Scalable Superscalar Processing

by
Soner Onder
BSc, Middle East Technical University, 1983
MSc, Middle East Technical University, 1988

Submitted to the Graduate Faculty of
Arts and Sciences in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh
1999



UNIVERSITY OF PITTSBURGH

FACULTY OF ARTS AND SCIENCES

This dissertation was presented

by

Soner Onder

It was defended on

July 12, 1999

and approved by

Prof. Henry Chuang

Prof. Guang R. Gao

Prof. Mary Lou Soffa

Prof. Rajiv Gupta (Committee Chairperson)

ii



Copyright by Soner Onder
1999

iii



Scalable Superscalar Processing
Soner Onder, PhD
University of Pittsburgh, 1999

In this dissertation, it is demonstrated that there is sufficient parallelism in ordinary pro-
grams to scale the issue width of the out-of-order issue superscalar processors provided that pro-
cessors employ very large instruction windows and near-perfect dynamic memory disambiguation.
The state-of-the-art instruction wake-up and dynamic memory disambiguation techniques are thor-
oughly analyzed and it is demonstrated that they do not scale beyond an issue width of 8. This
dissertation proposes alternative techniques for dynamic memory disambiguation and instruction
wake-up mechanisms that scale well upto an issue width of 32.

Large instruction windows can be implemented without adversely effecting the processor
clock using the concept of dynamically generating a dependence graph which is then used to directly
wake-up instructions which are shelved in the reorder buffer. The resulting microarchitecture is
called the Direct Wake-up Microarchitecture (DWMA). DWMA implements very large instruction
windows with little loss in performance compared to an ideal central window implementation of the
same size. For example, The DWMA processor achieves 84 %, 79 % and 67 % of the performance of
an ideal central window processor at issue widths of 8, 16 and 32 instructions, respectively.

The solution to scalable dynamic memory disambiguation is based on a novel memory
order violation detection mechanism which allows full out-of-order issuing of the store instructions
in the instruction window. As a result, memory dependence predictors which rely only on the
program counter values to make their predictions can be effectively employed without introducing
false memory dependencies. Using this technique together with the store-set memory disambiguator
a processor can achieve 100 %, 96 %, and 85 % of the performance of a processor that embodies a
”perfect” memory disambiguator at issue widths of 8, 16, and 32 instructions, respectively.

Evaluatation of both the existing techniques as well as the new ones demanded development
of many simulators. As a result, a new domain specific language called Architecture Description
Language (ADL) has been designed and implemented in a powerful simulation system called the
Flexible Architecture Simulation Tool (FAST). FAST has been used to generate all the cycle-level

accurate simulators required for this thesis.
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Chapter 1

Introduction

The last decade have witnessed a silent revolution. Today, with few exceptions, every
microprocessor that has been produced for the desktop, workstation and server environment is an
out-of-order issue superscalar processor. These processors are built with complex instruction fetch-
ing, scheduling and issuing mechanisms with each new generation having ever increasing capabilities
to exploit instruction level parallelism. There are many reasons behind this trend. Chip manufac-
turing technologies have made a big leap in their capabilities to put more transistors onto the same
chip area. It is already being widely discussed how to best make use of one billion transistors that
will soon be possible to put on a single chip [53, 35, 62]. However, the advances in manufacturing
technologies is only one side of the coin. Superscalar processors have been successful mainly because
of their inherent advantages: (a) they can execute existing code faster without a need for recom-
pilation; (b) they can make use of run time information to extract higher degrees of instruction
level parallelism; and (c) they can make effective use of speculative techniques such as aggressive
load, branch and value speculation, all of which can be implemented efficiently in such a setting.
These advantages make out-of-order superscalar processing the most likely architectural choice for
the foreseeable future, well into the next decade.

In order to deliver ever increasing amounts of instruction level parallelism, each successive
generation of superscalar processors is being designed with capabilities to issue more instructions
every cycle. Today, 4-issue superscalar processors are widely available. Processors that can issue
upto 16 instructions are on the horizon, all because of a very simple reason. Delivering higher
degrees of instruction level parallelism requires making the machine wider. This is true even when
one considers the technique of value prediction [34, 36, 28, 9, 69] which can enable dependent
instructions to execute in parallel. Ultimately, it is the number of instructions that a processor can
issue simultaneously that puts an upper bound on the performance of the architecture.

This trend however brings in two important questions, namely, the issue of available par-
allelism and the scalability of existing techniques. It has already been shown by many researchers
that ordinary programs have significant degrees of instruction level parallelism that can be exploited
by the hardware through a number of techniques [20, 8, 35, 53, 47, 70]. However, we need to know if
“typical” programs that are the target domain for superscalar processors have sufficient extractable

instruction level parallelism by the out-of-order superscalar processing paradigm. In other words,



we would like to know the limits of instruction level parallelism from a superscalar processing per-
spective. Once we know that there is sufficient exploitable instruction level parallelism to scale the
issue width, we would like to know if existing microarchitectural techniques scale to higher issue
widths to exploit it.

As it can be seen, there is a need for changing our approach to evaluating superscalar mi-
croarchitecture techniques. We need to ask not only the question of whether or not a new technique
increases the performance, but also whether the technique scales as the issue width of the processor
is increased. Although some techniques have been evaluated from a scalability perspective in rela-
tion to the manufacturing and implementation constraints recently [59], the limitations of existing

techniques as the issue width is increased have not been studied before.

1.1 Issues in Superscalar Processing

One of the primary goals of this thesis is to establish the necessary foundation for a change
of perspective in superscalar microarchitecture research such that evaluations stress the scalability of
the techniques. Doing so, this thesis considers three areas of superscalar processing as performance
critical. These are the instruction fetch, memory disambiguation, and instruction wake-up and issue
areas. In order to uncover and exploit high levels of parallelism, it is crucial that each of these areas
have scalable implementations. Among these, this thesis focuses on the instruction wake-up and
issue and memory disambiguation techniques and develops novel alternatives to existing algorithms.
Let us now focus on each of these areas, examine the state-of-the-art techniques and briefly discuss

the contributions of this thesis.

Instruction Fetch. In order to issue multiple instructions in each cycle, it is essential that the
processor possess the capability of fetching a large number of instructions every cycle. This task is
made difficult by the presence of frequent branches which disrupt the instruction stream. Branches
are problematic for high performance superscalar processors because of two reasons: (a) in a typical
program one out of every 4-5 instructions is a branch instruction. In order to issue a large number
of instructions every cycle, multiple branches must be predicted correctly and multiple blocks must
be fetched and combined; (b) when the instruction stream encounters a taken branch, the remaining
instructions in the cache line are discarded. In other words, misalignment is a significant consumer of
the instruction fetch bandwidth [48]. In fact, approximately 50 % of the branches on the average in
the dynamic instruction stream in Spec95 benchmarks are separated by only one useful instruction
(see Figure 1.1).

In addressing the fetch problem, the trace cache mechanism has yielded promising results
[61, 17]. Although there is a room for improvement in this area, the trace cache approach is a
significant step towards eliminating the fetch bottleneck. Recent work in this area reported that
with realistic branch prediction using Spec95 integer benchmarks a 16-issue superscalar can achieve

an IPC of 3.95 and with perfect branch prediction an IPC of 7.6. This figure is within close proximity
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Figure 1.1: Dynamic percentage of branches separated by a single instruction

of a perfect fetcher that can deliver an IPC of 9.5 [6]. Therefore, this thesis does not investigate the
fetch problem further.

Instruction Wake-up and Issue. Superscalar out-of-order processors mimic dataflow architec-
tures to exploit large amounts of instruction level parallelism. Doing so, they buffer a large number
of instructions which observe true data dependencies to begin their execution. To uncover high de-
grees of instruction level parallelism, a large number of instructions must be continuously examined
for ready instructions. In other words a large instruction window is needed from which ready in-
structions may be found to sustain a steady flow of instructions to the functional units for execution.

In fact, the required window size increases quadratically with increasing issue width [47].

Implementation of a large instruction window in a superscalar processor, without slowing
down the processor clock, requires better techniques for identifying ready instructions than what are
available today. This is because fetching and buffering a large number of instructions in a processor
is by itself not sufficient to derive the benefits of a large instruction window. The waiting instructions
must be woken up at the earliest possible time that they become ready to sustain a high degree of
instruction level parallelism. In other words, implementation of a large instruction window is made
difficult by the need for fanning out the wake-up signal to waiting instructions and selecting for
issuing the instructions which are ready. When we assume that instructions are woken up by means
of broadcasting, as in a central window implementation, we are faced with significant delays which
originate from wire delays, tag matching time as well as the associative logic necessary to implement
the wake-up functionality [49]. These delays increase significantly for high issue widths required to

exploit high degrees of instruction level parallelism. This is because the delay of the wake-up logic



of an instruction window is a function of the window size and the issue width. These delays increase

quadratically for most building blocks of the instruction window [49].
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Figure 1.2: Thesis Contribution in Instruction Window Implementation

While a number of alternative architectures have been considered to address the wake-
up problem [63, 62, 71, 30, 50], existing solutions within the context of out-of-order superscalar
execution paradigm have not produced satisfactory results. Today, efficient implementation of large

instruction windows in superscalar processors is an unresolved problem.

This dissertation proposes a novel solution to the implementation of large instruction win-
dow problem. The solution is based on the novel idea of generating a special form of dataflow graph
called Direct Data Forwarding Graph (DDFG). By generating and consuming such a graph dynami-
cally, large instruction windows can be implemented in superscalar processors without slowing down
the processor clock. The wake-up process is achieved by associating explicit wake-up lists with exe-
cuting instructions. The wake-up list of an instruction identifies a small number of instructions that
require an operand used and/or the result computed by the instruction for their execution. A design
of a microarchitecture, the direct wake-up microarchitecture (DWMA) that implements the wake-up

algorithm based upon dynamic construction of wake-up lists has been designed and evaluated fully.

Accomplishments in this area resulted in microarchitecture techniques which out-perform
the best non-broadcasting based window implementations such as the Dependence Based Microar-

chitecture (DBMA) by Palacharla et al [50]. Simulation results indicate that with contributions of
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Figure 1.3: Thesis Contribution in the area of Memory Disambiguation

this thesis, we are a step closer to implementing very large instruction windows at the efficiency of

ideal window implementations. This performance data is illustrated in Figure 1.2.

Dynamic Memory Disambiguation. In conventional architectures including superscalar out-of-
order issue processors data dependencies manifest themselves in two forms. These are dependencies
through registers and dependencies through memory. Because of the limited name space (i.e. num-
ber of register names), many false dependencies are imposed by the compiler while expressing the
semantics of the program. These dependencies can be removed easily by employing register renaming
techniques since register names are short names which are fully available as soon as the instructions
are fetched. On the other hand, dependencies through memory are much more problematic. Mem-
ory addresses are not available until the address computation has been performed. In many cases,
they are artificially dependent on the completion of other memory operations. Therefore, renaming
of the memory operations cannot be done sufficiently early so that performance is not lost. In order
to handle this problem, superscalar processors may employ load speculation.

Load speculation is a technique that allows a superscalar processor to initiate load instruc-
tions before all preceding store instructions perform their address computations so that the effect
of artificially imposed dependencies through the memory can be alleviated. However, in order to

achieve high performance, load instructions should be held precisely until such time that their issue



will not cause memory dependence violations but not held any longer than necessary [40]. In other
words, load instructions should wait for the completion of the store instructions they are dependent
on until those store instructions are issued, but not any longer. As a result, for high performance it

is essential that an effective dynamic memory disambiguation mechanism be provided.

Recent innovations in the area of memory disambiguation are Moshovos and Sohi’s work
[39] and the development of a simple and efficient speculative memory disambiguator by Chrysos
and Emer [10]. These techniques have shown quite promising results. However, detection of memory
order violations when all instructions including the store instructions are allowed to issue out-of-
order becomes particularly difficult to handle. As a result, existing algorithms impose an ordering of
store instructions in the instruction window. This results in significant loss of performance especially
at high issue widths since the processor cannot exploit all the available parallelism because of these

artificial dependences.

This thesis introduces a novel memory order violation detection mechanism so that full
out-of-order execution can be realized. When applied to the store set algorithm by Chrysos and
Emer [10] which is the best performing memory disambiguator to date, the technique out-performs
the original technique at all table sizes and in fact produces IPCs which are very close to the values
obtained by an ideal memory disambiguator. The performance data for the new technique averaged
over Spec95 benchmarks is illustrated in Figure 1.3 where the new algorithm has been labelled out-
of-order and the original algorithm has been labelled store set. These results show that given a high
bandwidth instruction fetcher and the improved memory disambiguator, a speculative superscalar
processor can uncover significant amounts of instruction level parallelism over a large instruction

window.

1.2 Simulation Framework

Computer architecture research is experimental in nature. Within our frame of knowledge,
there is no better substitution to analyze the effects of hundreds of parameters and design decisions
that may effect performance. As a result, most studies in this area involve significant amount of

coding, debugging and simulation activities which are performed repeatedly.

Contrary to other studies, this thesis has followed a largely unexplored approach to the
problem of microarchitecture simulation. Observing that many variations of microarchitectural
techniques would be needed, instead of hand-coding a simulator and then going through the error-
prone process of modifying it many times, a domain specific language called Architecture Description
Language (ADL) has been designed and its compiler has been implemented [46]. The architecture
to be simulated is described in the ADL language, compiled through the ADL compiler to yield an
assembler, a disassembler and a cycle level simulator automatically. This is a completely integrated
system that provides the desired simulators in a short period of time. The ADL compiler and its

host environment have been together named the Flezible Architecture Simulation Tool (FAST).



FAST system generates highly efficient detailed execution driven simulators. For a number
of simulated architectures, it has been observed that the generated simulators have simulation speeds
comparable to those of hand-coded simulators. Typical simulators have been found to be slower than

hand-coded simulators by less than a factor of two [46].

1.3 Thesis Organization

As it can be seen, this thesis has made contributions in two related areas of computer sci-
ence, namely, the microarchitecture research conducted in the sub-field of superscalar processors, and
in the programming languages area by developing a domain specific language for microarchitecture
simulations in the sub-field of domain specific languages.

The remainder of this thesis is organized as follows. In Chapter 2, a summary of prior
work which are related to the topics in this dissertation is presented. Chapter 3 discusses the
methodology used for assessing the scalability of existing techniques. In Chapter 4, the DBMA by
Palacharla et al. is analyzed in detail and it is illustrated why this solution does not scale well.
Next in Chapter 5, the novel idea of Dynamic Data Forwarding is presented and its performance is
analyzed. Chapter 6, presents the design of the Direct Wake-up Microarchitecture and thoroughly
analyzes its performance. In Chapter 7, the Store Set Algorithm by Chrysos and Emer is presented
and its performance is evaluated in detail. It is illustrated that new memory order violation detection
techniques are needed to have full out-of-order store instruction issuing. Chapter 8, gives the novel
memory order violation detection algorithm developed for this purpose.

Contributions of this thesis in the field of microarchitecture is followed by the contributions
in the area of domain specific languages with the presentation of the the Architecture Description
Language (ADL) in detail in Chapter 9 and its implementation Flezible Architecture Simulation Tool
(FAST) in Chapter 10. The thesis concludes with a discussion of the accomplishments and future
directions in Chapterll.



Chapter 2

Background

In this chapter, a review of the topics that are related to the techniques developed in this
dissertation is presented. Since each chapter also includes a brief discussion of the related mate-
rial, this chapter has rather been organized to be an overview of the related areas. In Section 2.1
techniques that can be used to measure available and exploitable parallelism in programs are dis-
cussed. Next, in Section 2.2, a brief history of superscalar processors is presented along with their
basic principles of operation. Since dynamic data forwarding and direct instruction wake-up are
essentially data-flow techniques, a brief review of dataflow computing is presented in Section 2.3.
Although employing these techniques within the context of superscalar processors will not make the
resulting processor a dataflow-Von Neumann hybrid, this once quite active research area is relevant
and is covered in Section 2.4. Finally, prior work in the area of automatic generation of simulators

is discussed in Section 2.5.

2.1 Available Parallelism

Available instruction level parallelism in programs has been the focus of attention since it
has been realized that parallel execution of machine instructions is a feasible way to speed-up the
execution of sequential programs. Establishing limits of instruction level parallelism is significant as
it may yield bounds on attainable performance by instruction parallel machines.

Theoretical modeling of the problem has led to the notion of program parallelism (PP) and
machine parallelism (MP) [27]. According to this definition, machine parallelism is defined as the
product of the average degree of superpipelining and the degree of parallel issue. In other words, the
machine parallelism is defined to be the maximum number of in flight instructions in the execution
stages of the processor. Program parallelism is defined to be the average speedup when the program
is executed on an infinitely parallel superscalar processor compared to execution on a single issue
processor.

According to the model, instruction level parallelism versus machine parallelism curve is
divided into two linear regions. In the first region, the machine parallelism is less than the program
parallelism and in the second the machine parallelism is greater than the program parallelism. This

early model does not explain the rounding of the actual curve in the transition region. Theobald et
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Figure 2.1: Jouppi’s Piecewise Linear Superscalar Performance Model

al. introduce the notion of smoothability of program parallelism [64] based on the observation that
program parallelism is never perfectly smooth. A superscalar processor which has an issue width
of n can find more than n instructions ready during some cycles and less than n in others. In this
respect, smoothability is defined to be the ratio of the performance with a machine parallelism P to

the performance with infinite machine parallelism.

More recently, Noonburg et al. have presented another theoretical model of superscalar
performance [44]. In this study, the two techniques, namely, Jouppi’s model and the notion of
smoothability are combined together by employing a parallelism distribution function which yields

better prediction of the actual performance of a given setting.

The theoretical approach is appealing since simulation studies take a long time. It is
however difficult to accurately model the machine parallelism that can be obtained using different
micro-architectural techniques. Adding to the difficulty are the techniques such as branch predic-
tion, memory dependence prediction and value prediction. Program parallelism that will be found
under a infinitely parallel superscalar processor that employs these techniques will be quite different
than the processor which does not employ them. Difficulty of modeling these program and data
dependent techniques make cycle-accurate simulation still the preferred choice. As a result, most

other parallelism studies have been largely experimental. These studies are covered in Chapter 3.
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2.2 Superscalar Processors

A superscalar processor is a machine capable of issuing multiple instructions in the same
cycle from a single instruction stream. Therefore, superscalar processors fetch and decode several
instructions at a time. The outcomes of conditional branch instructions are predicted to supply
an uninterrupted instruction stream. Once the data dependencies among instructions are decided,
instructions are selected for execution based on the availability of their operands rather than the
original program order. An instruction is said to issue when it progresses from the fetch stage
into the execution stage. By being able to continue issuing instructions even if earlier instructions
cannot, be issued, a superscalar machine is capable of performing out-of-order instruction issue. A

generic superscalar that employs separate floating point and integer instruction buffers is shown in

Figure 2.2.
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Figure 2.2: A Generic Superscalar Processor

The ability of a superscalar machine to issue multiple instructions is dependent upon the
available parallelism in the instruction stream and its ability to look ahead in the instruction stream.
The greater the capability of the processor, the better the processor’s ability to exploit instruction

level parallelism.

Although superscalar processors are thought to be extensions of reduced instruction set pro-
cessors by many, contrary to the RISC approach of early 1980s, superscalar processors are anything
but simple. Unlike dataflow based parallel machines, they rely on complex hardware mechanisms to
observe output and anti-dependences. Most widely used technique for this purpose is the scoreboard
mechanism which was first used in the CDC6600 machine [66]. Another very important processor has
been IBM 360/91 which made use of Tomasulo’s Algorithm [68]. Although both of these machines

were limited to issuing a single instruction per cycle, both approaches has played a significant role
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in the design of superscalar processors. Tomasulo’s algorithm laid out the essentials for out-of-order

instruction processing based on data availability in conventional processors.

2.3 Data Flow Architectures

Static dataflow architecture was based on the original design by Dennis and Misuanas [15].
According to Dennis [13], “the guiding principle has been to design hardware systems that would faith-
fully implement the semantics of computations expressed as dataflow graphs. The original hardware
concept envisioned instruction templates having spaces to receive the operands of the instructions”.
In this scheme, a dataflow graph is represented as a collection of activity templates, consisting of an
opcode for the instruction, operand slots for receiving operands of the instruction and one or more
destination address fields which contain the addresses of other activity templates that should receive
the result of the instruction. The machine operates by firing an instruction whenever its operands
are ready (i.e. tokens are present on all of its input arcs), and there is no token on any of its output
arcs. Once the instruction is executed, the machine propagates the computed result to its intended
recipients, enabling further instructions for execution.

Being the very first in this field, static dataflow machine has been challenged in many
respects. We can group these challenges into two categories, namely, implementability issues and
representation related problems. Representation related problems can be listed as the difficulty of
representing multiple contexts such as ordinary recursion, and parallel invocation of loop bodies.
Moreover, array handling has not been solved satisfactorily. In general, static dataflow machines
cannot exploit all the parallelism available in a program. For example, multiple iterations of a
loop cannot run in parallel even if there are no loop carried dependences. Implementation related
problems were mainly due to the implementation of acknowledgment arcs required by the original
design. Acknowledgment arcs limit the parallelism that can be exploited and they double the token
traffic.

In order to handle these shortcomings of static dataflow machine, dynamic dataflow ma-
chines have been proposed. In order to distinguish between multiple iterations of loops, and different
function invocations, activity names are extended to include an iteration count, and the procedure
context. A node can be enabled when tokens are present on its input arcs that has the same iden-
tifier (i.e. the same iteration count, and the procedure context). This mechanism eliminated the
need for acknowledgment arcs, however, brought in other implementation problems. For every to-
ken generated, the corresponding node must be found based on the tag of the token. This task
requires a search of waiting templates which is achieved by an associative search. Since this storage
must both be large and fast, it is not practical to implement this storage using content addressable
memories. Therefore, all implemented tagged token dataflow architectures use some form of hashing
mechanism to locate the destination slots, thus requiring a very long pipeline. In general, a long
pipeline is not preferred for programs that has limited parallelism. In fact, failure of many dataflow

machines to execute sequential and vectorizable code as efficiently as conventional architectures has
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always formed the basis of criticism for the dataflow architectures. Another significant problem with
the tagged token dataflow architectures has been the unpredictability of the amount of parallelism
available in the program. If the parallelism is not controlled, a highly parallel program may run until
all the resources of the machine are exhausted and then deadlock. Another problem with tagged

token dataflow architectures has been the difficulty of deciding a tag size.

The above mentioned problems of tagged token dataflow architectures led to the design
of Explicit Token Store architecture (ETS). According to Papadopoulos [52], the central idea in
the ETS model is that storage for tokens is dynamically allocated in sizable blocks, with detailed
usage of locations within a block determined at compile time. Since activation frames are allocated
dynamically and explicitly, storage for all tokens will be ready. Mapping of the actual dataflow arcs
to these locations is performed by the compiler. A token in ETS consists of an instruction pointer
(IP), a frame pointer (FP) and a data value. When a token arrives, the tag bits of the destination is
checked. If it is empty, the token’s data value is stored in the indicated operand of the instruction.
Otherwise, the value is extracted from the location, making it empty and resulting in the instruction
being fired.

ETS has a very important place in the history of dataflow based computing. Most of the
recent work which concentrated on dataflow Von Neumann hybrid solutions uses ideas of ETS. In

section 2.4, these hybrid solutions are discussed.

2.4 Data Flow - Von Neumann Hybrids

Current hybrid architectures are usually based on the multi-threading concept and most of
them try to eliminate the data fan-out problem by replacing the dataflow aspect of the computation
with a Von Neumann style store/fetch mechanism. For example, the argument fetch machine pro-
posed by Dennis and Gao [14, 18] is dataflow from the instruction scheduling point of view, while
instructions fetch operands from the memory and store computed results into the memory like a Von
Neumann machine. This machine later evolved into super actor machine (SAM) [23]. Many other
hybrids do the sequencing at the thread level based on the availability of operands for the thread
but use program counters to execute sequential threads.

One of the first hybrid machines is the Iannucci’s hybrid machine [24]. This machine
supports a cache memory with synchronization control and a hardware mechanism of processor
ready queues for fast context switching. This machine later evolved into IBM’s empire project,
which was later abandoned due to non-technical reasons. ETL in Japan [19] and the Sandia National
Laboratories in the United States are working on multi-threaded machines based on the ETS way
of handling the storage and the tokens.

A significant step in the introduction of dataflow based multi-threading was the P-RISC
idea proposed by Nikhil and Arvind [42]. In a very clear and simple model, they showed how the two

fundamental problems in multiprocessing [2], namely the latency and the cost of synchronization,
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can be handled using a simple model of sequential threads, fork, and join operations. The P-RISC

idea continues to be an important one and evolved with the implementation of *T machine [43].

2.5 Awutomatic Simulator Generation from Specification

To date, the automatic generation of micro architecture simulators from architecture de-
scriptions has been largely unexplored. The notable exceptions are the work of Cook [11] based on
a functional programming language called LISAS, Visualization-based Microarchitecture Workbench
by Diep [16], Larsson’s work titled Generating Efficient Simulators from a Specification Language
[31], the work of Leupers et al. [33] dealing mainly with DSP specific applications, and finally, the
work of Ramsey et al. [57] with the New-Jersey Tool Kit.

LISAS is used as a specification language for describing instruction set architectures. The
language describes instruction formats, and simple register files. Semantics of instructions are im-
plemented through functions. The language is not capable of describing the microarchitecture of the
Processors.

Visualization-based Microarchitecture Workbench generates an application programs in-
terface (API) for use with the C++ language. The tool generates the API and the programming is
done essentially in C++ using the APL

Ramsey et al. have taken the instruction set representation as a general problem. Using
the New Jersey Tool Kit, it is possible to rapidly develop system software which deal with the
instruction set architecture of the machine such as linkers and assemblers.

Larsson’s system can generate a disassembler, and a simulator from a microarchitecture
specification. The presented language is capable of describing the instruction set architecture for
automatic generation of functional simulators but the language is not capable of describing the mi-
croarchitecture. An attempt is also made to generate the assembler, but the automatically generated
assembler is a very simple assembler that cannot assemble arbitrary programs. Instead it is used

mainly as a debugging tool.



Chapter 3

Exploitable Instruction Level Parallelism
and Scalability

There are many studies that have tried to establish limits of instruction level parallelism
by either assuming a restrictive processor model or models with unlimited capabilities. Earlier
studies in this area mainly assumed restrictive processor models and generally painted a picture that
ILP cannot be scaled more than a few instructions per cycle [26, 72]. Later studies incorporated
features such as register renaming, perfect branch prediction and perfect caches and reported more
optimistic numbers, reaching as high as 60 instructions per cycle [73]. Later, when perfect memory
disambiguation mechanisms were considered, IPCs in the order of several thousands were observed
[4]. More recently, register renaming, memory renaming, as well as perfect disambiguation and
removal of compiler induced dependencies through the stack pointer have been considered [55]. All
these studies indicate that very large degrees of instruction level parallelism is available in these

programs.

These studies however have assumed either a too restrictive processor model or processor
models which are not realizable. Examples of restricted processor models include processor mod-
els which assume no memory disambiguation capabilities or processors employing the best branch
prediction techniques of their time. Examples of unrealizable processors include processors with

unlimited issue capability and unlimited look-ahead.

The problem with restrictive processor models is that the established limits of instruction
level parallelism through these studies become obsolete quickly. Each successive publication an-
nounces higher degrees of available instruction level parallelism. Such studies at best provide an
indication of the state of the art, and not a limit for the future processors. Unrealizable processor
models represent the other extreme. Since these models have never been meant to be realizable,
they can only establish the limits on instruction level parallelism imposed by the true dependencies
in the benchmark programs. Although it is useful to know that benchmark programs have high de-
grees of available instruction level parallelism, these studies cannot serve as a baseline for comparing
various microarchitecture techniques against each other. As a result, none of the previous studies
have been suitable for the goals of this thesis that aims to discover implementable microarchitectural

mechanisms which will allow scaling the issue width of the future processors.
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In order for a parallelism study to be useful for developing new microarchitectures, the
study should be based on a realistic processor model with idealized components. Having a realistic
processor model helps innovation on this model to be carried to real implementations. Using idealized
components on the other hand establishes performance targets for future innovation in individual
components. As newer techniques are developed, idealized components can be replaced with realistic
ones and the model can still serve as a performance limit into the future. More significantly, having
idealized components allows us to study individual realistic techniques without having side effects.
For example, for a configuration which is fetch starved, the claims of good performance of instruction
issue logic compared to a central window approach will make sense only until such time that a
better fetch mechanism becomes available. On the other hand, a novel instruction issue mechanism
evaluated in a machine configuration where all the remaining components such as the fetch and
the memory disambiguation are ideal can demonstrate the true potential of the technique and
the evaluation of the technique will not become useless with the advances in fetch and memory

disambiguation components.

