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Optical Time—Division—Multiplexed
Point—to—Point Networks
Xin Yuan, Ph.D.

University of Pittsburgh, 1998

Optical interconnection networks are promising networks for future supercomput-
ers due to their large bandwidths. However, the speed mismatch between the fast optical
data transmission and the relatively slow electronic control components poses challenges
for designing an optical network whose large bandwidth can be utilized by end users.
The Time-Division—-Multiplexing (TDM) technique alleviates this mismatch problem by
sacrificing part of the large optical bandwidth for efficient network control. This thesis
studies efficient control mechanisms for optical TDM point to point networks. Specifically,
three communication schemes are considered, dynamic single hop communication, dynamic
multi-hop communication and compiled communication.

Dynamic single-hop communication uses a path reservation protocol to establish
all-optical paths for connection requests that arrive at the network dynamically. An efficient
path reservation protocol is essential for this scheme to achieve high performance. In this
thesis, a number of efficient distributed path reservation protocols are designed and the
impact of system parameters on these protocols is studied.

Dynamic multi-hop communication allows intermediate hops to route messages
toward their destinations. In optical TDM networks, efficient dynamic multi-hop com-
munication can be achieved by routing messages through a logical topology that is more
efficient than the physical topology. This thesis studies efficient schemes to realize logical
topologies on top of physical torus topologies, presents an analytical model for analyzing the
maximum throughput and the average packet delay for multi-hop networks, and evaluates
the performance of the optical communication on the logical topologies.

Compiled communication eliminates the runtime communication overheads of the
dynamic communications by managing network resources at compile time. This thesis

considers issues for applying the compiled communication technique to optical TDM net-

v



works, including communication analysis, connection scheduling and communication phase
analysis. A compiler, called the E-SUIF compiler, is implemented to support compiled
communication on optical TDM networks.

Each communication scheme has its advantages and limitations and is more ef-
ficient for some types of communication patterns. This thesis compares the performance
of the three communication schemes using a number of benchmarks and real application
programs and identifies the situations where each communication scheme out—performs the

other schemes.
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Chapter 1

Introduction

Fiber optic technology has advanced significantly over the past few years, so have
the development of tunable lasers, filters, high speed transmitter and receiver circuits,
optical amplifiers and photonic switching devices [40, 76]. With the maturing of optical
technology, transmission cost, and in particular the cost of high speed data links, has
dropped tremendously. The electronic processing capability of computers cannot match the
potentially very high speed of optical data transmission. The communication bottleneck
has shifted from the transmission medium to the processing needed to control that medium.

In optical interconnection networks, each physical link can offer very high band-
width. In order to fully utilize the available bandwidth, an optical link can be shared
through time division multiplezing (TDM) [23, 53, 61] and/or wavelength division multi-
plexzing (WDM) [9, 19, 22, 72]. In TDM, optical links are multiplexed by assigning different
virtual communication channels to different time slots, while in WDM, optical links are mul-
tiplexed by assigning different virtual communication channels to different wavelengths. By
using TDM, WDM or TWDM (a combination of TDM and WDM), each link can support
multiple channels.

Point to point networks, such as meshes, tori, rings and hypercubes, are used in
commercial supercomputers. By exploiting space diversity and traffic locality, they offer
larger aggregate throughput and better scalability than shared media networks such as
buses. Optical point—to—point networks can be implemented by replacing electronic links
with optical links and operating in a packet switching fashion just like electronic networks.
The performance of such networks is limited by the speed of electronics since buffering and
address decoding are performed in the electronic domain. Thus, these networks cannot
efficiently utilize the potentially high bandwidth that optics can provide. New generation
optical point to point networks exploit the channel routing capability in optical switches.
In TDM networks, time slot routing[61] is used, while in WDM networks, wavelength

routing[20] is used. The channel routing in an optical switch routes messages from a channel



of an input port to a channel of an output port without converting the messages into the
electronic domain. The switch states, however, are usually controlled by electronic signals.

Using channel routing, two approaches can be used to establish connections in
multiplexed optical networks, namely link multiplexing (LM) and path multiplezing (PM).
These connections are called lightpaths since the light signal travels through the connections
that may span a number of optical links and switches without being converted into the
electronic domain. In LM, a connection which spans more than one communication link is
established by using possibly different channels on different links. In PM, a connection which
spans more than one communication link uses the same channel on all the links. In other
words, PM uses the same time-slot or the same wavelength on all links of a connection,
while LM can use different time-slots or different wavelengths, thus requiring time-slot
interchange or wavelength conversion capabilities at each intermediate optical switch. Since
the technology to support PM is more mature than the one to support LM, this thesis focuses
on PM.

Since the electronic processing speed is relatively slow compared to the optical
data transmission speed, optical point—to—point networks should ideally employ all-optical
communication in data transmission. In all-optical communication, no electronic processing
and no electronic/optical (E/O) or optical/electronic (O/E) conversions are performed at
intermediate nodes. Once converted into the optical domain, the signal remains there until
it reaches the destination. All-optical communication eliminates the electronic processing
bottleneck at intermediate nodes during data transmission and thus, exploits the large
bandwidth of optical links. This thesis considers all-optical networks where a lightpath
is established before a communication starts and the data transmission is carried out in a
pure circuit switching fashion. This type of communication is referred to as the dynamic
single—hop communication. In such networks, electronic processing occurs only in the path
reservation process and hence, using an efficient path reservation protocol is crucial to obtain
high performance. In this work, a number of path reservation algorithms that dynamically
establish lightpaths are designed and the impact of system parameters on the algorithms
is studied. These algorithms use a separate control network to exchange control messages
and allow all-optical communication in the optical data network.

Although dynamic single—hop networks achieve all-optical communication in data
transmission, the path reservation algorithms require extra hardware support to exchange
control messages and result in large startup overhead, especially for small messages. An
alternative is to use dynamic multi hop communication. In multi hop networks, interme-

diate nodes are responsible for routing packets such that a packet sent from a sender will



eventually reach its destination, possibly after being routed through a number of intermedi-
ate nodes. Clearly, multi-hop networks require E/O and O/E conversions at intermediate
nodes. Thus, it is important to reduce the number of hops that a packet visits. This re-
duction may be achieved in an optical TDM network by combining the channel routing
technique and the packet switching technique. Specifically, packets may be routed through
a logical topology which has a small diameter as opposed to the physical topology which
may have a large diameter. The major issue in the multi-hop communication is to design
appropriate logical topologies. This thesis considers efficient schemes for realizing logical
topologies on top of physical mesh and torus networks using path multiplexing. Realizing
logical topologies on optical networks is different from traditional embedding techniques in
that both routing and channel assignment options must be considered. An analytical model
that models the maximum throughput and average package latency of multi-hop networks
is developed and is used to evaluate the performance of logical topologies and identify the
advantages of each logical topology.

While dynamic (single hop or multi hop) communications handle arbitrary com-
munication patterns, their performance can be limited by the electronic processing which
occurs during path reservation in single-hop communication and during packet routing in
multi hop communication. Compiled communication overcomes this limitation for com-
munication patterns that are known at compile time. In compiled communication, the
compiler analyzes a program and determines its communication requirement. The compiler
then uses the knowledge of the underlying architecture, together with the knowledge of the
communication requirement, to manage network resources statically. As a result, runtime
communication overheads, such as path reservation and buffer allocation overheads, are
reduced or eliminated, and the communication performance is improved. However, due to
the limited network resources, the underlying network cannot support arbitrary communi-
cation patterns. Compiled communication requires for the compiler to analyze a program
and partition it into phases such that each phase has a fixed, pre-determined communication
pattern that the underlying network can support. The compiler inserts codes for perform-
ing network reconfigurations at phase boundaries to support all connections in the next
phase. At runtime, a lightpath is available for each communication without path reserva-
tion. Therefore, compiled communication accomplishes all-optical communication without
incurring extra hardware support and large start up overheads. This thesis studies the
application of compiled communication to optical interconnection networks. Specifically,
it considers the communication analysis techniques needed to analyze the communication

requirement of a program. These analysis techniques are general in that they can be ap-



plied to other communication optimizations and can be used for compiled communication
in electronic networks. This thesis also develops a number of connection scheduling schemes
which realize a given communication pattern with a minimal multiplexing degree. Note that
in optical TDM networks, communication time is proportional to the multiplexing degree.
Finally, a communication phase analysis algorithm is developed to partition a program into
phases so that each phase contains connections that can be supported by the underlying
network. All the algorithms are implemented in a compiler which is based on the Stanford
SUIF compiler[3]. This thesis evaluates the performance of the algorithms in terms of both

analysis cost and runtime efficiency.

Single-hop | Multi—hop | Compiled
All-optical comm. Yes No Yes
Startup overhead Yes No No
Extra hardware Yes No No
Arbitrary comm. Yes Yes No

Table 1.1: General characteristics of the three schemes

Table 1.1 summarizes the general characteristics of the three schemes. In optical
interconnection networks, the central problem to be addressed is the reduction of the amount
of electronic processing needed for controlling the communication. In dynamic single-
hop networks, this problem is addressed by having efficient path reservation algorithms.
In multi-hop networks, this problem is tackled by designing efficient logical topologies to
route messages. Compiled communication totally eliminates the electronic processing in
communications. However, it only applies to the communication patterns that are known
at compile time. While communications in optical TDM point—to—point networks can be
carried out by any of the three communication schemes, it is necessary to understand the
strengths and the limitations of each communication scheme in order to make appropriate
choices when designing an optical interconnection network. In addition to considering the
options within each communication scheme, this thesis compares the performance of the
three communication schemes using a number of benchmarks and real applications and
identifies the situations in which each communication scheme has advantage over other
schemes.

The remainder of the thesis is organized as follows. Chapter 2 begins by describing
background and thesis assumptions. This chapter presents an overview of optical intercon-
nection networks, discusses the TDM technique and introduces the path multiplexing (PM)

and link multiplezing (LM) techniques for establishing connections. This chapter also sur-



veys the research related to the three communication schemes. Finally, this background
chapter surveys the traditional compilation techniques for distributed memory machines
and communication optimizations and discusses the difference between the traditional com-
munication optimizations and the compiled communication technique.

Chapter 3 discusses the techniques used in dynamic single hop communication.
Two types of distributed path reservation protocols, the forward reservation protocols and
the backward path reservation protocols, are described. This chapter also describes a network
simulator for dynamic single-hop communication, evaluates the performance of the two
types of protocols and studies the impact of system parameters on these protocols.

Chapter 4 discusses dynamic multi hop communication. This chapter presents
efficient schemes for realizing logical topologies on top of the physical torus networks, de-
scribes an analytical model that models the maximum throughput and the average packet
delay for the logical topologies and verifies the model with simulation. In addition, this
chapter also describes the simulator for dynamic multi hop communication, evaluates the
multi hop communication with the logical topologies and identifies the advantages and the
limitations of each logical topology.

Chapter 5 considers compiled communication. This chapter describes the com-
munication analyzer and discusses the communication descriptor used in the analyzer, the
data flow analysis algorithms for communication optimizations, and the actual communica-
tion optimization performed in the analyzer. The chapter also describes off-line connection
scheduling algorithms and a communication phase analysis algorithm. Using these algo-
rithms, the compiler analyzes the communication requirement of a program, partitions the
program into phases such that each phase contains connections that can be supported by
the underlying network, and schedules the connections within each phase. The chapter also
presents the evaluation of the compiler algorithms and studies their runtime efficiency.

Chapter 6 compares the communication performance of the three communication
schemes. Three sets of application (benchmark) programs, including hand—coded parallel
programs, HPF benchmark programs and sequential programs from SPECY5, are used to
evaluate the communication performance of the communication schemes. Different sets of
programs exhibit different communication characteristic. For example, the hand—coded pro-
grams are highly optimized for parallel execution, while the programs from SPEC95 are not
optimized for parallel execution. This chapter compares the communication performance
of the three communication schemes and identifies the advantages of each scheme.

Finally, Chpater 7 summarizes the dissertation and suggests some directions for

future research.



Chapter 2

Background and related work

2.1 Optical TDM networks

An optical point—to—point network consists of switches with a fixed number of
input and output ports. One input port and one output port are used to connect the switch
to a local processing element and all remaining input and output ports of a switch are used
for connections to other switches. An example of such networks is the 4 x 4 torus shown
in Figure 2.1. In these networks, each link in the network is time multiplexed to support

multiple virtual channels.

NI e N
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o
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o

Figure 2.1: A torus connected network

Two approaches can be used to establish connections in multiplexed networks,
namely link multiplezing (LM) and path multiplexing (PM) [62]. PM uses the same channel

on all the links along the path to form a connection. On the other hand, LM may use



different channels on different links along the path, thus requiring time-slot interchange in
TDM networks at each intermediate node. Fig. 2.2 shows the PM and LM connections at
a 2 x 2 switch where each link supports two channels. LM is similar to the multiplexing
technique in electronic networks where a data packet can change channels when it passes
a switch. Using LM for communication has many advantages over using PM. For example,
the path reservation for a LM connection is simpler than that for a PM connection, and LM
results in better channel utilization. However, optical devices for LM are still in the research
stage and are very expensive using current technology. Hence, this thesis is concerned only
with path multiplexing because the enabling technology is more mature.

Channel 0
fffffffff Channel 1

channel interchange

S Wy
. 47
. - .
N ] . E
.

(a) path multiplexing (b) link multiplexing

Figure 2.2: Path multiplexing and link multiplexing

A o o —
cl:
Figure 2.3: Path multiplexing in a linear array
11 O3 11— =08
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02 02
(a Timesdlot 0 (b) Timeslot 1

Figure 2.4: Changing the state of a switch in TDM

In order to time multiplex a network with path multiplexing, a time slot is defined

to be a fixed period of time and the time domain is divided into a repeated sequence of



d time slots, where d is the multiplexing degree. Different virtual channels on each link
occupy different time slots. Figures 2.3 and 2.4 illustrate path multiplexing on a linear
array. In these two figures, two virtual channels are supported on each link by dividing the
time domain into two time slots, and using alternating time slots for the two channels c0
and cl. Let us use (u,v) to denote a connection from node u to node v. Figure 2.3 shows
four established connections over the two channels, namely connections (0,2) and (2,1)
that are established using channel ¢0, and connections (2,4) and (3,2) that are established
using channel ¢l. The switches, called Time—Multiplexed Switches (TMS), are globally
synchronized at time slot boundaries, and each switch is set to alternate between the two
states that are needed to realize the established connections. For example, Figure 2.4 shows
the two states that the 3 x 3 switch attached to PE 2 must realize for the establishment
of the connections shown in Figure 2.3. Note that each switch can be an electro-optical
switch (Ti:LiNbOg switch, for example [36]) which connects optical inputs to optical outputs
without E/O and O/E conversions. The state of a switch is controlled by setting electronic
bits in a switch state register.

The duration of a time slot may be equal to the duration over which several
hundred bits may be transmitted. For synchronization purposes, a guard band at each end
of a time slot must be used to allow for changing the state of switches (shifting a shift
register) and to accommodate possible drifting or jitter. For example, if the duration of a
time slot is 276ns, which includes a guard band of 10ns at each end, then 256ns can be
used to transmit data. If the transmission rate is 1Gb/s, then a packet of 256 bits can be
transmitted during each time slot. Note that the optical transmission rate is not affected
by the relatively slow speed of changing the state of switches (10ns) since that change is
performed only every 276ns.

Communications in TDM networks can either be single-hop or multi—hop. In
single-hop communication, circuit-switching style communications are carried out. A path
for a communication must be established before the communication starts. In general, any
N x N network, other than a completely connected network, has a limited connectivity in
the sense that only subsets, C = {(z,9)|0 < z,y < N}, of the possible N? connections can
be established simultaneously without conflict. For single-hop communication the network
must be able to establish any possible connection in one hop, without intermediate relaying
or routing. Hence, the network must be able to change the connections it supports at dif-
ferent times. This thesis considers switching networks in which the set of connections that
may be established simultaneously (that is, the state of the network) is selected by changing

the contents of hardware registers. The single-hop communication can be achieved in two



ways. First, a path reservation algorithm can be used to dynamically establish and tear
down all-optical connections for arbitrary communications. Second, compiled communica-
tion uses the compiler to analyze the communication requirement of a program and insert
code to establish all optical connections (at phase boundaries) before communications start.
Unlike the case in a single hop system where connections are dynamically established and
torn down, connections in a multi-hop system are fixed and a message may travel through
a number of lightpaths to reach its destination. Dynamic single-hop communication, dy-
namic multi-hop communication and compiled communication will be discussed in some

details next.

2.2 Dynamic single-hop communication with PM

To establish a connection in an optical TDM network, a physical path, PP, from
the source to the destination is first chosen. Then, a virtual path, V P, consisting of a
virtual channel in each link in PP is selected and the connection is established. The
selection of PP has been studied extensively and is well understood [50]. It can be classified
into deterministic routing, where PP can be determined from the source node and the
destination node (e.g., X Y routing on a mesh), or adaptive routing, where PP is selected
from a set of possible paths. Once PP is selected, a time slot is used in all the links along
PP.

The control in optical TDM networks is responsible for the establishment of a vir-
tual path for each connection request. Due to the similarity of TDM and WDM networks,
many techniques for virtual channel assignment in one of these two types of networks can
also apply to the other type. Network control for multiplexed optical networks can be clas-
sified into two categories, centralized control and distributed control. Centralized control
assumes a central controller which maintains the state of the whole network and schedules
all communication requests. Many time slot assignment and wavelength assignment algo-
rithms have been proposed for centralized control. In [61] a number of time slot assignment
algorithms are proposed for TDM multi-stage interconnection networks. In [19] wavelength
assignment for wide area networks is studied. A time wavelength assignment algorithm
for WDM star networks is proposed in [23]. Theoretical study for optimal routing and
wavelength assignment for arbitrary networks is presented in [64].

Distributed control does not assume a central controller and thus is more practical
for large networks. Little work has been done on distributed control for optical multiplexed
networks. In [61] a distributed path reservation scheme for optical Multistage Intercon-

nection Networks (MIN) is proposed. Distributed path reservation methods for both path
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multiplexing and link multiplexing are presented in [63]. This thesis proposes distributed
path reservation algorithms that are more efficient than the previous algorithms, investigates
variations in channel reservation methods and studies the impact of the system parameters

on the protocols.

2.3 Dynamic multi-hop communication with PM

By using path multiplexing, efficient logical topologies can be established on top
of the physical topology. The connections in the logical topologies are lightpaths that may
span a number of links. In such systems, the switching architecture consists of an optical
component and an electronic component. The optical component is an all-optical switch,
which can switch the optical signal from some input channels to output channels in the
optical domain (i.e., without E/O and O/E conversions), and which can locally terminate
some other lightpaths by directing them to the node’s electronic component. The electronic
component is an electronic packet router which serves as a store-and—forward electronics
overlaid on top of the optical virtual topology. Figure 2.5 provides a schematic diagram of

the architecture of the nodal switch in a physical torus topology.

5x5 TMS

router

\ processor \

Figure 2.5: A nodal switching architecture

Since the electronic processing is slow compared to the optical data transmission,
it is desirable to reduce the number of intermediate hops in a multi-hop network. This can
be achieved by having a logical topology whose connectivity is high. However, realizing a
logical topology with a large number of connections requires a large multiplexing degree.
In a TDM system, large multiplexing degree results in a large time to transmit a packet
through a lightpath because every light path is established only for a fraction of the time.
Hence, there exists a performance trade—off in the logical topology design between a logical
topology with large multiplexing degree and high connectivity and a logical topology with
small multiplexing degree and low connectivity. As will be shown in this dissertation, both

topologies have advantages for certain types of communication patterns and system settings.
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Multi-hop networks have been extensively studied in the area of WDM wide area
networks. The works in [6, 20, 47, 57, 77] consider the realization of logical topologies
on optical multiplexed networks. These works consider wide area networks and focus on
designing efficient logical topologies on top of irregular networks. Since finding an optimal
logical topology on irregular networks is an NP hard problem, heuristics and simulated
annealing algorithms are used to find suboptimal schemes. This dissertation considers reg-
ular networks in multiprocessor environments and derives optimal connection scheduling
schemes for realizing hypercube communications. Besides logical topology design, connec-
tion scheduling algorithms can also be used to realize logical topologies. In [63] message
scheduling for permutation communication patterns in mesh like networks is considered. In
[61] optimal schemes for realizing all-to-all patterns in multi-stage networks are presented.
In [33] message scheduling for all-to-all communication in mesh-like topologies is described.

The performance of multi hop networks has also been previously studied. How-
ever, most previous performance studies for optical multi hop networks assume a broadcast
based underlying WDM network, such as an optical star network [45, 67], where the ma-
jor concerns are the number of transceivers in each node and the tuning speed of the
transceivers. This thesis studies the logical topologies on top of a physical torus topology
in a TDM network, where the major focus is the trade off between the multiplexing degree

and the connectivity of a topology.

2.4 Compiled communication

Compiled communication has recently drawn the attention of several researchers
[13, 34]. Compiled communication has been used in combination with message passing in
the iWarp system [25, 26, 35], where it is used for specific subsets of static patterns. All
other communications are handled using message passing. The prototype system described
in [13] eliminates the cost of supporting multiple communication models. It relies exclusively
upon compiled communication. However, the performance of this system is severely limited
due to frequent dynamic reconfigurations of the network. Compiled communication is more
beneficial in optical multiplexed networks. Specifically, it reduces the control overhead,
which is one of the major factors that limit the communication performance in optical
networks. Moreover, multiplexing, which is natural in optical interconnection networks,
enables a network to support simultaneously more connections than a non multiplexed
network, which reduces the reconfiguration overhead in compiled communication.

The communication patterns in an application program can be broadly classified

into two categories: static patterns that can be recognized by the compiler and dynamic
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patterns that are only known at run-time. For a static pattern, compiled communication
computes a minimal set of network configurations that satisfies the connection requirement
of the pattern and thus, handles static patterns with high efficiency. Recent studies [48] have
shown that about 95% of the communication patterns in scientific programs are static pat-
terns. Thus, using the compiled communication technique to improve the communication
performance for the static patterns is likely to improve the overall communication perfor-
mance. Some advantages of using compiled communication for handling static patterns are

as follows.

e Compiled communication totally eliminates the path reservation and the large startup

overhead associated with the path reservation.

e The connection scheduling algorithm is executed off-line by the compiler. Therefore,

complex strategies can be employed to improve network utilization.

e No routing decisions are made at runtime which means that the packet header can be

shortened causing the network bandwidth to be utilized more effectively.

e Optical networks efficiently support multiplexing which reduces the chance of network

reconfigurations due to the lack of network capacity.

e Compiled communication adapts to the communication requirement in each phase.
For example, it can use different multiplexing degrees for different phases in a program.
In contrast, dynamic communications always use the same configuration to handle all

communications in a program which may not be optimal.

In order to apply compiled communication to a large scale multiprocessor system,

three main problems must be addressed:

Communication Pattern Recognition: This problem has been considered by many
researchers since information on communication patterns has been previously used to
perform communication optimizations [11, 28, 34, 51]. The stencil compiler [11] for
CM-2 recognizes stencil communication patterns. Chen and Li [51] incorporated a
pattern extraction mechanism in a compiler to support the use of collective communi-
cation primitives. Techniques for recognizing a broad set of communication patterns
were also proposed in [28]. However, most of these methods determine a specific sub-
set of static communication patterns, such as the broadcast pattern and the nearest
neighbor pattern, which is not sufficient for compiled communication. Since the com-

munication performance of compiled communication relies heavily on the precision of
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the communication analysis, it is desirable to perform more precise analysis that can
recognize arbitrary communication patterns. Furthermore, compiled communication
requires the partitioning of a program into phases, such that each phase contains com-
munications that can be supported by the underlying network, and the scheduling of

connections within each phase. These are new problems that must be addressed.

Compiling Static Patterns: Once the compiler determines a communication pattern
within each phase, which is called a static pattern, the compiler must be able to
schedule the communication pattern on the multiplexed network. In TDM networks,
communication performance is proportional to the multiplexing degree. Given a com-
munication pattern, the smaller the multiplexing degree, the less time the commu-
nication lasts. Thus, connection scheduling algorithms that schedule all connection
requests in a phase with a minimal multiplexing degree must be designed to handle
the static patterns. It has been shown that optimal message scheduling for arbi-
trary topologies is NP-complete [19]. Hence, heuristic algorithms that provide good

performance need to be developed.

Handling Dynamic Patterns: A number of techniques can be used to handle dynamic
communication patterns. One approach is to setup all-to-all connections among all
nodes in the system. This way each node has a time slot to communicate with ev-
ery other node. However, establishing paths for the all-to-all communication can be
prohibitively expensive for large systems. An alternative is to perform dynamic single
hop or multi-hop communications. The dynamic communications are not as efficient
as compiled communication. However, since this method is not used frequently, its

effect on the overall performance is limited.

2.5 Programming and machine model

Compiled communication requires the compiler to extract communication patterns
from application programs. The method to extract communication patterns in a program
depends on both programming model and machine model. The programming model in-
cludes the ones using explicit communication primitives and the ones that require implicit
communication through remote memory references. There are two different machine archi-
tectures, the shared memory machine and the distributed memory machine. Communication
requirements for these two machine models are different for a program. In shared mem-

ory machines with hardware cache coherence, communications result from cache coherence
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traffic, while in distributed memory machines, communications result from data movements
between processors.

Explicit communication: Most of the current commercial distributed mem-
ory supercomputers support the explicit communication programming model. In such pro-
grams, programmers explicitly use communication primitives to perform the communication
required in a program. The communication primitives can be high level library routines,
such as PVM [60] or MPI [54], or low level communication primitives such as the shared
memory operations in the CRAY T3D [59] and the CRAY T3E. Communication patterns
in a program with explicit communication primitives can be obtained from the analysis of
the communication primitives in the program.

Implicit communication: Managing explicit communication is tedious and error-
prone. This has motivated considerable research towards developing compilers that relieve
programmers from the burden of generating communication [2, 5, 31, 37, 65, 88]. Such
compilers take sequential or shared memory parallel programs and generate Single Program
Multiple Data (SPMD) programs with explicit message passing. This type of programs
will be referred to as shared memory programs. Shared memory programs can be compiled
for execution on both distributed memory machines and shared memory machines. In the
case when a program is to be run on a distributed memory machine, the communication
requirements of the program can be obtained from memory references. If a program is to
be run on a shared memory machine, the communication requirements depend on the cache
behavior. However, a superset of the communication patterns may be obtained by exam-
ining the memory references in the program. This work will consider data parallel shared
memory programs compiled for execution on distributed memory machines. Compilers that
exploit task parallelism [27, 71] are not considered. However, similar techniques may also

apply to task parallel programs.

2.6 Compilation for distributed memory machines

While communication requirements of a shared memory program can be obtained
by analyzing the remote memory references in the program, the actual communication
patterns in the program depend on the compilation techniques used. To obtain realistic
communication patterns, compilation techniques for compiling shared memory programs
for distributed memory machines must be considered. The most important issues to be
addressed when compiling for distributed memory machines are data partitioning, code
generation and communication optimization. This section surveys previous work on these

issues.
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Data partitioning decides the distribution of array elements to processors. There
are two approaches for handling the data partitioning problem. The first approach is to add
user directives to programming languages and let the users specify the data distribution.
This approach is used in Fortran D [37], Vienna Fortran [15] and High Performance Fortran
(HPF) [39] among others. It uses human knowledge of application programs and simpli-
fies the compiler design. However, using this approach requires programmers to work at a
low level abstraction (understanding the detail of memory layout). Since the best place-
ment decision will vary between different architectures, with explicit user placement, the
programmer must reconsider the data placement for each new architecture. Hence, many
algorithms have been developed to perform automatic data distribution. An algorithm has
been designed for the CM Fortran compiler that attempts to minimize and identify align-
ment communications in data parallel Fortran programs [42]. Similar algorithms have been
proposed in [16, 29, 34, 52]. Data partitioning directly affects the communication require-
ments in a program running on a distributed memory machine. Once data partitioning
is decided, the minimum requirement of data movements in a program, which results in
communications, is fixed.

