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PATH-SENSITIVE, VALUE-FLOW OPTIMIZATIONS OF PROGRAMS
Rastislav Bodik, Ph.D.
University of Pittsburgh, 1999

Current compiler optimizers are conservative and inflexilds a result, even “highly optimized” programs
execute half of their instructions redundantly, only toai@pute previously computed values. Ideally, these
values should be remembered and la¢eiIsed removing recomputations.

Unfortunately, this reuse strategy fails often. The ctlriintermittent reuse—one that exists only along
some execution paths leading to the redundant instrucTibis. path-specific reuse is frequent, but to remove
it, the optimizer may need to pay tke&ponentiaprice of optimizing each path separately.

This thesis describes how to defeat this exponential pattosion, in its various forms: how to analyze paths
separately only when it matters, via demand analysis; hogetwerate less path-specific code, via optimal
profiling feedback; and how to avoid profiling individual pat via adding confidence to imprecise profiles.
The result is a path-sensitive optimization framework thg@iowerful enough to remove nearly all redundan-
cies, yet practical enough to permit an industrial-stremgiplementation.

More specifically, this thesis attacks the various formsaihgexplosion by dividing the optimizer into three stageshe
responsible for one aspect of path sensitivity. Té@resentatiorexposes the reuse of values, #rmalysiscollects paths

with exposed reuse, and tlransformationexploits the collected reuse by removing the redundancies.

The representation stage models the flow of a recomputed.vBl1symbolically naming the value, it reduces the (hid-
den) value flow into a (exposed) data flow. As a result, recaatfmn can be detected essentially as reaching definitions.
The representation, called tMalue Name Graphobtains path-sensitivity by forming value names sepbyrdite each

path. However, paths are analyzed separately only whegznglthem together could hide some value reuse.

The analysis stage marks paths with value reuse and weighmsatked paths with a run-time profile to guide the subse-
guent transformation. Unfortunately, to perform precigéghing, frequencies of marked paths must be known. To make
profile-guiding practical, this thesis develops a familyestimatoralgorithms, which require onlgdgefrequencies, a
cheaper but inherently imprecise alternative to path feegies. Estimators bound the inherent error, thus prayidoth

confidence and practicality.

To effect a complete removal of recomputations while matilegathe exponential code growth caused by generating
path-specific code, the transformation stage combines timtbogonal program transformation methods. The expensiv
path duplicationis resorted to only when the growth-freede motiorfails to transform the program, and only when the
profile-drivencontrol speculatiorcannot profitably impair some paths to optimize other paths.
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Chapter 1

Introduction

1.1 Motivation: programs often redundantly recompute values

This thesis develops a framework for a broad classadiie-flowoptimizations of programs. Com-
mon to these optimizations is removal of program instrungtithat recompute values that are already known,
because they have already been computed in the programrtieyaber instruction or by a prior execution of
the same instruction), or because they can be computed atiledime. When two instructions compute the
same value, we say that thelue flowsetween them. In the following program, the value of the egpion
A[i] flows to the expressioA[i — 1] (computed one iteration later), and to the expressifin- 2] (computed
two iterations later).

for i=3,N do
Ali] = Ali-1] + Ali-2]

end for

Redundant value recomputations offer a conceptually sirygl powerful optimization: rather than
recomputing the new value, the old onegsised The most common way to reuse the value is to keepitin a
register until it is needed again. In the example programettpressionsl[i — 1] and A[i — 2] redundantly
recompute the value. The computation (involving addresspedgation and a memory load) can be removed
using two registers used to carry the value4df] for two iterations, as shown below. On the entry to any
loop iteration, the registers, ro carry the values ofi[i — 1] and A[i — 2], respectively.

ri = Al 2]
r2 = Al 1]
for i=3,N do
t =rl +7r2
rz =rl1
ri=Ai] =t
end for

Redundant recomputations occur frequently. Based on sfldueredundancy elimination, current
compilers remove about 30% of executed arithmetic insast[BC94] and 10% of executed conditional
branches [MW95b]. To estimate the amount of redundamegentin the program, we can refer to hard-
ware run-time prediction mechanisms. Based on remembefithgalues and predicting new ones, these
techniques predict correctly as much as 80% of values [SY&96 95% of conditional branches [YP91].
Clearly, what can be predicted is in some sense redundaen ough not all of the predicted values can



while ... do function conpare(x, y)
if conpare(Ali], B[k]) if x.f <y.f
Ctop++] = Ali ++] return 1
el se el se
C top++] = B[ k++] return O
end if end if
end while end conpare

Figure 1.1:A fragment from Merge Sort. The load ofB[k] and theif comparestatement are redundant.
Both redundancies are path-specific and hence these ratstdements cannot be simply removed from
the program.

be removed by a compiler, the high prediction rates suggleatprograms are inherently highly redundant,
which encourages us to develop techniques that improveotim@iéer optimizations.

Figure 1.1 shows a fragment from a Merge Sort program. Istitates why there is so much
redundancy, but also why optimizing it away is not a trivéek, either for the programmer or for the compiler.
Thewhile loop merges two sorted arrayisand B. In each loop iteration, it compares their top elements and
moves the smaller one to the accumulator array C. The mentogsa to the top elements is redundant: if
A[i] is the smaller element, theB[k] is not moved and s@[k] in the next iteration refers to the same array
element. TheB[k] expression produces the same value; it is a value-flow rexhoyd As in the first example,
the optimizer should remember the previous valug@] in a register, reuse it and remove the loadif].

Unfortunately, such an optimization is not directly apahte becausé[k] produces the same
value only along one path through the loop. Along the othéhn,pais incremented, after whicB[k] will
refer to a different array element and hence must be loadedtiie memory.

The Merge Sort example exhibits also another redundancgei®b that théf statement in the
while loop always branches in the same direction adfttstatement in the functiocompare. This branch
correlation is also a case of value-flow redundancy, beddessvo conditional expressions always compute
the same Boolean value. Because we always know the diregftitre redundant branch, we would like to
bypass and transfer the control from the return points tyréx the branches of thié statement. Here again,
we cannot simply remove the redundant conditional brancthypass it, we need to know along which path
we arrived at the branch. Compare the (failed) optimizatioinB[k] and theif statement. While the former
is optimizable only along some paths, the latter is optilligalong all paths; still, the latter is a path-specific
optimization because each path offers a different optitiuneof theif statement. Another noteworthy dif-
ference is that thé[k] optimization removes datadependency, and tté redundancy removescaontrol
dependency. Removal of either type of dependency may spabhdiprogram (the benefit of removing data
dependencies is illustrated in the following section).

In summary, value-flow redundancy exists even in reasonaellywritten programs, but is often
hard to remove. For the programmer, their removal wouldirecawkward (and error-prone) usage of tem-
porary variables. For the compiler, it would require digtiishing individual program paths, a non-trivial
task, as elaborated later in this chapter. In fact, the tdamdancies in the Merge Sort above are beyond the
power of existing optimizers, but the optimizer presentethis thesis can remove them.



1.2 Benefits of removing redundant instructions

In general, the removal of redundant instructions may speetie program in two ways:

1. Reduce hardware requirements of the prografthen the redundant instruction is removed, there are
fewer instructions to execute. As a result, there is lessetdion for hardware resources (functional
units, registers, cache ports), which allows scheduliegé&maining instructions earlier.

2. Shorten the critical path of data dependencBgcause the reused value is available sooner than the
recomputed one, instructions that need the value can belgigueearlier. Essentially, removing an
instruction breaks some paths of data dependences amangtitns. When the redundancy removal
breaks the critical path (i.e., the longest path), it may bssjple to schedule the program in fewer
machine cycles.

Note that the instruction schedule is improved regardléssether it is created statically (by a compiler) or
dynamically (by an out-of-order processor). Value flow optiation is thus beneficial for both statically and
dynamically scheduled processors. Also observe thatevthé resource constraints restriction can be over-
come with wider processors (making the first benefit of sonadvess important for future high-performance
processors), the critical path constraint is a manifestaif the data-flow limit of the program and hence can-
not be overcome without program transformation (makingsteond restriction more important for future
processors).

Figure 1.2 illustrates the two optimization benefits on thening example. The cycle-by-cycle
diagram compares the schedule of the unoptimized programtie program in which only the redundant
Ali — 1] was removed (b), and with the program in which bdtl— 1] and A[i — 2] were removed (c). Each
iteration of the loop body depicts only those operations ithiduence the speed of the loop (the loads, the
add, and the store). We measure the loop speed using theitdratiation rate, i.e., the number of processor
cycles after which a new loop iteration can be started; thesfecycles, the faster the loop execution. To
demonstrate the effect of insufficient hardware resouragsyme that the processor can issue at most one
memory instruction (load or store) per cycle.

In the unoptimized program, thedd instructions from subsequent iterations lie on a criticthp
of data dependences. The iteration-to-iteration lengthisfpath is three cycles, composed of add, store, and
load latencies. The critical path does not allow issuinga iteration faster than every three cycles. After
removing the load ofi[i — 1] (b), the adds communicate the value directly via a regidtee length of the
critical path has been shortened to one cycle. As a reselidit iteration can be issued each two cycles.
Note that the optimal issue rate of one iteration per cy@dg@mitted by the minimized critical path) has not
been achieved because only one memory instruction can texpeucycle, whereas each iteration has two
such instructions. After the load elfi — 2] is removed (c), resource requirements are reduced. Eaaltidte
contains only one memory operation, allowing the issueabtme cycle. In summary, the final optimization
benefited from reducing both the critical path and the resmtequirements. Both of them resulted from the
value-flow optimization.

1.3 Compiler optimization C program optimization

The previous sections made three important points:

'We note that recently proposed hardware techniques aret@bittack the data-flow limit [SVS96, SS97, LS97].
However, in Section 1.3 we argue that, like compiler optatians, they do so via a form of program transformation.
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Figure 1.2:Two benefits of removing value-flow redundanciesreducing the critical path of data depen-
dences; reducing the hardware resource requirements pfalgeam.

1. Programs are highly value-flow redundant.
2. Removal of value-flow redundancies has important benefits
3. Current compilers are not very good at removing the rednoi@s.

Because of (1) and (2), redundancy elimination is perhagsrtbst important optimization for instruction-
level parallelism. Because of (3), it should not come as pr&e thatcompiler optimizations not the only
technology forprogram optimizatiorthat targets value flow. Indeed, there are at least two atligrsamic
program specializatiomndprocessor architectureBased on different principles than value reuse, together
with compiler optimization they represent a spectrum thatgs this thesis in a broader research context.

Figure 1.3 contrasts the three approaches to value-flownggattion. What is common to all of
them is that they first analyze the program and then transfoivhat differs is how the optimization labor is
divided between compile-time and run-time. Consider hayy thptimize a loop that contains a loop-invariant
statement, i.e., a statement that computes the same vadaelinteration, and thus is redundant.

In compiler optimization, the analysis finds this redundsiatement and then transforms the pro-
gram so that when it is run, the loop-invariant value is cotagwnly once and then stored in a register from
which it can be reused when needed later.

Dynamic program specialization delays the transformatittii run-time [APC 96, KEH91,GMP 97,
CN96, MCB99]. Rather than reusing the value from a registervalue (once known at run time) is hard-
coded into the loop, by means of run-time code generatiore rébult is a loop specialized for the given
(loop-invariant) value. Delaying the transformation unin-time has an important benefit. Since the known
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Figure 1.3: The spectrum of approaches to value-flow optimization.The spectrum extends from static
(compile-time) techniques to dynamic (run-time) techeisju

value can be hard-coded into the program, there is no neezttgy a register, a scarce resource. The down
side is the cost of run-time program transformation.

Processor architecture of modern superscalar processdi@p a fully run-time optimization,
usingvalue predictiofSVS96, LS97]. They observe computed values, learn how theyge, and predict
future ones. When the value is predicted correctly, the yanogs effectively transformed, because future
instructions can execute earlier. However, when the vauais-predicted, we pay a penalty of having to
re-execute mis-predicted instructions. (Processor &ctire also useisistruction reusea non-predicting
technique that avoids recomputation of values by memoigiegious arguments of instructions [SS97].)

The three technologies form a spectrum, ranging from a pstatic to a purely dynamic approach
to optimization. Each of the three approaches offers unapfantages. The focus of this thesis is the
compiler optimization: its important advantage is zero-tinme cost; there is no run-time code generation
or mis-predictions. The disadvantage is that the compdldslind to run-time values. Hence, one of the
driving motivations behind this research is to explore houcmredundancy can be removed by analyzing
the program text alone (see Section 8.5). In the long rurh sampiler-centric research may indicate what
kind of optimization should be delayed to run-time, and hoghbuld be performed.

1.4 Path specific optimization opportunities

Among the three technologies in Figure 1.3, compiler optation is the oldest. In fact, the prob-
lem of redundancy removal is as old as the first compilers JOpcOne reason why optimizers are still far
from saturating their possibilities is that they are nofisigntly path-sensitive

The obstacles posed by paths have two distinct flavors., Hiestoptimizer may fail when the re-
dundancy is “partial,” i.e., when the optimization is pdsionly along some program paths. In Figure 1.4(a),
one can replace the computatioruof 2 with a simple constant 7 along one incoming path but not atbeg
other. Because the value @fs not known along that path, the valuewf 2 must be computed at run-time.
We say that + 2 is partially redundant
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Figure 1.4:Two flavors of path sensitivity: partial and diluted.

The second flavor of path-sensitivity is more tricky, as shawrigure 1.4(b). Whilé + ¢ equals
1 along all paths, common analyzers would discover thisdabt if each path is analyzed separately. When
analyzed together, this fact would be diluted, becausaeibhe variablé nor ¢ has a single unique constant
value along all paths considered together. The valuganilc are either 0 or 1, and so they are not considered
to be a constant. Consequently, their sum is assumed notdacbastant. This problem is known aen-
distributivity of a dataflow problem. Non-distributive (formulations o8tdflow problems produce imprecise
information because they dilute the information aboutvidlial control flow paths.

1.5 The challenge: exponential path explosion

The reasons why analyzers do not examine program pathsaselyds that there is an exponen-
tial number of paths, even in a program with no loops. To stactral, analyzers treat paths together,
summarizing their results whenever paths meet, dilutirtgrapation opportunities.

Unfortunately, paths explode exponentially not only inlgsia, but also in program transformation,
when we want to exploit the optimizable paths. To enable fitamizations in Figure 1.5(b), two paths had
to be physically separated via code duplication. This dapibn may cause an exponential code growth: we
obtained three copies of tieint(1) node, even though all three copies have the same contergseshlt is
that the code may grow exponentially in the number of prognanes?

Given the inevitable exponential cost, the imperative fathpsensitive optimization is to exploit
individual program paths only as far as it is practical. Ad tiore of this thesis is a battle against exponential
path explosion: because of the adverse effects of code yrtind more we manage to suppress the growth,
the more practical the optimization. While some practiehpsensitive optimizers exist, there is much room
for improvement, as our experiments will document. Thisthadvances the boundary of what is practical
in value-flow optimizations. As a result, we can double thedfi¢ over existing optimizers (see Section 6.6).

2Real programs have loops and thus an unbounded number sf g&tbn though we optimize cyclic paths, we still
pay just an exponential cost.
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Figure 1.5:Exponential path explosion:in analysis, and in transformation.

1.6 My thesis

The goal of this thesis is to develop compiler optimizatitgoathms that will target value-flow
problems. The distinguishing feature of these algorithriishe& that they are path-sensitive. More specifi-
cally, we want to demonstrate thaath-sensitivity can be made

1. effective:in that it improves the optimizer's power,
2. practical: in that the path-sensitive optimizer will be immune to theoential blow-up,

3. broad: in that path-sensitivity will be applicable to all value-flmptimization problems.



Chapter 2

PathFinder: the Optimization Framework

The remainder of this thesis presents PathFinder, a frankelwoderiving path-sensitivevalue-
flowcompiler optimizations. The terpath-sensitivelenoteshowthe optimization is performed: PathFinder
exploits bothdiluted andpartial path-specific optimization opportunities, i.e., it attadloth flavors of path-
sensitivity (see Section 1.4).

The termvalue-flowdescribesvhat computations are targeted by PathFinder. The PathFinder
framework can derive optimizers for the value-flow classarhputations, which include standard optimiza-
tions such as the removal of common subexpressions, lo@iamis, partial redundancies, array bound
checks, conditional branches, redundant loads and stiged,code and also constant propagation (see Sec-
tion 1.1). RTHFINDER generalizes these optimizations, by providing a uniforamfework, and improves
their power, by making them path-sensitive.

2.1 The optimizer stages

When designing the path-sensitive value-flow framewonkas required that it
1. handle both path-sensitivity flavors, and

2. can be parameterized and tuned for the various optiroizadisks, including targeting arithmetic ex-
pressions, memory access operations, conditional branete

The two goals were accomplished by separating the optirmiethree stages, shown in Figure 2.1. In this
optimizer architecture,

¢ value-flow representatioexposes the reuse of values,
e dataflow analysigollects paths with exposed reuse, and the
e program transformatiomxploits the collected reuse by removing the redundancies.

In finer detail, the representation builds a program modegiragph that connects equivalent computations.
The novel representation, called tklelue Name Graphanswers two questions: which computations are
value equivalent, and along which path the equivalenceshdlbe representation is responsible for avoiding
dilution of path-specific value flow (recall the second flavor of pathsitivity shown in Figure 1.4(b)). The
dilution is avoided by naming the value as it flows throughpghegram, as if each path was analyzed sepa-
rately. This naming technique improves the optimizati@@alhen paths need not be considered separately,
through the use of symbolic names that expose non-triviaiomships among instructions.
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Figure 2.1:The PathFinder stages and their function.

The dataflow analysis stage traverses the representatibcodiacts value reuse opportunities, by
marking optimizable paths. The analysis answers the que’s there a path along which this computation
could reuse a value?” Furthermore, using run-time prognafiling, it determines how frequently this reuse

occurs at run time. Effectively, the analysis separatesmipable paths from other program paths, which
corresponds to thpartial path sensitivity.

The transformation takes the redundancies collected bgrlagysis and removes them, using ei-
ther physical path separation (as shown in Figure 1.5) or byimg the redundant instructions, which is a
desirable, more economical alternative that does not clatgliprogram structure. Like the analysis stage, the
transformation handles thmartial path-sensitivity. However, while the analysis marks theérojzable paths
and weighs them with a profile, the transformation decides toaransform the paths.

The most important consequence of staging is separatidreofdarious goals of the optimizer and
the various forms of exponential path cost:

Representatiogoals:

o avoid dilution of path-specific opportunities, but

o do not model all possible paths separately.

Analysisgoals:

o collect all reuse exposed by the representation, but
o do not incur too much cost. The cost has two components:

Analysis cost:because the representation models some paths sepatately,lie larger than the
original program.

Profiling cost: for path-specific profile-guidance, we need the frequerafieptimizable paths;
there may be too many paths requiring profiling.

Transformatiorgoals:

o remove all redundancies collected by the analysis (corpésts), but
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o do not cause too much code growth, due to duplicating statenma paths with distinct opti-
mization opportunities (code growth).

After the trade-offs between goals and costs are dividamlstages, they become manageable. In fact, the
overall contribution of this thesis is that we can achiewe tarious (potentially exponentially exploding)
goals of the optimizer, while keeping the cost at a practez!.

2.2 Background and Related Work

One component of this thesis is defining the class of value-@iptimizations and identifying its
members. Another component is characterizing optiminasilyorithms from this class by isolating or-
thogonal issues inherent in the various optimization allgors. The goal of this section is to first describe
common value-flow optimizations and their shared propggie then to characterize them by analyzing the
approaches underlying these optimizations.

The class of value-flow optimizations is comprised of optiations that analyze the flow of values
in a program in order to remove operations that compute &\vhht is redundantbecause: a) it was previously
computed, or b) there is a less expensive way to compute the, @ c) it will not be used in the remainder
of the program.

Partial Redundancy Eliminatio(PRE) is a generalization of global common subexpressinds a
loop-invariant code motion optimization [MR79]. The aim BRE is to delete expression computations
that recompute a value produced previously by other exipressthat is, an expression is redundant if its
value flows to it from a previous identical computation (wWhizan be its own previous dynamic instance).
Both Scalar Replacemelf€CK90] andRegister PromotiofiLC97] remove memory operations that access
memory cells previously loaded by another load operatioiso &Aalled load/store elimination, these two
optimizations, rather than detecting the flow of expressanes, are concerned with value flow of (identi-
cal) addresses for the memory operatio@enditional Branch Eliminatioreliminates conditional branches
that are redundant because their outcome is known along smoeing paths [MW95b, BGS97a]. In this
optimization, the value of interest is the value of the braaandition. Array bound check optimization is
a special case of this optimizatio@onstant Propagationemoves expressions producing values known at
compile-time. Conceptually, constant expressions arerrgant because there is a compile-time expression
from which the value flows to the (redundant) constant exgioesexecuted at run timé&trength Reduction
is another value-flow optimization [DI180, KRS93]. Rathearhreusing the flowing value directly, it is used
to find a cheaper way to compute the result of the expresdfantial Dead Code EliminatiofKRS94b]
eliminates statements that compute a value that will notseel in the remainder of the program.

While all these optimizations share the paradigm of exjplgivalue-flow redundancies, the var-
ious techniques developed to perform the optimizatiorfedin how they analyze value-flow patterns and
how they modify the program to remove redundancies that eriy on some paths. To summarize existing
approaches, three components of the value-flow optimizez baen identified: value-flow representation,
program analysis, and program transformation. Each agiséchnique uses some form of value represen-
tation that prescribes algebraic rules for modeling theiwdlow. Then, the analysis traverses the value
representation to connect redundant computations,d.@entify value-flow patterns. Finally, the program
transformation component modifies the program to removernréant computations.

This thesis divides the process of value-flow optimizatioio ithree components in order to sep-
arate issues that are independent. Such separation leadsetiter understanding of underlying problems,



11

cleaner algorithms, and more general parameterizatiomeoframework. Although few existing techniques
explicitly separate these three components, the followlimge subsections distill the contribution of prior
work with respect to the representation, analysis, andtoamation. Rather than elaborating on the value-
flow optimizationgescribed above, the following discussions analyzes tineiptes behind some important
algorithmsimplementing the optimizations.

2.2.1 Value-Flow Representation

The simplest value representation uledgcal expressionstwo computations are value-equivalent
only if they have the same nanaed the name is not invalidated (killed) along the path. For epdemthe
assignments:=a+b andy:=a+b evaluate expressions with an identical lexical na¥lg; if neithera norb is
redefined between the two assignments, the two assignnm@nfsute the same value under the lexical model.
Note that the actual verification of the rule is left for th@gram analysis component (Section 2.2.2) which
traverses all paths between the two assignments. The lesdtize representation is used in many basic
and advanced optimizations: subexpression eliminatmop-invariant code motion [ASU86], and partial
redundancy elimination [MR79, Dha91, KRS92].

The lexical model is overly restrictive. It fails to uncowalue equivalence when two different
variables carry the same value. For example, following aigasentx:=y, expression®*x and2*y are
value-equivalent, although lexically differedalue numberings a method for finding equivalences of lexical
expressions in the presence of such copy assignments [CB&Yyalue numbering model relaxes the lexical
identity to the identity of syntax tree representations)giressions:2*x may be equal t@*y (but not to
2+x). The validity rule is also relaxe@*x is equivalent t@*y if x was assigned tg or vice versa, or if their
assignments computed expressions that are (transitieglyiyalent in the value numbering model.

While value numbering traces value flow across copy assigtsnit fails when the assignment has
a more complex right-hand side. For example, array expmesdi[i + 1] and A[i] are identical ifi is updated
between the two computations with the assignmiert i + 1. The value equivalence of[i + 1] and AJ]
can be determined usirgymbolic manipulatiomnd simple algebraic rules. Various methods for symbolic
value models have been proposed. Rau develops a conceptonehiork [Rau91] in the spirit of abstract
interpretation [CC77] in which repeated back-substitutdd names along loop back-edges can detect loop-
carried value equivalences on a path-per-path basis. @hesfvork concentrates on formalizing the problems
that arise in naming and comparing symbolic expressiomgraiing in different loop iterations; it does not
develop practical solutions to these problems.

Reif and Lewis provide a formalism for using back-substitisymbolic expression names on
the program control flow graph for determining constant &al[RL77]. More recently, a symbolic back-
substitution technique based on the Gated Single Statig@isent (GSA) representation [BMO90] was
presented by Tu and Padua [TP95]. To name values in a patiitigerfashion, they assign path predicates
to symbolic expressions using GSA gating functions. Thigrapch can be effective in answering queries
on pairs of symbolic expressions, especially when the tiegusymbolic expressions have simple gating
functions. In order to use this representation for data-#oalysis, a powerful Boolean symbolic evaluation
system may be needed. Johnson and Schlansker describe ttoa system can be constructed and utilized
in solving predicated flow problems [JS96].

Briggs and Cooper propose a simple symbadiassociatiorthat improves value numbering by
reordering nodes in the abstract syntax trees on which valagers are computed [BC94]. For example,
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by transforminge; = (a + ¢) + b into the canonicala + b) + ¢, it can be found equivalent with another
ea = (a+b) +c.

Finally, there are data-flow frameworks for array value-flovalysis, intended primarily for load/store
elimination [BG96, DGS97]. By focusing their applicationrdains to single loops with affine functions of
loop induction variables, they model flow between recureeray elements, such ai] ad A[i + 1].

This thesis presents a value-flow representation, cafédde Name Graphthat combines the ca-
pabilities of syntax-based value numbering and symbokduation methods.

2.2.2 Data-Flow Analysis

Data-flow analysis is a bridge between the value-flow reptesien and the program transforma-
tion. By traversing each path between potentially equiviademputations, the analysis verifies the algebraic
rules posed by the representation, for example, whetheriabla has been redefined. Being a tool for
summarizing global program properties, data-flow analgsstifies value flow patterns (whether a value is
computed on incoming or outgoing paths), which is then usaglitde the program transformation phase of
value-flow optimizations. The following discussion shoWwatteach existing technique that is not restricted
to individual basic blocks uses global data-flow informatidirectly or indirectly.

Elimination of redundancies usually requires computatba few data-flow problems to guide
the transformation. Global common subexpression elirdnatomputes availability of lexical expressions
and removes the statement if the value it produces is alaitdbng all incoming paths [ASU86]. Partial
redundancy elimination (PRE) based on code motion of reauinstatements is formulated as a bidirec-
tional data-flow problem [MR79]. Modern PRE formulationsdmpose the bidirectional problem into two
unidirectional problems: availability and anticipabhjlitalso called very busy expressions) [KRS94a].

To determine which redundant statements can be removedpfireach in [RWZ88] uses the no-
tion of dominators: if a computation is dominated by a vadggrvalent computation, then it can be removed
because its value has been computed on all incoming exaqudiths. Data-flow analysis is used here to
calculate the dominator relation. Global value numberiy¥88] verifies the value model using the Static
Single Assignment form (SSA) [CFR®1]. Because SSA encompasses information on whether diaisa
redefined between two program points, it can connect defitstand uses of the same variable. The SSA is
computed from the dominator relation and hence containddkes flow component, too.

Program analysis can navigate the transformation prooetsrbf, besides proving equality of
computations, it also gives an estimate of the benefit gaiyeithe optimization. Such benefit can be de-
rived from a program profile, traditionally representedhie form of execution frequencies of control flow
graph edges. Ramalingam developed a data-flow analysigtvark that computes the probability of a fact
occurring, rather than only Boolean existence informafieam96]. Unfortunately, the framework does not
explain how to apply frequency-based problems to maximparozation profitability. This thesis provides
such a methodology.

Because advanced program analysis is costly in time, pra@arch has developed methods for re-
ducing its cost. Hankt al. propose a region-based compiler architecture in whichgrtores are partitioned
into disjoint segments that are analyzed and optimizedragglg [HHR95]. By selecting appropriate region
sizes, the usually quadratic complexity of optimizatiogaalthms will be prevented from exploding beyond
practicality. Duesterwal@t al. developed an orthogonal approach which, instead of ligitire analysis
scope, examinesn demancdnly those program statements that may affect the resul§@xG This thesis
uses the demand-driven approach for performing intergrtoral value-flow analysis.
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2.2.3 Program Transformation

In the long history of research and implementation of vélaeroptimizations, four distinct trans-
formations for removing value-flow redundancy have beerbatified: code deletion, code motion, control
flow restructuring, and control speculation. In an integaural domain, inlining and cloning have also been
applied to enable exploitation of opportunities that emisinterprocedural paths.

