e, itmust be the
ase that if an ex
eption o

urs during the exe
ution of optimized
ode,it would have also o

urred during the original exe
ution. Hardware support presentin modern pro
essors su
h as IA-64 [21℄ allows relaxation of the above
onstraint.In parti
ular, spe
ulative
ode motion allows the
ompiler to introdu
e exe
utionsof a statement in the optimized
ode that are not present in the unoptimized
ode.Predi
ated
ode motion [21℄
reates more opportunities by moving
ode out of
ontrolstru
tures but still under
orre
t predi
ates.Control
ow restru
turing
reates unoptimized and optimized
opies of the state-ment and pla
es them along the in
oming edges. The primary
ost in restru
turing isthe growth of
ode size. Control
ow restru
turing
an be performed at di�erent
on-trol
ow granularities and s
opes. In
reasing the s
ope of restru
turing also in
reasesthe growth of
ode size. Fun
tion inlining is one way to a
hieve interpro
edural
ontrol
ow restru
turing. To limit
ode growth while performing interpro
eduraloptimizations a
ouple of alternative te
hniques have been proposed: partial inliningof frequently exe
uted paths through a pro
edure [25℄ and
reating pro
edures with

27multiple entries and multiple exits [6℄.Existing transformations are enhan
ed and new transformations are developedto take advantage of pro�les. They are used to develop a more pre
ise
ost-bene�tmodel and estimate whether the bene�t a
hieved from a parti
ular transformationoutweighs the
ost that it introdu
ed. For example, partial redundan
y elimination(PRE) is traditionally performed using safe
ode motion [29℄. The use of spe
ulationwas �rst proposed in [24, 23℄. A
ontrol
ow restru
turing approa
h was proposed in[52℄. A
ombination of all above transformations to a
hieve greater bene�ts at lower
ost is dis
ussed in [7℄.2.2.2 Pro�le guided value optimizationsValue pro�les
an be used to identify almost invariant variables for
onstant fold-ing, strength redu
tion,
ode spe
ialization, adaptive exe
ution and guiding dynami

ompilation.Muth, Watterson and Debray [39℄ introdu
ed a value pro�le based
ode spe
ial-ization te
hnique whi
h has in three steps. First, using basi
 blo
k pro�les, programpoints and registers are identi�ed where spe
ialization might be pro�table. Se
ondvalue and expression pro�les are obtained for these program points. Third, these
olle
ted pro�les are used to
arry out spe
ialization for those program points thatare deemed pro�table.Dynami
 optimization [3℄ and adaptive exe
ution [28℄ generate spe
ialized
odeeither from s
rat
h or from a stati
ally generated template. Value pro�les
an helpto identify the semi-invariant variables stati
ally and redu
e greatly the optimization
ost at runtime.Calder and Feller et al. [12℄ dis
ussed di�erent
omputer ar
hite
ture
omponentsthat
an bene�t from value pro�les. Hardware value predi
tors [34℄, for example,
an bene�t in several ways from value pro�les. By
lassifying instru
tions into pre-

28di
table, not predi
table, or hard to predi
t, one
an determine whi
h instru
tionsto stati
ally predi
t or not to predi
t. Value pro�ling
an even be used to
lassifyinstru
tions indi
ating whi
h type of predi
tor would better predi
t the instru
tion ina hybrid predi
tor. This in
reases the predi
tion a

ura
y and de
reases the
on
i
tsor aliasing in a predi
tion table.2.2.3 Pro�le guided memory optimizationsOver the past de
ade, while the pro
essor speed have risen by 55% ea
h year, thememory speeds have only improved by 7% ea
h year. As a result, the memory be
omesa major bottlene
k in performan
e improvement and so has drawn a lot of attention.The te
hniques proposed to optimize memory performan
e span a wide range of
ategories.� Obje
t pla
ement. This type of te
hnique determines a better pla
ements
heme of data obje
ts to improve
a
he behavior. Memory forwarding pro-posed by Luk and Mowry [35℄ atta
hed one bit to ea
h word in the memory.An obje
t
an be migrated dynami
ally a

ording to its runtime behavior. Afterits migration, the memory address where it previously resided saves an indire
tpointer to the new address. The additional bit is set to indi
ate that the ob-je
t has moved. Other approa
hes try to pla
e an obje
t in a desired pla
es.C
mallo
 [17℄ for example enhan
ed the system memory allo
ator by one moreparameter used as its parent pointer. Whenever possible, the new obje
t ispla
ed into the same
a
he blo
k as the existing obje
t. The address pro�les
an be used to identify obje
ts that are a

essed
ontemporaneously.� Obje
t layout. This type of te
hnique determines a layout of �elds within alarge data obje
t to improve
a
he lo
ality. A data stru
ture is often de�nedby the programmer to support
ode readability. The
ompiler simply uses amemory layout for the �elds whi
h mirror the order they are de
lared. However,

29
(a) Unoptimized (b) OptimizedFigure 2.3. A

mallo
 example.this order may not be
onsistent with the order that in
urs fewer
a
he misses.Truong et al. [56℄ evaluated an approa
h to reorder the �elds and showed that anode that spans several
a
he blo
ks
an take advantage of
a
he line prefet
hingand redu
e
a
he pollution, thus improving
a
he performan
e.� Hybrid s
heme. This type of te
hnique
ombines the obje
t pla
ement andlayout approa
hes to further improve the performan
e. In [16℄, obje
t splittingte
hnique was proposed to split an obje
t into two parts: the hot primary partand the
old se
ondary part. Hot �elds are a

essed dire
tly while the
old onesare a

essed through a pointer stored in the hot part. Lo
ality is improved byredu
ing the data obje
t size and bene�ts most memory a

esses for hot �elds.

30
Chapter 3Compressing the
ontrol flow tra
eA
ontrol
ow tra
e is a sequen
e of basi
 blo
k instan
es in their exe
ution order.Node, edge or path pro�les
an be viewed as lossy
ompressed representations of the
ontrol
ow tra
e. Until re
ently, it was believed that a
omplete
ontrol
ow tra
e istoo expensive to
olle
t and use. However, Larus [32℄ re
ently demonstrated that it isfeasible to e�e
tively
olle
t a whole program path (WPP), whi
h is the
ompressedform of a
omplete
ontrol
ow tra
e. By using the Sequitur [40℄ algorithm, Larusshowed that a
ontrol
ow tra
e whi
h is typi
ally very large (100's of MBytes),
anbe
ompressed (10's of MBytes) and saved for future analysis.While the
ompression algorithm proposed by Larus is highly e�e
tive, the
om-pression is a

ompanied with a loss in ease of a

essibility to information. For ex-ample, path tra
es pertaining to a parti
ular fun
tion
annot generally be obtainedwithout examining the entire
ompressed WPP representation. This is a seriousdrawba
k be
ause typi
ally an appli
ation using the WPP
an be expe
ted to makea series of requests for pro�le data for individual fun
tions, that is, ea
h request asksonly for a small subset of the overall information
ontained in a WPP. Repeated ex-tra
tion operations to satisfy these requests are likely to result in high analysis time
osts. Therefore it is important to design a representation from whi
h path tra
es ofindividual fun
tions
an be rapidly a

essed.The above loss of a

essibility is a natural
onsequen
e of of treating the entire
ontrol
ow tra
e as a single data stream during
ompression. As a result the in-formation
orresponding to a given fun
tion is s
attered throughout the
ompressedtra
e and
an in general be lo
ated only by examining the entire
ompressed tra
e.In order to solve this problem a new
ompression approa
h is proposed in this

31dissertation whi
h aims at simultaneously redu
ing the size of the
ontrol
ow tra
eand providing easy a

ess to subsets of information within the
ompressed tra
e. Theapproa
h organizes the information
ontained in a
omplete tra
e as follows. The
ontrol
ow tra
e is �rst broken into path tra
es
orresponding to individual fun
tion
alls, and all of the path tra
es for a given fun
tion are stored together as a blo
k.Therefore information regarding a spe
i�
 fun
tion
an be readily a

essed. In orderto ensure that the
omplete
ontrol
ow
an be re
onstru
ted from individual pathtra
es, a dynami

all graph whi
h links the path tra
es together is also maintained.The detailed
ompression algorithm for
ontrol
ow tra
es is presented in this
hapter.The rest of this
hapter is organized as follows. Se
tion 3.1 introdu
es the newtimestamped whole program path (TWPP) representation. The algorithm steps aregiven to
onvert a
ontrol
ow tra
e into the �nal representation. Se
tion 3.2 presentsthe experimental results,
omparing the
ompression ratio as well as the a

ess timeusing di�erent
ompression algorithms. Se
tion 3.3 summarizes the
hapter.3.1 TWPP: Timestamped whole program pathAs mentioned earlier, a whole program path (WPP) is the
ompressed form of a
ontrol
ow tra
e from a program exe
ution. Consider the program and a sample
ontrol
ow tra
e shown in Figure 3.1. The tra
e shows that the loop in main iterates5 times and in ea
h iteration the fun
tion f is
alled. The loop in fun
tion f iterates 3times for ea
h
all. Looking at the WPP for a small program we observe two things:WPPs for real appli
ations
an be expe
ted to be quite large (e.g., 100's of MBytes)and in its
urrent linear form WPP is diÆ
ult to use (e.g., in order to extra
t tra
einformation for a subpath in main or fun
tion f, we must examine the entire WPP).Next we present a step by step transformation of the above WPP to a
hieve twogoals:
ompa
tion of the WPP to redu
e memory requirements and organization ofthe WPP information for faster a

ess to path tra
es of individual fun
tions.

32

main(1.2.3.f(1.2.7.8.9.6.2.7.8.9.6.2.7.8.9.6.10).4.

2.3.f(1.2.7.8.9.6.2.7.8.9.6.2.7.8.9.6.10).4.

2.3.f(1.2.7.8.9.6.2.7.8.9.6.2.7.8.9.6.10).4.
2.3.f(1.2.3.4.5.6.2.3.4.5.6.2.3.4.5.6.10).4.

2.3.f(1.2.3.4.5.6.2.3.4.5.6.2.3.4.5.6.10).4.6)

1

2

5

4

3 f()

main

6

1

4

2

3 7

6

10

5 9

8

f()

Figure 3.1. An un
ompa
ted
ontrol
ow tra
e.Partitioning WPP into path tra
es. We partition the WPP into path tra
es
orresponding to individual fun
tion
alls and all of the path tra
es for a given fun
-tion are stored together as a blo
k. Therefore information regarding a spe
i�
 fun
tion
an be readily a

essed. In order to ensure that the
omplete WPP
an be re
on-stru
ted from individual path tra
es, a dynami

all graph (DCG) whi
h links thepath tra
es together is also maintained. Figure 3.2 shows this representation of theWPP for our example program. Clearly from this representation the WPP form ofFigure 3.1
an be easily
onstru
ted. More importantly one
an rapidly sear
h foro

urren
es of a given path (intrapro
edural or interpro
edural). The path tra
esof interest are lo
ated and then examined for desired information. To sear
h for ano

urren
e of a path in main we need to only examine one-sixth of the total tra
e inFigure 3.2.

33

f f f ff

main

1.2.7.8.9.6.2.7.8.9.6.2.7.8.9.6.10

1.2.7.8.9.6.2.7.8.9.6.2.7.8.9.6.10

1.2.3.4.5.6.2.3.4.5.6.2.3.4.5.6.10

1.2.7.8.9.6.2.7.8.9.6.2.7.8.9.6.10

1.2.3.4.5.6.2.3.4.5.6.2.3.4.5.6.10

1.2.3.4.2.3.4.2.3.4.2.3.4.2.3.4.6

Path TracesDCG

Figure 3.2. WPP organized using the DCG.

f f f ff

main 1.2.3.4.2.3.4.2.3.4.2.3.4.2.3.4.6

1.2.7.8.9.6.2.7.8.9.6.2.7.8.9.6.10

1.2.3.4.5.6.2.3.4.5.6.2.3.4.5.6.10

Path TracesDCG

Figure 3.3. WPP after redundant path tra
e removal.

34Eliminating redundant path tra
es. The WPP
an be greatly redu
ed in sizeby eliminating dupli
ate path tra
es generated by di�erent
alls to the same fun
tion.In Figure 3.2,
orresponding to the 5
alls to fun
tion f, there are only two unique pathtra
es. Therefore the WPP representation
an be transformed to eliminate redundantpath tra
es as shown in Figure 3.3. This te
hnique is very e�e
tive be
ause althoughmany fun
tions are
alled numerous times, they tend to follow one of a small subsetof paths through the fun
tion body. For example, in a WPP
olle
ted from exe
utingg

 we found that fun
tion rtx equal p was
alled 355189 times but it generatedonly 35 unique path tra
es.Creating di
tionaries of dynami
 basi
 blo
ks. Another te
hnique that we em-ploy repla
es a sequen
e of stati
 basi
 blo
k ids that
orrespond to a dynami
 basi
blo
k by a single id. A dynami
 basi
 blo
k (DBB) belonging to a path tra
e is asequen
e of stati
 basi
 blo
ks that is always entered from the �rst blo
k and exitedfrom the last blo
k in the path tra
e. Sin
e DBBs
an often appear inside loops, theyare often repeated many times in a path tra
e. Thus, repla
ing them by a single id
an signi�
antly redu
e the size of the WPP.Ea
h path tra
e is pro
essed as follows: a di
tionary of DBBs is
reated by
on-stru
ting a dynami

ontrol
ow graph and �nding
hains of stati
 blo
ks representingDBBs in it. Ea
h DBB is assigned the blo
k id of the �rst stati
 blo
k in it and a
-
ordingly the path tra
e is modi�ed by deleting all but the �rst id in ea
h o

urren
eof a DBB. On
e all
ompa
ted path tra
es and di
tionaries are obtained, dupli
atepath tra
es and di
tionaries are also eliminated. In this transformed form, ea
h nodein the dynami

all graph has an asso
iated tuple (t; d) where t is a path tra
e andd is a di
tionary. Figure 3.4 shows the
hains of stati
 basi
 blo
ks that form dy-nami
 basi
 blo
ks for the three path tra
es in Figure 3.3. After
reating di
tionariesand
ompa
ting path tra
es, we are left with one path tra
e and two di
tionaries forfun
tion f as shown in Figure 3.5.

35

10

1

2

f()

7

8

9

6

1.2.7.8.9.6.2.7.8.
9.6.2.7.8.9.6.10

10

1

f()

2

3

4

6

5

1.2.3.4.5.6.2.3.4.
5.6.2.3.4.5.6.10

2

4

3 f()

6

1.2.3.4.2.3.4.2.3.4.
2.3.4.2.3.4.2.3.4.6

1

main

Figure 3.4. DBBs and dynami

ontrol
ow graphs.

1.2.2.2.10

2 2.3.4.5.6

2 2.7.8.9.6

f f f ff

main

2 2.3.41.2.2.2.2.2.6

DBB DictionariesPath TracesDCG

Figure 3.5. WPP after
reating di
tionaries of DBBs.

36Timestamped WPP representation. In the WPP representation des
ribed sofar, the exe
ution tra
e of a given fun
tion invo
ation is represented by a sequen
e ofbasi
 blo
ks visited during its exe
ution. While su
h a path tra
e representation isadequate for identifying hot paths through a program, it is not the most appropriatefor performing data
ow analysis. Sin
e pro�le-limited data
ow analysis is
arriedout from the perspe
tive of basi
 blo
ks, it is more appropriate to organize the tra
esfrom the perspe
tive of dynami
 basi
 blo
ks. Next we des
ribe the timestampedWPP (TWPP) representation whi
h a
hieves this goal.The exe
ution of the fun
tion
an be viewed from the perspe
tive of time steps,where ea
h time step
orresponds to the exe
ution of a dynami
 basi
 blo
k. There-fore a path tra
e for a fun
tion
all in a WPP representation
an be viewed as amapping between time steps, or timestamps, and dynami
 basi
 blo
ks. In
ontrast,the TWPPs represent a mapping between dynami
 basi
 blo
ks and an ordered setsof timestamps. Let T , B, and P(T) denote the set of timestamps, set of dynami
basi
 blo
ks, and the power set of timestamps asso
iated with the path tra
e of agiven fun
tion
all f . A path tra
e in WPP and TWPP forms is represented by thefollowing mappings: WPPPathTra
ef : T ! BTWPPPathTra
ef : B ! P(T)Consider the WPP of Figure 3.5. The WPP tra
e 1:2:2:2:2:2:6
orresponds to thefollowing T ! B mapping: f1 ! 2, 2 ! 2, 3 ! 2, 4 ! 2, 5 ! 2, 6 ! 2, 7 ! 6g.When transformed to TWPP form it is represented by the following B ! P(T)mapping: f1 ! f1g, 2 ! f2; 3; 4; 5; 6g, 6 ! f7gg. The
omplete un
ompa
tedTWPP for this example is shown in Figure 3.6.Compa
ting TWPP path tra
es. The path tra
es in TWPP form
an be fur-ther
ompa
ted be
ause often a subsequen
e of timestamp values
orresponding a

37
f f f ff

main

2 2.3.4

2 2.3.4.5.6

2 2.7.8.9.6

B
T

1 2 6
1 7

B
T

1 2
1

10
52.3.4

2.3.4.5.6

DBB DictionariesDCG Path Traces

Figure 3.6. TWPP form.dynami
 basi
 blo
k forms an arithmeti
 series. This situation arises parti
ularlywhen the same path within a loop body is traversed repeatedly during di�erent loopiterations. The subsequen
es that form arithmeti
 series are
ompa
ted yielding asequen
e of entries whi
h are of the following form: l (singleton), l : h (l:l+1:l+2:::h,i.e., series with step 1), or l : h : s (l:l + s:l + 2s:::h, i.e., series with step s). Aswe
an see, depending upon its form, an entry is represented using one, two or threepositive integer values. We store the timestamps
orresponding to a blo
k merely as asequen
e of integers. For
orre
t interpretation of the information we need to en
odethe boundaries that separate the variable length entries. This information is en
odedin the signs (+ or -) of the values and therefore it does not require any in
rease inthe size of the path tra
e. In parti
ular, the last number in a ea
h entry is storedas a negative number. By using the sign to en
ode the end of an entry we limit thelargest timestamp value that is available to us sin
e we
an no longer use unsignedintegers. However, our experien
e with the ben
hmarks
onsidered shows that thetimestamp value does not over
ow be
ause individual path tra
es are mu
h smallerthan the
omplete WPP.Noti
e that the sequen
e of timestamps assigned to dynami
 basi
 blo
k 2 inFigure 3.6 form an arithmeti
 series sin
e blo
k 2 is exe
uted repeatedly during su
-

38
f f f ff

main

2 2.3.4

2 2.3.4.5.6

2 2.7.8.9.6

B
T

1 2 6

B
T

1 2 10

-1

-1 2:-4 -5

2:-6 -7

DCG Path Traces DBB Dictionaries

Figure 3.7. Compa
ted TWPP.
essive loop iterations. Therefore the TWPP
an be
ompa
ted into: f1 ! f�1g,2! f2 : �6g, 6! f�7gg. Noti
e that the last number in ea
h sequen
e is a negativenumber. The
omplete
ompa
ted form of TWPP for our running example is shownin Figure 3.7.It is also possible to in
rease the
ompressibility of timestamps asso
iated withbasi
 blo
ks using a simple te
hnique. Consider a situation in whi
h di�erent pathsthrough a loop body of a fun
tion
ontain di�erent numbers of nodes. For example,in Figure 3.8, there are three paths from A to F: paths ACDF and ACEF
ontainthree nodes while ABF
ontains 2 nodes. Even though nodes A and F are exe
utedalong ea
h of these paths, their timestamps are irregular due to the di�erent numberof nodes along the paths. However, if all paths
ontained the same number of nodes,then no matter whi
h path is taken during ea
h loop iteration, the nodes A and Fwould have had perfe
tly
ompressible series of timestamps. To address this problemwe asso
iated weights to edges where the weights are used to generate timestamps.In parti
ular, the weight of an edge represents the amount by whi
h the timestampis in
remented when the edge is traversed. By assigning weights to edges su
h thatsum of weights of edges along ea
h of the paths through the loop is the same, we
an

39
Trace:

ACDF ABF ACEF

ACEF ABF ACDF

ABF

Node Timestamp

A 1:-5,8:16:-4,19:-23

B 6:-17,-24

C 2:-9,13:-20

D 3:-21

E 10:-14

F 4:-7,11:-15,18:-22,-25

Node Timestamp

A 1:25:-4

B 6:-18,-26

C 2:-10,14:-22

D 3:-23

E 11:-15

F 4:28:-4

Edge Unbalanced TWPP Edge Balanced TWPP (W
BF
 = 2)

A

B C

D E

F

Figure 3.8. Balan
ing example.guarantee that nodes that are visited along ea
h path have
ompressible timestamps.In our example the edge BF is assigned the weight 2 while all the other edges are as-signed the weight of 1 in order to balan
e the paths. The result is that the timestampsfor nodes A and F
an now be
ompressed and the size of TWPP representation ofnodes A and F is further redu
ed.Compa
ting the DCG. The dynami

all graphs resulting from exe
utions oflarge appli
ation programs
an also be quite large. Therefore in addition to
om-pa
ting the path tra
es, we also
ompress the DCG. For this purpose we
onsideredthe popular di
tionary based approa
hes proposed by Ziv and Lempel [65, 66℄. Inparti
ular, we used Wel
h's variation of Ziv and Lempel's adaptive di
tionary basedte
hnique whi
h is also referred to as the LZW algorithm [60℄.

403.2 Implementation and experimentsThe TWPP algorithm has been implemented and evaluated to
ompa
t whole pro-gram paths for several ben
hmark programs from the SPECint95 suite [50℄. Theoriginal WPPs used in the experiments were generated using the Trimaran
ompilerinfrastru
ture [55℄. A WPP
onsists of two parts: the dynami

all graph (DCG)and the individual tra
es for fun
tion
alls (whi
h are
olle
tively referred to as theWPP tra
es). The sizes of WPPs used in the experiments are shown in Table 3.1.The experiments are aimed at studying the e�e
tiveness of our
ompa
tion te
hniquesin redu
ing memory requirements and the e�e
tiveness of organization of the WPPinformation for faster a

ess.Program DCG WPP Total(MB) tra
es (MB) size (MB)099.go 6.0 170.0 176.0126.g

 34.7 489.5 524.2130.li 6.6 78.3 84.9132.ijpeg 1.7 266.9 268.6134.perl 3.4 41.5 44.9Table 3.1. Sample input tra
es used in the experiments.WPP tra
e after Compa
ted OWPP /Program Redundan
y Di
tionary TWPP tra
e CTWPPremoval - MB
reation - MB - MB099.go 27.0 (x6.30) 17.1 (x1.58) 17.6 (x0.97) 9.7126.g

 86.5 (x5.66) 50.8 (x1.70) 32.9 (x1.54) 14.9130.li 8.5 (x9.21) 5.3 (x1.60) 1.1 (x4.81) 71.2132.ijpeg 28.1 (x9.50) 20.8 (x1.35) 5.7 (x3.65) 46.8134.perl 7.2 (x5.76) 1.7 (x4.24) 0.02 (x85.0) 2075Table 3.2. WPP tra
e
ompa
tion due to various transformations.

41Program Compa
ted Compa
ted TWPP (MB) Total Compa
tionDCG (MB) Tra
es Di
tionaries (MB) fa
tor099.go 6.6 17.6 2.3 26.5 7126.g

 13.8 32.9 4.9 51.6 10130.li 5.3 1.1 0.04 6.4 13132.ijpeg 1.0 5.7 0.6 7.3 37134.perl 0.7 0.02 0.02 0.7 64Table 3.3. Overall
ompa
tion fa
tor.Compa
tion study. Table 3.2 shows the sizes of the WPP tra
es in their variousforms. As we
an see, the three
ompa
ting transformations, removal of redundantpath tra
es,
reation of DBB di
tionaries, and transformation to
ompa
ted TWPPform are all very e�e
tive in redu
ing the WPP tra
e size. The ratio of the sizes oforiginal WPP tra
es (OWPP) and
ompa
ted TWPP tra
es (CTWPP) gives us the
ompression fa
tor whi
h varies from 9.7 to 2075 for our sample tra
es. The sizes ofthe WPP tra
es after ea
h of the three transformations as well as the
ompressionfa
tors
orresponding to ea
h of the transformations are also shown separately inparenthesis in Table 3.2. The results show that ea
h of the transformations is animportant sour
e of
ompa
tion.A large fa
tor of size redu
tion
omes from removing redundant path tra
es (5.66- 9.50). The reason for this large redu
tion be
omes
lear when the data in Figure 5.1is examined. This �gure gives the per
entage of total fun
tion
alls (plotted alongY-axis) that
an be attributed to fun
tions with at most N unique path tra
es (N isplotted along the X-axis). For 130.li, 132.ijpeg, and 134.perl programs 57-80%of all fun
tion
alls are attributable to fun
tions with at most 5 unique path tra
es.For 126.g

 and 099.go over 50% of fun
tion
alls are attributable to fun
tions withat most 25 and 50 unique tra
es respe
tively. Given that the number of fun
tion
allsmade during the runs of these ben
hmarks were in hundreds of thousands, we
an seethat the degree of redundan
y in path tra
es is very high.

42

0 100 200 300
Number of unique traces

0

20

40

60

80

100

%
 o

f t
ot

al
 c

al
ls

099.go
126.gcc
130.li
132.ijpeg
134.perl

Figure 3.9. Tra
e redundan
y.The
reation of di
tionaries results in
ompa
tion of WPP tra
es by fa
tors rang-ing from 1.35 to 4.24. The
onversion into
ompa
ted TWPP form results in furtherredu
tions. For four out of �ve ben
hmarks,
ompa
ted TWPP tra
es provide re-du
tions in the sizes of WPP tra
es by fa
tors ranging from 1.54 to 85. The only
ase in whi
h
ompa
ted TWPP tra
e is slightly larger is the 099.go program wherethe
ompa
ted TWPP tra
e was 3% larger than the
ompa
ted WPP tra
e prior toits
onversion to TWPP form. These results are very en
ouraging be
ause not onlyis the TWPP representation suitable for pro�le-limited data
ow analysis, it is also
ompa
t.The
ompa
ted sizes at di�erent algorithm steps are plotted in Figure 3.10 whi
hgives a visual
omparison. The step to eliminate redundant path tra
es is very ef-fe
tive and the step to
onvert to TWPP representation also
ontributes a lot to the
ompression.The breakdown of di�erent
omponents of a WPP and the overall
ompa
tionfa
tors for the
omplete WPP (DCG + WPP tra
e) are given in the Table 3.3. Forthe sample WPPs used in these experiments the overall WPP
ompa
tion fa
torranges from 7 to 64.