The processor model used in this thesis aims to satisfy the above requirements. It is a su-
perscalar out-of-order issue processor with ideal mechanisms. We equip this processor with an ideal
fetch unit, an ideal memory disambiguator and an issue mechanism based on the central window
model. With continuing advances in microarchitecture research and recent promising results [61, 10]
it is only a matter of time before we have realistic techniques for the fetch, memory disambiguation
and the instruction selection and issue logic with performances closely following that of ideal im-
plementations. Since this thesis aims to establish such microarchitectural techniques, this model is

quite suitable to the goals of the work.

In this chapter, we first present a study of ezploitable instruction level parallelism in the
Spec95 benchmarks by a superscalar out-of-order issue processor. Unlike the prior studies, this study
assumes a robust out-of-order issue superscalar processor model with idealized mechanisms. Doing
s0, the purpose of this study is two fold. First, we would like to demonstrate empirically that there
is sufficient exploitable instruction level parallelism in programs such as the Spec95 benchmarks to
scale the issue width of superscalar processors. Second, we would like to study the relationship of
the processor’s issue width to that of the effective window size as prior studies starting with the very
early ones [29] have well established that for higher degrees of ILP, processors must posses extensive
ability to look forward. Finally, by using the ideal processor model as our reference line we would
like to demonstrate that existing techniques for the issue logic and memory disambiguation do not
scale well. In the following sections, we plug-in each of the best published techniques in these areas
into the processor model and leave the rest of the processor ideal. Results obtained indicate that

there is a lot of room for improvement in both of these areas.

The organization of this chapter is as follows. The realistic idealized processor model used
in the study is given in Section 3.1, and its implementation parameters are provided in Section 3.2.
The results of the of the experimental evaluation to measure exploitable instruction level parallelism

using the Spec95 benchmarks are discussed in Section 3.3. Results obtained in this section serve as
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the baseline for the evaluation of the scalability of the instruction issue techniques in Section 3.4 and
the scalability of the memory disambiguation techniques in Section 3.5. The chapter is concluded

with a brief discussion of the implication of the results of the study.

3.1 Processor Model

A generic superscalar out-of-order processor model employing a central window implemen-
tation illustrated in Figure 3.1 forms the basis for the realistic idealized processor model that is used
in the studies. The machine model has been derived from Tomasulo’s algorithm [68]. By selecting
a generic out-of-order superscalar processor model as the basis, we can be fairly confident that the
model is implementable with realistic components, but with idealized components it represents the
performance limit for the out-of-order superscalar processing technique itself.

For studying the exploitable instruction level parallelism, the processor is equipped with an
ideal fetch unit, a central window for scheduling and functional units with realistic latencies. In the
following sections properties of each of the main components of the processor are outlined in detail.
When a particular technique is to be studied, corresponding ideal component is replaced with the
technique being evaluated. The performance of the machine is then compared with the machine
that has all the components ideal. This approach exposes the limits of the particular technique that

is being studied.
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Figure 3.1: Superscalar Central Window Processor Model (CW)
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Instruction Fetch. The fetch unit is a perfect instruction fetcher that fetches a group of instruc-
tions upto the processor’s issue limit (8, 16, 32 and 64) every cycle and ships them to the ID unit.
We provide proper buffering between the fetch unit and decode unit, as well as the decode/rename
unit and the instruction window so that any number of instructions can travel from one stage to the
next up to the issue limit. The branch prediction is assumed to be perfect, and as long as the ID unit
has space to accept instructions, the fetch unit sends the fetched instructions to the ID unit. The ID
unit decodes the instructions, renames them and sends them to the instruction window. All result
producing instructions are renamed and each instruction is allocated a pair of source registers where
the available data can be copied. In this way, all the dependencies except the true dependencies are
removed. With this approach, the performance of the machine is dependent solely on the window

size, and all other resources are allocated per window entry.

Instruction Window. The instruction window (IW) is implemented as an associative array of
reservation stations. If one or more operands for an instruction is missing, the instruction waits for
these operands in the IW, until they become available. When all the operands become available or
will become available via the by-pass paths by the time the instruction arrives at the functional unit,
the instruction proceeds to one of the functional units. There are issue width number of functional
units observing the latencies shown in Figure 1(b). At each cycle, upto the issue limit instructions
can proceed to functional units for execution. If the number of ready instructions is greater than the
issue limit, older instructions are issued before the newer ones, following an oldest-first policy. There
are sufficient buses to propagate the results from the functional units to all the destinations without
delays. Proper bypassing of results to the functional unit inputs is provided so that a dependent
instruction can start execution in the cycle immediately following the cycle in which a result is
produced. For example, two integer instructions where one is truly data dependent upon the other

will execute in successive cycles.

Functional Units. Functional units are symmetrical fully pipelined units and each can accept
a fresh instruction every cycle. The memory subsystem has sufficient number of ports so that
port contention is not a problem. An ideal data cache is simulated with unit access time. Load
or store instructions may be executed out-of-order as the load store unit does perfect memory
disambiguation. We do not however equip this processor with unit latencies. Although there is
always the possibility that innovation may reduce functional unit latencies, functional unit latencies
have remained relatively constant over the course of last two decades. Assuming unit latencies in
the model would shift the processor model towards an unrealizable one, and would adversely effect

the results of the studies related to the performance of the issue window techniques.
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3.2 Model Implementation

An implementation of the processor has been described for the MIPS ISA using the ADL
[46] language and the simulators have been generated from these descriptions automatically. These
simulators have then been used to execute the Spec95 integer and floating point benchmarks. Spec95
benchmarks have been compiled using gcce version 2.7.0 with the optimization flags -O3 to generate

MIPS code which were then linked with GNU C library version 1.09.1.

Since detailed cycle-level simulations take a considerable amount of time, one common
approach is to execute benchmarks until a specified number of instructions are executed. However,
in a study employing large windows it is more important to capture the behavior of complete
programs. Therefore, the Spec95 test inputs have been used and programs have been executed until
completion. However, in a few cases which have intolerably long simulation times, the input data
sets have been modified so that a smaller set of data is processed. For example, 099.go plays the
game on a 6x9 board, and 104.hydro2d solves a problem of 1/5-th the original size. The instructions
per cycle (IPC) figures have been based on the total number of instructions retired and the total

number of cycles spent to execute the program (retired/cycles).

3.3 Results of the Parallelism Study

The machine described in the previous section has been simulated across the Spec95 bench-
marks for the issue widths of 8, 16, 32 and 64 instructions. For each issue width, the window size has
been doubled starting with the issue width until a window size of 8192 instructions, yielding a total
of 684 runs. The harmonic means of the Spec95 benchmarks at each issue width/window size com-
bination have been computed and summarized in Figure 3.2. As it can be seen from this graph, very
high degrees of instruction level parallelism can be exploited by using an idealized out-of-order issue
processor with these programs. More significantly however, at each issue width, the performance
gains taper off only after instruction window size reaches to roughly the square of the issue width.
It is easy to see that for high performance, the instruction window size must grow quadratically as
the issue width is increased. With the provision that the instruction window size is set to at least
to the square of the issue width, almost a linear speed-up is possible as the issue width is increased

(see Figure 3.3).

We have illustrated that with proper disambiguation, out-of-order issue superscalars can
make use of very large instruction windows. For maximal performance, the instruction window size
must be at least as large as the square of the issue width of the processor. In other words, the
effective window size is a quadratic function of the issue width of the processor. To the best of the
author’s knowledge, this study is the first such study to establish experimentally that the instruction
window of a superscalar processor must grow quadratically in order to provide high performance.

Since a central window approach is based on a broadcast and select mechanism, it cannot be used
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to handle the instruction wake-up requirements of such large instruction windows. We therefore

examine alternative means for implementing such large windows.

3.4 Scalability of Instruction Issue Mechanisms

A number of alternative architectures have been considered to address the wake-up problem
[63, 62, 71, 30, 50]. Among these, only the approach taken in the design of the dependence based
microarchitecture (DBMA) [50] proposes a solution to the wake-up problem in the context of a
conventional superscalar architecture that is of reasonable complexity in comparison to a central
window processor. DBMA uses a set of FIFOs, equal in number to the issue width, to implement the
instruction window. Since the architecture only needs to check the instructions at the heads of the

FIFOs, it can buffer a large number of in-flight instructions without increased hardware complexity.
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Figure 3.4: Scalability of Dependence Based Microarchitecture

The published results on DBMA indicate that the architecture provides performance very
competitive to that of a central window, yet the mechanism has greatly reduced complexity [50].
Unfortunately, the original evaluation used a non-aggressive memory access mechanism that does
not perform load speculation. After verifying that published performance of the algorithm can be
replicated in our test bed, the algorithm was evaluated using the realistic ideal processor model
outlined in the previous sections. In other words, only the central window based issue logic of the
processor has been replaced with an implementation of the DBMA. The Spec95 benchmarks were
then executed under the DBMA processor and the harmonic mean IPC for the Spec95 suite was

computed at issue widths of 8, 16, and 32. It was found that at an issue width of 8, DBMA can
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provide about 54 % of the IPC of CW. At an issue width of 16, the performance drops to 48 % and
at an issue width of 32 it further diminishes to 43 %. The scalability data for the DBMA processor
has been summarized in Figure 3.4. These results clearly indicate that there is a great need for

devising a superior instruction wake-up and issue mechanism.

3.5 Scalability of Memory Disambiguation Techniques

In order to get high performance, out-of-order superscalar processors must issue load in-
structions as early as possible without causing memory order violations. Without the provision of
effective memory disambiguation, benefits of providing a large instruction window cannot be har-
vested. This is because most dependency chains start with a load operation. When the leading
load instruction in such a chain is delayed, the whole chain is delayed which results in significant
loss of parallelism. To illustrate the point, the performance of three techniques that deal with the
scheduling of load instructions were studied. These are, no load speculation, blind speculation and

load speculation based upon the store set memory dependence predictor [10].
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Figure 3.5: Scalability of No Speculation and Blind Speculation Techniques

No Speculation. When a processor employs no load speculation, it checks all prior store addresses
against the address of a pending load. When there are no prior stores with a matching address, the
load instruction is allowed to issue. On the other hand, if there is an address match and the store
data is not ready the issuing of the load is delayed. Depending on the processor implementation,
the processor may elect not to issue a load instruction even when the store data is ready in order to

reduce by-passing hardware that would be necessary. In these implementations the load instruction
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simply waits until the store completes. In this study, it is assumed that when the store instruction
has both its address and the data value ready, the load instruction is allowed to issue and obtain its

data value directly from the unissued store instruction.

Please note that this scheme requires all prior store addresses to be known before a load
instruction can compare its address against the prior store instructions. This is a significant problem
with schemes that do not perform load speculation since it results in unnecessary delaying of load
instructions because of unrelated store instructions. In a superscalar processor which employs a large
instruction window the possibility of having at least a few store instructions with unknown store
addresses is quite high. As a result, this scheme can exploit very limited amounts of instruction
level parallelism. In most cases, no parallelism across loop iterations is exploited even when the
loop iterations are completely independent. The results of simulations for no speculation case is
illustrated in Figure 3.5. These results confirm the findings of earlier studies that the load/store
parallelism provides little performance gains, and the benchmark programs do not have sufficient

instruction level parallelism to issue more than a few instructions per cycle [25].

The performance data shown in Figure 3.5 indicates that no-speculation mechanism can
provide only a fraction of the performance of the ideal disambiguator and does not scale as the
issue width is increased. At an issue width of 8, no-speculation mechanism achieves about 42 % of
the performance of the ideal disambiguator. At an issue width of 16, it can provide only 26 % of
the performance of the ideal disambiguator. Finally, at an issue width of 32, a mere 16 % of the

performance of the ideal disambiguator is obtained.

Blind Speculation. Observing that too much parallelism is lost because of the strict requirement
of prior store addresses to be known, an alternative scheme is to allow issuing of load instructions
whenever their register data dependencies are satisfied even when there are prior store instructions
with unknown addresses. Since the load instructions are allowed to issue speculatively, store instruc-
tions check for memory order violations as they are issued. A memory order violation is a violation of
a read after write dependency through the memory. When such a violation is detected, the execution
is restarted beginning with the load instruction that has obtained the wrong value. Performance
of the blind speculation at various issue widths is illustrated together with the performance of no
speculation in Figure 3.5. Blind speculation achieves 52 %, 33 % and 21 % of the performance of

the ideal disambiguator for 8, 16 and 32 issues respectively.

As it can easily be seen, blind speculation can help boost the performance of the machine,
but it also does not scale. As opposed to no speculation technique which looses too much paral-
lelism because of unnecessary delaying of load instructions, the blind speculation looses too much
parallelism because of too many memory order violations. It is clear from this experimental data
that without the provision of effective load speculation that does not cause frequent memory order
violations there is no point in establishing large instruction windows, or increasing the issue width

of the machine.
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Store Set Memory Disambiguation. Effective load speculation without causing excessive restarts
can be accomplished by using a memory dependence predictor to guide instruction scheduling. By
caching the previously observed load/store dependencies, a dynamic memory dependence predictor
guides the instruction scheduler so that load instructions can be initiated early, even in the presence
of a large number of unissued store instructions in the instruction window. A number of such tech-
niques have been developed yielding increasingly better results [21, 40, 39]. More recently, store set
algorithm by Chrysos and Emer [10] out-performed all prior mechanisms yielding performance close

to that of an ideal disambiguator at an issue width of 8.
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Figure 3.6: Scalability of Store Set Algorithm

This algorithm has been implemented and compared against the baseline processor CW.
The performance of the store set algorithm as a function of the issue width is illustrated in Figure 3.6.
As it can be seen from this graph, the algorithm closely matches the performance of the ideal
disambiguator at an issue width of 8, but starts to loose performance afterwards. The algorithm
provides 96 %, 81 % and 62 % of the performance of the ideal disambiguator at issue widths 8, 16
and 32 respectively. As it can be seen, for high performance, an effective memory disambiguation
mechanism must be provided. Only with an effective memory disambiguation mechanism, the true
potential of out-of-order issue superscalars can be unravelled. In this respect, the store set algorithm
provides good memory disambiguation performance upto a certain issue width, but does not scale

well afterwards. As a result, there is great room for improvement in this area.
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3.6 Concluding Remarks

In this chapter an evaluation of the exploitable instruction level parallelism in the Spec95
benchmarks using a superscalar out-of-order processor model has been presented. Unlike the prior
studies, the utilized model is a realistic ideal superscalar model and it is not tied to a particular
implementation. This model enabled us to study the true performance potential of each of the
evaluated techniques. In the following chapters, the same baseline processor is used to assess the
effectiveness of various microarchitectural techniques for the instruction selection and issue, and
memory disambiguation techniques.

While it has been illustrated that the existing techniques of memory disambiguation and
instruction issue techniques do not scale, the question of why that is the case has not been addressed
in this chapter. In Chapter 4, we study the DBMA algorithm in detail and present the reasons for
the poor performance of the algorithm. Alternative implementations of the issue window is given in
Chapters 5 and 6. Similarly, the store set algorithm is evaluated extensively in Chapter 7 and a

greatly improved disambiguator is presented in Chapter 8.



Chapter 4

Evaluation of Dependence Based
Microarchitecture

The wake-up algorithm proposed by Palacharla et al. in [50] attempts to reduce the com-
plexity associated with large instruction windows that is demanded by high performance superscalar
architectures of the future. The motivation for the design of the wake-up algorithm is the difficulty
of scaling a large central window to host many in-flight instructions [49]. The study differs from
prior studies in its unique approach to use explicit instruction dependencies for instruction wake-up
and scheduling. Nevertheless, as it has been illustrated in Chapter 3, the algorithm’s performance
is far from ideal with aggressive load speculation using a memory dependence predictor and there
is significant room for improvement. In this chapter, a thorough analysis of the underlying reasons
for the loss of performance is presented.

The organization of the chapter is as follows. First, in Section 4.1, a detailed summary
of the algorithm is presented along with the implementation of the algorithm in the dependence
based microarchitecture (DBMA). Next in Section 4.2, detailed experimental evaluation of DBMA
is presented. In Section 4.3, reasons for the poor performance of the algorithm are analyzed. The
performance of the algorithm using state-of-the-art techniques available today is presented in Sec-

tion 4.4. Finally, a brief discussion of the results is presented in Section 4.5.

4.1 The Wake-up Algorithm

The wake-up algorithm proposed by Palacharla et al. in [50] is based upon the observation
that if a set of instructions form a dependence chain, then the wake-up mechanism only needs to
examine the first instruction in the chain since the other instructions can never be successfully woken
up before the first instruction. Once the first instruction has been woken up, the next instruction
in the chain should be considered by the wake-up mechanism. An architecture that exploits this
observation, called the dependence based microarchitecture (DBMA), was designed and evaluated in
[50].

The pipeline of the DBMA microarchitecture is shown in Figure 4.1. This architecture pro-

vides a set of FIFOs that decouple the instruction fetch from instruction execution. The dependence
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Figure 4.1: Dependence-based microarchitecture

chains are dynamically identified and instructions belonging to a chain are steered into a FIFO queue
by the rename-steer stage. The number of queues is equal to the issue width. Only the instructions
at the queue heads are monitored for operand availability and are thus candidates for being woken
up. The availability of an operand is indicated by the setting of a bit in a table called the reservation
table. The complexity of the wake-up mechanism is proportional to the number of queues, that is,

the issue width of the processor.
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Figure 4.2: Scheduling on DBMA

Let us consider the algorithm for steering instructions into FIFOs in greater detail. In-
structions are steered as they are fetched to one of the queues by observing dependencies among
instructions. Since dependent instructions cannot execute in parallel, a dependent instruction is
steered behind the instruction on which it depends. Multiple instructions may require the same
operand value, and thus can be dependent on the same producer instruction. In this case the first
dependent instruction is scheduled behind the producer. However, additional dependent instruc-
tions are steered to empty FIFOs. By doing so, this heuristic allows all instructions dependent upon
the same producer to be initiated simultaneously once the producer instruction makes the operand
available. This aspect of the steering heuristic is crucial to its performance. If an instruction cannot
be placed in any queue according to the above criteria, the fetching and decoding is stalled till a
queue becomes available.

The DBMA scheduling process is illustrated in Figure 4.2. In this example, the processor
fetches instructions 1,2,3 and 4 in that order. Dependencies of these instructions are shown in

Figure 4.2a. When the first instruction is fetched, it is put into an empty FIFO. When instruction
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2 is encountered which is dependent on instruction 1, the instruction is put behind instruction 1.
Next, the processor fetches instruction 3. Since instruction 3 is dependent on instruction 2, it is
placed behind instruction 2. Finally, when instruction 4 is fetched the processor cannot put it behind
instruction 1 as there is already an instruction there. As a result, the new instruction is steered to

an empty FIFO.

With the above steering of instructions into the FIFOs, when instruction 1 completes both
instruction 2 and 4 will be at the heads of the FIFOs and they can start executing in parallel
provided they have only one missing operand. Please note that if a new instruction is fetched that
is not dependent on either instruction 3 or instruction 4 the decoding has to stall until an empty

FIFO becomes available.

4.2 The Evaluation

Palacharla et al. carried out an evaluation of the above wake-up mechanism by comparing
its performance with a central window implementation. The central window implementation em-
ployed the same basic pipeline except for the wake-up and issue stages. They demonstrated that
the TPCs obtained by the DBMA microarchitecture were within a few percent of the central window
based architecture. The baseline processor used in the above evaluation employed an instruction
fetch unit that was based upon McFarling’s gshare [37] branch predictor. Furthermore, memory
disambiguation was dealt with by issuing a load instruction only after memory addresses of all prior

stores were known.
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Using similar processor configurations, the published performance of the DBMA has been
successfully replicated. Although not evaluated in [50], the floating point benchmarks have also
been evaluated and they showed similar behavior. Also, while the original study has assumed unit
latencies, realistic latencies outlined in Figure 1(b) have been utilized in the evaluations. The results
of simulations for issue widths 8, 16 and 32 are shown in Figure 4.3, 4.4 and 4.5 respectively. As
it can easily be seen, DBMA matches the performance of the central window processor when it is
equipped with a regular fetch unit based on the gshare [37] branch predictor and the processor does
not employ load speculation (see CW/DBMA gshare no load speculation cases). In these figures,
IPCs for DBMA are typically within 10% of the central window processor.
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Figure 4.6: Scalability of Central Window and DBMA

However, when dynamic memory disambiguation is employed, the performance of DBMA
becomes significantly worse (see CW/DBMA ideal fetch ideal disambiguation cases). With most
benchmarks, DBMA scores well below CW providing below 50% of the performance of the central
window. The overall trend in these cases are further summarized in Figure 4.6(a) and (b). These
figures clearly show that as the issue width is increased the performance of DBMA in relation to
central window drops even further. The gap between the two architectures is notably larger in case
of floating point benchmarks which require larger instruction windows to hide the latency of the
floating point operations so that a high IPC can be delivered. Overall, the results of this study
show that the DBMA wake-up mechanism typically provides half the IPCs of those achievable by

the central window mechanism.
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4.3 The Analysis

Next we discuss the reasons for the loss of performance that was observed for the DBMA
wake-up algorithm. To uncover high degree of instruction level parallelism, as is needed for wide
issue processors, we need to examine an increasingly larger number of instructions [47]. The window
of instructions over which parallelism can be detected by the DBMA mechanism can be limited in
two situations. If the FIFOs are full, the fetching would be stalled and no more parallelism would
be detected. If the instruction steering algorithm requires additional empty FIFOs to proceed, and
none are available, it must stall until some FIFOs become empty.

The performance of DBMA assuming that the FIFOs have unlimited lengths was studied.
The results of this experiment are indicated by the data point dbma ideal fetch ideal disambiguator
infinite queues in Figure 4.3, 4.4 and 4.5. As we can see, providing longer queues does not result
in any performance improvement. From further analysis it has become clear that the performance
of the DBMA architecture was limited by the number of queues. In other words the performance
of the design which limits the number of queues to the issue width and uses the proposed steering

algorithm, does not scale to high issue widths.
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A frequently arising scenario which causes the DBMA to lose performance is illustrated in
Figure 4.7. This example also motivates the solution to the wake-up problem which is presented
in Chapter 6. Consider the code sequence and its dependence graph as shown in Figure 4.7(a)
and Figure 4.7(b). Assuming that no delays are introduced due to fetching of instructions, this
code sequence when scheduled on a central window processor of two functional units executes in
13 cycles as shown in Figure 4.7d. The schedule begins with the issuing of the DIV instruction.
Upon its completion, at the beginning of cycle 8, the LW and MUL instructions are issued. The
completion of the LW enables the issuing of the ADD instruction at cycle 10, and at cycle 11 all the
remaining instructions become ready. Assuming that the processor selects and issues the two oldest
instructions XOR and SLL first, the execution concludes with the scheduling of OR and SUB at cycle
12.

Now consider the scheduling of the same code sequence on the DBMA which contains two
FIFOs corresponding to the two functional units. The first four instructions (DIV, LW, ADD, XOR)
are fetched and successfully steered into the first FIFO as they form a dependence chain. The fifth
instruction, SLL, is steered to the empty queue since it is dependent upon the ADD instruction
in the first queue and the ADD instruction already has a dependent instruction (XOR) behind it.
The sixth instruction, OR, is also dependent on the ADD instruction and requires an empty queue.
However, since there is no empty queue available, the fetching and steering stalls. At cycle 12 empty
queues are available and therefore the OR instruction can be steered to an empty queue and as a
consequence now the MUL instruction can also proceed to an empty queue. Even though now the
MUL instruction can be issued, its issuing in comparison to the central window schedule has been
substantially delayed. Being a long latency operation, the delay in the scheduling of MUL extends
the schedule to 18 cycles.

In summary, the above example illustrates that if the DBMA runs out of available queues,
fetching of further instructions stalls and thus instruction window over which the DBMA can uncover
instruction level parallelism is severely limited. It should be noted that if non-aggressive fetch and
memory disambiguation mechanisms had been employed, delays introduced due to them would have
slowed down the central window schedule as well and the performance of DBMA and central window
would be comparable. This is essentially what led to the observed experimental results presented

earlier.

4.4 Performance of DBMA with State-of-the-art Techniques

In Chapter 3, it had been shown that when an effective memory disambiguation is not
employed, the set of instructions which can execute in parallel is severely limited. As a result, the
instruction issue window cannot extract parallelism regardless of the instruction wake-up and issue
technique that is used. In such cases, an inferior scheme may show performance as good as a superior
scheme, since the superior scheme cannot utilize its full potential because of other bottlenecks in the

processor.
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Figure 4.8: Performance of DBMA and CW

Since an ideal memory disambiguator cannot be used in a real implementation, in this
section we evaluate the performance of the DBMA using the state-of-the-art instruction fetch and
memory disambiguation techniques. For this purpose, we utilize an aggressive fetch mechanism
based on McFarling’s gshare predictor that can fetch multiple blocks every cycle by performing
multiple branch predictions. For memory disambiguation, we employ the store set algorithm [10].

Both the CW processor and the DBMA processor with these settings are perfectly realizable today.

The results of the simulations for an 8 issue processor are shown in Figure 4.8. As it can be
seen easily, previous results that we obtained using an ideal fetcher and an ideal disambiguator hold,
although with some differences. In general, integer benchmarks have lower branch prediction rates
than the floating point benchmarks. Because of excessive branch misprediction initiated roll-backs,
the central window processor cannot as effectively establish a full large instruction window over which
it can exploit high degrees of parallelism. Therefore, DBMA shows better relative performance with
the integer benchmarks. On the other hand, floating point benchmarks have both better branch
prediction rates and they require exploitation of high degrees of instruction level parallelism in order
to yield high IPC values. This is because in order to hide the latency of floating point operations a
large number of in-flight instructions is needed. Since DBMA cannot look-ahead as farther as the
central window processor if performs significantly worse in case of floating point benchmarks. With
these results, it has been demonstrated that the DBMA approach is severely limited with either the
contemporary techniques as well as using fetch and memory disambiguation techniques that may be

developed in the future.
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4.5 Concluding Remarks

Use of the dependence information to guide the instruction scheduling is a significant
step towards reduced complexity and increased performance. Unfortunately, because the original
evaluation made use of a model which was severely limited, the algorithm’s claim of high performance
with reduced complexity became false one year after its publication with the advances in memory
disambiguation. This event clearly shows the benefits of using an evaluation methodology which
makes use of a realistic, yet idealized processor model. These results at the same time show that
the so called window size problem has not been solved.

In Chapter 5, we develop a novel graph representation for encoding the instruction depen-
dencies that can be dynamically generated from ordinary RISC code. A simple microarchitecture
that can make use of such a graph for efficient waking-up of blocked instructions is presented in
Chapter 6. It is experimentally demonstrated that use of such explicit wake-up graphs is not prone

to the limitations of the DBMA approach, yields high performance and is highly scalable.



Chapter 5

Dynamic Data Forwarding

Contemporary superscalar processors are out-of-order issue processors which do not block
instruction issue as long as it is possible. When the processor encounters an instruction whose
operands are not yet ready, the blocked instruction is forced to step aside, paving the way for the
ready instructions to fill-in the pipelines. These blocked instructions are later executed dataflow
style once the required result becomes available.

As it has already been demonstrated in Chapter 4, the ability of the processor to look ahead
as far as possible while communicating the newly produced results to the blocked instructions at the
earliest possible time is crucial for extracting high degrees of instruction level parallelism. Ideally,
all the instructions waiting for the result should be able to utilize the data value at the beginning of
the next cycle. On the other hand, sending the data value to potentially all the instructions in the
instruction window requires a broadcast and select mechanism. For these reasons, most contemporary
superscalar processors implement the instruction window in some form of associative memory where
instructions monitor common data buses for the data values they need by matching their tags to
those broadcast on the bus [68]. Although this is an efficient mechanism enabling back-to-back
execution of dependent instructions, for very large windows the mechanism is not feasible because
of the increased hardware complexity [49].

An alternative mechanism to the currently employed instruction wake-up techniques in
superscalar processors is to store the blocked instructions in random access memory and to wake-
up these instructions through direct matching [52]. Since the instructions would reside in ordinary
random access memory, it would be possible to implement very large instruction windows efficiently
using this technique.

Direct matching has been studied extensively in the context of dataflow architectures by
Papadopoulos and Culler [51, 52]. On the other hand, the form of direct matching used in dataflow
processors cannot be readily applied in the context of out-of-order superscalar processors. Before
direct matching can be used in the context of a superscalar processor, a number of issues need to
be addressed:

1. In order to use direct matching, an explicit dataflow graph must be stored and maintained in

the processor. In case of dataflow processors this graph is encoded in the instruction stream
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whereas superscalar processors utilize instruction sets that make use of implicit communication
through register names. Therefore, the dataflow graph must be generated dynamically using

register names.

2. Unlike the dataflow processors, most superscalar processors deal with general purpose code
that has low to moderate parallelism. This type of code is very sensitive to any delays in the

propagation of values.

3. The data fan-out problem is a serious problem in a superscalar setting. When the graph is
generated dynamically, there is no way of knowing how many destinations a value should be
forwarded to in advance. The number of uses of a value is arbitrary and may assume any value
between one and the window size. Distributing a result to multiple memory locations rapidly

requires many ports which may result in slowing down the clock.