Codedeletionis the simplest form of removing a redundant statement: éfwailue of the state-
ment is previously computed along each incoming path, thenstatement can simply be removed. To
verify that the redundancy exists along all paths, the ogation can be restricted to basic blocks, as in
subexpression elimination [ASU86] or value numbering [@]SE&or applying deletion globally (across mul-
tiple basic blocks), data-flow analysis is applied to confihat the value is available along all paths, as in
global subexpression elimination [ASU86]. Alternativedpminators can be used, as in global value num-
bering [RWZ83].

Deletion is impossible when a statement is redundant alastga subset of all incoming paths.
Code motion is a technique that hoists the partially redohsi@tement so that it is removed from paths on
which it is redundant. Effectively, hoisting introducesygoensation code on non-redundant paths, chang-
ing partial redundancy into full redundancy, which enaldleketing the statement from its original position.
Loop-invariant code motion is the simplest form of such motiransformation. Morel and Renviose gener-
alized it to arbitrary control flow graphs by formulating tt@de motion problem as a bi-directional data-flow
analysis problem [MR79]. Knooegt al. found a uni-directional formulation for this problem [KR&H].

The necessary code motion may be blocked when it would charaggam semantics or impair
the program for certain inputs. When code motion fails tonglate all partial redundancies, control flow
restructuring can be applied. In value-flow optimizati@structuring is based on separating the optimizable
paths from the unoptimizable paths, which is accomplisheddmplicating all statements along the path
that needs to be separated. A simple form of restructurinigiligluplication [HMC*92] which separates
frequently executed paths to improve scheduling by seipgrabntrol flow merge points. Restructuring is
also necessary when redundant operations are unhoissaigle,as unconditional branches [MW92a] and
conditional branches [MW95b, BGS97a].

Guptaet al. apply control speculation, which is a transformation timeserts computations onto
paths that did not compute these computations in the unggérprogram. As a result, some paths are
optimized and some are impaired. To control the impairnmeenin-time program profile is used [GBF98]. A
form of speculative PRE was also explored in [HH97, Ca8].

Other kinds of value-flow optimizations are also built on onenore of these four transformations.
Elimination of partially dead values presented in [KRS94tgximizes optimization that is possible with
code motion alone. Dead values that cannot be removed witk owtion must be eliminated through
restructuring, as shown in [BG97]. Strength reduction (aemsion of PRE) has so far been presented as a
code-motion optimization [DI180, KRS93].

Clearly, the four transformations differ in their power aswbt [BGS98a]. Deletion is only appli-
cable on fully redundant operations, and hence is not daifab path-sensitive optimizations. While code
motion is economical in that it does not increase code sizg léss powerful than restructuring, which can
eliminate all redundancies but may incur significant codadesion. Control speculation does not remove all
redundancies and it impairs some paths, but it introducetupbtication. The goal of this dissertation was to
integrate the transformations so that the more econonrmasformations are used whenever possible, and
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the costly one (control flow restructuring via code dupi@al is resorted to only when its result would be
expected to result in a significant run-time speed-up.

2.2.4 Path-Sensitive Optimization Frameworks

A few path-sensitive value-flow optimizations developeda&te are either highly specific or amor-
phous enough to escape the three-stage classificatioe¢myation—analysis—transformation). Consequently,
we present them as frameworks.

Holley and Rosen [HR81] were first to recognize the benefitaifitaining program assertions that
are specific to individual execution paths during the anslya theirqualifieddata-flow framework, control
flow paths on which a variable has different constants ararségd through (virtual) code duplication. Path
duplication results in exposing path-specific contextsictvlare then used not only to remove conditional
branches whose outcomes are known in a given context, buaply to improve def-use computation. Be-
cause removing redundant branches also removes some pathgauld never be executed, def-use pairs
realizable exclusively along infeasible paths are notispisty collected on the expanded control flow graph.
Originally developed to improve analysis on programs wBMIregister-indirect jumps, the analysis does
not scale to general branch elimination where many varsablest be analyzed. A practical solution to multi-
variable analysis is offered in [BGS97c] by means of demaaddh correlation analysis, which reduces the
cost of finding redundant value-flow patterns.

Rather than associating path-specific data-flow facts witfitation paths in the graph-theoretic
sense, Johnson and Schlansker represent the executigragdloolean expressions derived from predicates
of conditional branches on those paths [JS96]. Intendedftimization of programs with predicated ex-
ecution [MLC"92], their analysis is primarily applicable for removingusipus dependencies that prohibit
operation reordering or register allocation [ED95]. Hoeevelaxing or strengthening the predicate condi-
tion guarding the execution of an operation correspondsdeimg the operation in the control flow graph,
and hence can achieve optimization.

Steffen [Ste96] presents an extension of the Holley-Ropenaach. In higroperty-oriented ex-
pansionframework, path separation is driven not only based on eonsbf variables but also on particular
assignments being or not being previously computed on a péltiis allows elimination of branches (as
in [HR81]) as well as of entire assignments. Steffen als@oles that some code duplication may be unnec-
essary and re-merges back unnecessarily split paths usitegdiate automaton minimization.

Ammons and Larus [AL98] extend Holley’s and Rosen'’s qualii@alysis by separating the paths
not on variable assertions but instead on frequently erelcpaths which are separated from each other
to maintain thehot path-specific context. Profile-directed graph expansiam psactical alternative to the
Holley-Rosen and Steffen property-oriented expansiomagghes: while some path contexts are sacrificed,
those along dynamically important paths are preserved. fldmework is presented as a constant prop-
agation optimization. After the analysis, the algorithmambines separated paths that present no useful
opportunities.

In a global view, preliminary research conducted as parhisftesearch has identified four main
issues withpath-sensitivevalue-flow optimizations: a) solvingon-distributiveproblems without conser-
vative approximation (e.g., non-linear constant propagatb) collectingpath-specific opportunitie.g.,
variable has a different constant along each pathgxp)oitingspecific opportunities (e.g., enabling folding
of path-dependent constants through restructuring), adé@ekcting the analysis effort towards hot paths.
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The approach of Ammons and Larus attacks all four issuesumiy by separation of hot paths,
their subsequent individual analysis, and recombinatimstead, the approach proposed by this thesis is to re-
serve restructuring for the actual transformation. Thiglies a different overall strategy: a) non-distributive
problems are solved precisely aloal paths by customizing the data-flavame spac@BA98], b) distinct
path-specific opportunities are collected through dendneen analysis as in branch elimination [BGS974a],
c) all profitable opportunities are exploited with econoahitansformations (code motion and speculation),
and d) infrequent program regions will be avoided using tfudile-guided demand-driven analysis.

Guptaet al.[GBF97b, GBF98, GBF97a] also use path profiles to carry otht-pansitive optimiza-
tion. Similar to the method of Ammons and Larus, path profiesused to maintain path-specific context
along each hot path. The results of the analysis are thentasetkgrate code-motion with control specula-
tion. In contrast to the method of Ammons and Larus, the foansation is delayed until after the results of
the analysis are known.

2.3 Contributions and the structure of the thesis

In each of the stages of the”HFINDER framework, this thesis develops new techniques. Next,
we summarize these contributions, on a per-chapter basis.

Chapter 3 Representation. This chapter develops théalue Name Graph (VNGa novel program rep-
resentation that models the flow of recomputed values. Bybsjically naming each value of interest, the
VNG reduces the (hidden) value flow into the (exposed) data flas a result, recomputation is detected
essentially as reaching definitions. The representatiomesahe value on demand, for a set of optimized
computations. Although the names are formed separatelgach path, obtaining path-sensitivity, any two
paths are analyzed separately only when it matters, i.enue value has a different name along these two
paths.

Chapter4 Dataflow analysis.This chapter develops a dataflow analysis technique forimgdptimizable
paths. This marking is used to guide the subsequent tranafam. Rather than enumerating all optimizable
paths, the analysis encodes them with polynomial compiéxie way from which the transformation can
recover them. The solution is based on a lattice that infommether, at a given point, the value flow exists
along all, some, or no paths. This chapter also shows howrforpevalue-flow analysis inter-procedurally.

Chapter 5 Dataflow analysis (with profiling).To assist in making the transformation trade-offs, the-anal
ysis weighs the marked paths with a run-time profile. Unfoately, precise weighing requires frequencies
of all paths. To make profile-guiding practical, this thetgselops a family oéstimatoralgorithms based on
edgefrequencies, a cheaper but inherently imprecise altemaiVhen weighing the reuse, estimators bound
the inherent error, adding confidence to imprecise profiles.

Chapter 6 Transformation (intra-procedural).This chapter develops a transformation that (nearly) com-
pletely removes all redundant recomputations, at almast zede growth. The transformation combines
three orthogonal methods. We resort to the expergstle duplicationtechnique only when the growth-free
code motiorfails to transform the program, and only when the profilesginicontrol speculatiortannot prof-
itably impair some paths to optimize others. The spectrum@drithms is based on a single abstraction, a
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Code-Motion-Preventing (CMP) Regiowhich identifies adverse effects of the control flow on thsiel
optimization.

Chapter 7 Transformation (inter-procedural). This chapter develops a transformation that completely
removes redundancies that are interprocedural, i.e e tivbsre the value flows across procedure boundaries.
Rather than resorting to (expensive) inlining, we separptienizable paths by generating multiple procedure
entry points and multiple exit points (which may return téietient points in the caller). Thanks to entry/exit
splitting, paths can be separated across procedure boesdaven when the call site invokes one of many
procedures, as in virtual procedure calls.

Chapter 8 Empirical evaluation. This chapter compares the power of our framework with thadrof
ideal value-flow optimizer, using the optimization of redant loads. We developed a run-time program
monitoring algorithm that exposed the amount of value rguesent in the program. This ideal amount was
compared with the amount detected by our analysis. We obdd¢imat we captured at least 80% of the reuse
present in the program.

Overall, the techniques presented in this thesis improteonty the effectiveness but also the
efficiency of the optimizer. The improvement stems from tieving:

e the thesis developsgeneric frameworlrom which new optimizations can be derived,

e the power of the representation and transformation alyostresults from combining techniques with
orthogonal strengths

¢ the trade-offs of the program transformation prefile-directed and

¢ to evaluate the power of the framework, we performed a litaidg which served as an ideal reference
point.

2.4 Preliminaries

This section presents the necessary definitions. The réadssumed to have some background in
dataflow analysis [Muc97] and Single Static Assignment paogform [CFR™91]; the rest of the thesis is
developed from first principles.

We use a control flow graph (CFG) as the underlying programesgmtation because it is the
most commonly used intermediate program representatibotim production and research compilers. Fur-
thermore, because CFG directly exposes program’s contwlghths, it enables an intuitive and efficient
formulation of code motion, and has thus become the starmdgmesentation for expressing redundancy
elimination [KRS94a].

Definition 2.1 (Directed graph) Directed graph is a pair(V, E) whereN is the node set andl is the
edge setF C N x N. Immediate predecessor and successors of nodes are definedapspredandsucc
predn) = {m|(m,n) € E},sucgn) = {m|(n,m) € E}. Afinite pathof G is a sequencé,, ... ,ny) of
nodes such that;, n;.1) € Fforall 1 <i < k. The empty path is denotéll. The length of a path is
denoted by\,. A subpathy of pathp is a continuous subsequencepodtarting at theth element ofp and
ending atjth element ofp, denoted byy = p[i, j], 1 <i,j < A,. If i > j, thenp[i, j] = (). If the subpath
excludes théth (jth) element, we will write; = pli, j] (¢ = pli, j]). O
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Definition 2.2 (Control flow graph) A control flow graph7 = (N, E, start, end) is a directed grapfV, E),

in which nodesn € N represent individual program statements (instructionf)e nodes are assumed
to contain three-address statemenys:= v, operatory; built on the variable set’ = {v;} of the pro-
gram [ASU86]. Edgegm,n) € E represent the non-deterministic branching structure efptogram.
Nodesstart andendare the unique start node and end nodé&'pthey are assumed to have no predecessors
and no successors, respectively. It is assumed that evdgrne N lies on a pathy = (start, end. O



Chapter 3

Value-Flow Program Representation

The value-flow representation is a value-centric model efgtogram; it exposes value-equivalent
instructions. Specifically, it finds control flow paths alomgich avalue flowshetween instructions comput-
ing the value.

Typically, when analyzing programs for value recomputateach value is identified with its lex-
ical name. When two expressions match the name, they cortfmutame value. But what name should be
used when the value flows between equivalent expressionbakia different names? The program repre-
sentation presented in this chapter overcomes the namitdgon by synthesizing names that fully trace the
flow of a value and by performing data-flow analysis on thistlsgsized name space.

The RTHFINDER analysis integrates three orthogonal techniques: symbugrpretation, value
numbering, and data-flow analysis. Symbolic interpretaficst creates all necessary names, and the value
numbering technique then determines which names are symorg, The result is expressed in a new
program representation, called tilalue Name GraplfVNG). Once the VNG is constructed, any conven-
tional data-flow analysis can answer two fundamental opgtition questions: which computations are value-
equivalent, and along which control flow paths?

The VNG is path-sensitive: value reuse is detected even wheh path requires different names,
for example due to conditionally incremented loop inductariables. The VNG can be parameterized for
redundancy optimizations such as common subexpressimmalion, constant propagation, or load/store
elimination. By phrasing these optimizations on the VNG olséain greater optimization power and broader
applicability.

This chapter begins by presenting two goals of the repratentin Section 3.1. Next, Section 3.2
contrasts the flow of data with the flow of values, and defindsevllow formally. Section 3.3 briefly de-
scribes the most common approaches for detecting value fibawsing on their strengths and weaknesses.
Section 3.4 presents the construction of the VNG, and explahy the VNG is a synergy of three orthog-
onal existing approaches. Finally, Section 3.7 compare¥tHG with other value-flow representations and
Section 3.8 experimentally evaluates its scalability, #n also its practicality.

3.1 The goals

Value-flow representation exposes the recomputation ofueeva the program, to facilitate value-
flow analyses and optimizations. In theT® FINDER path-sensitive value-flow optimizer, the representation
has two distinct goals:

1. Which instructions compute the same value? valae-flongoal)

18
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load A[0O]
v
p3 min:=i:=0
I Al 0] ‘
val := .
mn:=i :=0 load A[i]
do . . . *
it (Ali] < Almin]) load A[min]
mn :=i
i =i+l N .
while (i<N) pl min:=i
/p2
=i+l
_J /
a) the source program. b) the value flowAgmin].
Figure 3.1:The FIRSTMIN program.
2. Along which paths do they compute the same value? path-sensitivgoal)

Both goals are important to perform the optimization, assilated by the program in Figure 3.1(a). The
program, FRSTMIN, traverses an array and computes into variabhain the index of the smallest element
in the array. A close examination of the program revealstti@toad ofA[min] is redundant, due to the fact
that the value ofA[min|] has been loaded from the memory by some other instructiorgaach path leading
to the redundant load. The redundancy can be shown on a febasis as follows. Along path, (taken
when Afi] £ A[min]), the expressiom[min] in the current and the following iterations refers to the sam
memory location; hence, the later load is redundant. Alaty p, (taken whend[i] < A[min]), the variable
min is redefined andi[min] no longer refers to the same array element. However, aldeg#th, Afi] in
the current iteration equaks[min] in the following iteration. Hence, path offers a reuse betweeti] and
A[min|. Finally, along pattp; (taken when the loop is entered), the valuel@hin] equals4[0] loaded before
the loop. In conclusion, because pajhs p», p3 “cover” all possible paths leading to the load 4fmin],
whichever path is taken td[min], its value has already been loaded previously and can bedeus

This detected redundancy enables the removal of the loaftefn], which in turn enables schedul-
ing the loop better, at twice the iteration issue rafEhe 100% speed-up is due to reducing the critical path
of data and control dependences in the loop, as explaineddtiod 1.2. Figure 3.2 shows the schedule for
the critical path of the RSTMIN loop, before and after the removal of loadAfimin].

The moral of the RSTMIN example is that a traditional, pathsensitive analysis fails to discover
the redundancy that leads to the optimization. The reasoitsfdailure is that when pathg, andp. are
considered together, it is impossible to detect that eatthtpss a different source of value reuse (the source
on p; is A[min], and the source op, is A[i]). In other words, while both paths are optimizable, they are
optimizable in a different way. Without path sensitivithese optimization opportunities are diluted, as at
most one of the two sources can be discovered by the pathsitise analysis.

In conclusion, both goals of the representation are nepefsaa powerful optimization. It is not
enough to detect value flow. It must be detected in a pathtsensay.

! Assuming thef statement is compiled into a conditional move instructi®itg3, Dul98].
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o r :=val := A 0]
val := Al 0] Lo
mn:=0 Imn_a 0
I 2=0 do._
do . .
the source program: - . . if (A[i] <)
AT < AL Mo
_ [ :_=i+1 i .=ri;zA[|]
while (i <N while (i <N)
1 adr := A+ nin
2 r :=load adr 1 if r < Al
the schedule (per cycle): 3 ifr < Ali] > nin = } roi= AN
4 mn :=i
before optimization after optimization

Figure 3.2:The benefits of optimizing HRSTMIN. The instruction schedule of the loop, before and after
the removal of loadd[min]. The schedule shows only the instructions on the criticil padata and control
dependences.

3.2 Whatis value flow?

This section explains why detecting value flow is hard. Itillsssome properties of value flow,
shows why it is not explicitly exposed by the program text] aantrasts value flow with data flow (which is
explicitly exposed by the program). Overall, this sectitterapts to outline the properties that a value-flow
representation needs in order to achieve the two goaldsitatine previous section. These properties are
relied upon in the following section, to explain the insuiffitcy of existing value-flow representations. This
section concludes with a list of practical analysis protdehat can be phrased as value-flow problems and
thus solved in the &/HFINDER framework.

3.2.1 Value flow versus data flow

Proceduref in Figure 3.3(a) exhibits two instances of value reuse. R#gss of the procedure
parameterz, two pairs of statements always compute the same vatiseS; and Sz, S;. Their value-
equivalence becomes visible when the value they computgigssed in terms of the procedure parameter
a, as shown in Figure 3.3(13).

Although contrived, the example illustrates why analyamfue flowis harder than analyzingata
flow. The distinction between the two is typically not acknovged, perhaps because a simple approximation
of value flow can be computed as the well-known dataflow proldé available expressionss described
later in Section 3.3.1. However, we argue that the two flovesganalitatively different.

Dataflow analysis problems typically examine propertiesarfables For example, the problem
of reaching definitions is to compute, for each variabénd each program node the set of definitions of
that may reach. Similarly, the liveness problem is to compute whether thadh the variable will be used
in some instruction on some path framto end Dataflow analysis is well-suited for such variable-centri
problems because the definitions and uses of variables a&reustfrom the program text. In our example,

2Note that variables and z each have two distinct live ranges. For examplés defined as an actual parameter
and also in statemerft;. This duplicate (but feasible) use of a variable name isinteal; it serves to demonstrate, in
Figure 3.8, that one cannot rely on the names of variablesalthen naming a value computed by a statement.
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f(a) {
Si: b :=-2*a
So: X :=b- a Sy =S5 = —3a
Ss: a .= 2*b - x
Sy’ X :=b - a S3 =84 =—a
Ss: zZ .= a+ x

}

a) b)

Figure 3.3:Data flow versus value flow.(a) The procedure with two instance of value reuse, betwigen
andsSs, and betwees; andS,. (b) Values computed by the two pairs of equivalent statemexpressed as
a function of the procedure parameter

the fact thatz is live on the exit of the statemeft is evident from the fact that is defined inS, and used
in Ss.

On the other hand, value flow problems are concerned withguties ofvalues we want to know
which instructions compute the same value. Compared t@abias, values are “invisible” entities: while
each variable has a unique lexical name, a value may a) eequiltiple names and b) may not even be stored
in any variable as iflowsbetween the value-equivalent statements. Consider thie fiaw betweert, and
S5 in Figure 3.3: a) the value has a different lexical name atlzestatementsi(versusz); and b) between
S, andSs, no variable stores the value—the value will be “resurr@ttamly whenS; executes.

In summary, while the flow of data is lexically exposed, bydleéinitions and uses of variables, the
program text does not directly identify value-equivaldatements. This qualitative difference is illustrated in
Figure 3.4, where data-flow related statements are corthedtie def-use edges (left), and value-equivalent
statements are connected with “value-reuse” edges (rigthg value-reuse edges are not obvious from the
program text. Instead, they require some form of algebraicipulation.

To turn the above discussion into desirable propertieseptth-sensitive value-flow representa-
tion, we can state the following:

e The representation must add edges to the program that witlexi the equivalent statements, reflecting
their algebraic equivalence. The edges need not be addegicphy; they may be represented by
assigning equivalent computations identical labels (afsdorm).

e These “equivalence” edges must be placed in a path-semsitly, as shown in Figure 3.1(b), where
pathsp; andp, represent the “equivalence” edges. These edges are pathins® meaning that the
computations connected with the edges are equivalent dmhgaome paths between the computa-
tions.

The edges can be viewed as def-use edges. With such a vieflguthef values will appear as flow of data.
Thus, the representation reduces value flow problems tofldatgoroblems. This is precisely the approach
taken by the Value Name Graph.

3.2.2 A formal definition of value flow

Our framework optimizes any problem from a classalue-flowoptimization problems. To define
the value-flow class, we need to first introduce the languéggrobolic names that will be used to construct
value threads of the Value Name Graph.
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Definition 3.1 (Symbolic Language)A symbolic languages a tuple(S,w, b), whereS is a set of symbolic
names that represent values computed by program stateofentsrest;w € S is a distinguished symbolic
name denoting values that cannot be represented with ang @ans \ {w}; andb: N x S — S'is a back-
substitution function that maps a symbolic namg at the exit of a CFG node € N to a corresponding
symbolic namee,.,, at the entry oh. b(n,w) = w for every node: € N. O

A symbolic namee € S is a finite string over an arbitrary alphabet. Typically, #giphabet is a
suitable subset of program variable names, literals, eomstintegers, and operators. See Section 3.4.1.1 for
a discussion on how the symbolic language should be selémtedparticular value-flow optimization. We
present next two simple examples of the symbolic language.

Example 3.1 The following languages; expresses values computed by arithmetic statements cechpbs
additions and subtractions. A symbolic nambelongs taS; iff some of the following conditions holds:

e = c¢y+civr+...+cpug

e = w

wherew; is a program variable, < i < k, andc; is an integer() < j < k. The symbolic language can be
used by the value-flow program representation to represigmireetic expression® defined by the following
grammar

E = v
| ¢
| (E+E)
| (E-E)

The back-substitution function can be extended to transfeymbolic names across CFG paths
rather than nodes: §f = (ny,... ,nx) is a CFG paths, theb(e) = b(ng, b(ng—1,... ,b(n1, e))). Now we
are ready to use the symbolic language to define the flow oégalu

Definition 3.2 (Value Flow) Letp = (n;,... ,n;) be a CFG path ane;, e; be the values computes by the
statements in nodes;, n;, respectively. We say that the value computed in neg#owsalong pathp to
the value computed in node; if for every pathg = (start, n;) there isk such that(g[k, A;], b(p, €;)) =

3

b(glk, N, i) # w. O

An analysis problem belongs to the value-flow class if a sylmbb@nguage can be specified that
allows to specify the problem by means of value flow (as in tkeériition 3.2).

Example 3.2 In Figure 3.3, the value computed 8y flows to S, because(({S1, Ss), b((Ss,S4),z)) =
b((S1,S3),a) = —a # w.

*Note that a symbolic name may algebraically simplify its source expressifn Therefore, care must be taken
to ensure that the (arithmetic) evaluation of any symbolimae is equal to the (machine) evaluation of its source
expression®, in particular due to overflows of the finite machine représion of integers.
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Figure 3.4:Compared to data flow edges, value flow edges are “intangibleWhile def-use edges can be
identifiedlexically, i.e., from the text of the program, the value-reuse edggsire some form osymbolic
manipulation of the program, to expose the algebraic etpreas.

3.2.3 Program optimization problems characterizable as Vae flow

We list below a few common problems that fall into the valuafldass and can thus be solved in
a value-flow framework.

e value recomputation (expression, loads),
e branch correlation (and hence array bound checking),
e constant propagation,

e some type inference problems.

3.3 Existing techniques for value-flow detection

This section reviews three existing techniques for detgctalue flow: dataflow analysis, value
numbering, and symbolic evaluation. These three techsigreeorthogonal because each can detect different
kinds of value-equivalent statements. The (incomparaitengths of these techniques are described here
primarily because our value-flow representation integrttte three techniques in a way that preserves their
advantages and removes their limitations, as will be diesdrin Section 3.4.

3.3.1 Dataflow analysis

While dataflow analysis is in its nature most suitable forsia of the flow ofdatg it is the most
commonly used technique for detecting (an approximatigrited flow of values[KU77]. For example,
the well-knowndataflow problem ofavailable expressionsomputes an approximation of thalue-flow
problem of availability of values. In available expressippach value is identified with its lexical name,
typically the right-hand-side of an assignment. When twackl names match, the expressions compute
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identical values (unless the lexical name is killed along prath, i.e., one of the variables appearing the
lexical name is redefined). Because the analysis uses oalgame per value, it cannot detect computations
that are equivalent but have different names. For examipdegguivalence ofi[i] and A[min] along path

p2 in Figure 3.1 will not be detected by available expressidda.the other hand, when dataflow analysis
finds equivalence, it does so in a path-sensitive fashionirstance, in the same example, the equivalence
of A[min] alongp; is detected and, as a result, the pathcan be “marked” by the dataflow analysis as a
path along which the expressietimin| is available. In summary, dataflow analysis is path-sesmsiiut not
value-sensitive.

3.3.2 Value numbering

Value numbering partially overcomes the naming problematéfiow analysis. For each value,
it builds an abstract syntax tree, which serves as its “raifiveo names are equivalent if their syntax trees
match: they have identical shape, including operatorsragrimodes, and identical variables at leaves of
the tree. Value numbering is local (works in basic blocks) therefore not path-sensitive. Global Value
Numbering extends value numbering along all paths, buillirstuires that the equivalence holds along all
incoming paths [AWZ88]. In summary, value numbering iseitor discovering which names refer to the
same value (are synonymous), but is not path-sensitivetfigequivalent computations must be synonymous
along all paths connecting them). Furthermore, value nuimépés not able to perform (arbitrary) algebraic
manipulations of value names.

3.3.3 Symbolic evaluation

There are various ways to symbolically execute a computatitere we are alluding to methods
that perform algebraic simplifications of expressions. €ant propagation algorithms are such methods.
They may fold constants into expressions and evaluate teesentially simplifying the expressions. Another
method is to perform a symbolic backward substitution ofgpam expressions. In contrast to constant
propagation, the algebraic simplification is symbolicheatthan arithmetic. Such symbolic simplification
does not easily extend to path-sensitivity (it is not cleawtio handle paths on which a value has different
names). However, Tu and Padua were able to make symbolipoiation global (i.e., working on all paths)
using a version of SSA form [TP95]. In summary, symbolic npaiation of programs is suited for creating
the names for a value of an expression, and for performinglgication on the symbolic names. Such
manipulations, however, are not path-sensitive.