43

099.go
126.gcc

130.li

132.ijpeg
134.perl

0

100

200

300

400

500

600

S
iz

e
(M

B
)

Original trace
After redundancy removal
After creating DBB
Uncompacted TWPP
Compacted TWPP

Figure 3.10. Compa
ted size at ea
h TWPP step.A

ess time study. To study the impa
t of redu
tions in the WPP size on thespeed with whi
h the path tra
es
an be a

essed, an experiment was
ondu
tedwhi
h measured the time it took to extra
t the path tra
es
orresponding to a singlefun
tion from the
omplete WPP. The expe
ted speedups result from two sour
es.First due to the
ompa
tion of the WPP we have to read through a smaller �le.Se
ond the
ontents of the �le are organized to allow faster a

ess. Followed by thedynami

all graph, the path tra
es (in
luding di
tionaries) of the most frequently
alled fun
tion are stored �rst and that of least frequently
alled fun
tion are storedlast. By remembering the position of information for ea
h fun
tion in the �le, andstoring it as a header in the
ompa
ted TWPP �le, the path tra
es for individualfun
tions are rapidly a

essed.Table 3.4 shows the times taken to extra
t a fun
tion's tra
e in the following s
e-narios: extra
tion from un
ompa
ted �le (
olumn U); and extra
tion from
ompa
ted�le (
olumn C). Both the average and maximum times for U and C are given. Onaverage the a

ess times are redu
ed by over 3 orders of magnitude.Larus's Sequitur based
ompression algorithm. For
omparison Larus's
om-pression algorithm whi
h is based upon Sequitur [40℄ was also implemented. This

44Program U (ms) C (ms) Speedupavg. max avg. max C/U(avg.)099.go 5033 8383 8 1438 629126.g

 22879 29672 6 528 3813132.ijpeg 7615 11447 6 258 1269130.li 2390 3263 2 124 1195134.perl 1303 1873 0.2 3 434Table 3.4. Extra
tion times for a single fun
tion.algorithm produ
es the
ompressed WPP representation whi
h is in the form of agrammar that generates a single string - the original tra
e. The Sequitur generatedgrammar representation was
ompared with the TWPPs generated in two ways: theirsizes and the a

ess times to individual fun
tion tra
es.The results of this
omparison are shown in Table 3.5. On average, the totalsize of the grammar produ
ed by Sequitur is smaller than the
orresponding sizeof the
ompa
ted TWPP by a fa
tor of 3.92. Now
onsider the time it takes toextra
t the tra
e
orresponding to a single fun
tion from the
omplete
ompa
tedtra
e. The extra
tion of a fun
tion's tra
e from the Sequitur generated grammaressentially requires two steps: reading in the grammar and then pro
essing it togenerate a subgrammar
orresponding to the fun
tions tra
e. The total time takenfor extra
tion, and the times for ea
h of the steps, are shown in Table 3.5. Thesenumbers represent averages over all fun
tions present in the respe
tive programs.These times range from 10's to 1000's of millise
onds. In
ontrast, the TWPP isso organized that we
an lo
ate and extra
t the tra
e in a few (< 10) millise
onds.The a

ess times for Sequitur grammars are greater than a

ess times of TWPPsby fa
tors ranging from 89 to 553. In summary, although TWPPs are larger in sizeby an average fa
tor of 3.92, they provide a

ess times that are lower by an averagefa
tor of 309. These experiments show that the two representations embody designde
isions with di�erent spa
e time trade-o�s.

45Program Compa
ted size Extra
tion timeSequitur TWPP Sequitur (ms) TWPP(MB) (MB) read+pro
ess=total (ms)099.go 8.4 26.5 622 + 1315 = 1937 8126.g

 11.2 51.6 898 + 2423 = 3321 6132.ijpeg 0.7 6.4 544 + 1650 = 2194 6130.li 7.8 7.3 47 + 132 = 179 2134.perl 0.4 0.7 29 + 30 = 59 0.2Table 3.5. Compa
ted tra
e sizes and extra
tion times.Apart from the di�erent size and a

ess time
hara
teristi
s, the two represen-tations also impa
t on the design of analysis algorithms that will use them. WhileLarus's te
hniques is suitable for analysis of hot paths (i.e.,
olle
tion of data
owfa
ts that hold along frequently exe
uted paths), TWPP representation is suitablefor
olle
ting hot data
ow fa
ts (data
ow fa
ts that hold frequently at various pro-gram points). One of the advantages of our approa
h is that TWPPs are in the formrequired for pro�le-limited analysis. In
ontrast the
ompressed WPPs produ
edby Sequitur require some amount of prepro
essing before they
an be used by anappli
ation.3.3 Con
lusionA new timestamped whole program path representation is proposed in this
hapterto
ompress the
omplete
ontrol
ow tra
e. Without
ompromising a

essibility, ita
hieves e�e
tive size
ompa
tion. The organization of the tra
e information basedupon the dynami

all graph and timestamped dynami
 basi
 blo
ks is parti
ularlyappropriate for performing fast a

esses to path tra
es of a given fun
tion. It
ompa
tsthe original tra
es by fa
tors ranging from 7 to 64 and at the same time speedups ofover 3 orders of magnitude were observed in responses to queries requesting all of thetra
e information of a given fun
tion.

46
Chapter 4Compressing the memory dependen
etra
eIn the pre
eding
hapter, a new timestamped whole program path (TWPP) repre-sentation was proposed to
ompress a
omplete
ontrol
ow tra
e. Compared to theoriginal WPP whi
h is
ompressed by Sequitur, TWPP is more suitable for data
owanalysis. However,
ontrol
ow information alone is not suÆ
ient for inferring
ertaindynami
 data
ow fa
ts. If the data
ow fa
t is related to dynami
ally allo
ated datastru
tures or depends on the dynami
 memory a

esses then
ontrol
ow informationalone is insuÆ
ient. For example, Figure 4.1(a) shows the
ontrol
ow graph of asmall program in whi
h the results from a simple fun
tion and a
omplex fun
tionare assigned to address \p" and \q" respe
tively. If \p" and \q" almost always pointto the same address, it would be bene�
ial to transform the
ode to Figure 4.1(b)in whi
h the
omplex fun
tion is
alled only when the result will not be overwrittenlater. However, if \p" and \q" rarely point to the same address, this transformationshould not be applied sin
e the overhead introdu
ed due to the additional
omparisonwould outweigh the bene�ts.

*p = Fcomplex(..) ;

*q = Fsimple();

B1
if (p != q)

 *p = Fcomplex(..);

*q = Fsimple();

B1

Figure 4.1. Importan
e of data
ow information.The pre
ise dynami
 data
ow
onsists of two types of
ows: those a

essedthrough registers and those a

essed through memory lo
ations. The
ompiler will

47translate a high level variable a

ess into one of these two types. Sin
e most instru
-tions have two or three operands, the size of a pre
ise dynami
 data
ow tra
ing wouldbe about two to three times the exe
ution length. Lu
kily, the data
ows throughregisters are easy to determine, sin
e registers are always a

essed through their ex-pli
it names and therefore the data
ow through registers
an be re
onstru
ted easilyfrom its
ontrol
ow. Only the data
ows through memory lo
ations are impli
it,sin
e the lo
ation is de
ided by the runtime value of the sour
e address register ofa load or the value of the destination address register of a store. Thus, to pre
iselytra
e the dynami
 data
ow, memory addresses in the memory a

ess instru
tions,i.e. the values in the above dis
ussed registers, are tra
ed and saved into a �le.Usually memory address tra
es are mu
h bigger than
ontrol
ow tra
es. It isharder to
ompress a memory address tra
e than it is to
ompress a
ontrol
owtra
e. One reason is that the number of a

essed memory addresses is larger than thetotal number of basi
 blo
ks that a program
an have. Most
ompression algorithms,in
luding Sequitur, are less e�e
tive in handling a stream of text over a huge alphabetand thus do not a
hieve very good
ompression ratios in
ompressing a memoryaddress tra
e. Moreover, a basi
 blo
k id is usually represented by a half-word (16bits or less), while a memory address is represented by a whole word (32 bits).This
hapter will enhan
e the timestamped representation from the pre
eding
hapter to
ompress memory address tra
es with the aim of providing data depen-den
e information during data
ow analysis. The rest of this
hapter is organizedas follows. Se
tion 4.1 dis
usses the
ompression steps in
onstru
ting the enhan
edtimestamped whole program path (TWPP+). The implementation and experimentalresults are shown in se
tion 4.2. Se
tion 4.3 dis
usses the related work. Se
tion 4.4
on
ludes the
hapter.

484.1 TWPP+: TWPP with memory dependen
e edgesGiven a whole program tra
e in whi
h the basi
 blo
k ids as well as memory addressesa

essed within ea
h basi
 blo
k are represented in their exe
ution order, the enhan
edTWPP representation �rst separates the
ontrol
ow tra
e and the memory addresstra
e. The
ontrol
ow tra
e is represented by the TWPP representation introdu
edin the pre
eding
hapter. The memory address tra
e is handled as des
ribed in thefollowing steps.Eliminating expli
it memory addresses. As dis
ussed above, the purpose of in-
luding the memory address tra
e in a whole program path pro�le is to re
onstru
tthe pre
ise and
omplete data
ows for a given exe
ution. In su
h a s
enario, theabsolute addresses themselves are not important { only the load/store dependen
esinstead. Thus the �rst step is to eliminate the expli
it addresses and remember onlydynami
 data
ows.
a = …

b = …
*p = …

*q = …

… = a

… = b

B1

B4

B2 B3

B1 W(a) B2 W(b) B4 R(a) R(b)

B1 W(a) B3 W(b)W(a) B4 R(a) R(b)

B1 W(a) B3 W(a)W(c) B4 R(a) R(b)

(a) Sample CFG
(b) Combined control flow and

memory address traceFigure 4.2. An example of a memory dependen
e tra
e.A data
ow through a memory lo
ation exists from an instan
e of a store instru
-tion to an instan
e of a load instru
tion, denoted by a memory dependen
e edge fromthe store instan
e to the load instan
e. To pre
isely remember a dynami
 data
ow

49edge, both the load and store instru
tion ids as well as their instan
e
ounts needto be remembered. For example, in Figure 4.2, B3 was exe
uted twi
e during whi
hit wrote to lo
ations for \b,a" and \a,
" respe
tively. If we want to set up the data
ow dependen
e for the load of \b" at the end, we need to indi
ate that it gets thevalue from the �rst exe
ution instan
e of basi
 blo
k B3 and it is the �rst memorya

ess instru
tion in this basi
 blo
k. Similarly, a fun
tion instan
e
ount needs tobe remembered as the fun
tion might be exe
uted several times. Thus, a dynami
memory dependen
e edge is pre
isely de�ned by[< (F0; FC0); (B0; BC0); S0 >;< (F1; FC1); (B1; BC1); S1 >℄where F; FC;B;BC; S denote respe
tively the fun
tion id, the
all instan
e
ount ofthe fun
tion, the basi
 blo
k id, the instan
e
ount of the basi
 blo
k, the sequen
eindex of the memory a

ess inside a basi
 blo
k.
B1 W(a) B2 W(b) B4 R(a) R(b)

B1 W(a) B3 W(b)W(a) B4 R(a) R(b)

B1 W(a) B3 W(a)W(c) B4 R(a) R(b)

(a) Combined control flow and

 memory address trace

[<(F,1),(B4,1),1>,<(F,1),(B1,1),1>]

[<(F,1),(B4,1),2>,<(F,1),(B2,1),1>]

[<(F,1),(B4,2),1>,<(F,1),(B3,1),2>]

[<(F,1),(B4,2),2>,<(F,1),(B3,1),1>]

[<(F,1),(B4,3),1>,<(F,1),(B3,2),1>]

[<(F,1),(B4,3),2>,<(F,1),(B3,1),1>]

(b) After eliminating explicit

 memory addressesFigure 4.3. Eliminating expli
it addresses.For the sample tra
e shown in Figure 4.2, after eliminating the expli
it addresses,it
an be represented by expli
it memory dependen
e edges shown in Figure 4.3(b).Identifying the appropriate set to represent. As it was dis
ussed, the data
ows that pass through registers need not tra
ed be
ause they
ould be re
onstru
tedfrom the program's
ontrol
ow tra
e. Similarly, a data
ow, even if it passes througha memory lo
ation,
ould be safely dis
arded if it
an be re
onstru
ted from the pro-gram's
ontrol
ow. Sin
e all data
ows are represented as memory dependen
e edges

50after the �rst step, an edge
ould be dis
arded if the
orresponding data
ow has thisproperty. For example, in Figure 4.2, B2 writes to \b" and the se
ond a

ess of B4reads \b". If B2 is exe
uted before B4, there must be a data dependen
e betweenthem. This edge < F; 1; B4; 1; 2 >;< F; 1; B2; 1; 1 >
an be
onstru
ted from the
ontrol
ow. On the other hand, the edge < F; 1; B4; 3; 2 >;< F; 1; B3; 1; 1 >
annotbe eliminated be
ause the �rst store instru
tion of B3 may or may not write to theaddress \b". This edge
annot be re
overed from the
ontrol
ow. Thus, a mem-ory dependen
e edge
an be removed only if both its load instru
tion and its storeinstru
tion a

ess only one memory address and this address is stati
ally de
idable.
A1 <F,B1,1>

A2 <F,B2,1>

A3 <F,B3,1>

A4 <F,B3,2>

A5 <F,B4,1>

A6 <F,B4,2>

[<F,1,B4,1,1>,<F,1,B1,1,1>]

[<F,1,B4,1,2>,<F,1,B2,1,1>]

[<F,1,B4,2,1>,<F,1,B3,1,2>]

[<F,1,B4,2,2>,<F,1,B3,1,1>]

[<F,1,B4,3,1>,<F,1,B3,2,1>]

[<F,1,B4,3,2>,<F,1,B3,1,1>]

[<A5,1,1>,<A1,1,1>]

[<A5,1,2>,<A4,1,1>]

[<A6,1,2>,<A3,1,1>]

[<A5,1,3>,<A3,1,2>]

[<A6,1,3>,<A3,1,1>]

dictionary

dependence edges

Figure 4.4. Creating memory a

ess di
tionary.Another type of redundan
y exists in the representation of ea
h data dependen
eedge. Ea
h edge
onsists of two instru
tion instan
es (see Figure 4.3) and ea
h in-stan
e is de
ided by 5 items: the fun
tion id, the basi
 blo
k id of the fun
tion, theinstru
tion index of the basi
 blo
k, the fun
tion instan
e
ount and the basi
 blo
kinstan
e
ount. The �rst three items are stati
ally de
idable and thus
ould be
om-bined. We globally number all load and store instru
tions and ea
h instru
tion isassigned a unique id. Now, an edge
an be represented by[< G0; FC0; BC0 >;< G1; FC1; BC1 >℄where G represents the global unique memory a

ess point, i.e. a load or store

51instru
tion point. There is a global mapping from ea
h global unique id to a triplethat
onsists of the fun
tion id, the basi
 blo
k id and the instru
tion index in thebasi
 blo
k. This mapping is identi�ed as memory a

ess point di
tionary and isstored aside for future referen
e.Figure 4.4 shows the result after removing
ontrol
ow de
idable edges and
reat-ing the memory a

ess point di
tionary.
A1 <F,B1,1>

A2 <F,B2,1>

A3 <F,B3,1>

A4 <F,B3,2>

A5 <F,B4,1>

A6 <F,B4,2>

[<A5,1,1>,<A1,1,1>]

[<A5,1,2>,<A4,1,1>]

[<A5,1,3>,<A3,1,2>]

[<A6,1,2>,<A3,1,1>]

[<A6,1,3>,<A3,1,1>]

A1 <F,B1,1>

A2 <F,B2,1>

A3 <F,B3,1>

A4 <F,B3,2>

A5 <F,B4,1>

A6 <F,B4,2>

(a) regrouping according to

access points

(b) adding a number to remember the

order to get a store instance

[<A5,1,1>,<A1,1,1>,1]

[<A5,1,2>,<A4,1,1>,1]

[<A5,1,3>,<A3,1,2>,1]

[<A6,1,2>,<A3,1,1>,1]

[<A6,1,3>,<A3,1,1>,2]

Figure 4.5. Representation for timestamped memory dependen
e edges.Timestamped memory dependen
e edges representation. In the TWPP rep-resentation, a fun
tion level path is
onverted to a sequen
e of timestamps at whi
h itis exe
uted. Similarly, the sequen
e of dependen
e edges are regrouped a

ording totheir global unique ids. There are three reasons why it is organized in this way ratherthan grouping them a

ording to individual fun
tion
alls. First, data dependen
eedges are not dire
tly
onne
ted with the
ontrol
ow. Distin
t instan
es of the samestati
 load instru
tion might be dependent upon di�erent store instru
tion instan
eswithin the fun
tion or even from other fun
tions. Se
ond, ea
h fun
tion has many
allinstan
es. Unlike fun
tional level
ontrol
ow tra
es, it is less likely that the edge se-

52quen
es from two
all instan
es are exa
tly the same. Grouping edges at the fun
tionlevel will not lead to the dis
overy of mu
h redundan
y. Third, memory dependen
eedges show signi�
ant repetition at the same memory a

ess point. Organizing edgesa

ording to memory a

ess points
an in
rease
ompression opportunities.After grouping, the relative order of the edges is lost. Although it is possible torebuild the order by employing the
ontrol
ow tra
e, it is generally too expensive.Usually, the order between two edges is of interest if they share the same load orstore instru
tion. If they share the same load instru
tion, they are grouped in thesame blo
k, and the relative order is determined by their fun
tion instan
e and basi
blo
k instan
e
ounts. If they share the same store instru
tion, their relative order
ould be easily determined if they are from di�erent instan
es. However, in orderto distinguish those that share the same store instan
e, we remember one additionalnumber i for ea
h edge whi
h indi
ates this load instan
e is the i-th load from thatstore instan
e.The result after grouping for the previous example is shown in Figure 4.5(a). Theresult after adding the extra sequen
e number is shown in Figure 4.5(b). Three edgesat the �fth a

ess point are organized as size sets of grammars.
A5:

G_F_(1,1,1) , G_B_(1,2,3), G_WA_(A1,A4,A3) ,

G_WF_(1,1,1) G_WB_(1,1,2) G_SN_(1,1,1)

A6:

G_F_(1,1), G_B_(2,3), G_WA_(A3,A3),

G_WF_(1,1), G_WB_(1,1), G_SN_(1,2)

A1 <F,B1,1>

A2 <F,B2,1>

A3 <F,B3,1>

A4 <F,B3,2>

A5 <F,B4,1>

A6 <F,B4,2>

Figure 4.6. Compressing ea
h subsequen
e using Sequitur.

53Compressing the data
ow sequen
e. After organizing the memory dependen
eedges a

ording to their unique load instru
tion ids, all edges at the same point
ouldbe
ompa
ted using the Sequitur algorithm. As
an be seen from Figure 4.5(b), theedges in ea
h group share a signi�
ant similarity with ea
h item individually. Forthis reason, the edges form 7 individual subsequen
es and get
ompressed separately.Moreover, the �rst subsequen
e is removed as all edges in the same group share thesame global id. The last 6 subsequen
es are
ompressed and the results are shown inFigure 4.6.4.2 Implementation and experimentsThe TWPP+ algorithm has been implemented and evaluated to
ompress programtra
es for the programs from the SPECint95 ben
hmark suite [50℄ used in the pre-
eding
hapter. The original tra
es used in the experiments were generated using theTrimaran
ompiler infrastru
ture [55℄.4.2.1 Compression results using TWPP+The
ombined tra
e with both the
ontrol
ow and memory address tra
es is usuallymu
h bigger than the
ontrol
ow tra
e itself. Table 4.1 shows the
ontrol
ow partand memory address part of the original tra
e. For 126.g

 and 132.ijpeg, the rawdata is trun
ated at the upper limit of a �le in our system, whi
h is 2 gigabytes.Program Total
ontrol Total data Total tra
etra
e size (MB) tra
e size (MB) size(MB)099.go 176.0 555.9 731.9126.g

 164.4 687.1 851.1130.li 84.9 295.7 380.6132.ijpeg 130.0 838.0 968.0134.perl 44.9 158.0 202.9Table 4.1. Memory tra
e
hara
teristi
s.

54From the table, the length of the memory address tra
e is about four times biggerthan that of the
ontrol
ow tra
e. As dis
ussed above, there are two reasons. First, aword (32 bits) is used to represent a memory address while a half word (16 bits) is usedto represent a basi
 blo
k id. There is a fa
tor of 2 for this reason. Se
ond, manybasi
 blo
ks
ontain multiple memory a

esses and thus ea
h basi
 blo
k instan
emaps to several re
orded memory addresses.The �rst
ondu
ted experiment was aimed at evaluating the e�e
t of eliminatingthe expli
it memory addresses and
onverting the tra
e to memory dependen
e edges.Sin
e an edge is re
orded at every load instru
tion but not a store instru
tion point,the e�e
t of this
onversion is determined by the per
entage distribution of loadand store instru
tions. Table 4.2 shows the stati
 distribution of load and storeinstru
tions, and the dynami
 distribution of load and store instan
es for di�erentben
hmarks.The results indi
ate that 63.2% of all memory a

ess instan
es will generatememory dependen
e edges at runtime. However, we know that ea
h edge is indi-
ated by two memory a

ess points, so that without any
ompression, there are2*63.2%=126.4% memory a

ess points stored in the edge representation. Comparedto the original memory address tra
e, the
onversion introdu
es about 26% morea

ess points.Program Stati
 Dynami
load inst. store inst. load % load inst. store inst. load %099.go 11719 6682 63.7 % 100.5 M 38.5 M 72.3 %126.g

 34474 19649 63.7 % 108.2 M 63.5 M 63.0 %130.li 1564 1396 52.8 % 45.1 M 28.8 M 61.0 %132.ijpeg 3704 2840 56.6 % 141.8 M 67.9 M 67.6 %134.perl 3548 2862 55.4 % 20.5 M 19.0 M 51.9 %Average 58.4 % 63.2 %Table 4.2. Distribution of load and store a

esses.The se
ond step of the proposed
ompression algorithm removes the unne
essary

55memory dependen
e edges and
ompa
t the edge representation. Edge
ompa
tionis done for every edge and an edge is pa
ked into 6 items from its original 10 items,whi
h means there is a 40% redu
tion. The di
tionary generated is usually very small.For di�erent ben
hmarks, their di
tionary sizes are shown in Figure 4.3.Program Memory a

ess pointdi
tionary size (KB)099.go 110.4126.g

 324.7130.li 17.8132.ijpeg 39.3134.perl 38.5Table 4.3. Di
tionary size for memory a

ess points.Data was
olle
ted to estimate the per
entage of edges that are removed and thea
tual per
entage of edges removed from the sample tra
es. Table 4.4 summarizes theload (store) instru
tions with single and multiple sour
e (destination) addresses. Anedge, whi
h
onsists of a load instan
e and a store instan
e, is removed only when itsstore instru
tion
an only write to one address and its load instru
tion
an only loadfrom that address. Thus, the probability that we will drop a memory dependen
eedge is the produ
t of the probability of a load is a single sour
e load instru
tion andthe probability of a store is a single destination store instru
tion. From the table, theestimation is that on average 24% of total data dependen
e edges would be removed.Table 4.5 gives the a
tual per
entage of edges removed from the sample tra
es.The total instan
es of load and stores in ea
h
ategory were
olle
ted and the a
tualedges removed from the sample tra
es. Dynami
ally, if a load instru
tion from thesingle sour
e address
ategory loads a value from an address whi
h was written bya store instru
tion from the single destination address
ategory, the
orrespondingedge is skipped. The results from the table show that about 17.7% of total memorydependen
e edges are removed. After removing these edges, about 53.3% of dynami

56Load Store Estimation ofProgram multiple single multiple single removedaddress address address address edges099.go 9048 2671 4434 2248 7.7 %126.g

 20406 14068 9495 10154 21.1%130.li 1008 556 859 537 13.7%132.ijpeg 1181 2523 836 2004 48.1%134.perl 1617 1931 1256 1606 30.5%Average 24.2%Table 4.4. Distribution of stati
 load and store points.memory a

ess points need to be tra
ed. Sin
e ea
h edge has two points, now we needto tra
e about the same number of a

ess points as that in the raw tra
e (2�53:3% =106:6%).Program Load Store % of edges % of dynami
multiple sr
. single sr
. multiple dest. single dest. removed points to tra
einstan
es(MB) instan
es(MB) instan
es(MB) instan
es(MB) % (%)099.go 92.6 7.9 33.4 5.1 7.7 % 66.7 %126.g

 91.1 17.1 54.4 9.1 13.4 % 54.6 %130.li 36.9 8.2 25.6 3.2 16.4 % 51.0 %132.ijpeg 111.8 30.0 41.6 26.3 17.0 % 56.1 %134.perl 13.2 7.3 13.7 5.3 34.0 % 34.4 %Average 17.7 % 53.3 %Table 4.5. Dynami
 behavior and removed edges.After having the edges grouped at ea
h load instru
tion point, the resulting sub-sequen
es are
ompa
ted. The results are shown in Table 4.6 with a
omparison tothe s
heme that applies the Sequitur algorithm dire
tly to the entire tra
e
ombinedwith
ontrol
ow and memory address information. For 126.g

 and 132.ijpeg, boththe un
ompressed tra
e and the result
ontain only part of the
ontrol
ow tra
edis
ussed in the pre
eding
hapter.

57Program Un
ompressed Sequitur TWPP+size (MB) size(MB) size(MB)099.go 731.9 195.2 317.6 + 26.5 = 344.1126.g

 851.1 114.0 146.1 + 13.8 = 159.9130.li 380.6 35.9 24.4 + 6.4 = 30.8132.ijpeg 968.0 45.8 55.2 + 6.0 = 61.2134.perl 202.9 53.3 1.2 + 0.7 = 1.9Table 4.6. Compression results using Sequitur and TWPP+.4.2.2 Average s
an lengthThe purpose of
onverting a memory address tra
e into a new TWPP+ representationis to help the
onstru
tion of pre
ise data
ow information. Sin
e the load and storeinstan
es of a memory dependen
e edge are usually separated from ea
h other, wehave to s
an the two di�erent representations in order to set up an edge. The nextexperiment evaluates the average length to be s
anned in order to re
over a memorydependen
e edge from di�erent representations.Given a load instan
e, the store instan
e of its dependen
e edge is found in theraw tra
e by ba
kward traversal of the tra
e. In the worst
ase, the s
an length
an beas high as the length of the tra
e. The results in Figure 4.7 show the average lengthover all edges of all load points. In WPP representation, whi
h is
ompressed bySequitur algorithm, the worst-
ase s
an length is up to the length of the
ompressedrepresentation. In the WPP representation, the intermediate non-terminal symbolsare merely grammar symbols and thus they
annot help in information retrieval. Inmany
ases, the whole representation needs to be s
anned to �nd the dependen
e.However, the results in Figure 4.7 is the best
ase estimation whi
h means we needto just s
an the
ompressed items between the load instan
e and store instan
e ofthe edge. In the new TWPP+ representation, the memory dependen
e edges areexpli
itly annotated to ea
h load instru
tion. On
e the load instan
e is found, we
ould �nd the store instan
e of the edge from sear
hing all edges annotated to this

58load. Sin
e the edges are organized as several grammars, we
ount the length of thesegrammars and the results in Figure 4.7 show the average and maximal length that iss
anned in the TWPP+ representation.Program Raw Tra
e WPP TWPP+Average Maximum099.go 12.2 M 3.3 M 33.4 K 2.1 M126.g

 23.8 M 3.2 M 6.1 K 1.4 M130.li 10.0 M 0.9 M 22.7 K 4.2 M132.ijpeg 13.5 M 0.6 M 28.1 K 2.4 M134.perl 7.8 M 2.0 M 0.5 K 0.7 MTable 4.7. Average items s
anned before �nding a memory dependen
e edge.From the table, we �nd it is orders of magnitude faster to �nd a data dependen
eedge using the TWPP+ representation than that using the WPP representation.4.3 Related workChilimbi [15℄ proposed using the Sequitur [40℄ algorithm to
ompress memory ad-dress tra
es dire
tly. The lossy
ompressed result, identi�ed as whole program stream(WPS) is used to �nd hot subsequen
es of data obje
t a

esses and to use these sub-sequen
es to improve memory referen
e lo
ality. WPS is not a suitable representationfor memory dependen
e analysis be
ause of the following reasons. First, the addressabstra
tion is used before
ompression. The abstra
ted data referen
e tra
e
onsistsof units of larger granularity, e.g. obje
t ids instead of �eld ids. Thus the pre
isememory dependen
e information at word level is lost. Se
ond, the algorithm iteratesseveral times and infrequently used memory addresses are dis
arded after ea
h itera-tion. As a result, the pre
ise memory dependen
e information is lost even at the largegranularity. In
ontrast, the TWPP+ representation puts more emphasis on analysisand keeps the pre
ise memory dependen
e information. Moreover, as dis
ussed, ex-

59pli
it memory addresses are dis
arded as the goal of TWPP+ is not to improve thedata lo
ality.4.4 Con
lusionTo assist in data
ow analysis with pre
ise data and
ontrol
ow information for agiven exe
ution, a
omplete whole program path with both
ontrol
ow pro�les andmemory addresses is
olle
ted. However, it is observed that the expli
it memoryaddresses are not ne
essary for many appli
ations. Following the same design philos-ophy as the one used in designing TWPP, a new representation was proposed in this
hapter to reorganize the memory address tra
e into a sequen
e of memory depen-den
e edges annotated on ea
h load instru
tion point. While providing more pre
iseinformation during data
ow analysis, the new representation a
hieves
ompressionresults
omparable to that using Sequitur dire
tly on the
ombined tra
e. Moreover,the estimated speed to determine a memory dependen
e edge from the TWPP+representation is orders of magnitude faster than that from the WPP representation.