Among the above issues, the solution to the data fan-out problem holds the key to the
rest. Without having a fixed number of destinations per instruction, dynamic generation of the
dataflow graph from ordinary RISC code is largely unmanageable in the hardware. Similarly, the
need to initiate dependent instructions in successive cycles has to be handled as a subproblem of

data fan-out.

In order to address these problems, a novel data-fanout mechanism has been developed.
This data fan-out mechanism assumes a fixed number of def-use edges and a fixed number of use-use
edges per instruction. The fan-out is handled using the def-use edges first. Once the fixed limit
is reached, additional uses are satisfied through use-use edges of consumer instructions. In other
words, instructions which are being woken-up are used as stepping stones to waking-up further
instructions. This form of data forwarding is called source-to-source forwarding and a dataflow
graph dynamically computed from a conventional instruction stream in this respect is called the
Dynamic Data Forwarding Graph (DDFG). The semantics of DDFG can easily be implemented
using direct matching and unlike the prior direct matching techniques [74, 51], the graph does not

limit parallelism or introduce additional instructions to carry out data propagation.

In the remainder of the chapter, in Section 5.1, the existing solutions for the fan-out problem
and the reasons they are inadequate for a superscalar setting are discussed and the novel solution
of source-to-source forwarding are presented. The dynamic data forwarding graph is introduced
formally in Section 5.2, which is followed by the presentation of the execution semantics of the
graph in Section 5.3 and the construction algorithm from RISC code in Section 5.4. Finally, in
Section 5.5, it is illustrated that the use of a DDFG provides competitive performance to that of a
data distribution/wake-up scheme that assumes full fan-out capability such as the central instruction

window.
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5.1 The Fan-out problem

The fan-out problem is the representation and the implementation of the flow of values
from their producers to their consumers. There are mainly three approaches to the problem. These
are: (a) Providing varying size destination lists; (b) Assuming a fixed fan-out per instruction and
implementing the required fan-out by inserting identity instructions; and (c) Assuming a fixed fan-
out and blocking the instruction issue if issuing the new instruction will cause the fan-out limit to
be exceeded (DTS [74]). Alternative ways of implementing the fan-out has been first demonstrated
by Kenneth Todd [67]. Early dataflow machines employed the varying length lists approach (TTDA
[3]) whereas later dataflow machines employed the identity instruction approach (ETS [51]).

Using a varying length list is not suitable for superscalar processors since varying length
lists are difficult to manage efficiently in the hardware. Similarly, the blocking algorithm (DTS [74])
is not suitable since it severely limits the parallelism that can be exploited. Finally, insertion of
identity instructions is not desirable for superscalar processors since the need for a large data fan-
out occurs when the instruction window becomes full. Insertion of identity instructions dynamically
would fill-up the instruction window, resulting in reduced effective window size and consuming
valuable functional unit bandwidth to execute the identity instructions.

The developed solution uses the novel idea of source operand to source operand forwarding
(SSF). Like ETS, we assume a fixed fan-out, but we give the capability to forward data to the source
operands of the instructions as well. When an instruction executes, it sends its source operands to
their next uses, as well as its result. Figure 5.1 illustrates the flow of the values of x and y for various

techniques.

11: x=c+ const 11: x=c+ const

12: | y=al/b 12: ( y=alb
13: 13: | a=x+y
14: [4: \ _b=x* const
I5: I5: c=x+Db
16: 16: d=y-b
(a) Varying length (b) Tdentity (c) SSF

Figure 5.1: Handling of data fan-out

As it can be seen, SSF handles the distribution of data values using a fixed fan-out per
operand without introducing additional instructions. However, in its current form, it also restricts

the amount of parallelism that can be exploited. This is because the propagation of a data value
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is delayed when one operand of an instruction arrives but the other operand of the instruction
is missing. Since an instruction is scheduled for execution when both operands are available, the
propagation of the available operand does not start until after the other operand is received. For
example, in Figure 5.1(c), instruction I5 cannot start its execution until the long latency instruction
I2 completes and activates I3, although I5’s other operand would have been available long before
the completion of 12. It has been verified experimentally that this case occurs too often and it is
detrimental to the performance. Figure 5.2 compares the performance of SSF with a fan-out limit
of two and the central window. As it can be seen, the loss of performance is quite large for larger
issue widths. In order to eliminate the excessive delay, we need to allow data forwarding to continue
when at least one of the operands is available. This approach leads us to the concept of treating the
source operands and the instruction itself as independently schedulable entities. We therefore treat
the source and result values uniformly and refer to each data value that needs to be propagated an

oplet.
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Figure 5.2: SSF-2 versus full fanout

The concept of oplets forms the basis of DDFG. A dyadic instruction has three oplets,
while a monadic instruction has only two. An oplet is an executable entity that has a tag indicating
the status of the oplet, a value and a number of destinations that need this value. We define the
execution of an oplet as the propagation of the value it carries to its destinations whereas execution of
an instruction as consuming the input values, performing the operation indicated by the instruction
and generating a result oplet. Therefore, the program execution is realized by the execution of the

oplets of the graph and its instructions. Like any other dataflow style execution, both oplets and
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instructions can only execute when they have the required data values ready. Separation of the
instruction operands into oplets has two significant consequences. It allows oplets to have their own
life time. Therefore, an oplet receiving a data value can propagate it further without delays, given
sufficient hardware resources. In other words, data flows freely through the forwarding edges. On the
other hand, separate data operands require additional links called matching links for joining them
later. Revisiting the example in Figure 5.1(c), we observe that the left operand of the instruction I3
can propagate the value to instruction I5 although the instruction I3 itself was still blocked waiting
for the value of y from the divide instruction. As a result, the execution of I5 can start as soon as

14 is completed, while I2 is still executing.

5.2 Dynamic Data Forwarding Graph

We now define the Dynamic Data Forwarding Graph (DDFG) formally.
Definition: A DDFG is a directed graph G = (Vopier U Voperation, Ef U Ematcn) where Voperation 18
the set of nodes representing program instructions, V¢ is the set of nodes representing instruction
oplets, F¢ is the set of data forwarding edges, and E,,4¢cp, is the set of matching edges between the
instructions and their oplets.
Definition: A DDFG has a forwarding degree Fy iff VV €V, p1et, outdegrees (V) < Fy where outdegree ¢
is the number of forwarding edges emanating from V.

The DDFG deals with only those instructions which are in the instruction window and
fully specifies the data driven execution in the instruction window. An example DDFG which has
a forwarding degree of 2 is shown in Figure 5.3. For the purposes of illustration, oplet nodes have

been labeled with the register identifiers of the original program code.

///7\ w | Ra |

I1: DIV R3RI16R17
122 LW  R4,0(R3)
I3: ADD R5R4,R8
14: XOR R8,R6,R5
I5: SLL  R9,R5,1
16 OR  RIOR5R4
172 SUB RILR5R4

(a) Code (b) DDFG

Figure 5.3: Sample code and its DDFG
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There are many possibilities in the assignment of the forwarding edges in a DDFG, each
leading to different instruction schedules. For the construction of the forwarding edges, a simple
heuristic is used which works well. For each use of a value in the program order, the uses are
assigned to producer oplets breadth-first. This approach favors older instructions in the window,
and rapidly distributes a value to its destinations since each level in the graph can distribute a value

to increasingly more destinations.

5.3 DDFG Execution

The execution of DDFG is data-driven. An operation node can execute when it has both
data values (assuming it is a dyadic operation), and an oplet can execute when it has one data value.

Arrival of a data value at an oplet triggers the following sequence of events:

1. If the oplet has out-degree greater than zero, a copy of the data value is produced for each

link and sent through each link.

2. A copy of the data value is sent through the matching link to the operation node and the oplet

is deallocated.

3. Upon having both data values, an operation node performs the operation and sends the result

value to the adjoining result oplet.

4. The result oplet sends the value through its forwarding edges and both the operation node

and the result oplet are deallocated.

5.4 DDFG Construction

A DDFG is easily constructed as the program executes using an algorithm similar to re-
naming. For this purpose, an array of queues whose size is equal to the number of architectural
registers is needed. Each queue entry holds a descriptor consisting of a counter and a pointer that
points at the producer oplet which will have the value of a given register. Fetched instruction’s
source register identifiers are used to access the queue array to select the set of producer oplets for
this register value. If the corresponding queue is empty, there are no pending values for this register
and the value is provided to the instruction from the register file. Otherwise the descriptor at the
head of the queue identifies the producer oplet that must be used for this consumer. A forward-
ing edge is set-up from the producer oplet to the current instruction oplet and the counter of the
descriptor is incremented. If the value of the counter is greater than the degree of forwarding, the
entry is removed from the queue. In any case, a new descriptor is formed which identifies the current
instruction’s oplet as a new producer and the descriptor is inserted to the tail of the queue. Once

all the operands of an instruction are processed, a new descriptor is created for the result oplet,
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the queue corresponding to the result register is flushed and the new descriptor is inserted into the
queue.

For a DDFG which has a degree of forwarding of one, the queue array becomes unnecessary
and a table of size equal to the number of architectural registers is sufficient to generate the graph.
When the size of each queue is unlimited, a balanced DDFG is obtained. While a balanced DDFG
is ideal for the distribution of the values, in practice generated DDFGs will be unbalanced because
of the limited queue sizes. It has been observed that the queues must be as large as the degree of

forwarding for achieving high performance but returns diminish rapidly beyond this size.

5.5 DDFG Performance Evaluation

The performance of the DDFG compared to full data fan-out has been studied with degree
of forwarding of 2 and degree of forwarding of 4. Data produced using a degree of forwarding of 2 is
labelled DDFG-2 and degree of forwarding of 4 is labelled DDFG-4. When we examine the results for
8 and 16 issue processors (see Figure 5.4) we observe that a forwarding degree of 2 captures most of

what can be extracted with broadcasting.
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Figure 5.4: DDFG versus Full Fan-Out 8 and 16 Issue Processors

For example, at 256 in-flight instructions, the full data fan-out is only 6 percent better than
DDFG-2. Given the cost of increasing the degree of forwarding, the payoff is very little for forwarding
degrees greater than 2 at these issue widths. However, at bigger issue rates such as 32, the effective
window size rapidly increases. For 32 issue the effective window size is around 1024 entries although

a window size of 2048 still provides some measurable performance improvement. For 1024 in-flight
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Figure 5.5: DDFG versus Full Fan-Out 16 and 32 Issue Processors

instructions, full data fan-out is faster than DDFG-2 by about 21 percent, and faster than DDFG-4 by
about 9 percent. More significantly, the required degree of forwarding increases slowly and a linear
increase in the forwarding degree with respect to the issue width always matches the performance

of a processor equipped with full data fan-out capability.

5.6 Concluding Remarks

It has been shown that full data fan-out for high performance is not necessary. It has been
shown further that direct matching can be feasibly implemented within the context of a superscalar
by using the novel approach of generating a DDFG from a conventional instruction stream as part
of the renaming process. Using a fixed data fan-out per instruction, this graph can deliver high
performance and can be used to implement very large instruction windows.

In Chapter 6, it is illustrated how the DDFG semantics can be feasibly implemented by
circulating simple descriptors which represent oplet/instruction pairs. A high performance scalable

microarchitecture that utilizes the DDFG is described in full detail and its performance is evaluated.



Chapter 6

Direct Instruction Wake-up

In Chapter 5, it has been illustrated that for high performance full fan-out is not necessary
and a Dynamic Data Forwarding Graph DDFG can be used to address the scalability of the issue
window in out-of-order issue superscalars using direct matching. Although the DDFG paradigm
has been designed around the concept of the flow of values from producer instructions to consumer
instructions, an implementation of the concept does not have to rely on explicit movement of data.
As it has been demonstrated by Gao et al. [18], instead of propagating data values, signals can be
propagated to wake-up waiting instructions and a conventional register file can be used to supply
the data values.

In this chapter, a novel instruction wake-up algorithm that dynamically associates explicit
wake-up lists with executing instructions according to the dependences between instructions is pre-
sented. This technique leads to easy integration of the wake-up mechanism into a conventional
superscalar pipeline. The wake-up graph is generated dynamically as part of the renaming process
by storing the graph nodes directly in the reorder buffer. It then is utilized to guide the instruction
scheduling.

The organization of the chapter is as follows. In Section 6.1, the concept of using a direct
wake-up graph DWG for instruction scheduling and the semantics of the graph are discussed. In
Section 6.2, a detailed design of a microarchitecture called Direct Wake-up Microarchitecture, DWMA
which utilizes a DWG for instruction scheduling is presented. In Section 6.3, the algorithm for the
generation of the wake-up graph utilized in the DWMA is given. In Section 6.4 the details of the
instruction scheduling as it is implemented in the DWMA is presented. In Section 6.5 the performance
of the DWMA architecture is analyzed and compared with that of the realistic ideal model. Finally,

in Section 6.6 the implications of the approach for future processors is discussed.

6.1 Direct Wake-up Graph

Contrary to the approach taken in a central window implementation where instructions are
constantly monitored for readiness, direct wake-up algorithm identifies and considers for wake-up a
fresh subset of waiting instructions from the instruction window in each cycle. If in the current cycle

an instruction is expected to complete its execution, then another instruction waiting for the result
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of the completed instruction may become ready in the next cycle. Thus, such an instruction will be
among the set of instructions examined for wake-up and if ready, it would be issued for execution

in the next cycle.

In order to guide this wake-up heuristic, a wake-up graph is constructed and maintained
dynamically. Since the graph is to be maintained in hardware, it is subject to the same constraints
that were imposed on the DDFG graph. In particular, the number of edges emanating from a
node cannot be unbounded. In the hardware implementation the wake-up graph is represented by
associating with each instruction an explicit wake-up list, W-LIST, which identifies the instructions
that will be woken up by that instruction (i.e., the wake-up list is the representation of edges in the
graph).

Ideally in the W-LIST of an instruction we would like to place all the instructions which use
its result (i.e., all instructions to which there is a def-use edge). But since the number of entries in
the W-LIST must be a fixed small number in a practical implementation, we cannot include all such
instructions in the W-LIST. We therefore follow the same approach that has been used to construct a
DDFG. We allow an instruction that computes a result to directly wake-up only a small fixed number
of instructions in the instruction stream that use the result while the others are woken up indirectly.
The responsibility of waking up future instructions in the instruction stream is delegated to those
being woken-up directly through the def-use edges. To carry out the wake-up of further instructions
we introduce use-use edges first from the instructions that are being directly woken-up and then
from the instructions which are being woken-up indirectly through the use-use edges. This process
of introducing use-use edges is repeated till all instructions have been handled. Thus, the wake-up
graph contains both def-use and use-use edges. In summary, an instruction can wake-up instructions
connected through both def-use and use-use edges. In this implementation, it is assumed that there
are at most six edges in the W-LIST of an instruction. These are labelled (d0,d1), (10,I11) and (r0,r1)

corresponding to the result, the left operand and the right operand on an instruction.

It is important to note that the instructions that are linked through a chain of use-use
edges may execute in an order different from the order they appear in the chain. Consider a chain
of use-use edges that has been created due to an operand value v. When the value v is computed
by its producer, the first instruction in the chain is considered for wake-up. Let us assume that the
instruction cannot issue because its other operand is unavailable. In this situation, since the value v
is available, we will consider the next instruction in the chain for wake-up even though the previous
instruction is still waiting. It is possible that this instruction is found to be ready and thus may
execute prior to the preceding instruction in the chain. Thus, the introduction of use-use edges does
not restrict out-of-order execution. Its only consequence is that all instructions waiting for the same
operand are not examined simultaneously by the wake-up algorithm. Rather in each cycle only a
subset of instructions waiting for the value are examined.

Clearly the wake-up graph that is constructed dynamically is influenced by the order in
which the instructions appear in the code sequence. In addition, the form of the graph is also

influenced by the timing of instruction execution. In fact while the initial form of the wake-up graph
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is determined by the original instruction ordering, the graph undergoes transformations determined
by execution timing. Let us consider the modifications to the graph that may take place. When an
instruction is first added to the wake-up graph, it is linked to the producer of its first unavailable
operand, that is, it is added to the W-LIST of the producer of this operand. Now let us assume that
this operand becomes available. This will cause the instruction waiting for the value to be considered
for wake-up. At this point it may be determined that the second operand of the instruction is
unavailable. In this case the instruction would be added to the W-LIST of the producer of this
missing operand. In other words, while one def-use edge has been removed, another one is added to

the wake-up graph.
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Figure 6.1: Example wake-up graph and its schedule.

Finally we would like to make the observation that an instruction may be woken up 0, 1
or 2 times before it can execute. If the instruction has all of its operands available when it is first
fetched, it is issued immediately and thus never woken up. If the instruction has only one operand
missing when it is first fetched, then it will be woken up once when that missing operand becomes
available (either immediately using a def-use edge or in a delayed fashion through a use-use edge). If

both of the operands of an instruction are missing when it is fetched then it may be woken up twice,



45

once when the first operand becomes available, and then again when the second operand becomes

available.

Wake-up Graph Example. Now let us consider the example that has been used in Chapter 4
to demonstrate that the dependence based microarchitecture has limited look-ahead. When we
examine the code sequence (see Figure 6.1), we see that the wake-up links for all the instructions
except OR and SUB can be established using def-use edges, that is using d0 and d1. This is because
the ADD instruction has four children and therefore two result links are not sufficient. We therefore
associate XOR and SLL, the first two instructions, directly with the result of ADD through def-use
edges, whereas we satisfy the remaining two children OR and SUB using use-use edges emanating
from XOR. The resulting wake-up graph is shown in Figure 6.1(a).

The execution schedule is realized as follows. When the DIV instruction completes its
execution, it wakes-up the instructions LW and MUL through its def-use edges d0 and d1. When
LW completes its execution, it wakes up the ADD instruction through its d0 edge. Once ADD is
completed it activates the XOR and SLL instructions also through d0 and d1 edges. When XOR is
activated, it can now activate OR and SUB through its 10 and 11 links. The resulting schedule is
given in Figure 6.1(c). As we can see, in this case, the schedule generated using the direct wake-up

algorithm is of the same length as that generated by the central window algorithm.

6.2 The Direct Wake-up Microarchitecture

Next the direct wake-up microarchitecture (DWMA) that has been designed to dynamically
construct the wake-up graph and make use of it for instruction scheduling is presented. As shown
in Figure 6.2, DWMA is a highly parallel decoupled superscalar with an eight stage pipeline. The
construction of the wake-up graph is begun in the Decode and Graph GEN-1 stage and completed
in the Rename and Graph GEN-2 stage. The graph constructed is stored in the form of W-LISTs
associated with instructions in their respective reorder buffer entries. Since all instructions that
have entered the processor pipeline must have a reorder buffer entry, the size of the instruction
window from which instruction level parallelism is extracted is limited by the reorder buffer size.
The subset of instructions that are to be considered by the wake-up mechanism are fetched and
examined from the reorder buffer by the Fetch W-LIST and Wake-up stage while the updates to the
wake-up graph are performed by the Register Read and W-LIST WB stage through write backs to
the appropriate entries in the reorder buffer.

Each stage has a width equal to the issue width. The instructions that are executed
in parallel are obtained from the heads of the FIFOs and there is a one-to-one correspondence
between the FIFOs and the functional units. The instructions are put into the FIFO in the form of
instruction descriptors which, in addition to the usual opcode and physical register numbers needed
for the instruction’s execution, also contain additional information required to carry out the wake-

up activities associated with the instruction. Each instruction’s descriptor is entered into the queue
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Figure 6.2: The Direct Wake-up Microarchitecture

when it is first fetched and every time it is woken up by another instruction. Thus, the FIFOs contain
only a subset of instructions from the instruction window. In particular, these are the instructions
that according to our wake-up heuristic may be ready for execution.

Let us consider the operation of the key pipeline stages that construct and process the

wake-up graph as well as the reorder buffer that holds the graph in greater detail.

Reorder buffer: The reorder buffer is issue-width interleaved and its address space is divided equally
among the individual FIFOs. In other words, the low order bits of the reorder buffer addresses
also identify the queue that will process the instruction. The instructions are allocated a reorder
buffer entry on a circular basis to distribute the work more or less uniformly to individual
queues. In other words, the reorder buffer index allocated to the instruction modulo the

number of functional units yields the functional unit that will execute this instruction.

Decode and Graph GEN-1: In this stage, the instruction is decoded and in parallel the producers’ W-
LISTs, to which the current instruction must be added, are identified from the source register
identifiers. A reorder buffer entry is allocated to the instruction by incrementing the tail

pointer of the reorder buffer.

Rename and Graph GEN-2: The source register identifiers of the instruction are renamed to physical
registers and a result register is allocated if necessary. In parallel, the current instruction and
its W-LIST are written to the instruction’s assigned reorder buffer entry. The instruction is
assigned to a functional unit (or FIFO). The assignment is carried out in a round robin fashion
and thus can be computed as the reorder buffer index modulo the issue width. An instruction

descriptor is formed and sent to the appropriate FIFO.

Fetch W-LIST and Wake-up: The reservation table is accessed to determine whether the operands
of the instruction descriptors at the heads of the FIFOs are ready. In parallel, the reorder

buffer is accessed to fetch the W-LISTs of these instructions. The instructions corresponding
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to (10,11) are woken up if the left operand is available, the instructions corresponding to (r0,r1)
are woken up if the right operand is available, and the instructions corresponding to (d0,d1)
are woken up if the instruction takes a single cycle to execute. The ready woken up descriptors
are pushed back to the heads of the appropriate FIFOs. The current instruction descriptors,
that were initially obtained from the heads of the FIFOs, have now been processed. The ones
that are found to be ready and have their functional unit free are sent to the next stage. On
the other hand if the functional unit is busy, the ready descriptors are pushed back to the head
of their respective FIFQs. If the instruction is not ready, then it is simply forwarded to the

next stage.

Register Read and W-LIST WB: If the current descriptor is ready, the operand values are read from
the register file. If it is not ready the descriptor is written back to the W-LIST of the producer

of the missing operand in the reorder buffer.

As we can see from the above description, processing of W-LISTs is done in parallel with the conven-
tional functions of the pipeline stages Decode, Rename, Wake-up and Register Read. Therefore the
additional tasks necessary to implement the direct wake-up are juxtapositioned with the conventional
pipeline functions in Figure 6.2.

We have discussed the overall operation of DWMA. In the remaining sections, the detailed
algorithm for generating the wake-up graph is presented and how the instruction scheduling is carried

by DWMA is discussed in greater detail.

6.3 DWG Generation Algorithm

For the purpose of graph generation, an array of queues with each logical register being

associated with a single queue is utilized (see Figure 6.3(a)).

source register number

g g g g Reorder buffer index ‘ Counter ‘ Left/Right/Result

Q Q1 Q2 ... ... on

a) Descriptor Queues b) Descriptor format

Figure 6.3: Descriptor Queues Used for the Graph Generation

Each entry in a queue is a descriptor identifying a producer for the register’s data value. A
descriptor contains three fields, namely the reorder buffer index of the producer, the wake-up group
of the producer (left operand, right operand, or result) and a one bit counter (see Figure 6.3(b)).

When an instruction is being decoded, its source register identifiers are used to access the producer
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queue array and the descriptor at the head of the queue is copied to the instruction’s corresponding
operand. The descriptor’s counter is incremented, and if it now overflows, the descriptor is removed
from the head of the queue. Otherwise, the updated descriptor is left at the head of the queue. This
process ensures that, for any given counter size, there are at most that many edges
emanating from the instruction corresponding to each of its operands and its result.
Two new descriptors are formed, one for each operand which can now serve as new producers of
these values and they are inserted at the tail of the corresponding queues. Please note that if there
is no space left in a queues, the instruction decode need not stall but can simply discard the new
descriptors it just formed since there are already quite a few producers that can be used as wake-up
slots by the following instructions that need the same value.

Lets consider the ADD instruction in the code sequence shown in Figure 6.1. When this
instruction is fetched, it creates a descriptor for the result register R5, sets its counter to zero and sets
its wake-up group to result. The queue corresponding to register R5 is flushed and this descriptor
is inserted into the queue. When the XOR instruction is fetched, it indexes the queue array for
its source register R5 and gets the descriptor. Since its counter is zero, there are available def-use
links. The instruction establishes the link by copying the current descriptor, incrementing its counter
and re-inserting the descriptor back to the head of the queue. XOR instruction now creates a new
descriptor where the wake-up group is set to left operand, initializes its counter to zero and inserts
the descriptor to the tail of the queue. When the processor fetches the SLL instruction, the above
process is repeated. However, since the counter of the descriptor for R5 now overflows, instead of
re-inserting the descriptor back to the head of the queue, the descriptor is discarded. At this point,
we have consumed all the available def-use edges, but we have two new descriptors in the queue
which are of type use-use edges. When the processor fetches the OR and the SUB instructions, the
above process is repeated. This process essentially makes these two new instructions children of the

XOR instruction through use-use edges.

6.4 Instruction scheduling

DWMA implements the instruction scheduling uniformly by propagating instruction specific
information in the form of instruction descriptors which are hardware pointers uniquely identifying
the instruction. The format of the instruction descriptor is shown in Figure 6.4. The My-ROB-i
field is the index of the reorder buffer entry allocated to this instruction. The Op-bits field indicate
operand availability; there is one bit per operand. Left and Right register numbers are physical
(renamed) registers for this instruction. Finally the PTR-missing field is a pointer to the W-LIST of
a producer instruction. When both of the operands are missing, only one of them has to be recorded
as part, of the instruction descriptor since the descriptor itself is stored into the W-LIST of the other
operand.

The actual processing of the instruction descriptors stored into the FIFOs is handled at a

rate of one descriptor per FIFO through the Fetch W-List and Wake-up stage. Each descriptor field is
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Figure 6.4: Instruction descriptor.

used to handle the wake-up process. The processing of each of the descriptors consists of two main
steps. These are determining whether or not the instruction described by the current descriptor is
ready and waking up those instructions which are in the wake-up list of the current instruction. The
process of determining the status of the current instruction is handled in parallel with the fetching

of the wake-up list.

Determining the status of the instruction. The status of the current instruction is determined
by accessing the reservation table. For this purpose, the physical register identifiers are sent to the
reservation table to fetch the operand availability. Please note that only the instruction described
by the descriptor needs to access the reservation table, as the ready status for all the instructions
being woken-up can be easily computed from their descriptors and the operand status for the current

descriptor.

Fetching of the Wake-up List. Simultaneously with the reservation table access, the stage sends
the My-ROB-i field of the instruction descriptor to the reorder buffer to fetch the W-LIST associated
with this instruction. Since the descriptor is at the head of the queue, it should now wake-up any
instructions which are in its wake-up list.

Once the W-LIST and the operand availability information is obtained, the status of the

instructions being woken-up is determined easily by performing the following operations in parallel:

e if the left operand is available, in group 10,11 one zero bit from the Op-bits field of each descriptor

is turned on.

e if the right operand is available, in group r0,rl one zero bit from the Op-bits field of each

descriptor is turned on.

e if the instruction is a single cycle instruction, in group d0,d1 one zero bit from the Op-bits field

of each descriptor is turned on.

The set of instructions which are ready are easily identified using the operand availability
information for the currently processed instruction descriptor. The instruction itself is ready, if both
operands are available. The dependent instructions are ready if they are only missing the data of
the source operands of the currently processed instruction (i.e., the edges are of use-use type), or if
the current instruction is a single cycle integer instruction whose result would make them ready.

Following the above operation, we now have a number of descriptors, namely, the original

descriptor and its dependent descriptors. We first process the dependent descriptors. If these
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descriptors are ready they are pushed back to the head of the FIFO. In the next cycle, they can
now wake-up their dependents and issue. If they are not ready, they are written back to the reorder
buffer by the next stage. If the original descriptor is ready, and the corresponding functional unit is
free, the instruction is issued for execution through the Read registers and W-LIST WB stage. If the
corresponding functional unit is busy, the descriptor is pushed back to the head of the FIFO.
Longer latency operations need a similar treatment with a different timing. One cycle
before the completion of the result, they access their reorder buffer entry to fetch the descriptors in
their result wake-up group (d0, d1). These descriptors are inserted to the head of the queue they
belong. In the next cycle, these instructions can resume operation if they now have all of their

missing operands.