3.3.4 Summary: a need for integration

The three techniques described above are orthogonal—aadieaused to detect a certain class of
value redundancies [ARZ92]. Their strengths, summariaédgure 3.5, are integrated in our representation,
as follows. We use symbolic evaluation to name the valuefémas through the program. Such names will
sufficiently describe the value, even when it is not resideahy variable. Value numbering will compact the
symbolic names. Together, the two will build a represeatetihat will reduce value flow into the data flow.
Finally, dataflow analysis will be used to mark paths alongcivineuse exists, obtaining path sensitivity.
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data-flow analysis

+ finds paths with reuse
- only one name per value

value numbering symbolic evaluation
find synonyms algebraic simplification

Figure 3.5:Three orthogonal value-flow detection techniquesDataflow analysis is a path-sensitive tech-
nigue, as it can mark paths along which a value is recompuediever, the recomputation of the value is

detected only when all computations involved use the sameerfar the value. The strength of symbolic

evaluation is that it can connect, by means of algebraicl#ficgiion, identical computations even when they
compute the value under a different lexical name. Finalyii®@ numbering add another symbolic manipula-
tion dimension, by discovering which names are synonymous.

3.4 Value Name Graph

The preceding sections have set the stage for the presentditine program representation. Sec-
tion 3.1 distilled two goals of the program representattwat are needed for an effective optimization, Sec-
tion 3.2 explained why value flow is not exposed by the traddi program representation, and Section 3.3
showed that, while existing approaches do not offer a safiicsolution, they offer complementary qualities
whose integration could form the basis of the desired regmtasion. ThéValue Name Graph (VNG3} ex-
actly such an integration. This section first intuitivelypéains the VNG and then presents the three steps of
its construction.

Our representation is called a Value Name Graph becaus@dses the value flow by properly
naming the (recomputed) values that flow between equivalemiputations. The central idea is to create
sufficient names so that a value can be identified even wheowis foutside the scope of the lexical name
under which it is originally computed. Where the originahmais not valid, an equivalent symbolic name
is used. The symbolic names fovalue threadswhich conceptually represent the value-flow arrows in
Figure 3.1(b). The VNG is the collection of these value tdeaPropagating dataflow facts along these
threads achieves

e symbolic analysishecause the threads represent symbolic value names, and
e apath-sensitive value-flow analysisecause a thread is formed for each individual program path

The synthesized names are created using symbolic sulmstgutising a backwards propagation
of the lexical name of the value, as follows. Clearly, wheralug is computed by an instruction, it can be
identified with its “lexical” name. Consider the value conguliin the statemeiff; in the example below; the
value is identified with the nanme+ z. We want to propagate the name backwards and modify it wiesriev
becomes invalid. While this (lexical) name is valid at thé&gof Ss, it is not valid at the entry of,4, because
the value ofr beforeS, is different than befor&;—we say thatS, invalidates the name+ .
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Si: b= -2*a < namey(Ss) = —3a

So: X :=b- a + nane,(Ss) =b—a

Syt a = 2%p - x & names(S) =z

Sii x 1=b- a < namey(Ss) =2b—a
< name;(S;) =b+x

Ss: z 1= b + Xx

Whenever the propagated value name is invalidated by agrassit to a variable in the name,
another (symbolic) name for the value is synthesized usauk{substitution. Across§,, the name + z
changes t@b — a, because is substituted witth — a. As long as the symbolic name can be expressed in a
selected language of symbolic names, this process identifgevalue along its entire flow. The sequence of
created names forms a value thread. The central propertedf NG is that the computations that lie on the
same thread compute the same value. In the exarfiplend.S; lie on the same thread (because naffie)
=name(Ss)).

While the value threads achieve the goal of identifying tamh computations, they contain too
many symbolic names to be useful as a practical representdthe final Value Name Graph is compact; it
encodes the value threads using scalar variables. Eachutatiop is rewritten to refer to a scalar variable
C;. When two computations refer to the saifig they are on the same value thread. The VNG for the
above example is given below; equivalent computations itefé¢he same scalar variable (see Figure 3.3).
Technically, the VNG below is not a graph. Instead, it is agpaonform that encodes the graph. We will use
the graph and the program form interchangeably.

St G
Syt Oy
Szt Oy
Sy Cs
S5t Oy

Effectively, the scalar variablgs; are “compacted” symbolic names. Sometimes, a value thread
requires multiple names, even after compaction. This&itnaccurs whenever a value must be named in a
path-sensitive way, i.e., when a value has a different syimbame along two overlapping control flow paths.
Collapsing the symbolic names into a single scalar variableesC; would dilute the advantage of path-
sensitive naming. When multiple scalar names are requined/NG connects them usingrassignments.
The ¢-assignments switch between the compacted names, foriwamgp@cted) value threads. Figures 3.6
and 3.7 show the VNG for theIRSTNAME program. Each access to arrayis renamed to refer to a
scalar variable”;, and the equivalent computations are connected agr@ssignments. For example, the
value flow betweem[i] and A[min] alongp, in Figure 3.1(b) is manifested as a def-use chéin; Cs :=
#(Cy,C1), Cy := ¢(Cy,C3). The def-use chain identifies the CFG path along which thepetations are
equivalent. In particular, theé-assignments specify that the chain follows only the pathNote that the
VNG not only connects equivalent instructions but also doa®ng the appropriate paths.

Thus, the general rule is that two computations producedaheesvalue when they are connected
with a def-use chain across tigeassignments. The flow of values appears as flow of data, shaside-
pendences between definitions and uses of the scalar &éialaind can be encoded in dataflow transfer
functions.

‘The ¢-assignments are introduced when a “scalar’ representati® VNG is converted into the SSA
form [CFRT91]. In SSA form, each scalar variable is defined (i.e., assigto) exactly once, which is achieved by
renaming program variables at each definitighassignments connect, wherever control flow paths mergevatues
originating at two different assignments of the same pnogvariable.
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Sy:val = A 0] R

- - . .= Go
52: m .n_. =0 A[O] - Oy Cy = ¢(00703)
Sl Al = G |do

4- . .
S.: i f (A[ i ] < A[ mi n]) A[mm] - Oy i f (O] < Cg)
St MmN s Cy = ¢(Ca, C1)
Sy i =i+l while ()
Sg: while (i <N)

the original program the transformation its Value Name @rap

Figure 3.6: The Value Name Graph for theRETMIN program.

YYY
-, 9797 load A[0]
' min:=i:=0

1+ load A[i]

-0 @ .

o 4 load A[min]
i I omin:=i
O-0

O 4 ..

Lo{k /! =i+l

Figure 3.7:The VNG (in graph form) for the F IRSTMIN program from Figure 3.6.

In effect, the VNG converts the problem afailability of valuesnto the problem of reaching def-
initions (transitive acrosg-assignments). In summary, the design of the Value NamelGsag influenced
by the two goals from Section 3.1. The result is the followsadjent properties:

1. The value-flow goal. The VNG elevates the (invisible) value flow to the (visibl@}tal flow level. By
transforming value flow to data flow, the VNG exposes valuemgautations in the form of references

to (the same) scalar variables, allowing us to answer thstiune‘which instructions compute the same
value?”

2. The path-sensitive goal. The VNG supports dataflow analysis. Being a path-sensi@ehrtique,
dataflow analysis can mark the paths along which a value esmpated.

Additionally, because the VNG is a sparse representatioiiagi to the SSA form, it can be im-

planted into existing SSA-based PRE implementations,dwvipg their precision [LCK 98].

3.4.1 Constructing the VNG

Let us start with an overview of the VNG construction. Thestonction has three steps, each cor-
responding to one of the three underlying approaches., Hiessymbolic evaluatioplaces the value thread,
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Figure 3.8:The VNG after Step 1 (right). The thick lines arevalue threadghat connect equivalent com-
putations. In contrast, traditional dataflow analysist)lbtiilds threads using only the lexical name of the
computed value. The lexical names are killed (shown withsttissors), which prevents the (less powerful)
“lexical threads” from connecting equivalent computation

by synthesizing the names that are necessary to trace theflalv. Secondvalue numberingompacts the
value threads, by determining which symbolic names arersyms for the same value. The result of the first
two steps is the VNG. The third step forms the dataflow trarfsfiections using the scalar namé€s. The
algorithm is summarized in Figure 3.11.

Step 1: placing the value threads.The symbolic names are created by propagating the lexical
name of the analyzed computation backwards. At each assigntnat invalidates the current name, the
assignment’s right-hand-side expression is substituttml the current name and algebraically simplified.
The propagation effectively creates a “symbolic” sliceld# briginal computation.

The above example shows only the value thread for the valupuated bySs; Figure 3.8 completes
the example. It shows, in graph form, the value threads f@oahputations in the program. The graph shown
is an intermediate form of the VNG that is never explicitiystructed. At this intermediate stage, VNG nodes
are a cross product of CFG nodes with the synthesized syotmtnes. The VNG edges show how the value
name changes, forming the value threads. The highlightddswepresent the analyzed computations.

Note, however, that even by placing computations on valteatts, the naming of the computed
values is not adequate. Consider the values computed leyrstatsS, andS,. Although the two values are
not equivalent, they are given the same name ¢). The two (identically named) values may differ because
the name — a at pointS; refers to variable that has a different value tharat pointS,. Because one cannot
rely on variable names alone to provide a global naming ftwes in the Step-1 VNG, two computations
can safely be considered identical only when they have the saame at the same program point. Step 2
removes this deficiency by providing a global naming of value

Step 2: collapsing the value threadsThe first step formed the threads, which exposed the re-
computation ofS; by S5. This recomputation was detected becagisandS; lie on the same value thread.
Note, however, that whil&; andS, are equivalent, they are not on the same value thread; tha@dhain
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Figure 3.9:Step 2: collapsing value threads.

of data flow dependences between them and hence dataflovsisrfails to find them equivalent. The lack
of a connecting value thread is explained by the fact thaketkieal name ofS; (26 — z) did not match with
name ofS, propagated t&; by back-substitutions( — ). These two names are howewsnonymsor the
same value, as can be seen when they are expressed as anfofithie procedure formal parameterboth
are equal to-a. The problem is that the back-substitution process mattiieedames of; andS, only at a
predecessor dfs.

This delayed match is inherent in the symbolic back-suligtit process. It is corrected by the
value numbering step, which collapses threads whose namsgrzonymous. Two hames are synonymous if
the back-substitution reduces them to the same symbolien@he collapsed threads are shown in Figure 3.9.
After the threads are collapsed, the equivalent compuisfig and S, lie on the same thread and dataflow
analysis can find the recomputation. Note the change in theeveames. While the first step used the
synthesized symbolic names, the second step names thewiiiuéhe scalar nameS;. The scalar names
directly correspond to the congruence classes formedgluatlue numbering.

Step 3: dataflow analysis.Once the graph is constructed, recomputations of the sale aee
placed on the same (collapsed) threads. Computations axented to accesses to scalar names and the
dataflow analysis determines availability of a value as a BHN. analysis. The analysis is a bit vector
analysis, except fop-assignments, where the dataflow facts are propagated é&etwits corresponding to
the ¢-ed names.

Figure 3.10 summarizes the construction of the VNG usinghhee orthogonal techniques. The
following subsections describe the construction of the ViNGetalil.

3.4.1.1 Initial parameters

The VNG is parameterizable. It can be constructed to expaheflow among arithmetic ex-
pressions, memory load operations, conditional brancdttes, The VNG can be tailored for each kind of
recomputation by specifying the symbolic language thategmties the names of the values during back-
substitution. While the arithmetic recomputations in tlmegeding examples required a name that was an
expression composed of variable names and operatofs x, /, the analysis of conditional branches may
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Figure 3.10:The three steps of VNG construction.

require a name with relational operators, for example 0. Yet another language of names is needed for
analysis of repeated memory accesses to pointer-basestdataires.

The seed set of computations of interest. The first VNG parameter is the set of computations whose
recomputation is the focus of the analysis. These analyasgbuatations serve to seed the back-substitution
process; the value threads will start unrolling backwardsfthem. The computations of interest forrsesed
set O of pairs(n, e), where the name denotes a computation of interest at the CFG ned@he language

of symbolic names will be defined shortly.)

O ={(n,e)|neN,ec S}
Note that whilee is a lexical name, we assume it belongs to the language ofsjomiames.

Example 3.3 The seed seO for the example program in Figure 3.3 consists of the enigetthand-side
expressions, for each node of the program:

O ={(S1,-2%a),(S2,b—a),(S3,2%b—1x),(Ss,b—a),(Ss,a+z)}

The seed set for the program in Figure 3.6 consists of theeadds for the array accesses (assusizepi A[i]) =
4):

O = {(S1,adA)), (S5, ad(A) + 4 x i), (Ss, adf A) + 4 x min)}

O

The language of symbolic names Given a seed se, we have to decide upon a symbolic langudge
from which we will draw the symbolic names for creating thésegthreads. For example, the pattétmay
restrict the symbolic names to the fornx v + b, wherea andb are program literals andis a scalar variable.
Selection ofP is mainly an issue of the implementation, where one desigestable trade-off among a few
issues that influence the accuracy and complexity of theyaisal
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suitability: The format of a symbolic name should suit the kind of compaitatin the seed set, as mentioned
above: arithmetic expressions will need arithmetic omesato describe their values, while memory
accesses have to describe indirect memory accesses. Odecedainly permit all operators and an
arbitrarily deep nesting of expressions; however, sucteedom of expression may create too many
names during the back-substitution process, which mayepiroypractical. In practice, we observed
that simple names are expressive enough for a given kindeaf s@mputations.

semantics:How is the symbolic name evaluated? Daes- y mean the usual addition of values? Does
z + y equaly + z? Is there a canonical form such that two equal expressidwaya” have the same
representation? For example, the canonical form:fee +y may be the alphabetically sorted-y+ z,
which enables matching it with+ = + y.

interpretation: Which program statements modify the name and how? In othedsyevhat happens when
the back-substitution “inserts” a name into a symbolic namieat are the substitution and simplifi-
cation rules? For example, are we willing to substitute dobpy” assignments: := y or also more
complex ones, such as:= y + z. In the latter case, the complexity of the synthesized namess
grow beyond polynomial.

termination: When the symbolic language is infinite, the back-substituthay not terminate, as new names
continue to be created. To force termination, let us intoeda parameten, which stops the back-
substitution after all control flow paths with or fewer cycles have been examined.

implementation:The format of the name must permit efficient implementatieor. example, can two sym-
bolic names be compared in constant time? Can simplificéoperformed efficiently?

Recall that the language is extended with a special namethat denotes all values that cannot be expressed
within the selected symbolic language.

Example 1. Consider the problem of determining redundant address atatipns for accesses to one-
dimensional arrays. Choosig = ¢y + ), . c;v; is sufficient to represent address expressions for array
accesses such a5 = i + j + 3], even multi-dimensional accesses suchifist 1][j + k], but notA[i * j].
The setO contains address operands from all load and store nodeadeetizey are the eventual consumers
of address computations.

To accommodate indirect addressing, the symbolic langoégalue names is enriched with a
pointer dereferencing operateand back-substitution rules for loads and stores. Loadsase the indirec-
tion level: when a name+ 1 is propagated backwards acraéss- load L, it will change toxL + 1. Stores
may reduce the indirection: acrost®re L, ¢, the namexL + 1 will change tot + 1.

Memory addresses are represented with symbolic ndinesy + c;v1 + ... + ¢, v, + E', where
¢; are literals,p; are program variables, ard = %(E) | e. The termE’ adds addressing indirection. In
the actual implementation, one may want to set a maximum eumhindirection levels, in order to limit
the number of symbolic names created during back-sulistitutn our experiments, we used level 0 (x0
operator in the address name) and level 1 (poperator in the address). O

3.4.1.2 Step 1: placing the value threads

The first step synthesizes the names for the analyzed valiresoutput of the first step is the set
of symbolic namesS; C P and the value transfer s&f describing how the value threads transfer (switch)
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Input:
control flow graph G = (N, E, start, end).
seed set O,
substitution function substitute(n, e) : N x P — P,
loop iteration window w.

Output:
value name graph G = (N, E, start, vngend),
set of synthesized names S C P.

begin
Step 1: route the value threads (Figure 3.12)
Step 2: collapse the threads (Figure 3.15)
convert threads to SSA form
collapse threads using global value numbering
Step 3: dataflow analysis
define dataflow transfer functions (Section 3.4.1.4)
solve dataflow problem (Chapter 4)
end

Figure 3.11:The algorithm for constructing the Value Name Graph.

between symbolic name¥T is defined as follows(n, e, e') € VT if the namee was back-substituted into
e’ at CFG node.

The seWVT represents the value threads without explicitly buildimg¥NG nodes and edges shown
in Figure 3.8(b). Instead, the VNG is represented by spegfgnly VNG edges that connect different names
(where backsubstitution modified the propagated names iSlaiccomplished by representing each symbolic
namee € S; with a “symbolic” variable[e]. The switches between names are represented as assignments
between those variables, as shown in Figure 3.13(c): Wehsaye :=,, e') if (n, e, e’) € VT.

Note that the second step of the construction will transfirensymbolic nameke] assignments
into the SSA form and collapse them using value numbering $&etion 3.4.1.3).

The algorithm, shown in Figure 3.12, is a sequence of baakwavrersals of the CFG. Starting
from each of the seed computations, the traversal propatiege original (lexical) names and updates them
accordingly across each affecting node by performing sadistitution. Each traversal places value threads
along all acyclic paths; it stops at loop back-edges. Thiewahg traversal continues from the loop back-
edges, extending the threads across loop iteration boesddihe multiple traversals thus create threads that
model value flow along all possible paths acraesl®op iterations. Setting to 3 will discover equivalences
among address computations that occur within any threescoitise loop iterations.

We now describe the algorithm in Figure 3.12 in more detale Rlgorithm first initializes the
traversal worklist with the seed computations (line 2). Ntbtat the worklist maintains names on thét of
a node; therefore, the traversal starts from the predersestthe seed computations. Theni 1 traversals
are performed, each using a separate worklist (lines 4118} termination is similar tavidening[CC77].

The VNG thus models the flow of a value along angonsecutive loop iterations, which provides sufficient
scope for optimizations in the instruction-level paradlel domain.

Line 8 forces the back-substitution to fail at the CFG stadestart as a way of asserting the most
conservative assumptions when the program is entered. ufteéidnsubstitutén, ¢) determines how name
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Input:
control flow graph G = (N, E, start, end).
seed set O,
substitution function substitute(n, e) : N x P — P,
loop iteration window w.

Output:
synthesized symbolic names S; C P
value transfers A = {(e; :=, ¢;) | n € N, e;, e; € S1}.

begin

1 A:=0

2: worklisty := {(m,e) | (n,e) € O, m € pred(n)}
3: fori=1to w+ 1 do worklist; := 0

4: fori=0to wdo

5: while worklist; not empty do

6: remove a pair (n, e) from worklist;

7. visitedn, e] := true

8: if n = startthene’ :=w

9: else ¢’ := substitute(n, e)

10: if e’ # e then add (e :=,, e’') to A, add e’ to S;
11: for each m € pred(n) such that visitedm, '] = false do
12: if (m,n) € backedges(E) then

13: add (m,e") to worklist; 1

14: else

15: add (m, e') to worklist;

16: end for

17: end while

18: end for

19: for each (e,n) € worklist,+1 do

20: add (e :==, w)t0 A

21: end for

end

Figure 3.12: Step 1 of VNG construction: symbolic back-sitson.

e changes across nodgline 9). When the name changes acrosBne 10 outputs the assignment denoting
that the thread changes namesa atines 11-16 continue the traversal onto predecessorsingasames that
cross back edges into the next traversal (line 13), as disdusbovebackedged?) is defined to be the set of
CFG edges that are backedgesamedepth-first traversal of the CFG. Such a definition marksatkedges
of irreducible loops. The visited flag marks that the nagrteas visited the exit of node (line 7). The flag
prevents propagation of a name twice (line 11). Finally4ii9-21 terminate the threads that are left “in the
air” along the back-edges after the traversal sequenceasesféilly terminated aftew + 1 traversals. These
unfinished threads are groundeddtpasserting the same conservative assumptions as on thactiastart
at line 8.

Figure 3.13(c) shows the Step-1 VNG for the program in Figui&(a). Figure 3.13(b) shows the
VNG in (conceptual) graph form. We illustrate the back-@ogation using,, the address operand of the
load in node 9. When propagatipgacross the assignmemnt := ps + 1 in node 7, the right-hand sigg + 1
is substituted into the current name. We obtainps + 1, which becomes another name for the analyzed
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(a) the source program. (b) the (conceptual) VNG. (c) the VNG after Step 1.

Figure 3.13:Step 1 of the VNG construction: example

address of the load (9). After crossipg := load L, in node 6,xL, is substituted fop; andL, + 1
becomes yet another name for the addrdssi¢ the address of the global variabl The name will be
further changed at nodes 4, 3, and 1. (Note that Figure 3)58¢ws the VNG construction only along the
thenpath.) The address operands of remaining memory operatitiredso undergo this back-propagation.
The process of name creation is demand-driven, as only ttesseary names are created.

3.4.1.3 Step 2: collapsing the value threads

The second step collapses threads placed by the first steffap§ing can be viewed as post-
processing of the back-substitution. It places on the sémeatl those computations that back-substitution
found equivalent but did not place on the same thread. Thesmaputations that were symbolically reduced
to the same name, but the reduction occurred “upstream” thentwo computations, as is the case far
and S, in Figure 3.8. Technically, the collapsing is performed mding, at each node, which symbolic
names reduce to the same symbolic name. These names argrsgfonthe same value and are placed into
an equivalence class, which effectively collapses allatiseplaced into the class. The names of the classes
serve as the symbolic names for the final VNG.

Thread collapsing is thus expressed as a partitioning o§yh#olic name space into equivalence
classes, at each CFG node. Therefore, the second stepad $gthbolic Value Numbering (SVNor its
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SiiXe = o(e.,. )
Sy i f ()

Ss: Yo = Xp
Sy: el se

Ss. Y1 = Xo
S end if

S7:¥2 = é(Yo,Y1)
Sg: Xg ... Yo

Figure 3.14:GVN fails to find the equivalence ofzy, and y,. In contrast, the SVN succeeds, but it has a
higher cost.

similarity with the standard Global Value Numbering (GVNigat also discovers which names refer to the
same value [AWZ88]. To compare our SVN with the GVN, we obsdhat, like the GVN,

e the SVN computes which value names are synonymous, repirggegnonyms as partitions;
e the SVN computes synonyms globally, accounting for all ppogpaths leading to a given CFG node;

e the SVN uses a compact SSA encoding of names, to maintailgke sgiobal partitioning, rather than
a separate one at each CFG node.

Unlike GVN, however,

e the SVN detects synonyms based on their symbolic (algebeajgivalence, rather than from their
structural (syntactic) equivalence.

e the SVN uses a more precise (but also more expensive) paitig algorithm, as explained below.

The symbolic value numbering has two sub-steps. First, tap-8 VNG is transformed into the
Static Single Assignment (SSA) form [AWZ88]. Second, theASSl symbolic names are globally par-
titioned. Recall that after Step 1, the VNG is representedssggnments betwede] variables, denoted
(e :=, e'). When converted to SSA form, ea¢é] variable will be assigned exactly onge.The SSA
form is achieved by creating multiple copies of each vagabhe for each assignment, and by connecting
the copies withgp-assignments inserted at control flow merge points that eareched by two different
assignments of the same variable. The property desiredtiierB8SA transformation is that the insertion of
¢-assignments effectively breaks threads intoltrgestsnippets on which the synonyms relation remains
the same. As a result, the collapsing need not be expressadlanode, but on the snippets, in single global
partitioning. Because the] variables are ordinary scalar variables, any existing S&#stuction algorithm
can be used [CFRI1, SG95]. The SSA transformation changes the symbolic rigraee fromS; into an
SSA-ed name space denoisgl.

To partition the SSA-ed names, one could employ the GVN #lgor[AWZ88]. However, GVN
computes an imprecise solution in cases that may occur oftehe VNG. Consider Figure 3.14. In this
program, GVN fails to find the equivalencef andy,, but SVN succeeds.

SExcept for{w], which is never assigned, because it is never back-sutestiinto.
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Our partitioning algorithm represents the synonyms as plgria which edges connect equivalent
names. The algorithm is optimistic. It starts with all nanassumed equal and then removes edges that
cannot safely be assumed synonymous. An éfigé [e;]) is removed when there is a control flow path on
which [e;] is reduced tav (back-substitution failed) beforie;] and[e;] reduced to the same nanname.
After the fixed point is reached, th@(|S:|?)-sized graph is converted t0(| Sz |)-sized equivalence-class
partitioning, to save memory. The more economical classtigaring cannot be used before the fixed point
is reached because the graph does not necessarily repaiesemtivalence relation. Therefore, equivalences
must be represented at the granularity of edges, not paditi

The details of the algorithm are in Figure 3.15. The inputhis €quality graph. The graph is
optimistically initialized; edges connect every two SSAiahles whose live ranges overlap. Thus, the graph
is a live-range interference graph. It is built during theA®nstruction. The algorithm starts by identifying
pairs of names that are definitely not synonymous and thepagiates their inequality through the def-use
chain of the SSA variables, until no more edges can be remdviee 1 finds all namege;] that failed to
be back-substituted, at any node Line 2 then finds all namelg;] that are live at that node. Namps]
and[e;] must be different and are inserted into the worklist. Talédges from the worklist, the algorithm
removes an edge (line 9) if the edge has not been removedrny@8{. For each removed edge;], [e;]),
their inequality is propagated to all useq ef] and[e;], in a forward direction along the def-use chain, across
¢-assignments and the back-substitution assignnients=,, e;).

Returning to the running example, Figure 3.16(a) shows & f8rm of the Step-1 VNG shown
in Figure 3.13(c). In our example, onlyL, + 1] needs an SSA subscript and-aode; the live ranges of
other[e] variables do not cross the control-flow merge point. The S\@¢r@thm partitions thde] names
into congruence classes as shown in the figure. The names ofeibses are the symbolic names used by the
final VNG, which is shown in Figure 3.16(b). Note that the apied computations have been rewritten to
refer to the names of the equivalence classes.

Notice that the Step-1 VNG cannot find reuse between the elgunt’nodes 5 and 9, because
they are not on the same value thread (see Figure 3.13(bjgr thie threads have been collapsed, the two
nodes refer to the same thread, which is represented as i @hdata dependences frofiy to C3 (see
Figure 3.16(h)).

3.4.1.4 Step 3: dataflow transfer functions

The previous two steps constructed the nodes and edges ¥f\iBe To solve dataflow problems
on the VNG, it remains to construct the dataflow transfer fioms and the equation system for computing
dataflow problems. In this section, we show how to computdabitity of values, a forward problem. The
availability computation presented here is patbensitive, because it only determines whether the value is
available along@ll paths. A solution to this problem is sufficient for perforigiglobal common subexpres-
sion elimination (Global CSE) on the VNG, i.e., for elimiimaf fully redundant computations. Chapter 4
presents a path-sensitive formulation of dataflow anatysithe VNG, which will be used to perform partial
redundancy elimination.

First, we define the VNG constructed by the first two steps aR#tat, after the second step, every
symbolic namee can be defined only by-nodes, which were introduced when the VNG was converted int
the SSA form.

Definition 3.3 (Value Name Graph) Let G = (N, E, start, end) be a control flow graph anl be the name
space. The names i$i are the names of congruent class names created in Step theoggth the name.



Input:

IG = (IN, IE), interference graph for the SSA’ed name variables:
IN =S,
IE C (IN x IN): ([ei], [e]) € IEiff [e;] and [e;] are both live at some CFG node n.

Output:

begin

10:
11:
12:
13:
14:
15:
16:
17:
18:
end

S, the symbolic name space of the final VNG
S, — §, partitioning of SSA’ed name space into equivalence classes.

for each (e; :=,, w) do
for each [¢;] that is live at node n do
add (e;, e;) to worklist
end for
end for
while worklist not empty do
remove edge ([e;], [e;]) from worklist
if ([ei], [e;]) € IE then
remove edge ([e;], [e;]) from IE

for each assignment ([ex] :=» [ei]) or [er] :==n &(... ,[ei],...) dO
add ([ex], [e;]) to worklist
end for

for each assignment ([ex] :=» [e;]) OF [ex] :=n &(... ,[€j],...) dO
add ([e;], [ex]) to worklist
end for
end if
end while
partition IN into classes: each connected subgraph of IG is one class C;

Figure 3.15: Step 2: collapse value threads using value eunt
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| Ips]:= [+L,] load (L] |
T

[[t:] = [p4] |
¥

[p2 + 1] := [p4]

[ 11— lp] | —

| [*Lp + 1]1 := [p2 + 1] store [L,] | store Cy
¥

. sore 1]

T N

(1420 + 112 = 9(1xLp + 210, [xLy + 1))
[1ps+1]:= [*L:+ 1], load [,]]
| 1ps]:= i |
| : store [L,] | store €y

| load [p4}| load C3

Congruence classes:
Co: {[xLp + 1]o}
o AL}
02: {[*Lp]v[pl]v[tl][p2+1][*LP+1]1}
DALy + 1. [ps + 1], [p4]}

(a) the SSA form of the step-1 VNG. (b) the final VNG.

