
UNIVERSITY OF CALIFORNIA

RIVERSIDE

IMPRESS: Improving Multicore Performance and Reliability via Efficient Support

for Software Monitoring

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Vijayanand Nagarajan

December 2009

Dissertation Committee:

Professor Rajiv Gupta, Chairperson
Professor Walid Najjar
Professor Frank Vahid

Copyright by
Vijayanand Nagarajan

2009

The Dissertation of Vijayanand Nagarajan is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

My sincere thanks to my advisor Prof. Rajiv Gupta, with whom I have worked

for the past 5 years. I have learnt a lot about compilers, architecture and research from

him during this time. I have also learnt a lot from the ways in which he interacts with

his students. His humility, patience and concern for his students are characteristics that

have really struck me. I have thoroughly enjoyed the time spent with him solving research

problems, and I want to thank him for all the help, advice and encouragement towards

this dissertation. I also thank my other committee members Prof. Walid Najjar and Prof.

Frank Vahid.

I would also like to thank all the members of my research group including Dr.

Dennis Jeffrey, Dr. Sriraman Tallam, Dr. Bengu Li, Dr. Xiangyu Zhang, Dr. Arvind

Krishnaswamy, Mr. Chen Tian, Mr. Min Feng and Mr. Changhui Lin for helping me a lot.

Special thanks to my friends Balaji, Jeffrey, Arun, Varun, Mubeen, Priya, Divya, Abira,

Aishwarya and Gayatri for making my life in Tucson and Riverside that much more happier.

Finally, I would like to thank all my teachers, right from preschool to graduate

school. They have given me the necessary skills and knowledge, which has led to this

dissertation. Last, but not least, my deepest thanks to my parents for giving me a good life

and a good education.

iv

To my parents, Mrs. Prema Nagarajan and Mr. S. Nagarajan.

v

ABSTRACT OF THE DISSERTATION

IMPRESS: Improving Multicore Performance and Reliability via Efficient Support for
Software Monitoring

by

Vijayanand Nagarajan

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2009

Professor Rajiv Gupta, Chairperson

With the advent of multicores, there is demand for monitoring parallel programs running

on multicores for enhancing reliability and performance. Debugging tools such as data race

detection and deterministic replay debugging (DRD) require a parallel program to be mon-

itored at runtime. Likewise, techniques such as dynamic information flow tracking (DIFT)

that are used for preventing security attacks also require runtime monitoring. Furthermore,

techniques such as speculative parallelization and speculative optimization, that strive to

expose parallelism and increase performance of programs, also require runtime monitoring

– detecting misspeculation, which is an integral component of any speculative technique

requiring the program to be monitored at runtime.

While each of the above monitoring applications are quite different in their purpose

and implementation, they all share a common requirement in the context of monitoring a

parallel program running on a multicore – the need to detect and react to interprocessor

shared memory dependences (ISMD). Current software based monitoring tools, due to their

inability to detect and react to ISMDs efficiently, are rendered inapplicable for monitoring

vi

parallel programs running on multicores. On the contrary, hardware based monitoring tools,

while applicable in a multicore context, require specialized hardware modifications specific

for each monitoring task.

This dissertation IMPRESS strives to Improve Multicore Performance and and Re-

liability by providing Efficient Support for enabling Software based monitoring. To enable

software based monitoring on multicores, this dissertation proposes ECMon – lightweight

and general purpose support for exposing cache events to the software, in effect, efficiently

exposing ISMDs to the software. Using ECMon, a variety of monitoring applications, which

were inapplicable on multicores, can now be used to efficiently monitor parallel program on

multicores. More specifically, a class of monitoring applications known as shadow memory

tools such as DIFT for security, Memcheck and Eraser for debugging, can now monitor par-

allel programs running on multicores at almost the same execution overhead as monitoring

sequential programs, using ECMon support. ECMon can also be used to develop novel

monitoring applications for increasing performance and reliability. In particular, ECMon

can be used for performing speculative optimizations on parallel programs which results

in about 14.5% execution time reduction in a set of seven parallel programs considered.

Finally ECMon can be used by servers to recover from memory errors without requiring

heavy-weight checkpointing or rollback.

To summarize, this dissertation proposes light-weight and general purpose support

in the form of exposing cache events to the software. Using this support, it is shown

how parallel programs running on multicores can be monitored efficiently for increasing

performance and enhancing reliability.

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Applications of Runtime Monitoring . 2
1.2 Detecting and Reacting to ISMDs . 6
1.3 Dissertation Overview . 8

2 ECMon: Support for Exposing Cache Events 12

2.1 Motivation for Exposing Cache Events . 13
2.1.1 Role of ISMDs in monitoring applications 13
2.1.2 Approach . 15

2.2 System Model . 16
2.3 ECMon . 17

2.3.1 Events and Handlers . 18
2.3.2 ISA Support and Hardware Support 18
2.3.3 Hardware Support . 23
2.3.4 Completeness . 24
2.3.5 Correctness . 25

2.4 Recording ISMDs using ECMon . 25
2.4.1 HW based recording of ISMDs . 26
2.4.2 ECMon for recording . 29
2.4.3 Correctness Issues . 30
2.4.4 Handler Instrumentation . 34
2.4.5 Experimental Evaluation . 35

2.5 Summary . 38

3 Shadow Memory Applications using ECMon 40

3.1 Overview . 41
3.2 Runtime Monitoring: Applications and Costs 43
3.3 Shadow Memory Design for Multicores . 47

3.3.1 Instruction Set Support . 52

viii

3.3.2 Address Translation for Shadow Accesses 55
3.3.3 Atomic Updates of Shadow Memory 58

3.4 Experimental Evaluation . 66
3.4.1 Implementation . 66
3.4.2 Efficiency of Shadow Memory Support 67
3.4.3 Break-Up of Overheads . 69
3.4.4 Variation across Monitoring Tasks. 71
3.4.5 Memory System Performance . 71

3.5 Summary . 74

4 Speculative Optimizations using ECMon 75

4.1 Overview . 76
4.2 Speculation Past Barriers . 79

4.2.1 Thread Isolation . 82
4.2.2 Misspeculation Detection . 83
4.2.3 Reducing Misspeculation rate . 84

4.3 Speculative Register Promotion . 85
4.4 Alternate Support for Misspeculation Detection 89

4.4.1 Support for misspeculation detection 90
4.4.2 Microarchitecture support . 92
4.4.3 Speculation using modified ALAT 95

4.5 Experimental Evaluation . 99
4.5.1 Execution Time Reduction using ECMon 100
4.5.2 Execution time reduction using modified ALAT 102

4.6 Summary . 103

5 Self Recovery in Server Programs 104

5.1 Overview . 105
5.2 Study of Memory Corruption Propagation 108

5.2.1 Memory Propagation Study . 109
5.2.2 What causes self cleansing? . 116

5.3 Design and Implementation of SRS . 119
5.3.1 Crash Suppression . 121
5.3.2 Ensuring Isolation . 122
5.3.3 SRS Summary . 127

5.4 Experimental Evaluation . 129
5.4.1 Implementation . 129
5.4.2 Recovery in the presence of faults . 130
5.4.3 Performance of SRS: uniprocessor 131
5.4.4 Performance of SRS: multicore . 133
5.4.5 Performance of Checkpointing/Rollback Schemes 134

5.5 Summary . 135

ix

6 Related Work 137

6.1 Software based Monitoring . 137
6.2 Hardware based Monitoring . 138

6.2.1 Specialized hardware support . 139
6.2.2 General purpose hardware support 140

6.3 Transactional Memory . 140
6.4 Speculative Techniques . 141

6.4.1 Speculation past synchronization operations 141
6.4.2 Speculative parallelization . 142

6.5 Recovery in Server Programs . 143

7 Conclusion 146

7.1 Dissertation Contributions . 146
7.2 Future Work . 148

Bibliography 151

x

List of Figures

1.1 Runtime monitoring involved in debugging (DRD): recording a parallel pro-
gram execution consists of storing the values returned by system calls and
remembering dependences enforced in a log which is used during replay. . . 2

1.2 Runtime monitoring involved in security (DIFT): tracking information flow
in parallel programs consists of tracking intraprocessor and interprocessor
data flow . 3

1.3 Runtime monitoring involved for performance (speculative parallelization):
detecting misspeculation involves tracking if a value read speculatively (func-
tion bar) is later written into non-speculatively (function foo) 5

2.1 System Model: Multicore processor with coherent local L1 caches and a
shared L2 cache . 16

2.2 ECMon semantics . 17
2.3 Hardware support for enabling ECMon . 19
2.4 An example to illustrate ISA support . 21
2.5 Recording ISMDs using HW support . 27
2.6 (a) Problems due to lack of atomicity and its solution, solid lines represent

the exercised dependences, while dotted lines show the recorded dependences
(b) Instrumentation involved for recording using ECMon (c) Work done in
the software handlers. 31

2.7 Maintaining correct instruction counts . 32
2.8 Dependence Recording Overhead and Break up of Overheads 37

3.1 Overhead Imposed by Current Shadow Memory Tools. 46
3.2 Atomic Updates of Shadow Memory. 48
3.3 Timing of Shadow Value Updates. 50
3.4 Coupled Shadow Coherence. 51
3.5 Some Code Sequences for Accessing Shadow Values. 54
3.6 Address Translation. 56
3.7 Generating Shadow Value Count. 57
3.8 State Maintained to Implement CSC. 60
3.9 Handlers for Various Cache Events. 62
3.10 Co-transfer Pathological Scenarios. 63

xi

3.11 Cache Events and CSC Actions. 63
3.12 Transformation to Handle General SMIs. 65
3.13 Monitoring Overhead with Various Shadow Memory Implementations. . . . 69
3.14 Percentage overhead due to CSC for various monitoring applications 72
3.15 L1 Miss rates for various applications . 74

4.1 Dependences enforced by synchronization and its characteristics 76
4.2 Speculative execution past barrier . 80
4.3 Dependences exercised . 81
4.4 Code transformation . 83
4.5 (a) Reducing Misspeculation rate (b) Code transformation 84
4.6 (a) Redundant loads due to barriers (b) Data partitioning 85
4.7 Promoting registers during speculation . 88
4.8 Code transformation . 88
4.9 Interaction of instructions on ALAT . 92
4.10 Microarchitecture support . 93
4.11 Range Representation . 94
4.12 Code transformation . 96
4.13 Code transformation . 98
4.14 (a) Architectural parameters used for simulation (b) Programs used 99
4.15 (a) Execution time reduction and (b) break up 101
4.16 Efficacy of reordering . 102

5.1 Algorithm for Memory Propagation Study. 111
5.2 Variation of Corrupted Memory Locations with Time. 111
5.3 Variation in Max Corrupted and Final Corrupted across different execution

instances for mysqld. 112
5.4 Variation in Max Corrupted and Final Corrupted across different execution

instances for cvs. 113
5.5 Variation in Max Corrupted and Final Corrupted across different execution

instances for squid. 113
5.6 Variation in Max Corrupted and Final Corrupted across different execution

instances for apache. 113
5.7 Algorithm for Isolation Study. 116
5.8 Variation in Shared/Unshared with complexity of user requests for squid. . 118
5.9 Variation in Shared/Unshared with complexity of user requests for mysqld. 118
5.10 Suppression Semantics. 121
5.11 Ensuring Isolation. 125
5.12 Atomicity issue. 127
5.13 Summary: SRS. 128
5.14 Response Time Overhead in Normal Run. 132
5.15 Response Time Overhead after Recovery. 132
5.16 Response Time Overhead during Recovery in Suppression Mode. 132
5.17 Response Time Overhead in Normal Run. 133
5.18 Response Time Overhead after Recovery. 134

xii

List of Tables

1.1 Current software based monitoring tools are not applicable for monitoring
parallel programs running on multicore. 7

2.1 ISMDs in Monitoring Applications. 14
2.2 Exposed Cache Events. 19
2.3 Architectural Parameters. 35
2.4 SPLASH-2 Benchmarks Description. 36

3.1 Applications Requiring Runtime Monitoring. 44
3.2 Architectural Parameters. 66
3.3 SPLASH-2 Benchmarks Description. 68

5.1 Server Programs Characteristics. 110
5.2 Memory Corruption Propagation. 110
5.3 Memory Propagation Study. 114
5.4 Isolation Study. 119
5.5 Bugs in Server Programs. 131

xiii

Chapter 1

Introduction

Processor designers can no longer rely on frequency scaling for increased perfor-

mance, with the power wall thwarting further increases in processor frequency. This has

forced industry to turn to parallel processing, in the form of multicores, for increased per-

formance. However, extracting performance from multicores is far from a solved problem.

It is contingent on programmers writing parallel software that can take advantage of the

multicores – a task that is recognized as one of the biggest challenges facing academia and

industry currently. In fact, in the words of John Hennessy the above problem is “as hard

as any that computer science has faced” [67].

Demand for parallel software has sparked off yet another demand – the demand for

monitoring parallel programs running on multicores. In other words, there is a demand for

efficiently performing a variety of dynamic analyses while a parallel program is running on

a multicore for applications in debugging, security and performance. Debugging tools such

as data race detection, techniques such as dynamic information flow tracking (DIFT) that

are used for preventing security attacks, and speculative techniques that strive to expose

1

parallelism and increase performance of programs, are some of the tools that require runtime

monitoring.

1.1 Applications of Runtime Monitoring

Figure 1.1: Runtime monitoring involved in debugging (DRD): recording a parallel pro-
gram execution consists of storing the values returned by system calls and remembering
dependences enforced in a log which is used during replay.

(Debugging) Writing a correct parallel program is hard, and consequently, there

is need for tools that assist the programmer in the debugging of parallel programs. Unfor-

tunately, debugging a parallel program is also a cumbersome task. Bugs that manifested

during one run, mysteriously disappearing while debugging, are commonplace in parallel

and multithreaded programs. These bugs, known as Heisenbugs [29], arise due to non-

determinism inherent in parallel programs. The first challenge in debugging a parallel

program is to reproduce the bug. Deterministic replay debuggers (DRD) [61, 85, 83, 95, 111]

record the execution of a program and in this process they capture the non-determinism

inherent in the program. Once the non-determinism has been captured, the recorded infor-

2

mation is used to replay the program and thus the bug is reproduced. Recording program

execution involves capturing events such as system calls during execution. For instance,

the linux system call gettimeofday returns the current time and hence returns a new value

every execution. Consequently, the values returned by these system calls are recorded and

stored in a log. During replay, the values from the recorded log are used instead of executing

the system call again. Another important source of non-determinism in parallel programs

involve shared memory races [61, 111]. Unsynchronized memory accesses (involving a mem-

ory write) can lead to memory races, which essentially are memory dependences enforced

in a non-deterministic fashion. Thus to replay the execution of a parallel program faith-

fully, the order in which memory dependences are enforced is remembered. As illustrated in

Fig. 1.1, the RAW dependence between St1 and Ld1 and the WAR dependence between Ld1

and St2 are remembered in the log. During replay, it is made sure that these dependences

are enforced. In a similar vein, data race detection tools [50, 51, 84, 88, 113] also require

that memory dependences enforced in the execution of the parallel program be monitored.

Figure 1.2: Runtime monitoring involved in security (DIFT): tracking information flow in
parallel programs consists of tracking intraprocessor and interprocessor data flow

3

(Security) Runtime monitoring also has applications in security. Software attacks

have become increasingly prevalent. US CERT Statistics [2] show that the number of

attacks have increased rapidly over the years. At the same time it has become increasingly

costly for businesses to deal with worms and viruses. FBI computer crime survey estimates

that US businesses spent a total of $67.2 billion in the year 2005 to deal with computer

crime, a significant proportion of which was spent in dealing with software attacks (worms

and viruses). Dynamic Information flow tracking (DIFT) [23, 66, 73, 97] is a promising

technique for providing security against malicious software attacks. The basic idea hinges

on the fact that an important avenue through which an attacker compromises the system

is through input channels. This is a direct consequence of most of the vulnerabilities being

input validation errors. In fact, 72% of the total vulnerabilities discovered in the year 2006

are attributed to a lack of (proper) input validation [5]. Note that most of the memory errors

including buffer overflow, boundary condition and format string errors fall into this category.

The main principle of DIFT is as follows. A set of input channels, for example network

inputs, are considered insecure. The flow of information from these inputs is tracked and

those values that are data dependent on such inputs are in turn marked tainted as shown

in Fig. 1.2. Potential attacks are detected upon the suspicious use of tainted values. Since

DIFT relies on tracking the flow of values as the program executes, it requires the program

executing be monitored during runtime. With the advent of multicores, critical servers

programs are now parallelized and being made to run on multicores. Thus, there is a need

to ensure that DIFT techniques work for parallel code running on multicores.

(Performance) Finally, runtime monitoring is also essential for techniques that

strive to increase performance. With the advent of multicores, there is a great demand

4

Figure 1.3: Runtime monitoring involved for performance (speculative parallelization): de-
tecting misspeculation involves tracking if a value read speculatively (function bar) is later
written into non-speculatively (function foo)

for automatic techniques that parallelize sequential programs. However, extracting par-

allelism from sequential programs has proven to be a very hard problem. Two sequential

functions (for instance functions foo and bar as shown in Fig. 1.3) can be executed in parallel

if, and only if, there is no dependency between them; in other words, they can be executed

in parallel only when it can be proven that function bar does not read anything written by

function foo. However, it is hard to precisely guarantee the absence of dependence in the

presence of pointer variables [20, 34]. This is because the above requires interprocedural alias

analysis, which is known to be quite conservative. Even with sophisticated static analyses,

we may not be able to expose parallelism in the presence of infrequent dependences. For ex-

ample, even if there is a single dependence between functions foo and bar, as infrequent as it

may be, the two functions still can not be parallelized. Recently, there has been significant

interest on techniques that use speculation [25, 103] for parallelizing sequential programs.

These techniques speculate that there will be no dependence between two sequential chunks

5

of execution, and proceed to speculatively execute them in parallel, even if static analysis

cannot guarantee the absence of dependence. For example, the sequential functions foo and

bar may be speculatively executed in parallel, as shown in Fig. 1.3. If there is indeed no

dependence between the two sequential chunks then the speculation is said to have suc-

ceeded and the parallelization is successful. If, however, there is an observed dependence

between the two functions during runtime, then there is said to be a misspeculation and

the speculative state is squashed. The success of speculative parallelization is dependent

on two important factors. First, the misspeculation rate, which is the rate at which spec-

ulation fails, should be low. Fortunately, profiling techniques can be used to estimate the

misspeculation rate and speculation is actually performed only when it is expected to be

beneficial [25, 103]. Second, the success of speculation is also contingent upon the efficient

detection of misspeculation. Indeed, a key component of every speculation technique is the

efficient monitoring of the program execution for the detection of misspeculation. In the

above scenario, there is a misspeculation if there is a dependence detected between the spec-

ulative and the non-speculative functions (functionfoo and bar respectively). Thus runtime

monitoring techniques, that ascertain the absence of such dependences is an integral part

of speculation.

1.2 Detecting and Reacting to ISMDs

While each of the above monitoring tasks are different in their purposes and imple-

mentation, they share a common requirement in the context of monitoring parallel programs

running on multicores. In each of the monitoring tasks, there is a need to detect interpro-

cessor shared memory dependences (ISMD) and react to it. For instance in DRD, ISMDs,

6

since they are a source of non-determinism in parallel programs, have to be remembered.

Consequently, the ISMDs as shown in Fig. 1.1 has to be logged; during replay, the logged

dependences are enforced to recreate the original execution. Likewise, ISMDs that are un-

synchronized, constitute data races and hence there is a need to detect ISMDs in data race

detectors. DIFT technique for ensuring security relies on tracking both intraprocessor and

interprocessor data dependences as shown in Fig. 1.2 and hence ISMDs have to monitored.

In speculative parallelization, an ISMD signals a misspeculation and so ISMDs have to be

monitored, as shown in Fig. 1.3.

Current software monitoring approaches, due to their inability to detect ISMDs

efficiently, are rendered inapplicable for monitoring parallel programs running on multi-

cores. Table 1.1 shows some of the current monitoring tools and the scenarios in which

they are applicable. As we can see, LIFT [73] and Taint Analysis [66] which are tools for

implementing DIFT are only applicable for sequential programs. Flashback [95] and Jockey

[85], which are tools for performing DRD, are only applicable for sequential programs and

multithreaded programs running on a uniprocessor. However, they are not applicable for

multithreaded programs running on a multicore. It is the same with CHESS [50] and

Eraser [88] which are data race detection tools, and Valgrind’s Memcheck [63] which is a

Software Tool Purpose Sequential Multithreaded Multithreaded
Programs on unicore on multicores

LIFT, Taint Analysis DIFT Yes No No

Flashback, Jockey DRD Yes Yes No

Valgrind Memcheck Yes Yes No

CHESS, Eraser Race Detection Yes Yes No

Table 1.1: Current software based monitoring tools are not applicable for monitoring parallel
programs running on multicore.

7

tool for detecting memory errors. The inability to detect ISMDs have also affected software

based speculative parallelization techniques. Behavior oriented parallelism (BOP) [25] and

CORD [103] are two such techniques, which can only expose coarse-grained-parallelism; the

high cost of detecting an ISMD for misspeculation making them unsuitable for exposing

fine-grained-parallelism.

1.3 Dissertation Overview

This dissertation observes that the ISMDs, while hard to detect in software, can

be easily exposed to software using lightweight architectural support. To this end, this

dissertation proposes ECMon [54], support for exposing cache events to the software, in

effect, efficiently exposing ISMDs to the software. Whenever the cache controller of a

processor receives a cache event (eg. invalidate, data value reply), it interrupts the processor

and calls a predefined handler function. The handler function is programmable and is

defined based upon the requirement of the monitoring task. Using ECMon it is shown

how a variety of monitoring tasks, including novel monitoring tasks, can be implemented

efficiently for parallel programs running on multicores.

First, it is shown how ECMon support can be used to record ISMDs efficiently,

only incurring about 3 fold execution time reduction [54]. With added support for recording

ISMDs, DRD tools like flashback and jockey can now be used to record execution of paral-

lel programs on multicores. Second, it is shown how a class of monitoring tools known as

shadow memory tools [63] including DIFT,Eraser and Memcheck from Table 1.1, can be im-

plemented for parallel programs running on multicores using ECMon [55, 53]. Furthermore,

it is shown that the above tools can be implemented very efficiently, incurring roughly the

8

same execution time overhead as monitoring sequential programs. In other words, shadow

memory tools, which were previously unable to monitor parallel programs, can now monitor

parallel programs running on multicores, with little additional overhead. It is also shown

how ECMon can be used for performing a variety of speculative optimizations for parallel

programs, which resulted in about 14.5% decrease in execution times for the set of parallel

programs considered [54]. Finally it is shown that ECMon support can be used by server

programs for recovering from memory errors, without the need for heavy-weight techniques

such as checkpointing or rollback [57].

The contributions of this dissertation are as follows:

• ECMon, support for exposing cache events to software, is proposed. By exposing

cache events to the software, software is made aware of ISMDs. This enables software

based monitoring of parallel programs on multicores.

• ECMon is light-weight, requiring minimal hardware changes. More specifically, EC-

Mon requires no changes to the processor pipeline and the cache coherence protocol.

• ECMon is programmable and general purpose. This is illustrated by implementing a

variety of monitoring tools, including novel monitoring tools, using ECMon support.

More specifically, ECMon is used to build the following tools that can be used for increasing

performance, enhancing reliability and security of parallel programs on multicores.

• ECMon support is used to record shared memory dependences (ISMDs) in software,

incurring only 3 fold execution time reduction [54] in the process, a task which had

no prior software based solutions.

9

• ECMon support is used to efficiently implement a class of monitoring applications

known as shadow memory tools including DIFT, Memcheck and Eraser for parallel

programs running on multicores. Experimental results shows that ECMon is used to

implement DIFT (Memcheck, Eraser) at only 5 fold (10 fold , 10 fold) execution time

slowdown; whereas without ECMon support, the same monitoring tasks would have

incurred 14 fold (22 fold, 24 fold) execution time slowdown.

• ECMon is used, in a novel fashion, as a framework for performing speculative op-

timizations and exposing fine grained parallelism in parallel programs for increasing

performance. By speculatively executing past barrier synchronizations, the execution

time is reduced by a 12%, and by speculatively promoting variables to registers in the

presence of synhronization operations, execution time is further reduced by 2.5%.

• Finally ECMon is used, in a novel fashion, by server programs to efficiently recover

from memory errors without the need for heavy-weight techniques that use check-

pointing and rollback. Experimental results shows that server programs are slowed

down by only 5% using the above technique.

To summarize, this dissertation IMPRESS Improves Multicore Performance and

and Reliability by providing Efficient Support for enabling Software based monitoring. The

rest of the dissertation is organized as follows. Chapter 2 introduces and describes the

architectural support involved in ECMon. Here it is illustrated how this support can be used

to capture and record ISMDs efficiently for applications in DRD. Chapter 3 describes how

ECMon can be used to implement shadow memory based monitoring tools on multicores.

Chapter 4 describes how ECMon can be used for implementing speculative optimizations in

10

parallel programs. In chapter 5, the concept of self recovery in server programs is discussed,

followed by how ECMon can be used to implement self recovery in server programs. While

chapter 6 discusses related work, this dissertation concludes in chapter 7.

11

Chapter 2

ECMon: Support for Exposing

Cache Events

In this chapter, the motivation for exposing cache events to the software is first

discussed. Then the support involved in exposing cache events to the software is discussed

in detail. After describing the system model that is assumed, the main ECMon support,

which consists of the exposed cache events and the associated handlers are discussed. Then

the ISA support, which consists of the new instructions through which the programmer

interacts with ECMon, is discussed in detail. Then, the architectural support involved

for enabling ECmon is discussed. The next part of the chapter illustrates the usage of

ECMon in deterministic replay debugging (DRD). DRD is a debugging technique for parallel

programs , which requires than ISMDs are recorded. This is accomplished using ECMon

where the exposed ISMDs are recorded using software handlers. This chapter concludes

with experimental results that evaluates the efficiency with which ECMon support can be

used to record ISMDs.

12

2.1 Motivation for Exposing Cache Events

The advent of multicores has given rise to the need for monitoring parallel programs

running on multicores for applications in debugging, security and performance. However,

each of the above monitoring applications requires ISMDs to be detected. Since software

based monitoring techniques are not able to detect ISMDs efficiently, they are rendered

inapplicable for monitoring on multicores. On the contrary, hardware based monitoring

techniques are able to deal with ISMDs and hence are applicable in a multicore setting.

However, hardware based monitoring techniques are specialized, in that, each monitoring

task requires its own specific hardware support. This makes hardware based monitoring

solutions impractical, as it is unlikely that chip manufacturers would add hardware support

for a particular monitoring application. This dissertation makes the case for exposing cache

events to the software, in effect, efficiently exposing ISMDs to the software. With this

added support, software based monitoring techniques can now be made to monitor parallel

programs running on multicores.