6.5 Experimental Evaluation
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Figure 6.5: IPC values for DWMA

DWMA architecture has been evaluated for issue widths 8, 16, and 32 and its performance
has been compared with the central window processor. The resulting IPCs for all the benchmarks are
shown in Figures 6.5, 6.6 and 6.7. An 8-issue DWMA architecture attains 85% and 82% of the 8-issue
central window processor performance for integer and floating point benchmarks respectively. At an
issue width of 16, DWMA architecture achieves 81 % of the performance of the ideal central window
processor for integer benchmarks and 76 % for floating point benchmarks. The high performance
of DWMA is also evident in case of 32 issue processors. With integer benchmarks the same trend is
continued at 72 % of the performance of the central window processor. However, with floating point

benchmarks DWMA loses some performance achieving about 62 % of the ideal processor. The larger
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performance loss for the floating point benchmarks is directly related with the MIPS-I instruction
set, which does not have double word load and store instructions. Instead, two load single operations
are performed to load a double word. This results in a double precision operand requiring separate
wake-up links for each half of the double precision value, consuming valuable wake-up links. Much
better performance can be obtained by treating double precision registers as single objects for the

wake-up purposes.
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Figure 6.6: IPC values for DWMA

The harmonic means of IPCs obtained by the two algorithms are plotted in Figure 6.8. As
it can be seen, DWMA processor closely follows the performance of the central window processor in
case of integer benchmarks. In case of floating point benchmarks, performance loss becomes more
significant after an issue width of 16. At these high issue widths, available parallelism is being
exploited fully by the central window processor. Therefore, the limitation of a degree of forwarding

of 2 becomes more significant.

6.6 Concluding Remarks

In this chapter, a superscalar out-of-order processor, namely, DWMA that dynamically
generates a wake-up graph and utilizes it has been presented. This processor design is the first such
processor in the published literature demonstrating that high performance superscalar processing can
significantly benefit from the application of dataflow concepts. The application of dataflow concepts
has been made possible by the novel concepts of source-to-source forwarding, direct data forwarding

and direct instruction wake-up. This approach makes it feasible to implement very large instruction



92

36.0 T T T T T T T 32.0 T T T T T T T T

340 [ \_H CW ideal fetch ideal disambiguator L ] 300 [ CW ideal fetch ideal disambiguator ]
320 [ DWMA ideal fetch ideal disambiguatoy DWMA ideal fetch ideal disambiguato ]
30.0
28.0
26.0
24.0
22.0
20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0

0.0 —

Py oo & o ) Qe @ e e A i gt a8 Q.“d o 0'56 a@‘" \)‘) RCARTCART
Q@07 o 96D fL\\? 2T NI AN AN o0 S S (3O Qav o \99 B A AN
\}M“ \’\;19 o A2 O AQ \p'z; Y

(a) 32 Issue - Integer Benchmarks (b) 32 Issue - Floating point Benchmarks

Figure 6.7: IPC values for DWMA

20.0 ‘ 20.0 ‘
G—O CW integer G—=© CW floating point
G—FH DWMA intege) O——H& DWMA floating poin

15.0 | . 15.0 | .
© @
[} o
> >
(5] o
9] [}
Q Q
2 100 - . 2 100 .
S s
3 g
2 E
3 3
£ =

50 - . 50 .

00 ‘ ‘ ‘ 0.0 ‘ ‘ ‘

8 16 32 8 16 32
Issue Width Issue Width
(a) Harmonic Means for Integer Benchmarks (b) Harmonic Means for Floating point Bench-
marks

Figure 6.8: Scalability of CW and DWMA



93

windows, which otherwise are not possible to implement feasibly with the current implementation
technologies.

Approach taken in the design of DWMA exploits instruction level parallelism over a large
instruction window. In this respect, it can exploit similar levels of parallelism that can be exploited
by dataflow processors such as ETS [51]. In contrast to the dataflow approach of treating memory
dataflow as an integral part of the synchronization process by use of the I-structures, DWMA has to
rely on predictive speculative techniques with explicit load/store instructions being utilized. In the
following chapters, it is demonstrated that memory dataflow can be efficiently handled within this

framework.



Chapter 7
Analysis of the Store Set Algorithm

The store set algorithm proposed by Chrysos and Emer in [10] is a memory dependence
predictor that is typically integrated into the issue window logic. The predictor provides information
about whether or not a recently fetched load or store instruction can issue once it satisfies its
register data dependencies. If a load instruction is predicted to be dependent on a store instruction,
this information is communicated to the scheduler and the scheduler enforces the ordering in the
instruction window. In addition to the load/store dependencies, the algorithm may require a store
instruction to be ordered with respect to another store instruction. In other words, the predictor
may request both load/store dependencies as well as store/store dependencies to be enforced from
the scheduler. Since the predictor is accessed early in the pipeline, the implementation does not
hold the load instructions longer than it is necessary. As a result, as long as the predictor correctly
predicts the dependencies, the algorithm provides very high performance. When the predictor does
not correctly predict the dependencies, it may make load instructions dependent on the wrong store
instructions which may result in memory order violations or may result in unnecessary delaying of
the load instructions.

As it has been illustrated in Chapter 3, the algorithm performs superbly upto an issue
width of 8, but algorithm’s high performance diminishes at higher issue widths. In this chapter, a
thorough analysis of the underlying reasons for the loss of performance is presented.

The organization of the chapter is as follows. First, in Section 7.1, a detailed outline of
the algorithm is presented. Next in Section 7.2, detailed experimental evaluation of the algorithm is
presented. In Section 7.3, reasons for the loss of performance of the algorithm at high issue widths

are analyzed. Finally, a brief discussion of the results is presented in Section 7.4.

7.1 The Store Set Algorithm

The store-set algorithm is a simple and very effective memory disambiguator that relies on
the fact that the future memory dependencies can be correctly identified from the history of memory
order violations. In this respect, a store set is defined to be the set of store instructions a load has
ever been dependent upon. The algorithm starts with empty sets, and speculates load instructions

around stores blindly. When memory order violations are detected, the offending store and the load

o4
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instructions are placed in a store set. Since a load may depend upon multiple stores and multiple
loads may depend on a single store, an efficient implementation of the concept may be difficult. In
order to use direct mapped structures, Chrysos and Emer propose certain simplifying assumptions
in their implementation which limit a store to be in at most one store set at a time as well as the
total number of loads that can have their own store set. Furthermore, stores within a store set are
constrained to execute in order. With these simplifications, only two directly mapped structures
shown in Figure 7.1 are needed to implement the desired functionality.

Store Set ID Table Last Fetched Store Table
(SSIT) (LFST)

Load/Store PC

Index

\% SSID

Store inum

Figure 7.1: Store Set Implementation

When new load and store instructions are fetched, they access the store set id table (SSIT)
to fetch their store set identifiers (SSIDs). If the load/store has a valid SSID, it belongs to a store
set. Store instructions access the last fetched store table (LFST) to obtain a hardware pointer to the
last store instruction that is a member of the same store set which was fetched before the current
store instruction. Current store instruction is made dependent on this store. Next, recently fetched
store instruction puts its own id, that is, a hardware pointer to itself, into the table. Similarly, load
instructions are made dependent upon the store instruction whose id is found in the LFST table. As
a result, the algorithm orders stores within a store set in program order, but allows multiple loads
to be dependent on a single store.

The assignment of store set identifiers is carried out upon the detection of a memory order
violation. As a result, only those loads and stores that need to be synchronized are entered in
the tables resulting in efficient utilization of the table space. However, since a store can only be a
member of a single store set, it is possible that two different loads each belonging to different store
sets compete for a single store and cause additional memory order violations. In order to overcome

this problem, Chrysos and Emer propose a set of rules for the creation of store set entries:

1. If neither the load nor the store has been assigned a store set, one is allocated and assigned to
both instructions. Although any mechanism could be used to create a store set id, an exclusive

or hash of the load instruction’s PC works well.

2. If the load has been assigned a store set, but the store has not, the store becomes a member

of the load instruction’s store set by inheriting load instruction’s SSID.
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3. If the store has been assigned a store set, but the load has not, the load is assigned the store

instruction’s store set.

4. If both the load and the store have already been assigned store sets, one of the two store sets is
declared the winner. The instruction belonging to the loser’s store set is assigned the winner’s

store set.

The last rule ensures that no two loads competing for a single store cause thrashing since the
rule always declares the same instruction the winner. The algorithm is reported to require modest
table sizes. This is attributable to high locality of memory dependencies as well as the algorithm’s
approach to the store set creation. It has been indicated that the algorithm performs superbly using
4K or more SSITs and 128 or more entries of LFST. At an issue width of 8 instructions per cycle,
the performance of the algorithm is within few percentages of what can be accomplished using an

ideal memory disambiguator which has perfect knowledge of load and store dependencies.

7.2 The Evaluation

The original store set algorithm has been implemented faithfully using the ADL language
[46] and SPEC95 benchmarks have been executed at various issue widths. As a reminder, the
ideal memory disambiguator identifies the provider store instruction instance for each of the load
instruction instances. Hence, for a given load, the ideal disambiguator indicates whether or not the
store instruction on which the load is truly dependent has been issued. The disambiguator uses
memory address traces augmented with load/store sequence numbers to identify such dependencies
with perfect accuracy.

In order to evaluate the performance of the memory disambiguator, the machines with
ideal and the store set disambiguators were kept identical in all other aspects except the memory
disambiguator. Both superscalar processors employ an ideal instruction fetcher that has perfect
branch prediction and delivers issue width instructions every cycle. Similarly, the issue window is
a large central window implementation which can schedule instructions as soon as the data depen-
dencies for an instruction are satisfied. In order to show the effects of the predictor table size on the
performance, the performance of the algorithm is reported at both 4K entry tables as well as 64K
tables which experience very few destructive aliasing.

Results for an 8 issue machine are shown in Figures 2(a) and 2(b). These results confirm
the published performance of the store set algorithm with some minor differences. Although most
benchmarks with the exception of 110.applu have been reported to perform well in the original
study, it has been observed that all benchmarks show performance losses compared to the ideal
disambiguator with the exception of 107.mgrid and 145.fpppp. With 4K tables, benchmarks 110.ap-
plu, 141.apsi, 145 fpppp and 146.waveb demonstrate significant performance losses. However, with
64K tables the algorithm closely matches the performance of the ideal disambiguator. Differences

between these results and the published performance of the store set algorithm are attributable to
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using an ideal front end as well as using a different ISA (MIPS versus Alpha) and using different
compilers (gcc versus DEC cc). On the average, the store set algorithm achieves over 97% of the
performance of the ideal disambiguator for floating point benchmarks and over 98% for the integer
benchmarks with 64K tables. With 4K tables, the corresponding values drop to 80% for floating

point benchmarks and 96% for integer benchmarks.

When simulations were carried out using the same machine configurations for the issue
widths of 16 and 32, it was observed that performance loss as a result of non-ideal memory dis-
ambiguation becomes quite significant (see Figures 2(c), 2(d), 2(e) and 2(f)). Among the integer
benchmarks, both 126.gcc and 147.vortex show significant performance losses at an issue width of
16 and above and only 130.li continues to perform well as the issue width is increased. A simi-
lar behavior is observed among the floating point benchmarks. With the exception of 107.mgrid
and 125.turb3d, all benchmarks indicate significant performance losses compared to an ideal disam-
biguator. At an issue width of 16 and 64K tables, store set can achieve about 85% and 82% of the
performance of the ideal disambiguator for integer and floating point benchmarks respectively. With
4K tables, the algorithm can achieve about 69% of the ideal performance for integer benchmarks
and 61% for floating point benchmarks. At an issue width of 32 and 64K tables, performance drops
further to 67% and 64%. When harmonic means are used, an additional 3 to 4% performance loss is
observed with respect to the ideal disambiguator. With 4K tables, the algorithm can provide only
35% of the performance of the ideal disambiguator for floating point benchmarks and 50% for integer
benchmarks. These results indicate that there is a significant room for improvement, especially at

issue widths of 16 and above.

7.3 The Analysis

Although the cost of restart increases as the instruction window is enlarged, this is not
the main reason behind the poor performance of the algorithm at high issue widths. The algorithm
experiences performance losses because it forces the issuing of store instructions within a store set
to be in-order. In-order issuing of the stores within a store set in turn causes dependent loads to
issue in-order. While this restriction is not significant for a wide range of cases, it creates significant

degrees of false memory dependencies with two types of loops.

One of them is the case where certain iterations of a loop occasionally become dependent
on another iteration as in the case of 110.applu. The other involves loops with register spill code. In
both cases, the algorithm essentially serializes loop iterations once appropriate store set entries are
created since the algorithm cannot distinguish between multiple instances of the same load and store
instructions. In this case, all the instances of the same store instruction become members of the
same set and are forced to issue in-order. Limitations of the algorithm become more pronounced at
high issue widths because at small issue widths there is still ample amount of unexploited parallelism

to hide the effects of serialization. At large issue widths, the available parallelism in the program is
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already being fully exploited. Therefore, the effects of the serialization of the operations cannot be

hidden by other operations from the pool of available instructions.
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(d) Store-set schedule

Figure 7.3: Example spill code and its schedule

Let us now examine in detail how the algorithm executes such loops. In Figure 7.3(a), an
example loop that contains spill code is illustrated. When such a code sequence is executed using
sufficient resources to issue more than one load operation per cycle, it takes only a few iterations to
be unrolled before a memory order violation occurs. This is because, when there is no dependency
information stored in the tables, any of the loads can issue once they compute their addresses. As
a result, any load which is truly dependent on the store at the same iteration may issue before that
store. Once this happens, a memory order violation is detected and the store set entries are allocated.
From this point on, following instances of these loads and stores share the information stored in SSIT
and LFST which yields the dependence graph shown in Figure 7.3(b). The algorithm correctly makes
a load dependent on the proper store by means of the LFST table. However, since the algorithm
forces stores within the same store set to issue in order, for the given set of loads and stores the
generated schedule allows at most one load instruction to execute per cycle (see Figure 7.3(d)). In
contrast, an ideal disambiguator would allow fully parallel operation of the multiple instances of the

loop body, given sufficient resources (see Figure 7.3(e)).
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In order to measure the effect of the serialization on the load latency, additional experiments
have been conducted that studied the dynamic load latency and degree of load serialization. The

results of these experiments are as follows:

| store set

N\ p
O || store set disambiguator 4K ]
N &
M % 1 &
o «

T T T T
% Ideal disambiguator
Ideal disambiguator 4 Store set disambiguator 64K
Q’b’@ I- Store set disambiguator 64K QO I 4K b
&

] 2 Y 1
de ‘o’lf\ EI be \:L‘bg ‘
K «\g(\é —_— ’ ((\Q\z‘;’ il
S B ISY i
T NS
By ——F 1 ]

K 4
5 N
W :;I 7 s
o i ]
W P :I——I ] R ‘
ca AN ‘
b‘b\“ I I I I I I I N I I | | | | |
kd 00 10 20 30 40 50 60 70 80 00 10 20 30 40 50 60 70 80
(a) Floating Point Benchmarks (b) Integer Benchmarks

Figure 7.4: Normalized Average Dynamic Load Latencies

Dynamic load latency. Dynamic load latency measurement measures the number of cycles it
takes from the moment a load instruction is ready to issue to the moment it has the loaded value.
Dynamic load latency is a function of the dependencies imposed upon load instructions. Therefore,
it is a cumulative quantity that includes both the true dependencies of the program as well as
scheduling/disambiguation imposed dependencies. To obtain the contribution of the falsely imposed
dependencies, the dynamic load latency values have been normalized by dividing it with the dynamic
load latency value obtained using an ideal memory disambiguator (see Figure 7.4). In addition to
the normalized dynamic load latencies, the standard deviation of dynamic load latency across all
load instructions executed by the benchmark programs have been computed both for the store set
algorithm and the ideal memory disambiguator. The standard deviation values for the store set
algorithm were then normalized by dividing it with the corresponding value of the ideal memory
disambiguator (see Figure 7.5).

As shown in Figure 7.4, the measurements of the normalized dynamic load latencies ex-
hibit large values for those benchmarks which perform poorly whereas benchmarks which perform
well have very small values. Similar behavior is observed in the standard deviation values shown in
Figure 7.5. These results are indicative of long chains of dependent instructions that create large
fluctuations in the average load latency. It has also been observed that the harmonic mean values
of the load latencies are uniform across the benchmark spectrum and quite close to the ideal dis-
ambiguator. On the other hand, the arithmetic means show great degrees of fluctuation, and they

have the worst values for those benchmarks whose performance does not scale.
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Load serialization.

5.0

The degree of the serialization of load instructions through load-store-store

dependency chains has also been studied. The amount of serialization of load instructions has been

measured by identifying the dynamic load instructions which are blocked from issuing for one or

more cycles although their predicted provider store instruction is ready to issue. In Figure 7.6, the

percentage of total dynamically executed load instructions which have been serialized are shown.
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Figure 7.6: Percentage of Serialized Load Instructions

100.0

Measurements of the dynamic percentage of serialized load instructions also consistently

support the previous observations. As it can be seen from the experimental results shown in Fig-

ure 7.6, the three benchmarks, namely, 107.mgrid, 125.turb3d, and 130.li which perform well as the

issue width is increased have very low percentages of serialized load instructions. All the remain-
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ing benchmarks which perform poorly at high issue widths have significant percentage of the load

instructions serialized.

7.4 Concluding Remarks

It has been shown that the store set algorithm as originally proposed by Chrysos and Emer
[10] performs well at low issue widths but does not scale to higher issue widths because of store-
store induced memory dependencies. Introducing these dependencies is not an oversight, but is a
requirement to simplify the memory order violation detection which would simply be unmanageable
without this ordering.

In the next chapter, a novel memory order violation detection algorithm is presented which
can be utilized to correctly detect the memory order violations even when the store instructions are
allowed to issue completely out-of-order. The memory order violation detection algorithm is simple
and does not need to be on the processor’s critical path. With this algorithm, the original store
set algorithm can be modified to remove the requirement that store instructions within a store set

execute in-order, yielding very high performance at all issue widths.



Chapter 8

Memory Disambiguation with
Out-of-order Stores

In Chapter 7, we have seen through a detailed analysis that for high performance we need
to allow full out-of-order issuing of store instructions so that dependent load instructions can also
issue fully out-of-order. Unfortunately, without at least a partial ordering of store instructions in the
instruction window, the algorithm would have suffered much more significant levels of performance
losses because of false memory order violations. This is because, a simple mechanism for memory
order violation detection checks load addresses of the speculatively issued load instructions when a
store instruction is issued and upon an address match raises a memory order violation condition. In
this approach false memory order violations occur because this mechanism cannot decisively figure
out the set of store instructions which should participate in the memory order violation detection
process for a given load. Therefore, we need a mechanism that can detect memory order violations
precisely even when the store instructions are allowed to issue fully out-of-order. Once such a
mechanism is available, the original store set algorithm can be modified to allow full out-of-order
issuing of store instructions.

In this chapter, such a mechanism is developed and its performance is fully analyzed by
introducing the necessary changes into the original store set algorithm. In the remainder of this
chapter, in Section 8.1, false memory order violations and why they occur with simple memory
order violation detection mechanisms are discussed. Next in Section 8.2, requirements for detecting
memory order violations correctly are analyzed. The novel solution of delaying exceptions and
using values in addition to load/store addresses as opposed to using addresses alone to check for
memory order violations is presented in Section 8.3 and Section 8.4. Section 8.5 presents a detailed
performance evaluation of the technique. Finally, in Section 8.7 the chapter is concluded with a

brief summary of results.

8.1 False Memory Order Violations

To illustrate why false memory order violations occur with simple memory order violation

detection mechanisms, when store instructions are allowed to issue fully out-of-order, let us reconsider
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Figure 8.1: Removing the Store-Store Dependencies

the example shown in Figure 8.1. Assume that the dependence edges between the store instructions
are absent when the store set disambiguator is being used. As a result, the store instructions would
be allowed to issue fully out-of-order. In this case, a store instruction belonging to an earlier iteration
may be blocked whereas a store belonging to a later iteration may have a chance to proceed. For
example, in Figure 8.1 the store from the second iteration, ST-2, may proceed before ST-1 which
belongs to the first iteration. When ST-2 issues it makes its dependent load LD-2 eligible to issue in
the next cycle. When LD-2 issues, it gets the correct value from the forwarding buffer. The processor
however remembers that the load has been issued speculatively and makes an entry regarding this
load in the speculative loads table. When the store ST-1 issues, it finds that a load with a sequence
number greater than its own that computed the same address has issued before the store. In this
case, an exception is flagged which is in fact a false memory order violation. In other words,
removing the store ordering in the instruction window would convert all store ordering
induced false memory dependencies to false memory order violations. On the other hand,
when the memory disambiguator imposes an ordering on those stores which may have the same
effective address, false memory order violations will not be observed since a load instruction which
is dependent on a later store instruction would not issue before all store instructions preceding the

store instruction it is made dependent upon.

8.2 Precisely Detecting Memory Order Violations

In order to detect memory order violations correctly when store instructions are allowed to
issue freely, it is necessary to identify precisely the set of store instructions which should participate

in the memory order violation detection process. If an issuing store instruction is not the member of
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this set with respect to a given speculatively issued load instruction, we should not let this particular

store instruction raise a memory order violation for the load instruction in question.
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Figure 8.2: Speculative issuing of loads

In order to see how we can identify the set of store instructions which must participate
in the decision process, let us consider the sequence of store instructions and the load instruction
shown in Figure 8.2(a). Given this dynamic sequence of instructions, assume that the load LD-s
is predicted to be dependent on the store ST-p which is indicated through the dependence edge.
In this configuration, store instructions which are above the provider store instruction ST-p should
not participate in the memory order violation detection process for the speculatively issued load
instruction LD-s assuming that the addresses of ST-p and LD-s match. Only store instructions
which follow the provider store instruction, namely, ST-p+1 and ST-p+2 should raise an exception
if they compute an effective address that is the same as the load LD-s. In other words, the provider
store instruction splits the set of uncompleted stores into two sets, and only the ones that follow
the provider store instruction should participate in the decision process. In the case that the load
instruction obtains its value from the memory, all the prior stores should be involved for checking
the memory order violations with respect to the speculatively issued load LD-s.

One possible solution in this case is to include the sequence number of the provider store
(or a special identifier if it is memory) in the speculative loads table. In this case, issuing store
instructions may check their sequence numbers against the sequence number of the provider as well
as the sequence number of the load instruction to determine that if they fall into the shaded region
in Figure 8.2(a). If that is the case, and the address generated by the store instruction matches to
that of the load, an exception may be raised.

A straightforward implementation of the above mechanism leads to a complex piece of hard-
ware due to the following reasons. First of all, maintaining explicit temporal information through

sequence counters is not a trivial task because counters must be of finite size and when they over-
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flow, the boundary conditions must be properly handled. Second, for any given store instruction
the processor must execute the above algorithm in parallel against all the speculatively issued load
instructions, which means that the required hardware must be replicated. Finally, executing the
above algorithm on the critical path of the processor is very likely to slow down the processor clock.

In the next section, a much simpler yet more effective solution is presented.

8.3 Delayed Exception Handling and Value Matching

The solution to the detection problem builds on the following observations.

(1) The temporal information needed is implicitly available during the retire phase of the
instruction execution. In other words, if we can delay the detection of the memory order violations
to the retire phase, we do not need to maintain the temporal information explicitly. Since the
processor experiences very few exceptions due to memory order violations when equipped with a
good memory dependence predictor, the additional penalty of late restart is not high. Once we move
the detection logic to the retire phase, memory violation detection entails deciding whether or not
the provider store has retired. If that is the case, subsequent store instructions are from the shaded
region and they should check for memory exceptions. Of course, if the provider is the memory, the
provider store has already retired, and in this case all retiring store instructions will be involved in
the checking.

(2) For correctness, we do not need to identify the exact store instruction that provided the
value. We only need to verify that given a set of store instructions, the load has obtained the same
value as the value stored by the last store instruction to the same memory address. This technique
eliminates the need for special handling of the case where memory is the provider. Furthermore, as
it will be seen shortly that this method can take advantage of the value redundancy available in the

programs.

Given the above observations, we can now devise the following scheme that works quite well:

e The checking for exceptions in case of memory references is delayed until the store instruction

retires.

e The speculative loads table is expanded to contain a value field where the value the load

instruction has obtained is stored.

e An exception bit associated with the load instructions stored in the reorder buffer or in spec-
ulative loads table is allowed to be set or reset by store instructions as they retire. In other
words, each retiring store instruction compares the value it has stored, as well as the address

into which the data has been stored, to with that of the speculative loads:

If the addresses match and values differ, it sets the exception bit associated with the load

instruction.
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If the addresses match and values match, it resets the exception bit associated with the load

instruction.

If the addresses do not match, no action is taken.

e Once the load instruction is ready to retire, it checks its exception bit. If the bit is set, a
roll-back is initiated and the fetch starts with the excepting load instruction. Otherwise, the

load instruction’s entry is deallocated from the speculative loads table.

Please note that setting and canceling of exception bits as store instructions retire in this
manner handles the problem of identifying the provider store instruction automatically. When
the actual provider store instruction retires, both the address and the values will match, and the
exception bit is reset. In other words, this instruction will serve as a sentinel signaling the beginning
of the group of store instructions which should participate, nullifying the effects of all unrelated

prior store instructions.

Now let us reconsider the example shown in Figure 8.2. Suppose that load LD-s has already
been speculatively issued and obtained its value from the store ST-p. Further assume that the store
ST-1 has now been issued and has computed the same address as LD-s. Since ST-1 retires first
in program order, it will raise the exception bit associated with the load LD-s. Any of the stores
between store ST-1 and store ST-p may take the same action upon an address match and a value
mismatch. However, when finally store ST-p retires, it will have both an address and a value match
and will reset the exception. When the store ST-p+1 retires, if it computes the same address but
the value is different, this is a true exception. The exception will be taken when the load instruction
retires. Please note that if any of the store instructions ST-p+1 or ST-p+2 in the shaded region
have the same address as well as the same value, no exception will be raised and the machine will
take advantage of the available data redundancy. The same observation holds for the values coming

through memory.

Given the above solution that effectively handles the problem of false memory order vio-
lations, the false memory dependencies arising from store-store induced dependencies can now be
completely eliminated. To achieve this goal, only a small change to the original store set algorithm
is needed. The load instructions are made dependent on the store instruction they find in the LFST
table entry, but the store instructions which are members of the same store set are not chained,
allowing all the store instructions to issue fully out-of-order constrained only by their own register
dependencies. Load instructions however wait for the store instruction that they have been predicted
to be dependent on. Thus no load instructions are serialized unnecessarily. Although the memory
dependence prediction mechanism still relies only on the load and store program counter values, the
above method can effectively handle the problems arising from multiple instances of the same load

or store instruction.
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8.4 Taking Advantage of Value Redundancy

In the previous section, a simple technique has been presented that correctly indicates if
a memory order violation has occurred by matching the value each retiring store instruction stores
with that of the speculatively issued loads. Although there is nothing novel about the common-sense
technique of determining correctness of speculated instructions by matching actual data values,
the use of this approach in the context of the store set disambiguator is unique and yields high
performance beyond what is achievable by an ideal disambiguator that faithfully observes the true

memory dependencies. A review of the workings of the store set algorithm should explain why.

During the initial start-up, there is no information in the SSIT and LFST tables to guide
the scheduling. Because of the blind speculation of loads, loads acquire values either from the
forwarding buffer or directly from the memory. When the actual store instruction that the load
is truly dependent on retires with a value that is the same as the load instruction’s value, the
speculation is successful and no new entries are created in the SSIT and LFST tables. In other words,
the load speculates and executes successfully before the store it is actually dependent
on. The machine will continue to speculate the same load instruction until a violation occurs.
Once a violation occurs, the load instruction will not be speculated further since it will wait for
its producer store. In other words, the machine takes advantage of the value redundancy as long
as it is beneficial to do so. By speculating in this manner no performance overhead is incurred in
comparison to an address only approach. Instead, those load instructions that can take advantage
of the data redundancy are automatically selected by the algorithm. Although this process is not
directed intelligently as in [9], similar benefits are obtained by not paying the penalties associated
with a technique that speculates indiscriminately. The net effect of the technique is reduced load

access latency.

In the next section, it is demonstrated quantitatively that for most benchmarks, the tech-
nique indeed reduces the load access latency below what is possible with an ideal disambiguator that

faithfully observes the true dependencies.

8.5 Performance Evaluation

In order to assess the performance potential of store set memory disambiguator with the
modified back-end series of experiments have been designed. The algorithm has been fully im-
plemented and SPEC95 benchmarks have been executed with their training or test inputs. The
processor parameters have been kept as before. In these experiments, the performance of the out-of-
order memory disambiguator is compared with both the ideal disambiguator as well as the original

store set algorithm when it is appropriate.
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8.5.1 Dynamic Load Latencies.

Normalized average dynamic load latencies for out-of-order disambiguator is shown in Fig-
ure 8.3. It is interesting to note that with the exception of 110.applu and 107.mgrid, all normalized
dynamic load latencies for floating point benchmarks are below 1.0. In other words, out-of-order
disambiguator yields better dynamic load latencies than the ideal memory disambiguator. This is
expected, especially with those programs that have significant degrees of value redundancy. Such
value redundancy occurs when the actual store instruction a load is truly dependent on is value
redundant with respect to the stale value in the memory, or other issued but not yet committed
store instructions. Since the ideal disambiguator makes a load wait for precisely the exact producer
store instruction, in those cases where the store instruction is value redundant it makes the load
instruction wait much longer. Although not to the same level of uniformity, a similar behavior is

observed also among integer benchmarks.
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Figure 8.3: Normalized Average Dynamic Load Latencies

The technique results in a significantly longer dynamic load latency only in case of 129.com-
press. Nevertheless, the figure is still well below of the original store set algorithm (2.23 versus 1.79).
124.mk88ksim shows an outstanding performance providing a dynamic load latency which is only a
fraction of the ideal disambiguator (0.355). Normalized standard deviation values follow a similar
trend as shown in Figure 8.4 indicating that the success of the technique is uniform throughout the

benchmark’s execution.