Code generation generates the communication code to ensure the correctness of
a program. The OQuwner computes rule is generally used for distributing the computation
onto processors. Under owner computes rule, the owner of the array element on the left
hand side of an assignment statement executes the statement. Thus, the owner of an array
element on the right hand side of the assignment statement must send the element to the
owner of the left hand side, which results in communication. Without considering efficiency,
a simple scheme can be used to generate the correct SPMD code by inserting guarded
communication primitives [65]. However, the communication and synchronization overhead
of this scheme can be so large that there may be no benefit for running the program on a
multiprocessor system. Several researchers have proposed techniques for generating efficient
code for array statements, given block, cyclic and block—cyclic distributions. In [43, 44]
compile time analysis of array statement with block and cyclic distribution is presented.
In [17] Chatterjee et al. present a framework for compiling array assignment statements in
terms of constructing a finite state machine. This method handles block, cyclic and block—
cyclic distributions. Method in [69] improves Chatterjee’s method in terms of buffer space
and communication code generation overheads. Other compilers [2, 5, 31, 37, 65, 88] use
communication optimization to generate efficient code for programs on distributed memory
machines. Different ways of code generation result in different communication patterns at

runtime. For example, the compiler may decide to send/receive all elements in an array to
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speed up the communication. It may also decide to send/receive one element at a time to
save buffer space.

Communication optimizations reduce the cost of communication in a program.
Communication performance not only affects the performance of a parallel application but
also limits its scalability. Therefore, communication optimization is crucial for the per-
formance of programs compiled for a distributed memory machine. Many communication
optimizations are applied within a single loop using data dependence information. Exam-
ples of such optimizations include message vectorization [37, 88], collective communication
[28, 51], message coalescing [37] and message pipelining [31, 37]. Earlier methods are based
on location based data dependence, which is not precise since it only determines whether
two references refer to the same memory location. Later schemes refine the information
and use value based data dependence [2]. In value based data dependence, a read reference
depends on a write reference only if the write provides the value for the read reference.

Communication optimizations based only on data dependence information usually
result in redundant communications [14]. The more recently developed optimizations use
data flow information to reduce redundant communication and perform other optimizations.
In [24] a data flow framework which can integrate a number of communication optimizations
is presented. However, the method can only apply to a very small subset of programs which
are constrained in the forms of loop nests and array indices. In [32] a unified framework
which uses global array data flow analysis for communication optimizations is described.
Since only a very simplified version of the analysis algorithm is implemented, it is not clear
whether this approach is practical for large programs. In [14, 41] methods that combine
traditional data flow analysis techniques with data dependence analysis for performing
global communication optimizations are described. These schemes are very efficient in terms
of their analysis cost since bit vectors are used to represent data flow information. However,
they cannot obtain the array data flow information that is as precise as the information
computed using array data flow analysis approaches. Communication optimization changes
the communication behavior of a program. Since many communication optimizations are
commonly used in production compilers, these optimizations must be considered to obtain

realistic communication patterns in a program.



Chapter 3

Dynamic single-hop communication

This chapter discusses the path reservation protocols for dynamic single hop com-
munication. Two types of distributed path reservation protocols, the forward path reserva-
tion protocols and the backward path reservation protocols, have been designed for point—
to—point optical TDM networks. A network simulator that simulates all the protocols has
been developed and has been used to study the performance of the two types of protocols
and to evaluate the impact of system parameters such as the control packet processing time

and the message size on the protocols.
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Figure 3.1: An optical network with distributed control.

In order to support a distributed control mechanism for connection establishment,
it is assumed that in addition to the optical data network, there is a logical shadow network

through which control messages are communicated. The shadow network has the same

17
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physical topology as the data network. The traffic on the shadow network consists of
small control packets and thus is much lighter than the traffic on the data network. The
shadow network operates in packet switching mode; routers at intermediate nodes examine
control packets and update local bookkeeping information and switch states accordingly.
The shadow network can be implemented as an electronic network or alternatively a virtual
channel on the data network can be reserved exclusively for exchanging control messages.
Figure 3.1 shows the network architecture. A virtual channel in the optical data network
corresponds to a time slot. It is also assumed that a node can send or receive messages
through different virtual channels simultaneously.

A path reservation protocol ensures that the path from a source node to a desti-
nation node is reserved before the connection is used. A path includes the virtual channels
on the links that form the connection, the transmitter at the source node and the receiver
at the destination node. Reserving the transmitter and the receiver is the same as reserving
a virtual channel on the link from a node to the switch attached to that node. Hence, only
the reservation of virtual channels on links forming a connection with path multiplexing
will be considered. There are many options available with respect to different aspects of

the path reservation mechanisms. These are discussed next.

e Forward reservation versus backward reservation. Locking mechanisms are needed by
the distributed path reservation protocols to ensure the exclusive usage of a virtual
channel for a connection. This variation characterizes the timing at which the proto-
cols perform the locking. Under forward reservation, virtual channels are locked by
a control message that travels from the source node to the destination node. Under
backward reservation, a control message travels to the destination to probe the path,
then virtual channels that are found to be available are locked by another control

message which travels from the destination node to the source node.

e Dropping versus holding. This variation characterizes the behavior of the protocol
when it determines that a connection establishment does not progress. Under the
dropping approach, once the protocol determines that the establishment of a con-
nection is not progressing, it releases the virtual channels locked on the partially
established path and informs the source node that the reservation has failed. Under
the holding approach, when the protocol determines that the establishment of a con-
nection is not progressing, it keeps the virtual channels on the partially established
path locked for some period of time, hoping that during this period, the reservation

will progress. If, after this timeout period, the reservation still does not progress, the
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partial path is then released and the source node is informed of the failure. Dropping

can be viewed as holding with holding time equal to zero.

e Aggressive reservation versus conservative reservation. This variation characterizes
the protocol’s treatment of each reservation. Under the aggressive reservation, the
protocol tries to establish a connection by locking as many virtual channels as possible
during the reservation process. Only one of the locked channels is then used for
the connection, while the others are released. Under the conservative reservation

approach, the protocol locks only one virtual channel during the reservation process.

Deadlock

Deadlock in the control network can arise from two sources. First, with limited
number of buffers, a request loop can be formed within the control network. Second,
deadlock can occur when a request is holding (locking) virtual channels on some links while
requesting other channels on other links. This second source of deadlock can be avoided by
the dropping or holding mechanisms described above. Specifically, a request will give up all
the locked channels if it does not progress within a certain timeout period.

Many deadlock avoidance or deadlock prevention techniques for packet switching
networks proposed in the literature [21] can be used to deal with deadlock within the control
network (the first source of deadlock). Moreover, the control network is under light traffic,
and each control message consists of only a single packet of small size (4 bytes). Hence,
it is feasible to provide a large number of buffers in each router to reduce or eliminate the

chances of deadlocks.

States of virtual channels

The control network router at each node maintains a state for each virtual channel
on links connected to the router. For forward reservation, the control router maintains
the states for the outgoing links. As discussed later, this enables the router to have the
information needed for reserving virtual channels and updating the switch states. A virtual

channel, V', on link L, can be in one of the following states:

o AV AIL: indicates that the virtual channel V on link L is available and can be used

to establish a new connection,

e LOCK: indicates that V is locked by some request in the process of establishing a

connection.
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e BUSY: indicates that V is being used by some established connection to transmit

data.

For a link, L, the set of virtual channels that are in the AV AIL state is denoted
as Avail(L). When a virtual channel, V| is not in Avail(L), an additional field, CID, is
maintained to identify the connection request locking V', if V' is in the LOCK state, or the
connection using V', if V is in the BUSY state.

3.1 Forward reservation schemes

In the connection establishment protocols, each connection request is assigned a
unique identifier, ¢d, which consists of the identifier of the source node and a serial number
issued by that node. Each control message related to the establishment of a connection
carries its id, which becomes the identifier of the connection when it is successfully estab-
lished. It is this 7d that is maintained in the C'ID field of locked or busy virtual channels
on links. Four types of packets are used in the forward reservation protocols to establish a

connection.

e Reservation packets (RES), used to reserve virtual channels. In addition to the con-
nection id, a RES packet contains a bit vector, cset, of size equal to the number of
virtual channels in each link. The bit vector cset is used to keep track of the set of
virtual channels that can be used to satisfy the connection request carried by RES.
These virtual channels are locked at intermediate nodes while the RE S message pro-
gresses towards the destination node. The switch states are also set to connect the

locked channels on the input and output links.

e Acknowledgment packets (ACK), used to inform source nodes of the success of con-
nection requests. An AC K packet contains a channel field which indicates the virtual
channel selected for the connection. As an ACK packet travels from the destination
to the source, it changes the state of the virtual channel selected for the connection
to BUSY, and unlocks (changes from LOCK to AV AIL) all other virtual channels
that were locked by the corresponding RES packet.

e Fuil or Negative ack packets (FAIL/NACK), used to inform source nodes of the fail-
ure of connection requests. While traveling back to the source node, a FAIL/NACK
packet unlocks all virtual channels that were locked by the corresponding RES packet.
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e Release packets (REL), used to release connections. A REL packet traveling from
a source to a destination changes the state of the virtual channel reserved for that

connection from BUSY to AV AIL.

The protocols require that control packets from a destination, d, to a source, s,
follow the same paths (in opposite directions) as packets from s to d. The fields of a packet
will be denoted by packet.field. For example, RES.id denotes the id field of the RES
packet.

The forward reservation with dropping works as follows. When the source node
wishes to establish a connection, it composes a RFES packet with RES.cset set to the virtual
channels that the node may use. This message is then routed to the destination. When an
intermediate node receives the RES packet, it determines the next outgoing link, L, on the
path to the destination, and updates RES.cset to RES.cset N Avail(L). If the resulting
RES.cset is empty, the connection cannot be established and a FAIL/NACK message is
sent back to the source node. The source node will retransmit the request after some period
of time. This process of failed reservation is shown in Figure 3.2(a). Note that if Avail(L)

is represented by a bit-vector, then RES.cset N Avail(L) is a bit-wise AN D” operation.
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Figure 3.2: Control messages in forward reservation

If the resulting RES.cset is not empty, the router reserves all the virtual channels in
RES.cset on link L by changing their states to LOCK and updating Avail(L). The router
will then set the switch state to connect the virtual channels in the resulting RES.cset of
the corresponding incoming and outgoing links. Maintaining the states of outgoing links
is sufficient for these two tasks. The RFES message is then forwarded to the next node
on the path to the destination. This way, as RES approaches the destination, the path
is reserved incrementally. Once RES reaches the destination with a non-empty RES.cset,

the destination selects from RFES.cset a virtual channel to be used for the connection and
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informs the source node that the channel is selected by sending an AC'K message with
ACK.channel set to the selected virtual channel. The source can start sending data once it
receives the AC K packet. After all data is sent, the source node sends a RE L packet to tear
down the connection. This successful reservation process is shown in Figure 3.2 (b). Note
that although in the algorithm described above, the switches are set during the processing
of the RES packet, they can instead be set during the processing of the ACK packet.
Holding: The protocol described above can be modified to use the holding policy instead of
the dropping policy. Specifically, when an intermediate node determines that the connection
for a reservation cannot be established, that is when RES.cset N Avail(L) = ¢, the node
buffers the RES packet for a limited period of time. If within this period, some virtual
channels in the original RES.cset become available, the RES packet can then continue its
journey. Otherwise, the FAIL/NACK packet is sent back to the source. Implementing the
holding policy requires each node to maintain a holding queue and to periodically check that
queue to determine if any of the virtual channels has become available. In addition, some
timing mechanism must be incorporated in the routers to timeout held control packets.
This increases the hardware and software complexities of the routers.

Aggressiveness: The aggressiveness of the reservation is reflected in the size of the virtual
channel set, RES.cset, initially chosen by the source node. In the most aggressive scheme,
the source node sets RES.cset to {0,..., N — 1}, where N is the number of virtual channels
in the system. This ensures that the reservation will be successful if there exists an available
virtual channel on the path. On the other hand, the most conservative reservation assigns
RES.cset to include only a single virtual channel. In this case, the reservation can be
successful only when the virtual channel chosen by the source node is available in all the links
on the path. Although the aggressive scheme seems to have advantage over the conservative
scheme, it results in excessive locking of the virtual channels in the system. Thus, in heavily
loaded networks, this is expected to decrease the overall throughput. To obtain optimal
performance, the aggressiveness of the protocol should be chosen appropriately between the
most aggressive and the most conservative extremes.

The retransmit time is another protocol parameter. In traditional non multiplexed
networks, the retransmit time is typically chosen randomly from a range [0,MRT], where
MRT denotes some maximum retransmit time. In such systems, MRT must be set to a
reasonably large value to avoid live-lock. However, this may increase the average message
latency time and decrease the throughput. In a multiplexed network, the problem of live-
lock only occurs in the most aggressive scheme (non multiplexed circuit switching networks

can be considered as having a multiplexing degree of 1 and using aggressive reservation).
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For less aggressive schemes, the live-lock problem can be avoided by changing the virtual
channels selected in RES.cset when RES is retransmitted. Hence, for these schemes, a

small retransmit time can be used.

3.2 Backward reservation schemes

In the forward locking protocol, the initial decision concerning the virtual channels
to be locked for a connection request is made in the source node without any information
about network usage. The backward reservation scheme tries to overcome this handicap by
probing the network before making the decision. In the backward reservation schemes, a
forward message is used to probe the availability of virtual channels. After that, the locking
of virtual channels is performed by a backward message. The backward reservation scheme
uses six types of control packets, all of which carry the connection id, in addition to other

fields as discussed next:

e Probe packets (PROB) travel from sources to destinations gathering information
about virtual channel usage without locking any virtual channel. A PROB packet
carries a bit vector, init, to represent the set of virtual channels that are available to

establish the connection.

e Reservation packets (RES) are similar to the RES packets in the forward scheme,
except that they travel from destinations to sources, lock virtual channels as they go
through intermediate nodes, and set the states of the switches accordingly. A RES

packet contains a cset field.

e Acknowledgment packets (ACK) are similar to ACK packets in the forward scheme
except that they travel from sources to destinations. An ACK packet contains a

channel field.

e Fuail packets (FAIL) unlock the virtual channels locked by the RES packets in cases

of failures to establish connections.

e Negative acknowledgment packets (NACK) are used to inform the source nodes of

reservation failures.

e Release packets (REL) are used to release connections after the communication is

completed.

Note that a FAIL/NACK message in the forward scheme performs the functions
of both a FAIL message and a NACK message in the backward scheme.



24

The backward reservation with dropping works as follows. When the source node
wishes to establish a connection, it composes a PROB message with PROB.init set to
contain all virtual channels in the system. This message is then routed to the destination.
When an intermediate node receives the PROB packet, it determines the next outgoing
link, Ly, on the forward path to the destination, and updates PROB.init to PROB.init N
Avail(Ly). If the resulting PROB.init is empty, the connection cannot be established and
a NACK packet is sent back to the source node. The source node will try the reservation
again after a certain retransmit time. Figure 3.3(a) shows this failed reservation case.

If the resulting PROB.init is not empty, the node forwards PROB on Ly to the
next node. This way, as PROB approaches the destination, the virtual channels available on
the path are recorded in the init set. Once PROB reaches the destination, the destination
forms a RES message with RES.cset equal to a selected subset of PROB.init and sends
this message back to the source node. When an intermediate node receives the RES packet,
it determines the next link, Ly, on the backward path to the source, and updates RES.cset
to RES.cset N Avail(Ly). If the resulting RES.cset is empty, the connection cannot be
established. In this case the node sends a N ACK message to the source node to inform
it of the failure, and sends a F'AIL message to the destination to free the virtual channels

locked by RES. This process is shown in Figure 3.3 (b).
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Figure 3.3: Control messages in backward reservation

If the resulting RES.cset is not empty, the virtual channels in RES.cset are
locked, the switch is set accordingly and RES is forwarded on L; to the next node. When
RES reaches the source with a non-empty RES.cset, the source selects a virtual channel
from the RES.cset for the connection and sends an ACK message to the destination with
ACK.channel set to the selected virtual channel. This AC K message unlocks all the virtual

channels locked by RES, except the one in channel. The source node can start sending
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data as soon as it sends the AC K message. After all data is sent, the source node sends a
RFEL packet to tear down the connection. The process of successful reservation is shown in
Figure 3.3(c).

Holding: Holding can be incorporated in the backward reservation scheme as follows.
In the protocol, there are two cases that cause the reservation to fail. The protocol may
determine that the reservation fails when processing the PROB packet. In this case, holding
is not desirable because the PROB packet is used to collect the channel usage information
and holding could reduce the precision of the information collected (the status of channels
on other links may change during the holding period). When the protocol determines that
the reservation fails during the processing of a RES packet, a holding mechanism similar
to the one used in the forward reservation scheme may be applied.

Aggressiveness: The aggressiveness of the backward reservation protocols is reflected
in the initial size of cset chosen by the destination node. The aggressive approach sets
RES.cset equal to PROB.init, while the conservative approach sets RES.cset to contain
a single virtual channel from PROB.init. Note that if a protocol supports only the con-
servative scheme, the AC' K messages may be omitted, and thus only five types of messages
are needed. As in the forward reservation schemes, the retransmit time is a parameter in

the backward schemes.

3.3 Network simulator and experimental results

A network simulator has been developed to simulate the behavior of multiplexed
torus networks. The simulator models the network with various choices of system param-
eters and protocols. Specifically, the simulator provides the following options for protocol

parameters.

e forward and backward reservations, this determines which protocol to be simulated.

e initial cset size: This parameter determines the initial size of cset in the reservation
packet. It restricts the set of virtual channels under consideration for a reservation.
In forward schemes, the initial cset is chosen when the source node composes the
RES packet. Assuming that N is the multiplexing degree in the system, an RES.cset
of size s is chosen by generating a random number, m, in the range [0,N—1], and
assigning RES.cset = {m mod N,m~+1mod N..., N +s—1mod N}. In the backward
schemes, the initial cset is set when the destination node composes the AC K packet.
An ACK.cset of size s is generated in the following manner. If the available set,

RES.INIT, has less available channels than s, the RES.INIT is copied to ACK .cset.
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Otherwise, the available channels are represented in a linear array and the method

used in generating the cset in the forward schemes is used.

o timeout value: This value determines how long a reservation packet can be put in a
waiting queue. The dropping scheme can be viewed as a holding scheme with timeout

time equal to zero.

e mazimum retransmit time (MRT): This specifies the period after which a node will
retry a failed reservation. As discussed earlier, this value is crucial for avoiding live-
lock in the most aggressive schemes. The actual retransmit time is chosen randomly

between 0 and M RT — 1.

Besides the protocol parameters, the simulator also allows the choices of various

system parameters.

e system size: This specifies the size of the network. All our simulations are done on

torus topology.

e multiplezing degree. This specifies the number of virtual channels supported by each

link. In our simulation, the multiplexing degree ranges from 1 to 32.

e message size: The message size directly affects the time that a connection is kept

before it is released. In our simulations, fixed size messages are assumed.

e request generation rate at each node (r): This specifies the traffic on the network.
The connection requests at each node are assumed to have a Poisson inter-arrival
distribution. When a request is generated at a node, the destination of the request is
generated randomly among the other nodes in the system. When a generated request

is blocked, it is put into a queue, waiting to be re-transmitted.

e control packet processing and propagation time: This specifies the speed of the control
networks. The control packet processing time is the time for an intermediate node
to process a control packet. The control packet propagation time is the time for a
control packet to be transferred from one node to the next. It is assumed that all the

control packets have the same processing and propagation time.

In the following discussion, F'is used to denote forward reservation, B denotes the
backward reservation, H denotes holding and D denotes dropping schemes. For example,
FH means the forward holding scheme. In addition to the options of backward/forward

reservation and holding/dropping policy, the simulation uses the following parameters. The
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average latency and throughput are used to evaluate the protocols. The latency is the
period between the time when a message is ready and the time when the first packet of the
message is sent. The throughput is the number of messages received per time unit. Under
light traffic, the performance of the protocols is measured by the average message latency,
while under heavy traffic, the throughput is used as the performance metric. The simulation
time is measured in time slots, where a time slot is the time to transmit an optical data
packet between any two nodes in the network. Note that in multiprocessor applications,
nodes are physically close to each other, and thus signal propagation time is very small (1
foot per nsec) compared to the length of a message. Finally, deterministic XY routing is

assumed in the torus topology.
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Figure 3.4: Comparison of the reservation schemes with dropping

Figure 3.4 depicts the throughput and average latency as a function of the request
generation rate for six protocols that use the dropping policy in a 16 x 16 torus. The
multiplexing degree is taken to be 32, the message size is assumed to be 8 packets and
the control packets processing and propagation time is assumed to be 2 time units. For
each of the forward and backward schemes, three variations are considered with varying
aggressiveness. The conservative variation in which the initial cset size is 1, the most
aggressive variation in which the initial set size is equal to the multiplexing degree and an
optimal variation in which the initial set size is chosen (by repeated trials) to maximize the
throughput. The letters C, A and O are used to denote these three variations, respectively.
For example, F DO means the forward dropping scheme with optimal cset size. Note that
the use of the optimal cset size reduces the delay in addition to increasing the throughput.
Note also that the network saturates when the generation rate is between 0.006 and 0.018,

depending on the protocol used. The maximum saturation rate that the 16 x 16 torus can
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achieve in the absence of contention and control overhead is given by

number of links 1024

= = 0.0625.
no. of PEs X av. no. of links per msg X msg size 256 x 8 x 8

Hence, the optimal backward protocol can achieve almost 30% of the theoretical full uti-
lization rate.

Figure 3.4(b) also reveals that, when the request generation rate, r, is small, for
example r = 0.003, the network is under light traffic and all the protocols achieve the
same throughput, which is equal to r times the number of processors. In this case, the
performance of the network should be measured by the average latency. In the rest of the
performance study, the maximum throughput (at saturation) and the average latency (at
r = 0.003) were used to measure the performance of the protocols. Two sets of experiments
are performed. The first set evaluates the effect of the protocol parameters on the network
throughput and delay and the second set evaluates the impact of system parameters on

performance.

Effect of protocol parameters

In this set of experiments, the effect of the initial cset size, the holding time and
the retransmit time on the performance of the protocols are studied. The system parameters
for this set of experiments are chosen as follows: system size = 16 x 16, message size = 8

packets, control packet processing and propagation time = 2 time units.
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Figure 3.5: Effect of the initial cset size on forward schemes

Figure 3.5 shows the effect of the initial cset size on the forward holding scheme
with different multiplexing degrees, namely 1, 2. 4, 8, 16 and 32. The holding time is taken

to be 10 time units and the MRT is 5 time units for all the protocols with initial cset
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Figure 3.6: Effect of the initial cset size on backward schemes

size less than the multiplexing degree and 60 time units for the most aggressive forward
scheme. Large MRT is used in the most aggressive forward scheme because it is observed
that small MRT often leads to live-lock in this scheme. Only the protocols with the holding
policy will be shown since using the dropping policy leads to similar patterns. The effect of
holding/dropping will be considered in a later figure. Figure 3.6 shows the results for the
backward schemes with the dropping policy.

From Figure 3.5 (a), it can be seen that when the multiplexing degree is larger
than 8, both the most conservative protocol and the most aggressive protocol do not achieve
the best throughput. Figure 3.5(b) shows that these two extreme protocols do not achieve
the smallest latency either. The same observation applies to the backward schemes in
Figure 3.6. The effect of choosing the optimal initial cset is significant on both throughput
and delay. That effect, however, is more significant in the forward scheme than in the
backward scheme. For example, with multiplexing degree = 32, choosing a non-optimal
cset size may reduce the throughput by 50% in the forward scheme and only by 25% in the
backward scheme. In general, the optimal initial cset size is hard to find. Table 3.1 lists
the optimal initial cset size for each multiplexing degree. A rule of thumb to approximate
the optimal cset size is to use 1/3 and 1/10 of the multiplexing degree for forward schemes
and backward schemes, respectively.

Figure 3.7 shows the effect of the holding time on the performance of the protocols
for a multiplexing degree of 32. As shown in Figure 3.7(a), the holding time has little
effect on the maximum throughput. It slightly increases the performance for the forward
aggressive and the backward aggressive schemes. As for the average latency under light

work load, the holding time also has little effect except for the forward aggressive scheme,



30

Multiplexing Optimal cset size
Degree Forward | Backward
4 1 1
8 2 1
16 5 2
32 10 3

Table 3.1: Optimal cset size

where the latency time decreases by about 20% when the holding time at each intermediate
node increases from 0 to 30 time units. Since holding requires extra hardware support
compared to dropping, it is concluded that holding is not cost effective for the reservation

protocols. In the rest of the paper, only protocols with dropping policies will be considered.
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Figure 3.7: Effect of holding time

Figure 3.8 shows the effect of the maximum retransmit time on the performance.
Note that the retransmit time is uniformly distributed in the range 0.. M RT — 1. As shown
in Figure 3.8 (a), increasing MRT results in performance degradation in all the schemes
except FDA, in which the performance improves with MRT. This confirms that the MRT
value is important to avoid live-lock in the network when aggressive reservation is used.
In other schemes this parameter is not important, because when retransmitting a failed
request, virtual channels different than the ones that have been tried may be included in
cset. This result indicates another drawback of the forward aggressive schemes: in order
to avoid live-lock, the MRT must be a reasonably large value, which decreases the overall

performance.
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Effect of other system parameters

100 120

In this section, only dropping schemes with MRT equal to 5 time units for all

schemes except FDA will be considered. The MRT for FDA schemes is set to 60. This set

of experiments focuses on studying the performance of the protocols under different multi-

plexing degrees, system sizes, message sizes and control network speeds. One parameter is

changed in each experiment, with the other parameters set to the following default values

(unless stated otherwise): network size = 16 x 16 torus, multiplexing degree = 16, message

size = 8 packets, control packet processing and propagation time = 2 time units.
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Figure 3.9: The performance of the protocols for different multiplexing degree

Figure 3.9 shows the performance of the protocols for different multiplexing de-

grees. When the multiplexing degree is small, BDO and FDO have the same maximum
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bandwidth as BDC and FDC, respectively. When the multiplexing degree is large, BDO
and FDO offer better throughput. In addition, for all multiplexing degrees, BDO is the best
among all the schemes. As for the average latency, both FDA and BDA have significantly
larger latency than all other schemes. Also, FDO and BDO have the smallest latencies. It
can be seen from this experiment that the backward schemes always provide the same or
better performance (both maximum throughput and latency) than their forward reservation
counterparts for all multiplexing degrees considered.

Figure 3.10 shows the effect of the network size on the performance of the protocols.
It can be seen from the figure that all the protocols, except the aggressive ones, scale nicely
with the network size. This indicates that the aggressive protocols cannot take advantage
of the spatial diversity of the communication. This is a result of excessive reservation of
channels. When the network size is small, there is little difference in the performance of the

protocols. When the network size is larger, the backward schemes show their superiority.
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Figure 3.10: Effect of the network size

Figure 3.11 shows the effect of the message size on the protocols. The multiplexing
degree in this experiment is 16. The throughput in this figure is normalized to reflect the
number of packets that pass through the network, rather than the number of messages, that
is,

normalized throughput = msg size X throughput.
Both the forward and backward locking schemes achieve higher throughput for larger mes-
sages. When messages are sufficiently large, the signaling overhead in the protocols is small
and all protocols have almost the same performance. However, when the message size is
small, the BDO scheme achieves higher throughput than the other schemes. This indicates

that BDO incurs less overhead in the path reservation than the other schemes.
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Figure 3.11: Effect of the message size

The effect of message size on the latency of the protocols is interesting. Forward
schemes incur larger latency when the message size is large. By blindly choosing initial cset,
forward schemes do not avoid choosing virtual channels used in communications, which
increases the latency when the message size is large (so that connections are held longer
for communications). Backward schemes probe the network before choosing the initial
csets. Hence, the latency in backward schemes does not increase as much as in forward
schemes when message size increases. Another observation is that in both forward and
backward protocols, aggressive schemes sustain the increment of message size better than
the conservative schemes. This is also because of the longer communication time with
larger message sizes. Aggressive schemes are more efficient in finding a path in case of
large message size. Note that this merit of aggressive schemes is offset by over reservation.
Another interesting point is that the latency for messages of size 1 results in higher latency
than messages of size 8 in BDA scheme. This can be attributed to too many control messages
in the network in the case when data message contains a single packet (and thus can be
transmitted fast). The conflicts of control messages result in larger latency.