2.1.1 Role of ISMDs in monitoring applications

Table 2.1 shows a list of monitoring applications and the role of ISMDs in each of

the applications. It also lists the software and the hardware based solutions for each of the

monitoring applications. DIFT, which is a technique for detecting software attacks, relies

on tracking intraprocessor and interprocessor data flow. Hence ISMDs, which are essen-

tially used to implement interprocessor data flow, have to be tracked to implement DIFT.

Software based techniques for implementing DIFT [15, 66, 73] are unable to detect ISMDs

efficiently which renders them unsuitable for monitoring parallel programs on multicores.

13

Monitoring
Application

Role of ISMDs Software Hardware

Security

DIFT (Dy-
namic Infor-
mation Flow
Tracking)

ISMDs are
used to track
interprocessor
data flow.

Dynamic taint analysis
[66], LIFT [73], Taint-
trace [15] cannot deal
with ISMDs and hence
inapplicable in a mul-
ticore setting.

DIFT [97], Raksha [23],
Flexitaint [28] require
changes to processor
pipeline, caches and mem-
ory to track intraprocessor
and interprocessor infor-
mation flow.

Debugging

DRD (Deter-
ministic replay
debugging)

ISMDs have to
be remembered
to enable de-
terministic re-
play of parallel
programs

Flashback [95], Jockey
[85] cannot deal with
ISMDs and and are
applicable only for
multithreaded pro-
grams running on a
uniprocessor.

FDR [111], Bugnet [61],
Rerun [35] Delorean [48] re-
quire changes to caches and
cache coherence system to
detect ISMDs.

Debugging

Data race
detection

ISMDs which
are unsyn-
chronized are
data races and
hence ISMDs
have to be
detected

CHESS [50] Eraser
[88] cannot deal
with ISMDs and are
applicable only for
multithreaded pro-
grams running on a
uniprocessor.

HARD [113] and SigRace
[51] require changes to
cache coherence system to
detect ISMDs.

Performance

Speculative
Parallelization

ISMDs signal
misspecula-
tion.

Cord [103] BOP [25]
cannot detect ISMDs
and hence cannot ex-
pose fine grained par-
allelism

TLS [18, 32] and Specu-
lative synchronization [46]
Speculative lock elision [74]
can expose finegrained par-
allelism but require changes
to caches and cache coher-
ence system to detect IS-
MDs.

Table 2.1: ISMDs in Monitoring Applications.

14

On the contrary, hardware based techniques for implementing DIFT [23, 97, 28] are able

to detect ISMDs with additional hardware support; the additional hardware consists of

changes to the processor pipeline and caches for implementing the tracking operations in

hardware. DRD, which is a technique for enabling deterministic replay of parallel programs,

requires that the ISMDs be remembered and recorded, so they can be faithfully remembered.

Software based implementations of DRD [85, 95], since they are unable to detect ISMDs

efficiently can only record and replay multithreaded programs running on a uniprocessor.

On the contrary, hardware based techniques for implementing DRD [48, 35, 61, 111] with

changes to cache and cache coherence protocol, are able to detect ISMDs are hence are ap-

plicable in a multicore setting. Finally speculative parallelization techniques for increasing

the performance of programs, also need to detect ISMDs, since they signal a misspeculation.

Software based speculative parallelization techniques [25, 103], since they are unable to de-

tect misspeculation efficiently are unable to expose finegrained parallelism. On the contrary

hardware based speculative parallelization techniques [18, 32, 46, 74], with changes to caches

and coherence protocol, are able to detect misspeculation (ISMDs) efficiently and are able

to expose fine grained parallelism in programs.

2.1.2 Approach

In this dissertation it is observed that the ISMDs, while hard to detect in software,

can be easily exposed to software using lightweight architectural support. This is because

the cache coherence messages (along with the read miss and write back cache events) reveal

all the ISMDs. Indeed, several of the hardware based monitoring techniques piggyback

meta data along with cache coherence messages to achieve a specific monitoring task. For

15

example, FDR [111] and Bugnet [61] techniques piggyback time stamps along with cache

coherence messages to remember ISMDs. However the above techniques also include spe-

cialized hardware support for accomplishing the specific monitoring task. For example,

Bugnet utilizes changes to processor pipeline specifically for recording a program’s execu-

tion. The goal of this work is to identify the minimal hardware support for enabling all

the above monitoring applications. This follows the design principle of having the common

case in hardware and the rest in software. This also greatly enhances the practicality, as

the proposed hardware support is general-purpose with several applications. To this end,

this dissertation proposes ECMon [54], support for exposing cache events to the software, in

effect, efficiently exposing ISMDs to the software. Software techniques, now aware of ISMDs

using ECMon support, can now be used to implement all the above monitoring applications

for parallel programs running on multicores.

2.2 System Model

Figure 2.1: System Model: Multicore processor with coherent local L1 caches and a shared
L2 cache

For this discussion, a multicore processor with local caches and a shared lower

level cache is assumed as shown in Fig. 2.1. Further, it is assumed that the local caches are

16

writeback caches kept coherent using an invalidate based hardware coherence protocol. In

other words, it is assumed that a write issued by a processor will first update the value in

the processor’s local cache; the value in the lower level cache will only be updated (written

back), when a block is replaced from the local cache. Consequently, when the value in the

local cache is written into, it would make the values in other local caches stale. To prevent

this situation and to maintain cache coherency, a write to a local cache will invalidate all

other shared copies in other local caches.

2.3 ECMon

In ECMon, cache events are exposed to the software; in effect, efficiently exposing

the ISMDs to the programmer.

Figure 2.2: ECMon semantics

17

2.3.1 Events and Handlers

Whenever the cache controller receives a cache event for a processor’s local cache,

it can be programmed to interrupt the processor, and call a predefined handler function,

before responding to the event as shown in Fig. 2.2. The cache events exposed for the

applications in this work are the following: (i) a processor sending/receiving an invalidate

message, (ii) a processor sending/receiving a data value reply, (iii) a processor experiencing

a read miss for a block uncached in any processor and (iv) a processor about to write back

a block as illustrated in Table. 2.2. While the first four events expose ISMDs exercised

via the cache coherence network, the last two events expose ISMDs exercised via memory.

The handler function is programmable and is defined based upon the requirement. Since

the handler resides in user space, the semantics of the call to the handler is similar to a

function call; the programmer is responsible for saving and restoring the values of registers

that are used in the handler. However, the hardware is responsible for providing values to

the handler as function call parameters as mentioned in Table 2.2. In general, the block

address and the remote proc id are the parameters. However, for the send invalidate event,

since there are potentially multiple remote processors, the parameter for this event is the

number of remote processors holding the invalidated block. Finally, it is important to note

that while the handler function is called, the coherence controller independently responds

to the cache event, as usual.

2.3.2 ISA Support and Hardware Support

Through the proposed ISA interface, the programmer interacts with the processor

and is able to effectively utilize ECMon support. The programmer notifies the hardware

18

Event Parameters

receive data value reply block address, remote proc id

send data value reply block address, remote proc id

receive invalidate block address, remote proc id

send invalidate block address, number of remote procs

read miss block address

write miss block address

Table 2.2: Exposed Cache Events.

Figure 2.3: Hardware support for enabling ECMon

19

through the handler instruction, which handler to call for what event. While the event is

expressed via the predefined event-code, the handler is specified with its start address. The

programmer is also given the ability to mark regions of code where the ECMon support

is active, with the start-handler and end-handler instructions; the handler is actually

called upon reception of the event only for execution within these two points. Furthermore,

the programmer is given flexibility to specify when the handler will be called, upon reception

of an event. For this purpose, the start-handler instruction takes a when bit as one of

its operands; a 0 indicates that the handler will be called as soon as the event is received;

whereas a 1 indicates that the handler should be called only on specific points. If a 1 is

specified as the operand, the programmer inserts the call-handler instruction (within

start-handler and end-handler). When the processor receives an event, it does not call the

handler immediately and only calls the handler when the call-handler is encountered. It

is very useful for the programmer to control when the handler will be called. For example,

in speculative execution we may need to call the handler after the speculation to verify its

correctness. Likewise, this feature can be used to handle the atomicity problem associated

with software monitoring [16, 63], as we shall see later. Finally, through the track-range

instruction, the programmer is given the ability to specify the range of block addresses for

which the handler will be called. The rationale for supporting this option is to limit the

number of times the handler is called.

Having explained the purpose of each of the new instructions added at a high

level, we now describe in detail with an example as shown in Fig. 2.4, the semantics of the

instructions.

(Handler instruction) The programmer notifies the hardware through the handler

20

Figure 2.4: An example to illustrate ISA support

instruction, what handler to call for what event. The handler instruction has two operands.

The first operand is used to specify the event code, which is a predefined code for each cache

event. For example, the event code 0x1 may refer to the event when the processor receives

an invalidate message. Through the second operand which is a register, the programmer

specifies the instruction address of the handler to the hardware. In the above example,

the handler resides in the instruction address 0x4000. To maintain this information, each

core of the multicore processor maintains an event-descriptor table. When the handler

instruction is encountered it adds the event code and the handler’s instruction address to

the event-descriptor table as shown in Fig. 2.3.

(Start-handler and end-handler instructions) Through the start-handler

and end-handler instructions, the programmer marks the region of code where the ECMon

21

support is active. The handler is actually called upon reception of an event only for execution

within these two points. The start-handler takes two operands. While the first operand

specifies the event-code, the second operand is a one bit operand (called the when bit)

which controls when the handler should be invoked. When the start-handler instruction is

encountered, it sets the start bit and the when bit in the event-descriptor; on the other

hand, the end-handler clears the start-bit.

(When bit and call-handler instruction) The when bit and the call-handler

instruction are used to control when the handler is called. A 0 value indicates that the

handler will be called as soon as the event is received; whereas a 1 indicates that the

handler should be called only at specific points. If a 1 is specified as the operand, the

programmer inserts the call-handler instruction at specific points (within start-handler

and end-handler). When the processor receives an event, it does not call the handler

immediately and only calls the handler when the call-handler is executed. In the above

example, the when bit is set to 1, which means that the handler will be called only when

the call-handler instruction is executed. If the processor receives multiple events before

encountering the call-handler, it is buffered in the event-queue and then processed inorder

when the call-handler instruction is finally encountered. In the above example, proc 0

receives three events before the call-handler is encountered, two of which are buffered in the

event-queue. We will explain why one of them is not buffered after describing the actions for

the track-range instruction. Finally, when the handler is called, the hardware forces all the

when bits in the event-descriptor table to 1, to make sure that there are no nested handler

calls. This ensures that any events that occur when the handler is called are buffered in

the event-queue. The processor subsequently treats the return within the handler like a

22

call-handler and empties the event-queue.

(Track-range instruction) The programmer is also given the ability to restrict

the runtime values of block address for which the handler is called. The track-range

instruction is used to accomplish this. It has two operands: the start value and the end

value. The handler is called for any value that lies in the range (between start and end).

Once the track-range instruction is encountered, the ranges specified in the instruction

are stored in the event-descriptor. For each entry in the event-descriptor, the storage of

four such ranges is supported. When the event is encountered, the hardware checks if the

block address of the event fall into these range(s). If not, the handler is not called for that

event. In the above example, the track-range instruction specifies the range as addresses

between 0x1000 and 0x2000. The second invalidate message with the address 0x2040 was

not buffered in the event-queue since it did not lie within this range.

2.3.3 Hardware Support

Fig. 2.3 illustrates the hardware support required for enabling ECMon. Three

simple hardware structures are added to each core of the multicore processor: the event-

descriptor, the event-queue and an itlb. As discussed earlier, the purpose of the event-

descriptor is to store information about the events and its associated handlers, and the

purpose of the event-queue is to buffer events, in case the handler call needs to be delayed.

Finally, the purpose of the itlb (inverted TLB) is to store the mapping between physical

addresses and the virtual addresses. The addresses that the programmer uses (for example

in the track range instruction) are all virtual addresses. However, the addresses associated

with the coherence events are physical addresses. Thus, the itlb is added as a means of

23

converting the physical address into virtual addresses.

2.3.4 Completeness

ECMon is complete, in that it is guaranteed to expose all ISMDs. ISMDs consisting

of RAW, WAW and WAR dependences can be exercised via two modes: through the cache

coherence system or through the memory. By exposing all invalidate events, all WAR

dependences exercised through the coherence system are exposed. Similarly, by exposing

all data value reply events, all RAW and WAW dependences exercised through coherence

are exposed. However, not all dependences are exercised through cache coherence system;

some are exercised through the main memory due to cache block replacements. Let us see

how the various dependences exercised via memory are exposed:

WAR dependency: Proc 1 holding a shared block in its local cache (due to a

prior read to that block) can later replace that block. A write to the same block by another

processor, proc 2, results in a WAR dependency between proc 2 and proc 1. If the bus

based coherence protocol is used proc 1 would still get the invalidate message from proc 2 ,

thereby exposing the WAR dependency. If the directory based coherence protocol is used,

we make sure that local caches do not notify the directory on shared block replacements,

This ensures that proc 1 will still get the invalidate message from proc 1, although proc 2

has replaced the block, thereby exposing the WAR dependency.

RAW, WAW dependences: Proc 1 holding a block in exclusive state (due to

a prior write to that block) can later write it back to the memory. A read (or write) to

the same block by a different processor, proc 2, results in a RAW (or WAW) dependency

between proc 2 and proc 1, which is exercised through the memory. Two additional events

24

are exposed to help detect the above dependence. When a processor is about to write-back

an exclusively held block to the directory, the write-back event is exposed to the processor

causing the write-back. Later when a different processor requests the block, it sends a

read-miss to the directory. If such a read miss request is received by the directory and is

uncached in any of the processors, we expose the above read-miss event to the processor

causing the read miss. To summarize, RAW (WAR) dependences that happen through the

memory are detected by exposing the appropriate write-back and read-miss events.

2.3.5 Correctness

In the design of ECMon, the coherence controller merely calls the handler for spec-

ified cache events. Since there is no change to the coherence protocol itself, the correctness

of the original coherence protocol is retained.

2.4 Recording ISMDs using ECMon

This sections describes an application of ECMon in recording ISMDs which is

useful for debugging parallel programs. Deterministic Replay Debugging (DRD) [61, 95,

111], is a technique that helps programmers debug their program by replaying the exact

execution that causes the bug to manifest itself. Naturally, the first step of DRD is the

recording of program information as it executes, so that replay can be enabled. Recording

the execution of multithreaded programs involves the recording of ISMDs, since the order in

which the ISMDs are exercised are ,in general, non-deterministic. Software based approaches

[85, 95] are unable to record these shared memory dependences for multithreaded programs

executing in multicores. On the contrary, specialized hardware support, involving changes to

25

the cache, cache coherency and processor pipeline, has been proposed in prior work [61, 111]

to efficiently record these dependences. In this section, ECMon support is used to record

these dependences. First, the hardware techniques for recording ISMDs are reviewed, and

from this the ECMon based approach is derived. Experimental results show that ISMDs

can be recorded efficiently causing only 3 fold execution time slowdown.

2.4.1 HW based recording of ISMDs

The steps involved in recording dependences in hardware recording systems is

shown in Fig. 2.5(a). Each processor keeps track of its instruction count in an on-chip

counter instr-count. Furthermore, each cache block is augmented with space to hold the

instruction count in cache-block[addr]. Whenever the processor accesses that memory block,

it writes the current instruction to it. This is done so that when that memory block is

involved in an inter-processor dependence, the time in which it was last accessed can be

remembered. Dependences are expressed as edges between processor ids along with each

of their instruction counts [61, 111]. The key idea of recording ISMDs is based on the

observation that in a multiprocessor with local caches, the cache coherence protocol is

actually responsible for enforcing the above dependences and thus the coherence messages

reveal the dependences. Thus hardware recorders piggyback cache coherence messages with

instruction counts and the hardware takes care of recording these edges. Finally, before

recording the dependency the hardware checks if the dependency that is currently recorded

is automatically implied by a previously recorded dependency; if so, it will not log the

current dependency. We illustrate the above steps with the following simple example with

two processors.

26

Figure 2.5: Recording ISMDs using HW support

27

An Example Fig. 2.5(b) shows read and write operations prefixed by their dy-

namic instruction counts and also indicates the dependency exercised between processors.

There are two dependences exercised in the above example: a WAR dependency with the

write from processor 2 at instruction count 175 and the read from proc 1 at instruction

count 125. Likewise, there is a RAW dependency with the write from proc 1 at instruction

count 100 and the read from proc 2 at instruction count 200. Recording ISMDs involves

remembering the instruction counts at the time of the write and read, so that the same de-

pendences can be enforced during replay. First, the actions required for recording the WAR

dependency are considered. When the read occurs in proc 1, the instruction count at the

time of the read needs to be remembered, so that the RAW dependency can be recorded

when it is subsequently written in processor 2. To remember this count, an instruction

count is added to every cache block. Thus as the read is executed, the value 125 is stored in

the cache block associated with the read address. When the write is executed in processor

2, the instruction count (175) is similarly remembered in the cache block. Since it is a write,

the coherence controller sends an invalidate message to invalidate shared copies of the block

in other processors. Consequently, the same cache block that already resides in proc 1 is

invalidated. Once it is invalidated, proc 1 sends an invalidate acknowledgment, appending

to it the instruction count when it was last read. Using this, the dependence (P1, 125) →

(P2, 175) is recorded.

Now, the outer RAW dependency is considered. When the write in proc 1 is

executed, the instruction count (100) is remembered in the cache block. It then proceeds

to invalidate shared copies in proc 2. Thus when there is a read in proc 2, there is a

read miss and the value is sent as a data reply from proc 1, as usual appended with it

28

the instruction count when the block was written (100). However, before recording the

dependency, hardware recorders perform the Netzer’s transitive reduction [65] test, in which

they basically check if the current dependence is actually implied transitively by previous

dependences. In fact, in the above example, there is no need to record the outer RAW

dependence since it is automatically enforced by the WAR dependence that has already

been recorded. The recording of WAW dependences (not shown) takes place similar to

RAW dependences.

2.4.2 ECMon for recording

Recording using ECMon is motivated by the fact that all the steps involved in

recording dependences, excluding the ones dealing with coherence messages, can already

be performed in software. With ECMon support, even the coherence messages can be

dealt with under software control. Using shadow memory support [63], instruction counts

(instr-cnt[p]) are associated for each processor, which are incremented in software for every

memory instruction. Likewise, instruction counts are also maintained for every processor’s

cache block (cache-block[addr]) as well as memory block (directory[addr]) in software. All

stores and loads in the program are instrumented with instructions that copy the processor’s

instruction count to the shadow memory associated with the processor’s cache block for

that memory access. The basic steps involved in maintaining these counters are same as

shown in Fig. 2.5; only all the variables are actually stored in memory and the counters are

maintained using instructions. ECMon support is then used to detect the ISMDs and the

associated software handlers are programmed to record ISMDs.

To illustrate the process at a high level let us consider the RAW dependency ex-

29

ercised between the two processors in Fig. 2.5(b). When the read, accessing block address,

addr, occurs in proc 2, it sends a fetch message to proc 1, which contains the block in ex-

clusive state because of the earlier write that happened in proc 1. Upon receiving the fetch

message, proc 1 attempts to send a data-value reply to proc 2. This triggers the software

handler. Within the handler, two values are accessed: the instruction count corresponding

to the block address, cache-block[addr], and the current instruction count of proc 2, instr-

count[2]. Upon accessing the values, the ISMD is either recorded or skipped after checking

for Netzer’s transitivity condition. Recording of the WAR dependency in Fig. 2.5(b) pro-

ceeds among similar lines. When the write accessing block address, addr, occurs in proc 2, it

sends an invalidate message to proc 1. Upon receiving the invalidate message, the software

handler is triggered. Within the handler, two values are accessed: the instruction count

corresponding to the block address, cache-block[addr], and the current instruction count of

proc 2, instr-count[2]. Upon accessing the values, the ISMD is recorded, after checking for

Netzer’s transitivity condition.

2.4.3 Correctness Issues

There are some issues that threaten the correctness of the recorded dependences.

(Atomicity) The first issue concerns the atomicity of the original and shadow

memory operations [16, 63]. Recall that a separate store (denoted W ′

1
) is needed to update

the instruction count of cache-block[addr], for the original store, denoted by W1. This means

that these two operations are not atomic anymore. To see how this can cause correctness

problems, let us consider the example shown Fig. 5.12(a), which shows the same RAW

dependency. Let us first assume that the shadow store is performed after the original

30

Figure 2.6: (a) Problems due to lack of atomicity and its solution, solid lines represent the
exercised dependences, while dotted lines show the recorded dependences (b) Instrumenta-
tion involved for recording using ECMon (c) Work done in the software handlers.

store (scenario 1). In the example, let us suppose that the read R from proc 2 happens

before W ′

1
but after W1. This implies that cache-block[addr] is yet to be updated and

contains a stale value. Consequently, W0 → R, is recorded instead of W1 → R. A similar

correctness issue manifests itself, even if the shadow store is performed before the original

store, as shown in scenario 2 of Fig. 5.12(a); if read R from proc 2 happens after the shadow

store W ′

2
, but before W2. This implies that cache-block[addr] would have been updated

by W ′

2
; but the read R still gets its value from W1. Consequently, W2 → R, is recorded

instead of W1 → R. To deal with this issue, the effect of the original and shadow memory

instruction executing atomically is simulated via ECMon support. The ECMon facility to

control when the handler is invoked is used to simulate atomicity. Instead of forcing the

handler to be invoked immediately, upon reception of the event, it is invoked at certain

key points. More specifically, the call-handler instruction is instrumented after every

31

memory instruction/shadow memory instruction pair W1/W ′

1
. This will ensure that if an

event is received in between (between W1 and W ′

1
), the handler is called only after each

of them finish executing. In the above example, Fig. 5.12(a), let us first consider the case

where shadow store is performed after original store. When the event is received after W1

but before W ′

1
, the handler is not called then; it is only called when the call-handler is

encountered which is after W ′

1
. This ensures that cache-block[addr] is updated and contains

the current value. Similarly, in the second scenario, when the event is received after W ′

2
,

but before W2, the handler is not called yet; it is only called after W2. This means that the

data value reply is after W2 and hence R gets its value from W2, which is the dependency

that is recorded.

Figure 2.7: Maintaining correct instruction counts

(Correct Instruction counts) The second issue concerns the value of instr-

count[2], the instruction count of proc 2 when it is accessed in the handler from proc 1 for

recording the dependency. Recall that proc 1 is providing a data value reply in the first place

as proc 2 experienced a miss due to R. The value of instr-count[2] will thus be correct, if

it is not changed by a future write, from proc 2. To ensure this, proc 2 is made to wait

(using software) until the handler finishes in proc 1 as shown in Fig. 2.7. To accomplish this

32

synchronization, a synchronization variable ready(i, j) is maintained for every processor

pair i and j. When proc 2 receives a data reply, a handler is called within which we spin

until the ready(1, 2) becomes 1. The variable ready(1, 2) is set to true only when proc 1

has recorded the dependence and is about to return from the handler. Similarly for WAR

dependences we make sure that the processor sending the invalidate, waits until all the

processors receiving the invalidate have recorded the dependency.

(Avoiding nested handler invocations) It is worth noting that the access of

instr-count[2] within the handler of proc 1 will cause a miss, since the variable instr-count[2]

will be in exclusive state in proc 2. Thus, the value of instr-count[2] will finally be obtained

via a data value reply from proc 2. However, this data value reply should not cause a handler

call in proc 2. This is because this dependency should not be recorded, since it is not due

to the original program. The track-range instruction is used to deal with this problem. It

is ensured that the range of addresses provided does not include instr-count[1..n]. This in

turn ensures that the handler is not called for such events.

(Cache block replacements) When cache blocks are replaced, the dependences

are then exercised through the memory, rather than coherence system. Dependences exer-

cised through memory can be recorded, since ECMon is also able to expose such dependences

using the write-back and read-miss events. First, let us consider the recording of the RAW

dependency shown in Fig. 2.5(b). Let us suppose that proc1 writes back the block to the

directory before it is read by proc 2. The write-back event triggers the software handler,

within which the processor id and the instruction count corresponding to the block ad-

dress, cache-block[addr], is saved into the directory. For this purpose, additional memory

is associated with each directory entry in software. Later, when the read occurs in proc 2,

33

it results in a read-miss. This triggers the software handler associated with the read-miss

within which the RAW dependency is recorded by accessing the information saved in the

directory, during the write-back event.

(Thread switches) When a thread is scheduled out of a processor, the processor

can still hold cache blocks accessed by the previous thread. For example, proc 1 can hold

an exclusive block dirtied by thread 1, even after thread 1 is swapped out of proc 1. Then

later when there is cache miss for the same block in proc 2 running thread 2, the block may

be provided by proc 1 as a data value reply, even though it is currently idle. In this case,

the above RAW dependency will not be recorded, since proc 1 is idle. To handle this case,

whenever a thread is scheduled in or out of a processor, the instruction counts of each of

the processors are recorded. This dependency, also known as strata [60] in prior work, will

transitively subsume the missed dependences due to thread switches. The mapping between

the thread ids and processor ids is also recorded at the time of a thread switch. Recall that

whenever dependences are recorded, the ISMDs between processors are recorded; using this

mapping between the processors and threads, the dependences between the threads can

then be derived.

2.4.4 Handler Instrumentation

The instrumentation involved for recording ISMDs using ECMon is summarized

in Fig. 5.12(b). At the start of the program handlers are registered for two events: (i)

a processor receiving an invalidate message, (ii) a processor about to send the data value

reply. The the start-handler instruction is added, with the when bit set to 1, to handle

the atomicity problem. The track-range instruction is added, so that addresses involving

34

accesses to instr-cnt[1..n] do not cause handlers to be called. As discussed earlier, instr-cnt

is incremented and made to update cache-block[addr] for every memory instruction. For

the purpose of simulating the effect of atomicity, call-handler instruction is instrumented

after this update. The handlers for the events are summarized in Fig. 5.12(c) and are self-

explanatory. The first two events are for the purpose of recording dependences exercised

through coherence controller, while the last two events are for the purpose of recording

dependences exercised through memory.

2.4.5 Experimental Evaluation

In this section the results of our experimental evaluation of ECMon support in

recording ISMDs is discussed. Before presenting the results of the experimental evaluation,

the implementation is discussed.

Processor 8 processor, in order

L1 Cache 32 KB 4 way 1 cycle latency

L2 Cache shared 512 KB 8 way 9 cycle latency

Memory latency 200 cycle latency

Coherence MOSI Directory

Table 2.3: Architectural Parameters.

Implementation

The ECMon support was implemented in the SESC [80] simulator, targeting the

MIPS architecture. The simulator is a cycle accurate multiprocessor (supports multicore

mode) simulator which also simulates primary functions of the OS including memory allo-

cation and TLB handling. To implement ISA changes, the unused opcodes of the MIPS

instruction were used. The decoder of the simulator was then modified to decode the new

35

instructions and their semantics were implemented by adding the hardware structures to

the simulator. Finally, the ECMon support was implemented for a MOSI based directory

protocol for an 8 core processor with a shared L2 cache, which holds the directory entries.