8.5.2 Instructions Per Cycle.

For the measurement of the instructions per cycle figures, the harmonic means of the IPC
values observed for the floating point and integer benchmarks are compared for different algorithms.

When the instructions per cycle figures are analyzed, the benefits of using the approach become
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Figure 8.4: Normalized Standard Deviation Values for Dynamic Load Latencies

increasingly clear as the issue width is increased. At an issue width of 8, the out-of-order algorithm
slightly out-performs the ideal memory disambiguator. With floating point benchmarks, out-of-order
disambiguator is better than the ideal memory disambiguator by 0.01% and with integer benchmarks
it is better than the ideal disambiguator by about 1.8%. The out-of-order algorithm shows better
performance than the original store set algorithm by 4% with both the floating point and integer
benchmarks. In case of 124.m88ksim, out-of-order algorithm is better than both techniques by about
18% (see Figures 8.5(a) and 8.5(b)).

When the issue width is increased to 16, the out-of-order algorithm out-performs the orig-
inal store set algorithm by as much as 18% with integer benchmarks, and 22% with floating point
benchmarks (see Figures 8.5(c) and 8.5(d)). The performance difference further widens to 42% and
52% with floating point and integer benchmarks when the issue width is increased to 32 instructions
(see Figures 8.5(e) and 8.5(f)). In both cases, highly value redundant 124.m88ksim continues to
out-perform the ideal disambiguator and the out-of-order disambiguator closely follows the ideal

disambiguator for other benchmarks, even at very high issue widths.

8.5.3 Scalability With Different Table Sizes

In order to further compare the performance of the out-of-order store approach to that of
the original algorithm, both algorithms have been executed at predictor table sizes of 4K, 8K, 16K,
32K and 64K entries. It has been observed experimentally that the size of the LFST table is not
critical and in these runs it was left to be sufficiently large.

As it can be seen from the graphs in Figure 8.6 and Figure 8.7, the original store set
algorithm can out-perform the out-of-order algorithm only when the original store set algorithm
has a 32K entry table and the out-of-order disambiguator has a 4K entry table. For both integer

and floating point benchmarks, with 8K entries the out-of-order algorithm always out-performs the
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Figure 8.6: Scalability of Out-of-order Algorithm - Integer Benchmarks
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original algorithm even when the latter has 64K entry tables. When the out-of-order algorithm
is given a large predictor space, it matches the performance of the ideal disambiguator up to the
issue width of 16, and very closely follows the ideal curve with slight performance loss. This small
performance loss (about 10 % at an issue width of 32) originates from the cost of restarts. The
cost of restarts are largely paid for by the gains that are obtained through the exploitation of the
value redundancy. Unfortunately, at these high issue widths the exploited value redundancy is not
sufficient to compensate for all the restart costs. Nevertheless, it is natural to expect that the al-
gorithm will out-perform the ideal disambiguator at all issue widths if the cost of restarts can be
reduced by employing a mechanism which selectively reissues effected instructions instead of squash-
ing a window-full of instructions. Such re-execution recovery is quite feasible with memory order
violations. In case of memory order violations, the validity of the instructions are not questioned.
Therefore, only a few instructions which uses the wrong value can be reissued instead of throwing

away a window-full of instructions.

8.5.4 Reduction of False Memory Dependencies

It has also been observed that when smaller predictor tables are employed, the performance
gap between the out-of-order disambiguator and the original store set algorithm widens further,
indicating the success of the technique in reducing the false memory dependencies. The false memory
dependencies were also measured directly and the comparison of the original store set and our

algorithm is given in Figure 8.8.
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Figure 8.8: Normalized False Memory Dependencies

The false memory dependencies are reduced because of two reasons. The first reason is the
preciseness of the novel memory order violation detection algorithm in creating the store sets. When
a conventional approach is used to detect the memory order violations, it may take some number

of iterations and a number of false memory order violations before the true store instruction that
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a load is dependent on is discovered. In case of the new technique, this happens the first time a
violation is encountered. Second, because the approach also takes advantage of value redundancy,
it creates fewer number of table entries. In order to verify that this is indeed the case, the number
of dynamic instances of load and store instructions for which there is a matching SSIT entry has
been measured. This number was normalized by dividing it with the values produced by the original

store set algorithm. The results of these experiments are shown in Figure 8.9.
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Figure 8.9: Normalized Counts of Load/Store Instructions Synchronized Through SSIT Table

8.6 Bypassing Memory Operations

Load and store instructions are communication instructions which by themselves do not
contribute to computation. They are the means through which values are communicated from the
producer instructions to the memory and back to the consumer instructions. A superscalar processor
can take advantage of this fact and make the producer of the value communicate directly with the
consumer when they co-exist in the instruction window. In this manner, the critical path length is
reduced and higher degrees of instruction level parallelism is achieved because of reduced latency of
computation involving dependent instructions through memory.

Bypassing of memory operations have been studied by Moshovos and Sohi [39]. It has been
indicated that by keeping a history of memory dependencies, producer instructions may communi-
cate directly with the consumers speculatively. Because the critical path through the dependencies
is reduced, the technique is called memory dependency collapsing. In this technique load instructions
are allowed to access the memory and verify that they indeed get the correct value from the memory.
This process is illustrated in Figure 8.10. Solution proposed by Moshovos and Sohi can be improved
basically in two aspects: (a) proposed solution employs relatively complicated micro-architectural

structures. These structures can be replaced with structures that are scalable and capable of pro-
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Figure 8.10: Memory Dependency Collapsing [39]

viding the same functionality; (b) access to the memory for verification is indeed unnecessary. It
is sufficient to verify that the addresses computed by the load and the store instruction match and

there are no intervening stores writing to the same memory location.

Elimination of memory accesses is essential for high performance superscalar processors.
Memory ports are expensive and for high performance a large number of memory ports are needed.
Furthermore, it is only logical to expect that with larger issue widths and a large instruction window
there will be many candidates that can participate in memory dependency collapsing since both the
producer and the consumer instruction will co-exist in the instruction window. In fact, more than
20 percent of the load instructions are candidates for memory dependency collapsing in a processor
that has a window size of 32. This number rises to more than 45 percent with an instruction window
of 256 [39]. Therefore, a mechanism which can provide the verification without a memory access

may greatly reduce the memory port requirements and enhance the performance.

Recently, Jourdan et al. presented a modified solution using a combined renaming scheme
[28]. The new solution essentially addressed the complexity issue related with the original proposal
mentioned above. This piece of work illustrated that dependency establishment (i.e., establishing
the value flow from the producer to the consumer) can be easily achieved using a modified register
renaming scheme. What is left still unresolved is how to implement the verification process that has
to ensure all store instructions encountered between the couple access different memory addresses.
While for a small number of load and store instructions the process of making sure that no intervening
store writes to the same memory location may be manageable, for large instruction windows where
hundreds of loads are in-flight at once and a significant percentage of them are involved in memory
dependency collapsing process, it is unlikely that a brute force mechanism such as the ones applied

in existing processors can be extended to handle this task.
In this section, a new mechanism is presented which extends both the store set algorithm
and the developed memory order violation detection mechanism so that memory dependence col-

lapsing can be achieved in a scalable manner without accessing the memory.
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Establishing the communication. For establishing the communication, the LFST table is ex-
tended to include the physical register number of the store instruction. Upon encountering a load

instruction the following steps are performed:

(a) The load instruction accesses the SSIT table and then to the LFST table as usual. If there is an

entry, the load is made dependent on the store.

(b) The load instruction is converted to a sentinel load. In other words it is marked so that it can be

distinguished from other load instructions.

(c) Instead of obtaining a new physical register that will hold the result of the load instruction, the
rename table for the current logical register is changed to point to the register number found in
the LFST table.

(d) The load instruction is made register dependent on the register that the producer instruction will
be writing to and the store instruction will be reading from. Thus, when the load instruction is
ready to issue, it can be entered to the speculative loads table as if it has been issued speculatively
with an available load value. Please note that the load instruction still has to wait for its address

computation register dependencies as usual.

At the end of the process, all subsequent uses of the load instruction will now wait for the
result of the producer instruction. In other words, the dependency links from the producer to all

the consumers have been established.

Verification Process. As it has been discussed, the verification process involves making sure that
the load and the store instruction that were involved in dependency collapsing compute the same
address and there is no intervening store to the same memory address between the two. This means
both the load and store instruction should have a chance to perform the comparison.

The solution builds on a simple scheme. For the verification process to be successful
without accessing the memory, we need to be able precisely identify the store instruction involved
in the process. Furthermore, we need to be aware of the fact that before the load has a chance
to resolve its register dependencies involving the address computation (i.e., it is entered to the
speculative loads table so that the comparison takes place), the store involved in the dependency
collapsing may retire. These observations lead to a simple solution which extends the speculative
loads table with a wisited flag and the reorder buffer slot reserved for the load instruction with a
provider store instruction identifier. This identifier can simply be the reorder buffer index of the
store instruction which is stored in the LFST table by the store instruction and retrieved by the load
instruction during the communication establishment step discussed above.

When a store instruction is retiring, it checks its address against the addresses in the

speculative loads table as before. We have the following possibilities:
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(a) The retiring store instruction is the collapsed instruction. In this case, values will always match.
However, if addresses are different then the dependency has been incorrectly predicted. The ex-

ception bit is set. In either case, the visited bit is also set.

(b) The retiring store instruction is a store between the provider store instruction and the load. In this
case, if the addresses match and values are different, the exception bit is set. If addresses match
but values are the same, the exception is reset. Although the dependency has been mispredicted,
the actual store instruction is value redundant and collapsing of the dependency did not cause

harm.

When the load instruction is retiring, it now checks the visited field in the speculative loads
table. If it is not set, then the store instruction which has been involved in dependency collapsing
has retired before an address comparison could be made. In this case, a memory access has to be
performed and the value obtained from the memory has to be compared against the value load is

holding. If these values are different the machine state must be repaired.

Verification with Zero Memory Access. Verification with zero memory access can be achieved
using a simple mechanism at the expense of increased complexity in the instruction window’s depen-
dency checking mechanism. This is achieved by forwarding the store address when it is computed
to the load instruction which is involved in the dependency collapsing. In order to implement this
mechanism, the store instruction is split into two micro operations, namely, address computation
and value storing. The address computation part obtains a physical register and stores the register
number in the LFST table. Upon establishing the communication link, the load instruction is made
register dependent on: (a) the producer instruction’s result register; (b) its own base address regis-
ter; (c) store instruction’s address computation register. With this establishment, there is no need
to have the visited flag. Instead, when a sentinel load is ready to issue, it compares the address it
has calculated against the address it has received from the store instruction. If there is a mismatch,
the load instruction sets its own exception bit. Please note that the exception bit may be reset as

usual by the intervening stores if their addresses as well as values match.

8.7 Concluding Remarks

In this chapter, an effective mechanism for reducing false memory dependencies when using
a memory dependence predictor has been presented. It has been shown that full out-of-order issuing
of store instructions in the instruction window can be allowed using the new memory order violation
detection mechanism. In addition to allowing out-of-order issuing of the store instructions, the
presented mechanism takes advantage of the value redundancy present in programs. There are
two types of value redundancy that the mechanism exploits: (a) Value redundancy through a stale
value in memory; (b) Value redundancy that is present among store instructions which co-exist in

the instruction window and store a value to the same memory location. The first type of value
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redundancy can also be exploited by the value prediction mechanism, whereas the second one can
be exploited by load-store pairing mechanisms. In either case, the proposed mechanism does not
need additional hardware to take advantage of the value redundancy.

Developed solution is an orthogonal solution that can be utilized with other types of mem-
ory dependence predictors as well. For example, the scheme proposed by Moshovos and Sohi based
on MDPT/MDST associative structures [39] either forces a load to wait for all dependences pre-
dicted, or, MDPT entries are augmented to contain control flow information for each load/store
pair. Using the new scheme, there would not be any need to force a load to wait for all dependences
predicted or any need for augmenting predictor entries with control flow information. Similarly, the
proposed back-end can also be used together with value prediction techniques [34, 36, 28, 9]. Specif-
ically, a machine may employ selective value prediction to a subset of loads, whereas the remaining
ones can synchronize through the dependence predictor employing the new back-end. The verifi-
cation mechanism the scheme uses would work properly with value prediction mechanisms without
modifications.

Finally, it is important to note how the performance of the scheme would compare with
other predictive techniques. A recent study by Reinman and Calder studies the performance gains
that can be obtained using various predictive techniques for load value speculation including the
store set as well as value predictors [60]. This study reports that value prediction can out-perform
the store set mechanism by about 20 %. Given that in their store-set study store instructions are not
allowed to issue out-of-order and out-of-order disambiguator presented in this thesis out-performs
both the original store set algorithm as well as an ideal memory dependence predictor by taking
advantage of the value redundancy present in programs, further studies are needed to verify their

conclusion that the value prediction out-performs all other techniques.



Chapter 9

Architecture Description Language - ADL

The evaluation of previous processor architectures and new microarchitectural techniques
described in the previous chapters required detailed implementations of cycle accurate simulators
for this purpose. These simulators need to be executed millions of machine cycles that general
conclusions can be drawn regarding the performance of the technique being evaluated. As a result,
tools are required to enable rapid development of cycle level simulators that are fast enough to carry
out extensive simulation studies.

A commonly used approach for developing simulators is their hand coding in a general
purpose language such as C. Examples of some popular simulators which were developed using this
approach include the SPIM simulator for the MIPS architecture [32], the SimpleScalar simulator
[7], and the SuperDLX simulator [41]. The hand coding of simulators is a substantial task which
typically takes between 12 to 24 man months. Once developed, such simulators are difficult to
retarget to a modified microarchitecture or an instruction set architecture without a significant
amount of effort. Another problem that one encounters is the difficulty in porting these simulators
to different platforms. The portability issue arises due to the need for handling of external system
calls that are made by the benchmarks being run. Solutions that either disallow such calls or allow
external calls but sacrifice portability by allowing the simulator to run only on a specific platform
(e.g., SPIM) are undesirable.

An alternative to hand coding a simulator is to generate it automatically from a machine
specification written in a domain specific language. Automatic generation not only significantly
shortens the development cycle, it also allows retargeting since modifications in the architecture
can be made at the specification level and the new simulator can then be automatically generated.
Although a number of hardware description languages [1, 38, 54, 65] are available, these languages
are not suitable for developing cycle level simulators. These languages are capable of defining the
hardware to the smallest detail and result in simulators that are orders of magnitude slower than
cycle level simulators. The retargeting of simulators requires significant effort and no solution to the
portability problem is offered by these languages.

In order to allow rapid prototyping of required simulators, a domain specific language for
specifying processor microarchitectures called the Architecture Description Language (ADL) has been

designed and its compiler and run-time environment has been implemented in a system called the
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Flexible Architecture Simulation Tool (FAST). Required simulators for this dissertation have all been
generated automatically using the FAST system from architecture descriptions encoded in ADL.

ADL supports an execution model that is suitable for expressing a broad class of processor
architectures. It provides constructs for specifying the microarchitecture elements such as pipelines,
control, and the memory hierarchy including instruction and data caches as well as constructs for
the specification of the instruction set architecture (ISA), the assembly language syntax and the
binary representation. In order to provide portable operation, the language also incorporates a
mapping between the calling convention of the simulated architecture and the machine that hosts
the simulator. In this way, the simulator can perform external calls on behalf of the simulated
program to achieve greater portability.

The language also incorporates built-in constructs for statistics collection as well as a
language interface to a debugger so that the debugger can be invoked automatically when error
conditions are encountered.

In the remainder of this chapter, in section 9.1, an overview of the Architecture Description
Language is presented. In Section 9.2, language constructs which are designed for specifying the
microarchitecture of the simulated architecture are described. In Section 9.3, the constructs which
are used to define the instruction set architecture, general assembly syntax and the binary repre-
sentation are presented. Next in Section 9.4, the calling convention specification which allows the
automatically generated simulators perform system calls on behalf of the simulated program are out-
lined. In Section 9.5, examples of statistics collection and debugging related features are presented.
Finally, in Section 9.6 the chapter is concluded with a brief discussion of unique characteristics of

the ADL language.

9.1 Language Overview

An ADL program primarily consists of the description of a processor architecture which
includes the specification of the instruction set architecture as well as the organization of the com-
ponents of the microarchitecture. Before we discuss ADL in detail, let us first consider the model of
execution used by ADL to express the operation of an architecture and highlight some of its design
characteristics:

Explicit Instruction Flow and Instruction Context: In ADL the flow of instructions
through the architectural components is explicit. The data associated with an instruction under
execution is called the instruction context. The context is passed from one component to the next
and is operated upon by the components till the execution of the instruction is complete. The
context is allocated when the instruction enters the pipeline and is deallocated when the instruction
retires.

The Machine Clock: The notion of machine clock is built into the language and the
operation of the architectural components is described with respect to this clock. The machine clock

is viewed as a series of pulses. Fach discrete pulse is called a minor cycle, and a number of minor
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cycles are grouped together to form a machine cycle. The minor cycles in ADL are represented by
a series of labels. The first and the last minor cycles of a machine cycle are labeled as the prologue
and the epilogue and those in between are labeled as intermissions. The actions of each component
in the system during a machine cycle are divided into the operations that it performs in each of
the minor cycles. During the prologue a component receives an instruction context from another
component for processing, during the intermissions it operates upon the instruction context, and
during the epilogue it sends the modified context to another component. Figure 9.1 shows the clock

of a machine in which the major cycle is composed of A minor cycles.

Major Cycle
Ee Minor C)/CI@%Ee Minor Wcle%i ie Minor Cycle% Minor Wcle%i
| l | 2 | | )\_l | A |
| (Prologue) | (Intermission 1) | | (Intermission A-2) | (Epilogue) |

Figure 9.1: ADL Clock Labeling

Artifacts and Processing Stages: The architectural components are divided into two
categories: artifacts are components with standard well known semantics that are directly supported
by the language and stages are components whose semantics must be explicitly specified as part of
the ADL program.

Examples of artifacts include caches, memory units, and register files. Since they are
directly supported by ADL as built-in ¢ypes, the programmer can use them by simply declaring
objects of these types in an ADL program. Access to artifacts takes the form of assignments to and
from the artifact variables. Different implementations of these components can be used by specifying
different attribute values for the artifacts. The interaction of an artifact with the machine clock is
also specified as a list of attributes.

Processing stages are architectural components that exhibit a significant functional vari-
ety. Their operation is dependent on the microarchitecture as well as the current instruction being
processed. Furthermore, the function such an element performs is tightly coupled with the system
clock and the status of other components in the system. Thus, it is not feasible to follow a declara-
tive approach for stages but instead the user must explicitly specify their semantics using Register
Transfer Level (RTL) statements.

Separation of Instruction Set Architecture and Microarchitecture Specification:
The ISA specification is separated from the microarchitecture specification to facilitate the develop-
ment of different microarchitecture implementations for the same ISA or extend an ISA by adding
new instructions without altering the microarchitecture. The above separation has the following
consequence on the specification of stage semantics. The RTL statements describing the semantics

of stages are divided into two components: the general component that is common to all instruc-
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tions and the ISA-component which depends upon the specific instruction being processed. The
former is specified in the microarchitecture description while the latter is included as part of the
ISA specification.

Time Annotated Actions and Parallelism in the Microarchitecture: The specifi-
cation of the actions associated with the execution of specific instructions as well as the actions
associated with various architectural components are annotated with timing information so that it
can be determined when they are to be performed.

The procedures that implement the general component of actions associated with a process-
ing stage carry the name of the stage and the label of the minor clock cycle during which they are to
be executed. Such procedures are referred to as time annotated procedures (TAPs). Since there are
A minor cycles, there may be up to A TAPs for a given stage. The ISA-component associated with
an instruction is labeled with the name of the processing stage and optionally with the label of the
minor cycle during which it must be executed. These statements are referred to as labeled register
transfer level (LRTL) segments.

Parallelism at the architecture level is achieved by executing in each machine cycle the
actions associated with each component during that cycle as well as actions associated with an
instruction that are annotated with the current cycle. The machine execution is realized by invoking
each TAP corresponding to a minor cycle as the clock generates the corresponding label and the
parallel operation of individual components is modeled by concurrently executing all TAPs which
have the same annotation. During this process, LRTL segments corresponding to the currently
processed instruction are fused together with the corresponding TAP. The operation of a machine

can be described as follows:

do forever
for clock.label := prologue, intermission 1, ... intermission (A — 2), epilogue do
V TAP, TAP.annotation = clock.label do
{ process {TAP; TAP.instruction.LRTL } }
end

9.2 Microarchitecture Specification

The specification of the microarchitecture consists of describing the artifacts of the ar-
chitecture, declaring pipelines involved and their stages, specifying instruction contexts, and finally
defining TAPs for each of the stages. In the following sections, a simple pipelined architecture shown
in Figure 9.2 will be used to discuss each of these steps. In this architecture, the instruction fetch
stage (IF) fetches instructions from the instruction cache and ships them to the instruction decode
(ID) stage. ID stage decodes the instructions it receives, fetches their operands from the register
file, and sends them to the execution unit (EX). The memory access (MEM) stage performs a data

memory access for the load and the store instructions, but other instructions pass through this stage
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unchanged. Finally, the write back (WB) stage writes the results back to the register file. In order to
eliminate pipeline stalls that would otherwise result, data values are forwarded through forwarding

paths to the earlier stages.

|
Forwardirig paths
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Figure 9.2: A Simple Pipelined Processor

Artifacts: Artifacts are hardware objects with well-established operational semantics and
they are supported as built-in types by the language. A declaration of an artifact supplies the values
of the attributes of the artifact to derive a specific implementation of the artifact. For an artifact,
it is also specified how long does it take to process a single request in terms of clock cycles (i.e., the
latency), the rate at which new requests can be issued to the artifact (i.e., the repeat rate), and the
maximum number of requests that can be outstanding in a clock cycle (i.e., the number of ports).

The list of the different types of artifacts supported by the language is given below.

artifact-declaration = register—declaration
| register—-file-declaration
| memory-port-declaration
| cache-declaration
| buffer—declaration

| token-declaration

A register declaration declares an artifact of type simple register while a register file decla-
ration declares an array of registers. Registers and register files may be given the attribute shadow
which makes them invisible to the instruction set. ADL allows definition of one or more aliases for
the individual register file entries. A memory declaration defines a memory port with a given access

latency in units of machine cycles and a data path width in units of bits. For the cache artifact,
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attribute values include degree of set associativity, the kind of replacement strategy, and whether it
is a write-back or write-through cache. Memories, caches and buffers have an important property
of being stackable. This property is required for building memory hierarchies. When an artifact
is declared, the name of the artifact immediately lower in the hierarchy is mentioned using the of

clause, effectively placing the new artifact higher in the hierarchy.

shadow register temp 16; # A 16 bit temporary register.
register file gpr [32,32] # 32 registers,32 bits each.
$zero 0, # $zero is another alias for gpr[0]
$at 1, # $at is another alias for gpr[1]
$v0 2,
$sp 29,
$fp 30,
$ra 31;

memory mportQ latency 12 width 64, # 64 bit path to memory.
mportl latency 12 width 64; # 64 bit path to memory.

instruction cache icache of mport0 directmapped 64 kb 4 wpl;
data cache I2 of mportl directmapped 64 kb 4 wpl,
[1 of 12 4 way 8 kb 4 wpl;

Figure 9.3: Example artifact declarations

A sequence of artifact declarations for the example pipelined architecture of Figure 9.2 is
shown in Figure 9.3. The first declaration declares a temporary register invisible from the instruction
set. Next a register file gpr is declared and individual registers in the file are assigned aliases. The
names $0, $sp, etc, are ISA visible since the register file itself is ISA visible. RTL statements may
use either form of access (i.e., gpr[31] or $ra). The declaration specifies two memory ports with
12 cycles of access latency and 64 bit data paths. The memory port mportO hosts a direct mapped
instruction cache of 64 kilobytes with 4 words per cache line. Memory port mport1 hosts a direct
mapped cache of similar attributes and this direct mapped cache in turn services a four way set
associative cache of size 8 kilobytes. Thus, the cache L1 is at the highest level in the hierarchy and

the memory ports are at the lowest level.

Once declared, artifacts are accessed just like variables by the RTL statements in the
specification. For complicated structures, such as data caches, passing of additional parameters may
be required. For example, in order to store a single byte to the L1 cache, and retrieve a halfword,

the following sequence of RTL statements could be used:
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[1.(.BYTE) [addr] = data_value;
data_value = I1.(_(HALFWORD) [addr];

When an artifact is accessed, the status of the result is queried using the access-complete
statement. This statement returns a true value if the operation has been completed successfully, and
a false value otherwise. A false value may be returned because the artifact is slow, such as in the
case of memory-ports, or because there is a structural hazard. In these cases the request must be
repeated. Further details of why the operation was not successful may be queried using additional
statements.

Processing Stages and Instruction Context Declarations: The primary means of
declaring stages of the microarchitecture is the pipeline declaration. A pipeline declaration specifies
an ordering among pipeline stages such that each stage receives an instruction context from the
preceding stage and sends the processed context to a later stage. There may be more than one
pipeline declaration in an ADL program but the stage names must be unique. Once a stage is
declared using a pipeline construct, TAPs may be specified for each of the stages and semantic
sections of instruction declarations may utilize the stage names as LRTL labels. The following

declaration defines the pipeline for the example architecture:

pipeline ipipe (IF, ID, EX, MEM, WB);

In ADL, the set of data values carried along with pipeline stages are grouped together
in a structure called controldata. There is only one such declaration, which means all stages
have the same type of context, and the instruction context is the union of the data required by all
the pipeline stages in the system. While in a hardware implementation pipeline stages may carry
different types of contexts, definition of instruction context in this way simplifies the transfer and
handling of instruction contexts in the simulator. Since there is a uniform single instruction context
for all pipeline stages, each pipeline stage name is also an object of type controldata. The following

is a simple controldata declaration for a pipelined machine:

controldata register

my_pc 32, # Instruction pointer for the instruction.
simm 32, # Sign extended immediate.

dest 32, # dest holds the value to be written.
lop 32, # lop holds the left operand value.

rop 32; # rop holds the right operand value.

Elements of the controldata structure may be accessed from TAPs and by the semantic
parts of instruction declarations (i.e., LRTLs). Access to the elements of the structure may be

qualified or unqualified. When they are not qualified, the pipeline stage is the stage of the TAP that
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performs the reference or the label associated with the LRTL segment that performs the reference. In
its qualified form, the syntax controldata-element [stage-name] is used to access the instruction
context of another stage. This form is primarily used to implement internal data forwarding by
either the source stage writing into the context of the sink stage or the sink stage reading the data
from the context of the source stage.

Specifying Control and TAPs: The machine control is responsible for checking the
conditions for moving the pipeline forward, forwarding the instruction context from one stage to the
next, controlling the flow of data to and from the artifacts, and introducing stalls for resolving data,
control, and structural hazards. In ADL, the semantics of the control part of the architecture is
specified in a distributed fashion as parts of TAPs by indicating how and when instruction contexts
are transferred from one stage to another.

The movement of an instruction context through the pipeline, from one stage to the next,
is accomplished through the send statement. The send is successful if the destination stage is in the
idle state or it is also executing a send statement in the same cycle. All pipeline stages execute the
send statement during the epilogue minor cycle. In the normal pipeline operation, an instruction
context is allocated by the first pipeline stage using the ADL statement new-context. This context
is then filled in with an instruction loaded to the instruction register. When this stage finishes its
processing, it executes the send statement to send the context to the downstream pipeline stage.
When a context reaches the last pipeline stage it is deallocated using the ADL statement retire. If
any of the pipeline stages does not execute a send, send operations of the preceding stages fail. In this
case, they repeat their send operations at the end of next cycle. For decoding the instructions, ADL
provides a decode statement. The decode statement does not take any arguments and establishes a
mapping from the current context to an instruction name. This mapping is fully computable from
the binary section of instruction declarations. Once decoded, all the attributes of the instruction
become read-only controldata variables and are accessed accordingly.

The conditions for internal data forwarding can be easily checked by the stage that needs
the data. For example, the TAP for the ID stage in the example pipelined machine may check if
any of the stages EX and MEM has computed a value that is needed by the current instruction by
comparing their destination registers with the source registers of the instruction currently in the ID

stage. If that is the case, the stage reads the data from the respective stages instead of the register

file.
¢ For the handling of artifact data-flow and the handling of various hazards, ADL provides

the stall statement through which a stage may stall itself. The stall statement terminates the
processing of the current TAP and the remaining TAPs that handle the rest of the machine cycle.
The net effect of the stall statement is that no send statement is executed by the stage executing
the stall in that machine cycle.