Figure 3.12 shows the effect of the control network speed on performance. The
multiplexing degree in this experiment is 32. The speed of the control network is determined
by the time for a control packet to be transferred from one node to the next node and the
time for the control router to process the control packet. From the figure it can be seen
that when the control speed is slower, the maximum throughput and the average latency
degrade. The most aggressive schemes in both forward and backward reservations, however,
are more sensitive to the control network speed. Hence, it is important to have a reasonably

fast control network when these reservation protocols are used.
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Figure 3.12: Effect of the speed of the control network

3.4 Chapter summary

This chapter presented the forward path reservation algorithms and the backward
path reservation algorithms to establish connections with path multiplexing for connection
requests that arrive at the network dynamically. Holding and dropping variants of these
protocols were described. A holding scheme holds the reservation packet for a period of time
when it determines that there is no available channel on the next link for the connection. A
dropping scheme drops the reservation packet and starts a new reservation once it finds that
there is no available channel on the next link for the connection. Protocols with various
aggressiveness were discussed. The most aggressive schemes reserve as many channels as
possible for each reservation to increase the probability of a successful reservation, while
the most conservative schemes reserve one channel for each reservation to reduce the over—
locking problem. The performance of the protocols and the impact of system parameters on
the protocols were studied. The major results obtained in the experiments are summarized

as follows.

e With proper protocols, multiplexing results in higher maximum throughput. Multi-

plexed networks are significantly more efficient than non multiplexed networks.

e Both the most aggressive and the most conservative reservations cannot achieve op-
timal performance. The performance of the forward schemes is more sensitive to the

aggressiveness than the performance of the backward schemes.

e The value of the holding time in the holding schemes does not have significant impact

on the performance. In general, however, dropping is more efficient than holding.
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e The retransmit time has little impact on all the schemes except the forward aggressive

dropping scheme.

e The performance of the forward aggressive dropping scheme is significantly worse
than other protocols. Moreover, this protocol cannot take advantage of both larger

multiplexing degree and larger network size.

e The backward reservation schemes provide better performance than the forward reser-

vation schemes for all multiplexing degrees.

e The difference of the protocols does not affect the communication efficiency when the
network size is small. However, for large networks, the backward schemes provide

better performance.

e The backward schemes provide better performance when the message size is small.

When the message size is large, all the protocols have similar performance.

e The speed of the control network significantly affects the performance of the protocols.

These protocols achieve all-optical communication in data transmission. However,
they require extra hardware support to exchange control messages and incur large startup
overhead. An alternative to the single hop communication is the multi hop communication.
Multi hop networks do not require extra hardware support. They use intermediate hops
to route messages toward their destinations. In the next chapter, multi-hop networks are

considered.



Chapter 4

Dynamic multi—-hop communication

Since by using time division multiplexing multiple channels are supported on an
optical link, more sophisticated logical topologies can be realized on top of a simpler phys-
ical network to improve the communication performance. These logical topologies reduce
the number of intermediate hops that a packet travels at the cost of a larger multiplexing
degree. On the one hand, the large multiplexing degree increases the packet communica-
tion time between hops. On the other hand, reducing the number of intermediate hops
reduces the time spent at intermediate nodes. This chapter studies the trade off between
the multiplexing degree and the number of intermediate hops needed in logical topologies
implemented on top of physical torus networks. Specifically, four logical topologies ranging
from the most complex logical all to all connections to the simplest logical torus topology
are examined. An analytical model for the maximum throughput and the average packet
delay is developed and verified through simulations. The performance and the impact of sys-
tem parameters on the performance for these four topologies are studied. Furthermore, the
performance of the multi-hop communication using an efficient logical topology is compared
with that of the single hop communication using a distributed path reservation protocol,
and the advantages and the drawbacks of these two communication schemes are identified.

To perform multi-hop communication, packets may be routed through intermedi-
ate nodes. Specifically, a communication module at each node, which will be referred to
as the router in this chapter, is needed to route packets toward their destinations. It is
assumed that each router contains a routing buffer that buffers all incoming packets. For
each packet, the router determines whether to deliver the packet to the local PE or to the
next link toward the packet destination. A separate output path buffer is used for each
outgoing path that buffers the packets to be sent on that path and thus accommodates the
speed mismatch between the electronic router and the optical path. Figure 4.1 depicts the
structure of a router (see also Figure 2.5). Note that the output paths are multiplexed in

time over the physical links that connect the local PE to its corresponding switch. In the

36
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rest of the chapter, routing delay will be used to denote the time a packet spends in the
routing buffer and the time for the router to make a routing decision for the packet (packet
routing time). Transmission delay will be used to denote the time a packet spends on the

path buffer and the time it takes for the packet to be transferred on the path.
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Figure 4.1: A router

4.1 Realizing logical topologies on physical torus topology

Four logical topologies are considered in this section, the logical torus topology, the
logical hypercube topology, the logical all-to—all topology, and the logical alIXY topology
where all to all connections are established along each dimension. Let us consider an
example in which a packet is transmitted from node 0 to node 11 in the 4 x 4 torus shown
in Figure 4.2. Using the logical all to all topology, the packet will go directly from node
0 to node 11. Using the logical allXY topology, the packet will go from node 0 to node
3 to node 11. Using the logical hypercube topology, the packet will go from node 0(0000)
to node 1(0001) to node 3(0011) to node 11(1011). Using the logical torus topology, the
packet will go from node 0 to node 3 to node 7 to node 11.

Traditional embedding techniques that minimize the congestion for a given com-
munication pattern are not adequate for minimizing the number of virtual channels needed
to realize the communication in an optical network with path multiplexing. The congestion
is usually not equal to the number of channels needed to realize a communication pattern.
Consider the example in Figure 4.3 in which the congestion in the network is 2, while 3
channels are needed to realize the three connections. To efficiently realize a logical topology
in an optical network, both routing and channel assignment (RCA) options must be taken
into consideration. Schemes to realize these four logical topologies on the physical torus

topology will be discussed next.
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Figure 4.3: Difference between embedding and RCA

4.1.1 Logical hypercube topology

This subsection considers the optimal schemes to realize the logical hypercube
topology on top of the physical torus topologies. Since the algorithm to realize the hy-
percube topology on the physical torus topologies utilizes the algorithms to realize the
hypercube on top of physical mesh, ring and array topologies, algorithms to realize the
hypercube topology on top of all these mesh-like topologies are discussed.

Given networks of size N, it will be proven that [2Y] and |4 + £'| channels
are the minimum required to realize hypercube communication on array and ring topolo-
gies, respectively. Routing and channel assignment schemes that achieve these minimum

requirements are developed, indicating that the bounds are tight and the schemes are opti-

mal. These schemes are extended to mesh and torus topologies and it is proven that for a

2F x 2"k (k. > r —k) mesh or torus, {2X32kj and L%-I— %J channels are the minimum required
for realizing hypercube communication on these two topologies, respectively. Routing and
channel assignment schemes are designed that use at most two more channels than the
optimal to realize hypercube communication on these topologies. In the following sections,
first the problem of routing and channel assignments for the hypercube communication on

the physical mesh like topologies is formally defined, and then the algorithms are described.
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4.1.1.1 Problem definition

A network is modeled as a directed graph G(V, E), where nodes in V are switches
and edges in E are links. Each node in a network is assigned a node number starting
from 0. It is assumed that in arrays and rings the nodes are numbered from left to right in
ascending order, and that the nodes are numbered in row major order for meshes and tori of
size n x m. Thus, the node in the ith column and the jth row is numbered as j X m+:. This
subsection focuses on studying the optimal RCA schemes for these traditional numbering
schemes. Optimal node numbering (and its RCA) is a much more complex problem and
is not considered in this dissertation. The number of nodes in a network is assumed to be
N = 2". For a mesh or a torus to contain 2" nodes, each row and column must contain
a number of nodes that is a power of two. Hence, the size of meshes and tori is denoted
as N = 2F x 27=%_ Without losing generality, it is always assumed that & > r — k. The
notations ARRAY (N) and RING(N) are used to represent arrays and rings of size N
respectively, and MESH (2% x 27 %) and TORUS(2% x 2"=F) for meshes and tori of size
2F x 277k respectively.

The connection from node sre to node dst is denoted as (src,dst). A communica-
tion pattern is a collection of connections. The hypercube communication pattern contains
a connection (src,dst) if and only if the binary representations of src and dst differ in pre-
cisely one bit. A connection in the hypercube communication pattern is called a dimension
[ connection if it connects two nodes that differ in the [th bit position. In a network of
size N = 2", the set, DIM;, where 0 <[ < r — 1, is defined as the set of all dimension /

connections and H, is defined as the hypercube communication pattern. That is

DIM; ={(i,i+2") | i mod 2'*1 < 2}U {(i,i — 2') | i mod 2+ > 21}

H, = U]_,DIM,

It can be easily proven that removing any DIM;, for any [ < r —1, from H, leaves
two disjoint sets of connections, each of which being a hypercube pattern on % nodes. For
example, removing DIM, from H, results in an H, ; on the even—numbered nodes and
another H, | on the odd numbered nodes once the nodes are properly renumbered. Next,

some definitions are introduced and the results of this section are summarized.

Definition: P(z,y) is a directed path in G from node x to node y. It consists of a set of

consecutive edges beginning at x and ending at y.

Definition: Given a network G and a communication pattern I, a routing R(I) of I is a

set of directed paths R(I) = {P(z,y)|(z,y) € I}.
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Definition: Given a network G, a communication pattern I and a routing R(I) for the
communication pattern, the congestion of an edge o € E, denoted as (G, I, R(I), «),
is the number of paths in R(I) containing a. The congestion of G in the routing
R(I), denoted as n(G, I, R(I)), is the maximum congestion of any edge of G in the
routing R(I), that is, (G, I, R(I)) = mazo{n(G,I, R(I),a)}. The congestion of G
for a communication pattern I, denoted as 7(G, I), is the minimum congestion of G

in any routing R(I) for I, that is, 7(G, 1) = ming{n(G,I, R(I))}.

Definition: Given a network G and a routing R(I) for communication pattern I, an
assignment function A : R — INT, is a mapping from the set of paths to the set of
integers INT, where an integer corresponds to a channel. A channel assignment for

a routing R([) is an assignment function A that satisfies the following conditions:

1. If P(z1,y1), P(z2,y2) are different paths that share a common edge, then
A(P(x1,y1)) # A(P(z2,y2)). This condition ensures that each channel on one
link can only be assigned to one connection (i.e., there are no link conflicts).

2. A(P(z,y1)) # A(P(z,y2)) and A(P(z1,y)) # A(P(z2,y)). This condition en-
sures that each node can only use one channel at a time to send to or receive

from other nodes (i.e., there are no node conflicts).

A(R) denotes the set of channels assigned to the paths in R and |A(R)| is the size
of A(R). Let w(G, I, R) denote the minimum number of channels for the routing R,
that is, w(G, I, R) = mina{|A(R)|}. w(G,I) denotes the smallest w(G, I, R) over all
R, ie. w(G,I) = ming{w(G,I,R)}

Lemma 1: w(G,I) > n(G,I).

Proof: Follows directly from the above definitions. O

The following sections show that

w(ARRAY (N), H,) = n(ARRAY (N), H,) = | 2V |

w(RING(N),H,) =n(RING(N),H,) = |

o=

+ 4
w(MESH (2% x 27=%) H,) < L@J +2 <n(MESH(2" x 2"=%), H,) +2

w(TORUS(2 x 27 %) H,) < | & + 2| +2 < n(TORUS(2F x 2 %), H,) + 2
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4.1.1.2 Hypercube on linear array

Since routing in a linear array is fixed, the RCA problem is reduced to a chan-
nel assignment problem. Given a linear array of size N = 2", it is proven that L%J
channels is the lower bound for realizing the hypercube communication by showing that
m(ARRAY (N),H,) > L%J A channel assignment scheme is developed that uses ng
channels for the hypercube communication. This proves that the bound is a tight lower

bound and that the channel assignment scheme is optimal.
A lower bound

Using Lemma 1, a lower bound is obtained by proving that there exists a link in
the linear array that is used |2 | times when realizing H,. The following lemmas establish
the bound.

Lemma 2: In a linear array of size N = 2", where r > 2, there are 2"~! connections in
DIM, 1 U DIM,_4 that use the link (n,n + 1) for any specific n satisfying 22 <y <
2r-1 1.

Proof: The connections in DIM, 1 and DIM, 5 can be represented by

DIM, . ={(i,i+¥)0 <i < ¥} uf(ii— DY <i < N}

DIM, 5 ={(i,i+I)0<i<for § <i<
U {(i,i— DT <i<Forf <i< N}

"“‘|z
——

Consider the connections in DIM, ;. All connections (7,7 + %) with 0 < 4 < n use link
(n,m + 1), where 22 < n < 2! — 1. Hence, as shown in Fig. 4.4 (a), there are n+1
connections in DIM, ;1 that use link (n,n + 1). Similarly, in DIM, 5, all connections
(1,7 + %), where n < i + % < %, use link (n,n + 1). As shown in Fig. 4.4 (b), there are
2'=1 — p — 1 such connections. Hence, there are a total of n +14+2""1 —np —1 = 271
connections in DIM, | and DIM, o that use link (n,n+1). O

Lemma 3: In a linear array of size N = 2", there exists a link (n,n + 1) such that at least
|2Y | connections in H, use that link.

Proof: Let T;(2") be the number of connections in H, that use link (i,7 + 1) and let
T(2") = maz;(T;(2")). Thus T(2°) = 0 and T'(2!) = 1. From Lemma 2, one knows that
for 2772 < n < 271 — 1, link (n,n + 1) is used 2" ! times by connections in DIM,_;
and DIM, 5. Thus, the links in the second quarter of the array (from node 2”2 to node

271 — 1) are used 2" ! times by dimension 7 — 1 and dimension r — 2 connections. By the

definition of hypercube communication, it is known that dimension 0 to dimension r — 3
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2 I-
n+1 source nodes whose 2% <=n<=2" 1
connections use link (n, n+1)

(a) connectionsin dimension r-1 are between @ and nodes.

i
O T eee OO @ 22 OD D oo
z R aedll
N/2 -n-1 destination nodes whose
connections use link (n, n+1)

D

(b) connections in dimension r-2 are either between and Q nodes or between and % nodes.

Figure 4.4: Dimension r — 1 and r — 2 connections

connections form a hypercube on this quarter of the array. Thus, Lemma 2 can be recur-

sively applied and the following inequality is obtained.

T(2") > 21+ 7(2r2)

It can be proven by induction that the above inequality and the boundary conditions
T(2°) = 0, T(2") = 1, imply that T(N) = T(2") > [2¥]. Hence, there exists a link
which is used at least ng times by connections in H,. O

The proof of Lemma 3 is constructive in the sense that the link that is used at
least L%J times can be found. By recursively considering the second quarter of the linear
array, one can conclude that the source node, n, of the link (n,n + 1) that is used at least
[2X | times in H, isn = + & + % +. = | X|. Hence, the link that is used at least |2 |
times in H, is (| 5], [5]).
Corollary 3.1 Give an array of size N = 2", if the nodes in the array are partitioned into
2 sets S; = {i[0 <i <n}and Sy = {iln +1 <i < N}, where n = |§ |, then there are at
least L%J connections in H, from S; to Sy and {%J connections from Sy to S1. O
Theorem 1: m(ARRAY (N), H,) > |2 ].
Proof: Directly from Lemma 3. O

An optimal channel assignment scheme
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Figure 4.5: Realizing DIMy U DIM,; of Hj

By the definition of hypercube communication, connections in H, can be par-
titioned into three sets, DIM,, EFVEN, and ODD,. DIM; contains the dimension 0
connections, KV EN, contains connections between nodes with even node numbers, and
ODD, contains connections between nodes with odd node numbers. Each of EV EN, and
ODD, forms a r — 1 dimensional hypercube communication, H, 1, if only the nodes in-
volved in communications are considered and that the nodes are renumbered accordingly.
Thus, channel assignment schemes for H, ; can be extended to realize H, as shown in the
following lemma.
Lemma 4: Assuming that H, | can be realized on an array of size 2"~! using K channels,
then H, can be realized on an array of size 2" using 2K + 1 channels.
Proof: H. = EVEN, UODD, U DIM,. From the above discussion and the assumption,
EVEN, and ODD, are H, | (when nodes are properly renumbered), K channels can be
used to realize EV EN, or ODD,. Since it can be easily proven that DIM; can be realized
with one channel, a total of 2K + 1 channels can be used to realize H,. O

Let D(N) be the number of channels needed for H, on an array of size N = 2".
If a channel assignment scheme is used that is in accordance with the proof of Lemma 4, it
can be shown that the equation, D(N) = 2D(N/2) 4+ 1. Given that no channel is needed to
realize hypercube communication on a 1-node array, D(1) = 0. Solving for D(N) results
in D(N) = N — 1, which is not optimal. The following lemma improves this simple channel
assignment scheme.
Lemma 5: Assuming that H,_, can be realized on an array of size 2”2 using K channels,
then H, can be realized on an array of size 2" using 4K + 2 channels.
Proof: Consider H, without dimension 0 and dimension 1 connections. By the definition

of H., H. — (DIMyUDIM;) = DIM3 U ...U DIM,_; forms four hypercube patterns, each
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Algorithm 1: Assign_array(N = 2")

(1) If (r =0) then return ¢

(2) If (r is odd) then

(3) /* applying Lemma 4 */

(4)  recursively apply Assign_array(N/2 = 2""') for EVEN,.
(5)  recursively apply Assign_array(N/2 =2""') for ODD,.
(6)  assign connections in DIMj to one channel.

(7) Else /* r is even, apply Lemma 5 */

(8 Fori=0,1,23

(9) apply Assign_array(N/4 = 2"~ ?) for subarray;.

(10) assign connections in DIMo U DIM; to 2 channels.

Figure 4.6: The channel assignment algorithm

being an H, 9 pattern on nodes {n | n mod 4 = i} (with proper node renumbering), denoted
by subarray;, for i = 0, 1, 2 or 3. From the hypothesis, H, o can be realized on an array
of size 2”72 using K channels. The four sub—cube patterns can be realized in 4K channels.
The remaining connections to be considered are those in DIMy and DIM;. It can easily
be proven that connections in DI My and DIM; can be assigned to 2 channels as shown in
Fig. 4.5. Hence, the hypercube communication H, can be realized using a total of 4K + 2
channels. O

The channel assignment algorithm, Algorithm 1, is depicted in Fig. 4.6. For the
base case, when N = 2 = 1, the hypercube pattern contains no connection. To assign
channels to connections in an array of size N = 2", r > 0, there are two cases. If r is even,
then Lemma 5 is applied to use 4K + 2 channels for the hypercube pattern, where K is the
number of channels needed to realize a hypercube pattern on an array of size 2" 2 = N/4.
If r is odd, Lemma 4 is applied to use 2K + 1 channels to realize the hypercube pattern,
where K is the number of channels needed to realize a hypercube pattern in an array of
size 2! = N/2. The example of using this algorithm to schedule Hy in an array of size 16

is shown in Fig. 4.7.

2N
3
thus w(ARRAY (N), H,) < &Y.

Proof: Let D,44(2") and Deyen(2") denote the number of channels needed when r is odd

Theorem 2: Algorithm 1 uses | = | channels for H, on a linear array with N = 2" nodes,

and even, respectively. The number of channels for the hypercube pattern using Algorithm
1 can be formulated as follows,

Dqd(27) = 2Depen (27 1) + 1, when r is odd.

Deven(27) = 4Deyen (27 2) + 2, when 7 is even.
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subarray, < cl)

subarrayl< 2
3

subarray2< g

subarray, < 3

8
DIMy+DIM < g N N . .

Node#. 0 12 2 3 4 5 6 7 8 9 10 11 12 1314 15

Figure 4.7: Optimal channel assignment for Hy

Using the boundary condition Deyen(1) = Deyen (2°) = 0, it can be proven by induction that
Dygqa(N) = g - % and Dgyen(N) = % — % Hence, D,44(N) and Deye,(IN) are equal to
|2Y|. w(ARRAY (N),H,) < |&']. O

Theorem 3:

w(ARRAY (N), H,) = 1(ARRAY (N), H,) = |2 |, and Algorithm 1 is optimal.

Proof: Follows from Theorem 1, Theorem 2 and Lemma 1.0

4.1.1.3 Hypercube connections on rings

By having links between node 0 and node N —1, two paths can be established from
any node to any other node on a ring. It has been shown [8] that even for a fixed routing,
general optimal channel assignment problem is NP—complete. This section focuses on the
specific problem of optimal RCA for H, on ring topologies, obtaining a lower bound on the
number of channels needed to realize H, and developing an optimal routing and channel
assignment algorithm that achieves this lower bound.

Lemma 6: 7(RING(N),H,) > | & + & .
Proof: This lemma is proven by showing that there exist two cuts on a ring that partition
the ring into two sets, S; and Sy, such that 2 x L% + %J connections in H, originate at
nodes in S7 and terminate at nodes in S5. Since there are only 2 links connecting S; to Ss,
one of the 2 links must be used at least L% + %J times, regardless of which routing scheme
is used. Consider H, on a ring of size N = 2". The connections in DIMyU...DIM, 5 form
two r— 1 dimensional hypercube patterns in two arrays of size 2" 1. The first array, denoted

r

by subarray;, contains nodes 0, .., 2"~! — 1 and the second array, denoted by subarrays,

contains nodes 2"~ !,.., 2" — 1. From Corollary 3.1, it follows that there exists a link in each

2"=1! node array such that {%J connections in the hypercube pattern use that link in each

direction. From the discussion in previous section, the link is (| %], [§]) in subarray; and
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Figure 4.8: Hypercube on a ring

(L%J + 21 [%1 +271) in subarray,. These two links partition the ring into two sets
Sy ={il0 <i < [FJufif2r 4[]+l <i<2'—1}and So = {i|[ F]+1 <i <2 14 [Z ]}
Hence, there are L%J connections from SyNsubarray; to SoNsubarray; and L%J connections
from S7 N subarrays to Sy N subarrays in DIMy U ...DIM, 5. Thus, there are 2 x L%J
connections in DIMy U ..U DIM, 5 originating at nodes in S; and terminating at nodes
in Sy. Fig. 4.8 shows the cuts on a 16 node ring. The remaining connections of H, are in
DIM, 4. By partitioning the ring into S; and S5, each node in S; has a dimension r — 1
connection to a node in Sy. Hence, there are N/2 connections in DIM, _; between S; and
Sy. Therefore, a total of 2 x & ] + N/2 =2 x & + I connections in H, are from S; to
Sy. Thus, 7(RING(N), H,) > |5 + 4. O

The RCA scheme uses an odd even shortest path routing. Given a ring of size
N = 2", an odd-even shortest path routing works as follows. A connection between two
nodes is established using a shortest path. Connections that have two shortest paths are of
the forms (3,4 + 2" ') and (i,4 — 2" '). For these connections, the clockwise path is used if
1 is even and the counter clockwise path if 7 is odd.

The channel assignment algorithm is derived from Lemma 6. There are two parts
in the algorithm, channel assignment for connections in DIM, ; and channel assignment
for connections in DIMyU..UDIM, 5. Channel assignment for connections in DIMyU ..U
DIM, 5 is equivalent to channel assignment for two H,_; in two disjoint arrays, thus, using
the channel assignment scheme (for array) described in the previous section, |4 ] channels

can be used to realize these connections. For the connections in DIM, 5, using odd-even
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Algorithm 2: Assign ring(N = 2")

(1) Apply Assign_array(N/2 = 2"~ 1) on subarray:.
(2) Apply Assign_array(N/2 = 2""") on subarrays.
Since subarray: and subarray» are disjoint,
channels can be reused in steps (1) and (2).
(3) fori=0, N/2-2, step 2
Assign a channel to connections (i,i 4+ 2"~ 1), (s + 2" 1, 4),
(i4+1,i+2" ' +1)and G +2" 1 +1,i4+1)

Figure 4.9: The channel assignment for rings

shortest path routing, four connections in DIM,_q, (i, +2" 1), (1 +2""1,4), (i + 1,i +
21 +1), (i4+2" "'+ 1,i+ 1), can be realized using one channel. We denote by CONFIG;
these four connections. Since the union of all CONFIG;, where i = 0,2,4,..., N/2 — 2
is equal to DIM, 1, N/4 channels are sufficient to realize DIM, ;. Fig. 4.9 shows the
channel assignment algorithm for ring topologies.

Theorem 4: Algorithm 2 uses L% + & ] channels to realize H, in a ring of size N = 2".
Proof: Follows from above discussion. O

Theorem 5: w(RING(N), H,) = n(RING(N), H,) = | §+% ], and the odd even shortest
path routing with Algorithm 2 is an optimal RCA scheme for hypercube connection on rings.

Proof: Follows from Lemma 1, Lemma 6 and Theorem 4.0

4.1.1.4 Hypercube connections on meshes

Given a 2% x 2" =% mesh, realizing the hypercube connections on the mesh is equiv-
alent to realizing Hy in each row and H, j; in each column. The following lemma gives
the lower bound on the number of channels required to realize hypercube communication
patterns on meshes.

Lemma 7: n(MESH(2" x 2" — k), H,) > L2X32kj, assuming k > r — k.

Proof: The hypercube pattern on the mesh contains 2" % k dimensional hypercube pat-
terns on 2% arrays in the 2"~% rows. Consider a cut in edges (L%J, [%]) in every row,

which partitions the mesh into two parts. From Corollary 3.1, we know that for each

2x 2k
3

row there are | | connections from the left of the cut to the right of the cut, hence,
there are a total of 2" % x L@J connections crossing the cut. Since there are 2%
edges in the cut, there exists at least one edge that is used at least {MJ times. Thus,

3
r(MESH(2F x 2" — k), H,) > | ZZ|. O

Given a mesh of size 2¥ x2" =% the hypercube communication pattern in each row is

denoted by H;°" and the hypercube communication pattern in each column by Hf‘jlk The
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E configuration m O/C? Q

Figure 4.10: a Mesh configuration

RCA scheme uses X Y shortest path routing. Since we already know the optimal channel
assignment for H;°" and Hﬁ"fk, the challenge here is to reuse channels on connections in
two dimensions efficiently. Let us define an array configuration as the set of connections in
a linear array that are assigned to the same channel. Ring, mesh and torus configurations
are defined similarly. Using the definition of configurations, a mesh configuration can be
obtained by combining array configurations in the rows and the columns. For example,
if an array configuration in x dimension and an array configuration in y dimension can
be combined into a mesh configuration, the two array configurations can be realized in the
mesh topology using one channel. Notice that, while there is no link conflict when assigning
channels to row and column connections, node conflicts may occur and must be avoided.
Let us first take a deeper look at the array configurations for arrays of size N = 2.
Following the channel assignment algorithm, Algorithm I, array configurations can be clas-
sified into three categories; F—configurations that contain only connections between even—
numbered nodes, O configurations that contain only connections between odd numbered

nodes, and EO configurations that contain dimension 0 (and/or) dimension 1 connections
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As discussed in Section 3, if k£ is odd, there is only one EO-configuration for connections
in DIMy, (|2¥] — 1)/2 E-configurations for connections in EVENj, and (|2¥] — 1)/2
O—configurations for connections in ODDy. Similarly, if k£ is even, there are two EO-
configurations, ([2¥| — 2)/2 E configurations and (|2] — 2)/2 O configurations. The
following lemma shows that E configurations and O configurations in rows and columns of
the mesh can be combined.
Lemma 8: Given an E—configuration, F,, and an O—configuration, O,, in the x direction
and an E-configuration, F,, and an O-configuration, O,, in the y direction, £, and O, in
all rows and E, and Oy in all columns can be realized in two mesh configurations.
Proof: The proof is by constructing the two mesh configurations. In the first mesh con-
figuration, let all odd numbered rows realize O, and all even numbered row realize E,. In
this case, no connection starts or terminates at an odd numbered node in an even column
or at an even numbered node in an odd column. Thus, in the same mesh configuration, E,
can be realized in odd columns and O, can be realized in even columns. The second mesh
configuration realizes E; on odd numbered rows, O, on even numbered rows, E, on even
numbered columns and O, on odd numbered columns. These two mesh configurations re-
alize E; and O, in all rows and E, and O, in all columns. Fig. 4.10 shows the construction
of a mesh configuration. O

Lemma 8 lays the foundation for the channel assignment algorithm. Let a be
the number of E-configurations and O-configurations in H;°, b be the number of KO-
configurations in H;°", ¢ be the number of E—configurations and O-configurations in H, fﬂlk,
and d be the number of EO—configurations in Hﬁ"fk From assumptions, it follows that
k>r—k, a>c a+b= {%J and d < 2. By combining F configurations and O
configurations in rows and columns into mesh configurations, all the E configurations and
O—configurations in each row and all the E—configurations and O—configurations in each
column can be realized using a mesh configurations. Using an individual mesh configuration
for each EO configuration in the rows and the columns, a total of a + b+ d < L@J +2

configurations are sufficient to realize the hypercube connections.