In the implementation of the coherence protocol, the L1 cache does not notify the directory

on shared cache replacements. The architectural parameters for our implementation are

presented in Table 4.14.

Programs LOC Input Description

BARNES 2.0K 8192 Barnes-Hut alg.

FMM 3.2K 256 fast multipole alg.

OCEAN 2.6K 258 × 258 ocean simulation

RADIOSITY 8.2K batch diffuse radiosity alg.

RAYTRACE 6.1K tea ray tracing alg.

WATER-NSQ 1.2K 512 nsquared

WATER-SP 1.6K 512 spatial

Table 2.4: SPLASH-2 Benchmarks Description.

The SPLASH [110] benchmark suite (in Table 2.4.5) was chosen to evaluate our

ECMon support for helping in recording ISMDs. Instrumentation was performed by mod-

ifying the assembler output generated by the gcc-4.1 compiler. The dependences were not

output to a file, but maintained in a circular buffer, similar to Bugnet [61]. Time stamps by

instrumenting loads and stores with additional instructions that incremented a counter and

stored the time stamps in shadow memory. One register was specifically for maintaining

these time stamps, so that it need not be spilled and restored for every memory instruction.

Finally, the program VOLREND could not be compiled using the compiler infrastructure

that targets the simulator and hence was omitted from our experiments.

36

 1x

 1.5x

 2x

 2.5x

 3x

 3.5x

 4x

av
er

ag
e

w
at

er
−

sp

w
at

er
−

ns
q

ra
yt

ra
ce

ra
di

os
ity

oc
ea

n

fm
m

ba
rn

esN
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

O
ve

rh
ea

d

Benchmark

Handler:WAW
Handler:WAR
Handler:RAW
Load/store instrumentation

 50

 60

 70

 80

 90

 100

 110

 120

 130

av
er

ag
e

w
at

er
−

sp

w
at

er
−

ns
q

ra
yt

ra
ce

ra
di

os
ity

oc
ea

n

fm
m

ba
rn

es

 D
is

tr
ib

ut
io

n
of

 O
ve

rh
ea

d

Benchmark

Figure 2.8: Dependence Recording Overhead and Break up of Overheads

Performance: Recording Dependences

In this experiment, the execution time overhead of performing recording in soft-

ware with ECMon support was measured. As we can see from Fig. 2.8, the overhead for

performing recording ranges from 2.2 fold execution time overhead for the BARNES bench-

mark through 3.6 fold overhead for the FMM benchmark. On an average (harmonic mean),

recording causes a 2.8 fold execution time overhead.

To understand the causes for this overhead, the overhead was split into several

contributing categories as shown in Fig. 2.8. The first category is the overhead due to

the execution of additional instructions to maintain instruction counts; recall that in the

software version we actually needed to instrument loads and stores to maintain these counts.

As we can see, this is the major contributing factor of the overhead, accounting for 89% of

the overhead on an average. Now the high overhead of the FMM can be explained. Since

the FMM program has a large percentage of memory instructions (around 50%), significant

time was spent to maintain the instruction counts. On the contrary, BARNES and OCEAN

programs, with relatively fewer memory instructions (around 30%), causes lesser overhead.

37

It is important to note that, since most of time is spent on instrumentation, only 11% of

the execution time is spent executing the handler recording the ISMDs. This vindicates

ECMon’s main motivation: efficient support to expose dependences to the software. The

time spent in the handler was additionally split into 3 categories: time spent to log RAW,

WAR and WAW dependences. As we can see, most of the time (out of 11% time spent

recording dependences) is spent recording RAW dependences.

From the above set of experiments, it is clear that with ECMon support, ISMDs

can be efficiently recorded at only 2.8 fold execution time overhead. It is worth noting that

without ECMon support it would be prohibitively expensive to perform recording; several

additional instructions are needed for each memory instruction to derive dependences, in

addition to thread serialization to handle the atomicity problems which could result in

overhead at least an order of higher magnitude [55, 63].

2.5 Summary

Current software monitoring tools are rendered inapplicable for monitoring parallel

programs running on multicores, since they are unable to detect ISMDs efficiently. In this

chapter ECMon, support for exposing cache events to the software was proposed. With

ECMon support, software is made aware of ISMDs which enables monitoring of parallel

programs on multicores. An application of ECMon in which it was used to record ISMDs

was discussed. Experimental results showed that ISMDs could be recorded very efficiently,

incurring on an average only 3 fold execution time slowdown. By recording ISMDs with

ECMon support, current software tools for implementing deterministic replay debugging

are rendered applicable for parallel programs running on multicores. In the subsequent

38

chapters, ECMon support is used to enable several other existing and novel monitoring

applications for parallel programs running on multicores.

39

Chapter 3

Shadow Memory Applications

using ECMon

A class of monitoring applications requires the maintenance of information associ-

ated with each of the application’s original memory location, which is held in corresponding

shadow memory locations. Consequently, each original memory instruction (OMI) is asso-

ciated with shadow memory instructions (SMIs) for maintaining the meta data associated

with the memory location accessed. The above applications are known as shadow memory

applications. For multithreaded programs, it is essential that OMIs and the SMIs that

accompany them be carried out atomically, in order to correctly maintain shadow values.

Existing software monitoring schemes [64, 63] prevent race conditions that can lead to in-

correct shadow values by ensuring that a thread switch does not occur in the middle of

execution of OMI and its corresponding SMI. Unfortunately, the problem still exists when

a multithreaded program is being run on multicores. In this chapter we ensure that OMIs

and SMIs are executed atomically even when they are run on multicores, using ECMon

40

support proposed in the previous chapter. Another important issue in shadow memory

design that affects the speed and the robustness of the shadow memory implementation,

is the organization of the shadow memory in the address space of the application. Using

minimal OS support, in the form of coupled allocation of original and shadow pages, we

propose a robust implementation of shadow memory that is also very efficient.

3.1 Overview

There has been significant research on the online monitoring of running programs

using various dynamic analyses for a variety of purposes. For example, LIFT [73] and Taint-

Check [66] are software tools that perform taint analysis to ensure the execution of a program

is not compromised by harmful inputs; Memcheck [63] is a popular memory checking tool

that is widely used to detect memory bugs; and Eraser [88] is a tool for detecting data

races. A common element among these tools is that they make use of shadow memory

[63]. With each memory location used by the application, a shadow memory location

is associated to store information about that memory location. Original instructions in

the application that manipulate memory locations are accompanied by instructions that

manipulate corresponding shadow memory locations. For example, in taint analysis, with

every memory location a taint value is associated that indicates whether that memory

location is data dependent on an (tainted) input. Each original instruction that stores the

value of a register into a memory location is accompanied by an additional store that moves

the taint value of the register into the shadow memory location. Similarly each original

instruction that loads a value from a memory location to a register is accompanied by an

instruction that loads the corresponding taint value from shadow memory location. Thus,

41

monitoring requires that loads and stores present in an application be accompanied by

shadow memory loads and stores.

Although the need for shadow memory support across variety of monitoring tasks

is well recognized, supporting robust shadow memory that can be efficiently accessed and

manipulated remains a challenge that has not been successfully addressed. There are two

key issues at the heart of this challenge:

Atomic Updates For multithreaded programs, it is essential that original memory instruc-

tions (OMIs) and the shadow memory instructions (SMIs) accompanying them be carried

out atomically in order to correctly maintain the shadow values. Since OMIs and SMIs are

really separate instructions, maintaining atomicity incurs an additional cost. Existing soft-

ware monitoring schemes [64, 63] prevent race conditions that can lead to incorrect shadow

values by ensuring that a thread switch does not occur in the middle of execution of OMI

and its corresponding SMI. Unfortunately, the problem still exists when a multithreaded

program is being run on, the now ubiquitous, multicores. To overcome this problem of

concurrent updates on multicores, threads can be serialized and made to run on one core

[64]. However, this is clearly inefficient as parallelism is sacrificed. Alternatively, in the fine

grain locking approach, the thread that wants to perform a SMI along with the OMI, grabs

a lock associated with that memory region and releases the lock after completion. However,

this approach suffers from the overhead of executing additional instructions including the

expensive atomic instructions.

Shadow Memory Management An important issue in shadow memory design, that affects

the speed and the robustness of the shadow memory implementation, is the organization of

42

the shadow memory in the address space of the application process [63]. A simple half-and-

half scheme [15, 73] roughly divides the virtual memory into two halves, the original memory

and the corresponding shadow memory. While this has the advantage of a fast translation

of original addresses into corresponding shadow memory addresses, its less flexible layout

means that it fails for some programs in linux and is incompatible with operating systems

with restrictive layouts [63]. Moreover, it does not scale when we need to associate more

than one shadow value per memory location. To improve robustness, Valgrind’s Memcheck

tool [63] implements a two-level page table in software. Although, several optimizations are

proposed, the slowdown can still be as high as 22x for SPEC programs, about half of which

may be due to shadow memory accesses [63].

In this chapter, a robust shadow memory implementation for multicores that ad-

dresses the above challenges of atomic updates and efficient address translation is presented.

Our shadow memory implementation uses the ECMon support to ensure atomicity and pro-

poses OS support for a robust shadow memory implementation that ensures efficient address

translation.

3.2 Runtime Monitoring: Applications and Costs

Runtime monitoring serves as a foundation of a variety of tasks aimed at providing

security, performing debugging, and improving performance of applications. In this section

the role of shadow memory in context of four popular monitoring tasks. In addition, the

execution time overheads of runtime monitoring, as well as degree to which various factors

contribute to this overhead are analyzed.

Table 3.1 describes four popular monitoring tasks: DIFT [66] for runtime mon-

43

Monitoring Application Meta Data Tracked by
Shadow Memory

Code Instrumentation Re-
quired

DIFT [73, 66, 15] (Dy-
namic Information Flow
Tracking) is used to track
whether contents of mem-
ory locations are data de-
pendent upon insecure in-
puts.

With each memory loca-
tion (byte) a taint bit is
associated, which indicates
whether that memory lo-
cation is data dependent
upon an insecure input.
Consequently, the taint bit
has to be manipulated for
every memory instruction.

(Loads) For every load, the
taint bit corresponding to
the loaded memory loca-
tion has to be read; (Stores)
For every store, the taint
bit corresponding to the
stored memory location has
to be updated.

Eraser [88] is used to track
information to enable data
race detection.

With every memory word
Eraser associates the status
and the lockset. The status
tells if the current word is
shared across threads or ex-
clusive to one thread, while
the lockset indicates the set
of locks used to access that
memory location.

(Loads/Stores) Each mem-
ory access, either by a load
or a store, must be accom-
panied with reading and
writing of both status and
lock-set.

Memcheck [63] is used for
debugging memory bugs.

Every location is associated
with two values, the A bit
and the V bits. While the
A bit indicates if that par-
ticular memory location is
addressable, the V bits in-
dicate whether the corre-
sponding bits in the mem-
ory location have been de-
fined.

(Loads) The A bit is read
and updated while V bits
are read on every load;
(Stores) The A bit and the
V bits are read and updated
on every store.

MemProfile [8] is a simple
memory profiler that keeps
count of number of reads
and writes to each memory
location.

With each memory loca-
tion two counts are as-
sociated: ReadCount and
WriteCount.

(Loads) The ReadCount is
read and updated on every
load; (Stores) The Write-
Count is read and updated
on every store.

Table 3.1: Applications Requiring Runtime Monitoring.

44

itoring of software attacks, Memcheck [63] a tool for runtime checking of memory errors,

Eraser [88] for runtime detection of data races, and Memprofile a runtime memory profiler

[8]. Each of these monitoring tasks require the following:

• With each data memory location, shadow memory location(s) are associated to track the

meta data required by the monitoring task. The second column of Table 3.1 describes the

meta data maintained by these applications. The number of distinct items of information

to be associated with a memory location can vary. While DIFT associates just one value,

the taint bit, for every memory location, Eraser and Memcheck associate two values per

memory location. Thus, in general, capability of associating multiple shadow values for

every memory location is needed.

• Application code must be instrumented by associating operations for maintaining the

meta data with the memory operations (loads and stores) in the application. The third

column of Table 3.1 describes the function of shadow memory instructions (SMIs) that

instrument each original memory instruction (OMI) for each of the monitoring tasks.

• An OMI and its associated SMI(s) must be performed atomically. For example, if during

DIFT a value in an original memory location and its taint bit are read, atomicity must

guarantee that the taint bit corresponds to the value read from the original memory

location and not to some old value that once resided in the memory location. Note that

the SMI in DIFT is symmetric, i.e. for every original load there is an associated shadow

load and for every original store, there is a shadow store. However, in general, for every

original memory access (load, store), the associated shadow memory may need to be both

read and updated. In fact this is the case for Eraser.

45

Atomicity
Instrumentation.
Address Translation

 0x

 5x

 10x

 15x

 20x

 25x

w
at

er
−

sp
w

at
er

−
ns

q
ra

yt
ra

ce
ra

di
os

ity
oc

ea
n

fm
m

ba
rn

es

w
at

er
−

sp
w

at
er

−
ns

q
ra

yt
ra

ce
ra

di
os

ity
oc

ea
n

fm
m

ba
rn

es

w
at

er
−

sp
w

at
er

−
ns

q
ra

yt
ra

ce
ra

di
os

ity
oc

ea
n

fm
m

ba
rn

es

w
at

er
−

sp
w

at
er

−
ns

q
ra

yt
ra

ce
ra

di
os

ity
oc

ea
n

fm
m

ba
rn

es

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

O
ve

rh
ea

d

DIFT MEMCHECK ERASER MEMPROFILE

Figure 3.1: Overhead Imposed by Current Shadow Memory Tools.

To get an idea of the performance overhead imposed by the current shadow mem-

ory tools, the overhead of performing the above monitoring tasks for the SPLASH [110]

benchmarks on a 4 core processor was measured. As shown in Fig. 3.1, the runtime over-

head of monitoring was broken down into three components: the overhead for performing

address translation, overhead for maintaining atomicity of OMIs and SMIs, and finally the

overhead due to execution of instrumentation code required by the monitoring task. As

we can see, the overhead in performing the monitoring tasks can be as high as 25x, with

a significant percentage of overhead (about 50%) spent in performing address translation

and enforcing atomicity.

The goal of OASES is to reduce the runtime overhead of monitoring tasks. For

this purpose, we focus on providing support that reduces the overhead due to the two

components that are common to all the monitoring tasks, i.e. address translation of shadow

memory references and enforcing atomicity of OMIs and SMIs. The third component, code

instrumentation, varies from one monitoring task to another. Thus, the ability to program

the instrumentation to accommodate the requirements of different monitoring tasks must

46

be maintained. We do not provide any specialized hardware support to reduce the cost of

executing the instrumentation code as different monitoring applications will require different

hardware support.

3.3 Shadow Memory Design for Multicores

This sections begin with a brief overview of the approach for efficiently enforcing

atomicity and performing address translation. Then in subsequent sections the solutions

are presented in full detail. First, the problem of performing atomic updates of original

memory locations and corresponding shadow memory locations is considered.

Atomic Updates. First let us see why an OMI and its SMI(s) must be performed atomically.

Consider the example shown in Fig. 3.2. Processor A executes two store instructions (St1

and St2) and their corresponding shadow store instructions (SSt1 and SSt2) while Processor

B executes a load instruction Ld and its corresponding shadow load SLd. We assume that

all these instructions target the same virtual address. As we can see in Fig. 3.2a, if no

special care is taken, Ld in Processor B may see the value produced by St1 while SLd

may see a value produced at SSt2. Atomic SMIs will guarantee that Ld and SLd see

either values produced by (St1, SSt1) or (St2,SSt2) as shown in Fig. 3.2b. Prior solutions

have used thread serialization or fine grained locking to ensure atomicity of OMIs and SMIs.

However, they are inefficient as we saw earlier: while thread serialization is clearly inefficient

since it compromises on concurrency, the expensive atomic instructions and memory fences

involved in locking are also inefficient. Although the above example illustrates a scenario

in which there is a race in the original program, the same problem can manifest itself even

47

if the original program is devoid of races; the introduction of SM can break the assumed

atomicity of instructions such as compare-and-swap which are used to implement a variety

of synchronization primitives and lock-free data structures. [16]

Figure 3.2: Atomic Updates of Shadow Memory.

The solution for enforcing atomicity is based upon the following key observations.

First, given a memory location and a corresponding shadow value, we must maintain mul-

tiple memory locations for this shadow value. More specifically, a distinct shadow location

must be provided for each distinct place where the shadow value can reside, i.e. correspond-

ing to each processor’s cache we must provide a shadow memory location and corresponding

to the memory we must provide a shadow memory location. Second, we must provide a

protocol for updating the shadow values in a manner that guarantees atomicity. We name

this protocol as the Coupled Shadow Coherence (CSC) protocol because it couples the co-

herence of shadow values with coherence actions of the original values to achieve the effect

of atomicity.

The need for maintaining multiple shadow locations to implement a single shadow

value and the requirements placed on the CSC protocol for maintaining these shadow loca-

48

tions are illustrated by two scenarios shown in Fig. 3.3. Let us consider the first scenario,

Fig. 3.3(a), in which the Ld and SLd performed by processor B must access values v and v′

respectively. However, the execution of Ld and SLd at Processor B is intervened by execu-

tion of a St and SSt at Processor A that update values v and v′ to w and w′ respectively.

The contents of the memory location and the two corresponding shadow locations for the

two processors are shown in the figure as the execution proceeds. It should be noted that

to guarantee atomicity of Ld and SLd at Processor B, the following must be done. After

the execution of SSt at Processor A, although the contents of shadow location for Processor

A are changed to w′, the contents of the shadow location for Processor B must remain

unchanged as v′ till v′ has been read by SLd at Processor B. While this scenario shows that

an update of a shadow location may need to be delayed till a SLd had been executed, the

second scenario in Fig. 3.3b shows the reverse situation, i.e. the execution of SLd must be

stalled till the shadow location has been updated.

In the first scenario, there is a period of time during which the shadow values at

the two processors must be different. This justifies the need for separate shadow locations

for the two processors. The requirements of delaying the update of a shadow location

(first scenario) and waiting for the update of a shadow location (second scenario) must be

enforced by the CSC protocol that will be implemented in software. For example, in the

first scenario, following Processor B’s execution of its SLd operation, any future references

by Processor B to the memory location and its shadow location should result in the delivery

of values w and w′ respectively. While delivery of w is guaranteed by the hardware cache

coherence mechanism, the delivery of w′ requires that this value be copied from the shadow

location for Processor A to the shadow location for Processor B. The CSC protocol will be

49

Figure 3.3: Timing of Shadow Value Updates.

responsible for ensuring that this copying operation is performed. Similarly, in the second

scenario the CSC protocol will cause the execution of SLd to stall till it is able to copy the

value w′ from shadow location for Processor A to shadow location for Processor B.

The actions performed by the CSC protocol to maintain the consistency of shadow

memory locations are coupled with the actions performed by the cache coherence protocol to

maintain the consistency of the memory locations cached at various processors. The example

in Fig. 3.4 shows how cache events trigger corresponding CSC actions. To implement the

CSC protocol, ECMon support for exposing the cache events to the software, is utilized.

Whenever the cache controller of a processor receives a cache-coherence event, such as a

data value reply, it interrupts the processor and passes the control to the CSC protocol.

The CSC protocol is implemented as a sent of handler functions – one handler for each

distinct cache coherence event. One key aspect of the CSC protocol is that there are no

50

changes to the original hardware cache coherence protocol.

Figure 3.4: Coupled Shadow Coherence.

Efficient Address Translation. The process of addressing shadow memory needs to be both

robust and efficient. The same virtual address is used to reference both an original memory

location and the corresponding shadow memory location. During translation to physical

addresses, different physical addresses are produced for the original and SMIs referring to

the same virtual address. In particular, for every original page there are corresponding

shadow memory pages and during page translation virtual page is translated to different

appropriate physical pages. This approach is robust as unlike the half-and-half strategy

it does not require an application to reserve half of its virtual address space for shadow

memory. To enable efficient translation of original memory addresses into shadow memory

addresses the following approach is followed. A page of memory belonging to the application

and the corresponding shadow memory pages are all allocated consecutive physical memory

pages. Thus, from the address of a original memory location, the address of corresponding

51

shadow memory locations can be efficiently computed. Furthermore, it is ensured that at

any point in time if an original memory page resides in main memory then the corresponding

shadow memory pages also resides in main memory. Thus, while page table entries are

created for original memory pages, no additional page table entries are required for the

corresponding shadow memory pages.

In the remainder of this section, the detailed design and implementation of the

solutions outlined above are described. First the instruction set support for identifying

memory instructions that must be executed atomically, as well as distinguishing an OMI

from its SMIs is described. Next the details of the OS and architectural support for efficient

translation of original memory addresses to shadow memory addresses is presented. Finally,

the details of the CSC protocol that ensures atomic updates of original memory locations

and corresponding shadow memory locations, is described.

3.3.1 Instruction Set Support

Instruction set support is needed for two purposes. First, since each OMI and all

of its SMIs must execute atomically, a mechanism for identifying them as an atomic block is

needed. Second, since the same virtual address is specified in addressing a memory location

and its corresponding shadow locations, for correct address translation there is a need to

provide a means for distinguishing the OMI and SMIs for various shadow values. Two

new instructions that simultaneously meet the above requirements are added. As shown

below, the two new instructions, shadow-start and shadow-end, are used to define an

atomic block. The operands of the shadow-start instruction, init-SVC and pid, allow us

to distinguish between OMI and SMIs.

52

shadow-start init-SVC, pid

. . .

shadow-end

The pid operand identifies the processor id of the processor whose copy of a shadow value

is to be accessed. The pid operand is an optional operand. If no value is specified as the

processor id, the processor id is implicitly assumed to be the current processor’s processor id.

The operand init-SVC enables us to distinguish between the OMI and various SMIs within

an atomic block. All memory instructions in the atomic block that access the same virtual

address as the OMI are recognized as SMIs. If init-SVC is specified as 0, the first memory

operation in the atomic block is treated as the OMI and subsequent memory operations

that access the same virtual address are treated as SMIs. Moreover, the second memory

operation refers to the first shadow value, the third memory operation refers to the second

shadow value and so on. However, a non zero init-SVC is used to handle situations in

which only shadow values need to be accessed without the accessing original values. For

example, if init-SVC is 1, the first memory access refers to the first shadow value and so

on. In other words, initSVC is specified as a parameter to give us additional flexibility

in accessing the shadow values. It should be noted that there is an implicit assumption

that multiple shadow reads (writes) correspond to different shadow values. This is done

since each shadow memory location is read and written once in an atomic block. It is

not necessary to explicitly read (or write) to the same shadow memory location more than

once inside the atomic block – the shadow memory value can be copied on to the stack,

manipulated and then copied back.

53

Figure 3.5: Some Code Sequences for Accessing Shadow Values.

Given the above interpretation of init-SVC, the compiler must generate instruc-

tions within an atomic block in the appropriate order. Fig. 3.5 shows some examples that

show how the compiler generates code for accessing various shadow values. For the purpose

of this example, let us assume that there are 2 processors with 2 shadow values. The first

scenario shows the inlined instrumentation for accessing both original and shadow memory

values. Since original memory values are involved, the value of init-SVC is set to 0, speci-

fied as an operand to shadow-start instruction. Accordingly, the first memory access is an

original memory access and subsequent accesses are for shadow values. Since the shadow-

start instruction does not specify any pid operands, the current processor id is used in the

translation process and so the shadow cache contents of the current processor are accessed.

The second scenario shows code generated for the handler. The purpose of this handler

is to read the contents of shadow cache of processor 1 and write it to shadow memory.

Accordingly the first two loads access the shadow cache contents of processor 1. To enable

these accesses, init-SVC is set to 1 through the shadow-start instruction; this is because

54

there are no original memory accesses involved. Furthermore, by the specifying the pid as

1, the shadow cache contents of processor 1 are accessed. Finally, in the last example, the

two stores are made to write to the shadow memory contents. This is enabled by specifying

the pid as 3; since there are only, 2 processors, a pid of 3 denotes shadow memory.

3.3.2 Address Translation for Shadow Accesses

Since the same virtual address is used by the OMI and the corresponding SMIs, an

address translation scheme that efficiently translates the virtual address used by SMIs into

appropriate physical addresses of shadow locations must be implemented. To ensure that

the translation can be performed efficiently, a page layout scheme that fixes the relative

location of an original physical page and its corresponding shadow physical pages is used.

For every original page, the OS allocates p + 1 shadow pages per shadow value, where p is

the number of processors. Therefore, if there are n shadow values, the processor allocates

n × (p + 1) shadow pages. Moreover, consecutive set of physical pages are allocated by the

OS. Thus, given the physical address of an original memory location, the physical addresses

of the various associated shadow values can be easily determined. Given the values of SVC

(shadow value count), the pid, and N the number of processors, address translation proceeds

by multiplying N with the pid and adding the result with SVC. The resultant is added

to the physical page fetched from the TLB, if it is a shadow memory access (SVC is non

zero); if it is an original memory access, the resultant is 0, since the value of SVC is 0 and

hence the fetched page from TLB is used. The above page layout and addressing scheme

is illustrated in Fig. 3.6 for the scenario where there are 2 processors and 2 shadow values.

As we can see, the first page denotes the original page, while the rest denote shadow pages.

55

The second and third pages denote the shadow cache pages of the first processor, while the

fourth and fifth denote the shadow cache pages of the second processor, and finally the last

two pages refer to the shadow memory pages.

Virtual Page # Offset

Virtual Page # Offset
+

Original Memory Access

Shadow Memory Access

Offset

TLB

Physical Page + Shadow Page 1

Memory

Original Page

Shadow Cache 1

Shadow Cache 2

Shadow Cache 1

Shadow Page 1

SVC

x

N

pid

Shadow Page 2

Shadow Page 2

Shadow Cache 2

Shadow Mem
Shadow Page 1

Shadow Mem
Shadow Page 2

Figure 3.6: Address Translation.

The OS treats every original memory page and its corresponding shadow pages as

a single entity. When the OS decides to swap out an original page on to the disk, it also

swaps out the associated shadow pages. Similarly, both original page and its associated

shadow pages are swapped in together. The above translation process is highly efficient.

Another important consequence of this scheme is that shadow memory does not require

any additional TLB entries. Finally, since an application may not require monitoring, an

extra flag is added to the process descriptor which indicates whether that particular process

requires shadow memory support. When this flag is set, the OS allocates shadow page(s)

along with every original page that it allocates; otherwise no shadow pages are allocated.

56

Given the manner in which code within atomic blocks is organized, is then shown

how this organization can be used to generate the Shadow Value Count (SVC) needed for

address translation in Fig. 3.6. The state machine in Fig. 3.7 generates the value of SVC.