Figure 3.16:Step 2 of the VNG construction: example

TheValue Name Graph (VNG3 a graphG = (N, E, start, end), whereNN is the setof nodedV = N x S.
E isthe set of edge#i C N x N suchtha{(m, €’), (n, e)) € E iff m € pred(n) and

e ¢ is defined in node (which must be @-nodee := ¢(ey,... , e, ..., e;)) andm is theithimmedi-
ate predecessor afande’ = ¢;, or

e e is notdefinedim ande = e'.

The start nodestart is connected to all nodgstart, e), for all e € S. Similarly, end terminates all CFG
nodes, by connecting all VNG nodessuch thatn = (end e) VNG nodes.

Thepredandsuccfunctions are defined on VNG as usual.

Definition 3.4 (Thread) A threadis a path in the VNG graph. In contrastpathis a path on the CFG graph.
Note the relationship between threads and paths. For esedigh, there is exactly onsibling pathp, which
can be obtained with a functigrath p = path(p). O

Clearly, while each thread has one sibling path, along eatththere are multiple threads, each for a different
value.

Each VNG noden = (n, e) corresponds to a value with symbolic naméowing across a CFG
noden. We can now compute the availability of these values. Thdahility property AVAIL is computed
on a binary lattice{ T, L}. The meet operatok returns the lower elementt A L = L. A computation
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n = (n, e) is fully redundant (and can be removed)A¥AIL[n] = T. Let us assume that the value is
computed by all VNG nodes in the seed 6kt

AVAlLgy[start] = L
AVAILoy[n] =  fAVALAVAILG[n))
AVAILy[n] = A\ AVAILu[m]
mepred(n)

fAVAIL(',L,)
o x otherwise (propagate the valug

~

{ T if n € O, (generatethe value)
=df

Killing stores. Dataflow analysis on the VNG is closely coupled with the baakstitution step. Recall
that the VNG threads detect reuse aggressively—becaukeshbastitution may be defined to ignore may-
aliasing, the threads extend uninterrupted across patknkilling stores. As a result, the VNG detects
instructions that always read from the same location butésschot reflect that a stonegaychange the contents
of this location between these two reads. Treating mayialipkills separately is an intentional design
decision, because some hardware mechanisms enable r@lsitadion even in the presence of (infrequent)
kills, using a data-speculative load [KSR94, GKKG98, R@8].

May-aliasing can be easily accounted for in dataflow analgsi the VNG. Using our running
example, assume that may equall,. Becausép, ] belongs to congruent clagg and[L,] belongs taC’',
each store t@’; must kill reuse in clasé’s and vice versa. Therefore, in Figure 3.16(a), the store der®

would kill the reuse for the load in node 9. To account forikdl statements, we modify the transfer function
fAVAIL:

T if n € O (generate the value)
FOUN (@) =ar L if e may be aliased with’s value (kill the value)
x otherwise

Depending on the optimizer, this kill may entirely destrtie reuse, preventing register promotion, or may
mark only the reuse as unsafe.

3.5 Separable VNG

This section introduces a restricted case of the value namagghg The purpose is to simplify
the presentation of the profiling and transformation alppons in the following chapters. The restricted
version, calledseparable behaves just like a CFG with lexical (Morel-Renviose-slyledundancies. This
simplification allows us to present the algorithms first atismitive level, and then extend them for the
generalVNG.

Definition 3.5 (Separable VNG) A value name graphG = (NN, E, start,end) is called separableif all
symbolic names can be analyzed separately, i.e., theiadsrdo not interfere. Formally, for each edge
e=((n,e),(m,e')) € E,eithere =e'ore=wore' =w. O
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start

0

i:=0

|

load A[i+2]

load A[i]

i:=i+1

fid

de A[i+2] > T

W=3

Figure 3.17:The VNG can detect recurrent array accesseOn the left is the CFG of the source program.
On the right is the VNG of the same program.

3.6 Applications of the VNG

This section shows how the VNG can be parameterized to \&vialue-flow analysis problems. It
presents the detection of recurrent array accesses andiarvef constant propagation.

3.6.1 Recurrent array accesses

Because the back-substitution traverses a few consedatipeiterations, the VNG naturally ex-
poses the redundancy of recurrent array accesses. In lfi@ch/NG is a generalization of th&tretched
loop [BG96]. Figure 3.17(a) contains two such accesses. The ViNGhE loop is in Figure 3.17(b). In
the VNG, the equivalent array accesses are connected witiead that extends across three loop iterations.
For the analysis and transformation stages of the PathFotenizer, such inter-iteration threads are no
different than “acyclic” ones, and thus are handled unifigrm

3.6.2 Distributive non-linear constant propagation

The traditional formulation of Constant Propagat{@P) does not distribute across the meet op-
erator; therefore, algorithms for this data-flow problerechéo trade precision for effectiveness [CCKT86,
GT93]. Recently, a distributive formulation ofiaear version of CP was presented [SRH96]. The linear ver-
sion is restricted in that only assignments with at most arable in the right-hand side (e.g., =2* y+3)
are interpreted. Using VNG, one can formulate a distrilytivon-linear CP algorithm which can handle
arbitrary assignments (within the domain of the symbolittgza P). We are not aware of any other such
algorithm.

The VNG-based constant propagation (VNGCP) is performeal lag-product of the VNG con-
struction by grouping names into equivalence classeshegetith program constants: if any name is back-
substituted to a constant, then there must be a path aloripwhioperand from the seed §2has a constant
value. The subsequent value numbering step verifies thatdfizee is in a class with a constarit then the
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if (..) if (..)
a:=>5 ([3 x a] :=[15])
b:=3 ([a x b] :=[3 x a])
el se el se
a:=3 ([6 x a] :=[15])
b:=5 ([a x b]:=[5 x a])
end if end if
X :=a*h ([z] := [a x b])
a) isz a constant? b) Step-1 VNG
if (..)
([3 x alo = [15])
([a x by :=[3 x a]y) Cy = {[15],
el se [3 x a]o,[5 %X alo,
([6 x a]p :=[15]) [a x blo,[a x by
([a x b]; :=[5 x a]o) [a x b, [x]o
end if }
[a x bl := ¢([a x by, [a x b]1)
( Ilpg = [a X b]g)
c) SSA form of Step-1 VNG d) after value numbering

Figure 3.18:Constant propagation using the VNG.

value ofe equalsd along all program paths. No data-flow analysis (Step 3) isired because the value
numbering already verified that the name is a constant aldrigcaming paths. Figure 3.18 presents an
example. After the value numbering step of the VNG consioa¢the congruent class contains the symbolic
name[15], a constant, and also the symbolic ngmk. These two names are synonymous, and herise
the constant 15.

It should be noted that the distributivity comes at the céskponential worst-case complexity, due
to the number of symbolic names that the VNG may contain. Hewehe symbolic approach to constant
propagation has two advantages, compared to existing G@ithlgs. First, because it is based ®mbolic
names, the VNGCP can find constants whose value is known olimk&ime. For exampler may be found
to be A + 4, where A is the address of an array. Second, the freedom to chBgsermits discovery of
constants across assignments with arbitrary right-hateleskpressions; adjusting allows one to tune the
tradeoff between the cost and the power of the analysis.

3.7 Related work

A number of approaches for detecting equality among valags heen developed. The prior work
can best be compared with our representation on the basisaifsubset of the three underlying mechanisms
it employs and to what degree their power is exploited. Theetdimensional cube serves well to relate the
existing techniques (Figure 3.19).

Let us start with techniques that are based on the lexicabsarfivalues. To improve their power,
they add a degree of dataflow analysis.
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value numbering

Figure 3.19:Related work. Existing techniques for value-flow detection can be comparethe basis of
which of the three orthogonal mechanisms they employ andhtat extent they exploit their power.

Local common subexpression elimination (CS@&en none of the three methods is used, equivalent com-
putations are identified only using their lexical names.afitt dataflow analysis, one is restricted to
basic blocks. This path-insensitive (local), name-inémes(lexical) technique is in the origin of the
three-dimensional cube.

Global common subexpression elimination (Global CSBY. adding some dataflow analysis power, one
can verify if subexpressions are equal alatigpaths, but still in a path-insensitive manner [Coc70].

Loop-invariant code motion (Looplnv). By even smarter global dataflow analysis, one can find loop-
invariant computations. Since loop-invariants are re@mhanly alongsomepaths, this technique is
partially path-sensitive.

Partial redundancy elimination (PREPRE uses dataflow analysis to its full extent—it identifies\pata-
tions that are equivalent only along some paths [MR79]. Nwbavever, that along all these paths, the
equivalent computations are required to have the sameégxiame.

The techniques based on value numbering follow an analblgist@rical improvement, through adding the
path-sensitive power of dataflow analysis.

Local value numbering (Local VN)Restricted to a basic block, local value numbering does ansider
any program paths.

Global value numbering (GVN)This method detects syntactic equivalences that hold addingrogram
paths. While the commonly-used algorithm for GVN [AWZ88]Jedonot employ dataflow analysis to
verify the all-paths equivalence, it uses the SSA form, Whassentially encodes a result of dataflow
analysis (def-use chains) in a compact way. The same is t{iRL37], which uses a precursor of the
SSA form.

Value-numbering-driven PRE (VN-PRHBERosenet al. present a PRE algorithm that is driven by syntactic
equivalences, rather than lexical ones [RWZ88].
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Instead of using lexical names, the redundancy eliminajgproach in [Cli95] solves data-flow problems
on the name space of global value numbers [AWZ88].

Value Flow Graph (VFG).Steffenet al. [SKR90] make value numbering fully path-sensitive. Theah
representation is similar to the VNG. In fact, it, too, canviewved as placing value threads. The

difference is that their threads are based on equivalensgntctic terms, whereas ours are based on
algebraic equivalence.

While adding path-sensitivity to lexical and syntacticldeanumbering) names was systematic, there seem
to be only a few techniques for performing symbolic evalatlong paths.

Symbolic analysis. Tu and Padua use gated SSA (GSA) form to reason about symbolic expressions
along all program paths simultaneously [TP95]. Rather firajecting symbolic expressions onto the
CFG points, they assign path predicates to symbolic exioressising the gating functions of GSA.
This approach can be effective in answering queries on paggmbolic expressions, especially when
the resulting symbolic expressions have simple gatingtfons. In order to use this representation
for data-flow analysis, a powerful Boolean symbolic evabrasystem may be needed. Johnson and

Schlansker describe how such a system can be constructedtiineld in solving predicated flow
problems [JS96].

Array Analysis. Duesterwald, Gupta, and Soffa encoded the algebraic irg#thom about array index ex-
pressions into dataflow transfer functions. As a resulfpioarried (both recurrent and loop-invariant)
array accesses are detected [DGS93].

Stretched loop. Bodik and Gupta detect loop-carried array accesses witte rpath-sensitivity. The
stretched loop is a (virtually) unrolled loop that reducesa analysis (on affine indices) into the
scalar variable domain. In the simpler domain, a PRE-stgtaftbw analysis can be applied [BG96].
The application domains of both [DGS93] and [BG96] are ledito single loops in which loop indices
are incremented unconditionally and address expressfantecest for load/store operations are affine
functions of such loop indices. The VNG can analyze nesteddawvith arbitrary control flow and
conditionally incremented induction variables.

Effective PRE.Briggs and Cooper perform PRE dataflow equations on a nanoe spat uses a limited
form of symbolic evaluation (reassociation) and a form dfigamumbering. Because VNG does not use
reassociation, it is not strictly better than the EffecB\RE technique [BC94]. Expression reassociation
is orthogonal to the methodology behind the VNG. By using VOiGa re-associated program, one can
benefit from the combined power of the two approaches.

In contrast to existing methods, the VNG combines the povwaitldhree techniques. The authors are not
aware of any existing technique that would combine all tlqggroaches into a systematic analysis tool.

The VNG was inspired by the conceptual framework describe®éu [Rau91] in the spirit of
abstract interpretation [CC77]. He describes how repaadel-substitution of names along loop back-edges
can detect loop-carried value equivalences on a path-tiyl@sis. Rau’s paper presents the problems that
arise in naming and comparing symbolic expression origigah different loop iterations; theA?HFINDER
framework offers a practical solution to these problems.
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3.8 Experiments

The practicality of the VNG representation depends largalthe size of the symbolic name space
S. When the language of symbolic nanfess infinite, the worst-case size of the name sp8iég exponential
in the number of CFG nodes, even when the number of backiutlst iterationsw is a constant. This
would translate into exponential worst-case time and sjgaceplexity of our analysis. Fortunately, our
experiments show that the size 8fis in practice moderate. In fact, for the value-flow analysfisrray
accesses, it is smaller than the number of program variables

Rather than reporting the size of the final name sp$iceve measure the size &, the name
space created in the first step of the construction. Bec8use larger thanS, its size safely estimates the
complexity of the analysis on the VNG, but also the complegitthe VNG construction, namely the SSA
transformation and the value numbering step.

The experiments evaluated the size$f and other VNG properties on a VNG tailored for an
elimination of redundant loads and stores. The see@saintained all source operands of all load and store
instructions. The language was chosen to express address expressions for one-dimaheiay accesses,
henceP = ¢y + Zviev ¢;v;. The VNG was implemented in the HP Labs VLIW backend comgileor.

To determine the rate at which the name spSicgrows as a function ofy, we built the VNG for
various values ofv. Column 0 in Table 3.1 is the initial size &;, whenS; = O. The column labeled
i shows the size of; afteri iterations of back-substitution. The VNG was built for 15bgedures of 12
programs and we report those procedures with the steepmstigrate ofS;. The first three benchmarks
come from spec9yr ep is a Unix utility, and themnis are simple matrix multiplies, with static and dynamic
memory allocation, respectively. Before the VNG analysiswapplied, all classical optimizations [ASU86]
were applied on these procedures.

In a majority of procedures in Table 3.1, the growth rateSefis linear; in a few, the rate only
slightly exceeds a linear curve. For exponential growthd@bserved, a large fraction of variables involved
in the analysis would have to be back-substituted into afit expression along each branch of an if-
statement in a loop body. The address expression computatibe programs we considered did not have
such a property.

ColumnV shows the number of variables (virtual registers) refeednn the procedure. The fol-
lowing two columns give the size ratio &, andV, for w = 2 andw = 3. These two values have been
selected because they are most likely to be used in pratiiees are few opportunities for loop-carried value
reuse beyond an iteration distance of two [GKT91]. Surpgbi, the name space is much smaller than the
setV. While the growth rate o§; may be non-linear and its actual size may be larger for optitrons
other than load/store elimination, we expect the siz&pto be comparable td", which enables efficient
analysis. If some symbolic patterds permit dramatic name space growth in practice, the siz&;0fan
be restricted during its demand-driven construction bsnteating the back-substitution as soon as a prede-
termined number of names has been created. Such an appraacuecessfully used in the demand-driven
analysis in [BGS97a].

To provide some intuition as to why the symbolic names growlenately, Table 3.1 also presents
the percentage of CFG nodes on which back-substitution weenmed, for at least one symbolic name
(columnbsg). ColumnNN gives the number of CFG nodes in each procedure. Each nodaim®a single
intermediate statement. The experiments show that moneBB# of nodes do not influence the name of the
analyzed address expressions for array accesses.
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Benchmarks back-substitution iterations N bs V S|V 1] S|V
program | procedure 0 1 2 3 4 5 6 7 [%] w=2|w=3
alvinn initialize 9] 17| 27] 41| 59 81| 107] 137 181] 6.6] 106 0.25] 0.39
inputhidden 8] 14| 21| 28| 35 42 49 56 52| 17.3 48 0.43] 0.58
hiddenoutput 6| 10| 17| 24| 31 38 45 52 47| 14.9 46 0.37] 052
outputhidden 16| 28| 56| 89| 127| 170| 218| 271| 100| 26.0 70 0.83] 1.27
hiddeninput 4 7| 13| 19| 25 31 37 43 36 | 16.7 27 0.48] 0.70
compress| main 154 | 210 | 221 | 232 | 243 | 254 | 265| 276 1045| 12.9| 633 0.35 0.37
decompress 47 76| 90| 101 | 112| 123 | 134| 145]| 241]20.3| 166| 0.54| 0.61
prratio 71 12| 12] 12| 12 12 12 12 65| 7.7 52 0.23 0.23
output 61 89| 91] 93| 95 97 99| 101] 252]23.0| 197 0.46] 0.47
ear InitCorrelation 37| 51| 52| 53| 54 55 56 57 158 | 18.9 | 122 0.43 0.43

SendInputToColff 18| 27| 32| 37| 42 a7 52 57 65| 27.7 55 0.58 0.67
FFTCorrelation || 64 | 105| 130 | 157 | 188 | 221| 256 | 293 338| 19.5| 260| 0.50| 0.60

HartleyCorr 421 72| 91]111[133] 156 180| 205 232[19.0| 177 0.51] 0.63
StretchDisplay 38 58| 73] 90| 109| 130| 153] 178 187 20.9]| 141 052] 0.64
main 86| 131|157 183 | 209 | 235] 261| 287 668 14.1|] 455 0.34] 0.40
EARSTEP 87121 141|161 | 181 | 201| 221 | 241 337 22.8]| 246 0.57] 0.65
grep execute 156 | 301 | 479 | 659 | 839 | 1019| 1199 | 1379 2193 | 15.4| 1081| 0.44| 0.61
mm main 16| 29| 53| 86| 128| 179| 239| 308| 183| 17.0| 124 0.43] 0.69
mmdyn | main 25| 36| 44| 52| 60 68 76 84 || 213| 15.9]| 145 0.30| 0.36

| Average|| 347]17.7] 270] 0.45] 0.52]

Table 3.1: The size of name spages a function ofii’, and other characteristics of the VNG relevant to
analysis efficiency.



Chapter 4

Path-Sensitive Dataflow Analysis

Section 3.4.1.4 presented a dataflow analysis on the VNG. arielysis was path-insensitive; it
merely verified whether a property (value availability) d®klong all paths or not. This chapter presents
a dataflow analysis that is path-sensitive. It finds (and s)aritimizableprogram paths—i.e., paths along
which some value can be reused. The results of the analyisis the remaining stages of the optimizer.

Because there are exponentially many optimizable pataseghtral issue is how to represent them
compactly, with only polynomial cost. A compact marking ecamplished with a lattice that distinguishes
whether all, some, or none of the paths through a given nadegimizable. From such a compact encoding,
the transformation stage of PathFinder can recover indalidptimizable paths.

This chapter starts by defining the optimization properalye reuse) that should be marked on
the VNG. Next, Section 4.2 defines two dataflow problems thihgn solved, identify whether a path has the
optimization property. Section 4.3 defines a lattice thatxd computing the two dataflow problemsin a path-
sensitive way and Section 4.4 gives the dataflow equatioreofoputing the problems. Section 4.5 discusses
the solvers that can compute the fixed-point solution, asal déals with some issues of the implementation.

4.1 Value reuse (the analyzed property)

The VNG representation exposes traue flow—it shows how the name of the value changes as
it flows through the program, via the construction of value#us. For the purpose of optimization, we are
interested in subthreads along which the value floetsveercomputations that we wish taptimize We call
these subthreadsuse threadso reflect the fact these subthreads connect computatiahalthays compute
the same value (which can be reused). The reuse threadsponickto optimizable paths: we want to identify
them during the analysis, and separate them during the zatiion.

Reuse threads are defined using three kinds of VNG nagseratorswhich compute the value;
users which both compute the value and can reuse it; kitis, which kill the value. A reuse thread is a
kill-free subthread between a generator node and a user node

Note that each user node is a generator, but no generatorsisraThis distinction is introduced
to describe value reuse among computations whose value avayit memory (in particular, load and store
instructions). Similarly, only value flow via memory regesrkill nodes, which are introduced to account for
potential aliases that were (aggressively) disregardedglback-substitution that was used to construct the
VNG, as discussed in Section 3.4.1.4. In contrast, to deseadlue reuse among computations whose value
doesnot flow via memory (e.g., arithmetic operations), it would béisient to use the notion of user nodes.
The following example illustrates the three kinds of nodes.

46
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Example 4.1 ( Value reuse among memory operations. Consider the problem aedundant load removal
In this problem, a load of a memory location is redundantig tbad can reuse a prior access to the same
memory location. The prior access (either a load or a star@nputes” the value of the memory location
by placing it into a memory register from which the redundaatl operation can fetch it without accessing
memory.

To describe such optimization, the user nodesre all load instructions (the “optimizable” oper-
ations) because they can consume the value generated byrageess. Generatol3 are both loads and
storeg(n, e). Kills are all stores that could not be disambiguated.

Definition 4.1 (Reuse Threads)Given a tupleg G, D, U, K), where
e G=(N,E)isaVNG,
e D is the set ofjeneratorVNG nodesn = (n, e), D C N, that generate the valug

e U is the set oluserVNG nodesn = (n,e), U C D, a subset of generator nodes that (generate but
also) consume the valug

e K isthe set okill VNG nodes,K ¢ N, K N U = (), that may “modify” the value,

the set ofreuse threadsdenotedR, is a (potentially infinite) set of finite-length VNG threaglsoriginating
at a generator node; and sinking onto a user noag, such that threag contains a generator node or a Kill
node,

O

The condition\, > 0 ensures that a user node (which is both a generator and adeses)not generate
a value for its immediate consumption (along a zero-lengtih)o A node can reuse its own value only if
that value was generated in the past (along a cycle in the YBii@&h situation occurs when the user node
represents a loop-invariant computation.

4.2 Availability and anticipability (dataflow problems)

Reuse threads are identified via two dataflow problems—aiditly and anticipability—introduced
in [MR79]. A value isavailablealong an incoming path if the value was generated on the patiwvas not
subsequently killed. A value enticipatedalong a path if it will be used on that path before it is geredtatr
killed. While availability is a forward problem, anticip#iby is a backward problem. These two properties
are usually defined on the CFG. The two problems are defineldeoiNlG as follows.

Definition 4.2 (path-based availability of generators)A valuee is available at a CFG nodealong a CFG
pathp = (start, n) if there is a VNG thread = (start, (n, e)) that “runs along’p (i.e.,p = path(r)) such
that the value (flowing along the threaq is generated on a kill-free suffix’ of r, i.e., v’ = r[i, \,] for
somei such thatr[i] € D andr[j] ¢ K forall j,i < j < A,. O

Path-based anticipability is defined analogously.
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Lemma4.1l LetG = (N, E, start end be a CFG,G = (N, E, start,end be a VNG on, andR be a set
of reuse threads of¥. A noden = (n, e) € N belongs to a reuse threadec R iff value e is

1. available at the CFG nodee N along some CFG pattstart, n), and

2. anticipated at the CFG nodec N along some patkn, end. O

4.3 Marking the value reuse (dataflow lattice)

Definition 4.2 introduced the dataflow problems in a pathebasianner; computing availability
and anticipability for each path would give us a path-samsiataflow solution, at an exponential cost. To
mark the reuse threads on the VNG at polynomial cost, we dafimede-based characterization of the two
problems. This characterization distinguishes whethenédue is available at a node along all paths, no
paths, or (strictly) some paths.

Our versions of availability and anticipability predicatare thus not Boolean. Instead they can
take one of three valueMust, No, andMay, which mean that a value holds on all paths (must be available
at the node), no paths (is not available), or some paths (mayé&ilable, depending on the path taken).

Definition 4.3 (node-based availability, anticipability) The availability ofe at the entry ofn w.r.t. the
incoming paths is defined as:

Must all
AVAILy[(n,e)] =< No if eis available along no paths fromstartto n.
May some

The anticipability ofe at the entry of. w.r.t. the incoming paths is defined as:

Must all
ANTIG[(n,e)] =< No if eis anticipated along no paths fronw to end
May some
where “some paths” means strictly some paths. O

Note thatMay is not a “don’t know” answer. Instead it signifies that nadés on paths both with and
without the property. The three values are sufficient forttaasformation stage to recover the path-specific
information.

To compute the three-valued dataflow solutions, we defin&iadahat gives a partial order over
Must, May, No, and aT element, which is used as a “safe guess” when computing tliégowith an
iterative dataflow solver.

Definition 4.4 (Path-Sensitive Lattice) Lattice L is a tupleL = (P, 1, L1l), whereP = {T, Must, No, May, }
is a partially ordered sefj, LI are the (path-sensitive) “meet” and “union” operatorspeesively* The partial
order onP is given below.

T
VRN
No Must

N
May

!The “meet” operator returns the greatest lower bound:; théofh operator returns the smaller upper bound.
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4.4 The equation system (transfer functions)

Forward problems The forward problem of availability is computed using a sfem functionfAVAlL, The
equation system is given below.

AVAILoun] = fAVALAVAILG[n))
AVAILn[n] = Maepredn) AVAILoy[m]
Must if n e D
F(AVAIL), () =g No ifnekK
x otherwise

Backward problems On aseparabl&/NG, backward problems are set up analogously to the foreaes
(separable VNG is defined in Definition 3.5, page 39). For gan&NGs, however, dataflow facts may merge
not only when control-flow paths merge, but also when threagigie (which can happen at the arguments of
a¢-node). This thread merge has a different effect than thealefiow one, which createflay whenMust
meets withNo, combining paths in a path-sensitive way. In contrast, tinead merge combines threads
that share the sanmsbling path (see Definition 3.4). It is sufficient that one of the &t has the property.
Therefore, wheiMust meets withNo the result isMust.

The thread merge uses the “union” operatowhich is defined using the following order

T > Must > May > No.

Example 4.2 (Backward Dataflow Analysis) Consider the example below. The threadsdar b anda + ¢
meet on the CFG edge betwesn and S;. This merge influences the computation of anticipabilitheT
values computed ii5s andS; are anticipated a$,. Note that the solution of anticipability does not change
if Sg or.S7 is removed]

Siiif () then
Si:if () then So: ¢; anticipated here
So: c:=Db S3: el se
S5 el se atb — ¢ |g,: ..
Sy: e atc — ¢ Cyg = ¢(C1,02)
Ss: end if Cc; 1= ¢(C1 04)
Se:.. = a+b Ss:end if
Sy =a+ cC Sg: €3
57: Cs
the original program the Value Name Graph

Equipped with the union operator, we can set up the equation system.
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ANTIGy[n] = fANTC(ANTIC,u(n))
ANTICou((n, €)] = Muesucgn)U(m,e')esucd(n,e))ANTIGh[(m, €')]
Must ifne U
FANTIC() =g No ifneKU(D\U)
T otherwise

4.5 Computing dataflow solution (the solver)

The maximal fixed-point of the equation systems can be foutitdam iterative dataflow solver. An
effective alternative to an iterative algorithm is a demdanigen analyzer [DGS97, SRH96].

The four lattice values are efficiently encoded using twe.lH#ach value is represented as a pair
(va, vsome), Where the first bit is true if the property holds on all pathd éhe second if the property holds
on some (possibly all) paths (this meaning does not holdfowhich serves only as an initial guess of the
dataflow solution and never appears in the final solution).

v | Vall  Usome
T 1 0
Must | 1 1
No 0 0
May 0 1

Given this encoding, the “meet” operatoperforms the bit-wisand on v, and the bit-wis@r onvsome

vilw = (Uallz Usome) I ('LUth wsome)

= (Uall and'LUalla UsomeOr wsome)-



Chapter 5

Estimators: High-Fidelity Profiling using
Low-Cost Profiles

When an optimizing compiler has knowledge of the run-timbawéor of the program (e.g., the
execution frequencies of statements), it can avoid makengstormations that would result in a small run-
time benefit. The most common types of program profileedgeprofiles andoathprofiles, which measure
how frequently the edges/paths are executed for a giverf sgius.