60
Chapter 5Appli
ations of TWPP+The pre
eding two
hapters introdu
ed the new timestamped whole program path(TWPP+) representation to
ompress a
omplete program tra
e whi
h
ontains bothdata
ow and memory dependen
e information. The new representation has theadvantage of helping the program analyses and optimizations in several ways. This
hapter introdu
es three di�erent types of appli
ations using TWPP+.In the TWPP representation, all the exe
ution information related to a spe
i�
program entity is organized together. For example, ea
h basi
 blo
k groups its fun
-tion level exe
ution information as a sequen
e of timestamps; a load instru
tion groupsall of its memory dependen
e edges and
ompresses them together. In su
h a represen-tation, summary information with respe
t to di�erent entities
an be easily
olle
ted.By
ounting the number of items annotated to ea
h entity, simple frequen
y informa-tion
ould be
olle
ted and used to �nd hot program regions. Se
tion 5.1 dis
usses amore
omplex appli
ation whi
h uses TWPP+ to de
ide the per
entage distributionof redundant load and store instru
tions.Although the exe
ution information about di�erent program entities has beenseparated, TWPP keeps the global timestamps so that the original exe
ution order
ould be re
onstru
ted easily. This order is espe
ially helpful in �nding whether agiven data
ow fa
t holds at a given program point and with what frequen
y. Se
tion5.2 dis
usses how to
olle
t su
h information in a demand-driven fashion.The
omplete
ontrol
ow and memory dependen
e information
ould also beused in other appli
ations. In se
tion 5.3, TWPP is used in implementing di�erentdynami
 sli
ing algorithms with trade o� between
ost of
omputing sli
es and theira

ura
y.

615.1 Exploring LOAD/STORE redundan
yIn modern ar
hite
tures, memory a

esses have a long laten
y and thus a signi�
antamount of resear
h has been
arried out to redu
e the number of load and storeinstru
tions. However, before a load or store instru
tion
an be removed, it must beidenti�ed as being redundant. This se
tion will show how to assist in this type ofoptimization with memory dependen
e edges re
orded in TWPP.5.1.1 Identifying a redundant LOAD/STORE instru
tionA load instru
tion of the form \LD R1, off(R2)" loads the value from the memoryaddress (R2+o�) into register R1. A store instru
tion of the form \ST R1, off(R2)"stores the value from register R1 into the memory address (R2+o�).Redundant LOAD and STORE instru
tions are de�ned as follows. A load instru
-tion instan
e l whi
h loads from a memory address m is identi�ed as a redundantload if it satis�es the following
onditions.� There is another load instru
tion instan
e l0 whi
h is exe
uted before l, and l0loads from the same memory address m. l and l0
ould be the instan
es of thesame instru
tion or two di�erent instru
tions.� There is no store instru
tion instan
e s between l0 and l su
h that s writes tothe memory address m.A store instru
tion instan
e s whi
h writes to a memory address m is identi�edas a redundant store if it satis�es the following
onditions.� There is another store instru
tion instan
e s0 whi
h is exe
uted after s, and s0stores to the same memory address m. s and s0
ould be the instan
es of thesame instru
tion or two di�erent instru
tions.

62� There is no load instru
tion instan
e l between s and s0 su
h that l loads fromthe memory address m.For example, in Figure 5.1, the load instan
e L is redundant sin
e load instan
e L2gets the value from the same address and the address is not overwritten in between.The store instan
e S is redundant sin
e there is no load that gets its value before itis overwritten.
LD R1, 0(R2)

LD R4, 0(R2)

 … no store to 0(R2) …

L’:

L:

ST R1, 0(R2)

ST R4, 0(R2)

 … no load from 0(R2) …

S:

S’:

(a) redundant LOAD instance L (b) redundant STORE instance SFigure 5.1. Redundant LOAD/STORE instru
tions.Without program pro�les, a
ompiler
ould remove a redundant load (or store)instru
tion only when it is ensured that all of its instan
es are redundant. However,in many
ases, the memory addresses of di�erent load and store instru
tions arestati
ally determined as potentially aliased but dynami
ally never overlap. Even withthe most advan
ed aliasing analysis, many fully redundant load and store instru
tions
annot be identi�ed as redundant and be removed. In addition, it is desirable toexploit those instru
tions ea
h of whi
h has many of its instan
es as redundant. Theseopportunities
ould be dis
overed with the help of memory dependen
e edges stored inthe TWPP+ representation. Next, we study the potential redundant load and storeinstan
es and their distribution. As an ideal study, the following two assumptionsare made.� There are unlimited number of registers to hold values loaded from the memory.

63� Given a memory address, if its latest
opy has been loaded to a register, thatregister
an always be identi�ed.5.1.2 Identifying redundant loads from TWPP+Sin
e there are no expli
it memory addresses in a TWPP+ representation, load re-dundan
y is not identi�ed by
omparing di�erent load addresses, but instead it isdete
ted through expli
it memory dependen
e edges.Handle the dis
arded memory dependen
e edges. A TWPP+ representationdis
ards those edges that
an be re
onstru
ted from the
ontrol
ow tra
e. From thepre
eding
hapter, we know these edges are about 18% of total edges. The dis
ardededges share one
ommon property, i.e. the load and store instan
es of these edgesare instan
es of load and store instru
tions ea
h
an load from or store to only onestati
ally known address.There are three possible ways to handle these dis
arded edges. First, we
onsideronly the re
orded edges and their
orresponding instru
tions. Be
ause of the propertydis
ussed above { single memory address that is stati
ally known, the load and storeinstru
tions involved in dis
arded edges are relatively easy
ases to handle. Thus we
an skip pro
essing them. Se
ond, if we
an integrate them into the TWPP+ repre-sentation, as we show in the pre
eding
hapter, it in
reases about 18% un
ompressededges. Third, we
an re
over them from a
ontrol
ow graph traversal. However,be
ause we are only interested in re
overing these dis
arded edges, the
ontrol
owgraph is signi�
antly simpli�ed.Here, we give the algorithm to re
over these edges before �nding load and storeredundan
y. First, instru
tions are sele
ted from the set of all load and store instru
-tions. Ea
h sele
ted instru
tion
an load from or store to only one memory addressand the address is stati
ally de
idable. Se
ond, the
ontrol
ow graph of a fun
tionis simpli�ed by removing all basi
 blo
ks if they do not
ontain any sele
ted instru
-

64tions or any fun
tion
alls. A fun
tion is dis
arded if after the above simpli�
ation,it
ontains nothing. The above pro
ess is applied iteratively until the
ontrol
owgraph does not
hange any more. Third, the dynami

all graph, as well as a fun
-tion's
ontrol
ow graph, are traversed ba
kwards. During the traversal, a memorydependen
e edge is set up between a load instan
e and its immediate pre
eding storeinstan
e whi
h a

esses the same memory address.Identify redundant loads. As des
ribed in the pre
eding
hapter, there is a mem-ory dependen
e edge for ea
h load instan
e and the edge is of the form [< G1; F I1; BI1 >;< G2; F I2; BI2 >; SS℄ where G,FI,BI denote the global id, fun
tion instan
e id andbasi
 blo
k instan
e id and SS denotes this load is the SS-th load of the store value.The
onditions to identify a redundant load
an now be restated as follows.A load instan
e l denoted by an edge [< G1; F I1; BI1 >;< G2; F I2; BI2 >; SS1℄is redundant if there is another load l0 denoted by another edge [< G3; F I3; BI3 >;<G4; F I4; BI4 >; SS2℄ and� l and l0 load the value from the same memory address and there is no storeinstru
tion in between that writes to this memory address. This means they getthe value from the same store instan
e, i.e. < G2; F I2; BI2 >=< G4; F I4; BI4 >.� l is exe
uted before l0. This means < G1; F I1; BI1 > has a smaller timestampthan < G3; F I3; BI3 >, i.e. SS1 < SS2.For example, in Figure 5.2(a), the store instru
tion S1 has been exe
uted 3 times.For its se
ond instan
e, there are two load instru
tions L1 and L2 and the se
ondinstan
e of ea
h load instru
tion gets the value from it. If the se
ond instan
e of L1is exe
uted after that of L2, then it is redundant, otherwise the se
ond instan
e of L2is redundant.We know that memory dependen
e edges are organized at individual load pointsand stored in separated blo
ks, shown in Figure 5.2(b). A

ording to the
onditions

65
store R1, 0(R2)

{ inst1, inst2, inst3}

load R3, 0(R4)

load R5, 0(R6)

{ ..., inst2, …}

{ ..., inst2, …}

S1:

L1:

L2:

(a) redundant load instance

[<X1>, < G1, 1, 1>,S1]

[<X2>, < G1, 2, 1>,S1]

[<X3>, < G1, 2, 1>,S3]

[<X4>, < G2, 1, 1>,S1]

[<X5>, < G1, 1, 1>,S2]

[<X6>, < G1, 2, 1>,S2]

[<X7>, < G1, 2, 2>,S1]

[<X8>, < G2, 1, 1>,S2]

…………….

[<X1>, < G1, 1, 1>,S1]

[<X5>, < G1, 1, 1>,S2]

[<X2>, < G1, 2, 1>,S1]

[<X6>, < G1, 2, 1>,S2]

[<X3>, < G1, 2, 1>,S3]

[<X7>, < G1, 2, 2>,S1]

[<X8>, < G2, 1, 1>,S1]

[<X4>, < G2, 1, 1>,S2]

(b) TWPP+ representation
(c) regroup according to their

store instances

L1:

L2:

Figure 5.2. Determining a redundant load.dis
ussed above, we
an identify redundant loads from TWPP+ representation asfollows. The �rst step is to re
over the dependen
e edges dis
arded from the TWPP+and group them as a blo
k. The se
ond step is
ombine all edges and regroup thema

ording to their store instan
es. For the same store instan
e, edges are sorteda

ording to their load timestamps. Finally, we mark all loads ex
ept the �rst loadin ea
h group as redundant load instan
es and summarize the information (Figure5.2(
)).5.1.3 Identifying redundant stores from TWPP+We
an identify redundant stores from TWPP+ similarly. A

ording to the
onditionsthat identify a redundant store, there is no load instan
e whi
h gets a value from aredundant store instan
e. Thus if an instan
e is involved in any edge, it is notredundant. Otherwise it is redundant.For example, in Figure 5.3(a), the store instru
tion S1 has been exe
uted 3 times,both the �rst and the third instan
es have their dependent load instru
tion instan
es.There is no load instru
tion whi
h gets the value from its se
ond instan
e. The se
ondinstan
e is a redundant store instan
e. If the store is writing to an output stream, itis never marked as being redundant.

66Identifying redundant stores from the TWPP+ representation is similar to iden-tifying redundant loads. First, dis
arded edges are re
overed. Se
ond, all edges aregrouped and sorted. From the sorted list, all skipped instan
e number of a storeinstru
tion denotes a redundant instan
e, shown in Figure 5.3(
). 1

(a) redundant store instance (b) TWPP+ representation
(c) regroup according to their

store instances

store R1, 0(R2)

{ inst1, inst2, inst3}

S1:

[<X1>, < G1, 1, 1>,S1]

[<X2>, < G1, 2, 1>,S1]

[<X3>, < G1, 5, 1>,S1]

[<X4>, < G2, 1, 1>,S1]

[<X5>, < G1, 1, 2>,S1]

[<X6>, < G1, 1, 3>,S1]

[<X7>, < G1, 9, 2>,S1]

[<X8>, < G2, 1, 9>,S1]

…………….

[<X1>, < G1, 1, 1>,S1]

[<X5>, < G1, 1, 2>,S1]

[<X6>, < G1, 1, 3>,S1]

[<X2>, < G1, 2, 1>,S1]

[<X3>, < G1, 5, 1>,S1]

[<X7>, < G1, 9, 2>,S1]

[<X4>, < G2, 1, 1>,S1]

[<X8>, < G2, 1, 9>,S1]

7 redundant

stores

2 redundant

stores

3 redundant

stores

Figure 5.3. Determining all redundant stores from TWPP+.5.1.4 Experimental resultsRedundant load and store instru
tions for SPECint95 ben
hmark programs are evalu-ated using the algorithm des
ribed above. Ea
h load and store instru
tion is uniquelynumbered and individually analyzed.First we study the distribution of redundant LOAD instan
es. It is to �nd for ea
hgiven instru
tion, the per
entage of its instan
es that are redundant. For example,if 90 out of 100 instan
es for a load instru
tion are redundant, it is
ategorized as a90% redundant instru
tion. The �rst bar in Figure 5.4 shows the distribution of loadinstru
tions for di�erent programs.Although an instru
tion has a high per
entage of redundan
y, it might have onlya small number of instan
es and thus not be very important. We weighted all instru
-1To assist analysis, the highest instan
e number of ea
h store instru
tion is re
orded duringpro�ling.

67

0%
(0,10%]

(10%,20%]

(20%,30%]

(30%,40%]

(40%,50%]

(50%,60%]

(60%,70%]

(70%,80%]

(80%,90%]

(90%,100%)
100%

0

20

40

60

80

100

P
er

ce
nt

ag
e

099.go

of instructions
Weighted # of instructions

0%
(0,10%]

(10%,20%]

(20%,30%]

(30%,40%]

(40%,50%]

(50%,60%]

(60%,70%]

(70%,80%]

(80%,90%]

(90%,100%)
100%

0

20

40

60

80

100

P
er

ce
nt

ag
e

126.gcc

of instructions
Weighted # of instructions

0%
(0,10%]

(10%,20%]

(20%,30%]

(30%,40%]

(40%,50%]

(50%,60%]

(60%,70%]

(70%,80%]

(80%,90%]

(90%,100%)
100%

0

20

40

60

80

100

P
er

ce
nt

ag
e

130.li

of instructions
Weighted # of instructions

0%
(0,10%]

(10%,20%]

(20%,30%]

(30%,40%]

(40%,50%]

(50%,60%]

(60%,70%]

(70%,80%]

(80%,90%]

(90%,100%)
100%

0

20

40

60

80

100
P

er
ce

nt
ag

e
132.ijpeg

of instructions
Weighted # of instructions

0%
(0,10%]

(10%,20%]

(20%,30%]

(30%,40%]

(40%,50%]

(50%,60%]

(60%,70%]

(70%,80%]

(80%,90%]

(90%,100%)
100%

0

20

40

60

80

100

P
er

ce
nt

ag
e

134.perl

of instructions
Weighted # of instructions

Figure 5.4. Ideal LOAD redundan
y

68

0%
(0,10%]

(10%,20%]

(20%,30%]

(30%,40%]

(40%,50%]

(50%,60%]

(60%,70%]

(70%,80%]

(80%,90%]

(90%,100%)
100%

0

20

40

60

80

100

P
er

ce
nt

ag
e

099.go

of instructions
Weighted # of instructions

0%
(0,10%]

(10%,20%]

(20%,30%]

(30%,40%]

(40%,50%]

(50%,60%]

(60%,70%]

(70%,80%]

(80%,90%]

(90%,100%)
100%

0

20

40

60

80

100

P
er

ce
nt

ag
e

126.gcc

of instructions
Weighted # of instructions

0%
(0,10%]

(10%,20%]

(20%,30%]

(30%,40%]

(40%,50%]

(50%,60%]

(60%,70%]

(70%,80%]

(80%,90%]

(90%,100%)
100%

0

20

40

60

80

100

P
er

ce
nt

ag
e

130.li

of instructions
Weighted # of instructions

0%
(0,10%]

(10%,20%]

(20%,30%]

(30%,40%]

(40%,50%]

(50%,60%]

(60%,70%]

(70%,80%]

(80%,90%]

(90%,100%)
100%

0

20

40

60

80

100
P

er
ce

nt
ag

e
132.ijpeg

of instructions
Weighted # of instructions

0%
(0,10%]

(10%,20%]

(20%,30%]

(30%,40%]

(40%,50%]

(50%,60%]

(60%,70%]

(70%,80%]

(80%,90%]

(90%,100%)
100%

0

20

40

60

80

100

P
er

ce
nt

ag
e

134.perl

of instructions
Weighted # of instructions

Figure 5.5. Ideal STORE redundan
y

69tions by summarizing all instan
es in ea
h
ategory and the results are shown by these
ond bar in Figure 5.4.From the �gure, most load instru
tions fall in to three
ategories: \0%", \90-100%" or \100%". If a load belongs to the \0%"
ategory, there is no opportunityto optimize it; however, it is good to separate them from the rest be
ause we do nothave to invest any
ompile time on further analyzing them. If a load belongs to the\90-100%" or \100%"
ategory, it is worthy of further analysis sin
e good bene�tsare expe
ted from optimizing it.The experimental results for STORE redundan
y (Figure 5.5) show that moststore instru
tions are not redundant at all. There are not many opportunities foroptimizing store instru
tions.5.2 Frequen
y of data
ow fa
tsAlthough TWPP+ reorganizes the
omplete program tra
e, it keeps the timestampinformation su
h that the original exe
ution order
ould be re
onstru
ted. The exa
texe
ution order is very important in determining if some data
ow fa
ts hold and theirfrequen
ies at some points during the exe
ution. During pro�le guided
ompile-timeoptimization and dynami
 optimization of programs, one example
ould be a querywhi
h looks like: How often does a data
ow fa
t hold at a program point during theexe
ution
aptured by the WPP?. This query is useful for identifying hot data
owfa
ts, i.e., data
ow fa
ts that hold very often during the exe
ution. Another usefulquery is: Does a data
ow fa
t hold at a given program point during the exe
ution
aptured by the WPP?. This query is useful during debugging of programs in
ludingduring dynami
 sli
e
omputation whi
h is dis
ussed in the next se
tion.In this se
tion, a pro�le-limited data
ow analysis approa
h is introdu
ed to
olle
tinformation about data
ow fa
ts with respe
t to a given whole program path (WPP).The analysis presented in this se
tion
an be used to answer the above types of queries.

70For this analysis, there is no need to a

ess the entire TWPP but only a subsetof information
orresponding to the fun
tion under
onsideration. In parti
ular, atimestamp annotated dynami

ontrol
ow graph is used for the given path tra
ewhi
h is des
ribed below.5.2.1 Timestamp annotated dynami
 CFGThis representation
onsists of the dynami

ontrol
ow graph in whi
h DBBs areannotated with timestamp ve
tors. This representation is quite adequate for data
owanalysis be
ause we
an tra
e the WPP using the timestamp ve
tors asso
iated withthe dynami
 basi
 blo
ks and limit the exploration of only those
ontrol subpaths thatappear as part of the WPP during data
ow analysis. The following
hara
teristi
smake this proposed representation parti
ularly attra
tive for pro�le-limited data
owanalysis.First it allows eÆ
ient ba
kward and forward traversal of the path tra
e startingfrom any arbitrary point in the path tra
e. A timestamp and program point pair(t; n) together spe
ify a parti
ular point in the path tra
e. The pre
eding point is(t� 1; m) where m is the prede
essor of n in the dynami

ontrol
ow graph labeledwith timestamp t�1. Similarly the su

eeding point is (t+1; s) where s is a su

essorof n in the dynami

ontrol
ow graph whi
h is labeled with timestamp t+ 1.Se
ond it allows eÆ
ient simultaneous traversals of multiple subpaths in the pathtra
e. A ve
tor of timestamps at a program point (~T ; n)
an be used to representmultiple traversal points. Ea
h element in the ve
tor
an be in
remented or de
re-mented and resulting timestamps
an be mat
hed with timestamps of prede
essorsand su

essors to
ontinue simultaneous traversal along multiple subpaths. Com-pa
tion of timestamps dire
tly attributes to the eÆ
ien
y of traversals. For example
onsider a series of timestamps represented by (2:20:2) in our representation. A sim-ple in
rement/de
rement resulting in (3:21:2)/(1:19:2)
orresponds to simultaneous

71forward/ba
kward traversal along 10 subpaths in the path tra
e.An indi
ator of the relative
osts of pro�le-limited analysis and traditional stati
analysis are the
umulative sizes of stati
 and dynami

ow graphs (see Table 5.1).We
ompared the total number of nodes (N) and edges (E) in the stati
 and dynami

ow graphs. For a given fun
tion multiple dynami

ow graphs
an result be
ause ofmultiple unique tra
es asso
iated with it. The nodes and edges in all of these graphswere
ounted in
omputing the
umulative size of the dynami

ow graphs. From theresults in Table 5.1 we
an see that the number of nodes and edges in the dynami
graphs are typi
ally mu
h smaller than those in the stati
 graphs. However, the
ost of pro�le-limited analysis is also dependent upon the size of timestamp ve
torasso
iated with ea
h node. Average size of the timestamp ve
tor is shown in thelast
olumn of Table 5.1 (the value in parenthesis is the size of the ve
tor before
ompa
tion - the results show that timestamp ve
tor is signi�
antly redu
ed in sizeusing our
ompa
tion te
hnique). In summary, the data in Table 5.1 indi
ates thatwhile, as expe
ted, pro�le-limited analysis is more expensive than stati
 analysis, ithas a reasonable
ost.Program Stati
 FG Dynami
 FGN E P N P E avg. j~T j126.g

 66571 104379 8838 20012 14.0 (33.1)132.ijpeg 5718 8105 754 1213 18.1 (109.7)099.go 10823 16236 4739 16591 11.9 (15.7)130.li 2701 3536 265 289 51.2 (410.3)134.perl 13117 19539 501 674 3.9 (616.8)Table 5.1. Sizes of stati
 and dynami

ow graphs.5.2.2 Demand-driven analysisA traditional data
ow analysis framework
reated (GEN) and removed (KILL) data
ow fa
ts at ea
h basi
 blo
k. The transfer fun
tion is used to propagate the data

72
ow fa
ts through a basi
 blo
k and
ompute the data
ow solutions. Generally,
onservative solutions are
omputed at the meet or split points as well as for loopswhose solutions are
omputed iteratively. Details about data
ow analysis
an befound in [38℄.It is natural to formulate pro�le-limited analysis in a demand-driven fashion [20,46℄. This is be
ause the appli
ations of pro�le-limited analysis request informationin
rementally. For example, during debugging a user typi
ally makes a request forthe dynami
 sli
e
orresponding to only one variable at a �xed program point (i.e., weonly need to
ompute subset of data
ow information for subset of program points).Similarly during pro�le-guided or dynami

ode optimization, subset of pro�le-limiteddata
ow information may be requested by the optimizer for subset of program pointsin hot regions of the program [8℄.Queries for pro�le-limited data
owA pro�le-limited data
ow query is of the form < T ; n >d, where n is a node, T isa subset of timestamps for n in the path tra
e, i.e., T � T (n), and d is the data
ow fa
t of interest. This query represents a request for determining whether ornot d holds true prior to n's exe
utions
orresponding to timestamp values in T .Therefore the query < T (n); n >d determines the data
ow solution
orrespondingto all exe
utions of n in a given path tra
e. The solution to this query allows us todetermine if d always holds true, never holds true, and holds true sometimes for thegiven path tra
e. In fa
t solving su
h queries allows us to determine the frequen
ywith whi
h d holds true with respe
t to the given path tra
e [45, 7, 22, 24, 23℄.Query propagationLet us
onsider pro�le-limited demand-driven ba
kward propagation of queries forGEN-KILL problems be
ause they arise both during
ode optimization and debug-

73ging. For simpli
ity, the analysis of only intrapro
edural paths is
onsidered. How-ever, in analyzing these paths the e�e
ts of any fun
tion
alls that a path tra
e may
ontain will be taken into a

ount. The te
hnique presented
an be easily extended tohandle interpro
edural paths by analyzing path tra
es of multiple fun
tions in
on
ertand propagating queries along interpro
edural paths [20℄.The demand-driven propagation begins at a point n when the query < T ; n >d israised. For GEN-KILL problems it is appropriate to propagate a timestamp ve
tor, ~T ,whi
h
ontains one slot for every timestamp, or more pre
isely, for every entry in the
ompa
ted TWPP path tra
e. The propagation should be viewed as simultaneous(or parallel) sear
h for data
ow solutions
orresponding to ea
h timestamp in T .Ea
h slot in ~T is initialized to the timestamp value(s) to whi
h it
orresponds. Thepropagation of this ~T begins at n.It must be ensured that query propagation is
onsistent with the path tra
e under
onsideration. As dis
ussed earlier in this se
tion, this goal is easily a

omplishedusing the timestamp annotated dynami

ontrol
ow graph representation. It is pos-sible to
orre
tly manipulate the timestamp ve
tor during propagation su
h that thetimestamps in the ve
tor are propagated only to the appropriate prede
essors. Whena node that answers the query (true or false) with respe
t to a parti
ular times-tamp is en
ountered, the propagation on behalf of that timestamp
eases. Otherwiseequivalent queries are generated and propagated along the path tra
e.The query < ~T ; n > represents the sear
h for dynami
 GEN-KILL points
orre-sponding to timestamps of n for whi
h slots were
reated in ~T . For
arrying out thepropagation �rst dynami
 GEN-KILL sets (i.e, sets w.r.t. to a given TWPP) for adata
ow fa
t d (whi
h are denoted as DGENdn and DKILLdn) must be
omputed.Although n is a dynami
 basi
 blo
k, to simplify the presentation it is assumed thatn
ontains a single statement. If node n
ontains a
all to fun
tion f , then thetra
es for
alls made by the n's instan
es
orresponding to T (n) are examined. Theset GENdf (T (n)) (KILLdf (T (n)))
ontains the subset of timestamps from T (n) for