The state machine is in initial state “Outside Atomic Block” and when shadow-start is

encountered it moves to state ”Inside Atomic Block” initializing SVC to init-SVC the value

specified as an operand to the shadow-start instruction. For now, let us assume that the

value of init-SVC is a 0, which means the first memory instruction encountered refers to the

OMI. When the OMI (load or store) is encountered – the virtual address is remembered in

vaddr; counts LoadSVC and StoreSVC are set to initSVC; and transition to state ”Inside

Instrumentation Code” takes place. In this state when a shadow load (store) is encountered,

LoadSVC (StoreSVC) is incremented and its value is assigned to SVC for use by address

translation logic. If shadow-end is encountered, transition to initial state “Outside Atomic

Block” occurs.

other

shadow−start
In

Instrm.
Code

load addr st addr==vaddr

store addr st addr==vaddr

shadow−end

other
Outside
Atomic
Block

Atomic
Block

Inside

SVC=0
SVC=0

SVC = LoadSVC++

SVC = StoreSVC++

addr

LoadSVC
 = StoreSVC

vaddr = addr
= initSVC

load/store

Figure 3.7: Generating Shadow Value Count.

Small Sized Shadow Values. In the above discussion it is assumed that each mem-

57

ory location used by an application requires equal sized shadow values. For some monitoring

tasks, each word of original application does not require an equal size shadow value. For

example, in DIFT each memory byte is associated with only a shadow bit. Association of

a byte of shadow value with every byte of original application, in this instance, will lead to

wastage of memory. It is also possible to extend the scheme to support small-sized shadow

values as discussed in [53].

Optimizing Shadow Cache Organization. The memory overhead of maintaining

shadow cache can be reduced. This is based on the simple observation that the cache can

only hold a fixed amount of data and so the size of the shadow cache can be limited. Thus

one way of organizing shadow cache is to reserve a small portion of the virtual memory

for the shadow cache. For example, for an L1 cache of size 32KB with 8 processors and 4

shadow values, it is sufficient to allocate 1MB of virtual memory for shadow cache. However,

such a scheme will only be applicable for a direct mapped cache; otherwise tag checks that

are performed in parallel in hardware will have to performed in software, which can be very

expensive.

3.3.3 Atomic Updates of Shadow Memory

In a multithreaded application, an OMI and its corresponding SMI(s) need to be

executed atomically. In this section, the CSC protocol to ensure atomicity is first described.

Then the software implementation of CSC protocol using ECMon is discussed.

In CSC, the coherence of the shadow memory values is coupled with the coherence

of the original memory. In particular, to achieve atomicity, the CSC scheme ensures de-

pendence mirroring between OMI and SMIs; dependences exercised among SMIs are made

58

to mirror the dependences exercised among OMIs. Let M1 and M2 denote a pair of OMIs

and SM1 and SM2 denote their corresponding SMIs. If M2 is dependent (e.g., RAW) upon

M1 during an execution, then SM2 must be similarly dependent upon SM1. To enforce

dependence mirroring, it is ensured that whenever there is a transfer of original memory

values from one local cache to memory (or another local cache), it is accompanied by a

corresponding co-transfer of shadow memory values. To implement this in software, the

ECMon support is utilized. Recall that in ECMon, whenever the cache controller receives

a pre-specified cache event for a processor’s local cache, it can be programmed to interrupt

the processor, and call a predefined handler function; by suitably programming the handler,

dependence mirroring can be enforced in software.

Events. To implement CSC scheme in software the following specific cache events

are utilized:

• When a processor exclusively holding a block, is about to send the data value reply

• When a processor receives a data value reply

• When a processor experiences a read miss for a block uncached in any of the processors

• When a processor is about to write back a block

The first two events capture dependences that are exercised through cache coherence net-

work, while the last two events capture dependences exercised via the main memory.

Handler Semantics. The coherence controller interrupts the processor and calls

the handler function, when one of the specified events takes place. When the specified

event occurs, the current instructions in the pipeline are flushed and a call to handler

function is made at once. However, if the processor is in the midst of executing an atomic

59

block (between shadow-start and shadow-end), then the call to the handler is delayed

until the atomic block is fully executed (shadow-end instruction commits). In this regard,

the semantics of the shadow-end instruction is the same as the call-handler instruction

introduced in chapter 2.

Figure 3.8: State Maintained to Implement CSC.

State Maintained for Implementing CSC. Since CSC protocol is implemented in

software, shadow coherence state must be maintained in software as shown in Fig. 3.8.

Every original memory block, addr, that is present in the local cache of each processor p

is shadowed by shadow-cache(p, addr); likewise, each original memory address in the main

memory is shadowed by shadow(addr). When original memory dependences are enforced

via the coherence network, enforcing the dependences of shadow values entails that the

two processors involved in the dependency synchronize with each other. For achieving this

pair-wise synchronization, a flag value is maintained for each processor pair (i, j) which is

referred to as ready(i, j). When dependences are enforced through the memory, it is ensured

that co-transfer of shadow values to and from shadow memory, take place in the same order

of the transfer of original values to and from shadow memory. For achieving this, a count

referred to as shadow-event-cnt is maintained to uniquely identify each memory event.

60

Handlers for CSC. We now explain how the individual steps involved in CSC

scheme are implemented within the software handlers, which is shown in Fig. 3.9. For this

discussion, macros for reading and writing into the shadow memory (steps 48 through 55)

and shadow cache (steps 31 through 45) are assumed.

(Co-transfer through coherence.) Whenever processor i receives a data reply from

processor j, processor i is interrupted and the handler is called. Within the handler, the

corresponding shadow block is copied from processor j to processor i and thus co-transfer

is implemented in software. However, it needs to be ensured that the value in the shadow

block copied is consistent. A situation may arise where the shadow block from processor j

is yet to update the shadow block (it is in the midst of an atomic block), when it receives

a request for the shadow block, as shown in Fig. 3.10(b). Likewise, processor j may have

updated the shadow block by a later SMI, by the time it is copied, as shown in Fig. 3.10(a).

To deal with these scenarios, it is ensured that processors synchronize with each other before

co-transfer is performed. To implement this synchronization, whenever a processor receives

a request for data reply, it calls a handler (data-reply-request). Accordingly, processor j

is interrupted and the handler is called when it first receives a request for data reply. If

the processor j is in the midst of executing an atomic block, the calling of the handler is

delayed until the atomic block is completed; this avoids the problem shown in Fig. 3.10(b).

Within the handler, the ready(i,j) flag is set to be true, meaning that the shadow block is

now ready to be copied (step 3-6). Likewise, when processor i receives a data reply and

calls the handler, we spin and wait for the ready(i,j) flag to be true. Once it becomes true,

we proceed with the copying to accomplish the actual co-transfer (step 10-14). Fig. 3.11

shows the CSC actions performed in software for the delayed shadow read scenario.

61

Figure 3.9: Handlers for Various Cache Events.

62

Figure 3.10: Co-transfer Pathological Scenarios.

Figure 3.11: Cache Events and CSC Actions.

63

(Co-transfer through memory.) In the CSC scheme, is needs to be ensured that

shadow blocks are brought in (and written back) from the memory along with original

blocks. To implement this, the read miss and writeback events are exposed to the software.

Whenever, the cache controller performs a write back of an original block, it interrupts the

processor and calls a handler. Within the handler the shadow cache contents of the original

block is copied to the shadow memory (step 19). Likewise, whenever the cache controller

fetches an original block from the main memory, handler is called and within the handler the

shadow block is copied from the shadow memory to the shadow cache (step 26). However,

it needs to be ensured that the shadow transfers to and from the memory, take place in

the order of the original transfers. To this end, the coherence controller maintains a global

count of the total number of write-back and read-miss events in the event-cnt counter. For

every write-back or read-miss event, it increments event-cnt count by one and passes it as

a parameter to the handler. The handlers in turn maintains a shadow-event-cnt counter in

software which is incremented by one just before returning from the handler (step 20 and

step 27). Additionally, at the start of the handler the value of the shadow-event-cnt counter

is compared with the event-cnt counter that is passed as a parameter (step 18, step 25); a

value match guarantees that all prior handlers have completed executing and thus ensures

that handlers are executed in the order of the original memory transfers.

Preventing Nested Handler Invocations. Nested handler invocations are prevented

by ensuring that only OMIs (those which have SVC = 0) inside shadow-start and shadow-end

can cause handler invocations. It should be noted that the handler code does not involve

OMIs within shadow-start and shadow-end. Thus, no nested handler invocations can

occur.

64

Figure 3.12: Transformation to Handle General SMIs.

Handling general SMIs. Let us discuss how with general SMIs are dealt with,

where an original memory load is accompanied by both shadow loads and shadow stores.

As we can see from Fig. 3.12(a), the load Ld1 from processor A is accompanied by shadow

load SLd1 and a shadow store SSt1. Intuitively, the shadow load from processor B, SLd2,

needs to get its value from the shadow store SSt1. However, since each of the OMI are

loads, there is no transfer of original blocks through the coherence network, which in turn

means that co-transfer of shadow blocks is not possible. To enable co-transfer, the original

load is converted into a load followed by a (silent) store that writes the same loaded value

back to the memory, as shown in Fig. 3.12(b). This will mean that St1 will invalidate the

original block in processor 2 and the original block will be in exclusive state in processor 1.

Consequently, Ld2 will get its value from St1 through coherence network. This will enable

co-transfer and so the shadow load SLd2 will get its value from SSt1. It is important to

note that this transformation (of loads into a load and a silent store) is not required if the

monitoring tool uses symmetric SMIs.

65

3.4 Experimental Evaluation

In this section, the experimental evaluation of the shadow memory support is

discussed is detail. But before that, the implementation details are discussed.

3.4.1 Implementation

The shadow memory support including the OS support and support for ECMon:

exposed cache events in the SESC [80] simulator, targeting the MIPS architecture. The sim-

ulator is a cycle accurate multicore simulator which also simulates primary functions of the

OS including memory allocation and TLB handling. To implement ISA changes, the unused

opcodes of the MIPS instruction set were used to implement the newly added instructions.

Then the decoder of the simulator was modified to decode the new instructions and imple-

mented their semantics by adding the hardware structures to the simulator. The address

translation support was implemented by modifying the OS page allocation algorithm to

allocate additionally the shadow pages along with the original pages. The page replace-

ment algorithm was also modified, so that original and shadow pages are considered as a

single entity, and replaced together. Finally, the ECMon support was implemented for an

invalidate based snooping protocol for a multicore architecture with shared L2 cache. The

architectural parameters for our implementation are presented in Table. 3.2. The shadow

Processor 4 processor, out of order

L1 Cache 64 KB 4 way 1 cycle latency

L2 Cache shared 1024 KB 8 way 9 cycle latency

Memory 4 GB, 500 cycle latency

Coherence Bus based invalidate

Table 3.2: Architectural Parameters.

66

memory support was evaluated with four monitoring/profiling applications viz. DIFT[73],

Memcheck[63], Eraser[88] and MemProfile[8]. For implementing DIFT, a byte of shadow

value kept track of the taintedness for every word of original memory word. The system calls

(that were emulated by the simulator) were modified to initialize the taint values. Eraser

is a tool for identifying data races. The first part of the algorithm which characterizes each

memory word as virgin, exclusive, shared or shared-modified was implemented. The second

part of the algorithm that then uses this information to maintain the locksets was not im-

plemented. With each memory word, two bytes of information: one byte for maintaining

the above four states, and another byte for maintaining the thread-id of the thread that

last accessed that memory location was associated. Memcheck-lite, a version of Memcheck

in which the register level V-bits propagation is not implemented, was considered. A ver-

sion that has been optimized for word based memory operations was implemented. For

implementing MemProfile, two words of data along with each original memory word was

associated, used for maintaining the number of reads and writes to that memory word.

Instrumentation was performed by modifying the assembler output generated by

the gcc-4.1 compiler. The SPLASH-2 [110], a standard multithreaded suite (Table 3.4.1) of

benchmarks was used for our evaluation. The VOLREND program could not be compiled

using the compiler infrastructure that targets the simulator and hence it was omitted from

the experiments.

3.4.2 Efficiency of Shadow Memory Support

Recall that shadow memory support has two components: address translation

and atomicity. Address translation can be either achieved using a Valgrind style software

67

Programs LOC Input Description

BARNES 2.0K 8192 Barnes-Hut alg.

FMM 3.2K 256 fast multipole alg.

OCEAN 2.6K 258 × 258 ocean simulation

RADIOSITY 8.2K batch diffuse radiosity alg.

RAYTRACE 6.1K tea ray tracing alg.

WATER-NSQ 1.2K 512 nsquared

WATER-SP 1.6K 512 spatial

Table 3.3: SPLASH-2 Benchmarks Description.

implemented page table structure VAL or using our hardware assisted implicit addressing

scheme SM. Atomicity can be achieved using thread serialization ser that is currently used in

Valgrind; or with the help of fine-grained locking fgl; or using the CSC scheme with the help

of exposed cache events. The performance of implementing various monitoring tools with

different ways of achieving address translation and atomicity were explored. The results

of this experiment are presented in Fig. 3.13, which shows the execution time overhead

of performing four different monitoring tasks: DIFT, Memcheck, Eraser and MemProfile.

In each of the graphs the first bar represents the performance of using Valgrind’s address

translation with thread serialization VAL:serial. The second bar represents the performance

of using Valgrind’s address translation with fine-grained locking VAL:fgl. The third bar

represents the performance of using our implicit addressing scheme with fine grained locking

SM:fgl and finally the last bar represents the performance of using implicit addressing with

CSC scheme for achieving atomicity SM:csc.

As we can see, the overhead of performing monitoring using VAL:ser can be quite

high. On an average it slows down the program by a factor of 25 for performing DIFT (45x

for Memcheck, 35x for Eraser, and 27x for MemProfile). Using fine-grained locking VAL:fgl

68

Atomicity
Instrumentation.
Address Translation

 0x

 5x

 10x

 15x

 20x

 25x

 30x

 35x

S
M

:c
sc

S
M

:fg
l

V
A

L:
fg

l
V

A
L:

se
r

S
M

:c
sc

S
M

:fg
l

V
A

L:
fg

l
V

A
L:

se
r

S
M

:c
sc

S
M

:fg
l

V
A

L:
fg

l
V

A
L:

se
r

S
M

:c
sc

S
M

:fg
l

V
A

L:
fg

l
V

A
L:

se
r

S
M

:c
sc

S
M

:fg
l

V
A

L:
fg

l
V

A
L:

se
r

S
M

:c
sc

S
M

:fg
l

V
A

L:
fg

l
V

A
L:

se
r

S
M

:c
sc

S
M

:fg
l

V
A

L:
fg

l
V

A
L:

se
r

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

O
ve

rh
ea

d

DIFT

barnes fmm ocean radiosity raytrace water−nsq water−sp

Atomicity
Instrumentation.
Address Translation

 0x

 10x

 20x

 30x

 40x

 50x

 60x

S
M

:c
sc

S
M

:fg
l

V
A

L:
fg

l
V

A
L:

se
r

S
M

:c
sc

S
M

:fg
l

V
A

L:
fg

l
V

A
L:

se
r

S
M

:c
sc

S
M

:fg
l

V
A

L:
fg

l
V

A
L:

se
r

S
M

:c
sc

S
M

:fg
l

V
A

L:
fg

l
V

A
L:

se
r

S
M

:c
sc

S
M

:fg
l

V
A

L:
fg

l
V

A
L:

se
r

S
M

:c
sc

S
M

:fg
l

V
A

L:
fg

l
V

A
L:

se
r

S
M

:c
sc

S
M

:fg
l

V
A

L:
fg

l
V

A
L:

se
r

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

O
ve

rh
ea

d

MEMCHECK

barnes fmm ocean radiosity raytrace water−nsq water−sp

Atomicity
Instrumentation.
Address Translation

 0x

 5x

 10x

 15x

 20x

 25x

 30x

 35x

 40x

 45x

S
M

:c
sc

S
M

:fg
l

V
A

L:
fg

l
V

A
L:

se
r

S
M

:c
sc

S
M

:fg
l

V
A

L:
fg

l
V

A
L:

se
r

S
M

:c
sc

S
M

:fg
l

V
A

L:
fg

l
V

A
L:

se
r

S
M

:c
sc

S
M

:fg
l

V
A

L:
fg

l
V

A
L:

se
r

S
M

:c
sc

S
M

:fg
l

V
A

L:
fg

l
V

A
L:

se
r

S
M

:c
sc

S
M

:fg
l

V
A

L:
fg

l
V

A
L:

se
r

S
M

:c
sc

S
M

:fg
l

V
A

L:
fg

l
V

A
L:

se
r

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

O
ve

rh
ea

d

ERASER

barnes fmm ocean radiosity raytrace water−nsq water−sp

Atomicity
Instrumentation.
Address Translation

 0x

 5x

 10x

 15x

 20x

 25x

 30x

 35x

S
M

:c
sc

S
M

:fg
l

V
A

L:
fg

l
V

A
L:

se
r

S
M

:c
sc

S
M

:fg
l

V
A

L:
fg

l
V

A
L:

se
r

S
M

:c
sc

S
M

:fg
l

V
A

L:
fg

l
V

A
L:

se
r

S
M

:c
sc

S
M

:fg
l

V
A

L:
fg

l
V

A
L:

se
r

S
M

:c
sc

S
M

:fg
l

V
A

L:
fg

l
V

A
L:

se
r

S
M

:c
sc

S
M

:fg
l

V
A

L:
fg

l
V

A
L:

se
r

S
M

:c
sc

S
M

:fg
l

V
A

L:
fg

l
V

A
L:

se
r

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

O
ve

rh
ea

d

MEMPROFILE

barnes fmm ocean radiosity raytrace water−nsq water−sp

Figure 3.13: Monitoring Overhead with Various Shadow Memory Implementations.

obviates the need for thread serialization and reduces overhead to a factor of 13 slowdown

for DIFT (20x for Memcheck, 21x for Eraser, 15x for MemProfile). Using implicit addressing

of shadow memory proposed in this paper along with fine-grained-locking SM:fgl obviates

the need for performing address translation in software and further reduces the overhead to

a factor of 9 for DIFT (14.4x for Memcheck, 16x for Eraser, 9.5x for MemProfile). Finally

our CSC scheme SM:csc all but eliminates the cost for performing locking and reduces the

overall overhead to a factor of 4.5 slowdown for performing DIFT (9.8x for Memcheck, 8.8x

for Eraser, 5.5x for MemProfile).

3.4.3 Break-Up of Overheads

To make more sense of the experimental results observed, the costs of performing

monitoring were broken down into three categories: address translation cost, instrumenta-

69

tion cost and atomicity cost. While address translation cost involves execution of instruc-

tions to compute the shadow memory addresses for the original memory addresses and then

access the shadow memory, instrumentation cost involves the execution of instructions for

performing the particular monitoring task and atomicity cost refers to the cost of ensuring

that OMIs and its corresponding SMIs are executed atomically. For this section, let us limit

our discussion to the results of MemProfile.

First, let us consider the VAL:ser implementation. As we can see from Fig. 3.13,

the atomicity costs dominate VAL:ser. This is not surprising as atomicity is enforced by

thread serialization and since SPLASH-2 programs scale well, serialization almost quadru-

ples the slowdown. Fine-grained-locking offers a slightly better alternative compared to

serialization as we can infer from the results for VAL:fgl. However, using fine grained locks

to implement atomicity additionally slows down the program by a factor of 2. This is be-

cause additional instructions (including costly atomic instructions) need to be executed for

implementing locking.

Next, let us compare the overheads of SM:fgl with VAL:fgl. Since implicit address-

ing was used in SM:fgl, the cost of address translation is all but eliminated. The only cost

of address translation is the small cost of executing the shadow-start and shadow-end

instructions for identifying SMI. However, this cost is negligible compared to overall instru-

mentation overhead.

As we can see in SM:csc, the cost of implementing atomicity is greatly reduced.

This is because using our CSC scheme, there is no need to execute additional instructions

to perform locking. On the contrary, our CSC scheme serializes OMI and SMI from two

processors, only if they potentially race with each other. As we can see from Fig. 3.13,

70

the cost for performing this limited serialization is small across all benchmarks for various

monitoring tools.

Finally, it is important to note that that the overhead of performing monitoring

using SM:csc is almost equal to the instrumentation cost that is inherent to each monitoring

task. Thus, it is important to note that the two forms of architectural support added in

this work: implicit addressing support and exposed cache events are effective in limiting

the overhead of performing a variety of monitoring tasks.

3.4.4 Variation across Monitoring Tasks.

We observe that while instrumentation costs vary across various monitoring tasks

(highest for Memcheck and lowest for DIFT), the address translation cost stays almost

the same across the various monitoring tasks. It is also worth noting that the cost of

implementing atomicity is slightly larger for Eraser and MemProfile in comparison with

DIFT and Memcheck. This is because Eraser and MemProfile involve general SMIs – More

specifically, original memory reads in these monitoring tools are accompanied by both reads

and writes to corresponding shadow memory values. Thus shared reads in the original

application, which would have caused read hits will now cause misses for corresponding

accesses, causing additional slowdown.

3.4.5 Memory System Performance

In this section, memory system performance of our shadow memory scheme is

evaluated in more detail. In particular, the overhead introduced by our CSC scheme for

maintaining atomicity and the overhead introduced by the handling of additional shadow

71

values is evaluated.

Overhead introduced by CSC scheme: Recall that the CSC scheme is used to

serialize OMI and SMI from two processors, if they race with each other. This serialization,

albeit limited, causes additional overhead and in this section we measure this overhead.

DIFT
 MEMCHECK
 ERASER
 MEMPROFILE

 0%

 5%

 10%

 15%

 20%

 25%

 30%

w
at

er
−

sp

w
at

er
−

ns
q

ra
yt

ra
ce

ra
di

os
ity

oc
ea

n

fm
m

ba
rn

es

 P
er

ce
nt

ag
e

E
xe

cu
tio

n
T

im
e

O
ve

rh
ea

d

Figure 3.14: Percentage overhead due to CSC for various monitoring applications

As we can see from Fig. 3.14, the cost for performing this limited serialization is

less than 18% across all the benchmark, for various monitoring applications. First, let us

observe the trends across different monitoring applications. The CSC scheme introduces

greater overhead for MemProfile (average 11%) and Eraser (average 10%), which consists of

general SMIs compared to DIFT (average 4.3%) and Memcheck (average 2.1%), which use

symmetric SMIs. This is due to the fact that dependence mirroring needs to be additonally

enfoced for RAR in case of general SMIs. MemProfile and DIFT incur greater overhead for

enforcing atomicity as apposed to Eraser and Memcheck owing to the fact that the latter

monitoring applications are associated with heavier instrumentation, because of which the

relative cost of enforcing atomicity becomes cheaper.

Second, the variation across different benchmarks is observed. It is interesting to

72

note that OCEAN and FMM incur high cost for monitoring applications with general SMI

(MemProfile and Eraser) owing to the relatively larger concurrent shared memory reads in

these applications. Other than this, in general, it is observed that the cost of enforcing

atomicity via coupled coherence is inversely related to the instrumentation costs in each of

the benchmarks.

Overhead due to extra shadow values Each of the monitoring applications

are required to support additional shadow memory values, which can potentially slow down

the application due to additional page faults and cache pollution.

First, the effect of additional page faults is measured. However any measurable

degradation in performance due to additional page faults could not be observed. This is

because of the fact that the memory footprint for these applications were small enough, so

that the increased shadow pages could easily be accommodated in the main memory.

Then the effect of the additional shadow values on the miss rates of the caches was

measured. Fig. 3.15 shows the L1 miss rates for various monitoring applications. First, it

was observed that the L1 miss rates of the original unmonitored run in quite low (around

1%). As we can see, the miss rate increases marginally to 1.06% for DIFT; while it increases

further to 1.35% for Memcheck; Eraser has a L1 miss rate of 1.7% and MemProfile has a

simial miss rate of 1.8%.

Thus, only marginal increase in the L1 miss rate was observed for various moni-

toring applications (from 1% to 1.8%). Then, the increase in L2 miss rates across different

monitoring applications was measured. However, any marked increase was not observed.

Thus, the slowdown due to additional shadow values polluting the cache is very nominal.

73

Original
DIFT
 MEMCHECK
 ERASER
 MEMPROFILE

 0%

 1%

 2%

 3%

 4%

 5%

 6%

 7%

 8%

ba
rn

es

fm
m

oc
ea

n

ra
di

os
ity

ra
yt

ra
ce

w
at

er
−

ns
q

w
at

er
−

sp

 L
1

m
is

s
ra

te
s

Figure 3.15: L1 Miss rates for various applications

3.5 Summary

In this chapter, a combination of architectural support (in form of ECMon: ex-

posed cache events) and operating system support (in form of coupled allocation of memory

pages used by the application and associated shadow memory pages) was used to derive

a shadow memory implementation that is both efficient and robust. ECMon was used to

couple the coherence of shadow memory with the coherence of the main memory, thereby

ensuring that SMIs execute atomically with their corresponding OMIs. The proposed page

allocation policy enables fast translation of original addresses into corresponding shadow

memory addresses; thus allowing implicit and efficient addressing of shadow memory. The

shadow memory support was implemented in a cycle accurate multicore simulator [80].

Four monitoring tasks DIFT, Memcheck, Eraser and MemProfile were used to evaluate the

shadow memory support. Experimental evaluations showed that the shadow memory im-

plementation was able to ensure atomicity of OMIs and SMIs efficiently. Furthermore, it

was also able to significantly reduce the overhead involved in address translation.

74

Chapter 4

Speculative Optimizations using

ECMon

In the last two chapters, ECMon support was introduced and it was used to

enable two existing monitoring applications for improving reliability. The next two chapters

presents two novel monitoring applications using ECMon support. In this chapter, ECMon

support is used as a framework for enabling speculative optimizations in parallel programs

[54, 56]. It is first observed that synchronization operations in parallel programs, although

required, can greatly affect the program performance. In part, this is because they force

the compiler to make conservative assumptions in generating code. It is observed that each

processor spends significant portion of its execution time waiting at barrier synchronizations

and immediately following synchronization, each processor executes significant number of

redundant loads. In this chapter, ECMon support is first used to speculatively execute past

barrier synchronizations, which is able to reduce the time spent idling at barriers, translating

into a 12% reduction in execution times. ECMon support is also used to speculatively

75

promote variables in the presence of synchronization operations, that reduces the number

of redundant loads executed, translating into an additional 2.5% reduction in execution

time. This chapter then discusses an alternate implementation of misspeculation detection,

in which existing hardware support for data speculation in Itanium processor in the form

of ALAT (Advance load address table) is adapted to perform misspeculation detection.

4.1 Overview

The advent of multicores presents a promising opportunity for exploiting fine

grained parallelism present in programs. Low latency and higher bandwidth for inter-

core communication afforded by multicores allows for parallelization of codes that were

previously hard to parallelize. Programs parallelized in the above fashion typically involve

threads that communicate via shared memory, and synchronize with each other frequently

to ensure that shared memory dependences between different threads are correctly enforced.