In addition to the stall statement, ADL also provides statements to reserve a stage,
release a stage, and freeze/unfreeze the whole pipeline. When a stage is reserved, only the
instruction that reserved it may perform a send operation to that stage, and only this instruction

can release it regardless of where in the pipeline the instruction is at. When a stage executes a
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instruction register ir;
stall category mem_ic,Id_d_dep,pool_full;

(a) procedure ID epilogue
begin if i_type[EX]== load_type &
(dest_r[EX]==lop_r | dest_r[EX]==rop_r) then
stall Id_d_dep;
end ID;
(b) procedure IF prologue
begin ir=icache[pc];
if access_complete then
begin unfreeze; pc=pc+4 end
else
begin freeze; stall mem_icl end;
end IF;
(c) pipeline RSPOOL(RSTA[64]);
procedure ID epilogue
begin reserve_unit RSTA my_pc;
if | access_complete then stall pool_full;
end ID;

Figure 9.4: Handling of Hazards.

freeze, all stages except the stage that executed the freeze statement will stall and only the stage

that executed the freeze statement may later execute an unfreeze statement.

Examples of hazard handling using these statements are shown in Figure 9.4. Figure 9.4(a)
indicates the case where the result of a load instruction may be used immediately by the next in-
struction. Such data hazards cannot be overcome by forwarding alone and therefore require insertion
of pipeline bubbles. The stage in this case checks for the condition by examining the context of the
EX stage and its destination register and stalls appropriately. Because of the stall, the ID stage does
not execute a send in this cycle. Since the send operations of following stages are not effected by the
stall of prior stages, the EX stage enters the next cycle in an idle state which is equivalent to intro-
ducing a pipeline bubble. An instruction cache miss in a pipelined architecture is usually handled by
freezing the machine state. In Figure 9.4(b), the instruction fetch stage executes a freeze statement
whenever there is a cache miss. A stall is also executed so that the epilogue will not attempt to
execute the send statement. Note that an unfreeze is always executed whenever the cache access
is successful. Executing an unfreeze on a pipeline which is not frozen is a null operation. In this
way, the stage code does not have to be history sensitive. Finally in Figure 9.4(c), a structural
hazard and its handling is illustrated. The example shows one possible way to implement a unified
pool of 64 reservation stations using an array of stages for the Tomasulo’s algorithm [68]. The ID
stage attempts to reserve a unit from the pool of reservation stations. If the reserve statement is

unsuccessful, the stage executes the stall statement.
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9.3 ISA Specification

The ISA is specified by means of instruction declarations which describe the syntax and
semantics of both the machine instructions and the macro instructions using a uniform syntax given

below:

instruction-declaration = machine-instruction-declaration
| nacro-instruction-declaration
machine-instruction-declaration = syntaz-part emit
binary-part semantic-part
macro-instruction-declaration = syntaz-part macro

semantic-part

There are three major components of the instruction specification. These are the syntaz-part, the
binary-part and the semantic part. The syntax part and the binary part together define how the
assembler should parse instructions and generate the appropriate binary encoding of them. The
binary part is also used to automatically generate the decoder for the implementation of the decode
statement discussed earlier. The semantic part of a machine instruction description is a list of LRTL
segments describing what each stage should compute when the instruction is processed by the stage,
whereas the semantic part of a macro instruction description specifies how the assembler should
generate machine instructions from the macro specification.

Generation of a binary encoding of an assembly instruction involves three steps. These
are the parsing of the assembly instruction, extracting the values of any instruction fields which
are derived from the assembly instruction, and packing these values in an instruction format. The
instruction format for an instruction is a sequence of fields making up the instruction word. Some
of the instruction formats for the MIPS architecture are shown in Figure 9.5(a).

ADL defines instruction fields by associating a start bit and field width pair with a name.
The same pair may be defined multiple times using different names since the same pair may have
a different purpose in a different instruction format. If a field has a constant value for all the
instructions in the instruction set, it is declared to be a constant field. Otherwise, it is declared
to be one of the ADL types register, integer or signed integer. Such fields are considered to be
variable fields. Variable fields typically get their values from the assembly instruction when such
an instruction is parsed by the assembler. The instruction fields are specified using the declare
construct.

declare-construct = declare declarations
declarations = field-declaration
| variable-declaration

| temporary-declaration

field-declaration =  field-name
(constant | integer | register | signed)

field start-bit field-width
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Figure 9.5: Instruction format specification

field
field
field
field
field
field
field
field

31
25
20
15
10
)

25
15

S Ot Ot Ot Ut OY

16,

R-FORMAT

JFORMAT

I-FORMAT

89

Examples of field declarations for the MIPS instruction formats are given in Figure 9.5(b).

Field declarations alone are not sufficient to describe the binary encoding of an instruction. We

also need to define which fields make up the instruction (i.e., the instruction format) as well as

how their values are computed. Instead of defining separate instruction formats and then mapping

instructions to these formats [12], ADL chooses to specify the instruction format as part of the

instruction’s binary part. The binary part of each instruction is represented as a sequence of field

expressions. A field expression is the assignment of a value to a field of the instruction. The value

assigned to a field may be a constant, a constant expression, or, it may reference a value to be

derived from the assembly instruction by the syntax-part. The ADL syntax for the syntax-part and

the binary-parts of an instruction declaration are given below:

syntaz-part

= wnstruction-mnemonics argument-list

argument-list = argument | argument arqument-list

argument = label-variable | field

binary-part

| field-expression binary-part

field-expression = field | field = constant | field = <fog-list>

= field-expression
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fog-list = fog-predeclared | fog-list . pure-function
fog-predeclared = label-variable .base

| label-variable . offset

| label-variable . absolute

| label-variable .delta

| label-variable . segoffset

The syntax part of an instruction declaration is a list of arguments defined to be either
label variables or fields. A field in the argument list means that the assembler should expect to find
an object of the corresponding type such as a register or an integer constant at the corresponding
position of the assembly instruction. A label variable represents an address primary. Examples
of address primaries include labels, base/offset pairs, and any constant arithmetic on labels. Field
expressions given in the binary-part may query the values of the arguments of the instruction using
pre-declared functions such as base, offset, absolute, or delta, or substitute them directly. These
values may also be transformed by using pure functions which are functions which have a single
parameter and return a single transformation of this parameter.

Let us now see how the assembler could parse an instruction using the specification shown
in Figure 9.6 and generate the appropriate binary. In the example, the argument part consists
of a register field (rt), and a label variable (address). Therefore, the assembler expects to find
a register name followed by a sequence of tokens which can be reduced to an address primary
when a 1w mnemonic is detected in the input stream. The field expressions in the binary part
indicate that the opcode field must be set to the constant value of 35, rs field must be given the
base register number representing the address, and the immediate portion must be given the offset
representing the address. Since the rt field appears in the argument list, it gets a register number
from the parsed instruction. ADL representation of binary encoding is a concise representation and
is natural. Similar encoding techniques have been employed in the SLED approach [57, 58].

Specifying Instruction Semantics: The semantic-part of an instruction specification
serves two purposes. These are the specification of what each stage computes when such an instruc-
tion is received and instruction classification so that stages may apply operations specific to a class
of instructions. For example, branch instructions may be handled by a specific stage which requires
that the type of an instruction be known so that proper instruction steering can be performed.

The instruction specific operations of stages are specified using LRTL segments. A LRTL
segment is a program segment that consists of register transfer level statements where each block
of such statements are labeled using a stage name. The syntax of the LRTL segment is depicted

below.

LRTL-segment = begin labeled-RTL-list end
labeled-RTL-list = labeled-RTL | ; labeled-RTL-list
labeled-RTL = case stage-name RTL-statement-list end
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The classification of instructions is achieved using an optional instruction attributes section
where the attributes of the instruction are specified. These attributes can be queried by pipeline
stages upon receiving the instruction. An instruction attribute is a member of the global enumeration

defined by the attribute declaration given below:

attribute-declaration = identifier : attribute-list
attribute-list = name-list | integer

name-list = identifier | identifier , name-list

Since an attribute of an instruction classifies an instruction, values of attributes must be
specified for all the instructions. An example attribute declaration section that classifies instructions

according to their operation types is shown below:

attributes
i_type : alu_type,

conditional _direct,
conditional_direct_link,
unconditional_direct,
unconditional_direct_link,
unconditional_indirect,
unconditional_indirect_link,
load_type,
store_type;

Let us examine the semantic part of the lw instruction declaration shown in Figure 9.6.
This instruction has the i_type attribute load_type, and LRTL segments ID, EX, and MEM define
the operations each of the corresponding stages. The LRTL segment ID performs a sign extension
using powerful ADL bit operations. The sign extension is achieved by repeating the bit 15 of the
immediate field (|< operator) for 16 bits and then concatenating (|| operator) it with the field
itself. The result is then stored into the variable simm. The LRTL segment EX performs an address
computation by adding the contents of the variable lop with the sign extended value computed by
the ID stage. Similarly, the LRTL segment MEM performs a data cache access using the value
computed in the EX stage and stores the returned value into the variable dest. Since writing back
the results of instructions into the register file is common for all instructions, this task is handled
by TAPs.

The address space of a TAP consists of the global address space implemented by the artifacts
and the local address space defined by the instruction being currently processed. In Figure 9.6, the
variables simm, dest_r, lop are part of the local address space or the instruction context. When the
execution of a TAP is completed, the local address space is transferred to another TAP instead of
being deallocated. Typically, the next TAP that executes in the same context is the TAP belonging
to the same stage that has the next clock label. When the TAP that has the label epilogue is
executed, the context is either transferred to the prologue TAP of the same stage or to the prologue

TAP of another stage.
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Iw rt address
emit opcode=_|w rs=<address.base> rt immediate=<address.offset>
attributes(i_type: load_type, dest_reg: rt)

begin
case s_ID
simm=sign_extend_16(immediate);
end;
case s_EX
Imar=lop + simm,;
end,;
case ssMEM
dest=ncache [Imar];
end;
end,

Figure 9.6: MIPS Load Word Instruction

Macro Instructions: Most compilers available today (e.g., gcc) make use of macro instruc-
tions in code generation. The task of converting these instructions into actual machine instructions
is left up to the assembler. ADL handles macro instructions in a manner similar to machine instruc-
tions. The syntax part of the instruction has the same syntax, but no field variables are allowed in
the argument part. Therefore, all of the instruction arguments are variables. Since macro instruc-
tions themselves do not directly lead to a binary representation, there is no binary generation part.
The macro specification can be visualized as a procedure where the procedure arguments correspond
to the instruction arguments and the semantic part corresponds to the body of the procedure. The
procedure defines what instruction(s) should be generated given a particular instance of arguments.
Instructions to be generated are specified using an instruction call statement that generates a ma-
chine instruction by passing the values of the fields of the instruction as parameters. The syntax for

the instruction call statement is shown below.

instruction—call = instruction-mnemonics

field-assignment-list

An example macro declaration for the MIPS load immediate instruction is shown in Fig-
ure 9.7. This macro generates either a single instruction (ori) or a pair of instructions (lui, ori)

depending on the size of the immediate field.

9.4 Calling Convention Specification

The purpose of the calling convention specification is to enable the simulator to perform
external system calls on behalf of the simulated program so that operating system services can be
provided through the operating system of the host machine. For this purpose ADL provides a calling

convention section where the calling convention of the simulated architecture and the prototypes of
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declare rdest register variable,
src2 integer variable,
tx  integer temporary,
ty  integer temporary;
instruction li rdest src2 macro
begin tx=src2.[31:16];
ty=src2.[15:16];
if (src2.[31:17] == Ox1ffff) | (src2.[31:17] == 0) then
ori:rt=rdest rs=0 immediate=ty
else
begin lui:rt=rdest immediate=tx;
ori:rt=rdest rs=rdest immediate=ty;
end;
end;

Figure 9.7: Macro Instruction Example.

external references are specified. From this specification, an engine is generated that can execute
an external procedure by passing the values of the parameters from the simulated architecture and
returning the results back into the simulator. This approach allows the language user to specify
external references of a program and treat them as if they are single instructions.

The calling convention specification is based on the formal model and specification language
for procedure calling conventions by Bailey and Davidson [5]. Their language has been modified so
that it fits the general structure of the ADL language. The specification provides a mapping to a
register or a memory location, given an argument’s position and type in the procedure call. Since
an argument’s value may not have been written to the memory cell or to the register file at the
time of the call, the mapping has been modified so that each register identifier that may be used
to pass arguments to the callee and each stack alignment are associated with a supplier procedure.
Supplier procedures are microarchitecture specific procedures that return the value of the argument
at the time of the call. In a pipelined architecture, the supplier procedure may return the value
from an artifact if there are no instructions in the pipeline that are computing the value, or the
value may be returned from a stage if the value has been computed, but did not yet reach the write-
back phase. If the value is available and is being returned, the procedure sets the built-in variable
access-complete to true. In the case that more cycles are necessary before the value becomes
available, the access-complete variable is set to false. An example calling convention specification
for the MIPS architecture is given in Figure 9.8.

The calling convention specification consists of two sections, namely a data transfer section
which describes how arguments are allocated into the registers and the stack locations, and a pro-
totypes section, where prototypes of external procedures and names of external data addresses are
supplied. The data transfer section consists of argument declarations, set declarations and a map
declaration. Argument declarations associate either a register name with a supplier procedure name,

or a stack alignment name with a supplier procedure. For example, in Figure 9.8, argument register
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calling_convention begin
argument $4:int_p1, $5:int_p2, $6:int_p3, $7:int_p3;
$f12:flt_p1,$f13:flt_p2,$f14:flt_p3,$f15:flt_p4;
unbounded stk4: stk_p4, stk8: stk_p8;
set intregs($4,$5,96,$7 stk4),
intfpregs(<$4,$5>,<%6,$7>,<stk8,st4>),
fpfpregs (<$f12,$f13>, <$f14,$f15> <stk8,stkd>);
equivalence ($4,$f12), ($5,$f12), ($6,$f14), ($7,9f14);
typeset singleword(int, void *, ...), doubleword(double, ...);
map argument.type begin
singleword : intregs;
doubleword : map argument[1].type begin
singleword: intfpregs;
doubleword: fpfpregs;
end map;
end map;
prototypes begin
reference errno, sys_errlist ...
double cosh(double); int printf(int,...);
end;
end calling_convention;
procedure int_p1()
begin
int_pl=gpr[4];
access_complete=( has_context EX |
has_context MEM | has_context WB)==0;
end int_pl;

Figure 9.8: MIPS Calling Convention Specification

$4 is associated with the supplier procedure int_p1. Stack alignment names are declared using the
unbounded keyword and correspond to an unlimited pool of argument values starting at a given
alignment of the frame pointer for the architecture. Supplier procedures for stack alignment names
do the required alignment first and return the first word at the indicated location. The register
names and stack alignment names given as part of the argument declarations are called argument

locations.

Set declarations create ordered pools of arguments based on types. In our example, the set
intregs creates a pool of argument values which consists of four integer registers and an unbounded
pool of stack locations. Thus, a call site that requires six integer arguments would find the values
of its first four arguments in the registers $4, $5, $6, $7, and the remaining two on the stack.
In some architectures, if one register is used, some other registers can no longer be used for the
following arguments. For example, in the MIPS architecture, if the floating point register $12 is
allocated, integer registers $4 and $5 cannot be used to pass the following integer arguments. The

specification handles this problem by creating equivalence sets given by the equivalence declaration.



95

Register pairs listed in an equivalence declaration are removed together from the respective sets
when one of them is allocated.

Typeset declarations group variable types that map to the same sized objects. Once the
sets and typesets are defined, a map declaration creates a mapping from typesets to sets. For each
argument type, first the typesets are consulted to find the corresponding typeset. Next the typeset is
supplied to the map construct to find the set from which the argument value(s) should be obtained.
These sets are consumed one by one for each argument value that is needed. The map declaration in
the example in Figure 9.8 specifies that any arguments which have a type listed in the singleword
typeset will consume the set intregs while those which are members of the doubleword set select
the set based on the type of the first argument.

The prototypes section is an ADL extension to the calling convention specification which is
necessary to call external procedures. This section consists of a list of external procedure prototypes
and data reference names used by the benchmark programs. Both procedures and data references
can be renamed to match the names of the architecture so that greater portability is achieved.

The calling convention specification when complied, provides an interface that returns a
list of supplier procedures given a call site. This interface is used by the simulator to assemble the

argument values, perform the external call on behalf of the simulated program and return the values.

9.5 Statistics Collection and Debugging

ADL provides support for assisting the user in collection of statistics that may be required
to evaluate the specified architecture. An instruction category declaration is supported using which
the user can classify instructions into different categories. The counts for the number of retired
instructions in each of these categories are provided to the user by the generated simulator. The
stall statement may be followed by an optional stall category name. In this form, the stall is
registered under the mentioned category for the current instruction and the stall statistics for each
of the categories are reported to the user. This can be helpful in identifying performance bottlenecks.

More advanced customized statistic collection is also possible. The ADL programmer can
insert statements into the ADL program to collect special purpose statistics. For this purpose, ADL
provides a statistics declaration which accepts a register name and a format specifier string. At
the end of execution, the value of the register is printed using the supplied format. The example
in Figure 9.9 shows how one could count the number of branch-delay slots which are not filled
with useful instructions by the compiler. In this example, the TAP for the EX stage checks if the
instruction in EX is a branch instruction and the instruction in the ID stage is a null operation
which has an opcode field of zero.

Interaction with the debugger can also be specified in an ADL program. The debugger can
be entered through the ISA specification by using the ADL statement pause. In general, when an
unexpected condition is detected, this statement may be used to enter the debugger. For example,

a divide instruction may check for a zero operand and execute pause statement as part of an LRTL
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statistics " Total number of branches %d:" ,branch_count,
"Empty slots %d:” ,empty_slots;
procedure EX epilogue
begin if i_type == branch_typel | i_type == branch_type0 then
begin branch_count=branch_count+1;
if op[ID] == 0 then
empty_slots=empty_slots+1;

end;
Figure 9.9: Language Support for Gathering Statistics

segment. The registers whose contents are desired by the user to be displayed when the debugger is

entered can also be specified in the ADL program through the monitor declaration.

9.6 Concluding Remarks

In this chapter, an overview of the basic properties of ADL has been presented. ADL is a
unique language in many aspects, including the simple domain model it uses as well as the compre-
hensive solution it presents where a significant portion of the system software is also automatically
generated from ADL specifications. The language embodies sufficient information to enable auto-
matic generation of the compiler back-ends as well, although this aspect of the language has not
been explored yet. Because of these properties, it is expected that ADL is going to be a very useful
language for advancing microarchitecture research in the future as well.

In the next chapter, an implementation of the language called the Flexible Architecture
Simulation Tool (FAST) is presented along with engineering details that had to be overcome before

a running compiler for the language could be implemented.



Chapter 10

FAST - Flexible Architecture Simulation
Tool

In this chapter an implementation of ADL which includes a compiler as well as the necessary
run-time environment is presented. This integrated system has been named the Flexible Architec-
ture Simulation Tool (FAST). The system provides: (a) an implementation of a compiler for ADL
through which a cycle level simulator is generated automatically from an ADL processor description;
(b) automatic generation of support software tools including the assembler, disassembler and the
loader/linker for the architecture; (c) a cycle level assembly language debugger that assists in tracing

of program behavior; and (d) support software for displaying statistics and monitored information.

The system has been used extensively for the implementation of the microarchitectures
described in this dissertation as well as for other projects by graduate students. Implemented simu-
lators ranged from simple functional simulators and pipelined RISC machines to very sophisticated
speculative superscalar processors. Although the language is capable of describing almost any in-
struction set, the experience with this aspect of the system has been limited to the MIPS ISA [56, 22].
The resulting software can be used to compile and simulate very large benchmark programs. For
instance, Spec95 integer and floating point benchmarks on a variety of architecture specifications as
well as many other programs ranging from few hundred lines to 10,000 lines of C code have been
simulated successfully. Upon the completion of the system, the first three simulators took a short
period of 3 months to develop, demonstrating the ability of the system for rapid prototyping. The
specifications of the architectures varied from 5000 to 6000 lines of ADL code while the sizes of
automatically generated software varied from 20,000 to 30,000 lines of C++ code.

This chapter has been divided into the following sections. In Section 10.1 an overview
of the FAST implementation is given. In Section 10.2, basic implementation of the ADL compiler
is described. Section 10.3 presents the debugger facility which is an integral part of the system.
Experience acquired using the system is discussed in Sections 10.4 and 10.5. Finally, in Section10.6

the chapter is concluded with a brief discussion.
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10.1 Overview

The main components of FAST is illustrated in Figure 10.1. The core of the system is the
ADL compiler, which is a single pass monolithic compiler that uses program specialization techniques
to generate the desired software.

The generated software is synthesized using prototype modules called templates. A tem-
plate is a prototype module of software that consists of only architecture independent components.
For example, the assembler template contains a complete assembler with the exception of instruction
set specific portions such as the mnemonics tables and specific rules to parse individual instructions
and code that converts symbolic addresses to machine addresses. All these portions of an assembler
are ISA specific and they are compiled in from the ADL program and filled in by the compiler.
Similarly, artifacts have been implemented in another template file. For each instance of artifact
declaration, the ADL compiler obtains the corresponding artifact declaration from the template file

and generates the desired artifact implementation.

I ! s B
[ Assembler Disassembler | | Makefile
|
: Template Template ! L )
| |
| | Assembler
Machine | / (C++,bison,lex)
! ’ i
Description } ADL | > <
| Compiler \ Simulator
|
| ‘ e
. |
| Artifacts Simulator | [ Disassembler |
| Template Template | (C++)
| I (S

Figure 10.1: FAST Main Components

Generation of the software is accomplished by compiling the architecture description using
the ADL compiler. Once the compilation is successful, the resulting software can be compiled by
invoking the generated Makefile by the user so that the binaries for the simulator, assembler and
the disassembler for the architecture are obtained.

Simulation of the benchmark programs is accomplished by first compiling them into the
assembly language with the aid of a high level language (HLL)compiler as shown in Figure 10.2(a).
The assembly modules are then assembled using the automatically generated assembler to generate
the benchmark binaries as shown in Figure 10.2(b). Finally, these binaries are loaded by the auto-
matically generated simulator and interpreted under the simulated architecture (see Figure 10.2(c)).

The simulator can be passed a number of command line arguments to direct its operation.
Specifically, the simulations can be carried out until a desired number of simulation cycles. Once the
desired cycles are reached the simulation may be terminated, or optionally the integrated debugger

can be entered to single step through the simulated program while observing the status change in
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Benchmark Assembly
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program ool [ Language

HLL ompier Program

(a) Compilation into assembly language

Assembly FAST ‘
Language Generated I Bi nary
Program Assembler/Linker Codefile

(b) Compilation into FAST binary format

/
Binary FAST Execution
Codefile Generated = statistics
Simulator \
Address/Data
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Program
Datafile (s)

(c) Executing the benchmark program

Figure 10.2: Three Steps of Program Simulation

the artifact values. The simulation environment directs the output from the simulated program
to the window where the simulator is executed. In this manner, the simulations give the feeling
of executing the simulated benchmark program in native mode, albeit slower. This approach also
allows executing benchmarks in native mode and then under the simulator and comparing the two

outputs by redirecting outputs to disk files.

10.2 The ADL Compiler

The ADL compiler uses separate representations to describe the ISA and the microarchi-
tecture. Imperative code such as TAPs, general procedures and LRTL segments are each represented
by a separate syntax tree and these trees emanate from the internal representation of components
of the architecture. In case of ISA, LRTL syntax trees emanate from instruction descriptions which
represent the assembly syntax, binary representation, and macro implementations. In case of mi-

croarchitecture representation, syntax trees emanate from pipeline descriptions.

The generation of the simulator system is accomplished by copying a template until a
descriptor marker, indicating the position at which a component should be generated and placed, is

encountered. The compiler generates a table, a procedure, or a C++ class described by the marker.
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Once the required software element is generated, the scanning continues until another marker is

found, or the end of file is reached.

10.2.1 Generating the Assembler

ADL generates a two-pass conventional assembler. During the first pass, the symbolic
addresses are resolved. During the second pass, actual binary generation is performed. Generation
of the assembler embodies the following steps: (a) generation of the mnemonics tables; (b) generation

of the parsing rules; (c) generation of the semantic actions associated with the rules.

add, op-add, 0, 4,
addi, op_addi, 0, 4,
addiu, op_addiu, 0, 4,
addu, op_addu, 0, 4,
and, op_and, 0, 4,
andi, op-andi, 0, 4,
bclf, op-bclf, 0, 0,
bclf__, op_bclf__, 0, 4,
bclt, op_bclt, 0,0,
bclt__, op-bclt__, 0, 4,
beq, op-beq, 0,0,

Figure 10.3: A Portion of Mnemonics Table

Generation of the Mnemonics Tables. By saving the instruction names encountered as part
of the instruction declarations and eliminating the duplicate names, ADL generates simple tables to
be implemented by GNU gperf tool. This tool generates the necessary hash functions automatically.
Mnemonic tables return a simple enumerated value, given an assembler mnemonic. An example table
generated by the compiler is illustrated in Figure 10.3. Constructs op_<mmnemonic> are enumerations

generated by the compiler and inserted into the resulting assembler.

Generation of the Parsing Rules and Semantic Actions The parsing rules necessary for
parsing the assembly language program is generated in a straight-forward manner from the ADL
instruction specifications. For this purpose, the compiler uses the type of the corresponding field
declarations to each of the parameters of the instruction specification and generates the appropriate
rule entry. For example in Figure 10.4(a), the instruction declaration of the assembly part has three
identifiers, namely, rd, rs and rt all of which are declared to be register fields. The ADL compiler
therefore uses the meta-symbol register_id which corresponds to this type to generate each of the
register_id meta-symbols that appear on the rule. The output is a yacc input file that is processed
by the parser generator yacc. A sample rule that is generated automatically from the instruction
declaration shown in Figure 10.4(a) is illustrated in in Figure 10.4(b). It is easy to see that the

values to be bound to the meta symbols are used to generate the corresponding binary.
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add rd rs rt
emit opcode=_special rs rt rd shamt=0 funct=_add

(a) ADL Instruction Declaration

enter_rule_add : op_add {any_identifier=true;}
enter_rule_addi : op_addi {any_identifier=true;}

rule_add : enter_rule_add register_id ', register_id ',’ register_id
{ $$=951;
invoked_macro=0;
instruction_type=2;
if (pass2) then
begin
bitsy.emit_LE(0, 6); // w.[31:06] opcode = 0
bitsy.emit_LE(int_val($4), 5); // w.[25:05] rs = int_val($4)
bitsy.emit_LE(int_val($6), 5); // w.[20:05] rt = int_val($6)
bitsy.emit_LE(int_val($2), 5); // w.[15:05] rd = int_val($2)
bitsy.emit_LE(0, 5); // w.[10:05] shamt = 0
bitsy.emit_LE(32, 6); // w.[05:06] funct = 32
if (invoked_macro) then
bitsy.Boundary(macro_write_instruction,yysline);
else
bitsy.Boundary(write_instruction,yysline);
end
any_identifier=false;

}

(b) Generated Yacc Rules

Figure 10.4: Sample ADL Instruction Declaration and Generated Rule

Not all parsing rules can be generated in such a straight-forward manner. In those cases
which involve fog constructs, function applications may result in the generation of additional in-
structions. For example, an instruction may need a base register/offset form of an address primary,
which must be obtained from a label. Depending on the architecture, the process may involve gen-
eration of one or more instructions which would place the address into a register at run-time. These
instructions must be processed by the assembler before the processing of the current instruction is
completed. This is accomplished by saving the generated instructions in a queue as they are gener-
ated, and then generating a processed form of the current instruction and placing it at the end of the

queue. The scanner is then told to switch its head to this queue and scan the queue instead of the
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usual input. This process may be applied recursively (i.e. instructions which were so generated may

generate additional instructions) until the scanner may return to scanning to usual input stream.

10.2.2 Generating the Decoder

One of the most important steps in the generation process is the generation of the decoder.
Decoder generation involves two major steps. The first is the assignment of opcodes to individual
instructions. The opcode in question is not an opcode assigned by the instruction set architecture,
but a unique number that can be used to identify instructions internally both for disassembling and
simulation purposes. Assignment of opcodes is carried out in a straight-forward way by assigning
integers to instructions as they are encountered. Once the complete set of instructions are compiled,

the compiler generates the decoder by following the algorithm outlined below:

(a) Create a set S which contains all the instructions. Assign the set the name decoder.

Append the set S to the list of sets U.

(b) Remove a set P from U. Create the procedure heading where the procedure name

is set to the name of P.

(c) Identify an wnwvisited instruction field which is constant valued among all the
members of the set P. There must be at least one such field. Mark the field as

visited.

(d) Sort the instructions based on the value of this field. For each subset of instructions
@) which has the same value for this field, create a procedure name and assign

the subset () this name. Append the subset ) to U.