74whi
h
all to fun
tion f generates (kills) d. If node n simply
ontains a statement, thedynami
 sets are
omputed from the stati
 GEN and KILL sets for node n denotedbelow as SGENn and SKILLn.DGENdn = 8<: GENdf (T (n)) if n
alls fT (n) elseif d 2 SGENn� otherwiseDKILLdn = 8<: KILLdf (T (n)) if n
alls fT (n) elseif d 2 SKILLn� otherwiseNow let us
onsider query propagation. The timestamp values in ~T are ea
hde
remented by 1 during every step of ba
kward propagation. Only those result-ing timestamp values whi
h are present in T (m), where m is a prede
essor node,are propagated to m. At m the query for a timestamp may be resolved as true (ift 2 DGENdm) or as false (if t 2 DKILLdm). If it is not resolved, then the abovepro
ess is repeated starting with the de
rementing of the timestamp and propagation
ontinues. It should be noted that only a subset of slots may be relevant for a givenprede
essor node; thus the other slots will
ontain a null value denoted by ?. Theabove rules are stated pre
isely below and are further illustrated by example appli-
ations dis
ussed in the subsequent se
tions.Propagation of < ~T ; n >Notation: ~T =T 0 is a timestamp ve
tor st(~T =T 0)i = if (~T)i 2 T 0 then (~T)i else ?.Slots in ~T resolved as true are slots in ve
torsSm2pred(n)(~T �~1) = DGENdm whi
h do not
ontain ?.Slots in ~T resolved as false are slots in ve
torsSm2pred(n)(~T �~1) = DKILLdm whi
h do not
ontain ?.Queries propagated for unresolved slots in ~TSm2pred(n) < (~T �~1) = (T (m)�DGENdm �DKILLdm); m >

755.3 Dynami
 program sli
ing with TWPPProgram sli
ing is a useful tool in program analysis, understanding and debugging.Given a program point P of a program S and a variable V, a stati
 sli
e
omputesthe set of statements whose exe
ution
ould possibly a�e
t the value of V in someexe
utions. Given an exe
ution history, a program point P of a program S and avariable V, a dynami
 sli
e
omputes the set of statements whose exe
ution a�e
t thevalue of V in this exe
ution history. For example, in Figure 5.6, we havestati
 sli
e(Z; (14)) = f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 13; 14; 15; 16g;dynami
 sli
e(Z; (14); tra
e) = f2; 3; 4; 6; 7; 8; 9; 11; 13; 14; 15; 16g:There are two kinds of dependen
es: data dependen
es and
ontrol dependen
es. Forexample, in Figure 5.6, variable V is
ontrol dependent on statements 6,8 and datadependent on the rest.Stati
 ba
kward program sli
ing was �rst proposed by Weiser as a debuggingaid [59℄. The more pre
ise dynami
 sli
ing was proposed by Korel and Laski [30℄.Most re
ently Agrawal and Horgan [1℄ developed three dynami
 sli
ing algorithmswhi
h trade-o� pre
ision in the
omputed sli
e with the time it takes to
ompute thesli
e. Ea
h of these algorithms
onstru
ts a di�erent spe
ialized program dependen
egraph (PDG) to
apture the dependen
es exer
ised in a given exe
ution. A ba
kwardtraversal over the graph is used to
ompute the dynami
 sli
e as a transitive
losureover data and
ontrol dependen
es. Ea
h of the above dynami
 sli
ing algorithms
anbe implemented using one
ommon representation, the timestamped dynami

ontrol
ow graph, and thus the
onstru
tion of spe
ialized graphs suggested in [1℄ is avoided.5.3.1 Pre
ise dynami
 sli
ing with TWPP+Three algorithms with di�erent a

ura
y and
osts are presented in [1℄ to
al
ulatedynami
 sli
es. The implementation of the pre
ise algorithm with TWPP+ is dis-

76
ussed below. The impre
ise algorithms 1 and 2, whi
h
ompromise the a

ura
y forspeed, will be dis
ussed later.
Sample Program :

(1) P[0] = 2;

(2) P[1] = 4;

(3) N = input();

(4) I = 1;

(5) J = 0;

(6) while (I <= N) {

(7) X = input();

(8) if (X>=0)

(9) Y = P[X];

 else

(10) Y = f2(X);

(11) Z = f3(Y);

(12) output(Z);

(13) J = 1;

(14) I = I + 1;

 }

(15) Z = Z + J;

(16) breakpoint, request slice for Z

Input:

(N=3, X= {0,-1,1})

Trace:

1.2.3.4.5.6.7.9.10.11.12.13.14

 6.8.9.10.11.12.13.14

 6.7.9.10.11.12.13.14

 6.15.16

Timestamps :

(1) 1

(2) 2

(3) 3

(4) 4

(5) 5

(6) 6:30:8

(7) 7:23:8

(8) 8:24:8

(9) 9,25

(10) 17

(11) 10:26:8

(12) 11:27:8

(13) 12:28:8

(14) 13:29:8

(15) 31

(16) 32Figure 5.6. Dynami
 sli
ing example.Pre
ise algorithm: This method dupli
ates the exe
uted node and its dependen
eedges during the exe
ution so that it
an distinguish between the instan
es of a givenstatement. The expanded PDG graph is traversed to �nd the pre
ise dynami
 sli
e.The ba
kward analysis uses timestamps to �nd dependen
es and when a dependen
e isfound only a single timestamp is added to the newly generated queries. In other wordswe identify the pre
ise instan
e of the assignment (for data dependen
e) and predi
ate(for
ontrol dependen
e) whi
h is the sour
e of the dependen
e and generate queriesonly for the
orresponding instan
es of variables that are read by the assignment orpredi
ate. In our example, note that although statements 10 and 5 are exe
uted,they are not in
luded in the sli
e be
ause the value of Z at 15 depends only upon thevalues of Y and J
omputed by statements 9 and 13.The implementation of algorithm 3 using TWPP+ is shown in Figure 5.7. Ittraverses the TWPP+ representation ba
kwards and in
ludes both
ontrol and data

77
Dynami
 Sli
ing Algorithm:(01) Q = f< TS0; S0 >Xg;(02) WHILE (Q != NULL)(03) item = dequeue (Q);(04) IF (item is \< TS1; S1 >")(05) IF (S1 is a
ontrol statement)(06) insert (S1; TS1) to Dsli
e;(07) FOR ea
h variable Z in S1(08) insert < TS1; S1 >Z into Q;(09) ELSE(10) FOR ea
h pre
eding statement S2 of S1(11) insert < TS1 � 1; S2 > into Q;(12) IF (item is \< TS1; S1 >Y ")(13) IF (S1 is a
ontrol statement)(14) insert (S1; TS1) to Dsli
e;(15) FOR ea
h variable Z in S1(16) insert < TS1; S1 >Z into Q;(17) IF (S1 writes to Y)(18) insert (S1; TS1) to Dsli
e;(19) FOR ea
h RHS variable Z of S1(20) IF (data dependen
e edge list
ontains Z with TS1)(21) edge := (:::; < G2; I2 >)(22) insert < G2; I2 > into Q;(23) ELSE(24) FOR ea
h pre
eding statement S2 of S1(25) insert < TS1 � 1; S2 > into Q;(26) IF (S1 writes to some other variable)(27) FOR ea
h pre
eding statement S2 of S1(28) insert < TS1 � 1; S2 >Y into Q;(29) IF (item is \< G1; I1 >")(30) �nd the timestamp TS2 for instan
e I1 at global load point G1(31) �nd the statement S2 for global load point G1(32) insert (S2; TS) to Dsli
e;(33) FOR ea
h RHS variable Z of S2(34) insert < TS2; S2 >Z into Q;Figure 5.7. Pre
ise dynami
 sli
ing algorithm with TWPP+.

78dependent statements into the dynami
 sli
e. Control dependent statements are in-
luded from the ba
kwards traversal of the
ontrol
ow tra
e. However, there are twokinds of data dependent statements. If the load instan
e has a memory dependen
eedge, the algorithm follows this edge dire
tly to its de�nition point and in
lude thede�nition instan
e into the dynami
 sli
e. Otherwise, it traverses along the
ontrol
ow graph with the timestamp until the de�nition point is found.The main data stru
ture in this algorithm is a global queue whi
h holds the itemsneeded to be
he
ked for further dependen
e. The queue
ould
ontain a mixed ofthree types of nodes and the algorithm is to handle them a

ordingly.� < TS; S >X. It means the algorithm needs to �nd both the data and
ontroldependent edges for a a

ess point of variable X. If S is a
ontrol blo
k, thestatement is found whi
h the a

ess of variable is
ontrol dependent on. If Swrites to X, the de�nition of X is found, the algorithm
an then start to resolvethe dependen
e of its RHS variables. If S writes to a memory lo
ation otherthan X, the algorithm will skip this statement and go ba
kwards further.� < TS; S >. It means the data dependen
y has been resolved. The algorithmjust need to go ba
kwards and �nd the
ontrol dependen
y.� < G; I >. It denotes that a re
orded data dependen
e edge has been found and< G; I > is the de�nition point of this edge. The instru
tion should be in
ludedinto the sli
ed and data and
ontrol dependen
e should go further from thatpoint.The detailed propagation of queries for this algorithms is shown in Figure 5.8.The queries of the form < T ; n >V where T is the timestamp ve
tor, n is the nodeat whi
h the query is to be evaluated, and V is the variable whose de�nition is to befound. Therefore, a request for a sli
e on Z at line 16 is translated into the query< [32℄; 16 >Z . The updated sli
e after the pro
essing of a query is given in the

79
orresponding entry of the se
ond
olumn and the type of dependen
e (
ontrol ordata) that
aused the addition of a statement to the sli
e is also indi
ated.Approa
h 3: Sli
ing request: < [32℄; 14 >ZQuery Sli
e Dependen
e< [32℄; 16 >Z f16g< [31℄; 15 >Z< [31℄; 15 >J f15,16g data< [30℄; 6 >Z< [30℄; 15 >J< [30℄; 6 >I< [30℄; 6 >N f6,15,16g
ontrol< [29℄; 14 >Z< [29℄; 14 >J< [29℄; 14 >I< [29℄; 14 >N f6,14,15,16g data< [28℄; 13 >Z< [28℄; 13 >I< [28℄; 13 >N f6,13,14,15,16g data< [27℄; 12 >Z< [27℄; 12 >I< [27℄; 12 >N f6,13,14,15,16g data< [26℄; 11 >Y< [26℄; 11 >I< [26℄; 11 >N f6,11,13,14,15,16g data< [25℄; 9 >X< [25℄; 9 >I< [25℄; 9 >N< [25℄; 9 >P [1℄ f6,9,11,13,14,15,16g data< [25℄; 9 >X< [25℄; 9 >I< [25℄; 9 >N f2,6,9,11,13,14,15,16g memory< [24℄; 8 >X< [24℄; 8 >I< [24℄; 8 >N f2,6,8,9,11,13,14,15,16g
ontrol� � � � � �< [5℄; 5 >I< [5℄; 5 >N f2,4,6,7,8,9,11,13,14,15,16g data< [4℄; 4 >N f2,3,4,6,7,8,9,11,13,14,15,16g dataFigure 5.8. Implementing A&H's dynami
 sli
ing algorithm 3.The worst
ase time
omplexity of the implementation using TWPP is the sameas that of Agrawal and Horgan's algorithm. The primary
ost of both algorithms
omes from pro
essing the
ontrol
ow tra
e. The new algorithm must examine theentire tra
e to
ompute the TWPP path tra
e representation while their algorithmmust examine the tra
e to
onstru
t a dynami
 dependen
e graph. The main di�er-en
e between the two approa
hes is as follows. Agrawal et al.
ompute all dynami
dependen
es �rst and
onstru
t a graph using whi
h any dynami
 sli
e request
anbe pro
essed using a simple traversal. In
ontrast TWPP+ based approa
h
om-putes relevant dependen
es for sli
ing requests upon demand (like Weiser's algorithm[59℄). Sin
e the same dependen
es may be relevant to di�erent sli
ing requests, theirre
omputation must be avoided by
a
hing the
omputed dependen
es. In otherwords TWPP+ based approa
h builds the dynami
 dependen
e graph in
rementallyas sli
ing requests are pro
essed.

80
Approa
h 1:Sli
ing request: < �; 16 >ZQuery Sli
e Dependen
e< �; 16 >Z f16g< �; 15 >Z< �; 15 >J f15,16g data< �; 6 >Z< �; 6 >J< �; 6 >I< �; 6 >N f6,15,16g
ontrol< �; 5 >Z< �; 5 >I< �; 5 >N< �; 14 >Z< �; 14 >J< �; 14 >I< �; 14 >N f5,6,13,14,16g data< �; 4 >Z< �; 4 >N< �; 13 >Z< �; 13 >I< �; 13 >N f4,5,6,13,14,15,16g data< �; 3 >Z< �; 12 >Z< �; 12 >I< �; 12 >N f3,4,5,6,13,14,15,16g data< �; 2 >Z< �; 11 >Y< �; 11 >I< �; 11 >N f3,4,5,6,11,13,14,15,16g data< �; 1 >Z< �; 10 >X< �; 10 >I< �; 10 >N< �; 9 >P [0℄;P [1℄< �; 9 >X< �; 9 >I< �; 9 >N f3,4,5,6,9,10,11,13,14,15,16g data< �; 10 >X< �; 10 >I< �; 10 >N< �; 9 >X< �; 9 >I< �; 9 >N f1,2,3,4,5,6,9,10,11,13,14,15,16g memory< �; 8 >X< �; 8 >I< �; 8 >N f1,2,3,4,5,6,8,9,10,11,13,14,15,16g data,
ontrol< �; 5 >I< �; 5 >N f1,2,3,4,5,6,7,8,9,10,11,13,14,15,16g data< �; 4 >I< �; 4 >N f1,2,3,4,5,6,7,8,9,10,11,13,14,15,16g solved queriesApproa
h 2: Sli
ing request: < [32℄; 16 >ZQuery Sli
e Dependen
e< [32℄; 16 >Z f16g< [31℄; 15 >Z< [31℄; 15 >J f15,16g data< [30℄; 6 >Z< [30℄; 6 >J< [6 : 30 : 8℄; 6 >I< [6 : 30 : 8℄; 6 >N f6,15,16g
ontrol< [29℄; 14 >Z< [29℄; 14 >J< [5℄; 5 >I< [13 : 29 : 8℄; 14 >I< [5℄; 5 >N< [13 : 29 : 8℄; 14 >N f6,14,15,16g data< [28℄; 13 >Z< [12 : 28 : 8℄; 13 >I< [4℄; 4 >N< [12 : 28 : 8℄; 13 >N f4,6,13,14,15,16g data< [27℄; 12 >Z< [11 : 27 : 8℄; 12 >I< [11 : 27 : 8℄; 12 >N f3,4,6,13,14,15,16g data< [10 : 26 : 8℄; 11 >Y< [10 : 26 : 8℄; 11 >I< [10 : 26 : 8℄; 11 >N f3,4,6,11,13,14,15,16g data< [9; 25℄; 9 >P [0℄;P [1℄< [9; 25℄; 9 >X< [17℄; 10 >X< [9; 25℄; 9 >I< [17℄; 10 >I< [9; 25℄; 9 >N< [17℄; 10 >N f3,4,6,9,10,11,13,14,15,16g data< [9; 25℄; 9 >X< [17℄; 10 >X< [9; 25℄; 9 >I< [17℄; 10 >I< [9; 25℄; 9 >N< [17℄; 10 >N f1,2,3,4,6,9,10,11,13,14,15,16g memory< [8 : 24 : 8℄; 8 >X< [8 : 24 : 8℄; 8 >I< [8 : 24 : 8℄; 8 >N f1,2,3,4,6,8,9,10,11,13,14,15,16g data,
ontrol< [7 : 23 : 8℄; 7 >I< [7 : 23 : 8℄; 7 >N f1,2,3,4,6,7,8,9,8,10,13,14,15,16g data< [6 : 30 : 8℄; 6 >I< [6 : 30 : 8℄; 6 >N f1,2,3,4,6,7,8,9,8,10,13,14,15,16g solved queriesFigure 5.9. Implementing A&H's impre
ise dynami
 sli
ing algorithms.5.3.2 Approximate dynami
 sli
ing with TWPP+In this subse
tion, we use TWPP+ representation to implement the approximatealgorithms proposed in [1℄, identi�ed as approa
h 1 and 2.Impre
ise algorithm 1: This method marks all exe
uted nodes in the PDG duringthe exe
ution. The ba
kward traversal to identify the statements in the dynami
 sli
eis allowed to visit only the marked nodes. These marked nodes are essentially thenodes with non-empty timestamp sets in our TWPP representation. Therefore in ourimplementation the ba
kward traversal of a query through the timestamp annotatedCFG is allowed to traverse only nodes that have a non-empty timestamp set. Whena dependen
e is identi�ed under su
h a traversal, the statement at whi
h the depen-den
e originates is added to the dynami
 sli
e. In our example, all statements areexe
uted. Therefore the dynami
 sli
e is the same as a stati
 sli
e, whi
h
ontains allnodes ex
ept node 12.Impre
ise algorithm 2: This method marks all exe
uted edges in the PDG duringthe exe
ution. The ba
kward traversal to identify the statements in the dynami
 sli
e

81is allowed to only traverse marked edges. The ba
kward analysis uses timestamps to�nd dependen
es
an
arry out a similar traversal by ensuring that an edge fromnode n to node m is traversed only if the query at node m
ontains timestamp tand the timestamp t� 1 is asso
iated with node n. To �nd the memory dependen
e,all edges kept at a load instru
tion point are traversed ba
k to in
lude new nodesinto the sli
e. Moreover sin
e this algorithm does not distinguish between di�erenttimestamps
orresponding to a node, when a dependen
e is found, and new queries aregenerated at a node, all timestamps of that node are in
luded in the newly generatedquery for further propagation. In the example, we will be able to get the dynami
sli
e whi
h in
ludes all nodes ex
ept node 5 and 12.5.4 Con
lusionAs demonstrated by the three appli
ations dis
ussed in this
hapter, the timestampedwhole program path representation
an be used in a wide range of areas. It is orga-nized at di�erent level su
h that di�erent appli
ations
an �nd the required informa-tion more
onveniently.TWPP+
an be used to study the overall behavior of a program exe
ution. Byregrouping and sorting the memory dependen
e edges, redundant load and store in-stan
es are identi�ed. A signi�
ant per
entage of load instru
tions are highly redun-dant and
ould be further optimized to improve performan
e. With the timestamps,the exa
t exe
ution order is maintained in the TWPP+ su
h that it is mu
h faster toidentify the frequen
y of some data
ow fa
ts at some program points with respe
tto the given whole program path. The TWPP+ representation
an also be used asdebug tool to
reate dynami
 sli
es at any program exe
ution point. Di�erent sli
-ing algorithms are simulated using this representation with di�erent
ost and sli
ea

ura
y tradeo�.

82
Chapter 6Profiling dynami
ally allo
ated dataobje
tsIn the pre
eding
hapters, a new representation was developed to
ompress both
on-trol
ow and memory address pro�les. It enables the appli
ation of whole programpath in pro�le guided optimizations by speeding up the information retrieval at theanalysis stage. On the other hand, with the rapid advan
es in both
omputer ar
hi-te
ture and programming pra
ti
e, new types of pro�les are needed to explore newoptimization opportunities and develop new types of optimization te
hniques. In thefollowing three
hapters, a new pro�ling framework is developed to dis
over runtime
ompression opportunities. Both software and hardware te
hniques are developed toexploit these opportunities.Over the last de
ade, the memory and CPU performan
e gap has be
ome a majorperforman
e bottlene
k in modern
omputer ar
hite
tures. Ca
he has been proposedas an e�e
tive
omponent to bridge this gap. Sin
e
a
he is usually mu
h smallerthan the main memory and the user spa
e, it is very important to make good use ofthe
a
he memory in order to a
hieve good performan
e. Traditional approa
hes toimprove
a
he performan
e su
h as doubling the size, in
reasing the asso
iativity fromhardware, or rearranging data obje
ts or data �elds within obje
ts by
ompilers, donot
hange the data density in the
a
he. However, as we will see, a large per
entageof the bits stored in both the
a
he and the main memory are redundant. By removingthese redundant bits, more data items
an be kept in a
a
he of given size and alleviatethe memory bottlene
k by redu
ing the number of
a
he misses.The user spa
e is divided into three areas: sta
k, globals and heap. The datastru
tures allo
ated in di�erent areas show di�erent
a
he and memory a

essing

83behavior. Those allo
ated in sta
k usually have mu
h better performan
e than therest. Data layout optimizations
an be used to optimize the behavior of global andheap data a

esses. Those allo
ated in the global data spa
e, even if they have badperforman
e,
an be optimized well by existing
ompilers. However, those allo
ated inthe heap have bad
a
he behavior and they are hard to optimize at
ompile time sin
ethey are allo
ated dynami
ally. The fo
us of this resear
h is mainly on the dynami
data stru
tures. In parti
ular, new data
ompression te
hniques are designed to
ompress dynami
ally allo
ated data stru
tures.Before the design of a dynami
 and e�e
tive data
ompression te
hnique, we needto pro�le programs and
olle
t information that would guide us in the developmentof new
ompression te
hniques. In this
hapter, su
h a framework is presented forpro�ling dynami
ally allo
ated data obje
ts. The framework allows us to analyzethe value
hara
teristi
s and lifetime of the dynami
ally allo
ated obje
ts. Morespe
i�
ally, the framework allows us to
arry out and answer the following questions.� What data stru
tures should be
ompressed?� How should they be
ompressed?� When should they be
ompressed?The subsequent
hapters present detailed software and hardware s
hemes respe
-tively to remove redundan
y in dynami
ally allo
ated heap data obje
ts. While thesoftware te
hnique uses data
ompression transformations for redundan
y removal,the hardware te
hnique removes redundan
y through a novel data
a
he design.The rest of this
hapter is organized as follows. The type based pro�ling te
hniqueis introdu
ed in se
tion 6.1. The experimental framework is presented in se
tion 6.2.Results of studies aimed at answering the three questions listed above are presentedin se
tions 6.3, 6.4 and 6.5 respe
tively. Se
tion 6.6
on
ludes the
hapter.

846.1 Type based pro�lingUsually, a program
ontains a large number of obje
ts of a given type and there are anumber of �elds within the given type. For example, all the nodes of a linked list areof the same stru
ture with several �elds: a pointer �eld to link the nodes together andsome other data �elds. Often there exists a signi�
ant degree of value similarity a
rossthe same �elds from di�erent nodes. Spa
e requirements
ould be redu
ed by takingadvantage of this similarity. However, a
ompression strategy that treats uniformlyall �elds in a type is too
oarse and would miss many opportunities in pra
ti
e. A newtype-based pro�ling te
hnique whi
h
olle
ts the following information is proposed tosolve this problem.� The lifetime of ea
h obje
t and the total number of load and store a

esses tothis obje
t are found through pro�ling. This information identi�es the overallbehavior of ea
h dynami
ally allo
ated obje
t.� The value
hara
teristi
s for ea
h �eld of ea
h type in the program are deter-mined. This information is organized as the value range summary of all �eldinstan
es. Value
hara
teristi
 information
an be
olle
ted at di�erent granu-larity and it is possible to keep an additional list of most frequently use N valuesand their a

ess frequen
ies.To
olle
t the above information, a straightforward approa
h is a
omplete instru-mentation of all a

ess points in
luding the
reation point at mallo
(), the deletionpoint at free() and all load and store a

esses. Although it is easy to tra
e at the highlevel the type information of obje
ts through mallo
() and free() fun
tion
all points,a high level variable a

ess
an be translated to either a register a

ess and a memorya

ess. Sin
e we are only interested in memory a

esses, instrumentation at a highlevel is thus insuÆ
ient. One possible approa
h is to tra
e the load and store a

essesby modifying the
ode generation part of the
ompiler but it is too expensive. To

85minimize e�ort in modifying the
ompiler, a type-based pro�ling framework is pro-posed in this
hapter with a
ombined approa
h of using high level instrumentationand lower level simulation.6.2 Experimental framework
SUIF

Modified

Simplescalar

.c files .spd files my SUIF

pass

instrumented

.spd files

instrumented

.c files

SUIF

gcc
object code

resultsFigure 6.1. Type based pro�ling framework.Figure 6.1 shows the framework whi
h
ombines the use of SUIF 1.0
ompiler[54℄ and Simples
alar simulator [10℄. The original C programs are �rst
onverted toSUIF intermediate representations (IRs) by s

. A new pass is written to instrumentthese IRs and high level type of information is inserted into the instrumented
ode.The results of the new pass are still IRs and they are
onverted ba
k to C programsby s2
 (a
onversion tool in SUIF). Then the instrumented version of C programsare
ompiled by g

 provided in Simples
alar and the MIPS-like exe
utable
ode isgenerated. The Simples
alar simulator, whi
h has been modi�ed to pro
ess high leveltype information, is used to simulate the exe
ution and
olle
t pro�les.At the high level, the new SUIF pass instruments two kinds of program pointsand generates a type list for later referen
e.� At ea
hmemory allo
ation point, a dummy instru
tion \asm(\lw $0, T($26)")"is inserted before the fun
tion
all mallo
. Here the parameter \T" indi
atesthe type index of the return memory address and two registers $0 and $26 are

86expli
itly used. $0 is a
onstant zero register and $26 is an operating systemreserved register.� At ea
h type
asting point, two dummy instru
tions \asm(\lw $0, T1($26)")"and \asm(\lw $0, T2($26)")" are inserted to indi
ate the types before and after
asting.� A type list re
ords all types de
lared in the program. The mapping from ea
ho�set to its
orresponding �eld is kept for ea
h type. Given an o�set for a type,it is possible to �nd its
orresponding �eld and the type of the �eld.The register \$26" is safe to use be
ause as an operating system reserved register,the obje
t
ode generated from a
ompiler su
h as g

 does not use this register.Sin
e the obje
t
ode is to be simulated rather than exe
uted on a real ma
hine,the simulator
an
at
h these dummy instru
tions, nullify their e�e
ts ex
ept forextra
ting the type information they
arry from the high level instrumentation. As aresult, these dummy instru
tions have no e�e
t on the program exe
ution ex
ept theslots they take from the instru
tion
a
he. Be
ause it is the lower level simulator thattra
es memory a

esses, the high level
ode is inserted only at the mallo
 and type
asting points. The number of these points is signi�
antly smaller than the numberof memory a

esses. In this way the program's behavior is minimally a�e
ted by theinstrumentation.At the lower level, the simulator is modi�ed to instrument one kind of programpoint and maintain two pro�ling data stru
tures.� Memory a

ess point. Ea
h memory a

ess point, either a load or a storeinstru
tion, is tra
ed but only the a

esses to the interesting heap obje
ts arefurther pro
essed.� A B+ tree. The simulator maintains a B+ tree to keep all nodes dynami
allyallo
ated from system mallo
. When a new memory
hunk is allo
ated, a new

87re
ord that
ontains the starting address, the size, and the result type of thememory
hunk is inserted into this B+ tree. The starting address is gotten fromthe result of the
all to mallo
. The size and type information is obtained fromthe high level dummy instru
tions.� Field level
ompressibility list for ea
h type. The simulator maintains alist for ea
h type. The �eld level
ompressibility information is maintained inthis list to summarize the value properties for all instan
es.Sin
e nearly all data items are a

essed at word level, an assumption is made to
onsider only the a

esses at word size level from now on. Although there are a

essesto fet
h double pre
ision
oating point values, double word-sized values, or subwordlevel values, the overall per
entage of su
h a

esses is usually very small. It is alsopossible to approximate ea
h double-word a

ess by two
onse
utive word a

essesand ea
h subword a

ess by one word-sized a

ess plus a subsequent bit extra
tion.On
e a memory a

ess is tra
ed by the simulator at runtime, a series of
he
ks areperformed as follows. First, the simulator sear
hes the B+ tree and �nds the re
ord
ontaining the address. Se
ond, the o�set is
omputed from the node's starting ad-dress. With simple
al
ulation from the information in the type list, this memoryaddress is mapped to a �eld and the
orresponding �eld type information is deter-mined. For example, suppose we are
he
king a memory address \0x10000108" andthere is a node whi
h indi
ates an array type with starting address \0x10000000".Furthermore, ea
h item is 0x100 bytes long and is of the following type.stru
t list node fint value;stru
t list node *prev,stru
t list node *next;� � � ;g *t;

88The �eld being a

essed is then mapped to the third �eld of the se
ond item inthe array. Finally, the value itself is
he
ked to evaluate its
ompressibility and the�eld
ompressibility list is updated a

ordingly.Next, let us dis
uss the experiments and their results in answering the what, whenand how questions of data
ompression using this framework.6.3 Sele
ting obje
t types to
ompressA program may
ontain multiple data types, ea
h exhibiting di�erent a

ess patternsand di�erent
ompressibility. The data types that an optimizing
ompiler should
ompress are those, by transforming whi
h, positive impa
t on performan
e is ex-pe
ted. The �elds in a data type should also be
onsidered separately with the aimof maximizing bene�t. Sin
e di�erent
ompression s
hemes might group �elds dif-ferently, and thus a�e
t the overall
ompressibility, this se
tion will dis
uss how toseparate and pi
k out di�erent data stru
tures for
ompression. The
ompression ofdi�erent �elds is left to subsequent se
tions.As des
ribed, the
olle
ted pro�les provide the information about the number ofobje
ts for ea
h type and the information about the value ranges for all �elds of agiven type. Potential spa
e savings
an thus be
al
ulated from this information.Experiments have been done to identify the appropriate data types to
ompress inSPEC95int ben
hmark suite. Most programs from this ben
hmark suite have at leastone of the following properties.� There are a set of similar types and a generi
 type. The generi
 type is used tobuild up the data stru
ture but ea
h node is of a spe
i�
 type. Obje
t instan
esare a

essed by type
asting to a spe
i�
 type. Programs 130.li and 126.g

,whi
h themselves are
ompilers, exhibit this property. These programs buildup a syntax tree for ea
h fun
tion and ea
h node in the tree
ould be of a spe
i�
type (e.g., for an expression, a FOR statement, or an IF statement, et
).