In such programs threads often execute only hundreds of instructions independently before

they have to synchronize with other threads running on other cores.

Program. Time Redundant Enforced
at Barrier Loads (%) Dep. (%)

Jacobi 25 6.25 25

Cholesky 61 24.8 6

Recurrence 42 88.5 12.5

Equake 32 2.1 3.2

Swim 24 0 3.1

Bisort 18 3.2 9

MST 28 8.4 34

Figure 4.1: Dependences enforced by synchronization and its characteristics

76

Fig. 4.1(a) illustrates a simple example that shows a sequential program with a

doubly nested loop. While the iterations of the innermost loop are independent (do all) of

each other, each iteration of the outermost loop (do serial) is dependent on values computed

in the previous iteration. This naturally gives rise to a parallel implementation as shown in

Fig. 4.1(b), where iterations of the innermost loop are distributed and computed by parallel

threads, after which the threads synchronize at the barrier. Fig. 4.1(c) shows the loop-

unrolled version of the parallel code, in which the arrows show the inter-thread dependences

that are enforced by the barrier synchronization. As we can see from the above example,

the purpose of adding the synchronization is to enforce shared memory dependences across

threads.

(Effect of frequent synchronization) Such frequent synchronization operations, al-

though required, can greatly affect program performance. In addition to causing the pro-

gram execution to spend significant time at synchronization points waiting for other threads,

synchronization operations also force the compiler to make conservative assumptions in gen-

erating code; for instance, variables cannot be allocated to registers across synchronization

operations without precise analyses [81, 86] that guarantees that those variables that were

allocated to registers cannot be modified by other threads. In other words, variables that

are potentially shared cannot be allocated to registers across synchronization operations.

To evaluate the importance of these factors, executions of a set of parallel programs that

exploit fine grained parallelism were analyzed, as shown in Table 4.1. As we can see from

column 1, each program spends a significant portion of its execution time (as high as 61%)

waiting at barrier synchronizations. Furthermore, immediately following synchronization,

each processor executes significant number of redundant loads (as high as 88%), owing to

77

the fact that shared variables could not be allocated to registers because of synchronization.

(Infrequent Dependences) One interesting property that was observed in our study

is that barrier synchronizations used by these programs enforce interprocessor dependences

that arise relatively infrequently. For each load executed by a processor following barrier

synchronization, it was determined if the value that it read was generated by another pro-

cessor prior to barrier synchronization. It was found that only 6% to 35% of loads executed

at each processor involved interprocessor dependences (column 3 in the table in Fig. 4.1).

Motivated by this observation, our approach consists of creating two versions of the section

of code between consecutive synchronization operations. One version is a highly optimized

version created under the optimistic assumption that none of the interprocessor depen-

dences that are enforced by the synchronization operation will actually arise. The other

version is unoptimized code created under the pessimistic assumption that interprocessor

dependences will arise. At runtime, the optimistic code is first speculatively executed and if

misspeculation occurs, the results of this version will be discarded and the non-speculative

version will be executed. Clearly, the efficacy of this approach hinges on the misspeculation

rate. Since interprocessor dependences arise infrequently, as we saw in our study, misspec-

ulation rate remains low. This results in the execution of the optimized code most of the

time, leading to performance savings.

(Efficient misspeculation detection) Another important parameter that affects the

performance is the efficiency with which misspeculation is detected. It is worth noting that

there is a misspeculation when there is an dependence between threads across barriers as

shown in Fig. 4.1 – in other words, when there is an ISMD. To detect misspeculation, ECMon

support detailed in chapter 2 is utilized. Recall that the ECMon support exposes ISMDs

78

to the software and thus can signal a misspeculation. More specifically, the track-range

instruction is first used to specify the range of addresses that are speculatively read. Then

the invalidate event is exposed to the software for the purpose of misspeculation detec-

tion. Consequently, when there is a remote write to any of the addresses specified by the

track-range instruction, the handler is called. The call to the handler denotes a misspecu-

lation and hence within the handler, control is transferred to the pessimistic non-speculative

version.

This scheme is utilized to perform two speculative optimizations to improve par-

allel program performance. First, by speculatively executing past barrier synchronizations,

execution time spent idling on barriers is reduced, translating into a 12% increase in per-

formance. Second, by promoting shared variables to registers in the presence of synchro-

nization operations, a significant amount of redundant loads is eliminated, translating into

an additional performance increase of 2.5%.

This chapter is organized is as follows. First, the use of ECMon support in specu-

lating past barriers is discussed. Then the use of ECMon support in performing speculative

register promotion is discussed. This is followed by discussion of experimental evaluation.

Then, an alternate technique for misspeculation detection – using support for data specu-

lation in Itanium processors is discussed.

4.2 Speculation Past Barriers

Barrier synchronization is commonly used in programs that exploit fine grained

parallelism – threads often execute only hundreds of instructions before they have to wait

for other threads to arrive at the barrier. A thread that arrives at a barrier first, does no

79

Figure 4.2: Speculative execution past barrier

useful work until other threads arrive at the barrier and this amounts to the time lost due to

the barrier synchronization. In order to reduce the time lost due to the barrier synchroniza-

tion, compilers typically try to distribute equal amounts of work to the different threads.

However, threads often do not execute the same code and this in turn causes a variation

in the arrival times. Moreover, even if each thread executes the same code, they can each

take different paths leading to a variation in number of instructions executed. Experiments

showed that the time spent on barrier synchronization can be as high as 61% of the to-

tal execution time for the set of programs considered. To reduce the time spent idling on

synchronization, a compiler-assisted technique for speculating past barrier synchronizations

is proposed. It is based on the observation that inter-thread shared memory dependences

that the barriers strive to enforce can be infrequent. By speculatively executing past a bar-

80

rier, we in turn are speculating that the inter-thread dependences do not manifest during

speculation. When the inter-thread dependences are infrequent, more often than not our

speculation succeeds and a significant performance improvement in achieved.

Figure 4.3: Dependences exercised

The above approach is illustrated using an example (Fig. 4.2) which shows the

original sequential code, the unoptimized parallelized version and our optimized version

which shows the compiler transformation for speculatively executing past barriers. The

sequential code shows a doubly nested loop: each iteration of the inner loop can be done

in parallel (do all), while the outer loop has to be performed sequentially since there is a

loop-carried dependence. While each iteration of the inner loop could be given to different

thread, this is not done typically [91]. To increase the computation-to-communication ratio

and to preserve locality, each thread is given a part of the vector as illustrated in Fig. 4.3,

where each thread is given a chunk consisting of four elements. Consequently in every

iteration, each thread computes the values in its chunk, reading values computed from the

previous iteration, after which it synchronizes with other threads by entering the barrier.

Speculation past the barrier is enabled by generating code as illustrated in Fig. 4.2. Once

81

a thread arrives at a barrier, it is announced that the current thread has arrived at the

barrier as shown in the function enter-barrier. Then it is checked if all threads have reached

the barrier; if so, then there is no need to speculate and the next iteration is executed.

However, if not all threads have reached the barrier, speculative execution is performed

past the barrier.

4.2.1 Thread Isolation

A safe address partition is created for the speculative thread to work on. The

primary benefit of this isolation is that name dependences that manifest between the spec-

ulative and the non-speculative threads can be safely ignored, and do not cause a misspecu-

lation. Moreover, the need for heavy-weight rollback is obviated in case of a misspeculation;

the newly created address space is merely discarded as in prior work [103]. If the specula-

tion is successful, then the speculative state is merged with the non-speculative state. It is

important to note that the above tasks viz. thread isolation, recovery from misspeculation

and committing the results of a successful speculation are performed in software by the

compiler. The compiler ensures thread isolation by writing to a separate address space

during speculation. In other words, stores are transformed to store into the separate spec-

ulative address space. However, this creates a potential problem for reads; reads need to

be able to read from original or new address space, depending on whether the read address

has already been written into. To deal with this, each word of the new address space is

associated with meta data which is initialized to 0. Whenever there is a store to a word,

the meta-data for the corresponding word is set to 1 as shown in Fig. 4.4. Depending on

the value of the meta-data, loads then read from the speculative (new) or non-speculative

82

Figure 4.4: Code transformation

address space. However, for the programs considered, which essentially deals with loops

working on vectors, the compiler is able to statically determine whether the reads have to

read from the original or new address space, and this obviates the need for maintaining

meta data for most loads and stores.

4.2.2 Misspeculation Detection

ECMon support is used to detect misspeculation. Upon entering speculative exe-

cution, the range of addresses that are read is set using the track-range instruction. Then

the invalidate cache event is exposed to the software using ECMon. Whenever there is a

remote write to any of the addresses specified in the track-range instruction , it would

then cause the handler to be called. Recall that a remote write to any of the addresses read

speculatively, signals an interprocessor dependency which the barrier was attempting to en-

force. However, it is also the dependency that was not enforced due to the speculation and

83

hence such a dependency flags a misspeculation. Consequently, when the end of speculation

is reached, it is checked if there was any invalidates to the read set. This is performed by

executing the call-handler instruction. Consequently, if there had been any invalidates

during speculation, the handler will be called. Within the handler, the speculative state

is discarded, and control is transferred to non-speculative version. If there had been no

invalidates during speculation, then the handler will not be called and the speculative state

is committed. Committing the state involves copying the contents of the newly allocated

space into the original non-speculative address space.

4.2.3 Reducing Misspeculation rate

Although the dependences enforced by the barriers are infrequent, they can still

cause misspeculation if they manifest after the speculative code starts executing. As we can

see from Fig. 4.5(a), thread B has reached the barrier and has started executing past it in

speculative mode.

Figure 4.5: (a) Reducing Misspeculation rate (b) Code transformation

When it encounters the load instruction, St2 (thread A) has not yet been executed.

In other words, the dependence between the St2 and Ld has not yet been enforced. Thus,

84

when St2 eventually executes in thread A, a misspeculation will be flagged. On the contrary,

let us assume St2 does not exist (or writes a different address) and so the only interprocessor

dependence is between St1 and Ld. In this case, note that by the time Ld instruction

is executed in the (speculative) thread B, St1 from thread A has already executed. In

other words, the dependence between St1 and Ld has already been enforced, and so this

interprocessor dependency will not cause a misspeculation. Thus, to reduce the chance

of misspeculation, it would be beneficial to advance writes to shared data (like St1 and

St2), which is the focus of this optimization. To perform this optimization, the iterations

that write to shared data are first identified as shown in the profiling step of Fig. 4.5(b).

These iterations are then earlier than others. It is worth noting that this reordering can be

performed only if the iterations in the inner loop can be performed in any order (do all).

4.3 Speculative Register Promotion

Figure 4.6: (a) Redundant loads due to barriers (b) Data partitioning

Recall that the purpose of synchronization operations are to enforce shared mem-

ory dependences across threads. However, lack of precise information about the dependences

can lead to the execution of significant number of redundant loads. In our study it was

85

found that as high as 88% of loads executed around synchronization operations were redun-

dant loads. Fig. 4.6(a) illustrates the reason for these redundant loads. When a barrier is

reached, there is a need to dump all the variables that have been allocated registers to mem-

ory. Likewise, when a thread leaves a barrier, all the dumped variables have to be reloaded

into registers. This is because, without information that guarantees that a variable is local

to the thread, the compiler can not allocate the variable to a register across synchronization

operations. Let us consider the same example of the doubly nested loop, whose inner loop

can be parallelized. Recall that each thread is given a part of the vector to work on, to

increase locality. Since each thread accesses and updates parts of the vector, the vector as

a whole is shared. As shown in Fig. 4.6(b), thread 2, for example, reads in L[4] through

L[8] and writes L[5] through L[8], every iteration. Since the vector is shared, the compiler

cannot allocate individual elements across synchronizations. Thus, it cannot allocate L[4]

to a register in thread 2, because each iteration it is written by thread1. However, note

that elements L[5] through L[7] are actually exclusive to thread 2 and could be allocated

to registers across synchronizations. Without this fine grained partitioning information, it

is hard for the compiler [81, 86] to figure out which of the variables are local to threads.

On the other hand, it is relatively easier to estimate which of the variables are shared and

local, by using profiling. Such probably local variables can be speculatively promoted to

registers, provided there is a way to detect the case when this speculation is incorrect. In

this optimization, the track-range instruction is used to speculatively allocate the vari-

able to a register, at the same time, remembering the address. Whenever there is a remote

write to the such addresses, the handler is called, which helps us to detect the situation

when the speculation is incorrect. As we can see, in the transformed version in Fig. 4.6, by

86

promoting the variable to the register, the redundant loads can be removed every iteration.

It is worth noting that while the redundant load can be removed, we still have to store the

value to the memory every iteration before the barrier. This would serve as a means to

detect misspeculation in case the same variable had been promoted to a register in some

other thread.

However, speculatively promoting registers is not as simple as removing the loads

during speculation (past the barrier) and remembering the addresses in the ALAT. To see

why, let us consider the Fig. 4.7. As we can see by executing, track-range the addresses

of variables that have been speculatively promoted to registers are being remembered. This

will mean that, if there is a store in thread A (St2), this will call the handler and notify

us of our misspeculation. However, let us consider the case of St1, from thread A, which is

assumed to write to the same address. Since St1 has already been executed in thread A,

before the thread B has arrived at the barrier, there is no way of detecting this dependency;

in other words, misspeculation can not be detected in this scenario. To handle this situation,

the variables are speculatively loaded into registers once, initially (outside the loop) as shown

in Fig. 4.8. This enables us to remember the addresses via the track-range instruction

outside the loop. Whenever a thread reaches a barrier, before speculatively executing past

it, we check if there has been a misspeculation by executing the call-handler instruction.

If the handler is not called, this means that there has been no stores to the speculatively

promoted addresses. This in turn means that the promoted registers can be continued

to used without reloading. However, if the handler is called, then there has been a store

to one of the speculatively loaded registers. This, in turn, means that the variables have

to be reloaded into registers and this is precisely what is done within the handler. While

87

Figure 4.7: Promoting registers during speculation

Figure 4.8: Code transformation

88

reloading the variables to registers, track-range instruction is again used to remember that

these variables are again speculatively loaded. After taking care of registers, speculative

execution past the barrier is performed. As before, before exiting the speculation, the call-

handler instruction is again executed. It is important to note that this could mean one of

two things: either the values that have been speculatively loaded have been written into,

or the values that have been speculatively promoted have been written into. To take care

of the latter, the variables are reloaded into registers, at the same time, remembering the

loaded addresses using the track-range instruction. If the misspeculation flag has not been

set at this point, the handler is not called and the speculative state is committed.

4.4 Alternate Support for Misspeculation Detection

In the previous chapter ECMon support was utilized for detecting misspeculation.

However, existing support for data speculation in Itanium processors can be alternately

modified and adapted for detecting misspeculation. More specifically, support for data

speculation in the form of Advanced Load Address Table (ALAT) already present in Itanium

processors [1, 41] is used. This architectural support is exposed to the compiler via two new

instructions: the speculative read S.Rd and the jump on misspeculation jflag instruction.

The S.Rd instruction enables us to specify the range of memory addresses that are specula-

tively read, which are efficiently remembered in the ALAT. Once the speculative read S.Rd

is executed, the hardware ensures that remote writes to any of the addresses, from other

processors invalidate the corresponding entry in the ALAT and sets the misspeculation flag.

The compiler is given the ability to read this flag via the jflag instruction and hence can

react to misspeculation by jumping to the pessimistic non-speculative version.

89

4.4.1 Support for misspeculation detection

(ALAT for data speculation) The support for misspeculation detection is based on

data speculation support already present in Itanium processors [1, 41]. This hardware

support is in the form of a hardware structure known as the Advanced load address table

(ALAT) and the special instructions associated with it. When a data speculative load is

issued with a special load instruction known as the advanced load ld.a instruction, an

entry is allocated in the ALAT, storing the target register and the loaded address. Every

store instruction then automatically compares its address against all entries of the ALAT.

If there is a match, the corresponding entry in the ALAT is invalidated. Using the chk.a

instruction, a check is performed before the speculatively loaded value is used; while a valid

entry means that load speculation was successful, an invalid entry means that the data has

to be reloaded. Our observation that the above HW support can be used for misspeculation

detection in our scheme stems from the fact that entries in the ALAT are also invalidated

by remote writes to the same address from other processors [1]. Thus, in our optimistic

speculative version, values are loaded using advance load ld.a instructions, each load will

create an entry in the ALAT. A subsequent remote write in another processor to any of the

addresses loaded will precisely indicate an interprocessor dependency that was not correctly

enforced through our speculation. Such remote writes invalidate the ALAT entries and thus

serve as a mechanism for misspeculation detection.

(Modified ALAT for misspeculation detection) However, there are some significant

differences between data speculation, which is primarily meant for scalars in sequential code,

and speculative optimization for parallel programs. First, speculatively loading all values

in the optimized optimistic version, via the ld.a instruction would very likely exhaust all

90

possible entries in the ALAT. To deal with this size limitation, the speculative read S.Rd

instruction is proposed, through which the compiler can specify ranges of addresses that are

to be read speculatively.The purpose of S.Rd instruction is to merely inform the processor

about the (range of) addresses that are read, and no actual loading from memory happens.

In our design, each processor’s ALAT can hold 4 such address ranges. We provide this

capability so that vectors that are read speculatively can be specified succinctly by the

compiler. If the compiler is unable to determine the range, it then can generate code with

the S.Rd accompanying the loads in program without specifying the range. The hardware

then takes the responsibility of inserting the address into any of the ranges maintained. The

hardware does this conservatively – at any time the range of addresses maintained by the

hardware is guaranteed to contain all the addresses read speculatively.

Another important semantic difference is that, while data speculation requires that

local stores invalidate ALAT entries, speculation for parallel programs does not require this.

Accordingly, the ALAT entries created by S.Rd instruction are not invalidated by local

stores. It is worth noting that in the modified ALAT, there is still support for conventional

data speculation. Thus local stores are made to invalidate ALAT entries for the advanced

load instruction ld.a instruction, like before. Finally, a flag is added to the ALAT which

is used to indicate misspeculation. This flag can be reset by the compiler using the rflag

instruction. Whenever a remote write to one of the ALAT (ranges) is detected, the flag is

set. The compiler can access this flag via the jump on misspeculation instruction, jflag,

using which the compiler can jump to the pessimistic non-speculative version on detecting

a misspeculation.

Fig. 4.9 shows how the instructions interact with the ALAT. Following a syn-

91

Figure 4.9: Interaction of instructions on ALAT

chronization operation, the optimistic version which assumes the absence of interprocessor

dependences is first executed. The compiler specifies the range of addresses that the specu-

lative code reads, via the S.Rd instruction. Accordingly, the ranges of addresses are remem-

bered in the ALAT (step 1). The rflag instruction is then used to clear the misspeculation

flag (step 2). While the optimistic version is executing, if there are any remote writes to any

of the address ranges in the ALAT, the misspeculation flag is set (step 3). Finally at the

end of speculative version, the compiler checks for misspeculation via the jflag instruction,

and jumps to the non-speculative version, if there is a misspeculation.

4.4.2 Microarchitecture support

(Misspeculation detection) Fig. 4.10 illustrates the microarchitectural support needed

for misspeculation detection. Remote writes that write to the addresses in the ALAT are

detected using the invalidate cache-coherence message like in the Itanium [1]. Additional

logic is required in the form of comparators for comparing the invalidated block address with

92

Figure 4.10: Microarchitecture support

the ranges specified in the ALAT; if there is a match, the misspeculation flag is set. One

complication stems from the fact that the address ranges specified by the S.Rd instruction

are virtual addresses, while the addresses associated with coherence messages are physical

addresses. Accordingly, the physical addresses from the coherence messages are converted

to virtual addresses before they are compared with the entries in the ALAT. To enable this

conversion, an additional inverted TLB that stores the physical to virtual page mappings

is maintained.

(Representing Ranges) Each ALAT entry stores an n bit address value (anan−1...a0)

and a movable bit marker. The position of the bit marker implicitly determines the range

represented by the ALAT entry. If the bit marker resides in ith position, it represents a

range of address values between (anan−1...ai00...0) to (anan−1...ai11...1). For example, in

Fig. 4.11, the first entry in the ALAT represents a range of addresses between 8 and 15.

93

Figure 4.11: Range Representation

This is because the bit marker resides in the 3rd bit. With this representation, determining

if an address value lies within the range becomes as simple as comparing the first n − i

higher order bits. Since the ranges are represented in the above fashion, the operands of

the S.Rd instruction are really an address value and a bit position value to represent the

range. If the compiler is not aware of the range, then it specifies a bit position of 0 1.

(Extending the ranges) When a new S.Rd instruction is encountered, a new ALAT

entry is created to represent this range. However, if the ALAT entries are exhausted, the

new range is merged into one of the pre-existing ranges represented in the ALAT. Let

us suppose that the new instruction specifies an address addr and each of the the ALAT

entries have the address addrk with current bit position bk. Then the first bk bits of addr

are compared with each entry addrk. If there is match, then it means the current address

addr has already been accounted for, in the ALAT. If there is no complete match, the

ALAT entry with the closest match is chosen and its range is extended to include addr.

The ALAT entry with the maximum number of higher order bits matching addr is thus

selected and the bit marker is moved left until the range represented by the entry includes

1In our implementation, the bit marker resides initially at kth bit where 2k is the block size of the cache,
since addresses are stored at cache block granularity

94

addr. Fig. 4.11 shows an ALAT with 8 bit addresses that has the capacity for storing three

ranges. For the first address, the bit marker is pointing at the 3rd bit, representing the

range of addresses between 8 and 15. Similarly the other two entries store ranges 40 - 43

and 240 - 263 respectively. The above example also shows the transformation in the ALAT

when there is a new S.Rd instruction with the range 44 - 47. Since there are no free entries

in the ALAT, the new range is accommodated by extending the second range. The second

range is chosen since it is closest to the new range – the first 5 higher order bits match.

Consequently, the range extension for the second entry is reflected by moving the bit marker

towards the left.

4.4.3 Speculation using modified ALAT

This section discusses how the two speculative optimization: speculation past

barriers and speculative register promotion are performed using the modified ALAT. The

general algorithms for speculation using ALAT is very similar to performing speculation

with ECMon. However, there is one important difference. The S.Rd instruction is used to

maintain the addresses of the read set instead of the track-range instruction. This means

that there is no necessity for the compiler to figure out the read set. It merely suffices

that the compiler instrument every speculative load with an S.Rd instruction; the hardware

automatically maintains the speculative read values (the read set) efficiently, with the range

representation support.

95

Figure 4.12: Code transformation

Speculation past barriers using ALAT

Fig. 4.12 details the code transformation for speculating past barriers using the

modified ALAT. The basic idea is same as the code transformation with ECMon support

with some minor differences. Upon entering speculative execution, the rflag instruction

is used to reset the misspeculation flag. Then the range of addresses that are read using

the S.Rd instruction. However, this step is not a necessity; the compiler can set set the

range of addresses if it it has this information. If the compiler is not able to statically

determine the range of addresses read, then S.Rd instructions are made to accompany the

loads as shown in Fig. 4.12 – the hardware will ensure that all the addresses that are

read from, are remembered in the ALAT. Whenever there is a remote write to any of the

addresses remembered in the ALAT, it would then invalidate the ALAT entry and set the

misspeculation flag. Recall that a remote write to any of the addresses read speculatively,

96

signals an interprocessor dependency which the barrier was attempting to enforce. However,

it is also the dependency that was not enforced due to the speculation and hence such a

dependency flags a misspeculation. Consequently, at the end of the speculation, the value

of the misspeculation flag is checked and if it is not set, the speculative state is committed.

Committing the state involves copying the contents of the newly allocated space into the

original non-speculative address space, as usual.

Speculative register promotion using ALAT

The general idea of speculatively promoting registers using ALAT support is again

similar. The variables are speculatively loaded into registers once, initially (outside the loop)

as shown in Fig. 4.13. This enables us to remember the addresses of the loaded variables

in the ALAT. The misspeculation flag is then reset via the rflag instruction. Whenever

a thread reaches a barrier, before speculatively executing past it, the value of the flag is

checked. If flag value is not set, this means that there has been no stores to the speculatively

promoted addresses. This in turn means that the promoted registers can be safely used

without requiring reloading. However, flag that has been set at this point means that there

has been a store to one of the ALAT entries. This, in turn, means that the values of the

registers have to be reloaded. This is precisely what is done While reloading the variables

to registers, the S.Rd is again used to remember the loaded values in the ALAT. Having

taken care of registers, speculative execution is now performed. Likewise, before exiting the

speculation, the value of the misspeculation flag is checked. It is important to note that this

could mean one of two things: either the values that have been speculatively loaded have

been written into, or the values that have been speculatively promoted have been written

97

Figure 4.13: Code transformation

98

into. To take care of the latter, the values of the variables are reloaded into the registers, at

the same time, remembering the loaded addresses in the ALAT. If the misspeculation flag

has not been set at this point, the speculative state is committed as usual.

4.5 Experimental Evaluation

Processor 8 processor, inorder

L1 Cache 32 KB 4 way

L1 hit latency 1 cycle

L2 Cache 512 KB 8 way

L2 hit latency 9 cycle

Memory latency 200 cycle

Coherence MOSI bus based

Program. Source

Jacobi Iterative solver

Cholesky Cholesky gradient

Recurrence Linear recurrence

Equake Earthquake simulation

Swim Weather prediction

Bisort Bitonic sort

MST Minimum spanning tree

Figure 4.14: (a) Architectural parameters used for simulation (b) Programs used

In this section, the experimental results of our ECMon/modified ALAT assisted

speculative optimization framework is presented. First and foremost, the performance in-

crease obtained via speculatively executing past barrier synchronizations is presented. Since

key to a good performance is low misspeculation rate, the misspeculation rate was evalu-

ated; the effect of our compiler transformation of reordering the loops were also presented.

Next, the performance increase obtained by speculatively promoting shared variables into

registers was studied. But before the experimental results are presented, the implementa-

tion and the benchmarks used are described. The architectural support in the SESC [80]

simulator, which is a cycle accurate CMP simulator targeting the MIPS architecture. Both

the ECMon support and the modified ALAT support was implemented in the simulator.

This is because the proposed architectural support of ECMon as well as the modified ALAT

99

is not available in current processors and hence had to be simulated. For the simulation,

the architectural parameters listed in Table. 4.14 are used. The benchmarks used are a

set of seven parallel programs listed in Fig. 4.14. Cholesky (kernel 2) and Recurrence (ker-

nel 6) are parallelized versions of Livermore loops, whose implementations are described in

[87]. Equake and Swim are from the SPEC Openmp benchmark suite, while Bitonic sort

and MST are from the Olden benchmarks suite. Finally, the parallelized version of the

Jacobi iteration was also used. Each program was rewritten to make use of synchronization

constructs associated with the simulator and compiled each program to run on the sim-

ulator using the simulator’s cross compiler. It is important to note that since the above

programs synchronize frequently using barriers, they are interesting subject programs for

the evaluation of our technique.