Theorem 4: H, can be realized on a 2¥ x 2"~ mesh, where & > r — k, using {QX;ICJ +2

channels. O
Corollary 4.1: w(MESH(2F x 27 %) H,) < | 22| 4 2 < m(MESH(2F x 27 %), H,) + 2.
O
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4.1.1.5 Hypercube connections on tori

As in the case of realizing H, on a mesh, H, can be realized on a 2k % 27—k torus
by realizing H;°" in each row and H{fﬁlk in each column. The following lemma gives a lower
bound on the number of channels required to realize H, on a torus.

Lemma 9: 7(TORUS(2F x 2" — k), H,) > L% + %J, assuming k > r — k.

Proof: The hypercube pattern on the torus contains 2" % k-dimensional hypercube pat-

terns on 2 rings in the 2% rows. Considered two cuts in edges (LZk;J, [QICTA}) and

(Lﬁ%w + 21, [21%11 + 2%=1) in every row which partition the torus into two parts. Fol-
lowing the same reasoning as in the proof of lemma 6, it is known that for each row there
are 2 X L% + %J connections from one part to the other part, hence, there are a total of
2r =k % 2 x L% + %J connections crossing the two parts. Since there are 2 x 2"~% edges in
the cut, regardless of the routing scheme used, there exist at least one edge that is used at
least L% + %J times. Thus, 7(TORUS(2F x 2" — k), H,) > L% + %J 0

X-Y routing between dimensions and odd—-even shortest path routing within each
dimension are used to develop the RCA scheme. Next, the combination of ring configura-
tions into torus configurations is considered. As in the case of rings, given a 2F x 2" =% torus,
the connections in H, are partitioned into two sets. The first set includes all connections in
DIMyU..UDIM;_5 in each row and all connections in DIMyU ..U DIM,_j;_5 in each col-
umn. The second set includes the connections in DIM;,_q in each row and the connections
in DIM,_j_1 in each column. The connections in DIMy U .. U DIM_5 in each row and
the connections in DIMyU..UDIM, j 5 in each column form four hypercube patterns on
four disjoint 2¥=! x 2"7%=1 sub meshes in the torus. A straight forward extension of the
channel assignment scheme in the previous section can be used to assign channels to these
connections with at most L%J + 2 channels.

To realize the connections in DI M, _1 in each row and the connections in DIM, ;4
in each column, The same partitioning for the ring topology discussed in section 4 is followed.
Specifically, the following configurations are constructed in rows and columns respectively
row; = {(4,4 + 281, (6 + 2871 0), (i 4+ 1,0 + 12870, G+ 14280 1))
columnj = {(7,5 +2"*1), (G + 2751 9), G+ Lj+1+27F ), G+1+2 L+ 1))
DIM;,_; is composed of the configurations row;, for i = 0,2, ...,2¥71 —2 and DIM, _j_; is
composed of the configurations column; for j = 0,2, ..., or—k=1 _ 9,

Lemma 10 For any iy, i, where i1 # 42, row;, and row;, in each row and column;, and

column;, in each column can be realized in two torus configurations.

Proof: Similar to the proof of Lemma 8, omitted. O
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Theorem 5: H, can be realized on a 2¥ x 2"=* torus, where k > r — k, using L% + %J +2
channels.

Proof: As discussed above, L%J + 2 channels are sufficient to realize all connections in
H,, except the connections in DIMj_ 1 in each row and DIM, j_; in each column, by
realizing four hypercube communication patterns on the four disjoint sub-meshes. From

Lemma 10, configurations row;, i = 0,2,...,2"*~1

— 2 and configurations column;, j =
0,2,...,2"7%=1 — 2 can be realized in 2" ~*~2 torus configurations. Since 28=2 — 27—k=2
torus configurations can be used to realize row;, i = 2"k=1 27=k=1 1 9 2k=1 _ 9 4]l
the dimension £ — 1 connections in each row and dimension r — k — 1 connections in each
column can be realized in 2¥=2 torus configurations. Hence, H, can be realized by a total
of L%J +242F2 = L% + %J + 2 configurations. O

Corollary 5.1: w(TORUS(2¥x2" %), H,) < |4 +2|+2 < 7(TORUS(2* x 27 *), H,) +2.

a

4.1.2 Logical torus, all-to—all and allXY topologies

The logical torus topology coincides with the physical network. Thus, when realiz-
ing logical torus topology, there are no link conflicts since the physical network can support
all links in the logical network simultaneously. However, node conflicts may occur. Under
our network model, each node in the network can only access one channel at any given
time slot. Hence, to support 4 out—going links at each node, at least 4 channels are needed.
Using 4 channels, the logical torus topology can be realized as follows. All links in a torus
can be classified into four categories, the UP links, the DOWN links, the LEFT links and
the RIGHT links. Each category can be realized using 1 channels without incurring node
conflicts and link conflicts as shown in Figure 4.11. Notice that all nodes can be sending and
receiving messages in the figure. Hence, 4 channels are sufficient and necessary to realize
the logical torus topology on top of the physical torus topology.

Optimal schemes to realize all to all communication on ring and torus topologies
can be found in [33]. It is shown in [33] that for an N node ring, N > 8, the all-to-all
communication can be realized with N2 /8 channels without node conflicts. For an N x N
torus, the all to all communication can be realized with N3/8 channels. The connections on
each channel to realize the all to all communication will be called an AAPC configuration.
Details about the connection scheduling can be found in [33].

The logical allXY topology realizes all-to—all connections in each dimension in
the physical torus. For an N x N torus, each node in the logical allIXY topology logically

connects to 2N — 2 nodes. Using the AAPC configurations for rings, techniques similar to
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Figure 4.11: Realizing logical torus topology
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the ones in section 4.1.1.5 can be used to combine the ring configurations to form torus
configurations and realize the allXY on an N x N torus, where N > 16, resulting in a
multiplexing degree of N?/8. For an N x N torus with N < 8, 2N — 2 channels can be used
to realize the allXY topology. For example, using the 8 AAPC configurations for 8 node
rings in [33], 6 configurations along each dimension cannot be combined because of node
conflicts, while 2 configurations in each dimension can be combined in the torus, resulting

a multiplexing degree of 14 = 2 x 8 — 2 for realizing the allXY topology.

4.2 Performance of the logical topologies under light load

This section considers the communication performance of the logical topologies
under light load such that the network contentions on both channels and switches are
negligible. An analytical model will be described that takes the network contention effect
into consideration later in this chapter.

Let us assume that a packet can be transferred from source to destination on
a path in one time slot and that the network has a multiplexing degree of d. It takes on
average % time slots to transfer a packet from a router to the next router. Thus, assuming
that the packet routing time in each router (including the E/O, O/E conversions) is v, the
average number of intermediate routing hops per packet is h, and the network contention

is negligible, the average delay time for each packet can be expressed as follows:

d+1
delay = (h+2) v+ (h+1) ;— .

The first term, (h +2) *x~, is the average routing time that a packet spends at the
h intermediate routers and the 2 routers at the sending and receiving nodes. The second
term, (h + 1) %, is the average packet transmission time on paths plus the time that
a packet waits in the output path buffers. Thus, the average delay time is determined by
three parameters, the multiplexing degree d, the packet routing time 7y, and the average
number of hops per packet transmission h. We can assume that the packet routing time
v is the same for all topologies. Different logical topologies result in different number of
intermediate hops, h, and different multiplexing degree, d. Next, the performance of the
four logical topologies is discussed.

Given an N x N torus, the logical all to all topology establishes direct connections
between all pairs of nodes and thus, totally eliminates the intermediate hops, resulting in
h = 0. Using the algorithm in [33], a multiplexing degree of NTa can be used to realize the

logical all-to-all topology. Thus d = NTg, and the delay time is given by:
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N3
delayai—to—au =2 X v + (? +1)/2=0(y+ N?).

Given an N x N torus, a logical torus topology can be realized using a multiplexing
degree of 4 (i.e., d = 4). For a logical N x N topology, the average number of intermediate
hops is h = % — 1. Hence the delay time for the logical torus topology is given by:

N N
delayiorus = (3 +1) xvy+ 5 % (44+1)/2=O(N x ).
For N = 2", the algorithm in section 4.1.1.5 can realize a logical hypercube topol-

ogy on an N x N torus using a multiplexing degree of L% + %J + 2, if r is odd, and

L% + %J + 1, if  is even. For a logical N? node hypercube, the average number of inter-
mediate hops is h = w

by:

—1=1g(N) — 1. Hence, the delay time (for an even r) is given

delagnpercuse = (19(N) + 1) x 7+ 16(N) x (15 + 7] +2)/2 = O(2lg(N) + Nig(N)).

Finally, let us consider the logical allXY topology. As discussed in section 4.1.2,
when N < 8, the logical topology can be realized using a multiplexing degree of 2N —2. For
N > 8, a multiplexing degree of NTQ is needed. Since for two nodes in the same column or
row, no intermediate hop is needed, while in other cases, one intermediate hop is required,

the average number of intermediate hops on the logical allXY topology is given by:

2N -2 (V2D _(N-2) g N2 2N+1
N1 X 0+ N1 X1 =" x77

Therefore, for N > 8, the average delay can be expressed as follows:

N2 —2N +1 N2 —2N +1 N? )
del(l,ya”_XY:(2+W)X’}"I‘(].'I‘W)X(?+1)/2:O(’)’+N )
Logical Number of multiplexing total number
topology | intermediate hops (h) degree (d) of connections (P)
all-to-all 0 N N2(N2 - 1)

7 p)
all_ XY L e ot N?(2N —2)
hypercube Ig(N) —1 T+ +14 N?1g(N)
torus % -1 4 N? x 4

1 Assuming that N > 8. If N < 8, the value is 2N — 2.
I Assuming that r is even. If r is odd, the value is L% + %J + 2.

Table 4.1: Summary of logical topologies
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Table 4.1 summarizes the average number of intermediate hops (h), the multi-
plexing degree (d) and the total number of logical connections (P) for the four topologies.
Figure 4.12 plots the average delay as a function of the packet routing time -y, for the four
logical topologies on a physical 16 x 16 torus. When -y is very small compared to data trans-
mission time (y < 0.5), the logical torus topology achieves the smallest delay time. When
0.5 < v < 4.25, the logical hypercube has the best performance. When 4.25 < v < 256.25,
the allXY topology gives the best performance. When v > 256.25, the all-to—all topology
has the smallest packet delay.

The characteristics exhibited in Figure 4.12 are true for any network size. Specifi-
cally, for a given N, there is a value of v below which routing on the torus is more efficient
than routing on the logical hypercube. Similarly, there is a value of 7y, above which routing
on the alIXY topology is more efficient than routing on the logical hypercube. Finally, there
is a value of «, above which routing on the all to all topology is more efficient than routing
on the allXY topology. In Figure 4.13 these special values are plotted for different N and
the (N, ) parameter space is divided into four regions. Each region is labeled by the logical
topology that results in the lowest average packet delay.

These results are obtained by ignoring network traffic contention, and thus are
valid only under light load. In the next section, a queuing model is used to study the

network performance under high load.
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Figure 4.12: Performance for logical topologies on 16 x 16 torus

4.3 An analytical model and its verification

This section describes an approximate analytical model that takes network con-
tention into consideration. This model is used to study the effect of the network load on

the maximum throughput and the packet delay. It is assumed that in each time slot, a
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packet can be sent from the source to the destination on a path. For example, if a 1Gbps
channel is used with a 53 byte packet (or cell) as defined in the ATM standard, then the
slot duration is 0.424us. All other delays in the system are normalized with respect to this
slot duration.

The routers and the paths in a network are modeled as a network of queues. As
shown in Figure 4.1, each router has a routing queue that buffers the packets to be pro-
cessed. The router places packets either into one of the output path queues that buffer
packets waiting to be transmitted, or into the local processor. Both a router and a path
have a constant service time. The exact model for such network is very difficult to obtain.
The network is approximated by making the following assumptions: 1) each queue is inde-
pendent of each other and 2) each queue has a Poisson arrival and constant service time.
These assumptions enable the derivation of expressions for the maximum throughput and
the average packet delay of the four logical topologies by dealing with the M/D/1 queues
independently. The simulation results confirm that these approximations are reasonable.

The following notation is used in the model:

e N. Size of each dimension of the torus. Thus, the network has a total of N? nodes.

e d, h and P are defined in the previous section. A frame consists of d time slots.
Within a frame, one time slot is allocated to each path. As discussed earlier, the
average number of paths that a packet traverses is equal to h + 1. The average

number of routers that a packet traverses is h + 2.

e ). Average packet generation rate at each node per time slot. This implies that the
average generation rate of packets to the entire network is N?\. It is assumed that
the arrival process is Poisson and is independently and identically distributed on all

network nodes. Furthermore, it is assumed that all packets are equally likely to be
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destined to any one of the network nodes. At each router, the newly generated packets
and the packets arriving from other nodes are maintained in an infinite routing buffer

before being processed as shown in Figure 4.1.

e ). Average rate of packet arrival at a router per time slot, including both generated
packets and packets received from other nodes. This composite arrival rate, A;, may
be derived as follows. In any time slot the total number of generated packets that
arrive at all the routing buffers is AN2. On average, each of these packets traverses
h + 2 routers within the network. Therefore, under steady state condition, there will
be AN?(h + 2) packets in all the routers of the network in each time slot. Under the
assumption that each packet is equally likely to be in each router, the total arrival

rate is given by Ay = A(h + 2).

e )\,. Average rate of packet arrival at a path buffer per time slot. This arrival rate, A,
can be derived as follows. Under steady state condition, in any time slot, the total
number of packets in all the routers in the network is AN?(h42). Of all these packets,
AN? packet will exit the network and AN?(h+2) — AN? = AN?(h + 1) packets will be
transmitted through paths in the network. Under the assumption that sources and

destinations are uniformly distributed in the network, the average arrival rate is given

by )\p:w_

e 7. The routing time per packet at a router. Since packets are of the same length, the

routing time is a constant value. The average packet departure rate from the routing

buffer, denoted by us, is us = %

e 1,. The average packet departure rate from each path buffer per time slot. Since in
the model used, each path will be served once in every frame, u, = % The average

service time in each path is S, = ui =d.
P

Maximum throughput

With the above notation, the maximum throughput and average packet delay of
the logical topologies can now be studied. First the theoretical maximum throughput is
considered and then the average packet delay. Two bottlenecks can potentially limit the

maximum throughput.

e If the average packet arrival rate at a routing buffer is larger than the average packet
departure rate, that is if A; < ug, then the throughput will be limited by the router

processing bandwidth. The maximum packet generation rate allowed by the router
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bandwidth, \J’**, can be derived as follows: Ay < pg, or (h+2)A < %, or A < 7(h1+2)
Thus,
1
)\ma:E —
s ~v(h+2)

e If the average packet arrival rate at a path buffer is larger than the average packet
departure rate, that is A, < u,, then the throughput will be limited by the path band-
width. The maximum fresh packet generation rate allowed by the path bandwidth,

A%, can be derived as follows: A, < pp, or M < é, or A < W- Thus,
)\maw — P
p (h+1)Nd

The theoretical maximum throughput is the minimum of A{"** and AJ'**, that is,
AT = mgn (AT, )\;”‘”3). Given a topology, A% = AT"*" indicates that the router speed

is the bottleneck, while ™" = A" indicates that the path speed is the bottleneck.

Average packet delay

As mentioned before, the packet delay is divided into the routing delay, which
includes the time a packet spends on routing buffers and the time for routers to process
the packets, and the transmission delay, which includes the time a packet spends on path
buffers and the actual packet transmission time on the paths.

Let us first consider the routing delay in each router. It takes 7 timeslots for a
router to process the packet when the packet reaches the front of the routing buffer. As
for the packet waiting time in the routing buffer, since the routing buffer is modeled as an

M/D/1 queue, the average queuing delay depends on the arrival rate Ay and is given by:

N AS(’)’)Q
“Tanm

where )\, is the average packet arrival rate, v is the expected service time, pg is
the average packet departure rate. Given that ps = %, the total time that a packet spends

in each router is given by:

As (’7)2

2(1 - >\s7)

Consider the two components of the transmission delay on each path. The first

(1)

routing delay = v +

component is the delay required by a packet to synchronize with the appropriate outgoing
slot in the frame on which the node transmits and the actual packet transmission time.
The average value of this delay is %ﬁﬂl = % The second component is the M/D/1
queuing delay that a packet experiences at the buffer before it reaches the head of the buffer.

This follows the same formula as in the routing delay case, and is given by,
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NSy Ad?
2(1—32)  2(1—=Xd)

The two components are combined to obtain the total delay a packet encounters
on a path as follows,

d+1 Apdd?
2
> 21 ad) @)

transmission delay =

As discussed earlier, each packet takes h 4+ 2 hops and h + 1 paths on average.
Thus, given that on average, a packet spends routing delay in each router and transmission
delay on each path, the average packet delay can be expressed as follows:
delay = (h 4+ 2) X routing delay + (h + 1) X transmission delay.
Using formula (1) and (2), the following average delay encountered by a packet
from the source to the destination is obtained.

As(7)? d+1 Apd?
ST A U Al S i Tr e ey

delay = (h+2) x (v + )

Model verification

To verify the analytical model and to further study the performance of these logical
topologies, a network simulator was developed that simulates all four logical topologies on

top of the torus topology. The simulator takes the following parameters.

e system size, N x N: This specifies the size of the network. Based on the logical

topology, the system size also determines the multiplexing degree in the system.

e packet generation rate, A\: This is the rate at which fresh packets are generated in
each node. It specifies the traffic on the network. The inter—arrival of packets follows
a Poisson distribution. When a packet is generated at a node, the destination is

generated randomly among all other nodes in the system with a uniform distribution.

e Packet routing time, -y.

Fig 4.14 shows the maximum throughput obtained from the analytical model and
from simulations. Both 8 x 8 and 16 x 16 physical torus networks with different packet
routing time are examined. As can be seen from the figure, the analytical results and the
simulation results almost have a perfect match for all cases.

Figure 4.15 and Figure 4.16 show the average packet delays obtained from the

analytical model and from simulations. Here, the packet routing time, <y, is equal to 1
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time slot. For 8 x 8 torus, the analytical model matches the simulation results fairly well

for all topologies except when the generation rate is close to saturation. The difference

between the results from the analytical model and those from simulations is around 10%.

For the 16 x 16 physical topology, the analytical model matches the simulations results

for the all-to—all, allIXY and hypercube topologies. For the torus topology, the difference

is about 20% due to the approximation. Studies using other values of 7 have also been

conducted. The analytical model and the simulation results on those studies match slightly

better than those shown in Figures 4.15 and 4.16. Thus, overall the analytical model gives

a good indication of the actual performance.
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Figure 4.16: Packet delays for logical allXY, hypercube and torus topologies (y = 1)

4.4 Performance of the logical topologies

In the previous section, an analytical model for performance study for the logical
topologies was developed and verified. This section focuses on studying the performance
of the logical topologies. Since the simulation and the analytical model match reasonably
well, only the analytical model is used in this section to study the performance.

Figure 4.17 shows the impact of packet routing time on the maximum throughput.
The underlying topology is a 32 x 32 torus. For all logical topologies, increasing the speed of
routers increases the maximum throughput up to a certain limit. For the all to all topology,
the router speed of 1 packet per 4 time slots is sufficient to overcome the router performance
bottleneck. Using faster router will not further improve the maximum throughput. For the
allX’Y and hypercube topologies, the threshold is 1 packet per 2 time slots, and for the torus
topology, the threshold is 1 packet per time slot. When the routing speed is faster than the
threshold value, the maximum throughput is bound by the link speed and the maximum
throughput will not increase along with the increase in router speed. Table 4.2 shows the
bandwidth limits of routers and links for N = 32.

Figure 4.17 also shows that the all to all topology achieves higher maximum
throughput than the allXY topology, which in turn achieves higher maximum through-
put than the hypercube topology. The logical torus has the worst maximum throughput.
This observation holds for all packet routing speeds. Under high workload, all paths in
the all-to-all and allXY topologies are utilized. The algorithms to realize the all-to-all
and allXY topologies guarantee that in each time slot all links are used if all connections

scheduled for that time slot are in use, while the hypercube and torus topologies can not
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achieve this effect. Thus, it is expected that the all-to—all topology and the allIXY topology

will outperform the hypercube and torus topologies in terms of maximum throughput.
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Figure 4.17: Maximum throughput .vs. packet routing time (N = 32)

Figure 4.18 shows the impact of network size on the maximum throughput. The
results in this figure are based upon a packet routing time of one time slot. Different
packet routing times were also studied and similar trends were found. In terms of maxi-
mum throughput, the all-to—all topology scales the best, followed by the allXY topology,
followed by the hypercube topology. The logical torus topology scales worst among all these
topologies. Figures 4.17 and 4.18 show that by using time—division multiplexing to establish
complex logical topology, the large aggregate bandwidth in the network can be exploited to
deliver higher throughput when the network is under high workload.

Although the all-to—-all topology is the best in terms of the maximum throughput,
it suffers from large packet delay when the network is not saturated. Packet delay is another
performance metric to be considered. For a network to be efficient, it must also be able to
deliver packets with a small delay. It is well known that time division multiplexing results
in larger average packet delay due to the sharing of the links. However, as discussed earlier,
while using time—division multiplexing techniques to establish logical topologies increases
the per hop transmission time, it reduces the average number of hops that a packet travels.
Thus, the overall performance depends on system parameters. Next, this effect for the

logical topologies is studied.



topology | bottleneck | y =05 |vy=1|vy=2|y=4
Agrae 2.0 1.0 0.5 0.25

all-to—all AT 0.25 025 | 0.25 | 0.25
AT 0.25 025 | 0.25 | 0.25

Agrar 1.36 0.68 | 0.34 | 0.17

allXY At 0.25 0.25 | 0.25 | 0.25
AT 0.25 0.25 | 0.25 | 0.17

Agrar 0.67 0.33 | 0.17 | 0.09

hypercube At 0.1 0.1 0.1 0.1
Armae 0.1 0.1 0.1 0.09

s 0.24 0.12 | 0.06 | 0.03

torus At 0.06 0.06 | 0.06 | 0.06
Armae 0.06 0.06 | 0.06 | 0.03

Table 4.2: Maximum throughput for the logical topologies on 32 x 32 torus
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Figure 4.19 shows the delay with regard to the fresh packet generation rate. The
underlying topology is a 16 x 16 torus and y is 1 time slot. The figure shows that the
all-to—all topology incurs very large delay compared to other logical topologies. This is
because of the large multiplexing degree needed to realize the logical all to all topology.
Other topologies have similar delay when the generation rate is small, that is, under low
workload. However, the allXY topology has a larger saturation point than the hypercube
and torus topologies and thus has a small delay even when the network load is reasonably

high (e.g. A = 0.25). These results also hold for larger packet routing times.
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Figure 4.19: Packet delay as a function of packet generation rate (y = 1.0, N = 16)

Figure 4.20 shows the impact of packet routing time on the average packet delay.
The results are based upon a 16 x 16 torus network and a packet generation rate of 0.005.
The packet routing speed has an impact on the delay for all topologies. For very small
packet routing time (y = 0.25), the torus topology has the smallest delay. When the
packet routing time increases, the delay in torus increases drastically, while the delays in
the all to all and allXY topologies increase slightly. In the all to all and allXY topologies
a packet travels through fewer number of routers than it does in the torus topology. Hence
the contention at routers does not affect the delay in the all to all and allXY topologies
as much as it does in the torus and hypercube topologies. This study also implies that to
achieve good packet delay for logical torus topology, fast routers are crucial, while a fast
router is not as important in the all to all and allXY topologies.

Figure 4.21 shows the impact of network size on the packet delay for the topologies.
The results are based upon a packet routing time of 1 time slot and a packet generation
rate of 0.01. This figure shows the manner in which the delay time grows with regard to the
network size. As discussed in section 2, ignoring network contention for a physical N x N

torus, the all to all topology results in a packet delay of O(y + N3), the allXY topology
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Figure 4.20: Impact of packet routing time on packet delay (A = 0.005, N = 16)

has a delay of O(y + N?), hypercube has a delay of O(ylg(N) + Nlg(N)), and torus has
a delay of O(yN). Thus, the all to all topology has very large delay when the network
size is large. The delay differences among the other three topologies are relatively small
for reasonably large sized networks. When the packet routing time is small (y = 1.0), the
hypercube topology scales slightly better than the torus and the allXY topologies as shown
in Figure 4.21 (a). When + is large (v = 4.0), the hypercube topology and the allXY
topology are better than the other two topologies as shown in Figure 4.21 (b).

From the above discussions, three parameters, N, v and A affect the average packet
delay for all the logical topologies. Next, the regions in the (NN, v, A\) parameter space, where
a logical topology has the lowest packet delay are identified. Figure 4.22 shows the best
topologies in the parameter space (N,7) with fixed A\. Comparing Figure 4.13, where
the network contention is ignored, with Figure 4.22, where the contention is taken into
consideration, it can be seen that the logical topologies with less connectivity suffer more
from network contention. As can be seen from Figure 4.22 (a), with small packet generation
rate, all four logical topologies occupy part of the (IV,7) parameter space, which indicates
that under certain conditions, each of the four topologies out performs the other three
topologies. While in the case of large packet generation rate as shown in Figure 4.22 (b),

the logical torus topology is pushed out of the best topology picture.
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Figure 4.23 shows the best logical topologies on the (7, A\) parameter space. Here,
the underlying network is a 16 x 16 torus. Networks of different size exhibit similar charac-
teristics. The majority of the (v, A\) parameter space is occupied by the logical hypercube
and allXY topologies. The logical torus topology is good only when the A is small and 7 is
small. The logical all to all topology out performs other topologies only when the network
is almost saturated, that is, large A or large y. This indicates that in general, the logical
hypercube and allXY topologies are better topologies than the logical torus and all-to—all

topologies in terms of packet delay.
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Figure 4.23: Best logical topology for a 16 x 16 torus

Figure 4.24 compares the performance of the logical hypercube and allXY topolo-
gies. Given a fixed +, there is a packet generation rate, A, above which the allIXY topology
out performs the logical hypercube topology. When + increases, the line in the figure moves

down. In other words, the hypercube topology is more sensitive to the packet routing time

Y-

4.5 Multi-hop communication vs single-hop communication

Previous sections considered the logical topologies that can be used to route pack-
ets and perform multi-hop communications. As discussed in Chapter 3, another way to
perform dynamic communication on multiplexed optical networks is to use a path reser-
vation algorithm which reserves an optical path from the source to the destination and

then perform single—hop communications. The performance of these two communication
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schemes on a physical 16 x 16 torus is compared in this section. The logical allXY topology

is used as the logical topology for multi hop communication since it offers large maximum

throughput and reasonably small average package delay for this size of networks. To obtain

a fair comparison, the following assumptions are made:

e Both networks have the same multiplexing degree. For a 16 x 16 torus, this means

that both networks have a multiplexing degree of 32, which is required for the logical
allXY topology.

The data packet processing time in the multi-hop communication is equal to the
control packet processing time in the path reservation algorithm, since electronic pro-
cessing is involved in both cases. Packet processing time, -y, is used to represent both
the data packet processing time in the multi hop communication and the control

packet processing time in the single-hop communication.

Control packet propagation time between two neighboring nodes is equal to data
packet propagation time between the source and the destination, which is equal to 1

time slot.

It is assumed that a data message contains s packets. Accordingly, the average mes-
sage delay, which is defined as the difference between the time the message is generated
and the time when the whole message is received, is measured instead of the average
packet delay. The notation A4 in this section represents the message generation rate

per node per time slot. Since messages can be of different sizes, the network load is

defined to be
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network load = s X A9 X number of nodes,
which is equal to the total number of packets injected into the network. For the same

reason, the throughput is measured in terms of packets delivered per time slot.