(e) Generate a switch statement for the field identified in step (c). For each unique
value generate a return statement that returns the assigned opcode for that in-
struction. Values for which a subset ) had been created in step (d), generate a
return statement that returns the value of procedure name assigned to Q. Write

the procedure closing.

(f) Repeat steps (b) through (e) as long as U has members.

Please note that the actual copying of the generated code does not start until all the sets
are processed. Generated switch statements as well as the procedure heading are kept together
with the sets until they are completely processed. Once completed, the compiler has successfully
generated a decoder which returns the integer value assigned to an instruction, given the binary
code for the instruction. The generated decoder is used to implement the disassembler as well as

the ADL statement decode.
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10.2.3 Generating the Disassembler

Generating the disassembler entails the following steps: (a) generating code to load the
program binary into the memory; (b) copying the decoder onto the symbol file being generated;
(c) generating code to assign the value of the program counter to the beginning of the program
area; (d) generating code to invoke procedures which disassemble the data segments; (e) generating
a procedure per instruction which can disassemble a given instruction; (f) generating a loop that
calls decoder, calls appropriate procedure to disassemble the detected instruction and increment the
program counter by the size of the instruction.

The generated disassembler tries to match the disassembled assembly program line with
that of the original source program so that the disassembled output will have the macro instructions

and what is generated from them aligned to increase readability.

10.2.4 Generating the Simulator

Generating the simulator involves the following basic steps: (a) generating code to load
the program binary into the memory; (b) inserting the decoder into the appropriate position in the
simulator template; (c) generating structures necessary to hold instruction contexts; (d) generating
code to assign the value of the program counter to the beginning of the program area; (e) generating
TAPs; (f) generating the simulator main loop.

The simulator main loop is generated by processing the pipeline declarations in declaration
order, and individual pipeline stages in reverse declaration order. For each minor cycle, code is
generated so that the corresponding time annotated procedure and the LRTL segment will be invoked.
In this way, instruction flow in the pipelines is handled by polling from the sink stages towards the
source stages. This mechanism allows modeling of flow of instructions through the pipeline by polling

each stage once per minor cycle.

10.3 The Debugger

The debugger is entered through command line arguments or automatically upon detecting
an error condition. Command line arguments may specify that the debugger must be entered after
a specified number of cycles, or immediately. If a deadlock is suspected, that is, no instruction
is retired for a large number of cycles, the simulator invokes the debugger automatically. Upon
an internal fault in the simulator the system’s standard debugger along with the FAST debugger
are fired. Finally the debugger may be invoked when the pause statement in an ADL program is
encountered which is used when an unexpected condition occurs. The debugger when entered fires
up two windows. The first window displays a disassembled memory image where the line number
of the assembly language program, the memory location, binary encoding of the instruction, the
machine instructions and the original assembly language program are shown in that order on each

line. The second window displays the contents of registers specified in the monitor declarations and
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the contents of the pipeline stages of the machine architecture. In addition, the current number of
machine cycles, the number of useful cycles and the number of stall cycles are also displayed. A

sample output is shown in Figure 10.5.

583 40fEL374 d6 40 17 3c ¢ lui $23,16533 addu $24,$23,8208  [[H----- - Registers - - - - - - - -
503 40fERS7E 20 85 £7 26 ¢ ord $23,$22,-31328 00000000 ($0} 40154424 (413 00022198 ($2)
583 40fEb37c 10 20 £8 26§ addiu $24,$23,8208 00000033 ($33 40154568 (54 40337808 ($5)
S84 la $23,rx,5-4104  JOOO0000S (36D Q0000003 (573 00000000 ($3)
40fEB320 bE 40 17 Zc ¢ lui 423, 16566 addu $23,$23,8208 00000000 (533 00000000 {3103 00000000 $11>
40fEB324 98 65 £7 36 : ori $23,$23,26008 00000000 {FL2} 00000000 {$133 00000000 {514}
40fEBb388 10 20 £7 26 1 addiu $23,$23,8208 00000000 ($15) FEFFFFFF ($16) 00000030 ($17)
40fEb38c 28 3F b7 af ¢ o=u $23,161840$29) 0 $23,16184 (5spd OO000O004 ($18) 00032192 ($19) Q0000023 ($200
la $23,dd,1-4104 40365533 ($21) 40763530 ($22) 40bER5aS ($23)
40fBb330 35 40 17 3c 1 lui $23,16437 addu $22,$23,8208 40d6abb0 ($24) Q0000000 ($25) 00000000 ($26)
4 :oori Q00000 ($27) 40154578 ($28) 40fe24f0 ($29)
u : addiu 00000000 {5303 40fBh7TFE ($313
583 la $23,5a,0-4104
530 40fEb39c 15 40 17 3¢ ¢ lui 423, 16405 addu $21,$23,8208 00000000 (EFOD Q0000000 {$F1) Q0000000 ($F2)
530 40fBb3a0 70 5 F7 36 ¢ ori $23,%23,-14392 00000000 {$F3} 0000000 {$F43 00000000 {$F5}
530  40fEb3ad 10 20 £ 26 ¢ addiu $21,$23,8208 00000000 ($FE) Q0000000 ($F7) 00000000 (333
531 la $23,4,4-8208 00000000 ($£3) Q0000000 ($F10) 00000000 ($F11>
532 40fBb3a8 96 40 17 3c ¢ lui $23,16534 addu $13,%23,8208 00000000 ($F12) 00000000 ($F13) 00000000 ($F142
532 40fEbJac 88 35 £7 36 ¢ ori $23,$23,13704 00000000 ($£15) Q0000000 ($F16) 00000000 (3173
532 40fEb3b0 10 20 £3 26 & addiu $19,$23,8208 00000000 ($£18) Q0000000 ($F19) 00000000 (3203
592 la $22,4.4 ZFAO0000 ($F21) 00000000 ($F22) ZFFOOO00 ($F22)
534 40fEb3b4 96 40 17 3c ¢ lui $23,16534 addu $15,$23,8208 e2308c3a ($£24) 335798 ($F20) 829chclt (3262
534 40fERILE 598 55 £7 36 ¢ ori $23,$23,21912 40005337 ($£27) Q0000000 ($F28) EFcO0000 (3293
534 40fEbSbc 10 20 ef 26 ¢ addiu $15,$23,8208 00000000 ($F30) 00000000 ($£31)

40FER9S (pc)

WExz - - --- Pipeline - - ----- -
Qi 900000003 00000000 £_mull
01 000000003 00000000 F_mul2
02 000000003 000000003 £_mul3
03 000000003 000000003 £_addl <BUEELE >
04 000000003 000000003 £_add2 <BUBELE >

+ <BUBELE >
05 000000003 000000001 £_add3 ; <BUEELE >

<BUEELE >
<BUEELE >

06 40fEB333; 00000000: =_if <ori
07 40fEBT34: 00000000:  =_id <ori
08 40FEBII0: OOOO0O00T = _ex <lui
03 40FEB3Gcy 00000000:  =_mem <su

10 40fEb3BE: 00000000  =_wb <addiu
Machine Cycles @ 180000

Uzeful Cycles : 83853

Stall Cycles : BE153

N

Figure 10.5: Sample Debugger Screens

Once in the debugger, the user can single-step the execution, continue the execution until
a certain number of additional cycles are executed, or simply resume the execution. In case more
powerful debugging is needed, the user may fire the regular system debugger, such as gdb, and
perform further analysis. Since ADL compiler preserves ADL program names when generating the
simulator, the user may inquire the values of variables using the ADL program names.

In some cases, problems surface after large numbers of simulation cycles although the exact
cause of the problem may actually be hundreds of cycles prior to the point it is detected. Solving
these kinds of problems requires the knowledge of how a specific point in the program execution
is reached. For example, a label may be the destination of a number of branch instructions and
it is virtually impossible to know which path had been taken to arrive at this point. In order to
address these problems, the debugger provides a unique reverse execution mode. In order to use
this mode, the user specifies a range of cycles during which the simulator saves register and the
pipeline contents. When the debugger is entered upon the occurrence of the problem, the program
can be traced in reverse using the backstep command. In this mode, it is possible to backstep then

forward step, within the window of saved cycles. This mode is slow and saves significant amounts of
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data. However, it has proven to be very valuable during the development of many ADL architecture

descriptions.

10.4 Evaluation of FAST Implementation

The implementation of the FAST system took over 24 months. This is a large software
project totaling over 34,000 lines of code (see Table 10.1). Although it took a relatively long period
of time to develop, once completed, three simulators have been developed during a course of an
additional three months. All the simulators were based on the MIPS ISA consisting of 84 machine
instructions and 53 macro instructions. These simulators are: (a) a standard five stage pipelined
MIPS architecture (PIPE); (b) an implementation of the Tomasulo’s algorithm applied to MIPS ISA
(TOM); and finally (c) an initial version of the data forwarding architecture (FWD) that has been
used to collect the statistics reported in Chapter 5.

Software Component Lines
ADL Compiler 19675
Artifacts 1682
Assembler template 4953
Shared modules 5935
Linker template 970
Disassembler template 531
Simulator template 4259
Library Support 1200
Debugger 487
Total 34292

Table 10.1: Software Sizes.

For each of these architectures, relative percentages and the sizes of various sections of
ADL descriptions are illustrated in Table. 10.2(a). One immediate observation is the larger share of
the ISA specification. This is a direct result of the ADL approach to the problem. ADL approach
is an instruction oriented approach and in this respect, a significant portion of the semantics of
the machine execution is defined as part of the ISA specification. Another important point is the
small size of the artifacts section. Although artifacts make up a significant portion of the actual
hardware, they can be specified with ease by means of powerful ADL abstractions in a few hundred
lines. Finally, while the sizes of the architecture specifications are around 6000 lines of ADL code,
the sizes of the simulators vary from approximately 20,000 to 30,000 lines of C++ code. This clearly
shows the merit of automatic generation.

Developing the ISA portion has been relatively straight-forward. Few software bugs have
been traced to the ISA section. Most of these errors resulted either because of typing errors or
ambiguity in the architecture manuals that were used. Although ISA section is fairly large and the

microarchitecture section is relatively small, the development times for the ISA component and the
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Component | PIPE % | TOM % | FWD %
ISA spec 4549 T78.6 | 4549 73.8 | 4549 76.6
Artifacts 210 3.6 230 3.7 230 3.9
p-arch 554 9.6 890 144 673 11.3
Other 459 8.2 497 8.1 485 8.2
Total 5782 6166 5937

(a) ADL lines of code

Component | PIPE % | TOM % | FWD %
Assembler 6775 30.7 6775 21.9 6775 35.8
Disassm. 1508 6.8 1508 4.9 1508 8.0
Simulator 10942 49.6 | 19834 64.1 7803 41.2
Linker-etc 2838 129 2842 9.1 2842 15.0
Total 22063 30959 18928

(b) Generated C++ lines of code

Table 10.2: ADL programs and generated software

microarchitecture sections were roughly equal. This is expected as the microarchitecture section
involves a high degree of parallel operation. These results demonstrate that the separation of ISA
from the microarchitecture is a powerful approach since developing three fully functional simulators

in three months would not have been possible without this separation.

The size of the ADL generated software for each of the architectures are given in Ta-
ble 10.2(b). When the size of the ADL generated software is compared to hand coded simulators
which implement comparable architectures, surprising similarities are observed. For example, the
pipelined MIPS architecture implements essentially the same architecture as SPIM. The automat-
ically generated PIPE simulator consisting of 22,063 lines compares quite well with SPIM that
consists of 20,441 lines of C code. Comparison of MIPS-Tomasulo (an out-of-order architecture)
implementation with SimpleScalar yields similar results. SimpleScalar package contains a total of
26,500 lines (excluding the library and the provided gcc compiler) and includes three simulators.
Considering only the out-of-order simulator would correspond roughly to 25,000 lines, as these sim-
ulators are relatively small and share enormous amount of code. Thus, the automatically generated
TOM simulator consisting of 30,959 lines compares well the size of SimpleScalar simulator. Finally,
the data-forwarding architecture has an intermediate complexity, for which there is no hand coded

simulator that it can be compared with.

Simulation speeds are very reasonable and compare well with hand coded simulators. The
pipelined version executes at an average speed of 200,000 simulator cycles/second on a 200 MHZ
Pentium Pro and the Tomasulo’s algorithm executes at an average speed of 100,000 cycles/second.
The Tomasulo’s algorithm is comparable in complexity to the out-of-order SimpleScalar simulator [7]

which reports a simulation speed of 150,000 cycles/second on a 200 MHZ Pentium Pro. Comparing
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these figures with the SimpleScalar numbers yields that ADL generated simulators are less than 2

times slower than the hand coded counterparts.

10.5 Advanced Machine Descriptions

Once the initial descriptions have been successfully implemented and used to test and
improve the reliability of the implementation, a large number of descriptions have been written
for the techniques presented in this dissertation. These implementations includes the scalability
study presented in Chapter 3, as well as the DBMA and DWMA. During this process, it has been
observed that it is difficult to maintain various processor descriptions coherent as new additions
are performed on them. This observation gave rise to the notion of processor descriptions which
can host multiple implementations of a given hardware component. Based on this observation,
ADL specification has been extended with the notion of tagging various procedures with a compile
time evaluatable expression. The compiler would still compile a given component as usual, but the
resulting code would not be inserted into the generated simulator if the compile time expression
evaluates to false. Since conditional skipping of modules is done by the compiler and not by the
preprocessor, the undesirable outcome of a change introduced for a given implementation effecting

other implementations is minimized.

Component ADL Lines of Code
Central window 1000
DBMA 800
DWMA 1300
Branch Predictors 700
Store set algorithm and variants 680
Ideal Memory disambiguator 300
Speculative restart handling 1200
Common code 2050
Total 8030

Table 10.3: Components of the Unified Description

Using the introduced conditional compilation facilities, various processor descriptions have
been merged into a single processor description which contains multiple implementations of branch
predictors, issue window and memory disambiguation techniques. With this merged description, it
became possible to obtain any combination of the implemented techniques by setting the appropriate
compile time constants. The break-down of this large processor description which has more than
8000 lines excluding the ISA specification is illustrated in Table 10.3.

Generated simulators for the various combinations ranged between 18,000 to 35,000 lines
of C++ code. Depending on the issue width and the window size which is being studied, the

performance of the simulator showed a slowdown of a factor 2.5 to 10 compared to the simpler
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Technique Performance

Central window | 10,000-23,000 cycles/sec
DBMA 25,000-40,000 cycles/sec
DWMA 13,000-30,000 cycles/sec

Table 10.4: Performance of Various Techniques

implementations discussed before. The performance of various combinations are summarized in
Table 10.4 using a 200 MHZ Pentium Pro machine. In these numbers, the lower figures are observed
with 32 issue processors and the higher figures are observed with 8 issue processors. This is expected
as the speed of the simulator is directly proportional to the hardware complexity that is being

simulated.

10.6 Concluding Remarks

In this chapter an overview of the implementation of the ADL language, namely, the FAST
system has been presented. Because of the enormous size and complexity of the software as well as
irrelevance of many details, only aspects which were considered to be significant have been covered.

Being one the first in the area of automatically generating simulators from specifications,
FAST system has proven to be very effective with its unique properties such as the presentation of a
complete solution to the microarchitecture simulation problem. FAST does not only generate a cycle
accurate simulator from a machine description but it also generates the required system software
including the assembler, linker and a debugger. As such, it is expected that it is going to be quite
useful for future microarchitecture research.

Given that the development time for SimpleScalar simulator was 18 man-months [7], and
the number of simulators developed for this dissertation, it can be comfortably stated that automatic

generation using a domain specific language is a cost-effective approach.



Chapter 11

Conclusions

This thesis has been about the scalability of superscalar processing. Each of the evaluated
and developed techniques have been examined with an emphasis on their scalability demonstrating
that there is a need for techniques that scale better. This observation motivated the development
of alternative techniques which were then thoroughly evaluated to verify that the contributed algo-
rithms greatly enhance the scalability of the superscalar paradigm. In the experiments presented
throughout the dissertation a robust methodology has been applied which calls for evaluating in-
dividual algorithms in settings where only the algorithm being studied is the bottleneck. In this
section, the two techniques, namely DWMA architecture and the out-of-order store set algorithm
are combined in an architecture to demonstrate that proposed techniques work well together and
advance the state-of-the-art.

The first section of this chapter therefore has been reserved for evaluations of the proposed
techniques where these techniques are evaluated together. Section 11.2 presents an itemized list
of contributions of this thesis. Finally, the dissertation is concluded with a brief discussion of the

future research directions in Section 11.3.

11.1 Improvement in the State-of-the-art

In this section, the performance of the DWMA-OOS processor that employs the best previ-
ously known techniques (i.e., store set disambiguator and DBMA) is compared with the DBMA-SSET
processor that employs the newly developed techniques (i.e., out-of-order store set and DWMA). The
comparison essentially shows the improvement in the state-of-the-art superscalar processing tech-
niques. As a reference line, the ideal central window processor (CW) which employs an ideal memory
disambiguator is also plotted. All the processor configurations employ identical fetchers.

The resulting IPCs for all the benchmarks are shown in Figures 11.1, 11.2 and 11.3. An
8-issue DWMA-OOS architecture performs 60% and 46% better than the DBMA-SSET processor for
integer and floating point benchmarks respectively. At an issue width of 16, DWMA-OOQS architec-
ture achieves 64 % and 50 % better than the DBMA-SSET processor for integer and floating point
benchmarks respectively. Finally, for 32-issue DWMA-OOQOS architecture performs 57% and 45% bet-
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ter than the DBMA-SSET processor for integer and floating point benchmarks respectively. Therefore
it has been demonstrated that the proposed techniques significantly improve the state-of-the-art.

Now let us observe the performance of DWMA-OOS with respect to the ideal central window
processor. An 8-issue DWMA-OOS architecture attains 84% and 81% of the 8-issue ideal central
window processor performance for integer and floating point benchmarks respectively. At an issue
width of 16, DWMA-OOQS architecture achieves 76 % of the performance of the ideal central window
processor for integer benchmarks and 72 % for floating point benchmarks.

At an issue width of 32, DWMA-OQOS achieves 66 % of the performance of the central
window processor for integer benchmarks. With floating point benchmarks, DWMA-OOQOS loses more
performance, achieving about 50 % of the performance of the ideal processor. This performance loss
has been traced to the sensitivity of the 32 issue processor to instruction schedule ordering as well as
the degree of forwarding. Therefore the performance of the DWMA-OOS can be further improved by
increasing the degree of forwarding and employing additional heuristics in the descriptor selection.

The average IPCs obtained by the three algorithms are summarized in Figure 11.4.

11.2 Contributions

The contributions of this thesis are:

(a) Development of an effective methodology for the evaluation of superscalar processors with an

emphasis on scalability;

(b) Empirical demonstration that for high performance large instruction windows are needed which

grow quadratically as a function of the issue width;

(c) A unique superscalar out-of-order processing paradigm which relies on run-time generation of
a special dataflow graph called Direct Data Forwarding Graph (DDFG) from ordinary RISC

code.

(d) The Direct Wake-up Microarchitecture (DWMA) which uses principles of DDFG generation to
implement large instruction windows, outperforming the best non-broadcasting based instruc-

tion window implementations;

(e) A novel memory order violation detection algorithm that greatly enhances the performance of
memory dependence prediction based dynamic memory disambiguators by eliminating false

memory order violations as well as a significant percentage of false memory dependencies;

(f) A powerful domain specific language for the microarchitecture simulation domain called the Ar-
chitecture Description Language (ADL) which can be used to specify a broad class of instruction

set architectures as well as microarchitectures;

(g) A complete implementation of ADL in an integrated system called Flexible Architecture Simu-
lation Tool (FAST).
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11.3 Future Research Directions

Future research related with the basic principles laid out in this dissertation carries great
potential. In the area of micro architecture research for improving the scalability of out-of-order issue
processors there are many trails which can be pursued. Especially, in the areas of instruction fetch
and instruction issue logic, there is still a lot that can be done to further improve the performance.
Techniques which can greatly out-perform even ideal mechanisms are possible with a change of mind-
set. Contrary to the conventional notion of treating these two areas as two distinct and unrelated
areas, we must start thinking about the problem as a whole. Once we remove the artificial barriers on
the superscalar processors which are imposed by the application of brute force hardware techniques
and start using techniques which are dependency aware such as the direct wake-up technique, new

opportunities will arise which cannot be seen with a conventional mind-set.

Instruction Fetch and Instruction Wake-up. As it has already been stated in this disserta-
tion, the trace cache approach is quite promising. A processor that implements a trace cache will
benefit from its use when it is using the techniques such as direct wake-up and out-of-order store set
algorithms developed in this dissertation. However, much greater gains can be obtained by integrat-
ing the trace cache with the reorder buffer itself. Because of the reorganization of the wake-up graph
as the program executes, the final form of the wake-up graph is a better schedule than the initial
one. By caching completed portions of the reorder buffer, it is possible to cache the dependencies
as well as the execution trace that the program has followed. Upon a hit in this cache, instructions
may start firing immediately without going through the initial stages of the program execution.
This is a very promising technique since it has the potential to out-perform even a completely ideal

conventional superscalar processor setting.

Multi-threaded Program Execution. Direct wake-up and direct data forwarding techniques
can be effectively employed for exploiting thread-level parallelism. As it has been illustrated in
[45] these techniques can be employed in a multi-threaded setting for direct communication and
the synchronization of threads. Such use of the techniques represent an area of the spectrum of
dataflow-Von Neumann hybrid architectures which has not been explored fully. Since there are
many applications which lend themselves directly to efficient execution on multi-threaded machine

models, this avenue of research should be explored as well.

Instruction Issue and Direct Wake-up. Presented design of the direct wake-up architecture
is only one design among several which had been tried. The design space is huge and it is only
natural to expect that better implementations of the idea may exist. Since Chapter 5 decisively
illustrated that the DDFG is not the limiting factor for high performance, future research for better

micro architectures that rely on the notion of direct wake-up should also be sought.
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Memory Disambiguation. One of the important bottlenecks in the current processor implemen-
tations is the number of memory ports. Memory ports are quite expensive to implement and for
high performance many memory ports are needed. However, large instruction windows also present
better opportunities for bypassing values between load instructions and store instructions as well
as the bypassing of values directly between the producer of a value and its consumer without going
through the memory. Although existing techniques addressed this question in a number of cases

[39], effect of large windows in this manner has not been studied.

Automatic Generation of Simulators. The first design of ADL has been quite successful. How-
ever, the language can be enhanced in many ways, the most important aspect being the imperative
nature of the microarchitecture specification. The imperative approach has been selected because
the current state of knowledge is not mature enough to obtain fully functional and efficient simula-
tors from declarative microarchitecture specifications. Research in this respect may greatly speed-up

both the development and the run-time performance of the resulting simulators.
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Appendix A

Sample ADL Micro Architecture
Description

processor processor_0 highbit 31
begin

Machineid "simple";
lilliput 1little_endian;

shadow register
code_start 32,
ex_trace 32,
hi 32, # Division operation HI value.

_lo 33, # Division operation LO value.

linebreak 32,

#

dest_r 32,

check_ex 1,

check_mem 1,

check_wb 1,

ex_has_it 1,

mem_has_it 1,

wb_has_it 1,

target 32, # Used in the branch target computation.
data_tmp 32, # Used in data transfers.

ptemp 32, # A temporary value register.

dummy 32, # SAA (Same as above)

which 2, # For passing parameters to cop branch units.
equal 1,

less 1,

unordered 1;

shadow register file dtemp[2,32];
shadow register file scratch[2,32];

constant generate_trace 0;
constant machine_drained 1;
constant cpc_register_number 32;
constant lo_hi_register_number 32;

# This is the instruction pipeline.
#

pipeline IPIPE (s_ID);

source s_ID;

latch
exception 1,
new_pc 32,
branch_input 1,

branch_target 32;
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register file fpr [33,32]

# [34 regs,32 bits each].

$£3
$£8
$£13
$£18
$£23
$£28

3,
8,
13,
18,
23,
28,

3,
8,
13,
18,
23,
28,

3,
8,
13,
18,
23,
28,

$4
$9
$14
$19
$24
$29

$a0
$t1
$t6
$s3
$t8
$sp

$£0 0, $f1 1, $f2 2,
$£5 5, $£6 6, $£7 7,
$£10 10, $£11 11, $£12 12,
$£15 15, $£16 16, $£17 17,
$£20 20, $f21 21, $£22 22,
$£25 25, $£26 26, $£27 27,
$£30 30, $£31 31, $CpC 32;
register file gpr [34,32] # [34 regs,32 bits each].

$0 0, $1 1, $2 2, $3
$5 5, $6 6, $7 7, $8
$10 10, $11 11, $12 12, $13
$15 15, $16 16, $17 17, $18
$20 20, $21 21, $22 22, $23
$25 25, $26 26, $27 27, $28
$30 30, $31 31,

$zero 0, $at 1, $v0 2, $vi
$al 5, $a2 6, $a3 7, $t0
$t2 10, $t3 11, $t4 12, $t5
$t7 15, $s0 16, $s1 17, $s2
$s4 20, $s5 21, $s6 22, $s7
$t9 25, $k0 26, $ki 27, $gp
$fp 30, $ra 31;

shadow register
hi_val 32,
lo_val 32;

# We have to specify the name of the instruction register. The instruction
# register is treated as a special register to allow less typing. That is,
# ir.rt is equivalent to rt iff ir is the instruction register.

instruction register ir 32;
instruction pointer

pc 32;

memory mem_O latency O width 32;
memory ncache latency 0 width 32;

controldata register

my_pc

shadow register
1s_bypass
mem_stat
access_type
byte
lop_r
rop_r
simm
zimm
smdr
store_v
lmar
smar
dest
dest2
lop
lop2
rop
rop2

32;

1,

1,
32,

2,

6,

6,
32,
32,
32,
32,
32,
32,
32,
32,
32,
32,
32,
32;

H H OH

H HE B HHEH HHEH

Zero extended immediate.

Store Memory data register.
load memory address register.
store memory address register.
dest holds the value to be written.
dest holds the value to be written.
lop holds the left operand value.

$£4
$£9
$£14
$£19
$£24
$£29

rop holds the right operand value.