4.5.1 Execution Time Reduction using ECMon

First, the execution time reduction was measured using the ECMon support. Pro-

filing was used to identify the part of shared data that is local to each thread and such

variables were promoted to registers. To keep misspeculation at a minimum the compiler

technique described to reorder the iterations of loop was used.

As we can see from Fig. 4.15(a), the execution time was reduced significantly us-

ing the two techniques. The percentage reduction in execution times ranges between 6%

(Bitonic sort) and 24% (Livermore loop 2). On an average, a 12% reduction in execu-

tion time was achieved by speculatively executing past barriers. By performing speculative

promotion of variables into registers, a further reduction in execution times was achieved.

Recurrence and Cholesky, have a significant number of redundant loads around synchroniza-

100

 register promotion
speculation past barrier

 0

 5

 10

 15

 20

 25

 30

av
er

ag
e

M
S

T

B
is

or
t

S
w

im

E
qu

ak
e

R
ec

ur
re

nc
e

C
ho

le
sk

y

Ja
co

bi P
er

ce
nt

ag
e

E
xe

cu
tio

n
T

im
e

R
ed

uc
tio

n
Copy Overhead
Miss−speculation
Useful Work

 0

 20

 40

 60

 80

 100

 120

 140

av
er

ag
e

M
S

T

B
is

or
t

S
w

im

E
qu

ak
e

R
ec

ur
re

nc
e

C
ho

le
sk

y

Ja
co

bi

 E
xe

cu
tin

g
tim

e
br

ea
ku

p

Figure 4.15: (a) Execution time reduction and (b) break up

tions and for these programs, the execution times significantly – 8% and 4% respectively.

On an average, execution time was reduced by a further 2.5% across all benchmarks, due

to speculative register promotion. To gain further insight as to why speedup was achieved,

we measured how the original time spent in synchronization (without speculation) was now

being spent with speculation. As we can see from Fig. 4.15(b), about 37% of the original

time spent in barrier is now channeled into performing useful work. We can also see that

the time spent inside the handler recovering from misspeculation is relatively low (about

5%), owing to small number of misspeculations. However, significant time (about 58%) was

spent performing copies for maintaining and committing speculative state.

Efficacy of loop reordering Recall that to reduce misspeculation, loops were

reordered, so that updates to shared data take place earlier. To determine the efficacy of this

optimization, the misspeculation rates before and after application of this transformation

was measured. As we can see from Fig. 4.16, this optimization significantly reduces the

misspeculation rates for Jacobi (44% to 5%), Equake(54% to 2.3%) and Swim (51% to 6%)

programs. In the above three programs, there was a shared update in the end of each

101

 Without Reordering
 With Reordering

 0

 10

 20

 30

 40

 50

 60

 70

av
er

ag
e

M
S

T

B
is

or
t

S
w

im

E
qu

ak
e

R
ec

ur
re

nc
e

C
ho

le
sk

y

Ja
co

bi

 M
is

s−
sp

ec
ul

at
io

n
ra

te

Figure 4.16: Efficacy of reordering

thread’s execution which was causing misspeculation. Once this shared update was moved

earlier, the misspeculation rate significantly dropped.

4.5.2 Execution time reduction using modified ALAT

The execution time reduction obtained by the application of the above speculative

optimizations using a modified ALAT was also evaluated. It was found that the execu-

tion time reduction was almost identical to the above results obtained. This result is not

surprising since the support involved in modified ALAT is equivalent to ECMon support

for misspeculation detection. The only difference being that in ECMon a handler is called

when a misspeculation is detected, while with the modified ALAT support, the code for

reacting to misspeculation is inlined within the original code, using the jflag branching

instruction. Since the misspeculation rate was quite low, the difference due to the above

was not apparent in the experimental results.

102

4.6 Summary

In this chapter, ECMon support was used as a framework for performing specula-

tive optimizations for parallel programs running on multicores. In particular, ECMon was

used to perform two speculative optimizations to improve parallel program performance.

First, by speculatively executing past barrier synchronizations, time spent idling on barri-

ers was significantly reduced, translating into a 12% reduction in execution time. Second,

by promoting shared variables to registers in the presence of synchronization, a significant

amount of redundant loads were reduced, translating into a further reduction of 2.5% in ex-

ecution time. Finally, an alternate technique for misspeculation detection using a modified

ALAT (Advanced load address table), which is already present in Itanium processors, was

discussed.

103

Chapter 5

Self Recovery in Server Programs

It is important that long running server programs retain availability amidst soft-

ware failures. However, server programs do fail and one of the important causes of failures

in server programs is due to memory errors. One safe way of recovering from these crashes

is to periodically checkpoint program state and rollback to the most recent checkpoint on a

crash. However, checkpointing program state periodically can be quite expensive. In this

chapter, a detailed study is conducted to see how memory corruption propagates in server

programs. Our study shows that memory locations that are corrupted during the process-

ing of an user request, generally do not propagate across user requests. On the contrary,

the memory locations that are corrupted are generally cleansed automatically, as memory

(stack or the heap) gets deallocated or when memory gets overwritten with uncorrupted

values. This self cleansing property in server programs led us to believe that recovering

from crashes does not necessarily require the expensive roll back of state for recovery. Moti-

vated by this observation, SRS, a technique for self recovery in server programs which takes

advantage of self-cleansing to recover from crashes is proposed. Since SRS is a software

104

based monitoring application that utilizes meta data stored in shadow memory, it is not

able to run on multicores because of races between data and meta data [64]. To enable SRS

for multicores, ECMon support is utilized to enforce consistency of data and meta data

accesses.

5.1 Overview

Long running server programs seek to maximize their uptime and thereby ensure

that they are available to users. However, server programs do fail and one of the important

causes of failures in server programs is due to memory errors. According to the National

Vulnerability Database [4], memory errors like buffer overflows, format string errors, integer

overflows etc. constitute a significant percentage (30% as of 2008) of software failures.

Memory bugs in the server code, when exposed by certain user request, can lead to memory

corruption which can eventually lead to crashes or even software attacks (if user input is

malicious).

There has been significant research on the recovery from software failures. One

safe way of recovering from such software failures and ensure availability is to periodically

checkpoint program state and rollback to the most recent checkpoint, when failure is de-

tected [30, 71, 72, 77, 101]. Having rollbacked to a safe state, all user requests starting from

the safe state point until the crash point are replayed; during replay, the particular bad user

request that triggered the crash is identified and dropped [72, 101] so that the same fail-

ure is not repeated. However the checkpointing/rollback scheme has its limitations. First,

checkpointing program state periodically can be quite expensive. Second, since recovery can

involve rolling back of considerable state information, the throughput and response time of

105

the server can be reduced significantly during rollback recovery. Third, since checkpointing

is done only at specific program points, recovery can involve the replay of several good

user requests. Finally, checkpointing/rollback system is complex and poses implementation

challenges for multithreaded programs [72].

In this chapter, a detailed study of memory corruption was conducted in server

programs, to see how memory corruption propagates as the server program executes, with a

view to understand whether the expensive checkpointing and rollback operations are really

needed. If the memory corruption does really propagate a lot through memory, then that

would vindicate the expensive state rollback in the checkpointing/rollback approach; on the

contrary, if memory corruption does not propagate all that much, such expensive recovery

mechanisms might not be really needed. In our study of real world server programs, values

written to the memory by different store instances (all store instances were comprehensively

tested) are assumed to be “corrupt” and its propagation studies. This study showed that

memory locations that are corrupted during the processing of an user request, generally

do not propagate across user requests. On the contrary, the memory locations that are

corrupted are often cleansed automatically, as memory (stack or the heap) gets deallocated

or when memory gets overwritten with uncorrupted values. Thus this self cleansing property

in server programs showed that recovering from crashes does not necessarily require the

expensive roll back of state for recovery.

Motivated by the above study, SRS a safe technique for enabling Self Recovery

in Server programs is proposed. In SRS, the self-cleansing property is in server programs

is utilized to isolate the faulty user request from other succeeding benign user requests,

without checkpointing or rollback. In other words, in SRS, when a crash occurs, we do not

106

rollback state to a previously saved safe state; on the contrary, we suppress the crash and

execute forward. When executing forward, SRS guarantees that the user requests succeeding

the faulty request do not read any values written during the processing of the faulty request,

thereby achieving the effect of dropping the bad request. Despite self cleansing, there can

be a small number of memory locations that remain corrupt; if there is a need to access such

a corrupted location, a demand driven approach is used to restore the corrupted value when

a read for it is encountered. Thus in SRS, instead of the expensive rollback operation to

restore the memory contents to a safe state, an efficient demand driven restoration technique

us used. Furthermore, since execution is made to proceed forward past a crash, the need

to replay benign user requests is eliminated altogether.

However, executing forwards past a crash is not without its own challenges. Even

though the first crash can be suppressed, similar crashes can recur (and likely will recur),

when values that are dependent on the corrupted memory values are used later. To prevent

such crashes from recurring a mechanism called crash suppression is used, in which those

instructions that use values that are corrupted are not made to execute, and are suppressed.

Owing to the self-cleansing property, fewer memory locations remain corrupted because of

which fewer instructions need to be suppressed as execution moves forward.

This demand demand approach for recovery requires program monitoring, albeit

minimal, and is accomplished via software instrumentation. However, as shown in chapter 3,

monitoring multithreaded server programs running on multicores, introduces races between

data and meta data, which can corrupt the monitoring process. To enable monitoring of

multithreaded server programs on multicores, we use ECMon support.

SRS was evaluated with real world memory bugs in 4 widely used server programs

107

and it was found that SRS could successfully recover from the failures caused by faulty user

requests. It was also found that SRS is efficient, causing negligible drop in the response

time of the program during normal run and after recovery.

5.2 Study of Memory Corruption Propagation

The process of exposing a memory bug in a program via a user request that causes

a crash consists of three events in program execution. In the first step, the bug in the

source code is traversed by user input. In the second step, the traversal of the bug leads to

the first point of memory corruption; this is the point when a memory location is mishan-

dled in some way. The corrupted memory location then propagates across memory where

it spreads and corrupts other memory locations. Finally, a crash occurs when there is an

access to a spurious memory location. The goal of a checkpointing/rollback system is to

rollback to a prior memory state, a state that is hopefully devoid of memory corruption. We

conducted a detailed study of memory corruption in server programs to see how memory

corruption propagates as the server program executes, with a view to understand whether

the expensive checkpointing and rollback operations are really needed. Does the corrupted

memory location go on to corrupt other memory locations; if so on an average how much

does the corruption spread? Is it possible that the set of corrupted memory locations can

shrink? These were some of the questions that the memory propagation study can poten-

tially answer. If the memory corruption does really propagate a lot through memory, then

that would vindicate the expensive state rollback in the checkpointing/rollback approach;

on the contrary, if memory corruption does not propagate all that much, such expensive

recovery mechanisms might not be really needed. In this section, the server programs used

108

in the study are first discussed. Then, the study of memory corruption propagation along

with an analysis of salient observations is discussed.

4 widely used real world server programs are used in this study. Mysqld, cvs, squid,

and apache are the servers considered as listed in Table 5.1. For each of these programs, the

client sends separate user requests; for mysqld 3 separate requests that build and manipulate

separate tables are sent; for cvs 3 separate requests to checkout source code are sent; for

apache and squid 3 requests are sent for downloading files of various sizes.

5.2.1 Memory Propagation Study

Methodology: The purpose of this study is to understand how memory corrup-

tion propagates through memory as the program executes. One possibility is to study the

propagation of the memory corruption in real bugs. However, the memory propagation

clearly depends on what memory location(s) are corrupted. For example, a global variable

that is marked corrupt is expected to lead to several other corrupted values, while a local

temporary may only lead to fewer corrupt values. Hence, to comprehensively study the

propagation of memory corruption, several executions of the server program are considered;

in each execution, different memory locations are assumed to be corrupt and its propaga-

tion studied. More specifically, in each execution it is assumed that a specific dynamic store

instruction writes a corrupt value to memory and study the propagation of this corruption

in the rest of the execution. This way, all possible memory locations that can potentially

be corrupted are exhaustively covered.

The steps of the memory propagation study, as illustrated in Fig. 5.1, consists of

two phases. In the first phase, called Trace Stores, a trace of all store instructions and the

109

Table 5.1: Server Programs Characteristics.

Program Description LOC

mysqld Database server 588K

cvs Version Control server 93K

squid Web Proxy cache server 283K

Apache Web server 114K

Table 5.2: Memory Corruption Propagation.

Action Target Src1 Src2

Fault Corr.

Instr: Target = src1 op src2 Corr. Uncorr. Corr.

Instr: Target = src1 op src2 Corr. Corr. Uncorr.

Instr: Target = src1 op src2 Corr. Corr. Corr.

Instr: Target = src1 op src2 Uncorr. Uncorr. Uncorr.

Deallocation Uncorr.

corresponding instruction count when each store instruction is executed (see step 4 in 1st

phase) are collected, so that each dynamic store can be uniquely identified. In the second

phase, called Memory Corruption Propagation, we repeatedly assume each unique dynamic

store to be corrupted, i.e. we assume that it writes a corrupt value to the memory, and

study the memory corruption propagation. This is achieved by associating a corruption bit

with every memory word and register and propagating the corruption bits as the program

executes. using the propagation rules detailed in Table. 5.2 (see Fig. 5.1 2nd phase, steps

9,10). When an instruction experiences an exception (for example an out-of-bounds load),

the target of that faulting instruction is marked corrupt. When a corrupted location is

used by an instruction, then the value computed (or defined) by that instruction in turn

is marked corrupt. However, when an instruction whose uses are uncorrupted, redefines a

value, then the redefined value is considered to be uncorrupt, since it is computed with valid

110

Phase 1: Trace Stores

Let cnt: global instruction count

1. switch (instruction)

2. cnt ++ // Update Current instruction count

3. case store:
4. fprintf (trace-file, cnt) // Write current instruction count to trace file

Phase 2: Memory Corruption Propagation

For each memory word addr, register reg,

src.corruption : Whether src (address/reg) is corrupted

1. while (!eof (trace-file))

2. fscanf (trace-file, propagate_cnt) // Read count from trace file and start new execution

3. switch (instruction)

4. cnt++ // Update current instruction count

5. case target = src1 op src2 // Target, src1, src2 can be memory / register

6. if (cnt == propagate_cnt)

7. propagation = true // Start propagation mode
8. target.corruption = true // Initial Corruption

9. if (propagation)

10. if (src1.corruption or src2.corruption)

11. target.corruption = true // Propagation semantics

12. target = src1 op src2 // Regular semantics

Figure 5.1: Algorithm for Memory Propagation Study.

operands. Finally, when memory (stack or heap) gets deallocated it is marked uncorrupt.

Thus for a load instruction that moves a memory value into a register, the corruption bits

corresponding to the memory word are also moved into a register. Similarly, the corruption

bits are cleared when memory gets deallocated.

(a) (b) (c)

C
orr

up
ted

 Lo
cat

ion
s

C
orr

up
ted

 Lo
cat

ion
s

C
orr

up
ted

 Lo
cat

ion
s

Execution Time Execution TimeExecution Time

Figure 5.2: Variation of Corrupted Memory Locations with Time.

Observations and Analysis: When a memory value is corrupted, it can go on

to corrupt other memory locations; at the same time, the memory locations that are marked

corrupt can revert back to being uncorrupt, as memory gets deallocated. Fig. 5.2 shows

111

different ways in which the number of corrupted memory locations varied, after the initial

memory corruption. One common pattern that was observed was that, a memory location

once corrupted, marks zero or more memory locations corrupt, each of which revert back

to uncorrupted state, as that respective memory locations are deallocated (see Fig. 5.2(a)).

On the other hand, Fig. 5.2(b) shows the situation in which not all of the memory locations

that are corrupted, revert back to uncorrupt state. Similarly, Fig. 5.2(c) shows the situation

in which none of the memory locations that are corrupted, revert back to uncorrupted state.

This can happen when the corrupted variables are those variables that are used across user

requests, in which case they are not deallocated.

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

#
 o

f
c
o
rr

u
p
te

d
 m

e
m

o
ry

 l
o
c
a
ti
o
n
s

% of analyzed stores

mysql

max
last

Figure 5.3: Variation in Max Corrupted and Final Corrupted across different execution
instances for mysqld.

To get a quantitative perspective of the propagation of memory corruption, the

maximum number of corrupted memory locations and the final number of corrupted locations

at the end of the current user request was measured. For each of the above metrics the min,

max, mean and median across different executions was measured, where different memory

locations are marked corrupt as shown in Table. 5.3. To study how the above values are

distributed across different executions, the values for each of the benchmarks were also

112

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90 100

#
 o

f
c
o
rr

u
p
te

d
 m

e
m

o
ry

 l
o
c
a
ti
o
n
s

% of analyzed stores

cvs

max
last

Figure 5.4: Variation in Max Corrupted and Final Corrupted across different execution
instances for cvs.

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70 80 90 100

#
 o

f
c
o
rr

u
p
te

d
 m

e
m

o
ry

 l
o
c
a
ti
o
n
s

% of analyzed stores

squid

max
last

Figure 5.5: Variation in Max Corrupted and Final Corrupted across different execution
instances for squid.

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

#
 o

f
c
o
rr

u
p
te

d
 m

e
m

o
ry

 l
o
c
a
ti
o
n
s

% of analyzed stores

apache

max
last

Figure 5.6: Variation in Max Corrupted and Final Corrupted across different execution
instances for apache.

113

Table 5.3: Memory Propagation Study.

Program Max Corrupted Location Final Corrupted Locations
Min Max Mean Med Min Max Mean Med

mysqld 1 14241 377 1 0 4995 120 0

cvs 1 1672 56 1 0 577 18 0

squid 1 475771 6997 2 0 8680 423 0

apache 1 32672 3228 5 0 6631 607 0

plotted as shown in Figs. 5.3 through 5.6. Each graph shows the variation in the max

corrupted values and final number of corrupted values over different execution instances,

in each of which an unique store is assumed to write a corrupt value. From Table. 5.3 and

Figs. 5.3 through 5.6 the following observations are made:

• The minimum value of maximum number of corrupted locations (minmax) across all

benchmarks is 1; this is the one that is initially marked corrupt and does not corrupt

any more new locations. This can happen for several reasons. One possible reason is

because the corrupted value can be used as a loop counter, in which case the corruption

does not propagate across other memory locations. Another possible reason is because

the stored value is sometimes not read at all, in which case no propagation occurs.

• We also observe that the minimum value of final number of corrupted locations (min-

final) is 0 . This corresponds to the case in which each of the memory locations that

were marked corrupt were reverted back to uncorrupted state. This can happen due

to two reasons. First, those memory locations that have been marked corrupt could

have been deallocated; second, the values that have been marked corrupt could have

been overwritten with uncorrupt values.

• The maximum number of maximum number of corrupted locations (maxmax) can

114

be large. This can happen if some of the important variables that has several uses

is marked corrupt. However, as we can see from Figs. 5.3 through 5.6 often the

maximum number of corrupted locations is quite low. For 80% of the execution

instances, less than 10 memory locations get corrupted.

• The maximum number of final number of corrupted locations (maxfinal) is relatively

lower than maxmax. This is because of the self cleansing effect in server programs;

this causes a large number of memory locations that are marked corrupt are reverted

back to uncorrupt state. This fact is confirmed from Figs. 5.3 through 5.6 where the

final number of corrupted locations is significantly lower. In fact, between 70% and

90% of the execution instances, the final number of corrupted memory locations is 0,

meaning whatever memory locations that were marked corrupt were fully cleansed.

• This fact is further reinforced when the median of the maximum number of corrupted

locations (medmax) and final number of corrupted locations (medfinal) is observed.

While medmax is less than 5 across all benchmarks, medfinal is 0. This means that

more often than not, a corrupted memory location goes on to mark only few other ad-

ditional memory locations as corrupt, each of which are reverted back to uncorrupted

state.

Thus the most important insight that was inferred from the memory corruption prop-

agation study is that a memory location that is marked corrupt goes on to corrupt only a few

other memory locations, most of which are uncorrupted by the end of processing of the user

request. This is what is known as the self cleansing property inherent in server programs.

115

5.2.2 What causes self cleansing?

Next, another study was conducted to find out the reasons for the above obser-

vations. In particular, the reason for this study is to find why self cleansing takes place in

server programs. Why does memory corruption spread and then diminish rapidly as the

server begin to handle the next request. One possible reason could be that user requests

are already isolated, in that, there is very little data that is shared between user requests,

which can cause memory locations corrupted during the processing of one user request to

become invisible for other user requests. So, this study was conducted to find out if this is

indeed true.

Memory Isolation Study

Let curr-id : Current user request id
For each memory word addr:
addr.request-id: User request that wrote to it last
shared : set of shared memory locations

1. switch (instruction)
2. case store:

addr.request-id = curr-id
3. case load:

if (addr.request-id < curr-id)
shared = shared U addr

Figure 5.7: Algorithm for Isolation Study.

Methodology: The purpose of this study is to determine the degree of isolation

among user requests already inherent in server programs. In this study, the server was

connected with several user requests, the number of memory locations that are shared

across user requests was determined. A memory location is said to be shared if it was

written into by an earlier user request, and read by a later request; in other words if a

memory location is used to exercise an inter user request RAW dependence, it is considered

116

shared. A small percentage of shared memory locations, would mean that values written

during the processing of one request , is not read during the processing of other user requests

and thus can explain why self cleansing takes place. To determine the number of shared

memory locations, stores and loads are instrumented as shown in Fig. 5.7. Each memory

location is tagged with a shadow memory location; each store is instrumented to store the

current user request id in the shadow memory location associated with the original address.

Each load is instrumented, to check if the value loaded comes from a previous user request,

by checking the user request id; if that is the case, that particular memory address is added

to the set of shared addresses.

Observations and Analysis: The percentage of memory locations that are

shared across several user requests is measured in each of the server programs. As we

can see from Table. 5.4 only a small percentage of memory locations (ranging from 6%

to 35%) were shared across user requests. The effect of the complexity of user requests

on the number of shared memory locations was also measured. Results are presented for

two programs mysqld and squid. For mysqld, the number of shared memory locations was

measured, as the size of the tables are varied. For squid, the sizes of the webpages that

squid fetches are varied and the effect on the number of shared memory locations is mea-

sured. As we can see from Figs. 5.8 and 5.9: as the complexity of user requests increases,

the number of non-shared memory locations increases rapidly, while the number of shared

memory locations almost remains the same. This evidence points to the fact that server

programs have a fixed global state that is shared across user requests.

Thus the most important insight that was derived from this study is that most of the

values that are written during the processing of a user request are used locally; only a small

117

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

largestlargemediumsmall

#
 u

n
iq

u
e
 l
o
a
d
e
d
 m

e
m

o
ry

 l
o
c
a
ti
o
n
s

Request Sizes

mysql

not shared
shared

Figure 5.8: Variation in Shared/Unshared with complexity of user requests for squid.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

largestlargemediumsmall

#
 u

n
iq

u
e
 l
o
a
d
e
d
 m

e
m

o
ry

 l
o
c
a
ti
o
n
s

Request Sizes

squid

not shared
shared

Figure 5.9: Variation in Shared/Unshared with complexity of user requests for mysqld.

118

Table 5.4: Isolation Study.

Program # Shared # Non-Shared % of Shared

mysqld 758 6493 10.4

cvs 271 1457 15.6

squid 2753 41650 6.2

Apache 1471 2646 35.7

(fixed) amount of global state is shared across user requests. The small shared state is the

reason why memory corruption does not propagate across user requests, and hence explains self

cleansing.

5.3 Design and Implementation of SRS

In this section, the design and implementation of our technique SRS, for recovering

from server failures related to memory corruption, is discussed in detail. First, the general

idea of SRS is discussed at a high level. Then the steps involved in implementing SRS at a

conceptual level is discussed in detail.

When a server program experiences a failure while processing a user request, ideally

the server should not crash; on the contrary, the server program should continue to process

future user requests. At the same time, the memory state that has been corrupted by the

fault inducing memory request should not be visible to future user requests. In other words,

the faulty user request should be isolated from the processing of other benign user requests.

One way to perform this is to checkpoint memory and architectural state before processing

every user request; upon the detection of a failure, the state can then be rollbacked to

the prior benign state. The objective of SRS is to ensure semantics similar to rollback

based recovery scheme, without performing checkpointing or rollback. For this SRS takes

119

advantage of self cleansing inherent in server programs. Recall that from the study it was

inferred that different user requests of sever programs share very little shared state, owing

to which memory corruption that happens during the processing of a user request is largely

invisible to future requests. Thus the main steps in SRS are two fold:

• Execute past a failure, when a failure is detected, instead of rolling back, so as to

trigger self cleansing. We enable execution past a failure by executing instructions

under crash suppression mode – under suppression mode, instructions, any of whose

source operands are corrupt, are not executed and the target is marked corrupt.

• Despite self cleansing there can be small number of memory locations that remain

corrupted – if there is a need to access such corrupted locations later (by a later

request), a demand driven approach is used to restore the corrupted values only when

it is needed to be read. In SRS, the set of memory locations that are potentially shared

across user requests are identified via profiling; these specific memory locations are

specially monitored, so that in case of a failure these specific locations are restored in

a demand driven fashion.

The rest of this section is organized in follows. The crash suppression semantics

and its implementation is discussed in detail. Then it is discussed how isolation is realized

with demand driven restoration of shared memory locations. Then it is briefly discuss how

SRS maintains thread safety for multithreaded code. Finally, each of the above steps is

integrated and present as the SRS technique.

120

For each memory word addr, register reg
src.corruption : Whether src (address/reg) is corrupted

1. switch (instruction)
2. case faulting instruction:
3. suppression = true // Start suppression mode
4. target.corruption = true // Initial Corruption

5. case target = src1 op src2

6. if (suppression)

7. if (src1.corrupt or src2.corrupt)
8. target.corrupt = true // Suppression semantics
9. else
10. target = src1 op src2 // Regular semantics

Figure 5.10: Suppression Semantics.

5.3.1 Crash Suppression

Once a failure is detected while processing a user request, in SRS, execution is

continued forwards so that we can take advantage of the self-cleansing property1. However,

executing forwards past a crash is not without its own challenges. Even though the first

crash can be suppressed, similar crashes can recur (and likely will recur), when values that

are dependent on the corrupted memory values are used later. We enable execution past a

failure using crash suppression semantics, in which an instruction is suppressed without exe-

cuting, if any of its source operands are corrupted. The basic steps for realizing suppression

semantics are outlined in Fig. 5.10. We implement suppression by associating a corruption

bit with every memory word and register. Upon detecting a failure, the corruption bit for

the target of the instruction that causes the failure is set. Suppression semantics entail that

any instruction, any of whose source operands are marked corrupt, is suppressed and is not

1For this work, failure refers to an OS out-of-bounds exception, although others sensors [72] can be used
to detect a failure

121

executed. However, the corruption bit is propagated, which means the target operand’s cor-

ruption bit is set. If the corruption bit for a branch predicate is set, the control is made to

skip the whole branch structure; For instance if the predicate for an if-then-else structure is

marked corrupt, then both the then and the else parts of the structure are skipped. Dealing

with indirect jumps (and returns) whose target address is marked corrupt is more tricky. In

our current implementation, profiling is used to figure out the most frequent branch target

for such indirect jumps and jump to that target. In case profile information is not available,

we directly jump to the next user request.