A typical profile-directed optimizer works in two steps. sfjra profiler measures the run-time
behavior of the program. Second, the program transformabmsults the generated profile dstimatethe
run-time benefit of alternative transformation choices prath-sensitive setting, these two steps are currently
incompatible:edgeprofiles are inexpensive to collect but their estimatesmpgrécise and path-insensitive.
Pathprofiles produce more precise, path-sensitive estimateshbey are expensive to collect and non-trivial
to consult and incorporate into dataflow analysis.

This chapter bridges profiling and optimization. It preseattechnique that uses edge profiles,
an inexpensive, path-insensitive measurement of prograoiitrol-flow behavior, and produces a profile-
weighted dataflow information—information that is a) infaative: compatible with the value-flow optimizer
and b) practical: inexpensive, yet precise.

InformativenessDataflow analysis on the Value Name Graph answers essgridiatllean ques-
tions: “given a computation at node does a value flow along some pathi®’ When this question is an-
swered in relative terms, using the expected executioméegy of the value flow, program transformations
can perform a cheaper program optimization (i.e., one #tires less code growth due to code duplication),
as will be shown in Chapter 6. This chapter presents a sestohatoralgorithms for computing suchie-
guency informatioftry combining Boolean dataflow information with a programfipeo In this dissertation,
the frequency information has two uses: it guides the progransformation (Chapter 6) and evaluates the
performance of the entire framework by quantifying the antaf value-flowexposedy the static analysis
(Chapter 8).

Practicality: Practicality was the primary design goal behind thgHFINDER estimators and was
achieved through two novel contributions. First, estimateere designed to work from edge profiles, which
have low profiling cost and are widely supported. Unfortehatedge profiles are inherently imprecise, be-
cause they cannot reconstruct frequencies of individuadqam paths. To add confidence to profile-directed
optimization, the estimators bound the inherent imprenishat surfaces in the computed frequency. The
bound is achieved by assuming an optimistic and a pessinsistinario of the profiling error.

The second contribution is that the estimators form a hibraof increasing precision. The hier-
archy provides a practical solution to profile-weightedlgsia: when a simple estimator returns bounds that
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are too loose, the compiler can invoke a better estimataz.bEtter estimator will obtain bounds guaranteed
to be no worse, while reusing (some) information alreadymated by the simpler estimator, decreasing both
the compile time and the implementation effort. The tungloéeision is obtained via two algorithmic prin-
ciples: a) localizing program regions vulnerable to theesdgpfile error, and b) reducing the error through
various notions of control flow reachability.

Another contribution is the experiments with edge profil&hile our estimators cannot eliminate
the inherent edge-profile error, by computing its boundsy tlestrict it, and also quantify the fundamental
limitations of edge profiles. The experiments show that tieient error is small (at least for load reuse).
With good algorithms, the error can be considerably reducessecond best estimator was able to bound
the error down to 5%, a 4-fold improvement over our simplasineator. Hence, when used properly, edge
profiles seem to provide sufficient precision and a simpldemgntation.

This chapter starts by stating the problem, motivating @aliéstimator, and reviewing the related
work. Section 5.2 intuitively introduces the principlesbel our estimator algorithms. The following two
sections present the estimator algorithms, first for sép@NNGs (Section 5.4), and then for general VNGs
(Section 5.5). Section 5.6 empirically evaluates the ieniof our estimators. Edge-profile precision is
limited; for absolute precision, a more detailed profile éeded. Section 5.7 sketches a novel profiling
algorithm that is fully path-sensitive, yet does not reguirofiling complete program paths. Section 5.8
concludes by summarizing our results and providing reconttagons for deployment of estimators in a
production compiler.

5.1 Motivation and related work

Before describing the estimator algorithms, this sectimtes the problem of estimating, from a
profile, the run-time benefit of an optimization. This sectadso highlights the inherent issues and describe
how they are tackled by existing techniques.

5.1.1 The problem statement

Recall that, on the VNG, value reuse is manifested asiae thread kill-free VNG path connect-
ing a generator and a user of the same value. Each executinenfse thread corresponds to exactly one
reuse opportunity. Note that each progrpath may execute multiple reugbreadsunning along this paths,
giving rise to multiple opportunities (see Definition 3.4 pege 38).

Informally, theestimation problenis to determine how many reuse threads are executed by a given
program input. Notice that, for the moment, we are not retatig ourselves to a specific profile format to
measure the behavior of the program on the given input. I &stecting (or designing) the profile is an
inherent part of solving the estimation problem. To this,eekction 5.1.4 evaluates existing profile formats,
justifying our selection of edge profiles. On the other h&ettion 5. designsa new profile format.

Figure 5.1 introduces a running example. The estimatioblpro is illustrated on a program frag-
ment in VNG form (see Chapter 3), in which the three loads limaen detected to always refer to the same
memory location, denoted with a symbolic najeé NodeA, C, andE are users (and thus also generators)
of the value. Node® andD kill the value, as they may write fa], according to some alias analysis. When-
ever the program executes two loadseofvithout intercepting a killing store, the later load is redant and
can be eliminated.
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AT
Z

{

Figure 5.1: The estimation problem statement: What is the amount of reuse among the load$ad?
Constituent sub-problems: what kind of program profile $thidne collected at run-time? How to combine
the collected profile with the static analysis?

The estimation problem is to determine how many times thgnam input executes a reuse thread,
which in the figure areA, f,C], [C, 4, m, E], [A, f, h,i,j,m, E], and[A, f, h,i, [k, [T, m, E], where *’
denotes the usual non-zero repetition. Each time any oéttieeads is taken, exactly one loadrofan be
removed. Note that because the VNG is separable and has oalgyonbolic name[£]), threads can be
referred to as paths.

5.1.2 The applications of estimators.

An algorithm that solves the estimation problem is calle@stimmator In this dissertation, estima-
tors have two-fold application:

Profile-directed transformationChapter 6 develops PRE transformation algorithms thatoovee the limi-
tations of the traditional PRE that is based on coudionvia

1. CFGrestructuring(this algorithm is called PRE(MR); it is expensive but aeimg optimal re-
moval of redundancies), or

2. controlspeculatior(this algorithm is called PRE(MS); it is inexpensive butubsoptimal).

To decide between the two options, their expected run-tiemefit must be known.

Because restructuring removes all redundancies, themabienefit of restructuring equals the amount
of reuse in the program, which is exactly the precise est@rbatinded by the estimator. For specula-
tion, it turns out that, for each estimator, one can detegrhow to carry out the speculation transforma-
tion in such a way that its benefit equals exactly the lowemidaaf the estimate. Thus, by comparing
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the lower and the upper bounds, estimators identify whenwdpgon is too sub-optimal, facilitating
trade-offs between restructuring and speculation.

Evaluation of the VNG Chapter 8 uses the estimators to measure the accuracy ofNBea¥/finding value
recomputation. By incorporating the profile into dataflovalgsis, an estimator computes, in dynamic
terms, the amount of reusxposedy the representation and subsequeontiectedby the dataflow
analysis (see Section 2.1). Chapter 8 compares such aragstivith the (ideal) amount of value flow
presentin the program, obtained usirmguse profiling done on the same input. The algorithm for
reuse profiling is also developed in Chapter 8. Comparingxpe®sed/collected amount with the ideal
amount shows what fraction of the reuse detected by the profieer was found by the static analysis,
and therefore indicates the precision of the framework.

5.1.3 Anideal estimator.

The process of designing the estimator involves designirsglecting a profile format and devel-
oping an algorithm that combines the profile with the restilthe dataflow analysis. An ideal estimator
algorithm should have the following properties.

e Accuracy: the dynamic optimization opportunities counted by theneator should equal the oppor-
tunities that occurred in the given execution of the progranaffected by profile imperfections and
estimator’s approximations.

e Dataflow independencéhe profile should collect measurements that are indepéonélemat dataflow
facts will be counted by the estimator (reuse of loads, ostamts). Dataflow independence enables
reusing the profile for other optimizations, and eliminates need to perform the profiling step (re-
peatedly) between the analysis and estimation stages.

e Low-cost profiling:the estimator should use a profile format that requires Emppbgram instrumen-
tation and incurs low execution overhead during profiling.

e Low-cost profile processinghe information needed by the estimator should be simplérangbensive
to extract from the profile.

e Sharability: rather than requiring specialized algorithms, the esomsiiould rely on algorithms that
are commonly implemented in optimizing compilers, to rezlimplementation effort. Also, the profile
information should be general enough to be shared by othrex pithe compiler.

5.1.4 Program profiles.

The first step in developing an estimator is to select (orgigsa run-time program profile. Let
us review next the most commonly used profile formats, diescdhie information they collect and highlight
their properties.

The use of profiles and profile types Program profiling was originally developed to enhanoatrol-flow
optimizations. Such optimizations use the profile to ledrawa control-flow behavior of the program, i.e.,
about the frequency with which its procedures or statemamatexecuted. Control-flow profiles are used for
i) performing compile-time branch prediction, ii) ideniifig frequently executedt) program regions, with
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profile type information profiling profile accuracy processing
collected cost overhead size
edgeprofile CFG edges 1-3% O(FE) low low
pathprofile acyclic CFG paths 30% not reported medium medium
whole-program patiprofile control trace > 100% 1-10MB full ??

Table 5.1:Control-flow profiles.

the goal of enlarging the scope of traditional optimizasiovia inlining or trace scheduling, or iii) focusing
the effort of static analysis to hot program regions [AdJB,29.98, BGS98a].

In contrast to control-flow optimizations, estimators fe@n thevalue-flowbehavior of the pro-
gram. Instead of determining the frequency of control-fl@thg, they compute the frequency of value-flow
paths (called threads in the VNG representation), whichcargrol-flow paths along which reuse exists.
What these paths are is determined by the (static) valuedi@lysis.

Accordingly, this section divides profiles into controlvlprofiles and value-flow profiles. Control-
flow profiles have received much more attention. There areetprofile formats relevant to solving the
estimation problemedgeprofiles, path profiles, andwvhole-program pattprofiles. Value-flow profiles ob-
serve values computed by the program. The most common kiretlsdieaddress profilingand value pro-
filing. The former are used to assist in static instructiomestuling, the latter in compiler-supported value-
prediction [RCT98]. Because value-flow profiles are more expensive thamaeffaw profiles, and because
they are not independent of the dataflow information to bieneged, we made a deliberate decision to base
our estimators upon a control-flow profiles.

Next, let us discuss control-flow profiles, through the ojtations for which they were developed.
The various profile types were developed because, depeaditig optimization, a different program region
is profiled. Profile-based static branch prediction attenpipredict the direction of a branch from previous
program runs [MH86, FF92]. Such optimization requires tharts of nodes or edges in the control flow
graph. A profile capturing such information is calledetge profile Edge profiling is also used by procedure
inlining [CMCH92, AGS97], which requires execution freaqueges of each call site.

More sophisticated static branch predictors measure ttrelation among multiple branches, re-
quiring profiling of control flow paths [YS94]. Sugbath profilesare also useful in forming an instruc-
tion scheduling region, although most schedulers appratérthe information with edge profiles [LF103,
HMC*92, MLC*+92].

The above path profiles collect statistics on short [YS94ayrclic [BL96a] CFG paths. Recently,
Larus [Lar99] developedhole-program patlprofiling that captures the entire control flow trace of the-pr
gram. His profiling algorithms compresses the trace by fogaigrammar whose (only) string is the executed
trace.

Profiling techniques. The control-flow profiles are summarized in Table 5.1. Next,uls briefly review
existing approaches for collecting the control-flow prafil@he most common technique used is instrument-
ing the program with instructions that increment countdiise algorithms differ in how these counters are
incremented and maintained. For edge profiling, the mogtiefii technique isamplingthe execution of
the program, which is a more efficient but less precise teglethan instrumentation. Of the three profiles,
sampling was used only for edge profiling.

Edge profiles. An edge profile can be collected using program instrumentatiith overhead
of about 16% [BL94]. With a hardware-based sampling appgrpacdge profiles cost only 1-3% over-
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head [ABD"97]. Recently, a software-based sampling approach wadaped via transient (removable)
instrumentation [TS99], or transient interpretation ofiveinstructions [BDB99]. Their cost is comparable
to that of the hardware-based approach (a few percent).

Path profiles. Path profiles can be collected relatively efficiently, evdrew compared to the low
cost of edge profiling. A path profile can be obtained with @l39% overhead [BL96a].

Whole-program path profilesLarus’s compression technique is the best complete profiénh-
nigue. It achieves low memory consumption by compressiegridice (on-line) into a grammar, on which
path frequencies can be determined without decompredsingdce. Still, compared to edge and path pro-
files, the cost of collecting whole-program paths is rekdtivhigh (a slowdown of more than 100%). The
compressed profile size is also considerable (24MB for X29.9

5.1.5 Related work: existing estimators.

Let us review next the existing estimators. The related vimdivided based on the kind of profile
information used. A common property all of them is that theg based on control-flow profiles. There-
fore, they are dataflow independent: they profile the prodrafare performing any value-flow analysis and
estimation.

Edge profiles Ramalingam [Ram96] offers the only existing systematichoétfor estimating a dataflow
solution. Using edge profiles, hirequency analysiderives the probability of a data-flow fact holding at a
CFG node. The probability replaces the less informativel®amo data-flow lattice. The frequency analysis
can be directly applied on the VNG representation: aftenevdllow has been converted into data flow, it is
represented in a domain that frequency analysis can handle.

e Accuracy. Unlike our estimators, frequency analysis does not bouedrtherent edge-profile error;
without quantifying the error, it is not clear how close thequency analysis is to the actual estimate.

e Sharability. While frequency analysis requires an elimination-styléalaw analysis solver (not
commonly implemented in existing compilers), our estimately on control flow reachability or
network flow algorithms, which are easier to implement.

e Processing costOperating on real numbers, rather than on bit-vectorsugaqy analysis is expected
to be rather slow. Our estimators delay the floating-pointjgatation until the value-flow patterns are
abstracted and summarized. Our estimators offer an aftegrta frequency dataflow analysis; they
are not as general (not all our estimators can compute theqair estimate) but are cheaper and fit the
needs of PRE transformations.

Path profiles Gupta et al [GBF97a, GBF97hb, GBF98] present various vessidiprofile-directed PRE, for
exploiting various hardware features. Common to all thégershms is that they are guided using Ball-Larus
path profiles [BL96a, BMS98]. While the algorithms do not keily compute an estimate, the estimate is
computed implicitly, “on-the-fly” during the dataflow analg.

e Accuracy. Unfortunately, even path profiles remedy the correlatiasbfgm only partially, as they
measure execution frequencies only of acyclic programspath a result, estimating value flow along
cyclic paths incurs the same branch correlation error, asteasured paths may not fully overlap
with the detected reuse paths. Thus, they capture only parea@orrelation needed to reconstruct the
frequency of the value-flow path.
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e Processing cost.The algorithms maintain dataflow information independgfutt each executed path
in the program, hence the slowdown factor due to making thienigation profile-directed roughly
equals the number of acyclic paths with non-zero executeguency. Experiments in [GBF98] show
that 1.4% of procedures in a subset of Spec95 executed mamel®0 paths, and that 35% of proce-
dures executed at least 5 paths.

e Sharing. The algorithms are phrased mostly as bit-vector problerdslamot require special dataflow
solvers. Collected path profiles can be reused in the in&ruscheduler and procedure inliner.

Whole-program path profiles The Larus whole-program path profiler [Lar99] can be usedasstmator.
He provides an algorithm for determining the frequency diilapath, from the compressed profile.

e Accuracy. Whole path profiles completely eliminate the branch coti@taerror. They, therefore,
represent an ideal profile for value-flow optimizations.

e Processing cost. Unfortunately, there are currently no algorithms for deti@ing the frequency
of an set of sub-paths, represented as a regular expretk®othe pathg A4, f, h, i, [k, |7, m, E] in
Figure 5.1. Such cyclic paths commonly carry value reusenaunst be estimated by the optimizer.

A hope for an ideal estimator? To summarize the above discussion of existing work, no fra¢accurate
estimator exists. Two accurate estimator approaches cambediately suggested, but they are both imprac-
tical. The firstis to is to follow the dataflow analysis wittcampleteredundancy elimination (Chapter 6),
which is followed by re-profiling, to obtain an optimized dymic computation count. Because complete
redundancy removal is based on restructuring the CFG, sacpproach is impractical and—due to the
code growth incurred during restructuring—potentiallfemmsible. The second approach is to enumerate all
value-reuse paths detected by value-flow analysis and Ipotheir frequencies in the trace produced by
the whole-program path profile. Because dataflow analysisdatect infinitely many reuse threads (due to
loops), we need to (somehow) stop their enumeration whendeitain that the further threads will not be
contained in the thread. In conclusion, it appears that st eccept (and deal with) the error that is inherent
in program profiling. This section presents estimator atgors that reduce this inherent error and guarantee
its bounds.

5.2 The hierarchy of estimators

This section outlines our estimators and defines conceptsnam to all our estimator algorithms.
We describe the properties of our estimators and show hoyabkieve (nearly) all the goals of the ideal
estimator.

The estimators follow three main design choices, each sgatisg the following one.

1. Use edge profiles. For pragmatic reasons, our estimators are based on edglegrdecause edge
profiles are inexpensive to collect and store, we achi@weprofiling cost Because they measure only
control-flow behavior of the program, we achiedataflow independenas profiling. Because edge
profiles are widely used, e.g., for procedure inlining arstrunction scheduling, we can justify (and
amortize) the profiling cost, achievirstarability.
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Figure 5.2:The running example annotated with edge profile.

. Compute error boundsUnfortunately, edge profiles contain an inherent profilimpe Because they
do not capture branch correlation, they cannot reconspaitt frequencies accurately to the actual
execution. Consider the running example annotated withdge @rofile, shown in Figure 5.2. One
of the paths with value-reuse |4, f, h,i,j, m, E]. The edge profile cannot precisely determine its
frequency; according to the edge profile, the path frequeanyrange from 30 to 40 (because the path
[B, g, h,i,j,m, E] might contribute 10 to the count on the edggj)), which is a large profiling error.

While edge profiles prevent our estimators from achievingaiccuracy the estimators presented here
gain confidence in edge-profiles by computing not a singlgi@tise) estimate, but instead a lower
and an upper bound of the accurate estimate, by assumingiaisi and an optimistic control flow
scenario. Because the bounds limit the inherent error, ¢tbarate estimate lies somewhere between
them. The tighter the bounds are to each other, the moresprééw estimate we obtain.

. Hierarchy of estimators. The amount of the profiling error that appears in the resyléstimate
depends on:

(a) The inherent edge profile erroleven though the edge profile is imprecise, when the contal-fl
behavior of the program is skewed highly towards a small remobpaths, the edge profile may
describe these dominant paths very precisely. Considexteenee example, in which each CFG

node is executed at most once. In such a program, the edgke fiscds precise as the complete
trace.

(b) The control-flow complexity of value-flow threadsValue-flow threads do not always require
more than the edge profile. Consider ndden Figure 5.2. IfD did not kill the reuse ofz],
there would be more value-flow paths, but their overall patt@uld be simpler to quantify using
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the edge profile: the load i would be redundant always except when it was precedd@l, tsp
the estimate for the load is its frequency (150) less theueeaqy of B (50).

Because the amount of error induced in the estimate variesadthese two factors, the full power of
our algorithm may not always be needed. Therefore, estimatovide a scalable solution: while one
cannot influence the factor (a), one can focus on (b) andaighiwith a scalable effort—the estimator
bounds in those places of the program where the threads l@ma@lex control-flow pattern.

The scalability is achieved via five estimator algorithmat thiffer in their error-bounding precision
and run-time complexity, as shown in Figure 5.3. The prattieason for developing a hierarchy of
increasingly better estimators is that when a simpler (astkf) estimator yields loose bounds, one can
run the next better (but slower) estimator, with the guaranhat the new bounds will not be worse.
Resorting to a stronger algorithm only when necessary tegulow processing costFurthermore,
our estimators share a common paradigm, and rely on infesmat algorithms used also by other
PathFinder stages, thus providisigarability.

Having established our design choices (compugngr boundof edge profilesn a hierarchical
manner), we can formulate thexlge-profileestimation problem. From now on, the term profile refers to
the edge profile. Let[start,end be a control trace (i.e., the sequence of executed nodes)camugp, t)
the number of times a pafhoccurs in the trace, that is, the execution frequency pfin the execution.
Similarly, we defineoccurgp, t), for a value-flow threagh: occurgp,¢) = occurgpath(p), t).

Definition 5.1 (Edge Profile) Given a CFGG = (N, E, start,end) and a profilefreq : E — 7, a tracet in-
duceghe profilefreq, denoted/ freq, iff for eache = (n,m) € E, freq(e) = occurg[n,m],t). Conversely,
a tracet is permittedby a profilefreq if ¢ inducesfreg. O

Recall the Definition 4.1 of value reuse threads (page 47)chwhre VNG sub-threads, originating at a
generatorVNG noden € D, sinking onto auser VNG nodem € U, without crossing &ill VNG node
ke K.

The trace determines the dynamic amount of value-flow in tbgnam. It precisely determines the
estimate, i.e., how often a user node is executed such tisgiréceded by a generator node without crossing
a kill node. The estimation problem is then to bound the eg#mThe bounds are computed by considering
a pessimistic (and an optimistic) control flow scenario ped by the profile. In other words, the goal is
to find the smallest (and the largest) amount of value flow, ragvadl possible traces permitted by the edge
profile.

Definition 5.2 (The Estimation Problem) Theestimation problent is a tupleS = (G, R, freq), where
e freq is an edge profile on a control flow graph= (N, E, start,end), freq : E — Z,
e G = (N, E,start,end) is a value name graph d@.

e R=(G,D, U, K) be the set of reuse threads (see Definition 4.1 on page 47)
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Theestimation problen$ = (G, R, freq) is to compute the lower and upper bouhdsndU on the amount
of reuse permitted by the edge proffteq:

L = min occurgp,t
{t\t/frea}z 1p.1)
PER
u = max occurgp,t).
{t\t/freq}z 1p.1)
PER

O

Example 5.1 Figure 5.2 illustrates the estimation problém= (G, R, freq). The reuse threadR cor-
respond to the optimization opportunities for the removakoundant load operations af Whenever the
program follows a reuse thread, exactly one load operatiarbe removed. The reuse threads to be estimated
are specified using the generator (loads or stores), usgtqjpand kill (stores) sets:

D ={A,C E)}
U ={A,C E}
K = {D}

The problem is to compute the minimum and the maximum numii&ese reuse opportunities as permitted
by the annotated profile. In other words, we want to find maxmamd minimum assignments of frequencies
to the reuse threads such that the frequency assignmenpeanitted by the edge profile. Even without

enumerating all reuse threads, the reader can convinceltiat in the example the maximum assignment
is 115, and the minimum assignment is 100. O

According to Definition 5.2, the boundsandU are tight; i.e., the relative errgt/ — L)/L can
be entirely attributed to the imperfections of the edge fEdalthough the error size depends also on the
shape of value-flow threads, as explained in bullet 3b on B&)e The best estimator is tight only on a
separable VNG with a single symbolic value, like the VNG igiiie 5.2. On a general VNG, the estimation
problem may be NP-hard, and our estimators compute its appation. The estimators do not guarantee a
competitive ratio for their approximations. However, ttygiecision can be measured using the relative error
(U — L)/L, and in practice, the relative error of the second best astinwas about 5%.

5.3 Overview of estimators.

Computing the estimate as prescribed by Definition 5.2 wowldlve iterating across a) all traces
permitted by the profile, and b) all possible reuse threani: fR. Such a direct approach is impractical,
as there may be too many permitted traces and infinitely manger threads, such as those denoted by
[A, f,h,i, [k, 1], m, E] in Figure 5.2.

Rather than dealing with individual traces and threadsestimators findummary program points
that “summarize” groups of paths with identical value-floreperties. The properties are: a) value is gener-
ated along incoming paths, b) value is generated along rorimy paths, and c¢) value can be reused along
all outgoing paths.

Lemma 5.1 (Summary Points) Let G be a VNG andR = (G, D, U, K) a set of reuse threads @».
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| PRE | \CMPC\

Figure 5.3:The estimators and their precision ordering.

more precise

1. Producers.If a VNG edgea is aproducer then the reuse is generated (by a generator ffpnalong
all control flow paths reaching the sourceaf

2. Stealers.If a VNG edgea is astealer then the reuse is generated along no all control flow paths
reaching the source af.

3. Consumerslf a VNG edgea is aconsumerthen the value (that flows across the edgevill be used
(by a user fromU) along all control flow paths originating at the sink@f O

The estimators differ how they place the summary points.alcheestimator, the sets of producers, stealers,
and consumers are denotBd, St, Co, respectively. The remainder of this section focuses opld@igement
of summary points.

To compute the actual value of the upper bound, our estimatetermine how much reuse can
flow between generators and the set of consumers points.riVe at the lower bound, they determine how
much (reuse-free) flow can reach from stealers to the cons,stealing[BMS98] the reuse flowing from
the sources.

Note the contrast between generators/users/kills (Diefindt.1) and producers/consumers/stealers
(Definition 5.1). While the first triplestatesthe problem by specifying the value flow patterns in the VNG,
the latter triplerepresentshe problem statement to enable an efficient and accuratputation of estimate
bounds. Producers summarize generators, consumers sim@msers, and stealers summarize kills and
other reuse-free path.

An overview of our estimators. The estimators differ in how they compute these three sathaw pre-
cisely they account for the possible value flow among thenat 19) they differ in how much error (in ad-
dition to the inherent error) they allow when constructihgit pessimistic/optimistic reuse scenarios. Next,
we present a brief overview of the individual estimatorartetg from the conceptually simplest one. The
estimator hierarchy is given in Figure 5.3; the estimataneswill be explained below.

PRE is the simplest estimator. Mirroring closely the PaRadundancy Elimination transformation (see
Section 6.2), producers are taken to be those instructi@igenerate the reuse, that is, the instruc-
tions from D; consumers are the partially redundant computations,ishahe user nodes fron;
and stealers are the points where an operation must beaddgrtPRE to compensate partial redun-
dancy. To determine which generators (or stealers) mayuse¢br steal) reuse for each consumer
computation, PRE uses graph reachability.
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The PRE estimator uses a trivial placement of summary pofngsnarter placement can improve
the bounds by exploiting an observation that some reusadbrean be estimated precisely even from the edge
profile. For example, if a producer is post-dominated (fsd on each control flow path) by a consumer
(with no intervening kill), then all reuse from the produeeust reach the consumer, and no reuse can be
stolen. Consequently, the producer frequency represegmtscise estimate for all threads that connect the
producer and the consumer, considering them all in conéent.such threadsany edge profile is precise;
they can be safely excluded from worst-case control flowades.

Thus, the central idea behind the remaining estimatorsigotate the reuse threads for whiahy
edge profile is precise and focus on reducing the error imr-ewmntaining threads. This (effective) factoring
of threads is accomplished by placing the summary pointdose ¢o each other as possible: starting from
the PRE’s position of summary points, producers and steae¥ delayed (i.e., moved forward) and the
consumers are hoisted (i.e., moved backward). When thestsmoeet, then all threads represented by them
can be precisely summarized by the frequency of the meetlgg.eConversely, when these points do not
meet, error remains, but we at least minimized the lengtlt®os$idered threads, minimizing the number of
branches on these threads, and thus reducing the branefation error induced in the solution.

It is interesting to note that the closest placement of sumpmades coincides with thEMP re-
gion,! described in detail in Chapter 6, where it is used to iderdligtacles to the complete PRE transfor-
mation. The CMP region is the smallest multiple-entry, pldtexit region in which the entry edges can be
divided between producers and stealers, and the exits beteansumers and (strict) non-consumers. Being
the smallest such region, it finds the desired closest planeaf summary points.