The analytical model for the multi-hop communication cannot model the com-
munication performance when packets in a message are sent to the same destination since
destinations of packets are no longer distributed uniformly among all nodes. In some sense
the number of packets in a message reflects the locality of the communication traffic. All

results in this section are obtained through simulations.
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Figure 4.25: Maximum throughput

Figure 4.25 shows the maximum throughput of the two schemes with different mes-
sage sizes, s, and packet processing times, v. The packet processing time affects both the
single hop communication and the multi hop communication, while the message size affects
only single hop communication (larger message size leads to higher maximum throughput).
When the packet processing speed is fast, e.g. v = 1, such that the path bandwidth is
the bottleneck in the communication, the multi-hop communication offers larger maximum
throughput than the single-hop communication. The reason is that multi-hop commu-
nication utilizes the links in the network more efficiently when the network is saturated
and does not incur additional control overhead. However, the multi hop communication is

more sensitive to the packet processing time and the maximum throughput of the multi-
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hop communication decreases drastically when the packet processing time increases. In the
single-hop communication, the packet processing is only involved in the control network,
thus, preserving the large bandwidth in the data network when the packet processing time
is large. This effect manifests itself when the message size is reasonably large and the extra
control overhead is amortized over the length of a message. Thus, the single hop commu-
nication offers larger maximum throughput when the packet processing time is large and
the message size is sufficiently large. Figures 4.26 (a) and 4.26 (b) show the maximum
throughput with different message sizes for packet processing times of 1 and 4 respectively.
As can be seen from the figures, when the packet processing time is small (v = 1), the
multi hop communication offers larger maximum throughput for all message sizes. When
the packet processing time is large (y = 4), the single-hop communication has a larger

maximum throughput when the message size is sufficiently large.
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Figure 4.26: Maximum throughput for different message sizes

When the network is under light load, it is more meaningful to compare the mes-
sage delay. Figure 4.27 shows the impact of the network load and the message size on the
average message delay. In this figure, v = 1. When the message size is small (size = 4),
the multi hop communication has smaller message delay. When the message size is large
(size = 64), the single hop communication offers smaller message delay. In both cases, the
large network load amplifies the difference between single hop and multi hop communica-
tions. For messages of medium size (size = 16), the multi-hop communication has smaller
delay when the network load is below a certain point. In general, small messages favor the
multi hop communication while large messages favor the single hop communication.

The packet processing time affects the average message delay for both the single

hop communication and the multi-hop communication. In the single-hop communication,
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the packet processing time affects the path reservation time only. Thus, given a fixed packet
processing time, the extra control overhead is almost the same for all message sizes. In the
multi-hop communication, the extra overhead applies to each packet in a message, and thus
the larger the message size, the larger the overhead. Figure 4.28 shows the impact of the
packet routing time on the average packet delay. In this figure, the same network load of
10.24 is considered for different message sizes (e.g. a generation rate of 0.01 for messages of
size 4, 0.01 x 4 x 256 = 10.24) with different message sizes. As can be seen from the figure,
when the message size is small, the single-hop communication incurs larger message delay
while for large message sizes, the multi hop communication incurs larger message delay.

The large packet processing time amplifies these effects.

4.6 Chapter summary

This chapter considered the logical topologies for routing message on top of torus
topologies. Schemes for realizing the logical torus, hypercube, allXY (where all-to—-all con-
nections along each dimension are established) and all-to—all topologies on top of physical
torus networks were discussed. Optimal schemes for realizing hypercube on top of physical
arrays and rings were designed. Schemes that use at most 2 more channels than the optimal
for realizing hypercube on top of meshes and tori were presented.

An analytical model for the maximum throughput and the packet latency for
multi-hop networks was developed and verified through simulations. This analytical model
was used to study the performance of the logical topologies and to identify the cases where
each logical topology out performs the other topologies. In general, the performance of the
logical topologies with less connectivity, such as the torus and hypercube topologies, are
more sensitive to the network load and the router speed while the logical topologies with
more connectivity, such as the all to all and allXY topologies, are more sensitive to network
size. Logical topologies with dense connectivity achieve higher maximum throughput than
the topologies with less connectivity. In addition, they also scale better with regard to
the network size. In terms of the maximum throughput, the topologies can be ordered as
follows:

all to all > allXY > hypercube > torus.

In term of the average packet delay, the logical torus topology achieves best results
only when the router is fast and the network is under light load, while the logical all to all
topology is best only when the router is slow and the network is almost saturated. In all

other cases, logical hypercube and allXY topologies out—perform logical torus and all-to—all
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topologies. Comparing the logical allXY to the logical hypercube, the allXY topology is
better when the network is under high load. These results hold for all network sizes.

This chapter further compared multi—-hop communication with single-hop commu-
nication and identified the advantages and the limitations of each communication scheme.
The study in this chapter used randomly generated communication traffic. Performance
evaluation of these two schemes using communication patterns from real application pro-
grams, which confirms the results in this chapter, will be presented in Chapter 6. Multi—
hop communication is more efficient than single-hop communication in terms of maximum
throughput when the packet processing speed is not a bottleneck in the system and when
the message size is small. When packet processing speed is slow, the single hop commu-
nication has higher maximum throughput when the message size is sufficiently large. In
terms of the average message delay when the network is under light load, large messages fa-
vor single hop communication, while small messages favor multi hop communication. The
large packet processing time amplifies these effects. Table 4.3 and Table 4.4 summarize

these conclusions.

Table 4.3: Maximum throughput on a 16 x 16 torus
Small message size(4) | Large message size(64)
Multi hop Multi hop

Multi—hop Single—hop

Small packet processing time

Large packet processing time

Table 4.4: Average message delay on a 16 x 16 torus

Network | Packet processing Message size
load time Small(4) | Medium(16) | Large(64)
Small Small Multi hop | Multi hop | Single hop
Large Multi-hop | Single-hop | Single-hop
Large Small Multi-hop | Single-hop | Single-hop
Large Multi hop | Single hop | Single hop

Both communication schemes suffer from the bottleneck of electronic processing,
which occurs in the path reservation in single-hop communication and in the packet routing
at intermediate nodes in multi hop communication. Using the compiled communication

technique discussed in the next chapter, this bottleneck can be removed.
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Compiled communication

In compiled communication, the compiler analyzes a program to determine its
communication requirement. The compiler can then use the knowledge of the underlying
architecture, together with the knowledge of the communication requirement, to manage
network resources statically. As a result, runtime communication overheads, such as the
path reservation overhead and the buffer allocation overhead, can be reduced or eliminated,
and the communication performance can be improved. Due to the limited resources, the
underlying network cannot support arbitrary communication patterns. Thus, compiled
communication requires the compiler to analyze a program and partition the program into
phases such that each phase has a fixed, pre-determined communication pattern that the
underlying network can support. The compiler inserts code to reconfigure the network at
phase boundaries, uses the knowledge of the communication requirement within each phase
to manage network resources directly, and optimizes the communication performance.

A number of compiler issues must be addressed in order to apply the compiled
communication technique to optical TDM networks. Specifically, given a multiplexing de-
gree, the compiler must partition a program into phases such that each phase contains
connections that can be realized by the underlying network with the given multiplexing
degree. To obtain good performance, each phase must contain as much communication
locality as possible so that less reconfiguration overhead will be incurred at runtime. A
compiler, called the E-SUIF (extended SUIF) compiler, is implemented to support com-
piled communication. The structure of the compiler is shown in Figure 5.1. There are
four major components in the system. The first component is the communication analyzer
that analyzes a program and obtains its communication requirement on virtual processor
grids. The second component is the virtual to physical processor mapping subsystem that
computes the communication requirement of a program on physical processors. The third
component is the communication phase analysis subsystem that partitions the program

into phases such that each phase contains communications that the underlying network can
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aHPF-like program

Communication analysis

|

program + logical communications

|

virtual to physical processor mapping

L

program + physical communications

l

connection
Communication phase analysis|-——| scheduling
| algorithms

program + physical communications
+ phases + scheduling

Figure 5.1: The major components in the E-SUIF compiler

support. The communication phase analysis utilizes a fourth component of the system, the
connection scheduling algorithms, to realize a given communication pattern with a minimal
number of channels.

Next, the programming model of the compiler will be discussed, followed by the

four components needed to support compiled communication.

5.1 Programming model

The E SUIF compiler considers structured HPF like programs that contain con-
ditionals and nested loops, but no arbitrary goto statements. The programmer explicitly
specifies the data alignments and distributions. For simplicity, this chapter assumes that
all arrays are aligned to a single virtual processor grid template, and the data distribution
is specified through the distribution of the template. However, the implementation of the
communication analyzer handles multiple virtual processor grids. Arrays are aligned to the
virtual processor grid by simple affine functions. The alignments allowed are scaling, axis
alignment and offset alignment. The mapping from a point d in data space to the corre-
sponding point € on the virtual processor grid is specified by an alignment matrix M and
an alignment offset vector . € = Md + #. The alignment matrix M specifies the scaling
and the axis alignment, thus it is a permutation of a diagonal matrix. The distribution of

the virtual processor grid can be cyclic, block or block—cyclic. Assuming that there are p
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processors in a dimension, and the block size of that dimension is b, the virtual processor e is
in physical processor e mod (p x b)/b. For cyclic distribution, b = 1. For block distribution,
b = n/p, where n is the size of the virtual processes along the dimension.

The communication analyzer performs communication optimizations on each sub-
routine. A subroutine is represented by an interval flow graph G = (N, E), with nodes N
and edges E. The communication optimizations are based upon a variant of Tarjan’s inter-
vals [75]. The optimizations require that there are no critical edges which are edges that
connect a node with multiple outgoing edges to a node with multiple incoming edges. The
critical edges can be eliminated by edge splitting transformation[32]. Figure 5.2 shows an
example code and its corresponding interval flow graph.

ALIGN (i, j) with VPROCS(i, j) :: x,y, z
ALIGN (i, j) with VPROCS(2%j, i+1) == w
1

(s1) doi=1, 100

(s2) doj=1,100

(3)  x(ij)=

(s4)  enddo

(s5) enddo

(s6) doi= 1,100

(s7)  doj=1,100

(8)  y(id)=wli)

(s9)  enddo

(s10) enddo

(s11) doi=1, 100

(s12) doj =1, 100

(813) Z(i7 J) = X(i+17 J)* W(i7 7J)
(G14) i ) = 2 ) y(i+L, )
(s15) end do

(s16) w(i+1, 100) = ...

(s17) end do

Level O Level 1 Level 2 Level 3

—

2 DOj |J=—/—""
e (3 x(ij)=.. |

4 DOi =] ]

[5 DOj |J=—"—+
16 y(i,j) =w(i,) |

(7 poi |
8 DOj

19 z(i,i>=J(i+1,J)*w(i,i) \

10 z(i,j)=z(@,)+y(i+1,))

11 w(i, 100) = ...

Figure 5.2: An example program and its interval flow graph



7

5.2 The communication analyzer

The communication analyzer analyzes the communication requirement on virtual
processor grids and performs a number of common communication optimizations. This
section presents the data flow descriptor used in the analyzer to describe communication, the
general data flow algorithms to propagate the data flow descriptor, and the communication

optimizations performed by the analyzer.

5.2.1 Section communication descriptor (SCD)

In order for the compiler to analyze the communication requirement of a program,
data structures must be designed for the compiler to represent the communications in the
program. The data structures must both be powerful enough to represent the communica-

tion requirement and simple enough to be manipulated easily.

The descriptor

The communication analyzer represents communication using Section Communi-
cation Descriptor (SCD). A SCD =< A,D,CM,(Q > consists of three components. The
first component is the array region that is involved in the communication. This includes
the array name A and the array region descriptor D. The second component is the com-
munication mapping descriptor C M, which describes the source destination relationship of
the communication. The third component is a qualifier descriptor (), which specifies the
time when the communication is performed.

The bounded regular section descriptor (BRSD)[12] is used as the region descriptor.
The region D is a vector of subscript values. Each element in the vector is either (1) an
expression of the form a * i+ 3, where o and 8 are invariants and i is a loop index variable,
or (2) a triple [ : u : s, where [, u and s are invariants. The triple, [ : u : s, defines a set of
values, {l, [ + s, [ + 2s, ..., u}, as used in the array statement in HPF.

The source destination mapping C'M is denoted as < sre, dst, qual >. The source,
sre, is a vector whose elements are of the form « % i 4+ 8, where a and § are invariants and
1 is a loop index variable. The destination, dst, is a vector whose elements are of the form
v#*j 4§, where v and § are invariants and j is a loop index variable. The mapping qualifier
list, qual, is a list of range descriptors. Each range descriptor is of the form i =1 : u : s,
where [, © and s are invariants and ¢ is a loop index variable. The notation qual = NULL
and qual =— denote that no mapping qualifier is needed. The mapping qualifier specifies

the range of a variable in dst that does not occur in src to express the broadcast effect.
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The qualifier @) is a range descriptor of the form ¢ = [ : u : s, where ¢ is the loop
index variable of the loop that directly encloses the SCD. This qualifier is used to indicate
the iterations of the loop in which the SCD should be performed. If the SCD is to be
performed in every iteration in the loop, Q@ = NULL or Q =—. @ will be referred to as the

communication qualifier. Notice that the qualifiers in most SCDs are NULL.

Operations on SCD

Operations, such as intersection, difference and union, on SCD descriptors are de-
fined next. Since in many cases, operations do not have sufficient information to yield exact
results, subset and superset versions of these operations are implemented. The analyzer uses
a proper version to obtain conservative approximations. These operations are extensions of
the operations on BRSD.

Subset Mapping testing. Testing whether a mapping is a subset of another mapping is
one of the most commonly used operations in the analyzer. Testing that a mapping relation
CM; (=< s1,d1,q1 >) is a subset of another mapping relation CMy (=< s9,da, g2 >) is
done by checking for a solution of equations s; = so and dy = do, where variables in C'M;
are treated as constants and variables in C'M, as variables, and subrange testing ¢q; C go.
Note that since the elements in s; and sy are of the form «a %7 + 3, the equations can
generally be solved efficiently. Two mappings, CM; and C'Ms are related if CM; C C M,
or CMs C C'M;. Otherwise, they are unrelated.

Subset SCD testing. Let S1 =< Ay, D1,CM;,Q1 >, So =< A, Dy, CMs, Qs >,
SCD1 CSCDy <= A1 =A3;ANDy C Dy ANCM; CCMy A@Qy C Q.

Intersection Operation. The intersection of two SCDs represents the elements consti-
tuting the common part of their array sections that have the same mapping relation. The
following algorithm describes the subset version of the intersection operation. Note that
the operation requires the qualifier (); to be equal to ()2 to obtain a non empty result. ¢
denotes an empty set. This approximation will not hurt the performance significantly since

most SCDs have () =—.

<A1, D, CM,Q1 >N < Az, Dy, CM3, Q2 >

= ¢, if Ay # As or CM; and C M, are unrelated or Q1 # Qo

=< A;,D1NDy,CMy,Qq >, if Ay = Ay and CM; C CM;, and Q1 = Q9
=< A1,D1 N Dy, CMy, Q1 >, if Ay = Ay and CM; D CMs and Q1 = (9

Difference Operation. The difference operation causes a part of the array region associ-

ated with the first operand to be invalidated at all the processors where it was available. In
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the analysis, the difference operation is only used to subtract elements killed (by a state-
ment, or by a region), which means that the SCD to be subtracted always has CM = T
and QQ =—.

< A1,D,CM,Q1 > — < Ay, Dy, T, —>
= < A1, D1,CMy, Q1 >, if Ay # Ay
=< Ay, Dy — Dy, CMy,Q >, if Ay = A.

Union operation. The union of two SCDs represents the elements that can be in either

part of their array section. This operation is given by:

<A, D, CM,Q1 >U < Ay, Dy, CMy, Q9 >
=< A, DiUD2,CM,,Q >, if Ay = Ay and CMy = CM>5 and Q1 = 9
= list(< Ay, D1,CM;, Q1 >, < Ay, Dy, C My, Qo >), otherwise.

5.2.2 A demand driven array data flow analysis framework

Many communication optimization opportunities can be uncovered by propagating
SCDs globally. For example, if a SCD can be propagated from a loop body to the loop
header without being killed in the process of propagation, the communication represented by
the SCD can be hoisted out of the loop body, that is, the communication can be vectorized.
Another example is the redundant communication elimination. While propagating SC Dy,
if SCDy is encountered such that SC D5 is a subset of the SC D1, then the communication
represented by SC' Dy can be subsumed by the communication represented by SC'D; and
can be eliminated. Propagating SCDs backward can find the earliest point to place the
communication, while propagating SCDs forward can find the latest point where the effect of
the communication is destroyed. Both these two propagations are useful in communication
optimizations. Since forward and backward propagation are quite similar, only backward
propagation will be presented next.

Generic demand driven algorithms are developed to propagate SCDs through inter-
val flow graph. The analysis technique is the reverse of the interval-analysis [30]. Specially,
by reversing the information flow associated with program points, a system of request propa-
gation rules is designed. SCDs are propagated until they cannot be propagated any further,
that is, all the elements in the SCDs are killed. However, in practice, the compiler may
choose to terminate the propagation prematurely to save analysis time while there are still
elements in SCDs. In this case, since the analysis starts from the points that contribute
to the optimizations, the points that are textually close to the starting points, where most

of the optimization opportunities are likely to be present, are considered. This gives the
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demand driven algorithm the ability to trade precision for time. In the propagation, at
a given time, only a single interval is under consideration. Hence, the propagations are
logically done in an acyclic flow graph. During the propagation, a SCD may expand when
it is propagated out of a loop. When a set of elements of SCD is killed inside a loop, the
set is propagated into the loop to determine the exact point where the elements are killed.
There are two types of propagations, upward propagation, in which SCDs may need to be
expanded, and downward propagation, in which SCDs may need to be shrunk.

The format of a data flow propagation requestis < S,n,[UP|DOW N], level, cnum >,
where S is a SCD, n is a node in the flow graph, constants U P and DOW N indicate whether
the request is upward propagation or downward propagation, level indicates at which level
is the request and the value cnum indicates which child node of n has triggered the request.
A special value —1 for cnum is used as the indication of the beginning of downward propa-
gation. The propagation request triggers some local actions and causes the propagation of
a SCD from the node n. The propagation of SCDs follows the following rules. It is assumed
that node n has k children.

Propagation rules

RULE 1: upward propagation: regular node. The request on a regular node takes an
action based on SCD set S and the local information. It also propagates the information
upward. The request stops when S become empty. The rule is shown in the following pseudo
code. In the code, functions action and local are depended on the type of optimization to
be performed. The pred function finds all the nodes that are predecessors in the interval
flow graph and the set kill, includes all the elements defined in node n. Note that kill,

can be represented as an SCD.

request(< S1,n,UP,level,1 >) A ... A request(< Sg,n,UP,level, k >) :
S=58nN..NS;
action(S, local(n))
if (S — Kill, # ¢) then
for all m € pred(n)
Let n be m’s jth child
request(< S — kill,, m,UP,level,j >)

A response to requests in a node n occurs only when all its successors have been

processed. This guarantees that in an acyclic low graph each node will only be processed
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once. The side effect is that the propagation will not pass beyond a branch point. A more
aggressive scheme can propagate a request through a node without checking whether all
its successors are processed. In that scheme, however, a nodes may need to be processed
multiple times to obtain the final solution.

RULE 2: upward propagation: same level loop header node. The loop is contained
in the current level. The request needs to obtain the summary information, K, for the
interval, perform the action based on S and the summary information, propagate the in-
formation past the loop and trigger a downward propagation to propagate the information
into the loop nest. Here, the summary function K,, summarizes all the elements defined
in the interval. It can be calculated either before hand or in a demand driven manner.
The method to calculate the summary in a demand driven manner will be described later.
Note that a loop header can only have one successor besides the entry edge into the loop
body. The cnum of the downward request is set to -1 to indicate that it is the start of the

downward propagation.

request(< S, n, UP,level,1 >):
action(S, K,,)
if (S — K, # ¢) then
for all m € pred(n)
Let n be m’s jth child
request(< S — K,,,m,UP,level,j >)
if (SN K, # ¢) then
request(< SN K,,,n, DOW N, level, —1 >)

RULE 3: upward propagation: lower level loop header node. The relative level
between the propagation request and the node can be determined by comparing the level
in the request and the level of the node. Once a request reaches the loop header. The
request will need to be expanded to be propagated in the upper level. At the same time,
this request triggers a downward propagation for the set of elements that are killed in the

loop. Assume that the loop index variable is ¢+ with bounds low and high.

request(< S, n,UP,level,1 >):
calculate the summary of loop n
outside = expand(S,i,low : high) — Ugerexpand(def,i,low : high)
inside = expand(S,i,low : high) N Ugerexpand(def,i,low : high)
if (outside # ¢) then
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for all m € pred(n)
Let n be m’s jth child
request (< outside, m,UP,level — 1,5 >)
if (inside # ¢) then
request (< inside,n, DOW N, level, —1 >)

The variable outside contains the elements that can be propagated out of the

loop, while the variable inside contains the elements that are killed within the loop. The
expansion function has the same definition as in [30]. For a SCD descriptor S, expand(S, k,
low:high) is a function which replaces all single data item references a * k + [ used in any
array section descriptor D in S by the triple (« x low + 3 : a * high + 8 : «). The set def
includes all the definitions that are the source of a flow-dependence.
RULE 4: downward propagation: lower level loop header node. This is the
initial downward propagation. The loops index variable, i, is treated as a constant in the
downward propagation. Hence, SCDs that are propagated into the loop body must be
changed to be the initial available set for iteration 7, that is, subtract all the variables
killed in the iteration i+1 to high and propagate the information from the tail node to the
head node. This propagation prepares the downward propagation into the loop body by
shrinking the SCD for each iteration.

query(< S,n, UP,level, cnum >):
if (cnum = —1) then
calculate the summary of loop n;
request(< S — Ugerexpand(def, k,i + 1 : high),l, DOW N, level — 1,1 >);
else

STOP /* interval processed */

RULE 5: downward propagation: regular node. For regular node, the downward

propagation is similar to the upward propagation.

request(< S1,n, DOW N, level,1 >) A ... A request(< Sg,n, DOW N, level, k >) :
S=8N..NS
action(S, local(n))
if (S — kill,, # ¢) then
for all m € pred(n)
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Let n be m’s jth child
request(< S — kill,, m, DOW N, level,j >)

RULE 6: downward propagation: same level loop header node. When downward
propagation reaches a loop header (not the loop header whose body is being processing), it

must generate further downward propagation request to go deeper into the body.

request(< S,n, DOW N, level,1 >):
action(S, summary(n));
if (S — K,, # ¢) then
for all m € pred(n)
Let n be m’s jth child
request(< S — K, m, DOW N, level,j >);
if (SN K, # ¢) then
request(< SN K,,,n, DOW N, level,—1 >);

Summary calculation

During the request propagation, the summary information of an interval is needed
when a loop header is encountered. An algorithm is described to obtain the summary infor-
mation in a demand driven manner. The calculation of kill set of the interval is used as an
example. Let kill(i) be the variables killed in node i, K;, and K,,; be the variables killed
before and after the node respectively. Figure. 5.3 depicts the demand driven algorithm.
The algorithm propagates the data flow information from the tail node to the header node

in the interval using the following data flow equation:

Kout(n) = Usesuce(n) Kin(8)

Kin(n) = kill(n) U Ky (n)
When an inner loop header is encountered, a recursive call is issued to get the
summary information for the inner interval. Once a loop header is reached, the kill set

needs to be expanded to be used by the outer loop.
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(1) Summary kill(n)

(2) Kout(tail) = ¢

(3) for all m € T'(n) and level(m) = level(n)-1 in backward order
(4) if m is a loop header then

(5) Kout(m) = Usesucc(m)Ki (3)

(6) Kin(m) = summary kill(m) UK, (m)

(7) else

(8) Kout(m) = UsEsucc(m)Ki (s)

(9) Kin(m) = kill(m) U Kpyt(m)

(10) return (expand(K;y (header), i, low:high))

Figure 5.3: Demand driven summary calculation

5.2.3 The analyzer

The analyzer performs message vectorization, redundant communication elimi-
nation and communication scheduling using algorithms based upon the demand driven

algorithms described in the previous section. The analyzer performs the following steps:

1. Initial SCD calculation. Here the analyzer calculates the communication requirement
for each statement that contains remote memory references. Communications required
by each statement are called initial SCDs for the statement and are placed preceding

the statement.

2. Message vectorization and available communication summary calculation. The ana-
lyzer propagates initial SCDs to the outermost loops in which they can be placed. In
addition to message vectorization optimization, this step also calculates the summary
of communications that are available after each loop. This information is used in the

next step for redundant communication elimination.

3. Redundant communication elimination. The analyzer performs redundant communi-
cation elimination using a demand driven version of availability communication anal-
ysis [30], which computes communications that are available before each statement.
A communication in a statement is redundant if it can be subsumed by available
communications at the statement. The analyzer also eliminates partially redundant

communications.

4. Message scheduling. The analyzer schedules messages within each interval by placing
messages with the same communication patterns together and combining the messages

to reduce the number of messages.
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Initial SCD Calculation

The owner computes rule is assumed which requires each remote item referenced
on the right handside of an assignment statement to be sent to the processor that owns
the left handside variable. Initial SCDs for each statement represent this data movement.
Since the ownership of array elements determines communication patterns, the ownership

of array elements will be described before the initial SCD calculation step is presented.

Ownership.

All arrays are aligned to a single virtual processor grid by affine functions. The
alignments allowed are scaling, axis alignment and offset alignment. The mapping from a
point d in data space to a corresponding point € on the virtual processor grid (the owner
of cf) can be specified by an alignment matrix M and an alignment offset vector ¢ such
that & = Md + . Using the alignment matrix and the offset vector, the owner of a data

element can be determined. Consider the array w in the example program in Figure 5.2,

the alignment matrix and the offset vector are given below.
0 2 . 0
MU} = I Uy =
1 0 1

Using the ownership information, the initial SCDs are calculated as follows. Let

Initial SCD Calculation.

us consider each component in an initial SCD =< A, D,CM,(Q >. A is the array to
be communicated. The region D contains a single index given by the array subscript
expression. The qualifier () =— since initial communications must be performed in every
iteration. Let CM =< src,dst,qual >. Since initially communication does not perform
broadcast, qual =—. Hence, the calculation of src and dst, which will be discussed in the
following text, is the only non-trivial computation in the calculation of initial SCDs.

Let 7 be the vector of loop induction variables. When subscript expressions are
affine functions, an array reference can be expressed as A(GZ—!— G), where A is the array
name, G is a matrix and § is a vector. G is called the data access matriz and g the access
offset vector. The data access matrix, G, and the access offset vector, g, describe a mapping
from a point in the iteration space to a point in the data space. Let Gy, §;, M;, U) be the
data access matrix, the access offset vector, the alignment matrix and the alignment vector
for the lhs array reference, and G,, g, M,, U, be the corresponding quantities for the rhs

array reference. The source processor src and destination processor dst are given by:

src = M (Gyi + §y) + U, dst = My(Gyi + §) + @
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Consider the communication of w(i, j) in statement s13 in Figure 5.2. The analyzer
can obtain from the program the data access matrices, access offset vectors, alignment
matrices and alignment vectors and from them the SCD for the communication given below.
As an indication of the complexity of a SCD, the structure for this communication required

524 bytes to store.

1 0 0 0 2 0
MZ = s 'D’z - ) Mu) = I ﬁw =
1 0 0 1 0 0
Gl = ’ gl ) Gr = ; _’r =
0 1 0 0 1 0

< A= “)7D = (7’77)’CM =< (2 *7a7’ + 1)7 (7’77)’7>aQ =—>

Message Vectorization and Available Communication Summary

In this phase, the analyzer computes backward exposed communications, which are
SCDs that can be hoisted out of a loop, and forward ezposed communications, which are
SCDs that are available after the loop. Backward exposed communications represent actual
communications vectorized from inside the loop. When a SCD is vectorized, the initial SCD
at the assignment statement are replaced by SCDs for backward exposed communications
at loop headers. Forward exposed communications represent the communications that are
performed inside a loop and are still alive after the loop. Hence they can be used to subsume
communications appearing after the loop. By using data dependence information, backward
and forward exposed communications are calculated by propagating SCDs from inner loop
bodies to loop headers using a simplified version of the rules discussed in previous section.

Algorithms for the forward and backward exposed communication calculation are
described in Figure 5.4 (a) and (b). Since only UP propagation is needed, Request(S,n)
is used to denote placing a propagation of S after node n. In the algorithms, S is a SCD
occurring inside the interval whose header is node n and whose induction variable is ¢ with
lower bound 1 and upper bound h, anti_def is the set of definitions in the interval that have
anti dependence relation with the original array reference that causes the communication S,
flow_def is the set of definitions in the interval that have flow dependence relation with the
original array reference that causes the communication S. For a SCD, S, expand(S,i,1: h)
first determines which portion of the S =< A, D,CM,(Q > to be expanded. If D is to be
expanded, that is, 7 occurs in D, the function will replace all single data item references
a* i+ [ used in D by the triple a + 8 : a*x h + 8 : a. If D cannot be expanded, that is,

after expansion D is not in the allowed form, then the communications will stay inside the
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loop. If CM =< src,dst,qual > is to be expanded, that is, ¢ occurs in dst but not in src
and D, the function will add 7 = 1: h : 1 into the mapping qualifier list qual.