5.3.2 Ensuring Isolation

We need to ensure that an user request, that encountered a failure, should be

isolated from future benign user requests. This entails that values written to memory during

the processing of the faulty request should not be visible to future requests. Those memory

locations that are shared across user requests are those which can possibly be visible to

future requests. Fortunately, our study shows that the number of shared memory locations

are relatively small. In SRS, memory locations that are likely shared using profiling are

identified. During normal run, these shared memory locations are monitored and multiple

versions of these shared memory locations are maintained. Thus, when an user request

experiences a failure and there is a need to access one of these shared memory locations,

the corrupted value can be restored to its original uncorrupted state, on demand. However,

it is worth noting that profiling only gives us an underestimate of the set of memory locations

that are shared across user requests. Thus, a situation could be potentially encountered

when there is a need to access a corrupted shared memory location, which has not been

122

identified and monitored. Our approach to deal with this situation is to provide capability

to detect such a situation. When such a situation arises, the server is restarted; by doing

this it is ensured that recovery is fail safe. Having explained our approach for ensuring

isolation at a high level, now let us consider in detail the individual steps.

Monitoring Shared Locations

The memory locations that are potentially shared across user requests are found

using profiling. In the profiling run we connect to the client with several user requests,

and then identify the memory locations which are written to by an earlier request and read

by a later request. In other words, the set of memory locations which are used to enforce

true dependences across user requests are identified. These are the memory locations in

which global state is maintained. For instance, a global variable which essentially stores the

number of user requests handled will have this property. These set of memory locations are

known as the TrackSet. It is worth noting that this is only an underestimate, since profiling

is used to identify this set. Nothing is done regarding anti and output dependences; this is

because these locations are overwritten with a new (uncorrupt) value in the later request.

Let us see how the TrackSet is monitored and how different versions are maintained

for the memory locations in the TrackSet. Whenever the processing of a new user request

starts, memory (the TrackLog) is allocated to hold the previous values of the memory

locations within the TrackSet. The TrackLog is a buffer, each entry having two values: the

address and the (previous) value. All stores operating on the TrackSet are instrumented

so that their prior values can be maintained in the TrackLog. If the current user request

does not experience a fault, then the TrackLog can simply be discarded. However, if the

123

user request experiences a fault, the TrackLog is used later to restore the corrupt memory

locations to their prior values, on demand.

Demand Driven Restoration

The main idea of demand driven restoration, is to restore the corrupted value

using the TrackLog, when it is is about to be read in a future request. To be able to do

this we first need to identify that a value is corrupt, when it is about to be accessed. A

value is considered corrupt, if it was written into during the processing of a fault inducing

user request. To identify such memory values, every memory location is shadowed 2 with a

request-id. This is essentially a unique number associated with every user request. All stores

are then instrumented to additionally write the current request-id to the shadow location

associated with the memory address.

When a user request experiences a failure, this is remembered by adding the current

request-id to the list of failed requests. Once a failure is encountered, all loads in the program

are instrumented to perform an additional check. By comparing the request-id associated

with the loaded memory location with the list of failed user request, we are essentially

checking if the value loaded comes from a value that has been stored during the processing

a fail request. If so, the TrackLog is consulted using the effective address as an index

into the TrackLog. An entry in the TrackLog means that this memory location has been

identified during profiling and the value has been backed up in TrackLog. Accordingly, the

value in then restored from the TrackLog into the actual memory location. In other words,

corrupted values are restored on demand, when they are accessed.

2It is sufficient if the heap and global space are shadowed, since stack memory locations are not used to
enforce true dependences across user requests

124

However, it is important to note that the TrackLog is only an underestimate of

the actual set of values that is shared across user requests. Hence it is possible that the

TrackLog does not have an entry if the memory location had not been identified as a part

of TrackSet during profiling. If this is the case, the server is restarted to ensure fail safety.

1st User Request

TrackLog[] : Buffer to store previous values
curr-id : Current user request id (=1)
request-id[addr] : Stores the id of user request that

wrote to this addr
faulting-reqs[] : Buffer that stores faulting requests

1: Ld1 reg1, [0x1000]

2: Ld2 reg2, [reg3]

3. St1 reg1, [0x1000]
i) Append *(0x1000), 0x1000 to TrackLog[]
ii) request-id[0x1000] = curr-id

4. St2 reg2, [0x2000]
i) request-id[0x2000] = curr-id

…

5. Fault:
i) Append curr-id to faulting-reqs[]

…
…

2nd User Request

TrackLog[] : Buffer to store previous values
curr-id : Current user request id (=1)
request-id[addr] : Stores the id of user request that

wrote to this addr
faulting-reqs[] : Buffer that stores faulting requests

1: Ld1 reg1, [0x1000]
i) id = request-id[0x1000]
ii) if id among faulting-reqs[]

if TrackLog.find(0x1000)
*(0x1000) = TrackLog[0x1000]

else
restart server

endif
endif

2: Ld2 reg2, [reg3]

i) id = request-id[reg3]
ii) if id among faulting-reqs[]

if TrackLog.find(reg3)
*(reg3) = TrackLog[reg3]

else
restart server

endif
endif

…

Figure 5.11: Ensuring Isolation.

An Example

In this section, the steps involved in ensuring isolation are summarized with a

simple example. Let us consider two user requests the first of which experiences a fault

while being processed. The first step is to identify the TrackSet using profiling. Let us

assume that during profiling run, there is only one memory location (0x1000) that is shared

between two user requests, and it is the one that is written into by St1 and read by Ld1

across user requests as shown in Fig. 5.11. Consequently, St1 is instrumented with code

that stores the prior value residing in the memory location to the TrackLog associated with

125

the user request (step 3). Since St2 does not write to the TrackSet, it is not instrumented

in the above fashion. However, it is instrumented to write the current request-id in the

shadow memory associated the memory location (step 4). Let us assume that the program

then experiences a fault while executing a subsequent instruction, while processing the same

user request. Upon a fault (step 5), the current request-id is added into the list of failed

user requests.

Now let us consider the processing of the next user request, and in particular the

execution of the two loads Ld1 and Ld2. Ld1 which obtains its value from St1, now gets

it value from a store that was executed during the processing of a fault inducing request

(request 1). In other words, the value to be loaded is corrupt and the condition (step ii)

evaluates to true. Since the value is corrupt, the TrackLog is searched for the value. As the

value was already appended in step 3 of the 1st request, it is found there. Consequently,

the value is restored from the TrackLog and the correct (uncorrupt) value is loaded. Now,

let us consider the execution of Ld2. Let us assume that during this run Ld2 actually gets

its value from St2 since the value of reg3 happens to be 0x2000 during this run. This is

an instance of a dependency across user requests that was not captured during profiling.

Consequently, the value is not found in the TrackLog and the server is restarted.

Handling Multithreaded Code using ECMon

Since the SRS technique is associated with meta data for every memory location

(for eg. request id) and includes software instrumentation associated with memory instruc-

tions, races present in the source can lead to meta data inconsistency [16]. For example,

let us consider Fig. 5.12 which illustrates the atomicity issue. Recall that each store is

126

Figure 5.12: Atomicity issue.

associated with a shadow store that writes the request id to the shadow memory location.

In the above example, while St1 from processor 1 executes before St2 from processor 2, the

corresponding shadow stores are executed in the opposite order. This means that while the

value written by St2 is the value that is written last, the request id is the one corresponding

to the request from processor 1. In SRS, this problem is dealt with by serializing the threads

and making sure that thread switches do not occur between data and meta data updates

as in Valgrind [64]. However it is worth noting that thread serialization is inefficient as

it forces the code to run on a uniprocessor. To make SRS applicable for server programs

running on multicores, ECMon support is utilized to enforce atomicity (as described in

chapters 3).

5.3.3 SRS Summary

Each of the steps of SRS are illustrated in the concise algorithm shown in Fig. 5.13.

The steps of SRS are roughly divided into four phases. In the first profiling phase, which is

performed offline, the TrackSet is determined and all the stores that write to the TrackSet

127

Offline: Normal Run

1. Perform profiling and
determine TrackSet.

2. Determine the Stores that
operate on TrackSet.

Online: Normal Run

1. For stores that operate on
TrackSet maintain their
previous values in TrackLog.

2. Instrument other stores to write
current request id to shadow
memory.

Online: Fault Detection

1. Catch OS exceptions for
access violations.

2. Append current user request to
set of faulting requests.

3. Enter Suppression mode until
the end of current request.

Online: Recovery Run

1. Instrument loads to check if
they were written during
faulting request

2. If so, check if the available in
TrackLog. If available, restore
it, otherwise restart.

Figure 5.13: Summary: SRS.

are determined. In the normal run, the TrackLog is maintained for all stores that write to the

TrackSet. For all other stores, the current request id is written out to the shadow memory

to assist on-demand restoration. It is worth noting that the online overhead imposed by

SRS is the overhead of executing the additional instrumentation. The next phase consists

of the fault detection. In this phase, the OS out-of-bounds exception is used to denote a

fault. However it is worth noting that other sensors including security attack detection tools

can be used in this step. Once the fault is detected, the current user request is added to

the set of faulting requests, and execution enters suppression mode. In the final recovery

phase, loads are instrumented to check if the request id corresponding to the loaded value

comes from a faulty user request. If this is the case, then the TrackLog is searched and the

correct value is restored on demand. If the entry is not found in the TrackLog, the server

is restarted.

128

5.4 Experimental Evaluation

The experimental evaluation of SRS was performed with several goals in mind.

First and foremost, the efficacy of SRS in recovering from real faults in server programs in

evaluated. At the same time, the overheads imposed by SRS in the normal run and during

recovery was also investigated. But before the results of our experiments are presented, the

implementation of the prototype is discussed.

5.4.1 Implementation

A functionally working version of SRS was implemented in Valgrind [64] and was

used for conducting the study. Valgrind’s shadow memory support [63] was used for storing

the various meta data information used for implementing SRS. The starting instruction

address, where processing of every user request commences, was manually identified. Once

this address is encountered the Tracklog is allocated and the current request id is incre-

mented. With Valgrind, the out-of-bounds OS exception was captured, and then execution

continued in suppression mode. After completing the faulty user request and encountering

the start address of the next request, the execution leaves suppression mode and enters

recovery mode, where every load includes the fail safety check. However, since the Valgrind

infrastructure, which is built for the ease of writing complex tools, imposes higher overheads,

a performance optimized version was also implemented in dynamoRIO [10]. This version of

SRS, which was used to measure the overhead of SRS, includes all instrumentation of the

prior version, but does not catch OS exceptions, so it has to be manually run in normal

mode or recovery mode.

The overhead of SRS with ECMon support while monitoring programs running on

129

multicores, was also evaluated. For this the SESC [80] simulator was used. Recall that the

ECMon support was built into the SESC simulator. However, the server programs could

not be run with the simulator infrastructure. Hence, the SPLASH2 [110] benchmarks were

used in its place. It is important to note that these experiments were carried out merely

to estimate the overheads of performing SRS on multicores and there was no fault in the

programs themselves.

5.4.2 Recovery in the presence of faults

Versions of the server programs with real memory errors were used for this exper-

iment. The bugs in the program are described in the Table. 5.5.

For each of the programs, the server was connected with about 10 user requests,

with the special user request that triggers the fault as the 5th request. Different user

requests compared to the one used in profiling runs were used. In each of the cases, the bug

causes an out-of-bounds OS exception which SRS catches; then, SRS enters suppression

mode under which SRS was able to safely execute to the end of the faulty request, without

experiencing other faults. Once the faulty request is “processed”, SRS enters recovery mode

in which fail safety checks are added before every load. In our set of experiments, it was

observed that none of the fail safety checks failed; thus the need to restart the server never

arises. We believe that typically, the need to restart will not occur, since the shared variables

stay mostly the same irrespective of the variation in the user request. Thus this experiment

shows that SRS can be used to survive faults safely.

130

Table 5.5: Bugs in Server Programs.

Program Bug

mysqld Uninitialized Read [3]

cvs Double free [42]

squid Buffer overflow [42]

Apache Stack Overflow [42]

5.4.3 Performance of SRS: uniprocessor

In this experiment, the overhead experienced in the response time imposed by

SRS was measured during normal run as well as during recovery. Recall that the overhead

imposed during normal run is due to the additional instrumentation involved for maintaining

the TrackLog and for storing the current user request id for every original store instruction.

As we can see from Fig. 5.14, the overhead imposed is very low, on an average, 5% across

all benchmarks. This overhead is low mainly for two reasons. First, since these are not

computationally bound programs, the additional instrumentation could easily be tolerated.

Second, the additional instrumentation during normal run, is only an additional store for

every store instruction. Since the processor does not generally wait for the stores, the

overhead imposed is not high.

We also measured the additional overhead imposed after recovery, which is basi-

cally the overhead for performing the fail safety checks along with every load. Even this

overhead is pretty low, on an average 8% across each of the benchmarks (Fig. 5.15). The

overhead is higher because now the instrumentation is performed for every load along with

a safety check.

The overhead involved in executing in suppression mode was also measured. As

we can see, from Fig. 5.16, this overhead can be as high as 3 times for these benchmarks.

131

 0

 2

 4

 6

 8

 10

av
er

ag
e

ap
ac

he

sq
ui

d

cv
s

m
ys

ql
d

P
er

ce
nt

ag
e

R
es

po
ns

e
T

im
e

O
ve

rh
ea

d

Server Program

Figure 5.14: Response Time Overhead in Normal Run.

 0

 2

 4

 6

 8

 10

av
er

ag
e

ap
ac

he

sq
ui

d

cv
s

m
ys

ql
d

P
er

ce
nt

ag
e

R
es

po
ns

e
T

im
e

O
ve

rh
ea

d

Server Program

Figure 5.15: Response Time Overhead after Recovery.

 0x

 1x

 2x

 3x

 4x

 5x

 6x

av
er

ag
e

ap
ac

he

sq
ui

d

cv
s

m
ys

ql
dN

or
m

al
iz

ed
 R

es
po

ns
e

T
im

e
O

ve
rh

ea
d

Server Program

Figure 5.16: Response Time Overhead during Recovery in Suppression Mode.

132

However it is important to note that the overhead for performing suppression is only for the

duration of processing the faulty request, hence the dip in performance is only applicable

for a very short time. Once the faulty request is handled, then SRS stops executing in

suppression mode. Furthermore, there has been significant research on performing dynamic

information flow tracking efficiently using hardware support [97, 21, 23]. DIFT hardware

can be used to optimize the performance of the suppression mode, since the instrumentation

operations performed during suppression mode resemble those that are performed during

dynamic information flow tracking.

5.4.4 Performance of SRS: multicore

The overhead of SRS while executing on a multicore using ECMon support was

also measured. This experiment was carried out using our simulator infrastructure. Since

the server programs could not be compiled for this infrastructure, we used the popular

SPLASH2 benchmarks for this study. In this experiment, the overhead of SRS during

normal run was measured.

 0%

 10%

 20%

 30%

 40%

 50%

ba
rn

es

fm
m

oc
ea

n

ra
di

os
ity

ra
yt

ra
ce

w
at

er
−

ns
q

w
at

er
−

sp

ha
r_

m
ea

n P
er

ce
nt

ag
e

E
xe

cu
tio

n
T

im
e

O
ve

rh
ea

d

Figure 5.17: Response Time Overhead in Normal Run.

133

 0%

 10%

 20%

 30%

 40%

 50%

ba
rn

es

fm
m

oc
ea

n

ra
di

os
ity

ra
yt

ra
ce

w
at

er
−

ns
q

w
at

er
−

sp

ha
r_

m
ea

n P
er

ce
nt

ag
e

E
xe

cu
tio

n
T

im
e

O
ve

rh
ea

d

Figure 5.18: Response Time Overhead after Recovery.

As we can see from Fig. 5.17, the overhead of SRS, when run on multicores is 27%

on an average, while the overhead during recovery in 31% on an average. The overheads

are higher than those of server programs, since these programs are cpu intensive and it

is not easy to accommodate additional instrumentation without incurring overheads. It is

important to note that the atomicity is required only during normal run and not during

recovery. This is because during recovery, the instrumentation consists of loads for every

load original load instruction and hence there is no possibility of races between data and

meta data accesses. However, the overhead during recovery is higher due to the fact that

there are greater loads than stores in these programs and thus, there is need for greater

number of instrumentation instructions executed during recovery.

5.4.5 Performance of Checkpointing/Rollback Schemes

One issue with Checkpointing based rollback recovery schemes is the frequency

of checkpointing, which in turn results in the trade-off between the normal execution per-

formance and recovery performance. Infrequent checkpointing can reduce the overhead of

134

checkpointing, but can increase the cost of recovery [72]. On the other hand, frequent

checkpointing can cause greater overhead during normal execution. A highly optimized

checkpointing system [95] with a checkpointing interval of 50ms resulted in a overhead of

about 11% during normal execution run, with marginal overheads during recovery. The

overheads incurred by SRS are thus comparable (slightly lesser) to overheads experienced

in a checkpointing based rollback recovery scheme, without the need for a complex check-

pointing/rollback system.

5.5 Summary

In this chapter, a technique known as SRS that was used to retain the availability

of server programs amidst software failures caused due to memory errors was presented.

SRS was motivated by a detailed study that was conducted to see how memory corruption

propagates in server programs. The study showed that memory locations that are corrupted

during the processing of an user request, generally do not propagate across user requests.

On the contrary, the memory locations that are corrupted are generally cleansed automati-

cally, as memory (stack or the heap) gets deallocated or when memory gets overwritten with

uncorrupted values. This self cleansing property in server programs led us to believe that

recovering from crashes does not necessarily require the expensive roll back of state for re-

covery. Motivated by this observation, SRS, a technique for self recovery in server programs

which takes advantage of self-cleansing to recover from crashes was proposed. Experiments

conducted on real world server programs with real bugs, showed that in each of the cases

the server program could efficiently recover from the crash and the faulty user request was

isolated from future benign user requests. Performance evaluations revealed that SRS could

135

efficiently recover from a crash, and causes nominal overhead of about 5% during normal

run when considering executions on a uniprocessor. Since races between data and metadata

accesses make a direct implementation of SRS unsuitable for multicores, ECMon support

was used to adapt it for multicores.

136

Chapter 6

Related Work

6.1 Software based Monitoring

Software based monitoring techniques instrument the program with additional

code for enabling monitoring. While software based monitoring requires no special hard-

ware support and can be applied to a variety of monitoring tasks, they cause significant

program slowdown. In general, software monitoring tools take advantage of a dynamic

binary translator (DBT) [43, 64, 108] for adding the additional instrumentation code for

monitoring. Dynamic taint analysis [66], LIFT [73], TaintTrace [15] and Dytan [19] are

tools that perform dynamic information tracking. Flashback [95] and Jockey[85] are tools

that enable deterministic replay debugging by recording and replaying program execution.

Memcheck [63] and eraser [88] are debugging tools; while the former is used to debug mem-

ory errors, the latter is used to detect data races in multithreaded programs. Redux [62]

and OnTrac [58] are tools that trace a program’s execution as it executes. Often software

monitoring tools use shadow memory [63] to maintain meta data for every memory location

137

of the original program; for this reason such tools [66, 63, 88], are known as shadow memory

tools. Each location in the original program is associated with a shadow memory location,

where the meta data is maintained. Allocating and maintaining shadow memory in a robust

and efficient fashion is one of the important challenges facing software monitoring techniques

[63].

Although there are several software based monitoring tools, they are thwarted by

ISMDs, which makes them either inapplicable [66, 73, 95] or inefficient [25, 63] on multi-

cores. For example, both Flashback [95] and Jockey[85] are only applicable for (single and)

multithreaded programs running on a uniprocessor. Likewise, software based taint analysis

tools [15, 66, 73] are unable to monitor multithreaded programs running on multiprocessors

[16]. Software tools that perform monitoring need separate instructions to perform moni-

toring, giving rise to races between data and meta-data when executed on multicores [16].

Since the ISMDs can be captured using ECMon, the proposed support in this dissertation,

these races can be dealt with in our dissertation. This dissertation shows how exposed cache

events could be used to program a variety of software monitoring tools, including shadow

memory tools [55, 53, 52] and tools for performing DRD [54]. Furthermore, this dissertation

also shows how shadow memory, which is used in several software monitoring tools, can be

managed robustly and efficiently with support for managing and addressing shadow pages

[55, 53, 52].

6.2 Hardware based Monitoring

Hardware based monitoring techniques use hardware support for enabling mon-

itoring. While hardware based monitoring tools are generally faster than software based

138

monitoring tools, they can not be directly used in real machines. Hardware based monitor-

ing techniques, can be coarsely divided into two two categories: those that use specialized

hardware support for tackling one single monitoring problem (or a small class of problems),

and those that use general purpose hardware support that can be programmed for tackling

a large class of monitoring problems.

6.2.1 Specialized hardware support

There has been several proposals that use specialized hardware support to ensure

the reliability of software [23, 60, 61, 97, 111]. The hardware support involved in each of

the above proposals is non-trivial and involves changes to the processor pipeline, caches,

cache coherence and memory subsystem. For example, FDR [111],Bugnet [61], and Strata

[60], which are hardware tools for recording the programs execution, involve augmentations

to the cache coherence protocol to capture dependences, changes to processor pipeline to

maintain instruction counts, addition of per block counters to the caches and addition of

other hardware structures to optimize recording. Rerun [35] and DeLorean [48] represent

recent work in the above area, that optimize the hardware requirements for performing the

recording. Similarly, DIFT [97], Minos [22], Raksha [23] and flexitaint [28] use specialized

hardware with changes to processor pipeline and memory subsystem to perform dynamic

information flow tracking (DIFT). Recently there has been work to utilize support for data

speculation in processors to perform DIFT [13]. In this dissertation, the minimal hardware

support needed (ECMon: exposing cache events) is isolated, so that all other tasks required

are performed in software. This approach, in addition to increasing the flexibility and

programmability, makes ECMon applicable to a variety of monitoring tasks.

139

6.2.2 General purpose hardware support

Recently there has been work that strives to design general purpose hardware

support for a variety of monitoring applications [14, 59, 90, 105]. Chen et al. [14] and

Venkataramani et al. [105] propose general purpose hardware support for enabling a variety

of monitoring techniques such as Memcheck, Addrcheck and data race detection. The

hardware support used in the above works involves support for accessing shadow memory

location efficiently and performing additional operations in hardware along with original

instructions. Shetty et al. [90] and Nagarajan et al. [59] propose using idle cores in a

multicore processor for performing monitoring tasks. To communicate between cores, they

utilize hardware based communication channels between cores in multicores. However, the

above techniques concentrate on monitoring that target sequential programs. For example,

none of the above techniques can be directly used to record ISMDs. On the contrary,

the techniques proposed in this dissertation can handle a wide variety of monitoring tasks

including ones that are geared towards parallel programs running on multicores.

6.3 Transactional Memory

The problem of detecting cross-thread dependence violations at run time is known

as conflict detection under Transactional memory (TM) [33] parlance. STM systems [6, 44]

instrument loads and stores with read/write barriers to detect conflicts. On the contrary,

HTM systems [32, 33, 75] like TLS systems [18, 32] rely on hardware support (modifications

to caches/cache coherence) to detect conflicts. Hybrid TMs [24, 47, 92] use hardware to

perform the simple and common case and rely on software support to handle the uncommon

140

case. Recent proposals on hybrid TM have proposed hardware support for conflict detec-

tion. While SigTM [47] uses hardware signatures for conflict detection, RTM proposed the

Alert-on-Update [94] mechanism which triggers a software handler when specified lines are

modified remotely. Whereas the hardware support involved in ECMon is similar to Alert-

On-Update, it is shown how other cache events (in addition to remote update), can be used

for performing a variety of monitoring applications including speculation bast barriers and

recording of ISMDs. There has been a recent proposal [16] to use transactional memory

support for dealing with the atomicity problem facing software monitoring tools. However,

it does not discuss the efficient addressing of shadow memory which is also an important

inefficiency in current software based shadow memory tools.

6.4 Speculative Techniques

6.4.1 Speculation past synchronization operations

The Fuzzy Barrier [31] is a compile time approach to reduce time spent idling on

barriers by specifying a range of instructions over which the synchronization can take place

instead of a specific point where the threads must synchronize. However, this approach relies

on the compiler to find instructions that can be safely executed while a thread is waiting for

others to reach the barrier. Speculative lock elision [74] and Speculative synchronization[46]

are hardware techniques to speculatively execute threads past synchronization operations.

While the former dynamically converts lock-based codes into lock-free codes, the latter also

applies to flag synchronizations and barriers. The thread that has reached the barrier,

speculatively executes past the barrier. Hardware support (addition of per block tags to

141

the cache, modifications to the cache coherence, support for register checkpointing) is used

to monitor dependence violations between the speculate thread(s) that are executing past

the barrier and other non-speculative threads that are yet to reach the barrier. If such a

violation is detected, the speculative thread is rollbacked to the synchronization point. Our

approach, on the contrary, detects miss-speculation using cache events.

6.4.2 Speculative parallelization

Recently there has been significant work on parallelizing sequential loops. One

commonly used approach for parallelization of loops is software pipelining. This technique

partitions a loop into multiple pipeline stages where each stage is executed on a different

processor. Decoupled software pipelining (DSWP) [69, 76, 104] is a technique that targets

multicores. The proposed DSWP techniques requires two kinds of hardware support that

is not commonly supported by current processors. First, hardware support is used to

achieve efficient message passing between different cores. Second, hardware support is

versioned memory which is used to support speculative DSWP parallelization. Since DSWP

requires the flow of data among the cores to be acyclic, in general, it is difficult to balance

the workloads across the cores. Raman et al. [76] address this issue by parallelizing the

workload of overloaded stages using DO-ALL techniques. This technique achieves better

scalability than DSWP but it does not support speculative parallelization which limits

its applicability. Other recent works on software pipelining target stream and graphic

processors [36, 11, 26, 37, 102]. In this dissertation we show that ECMon, support for

exposing cache events, is sufficient for exposing parallelism in programs. However, it remains

to be seen as to how exactly will ECMon impact the performance of the above techniques.

142

The alternative approach to exploiting loop parallelism is DO-ALL technique [25,

39, 38, 18, 32, 106, 96, 9, 45, 114] where each iteration of a loop is executed on one processor.