89� The program �rst allo
ates a large
hunk and starting address of the node is re-
al
ulated (aligned) to a spe
ial address. Be
ause of impli
it address arithmeti
,the
ompiler has diÆ
ulty in remapping the �elds and their o�sets. Program124.m88ksim exhibits this property.The above identi�ed properties blo
k further pro
essing of SPEC95int ben
hmarksand we
on
lude that they are not good for automati

ompression transformations.The programs from Olden ben
hmark suites were further studied. Olden is apointer intensive ben
hmark suite (Table 6.1). Although the types of a programare divided into several groups, ea
h group has only one type. The
lear type iso-lation provides good opportunities for
ompiler-based
ompression. The main datastru
tures that were
onsidered for
ompression are given in Table 6.1.Program Appli
ation Main data stru
turebh Barnes & Hut N-body for
e
omputation al-gorithm Heterogeneous treebisort Bitoni
 Sorting Binary Treehealth Columbian health
are simulation Doubly- linked listsmst Minimum spanning tree of a graph Heterogeneous treeperimeter Perimeter of regions in images Quad-treetreeadd Re
ursive sum of values in a balan
ed B-tree Binary treetsp Traveling salesman problem Balan
ed binary treevoronoi Computes the voronoi diagram of a set ofpoints Balan
ed binary treeTable 6.1. Olden Ben
hmark Summary.6.4 Choosing the
ompression s
hemeA major
hallenge in the design of a
ompression s
heme is to balan
e the dynami

ompression
osts and the bene�ts of
ompression. A dynami

ompression s
hemeshould be simple and fast for most if not all of the a

esses. If applying traditional
ompression te
hniques (e.g., a di
tionary based approa
h or Hu�man
oding), there

90are at least two memory a

esses: one to fet
h the en
oded data and the other to fet
hthe de
oded data. As the
a
he and memory a

esses are already the bottlene
k andthe major fo
us of applying
ompression dynami
ally is to redu
e the total numberof these a

esses, these te
hniques are not appealing for dynami

ompression. Thenew
ompression s
heme that would be suitable to have in a dynami
 environmentshould get all information about a value in one a

ess for most if not all of the dataa

esses. Of
ourse, subsequent
omputation to extra
t the de
oded value might beinevitable. A logi
al
omparison of the traditional and new
ompression s
hemes isshown in Figure 6.2.
access

encoded

value

access

decode

table

access

encoded

value

compute

decoded

value

(a) using a traditional compression scheme

(b) using a desired new compression scheme

Figure 6.2. A

ess sequen
es with di�erent
ompression s
hemes.To design a
ompression s
heme that
an get all information from one memorya

ess, no
ompli
ated en
oding s
heme should be used but rather we should dis
arddire
tly the redundant bits from original word representation. The following two typesof redundan
y are identi�ed (also see Figure 6.3).� If a pointer is saved in a pla
e that is
lose to the pla
e it points to, the value ofthe pointer and the address of the pointer share the same pre�x. Sin
e the valueis a

essed always from its address, the pre�x of the value
an be
onsideredas redundant as it
an be
onstru
ted from its address easily. In this
ase, the

91

(a) pointer addresses share the same prefix

0 231-1- 231+1

11 … 1 xxx 00… 0 xxx

(b) small positive or negative values

P

Q

prefix(P) = prefix(Q)

same chunk

xxx xxx1 0Figure 6.3. Representing a 32-bit value with fewer than 32 bits.pre�x bits of the pointer
an be safely dis
arded.� If a value is
lose to zero, the higher order bits are sign extensions and theyare either all 0s or all 1s. In either
ase, there is no need to remember all theseidenti
al bits and thus the pre�x bits are
onsidered as redundant. Only thesign bit should be remembered and the rest
an be safely dis
arded.With the
ompression opportunities identi�ed, one
ould dynami
ally dis
ard allredundant bits and use the least possible bits to represent a value, or dis
ard someredundant bits but use �xed number of bits to represent a value. Sin
e data values
hange dynami
ally, the former strategy would bring too mu
h
omplexity to dynami
memory management and thus is not used. For the latter, we need to
hoose the �xednumber of bits based upon the
ost-bene�t analysis of using this �xed number of bitsto
arry out
ompression.6.4.1 Potential savings in spa
e due to redundan
y removalThe bene�ts of a dynami

ompression s
heme
ome from the spa
e savings and the
orresponding
a
he miss redu
tion due to the spa
e savings. As a result, the bene�tsestimation is based upon spa
e savings and the experiment is designed as follows. Theoriginal s
heme always represents a word-sized value with 32 bits. The new s
heme

92uses a �xed bit width L and if after removing the redundant pre�x bits from a value'srepresentation, the required number of bits is less that L, L bits are used to representthis value; otherwise, 32 bits are used to represent the value. The total number ofbits required for representing values involved in all a

esses for di�erent values of Lwere
olle
ted.

4 bits 8 bits 12 bits 16 bits 20 bits 24 bits 28 bits 32 bits
20

40

60

80

100

N
or

m
al

iz
ed

 R
eq

ui
re

d
B

its

bh
bisort
health
mst
perimeter
treeadd
tsp
voronoiFigure 6.4. Required bits with �xed length.The programs from the Olden suite with small inputs were exe
uted to
olle
t thepro�ling information. The results are shown in Figure 6.4 with the original requiredbits normalized as 100%. A smaller �xed length saves greater number of bits for ea
h
ompressible value. However, if L is too small, the probability that a value will berepresented using 32 bits is high. From the results in Figure 6.4, it
an be seen that�nd some ben
hmarks a
hieve the best pro�ling results at the point with �xed 4 bitswhile some a
hieve the best results with 8 or 16 bits. However, if the �xed length isbigger than 16 bits, the required bits in
rease almost linearly for all ben
hmarks.6.4.2 Potential
osts of redundan
y removalLet us now study the
ost of dynami

ompression. The real
ost is implementationdependent and a pre
ise estimation
an only be done when both the
ompressions
heme and the lower level ar
hite
ture are all well de�ned. A
oarse estimation is

93presented instead and it is suÆ
ient to guide the design of the
ompression s
heme.Sin
e the bene�ts
ome from the
ompression of �elds whose majority instan
es are
ompressible values, a su

essful
ompression s
heme should speedup the a

esses of
ompressible values; otherwise, the slowdown of majority a

esses will downgrade sig-ni�
antly the overall performan
e. On the other hand, the a

esses of in
ompressiblevalues
ould be slower than those of
ompressible ones. Thus, the
ost estimationis performed by answering the following question. If only a

esses of in
ompressiblevalues are slowed down, would the
ost from a

essing in
ompressible values be o�setby the bene�t obtained from a

esses of
ompressible values? This in turn dependson the distribution of
ompressible and in
ompressible values. The results for Oldenben
hmark programs are shown in Figure 6.5. A memory a

ess is
onsidered to bea �tting a

ess if its value
an be represented by �xed 4, 8, 16 bits respe
tively. Theresults in Figure 6.5 show that more than half of the a

esses
ould be expensive non-�tting a

esses if using 4 bits. While with 16 bits, the per
entages of �tting a

essesare between 69% and 99%. As a result, 16-bit is a
ost-e�e
tive point and a good
andidate to use.Dynami
 values
hange frequently and it is usually more expensive to
onvert a
ompressible value to an in
ompressible one, or vi
e versa. With dynami
 expansionof values
onsidered, a study of the ben
hmarks has been done from the storage pointof view and the results are shown in Figure 6.6. All values are initially allo
atedwith �xed lengths, 4 bits, 8 bits and 16 bits respe
tively. If a value
hanges from
ompressible to in
ompressible, it gets expanded and stays as an in
ompressible valuefrom then onwards. Therefore later a

esses will be �tting-a

esses even if theyare a

essing the in
ompressible value. The results show that with a �xed 16-bitrepresentation, the majority memory a

esses �t this length and dynami

onversionis very infrequent.From the above analysis and the results in estimated
osts and bene�ts, we
on-
lude that a well-balan
ed
ompression s
heme should represent a 32 bits value with

94

4 8 16
Fixed Bit Width

0

20

40

60

80

100

A
pp

ea
re

d
V

al
ue

(%
)

bh

fitting values
non−fitting values

4 8 16
Fixed Bit Width

0

20

40

60

80

100

A
pp

ea
re

d
V

al
ue

(%
)

bisort

fitting values
non−fitting values

4 8 16
Fixed Bit Width

0

20

40

60

80

100

A
pp

ea
re

d
V

al
ue

(%
)

health

fitting values
non−fitting values

4 8 16
Fixed Bit Width

0

20

40

60

80

100

A
pp

ea
re

d
V

al
ue

(%
)

mst

fitting values
non−fitting values

4 8 16
Fixed Bit Width

0

20

40

60

80

100

A
pp

ea
re

d
V

al
ue

(%
)

perimeter

fitting values
non−fitting values

4 8 16
Fixed Bit Width

0

20

40

60

80

100

A
pp

ea
re

d
V

al
ue

(%
)

treeadd

fitting values
non−fitting values

4 8 16
Fixed Bit Width

0

20

40

60

80

100

A
pp

ea
re

d
V

al
ue

(%
)

tsp

fitting values
non−fitting values

4 8 16
Fixed Bit Width

0

20

40

60

80

100

A
pp

ea
re

d
V

al
ue

(%
)

voronoi

fitting values
non−fitting values

Figure 6.5. Distribution of values with �xed length.

95

4 8 16
Fixed Bit Length

0

20

40

60

80

100

A
pp

ea
re

d
V

al
ue

s(
%

)

bh

fit small storage
require converting
fit expanded storage

4 8 16
Fixed Bit Length

0

20

40

60

80

100

A
pp

ea
re

d
V

al
ue

s(
%

)

bisort

fit small storage
require converting
fit expanded storage

4 8 16
Fixed Bit Length

0

20

40

60

80

100

A
pp

ea
re

d
V

al
ue

s(
%

)

health

fit small storage
require converting
fit expanded storage

4 8 16
Fixed Bit Length

0

20

40

60

80

100

A
pp

ea
re

d
V

al
ue

s(
%

)

mst

fit small storage
require converting
fit expanded storage

4 8 16
Fixed Bit Length

0

20

40

60

80

100

A
pp

ea
re

d
V

al
ue

s(
%

)

perimeter

fit small storage
require converting
fit expanded storage

4 8 16
Fixed Bit Length

0

20

40

60

80

100

A
pp

ea
re

d
V

al
ue

s(
%

)

treeadd

fit small storage
require converting
fit expanded storage

4 8 16
Fixed Bit Length

0

20

40

60

80

100

A
pp

ea
re

d
V

al
ue

s(
%

)

tsp

fit small storage
require converting
fit expanded storage

4 8 16
Fixed Bit Length

0

20

40

60

80

100

A
pp

ea
re

d
V

al
ue

s(
%

)

voronoi

fit small storage
require converting
fit expanded storageFigure 6.6. Distribution of values with �xed storage.

96�xed 16 bits, allow dynami
 expansion, but not allow dynami
 shrinking.6.5 Choosing the time for
ompressionThe next problem to be
onsidered is that of determining when these types should be
ompressed. The following three possible s
hemes are studied.� Complete
ompression at the beginning. The simplest s
heme is to
ompress all�elds of a type at the beginning. If implementing in a
ompiler, it means thatthe memory layout of the type is redu
ed to half of its original size at
ompiletime. It has the simpli
ity that the o�set of ea
h �elds is known at
ompiletime and
ode generation is therefore simpli�ed.� Sele
tive
ompression at the beginning. Sin
e di�erent �elds exhibit di�erent
ompression opportunities and some �elds su
h as
oating point value �eldsare general hard to
ompress. Consider the
ost the program has to pay atruntime to a

ess in
ompressible �elds, it is more preferable to
ompress onlythose highly
ompressible �elds and leave the rest as they are. This s
heme stillhas the property that the o�sets of the �elds are known at
ompile time.� Compression after last write. Sin
e the
ompressibility of a value
an only be
hanged by a write operation, after the last write of a �eld, its representation is�xed and more aggressive
ompression s
heme
an be used and we do not haveto worry that the values might
hange later. This
ompletely eliminates the
ostthat a
ompression s
heme has to pay to handle
onversions from
ompressiblevalues to in
ompressible ones.Figure 6.7 shows the experimental results in studying the Olden ben
hmark pro-grams under di�erent
ompression time. For the sele
tive
ompression s
heme at thebeginning, a �eld is
hosen if 80% of its instan
es are
ompressible. The x axis of

97

0 1000 2000 3000 4000 5000
0

20000

40000

60000

80000

1e+05

bh

original
comp. after last write
comp. at start(all fields)
comp. at start(some fields)

0 1000 2000 3000 4000 5000
0

10000

20000

30000

bisort

original
comp. after last write
comp. at start(all fields)
comp. at start(some fields)

0 1000 2000 3000 4000 5000
0

20000

40000

60000

80000

health

original
comp. after last write
comp. at start(all fields)
comp. at start(some fields)

0 1000 2000 3000 4000 5000
0

20000

40000

60000

80000

mst

original
comp. after last write
comp. at start(all fields)
comp. at start(some fields)

0 1000 2000 3000 4000 5000
0

50000

1e+05

1.5e+05

2e+05

perimeter

original
comp. after last write
comp. at start(all fields)
comp. at start(some fields)

0 2000 4000 6000
0

20000

40000

60000

80000

treeadd

original
comp. after last write
comp. at start(all fields)
comp. at start(some fields)

0 1000 2000 3000 4000 5000
0

50000

1e+05

1.5e+05

tsp

original
comp. after last write
comp. at start(all fields)
comp. at start(some fields)

0 1000 2000 3000 4000 5000
0

2e+05

4e+05

6e+05

8e+05

1e+06

voronoi

original
comp. after last write
comp. at start(all fields)
comp. at start(some fields)

Figure 6.7. De
iding the time for
ompression.

98the �gure shows the exe
ution time whi
h has been normalized to 5000 units. The yaxis shows the required heap spa
e during the exe
ution. \free()" is not
onsideredduring program exe
ution and thus the memory requirements in
rease
ontinuouslyand de
rease to zero at the end of the exe
ution.The s
heme that
ompresses an obje
t after its last write
an remove the dynami

onversion
ost from
ompressible values to in
ompressible ones. It
an also a
hievebest spa
e savings for 4 out of 8 programs. Although it looks like an appealingapproa
h, it is diÆ
ult to apply in pra
ti
e. Usually at some program point, only asmall number of nodes in a data stru
ture are modi�ed. However, the whole datastru
ture might be traversed and nodes are dynami
ally sele
ted for modi�
ation. Itwould be very expensive, and sometimes impossible, to predi
t the last write to aparti
ular node.Comparing the two s
hemes that
ompress data items at the beginning, the re-sults show that although
ompressing all the �elds a
hieves more spa
e redu
tionat the beginning, it requires more data expansion during program exe
ution. Thuseventually, it requires more spa
e than the sele
tive
ompression s
heme. Moreover,the results show that sele
ing only highly
ompressible data �elds for
ompressionredu
es both the spa
e requirements and dynami

osts of a

essing in
ompressiblevalues. Overall, the s
heme that
ompresses sele
ted �elds at the beginning a
hievesthe best result for 5 out of 8 programs and almost the best for another 2 programs.6.6 Con
lusionA type-based pro�ling framework is introdu
ed in this
hapter to explore the runtimevalue representation redundan
y for Olden ben
hmark suites. It pro�les ea
h type inthe program at �eld level and all obje
t instan
es are
he
ked to set up a
ost-bene�tmodel. The model is used in the design of new
ompression s
hemes. In parti
ular,three important questions were answered. We de
ided to
ompress all obje
ts of a

99given type if there was no address arithmeti
 and no type
asting. Promising �eldswere sele
ted for
ompression at the beginning of the exe
ution. A 32-bit valueis represented using �xed 16 bits and while dynami
 expansion is allowed, dynami
shrinking is not allowed. This
hapter also identi�ed two types of value representationredundan
y from
ommon pre�x of pointer addresses and sign extensions of smallvalues.

100
Chapter 7Profile-guided data
ompressiontransformationsIn the pre
eding
hapter, a type based pro�ling framework was introdu
ed to iden-tify opportunities for redu
ing redundan
y in the dynami
 representation of values.Results of studies
ondu
ted using the pro�ling framework have identi�ed the mostimportant
hara
teristi
s of a suitable
ompression s
heme by answering the what,how and when questions. In this
hapter, a
on
rete
ompiler based
ompressions
heme will be introdu
ed. The design details are
onsistent with the
hara
teristi
sdis
ussed in the pre
eding
hapter.A
ompiler based approa
h exploits the
ompression optimization opportunitiesthrough transformation. First, the data stru
tures and types with
ompression oppor-tunities are identi�ed. Fields are pa
ked in a way to a
hieve better
ost-bene�t ratio.Before
ode generation, the original memory layouts of these types are
hanged to
ompressed forms su
h that ea
h node takes less spa
e than before. Se
ond, the orig-inal
ode sequen
e that a

esses the
ompressed �elds is
onverted to a new sequen
eto a

ess the modi�ed type with
ompression and de
ompression done dynami
ally.By redu
ing the value representation redundan
y, dynami
 resour
es su
h as
a
heand main memory spa
e, memory bandwidth are utilized more e�e
tively.The rest of this
hapter is organized as follows. The data
ompression transfor-mations are introdu
ed in se
tion 7.1. The instru
tion and
ompiler support neededto perform these transformations are dis
ussed in se
tions 7.2 and 7.3 respe
tively.Experimental results are shown in se
tion 7.4. Finally, se
tion 7.5
on
ludes the
hapter.

1017.1 Data
ompression transformationsFrom the dis
ussion in the pre
eding
hapter, it is known that many dynami
 valuesexhibit value representation redundan
y and the maximal
ost-bene�t ratio appearsat about the point to represent values with �xed 16 bits. Therefore, employing a
ompiler transformation that repla
es a 32-bit variable by a 16-bit variable and pa
kstwo variables into a single word is the logi
al
hoi
e. In the example below, a pointer�eld and a small value �eld are pa
ked into a single 32-bit �eld value next.Original Stru
ture: Transformed Stru
ture:stru
t list node f stru
t list node f� � � ; � � � ;int value; int value next;stru
t list node *next; g *t;g *t;In this way, 4 bytes are saved from ea
h node in the linked list. Although indi
atedby a type rede
laration, this transformation is not done at the sour
e level and there isno need to generate the new de
laration at sour
e
ode level. Instead the optimizing
ompiler will
hange the memory layout before
ode generation and then generatenew
ode sequen
es a

ordingly. As we see, there are two types of �elds: pointeraddresses and small value �elds. They are handled di�erently through two types ofdata
ompression transformations.Common-pre�x transformation for pointer data. The pointer
ontained in thenext �eld of the link list
an be
ompressed under
ertain
onditions. In parti
ular,
onsider the addresses
orresponding to an instan
e of list node (addr1) and the next�eld in that node (addr2). If the two addresses share a
ommon 17 bit pre�x be
ausethey are lo
ated fairly
lose in memory, the next pointer is
lassi�ed as
ompressible.In this
ase the
ommon pre�x from address addr2 whi
h is stored in the next pointer�eld is eliminated. The lower order 15 bits from addr2 represent the representationof the pointer in
ompressed form. The 32 bit representation of a next �eld
an be

102re
onstru
ted when required by obtaining the pre�x from the pointer to the list nodeinstan
e to whi
h the next �eld belongs.Narrow data transformation for non-pointer data. Now let us
onsider the
ompression of the narrow width integer value in the value �eld. If the 18 higherorder bits of this value are identi
al, that is, they are either all 0's or all 1's, it is
lassi�ed as
ompressible. The 17 higher order bits are dis
arded and leaving a 15bit entity. Sin
e the 17 bits dis
arded are identi
al to the most signi�
ant order bitof the 15 bit entity, the 32 bit representation
an be easily derived when needed byrepli
ating the most signi�
ant bit.Pa
king together
ompressed �elds. The value and next �elds of a node be-longing to an instan
e of list node
an be pa
ked together into a single 32 bit word asthey are simply 15 bit entities in their
ompressed form. Together they are stored invalue next �eld of the transformed stru
ture. The 32 bits of value next are dividedinto two half words. Ea
h
ompressed �eld is stored in the lower order 15 bits of the
orresponding half word. A

ording to the above strategy, bits 15 and 31 are notused by the
ompressed �elds. Next the handling of in
ompressible data in partially
ompressible data stru
tures is des
ribed. The implementation of partially
ompress-ible data stru
tures requires an additional bit for en
oding information. This is why�elds are
ompressed down to 15 bit entities and not into 16 bit entities.Partial
ompressibility. The basi
 approa
h is to allo
ate only enough storage toa

ommodate a
ompressed node when a new node in the data stru
ture is
reated.Later, as the pointer �elds are assigned values, it is
he
ked to see if the �elds are
ompressible. If they are, they
an be a

ommodated in the allo
ated spa
e; otherwiseadditional storage is allo
ated to hold the �elds in un
ompressed form. The previouslyallo
ated lo
ation is now used to hold a pointer to this additional storage. Therefore

103for a

essing in
ompressible �elds the approa
h has to go through an extra step ofindire
tion.If the in
ompressible data stored in the �elds is modi�ed, it is possible that the�elds may now be
ome
ompressible. However, su
h
he
ks are not
arried out andinstead the �elds in su
h
ases are left in un
ompressed form. This is be
ause ex-ploitation of su
h
ompression opportunities
an lead to repeated allo
ation and deal-lo
ation of extra lo
ations if data values repeatedly keep os
illating between the
om-pressible and in
ompressible kind. To avoid repeated allo
ation and deallo
ation ofextra lo
ations the approa
h is simpli�ed so that on
e a �eld is assigned an in
om-pressible value, from then on wards, the data in the �eld is always maintained inun
ompressed form.The most signi�
ant bit (bit 31) in the word is used to indi
ate whether or notthe data stored in the word is
ompressed or not. It
ontains a 0 to indi
ate thatthe word
ontains
ompressed values. If it
ontains a 1, it means that one or bothof values were not
ompressible and instead the word
ontains a pointer to an extrapair of dynami
ally allo
ated lo
ations whi
h
ontain the values of the two �elds inun
ompressed form. While bit 31 is used to en
ode extra information, bit 15 is neverused for any purpose.The example in Figure 7.1 illustrates the above method using an example in whi
han instan
e of list node is allo
ated and then the value and next �elds are set up oneat a time. As we
an see �rst storage is allo
ated to a

ommodate the two �elds in
ompressed form. As soon as the �rst in
ompressible �eld is en
ountered additionalstorage is allo
ated to hold the two �elds in un
ompressed form. Under this s
hemethere are three possibilities whi
h are illustrated in Figure 7.3. In the �rst
ase both�elds are found to be
ompressible and therefore no extra lo
ations are allo
ated. Inthe se
ond
ase the value �eld, whi
h is a

essed �rst, is
ompressible but the next�eld is not. Thus, initially value �eld is stored in
ompressed form but later whenthe next �eld is found to be
ompressible, extra lo
ations are allo
ated and both

104�elds are store in un
ompressed form. Finally in the third
ase the value �eld is not
ompressible and therefore extra lo
ations are allo
ated right away and none of thetwo �elds are ever stored in
ompressed form.
Original : Create left link and then right.
addr1

nil

addr2t

left

right

addr1

addr3

addr2

left

right

t

Transformed: Both left and right links are compressible.
addr1

nil addr21

t

lr0

addr1

addr31 addr21

t

lr0

Transformed: left link is compressible and right is not.
addr1

nil addr21

t

lr0

addr1

t

lr1

addr31

addr21

Transformed: left link is uncompressible.
addr1

t

lr1

addr1

t

lr1

addr31

addr21addr21

nilFigure 7.1. Dealing with in
ompressible data.7.2 Instru
tion set supportCompression redu
es the amount of heap allo
ated storage used by the program whi
htypi
ally improves the data
a
he behavior. Also if both the �elds need to be read intandem, a single load is enough to read both the �elds. However, the manipulationof the �elds also
reates additional overhead. To minimize this overhead new RISC-