The algorithms determine the part of communications Outside, that can be hoisted
out of a loop, and Inside, that cannot be hoisted out of the loop. In forward exposed com-
munication calculation, the analyzer makes Qutside as the forward exposed communication
and ignores the Inside part. In backward exposed communication calculation, the analyzer
makes Outside as backward exposed communication. In addition, the analyzer must also
change the original SCD according to contents of Inside. In the case when the SCD can be
fully vectorized, the SCD in the original statement is removed. In the case when the SCD
cannot be fully vectorized, part of the communication represented by Outside is hoisted
out of the loop, while other part represented by Inside stays at the original statement.
Thus, the SCD in the original statement must be modified by a communication qualifier to

indicate that the SCD only remains in iterations that generate communications in Inside.

request(S, n) : request(S, n) :
Outside = expand(S,i,1: h)— Outside = expand(S,i,1: h)—
Uanti_de fexpand(antidef,i,1 : h) Ufiow_de fexpand(flowdef,i,1 : h)
if (Outside # ¢) then Inside = expand(S,i,1: h)N
record Qutside as Uftow_de rexpand(flow_def,i,1 : h)
forward exposed in node n if (Outside # ¢) then
Let m be the header of the convert Inside in terms of S
interval including node n with qualifier, denoted as D
request(Outside, m); if (conversion not successful) then
stop /* fail */
else

change the S into D

record QOutside as backward
exposed comm. at node n.

Let m be the header of the
interval including node n

request(Outside, m);

(a) Forward exposed communication (b) Backward exposed communication

Figure 5.4: Algorithms for the forward and backward exposed communication

Consider communications in the loop in Figure 5.5. Assume that arrays a, b and
d are identically aligned to the virtual processor grid, initial SCDs, C'1 and C2, are shown
in Figure 5.5. C3, C4 and C) are the communications after the backward exposed com-
munication calculation. Calculating the backward exposed communication for C1 results
in communication C3 in the loop header and the removal of the communication C1 from
its original statement. Calculating the backward exposed communication for C2 puts C'4
in the loop header and changes C2 into C'5. Note that, there is a flow—dependence rela-

tion from b(i) to b(i-1). In calculating the backward exposed communication for SCD C2,
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C3: <a, (1), <(1), (i), i=1:100:1>, nil>
C4: <b, (0), <(i-1), i, nil>, nil>

MEEI%<& (1), <(1), (i), nil>, nil>
d(i) = a1

C2: <b, (i-1), <(-1), (i), nil>, nil>

C5: <b, (i-1), < (i-1), (i), nil>, i=2:100:1>

bm:bii-li
I

Figure 5.5: Calculating backward exposed communications

Inside =< b,(1:99:1),< (i—1,1),(4,1), —>, —>. Converting Inside back in terms of C2

results in C'5.

Redundant Communication Elimination

This phase calculates available communications before each statement, and elim-
inates a communication at the statement if the communication is available. This opti-
mization is done by propagating SCDs forward until all elements are killed. During the
propagation, if another SCD that can be subsumed is encountered, that SCD is redundant

and can be eliminated.

request(Si,n,UP) A ... request(S,n, UP):

Arequest(Sy,n, UP) : calculate the summary of loop n
S=5N..NSk Inside= expand(S,i,1:i—1)N
if (SCDs in n is a subset of S) then (Uge rexpand(def,i,1: i — 1))

remove the SCDs if (inside # ¢) then
if (S — kill, # ¢) then Let [ be the first node.
for all m € succ(n) request(Inside, |, DOW N)

request(S — kill,,, m,UP)
(a) Actions on nodes within an interval (b) Actions on a loop header
Figure 5.6: Actions in forward propagation

Using the interval analysis technique [30], two passes are needed to obtain the data
flow solutions in an interval. Initially, UP propagations are performed. Once the UP prop-
agations reach interval headers, summaries of the SCDs are calculated and DOWN propa-
gations of the summaries are triggered. Note that since the data flow effect of propagating
SCDs between intervals is captured in the message vectorization phase of the analyzer, both
the UP and DOWN propagations are performed within an interval in this phase.

Assuming that node n has k predecessors. When propagating SCDs within an
interval in forward propagation, actions in a node will be triggered only when all its prede-

cessors place requests. The nodes calculate the SCD available by performing intersection on
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all SCDs that reach it, check whether communications within the node can be subsumed,
and propagate the live communications forward. Figure 5.6 (a) describes actions on the
nodes inside the interval in an UP forward propagation. When the UP propagation reaches
an interval boundary, the summary information is calculated by obtaining all the elements
that are available in iteration 4, and a DOWN propagation is triggered. Note that in for-
ward propagation, communications can be safely assumed to be performed in every iteration
(Q =—), since the effect of the communication must guarantee that the valid values are at
the proper processors for the computation. Figure 5.6 (b) shows actions at interval bound-
aries. The propagation of a DOWN request is similar to that of an UP request except that
a DOWN propagation stops at interval boundaries.

Global Message Scheduling

After the redundant communication elimination phase, the analyzer further re-
duces the number of messages using a global message scheduling algorithm proposed by
Chakrabarti et al. in [14]. The idea of this optimization is to combine messages that are of
the same communication pattern into a single message to reduce the number of messages
in a program. In order to perform message scheduling, the analyzer first determines the
earliest and latest points for each communication. Placing the communication in any point
between the earliest and the latest points that dominates the latest point always yields
correct programs. Thus, the analyzer can schedule the placement of messages such that
messages of same communication patterns are placed together and are combined to reduce
the number of messages.

The latest point for a communication is the place of the SCD after redundant
communication elimination. Note that after message vectorization, SCDs are placed in the
outermost loops that can perform the communications. The earliest point for a SCD can be
found by propagating the SCD backward. As in [14], it is assumed that communication for
a SCD is performed at a single point. Hence, the backward propagation will stop after an
assignment statement, a loop header or a branch statement where part of the SCD is killed.
Since the propagation of SCDs stops at a loop header node, only the UP propagation is
needed. Once the earliest and latest points for each communication are known, the greedy

heuristic in [14] is used to perform the communication scheduling.

5.2.4 Evaluation of the analyzer

The analyzer is implemented as part of the E SUIF compiler which is developed

to support compiled communication on optical TDM networks. The E-SUIF compiler is
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based on the Stanford SUIF compiler [73]. The generation of a program used for evalua-
tions is carried out in the following steps. First, a sequential program is compiled using
SUIF frontend, scc, to generate the SUIF intermediate representation. Next, the SUIF
transformer, porky, is used to perform a number of scalar optimizations including copy
propagation, dead code elimination and induction variable elimination. The communica-
tion preprocessing phase is used to annotate global arrays with data alignment information.
The analyzer is then invoked to analyze and optimize communications in the program. Af-
ter communication optimizations, the backend of the compiler inserts a library call into the
SUIF intermediate representation for each SCD remaining in the program. Finally, the s2¢
tool is used to convert the SUIF intermediate representation into C program, which is the
one that is executed for evaluation.

To evaluate performance of the analyzer, a communication emulation system is
developed. The system takes SCDs as input, emulates the communications described by the
SCDs and collects statistics about the required communications, such as the total number
of elements communicated and the total number of messages communicated. The emulation
system provides an interface to C program in the form of a library call whose arguments
include all information in a SCD. The compiler backend in E-SUIF automatically generates
the library call for each SCD remaining in the program. In this way, the communication
performance of a program can be evaluated in the emulation system by running programs
generated by the E-SUIF compiler.

Six programs, [.18, ARTDIF, TOMCATYV, SWIM, MGRID and ERHS are used
in the experiment. Programs ARTDIF, TOMCATV, SWIM, MGRID and ERHS are from
the SPEC95 benchmark suite. The descriptions of the programs are as follows.

1. L18 is the explicit hydrodynamics kernel in livermore loops (loop 18).

2. ARTDIF is a kernel routine obtained from HYDRO2D program, which is an astro-
physical program for the computation of galactical jets using hydrodynamical Navier

Stokes equations.
3. TOMCATYV does the mesh generation with Thompson’s solver.
4. SWIM is the SHALLOW weather prediction program.

5. MGRID is the simple multigrid solver for computing a three dimensional potential

field.

6. ERHS is part of the APPLU program, which is the solver for five coupled

parabolic/elliptic partial differential equations.
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Table 5.1 shows the analysis cost of the analyzer. The analyzer, which implements
all the optimization algorithms on all SCDs in the programs, was run on a SPARC 5
machine with 32MB memory. Row 2 and Row 3 shows the program sizes. Row 4 shows
the cumulative memory requirement, which is the sum of number of SCDs passing through
each node. This number is approximately equal to the memory requirement of traditional
data flow analysis. The value in parenthesis is the maximum number of cumulative SCDs
in a node, which is the extra memory needed by the analyzer. In the analyzer, the size of a
SCD ranges from 0.6 to about 3 kbytes. The results show that traditional analysis method
will require large amount of memory when a program is large, while the analyzer uses little
extra memory. Row 5 gives the raw analysis times and row 6 shows the rate at which the
analyzer operates in units of lines/sec. On an average, the analyzer compiles 172 lines per
second for the six programs. Row 9 shows the total time, which includes analysis time and
the time to load and store the SUIF structure, for reference. In most cases, the analysis

time is only a fraction of the load and store time.

Program L18 | ARTDIF | TOMCATV | SWIM | MGRID | ERHS
size(lines) 83 101 190 429 486 1104
# of initial SCDs 35 12 108 76 125 403
accu. memory req. | 348(1) | 175(1) 5078(3) | 767(1) | 1166(1) | 6029(5)
analysis time(sec) 0.62 0.32 3.47 1.87 1.92 20.92
lines / sec 133 316 o4 229 253 52
total time(sec) 2.00 1.75 6.95 6.65 12.52 35.42

Table 5.1: Analysis time

Table 5.2 and Table 5.3 show the effectiveness of the optimizations in the ana-
lyzer. Table 5.2 shows the reduction of the total number of elements to be communicated
and Table 5.3 shows the reduction of the total number of messages. Both cyclic and block
distributions on 16 PE systems are considered. This experiment is conducted using the
test input provided by the SPEC95 benchmark for programs TOMCATYV, SWIM, MGRID
ERHS. The outermost iteration number in MGRID is reduced to 1 (from 40). Problem
sizes of 6 x 100 for L18 and 402 x 160 for ARTDIF are used. The number of elements
and number of messages communicated after all optimizations is compared to those after
message vectorization optimization. Table 5.2 shows that for cyclic distribution, an average
reduction of 31.5% of the total communication elements is achieved. The block distribution
greatly reduces the number of elements to be communicated and affects the optimization
performance of the analyzer. For block distribution, the average reduction is 23.1%. Ta-

ble 5.3 shows that the analyzer reduces the total number of messages by 36.7% for cyclic
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distribution and by 35.1% for block distribution. These results indicate that global com-
munication optimization opportunities are quite common and the analyzer developed is

effective in finding these opportunities.

Dist. | Opt. L18 | ARTDIF | TOMCATV | SWIM | MGRID | ERHS
x 104 x10° x108 x107 x 107 x 106

Vector. | 1.38 7.01 1.38 6.38 5.69 3.62
cyclic [ Final | 0.96 5.73 0.34 4.58 5.69 2.29
69.6% | 81.7% 24.6% 71.8% | 100% | 63.3%

x 103 x10? x10° x10° x 100 x 100

Vector. | 3.26 7.17 5.74 3.38 8.49 3.11
block | Final | 2.57 6.97 5.12 1.08 8.49 1.65
78.8% | 97.2% 89.1% 32.0% | 100% | 53.1%

Table 5.2: Total number of elements to be communicated

Dist. Opt. L18 | ARTDIF | TOMCATV | SWIM | MGRID ERHS

Vector. | 368 400 68555 3892 17662 | 1.14 x 10°

cyclic | Final 96 336 41075 1807 17662 | 0.72 x 10°
26.1% 84.0% 59.9% 46.4% 100% 63.1%

Vector. | 330 185 16750 3894 14650 | 9.20 x 10°

block | Final 90 161 10915 2209 14650 | 4.89 x 10°
27.3% 87% 65.2% 56.7% 100% 53.2%

Table 5.3: Total number of messages

5.3 Virtual to physical processor mapping

In order to support compiled communication, communication patterns on physical
processors must be computed. This section assumes that the physical processor grid has
the same number of dimensions as the logical processor grid. Notice that this is not a
restriction because a dimension in the physical processor grid can always be collapsed by
assigning a single processor to that dimension. This section presents algorithms to compute
communications on physical processors from SCDs. The computation may not always be
precise due to symbolic constants in the SCD that are unknown at compile time. The
algorithms employ multi-level approximation schemes to obtain best information.

Givena SCD =< A, D,CM =< src,dst, qual >, () >, let us first consider the case
where A is an one-dimensional array and the virtual processor grid is also one-dimensional.

Let src = axi+ G and dst = yxi+6, a # 0, v # 0, and qual = NULL. qual # NULL will
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be considered later when multi-dimensional arrays and multi-dimensional virtual processor
grids are discussed. Let the alignment matrix and the offset vector be M4 and w4, that is,
element A[n| is owned by virtual processor M4 *n +v4. Let us assume that the number of
physical processors is p and the block size of the distribution of virtual processor grid is b.
For an element A[n], the physical source processor of the communication can be computed
as follows.
(Maxn+wva) mod (p*b)/b
The virtual destination processor can be computed by first solving the equation
(Mg *xn+wva)=axi+ [ toobtaini= (My*n+vs—pf)/a
and then replacing the value of 7 in dst to obtain the virtual destination processor 7 x (M4 *
n+wva — 3)/a+ §. Thus, the physical destination processor is given by
(v* (Mgaxn+wva—pB)/a+ ) mod (pb)/b.
The physical communication pattern for the SCD can be obtained by considering all ele-
ments in D. However, there are situations that the exact region D cannot be determined
at compile time. It is desirable to have a good approximation scheme that computes the
communication patterns when D cannot be determined at compile time.

Before the approximation scheme is presented, let us first examine the relation
between communications on physical processors and that on virtual processors. Let us use
notation src — dst to represent a communication from src to dst. Given a data region
D =1 :wu: s, the communications on virtual processors can be derived as follows. By
mapping D to the virtual processor grid, the source processors of the communications can
be obtained. Since the mapping from data space to the virtual processor grid is linear, the
set of source processors can be represented as a triple vs; : vs, : vss, that is, the source
processors on the virtual processor grid are vs;, vs; + vSs, v + 2 * VSg, ..., USy,. Due to the
way in which CM.src = a*i+( is computed, equations vs;+i*xvsy, = CM.src, 1 =0,1,2, ...,
always have integer solutions. Since CM.dst is of the form « % ¢ + 0, where v and § are
constants, the destination processors on the virtual processor grid can also be represented
as a triple vd; : vdy : vdg, where vd; = v * ((vs; — B) /) + 6, vdy = v * ((vsy, — B)/a) + 0
and vds = 7y x vsg/a. Notice that because of the way in which CM is computed, all the
division operations in the formula result in integers. Thus, communications on the virtual
processor grid can be represented as vs; — vd; : vs, — vd, : vss — vds, meaning the set

{vs; = vdj,vs8; + vss — vd) + vdg, ..., V8, — vdy }.
Communications on physical processors are obtained by mapping virtual processors onto
physical processors. Given a block cyclic distribution with block size b and processor num-

ber p, a sequence of processors on the virtual processor grid [,] + s,l + 2 x s,... will be
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Figure 5.7: Virtual processor space

mapped to a sequence of physical processors repeatedly. For example, assuming that p = 2
and b = 2, the sequence of virtual processors 2,2 +3 =5,24+2%3=8,2+3x3 =11,....
will be mapped to physical processors 1,0,0, 1 repeatedly as shown in Figure 5.7. As will
be seen later, this characteristic can be utilized to develop an approximation algorithm for
the cases when D is unknown at compile time. A point e in the virtual processor grid can
be represented by two components (pp,0), where pp = e mod (p = b)/b is the physical pro-
cessor that contains e and 0 = e mod b is the offset of e within the processor. Let (ppx, ex)
correspond to [ + ks, Kk =0,1,.... It can be easily shown that

ppi = ppj N e; = ej implies ppir1 = ppj+1 A €iy1 = €541
Since in the (pp, 0) space, there are p choices for pp and b choices for o, Thus, there exists
a k, k <p=xb, such that pp;, = py and e, = ey, which determines a repetition point. In the
previous example, consider the sequence

2=(1,0),5=1(0,1),8 =(0,0),11 = (1,1),14 = (1,0)....
Thus, the physical processors repeat the sequence 1,0,0, 1.

Communications on physical processor contains two processors, the source proces-
sor and the destination processor. Thus, in order for the communications to repeat, both
source and destination processors must repeat. Following the above discussion, the commu-
nication on the virtual processor grid, src¢ — dst, can be represented by four components
(spp, so, dpp, do), where spp is the physical processor that contains src¢, so is the offset of
src within the processor, dpp is the physical processor that contains dst, do is the offset
of dst within the processor. Assuming that the source array and the destination array are
mapped to the same virtual processor grid, there are p choices for spp and dpp, and b choices
for so and do. Thus, there exists k, k < p?b?, such that both source and destination pro-
cessors, and thus the communication pattern, will repeat themselves. The following lemma
summarizes these results. Using this lemma, communication patterns can be obtained by
considering the elements in D until the repetition point or the end of D, whichever occurs
first.

Lemma: Assume that the virtual processor grid is distributed over p processors with

block size b. Let SCD =< A,D =1:wu :s,CM =< src,dst,qual >,() >, assuming u
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Compute_1 dimensional pattern(D, CM.src, C M.dst)

Let D=1l:u:s8, CM.src=ax*xi+ 3, CM.dst=vyx%i+ 0
if (I contains variables) then
return all-to—-all connections
end if
if (o, B, v or § are variables) then
return all to all connections
end if
pattern = ¢
for each element 7 in D do
pattern = pattern 4+ communication of i
if (communication repeated) then
return pattern
end if
end for

Figure 5.8: Algorithm for 1-dimensional arrays and 1-dimensioanl virtual processor grid

is infinite, there exist a value k, k& < p?b?, such that the communication for all m > k,
A[l+mx s| has the same source and destination as the communication for A[l+ (m — k) * s].
Proof: Follows from above discussions. O

The implication of the lemma is that the algorithm to determine the communica-
tion pattern for the SCD can stop when the repetition point occurs. In other words, when
the upper bound of D is unknown, the communication pattern can be approximated by
using the repetition point. Figure 5.8 shows the algorithm to compute the physical com-
munication pattern for a 1-dimensional array and a 1-dimensional virtual processor grid.
The algorithm first checks the SCD. Let D =1:u:sand CM =< a+ B* i,y + d *i,—>.
If [ contains variables or the mapping is not clean (a, 3, v or § are symbolic constants), the
communication is approximated with all to all connections. Note that by the semantics
of array sections, when [ is unknown, the compiler cannot determine the actual sequence
of elements in an array section. When s contains variables, it will be approximated by 1,
that is, D is approximated by a superset [ : u : 1. When u contains variables, the physical
communication is approximated by considering all elements until the repetition point. Note
that when u contains a variable, the sequence in D is [, | + s, l + 2 % s, .... Although the
upper bound of the sequence is unknown to the compiler, the repetition point can be used
to approximate the communication pattern.

Now let us consider multi-dimensional arrays and multi dimensional virtual pro-

cessor grids. In an n dimensional virtual processor grid, a processor is represented by a
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n—dimensional coordinate (pi,ps2,...,pn). The algorithm to compute the communication
pattern finds all pairs of source and destination processors that require communication.
This is done by considering the dimensions in virtual processor grid one at a time. A set
of srec = (sp1,8p2; ..., Spn) — dst = (dp1,dpa, ...,dpy,) pairs is used to represent the com-
munications. A wild card, %, is used to represent the dimension within a tuple that has
not been considered. Initially the communication set contains a single element where all
dimensions are wild—cards. When one dimension is considered, it generates a 1-dimensional
communication pattern for a specific dimension in the source and the destination, denoted
as src_dim and dst_dim respectively. This 1-dimensional pattern may degenerate to con-
tain only source processors or destination processors. A cross product operation is defined
to merge the 1-dimensional communication patterns into the n-dimensional communica-
tion. This operation is similar to the cross product of sets except that specific dimensions
are involved in the operation. For the degenerate form of the 1-dimensional pattern, the
operation only involves source processors or destination processors.

For example, consider the communication for

SCD =<y, (1:4:1,1:4:1),< src= (i,7),dst = (4,4),qual = NULL >, NULL >.

Further assume that the virtual processor grid is distributed on 2 processors with block
size of 2 in each dimension and array y is identically mapped to the virtual processor
grid. Initially, the communication set contains a single element (x,%) — (*,#), indicat-
ing that all dimensions in the source and destination processor have not been consid-
ered. Considering the first dimension in the data space, which is identically mapped to
the first dimension of the virtual grid. Hence, src.dim = 1. From the mapping rela-
tion CM.src and CM.dst, it is can found that dimension 2 in the destination proces-
sor correspond to dimension 1 in the source processor. Hence, dst_dim = 2. Apply-
ing the algorithm for the 1-dimensional communication pattern obtains the communica-
tion to be {0 — 0,1 — 1} with src.dim = 1,dst.dim = 2. Taking the cross prod-
uct of this pattern with the 2-dimensional communication set {(x,%) — (*,%)} yields
{(0,%) — (%,0),(L,%x) — (%,1)}. Considering the second dimension of the data space,
the 1 dimensional communication set is {0 — 0,1 — 1} with sre_dim = 2,dst_dim = 1.
Taking the cross product of this pattern set to the 2-dimensional communication set gives
{(0,0) — (0,0),(0,1) — (1,0),(1,0) — (0,1),(1,1) — (1,1)}, which is the physical com-
munication for the SCD.

The above example does not take constant mappings and non NULL qualifiers into
consideration. The algorithm to compute communication patterns for multi-dimensional

arrays that is shown in Figure 5.9 considers all these situations. The algorithm first checks
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whether the mapping relation can be processed. If one loop induction variable occurs in two
or more dimensions in C'M.src or CM.dst, the algorithm cannot find the correlation between
dimensions in source and destination processors, and the communication pattern for the
SCD is approximated by all to all connections. If the SCD passes the mapping relation test,
the algorithm determines for each dimension in the data space the corresponding dimension
sd in the source processor grid. If it does not exist, the data dimension is not distributed and
need not be considered. If there exists such a dimension, the algorithm then tries to find the
corresponding dimension dd in the destination processor grid by checking whether there is a
dimension dd such that CM.dst[dd] contains the same looping index variable as the source
dimension CM.src[sd]. If such dimension exists, the algorithm computes 1-dimensional
communication pattern between dimension sd in the source processor and dimension dd in
the destination processor, then cross—products the 1-dimensional communication pattern
into the n-dimensional communication pattern. When dd does not exist, the algorithm
determines a degenerate 1-dimensional pattern, where only source processors are considered,
and cross-products the degenerate 1-dimensional pattern into the communication pattern.
After all dimensions in the data space are considered, there may still exist dimensions in
the source processor (in the virtual processor grid) that have not been considered. These
dimensions should be constants and are specified by the alignment matrix and the alignment
offset vector. The algorithm fills in the constants in the source processors. Dimensions
in destination processor may not be fully considered, either. When CM.qual # NULL,
the algorithm finds for each item in CM.qual the corresponding dimension, computes all
possible processors in that dimension and cross—products the list into the communication
list. Finally, the algorithm fills in all constant dimensions in the destination.

An example in Figure 5.10 illustrates how communications on physical processors
are derived. In the program, the virtual processor grid is 3-dimensional and the alignment

array and the alignment offset vector for arrays « and y are as follows:

0 2 0 0 1
My=|10 |,0.=|2|M=|1],8=]|1
0 0 1 0 2

Let us assume that the virtual processor grid, V PROCS, is distributed as p =
(2,2,1), which means 2 processors in dimension 0, 2 processors in dimension 1 and 1 pro-
cessor in dimension 2, and b = (2,2, 1), which means the block size 2 in dimension 0, 2 in

dimension 1 and 1 in dimension 2. After communication analysis, the SCD to represent the
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Compute communication pattern(SCD)

Let SCD =< A,D,CM,Q >

if (the format of CM is not good) then
return all-to-all connections

end if

pattern = {(*, x, ..., )}

for each dimension 7 in the array do
Let sd be the corresponding dimension in source processor grids.
Let dd be the corresponding dimension in destination processor grids.
ldpattern = compute_l-dimensional_pattern(D[i|, C M.src[sd], CM.dst[dd])
pattern = cross_product(pattern, 1dpattern)

end for

pattern = source_processor_constants(pattern)

for each element i in the mapping qualifier do
Let dd be the corresponding destination processor dimension.
ldpattern = compute_l-dimensional_pattern(CM.qual[i], —, CM.dst[dd])
pattern = cross_product(pattern, ldpattern)

end for

pattern = destination_processor_constants(pattern)

return pattern

Figure 5.9: Algorithm for multi-dimensional array

ALIGN (i, j) with VPROCS(2%j, i4+2, 1) = x
ALIGN (i) with VPROCS(1, i+1, 2) =1 y
DOi=1,5
DOj=1,5

<0, J) = y() + 1
END DO
END DO

Figure 5.10: An example
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communication is as follows:
SCD =<y,(1:5:1),<sre=(1,i+1,2),dst = (2% j,i+2,1),qual = {j =1:5:1} >, NULL >.

The communication on physical processors is computed as follows. First consider
the dimension 0 in the array y. From the alignment, the algorithm knows that dimension
1 in the virtual processor grid corresponds to this dimension in the data space. Checking
dst in M, the algorithm can find that dimension 1 in destination corresponds to dimension
1 in source processors. Applying the 1-Dimensional mapping algorithm, an 1-dimensional
communication pattern {0 — 1,1 — 0} with src.dim = 1 and dst_.dim = 1 is obtained.
Thus the communication list becomes {(x, 1, %) — (*,0, %), (*,0,%) — (*,1,%)} after taking
the cross product with the 1 dimensional pattern. Next, the other dimensions in source
processors, including dimension 0 that is always mapped to processor 0 and dimension 2
that is always mapped to processor 1 are considered. After filling in the physical processor
in these dimensions in source processors, the communication pattern becomes {(0,1,1) —
(%,0,%),(0,0,1) — (x,1,%)}. Considering the qual in M, the dimension 0 of the destination
processor can be either 0 or 1. Applying the cross product operation, the new communica-
tion list {(0,1,1) — (0,0,%), (0,1,1,) — (1,0,%), (0,0,1) — (0,1,%), (0,0,1) — (1,1,%)}
is obtained. Finally, the dimension 2 in the destination processor is always mapped to
processor 0, Thus, the final mapping is {(0,1,1) — (0,0,0),(0,1,1s) — (1,0,0),(0,0,1) —
(0,1,0),(0,0,1) — (1,1,0)}.

There are several levels of approximations in the algorithm. First, when the algo-
rithm cannot correlate the source and destination processor dimensions from the mapping
relation, the algorithm uses an approximation of all-to—all connections. If the mapping
relation contains sufficient information to distinguish the relation of the source and desti-
nation processor dimension, computing the communication pattern for a multi-dimensional
array reduces to computing 1-dimensional communication patterns, thus the approxima-
tions within each dimension are isolated to that dimension and will not affect the patterns
in other dimensions. Using this multi-level approximation scheme, some information is

obtained when the compiler does not have sufficient information for a communication.

5.4 Connection scheduling algorithms

Once the communication requirement on physical processors is obtained, the com-
piler uses off line algorithms to perform connection scheduling and determines the commu-
nication phases in a program. This section presents the connection scheduling algorithms

and their performance evaluation. These algorithms assume a torus topology.
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For a given network, a set of connections that do not share any link is called a
configuration. In an optical TDM network with path multiplexing, multiple configurations
can be supported simultaneously. Specifically, for a network with multiplexing degree d, d
configurations can be established concurrently. Thus, for a given communication pattern,
realizing the communication pattern with a minimum multiplexing degree is equivalent to
determining the minimum number of configurations that contain all the connections in the
pattern. Next, some definitions will be presented to formally state the problem of connection

scheduling. A connection from a source src to a destination dst is denoted as (src, dst).

A pair of connections (s1,d;) and (s9,ds) are said to conflict, if they cannot be simulta-

neously established because they use the same link.

A configuration is a set of connections {(s1,d1), (s2,d2), ..., ($m,dm)} such that no con-

nections in the set conflict.