Among these works, a large number of them focus on thread level speculation (TLS) which

essentially is a hardware-based technique for extracting parallelism from sequential codes

[18, 32, 106, 96, 9, 45, 114]. In TLS, speculative threads are spawned to venture into

unsafe program sections. The memory state of the speculative thread is buffered in the

cache, to help create thread isolation. Hardware support is required to check for cross

thread dependence violations; upon detection of these violations, the speculative thread is

squashed and restarted on the fly. While the above HW support is specialized, in that, the

support is useful only for parallelization, the support proposed in this dissertation ECMon

is general purpose, in that it has other applications.

Recently there has been work on purely software based speculation techniques

[17, 25, 103], where it was shown that coarse grained parallelism in sequential programs could

be extracted without any hardware support. In this dissertation, we show additionally how

fine grained parallelism can be extracted with support for exposing cache events. However,

it remains to be seen if ECMon can be used to further optimize the above techniques.

6.5 Recovery in Server Programs

Recovering from failures has been a subject of significant research over the years.

There has been significant work on coping with software failures by using various kinds of

rebooting techniques. While whole program restart [30] works by simply restarting the failed

application, a small set of partial software components may be selectively restarted [12] to

reduce the cost of recovery. The problem with restarting techniques is that the server

143

program can be temporarily unavailable during restart. To reduce the cost of recovery,

checkpointing based techniques[30, 71, 72, 77, 101], periodically checkpoint program state

and rollback to the most recent checkpoint when the failure is detected. Having rollbacked

to a safe state, that particular user request is then dropped [72, 101] so that the same failure

is not repeated. However, the space and time overheads of checkpointing can be expensive

if the checkpointing interval is small [71, 72]. On the contrary, if the checkpoint interval

is large then the throughput and the response time of the server can be affected during

recovery.

There has also been work on the reliability of long running programs using a

combination of checkpointing and tracing [100, 112]. The scope of self recovery in this

dissertation is to consider server programs, since there is a pressing need for them to be

available. However, the techniques presented in this paper are also applicable for other long

running programs, which process different user inputs continually.

There has been recent research on recovering from memory errors without the

need for checkpointing or rollbacks [82, 93]. Self recovery in this dissertation is closely

related to failure oblivious computing [82], which also observes and utilizes the self cleansing

property for maintaining server availability amidst failures. In the above work, instead of

crashing when an illegal memory access occurs, the server continues program execution by

simply discarding the illegal writes and manufacturing values to return for illegal reads.

The success of the above technique hinges on small error propagation distances on server

programs, which is referred to as self cleansing in our work. However in this dissertation,

instead of speculating the programmer’s intentions (for example, by manufacturing values

for reads), the faulty request is nullified using crash suppression and isolated.

144

Recovery oriented computing [68, 70] proposes a system in which software compo-

nents of a system are designed to be isolated, so that the impact on failures can be reduced.

The dissertation is related to work on recovering from failing device drivers [98, 99] in that

the above works also try to build a system that tries to isolate the failing device drivers from

other parts of the system. However, this dissertation shows how this isolation is already

present is server programs.

There has been significant work on recovering from Transient soft errors [49, 79,

78, 109, 107], which are radiation induced errors that cause random bit flips in both the

computational and memory hardware. Bit flips to computation circuitry and memory ele-

ments are a form of memory corruption, and the results of the study conducted in this work

are equally applicable for transient errors. In particular, the observation that a corrupted

memory location , most often, corrupts only a few other memory locations can be taken

advantage by a system that recovers from transient errors.

145

Chapter 7

Conclusion

In this chapter the main contributions of the dissertation are summarized. Then

the future directions of research are briefly discussed.

7.1 Dissertation Contributions

With the advent of multicores, there is a huge demand for programmers to write

parallel programs to utilize the power of multicores. However, there is a huge effort involved

in writing correct, efficient parallel programs. This has resulted in a huge demand for

software tools that assist the programmers in writing correct and efficient parallel programs.

Such tools include those that help in automatically parallelizing sequential programs, tools

that help in exposing (additional) parallelism present in parallel programs, and tools that

help in debugging and ensuring the secure execution of parallel programs. The above

monitoring tools, since they require some form of dynamic analysis to be performed while

the program is running, are known as runtime monitoring tools. This dissertation first

observes that runtime monitoring on multicores require that interprocessor shared memory

146

dependences (ISMDs) be detected efficiently. However, current runtime monitoring tools,

since they can not deal with ISMDs, are not applicable for multicores. This dissertation

proposes support for enabling efficient and programmable runtime monitoring of parallel

programs running on multicores. It has then been showed how this support can be used

to increase the performance and enhance the reliability of parallel programs running on

multicores. In particular the contributions of this dissertation are as follows.

• ECMon: Support for exposing cache events to software, has been proposed. By

exposing cache events to the software, software is made aware of ISMDs. This enables

software based monitoring of parallel programs on multicores. ECMon is light-weight,

requiring minimal hardware changes. More specifically, ECMon requires no changes

to the processor pipeline and the cache coherence protocol.

• Shadow memory tools using ECMon: ECMon is programmable and general

purpose. This has been illustrated by implementing a variety of monitoring tools

using ECMon support. In particular, it has been shown how a class of monitoring

tools known as shadow memory tools, that include DIFT: tool for ensuring secure

execution, Memcheck: tool for detecting memory errors and Eraser: tool for detecting

data races, can be implemented efficiently using ECMon support. More specifically, it

is shown how the above tools can be implemented for parallel programs at almost the

same execution time overhead as sequential programs. It is also shown how lightweight

OS support can further help in reducing the execution time overhead of accessing meta

data stored in shadow memory.

147

• Novel monitoring applications using ECMon This dissertation has shown how

ECMon can be used to develop novel monitoring application for parallel programs

running on multicores. It is shown how ECMon can be used to record shared memory

dependences as a parallel program executes, which can then be used to replay the

program. Furthermore, it is shown that this can be done efficiently only resulting is

3 fold execution time reduction. It is also shown how ECMon support can be used

by multithreaded server programs to recover from memory errors, without requiring

checkpointing or rollback.

• Speculation using ECMon This dissertation has also shown that ECMon can be

utilized to perform speculative optimizations in parallel programs, which can be used

to increase the performance of parallel programs running on multicores. More specifi-

cally, this dissertation has shown how ECMon can serve as a framework for performing

two speculative optimizations. First by speculating past barrier synchronizations, it

is shown that the time spent idling at barriers can be decreased translating into a 12%

increase in performance. Second, by speculatively promoting shared variables in the

presence of synchronization operations, it is shown how significant redundant loads

can be reduced translating into a performance increase of a further 2.5%.

7.2 Future Work

While this dissertation has already illustrated the used of ECMon with novel mon-

itoring applications, the applications considered are by no means exhaustive. Future work

can proceed by exploring other novel applications that ECMon can enable. Another line of

148

future work is to identify and design other general purpose HW support that can be used

to further optimize the costs involved in monitoring parallel programs on multicores.

Ensuring SC using ECMon: With the advent of multicores, there is great

demand to write correct parallel programs. One of the implicit assumptions that a pro-

grammer makes about the parallel program he writes, is sequential consistency (SC) [40].

However multicores often use weaker memory consistency models [7] for purposes of effi-

ciency. Compilers introduce memory fences [27, 89] (or delays) to ensure a sequentially

consistent execution of a parallel program running on a machine supporting a weaker mem-

ory consistency model. To identify the insertion points of fences, compilers need to compute

shared memory dependency information. However, since static analysis is used to identify

the shared memory dependences, fences are often introduced conservatively, which can sig-

nificantly slowdown a program. To increase performance, one possible research direction is

to utilize ECMon, to introduce fences dynamically only when it is necessary.

Transactional memory using ECMon: Recently there has been huge interest

in the industry and academia on transactional memory (TM). In addition to providing lock

free concurrency, it can also be used for performing speculative parallelization. TM, which

mainly attempts to isolate different threads executing concurrently, consists of two major

components: conflict detection and memory versioning. Conflict detection, whose purpose

is to detect if two concurrently executing threads share a dependence, can potentially be

implemented using ECMon support. Memory versioning, whose purpose is to maintain

memory isolation between threads, can be potentially implemented using OS support pro-

posed in chapter 3. Thus, it would be interesting to see if the support proposed in this

dissertation, can be used to implement transactional memory efficiently.

149

Parallelizing software based monitoring tools: ECMon support can be used

to enable software based monitoring of parallel programs running on multicores. However,

it does not deal with the problem of parallelizing the instrumentation involved in software

based monitoring. This is particularly relevant with manycore processors, which can have

several cores that are idle. Nagarajan et al. [59] have proposed a hardware based com-

munication queue between cores, to help in parallelizing DIFT on a multicore. However,

the above work only considers sequential programs. It would be interesting to apply this

technique with the above support in conjunction with ECMon, so that the above tech-

nique can also be applied for parallel programs. More generally, identifying the support

needed to parallelize the instrumentation involved in software monitoring would constitute

an interesting direction of future work.

Programming language support for monitoring: Current software monitor-

ing techniques are contingent on system programmers writing correct code for the instru-

mentation associated with every instruction. With ECMon, there is added programming

effort involved in writing the handlers associated with every cache event. It would be bene-

ficial to convey the semantics of the monitoring task via programming language constructs.

Then the actual code for accomplishing the monitoring could be potentially generated by

the compiler. Thus the design of the necessary programming constructs to convey the

Semitics of a monitoring task constitutes an important direction of future work.

150

Bibliography

[1] Itanium software developers manual. In http://www.intel.com/design/itanium/manuals/
iiasdmanual.htm.

[2] Midnight commander. http://www.cert.org/stats.

[3] mysql bug. bugs.mysql.com/bug.php?id=110.

[4] National vulnerability database. http://nvd.nist.gov/statistics.cfm.

[5] National vulnerability database statistics. http://nvd.nist.gov/statistics.cfm.

[6] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy, B. Saha, and T. Shpeis-
man. Compiler and runtime support for efficient software transactional memory. In
PLDI, pages 26–37, 2006.

[7] S. V. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial.
IEEE Computer, 29(12):66–76, 1996.

[8] F. Angiolini, L. Benini, and A. Caprara. An efficient profile-based algorithm for
scratchpad memory partitioning. IEEE Trans. on CAD of Integrated Circuits and
Systems, 24(11):1660–1676, 2005.

[9] A. Bhowmik and M. Franklin. A general compiler framework for speculative multi-
threading. In SPAA, pages 99–108, 2002.

[10] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for adaptive dynamic
optimization. In CGO, pages 265–275. IEEE Computer Society, 2003.

[11] I. Buck. Stream computing on graphics hardware. PhD thesis, Stanford, CA, USA,
2005. Adviser-Pat Hanrahan.

[12] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox. Microreboot - a
technique for cheap recovery. In OSDI, pages 31–44, 2004.

[13] H. Chen, X. Wu, L. Yuan, B. Zang, P.-C. Yew, and F. T. Chong. From speculation to
security: Practical and efficient information flow tracking using speculative hardware.
In ISCA, pages 401–412, 2008.

151

[14] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. Gibbons, T. C. Mowry, V. Ra-
machandran, O. Ruwase, M. Ryan, and E. Vlachos. Flexible hardware acceleration
for instruction-grain program monitoring. In ISCA, 2008.

[15] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige. Tainttrace: Efficient flow tracing with
dynamic binary rewriting. ISCC, pages 749–754, 2006.

[16] J. Chung, M. Dalton, H. Kannan, and C. Kozyrakis. Thread-safe binary translation
using transactional memory. In HPCA, 2008.

[17] M. H. Cintra and D. R. L. Ferraris. Design space exploration of a software speculative
parallelization scheme. IEEE Trans. Parallel Distrib. Syst., 16(6):562–576, 2005.

[18] M. H. Cintra, J. F. Mart́ınez, and J. Torrellas. Architectural support for scalable
speculative parallelization in shared-memory multiprocessors. In ISCA, pages 13–24,
2000.

[19] J. A. Clause, W. Li, and A. Orso. Dytan: a generic dynamic taint analysis framework.
In ISSTA, pages 196–206, 2007.

[20] K. D. Cooper and K. Kennedy. Fast interprocedural alias analysis. In POPL, pages
49–59, 1989.

[21] J. R. Crandall, S. F. Wu, and F. T. Chong. Minos: Architectural support for pro-
tecting control data. ACM Trans. Archit. Code Optim., 3(4):359–389, 2006.

[22] J. R. Crandall, S. F. Wu, and F. T. Chong. Minos: Architectural support for pro-
tecting control data. TACO, 3(4):359–389, 2006.

[23] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: a flexible information flow archi-
tecture for software security. In ISCA, pages 482–493, 2007.

[24] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nussbaum. Hybrid
transactional memory. In ASPLOS-XII, pages 336–346, 2006.

[25] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang. Software behavior
oriented parallelization. In PLDI, pages 223–234, 2007.

[26] K. Fan, H. hul Park, M. Kudlur, and S. ott Mahlke. Modulo scheduling for highly
customized datapaths to increase hardware reusability. In CGO ’08: Proceedings
of the sixth annual IEEE/ACM international symposium on Code generation and
optimization, pages 124–133, New York, NY, USA, 2008. ACM.

[27] X. Fang, J. Lee, and S. P. Midkiff. Automatic fence insertion for shared memory
multiprocessing. In ICS, pages 285–294, 2003.

[28] Y. S. G. Venkataramani, I. Doudalis and M. Prvulovic. Flexitaint: A programmable
accelerator for dynamic taint propagation. In HPCA, 2008.

[29] J. Gray. Why do computers stop and what can be done about it? In Symposium on
Reliability in Distributed Software and Database Systems, pages 3–12, 1986.

152

[30] J. Gray. Why do computers stop and what can be done about it? In Symposium on
Reliability in Distributed Software and Database Systems, pages 3–12, 1986.

[31] R. Gupta. The fuzzy barrier: A mechanism for high speed synchronization of proces-
sors. In ASPLOS, pages 54–63, 1989.

[32] L. Hammond, M. Willey, and K. Olukotun. Data speculation support for a chip
multiprocessor. In ASPLOS, pages 58–69, 1998.

[33] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for
lock-free data structures. In ISCA, 1993.

[34] M. Hind, M. G. Burke, P. R. Carini, and J.-D. Choi. Interprocedural pointer alias
analysis. ACM Trans. Program. Lang. Syst., 21(4):848–894, 1999.

[35] D. Hower and M. D. Hill. Rerun: Exploiting episodes for lightweight memory race
recording. In ISCA, pages 265–276, 2008.

[36] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn, P. Mattson, and J. D.
Owens. Programmable stream processors. Computer, 36(8):54–62, 2003.

[37] M. Kudlur and S. Mahlke. Orchestrating the execution of stream programs on mul-
ticore platforms. In PLDI, 2008.

[38] M. Kulkarni, K. Pingali, G. Ramanarayanan, B. Walter, K. Bala, and L. P. Chew.
Optimistic parallelism benefits from data partitioning. In ASPLOS, pages 233–243,
2008.

[39] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L. P. Chew.
Optimistic parallelism requires abstractions. In PLDI, pages 211–222, 2007.

[40] L. Lamport. How to make a multiprocessor computer that correctly executes multi-
process programs. IEEE Trans. Computers, 28(9):690–691, 1979.

[41] J. Lin, T. Chen, W.-C. Hsu, and P.-C. Yew. Speculative register promotion using
advanced load address table (alat). In CGO, pages 125–134, 2003.

[42] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou. Bugbench: A benchmark for
evaluating bug detection tools. In Bugs, 2005.

[43] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: building customized program analysis tools with
dynamic instrumentation. In PLDI, pages 190–200, 2005.

[44] V. J. Marathe, W. N. S. III, and M. L. Scott. Adaptive software transactional memory.
In DISC, pages 354–368, 2005.

[45] P. Marcuello and A. González. Clustered speculative multithreaded processors. In
ICS, pages 365–372, 1999.

[46] J. F. Mart́ınez and J. Torrellas. Speculative synchronization: applying thread-level
speculation to explicitly parallel applications. In ASPLOS, pages 18–29, 2002.

153

[47] C. C. Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson, J. Casper,
C. Kozyrakis, and K. Olukotun. An effective hybrid transactional memory system
with strong isolation guarantees. In ISCA, pages 69–80, 2007.

[48] P. Montesinos, L. Ceze, and J. Torrellas. Delorean: Recording and deterministically
replaying shared-memory multiprocessor execution effciently. In ISCA, pages 289–300,
2008.

[49] S. S. Mukherjee, J. S. Emer, and S. K. Reinhardt. The soft error problem: An
architectural perspective. In HPCA, pages 243–247, 2005.

[50] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I. Neamtiu. Finding
and reproducing heisenbugs in concurrent programs. In OSDI, pages 267–280, 2008.

[51] A. Muzahid, D. Suárez, S. Qi, and J. Torrellas. Sigrace: signature-based data race
detection. In ISCA, pages 337–348, 2009.

[52] V. Nagarajan and R. Gupta. Support for symmetric shadow memory in multiproces-
sors. In PADTAD, page 5, 2008.

[53] V. Nagarajan and R. Gupta. Architectural support for shadow memory in multipro-
cessors. In VEE, pages 1–10, 2009.

[54] V. Nagarajan and R. Gupta. Ecmon: Exposing cache events for monitoring. In ISCA,
2009.

[55] V. Nagarajan and R. Gupta. Runtime monitoring on multicores via oases. SIGOPS
Oper. Syst. Rev., 43(2):15–24, 2009.

[56] V. Nagarajan and R. Gupta. Speculative optimizations for parallel programs on
multicores. In LCPC, 2009.

[57] V. Nagarajan, D. Jeffrey, and R. Gupta. Self-recovery in server programs. In ISMM,
pages 49–58, 2009.

[58] V. Nagarajan, D. Jeffrey, R. Gupta, and N. Gupta. Ontrac: A system for efficient
online tracing for debugging. In ICSM, pages 445–454, 2007.

[59] V. Nagarajan, H.-S. Kim, Y. Wu, and R. Gupta. Dynamic information flow tracking
on multicores. 2008.

[60] S. Narayanasamy, C. Pereira, and B. Calder. Recording shared memory dependencies
using strata. In ASPLOS-XII, pages 229–240, 2006.

[61] S. Narayanasamy, G. Pokam, and B. Calder. Bugnet: Recording application-level
execution for deterministic replay debugging. IEEE Micro, 26(1):100–109, 2006.

[62] N. Nethercote and A. Mycroft. Redux: A dynamic dataflow tracer. Electronic Notes
in Theoretical Computer Science 89 No. 2, 2003.

[63] N. Nethercote and J. Seward. How to shadow every byte of memory used by a program.
In VEE, pages 65–74, 2007.

154

[64] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight dynamic binary
instrumentation. In PLDI, pages 89–100, 2007.

[65] R. H. B. Netzer. Optimal tracing and replay for debugging shared-memory parallel
programs. In Workshop on Parallel and Distributed Debugging, pages 1–11, 1993.

[66] J. Newsome and D. Song. Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. In NDSS, 2005.

[67] C. O’Hanlon. A conversation with john hennessy and david patterson. ACM Queue,
4(10):14–22, 2006.

[68] D. L. Oppenheimer, A. B. Brown, J. Beck, D. Hettena, J. Kuroda, N. Treuhaft,
D. A. Patterson, and K. A. Yelick. Roc-1: Hardware support for recovery-oriented
computing. IEEE Trans. Computers, 51(2):100–107, 2002.

[69] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic thread extraction
with decoupled software pipelining. In MICRO 38: Proceedings of the 38th annual
IEEE/ACM International Symposium on Microarchitecture, pages 105–118, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[70] D. A. Patterson. Recovery oriented computing: A new research agenda for a new
century. In HPCA, page 247, 2002.

[71] J. S. Plank, K. Li, and M. A. Puening. Diskless checkpointing. IEEE Trans. Parallel
Distrib. Syst., 9(10):972–986, 1998.

[72] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: treating bugs as allergies - a safe
method to survive software failures. In SOSP, pages 235–248, 2005.

[73] F. Qin, C. Wang, Z. Li, H. seop Kim, Y. Zhou, and Y. Wu. Lift: A low-overhead
practical information flow tracking system for detecting security attacks. In MICRO
39, pages 135–148, 2006.

[74] R. Rajwar and J. R. Goodman. Speculative lock elision: enabling highly concurrent
multithreaded execution. In MICRO, pages 294–305, 2001.

[75] R. Rajwar, M. Herlihy, and K. K. Lai. Virtualizing transactional memory. In ISCA,
pages 494–505, 2005.

[76] E. Raman, G. Ottoni, A. Raman, M. J. Bridges, and D. I. August. Parallel-stage de-
coupled software pipelining. In CGO ’08: Proceedings of the sixth annual IEEE/ACM
international symposium on Code generation and optimization, pages 114–123, New
York, NY, USA, 2008. ACM.

[77] B. Randell, P. A. Lee, and P. C. Treleaven. Reliability issues in computing system
design. ACM Comput. Surv., 10(2):123–165, 1978.

[78] S. K. Reinhardt and S. S. Mukherjee. Transient fault detection via simultaneous
multithreading. In ISCA, pages 25–36, 2000.

155

[79] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August. Swift: Software
implemented fault tolerance. In CGO, pages 243–254, 2005.

[80] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze, S. Sarangi,
P. Sack, K. Strauss, and P. Montesinos. SESC simulator, January 2005.
http://sesc.sourceforge.net.

[81] M. C. Rinard. Analysis of multithreaded programs. In SAS, pages 1–19, 2001.

[82] M. C. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and W. S. Beebee. En-
hancing server availability and security through failure-oblivious computing. In OSDI,
pages 303–316, 2004.

[83] M. Ronsse and K. D. Bosschere. Recplay: A fully integrated practical record/replay
system. ACM Trans. Comput. Syst., 17(2):133–152, 1999.

[84] M. Ronsse and K. D. Bosschere. Non-intrusive on-the-fly data race detection using
execution replay. In AADEBUG, 2000.

[85] Y. Saito. Jockey: a user-space library for record-replay debugging. In AADEBUG,
pages 69–76, 2005.

[86] A. Salcianu and M. C. Rinard. Pointer and escape analysis for multithreaded pro-
grams. In PPOPP, pages 12–23, 2001.

[87] J. Sampson, R. González, J.-F. Collard, N. P. Jouppi, M. Schlansker, and B. Calder.
Exploiting fine-grained data parallelism with chip multiprocessors and fast barriers.
In MICRO, pages 235–246, 2006.

[88] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: a dy-
namic data race detector for multithreaded programs. ACM Trans. Comput. Syst.,
15(4):391–411, 1997.

[89] D. Shasha and M. Snir. Efficient and correct execution of parallel programs that share
memory. ACM Trans. Program. Lang. Syst., 10(2):282–312, 1988.

[90] R. Shetty, M. Kharbutli, Y. Solihin, and M. Prvulovic. Heapmon: A helper-thread
approach to programmable, automatic, and low-overhead memory bug detection. IBM
Journal of Research and Development, 50(2-3):261–276, 2006.

[91] J. Shirako, J. M. Zhao, V. K. Nandivada, and V. Sarkar. Chunking parallel loops in
the presence of synchronization. In ICS, pages 181–192, 2009.

[92] A. Shriraman, M. F. Spear, H. Hossain, V. J. Marathe, S. Dwarkadas, and M. L.
Scott. An integrated hardware-software approach to flexible transactional memory.
In ISCA, pages 104–115, 2007.

[93] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D. Keromytis. Building a reac-
tive immune system for software services. In USENIX Annual Technical Conference,
General Track, pages 149–161, 2005.

156

[94] M. F. Spear, A. Shriraman, H. Hossain, S. Dwarkadas, and M. L. Scott. Alert-on-
update: a communication aid for shared memory multiprocessors. In PPOPP, pages
132–133, 2007.

[95] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou. Flashback: a lightweight
extension for rollback and deterministic replay for software debugging. In ATEC,
pages 3–3, 2004.

[96] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A scalable approach to
thread-level speculation. In ISCA, pages 1–12, 2000.

[97] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program execution via
dynamic information flow tracking. In ASPLOS, pages 85–96, 2004.

[98] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy. Recovering device
drivers (awarded best paper!). In OSDI, pages 1–16, 2004.

[99] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the reliability of commodity
operating systems. In SOSP, pages 207–222, 2003.

[100] S. Tallam, C. Tian, R. Gupta, and X. Zhang. Enabling tracing of long-running
multithreaded programs via dynamic execution reduction. In ISSTA, pages 207–218,
2007.

[101] S. Tallam, C. Tian, R. Gupta, and X. Zhang. Avoiding program failures through safe
execution perturbations. In COMPSAC, pages 152–159, 2008.

[102] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A practical approach to exploiting
coarse-grained pipeline parallelism in c programs. In MICRO ’07: Proceedings of the
40th Annual IEEE/ACM International Symposium on Microarchitecture, pages 356–
369, Washington, DC, USA, 2007. IEEE Computer Society.

[103] C. Tian, M. Feng, V. Nagarajan, and R. Gupta. Copy or discard execution model for
speculative parallelization on multicores. In MICRO, pages 330–341, 2008.

[104] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and D. I. August.
Speculative decoupled software pipelining. In PACT ’07: Proceedings of the 16th
International Conference on Parallel Architecture and Compilation Techniques, pages
49–59, Washington, DC, USA, 2007. IEEE Computer Society.

[105] G. Venkataramani, B. Roemer, Y. Solihin, and M. Prvulovic. Memtracker: Efficient
and programmable support for memory access monitoring and debugging. In HPCA,
pages 273–284, 2007.

[106] T. N. Vijaykumar, S. Gopal, J. E. Smith, and G. S. Sohi. Speculative versioning
cache. IEEE Trans. Parallel Distrib. Syst., 12(12):1305–1317, 2001.

[107] T. N. Vijaykumar, I. Pomeranz, and K. Cheng. Transient-fault recovery using simul-
taneous multithreading. In ISCA, pages 87–98, 2002.

157

[108] C. Wang, S. Hu, H.-S. Kim, S. R. Nair, M. B. Jr., Z. Ying, and Y. Wu. Stardbt: An
efficient multi-platform dynamic binary translation system. In Asia-Pacific Computer
Systems Architecture Conference, pages 4–15, 2007.

[109] C. Wang, H.-S. Kim, Y. Wu, and V. Ying. Compiler-managed software-based redun-
dant multi-threading for transient fault detection. In CGO, pages 244–258, 2007.

[110] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 programs:
Characterization and methodological considerations. In ISCA, pages 24–36, 1995.

[111] M. Xu, R. Bodik, and M. D. Hill. A ”flight data recorder” for enabling full-system
multiprocessor deterministic replay. In ISCA, pages 122–133, 2003.

[112] X. Zhang, S. Tallam, and R. Gupta. Dynamic slicing long running programs through
execution fast forwarding. In SIGSOFT ’06/FSE-14, pages 81–91, 2006.

[113] P. Zhou, R. Teodorescu, and Y. Zhou. Hard: Hardware-assisted lockset-based race
detection. In HPCA, pages 121–132, 2007.

[114] C. Zilles and G. Sohi. Master/slave speculative parallelization. In MICRO, pages
85–96, 2002.

158