105style instru
tions are designed. Six simple instru
tions have been designed of whi
hthree ea
h are for pointer and non-pointer data respe
tively that eÆ
iently implement
ommon-pre�x and narrow-data transformations. The semanti
s of the these instru
-tions are summarized in Figure 7.2. These instru
tions are RISC-style instru
tionswith
omplexity
omparable to existing bran
h and integer ALU instru
tions. Let usdis
uss these instru
tions in greater detail.Che
king
ompressibility. Sin
e we would like to handle partially
ompressibledata, before a
tually
ompressing a data item at runtime, �rst a
he
k is made todetermine whether the data item is
ompressible. Therefore the �rst instru
tiontype that is introdu
ed allows eÆ
ient
he
king of data
ompressibility. Two newinstru
tions have been designed and they are des
ribed below. The �rst
he
ks the
ompressibility of pointer data and the se
ond does the same for non-pointer data.bneh17 R1, R2, L1 { is used to
he
k if the higher order 17 bits of R1 and R2are the same. If they are the same, the exe
ution
ontinues and the �eld heldin R2
an be
ompressed; otherwise the bran
h is taken to a point where wehandle the situation, by allo
ating additional storage, in whi
h the addressin R2 is not
ompressible. The instru
tion also handles the
ase where R2
ontains a nil pointer whi
h is represented by the value 0 both in
ompressedand un
ompressed forms. Sin
e 0 represents a nil pointer, the lower order 17bits of an allo
ated address should never be all zeroes - to
orre
tly handle thissituation we have modi�ed our mallo
 routine so that it never allo
ates storagelo
ations with su
h addresses.bneh18 R1, L1 { is used to
he
k if the higher order 18 bits of R1 are identi
al (i.e.,all 0's or all 1's). If they are the same, the exe
ution
ontinues and the valueheld in R1 is
ompressed; otherwise the value in R1 is not
ompressible andthe bran
h is taken to a point where we pla
e
ode to handle this situation by

106allo
ating additional storage.
BNEH17 R1,R2,L1
 if (R2 != 0) && (R131..15 != R231..15)

goto L1

31 ... 15 14 ... 0

R1

R2

BNEH18 R1,L1
 if (R131..14 != 0) && (R131..14 != 0x3ff)

goto L1

R1
31 ... 14 13 ... 0

XTRHL R1,R2,R3
 if (R314..0 ! = 0) / * N o n - N U L L c a s e * /

R 1 = R 23 1 . . 1 5 R 31 4 . . 0
 e l s e

R 1 = 0
 31 ... 15 14 ... 0

R 2

31 30 ... 16 15 14 ... 0

R 3

R 1

XTRHH R1,R2,R3
 i f (R 33 0 . . 1 6 ! = 0) / * N o n - N U L L c a s e * /

R 1 = R 23 1 . . 1 5 R 33 0 . . 1 6
 e l s e

R 1 = 0

R 3

R 1

31 30 ... 16 15 14 13 ... 0

R 2

XTRL R1,R2
 i f (R 21 4 = = 1)

R 1 = 0 x1 f f f f R 21 4 . . 0
 e l s e

R 1 = R 21 4 . . 0

-

xxxxxxxxxxxxxxxxR 1

31 30 29 ... 16 15 14 ... 0

R 2

XTRH R1,R2
 i f (R 23 0 = = 1)

R 1 = 0 x1 f f f f R 23 0 . . 1 6
 e l s e

R 1 = R 23 0 . . 1 6

0

xxxxxxxxxxxxxxxxR 1

R 2

0 -

0

x

x

-

0

-

 31 ... 15 14 ... 0

31 30 ... 16 15 14 ... 0Figure 7.2. DCX instru
tions.Extra
t-and-expand. If a pointer is stored in
ompressed form, before it
anbe dereferen
ed, its 32-bit representation must be re
onstru
ted. Compressed non-pointer data should be handled similarly before its use. Therefore the se
ond instru
-tion type that is introdu
ed
arries out extra
t-and-expand operations. There arefour new instru
tions that we des
ribe below. The �rst two instru
tions are used toextra
t-and-expand
ompressed pointer �elds from lower and upper halves of a 32-bitword respe
tively. The next two instru
tions do the same for non-pointer data.xtrhl R1, R2, R3 { extra
ts the
ompressed pointer �eld stored in lower order bits(0 through 14) of register R3 and appends it to the
ommon-pre�x
ontained in

107higher order bits (15 through 31) of R2 to
onstru
t the un
ompressed pointerwhi
h is then made available in R1. The
ase when R3
ontains a nil pointer isalso handled. If the
ompressed �eld is a nil pointer, R1 is set to nil.xtrhh R1, R2, R3 { extra
ts the
ompressed pointer �eld stored in the higher or-der bits (16 through 30) of register R3 and appends it to the
ommon-pre�x
ontained in higher order bits (15 through 31) of R2 to
onstru
t the un
om-pressed pointer whi
h is then made available in R1. If the
ompressed �eld is anil pointer, R1 is set to nil.The instru
tions xtrhl and xtrhh
an also be used to
ompress two �elds to-gether. However, they are not essential for this purpose be
ause typi
ally thereare existing instru
tions whi
h
an perform this operation. In the MIPS likeinstru
tion set that was used in this work this was indeed the
ase.xtrl R1, R2 { extra
ts the �eld stored in lower half of the R2, expands it, and thenstores the resulting 32 bit value in R1.xtrh R1, R2 { extra
ts the �eld stored in the higher order bits of R2, expands it,and then stores the resulting 32 bit value in R1.Next a simple example is given to illustrate the use of the above instru
tions. Letus assume that an integer �eld t! value and a pointer �eld t! next are
ompressedtogether into a single �eld t! value next. In Figure 7.3(a) it is shown how
ompress-ibility
he
ks are used prior to appropriately storing newvalue and newnext valuesin to the
ompressed �elds. In Figure 7.3(b) we illustrate the extra
t and expandinstru
tions by extra
ting the
ompressed values stored in t! value next.

108; $16 : &t� > value next; $18 : newvalue; $19 : newnext; bran
h if newvalue is not
ompressiblebneh18 $18, $L1; bran
h if newnext is not
ompressiblebneh17 $16, $19, $L1; store
ompressed data in t� > value nextori $19, $19, 0x7fffswr $18, 0($16)swr $19, 2($16)j $L2$L1: ; allo
ate extra lo
ations and store pointer; to extra lo
ations in t� > value next; store un
ompressed data in extra lo
ations� � �$L2: � � �(a) Illustration of
ompressibility
he
ks.; $16: &(t� > value next); $17: un
ompressed integer t� > value; $18: un
ompressed pointer t� > next; load
ontents of t� > value nextlw $3,0($16); bran
h if $3 is a pointer to extra lo
ationsbltz $3, $L1; extra
t and expand t� > valuextrl $17, $3; extra
t and expand t� > nextxtrhh$18, $16, $3j $L2$L1: ; load values from extra lo
ations� � �$L2: � � �(b) Illustration of extra
t and expand instru
tions.Figure 7.3. An example.

1097.3 Compiler supportSimilar to obje
t layout optimization te
hniques, data
ompression transformationsneed to rearrange the �elds in an obje
t. A basi
 assumption of obje
t layout trans-formations states that it is ensured by the programmer that appli
ation of layouttransformations are safe (program
orre
tness is ensured). Generally, if there is noaddress arithmeti
 and �elds are a

essed from their names, the assumption
an besatis�ed. Starting from this assumption, the optimizing
ompiler automati
ally trans-form the data types and generate
orresponding
ode. The key aspe
ts of the
ompilertransformation are dis
ussed as follows.Identifying �elds for
ompression and pa
king. The
andidate �elds are
las-si�ed from the type-based pro�ling des
ribed in the previous
hapter. A �eld is iden-ti�ed to be highly
ompressible if 90% of the �elds instan
es are
ompressible. Apointer value is
onsidered as
ompressible if it shares the 17 bits pre�x with its ad-dress and a small value is
onsidered as
ompressible if the higher order 18 bits arethe same.The most
riti
al issue is that of pairing
ompressed �elds for pa
king into a singleword. Based on the pro�ling information, �elds are further
ategorized into hot �eldsand
old �elds. With all
ategorized �elds, there are two
hoi
es in pa
king. It ispossible to pa
k two hot �elds together if they are typi
ally a

essed in tandem. Thisis be
ause in this situation a single load
an be shared while reading the two values. Itis also useful to
ompress any two
old �elds even if they are not a

essed in tandem.This is be
ause even though they
annot share the same load, they are not a

essedfrequently. In all other situations it is not as useful to pa
k data together be
auseeven though spa
e savings will be obtained, exe
ution time will be adversely a�e
ted.C
mallo
 vs mallo
. C
mallo
 [17℄, a modi�ed version of mallo
, is used to
arryout storage allo
ation. This form of storage allo
ation was developed by Chilimbi et

110al. [17℄ and as des
ribed earlier it improves the lo
ality of dynami
 data stru
turesby allo
ating the linked nodes of the data stru
ture as
lose to ea
h other as possiblein the heap. Compared to system mallo
, it has one more pointer parameter whi
hindi
ates the parent node of the new node. The new node is allo
ated in the same
a
he line
hunk as it parent node if there are still enough spa
e to hold the new one.Otherwise, a new
hunk is allo
ated. As a
onsequen
e, this te
hnique in
reases thelikelihood that the pointer �elds in a given node will be
ompressible. Therefore itmakes sense to use

mallo
 in order to exploit the synergy between

mallo
 anddata
ompression.Register pressure. Another issue that we
onsider in our implementation is thatof potential in
rease in register pressure. The
ode exe
uted when the pointer �eldsare found to be in
ompressible is substantial and therefore it
an in
rease registerpressure signi�
antly
ausing a loss in performan
e. However, we know that this
odeis exe
uted very infrequently sin
e very few �elds are in
ompressible. Therefore, inthis pie
e of
ode we �rst free registers by saving values and then after exe
utingthe
ode the values are restored in registers. In other words, the in
rease in registerpressure does not have an adverse e�e
t on frequently exe
uted
ode.Instru
tion
a
he behavior and
ode size. The additional instru
tions gener-ated for implementing
ompression
an lead to an in
rease in
ode size whi
h
anfurther impa
t the instru
tion
a
he behavior. It is important to note however thata large part of the
ode size in
rease is due to the handling of the infrequent
ase inwhi
h the data is found not to be
ompressible. In order to minimize the impa
t onthe
ode size we
an share the
ode for handling the above infrequent
ase a
ross allthe updates
orresponding to a given data �eld. To minimize the impa
t of the per-forman
e on the instru
tion
a
he, we
an employ a
ode layout strategy whi
h pla
esthe above infrequently exe
uted
ode elsewhere and
reate bran
hes to it and ba
k so

111that the instru
tion
a
he behavior for more frequently exe
uted
ode is minimallya�e
ted. Our implementation
urrently does not support the above te
hniques andtherefore we observed
ode size in
rease and degraded instru
tion
a
he behavior inour experiments.Code generation. The remainder of the
ode generation details for implementingdata
ompression are in most part quite straightforward. On
e the �elds have beensele
ted for
ompression and pa
king together, whenever a use of a value of any ofthe �elds is en
ountered, the load is followed by an extra
t-and expand instru
tion.If the value of any of
ompressed �elds is to be updated, the
ompressibility
he
k isperformed before storing the value. When two hot �elds that are pa
ked together areto be read/updated, initially we generate separate loads/stores for them. Later in aseparate pass, the later of the two loads/stores is eliminated whenever possible.7.4 Implementation and experiments7.4.1 Experimental setupTe
hniques des
ribed have been implemented to evaluate their performan
e. Thetransformations have been implemented as part of the g

ompiler and the DCX in-stru
tions have been in
orporated in the MIPS like instru
tion set of the supers
alarpro
essor simulated by simples
alar [10℄. The evaluation is based upon six ben
h-marks taken from the Olden test suite whi
h
ontains pointer intensive programs thatmake extensive use of dynami
ally allo
ated data stru
tures.In order to study the impa
t of memory performan
e we varied the input sizesof the programs and also varied the L2
a
he laten
y. The programs were run forthree input sizes { small (this is the standard input that is typi
ally used to runthe ben
hmark), medium and large (see Figure 8.10(a)). The
a
he organization ofsimples
alar is shown in Figure 8.10(b). There are �rst level separate instru
tion

112and data
a
hes (I-
a
he and D-
a
he). The lower level
a
he is a uni�ed-
a
he forinstru
tions and data. The L1
a
he used was a 16K dire
t mapped
a
he with 9
y
le miss laten
y while the uni�ed L2
a
he is 256K with 100/200/400
y
le misslaten
ies. Our experiments are for an out-of-order issue supers
alar with issue widthof 4 instru
tions and the Bimod bran
h predi
tor.Program Appli
ation small input medium input large inputtreeadd Re
ursive sum of values in a B-tree 20 1 21 1 22 1bisort Bitoni
 Sorting 32768 1 128000 1 312000 1tsp Traveling salesman problem 65536 1 131072 1 262144 1perimeter Perimeters of regions in images 12 1 13 1 14 1health Columbian health
are simulation 3 2000 1 3 3000 1 3 4000 1mst Minimum Spanning tree of a graph 512 1 1024 1 2048 1(a) Ben
hmarks and inputs used.Parameter ValueIssue Width 4 issue, out of orderInstru
tion
a
he 16K dire
t mapI
a
he miss laten
y 9
y
lesLevel 1 data
a
he 16K dire
t mapLevel 1 data
a
he miss laten
y 9
y
lesLevel 2 uni�ed
a
he 256K 2-way asso.Memory laten
y Con�guration 1/2/3 =(level 2
a
he miss laten
y) 100/200/400
y
les(b) Ca
he
on�gurations used.Figure 7.4. Experimental setup.7.4.2 Impa
t on storage needsThe transformations applied for ea
h program and their impa
ts on node sizes areshown in Figure 7.5. In the �rst four ben
hmarks (treeadd, bisort, tsp, andperimeter), node sizes are redu
ed by storing pairs of
ompressed pointers in asingle word. In the health ben
hmark a pair of small values are
ompressed togetherand stored in a single word. Finally, in the mst ben
hmark a
ompressed pointer and

113Program Transformation Applied Node Size Change (bytes)treeadd CommonPre�x/CommonPre�x from 28 to 20bisort CommonPre�x/CommonPre�x from 12 to 8tsp CommonPre�x/CommonPre�x from 36 to 32perimeter CommonPre�x/CommonPre�x from 12 to 8health NarrowData/NarrowData from 16 to 12mst CommonPre�x/NarrowData from 16 to 12Figure 7.5. Applied transformations.a
ompressed small value are stored together in a single word. The
hanges in nodesizes range from 25% to 33% for �ve of the ben
hmarks. Only in
ase of tsp is theredu
tion smaller { just over 10%.The runtime savings in heap allo
ated storage are measured for ea
h of the threeprogram inputs. The results are given in Figures 7.6(a-
). The average savings arenearly 25% while they range from 10% to 33% a
ross di�erent ben
hmarks. Evenmore importantly these savings represent signi�
ant levels of heap storage { typi
allyin megabytes. For example, the 33% storage savings for treeadd represents 4.2Mbytes, 8.3 Mbytes, and 17 Mbytes of heap storage savings for small, medium andlarge program inputs respe
tively. It should also be noted that su
h savings
annot beobtained by other lo
ality improving te
hniques des
ribed earlier [56, 35, 13, 17, 16℄.From the results in Figure 7.6(a-
) another very important observation is made.The extra lo
ations allo
ated when non-
ompressible data is en
ountered is non-zerofor all of the ben
hmarks. In other words we observe that for none of the data stru
-tures to whi
h our
ompression transformations were applied, were all of the instan
esof the data en
ountered at runtime a
tually
ompressible. A small amount of addi-tional lo
ations were allo
ated to hold a small number of in
ompressible pointers andsmall values in ea
h
ase. Therefore the generality of our transformation whi
h al-lows handling of partially
ompressible data stru
tures is extremely important. If theappli
ation of
ompression was restri
ted to data �elds that are always guaranteed

114Storage (bytes)Program Original Compressed nodes + Spa
eExtra lo
ations = Total savingstreeadd 12582900 8388600 + 13440 = 8402040 33.2 %bisort 786420 524280 + 25600 = 549880 30.1 %tsp 5242840 4194272 + 6080 = 4200352 19.9 %perimeter 4564364 3260260 + 5120 = 3265380 28.5 %health 566872 509952 + 320 = 510272 10.0 %mst 3414020 2367492 + 320 = 2367812 30.6 %average 25.4 %(a) Redu
tion in heap storage for small input.Storage (bytes)Program Original Compressed nodes + Spa
eExtra lo
ations = Total savingstreeadd 25165812 16777208 + 26560 = 16803768 33.2 %bisort 3145716 2097144 + 136320 = 2233464 29.0 %tsp 10485720 8388576 + 12160 = 8400736 19.9 %perimeter 9322572 6658980 + 10560 = 6669540 28.5 %health 847584 762348 + 320 = 762668 10.0 %mst 13643780 9453572 + 320 = 9453892 30.7 %average 25.2 %(b) Redu
tion in heap storage for medium input.Storage (bytes)Program Original Compressed nodes + Spa
eExtra lo
ations = Total savingstreeadd 50331636 33554424 + 51260 = 33605684 33.2 %bisort 3145716 2097144 + 204160 = 2301304 26.8 %tsp 20971480 16777184 + 23040 = 16800224 19.9 %perimeter 20332620 14523300 + 23680 = 14546980 28.5 %health 1128240 1014804 + 320 = 1015124 10.0 %mst 54550532 37781508 + 320 = 37781828 30.7 %average 24.9 %(
) Redu
tion in heap storage for large input.Figure 7.6. Impa
t on storage.

115to be
ompressible, no
ompression would have been a
hieved and therefore no spa
esavings would have resulted. Code Size (bytes)Program Original Transformed In
reasetreeadd 5480 6376 16.4%bisort 11944 16720 40.0%tsp 18280 19172 4.9%perimeter 14976 18160 21.3%health 15952 21324 33.7%mst 12768 14136 10.7%average 21.1%(a) Code size before linking.Code Size (bytes)Program Original Transformed In
reasetreeadd 228360 228444 0.04%bisort 257552 257572 0.01%tsp 238004 238448 0.18%perimeter 233736 238340 1.97%health 256608 257200 0.23%mst 232296 232440 0.06%average 0.41%(b) Code size after linking.Figure 7.7. Impa
t on obje
t
ode size.The in
rease in
ode size
aused by
ompression transformations was also mea-sured (see Figures 7.7). The in
rease in
ode size prior to linking is signi�
ant whileafter linking the in
rease is very small sin
e the user
ode is small part of the bina-ries. However, the reason for signi�
ant in
rease in user
ode is be
ause ea
h timea
ompressed �eld is updated, our
urrent implementation generates a new
opy ofthe additional
ode for handling the
ase where the data being stored may not be
ompressible. In pra
ti
e it is possible to share this
ode a
ross multiple updates.

116On
e su
h sharing has been implemented, the in
rease in the size of user
ode willalso be quite small.7.4.3 Impa
t on exe
ution timeBased upon the
y
le
ounts provided by the simples
alar simulator we studied the
hanges in exe
ution times resulting from
ompression transformations. The impa
tof input size and L2 laten
y on exe
ution times was also studied. Let us examinethe results in Figure 7.8(a) { these results are for L2
a
he laten
y of 100
y
les.The redu
tion in exe
ution times in
omparison to the original programs whi
h usemallo
 range from 3% to 64% while on an average the redu
tion in exe
ution timeis around 30%. The redu
tions in exe
ution times in
rease gradually with the inputsize.The exe
ution times are
ompared with versions of the programs that use

mallo
.The new approa
h outperforms

mallo
 in �ve out of the six ben
hmarks (our ver-sion of mst runs slightly slower than the

mallo
 version). On an average it outper-forms

mallo
 by nearly 10%. Our approa
h outperforms

mallo
 be
ause on
ethe node sizes are redu
ed, typi
ally greater number of nodes �t into a single
a
heline leading to a low number of
a
he misses. Additional runtime overhead is in
urredin form of extra instru
tions needed to
arry out
ompression and extra
tion of
om-pressed values. However, this additional exe
ution time is more than o�set by thetime savings resulting from redu
ed
a
he misses; thus leading to overall redu
tion inexe
ution time.It should be pointed out that the use of spe
ial DCX instru
tions was
riti
al inredu
ing the overhead of
ompression and extra
tion. Without DCX instru
tions theprograms would have ran signi�
antly slower. The average redu
tion in exe
utiontimes, in
omparison to original programs, dropped from 30% to 12.5%. Instead ofan average redu
tion in exe
ution times of 10% in
omparison to

mallo
 versions

117of the program we observed an average in
rease of 9% in exe
ution times.The experiments of Figure 7.8(a) were also repeated for higher L2
a
he laten-
ies. The results are presented in Figures 7.8(b-
). As the laten
y of L2
a
he isin
reased,
ompression outperforms

mallo
 by a greater extent. The graph in Fig-ure 7.8(d) plots the average redu
tion in exe
ution time that
ompression providesover

mallo
 for the di�erent
a
he laten
ies. As it
an be seen, on an average,
om-pression redu
es the exe
ution times by 10%, 15%, and 20% over

mallo
 for L2
a
he laten
ies of 100, 200, and 400
y
les respe
tively. These numbers also improvegradually with input size. In summary our approa
h provides large storage savingsand signi�
ant exe
ution time redu
tions over

mallo
.7.4.4 Impa
t on power
onsumptionExperiments have also been done to
ompared the power
onsumption for the
om-pression based programs with that of the original programs and

mallo
 basedprograms (see Figures 7.9(a-d)). These measurements are based upon the Watt
h [9℄system whi
h is built on top of the simples
alar simulator. These results tra
k theexe
ution time results quite
losely. The average redu
tion in power
onsumptionover the original programs is around 30% whi
h in
reases gradually with the size ofthe input. The graph in Figure 7.8(d) plots the average redu
tion in power dissipationthat
ompression provides over

mallo
 for the di�erent
a
he laten
ies. As we
ansee, on an average,
ompression redu
es the power dissipation by 5%, 10%, and 15%over

mallo
 for L2
a
he laten
ies of 100, 200, and 400
y
les respe
tively. Thesenumbers further improve gradually as the input size is in
reased.7.4.5 Impa
t on
a
he performan
eFinally, Figure 7.10 presents the impa
t of
ompression on
a
he behavior, in
luding I-
a
he, D-
a
he and uni�ed L2
a
he behaviors. As expe
ted, the I-
a
he performan
e

118Program Input Size Con�guration 1 Con�guration 2 Con�guration 3Comp:Orig: Comp:

mallo
 Comp:Orig: Comp:

mallo
 Comp:Orig: Comp:

mallo
small 58.8 % 81.0 % 62.1 % 73.2 % 66.6 % 65.4 %treeadd medium 58.8 % 81.0 % 62.0 % 73.2 % 66.6 % 65.4 %large 58.7 % 81.0 % 62.0 % 73.2 % 66.5 % 65.4 %small 75.3 % 73.9 % 62.8 % 58.6 % 48.6 % 42.9 %bisort medium 69.3 % 69.5 % 54.8 % 53.4 % 40.7 % 38.7 %large 67.7 % 64.9 % 51.9 % 48.1 % 36.5 % 32.8 %small 97.3 % 99.7 % 96.5 % 99.7 % 95.3 % 99.8 %tsp medium 97.0 % 99.7 % 96.2 % 99.7 % 94.9 % 99.8 %large 96.8 % 99.5 % 95.9 % 99.6 % 94.5 % 99.6 %small 75.1 % 91.8 % 73.8 % 87.1 % 72.2 % 81.6 %perimeter medium 76.3 % 92.3 % 74.8 % 87.7 % 72.9 % 82.1 %large 77.6 % 93.1 % 76.0 % 88.5 % 73.9 % 82.9 %small 83.4 % 94.6 % 83.6 % 91.3 % 83.7 % 89.3 %health medium 68.1 % 95.5 % 66.3 % 93.1 % 65.3 % 91.8 %large 62.1 % 95.8 % 60.0 % 93.8 % 58.8 % 92.6 %small 35.7 % 102.2 % 28.3 % 101.7 % 23.2 % 101.2 %mst medium 37.8 % 102.1 % 31.2 % 101.6 % 26.8 % 101.0 %large 36.6 % 102.2 % 30.7 % 101.6 % 26.6 % 101.0 %small 70.9 % 90.5 % 67.9 % 85.3 % 64.9 % 80.0 %average medium 67.9 % 90.0 % 64.2 % 84.8 % 61.2 % 79.8 %large 66.6 % 89.4 % 62.7 % 84.1 % 59.5 % 79.0 %(a) Change in
y
le
ounts

small medium large
Input Size

0

5

10

15

20

25

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t(

%
)

 Total Cycles Comparison

MemLatency 400 cycle
MemLatency 200 cycle
MemLatency 100 cycle

(b) Compression vs

mallo
.Figure 7.8. Change in exe
ution time due to data
ompression.

119Program Input Size Con�guration 1 Con�guration 2 Con�guration 3Comp:Orig: Comp:

mallo
 Comp:Orig: Comp:

mallo
 Comp:Orig: Comp:

mallo
small 60.9 % 89.7 % 62.5 % 83.4 % 65.0 % 75.5 %treeadd medium 60.9 % 89.7 % 62.5 % 83.4 % 65.0 % 75.5 %large 60.9 % 89.7 % 62.5 % 83.4 % 65.0 % 75.5 %small 77.9 % 79.2 % 67.6 % 66.0 % 54.9 % 51.1 %bisort medium 73.7 % 75.9 % 61.3 % 61.6 % 47.9 % 46.8 %large 73.3 % 72.1 % 59.5 % 56.9 % 44.5 % 41.3 %small 97.1 % 99.8 % 96.5 % 99.9 % 95.6 % 99.9 %tsp medium 96.7 % 99.8 % 96.1 % 99.8 % 95.1 % 99.9 %large 96.7 % 99.7 % 96.0 % 99.7 % 94.9 % 99.7 %small 75.9 % 95.1 % 74.7 % 91.6 % 73.1 % 86.8 %perimeter medium 77.1 % 95.6 % 75.8 % 92.2 % 74.1 % 87.4 %large 78.6 % 96.4 % 77.2 % 93.1 % 75.2 % 88.2 %small 90.0 % 101.4 % 87.8 % 95.9 % 86.2 % 92.1 %health medium 73.5 % 101.1 % 69.5 % 96.6 % 67.1 % 93.8 %large 66.8 % 100.9 % 62.7 % 96.8 % 60.2 % 94.3 %small 38.9 % 104.5 % 31.5 % 103.8 % 25.7 % 102.9 %mst medium 40.5 % 104.2 % 33.9 % 103.4 % 28.9 % 102.5 %large 39.7 % 104.2 % 33.5 % 103.4 % 28.7 % 102.5 %small 73.4 % 95.0 % 70.1 % 90.1 % 66.7 % 84.7 %average medium 70.4 % 94.4 % 66.5 % 89.5 % 63.0 % 84.3 %large 69.3 % 93.8 % 65.2 % 88.9 % 61.4 % 83.6 %(a) Change in power
onsumption.

small medium large
Input Size

0

5

10

15

20

25

P
ow

er
 R

ed
uc

tio
n(

%
)

 Total Power Comparison

MemLatency 400 cycle
MemLatency 200 cycle
MemLatency 100 cycle

(b) Compression vs

mallo
.Figure 7.9. Impa
t on power
onsumption.