The CMP region precisely divides (the reuse in) the VNG imoartain and definite. Each node
in the CMP has an error, as the reuse is produced only adongeincoming pathsand can be consumed
only alongsomeoutgoing paths. Consequently, without the knowledge ofitinacorrelation in the CMP, it
is not possible to determine how much incoming reuse agttlaived to consumers in the profiled program
execution. Conversely, each node outside the CMP regiomas-ee, as the value isither produced (or
stolen) alongall incoming pathor is consumed alongll outgoing paths; in either case, the edge profile is
sufficient.

To summarize, the CMP region contains all the branch-caticgl error inherent in the edge profile.
Therefore, the four CMP estimators focus on reducing ther @ontained in the CMP region, with different
variations on the optimistic/pessimistic approach, ae¥es:

CMP! estimator conservatively assumes that there is a single @Mifce thel in the name), in which all
entries and exits are mutually reachable. This false rdslifyanay connect consumers to spurious
producers and stealers, yielding loose bounds.

CMP¢ attacks false reachability by partitioning the CMP regiatoiconnected CMP subregions, using
graph reachability between CMP entries and exits. The iddal connected CMPs are treated with
the CMP estimator.

CMP" exploits entry-exit eachability further. Compared to CMRAt removes false reachability even within
each connected CMP by computing the amount of value flow asaorieflow problem.

'CMP region stands foode-Motion-Preventingegion. By using the ternCMP before it is introduced later in
Chapter 6, we are getting ahead of ourselves. Chapter 6 mllsivfthis chapter because it relies on the estimators
presented here to develop its transformation algorithrhe.fame CMP reflects the transformation and not the estimatio
for historical reasons: the transformation algorithmsenaveloped earlier [BGS98a] than the estimators [BGS98b].
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CMP/ exposes to the networfikow computation of all the CFG edges in the CMP, not just th@msary
entry-exit reachability information, thus exploiting &ined notion of reachability that accounts for
how much reuse can flow between CMP entries and exits, andstohether they are reachable.

The following two sections present the detailed estimatgorithms, Section 5.4 for separable
VNGs, to simplify the presentation, and Section 5.5 for gahéNGs.

5.4 Estimators for separable VNGs

This section assumesseparableVNG, i.e., a VNG without¢-nodes, and hence without any
dataflow transfers between value names. Without transfac name can be handled separately as a “slice”
of the VNG, with CFG properties. To handle general VNGs, aniyor algorithmic extensions are needed,
but we delay them to the next section, once the basic priesiple clear.

Recall the following notation introduced in the previoust&mn. Given an estimation problefh=
(G, R, freq), an estimator algorithm € {PRE CMP!, CMP¢,CMP", CMP’} returns upper and lower
bounds on the accurate estimate, dendiécindL®, respectively. The problerfi specifies the value flow
using three sets of VNG nodes: generatbrsusersU, and kills K; the estimate measures the frequency of
K -free threads betweeB and U. All estimators summarize value flow by finding a placemersiohmary
points: producer$’r, stealersSt, and consumergo. Also, we overload the edge profile by extending its
domain to VNG nodes and edges in a straightforward ray,: (EUN U N U E) — Z.

Recall the Definition 4.2 of availability and anticipabjlitwo dataflow properties that describe
whether a value flow was computed on an incoming path, or caaused on an outgoing path, respectively.
Using the lattice defined in Definition 4.4, these propetti@ge the following meaning.

Must all
AVAILx[n] = ¢ No if zis available along no paths.
May some

Anticipability (ANTIC) is defined analogously.

The placement of summary points will be computed from thafttaw solution of availability and
anticipability (see Definition 4.3 on page 48). The follogilemma shows that, whatever the particular
selection of producers, each producer mustiost-available. Similar relationships hold for consumers and
stealers.

Lemmab5.2

(n,m) € Pr = AVAILyy[n] = Must
(n,m) € Co = ANTIC,[m] = Must
(n, m) € St = AVAILyy[n] = No

Proof. According to Definition 5.1, each producer generates theevahch time it is executed. Therefore,
the value must be generated on each path leading to the moddence, its availability solution #slust.
Similar arguments apply for consumers and stealers. O
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Pr = {(n,m)€ E|necD}

Co = {(n,m)c E|meU}

St = {(n,m) € E|AVAILn] = No A AVAILm] = May}
Pr(e¢) := {(n,m)e Pr|3p={(m,c).pN(DUKUSt) =0}
St(e) := {(n,m)e St|3Ip=(m,c).pN(DUKUSt) =0}

LPRE(¢) := max{0, freq(c) — Z freq(s)}
seSt(ce)
UPR&(e) = min{freg(c), Y freq(r)}
r€Pr(c)
LPRE ._ LPRE(¢)
C;O
UPRE ._ UPRE(¢)
Cg(;o

Figure 5.4:The PRE estimator.

The PRE estimator. The PRE estimator calculates the estimate independemtlafth consumer point;
given the individual estimates, the total estimate is algdias their sum. The PRE estimator mirrors the
PRE transformation (see Chapter 6):

e consumerg’o are VNG edges that sink onto optimizable statements (uskrs)o

e producersPr are the sources of redundandy;, = D. Computed independently for each consumer
point ¢ € Pr, the producers of each consumgdenotedPr(c) C Pr, are VNG edges that emanate
from those generators nodes that may reachithout crossing a Kill, i.e., those generators that are
backwards reachable fromalong some (kill-free) thread.

e the set of stealers for a given consumedenotedSt(c), are those VNG edges onto which a compu-
tation must be inserted to make (the partially redundard)ly redundant. Stealers are also computed
using graph reachability.

To compute the upper bound for a consumemwe assume the most optimistic control flow scenario: all
produced values that can reaechactually flow toec. In such a scenario, the frequency of reuse threads
betweenPr(c) andc equals the lower oPr(¢)’s and¢’s frequencies. The lower bound assumes the worst
case: all flow from reachable stealers flowsctominimizing the frequency with whicla executes with a
value flowing from producers, stealing value flowing fromgwoers. The formulas for computing the PRE
estimate are shown in Figure 5.4. Note that tivex operator inL"RE(¢) serves to make the lower bound
non-negative.

Example 5.2 (The PRE estimator)Let us apply the PRE estimator to the VNG in Figure 5.5. (See Ex
ample 5.1 for the definition of the problem.) The produceosistimers, and stealers for the PRE estimator
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Summary points:
® producer

O  stealer

W consumer

Figure 5.5:Example of the PRE estimator.

are
Pr = {(Avf)(cvj)v(E)}
Co = {(A),(f,C),(m,E)}
St = {(gzh)v(gvk)=(D=m))}

The bounds for consumersandC' are trivial, asA is not redundant (has no reaching producers)
andC is fully redundant (has no stealers):

LPRE(A) _ UPRE(A)
LPRE(C) _ UPRE(O)

0
3

3.
The edge-profile error affects only the (partially redurtiiaonsumei, whose producers and stealers are
Pr(E) ={(4, 1), (C. 1)},
St(E) = {(g,h), (g, k), (D,m)},
yielding bounds for the consumér

LPRE(E) = max{0, freq(c) — Y freq(s)} = max{0,150 — (10,40,55)} = 45
s€St(c)

UPRE(E) = min{freq(c), Z freq(r)} = min{150,100 + 35} = 135.
réPr(c)
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The total estimate is

LPRE= 3" LPRE(c) =0+35+45 =80

cePr
UPRE= " UPRE(c) = 0+ 35+ 135 = 170,
cePr
which is a(170 — 80)/80 = 112.5% error. The smallest (tightly bounded) error is 15%. O

The CMP estimators. This large error produced by the PRE estimator is not egtutak to the error of
the edge profile. Instead, the loose bounds are caused bysRRIge placement of summary points, which
suffers from “overbooking” of a producer to multiple consens: In the running example, nodeacts as

a producer common to consumeérsand £, which together consume more value flow tharcan produce
(while A produces only 100 unitg; and E together consum&5 + 150 units, see Figure 5.5). Overbooking
can be removed by dividing the producer’s contribution agyoeths leading from the producer to its different
consumers. In the CMP estimators, the contribution is édidydelaying[KRS94a] the producer. Delaying
moves the producer forward along all paths as far as it resraproducer according to Definition 5.1, i.e., as
far as each path through it generates the value. Figure)sB@svs how producef, A) is delayed into the
edgeqf, C) and(f, h), which become the new producers, effectively dividing tbetdbution of A among
consumerg’ andE.

Note that consumers, too, cause PRE’s imprecision. In taenple, the consumet claims to
be able to consume 150 units (equal to its weight), while @3ynits can reach it, due to the kill node
which blocks 55 units of value flow. This flawed flow accountimjxed byhoistingthe consumers. Hoisting
moves consumers backwards as far as they remain consumerfs )ike delaying moves the producers.

After producers are delayed and consumers are hoistedjrathary points are optimally placed.
(Note that, unlike its producers and consumers, PRE’s plaog of stealers was already optimal.) The
placements are optimal in the sense that the summary pa@ntot be moved closer to each other without
being forced onto a path that contradicts their definitioef{ition 5.1). As a result, the paths between
producers/stealers and consumers are as short as possihil®jzing the number of conditional branches
on these paths and thus also the branch-correlation erp@aaing in the estimates. Indeed, where produc-
ers/consumers and stealers meet, creating unit-lengtis,padge profile introduces no error. For example,
the frequency of the unit-length producer-consumer fath;)] can be trivially and precisely determined
from any edge profile. On the other hand, where the summant$dbd not meet, error may appear in the
estimate.

To put these principles on a solid footing, we observe thatsiimmary points enclose a VNG
region. The region has multiple entry edges and multiplé esges. Its entries can be divided between
producers and stealers, and its exits can be divided betegesumers or (strict) non-consumers. Because
the summary points are optimally placed, the region is thallest region that contains all the profiling
error. It turns out that this region precisely coincidedwmite CMP region to be presented in Chapter 6. The
CMP maximizes the number of paths that can be excluded fremvtirst-case assumptions about branch
correlations: any thread passing outside the CMP regiorbeagstimated precisely from any edge profile.
Conversely, any path that crosses the region may have pgpéfiror (for some profiles).

Let us rephrase now the definition of the CMP region (to beedtat Definition 6.4) using the
terminology of this chapter. Formally, the CMP is a subgraptihe VNG, delimited by entry end exit edges,
such that on each node from the CMP region, its value is gtatboa some (but not all) incoming threads,



CMP(x)

CMP region

entries: oM @ Must-Avalil
N O No-Avail

exits: XM H  Must-Antic
xN O No-Antic

E load x

v '
(a) The source program annotated (b) The CMP region for the
with an edge profile. reuse on memory location x.

actual flow capacity (the weak link is exposed)
infinite flow capacity

(c) CMF estimator, based on (d) cmP estimator, based on
control-flow reachability. frequency reachability.

Figure 5.6:Computing the estimates on the running example.



68

and will be used on some (but not all) outgoing threads. Th&Edgion is identified by solving the problems
of anticipability and availability, as defined in Definitidn2.

Definition 5.3 (CMP Region) Let G = (N, E, start, end) be a VNG. The CMP region ofs is the set of
nodesn C N such that for alln in the CMP regionAVAILj,[n] = May andANTIG,[n] = May. O

Lemma 5.3 (Entry/Exit Edges of the CMP Region.) The CMP region has a set of entry edges and exit
edges. Each entry is either

e Must-available, denotedn™, acting as producers, or

¢ No-available, denotedn ™, acting as stealers.
Similarly, exits are either

e Must-anticipated, denoteez:™, acting as consumers, or

o No-anticipated, denoteelz”v , not participating in the estimator calculations.

O

The CMP region divides the value flow inttefiniteanduncertaincomponents. The definite com-
ponentS,; has no error and equals the sum of frequencies of all defird@uzersPr;, defined in Figure 5.7
below. The salient property of each definite producer isalatalue flow it produces will be consumed. The
bounds of the uncertain component are computed in the CMBrregd are given in Figure 5.8.

Prq = {(u,v) | AVAILyy u] = Must A (AVAILn[v] = May V v € U) A ANTIG,[v] = Must}
Sa = Z freq(n)
nePry
ue := S;+U;
L = Si+L;

Figure 5.7:The CMP estimators for separable VNGs.e € {CMP', CMP*, CMP", CMP/} The formulas
for computing the uncertain component of the estimhfeandU:)) are given in Figure 5.8.

Example 5.3 (CMP Region, Definite Estimate)The CMP region for the running VNG example is shown in
Figure 5.6(b). The CMP region excludes from the worst-casesiderations threadsl, f, C] and[C, j, E],
because their estimate can be computed from an edge prdditésely, using theefiniteproducer points,
which are

Prq ={(f,0),(C,j)}
Each of these definite producers provides 35 units of reuseatse these producers are definite, their reuse
will be fully consumed, byC' and byFE, respectively. Thus, the definite reuse is
Sa="70.

The definite reuse remains the same for all CMP estimators. ]

The CMP estimators differ in how they compwté™? () andLSMP(z), which are the bounds of
the uncertain component of the estimate. Each of the CMPhasirs uses a different notion of reachability;
by reducing the amount of flow that may reach the consumens fine producers (or stealers), the estimators
obtain can refine the upper (or lower bounds). The approdeken by the CMP estimators are compared in
Figure 5.8.
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Figure 5.8:The CMP-based estimators for separable VNGsalgorithms for computing the uncertain com-
ponent of the estimate. In the formulag,V, en”™, andez™ (are overloaded to) mean the frequencies of the
corresponding CMP entries and exits. namehy)! denotes théth Must-available entry of the CMP rea-
gion,en% denotes théth entry of thejth connected CMP subregion. maxflawwv) denotes the maximum

flow between vertices andwv in the shown networksCMP ! assumes all CMPs are one, i.e., that all entries
and exits are mutually reachabl€MP ¢ separates connected CMPs, eliminating some false redithabi
CMP" exploits intra-CMP reachability, using a max-flow compiatat CMP/ exposes to the max-flow all
intra-CMP edges, including their actual profile weights.
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The CMP! estimator. This is the simplest CMP-based estimator. CM@entifies CMP entries and exits
and, to minimize its computational cost, assumes that eddh Entry-exit pair is mutually reachable. The
upper-bound scenario resulting from this assumption isatan™ entries are producers for alle™ con-
sumers. The lower bound follows the same conservative gasoumthat the CMP region is fully connected.
The bounds are computed as in the PRE estimator. Figure\es8 tiie formulas.

CMP! is very efficient; it computes only th&NTIC and AVAIL data-flow solutions. Entries and
exits are identified by examining the two data-flow solutitotzlly at each node. The cost of computing the
solutions and the entries and exits is amortized, as theglsoeneeded by the PRE transformation (Chapter 6).

Example 5.4 (CMP') For the running example in Figure 5.6(b), CM{elds

LEMP! — max{0, (40 + 20) — (10 + 40)} = 10
USMP' = min{65, 40 + 20} = 60.

The total estimate is

LOMP' — g, 4+ LCMP' = 70 4 10 = 80
UCMP' — 5, + USMP' = 70 + 60 = 130,

which improves PRE’s upper bound by removing overbookinthefproducer4, reducing the error from
112.5% to (130 — 80)/80 = 62.5%. Note that, while CMP is better than PRE in this example, it is not
strictly superior in general, as indicated in the hierargtaph in Figure 5.3. O

The CMP¢ estimator. This estimator improves the precision of CMIBy eliminating some false entry-exit
reachability assumed by CMPTo this end, it identifies connected CMP subregions, thustipaing pro-
ducer, stealer, and consumer sets. Smaller sets resufisiol@restimation when considering the worst-case
scenarios. The bounds are computed separately for eackeadedrCMP, and then summed. In the experi-
ments, this partitioning of the CMP region produced the bajhincrease in precision. As a result, CMP

the recommended estimator for practical applications,tdues cost-precision balance (see Section 5.6 for
further empirical observations).

The CMP estimator is more complex than CMPIn addition to computinghVAIL, ANTIC and
identifying CMP entries and exits, it must compute 1) re&ditg of CMP entry-exit pairs, producing a
reachability graph, and 2) find connected subgraphs of thehability graph, to find connected CMP sub-
regions. Fortunately, these two analyses are also needi@ IRRE transformation, to guide the profile-
directed speculation (see Section 6.3.2.1).

Example 5.5 (CMF) In the running example, the CMP region is connected, here€tP* estimate is
identical to that of CMP. 0O

The CMP" estimator. This estimator adds more precise handling of intra-CMPhehitity. Each CMP
region is represented as a bipartite graph in whankry and exit nodes are connected if there is a thread
connecting them (see Figure 5.8). The bipartite graphs@reexrted into a network using three super-nodes
ENM, EN", andEX™ that connect all producers, stealers, and consumersatese The flow capacities

of edges connecting the super-nodes mirror the frequen&MP entry and exit edges; the capacity of
intra-CMP edges is (conservatively) set as infinite. Eqegpyith this network, we compute the upper reuse
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bound as the maximum flow betweBN" andEX?. Similarly, the amount of reuse that can be stolen from
consumers is given by the max-flow betwdgi"” andEX™

Compared to CMP, the CMP" estimator does not identify connected sub-regions, buéats
computes the more costly network-flow. Note that the netvoorkstruction implicitly partitions the CMP
into connected sub-regions.

Example 5.6 (CMP") The network for our running example is shown in Figure 5.6Bgcause CMP exit
edge(i, j) is not reachable from CMP entry edde, k), less reuse can be stolen than in CMRhich
improves its lower bound:

CMP" CMP"
L =Si+L;

= Sy +maz{0,y  xM — maxflonENY, EX")}

= 70 + max{0, (40 + 20) — 30}
=100,
UCMP" — 5, 4 UCMP"
= S + maxflow(ENM  EX™M)
=70+ 60
=130,
which is a(130 — 100) /100 = 30% error. O

The CMP/ estimator. While an entry-exit pair may be graph-reachable (i.e.,mabte along a thread), it
may not be sufficientifrequencyreachable. In Figure 5.6(b), such a pair is the CMP efifty:) and the
CMP exit(l, E). The only path connecting them containw@ak link—the edge(i, k) with a low frequency

of 5. Even though there is enough value flow on the entry, thakvliak prevents this flow from saturating
the exit(l, E)—only 5 units of reuse can be exploited. To account for weaksli it suffices to expose to
the max-flow computation the inside structure of the CMP atetige level, including edge frequencies, as
shown in Figure 5.6(d).

Example 5.7 (CMP/) After the weak link is accounted for, the upper bound of thevimus estimator is
improved:

CMP" CMP"
L =S;+ Lu

= Sy +maz{0,y  xM — maxflonEN"Y, EX")}
i

= 70 + max{0, (40 + 20) — 30}
= 100,
UCMP" — 5, 4 UCMP"
= S + maxflow(ENM  EX™M)
=70 +45
=115,
which is a(115 — 100)/100 = 15% error. Note that, for this example, CMRestimator produced tight

bounds; that is, there exist control tradgst, that induce the edge profile andt,’s “estimate” equals
LCMP" andt,’s “estimate” equal& *MF" . O
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control-flow paths value threads

a) The CFG of the program. b) The paths through the CFG. c) The VNG of the program
and its CMP region.

Figure 5.9:Computing the estimate on a general VNGThe figures represent a concrete example of the
estimators in Figure 5.8.

5.5 Estimators for a general VNG

The previous section presented estimators feg@arable/NG. On a separable VNG, threads can
be considered in isolation, like bits in a separable biteegroblem. In ageneralVNG, threads may be split
(even when underlying control flow paths do not split), siginig that a value is identified under multiple,
synonymous names. Such thread splitting qualitativelyngka the VNG properties. In particular, what is
considered “overbooking” of a generator by the consumeis separable VNG may be considered legal on
the general VNG. This section extends our five estimatorsitalie the complications of the general VNGs.

The example in Figure 5.9 illustrates the issues raised hgmg¢VNGs. Consider the control flow
pathsp; andp, shown in Figure 5.9(b). Along these paths, the nadesdD are equivalent, yetin the VNG
they are (correctly) not placed on the same thread. The VNSBasgvn in Figure 5.9(c). Nodé&s andD are
not the same thread because they are not synonymous alomgoatiing paths. They differ along paph; as
a result, the thread going acrasss splitinto h andh/’.

The consequence of such thread splits is that a generateraaod‘provide” more value flow than
its own execution frequency. Consider the ndglén Figure 5.9. Node&3 is a generator with frequency 25,
yet it provides enough value flow for both and D, which are consumers with a frequency of@&ch The
reason whyB can “feed” bothC' and D is that its value flow is duplicated when it crosses ngdeshere
the thread is split. As a result of the split, the incomingueaflow isduplicatedonto the outgoing threads
(i.e., onto node& andh’). A general VNG has thus two kinds of thread splits. Firse, ¢plit ati is induced
by control flow, just like in the separable VNG. At controlsieplit, the frequency of value flow divided
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among outgoing threads. Second, the split stinduced by synonyms. At a synonym split, the frequency is
duplicated

On a general VNG, the flow entering the region need not eqedldiwv leaving the region, which
was the case on a separable VNG. The reason is that value flpwerduplicated in the region. Consider the
CMP region in Figure 5.9(c). The sum of entry edge frequenisid 50, but the sum of exit edge frequencies
is 200. The difference between exit and entry frequenciaalsghe amount of “flow duplication” in the CMP
region. The amount of this duplication is an important valuwill be used to generalize our estimators.

The PRE estimator. The formulas for computing the PRE estimate are the sameratdoseparable
VNGs shown in Figure 5.4. The algorithm remains the same &mdbecause each consumer still finds
all its producers and stealers. Compared to the separatbiegsehe only difference is that some of the
overbooking is actually legal value flow, due to flow duplioat as discussed above.

The CMP estimators. Two extensions are needed to handle merging threads. W®ingn hoisting the
consumer summary points, it must be guaranteed that thgylased at points from which exactly one user
is reachable along each outgoing control flow path, evendrptiesence of thread merging. Second, it must
be accounted for duplication of flow in the region. Becaussftbquency of CMP exits may be greater than
the frequency of CMP entries, the entries alone do not telavs much flow can be produced or stolen.

1. Placement of consumers. When hoisting the consumer points, it must be guarantedd tha
consumers are placed at points from which exactly one useisag@achable a) along each outgoing control
flow path rather than b) along each value natheead a condition used in the separable setting, in which a)
and b) coincide. The justification for the refinement is thiatng b), multiple users can be reached along a
single control flow path. Therefore, the frequency of thestoner point under-represents the amount of users
reachable from the consumer. In Figure 5.9(c), the conssic@rnot be hoisted across ngdbecause the
consumers would be merged into one consumer whose frequenidg bar less than those of the summarized
users. (Use a better example, in which the edges emanatimgtfiread-merge node akéust-anticipated.)

2. Flow duplication in the CMP region. Let » be a CMP regionfy be the sum of's entry
edge frequenciegny = ), freq(n;), andfx be the sum of’s exit edge frequenciegx = >, freq(z;:).
Then,A = fx — fn gives the amount of flow duplicated in the CMP region. Becahseduplication
happens inside the region, a fractionAfcarries the value reuse and a fraction is reuse-free, damend
on whether the flow originated at producer entries or steainies. In CMP, CMP°, and CMP, these
fractions cannot be determined (because the inside of th® @dion is not examined) and hence these
estimators (conservatively) increase Byboth the producers frequencies and the stealer frequentres
contrast, because the CNMRstimator exposes the individual inner edges of the regiaan account for
how much of the duplicated flow is from producers versus freealsrs. Instead of computing tihe CMP/
reduces the estimate into a generalized version of the miefileav problem, defined below.

For theCMP estimators, the formulas in Figure 5.7 remain valid in theegalized setting. The
formulas for the uncertain component@fP estimators change, as shown Figure 5.10. The EpHmator
computesA for all entries and exits together, assuming all belong ¢éosdime connected CMP region. The
CMP° estimator finds the connected sub-regions and comphite®r eachith sub-region. The CMP
estimator accounts for the duplicated flow by adding a nbtle the network that reflects the intra-CMP
reachability. The added node, denotethcreases the amount of flow that can reach the consumer bgih
from the producer super-nod@N" and the stealer super-noB&N" .
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Figure 5.10:The CMP-based estimators for bi-distributive VNGs: algorithms for computing the uncertain
component of estimates. The algorithms generalize theritigus for separable VNGs (see Figure 5.8).
CMP! adds the amount of flow duplicated in the CMP region, dendteid both the produced flow and
the stolen flow.CMP¢ is similar, exceptA is computed for each connected sub-regi@MP" adds more
flow to the consumers by adding a “channel” between the snpdes and the consumers. The flow capacity
of the added nodé is A. Dotted lines mark edges inherited from the separable CMEMP/ computes
the bounds using a generalized version of the max-flow pnojile which some nodes duplicate, rather than
distribute the incoming flow.
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The CMP/ estimator The CMF estimator exposes to the max-flow computation all inner Cges.
To account for flow duplication, let us introduce a generlimax-flow problem, callechax-dup-flowin
which some nodes in the network rather than preserve themimgpflow onto the outgoing edges (in the
usual way), while others catuplicateit.

Definition 5.4 (Duplicating Flow Network) A duplicating flow networkid = (N,, N4, E) is a directed
graph whose vertice¥ are divided intdflow-preservingrerticesV,, andflow-duplicatingverticesNg, N =

N, UNy,N, N Ng = 0. Each edgén,m) € E,E C N x N has a non-negativeapacityc(n,m) > 0. For
convenience, we assign the capacity of 0 to all nonexistiyg® We distinguish two special nodes € N,

which are thesourceandsink of the network, respectively.

Definition 5.5 (Max-Dup-Flow Problem) Let G = (N,, N4, E) be a duplicating flow network (with an
implied capacity functior, sources and sinkt). A flowin G is an integer-valued functiofi: £ — Z that
satisfies the following four properties:

1. Capacity constraint:

VY(n,m) € E.0< f(n,m) <e(n,m)

2. Flow preservation (at flow-preservation nod®s):

Vn € Ny — {s,t}. Zf(m,n) = Zf(n,k)

k
3. Flow duplication (at flow-duplication nod€s,;):

Vn € Ng . Zf(m,n) = max f(n, k)

Reducing the estimation problem to the max-dup-flow problérhe reduction of the estimation
problem to the max-dup-flow problem is straightforward. Each VNG noden that is a synonym split
node (likeg in Figure 5.9(c)), a flow-duplicating node is created. Fdrotther VNG nodes, we create a
flow-preserving node.

Computing the Max-Dup-Flow problemWhile we do not have an algorithm for computing the
max-dup-flow precisely. Instead, an approximation is comgiy reducing the max-dup-flow problem to
the standard max-flow. The reduction is similar to that use@MP". The reduction add4 units of flow
to the CMP region but, compared to CNloes it in a more fine-grained fashion. Rather than conrgectin
to the node) the exis of the CMP region, it connectsddhe flow-duplicating nodes from the CMP region.
This accounts for (some) weak links in the CMP region.

5.6 Experiments

Figure 5.11 compares the precision of the estimators. Far banchmark, the figure plots the
weighted reuse obtained by four estimators (CM#as not implemented). The reuse is broken up into
four parts; the left two bars together represent the defieitse componen®,;, on which all benchmarks
are normalized. The third and fourth bars are the lower aadifiper bounds on the uncertain reuse. The



| PRE | 1 cmp! |

smaller
2 - error
15 | r
error { F- _ ' [ - r— J
0.5 4
0
Y ) <& N D D A Q & N >
O Q@%% S ¢ ¢ F S &
'\QQ) 0@ <O \@\
<
INT FP

Figure 5.11:An experimental comparison of estimator precisions.For each benchmark, the plot shows
the precision of four estimators (the CNRstimator was not implemented). The precision is given lay th
dark bar: the bottom of the dark bar gives the lower boundnetiby the estimator (normalized); the top of
the dark bar is the upper bound. The eight benchmarks onftheadeinteger programs; the four benchmarks
on the right are floating-point programs.

floating-point benchmarks (the four on the right) have nead uncertain reuse, due to simple control flow.
On the other hand, the reuse in integer benchmarks has &cagiuncertain component. It can be observed
that with good algorithms, the profiling error can be greatiguced. Note that while, in theory, CMIB

not strictly more precise than PRE (as the precision ordesimows), it performs much better in practice. In
fact, CMP' is appreciably better than CMPnly ongcc. Hence, due to its simplicity, CMPmay be the
estimator of choice. Overall, the average error was 15% RIE Rnd 5% for CMP.