Given a set of connections Comm = {(s1,d1), (s2,d2), ..., (Sm,dm)}, the set MC = {C},
Cy, ..., Cy } is a minimal configuration set for Comm iff:
e cach C; € MC is a configuration and each connection (s;,d;) € R is contained in
exactly one configuration in M C'; and
e each pair of configurations C;,C; € MC contain connections (s;,d;) € C; and

(S]‘, dj) € Cj such that (84,d;) conflicts with (S]‘, dj).

It has been shown that optimal message scheduling for arbitrary topologies is
NP-complete [19]. Therefore these algorithms are heuristics that are demonstrated to pro-
vide good performance. Three connection scheduling heuristic algorithms that compute a

minimal configuration set for a given connection set Comm are described next.

5.4.1 Greedy algorithm

In the greedy algorithm, a configuration is created by repeatedly putting con-
nections into the configuration until no additional connection can be established in that
configuration. If additional connections remain, another configuration is created and this
process is repeated till all connections have been processed. This algorithm is a modifica-
tion of an algorithm proposed in [61]. The algorithm is shown in Figure 5.11. The time
complexity of the algorithm is O(|Comm| x maz;(|C;|) x d), where |Comm/| is the number of
the connections, |C;| is the number of connections in configuration C; and d is the number
of configurations generated.

For example consider the linearly connected nodes shown in Figure 5.12. The

result for applying the greedy algorithm to schedule connections set {(0, 2), (1, 3),(3, 4),
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(1) MC=¢ k=1

(2) repeat

(3) Cp=¢

(4) foreach (s;,d;) € Comm

(5) if (s;,d;) does not conflict with any connection in Cj then
(6) Cr =CrU (si,d;)

(7) Comm = Comm — (s;,d;)
(8) end if

(9) end for

(10) MC =MC U Cy

(11) until Comm = ¢

Figure 5.11: The greedy algorithm.

(2, 4)} is shown in Figure 5.12(a). In this case, (0, 2) will be in time slot 1, (1, 3) in time
slot 2, (3, 4) in time slot 1 and (2, 4) in time slot 3. Therefore, multiplexing degree 3 is
needed to establish the paths for the four connections. However, as shown in Figure 5.12
(b), the optimal scheduling for the four connections, which can be obtained by considering
the connection in different order, is to schedule (0, 2) in slot 1, (1, 3) in slot 2, (3, 4) in
slot 2 and (2, 4) in slot 1. The second assignment only use 2 time slots to establish all the

connections.

Figure 5.12: Scheduling connections (0, 2), (1, 3),(3, 4), (2, 4)

5.4.2 Coloring algorithm

The greedy algorithm processes the connections in an arbitrary order. This sub-
section describes an algorithm that applies a heuristic to determine the order to process
the connections. The heuristic assigns higher priorities to connections with fewer conflicts.
By giving the connections with less conflicts higher priorities, each configuration is likely to
accommodate more connections and thus the multiplexing degree needed for the patterns
is likely to decrease.

The problem of computing the minimal configuration set is formalized as a graph

coloring problem. A coloring of a graph is an assignment of a color to each node of the
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graph in such a manner that no two nodes connected by an edge have the same color. A
conflict graph for a set of connections is built in the following manner, (1) each node in the
graph corresponds to a connection and (2) an edge is introduced between two nodes if the
connections represented by the two nodes are conflicted. As stated by the theorem given
below, the number of colors used to color the graph is equal to the number of configurations
needed to handle the connections.

Theorem: Let Comm = {(s1,d1), (s2,d2), ..., (Sm,dm)} be the set of connections and G =
(V, E) be the conflict graph for Comm. There exists a configuration set M = {C,Cy, ..., Cy }
for R if and only if G can be colored with ¢ colors.

Proof: Since connections that correspond to the nodes with the same color do not conflict
with each other, they can be placed in one configuration. O

Thus, the coloring algorithm attempts to minimize the number of colors used in
coloring the graph. Since the coloring problem is known to be NP-complete, a heuristic
is used for graph coloring. The heuristic determines the order in which nodes are colored
using the node priorities. The algorithm is summarized in Fig 5.13. It should be noted
that after a node is colored, the algorithm updates the priorities of uncolored nodes. This
is because in computing the degree of an uncolored node, only the edges that connect the
node to other uncolored nodes are considered. The algorithm finds a solution in linear time
(with respect to the size of the conflict graph). The time complexity of the algorithm is
O(|Comm|? x maz;(|C;|) x d), where |Comm| is the number of the connections, |C;| is
the number of connections in configuration C; and d is the total number of configurations
generated.

For torus and mesh networks, a suitable choice for priority for a connection is
the ratio of the number of links in the path from the source to the destination and the
degree of the node corresponding to the connection in G. Applying the coloring algo-
rithm to the example in Figure 5.12, in the first iteration, the connections are reordered
as {(0,2),(1,3),(2,4),(3,4)} and connections (0, 2), (2, 4) will be put in time slot 1. In
the second iteration, connections (1, 3), (3, 4) are put in time slot 2. Hence, applying the

coloring algorithm will use 2 time slots to accommodate the connections.

5.4.3 Ordered AAPC algorithm

The graph coloring algorithm has better performance than the greedy heuristic.
However, for dense communication patterns the heuristics cannot guarantee that the mul-
tiplexing degree found would be bounded by the minimum multiplexing degree needed to

realize the all-to-all pattern. The algorithm described in this section targets dense com-
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(1) Construct conflict graph G = (V, E)

(2) Calculate the priority for each node

3) MC=¢ k=1

(4)  NCSET =V

(5) repeat

(6) Sort NCSET by priority

(7) WORK = NCSET

(8) Cp=¢

9) while (WORK # )

(10) Let ny be the first element in WORK
(11) Cr = Cy U{< Sf,df >}

(12) NCSET = NCSET —{n}

(13) for each n;, € NCSET and (f,i) € E do
(14) update the priority of n;

(15) WORK = WORK - {n;}

(16) end for

(17) end while

(18) MC = MC + {Cy}

(19) until NCSET = ¢

Figure 5.13: The graph coloring heuristic.

munication patterns. By grouping the connections in a more organized manner, better
performance can be achieved for dense communication.

The worst case of arbitrary communication is the all-to-all personalized communi-
cation (AAPC) where each node sends a message to every other node in the system. Any
communication pattern can be embedded in AAPC. Many algorithms [33, 38] have been
designed to perform AAPC efficiently for different topologies. Among these algorithms,
the ones that are of interests to us are the phased AAPC algorithms, in which the AAPC
connections are partitioned into contention free phases. A phase in this kind of AAPC
corresponds to a configuration. Some phased AAPC algorithms are optimal in that every
link is used in each phase and every connection follows the shortest path. Since all the
connections in each AAPC phase are contention—free, they form a configuration that uses
all the links in the system. Each phase in the phased AAPC communication forms an
AAPC configuration. The set of AAPC configurations for AAPC communication pattern is
called AAPC configurations set. The following theorem states the property of connection
scheduling using AAPC phases.

Theorem: Let Comm = {(s1,d1), (s2,d2), ..., (Sm,dm)} be the set of connections, if

Comm can be partitioned into K phases Py = {(s1,d1), ..., (si,,d;, )},
Py = {(‘9i1+17di1+1)7---a (sizadh)}a oy Pro= {(‘91K71+17diK71+1)7"'a (sixadix)}v such that
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P, 1 <1 < K, is a subset of an AAPC configuration. Using the greedy algorithm to
schedule the connections (s1,d1), (s2,d2), ..., ($m,dy,) results in a multiplexing degree less
than or equal to K.

Proof: The theorem is proven by contradiction that for any a, 1 < o < m, let (sq,ds) € Pg,
1 < 3 < K, connections (81,d1), ..., (Sa;da) can be scheduled by the greedy algorithm using
a multiplexing degree less than or equal to 3.

Let (sq,ds) € Pg be the first connection that does not satisfy the above proposi-
tion. That is, (s1,d1), .y (Sa_1,dn_1) are scheduled using a multiplexing degree of 5 and
(8a;dq) cannot be accommodated in configuration 5. Since the connections in Ps do not
conflict with each other, another connection that belongs to P,, v < 8 must be scheduled
in configuration 3. Hence, ($q,d,) is not the first connection that does not satisfy the
proposition, which contradicts the assumption. O

The theorem states that if the connections are reordered by the AAPC phases, at
most all AAPC phases are needed to realize arbitrary pattern using the greedy scheduling
algorithm. For example, following the algorithms in [33], N3 /8 phases are needed for a N x N
torus. Therefore, in a N x N torus, N?/8 degree is enough to satisfy any communication
pattern.

To obtain better performance on dense communication patterns, it is better to
keep the connections in their AAPC format as much as possible. It is therefore better to
schedule the phases with higher link utilization first. This heuristic is used in the ordered
AAPC algorithm. In ordered AAPC algorithm, the rank of the AAPC phases is calculated
so that the phase that has higher utilization has higher rank. The phases are then scheduled
according to their ranks. The algorithm is depicted in Figure 5.14. The time complexity of
this algorithm is O(|Comm/|(lg(|Comm|)+maz;(|C;|) x K)), where |Comm]| is the number of
the connections, |C;| is the number of connections in configuration C; and K is the number
of configurations needed. The advantage of this algorithm is that for this algorithm the
multiplexing degree is bounded by N?3/8. Thus, in situations where the greedy or coloring

heuristics fail to meet this bound, AAPC can be used.

5.4.4 Performance of the scheduling algorithms

In this section, the performance of the connection scheduling algorithms on 8 x 8
torus topology is studied. The performances of the algorithms are evaluated using randomly
generated communication patterns, patterns encountered during data redistribution, and
some frequently used communication patterns. The metric used to compare the algorithms

is the multiplexing degree needed to establish the connections. It should be noted that a
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(1) PhaseRank[*] = 0

(2) for(s;,d;) € Comm do

(3) let (Si,di) € A

(4) PhaseRank[k] = PhaseRank[k| + length((s;, d;))
(5) end for

(6) sort phase according to PhaseRank

(7) Reorder Comm according the sorted phases.

(8) call greedy algorithm

Figure 5.14: Ordered AAPC scheduling algorithm

dynamic scheduling algorithm will not perform better than the greedy algorithm since it
must establish the connections by considering the connections in the order that they arrive.

A random communication pattern consists of a certain number of random connec-
tions. A random connection is obtained by randomly generating a source and a destination.
Uniform probability distribution is used to generate the sources and destinations. The
data redistribution communication patterns are obtained by considering the communication
results from array redistribution. In this study, data redistributions of a 3D array are con-
sidered. The array has block—cyclic distribution in each dimension. The distribution of a
dimension can be specified by the block size and the number of processors in the dimen-
sion. A distribution is denoted as p:block(s), where p is the number of processors in the
distribution and s is the block size. When the distribution of an array is changed (which
may result from the changing of the value p or s), communication may be needed. Many
programming languages for supercomputers, such as CRAFT FORTRAN, allow an array
to be redistributed within a program.

Table 5.4 shows the multiplexing degree required to establish connections for ran-
dom communication patterns using the algorithms presented. The results in each row are
the averages obtained from scheduling 100 different randomly generated patterns with the
specific number of connections. The results in the column labeled combined algorithm are
obtained by using the minimum of the coloring algorithm and the AAPC algorithm results.
Note that in compiled communication, more time can be spent to obtain better runtime
network utilization. Hence, the combined algorithm can be used to obtain better result by
the compiler. The percentage improvement shown in the sixth column is achieved by the
combined algorithm over the dynamic scheduling. It is observed that the coloring algorithm
is always better than the greedy algorithm and the AAPC algorithm is better than the other

algorithms when the communication is dense. It can be seen that for sparse random pat-



number of greedy coloring AAPC combined | improvement
connections. | algorithm | algorithm | algorithm | algorithm | percentage
100 7.0 6.7 6.9 6.6 6.3%
400 16.5 16.1 16.5 15.9 3.8%
800 27.2 25.9 26.5 25.6 6.3%
1200 36.3 34.5 35.3 34.2 6.1%
1600 45.0 43.5 43.4 42.8 5.1%
2000 53.4 50.4 50.4 49.7 7.4%
2400 60.8 57.5 57.4 56.7 7.2%
2800 68.8 64.4 62.4 62.4 10.2%
3200 76.3 70.8 64 64 19.2%
3600 83.9 76.8 64 64 31.1%
4000 91.6 83 64 64 43.1%
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Table 5.4: Performance for random patterns

terns (100 - 2400 connections), the improvement range varies from 3.8% to 7.2%. Larger

improvement results for dense communication. For example, the combined algorithm uses

43.1% less multiplexing degree than that of the greedy algorithm for all to all pattern.

This result confirms the result in [33] that it is desirable to use compiled communication

for dense communication.

No. of No. of greedy coloring AAPC combined | improvement
connections | patterns | algorithm | algorithm | algorithm | algorithm | percentage
0 - 100 34 1.2 1.2 1.2 1.2 0.0%
101 - 200 50 5.9 4.9 4.8 4.6 28.3%
200 - 400 o4 10.6 9.7 10.0 9.5 11.6%
401 - 800 105 17.7 15.9 16.0 15.5 14.2%

801 - 1200 122 31.7 28.7 28.6 27.6 14.9%
1201 - 1600 0 0 0 0 0 0%
1601 - 2000 15 46.3 42.8 35.1 35.1 31.9%
2001 - 2400 7 55.5 51.5 51.9 50.4 10.1%
2401 - 4031 0 0 0 0 0 0%

4032 43 92 83 64 64 43.8%

Table 5.5: Performance for data distribution patterns

To obtain more realistic results, the performance is also evaluated using the com-

munication patterns for data redistribution and some frequently used communication pat-

terns which occurs in the programs analyzed by the E SUIF compiler. Table 5.5 shows the

performance of the algorithms for data redistribution patterns. The communication pat-

terns are extracted from the communication resulting from the random data redistribution
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of a 3D array of size 64 x 64 x 64. The random data redistribution is created by randomly
generating the source data distribution and the destination data distribution with regard to
the number of processors allocated to each dimension and the block size in each dimension.
Precautions are taken to make sure that the total processor number is 64 and the block size
is not too large so that some processors do not contain any part of the array. The table
lists the results for 500 random data redistributions. The first column lists the range of
the number of connections in each pattern. The second column lists the number of data
redistrictions whose number of connections fell into the range. For example, the second
column in the last row indicates that among the 500 random data redistributions, 43 re-
sults in 4032 connections. Columns three to six list the multiplexing degree required by the
greedy algorithm, the coloring algorithm, the AAPC algorithm and the combined algorithm
respectively. The seventh column lists the percentage improvement by the combined algo-
rithm over the greedy algorithm. The result shows that the multiplexing degree required
to establish connections resulting from data redistribution is less than that resulting from
the random communication patterns. For the data redistribution pattern, the percentage
improvement obtained by using the combined algorithm ranges from 10.1% to 31.9%, which

is larger than the improvement for the random communication patterns.

Pattern No. of conn. | greedy | coloring | AAPC | comb | percentage
ring 128 3 2 2 2 50%
nearest neighbor 256 6 4 4 4 50%
hypercube 384 9 7 8 7 28.6%
shuffle-exchange 126 6 4 5 4 50%
all to all 4032 92 83 64 64 43.8%

Table 5.6: Performance for frequently used patterns

Table 5.6 shows the performance for some frequently used communication patterns.
In the ring and the nearest neighbor patterns, no conflicts arise in the links. However, there
are conflicts in the communication switches. The performance gain is higher for these

specific patterns when the combined algorithm is used.

5.5 Communication Phase analysis

Armed with the connection scheduling algorithms, the compiler can determine
when two communication patterns can be combined so that the underlying network can

support both patterns simultaneously and thus, can partition a program into phases such
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that each phase contains connections that can be supported by the underlying network.
This section considers the compiler algorithm to partition a program.

The communication phase analysis is carried out in a recursive manner on the
high level SUIF representation of a program, which is similar to an abstract syntax tree.
SUIF represents a program in a hierarchical manner. A procedure contains a list of SUIF
nodes, where each node can be of different types and can contain sub—lists. Some impor-
tant SUIF node types include TREE_FOR, TREE_LOOP, TREE_IF, TREE_BLOCK and
TREE_INSTR. A TREE_FOR node represents a for-loop structure. It contains four sub—
lists, Ib_list which contains the SUIF to compute the lower bound, ub_list which contains
the nodes to compute the upper bound, step_list which contains the nodes to compute the
step, and body which contains the loop body. A TREE_LOOP node represents a while-loop
structure. It contains two sub-lists, test and body. A TREE_IF node represents an if-then—
else structure. It contains three sub lists, header which is the test part, then_part which
contains the nodes in the then part, and the else_part. A TREE_BLOCK node represents
a block of statements, it contains a sub list body. A TREE_INSTR nodes represents a
statement.

Given a SUIF representation of a program, which contains a list of nodes, the
communication phase analysis algorithm determines the communication phases for each
sub lists in the list and then determines the communication phases of the list. In addition
to the annotations for communications, a composite node, which contains sub-lists, is as-
sociated with two variables, pattern, which is the communication pattern that is exposed
from the sub-lists, and the kill_phase, which has a boolean value, indicating whether its
sub lists contain phases.

The algorithm to analyze communication phases in a program for a node list is
shown in Figure 5.15. The algorithm assumes that the multiplexing degree for the system
is d. It also uses one of the algorithms discussed in section 5.4, denoted as
multiplezing _degree(Comm), to compute the multiplexing degree required to realize com-
munication pattern Comm. Given a node list, the algorithm first recursively examines the
sub lists of all nodes and annotates the nodes with pattern and kill_phase. This post order
traversal of the SUIF program accumulates the communications in the innermost loops first,
and thus can capture the communication locality when it exists and is supported by the un-
derlying network. Figure 5.16 describes the operations for TREE_IF nodes. The algorithms
for TREE_IF node computes the phases for the three sub lists. In the cases when there are
phases within the sub lists and when the network does not have enough capacity to support

the combined communication, a phase is created in each of the sub-list to accommodate the



Communication_Phase_Analysis(list)

Input: list: a list of SUIF nodes

Output: pattern: communication pattern exposed out of the list
kill_phase: whether there are phases within the list

Analyze communication phases for each node in the list.
c_pattern = NULL, kill_phase = 0
For each node n in list in backward order do
if (n is annotated with kill_phase) then
Generate a new phase for c_pattern after n.
c_pattern = NULL, kill_phase = 1
end if
if (n is annotated with communication pattern a) then
new_pattern = c_pattern + a
if (multiplexing_degree(new_pattern) < d) then
c_pattern = new_pattern
else
Generate a new phase for c_pattern after n.
c_pattern = a, kill_phase =1
end if
end if
end for
return c_pattern and kill_phase

Figure 5.15: Communication phase analysis algorithm

Communication_Phase_Analysis for TREE_IF

Analyze the header list.
Analyze the then_part list.
Analyze the else_part list.
Let comb = the combined communications from the three sub lists.
If (there are phase changes in the sub-lists) then
Generate a phase in each sub list for the communication exposed.
pattern = NULL, kill_phase = 1
if (multiplexing_degree(comb) > d) then
Generate a phase in each sub-list for the communication exposed.
pattern = NULL, kill_phase =1
else
pattern = comb, kill_phase = 0
end if
Annotate the TREE_IF node with pattern and kill_phase.

Figure 5.16: Communication phase analysis for TREE_IF nodes
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Figure 5.17: An example for communication phase analysis

corresponding communication from that sub list. Otherwise, the TREE_IF node is anno-
tated with the combined communication indicating the communication requirement of the
IF statement. Algorithms for processing other node types are similar. After all sub lists
in all nodes in the list are analyzed, the node list contains a straight line program, whose
nodes are annotated with communication, pattern and kill_phase. The algorithm exam-
ines all these annotations in each node from back to front. A variable c_pattern is used
to maintain all communications currently accumulated. There are two cases when a phase
is generated. First, once a kill_phase annotation is encountered, which indicates there are
phases in the sub—lists, thus, it does not make sense to maintain a phase passing the node
since there are phase changes during the execution of the sub-lists, a new phase is created
to accommodate the connection requirement after the node. Second, in the cases when
adding a new communication pattern into the current (accumulated) pattern exceeds the
network capacity, a new communication phase is needed.

Figure 5.17 shows an example for the communication phase analysis. The program
in the example contains six communications, C0, C1, C2, C3, C4, C5 and C6, an IF
structure and a DO structure. The communication phase analysis algorithm first analyzes
the sub lists in the IF and DO structures. Assuming the combination of C'1 and C2 can
be supported by the underlying network, while combining communications C'1, C2 and C3

exceeds the network capacity, which results in the two phases in the IF branches and the
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Prog. Description Distrib.

0001 Solution of 2-D Poisson Equation by ADI (*, block)
0003 2-D Fast Fourier Transform (*, block)
0004 NAS EP Benchmark - Tabulation of Random Numbers (*, block)
0008 2-D Convolution (*, block)
0009 Accept/Reject for Gaussian Random Number Generation (block)

0011 Spanning Percolation Cluster Generation in 2-D (*, block)
0013 2-D Potts Model Simulation using Metropolis Heatbath (*, block)
0014 | 2-D Binary Phase Quenching of Cahn Hilliard Cook Equation | (*, block)
0022 Gaussian Elimination - NPAC Benchmark (*, cyclic)
0025 N-Body Force Calculation - NPAC Benchmark (block, *)
0039 Segmented Bitonic Sort (block)

0041 Wavelet Image Processing (*, block)
0053 Hopfield Neural Network (*, block)

Table 5.7: Benchmarks and their descriptions

Kill_phase is set for the IF header node. Assuming that all communications of C'5 within
the DO loop can be supported by the underlying network, Figure 5.17 (a) shows the results
after the sub-lists are analyzed. The algorithm then analyzes the list by considering each
node from back to forth, it combines communications C4 and C5. Since the IF header node
is annotated with kill_phase. A new phase is generated for communications C'4 and C5
after the IF structure. The algorithm then proceeds to create a phase for communication
C0. Figure 5.17 (c) shows the final result of the communication phase analysis for this

example.

5.5.1 Evalutation of the communication phase analysis algorithm

This section presents the performance evaluation of the E-SUIF compiler for com-
piled communication. The compiler is evaluated with respect to the analysis time and the
runtime performance. The E SUIF compiler analyzes the communication requirement of a
program and partitions the program into phases such that each phase contains a communi-
cation pattern that can be realized by a multiplexing degree of d, where d is a parameter.
In addition, the compiler also gives channel assignments for connections in each phase. It
is assumed that the underlying network is a 8 x 8 torus.

Programs from the HPF benchmark suite at Syracuse University are used to evalu-
ate the algorithms. The benchmarks and their descriptions are listed in Table 5.7. The table
also shows the data distribution of the major arrays in the programs. These distributions

are obtained from the original benchmark programs. Table 5.8 breaks down the analysis
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benchmarks | size (lines) | overall | logical communication | phase analysis
0001 045 11.33 0.45 8.03
0003 372 24.83 0.50 11.80
0004 999 19.08 0.42 15.02
0008 404 27.08 0.68 13.28
0009 491 46.72 4.45 19.65
0011 439 14.78 0.57 11.37
0013 688 23.08 1.07 17.30
0014 428 15.58 1.03 11.38
0022 496 22.57 0.77 18.35
0025 295 5.77 0.78 3.35
0039 465 16.08 0.38 13.13
0041 579 9.93 0.28 6.62
0053 474 7.39 0.35 4.33

Table 5.8: Communication phase analysis time

time. The table shows the time for overall analysis, the logical communication analysis and
the communication phase analysis. The overall analysis includes the time to load and store
the program, the time to analyze communication requirement on the virtual processor grid,
the time to derive communication requirement on the physical processor grid and the time
for communication phase analysis. The communication phase analysis time accounts for
a significant portion of the overall analysis time for all the programs. This is because the
communication phase operates on large sets of data (communication pattern). However, for
medium size programs, such as the benchmarks used, the analysis time is not significant.
Table 5.9 shows the precision of the analysis. It compares the average number of
channels and connections per phase obtained from our algorithms with those in actual exe-
cutions. The number of channels and connections per phase in actual executions is obtained
by accumulating the connections within each phase, which is determined by the compiler.
When a phase change occurs, the statistics about the number of connections within each
phase is collected and the connection scheduling algorithm is invoked to compute the num-
ber of channels needed for the connections in that phase. For most programs, the analysis
results match the actual program executions, which indicates that approximations are sel-
dom used. For the programs where approximations occur, the channel approximation is
better than the connection approximation as shown in benchmark 0022. This is mainly
due to the approximation of the communications that are not vectorized. For such commu-
nications, if the underlying network can support all connections in a loop, the phase will

contain the loop and use the channels for all communications in the loop. However, for the
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benchmark connections per phase channels per phase

programs | actual | compiled | percentage | actual | compiled | percentage
0001 564.4 564.4 100% 9.1 9.1 100%
0003 537.6 537.6 100% 8.6 8.6 100%
0004 116.3 116.3 100% 5.5 5.5 100%
0008 562.6 562.6 100% 8.9 8.9 100%
0009 91.2 230.7 39.6% 4.3 6.6 65.1%
0011 126.3 126.3 100% 5.2 5.2 100%
0013 67.3 67.3 100% 3.1 3.1 100%
0014 126.4 126.4 100% 4.0 4.0 100%
0022 13.1 413.2 3% 4.6 8.9 52.7%
0025 80.0 80.0 100% 3.0 3.0 100%
0039 125.7 125.8 99.9% 8.8 8.8 99.9%
0041 556.1 556.1 100% 8.8 8.8 100%
0053 149.2 575.2 25.9% 9.0 9.1 98.9

Table 5.9: Analysis precision

connections, the compiler approximates each individual communication inside the loop with
all communications of the loop. Since the number of channels for a communication pattern
determines the communication performance, this type of approximation does not hurt the

communication performance.

5.6 Chapter summary

This chapter addressed the compiler issues for applying compiled communica-
tion. In particular, algorithms for communication analysis were presented which take into
consideration common communication optimizations including message vectorization, re-
dundant communication elimination and message scheduling. A demand driven array data
flow framework, which improves over previous communication optimization algorithms by
reducing the analysis cost and improving the analysis precision, was developed for the com-
munication optimizations. Three off-line connection scheduling algorithms were described
that realize a given communication pattern with a minimal multiplexing degree. A com-
munication phase analysis algorithm, which partitions a program into phases such that
each phase contains communications that can be supported by the underlying network, was
developed. The algorithm also exploits communication locality to reduce the amount of
reconfiguration overhead during program execution.

A compiler, called the E SUIF compiler, implements all the above algorithms and

thus, supports compiled communication. The E SUIF compiler compiles a HPF like pro-
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gram, analyzes its communication requirement, partitions the program into phases such that
each phase contains connections that can be supported by the underlying network, assigns
channels for connections in each phase, and outputs a C program with the communica-
tion and phase annotations such that when the program is executed, the communications
(and phases) in the program can be simulated. All the algorithms were evaluated in the
compiler. It was found that the communication optimization algorithms are efficient in
terms of the analysis cost and are effective in finding the optimization opportunities. The
communication phases analysis algorithm generally captures the program runtime behavior
accurately.

In the last three chapters, techniques for the three communication schemes are
discussed. Next chapter evaluates the three communication schemes and compares their

performance using real application programs.



Chapter 6

Performance comparison

This chapter evaluates the relative performance of the three communication schemes
presented in Chapters 3, 4, and 5 using real application programs. Three sets of programs
are used in the evaluation. The first set of programs includes three hand—coded parallel
programs, where communications are well defined and highly optimized for parallel execu-
tion. The second set of programs includes a number of HPF benchmark programs which
are tuned for parallel execution. The third set of programs includes a number of programs
from SPEC95 which are not optimized for parallel execution.

The performance measurement is the communication time in the unit of time slots.
A packet, which contains a number of words, can be transmitted through a lightpath in
a time slot. In addition, normalized time is also used to compare the performance of the
schemes. In normalized time, the best communication time among all schemes is assigned a
value of 1.0 and communication times of all schemes are normalized with respect to the best
communication time. The normalized time shows the best scheme for each program and how
other schemes perform compared to the best scheme. It is assumed that the communication
in each pattern is performed in a synchronized manner. That is, the program synchronizes
before and after each communication pattern and thus no interleaving of communications
and computations is allowed.