120is degraded due to in
rease in
ode size
aused by our
urrent implementation of
ompression. However, the performan
es of D-
a
he and uni�ed
a
he are signi�
antlyimproved. This improvement in data
a
he performan
e is a dire
t
onsequen
e of
ompression. I-
a
he D-
a
he Uni�ed-
a
heProgram Input Size Comp:Orig: Comp:

mallo
 Comp:Orig: Comp:

mallo
 Comp:Orig: Comp:

mallo
small 105.2 % 104.8 % 62.2 % 60.4 % 85.1 % 49.7 %treeadd medium 106.4 % 105.5 % 61.5 % 59.7 % 85.0 % 49.7 %large 107.3 % 104.7 % 60.0 % 59.8 % 84.9 % 49.7 %small 153.3 % 155.9 % 65.0 % 58.7 % 16.2 % 16.8 %bisort medium 228.2 % 234.1 % 68.7 % 63.1 % 15.5 % 16.6 %large 228.2 % 234.1 % 47.3 % 38.3 % 7.4 % 7.0 %small 5.0 % 120.5 % 70.1 % 90.3 % 84.1 % 100.1 %tsp medium 4.0 % 122.1 % 66.0 % 94.0 % 84.4 % 100.1 %large 3.6 % 124.9 % 62.4 % 84.3 % 84.4 % 100.1 %small 145.1 % 86.0 % 69.1 % 71.3 % 67.1 % 67.0 %perimeter medium 205.1 % 83.5 % 68.9 % 70.9 % 67.0 % 66.8 %large 321.8 % 78.0 % 69.1 % 70.3 % 67.0 % 66.8 %small 122.2 % 112.1 % 82.2 % 96.2 % 41.6 % 62.3 %health medium 133.8 % 116.6 % 82.2 % 97.8 % 46.4 % 67.3 %large 144.8 % 120.7 % 82.1 % 98.6 % 51.9 % 71.1 %small 26.6 % 61.6 % 41.0 % 100.9 % 16.2 % 100.0 %mst medium 16.8 % 48.2 % 49.0 % 96.3 % 21.3 % 100.0 %large 13.8 % 42.7 % 33.2 % 94.8 % 21.5 % 100.0 %small 92.9 % 106.8 % 64.9 % 79.6 % 51.7 % 66.0 %average medium 115.7 % 118.3 % 66.0 % 80.3 % 53.3 % 66.8 %large 136.6 % 117.5 % 59.0 % 74.3 % 52.8 % 65.8 %Figure 7.10. Change in
a
he misses -
on�guration 1.7.5 Related workRe
ently there has been a lot of interests in exploiting narrow width values to improveprogram performan
e [9, 64, 61℄. However, our work fo
uses on pointer intensiveappli
ations for whi
h it is important to also handle pointer data. A lot of resear
h hasbeen
ondu
ted on development of lo
ality improving transformations for dynami
allyallo
ated data stru
tures. These transformations alter obje
t layout and pla
ement

121to improve
a
he performan
e [56, 17, 13℄. However, none of these transformationsresult in spa
e savings.Existing
ompression transformations [53, 18℄ rely upon
ompile time analysis toprove that
ertain data items do not require a
omplete word of memory. They areappli
able only when the
ompiler
an determine that the data being
ompressed isfully
ompressible and they only apply to narrow width non-pointer data. In
ontrast,our
ompression transformations apply to partially
ompressible data and, in additionto handling narrow width non-pointer data, they also apply to pointer data. Theapproa
h introdu
ed in this
hapter is not only more general but also simpler in onerespe
t. It does not require
ompile-time analysis to prove that the data is always
ompressible. Instead simple
ompile-time heuristi
s are suÆ
ient to determine thatthe data is likely to be
ompressible.ISA extensions have been developed to eÆ
iently pro
ess narrow width data in-
luding Intel's MMX [44℄ and Motorola's AltiVe
 [57℄. Compiler te
hniques are alsobeing developed to exploit su
h instru
tion sets [31℄. However, the instru
tions in-trodu
ed in this
hapter are quite di�erent from MMX instru
tions be
ause bothpartially
ompressible data stru
tures and pointer data must be handled.7.6 Con
lusionIn this
hapter, two types of data
ompression transformations are introdu
ed toapply data
ompression te
hniques to
ompa
t the sizes of dynami
ally allo
ateddata stru
tures. These transformations result in large spa
e savings and also resultin signi�
ant redu
tions in program exe
ution times and power dissipation due toimproved memory performan
e.An attra
tive property of these transformations is that they are appli
able topartially
ompressible data stru
tures. This is extremely important be
ause a

ord-ing to our experiments, while the data stru
tures in all of the ben
hmarks studied

122in this
hapter are very highly
ompressible, they always
ontain small amounts ofin
ompressible data.This approa
h is appli
able to a more general
lass of programs than existing
ompression te
hniques: it
an
ompress pointers as well as non-pointer data; and it
an
ompress partially
ompressible data stru
tures. Finally the DCX ISA extensionshave been designed to enable eÆ
ient manipulation of
ompressed data. The sametask
annot be
arried using MMX type instru
tions. The main
ontribution of thiswork is that data
ompression te
hniques
an now be used to improve performan
eof general purpose programs and therefore it takes the utility of
ompression beyondthe realm of multimedia appli
ations.

123
Chapter 8Exploiting value representationredundan
y in hardwareData
ompression transformations were introdu
ed in the pre
eding
hapter to ex-ploit the value representation redundan
y whi
h was dis
overed from the type basedpro�ling framework introdu
ed in
hapter 6. Both pro�les and semanti
 informationare used to sele
t the �elds for
ompression and pa
k them together. Ca
he perfor-man
e is improved due to improved data lo
ality. However, the approa
h also hassome limitations. Sour
e
ode has to be available in order to perform pro�ling, anal-yses and transformations. Thus, it is not appli
able if only binary
ode is available.Moreover, restri
tions su
h as address arithmeti
 and type
asting may prohibit theappli
ation of these transformations (e.g., for SPEC ben
hmarks). In order to over-
ome the above drawba
ks, a hardware-based approa
h for exploiting
ompression is
onsidered in this
hapter. This hardware approa
h does not analyze or transform theprogram and thus is appli
able to all programs, in
luding SPEC ben
hmarks whi
h
ould not be handled by the data
ompression transformations.

tag
x

tag offsetindex

Address:

Tag: Data:

?Figure 8.1. Memory address and
a
he a

ess.To study the potential of this approa
h, the
hara
teristi
s of values involved

124in word-sized a

esses from the
a
he (Figure 8.1) were studied for programs fromOlden, SPEC 95int, and SPEC 2000int ben
hmark suites. These values are dividedinto three
ategories:
ompressible small values { these are values whose higher order18 bits are all zeros or all ones;
ompressible address values { these are values thatshare the same 17-bit pre�x with their addresses; and in
ompressible values { theseare all remaining values that are a

essed. The results are summarized in Figure8.2. On an average, 59% of dynami
 appeared values are
ompressible and
an berepresented by less than or equal to 16 bits. Note that even though
ompiler basedapproa
h
ould not handle SPEC ben
hmarks, the data belonging to these programsis still highly
ompressible.
olden.bisort

olden.health

olden.mst

olden.perimeter

olden.treeadd
olden.tsp

olden.voronoi

spec2000.176.gcc

spec2000.181.mcf

spec2000.300.twolf

spec95.099.go

spec95.124.m88ksim

spec95.126.gcc

spec95.130.li

spec95.132.ijpeg
Average

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 A

pp
ea

re
d

V
al

ue
s

compressible addresses
compressible small values
uncompressible values

Figure 8.2. Values en
ountered during program exe
ution.Given the fa
t that the value representation redundan
y exists uniformly a
ross aspe
trum of ben
hmark programs, it is useful to design a hardware approa
h whi
hskips the
omplexity of
ompile-time analysis and transformation, and takes advan-tage of the value representation redundan
y observed through pro�ling dire
tly. Inthis
hapter, a new
a
he design is proposed to exploit value representation redun-dan
y. Values are stored in
ompressed form and the storage that is freed by thispro
ess is used to enable a novel style of
a
he line prefet
hing.The rest of the
hapter is organized as follows. The
ompression
a
he design isdis
ussed in se
tion 8.1. The implementation and experimental results are given inse
tion 8.2. Related work will be dis
ussed in se
tion 8.3. Se
tion 8.4 summarizes the

125
hapter.8.1 Compression enabled partial
a
he line prefet
hingFirst the representation of
ompressible values in hardware is given and then it isshown how the
a
he performan
e
an be improved by enabling prefet
hing of partial
a
hes lines. The des
ription of how the
a
he is a

essed and maintained dynami
allyis also given.8.1.1 Value representation in hardwareAs already dis
ussed, in many
ases, values
an be represented by their lower order16 bits as shown in Figure 8.3(a)(b). Figure 8.3(a) shows that the pre�x of a pointervalue
ould be dis
arded if it shares the same pre�x with the memory address wherethe value is stored. Figure 8.3(b) shows that the pre�x of a small value
ould bedis
arded if these bits are sign extensions.
(a) pointer addresses share the same prefix

0 231-1- 231+1

11 … 1 xxx 00… 0 xxx

(b) small positive or negative values

P

Q

prefix(P) = prefix(Q)

same chunk

xxx xxx1 0Figure 8.3. Representing a 32-bit value with fewer than 32 bits.Sin
e dynami
ally, both
ompressible and in
ompressible values will be en
oun-tered. When
ompressible values are represented in their
ompressed formats, amethod is required to distinguish
ompressible values from in
ompressible ones. Inaddition, to re
onstru
t the original values at runtime, we must know whether theyrepresent
ompressed addresses or
ompressed small values.

126To help distinguish these
ases, we have a 32-bit value
ompressed to 15 bitsinstead and use the 16th bit to tells its type (shown by \VT" in Figure 8.4). Similarly,we need one more bit to tell whether the word
ontains
ompressed or un
ompressedvalues (shown by \VC" in Figure 8.4). However this bit is not stored as part of thevalue representation but stored in the
a
he as
ags and will be dis
ussed in moredetail in
a
he design se
tion.
VVT

Vprefix(P)

VSign(V)

VT = 1

VT = 0

16 bits

32 bits

VC

VC = 0

VC = 1

Figure 8.4. Representing
ompressed values in hardware.8.1.2 Partial
a
he line prefet
hingHardware te
hniques for prefet
hing
a
he lines [49, 47℄ have been proposed to im-prove
a
he performan
e in high performan
e systems. If a
a
he line l is not in the
a
he, a memory a

ess m for a word in l results in a
a
he miss. Prefet
hing loadsthe line l into the
a
he before m is en
ountered. By the time m is en
ountered later,l is already in the
a
he and there is no
a
he miss. In this way, prefet
hing hides thelong
a
he miss laten
y. The problem with prefet
hing is that it greatly in
reases thememory traÆ
. Although it is a very e�e
tive te
hnique for high performan
e systemswith big memory bandwidth, the signi�
ant in
rease in memory traÆ
 restri
ts itsappli
ation to other systems su
h as embedded systems.By exploiting the dynami
 value representation redundan
y, we
an perform hard-ware prefet
hing with no in
rease in memory traÆ
. Our method fet
hes
ompressiblevalues into the
a
he and stores the values in the
a
he in
ompressed formats. By

127having a
ompressible word represented by 16 bits, a signi�
ant part of the
a
hespa
e is spared. Let us
onsider the example shown in Figure 8.5 where it is assumedthree out of four words are
ompressible in ea
h
a
he line. The saved spa
e in ea
h
a
he line (0:5 � 4 bytes=word� 3 words = 6 bytes) is not enough to hold another
a
he line. Therefore, we
hoose to prefet
h only part of another line.
(a) before compression

(b) after compression (c) combine another line

X1

X1

X2Figure 8.5. Compressing data in the
a
he to hold more words.Let us
onsider the situation shown in Figure 8.5. If the
ompressible words fromanother
a
he line with
orresponding o�sets are prefet
hed, then three additional
ompressible words
an be stored whi
h
overs 7 out of 8 words from two
a
he lines.On the other hand, if the in
ompressible words are fet
hed, we need two unused half-word-sized spots to store all bits of a prefet
hed word and some indexing spa
e toindi
ate its order. The 6 bytes of available spa
e
an only store one more word fromthe prefet
hed line. Therefore a design is developed to only prefet
h
ompressiblevalues from another line.The example in Figure 8.6 illustrates how
ompression enabled prefet
hing
anenhan
e performan
e. Figure 8.6(b) shows a
ode fragment that traverses a link listwhose node stru
ture is shown in Figure 8.6(a). The memory allo
ator would alignthe address allo
ation and ea
h node takes one
a
he line (we assume 16 bytes perline
a
he). There are 4 �elds among whi
h two are pointer addresses, one is a type

128
struct node {

int type;

int info;

struct node *prev;

struct node *next;

};

(a) node declaration

…

(1) while (p) {

(2) if (p type == T)

(3) sum += p info;

(4) p = p next;

}

…

(b) sample codeFigure 8.6. Dynami
 data stru
ture de
laration.�eld and the other one
ontains a large value. Ex
ept this large information value�eld, the other three �elds are identi�ed as highly
ompressible �elds. The sample
ode shown in Figure 8.6(b)
al
ulates the sum of the information �eld for all nodes oftype T. Without
a
he line
ompression, ea
h node takes one
a
he line. To traversethe list, the next �eld is followed and a new node is a

essed.A typi
al a

ess sequen
e for this pie
e of
ode would generate a new
a
he missat statement (2) for every iteration of the loop (see Figure 8.7(a)). All
ompressiona

esses to other �elds in the same node fall into the same
a
he line and thus areall
a
he hits as shown in Figure 8.7(b). However, if all
ompressible �elds are
om-pressed, a
a
he line would be able to hold one
omplete node and three �elds fromanother node. Now an a

ess sequen
e will have
a
he hits at statements (2) and(4) plus a possible
a
he miss at statement (3). The partial
a
he line prefet
hing
an improve performan
e in two folds. First, if the node is not of the type T, wedo not need to a

ess the large information �eld. This saves a
a
he miss. Se
ond,even in the
ase we do need to a

ess it, the
a
he miss happens at statement (3).Although the new and old s
heme generate the same number of
a
he misses, the missat statement (3) is not on the
riti
al program exe
ution path whi
h is \(1)(2)(4)"and it has less impa
t on the performan
e.

129
type

1
info

1
prev

1
next

1

type
2

info
2

prev
2

next
2

(a) cache layout before compression

t
1

i
1

t
2

(b) cache layout after compression

p
1

p
2

n
1

n
2

typical access behavior:

(2) … cache miss

(3) … cache hit

(4) … cache hit

typical access behavior:

(2) … cache hit

(3) … cache miss

(4) … cache hit

Figure 8.7. Ca
he layout before and after
ompression.8.1.3 Ca
he design detailsThe new
a
he design
an be implemented in either a single or a multiple level
a
hehierar
hy. A two level
a
he hierar
hy shown in Figure 8.8 is used and the
ompressionenabled partial
a
he line prefet
hing is employed in both
a
hes.
CPU

Level 1

Cache
Level 2

Cache

Memory

chip boundary

Figure 8.8. Two level
ompression
a
he design.The
ompression s
heme used is des
ribed as before. A value is
ompressible if itsatis�es either of the following two
onditions.� If the 18 higher order bits are all ones or all zeros, the 17 higher order bits aredis
arded.

130� If the 17 higher order bits are the same as those of the value's address, the 17higher order bits are dis
arded.The physi
al
a
he line at ea
h level
an potentially hold the
ontents from twolines, identi�ed as the primary
a
he line and the aÆliated line. The primary
a
heline is de�ned as the line mapped to this set in a normal
a
he of the same size andasso
iativity. Its aÆliated
a
he line is the unique line that is
al
ulated through asingle operation as shown below.< Tagaffiliated; Setaffiliated >=< Tagprimary; Setprimary > � maskwhere the mask is a prede�ned value. The mask is
hosen to be 0x1 whi
h meansthe primary and aÆliated
a
he lines are
onse
utive lines of data. Thus, given a
a
he line, it has two possible pla
es to stay in the
a
he, its primary lo
ation and anaÆliated lo
ation. Our
a
he a

ess and repla
ement poli
y des
ribed later ensurethat at most one
opy of a
a
he line is kept in the
a
he at any time.In a standard two level
a
he hierar
hy, the requests from the upper level are
a
he line based. For example, if there is a miss at the �rst level
a
he, a request forthe whole line is issued to the se
ond level
a
he. In the
ompression
a
he design,the requested line might stay as an aÆliated one in the se
ond level
a
he and thus
ontains only partial data. To maximize the bene�ts from partially prefet
hed
a
heline, there is no need to get a
omplete line as long as the requested data item
anbe found. So the
ompression
a
he design still keeps the requests to the se
ond level
a
he as word based and a
a
he hit at the se
ond level
a
he only returns a partial
a
he line. The returned line might be pla
ed as a primary line or an aÆliated line. Ineither
ase,
ags are needed to indi
ate whether a word is available in the
a
he lineor not. A
ag PA (Primary Availability) for the primary
a
he line is asso
iated withone bit for ea
h word and another
ag AA (AÆliated Availability) for the aÆliated
a
he line is provided. As dis
ussed, a value
ompressibility
ag (VC) is used toidentify if a value is
ompressible or not. For the values stored in the primary line,

131a one-bit VCP
ag is asso
iated for ea
h word. On the other hand, if a value
anappear in the aÆliated line, it must be
ompressible and thus no extra
ag is neededfor these values. The design details of the �rst level
ompression
a
he are shown inFigure 8.9.
PA0 AA0

PA1 AA1

tag
0

tag
1

tag offsetindex

Address:

Tag: Data: Availability:

?

?

?

?

VCP
0

VCP
1

Compressed:

Figure 8.9. Compression
a
he.8.1.4 Dynami
 value representationIt happens only in the best
ase that both the primary and the aÆliated lines arefully
ompressible. Normally, some words from one or both lines are not
ompressible.In those
ases, priority is given to hold the words from the primary line. Thus, theprimary line
an always �nd the pla
e to save the value while the aÆliated line onlykeeps a word, if this word is
ompressible, and the word at the same o�set from theprimary line is also
ompressible.At runtime, if a value
hanges from
ompressible to in
ompressible, a pla
e tostore the value must be found. There are two possibilities. If the value is to be storedin a primary
a
he line, the
orresponding word from the aÆliated
a
he line is ki
ked

132out. The aÆliated line is written ba
k to lower level memory hierar
hy if it is dirty.If the value is to be stored in an aÆliated
a
he line, the aÆliated line is moved toits primary pla
e. The other line whi
h stays in its primary pla
e is ki
ked out andwritten ba
k if that line is dirty.8.1.5 Ca
he a

ess poli
yThere are three
a
he interfa
es to
onsider: CPU/L1
a
he, L1/L2
a
he and L2
a
he/Memory. For a
a
he a

ess from CPU to L1
a
he, the set index of its primary
a
he line is extra
ted, the least signi�
ant bit is
ipped to a

ess its aÆliated line.Both lines are a

essed simultaneously. If the tag mat
hes either of them, and its
orresponding availability bit is set, the word is extra
ted, extended and returnedto the CPU. For a
a
he a

ess from L1
a
he to L2
a
he, if the a

essed wordis available in L2, it is a
a
he hit and only the available words are returned. Foran a

ess from L2
a
he to memory, both the primary and the aÆliated lines arefet
hed. However, before returning the data, the
a
he lines are
ompressed and onlyavailable pla
es from the primary line are used to store the
ompressible items fromthe aÆliated line. The memory bandwidth is still the same as before.For both L1 and L2
a
he, when a new
a
he line arrives, the prefet
hed aÆliatedline is dis
arded if it is already in the
a
he (it must be in its primary pla
e in thissituation). When a new
a
he line repla
es an existing
a
he line, the aÆliated pla
eof the existing
a
he line is
he
ked to see if the tag mat
hes. If yes, the
ompressiblewords are �lled into the available spots of its aÆliated pla
e. However, if the line isdirty, we still write ba
k the
ontent and only keep a
lean partial
opy in its aÆliatedpla
e.

1338.2 Implementation and experiments8.2.1 Experimental setupThe
ompression enabled partial
a
he line prefet
hing has been implemented andevaluated using Simples
alar 3.0 [10℄. We use a two level
a
he hierar
hy: separate8K �rst level data and instru
tion
a
hes and a uni�ed 64K level two
a
he. Forthe baseline
on�guration, L1 data
a
he is dire
t mapped and uni�ed L2
a
he istwo-way set asso
iative. Our
ompression
a
he is designed on top of the baseline
on�guration, with the ability to mat
h its aÆliated
a
he line. Sin
e the proposed
a
he design doubles the number of lines sear
hed in
omparison to the baseline
on�guration,
omparison is also made to a
a
he of higher asso
iativity: a 2-wayset asso
iative L1
a
he plus a uni�ed 4-way set asso
iative L2
a
he. They are ofthe same size as the baseline
on�guration. Other parameters are all the same andsummarized in Figure 8.10. A spe
trum of programs from Olden [14℄, SPEC95, andSPEC2000 [50℄ ben
hmark suites are used.Parameter ValueIssue Width 4 issue, out of orderI
a
he 8K dire
t mapped (64 bytes/line)I
a
he miss laten
y 10
y
lesL1 data
a
he 8K dire
t mappedL1 data
a
he miss laten
y 10
y
lesL2 uni�ed
a
he 64K 2-way (128 bytes/line)Memory laten
y 100
y
les (L2
a
he miss laten
y)Figure 8.10. Baseline experimental setup.
8.2.2 Overall performan
eFigure 8.11 shows the overall performan
e
omparison with the baseline and thehigher asso
iativity
a
he
on�gurations. The results are normalized with respe
t to

134the baseline
a
he performan
e. Smaller numbers mean better results.
olden.bisort

olden.health

olden.mst

olden.perimeter

olden.treeadd
olden.tsp

olden.voronoi

spec2000.176.gcc

spec2000.181.mcf

spec2000.300.twolf

spec95.099.go

spec95.124.m88ksim

spec95.126.gcc

spec95.130.li

spec95.132.ijpeg
Average

70

80

90

100

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

(%
)

Baseline Cache
Compression Cache
Higher Associativity Cache

Figure 8.11. Performan
e
omparison.The newly designed
a
he gives
onsistently better results than the baseline
a
he.On an average, programs run about 7% faster. Speedup
omes from the fa
t thatunlike many other prefet
hing s
hemes whi
h save the prefet
hed data into the
a
heand have the possibility of polluting the
a
he line, the
ompression
a
he never ki
ksout a
a
he line if the baseline
a
he does not have to repla
e it with the same a

esssequen
e. As a result, the
a
he miss rate
an redu
e but never in
rease. In many
ases, the new design even outperforms the higher asso
iativity
a
he
on�guration.The reason is that although higher asso
iativity
a
he has a better repla
ement poli
y,the proposed
a
he
an keep more data. For example, in a two-way set asso
iative
a
he, 2
a
he lines form one set
an hold the
ontents from two lines at most whilein the
ompressed dire
ted mapped
a
he, two
a
he lines
an potentially hold the
ontents of 4 lines. While the proposed design may have higher number of
on
i
tmisses, than the higher asso
iativity
a
he, it may have fewer
apa
ity misses if thedata items are highly
ompressible. On an average, exe
ution time is 2% faster thanthat of a higher asso
iativity
a
he.8.2.3 Ca
he miss
omparisonThe
omparison results of L1 and L2
a
he misses for di�erent
on�gurations areshown in Figure 8.12 and Figure 8.13 respe
tively. As we
an see, through prefet
hing,

135the
ompression
a
he greatly redu
es the
a
he misses
ompared to the baseline
on�guration.
olden.bisort

olden.health

olden.mst

olden.perimeter

olden.treeadd
olden.tsp

olden.voronoi

spec2000.176.gcc

spec2000.181.mcf

spec2000.300.twolf

spec95.099.go

spec95.124.m88ksim

spec95.126.gcc

spec95.130.li

spec95.132.ijpeg
Average

0

10

20

30

40

50

60

70

80

90

100

N
or

m
al

iz
ed

 L
1

ca
ch

e
m

is
se

s
(%

)

Baseline Cache
Compression Cache
Higher Associativity Cache

Figure 8.12. Comparison of L1
a
he misses.

olden.bisort

olden.health

olden.mst

olden.perimeter

olden.treeadd
olden.tsp

olden.voronoi

spec2000.176.gcc

spec2000.181.mcf

spec2000.300.twolf

spec95.099.go

spec95.124.m88ksim

spec95.126.gcc

spec95.130.li

spec95.132.ijpeg
Average

0

10

20

30

40

50

60

70

80

90

100

N
or

m
al

iz
ed

 L
2

ca
ch

e
m

is
se

s
(%

)

Baseline Cache
Compression Cache
Higher Associativity Cache

Figure 8.13. Comparison of L2
a
he misses.An interesting phenomenon observed is that although in many
ases the
ompres-sion
a
he has more L1
a
he misses than the higher asso
iativity
a
he
on�guration,it still a
hieves better overall performan
e. For example, for 130.li from SPECint95,although the new
a
he design has more L1 and L2
a
he misses than the higher as-so
iativity
a
he, 6% improvement in performan
e over the higher asso
iativity
a
heis observed. As was mentioned in the previous se
tions, this suggests that di�erent
a
he misses have di�erent performan
e impa
ts, i.e. some
a
he misses hurt theperforman
e more than other
a
he misses.To further analyze this phenomenon, we
arried out additional experiments. Givena set of memory a

ess instru
tions m, the importan
e of this set is de�ned as the

136per
entage of total exe
uted instru
tions that dire
tly depend on m. In
ase that mis the set of all
a
he miss instru
tions from a program exe
ution, its importan
e pa-rameter indi
ates how many dependent instru
tions are blo
ked by the
a
he misses.A higher number means that the
a
he misses blo
k more instru
tions and thus hurtthe performan
e more. The method to approximately
ompute this per
entage isshown as follows. A

ording to Amdahl's law, we haveSpeedupoverall = Exe
utionoldExe
utionnew= 1(1� Fra
tionenhan
ed) + Fra
tionenhan
edSpeedupenhan
ed) Fra
tionenhan
ed = Speedupenhan
ed(1� 1Speedupoverall)Speedupenhan
ed � 1 :In the Simples
alar simulator, without spe
ulative exe
ution, the memory addressgenerated and their a

esses are a�e
ted by the following fa
tors: the exe
utableprogram, the input, the seed for the random generator. If all these fa
tors are �xed,two runs with di�erent
a
he
on�gurations will generate exa
tly the same instru
tionexe
ution sequen
e as well as the memory address a

ess sequen
e. Thus, by varyingonly the
a
he miss penalty and running the program twi
e, we would observe thesame number of
a
he misses happen at the same instru
tions. Moreover, given this�xed set of instru
tions that have
a
he misses, their dire
tly dependent instru
tionsare also �xed. As we know, by shortening the miss penalty, the main
hange tothe exe
ution is the redu
ed dependen
e length from a
a
he miss instru
tion to itsdire
tly dependent instru
tions, the enhan
ed fra
tion
ould thus be
onsidered asthe per
entage of the instru
tion that are dire
tly depending on these
a
he misses.Now, for di�erent
a
he
on�gurations, this fra
tion is
omputed as follows. First,the
a
he miss laten
y is redu
ed in half, whi
h means Speedupenhan
ed =2. Se
ond,the overall performan
e speedup is measured, whi
h is Speedupoverall. It is
omputed

137from the total number of
y
les before and after
hanging the miss penalty. Now, thevalue of Fra
tionenhan
ed
an be obtained. The results are plotted in Figure 8.14.
olden.bisort

olden.health

olden.mst

olden.perimeter

olden.treeadd
olden.tsp

olden.voronoi

spec2000.176.gcc

spec2000.181.mcf

spec2000.300.twolf

spec95.099.go

spec95.124.m88ksim

spec95.126.gcc

spec95.130.li

spec95.132.ijpeg
0

20

40

60

80

100

D
ep

en
de

nt
 F

ra
ct

io
n(

%
)

Baseline Cache
Compression Cache
Higher Associativity Cache

Figure 8.14. The estimation of
a
he miss importan
e.From the
omparison results for di�erent ben
hmark programs shown in Fig-ure 8.14, it
an be seen that the
ompression
a
he redu
es the importan
e of the
a
he misses for most ben
hmarks. For the ben
hmarks that are slower than thehigher asso
iative
a
he, it is seen that they have larger importan
e parameters. Forthe ben
hmarks with signi�
ant importan
e redu
tion, further study of the averageready queue length, when there is at least one outstanding
a
he miss, was
arriedout. The queue length in
rease of our
ompression
a
he over the higher asso
iativity
a
he was studied. The results are shown in Figure 8.15. The results indi
ate thatthe average queue length is improved by up to 78% for these ben
hmarks. This pa-rameter tells us when there is a
a
he miss in the new
a
he design, the pipeline stillhas a lot of work to do.In summary, the
a
he misses that are en
ountered in the proposed
ompression
a
he design are less important in
omparison to both the baseline and the higherasso
iativity
a
he
on�gurations.