An important observation was that the estimator precissostiongly dependent on the pointer
aliasing information. By interrupting some reuse paths, kitling stores induce more CMP regions, with
more entries and exits, increasing the amount of uncer&aise. For the comparison in Figure 5.11, we
selected the configuration of load-reuse analysis thatechile largest estimator errors (kill set = each array
and pointer store, and each procedure call; see Section 5.6)

5.7 Correlation profiling

The CMP-based Correlation Profiling estimator is not baseddge profiles. Instead, it assumes
profile information that correlates CMP entries and exifficgantly to avoid the profiling error. We present
it to show what profile information may fully eliminate thegfiting error.

Using the CMP region, we can specify what information fronrafiter would enable computing
the reuse with no branch-correlation error. Coming backigmie 5.6(b), we can observe that the precise
amount of uncertain reuse equals the number of times a peodundryen is followed by a consumer exit
exM. Therefore, measuring the pair-wise correlation betweBtP@ntries and exits captures all branch
correlation that affects the amount of reuse. After the -flata analysis identifies the CMP regions, the
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profiler can instrument the program to collect this pairanisformation. Whether such a pair-wise profiling
can be (efficiently) performed prior to knowing the shapeSWIiP regions in the profiled program is an open
guestion.

5.8 Conclusion

The estimators presented in this chapter compute, givedgmrofile, the (bounds of) cumulative
frequencies of the reuse threads detected by the value flalysais The estimators are conceptually simple:
they do not reconstruct the path frequencies but insteadpfiogram points that summarize the paths. The
points are value-flow-dependent; if value flow-patternssamgle (e.qg., value-flow holds on all paths, or can
be handled with code-motion PRE), the edge profile errorsmo&gppear, for any given edge profile.

The experimental results suggest that imprecise, dataifidependent profiling followed by smart
estimation algorithms is a very successful strategy fofilerdirected optimization. If one desires to use a
more precise, data-flow-dependent profiling, then the trom profiling described in Section 5.7 seems to
be the alternative of choice.

More specifically, the experiments suggest that the CM§timator offers an ideal balance be-
tween precision and computational cost. On average, CWd3 able to bound the inherent profiling error
down to about 6.5%, a sufficient precision for profile-diegtbptimization. Compared to the more complex
estimators, CMPhas linear asymptotic complexity.

By bounding the branch correlation error, the estimatoposg the inherent imprecision of edge
profiles. Our experiments suggest that:

e Edge profiles are precise for load-reuse optimization. iff thsult extends to other value-flow prob-
lems, we do not need path-profiles, which are one of the exg@mdactors in value-flow optimiza-
tions.

e Considering that the inherent edge-profile error is smalkwggested by our experiments, the maxi-
mum amount of error in the result of Ramalingam'’s frequen@lysis will be correspondingly small
(the result of his analysis always falls between our lowet @pper bounds).



Chapter 6

Intra-procedural Removal of Redundancies

This chapter describes the last stage of theHFINDER optimizer—program transformation—
whose task is to perform the actual optimization of the pmogr Given the redundant computations de-
tected by the previous stages, a program transformatige stadifies the program so that values are reused,
rather than redundantly recomputed. Such a transforméi&nown as Partial Redundancy Elimination
(PRE) [MR79], because it removes redundancies that are maryal (i.e., path-specific). Because partial
redundancies include common subexpressions and loopanv@omputations, PRE has become the most
important component of global optimizers.

Ideally, the transformation should remove all computatidetected as redundant. While such a
completetransformation is possible (decidable), it may requireféedint code transformation along each
optimizable program path, which requires a separation diidual optimizable paths, which may in turn
incur prohibitive growth in the program code size. To avaide growth, practical PRE algorithms restrict
their toolset tacode motiona method that moves redundant instructions but does nataepaths. The price
of practicality is, however, the failure to remove the redamcies completely. Experimental observations
show that the penalty is severe. In static terms, 73% of log@riant statements cannot be eliminated from
loops by code motion alone. In dynamic terms, the tradifigoade-motion) PRE eliminates only half of
redundancies that are strictly partial.

This chapter focuses on achieving a (nearly) complete PRite witurring an acceptable code
growth. This goal is achieved by combining the strengthshode transformation methodszede motion
control flowrestructuring and controbpeculatior—integrated in a parameterizable way that induces a family
of transformation algorithms, all built on the same abdioac The algorithms are characterized either as
profile-independent or profile-guided.

The main profile-independent algorithm integrates the estoal code motion with the more pow-
erful restructuring. In contrast to existing complete t@gaes, the algorithm resorts to restructuring merely
to remove obstacles to code motion, rather than to carrylmuentire optimization. For a large class of
problems, this algorithm achieves minimal code growth.

When a program profile is available, additional code growetthuction is possible by sacrificing
completeness where it is dynamically insignificant. Basedhe profile-based estimators from Chapter 5,
the main profile-guided algorithm combines code motion withtrol speculation. Speculation overcomes
the obstacle to code motion not by separating paths, butdgyting computations on program paths that did
not execute them in the original program. Estimators enthakafter this (potentially counterproductive)
transformation, the program is improved more than it is imggh In fact, estimators can maximize the
optimization benefit of speculation.

78
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The last algorithm balances all three transformations:nithe economical code motion fails and
the unsafe speculation impairs the program, restructisinged. In practice, the algorithms presented in this
chapter can achieve a near-complete redundancy removeaverny little code growth.

This chapter is concerned with the reusardfa-procedural value flowlnter-procedural redun-
dancies will be attacked in the following chapter.

6.1 Overview

The RTHFINDER stages presented so fdetectedhe reuse of values: in turn, the representation
exposed value flow using threads, the analysis marked valise on the threads, and the estimators weighted
the reuse threads with profile information. The task of teedtage is texploitthe value reuse, by transform-
ing the original program so that values are reused ratherrddundantly recomputed. This transformation,
known as Partial Redundancy Elimination (PRE), was firsppsed by Morel and Renviose [MR79].

By removing computations that are partially redundant, FREsponsible for handling ttgartial
flavor of path-sensitivity, i.e., the reuse that is avadabhly along some paths (see Section 1.4). Formally,
partially redundant computations are VNGer nodes for which reuse was detected along some (but not
necessarily all) paths. See Definition 4.1 for the desaiiptif reuse threads.

Definition 6.1 (Partial Redundancy) A VNG noden € U C N is partially redundantf there is a reuse
threadp[m, n) € R.

It can be shown that a computatianis partially redundant when
AVAILp[n] € {Must v May }

(see Definition 4.3.)

PRE is attractive because, by targeting computations teataundant only along some program
paths, it subsumes and generalizes two important valugereptimization: global common subexpression
elimination and loop-invariant code motion. Furthermdrecause the VNG uniformly represents all kinds
of value flow (e.g., value recomputation, repeated loadsetaied branches), PRE serves in our value-flow
framework as a unified program transformation technique.

The ideal optimization goal is to remove all computationtedied as redundant. While such a
program transformation is possible, it may require isolatf optimizable program paths, which may in-
cur prohibitive code growth, due to the exponential pathl@sipn, as shown in Section 1.5. Therefore,
practical PRE algorithms are basedande motionan economical transformation that reorders instructions
but does not change the shape of the control flow graph, gtislgilihe expensive isolation of individual
paths [BC94, CCK 97,DRZ92, Dha91, DS88, DS93, KRS94a, MR79]. The price ofréstriction to code
motion, however, is the failure to remove all detected refdunties. In theory, even the optimal code-motion
algorithm [KRS944a] breaks down on loop invariants in whHdeps, unless preceded by do-until conversion
(which is based on path separation). In practice, one halflpiamic) computations that are strictly par-
tially redundant (i.e.not redundant along some paths) are left unoptimized due to-oat®n obstacles,
according to our experiments.

This chapter achieves a (nearly) complete PRE by first cana#p analyzing the Morel-Renviose
code-motion algorithm, and then by systematically addinggss limitations. The result is a family of PRE
algorithms that combines strengths of three transformatiethodscode motior{economical), control flow
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restructuring(powerful), and controspeculation(potentially harmful). The three methods are abbreviated
with M, R, S, respectively.

As the first step towards a complete PRE with affordable cadevtlp, we present an algorithm
that integrates the code motion with restructuring, deth®BE(MR). The algorithm allows a complete
removal of redundant expressions while minimizing codelidapon. In contrast to existing complete tech-
niques [Weg75b, Weg75a, Ste96], it resorts to restrugjuriarely to remove obstacles to code motion, rather
than to carry out the entire optimization, thus eliminatimmpecessary code duplication. The resulting code
growth is minimal for a large class of problems. OReE®95, we found the code growth to be three times
smaller than that of the pure restructuring approachesofddPRE(R)).

No prior work systematically treated the integration of eadotion and transformation. The
PRE(MR) algorithm controls the extent of code duplicatignrbstricting it to acode-motion preventing
(CMP) region, which localizes adverse effects of contradftn the desired code motion. Figure 6.2(a—c)
illustrates our first algorithm, PRE(MR), through optintipa of the loop in Figure 6.1.

while (true) {

if (O
c+d

else if (P)
br eak

if (Q
c+d

el se
R

S

a+b

Figure 6.1:The example loop.

Let us assume that no statement in the loop in Figure 6.2 defaréables:, b, ¢, ord. Hence, the
computations: + b andc + d are loop invariant. Although a + b is loop-invariant, it cannot be removed
from the loop with code motion alone because it would be eteztan the pathEn, O, P, Ex], which does
not executea + b in the original program. If the frequency of this path is hegthan that of paths that
executea + b, the optimization could slow down the program. To avoid deyoroductive transformations,
the traditional PRE disallows sucimsafecode motion.

The desired optimization is possible only if the CFG is nestiured. The pure-restructuring PRE
duplicates each node on which the valuaof b is available strictly partially (i.e., not along all path§uch
a duplication splits partial redundancy into full redunchand no redundancy [Weg75hb, Weg75a, Ste96].
The resulting program is shown in Figure 6.2(b). While- b is fully optimized, restructuring unnecessarily
peeled off the entire loop body.

!The program in Figure 6.2(a) induces a separable VNG; itlvas be viewed both as a CFG with expressionsb,
¢+ d, and as a VNG with computations named+ b, ¢ + d.
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duplicated to make e:[a+b] fully redundant
duplicated to allow code motion of e:[a+b]

En

a) the source program. b) optimization of [a+b]. c) our optimization of [a+b], via
via restructuring. code motion + restructuring.

duplicated for complete optimization of [c+d]
duplicated for partial optimization of [c+d]

En En En

d) optimization of [a+b], via e) optimization of [c+d], via f) a trade-off variant of e).
code motion + speculation. code motion + restructuring.

Figure 6.2: PRE through integration of code motion, corftoal restructuring, and control speculation.
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In contrast, our PRE(MR) algorithm achieves completenedsmuch smaller duplication scope,
see Figure 6.2(c). We apply the more economical code-matimsformation to its full extent, resorting to
restructuring merely to enable the desired code motionhisndase, the hoisting af + b out of the loop. To
hoista + b, itis sufficient to isolate the offending pathn, O, P, Ex]. The necessary scope of duplication is
computed as the CMP region, short for code-motion-premgmégion, which is highlighted in Figure 6.2(c).
The restructuring is achieved by duplicating the regioterafvhich hoisting can be performed without im-
pairing the offending path. As no opportunities for valuese ofa + b remain, the resulting optimization
of a + b is complete. Yet, in contrast to Figure 6.2(b), only two bddocks have been duplicated.

Profile-guided PRE Using the dynamic count of eliminated computations as thasue of optimization
benefit, our profile-guided algorithms trade (some) optation for (much) code duplication. To reduce code
growth, we use profiling, in two different ways:

e To identify infrequently executed pathsth reuse. Reuse along these paths is not worth the restructur-
ing cost.

e To identify infrequently executed program pathghout reuse. These paths may be effectively be
disregarded when hoisting computations. (Hoisting inesthpaths constitutes control speculation).

The first profile-guided algorithm, denoted PRE(MS), corekimotion with speculation. It does
not use restructuring; instead, when code motion fails oensate partial redundancy into full redundancy,
the compensation is done speculatively, by inserting cdatjmns onto program paths that did not contain
them in the original prograrh.Such insertion is speculative because when these pathakar, the cost of
the insertion will not be amortized by a removed computation

With speculation, some paths are impaired so that otherdeasptimized. The net benefit of
speculation depends on the difference of frequencies oftheoved and the impaired paths, computed from
the profile. In our example, if the profile reveals that theentfing (impaired) pathEn, O, P, Ez] is less
frequent than the paths that execute- b, thena + b will be speculatively hoisted from the loop, as shown
in Figure 6.2(d).

The next profile-guided PRE algorithm makes the complete(RRE more practical by limiting
its code growth. The algorithm, denoted PRE(Mr), restmesiselectively. It sacrifices those value-reuse op-
portunities that are infrequent but require significantecddplication. The PRE(Mr) algorithm is illustrated
on the optimization ot + d; Figure 6.2(d) serves as the starting point. Figure 6.2{eys the (complete)
optimization ofec + d, performed by PRE(MR) by duplicating the shaded CMP regioth subsequently
performing the code motion af + d. Because the program control flow structure affects thevaptition
of ¢ + d more adversely that it affecis + b (i.e., the CMP region foe + d is larger than that o& + b),
more code is duplicated. If the size of duplication outwsitfie run-time gains, according to some utility
function, the PRE(MR) algorithm can be scaled back to seleshaller set of nodes to duplicate, yielding
the PRE(Mr) algorithm. An example of such an incomplete PRI& Figure 6.2(f), where the size of basic
block S is assumed to be greater than would be justified by the frexyugvalue reuse flowing throug#.

Finally, this chapter presents the PRE(Msr) algorithm ghifiialances all three methods. PRE(Msr)
uses restructuring only when speculation cannot be donefioally. Experiments show that PRE(Msr) is
near-complete PRE with very little code growth.

2Control speculation can be viewed aswarsafeversion of code motion.
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Minimal Do-Until Conversion Do-Until Conversion (DUC) is a common pre-processing tfamsation
for enabling code motion of loop invariants out of while-dops that would otherwise prohibit the desired
code motion [Muc97]. DUC is based on path separation; it eaiswvhile-do loops into do-until loops by
duplicating a part of the loop body (the loop exit conditioD)JC enables optimization of some (but not all)
loop invariants. Additionally, its duplication scope isdar than necessary.

It is interesting to note that the PRE(MR) algorithm subssiaied (fully) generalizes DUC. Con-
sider the loop in Figure 6.2(a). A commonly used DUC will féilsmarter DUC will peel off (unnecessarily)
the entire loop iteration, just like the PRE(R)algorithnowin in Figure 6.2(b). No known DUC can enable
the hoisting ofe + d.

In contrast, PRE(MR) produces the necessary do-until asiore Figure 6.2(c) shows the conver-
sion necessary to hoist + b, and Figure 6.2(e) shows the conversion requiredbyd. The PRE(MR)
conversion is minimal: with any less duplication, the staats could not be hoisted. While Figures 6.2(c,e)
show separate conversions tor- b andc + d, the two conversions can be naturally composed, as dedcribe
later in this chapter.

However, we note that, while PRE(MR) is successful in redgciode growth, the profile-guided
speculation-based PRE(MS) works much better: our expaitsrahow that it removes nearly all redundan-
cies, without any code growth. Furthermore, PRE(MR) mayegate irreducible programs, like the one in
Figure 6.2(c). Irreducibility may be produced by other mesturing algorithms, including PRE(R), although
it did not manifest itself in Figure 6.2(b). Irreducibilitan be corrected; Section 6.5.1 presents a simple,
reducibility-preserving version of PRE(MR).

Organization of this chapter Section 6.2 establishes the groundwork by analyzing thiédtians of the
standard, code-motion PRE and by motivating our solutiohe PRE algorithms are presented next. As
in Chapter 5, the presentation is simplified by first assunairggparable VNG (Section 6.3), and then a
general VNG (Section 6.4). Within each section, the alpang are divided into profile-independent and
profile-guided. Section 6.5 handles various practicaldssauch as irreducible graphs and hardware support.
Section 6.6 experimentally evaluates the algorithms awti®e6.7 concludes with a summary of the results
and discussion of related work.

6.2 Analysis of the Morel-Renviose algorithm

To motivate the approach taken here, this section intUjtidescribes the principle of the code-
motion PRE (denoted PRE(M)), conceptually analyzes whehvay it fails, and finally explains the ap-
proach for overcoming these limitations.

Figure 6.3 illustrates the principle of PRE(M). The compiotaa + b is partially redundant be-
cause there is a reuse thread leading to it. In CFG terms thex control flow path on which + b is
computed without being killed. PRE(M) optimizes+ b by hoisting it away from the reuse thread. Hoisting
inserts a computation on incoming non-reuse threads talerpartial redundancy af + b into full redun-
dancy. The transformation is completed by initializing estt temporary variableto carry the reused value
and replacing the original computation with a reference to

Figure 6.4 illustrates when and why code-motion fails. Fég6.4(a) shows partially redundant
a + b and its reuse thread. In this program+ b can be hoisted out of the reuse thread, as shown in
Figure 6.4(b). However, a slight modification of the progreauses the code motion to fail. When the
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at+b t:=atb BRSNS initialize

N //t:: a+b ... insert

reuse thread

\

e m atb E b replace

a) a+b is partially redundant. b) the optimization of a+b.

Figure 6.3:The principle of the code-motion PRE transformation.

|

t=a+b

[ o] [ o]
e: [a+b e

desired code motion

but code motion blocked
where reuse and free therads
meet.

a) source program b) after PRE(M), c) a version of a), d) PRE(M) fails, as
with a reuse thread a+b hoisted from with reuse and a+b is inserted onto
(dashed arrow). the reuse thread. free thread. the free thread.

Figure 6.4:The reasons for the failure of the code-motion PRE.

do-until loop is changed into a while-do loop shown in Figéré(c), the desired hoisting fails. Hoisting
fails because + b would have to be placed onfeee path—one that does not compute the value of b,
and thus cannot reuse its value and amortize the cost of sketion. To avoid impairment of the free path,
PRE(M) disables suchnsafecode motion; the code motion is blocked before it can enteiffrie path, as
shown in Figure 6.4(d).

This figure also shows the consequences of the unsafe lgpdtiaa + b. The insertion ofa + b
is a case otontrol speculationasa + b is executed even when the program will not execute the aigin
computation—we arspeculatinghat thecontrolwill reach the original computation, which would amortize
the cost of the speculative insertion. Because PRE(M) iilermsensitive, it cannot safely and beneficially
use speculation.

To summarize the above discussion, PRE based on code masdwb orthogonal deficiencies:

1. The safe optimization model is too conservativin guarantee that the program “never runs slower,”
the optimization allows improving reuse paths but only whrer paths are not impaired.

2. The program transformation used is not aggressive enougbde motion is the only program trans-
formation technique applied; when it is blocked, the optition opportunity is missed.

Our approach attacks both deficiencies:

1. Relax the optimization model. We allow control speculation. To guaranitebat the program is
improved more than it is impaired, the speculation is prafieen.

3As natural for profile-directed optimization, we guarantieat the program is not impaired only for the program
input(s) used to generate the profile.



85

+ no code growth
- impairs some paths

control speculation
S

code motion v - restructuring

+ no code growth

) o + complete
- misses opportunities

- code growth

Figure 6.5: The design space for our PRE algorithm. The algorithm can use any (combination) of the
three program transformation techniques. The algorithmliesanywhere in the design triangle. It resulting
properties depend on how biased it to a constituent teckniqu

2. Enhance the program transformatione allow the use of control restructuring. Restructurinkgss
economical than code motion, but we use it only when codeanddiils.

Our PRE algorithm thus uses three transformation techsiqUédese techniques are orthogonal; each is
useful in a different situation.

M) Code motiordoes not cause any code growth, but can be blocked befone fitiba remove the redun-
dancy.

R) Control flow restructuringcan alone remove all redundancies but the cost is high canetigr

S) Control speculatiordoes not cause any code growth, but it impairs some paths emcehcan be
counter-productive.

Our PRE algorithms always thyto optimize with code motion as much as possible (it is bofle sad
economical). When code motion fails, then—depending ohe) dptimized program and ii) the desired
optimization properties—our PRE can employ restructudngpeculation (or both). The optimized program
influences PRE with the shape of its reuse threads and itdegarofie properties of the optimization depend
on which transformations are applied. Figure 6.5 shows &sigth space of our PRE algorithms, as formed
by the three methods. The resulting algorithm can lie anya/hethe design triangle. Its resulting properties
depend on how biased it is to the particular transformatiethds.

We present five variants of the transformation algorithrh chbracterized in Figure 6.6. Two
algorithms are profile-independent and three are profildegli We also formulate the (profile-independent)
PRE(R) algorithm, in order to facilitate an empirical comipan of PRE(MR) with a pure-restructuring PRE
approach.

The two goals of a PRE algorithm are as follows:

1. Completenesst is desirable to exploit all reuse detected on the VNG. Winenused transformation
methods do not permit completeness (as in the case of cotler)ahe goal is to maximize the
removal of redundancies. Such a “best” optimization is defidifferently for profile-independent and
for profile-guided algorithms:

*On a separable VNG, code motion is used tortfeximundegree possible.
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PRE(MS)

[
PRE(Msr)

@ @
PRE(M) PRE(MR) PRE(R)
PRE(M)

Figure 6.6:The various variants of PRE algorithms.

Definition 6.2 (Best static PRE (profile-independent))A programP’ is thebest static optimization
of a programP if no other transformatio®’’ of P exists (using the allowed methods) such that a path
p executes less computationsitf than inP’. O

Because the measure of optimization quality is each indaliggrogram path, the best program may
not always exist.

Definition 6.3 (Best dynamic PRE (Profile-guided))A programP”’ is thebest dynamic optimization
of a programpP if no other transformatio®”’ of P exists (using the allowed methods) such that the
dynamic number of user computationdi§ is less than in?’. O

Because a single measure of quality is used for the entigrano, the best transformation must always
exist.

2. Shortest-live rangesit is desirable to insert the compensating computations@jram points such
that the live ranges of the inserted temporaries are as ahgrossible. More precisely, given the set
of bestoptimizations, the live-range optimal is one in which eaigk range is no longer than the
corresponding range in any other best program.

For each PRE algorithm developed in this chapter, a diftesptimality goal is appropriate, de-
pending on the transformation methods applied (M, R, S),damnding whether profiling is used.

PRE(M): Find beststaticoptimization a) without changing the shape of the CFG and/bjbving only the
optimized computations (not any other computations in tlog@mm).

PRE(MR): Find a complete optimization that minimizes the number gfldated CFG nodes.
PRE(R): Same optimality goal as PRE(MR).
PRE(MS): Same optimality goal as PRE(M), but in terms of bégbamicoptimization.

PRE(Mr): Find a dynamic optimization that maximizes a utility fumeti The utility function reflects a ratio
of code-growth cost with the dynamic optimization benefit.

PRE(Msr): Same optimality goal as PRE(Mr), but allow speculation.
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6.3 PRE for a separable VNG

As in the previous chapter, the algorithms are presentedffirsseparable VNGs and then for
general VNGs. On a separable VNG, each value thread use®pnelgame throughout the entire program.
Such simple VNGs require simpler algorithms and achievaradtoptimizations, typically at polynomial-
time cost. In contrast, for general VNGs, we either do noehav optimal transformation algorithm, or the
transformation is intractable. This section is devotedeodeparable VNGs. Section 6.4 presents extensions
needed for generality, focusing on the PRE(MS) algorithimctv appears to be the most useful in practice.

6.3.1 Profile-independent PRE

We will first consider the profile-independent variants ofBPRhese algorithms guarantee that,
whatever the path frequencies, the optimized program wilen execute more computations than the unopti-
mized program. Thus, these algorithms operate withirs#tfie optimization modét which no program path
can be impaired. To achieve completeness without impaaimgpath, code motion obstacles must be over-
come with restructuring. Our goal, then, is to minimize testructuring cost, i.e., the code growth measured
as the number of duplicated CFG nodes.

In turn, this section presents PRE(MR), PRE(M), and PRE{RE first algorithm is the complete
PRE that minimizes code duplication. The second algoritlseswur abstractions to derive an intuitive
formulation of the optimal code-motion PRE [KRS94a]. Thstlalgorithm is the restructuring-only PRE,
presented to serve as a reference point for our experiments.

6.3.1.1 PRE(MR): Code motion + restructuring

PRE(MR) integrates code motion and control flow restruotyiriTo reduce code growth, restruc-
turing is only a secondary transformation exploited by PREY. It is used merely to enable hoisting across
CFG nodes that prevent the desired code motion. The cedealdf PRE(MR) algorithm is to identify the
smallest set of motion-blocking nodes and duplicate thestructuring the CFG. After the restructuring, the
motion obstacles disappear.

To identify the offending nodes, we determine a predi®agventedn) that characterizes whether
a VNG noden blocks the desired code motion. The predicate is based osdiu¢ions to the standard
dataflow problems of anticipability and availability (seefidition 4.2). The problems are computed on the
Must-May-No lattice defined in Section 4.4.

The Preventedpredicate is derived as follows. A computation is partiaigundant if its value
is computed on some incoming control flow path by a previousmaation. Code motion eliminates the
(partial) redundancy by hoisting the redundant computediong all paths until it reaches an edge where the
reused value is redundant along eita#paths omo paths. In the former case, the computation is removed;
in the latter, itis inserted, to make the original computafully redundant (recall Figure 6.3). Unfortunately,
code motion may be blocked before such edges are reachedley ttwat prevent the code motion. These
nodes are characterized by the following set of conditions:

1. Hoisting of a computation of from the exit to the entry of a VNG node = (n, e) is desiredwhen
an opportunity for value-reuse exists, which is true wheth tod the following conditions hold:

a) The valuee is computed on some, but not all, control flow paths leading.tdn such a case,
hoisting must continue acroasto move the computation to CFG edges where it is either always
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or never redundant. Such a situation is true iff
AVAILyy[n] = May.

b) The valuee is consumed by a user node on some control flow p&timanating from, i.e., there
is a computation to be optimized (and hoisted from) the patuch a situation exists iff

ANTICou[n] # No.
Hence,
Desiredn] < AVAILy[n] = May A ANTIC[n] # No.

2. Hoisting of a computation of acrossn is disabledwhen the computation would impair some control
flow path, because the path cannot amortize the computasdhe following two conditions elaborate:

¢) The hoisted computation is not fully redundant and heheeetis an incoming path from which
it cannot be removed, which is true iff

AVAILp[n] # Must, and
d) The hoisted computation cannot make other computatidum@ant, on some path leaving
ANTIGp[n] # Must.
Hence,

Disabledn] < AVAILn[n] # Must A ANTIG,[n] # Must.

A noden prevents the code motion fewhen the motion is both desired and disabled. By way of cartjan,
we get the code motion-preventing condition:
Prevente@in] < Desiredn] A Disabledn]
& AVAlLgyn] = May A AVAILn[n] # Must A
ANTICu[n] # No A ANTIG,[n] # Must

BecauseAVAlLy[n] = May, noden is neither a generator nor a kill node ¢ D,n ¢ K, see Defini-
tion 4.1), from which one can show that

Preventefin] < AVAIlL[n] = May A ANTIC,[n] = May.

The predicat®reventefln] characterizes the smallest set of nodes that block the colermm For the desired
code motion to be enabled, the blocking condition of theskeranust be “removed” via restructuring. The
Code-Motion-Preventing (CMP) Regi@ithe set of such nodes.