Because the E-SUIF compiler does not handle the message passing paradigm, the
first set of experiment is carried out manually by extracting the communication patterns in
the programs by hand. The programs in the second and third sets are generated automat-
ically by the E SUIF compiler for the experiment. As discussed in Chapter 5, the E SUIF
compiler first analyzes and optimizes the communications in a program and represents the
communications using Section Communication Descriptors (SCDs). It then performs the
communication phase analysis and partitions the program into phases and schedules the
communication pattern within each phase. Finally, the backend of the E SUIF compiler

generates a library call, lib_comm, for each SCD and another library call, lib_phase for each
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phase. The lib_cornm takes a SCD with all runtime information as parameter. When the
program is executed, the lib_comm procedure invokes a network simulator which simulates
dynamic single-hop communication, dynamic multi-hop communication or compiled com-
munication to obtain the communication time of the communication using one of the three
communication schemes. The lib_phase is useful only when simulating compiled communi-
cation. It accesses to the communication requirement of each phase (that is obtained by the
compiler), and performs channel assignment for connections within each phase. Thus, the
communication performance of a program is obtained by running the program generated
by the E SUIF compiler.

The experiments use the following system settings.

Physical network: 8 x 8 torus.

Packet size: 4 words.

Routing algorithm: XY routing between dimensions and Odd—Even shortest—path

routing within each dimension.

e Dynamic single hop communication.

Control protocol: Conservative backward reservation protocols (cset size is 1).
As discussed in Chapter 3, the conservative backward reservation protocol almost

has the best performance among all the path reservation protocols.

— Control packet processing time: 1 time slot.

Control packet propagation time: 1 time slot.

Maximum control packet retransmission time: 5 time slot.

— Multiplexing degree: 1, 4, 14, 20.
e Dynamic multi hop communication.

— Logical topologies: torus, hypercube, allXY and all-to—all.

— packet switching time: 1 time slot.
e Compiled communication.

— Connection scheduling algorithms: combined algorithm for the first set of exper-

iment, AAPC algorithm for the second and third experiments.
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6.1 Hand—coded parallel programs

This set of program includes three hand-coded parallel programs, namely GS,
TSCF and P3M. The GS program uses Gauss—Siedel iterations to solve Laplace equa-
tion on a discretized unit square with Dirichlet boundary conditions. It contains a nearest
neighbor communication pattern with fairly large message size (64 packets messages). The
TSCF program simulates the evolution of a self-gravitating system using a self consis-
tent field approach. It contains a hypercube communication pattern with small message
size (1 packet message). P3M performs particle—particle particle-mesh simulation [84].
This program contains five static communication patterns. Table 6.1 describes the static

communication patterns that arise in these programs.

Pattern | Type Description
GS shared array ref. | PEs are logically linear array, Each PE
communicates with two PEs adjacent to it.

TSCF | explicit send/recv | hypercube pattern

P3M 1 | data redistrib. (:block, :block, :block) — (:, :, :block)
P3M 2 | data redistrib. (:, 1, :block) — (:block, :block, :)
P3M 3 | data redistrib. (:block, :block, :) — (:, :, :block)
P3M 4 | data redistrib. (:, i, :block) — (:block, :block, :block)

P3M 5 | shared array ref. | PEs are logically 3-D array, each PE
communicates with 6 PEs surrounding it

Table 6.1: Communication pattern description.

Table 6.2 shows the communication time for these patterns in one main loop step
in the programs. Table 6.3 shows the normalized time where the best communication time
is normalized to 1.0. In this experiment, it is assumed that there is sufficient multiplexing
degree to support all the patterns in compiled communication. Thus, each phase con-
tains one communication pattern and no network reconfiguration is required to within each
pattern. For dynamic single-hop communication, the communication time for fixed mul-
tiplexing degrees of 1, 4, 14 and 20 is evaluated. For dynamic multi hop communication,
the logical torus, hypercube, allXY and all to all topologies are considered. The following

observations can be made from the results in Table 6.3.

e Compiled communication out performs dynamic single hop communication in all
cases. The average communication time for dynamic single-hop communication is
4.5 to 8.0 times greater than that for compiled communication, depending on the

multiplexing degree used in dynamic single hop communication. Larger performance



118

gains are observed for communications with small message sizes (e.g., the TSCF pat-
tern) and dense communication (e.g., the P3M 2 pattern). Large multiplexing degree
does not always improve the communication performance for dynamic single-hop com-
munication. For example, a multiplexing degree of 1 results in the best performance
(for dynamic single hop communication) for the pattern in GS while a degree of 14

has the best performance for the P3M 5 pattern.

Compiled communication out performs dynamic multi hop communication in all cases
except for the T'SC'F program where dynamic multi hop communication has better
communication time when using the logical hypercube topology. The reason is that
the TSCF program only contains hypercube communication with message size equal
to 1. Multi-hop communication achieves good communication performance when
communication patterns in a program matches the logical topology. However, on av-
erage, the communication time for multi hop communication is 3.0 to 7.6 times larger
than the communication time for compiled communication, depending on the logical

topology used.

Compiled communication achieves an average normalized time of 1.1 for all the com-
munication patterns, which indicates that compiled communication almost delivers

optimal communication performance.

Comparing dynamic multi hop communication with dynamic single hop communi-
cation, multi-hop communication has better performance when the message size is
small (e.g. TSCF, P3M 5), and when the communication requires dense connections
(e.g. P3M 2,3), while single hop communication is better when the message size is

large (e.g. GS).

Pattern GS | TSCF | PSM 1 | PSM 23 | P3M 4 | P3M 5
Compiled comm. 131 19 831 382 457 40
torus 404 30 3366 1656 1632 127

Multihop | hypercube | 792 13 3371 1338 1499 74
comm. allX'Y 990 17 3157 1058 960 121
alltoall | 4159 70 1326 749 1326 276

d=1 209 215 3194 6655 2091 378

Single hop d=4 296 118 2029 2998 1302 213
comm d=14 924 107 1713 2171 1508 196
d=20 1296 108 1702 2096 1314 231

Table 6.2: Communication time (timeslots) for the hand coded programs
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Pattern GS | TSCF | P3M 1 | P3M 2,3 | P3M 4 | P3M5 | Average
Compiled comm. 1.0 1.5 1.0 1.0 1.0 1.0 1.1
torus 3.1 2.3 4.1 4.3 3.6 3.2 3.4

Multihop | hypercube | 6.0 1.0 4.1 3.5 3.3 1.9 3.3
comm. allX'Y 7.6 1.3 3.8 2.8 2.1 3.0 3.4
alltoall 31.7 5.4 1.6 2.0 2.9 6.9 8.4

d=1 1.6 16.5 3.9 17.4 4.6 9.5 8.9

Single—hop d=14 2.3 9.1 2.4 7.8 2.8 5.4 5.0
comm d=14 7.1 8.2 2.1 5.7 3.3 4.9 5.2
d=20 9.9 8.2 2.0 5.5 2.9 5.8 5.7

Table 6.3: Normalized communication time for the hand—coded programs

In this study, two types of communication patterns are observed in a well de-
signed parallel program, fine grain communications resulted from shared array references
and coarse grain communications resulted from data redistributions. The fine grain commu-
nication causes sparse connections with small message sizes, while the coarse grain commu-
nication results in dense connections with large message size. For a communication system
to efficiently support the fine grain communication, the system must have small latency.
Optical single hop networks that use dynamic path reservation algorithms have a large
startup overhead, thus cannot support this type of communication efficiently. As shown in
our simulation results, compiled communication where the startup overhead is eliminated
and dynamic multi-hop communication perform this type of communications efficiently.
For the coarse grain communication, the control overhead in the dynamic communications
is not significant. However, dense communication results in a large number of conflicts
in the system (path reservation in dynamic single-hop communication and packet routing
in dynamic multi-hop communication), and the dynamic control systems are not able to
resolve these conflicts efficiently. By using an off line connection scheduling algorithm,
compiled communication handles this type of communications efficiently. The performance
study confirms the conclusion in [33] that static management of the dense communication

patterns results in large performance gains.

6.2 HPF parallel benchmarks

This set of programs is from the Syracuse University HPF benchmark suite. The
benchmarks and their descriptions are listed in table 5.7 in Section 5.5.1 . The benchmarks
include many different types of applications, however, all of the programs contain only

regular computations.
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The major difference between this experiment and the first experiment is that, in
this experiment, compiled communication is applied to the whole program instead of each
individual communication pattern. Assuming a multiplexing degree of 10, the compiler
tries to aggregate as many communications as possible into a phase as opposed to the first
experiment where compiled communication is assumed to have an infinite number of virtual
channels to handle each individual communication pattern in the programs. In addition, this
set of programs contains communication patterns about which the compiler cannot obtain
precise information. Two factors may degrade the performance of compiled communication.
First, compiler approximations may result in the waste of bandwidth for establishing con-
nections that are not used. Second, aggregating more communications in a phase reduces
the number of network reconfigurations, but may result in larger communication time since
larger multiplexing degree is needed for more communications. This experiment aims at
studying the performance of compiled communication under these limitations.

Table 6.4 shows the communication time of the programs using different com-
munication schemes. Table 6.5 shows the normalized time. Even with the limitations
discussed earlier, compiled communication in general out—performs dynamic communica-
tions to a large degree. The benefits of managing channels at compile time and eliminating
the runtime path reservation overhead over weights the bandwidth losses through the im-
precision of compiler analysis. The average normalized time for compiled communication is
1.1 which indicates that compiled communication almost delivers the best communication
performance for this set of programs. However, performance degradation in compiled com-
munication due to the conservative approximation in compiler analysis is observed in some
of the programs. For example, compiler over estimating the communication requirement is
found in benchmarks 0009 and 0022. Note that the overall communication time for the pro-
grams in Table 6.4 may not show this, because each program contains many communication
patterns and the pattern that is approximated may not dominate the overall communica-
tion time. The performance loss due to aggregating communications, which results in larger
multiplexing degree, is observed in benchmark 0025. Nonetheless, the overall trend of this

experiment is very similar to that in the first experiment.

6.3 Programs from SPEC95

Four programs, ARTDIF (from HYDRO2D), TOMCATV, SWIM and ERHS (from
APPLU) are used in this experiment. These programs are also used in Section 5.2.4,
where the descriptions of these programs can be found, to evaluate performance of the

communication analyzer in the E SUIF compiler.
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benchmarks 0001 0003 | 0004 0008 | 0009 0011
Compiled comm. 45,624 752 | 1,368 | 2,256 | 2,394 105,252
torus 197,760 | 3,296 | 1,776 | 9,888 | 3,108 158,594
Multihop | hypercube | 159,840 | 2,664 | 1,032 | 7,992 | 1,806 147,496
comm. allXY 125,280 | 2,088 | 1,704 | 6,439 | 2,982 265,636
alltoall 87,960 | 1,466 | 4,944 | 4,398 | 8,652 | 1,027,818
d=1 888,240 | 14,804 | 1,920 | 44,412 | 3,360 141,052
Single hop d=14 357,600 | 5,960 | 2,208 | 17,880 | 3,864 181,506
comm d=14 267,360 | 4,456 | 3,504 | 13,368 | 6,132 372,678
d=20 273,360 | 4,556 | 4,224 | 13,668 | 7.392 484,374
benchmarks 0013 0014 0022 0025 0039 0041
Compiled comm. 166,280 63,400 | 3,244,819 | 29,854 | 68,704 | 1,504
torus 257,980 129,800 | 6,382,683 | 25,470 | 106,525 | 6,592
Multihop | hypercube 363,340 200,600 | 9,509,070 | 58,661 | 132,348 | 5,328
comm. allXY 748,220 379,200 | 5,922,920 | 63,264 | 135,353 | 4,176
alltoall 3,368,600 | 1,679,200 | 6,379,275 | 214,343 | 393,166 | 2,932
d=1 154,080 71,200 | 6,844,054 | 23,440 | 115,488 | 29,608
Single hop d=14 256,240 125,200 | 6,402,631 | 31,221 | 136,390 | 11,920
comm d=14 779,920 391,200 | 6,516,485 | 61,712 | 214,042 | 8,912
d=20 1,086,160 550,800 | 6,925,278 | 81,958 | 261,832 | 9,112

Table 6.4: Communication time for the HPF benchmarks.




benchmarks 0001 | 0003 | 0004 | 0008 | 0009 | 0011
Compiled comm. 1.0 1.0 1.3 1.0 1.3 1.0
torus 4.3 4.4 1.7 4.4 1.7 1.5
Multihop | hypercube 3.5 3.5 1.0 3.5 1.0 1.4
comm. allXY 2.7 2.3 1.7 2.9 1.7 2.5
alltoall 1.9 1.9 4.8 2.0 4.8 9.8
d=1 19.3 | 19.7 1.9 | 19.7 1.9 1.3
Single hop d=4 7.8 7.9 2.1 7.9 2.1 1.7
comm d=14 5.8 5.9 3.4 5.9 3.4 3.5
d =20 5.9 6.0 4.1 6.0 4.1 4.6
benchmarks 0013 | 0014 | 0022 | 0025 | 0039 | 0041 | average
Compiled comm. 1.1 1.0 1.0 1.3 1.0 1.0 1.1
torus 1.7 2.1 2.0 1.1 1.6 4.4 2.6
Multihop | hypercube 2.4 3.2 2.9 2.5 1.9 3.5 2.5
comm. allXY 4.9 6.0 1.8 2.7 2.0 2.8 2.8
alltoall 21.9 | 26.7 2.0 9.1 5.7 1.9 7.6
d=1 1.0 1.1 2.1 1.0 1.7 19.7 7.5
Single hop d=4 1.7 1.9 2.0 1.3 2.0 7.9 3.9
comm d=14 5.1 6.2 2.0 2.7 3.1 5.9 4.4
d=20 7.1 8.7 2.1 3.6 3.8 6.1 5.2
Table 6.5: Normalized time for the HPF benchmarks.
Pattern ARTDIF | TOMCATYV | SWIM | ERHS
Compiled comm. 1,224 15,480 | 2,708 | 6,689
torus 2,724 34,260 1,378 | 4,380
Multihop | hypercube 4,338 57,240 | 2,309 | 6,482
comm. allXy 8,583 108,900 | 4,409 | 15,117
alltoall 38,772 491,460 | 19,169 | 68,800
d=1 666 8,280 669 | 1,148
Single-hop d=4 2,478 31,260 1,674 | 4,382
comm d=14 8,538 108,060 | 4,511 | 15,166
d =20 12,168 154,140 | 6,343 | 21,614

Table 6.6: Communication time for SPEC95 benchmark programs.
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Pattern ARTDIF | TOMCATYV | SWIM | ERHS | average
Compiled comm. 1.8 1.9 4.0 5.8 3.3
torus 4.1 4.1 2.1 3.8 3.5

Multihop | hypercube 6.5 6.9 3.5 5.6 5.6
comimn. allX'Y 12.9 13.1 6.6 13.1 114
alltoall 58.2 59.2 28.7 59.9 51.5

d=1 1.0 1.0 1.0 1.0 1.0

Single—hop d=14 3.7 3.8 2.3 3.8 3.4
comm d=14 12.8 13.0 6.7 13.2 114
d=20 18.2 18.6 9.4 18.8 16.3
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Table 6.7: Normalized communication time for SPEC95 benchmark programs.

Table 6.6 shows the communication performance of the programs. Table 6.7 shows
the normalized time. The test inputs are used as the inputs to these program, which de-
termine the problem size. To reduce the simulation time, the main iteration numbers in
programs ARTDIF, SWIM and ERHS are reduced to one. All programs ARTDIF, SWIM,
TOMCATYV and ERHS only contains simple nearest neighbor communication patterns.
Compiled communication performs worse than dynamic single hop communication with a
multiplexing degree of one because it aggregates communications and uses larger multiplex-
ing degree than needed. Hence, it is desirable to develop more advanced communication
phase analysis techniques that can use different multiplexing degrees for different parts
of a program to achieve best performance. However, considering all the programs evalu-
ated, compiled communication out performs other schemes to a large degree as shown in

Table 6.8.

Comm. Comp. Multi hop Single hop
schemes comm. | torus | hype. | alIXY | alltoall | 1 4 |14 ] 20
Norm. time 1.5 3.0 3.3 4.6 16.1 |66 |40|59 |74

Table 6.8: Average normalized communication time for each scheme.

6.4 Chapter summary

This chapter studied the communication performance for the three communication
mechanisms, dynamic single hop communication, dynamic multi hop communication and
compiled communication using three sets of programs. The following conclusions were

drawn from the study.
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Compiled communication out—performs dynamic communications to a large degree

for applications with regular computations.

The performance of compiled communication can be further improved by incorpo-
rating more advanced communication phase analysis techniques that allow different

multiplexing degrees in different parts of a program.

The major disadvantage of dynamic communications is that they cannot adapt to
different communication requirements. Thus, they support some communication pat-
terns efficiently while they are inefficient for other communication patterns. Compiled
communication efficiently supports all types of communication patterns that can be

determined at compile time.

Comparing dynamic multi-hop communication and dynamic single-hop communica-
tion, dynamic multi-hop communication achieves better performance when the mes-
sage size is small and when the communication is dense, while dynamic single hop
communication is better when the message size is large. This result matches the results
in Section 4.5 where dynamic single-hop communication is compared with dynamic

multi-hop communication using randomly generated communication patterns.



Chapter 7

Conclusion

While optical interconnection networks have the potential to provide very large
bandwidth, network control, which is performed in the electronic domain due to the lack
of suitable photonic logic devices, has become the communication bottleneck in such net-
works. In order to design efficient optical networks where end users can utilize the large
bandwidth, efficient network control mechanisms must be developed to reduce the control
overheads. This thesis addresses the network control bottleneck problem in optical net-
works by considering three communication schemes, dynamic single hop communication,
dynamic multi-hop communication and compiled communication. In addition to developing
techniques to improve communication performance in each scheme, this thesis also com-
pares the communication performance of the three schemes and identifies the advantages
and the limitations of each scheme. In the following sections, the thesis contributions are

summarized and directions for future research are identified.

7.1 Thesis contributions

This thesis makes contributions in the design of control mechanisms for time—
multiplexed optical interconnection networks. The contributions are in two areas: optical
interconnection networks and compiler analysis techniques. In the optical interconnection
networks area, this thesis introduces efficient control schemes for dynamic single hop com-
munication and dynamic multi hop communication. This thesis also proposes and validates
the idea of applying the compiled communication technique to optical TDM networks. In the
compiler area, this thesis addresses all the issues needed to apply the compiled communica-
tion paradigm to optical interconnection networks, including communication optimization,
communication analysis, connection scheduling and communication phase analysis. The

main contributions of the thesis are detailed as follows.
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e Dynamic single-hop communication. Two sets of efficient path reservation al-
gorithms, forward path reservation protocols and backward path reservation proto-
cols, are designed. Variants of the protocols, including holding/dropping and aggres-
sive/conservative schemes, are considered. The performance of the protocols and the
impact of system parameters on these protocols are evaluated. Forward path reser-
vation protocols extend traditional path reservation schemes for electronic networks
and are simpler compared to backward path reservation protocols. However, these
schemes suffer from either the over—locking problem for aggressive schemes or the low
successful reservation rate for conservative schemes. Backward path reservation pro-
tocols overcome these problems by probing the network state before reserving chan-
nels. Performance study has established that in optical time—division multiplexing
networks, backward path reservation protocols, though more complex than forward
path reservation protocols, result in better communication performance when the cor-
responding system and protocol parameters are the same. It is also found that while
some system or protocol parameters, such as the holding time for holding schemes,
do not have a significant impact on the performance of the protocols, other param-
eters, such as the aggressiveness of a protocol and the speed of the control network,
affect the performance drastically. Similar techniques can be extended for the path

reservation in WDM wide area networks [78, 87].

e Dynamic multi-hop communication. Schemes for realizing four logical topolo-
gies, torus, hypercube, allXY and all to all, on top of the physical torus topologies
are considered. Optimal and near optimal routing and channel assignment (RCA)
schemes for realizing hypercube on array, ring, mesh and torus topologies are devel-
oped. An analytical model for analyzing the maximum throughput and the average
packet delay is developed and verified via simulation. This model is used to study the
performance of dynamic multi hop communication using the four logical topologies.
It is found that in terms of the maximum throughput, the logical all to all topology is
the best while the logical torus topology has the lowest performance. In terms of the
average packet delay, the logical torus topology achieves best results only when the
router is fast and the network is under light load, while the logical all-to—all topology
is best only when the router is slow and the network is almost saturated. In all other
cases, logical hypercube and allXY topologies out perform logical torus and all to all
topologies. In addition, the impact of system parameters, such as the packet switch-
ing time, on these topologies are studied. In general, the performance of the logical

topologies with low connectivity, such as the torus and hypercube topologies, are more
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sensitive to the network load and the router speed while the logical topologies with
more connectivity, such as the all-to—all and allIXY topologies, are more sensitive to
network size. Some of the techniques developed for multi-hop communication in op-
tical TDM networks can be applied to other areas. The optimal scheme to realize
hypercube on mesh like topologies can be used to efficiently perform communications
in algorithms that contain hypercube communication patterns [50]. The modeling
technique can be extended to the modeling of WDM networks or electronic networks

that perform multi-hop communication.

Compiled communication. This thesis considers all the issues necessary to apply
compiled communication to optical TDM networks, including communication opti-
mization, communication analysis, connection scheduling and communication phase

analysis.

— Communication optimization and communication analysis. A communication
descriptor called Section Communication Descriptor (SCD) that describes com-
munications on virtual processor grids is developed. A communication analyzer
which performs a number of communication optimizations, including message
vectorization, redundant communication elimination and message scheduling, is
presented. All the optimizations use a demand driven global array data flow
analysis framework. This framework improves previous data flow analysis algo-
rithms for communication optimizations by reducing analysis cost and increas-
ing analysis precision. Algorithms are developed to derive communications on
physical processors from SCDs. These algorithms address the problem of effec-
tive approximations in the cases when the information in a SCD is insufficient
for deriving precise communication on physical processors. The communication
optimization technique is general and can be implemented in a compiler that
compiles HPF-like programs for distributed memory machines. The communi-
cation analysis technique can be used by a compiler that requires the knowledge

of the communication requirement of a program on physical processors.

— Connection scheduling. A number of heuristic connection scheduling algorithms
are developed to schedule connections on torus topologies. Some of the algo-

rithms can also be applied to other topologies.

— Communication phase analysis. A communication phase analysis algorithm is
designed to partition a program into phases such that each phase contains com-

munications that can be supported by the underlying network, while capturing
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the communication locality in the program to reduce the reconfiguration over-
heads. This algorithm can also be applied to compiled communication on elec-

tronic networks.

e Communication performance comparison. A number of benchmarks and real
application programs, including hand coded parallel programs, HPF kernel bench-
marks and programs from SPEC95, are used to compare the communication perfor-
mance of the three communication schemes. The relative strengths and weaknesses
of the three schemes are evaluated. The study establishes that even with the limita-
tions of compiler analysis, compiler communication generally out performs dynamic
communications. It delivers high communication performance for all types of com-
munication patterns that are known at compile time. The dynamic single-hop com-
munication and dynamic multi-hop communication both suffers from the inability to
adapt to the communication requirement. Given a fixed system setting, they pro-
vide good performance for some communication patterns while fail to achieve high
performance for other communication patterns. Comparing these two communica-
tion schemes, multi-hop communication has the advantage when the message size
is small and when the communication requires dense connections, while single-hop

communication has the advantage when the message size is large.

7.2 Future research

The research of this thesis can be extended in various ways. Some of the algorithms
can be improved. Additional work may either extend the applicability of the techniques
or improve the techniques. Following are a number of future research directions that are

related to this thesis.

e Improving backward path reservation algorithms. In the backward reservation,
once a channel is reserved, the reservation fails only when the network state changes.
Due to the distributed manner of collecting channel states and reserving channels in
backward path reservation algorithms, the information for channels on links close to
the source node is not as accurate as the information for channels on links close to the
destination node. This problem can be severe when the network size is large. Two
possible solutions to this problem are as follows. First, a more efficient control network
can be used to route control messages. For example, a Multistage Interconnection
Network (MIN) with multi cast capability can be used to route control messages so

that control messages can reach all nodes along the path at the same time. This allows
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a protocol to collect the channel usage information more efficiently and increases the
chance of successful reservation. Second, assuming that the control network has the
same topology as the data network, the backward path reservation protocols can
selectively collect the channel usage information. The idea behind this improvement

is that wrong information may be worse than no information.

Path reservation with adaptive routing. In the thesis, path reservation algo-
rithms assume a deterministic routing. Preliminary research on extending the path
reservation protocols with adaptive routing was carried out. The preliminary results
show that using current path reservation protocols (both forward and backward reser-
vations), the adaptive routing yields lower maximum throughput on the physical torus
topology for uniform communication traffics. Further research is needed to explain
this phenomenon and to design path reservation protocols that take advantage of

adaptive routing.

Topologies for multi-hop communication. In this thesis, four logical topolo-
gies, torus, hypercube, allXY and alltoall, on top of the physical torus topologies are
considered. There are two ways to extend this work. First, a different physical topol-
ogy can be considered. For instance, it would be interesting to consider efficiently
realizing regular topologies, such as mesh, torus, on top of an irregular topology. Sec-
ond, there are logical topologies other than the four logical topologies considered that
can achieve good communication performance. Examples include the tree and the

shuffle exchange topologies.

Interprocedural communication optimization. The communication analyzer in
the thesis performs a number of communication optimizations, including message vec-
torization, global redundant communication elimination and global message schedul-
ing, using intraprocedural array data flow analysis. By incorporating the interpro-
cedural array data flow analysis, more optimization opportunities can be uncovered.
The intraprocedural array data flow analysis framework uses interval analysis. It can
naturally be extended to interprocedual analysis by treating a procedure as an inter-
val. However, many details, such as array reshaping at subroutine boundaries and
its impact on communications, must be considered in order for the interprocedural

analysis to work.

Improving communication phase analysis. The communication phase analysis
algorithm in the thesis follows simple heuristics, it considers the control structures in a

program using post—order traversal. This enables the algorithm to consider communi-
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cations in innermost loops first, aggregate the communications out of loops to reduce
the reconfiguration overhead and capture the communication locality. However, while
the algorithm is simple to implement, the phases it generates are not optimal in the
sense that there may exist other program partitioning schemes that result in less
phases in a program. More advanced communication phase analysis algorithms based
on better communication model [66] may be developed by using a general control flow
graph for program representation and by considering the communication requirement

of the whole procedure when generating phases.

Compact communication descriptor. The communication descriptor in the com-
piler that describes communication patterns on physical processors is a flat structure.
It contains all pairs of source and destination nodes. This descriptor is both large
and hard to manipulate. More compact communication descriptor is desirable for the
compiler. The challenge however, is that the descriptor must both be compact and

easy to use by the analysis algorithms.

Irregular communication patterns

Many scientific codes contain irregular communication patterns that can only be de-
termined at runtime. This thesis has restricted the compiled communication technique
to be applied to the programs that contain only regular computations. This restric-
tion can be relaxed by using a strategy similar to the Chaos runtime library[74]. This
library performs an inspector phase that calculates the runtime schedule once for
many executions of the communication pattern. Similarly the connection scheduling
algorithms can gather communication information at runtime and assign channels to

all connections within the next looping structure to be used for subsequent iterations.

Impact of this research

This thesis establishes that the compiled communication technique is more efficient

than both dynamic single hop communication and dynamic multi hop communication. The

compiler algorithms that enable the application of compiled communication on optical TDM

networks, though can be further improved, are available in this thesis. Although the com-

piled communication technique can only apply to the communication patterns that are

known at compile time, mechanisms that allow the compiler to manage network resources

so that compiled communication can be supported must be incorporated in future optical

TDM networks for multiprocessor systems to achieve high performance. Dynamic communi-

cation schemes must be used to handle general communication in an optical TDM network.
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Dynamic single-hop communication incurs large startup overhead and is thus inefficient for
small messages which occur frequently in parallel applications. Dynamic multi-hop com-
munication is efficient for small messages, however, it places electronic processing in the
critical path of data transmission and cannot fully utilize the large bandwidth in optical
links when the optical data transmission speed is significantly faster than the electronic
processing speed. Hence, both schemes have their own advantages and the better choice
between these two schemes depends on the application programs and the advances in optical
networking technology.

This thesis develops techniques for efficient communication in optical TDM net-
works. Many techniques developed can be applied to other areas. The path reservation
algorithms for dynamic single-hop communication can be extended for WDM wide area
networks. The efficient routing and channel assignment algorithms for hypercube communi-
cation pattern can be used to efficiently perform communications in algorithms that contain
hypercube communication patterns. The modeling technique for multi hop communication
in optical TDM networks can be extended for WDM networks and electronic networks with
multi—-hop communication. The communication optimization technique based on a demand
driven data flow analysis technique can be incorporated in a compiler that compiles a HPF—
like language for distributed memory machines. The communication analysis technique can
be used by compilers that perform architectural dependent communication optimizations,

or compiled communication on electronic networks.
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