138

olden.perimeter

olden.treeadd
olden.tsp

spec2000.176.gcc

spec2000.181.mcf

spec95.126.gcc

spec95.130.li
100

110

120

130

140

150

160

170

180

N
or

m
al

iz
ed

 R
ea

dy
 Q

ue
ue

 L
en

gt
h(

%
)

Figure 8.15. Average miss
y
le ready queue length.8.2.4 Memory traÆ
The partial prefet
hing of the next
a
he line is enabled only in the
ase that there areavailable spots in the primary
a
he line and the
orresponding aÆliated words arealso
ompressible. By
ombining the lower order bits from two words, and using thesame memory bandwidth, more data items are e�e
tively transmitted. So the memorytraÆ
 is not in
reased. A
tually, the overall memory traÆ
 is redu
ed be
ause ofthe redu
tion in the se
ond level
a
he misses. The only situation that may
ausein
reased memory traÆ
 happens if a store instru
tion writes to the primary pla
eor the aÆliated pla
e
hanges a
ompressible value to an in
ompressible one. Eitherit will generate a
a
he miss if writing to the aÆliated pla
e, or ki
k out a (dirty)aÆliated line. In either
ases, the memory traÆ
 would in
rease. However, sin
ethis happens infrequently, a net redu
tion in memory traÆ
 is observed. Figure 8.16summarizes all these impa
ts and shows the �nal results. Thus it is observed that thenew
a
he design
onsistently performs better than the baseline
on�guration and insome
ases, it
an even outperform the higher asso
iativity
a
he
on�guration.

139

olden.bisort

olden.health

olden.mst

olden.perimeter

olden.treeadd
olden.tsp

olden.voronoi

spec2000.176.gcc

spec2000.181.mcf

spec2000.300.twolf

spec95.099.go

spec95.124.m88ksim

spec95.126.gcc

spec95.130.li

spec95.132.ijpeg
Average

40

60

80

100

N
or

m
al

iz
ed

 T
ra

ffi
c

P
er

ce
nt

ag
e

Baseline Cache
Compression Cache
Higher Associativity Cache

Figure 8.16. Comparison of memory traÆ
.8.3 Related workA number of di�erent designs have been proposed to perform hardware and/or soft-ware prefet
hing to improve
a
he performan
e [49, 47℄. Sin
e prefet
hing mightfet
h unne
essary blo
ks or fet
h blo
ks at the wrong time, it has the potential prob-lem of wasting valuable memory bandwidth and polluting the
a
he. However, thenew
a
he does not in
rease the memory traÆ
 and a
a
he line is never repla
ed justto hold prefet
hed words. It also e�e
tively transmits more words and redu
es thememory traÆ
.Some
ompression
a
he designs [33, 61℄ have been proposed to improve the datadensity inside the
a
he. In [33℄ a
a
he design is proposed that
ompresses two
on-se
utive lines using a
omplex
ompression algorithm, both the
ompression and thede
ompression are expensive. As a result, it
annot meet the
riti
al time
onstraintsof a level one
a
he and is used at a lower level in the hierar
hy. In [61℄ data is
ompressed using frequent values found from programs. If two
on
i
ting
a
he lines
an be
ompressed, both are stored within the
a
he; otherwise, only one of themis stored. Both of the above designs do not distinguish between the importan
e ofdi�erent words within a
a
he line and a partially
ompressible
a
he lines
annot beexploited.The pseudo asso
iative
a
he [43℄ also has a primary
a
he line and a se
ondary

140
a
he line. However, if a
a
he line enters its se
ondary pla
e, it has to ki
k out theoriginal line and hen
e there is a danger of
onverting a fast hit to a slow hit or evena
a
he miss. On the
ontrary, proposed
ompression
a
he design only stores a
a
heline to its se
ondary pla
e if there are free spots. Neither will it pollute the
a
he linenor will it degrade the original
a
he performan
e.8.4 Con
lusionA novel
a
he design is developed in this
hapter to remove the value representationredundan
y whi
h was found in
hapter 6. It partially prefet
hes the
ompressiblewords from the next
a
he line and stores these words in the
a
he. It removes theprefet
h bu�er and thus minimizes the
a
he size in
rease. Unlike other prefet
hings
hemes that save the words in the
a
he, it never pollutes the
a
he line. On anaverage, the new
a
he improves the overall performan
e 7% over the baseline
a
heand 2% over the higher asso
iativity
a
he
on�guration. The new design adopts thepositive aspe
ts of hardware prefet
hing and eliminates the problems it has, espe
ially,it makes better use of both memory bandwidth and
a
he spa
e. In this way, thisdesign opens the way to apply hardware prefet
hing to more restri
ted environmentssu
h as embedded systems.

141
Chapter 9Con
lusion and future workThis dissertation makes
ontributions in the areas of program pro�ling and pro�le-guided
ompiler optimizations. While pro�le-guided optimizations
an greatly im-prove program performan
e over the traditional ones, re
ent advan
es in pro�ling
olle
t huge amount of pro�ling data and make information retrieval at analysis stagea bottlene
k. On the other hand, due to the in
reasing performan
e gap betweenCPU and memory, new optimization opportunities arise from the fa
t that a signi�-
ant per
entage of the spa
e stores redundant data. New type of pro�les and pro�lingte
hniques are needed in the design of new optimization te
hniques. In this disser-tation, these problems are solved through the design and appli
ation of new data
ompression te
hniques. In parti
ular, the
ontributions are summarized in se
tion9.1. Se
tion 9.2 dis
usses dire
tions for further resear
h.9.1 Summary of
ontributionsTWPP+ representation. A new representation is proposed to
ompress wholeprogram path pro�les in
luding both
ontrol
ow and memory address infor-mation. While prior work aimed at
ompressing the pro�les to a
hieve maximal
ompression ratio, the proposed timestamped whole program path representa-tion puts more emphasis on organization and speed up the information retrievalin
ompiler analysis and optimization. Control
ow and memory addresses areexpli
itly separated from ea
h other. The
omplete
ontrol
ow is representedby a two levels organization. A global
all graph is kept to remember the
alling
ontext information. At the fun
tion level, a sequen
e of timestamps is atta
hedto ea
h basi
 blo
k in the
ontrol
ow graph to indi
ate when it is exe
uted.

142Memory address tra
e is expli
itly represented as dependen
e edges and reor-ganized as a sequen
e of dependen
e edges atta
hed at ea
h load instru
tionpoint in the
ontrol
ow graph.Appli
ations of TWPP+. Instead of
onsidering a tra
e as a stream of symbols,TWPP+ divides a
omplete tra
e into a
ontrol
ow tra
e part and a memorydependen
e tra
e part; ea
h part is then reorganized to allow fast retrieval ofinformation during data
ow analyses. Common queries in data
ow analyses
ould be pro
essed mu
h faster and thus
ould be used to integrate the exe-
ution information into a broad range of data
ow analyses and optimizations.Three appli
ations are demostrated in this dissertation to use the information
ontained in TWPP+ representation. It
ould be used to study the overallbehavior of a program exe
ution. By regrouping and sorting the memory de-penden
e edges, redundant load and store instan
es are identi�ed. A signi�
antper
entage of load instru
tions are highly redundant and
ould be further op-timized to improve performan
e. With the timestamps, the exa
t exe
utionorder is maintained in the TWPP+ su
h that it is mu
h faster to identify thefrequen
y of some data
ow fa
ts at some program points with respe
t to thegiven whole program path. The TWPP+ representation
an also be use asdebug tool to
reate dynami
 sli
es at any program exe
ution point. Di�erentsli
ing algorithms are simulated using this representation with di�erent
ost andsli
e a

ura
y tradeo�.Type-based pro�ling for identifying value redundan
y. A type-based pro�lingframework is proposed to pro�le the programs with respe
t to both high-leveltype information as well as value
hara
teristi
s. It is implemented with a
ombination of instrumentation and simulation using SUIF
ompiler [54℄ andSimples
alar simulator [10℄. In this framework, data types are pro�led at �eldlevel; value range summaries are
olle
ted for ea
h �eld. With this information,

143
andidate types for
ompression
ould be identi�ed. A bene�t-
ost model basedon pro�les is used in the framework to assist the design and appli
ation of thenew
ompression te
hniques.Appli
ations of value redundan
y. Two new types of value representation redun-dan
y are identi�ed for small values and pointer addresses respe
tively. Thosetypes of redundan
y exist widely in a spe
trum of programs. They are simplein logi
 and easy to explore in pra
ti
e. Moreover, this dissertation proposedboth software and hardware approa
hes to explore them.Data
ompression transformations are proposed and implemented as a
ompilerapproa
h. Code are transformed a

ording to a

ess pattern of the
andidatedata �elds. To further redu
e the runtime overhead, data
ompression instru
-tion extensions are designed and evaluated. With the help of six new simpleRISC- style instru
tions, the memory footprints are greatly redu
ed and theoverall performan
e is improved on top of existing memory lo
ality enhan
e-ment te
hniques.A novel hardware
a
he design is proposed and evaluated to improve the pro-gram performan
e by redu
ing the number of
a
he misses. Compressible valuesare transmitted from the memory and stored in the
a
he in
ompressed for-mats. By removing value representation redundan
y, the
ompression
a
he
ane�e
tively fet
h and store more data items with the given memory bandwidthand the given
a
he size. The experiments further identi�ed that in many pro-grams, the prefet
hed
ompressed data items are more important for programexe
ution. The overall performan
e is greatly improved from the
ompressionwith redu
ed
a
he misses and memory traÆ
.

1449.2 Future workPro�le database. With the in
reasing program
omplexity, advan
es in programpro�ling tend to
olle
t a huge amount of pro�ling data. This
ould be theresult from
olle
ting whole program paths, or from the iterative
olle
tionswith di�erent inputs. The former is dis
ussed in this dissertation, the later hasbeen employed in pro�ling
ompli
ated
ommer
ial programs. In all these
ases,it would be helpful to design a uni�ed interfa
e for stored pro�les. The pro�les
ould be organized as an independent subsystem { a spe
ial database. Di�erentanalyses and optimizations
ould issue di�erent queries to this subsystem andthe queris are pro
essed similar to that of SQL queries.New optimizations. Compared to prior pro�les, a whole program path providesa

urate exe
ution information. Espe
ially, it keeps the information a
ross theloop boundaries and pro
edural s
opes. Reorganizing the whole program pathat multiple semanti
 levels, TWPP+
an be used to enhan
e existing data
ow analysis te
hniques as well as design new optimization passes. It wouldbe very interesting to explore additional optimization opportunities using theinformation provided by TWPP+.Dynami
 sli
ing. Dynami
 sli
ing is used as an example to illustrate the strengthof the new timestamped whole program path representation. Although it isbeyond the s
ope of this dissertation to fully explore dynami
 sli
ing, it wouldbe an interesting topi
 to evaluate di�erent dynami
 sli
ing algorithms withthe presen
e of pointers and arrays in real C programs. The experien
e in ourresear
h group [63℄ showed that the memory requirement is extremely large ifdynami
ally maintaining the data dependen
e edges. Sin
e the a

urate sli
-ing algorithm
ould also be implemented by ba
kward s
an of the tra
e, it ismore realisti
 to
ompare the implementations of the a

urate sli
ing algorithm

145using di�erent representations and then
hoose the right representation to usein pra
ti
e. While an a

urate algorithm might exe
ute longer, its memoryrequirement is well
ontrolled.

146Referen
es[1℄ Hiralal Agrawal and Joseph R. Horgan. Dynami
 program sli
ing. In ACMSIGPLAN Conferen
e on Programming Language Design and Implementation,pages 246{256, White Plains, NY, 1990.[2℄ Matthew Arnold and Barbara G. Ryder. A framework for redu
ing the
ost ofinstrumented
ode. In ACM SIGPLAN Conferen
e on Programming LanguageDesign and Implementation, pages 168{179, Snowbird, UT, 2001.[3℄ Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: A transpar-ent runtime optimization system. In ACM SIGPLAN Conferen
e on Program-ming Language Design and Implementation, pages 1{12, 2000.[4℄ Thomas Ball and James Larus. EÆ
ient path pro�ling. In 29th AnnualIEEE/ACM International Symposium on Mi
roar
hite
ture, pages 46{57, Paris,Fran
e, 1996.[5℄ Thomas Ball, Peter Mataga, and Mooly Sagiv. Edge pro�ling versus path pro�l-ing: The showdown. In ACM SIGPLAN-SIGACT Symposium on Prin
iples ofProgramming Languages, pages 134{148, San Diego, CA, 1998.[6℄ Ras Bodik, Rajiv Gupta, and Mary Lou So�a. Interpro
edural
onditionalbran
h elimination. In ACM SIGPLAN Conferen
e on Programming LanguageDesign and Implementation, pages 146{158, Las Vegas, NV, 1997.[7℄ Ras Bodik, Rajiv Gupta, and Mary Lou So�a. Complete removal of redundantexpressions. In ACM SIGPLAN Conferen
e on Programming Language Designand Implementation, pages 1{14, Montreal, Canada, 1998.[8℄ Ras Bodik, Rajiv Gupta, and Mary Lou So�a. ABCD: Eliminating array bounds
he
ks on demand. In ACM SIGPLAN Conferen
e on Programming LanguageDesign and Implementation, pages 321{333, Van
ouver B.C., Canada, 2000.[9℄ David Brooks, Vivek Tiwari, and Margaret Martonosi. Watt
h: a framework forar
hite
tural-level power analysis and optimizations. In The 27th InternationalSymposium on Computer Ar
hite
ture, pages 83{94, 2000.[10℄ Doug Burger and Todd Austin. The simples
alar tool set, version 2.0. Te
hni
alReport CS-TR-97-1342, University of Wis
onsin-Madison, 1997.[11℄ Brad Calder, Peter Feller, and Alan Eusta
e. Value pro�ling. In IEEE/ACMInternational Symposium on Mi
roar
hite
ture, pages 259{269, 1997.

147[12℄ Brad Calder, Peter Feller, and Alan Eusta
e. Value pro�ling and optimization.Journal of Instru
tion Level Parallelism, Vol. 1, 1999.[13℄ Brad Calder, Chandra Krintz, Simmi John, and Todd Austin. Ca
he-
ons
iousdata pla
ement. In The Eighth International Conferen
e on Ar
hite
tural Supportfor Programming Languages and Operating Systems, pages 139{149, San Jose,CA, 1998.[14℄ Martin C. Carlisle. Olden: Parallelizing Progrms with Dynami
 Data Stru
tureson Distributed-Memory Ma
hines. PhD thesis, Prin
eton University, 1996.[15℄ Trishul M. Chilimbi. EÆ
ient representations and abstra
tions for quantifyingand exploiting data referen
e lo
ality. In ACM SIGPLAN Conferen
e on Pro-gramming Language Design and Implementation, pages 191{202, Snowbird, UT,2001.[16℄ Trishul M. Chilimbi, Bob Davidson, and James R. Larus. Ca
he-
ons
ious stru
-ture de�nition. In ACM SIGPLAN Conferen
e on Programming Language De-sign and Implementation, pages 13{24, Atlanta, GA, 1999.[17℄ Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Ca
he-
ons
ious stru
-ture layout. In ACM SIGPLAN Conferen
e on Programming Language Designand Implementation, pages 1{12, Atlanta, GA, 1999.[18℄ Ja
k W. Davidson and Sanjay Jinturkar. Memory a

ess
oales
ing: A te
hniquefor eliminating redundant memory a

esses. In ACM SIGPLAN Conferen
e onProgramming Language Design and Implementation, pages 186{195, 1994.[19℄ Digital Equipment Corporation, Maynard, MA. ATOM User Manual, Mar
h1994.[20℄ Evelyn Duesterwald, Rajiv Gupta, and Mary Lou So�a. Demand-driven
om-putation of interpro
edural data
ow. ACM Transa
tions on Programming Lan-guages and Systems, 19(6):992{1030, 1998.[21℄ Carole Dulong. The IA-64 ar
hite
ture at work. IEEE Computer, 31(7):24{32,1998.[22℄ Rajiv Gupta, David A. Berson, and Jesse Z. Fang. Path pro�le guided partialdead
ode elimination using predi
ation. In International Conferen
e on ParallelAr
hite
ture and Compilation Te
hniques, pages 102{115, San Fran
is
o, CA,1997.

148[23℄ Rajiv Gupta, David A. Berson, and Jesse Z. Fang. Resour
e-sensitive pro�le-dire
ted data
ow analysis for
ode optimization. In The 30th AnnualIEEE/ACM International Symposium on Mi
roar
hite
ture, pages 558{568, Re-sear
h Triangle Park, NC, 1997.[24℄ Rajiv Gupta, David A. Berson, and Jesse Z. Fang. Path pro�le guided partialredundan
y elimination using spe
ulation. In IEEE International Conferen
e onComputer Languages, pages 230{239, Chi
ago, IL, 1998.[25℄ Ri
hard E. Hank, Wen mei W. Hwu, and B. Ramakrishna Rau. Region-based
ompilation: An introdu
tion and motivation. In IEEE/ACM International Sym-posium on Mi
roar
hite
ture, pages 158{168, Ann Arbor, MI, 1995.[26℄ Doug Hunt. Advan
ed performan
e features of the 64-bit pa 8000. In COMP-CON'95, 1995.[27℄ Intel Corporation. The IA-32 Intel Ar
hite
ture Software Developer's Manual,2002.[28℄ Todd B. Knoblo
k and Erik Ruf. Data spe
ialization. In ACM SIGPLAN Con-feren
e on Programming Language Design and Implementation, pages 215{225,1996.[29℄ Jens Knoop, Oliver Rthing, and Bernhard Ste�en. Lazy
ode motion. In ACMSIGPLAN Conferen
e on Programming Language Design and Implementation,pages 224{234, San Fran
is
o, 1992.[30℄ Bogdan Korel and Janusz Laski. Dynami
 program sli
ing. Information Pro-
essing Letters, 29:155{163, 1988.[31℄ Samuel Larsen and Saman Amarasinghe. Exploiting superword level parallelismwith multimedia instru
tion sets. In ACM SIGPLAN Conferen
e on Program-ming Language Design and Implementation, pages 145{156, Van
ouver B.C,Canada, 2000.[32℄ James Larus. Whole program paths. In ACM SIGPLAN Conferen
e on Pro-gramming Language Design and Implementation, pages 259{269, Atlanta, GA,1999.[33℄ Jang-Soo Lee, Won-Kee Hong, and Shin-Dug Kim. Design and evaluation ofa sele
tive
ompressed memory system. In IEEE International Conferen
e onComputer Design, pages 184{191, Austin, TX, 1999.[34℄ Mikko H. Lipasti and John Paul Shen. Ex
eeding the data
ow limit via valuepredi
tion. In International Symposium on Mi
roar
hite
ture, pages 226{237,1996.

149[35℄ Chi-Keung Luk and Todd C. Mowry. Memory forwarding: Enabling aggres-sive layout optimizations by guaranteeing the safety of data relo
ation. In The26th Annual International Symposium on Computer Ar
hite
ture, pages 88{99,Atlanta, GA, 1999.[36℄ Eduard Mehofer and Bernhard S
holz. A novel probabilisti
 data
ow framework.In Le
ture Notes in Computer S
ien
e 2027, pages 37{51, Genova, Italy, 2001.[37℄ MIPS Te
hnologies In
orporation. R10000 Mi
ropro
essor User's Manual-Version 1.1, 1996.[38℄ Steven S. Mu
hni
k. Advan
ed Compiler Design and Implementation. MorganKaufmann Publishers, 1997.[39℄ Robert Muth, S
ott Watterson, and Saumya Debray. Code spe
ialization basedon value pro�les. In International Stati
 Analysis Symposium, LNCS 1828, pages340{359, 2000.[40℄ Craig Nevil-Manning and Ian H. Witten. Inferring lexi
al and grammati
al stru
-ture from sequen
es. In IEEE Data Compression Conferen
e, pages 179{188,Snowbird, UT, 1997.[41℄ Soner Onder and Rajiv Gupta. Automati
 generation of mi
roar
hite
ture simu-lators. In IEEE International Conferen
e on Computer Languages, pages 80{89,1998.[42℄ Vijay S. Pai, Parthasarathy Ranganathan, , and Sarita V. Adve. Rsim referen
emanual. version 1.0. Te
hni
al Report Te
hni
al Report 9705, Ri
e University,1997.[43℄ David A. Patterson and John L. Hennessy. Computer Ar
hite
ture, A QuantativeApproa
h. Morgan Kaufmann Publishers, 2nd edition, 1996.[44℄ Alex Peleg and Uri Weiser. MMX te
hnology extension to the intel ar
hite
ture.IEEE Mi
ro, 16(4):51{59, 1996.[45℄ Ganesan Ramalingam. Data
ow frequen
y analysis. In ACM SIGPLAN Con-feren
e on Programming Language Design and Implementation, pages 267{277,Philadelphia, PA, 1996.[46℄ Thomas Reps, Susan Horwitz, and Mooly Sagiv. Pre
ise interpro
edural data
ow analysis via graph rea
hability. In The 22nd ACM Symposium on Prin
iplesof Programming Languages, pages 49{61, 1995.

150[47℄ Amir Roth, Andreas Moshovos, and Gurindar S. Sohi. Dependan
e basedprefet
hing for linked data stru
tures. In The Eighth International Conferen
eon Ar
hite
tural Support for Programming Languages and Operating Systems,pages 115{126, San Jose, CA, 1998.[48℄ Vivek Sarkar. Determining average program exe
ution times and their varian
e.In ACM SIGPLAN Conferen
e on Programming Language Design and Imple-mentation, pages 298{312, Portland, OR, 1989.[49℄ Alan Jay Smith. Ca
he memories. ACM Computing Survey, 14:473{530, 1982.[50℄ SPEC95. http://www.spe
.org/osg/spe
95/.[51℄ Amitabh Srivastava, Andrew Edwards, and Hoi Vo. Vul
an binary transforma-tion in a distributed environment. Te
hni
al report, Mi
rosoft Resear
h, 2001.[52℄ Bernhard Ste�en. Property-oriented expansion. In International Stati
 AnalysisSymposium, LNCS 1145, pages 22{41, Germany, 1996.[53℄ Mark Stephenson, Jonathan Babb, and Saman Amarasinghe. Bitwidth analy-sis with appli
ation to sili
on
ompilation. In ACM SIGPLAN Conferen
e onProgramming Language Design and Implementation, pages 108{120, Van
ouverB.C, Canada, 2000.[54℄ Stanford SUIF. http://www.suif.org/.[55℄ Trimaran. The Trimaran Compiler Resear
h Infrastru
ture, November 1997.Tutorial Notes.[56℄ Dan N. Truong, Franois Bodin, and Andr�e Sezne
. Improving
a
he behavior ofdynami
ally allo
ated data stru
tures. In International Conferen
e on ParallelAr
hite
tures and Compilation Te
hniques, pages 322{329, Paris, Fran
e, 1998.[57℄ Jon Tyler, Je� Lent, Anh Mather, and Huy Van Nguyen. Altive
(tm): Bringingve
tor te
hnology to the powerp
(tm) pro
essor family. Phoenix, AZ, 2000.[58℄ S
ott Watterson and Samuya Debray. Goal-dire
ted value pro�ling. In Inter-national Conferen
e on Compiler Constru
tion, LNCS 2027, Springer Verlag,Genova, Italy, 2001.[59℄ Mark Weiser. Program sli
ing. IEEE Transa
tions on Software Engineering,10(4):352{357, 1984.[60℄ Terry A. Wel
h. A te
hnique for high-performan
e data
ompression. IEEEComputer, 17(6):8{19, 1984.

151[61℄ Jun Yang, Youtao Zhang, and Rajiv Gupta. Frequent value
ompression in data
a
hes. In IEEE/ACM International Symposium on Mi
roar
hite
ture, pages258{265, Monterey, CA, 2000.[62℄ Cli� Young, David S. Johnson, David R. Karger, and Mi
hael D. Smith. Near-optimal intrapro
edural bran
h alignment. In ACM SIGPLAN Conferen
e onProgramming Language Design and Implementation, pages 183{193, 1997.[63℄ Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. Dynami
 Sli
ing Algorithms:Design and Evaluation, 2002. Manus
ript.[64℄ Youtao Zhang, Jun Yang, and Rajiv Gupta. Frequent value lo
ality and value-
entri
 data
a
he design. In ACM 9th International Conferen
e on Ar
hite
-tural Support for Programming Languages and Operating Systems, pages 150{159, Cambridge, MA, 2000.[65℄ Ja
ob Ziv and Abraham Lempel. A universal algorithm for data
ompression.IEEE Transa
tions on Information Theory, 23(3):337{343, 1977.[66℄ Ja
ob Ziv and Abraham Lempel. Compression of individual sequen
es viavariable-rate
oding. IEEE Transa
tions on Information Theory, 24(5):530{536,1978.