4,
9,
14,
19,
24,
29,

Next, each machine register mnemonic is presented together with their
actual register number. For MIPS $zero and $0 are aliases, so are many
others. From the perspective of the machine-gen, only the association
of names with numbers is important. Therefore, as many aliases as

necessary can be described.

lop_r indicates the register number for the lop.
rop_r indicates the register number for the rop.
Sign extended immediate.
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bitconstant
_BYTE 00,
_HALFWORD 01,
_TRIPLEBYTE 1 0,
_WORD 11;

$include mips-instruction-set-simple.adl
$include ../mips-calling-convention.adl

#- Instruction Decode - - - - - - - - = = = = = = = - - - - - - - - - -

procedure s_ID prologue

begin
my_pc = pc; #- Required by jal.
ir = mem_O[pc];

if (branch_input) then
begin
branch_input=0;
pc=branch_target;
end
else
pc=pc + 4;

# Fetch input registers. Sign extend the immediate portion.
#

decode;

dest_r = ordinal(dest_reg);

# Read operands.

case lop_type of

begin
cpc_register:
lop_r = cpc_register_number;
lop = fprllop_r];

integer_register:
lop_r=rs;
lop=gpr[lop_rl;

float_register
lop_r=fs;
lop =fpr[lop_r]l;

double_register
lop_r=fs;
lop =fprllop_rl;
lop2=fpr[lop_r+1];

special_input
lop_r = 2;
lop = gpr[2];

lo_hi_register:
lop_r = lo_hi_register_number;
lop=gpr[lop_r];
lop2=gpr[lop_r+1];
end;

case rop_type of
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begin
cpc_register:
rop = tf;

integer_register:
rop_r=rt;
rop=gpr[rop_r];

float_register
rop_r=ft;
rop =fpr[rop_rl;

double_register:
rop_r=ft;
rop =fprlrop_r];
rop2=fpr[rop_r+1];

end;
if (i_class == branch_class) then
condition_code(lop,rop);
end s_ID;

procedure s_ID epilogue
begin
case dest_type of
begin
lo_hi_register:
gprldest_r]=dest;
gprldest_r+1]=dest2;

integer_register
gprldest_r]=dest;

cpc_register
float_register
fpr[dest_r]=dest;

double_register
fpr[dest_r]=dest;
fpr[dest_r+1]=dest2;

else : if ordinal(dest_type) then
builtin printf("skip skip %d\n");
end;
builtin sprintf(pointer(scratch),"},6d\n",my_pc - code_start);
if generate_trace then
if builtin upfast_write_file
(
ex_trace,
7,
scratch) "= 7 then
begin
builtin perror("Store ex trace");
builtin simulation_exit(-1);
end;
retire stat;

newcontext;
end s_ID;

procedure boot_up untyped
begin
forall gpr = 0;
code_start = builtin fast_text_begin;

if generate_trace then



120

ex_trace = builtin fast_open_file("execution-trace","output");
end boot_up;

initialization boot_up;

# These are the registers we monitor duxecution.

#

#

monitor
$o, $1, $2, $3, ¥4, ¢$5, $6, 7, $8, §9, 10,
$11, $12, $13, $14, $15, ¢$16, $17, $18, $19, $20, $21,
$22, $23, $24, ¢$25, ¢$26, $27, $28, $29, $30, $31,

linebreak,
linebreak,
$£0 , $f1 , $£2 , $£3 , $f4 , $£5 , $f6 , $£7 s
$£8 , $£9 , $f10 , $£f11 , $f12 , $£f13 , $f14 , $f15

$f16 , $f17 , $f18 , $f19 , $£f20 , $f21 , $f22 , $f23 ,
$£24 , $f25 , $f26 , $£f27 , $£f28 , $f29 , $£30 , $f31 ,
linebreak,
linebreak,
pc;

end; # processor

#- C and C++ supplements. Initialize machine must be provided. - - - - - - #
# #
# #
# Simulator supplements. #
e el e #

simulator begin

%

integer pseudo_procedure_call;
integer pseudo_pipeline_flush;
integer nop_line[4];

integer nop_flush[4];

void procedure initialize_machine
(code_file_header& H,int arg_count,char **args,integer lim)
begin
char * p;

while (lim & 0x7) lim--;
$sp=(1im-8);

pseudo_procedure_call=(integer)&nop_line;
nop_line[0]=0;
nop_line[1]=0;
nop_line[2]=0;
nop_line[3]=0;

pseudo_pipeline_flush=(integer)&nop_flush;
nop_flush[0]=0;
nop_flush[1]=0;
nop_flush[2]=0;
nop_flush[3]=0;

for (integer i=0; i < upfast_ext_count; i++)

begin
if (strcmp(externals[i].name,"exit")==0) then
begin
$31=e_ref_table_start + ((integer)&externals[i]-(integer)&externals);
break;
end
end

// cout << "Args are
// for (integer i=0; i < arg_count; i++)
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// cout << args[i] << " ";

// cout << "\n";

$4=arg_count;

$5=(integer)args;

$28=H.sbss_segment_start;
end // initialize_machine //
Hh

end simulator;
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Appendix B
Sample ADL ISA Description

Any instruction fields which are accessed BEFORE the instruction is
decoded must be declared fixedfields. For example, the values of
the rs & rt fields from the instruction register are

available immediately after the instruction register is

loaded with a new instruction. This information is used

for ’fixed field decoding’ during simulator code generation.

opcode constant field 31 6,

rs register fixedfield 25 5,

rt register fixedfield 20 5,

rd register field 15 5,

shamt integer field 10 5,

funct constant field 5 6,

functco constant field 4 5,

immediate signed field 15 16,

uimmediate integer field 15 16,

code integer field 25 20,

cofunl integer field 24 25,

cofun2 integer field 24 20,

cof integer field 25 1,

b_offset signed field 15 16,

j_offset integer field 25 26,

copfl integer field 24 4,

copf2 integer field 20 5,

copf3 integer field 10 11,

ccf integer field 20 3,

nd integer field 17 1,

tf integer field 16 1,

call_n integer field 15 16,

ft register fixedfield 20 5,

fs register fixedfield 15 5,

fd register fixedfield 10 5,

format integer field 24 4,

uccf integer field 10 3, # unused zero field.
ufzf integer field 7 2, # unused zero field.
ufc integer field 5 2, # unused zero field.
cond integer field 3 4, # unused zero field.
address label variable,

rdest register variable,

rsrcl register variable,

rsrc2 register variable,

rsrc3 register variable,

src2 integer variable,

fsrc2 float variable,

tx integer temporary,

11 label temporary,
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attributes

end;

i_class

i_cycles

i_type

exu

c_what

dest_type

dest_reg

lop_type
rop_type
t_count
t_cycles
t_min
t_max

assertion
#- All single cycle operations are executed by the integer unit.

#

1

i_cycles

integer temporary;

float_class,
integer_class,
branch_class,

long_integer_class; #- Multi-cycle integer ops.

single_cycle,

multiple_cycles;

number_of_i_types,

alu_type,
system_type,

conditional_direct,
conditional_direct_link,
unconditional_direct,
unconditional_direct_link,
unconditional_indirect,
unconditional_indirect_link,

load_type,
store_type;

load_unit,
store_unit,
integer_unit,
call_unit,
divide_unit,
f_add_unit,
f_mul_unit;

condition_equal,

condition_gez,
condition_gtz,
condition_lez,
condition_1ltz,
condition_neq,
condition_u,

condition_z;

float_register,integer_register,double_register,

special_input,
cpc_register,
lo_hi_register;

integer;

dest_type;
dest_type;
general;
general;
general;
general;

== single_cycle

# Total instructions of this instruction.
# Total cycles for this instruction.

# Minimum cycles for this instruction.

# Maximum cycles for this instruction.

(exu == integer_unit)
(exu == call_unit) H

#- If any operands of the instruction is integer, then it must be
executed by either the integer unit or the load store unit.

#
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2 : (lop_type == integer_register) |
(rop_type == integer_register) : (exu integer_unit)
(exu call_unit)
(exu divide_unit)
(exu load_unit)
(exu == store_unit);
end;

procedure condition_code(x:32,y:32) untyped

begin
if c_what == condition_equal then
branch_input=(x == y)
else
if c_what == condition_gez then
branch_input=((x.[31:1])==0)
else
if c_what == condition_gtz then
branch_input=(x > 0)
else
if c_what == condition_lez then
branch_input=(x.[31:1] | (x == 0))
else
if c_what == condition_ltz then
branch_input=(x.[31:1])
else
if c_what == condition_neq then
branch_input=(x ~= y)
else
if c_what == condition_u then
begin
branch_input=1;
branch_target=x;
end
else
if c_what == condition_z then
begin
branch_input=1;
end;

end condition_code;

# These procedures are applied by the assembler to compute various
# offsets.
#
procedure add4(x) computation
begin
add4=(x) + 4 ;
end add4;

procedure addl(x) computation
begin

addi=(x) + 1;
end addil;

procedure jump_address(x) computation
begin

jump_address=(x) >> 2;
end jump_address;

procedure upper(x) computation
begin

upper=x.[31:16];
end upper;

procedure lowerc(x) computation
begin
lowerc=x.[15:16];



end lowerc;

# Utility procedures save on typing and eliminate some errors that
# would otherwise may result.
#
procedure sign_extend_24 (x:8)
begin
sign_extend_24=(x.[7:1] [< 24) || x;
end sign_extend_24;

procedure sign_extend_16 (x:16)
begin

sign_extend_16=(x.[15:1] [|< 16) || x;
end sign_extend_16;

procedure zero_extend_16 (x:16)
begin

zero_extend_16=x & Oxffff;
end zero_extend_16;

procedure sign_extend_14 (x:16)
begin

sign_extend_14=(x.[15:1] < 14) || x || (0 1< 2);
end sign_extend_14;

bitconstant # FMT field encodings.
#
_single_float 00O00O0, # s
_double_float 0001, # d
_reserved_1 0010, #
_reserved_2 0011, #
_single_fixed 010 0; # w

# _______________________________________

# Opcode bits: For simplicity these bits are goruped together and

# they are asssigned as a single constant to the opcode field.

# An alternative strategy could create two opcode fields, opcodel

# and opcode2.

# _______________________________________

bitconstant
#
# 31..29 28..26 31..29 28..26 31..29
# ____________
_special 000 000, _addi 001 000, _copO 01
#unused 011 000, _1b 100 000, _sb 10
_lwcO 110 000, _swcO 111 000, _bcond 00
_addiu 001 001, _copl 010 001, _swcl_set 01
_lh 100 001, _sh 101 001, _lwcl 11
_swcl 111 001, _j 000 010, _slti 00
_cop2 010 010 , #unused 011 010, _1wl 10
_swl 101 010, _lwc2 110 010, _swc2 11
_jal 000 011, _sltiu 001 011, _cop3 01
_sw_set 011 011, _lw 100 011, _sw 10
_lwc3 110 011, _swc3 111 011, _beq 00
_andi 001 1 0 0 , #unused 010 1 0 0 , #unused 01
_lbu 100 1 0 0, #unused 101 1 0 0 , #unused 11
#unused 111 100, _bne 000 101, _ori 00
#unused 010 1 01 , #unused 011 101, _lhu 10
#unused 101 1 01, #unused 110 1 01 , #unused 11
_blez 000 110, _xori 001 110 , #unused 01
#unused 011 110, _lur 100 110, _swur 10
#unused 110 110 , #unused 111 110, _bgtz 00
_lui 001 111 , #unused 010 111 , #unused 01
#unused 100 111, #unused 101 111 , #unused 11
#unused 111 111

O OHOHOFRLOFRLROFLOHFHOKFE,OKOHRDO

28..26

B R R R R R R R R R R 0000000000
H R R R, 000000 REREREOOOOO

H H B H

HHEREPOOFRRHOOOKHKRLOOOKRKRKEKEOO

# was unused.
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Special field.

This field extends 5..0 and is assigned

#
#
#
# field.
#
#
#

to the funct

Bits: 543 210
_sll 000 000, _jr 001 000, _mfhi
_mult 011 000, _add 100 0 0 0 , #unused
#unused 110 0 0 0 , #unused 111 0 0 0 , #unused
_jalr 001 001, _mthi 010 001, _multu
_addu 100 0 0 1, #unused 101 0 0 1 , #unused
#unused 111 001, _srl 000 01 0 , #unused
_mflo 010 010, _div 011 010, _sub
_slt 101 0 10 , #unused 110 01 0 , #unused
_sra 000 0 11 , #unused 001 011, _mtlo
_divu 011 011, _subu 100 011, _sltu
#unused 110 011, #unused 111 011, _sllv
_syscall 001 100, _syscall2 010 1 0 0 , #unused
_and 100 1 0 0 , #unused 101 1 0 0 , #unused
#unused 111 1 0 0, #unused 000 101, _break
_call 010 1 01, #unused 011 101, _or
#unused 101 1 01, #unused 110 1 01 , #unused
_srlv 000 110 , #unused 001 110 , #unused
#unused 011 110, _xor 100 110 , #unused
#unused 110 110 , #unused 111 110, _srav
#unused 001 111 , #unused 010 111 , #unused
_nor 100 111, #unused 101 111 , #unused
#unused 111 111
# BCond field.
#
# This field extends 20..16 and is normally the rt field.
#
# Bits: 20..19 18..16
# ____________
_bltz 00 0 0 0 , #unused 01 000, _bltzal
#unused 11 000, _bgez 00 0 0 1 , #unused
_bgezal 10 0 0 1 , #unused 11 001,
# Copfl field.
#
# This field extends 25..21 and used by coprocessor instructions.
#
# Bits: 24..23 22 21
# ___________
_mf 00 0 0 , #unused 00 0 1, _cf 0
#unused 00 1 1, _mt 01 0 O , #unused 0
_ct 01 1 0 , #unused 01 1 1, _bc 1
#unused 10 0 1 , #unused 10 1 0 , #unused 1
# Copf2 field.
#
# This field extends 20..16 and used by coprocessor instructions.

#

# Bits: 20 19 18 17 16
# ______________
_f 000 0 O O,
_t 000 0 O 1,
# CopO

# _____

# Co processor(Q operations.
#

=, OFR, OO O =, OF, OOKRO

= O O R~ OO

H OO RO

O O = O
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B e OO R

= O
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#Bits : 43 210
# _——— m———

#unused
_tlbp
_rfe
_tlbr
_tlbwi
_tlbwr

O O O OO
O O O OO
O OO OO
= = O O OO
O O O oo

_zero 000 00O ;

# Floating point compares. Each predicate and its negation
# use the same cond bits.

e e i I #
bitconstant

_fcond_f 0000, False / True.

_fcond_un 0001, Unordered/ordered (OR)

_fcond_eq 0010, Equal / Not equal (NEQ)

_fcond_ueq 0011, Unordered or equal /

_fcond_olt 0100, Ordered or less than /

Unordered or greater than or equal (UGE)
Unordered or less than /

Ordered or greater than or equal (OGE)
Ordered or less than or equal /

Unordered or greater than (UGT)

Unordered or less than or equal /

Ordered or greater than (0GT)

Signaling false / Signaling true (ST)

Not greater than or less than or equal /
Greater than or less than or equal (GLE)
Signaling equal / Signaling not equal (SNE)
NOt greater or less than /

Greater than or less than (GL)

Less than / Not less than (NLT)

Not greater than or equal /

Greater than or equal (GE)

Less than or equal / Not less than or equal (NLE)
Not greater than / Greater than (GT)

_fcond_ult 0101,
_fcond_ole 0110,
_fcond_ule 0111,

_fcond_sf 1000,
_fcond_ngle 1001,

_fcond_seq 1010,
_fcond_ngl 1011,

_fcond_1t 1100,
_fcond_nge 1101,

_fcond_le 1110,
_fcond_ngt 1111,

H OH H H H H H HEHHHH R R HEHEHEHEH R

bitconstant
_add_fmt 0000, _sub_fmt 0001, _mul_fmt 0010,
_div_£fmt 0011, _abs_fmt 0101, _mov_fmt 0110,
_neg_fmt 0111, _cvt_s_fmt 0000, _cvt_d_£fmt 0001, # 33,
_cvt_w_fmt 0100, _c_fmt 0000, _trunc_w 110 1;
bitconstant
fc_arithmetic 0 O,
fc_cvt 10, # 33,
fc_c_fmt 11;
bitconstant
_fmul 0010,
_fdiv 1010,
_fadd 1000,
_fsub 0001,
_fneg 0111;
instruction
SYSCALL : System call - - - = - - = = = = = = = = = - = = - - = - - - - - - #

#-
#
# MIPS I.
#
#

H H B H

This instruction is used to simulate external calls as if it is a
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# single instruction. This instruction uses $4 as its left operand and #
# returns the result in $2. #
L e e e e #

syscall code
emit opcode=_special code funct=_syscall

attributes
(
i_class : integer_class,
i_cycles : multiple_cycles,
exu : call_unit,
c_what : none,
dest_type : special_input,
lop_type : special_input,
rop_type : special_input,
i_type : alu_type,
dest_reg : none
)

begin

case callu
dest=builtin do_mips_syscall(lop,lop2,rop,rop2,0);

dest2=0;
end;
end,
syscall macro
begin
syscall : code=0;
end,
#- SLL : Shift word left logical - - - - - - - - - = = = = - - = - - - - - - - #
# #
# MIPS I. #
e T T #

sll rd rt shamt
emit opcode=_special rs=0 rt rd shamt funct=_sll

attributes
(
i_class : integer_class,
i_cycles : single_cycle,
exu : integer_unit,
c_what : none,
dest_type : integer_register,
lop_type : none,
rop_type : integer_register,
i_type : alu_type,
dest_reg : rd
)

begin

case s_EX
dest=(+rop) << (+shamt);
end;
end,

#- ADD : Add word - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#
# MIPS I.

add rd rs rt
emit opcode=_special rs rt rd shamt=0 funct=_add
attributes
(
i_class : integer_class,
i_cycles : single_cycle,



exu : integer_unit,
c_what : none,
dest_type : integer_register,
lop_type : integer_register,
rop_type : integer_register,
i_type : alu_type,
dest_reg : rd
)

begin

case s_EX
dest=lop + rop;

end;
end,
#- ADDI : Add immediate word - - - - - - = = = = = - - - - - - - - - - - - - #
# #
# MIPS I. #
T e i #

addi rt rs immediate
emit opcode=_addi rs rt immediate

attributes
(
i_class : integer_class,
i_cycles : single_cycle,
exu : integer_unit,
c_what : none,
dest_type : integer_register,
lop_type : integer_register,
rop_type : none,
i_type : alu_type,
dest_reg : rt
)

begin

case s_ID

simm=sign_extend_16(immediate);
end;

case s_EX
rop=simm;
dest=lop + rop;
end;
end,

#- ADDIU : Add immediate unsigned word - - - - - - - - = - - - - - - - - - -
#
# MIPS I.

addiu rt rs uimmediate
emit opcode=_addiu rs rt uimmediate

attributes
(
i_class : integer_class,
i_cycles : single_cycle,
exu : integer_unit,
c_what : none,
dest_type : integer_register,
lop_type : integer_register,
rop_type : none,
i_type : alu_type,
dest_reg : rt
)

begin

case s_ID
simm=sign_extend_16(immediate);
end;
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case s_EX
dest=lop + simm;

end;
end,
#- ADDU : add unsigned word - - - - - - - — = = — = = - - - - - - - - - - - - #
# #
# MIPS I. #
T e e e T T T TN #

addu rd rs rt
emit opcode=_special rs rt rd shamt=0 funct=_addu

attributes
(
i_class : integer_class,
i_cycles : single_cycle,
exu : integer_unit,
c_what : none,
dest_type : integer_register,
lop_type : integer_register,
rop_type : integer_register,
i_type : alu_type,
dest_reg : rd
)

begin

case s_EX
dest=lop + rop;

end;
end,
#- AND And - - - = - = = = = = = = = = - - - - - - - - - - - - - - - - - - - #
# #
# MIPS I #
T e i #

and rd rs rt
emit opcode=_special rs rt rd shamt=0 funct=_and

attributes
(
i_class : integer_class,
i_cycles : single_cycle,
exu : integer_unit,
c_what : none,
dest_type : integer_register,
lop_type : integer_register,
rop_type : integer_register,
i_type : alu_type,
dest_reg : rd
)

begin

case s_EX
dest=lop & rop;
end;
end,

#- ANDI : And immediate - - - - - - - - = = = = = = - - - - - - - - - - - - -
#
# MIPS I.

andi rt rs immediate
emit opcode=_andi rs rt immediate
attributes

(



i_class : integer_class,
i_cycles : single_cycle,
exu : integer_unit,
c_what : none,
dest_type : integer_register,
lop_type : integer_register,
rop_type : none,
i_type : alu_type,
dest_reg : rt
)

begin

case s_ID
zimm=zero_extend_16(immediate) ;
end;

case s_EX
dest=lop & zimm;
end;
end,

#- BEQ branch on equal - - = = - = = = = = - - - - - - - - - - - - - - - - -
#

# MIPS I

# _______________________________________

beq__ rs rt immediate
emit opcode=_beq rs rt immediate

attributes
(
i_class : branch_class,
i_cycles : single_cycle,
exu : integer_unit,
c_what : condition_equal,
dest_type : none,
lop_type : integer_register,
rop_type : integer_register,
i_type : conditional_direct,
dest_reg : none
)

begin

case s_ID
branch_target=my_pc + sign_extend_14(immediate);
end;
end,

#- BGEZ : Branch on greater than or equal to zero - - - - - - - - - - - - - -

bgez rs immediate
emit opcode=_bcond rs rt=_bgez immediate

attributes
(
i_class : branch_class,
i_cycles : single_cycle,
exu : integer_unit,
c_what : condition_gez,
dest_type : none,
lop_type : integer_register,
rop_type : none,
i_type : conditional_direct,
dest_reg : none
)

begin

case s_ID
branch_target=my_pc + sign_extend_14(immediate);
end;
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end,
#- BGEZAL : Branch on greater than or equal to zero and link - - - - - - - - #
# #
# MIPS I. #
L e T #

bgezal__ rs immediate

emit opcode=_bcond rs rt=_bgezal immediate

attributes
(
i_class : branch_class,
i_cycles : single_cycle,
exu : integer_unit,
c_what : condition_gez,
dest_type : integer_register,
lop_type : integer_register,
rop_type : none,
i_type : conditional_direct_link,
dest_reg : 31
)

begin

case s_EX
dest=my_pc + 8;
end;
end,

#- BGTZ : Branch on greater than zero - - - - - - - - - - - - - - - - - - - -
#
# MIPS I.

bgtz__ rs immediate

emit opcode=_bgtz rs rt=0 immediate

attributes
(
i_class : branch_class,
i_cycles : single_cycle,
exu : integer_unit,
c_what : condition_gtz,
dest_type : none,
lop_type : integer_register,
rop_type : none,
i_type : conditional_direct,
dest_reg : none
)

begin

case s_ID
branch_target=my_pc + sign_extend_14(immediate);
end;
end,

#- BLEZ : Branch on less than or equal to zero - - - - - - - - - - - - - - -
#
# MIPS I.

blez rs immediate

emit opcode=_blez rs rt=0 immediate

attributes
(
i_class : branch_class,
i_cycles : single_cycle,
exu : integer_unit,
c_what : condition_lez,
dest_type : none,
lop_type : integer_register,

rop_type : none,



#- BLTZ : Branch on less zero - - - — — - = = — = = — - = = - = — — - — - — -

#
#

#
#
#

#- BNE : Branch on not equal - - - - - - - - - - - - - - - - - - — - — - - - -

i_type : conditional_direct,
dest_reg : none
)
begin
case s_ID

branch_target=my_pc + sign_extend_14(immediate);

end;
end,

MIPS I.

bltz rs immediate

emit opcode=_bcond rs rt=_bltz immediate

attributes
(
i_class : branch_class,
i_cycles : single_cycle,
exu : integer_unit,
c_what : condition_ltz,
dest_type : none,
lop_type : integer_register,
rop_type : none,
i_type : conditional_direct,
dest_reg : none
)

begin

case s_ID

branch_target=my_pc + sign_extend_14(immediate);

end;
end,

- BLTZAL : Branch on less zero and link - - - - - = = = = = = = = - - - - - -

MIPS I.

bltzal__ rs immediate
emit opcode=_bcond rs rt=_bltzal immediate

attributes
(
i_class : branch_class,
i_cycles : single_cycle,
exu : integer_unit,
c_what : condition_1tz,
dest_type : integer_register,
lop_type : integer_register,
rop_type : none,
i_type : conditional_direct_link,
dest_reg : 31
)

begin

case s_EX
dest=my_pc + 8;
end;
end,

bne__ rs rt immediate
emit opcode=_bne rs rt immediate
attributes
(
i_class : branch_class,
i_cycles : single_cycle,
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exu : integer_unit,
c_what condition_neq,
dest_type : none,
lop_type integer_register,
rop_type integer_register,
i_type conditional_direct,
dest_reg : none
)

begin

case s_ID
branch_target=my_pc + sign_extend_14(immediate);
end;
end,

bne__ rs rt address

emit opcode=_bne rs rt immediate=<address.delta.jump_address>

attributes
(
i_class : branch_class,
i_cycles single_cycle,
exu : integer_unit,
c_what condition_neq,
dest_type none,
lop_type integer_register,
rop_type integer_register,
i_type conditional_direct,
dest_reg : none
)

begin

case s_ID
branch_target=my_pc + sign_extend_14(immediate);

end;

end,
#- Break : Breakpoint - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#
# MIPS I
b e T T
# Description.
#
# We should list any variations of instructions with a constant field
# after the main instruction so that the decoder will correctly print
# out the decoded instruction. For example, the parameterless variant
# of the break instruction sets the code field to zero. By putting
# the one with the parameter first we make sure that its representation
# goes to the decoder.

break code

emit opcode=_special code funct=_break

attributes
(
i_class integer_class,
i_cycles single_cycle,
exu integer_unit,
c_what : none,
dest_type : none,
lop_type : none,
rop_type : none,
i_type system_type,
dest_reg : none
),

break macro
begin
break code=0;

end,

H H O
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#- CTC1 @ = - = = = = = = = = = = = = = = = = = = = = - - - - - - - - - - -~
#
# MIPS I
# _______________________________________
# Description
# _______________________________________
ctcl rt fs
emit opcode=_copl cof=0 copfl=_ct rt fs copf3=0
attributes
(
i_class float_class,
i_cycles single_cycle,
exu integer_unit,
c_what : none,
dest_type : none,
lop_type float_register,
rop_type integer_register,
i_type alu_type,
dest_reg rt
)
begin
case s_EX
dest=lop;
end;
end,
cfcl rt fs
emit opcode=_copl cof=0 copfl=_cf rt fs copf3=0
attributes
(
i_class float_class,
i_cycles single_cycle,
exu integer_unit,
c_what : none,
dest_type : none,
lop_type float_register,
rop_type integer_register,
i_type alu_type,
dest_reg rt
)
begin
case s_EX
dest=1op;
end;
end,

#- DIV : Divide word - - - - - - = = = = = = - = = - - - - - - - - - - - - -

#
# MIPS I.

div rs rt

emit opcode=_special rs rt rd=0 shamt=0 funct=_div

attributes
(
i_class
i_cycles
exu
c_what
dest_type
lop_type
rop_type
i_type
dest_reg
)
begin
case s_ID

long_integer_class,

: multiple_cycles,

divide_unit,

: none,

lo_hi_register,
integer_register,
integer_register,
alu_type,
lo_hi_register_number
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latency 7;
end;

case s_EXD
if rop == 0 then
exception = 1

else
begin
dest2 = lop / rop;
dest = lop % rop;
end;
end;
end,
#-J Jump - - - - - - - - - - - - - - - - - - - - - - - - - - - - === - - #
# #
# MIPS I #
L e T T #

j__ Jj_offset
emit opcode=_j j_offset

attributes
(
i_class : branch_class,
i_cycles : single_cycle,
exu : integer_unit,
c_what : condition_z,

dest_type : none,
lop_type : none,

rop_type : none,
i_type : unconditional_direct,
dest_reg : none
)
begin

case s_ID
branch_target=my_pc.[31:4] || j_offset || 0 [< 2;
end;
end,

#- JAL : Jump and link - - - - - - - - - - - - - - - - - - - - - - - - - - -
#
# MIPS I.

jal__ j_offset
emit opcode=_jal j_offset

attributes
(
i_class : branch_class,
i_cycles : single_cycle,
exu : integer_unit,
c_what : condition_z,

dest_type : integer_register,
lop_type : none,

rop_type : none,
i_type : unconditional_direct_link,
dest_reg : 31
)
begin
case s_ID
branch_target=my_pc.[31:4] || j_offset || 0 I< 2;
end;

case s_EX
dest=my_pc + 8;
end;
end,



jalr__ rd rs

attributes

(

i_class

i_cycles

exu
c_what
dest_type
lop_type
rop_type
i_type
dest_reg

)
begin

case s_EX
dest=my_pc + 8;

end;

end,

#- JR : Jump register

#
# MIPS I.

jr__ rs

emit opcode=_special rs rt=0 rd shamt=0 funct=_jalr

: branch_class,

single_cycle,
integer_unit,
condition_u,
integer_register,
integer_register,

: none,
: unconditional_indirect_link,

rd

emit opcode=_special rs rt=0 rd=0 shamt=0 funct=_jr
attributes

(

i_class

i_cycles

exu

c_what
dest_type
lop_type
rop_type
i_type
dest_reg

)

#- LB : Load byte

#
# MIPS I.

1b rt addre

emit opcode=_1b rs=<address.base> rt immediate=<address.offset>

Ss

attributes

(

begin

i_class
i_cycles
exu
c_what
dest_type
lop_type
rop_type
i_type
dest_reg

: branch_class,

single_cycle,
integer_unit,
condition_u,

: none,

integer_register,

: none,
: unconditional_indirect,
: none

integer_class,

: multiple_cycles,

load_unit,

: none,

integer_register,
integer_register,

: none,

load_type,
rt
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case s_ID

simm=sign_extend_16(immediate);
end;

case s_EX

lmar=1op + simm;
byte=lmar.[1:2];

end;
case s_MEM
if 1s_bypass then
dest=dest2
else
begin
dest=ncache [lmar];
mem_stat=access_complete;
end;
1mdr=dest;
if mem_stat | ls_bypass then
begin
if byte == 0 then
dest = dest.[07:08]
else
if byte == 1 then
dest = dest.[15:08]
else
if byte == 2 then
dest = dest.[23:08]
else
dest = dest.[31:08];
dest=sign_extend_24(dest);
end;
end;
end,

controlflow
bcif__, beq__, bgez__, bgezal__, bgtz__, blez
bne__, j__, jal__, jalr__, jr__;

bltz bltzal__,

instruction category integer_arithmetic
add, addi, addiu, addu, and, andi, div, divu, lui, mfhi, mflo, mult,
multu, nor, or, ori, sll, sllv, slt, slti, sltiu, sltu, sra, srav, srl,
srlv, sub, subu, xor, xorij;

instruction category conditional_branch

beq__, bgez__, bgezal__, bgtz__, blez__, bltz__, bltzal__, bne__;
instruction category other

break;

instruction category unconditional_branch
j__, jal__, jalr__, jr__;

instruction category load
1b, 1lbu, 1lh, lhu, lw, lwl, lwr, lwcl__;

instruction category store
sb, sh, sw, swl, swr, swcl__;

instruction category float_arithmetic
"cvt.d.w", "cvt.d.s", "cvt.s.w", "cvt.s.d", "div.d", "div.s", "mul.s",
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"neg.d", "sub.s", "sub.d", mfcl,

"mul.d", "add.s", "add.d", "neg.s",
"mov.s", "mov.d",

mtcl, "c.cond.d", "c.cond.s", "abs.s", "abs.d",

"trunc.w.s", "trunc.w.d";

instruction category float_conditional
belf__,
beclt__;
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