Definition 6.4 (CMP Region) Let G = (N, E, start, end) be a value name graph. TE@MP regionof G,
denotedG"™, is a subgraph o&F such thatG® = (N¥, E¥, I, O), where
N¥ =4 {n € N | Preventefn]} nodes
E¥ =4 EN(N¥ x N¥) edges
I=¢{(n,m)c E|ng N* Amec N¥}  entryedges
O=¢{(n,m)cE|nec N* Am¢g N¥} exitedges. O
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The entry and exit edges are used to attach a copy of the CMénrég the rest of the program during
restructuring. The set of CMéntryedges,I, can be factored into two sets: entry edges on which the value
is available along all incoming paths or no incoming pathsese two sets are denoté andIN:

V(m,n) € IM . AVAILoy[m] = Must calledMust entry edges,
V(m,n) € IN . AVAILow[m] = No calledNo entry edges.

Similarly, exitedges can be factored into those on which the value is corts(amécipated) along either all
outgoing paths or no outgoing paths. These two sets areetkadt and ON:

V(m,n) € O™ . ANTIG,[n] = Must calledMust exit edges,
Y(m,n) € OV . ANTIG,[n] = No calledNo exit edges.

Observe that eacteusethread must enter the CMP region througlast entry and leave throughMust
exit. Similarly, afreethread must enter throughNo entry and leave throughNMo exit.

To explain how PRE(MR) removes obstacles presented by the @&gion, let us assume for sim-
plicity that the VNG contains only one name,+ b, which allows us to view the VNG as a CFG (i.e.,
threads coincide with paths). We will deal with multiple nresronce the central idea is clear. In PRE(MR),
the obstacles of the CMP region are removed by duplicatiegetitire region, as illustrated in Figure 6.7.
The goal of duplicating the CMP region is to factor thlay -availability that holds in the original region
into Must-availability andNo-availability, each holding in one copy of the region. Afiéay-availability no
longer holds in the region, the paths whttust- andNo-availability have been separated.

To see whyMay-availability can be split intdMlust- and No-availability in the two respective
region copies, observe that a) no region entry edisig-available, and b) the solution of availability within
the region depends solely on solutions at entry edges, bec¢he value is neither computed nor killed within
the region. Hence, the desired factoring can be carried pattiaching to each region copy the subset of
eitherMust or No entry edges, which separates the offending paths, as showigure 6.7(b). The exit
edges are duplicated and attached to both copies of thenteditier the CMP region is duplicated, the
conditionPreventeds false on each node, enabling the desired code motionpassh Figure 6.7(c).

Let us remove the restriction that the VNG has a single vafieen It is now possible that a CFG
noden prevents code motion of multiple names, denated. . . , e;, wherek > 1. Such a node (and its
duplicates) may need to be duplicated ugitmes, producing up t@* copies ofn. The first two copies of
n, denotedhyyst andnyo, separate the reusel/free pathséer After enabling the hoisting oé;, the paths
for the remaining names may still meetraj,s; and/orny,. Further duplication of these copies separates
both e, and e, paths, producing nodesgyyst must ; Must,No 7No Must s ’No.No- T NiS process continues until
there is a copy ofi for each subset ofy , ... | ex.

Some of the node duplicates may not be necessary. For exafirplese paths foe; match those
of ey, then nodesimyst.No, 2No,Must NEEd NOt be created. There are two alternatives how to odsteuthe
program and create only the needed nodes. The first is taictste along name; and then recompute
AVAIL. If paths for some other namg have been split in the process, Reeventectondition will disappear.
The restructuring then continues with names whesentecpredicate still holds.

The PRE(MR) algorithm presented uses the second alteenativavoid recomputing thavAlIL
solution, it creates afl* copies of each node, to perform restructuring for all nariresléaneously. Spurious
copies will be manifested as unreachable CFG nodes andevi#imoved in a cleanup phase. The PRE(MR)
algorithm has the following three steps:
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Figure 6.7:Removing obstacles to code motion via restructuring.
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1. Compute availability of generators and anticipability ¢fews. The computation of the two proh
lems is described in Chapter 4.

2. R: Remove the CMP region via control flow restructurifidie algorithm, shown in Figure 6.1
has three parts: node duplication (lines 1-12), edge adgrst (lines 13-17), and removal of
unreachable nodes (lines 18-24). The algorithm, as pesehtilds a restructured CFG”
from the original CFQ=. However, the algorithm can be easily altered to modifin-place.

O

The functionCMP(n) maps each CFG node into the set of value names that belong @\
region atn. This function directs how many copies of each node are ededttline 3: one copy
of each CFG node is created for each combinatiodo$t or No paths that must be separated at
noden, that is, one copy for each subset@¥1P(n). Note that ifCMP(n) is an empty set, only
one copy is created, denoteg, which is the case for thetart andend CFG nodes. Each node
is duplicated together with its dataflow solutioAgAIL and ANTIC. Lines 6 and 9 effectively
separate the reuse and free paths, by adjusting\A¢L dataflow solution.

Given the duplicated nodes with adjust®dAIL solutions, line 15 places edges between nodes
with compatibleAVAIL solutions, creating the restructured CFG. Line 14 testshérewo CFG
nodes have compatible solutions. Essentially, the testepie aMust-available node to be corn
nected with aNo-available node, ensuring théust and No paths are separated. Note that
AVAILq[m;] is the vector ofAVAIL solutions for all symbolic names fro. The lattice partial
order< was defined in Definition 4.4. The functien' : (E x 2%) — 25 permutes the name
in the dataflow vector, to reflect how the value names chang@ates. At separable VNGs, thjs
function is an identity.

)

Finally, unreachable nodes are detected using a work gstrighm, by propagating control floy
from thestarty, the start node off".

<

Figure 6.8:The PRE(MR) algorithm.

Theorem 6.1 (Completeness of PRE(MR)PRE(MR) is optimal in that it minimizes the number of com-
putations on each path.

Proof. First, each original computation is replaced with a tempo(&q. 6.1). Second, no computation is
inserted where its value is available along any incoming) pelence, no user computation in the optimized
program is partially redundarii]

Within the domain of the Morel and Renviose code-motion gfarmation, where PRE is ac-
complished by hoisting optimization candidates (but nastirng any other statements) [MR79], PRE(MR)
achieves minimum code growthThis follows from the fact that after CMP restructuring, nade is un-
reachable and no program node can be removed or merged with gther node without destroying any
value reuse.

SQutside this domain, further code growth reduction is gmesfor example, by moving some instructions out of the
CMP prior to its duplication.
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3. M: Optimize the program via code motioithe code motion transformation is carried out py
replacing each generator computation= (n, e) € D with a temporary variable, (eq. 6.1).
The temporary is initialized with a computation, which caniserted at three different points

Eqg. 6.2: at eachNo-available edge that sinks ontoMay-available node. This insertion will
compensate the partial redundancy into the full redundahbg insertion edge must also
be Must-anticipated to verify that an optimized computation wassteal to the insertiorn
edge.

Eq. 6.3: before each user computation that is not partially redundan

Eqg. 6.4: before eaclgeneratocomputation that is not asercomputation (e.g., a store instruc-
tion in redundant load optimization). Recall that such catapons cannot reuse the value
although they can generate it.

The last two cases initialize temporaries for computatitias have been replaced but have not
been hoisted.

Replacén,e) < (n,e) € D (6.1)
Insert((n,m)) < AVAlLgw[n] = No A AVAILy[m] = May A ANTIG,[m] = Must

(6.2)

V AVAILp[m] =NoAm € U (6.3)

vmeD\U (6.4)

Figure 6.9:The PRE(MR) algorithm, continued.

Algorithm complexity. The cost of restructuring (Step 2) dominates the dataflowyaisa(Step 1) and the
code motion (Step 3). Due to duplication, the size\6fmay beO(29) times larger tharV, whereS§ is the
number of VNG symbolic names. In practice, the algorithm sigsificantly slowed down only on some
very large procedures (of size more than 1000 nodes). Thisgon is to be expected, due to the exponential
number of possible program paths. Yet, PRE(MR) is very ssgfaéin reducing code growth. As will be
shown in Section 6.3.1.4, its code growth is less than hdliatfcaused by PRE(R).

6.3.1.2 PRE(M): Code motion

Besides enabling an efficient complete PRE, the abstraofiti:e CMP region also facilitates an
intuitive formulation of an optimal code-motion PRE. Rédadm Section 6.2 that PRE(M) is optimal when

a) it achievedest staticoptimization, i.e., it removes all redundancies that cam@mized with code
motion alone, and

b) itis live-range optimal, i.e., the live ranges of insdrtemporary variables are as short as possible.

Existing optimal algorithms [DS93, KRS94a, CERT7] work in two phases.
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control flow graph G = (N, E, start, end)
value name graph G = (N, E, S)
CMP region G® = (N¥, E¥ IN, OUT)

Output:

CFG G" = (N", E", starty, endy)
aries:
CMP : N — 25 CMP(n) = {e|(n, e) € N¥}

CreateN": duplicate CMP nodes and adjust their dataflow solutions

for eachn € N do
for each C € 2°MP(") do

copy the CFG node, including its dataflow solutions AVAILTAIN

make a copy of n, denoted '
add n' to N”
foreach e € C do
AVAIL[(n', )] := AVAILow[(n', €)] := Must
end do
for each e € CMP(n) \ C do
AVAILp[(n', )] := AVAILow[(n', e)] := No
end do
end do
end do

CreateE": connect the (new) nodes N"
for each pair (m;, n;) such that (m,n) € E do
if AVAILow[mi] <% ¢, . (AVAILix[n;]) then
add (77’7/1‘7 TLJ‘) to E”
end if
end for

Remove frontz" nodes unreachable frostary;, the start node of7".

add start; to Reachableadd start; to worklist
while worklistis not empty do
remove a node n from worklist
A :={m|(n,m) € E" A'm ¢ Reachabl¢
Reachable= ReachableJ A; worklist := worklistu A
end while
N' := ReachableE" := E" N (Reachablex Reachablg

93

Figure 6.10:The R phase of PRE(MR):remove the CMP region via control flow restructuring.
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1. Partially redundant computations are hoisted as higreasitied by code-motion obstacles. Such a
transformation produces the best static optimization.

2. Hoisted computations are rolled back as low as possifeowi undoing the optimization. Such a
transformation results in the best static optimizatath the shortest live ranges of temporaries.

In [KRS92, KRS944a], the two phases are callerdycode motion anthzy code motion, respectively.

The two-phase approach complicates the comprehensior @lgiorithm, for two reasons. First,
being an artifact of the dataflow equations, the busy codémtioks different (and hence counter-intuitive)
than the desired final transformation. Second, althoughathecode motion is a separate, corrective step, it
has to be considered in concert with the first phase to be stobet.

In contrast, our PRE(MR) algorithm operates in a single phHlsetains the single-phase property
even when its restructuring component is disabled, whickemit a PRE(M) algorithm. Such a constraint
provides a natural formulation of an optimal code motion. sMionportantly, PRE(M) is derived from the
same framework as our other PRE algorithms (i.e., it is basethe CMP region and thiglust-May-No
lattice), and hence it can be inexpensively implementedsggeaial case of a more general PRE algorithm.
We also note that the computational cost of our PRE(M) is Eguhat of the two-phase algorithms.

First, we explain why PRE(MR) is a single-phase algorithmext\ we show how to restrict
PRE(MR) to PRE(M) without losing the intuitive single-pleagroperty. The two-phase PRE hoists ag-
gressively until code motion is blocked. In other words,stiog continues upwards even after the hoisted
computation has been hoisted from its reuse path. Such @ Indiisting overshoots, and hence is corrected
by the second phase, which rolls back (delays) the hoistegbatations .

In contrast, the PRE(MR) algorithm hoists only as far as se@ey. The hoisting stops as soon as
the hoisted computation leaves its reuse path. The hoigtispppedearly, thanks to our more expressive
lattice: hoisting continues whil&VAIL is May (still on a reuse path), but stops as soo®®AlIL turns toNo
(no longer on a reuse path) btust (on a reuse path but fully redundant). Stopping early resalshortest
live ranges, avoiding the need for roll-back of insertions.

To derive PRE(M) from PRE(MR), one needs to do more than tésastructuring of the CMP
region. Our PRE(M) is based on the observation that the rBoséng across the CMP region is exactly
the reuse that code motion cannot exploit. The criticalesbws is how to prevent hoisting into paths that
emanate from exits of a CMP region (such hoisting is pregisgiat would have to be rolled back). It is
sufficient to ensure thaVAIL on a CMP exit is alway®o, indicating that no reuse is available to code
motion across the region. This is the only modification of FRRE) needed to derive PRE(M).

The PRE(M) algorithm uses the dataflow prope®AIL* , which holds when a value exploitable
by code motion is available at a node. TARTIC property is as in PRE(MR).

Definition 6.5 (Availability of Generators Accessible to Cale Motion) The M-availability ofe at the en-
try of n w.r.t. the incoming paths is defined as:

Must if e is available alon@ll paths fromstartto n,
AVAILY [(n,e)] = ¢ May if e is available alongomepaths fromstartto n,
No if e is available only along paths that contain a node from a C\jiore

O

It can be shown tha&VAILY [n] € {Must, May } iff all reuse flowing ton can be removed with code motion.
To summarize, PRE(M) has two steps: dataflow analysis anel gadion.
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1. Compute availability of generators, anticipability of use We compute the standard anticipabi
ity, as in PRE(MR). Availability accounts for the killingfettt of CMP nodes, which are treated
as kill nodes. The flow function for th&/AILM problem follows. The third line kills reuse it

is a CMP node.
Must if n € D, (value generated)
ful2) No if n e K, (value killed)
n(T = . .
No if Preventefin], (CMP region)
x otherwise.

2. M) Optimize the program via code motio@iven a maximal fixed point solution tdtNTIC and
AVAILM | the transformation proceeds as in PRE(MR), exceptAkiaiL replacesAVAIL

Figure 6.11:The PRE(M) algorithm.

Theorem 6.2 (Computational optimality of PRE(M)) Given the restriction ofimmutable shape of the con-
trol flow graph, PRE(M) achieves optimization thabisstunder code motion.

Proof outline. The proof is based on showing that any reuse that remainsRiRie(M) requires crossing the
CMP region and hence code motion would be blocked

To understand the concept behind the PRE(M) algorithm, wesl ranly to understand the definition of
AVAILM and its flow function.

While PRE(M) is easy to understand, it requires computatfcthree dataflow problem@\TIC,
AVAIL, andAVAILM), each requiring two bits in dataflow vectors per value nammecontrast, equivalent
two-phase algorithms compute three problems of one bit @agdilability, anticipability, delayability). Next,
we show how to compute PRE(M) with the same efficiency. Theieficy is improved by computing not
AVAILM but a “weaker” predicate that requires only one bit.

To computeAVAILM | we need the solution &VAIL andANTIC, which are required by the predi-
catePrevented To avoid computing botAVAIL andAVAILY | it is tempting to combine the detection of CMP
nodes and their killing effects into a single dataflow pratleThe following transfer function foAVAILM
does exactly that; thEreventedpredicate does not use the valueAAIL, but instead it uses the value of
AVAILM that is being computed/AILM appears as the valug in the third line).

Must if n € D,

No ifne K,

No if z = May A ANTIGy[n] = May, Preventefin|
x otherwise.

It can be shown that the maximal fixed point solutionsfipandf!, are both equal t&VAILM . Unfortunately,
/1 is not monotone: giveANTICG,[n] = May,z; = Must,z, = May, we haver; J z, but f,,(z1) =
Must 2 f.(z2) = No. Therefore, an iterative dataflow solver may produce (covasigely) imprecise
values ofAVAILM [KU77], i.e., we may obtain the solutidvlay instead oiNo.
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Instead, we define another availability property, den®étliL , which is “weaker” thamVAILM
but sufficient for computing thinsertpredicate correctlyAVAILY is defined as follows:

AVAILM = Must =4  AVAILM = Must (6.5)
AVAILY = May =4 AVAILM = May (6.6)
AVAILM = No =4 AVAILM =No v ANTIC= No (6.7)

It can be shown tha&VAILM can be used instead A¥AIL in the predicaténsert, without changing its value.
The reason for the condition 6.7 is thYAILY can be computed efficiently using three Boolean
(i.e., one-bit) problemsAN 4, AV, andAVseme defined as follows:

ANgj Sdf ANTIC = Must
Ay g AVAILY = Must
AVsome <>ar AVAILY # No

Clearly, the pai AVa, AVsomd expresses the solution 8/AILM . The true and false values are denoted
and L, respectively.

AVAILM = Must < (AVar, AVsomd = (T, T)
AVAILM =May & (AVar, AVsomd = (L, T)
AVAILM = No & (AVal, AVsomd = (L, L)

To computeANy;, AV, andAVseme We oObserve thalNy is the well-known (Boolean) must-anticipability
property, which holds when the value is anticipated alohguaigoing paths. SimilarlyAVy, is the must-
availability, which follows fromAVAILM = Must <« AVAIL = Must, which in turn follows from the
fact that noMust-available node is in the CMP region.

OnceANy andAVy, are solvedAVsomeis computed with the following transfer function.

if n e D,

if ne K,

if AVat = L AANg = L, Preventeg,[n]
otherwise.

Taveame( ) () =

8 b b o

It can be shown thafay,,..indeed computes the maximal fixed point R¥some( fav. IS false iff all incoming
paths either have no reuse or are kioist-anticipated, or they kill the reuse withf or a CMP node).
Intuitively, the conditiorPreventeq is weaker tharPreventedi.e., it is true more often)

Prevente g AVai= LAANgy = L
< AVAIL # Must A ANTIC # Must
Prevented <  AVAIL= May A ANTIC = May

Therefore, the weaker condition Kills reuse at CMP nodessante other nodes as well. However, both are
equivalent for our purpose, as it is safe to kill when theradsreuse AVAIL = No) or when there is no

hoisting ANTIC = No). The weaker predicatereventeg, is beneficial because computing and testing non-
Must requires one bit, while two bits are required to #dsty . As a result, we obtain the same implementation
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complexity as the algorithms in [DS93, KRS94a]: three dia-problems must be solved, each requiring
one bit of solution per expression.

In conclusion, the CMP region is a convenient abstractiorifominating hoisting when it would
unnecessarily extend the live ranges. It also provides titire way of explaining the shortest-live-range
solution without applying the corrective step based onyddidity [KRS94a]. Furthermore, the CMP-based,
motion-only solution can be implemented as efficiently astég shortest-live-range algorithms.

6.3.1.3 PRE(R): Restructuring

PRE(R) removes all redundancies, relying exclusively o gaparation. As mentioned above,
PRE(R)’s aggressiveness is undesirable because it digdicade when the more economical code motion
could be used instead. We present PRE(R) here in order taiaxplore formally why some duplication
is unnecessary, and also because it is used in this subseastia reference point for our experiment that
compares the code growth of PRE(M), PRE(MR), and PRE(R).

PRE(R) turns partial redundancy into full redundancy notbmpensating the partial redundancy,
but by separating out reuse paths. Compared to PRE(MR) Jesweuse paths are separated not only where
they meet aree path—a requirement for enabling code motion—but all the teathe partially redundant
computation, which causes more code growth than PRE(MR)n&lty, while PRE(MR) duplicates when

Preventefin] = AVAILn[n] = May A ANTIG,[n] = May,
PRE(R) duplicates when a reuse is only partial

PartialReusén] = AVAILix[n] = May A ANTIGq[n] # No
= Preventefin] vV (AVAILin[n] = May A ANTIGq[n] = Must)

That is, PRE(R) duplicates nodes on whaWAlLj,[n] = May A ANTIG,[n] = Must. On these nodes, the
partially redundant computation could instead be hoisted.

PRE(R) can be expressed as a form of PRE(MR), in which theuasting phase duplicates not on|ly
the CMP region, but its supersgt | PartialReusén|}.

1. Dataflow analysisAs in PRE(MR).

2. R) Restructuring:As in Figure 6.10, except that line 2 duplicates node for WitlartialReuséas
true.

3. Optimization:No code motion, as all computation are either fully redurngaom not redundant;
merely remove fully redundant computations. Still, pretésinsert and Replaceremain as in
PRE(MR).

Figure 6.12:The PRE(R) algorithm.

There are at least three algorithms that fit the PRE(R) cagdi¢eg75b, Weg75a, Ste96]. Although
not formulated via region duplication, they peel off reusg¢hs. To decide where the redundancy is only
partial, all of them use a form &VAIL
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Figure 6.13:Code growth of the three profile-independent PRE algorithms

6.3.1.4 A code growth experiment.

The purpose of the experiment is to evaluate the performafiffBRE(MR) in terms of reducing the
code-growth cost incurred by PRE(R). Both PRE(R) and PRE(&ffRct a complete removal, but PRE(MR)
should duplicate less code in practice. Figure 6.13 conspdueir code growth. Indeed, combining code
motion with restructuring reduces the amount of duplicatio less than one half of the pure restructuring
approach. On average for oup&c95 benchmarks, our PRE(MR)algorithm was able to reduce dlde c
growth of PRE(R) from 80% to about 33%.

Compare the ratio of PRE(R)/PRE(MR) code growth on the et¢lNT) versus the floating-point
(FP) benchmarks. The scientific FP programs exhibit morelaegontrol flow structure than the control
flow sensitive INT programs (they have relatively more lotim if statements) and so code motion is more
successful on FP, requiring little restructuring. In otherds, using pure restructuring on the FP programs
was more of an overkill than on the INT programs. In fact, dblvei shown in Section 6.6, on FP benchmarks
code motion alone was able to remove nearly all redundaguieasured as the dynamic amount).

In our experiment, the code size was measured as the sizesinf flacks (i.e., the number of
instructions in the basic block). The final code size did nolide the amount of inserted statements (see the
Insert predicate), which may also grow the program code slightty. tRis reason, in Figure 6.13, the code
growth of PRE(M) is shown to be 0.

The code growth of both PRE(MR) and PRE(R) depends on the mhoduedundancies and the
shape of their reuse paths. In this experiment, the valve+ipresentation was very restricted; it detected
only the class of lexically identical arithmetic expressiqas is common in traditional PRE). Namely, a
three-address instructianop b was considered partially redundant when it was precedea e $ontrol
flow path by an identical instructionop b, anda, b were not redefined since that previous computation. The
operatoopwas any arithmetic and logic operator in the PlayDoh [KSRAdfruction set. Loads, stores, and
conditional branches were not analyzed.

On some large procedures, the code growth exploded beyawatigal means. To make the ex-
periment feasible, the algorithm was terminated when tloequure size reached 3,000 instruction. The
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comparison of the two algorithms was made only on procedtedslid not exceed the limit, in either algo-
rithm.

Despite decreasing the cost of PRE(R) to less than a half(lRJEs growth (33%) is still a very
significant code increase. In a production compiler, th@nadble growth ranges around 20% [AGS97]. Keep
in mind also that the code size is a precious resource, mkelptocessor registers; the code-growth budget
needs to be shared among procedure inlining and loop umgolvhich typically have higher payoffs than
PRE and hence would be allocated a larger fraction of the dtudeurthermore, recall that our experiment
targeted only the lexical redundancies; using the VNG sg&ation, PRE(MR) would grow the code much
more than 33%.

In conclusion, because the PRE(MR) algorithm achievesrttadiast possible code growth (within
the Morel-Renviose domain), we conjecture that, with kn@nogram transformation methods, further code
growth reduction must be achieved via sacrificing some repgp®rtunities. However, in the absence of
profile information, code growth cannot be further reducétiout impairing the optimization. This obser-
vation suggests the necessity of profiling, which selecpodpnities to be sacrificed. Profile-guided PRE is
developed next.

6.3.2 Profile-guided transformation

While the CMP region is the smallest set of nodes whose daftic enables the desired code
motion, its size is often prohibitive in practice. In thiscBen, relying on the profile for estimation of the
run-time optimization benefit, PRE is made more practicayiding code replication that is

e unprofitable (PRE(Mr): too little benefit for too much dugplion) Section 6.3.2.2, or
e can be replaced with careful speculative impairment of fraés, Section 6.3.2.1, or

e both, Section 6.3.2.3.

6.3.2.1 PRE(MS): code motion + speculation

Once PRE is profile-driven, the measurédestoptimization changes. Rather than improving each
path as much as possible, the goal is to minimize the oveuaiber of dynamic optimizations, as measured
by the supplied profile (recall Definitions 6.2, 6.3). PRE(MSan algorithm that finds such begfnamic
optimization. While PRE(MR) is optimal in the absence offpecinformation (in that is minimizes code
growth), PRE(MS) is optimal in theresencef run-time profile (in that it maximizes the dynamic beneit
a given profile).

Because PRE(MS) is profile-driven, it is also speculativariother sense: since the program is
optimized under a specific run-time profile (and therefose ainder a specific program input), we provide
no guarantee that the transformation will actually not stbe program down for another input. However,
our preliminary experiments indicate that PRE(MS) is axiely stable across various profiling inputs.

Next, we describe the principle of combining code motiorhvgipeculation. In PRE(M), hoisting
of a computatiore is blocked whenever it would enter a free patthat does not compute in the original
program. Suclspeculativecode motion is disabled because executirgjong pathp could

1. raise spurious exceptions when compuin@.g., overflow, page fault), and

2. outweigh the dynamic benefit of removing the original coiagion ofe.
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AVAIL=Must
O AVAIL=No

-
[ ]

ANTIC=Must

speculative O ANTIC=No
~ code motion

ex(e2)

Optimization benefit:

e4 . -ex(e2) --insertion

ex(ed) +ex(e4)  --removal
ex(ed)-ex(e2)

\l

Figure 6.14:PRE(MS): a simple version of speculation-profitability tes. Optimal speculation is found
using estimators from Chapter 5.

Of course, the first restriction does not hold for instructioat cannot cause exceptions, such as additions or
memory operations that can be proven to access a valid addesepting instructions can be optimized with
modern processors, which suppdetayed exceptiori®ul98]. Special versions of excepting instructions are
provided which suppress raising the exception until theegaied value is actually used [MCB3]. Using
delayed exceptions in PRE is a simple extension describ8ddtion 6.5.2.

The second problem is harder. To guarantee that speculatjpmofitable, PRE(MS) utilizes the
CMP region to determine the positions of speculative insefoints that

e make speculation profitable, and

e minimize live ranges of temporary variables.

Figure 6.14 illustrates the PRE(MS) algorithm. While thesien of the algorithm discussed here is not
computationally optimal (it does not maximize the benéfit)ustrates well the principle of combining code
motion and speculation.

In PRE(MS), instead of duplicating the CMP region, we hdistéxpression into aNlo-available
entry edges. This makes all exits fully available, enabtiomplete removal of original computations along
theMust exits. In the exampleg + b is moved into theNo-available region entry edge. This hoisting is
speculative because+ b is now executed on each path going througtandes, which previously did not
contain the expression.

To determine whether such a speculative hoisting is beagfice examine the execution frequen-
cies of entry and exit edges, as follows. After the speotddibisting, the dynamic amount of computations
is decreased by the execution frequefiey(e,) of the Must-anticipated exit edge (following which a com-
putation was removed), and increased by the frequétegye.) of the No-available entry edge (into which
the computation was inserted). Speculation is profitalitesifinsertion is less frequent than the removal, i.e.,
the total execution frequency Must-anticipable exit edges exceeds thalNuf-available entry edges.

The algorithm sketched above is not computationally ogtin@ptimality is achieved via two
observations. First, it is not necessary to speculate ithtdbl@ entry edges. When Klust exit cannot be
reached from a&o entry, the entry need not be speculated to enable the optiimizof that exit. If the
entry has a high frequency, avoiding its speculation maye@mee the difference between improvement and
impairment. Consider Figure 5.6(c) in the previous chagdtas more profitable to speculate only into the
(g, h) entry (benefitis 30); speculating to &lb entries yields a benefit of 10.

Second, CMP entries are not the only possible speculatiantsppru99]. Optimal speculation
points may lie within the CMP region. Consider Figure 5.6t assume that th&/AlL solution on CMP
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entries is reversed (i.e(f, h) is No-available, andg, h), (g, k) are Must-available). In such a modified
program, it is more profitable to speculate into the inneregdgk), at the benefit of 15, than into the entry
edge(f, h), at the (negative) benefit of -5.

The two observations lead to the main result about PRE(MS):

Theorem 6.3 The maximal benefit of speculation equals the lower bountdefitost precise estimator.
Proof outline. Recall that the lower bound of an estimator is computed agéogiency of theMust-exits
minus the frequency of reuse that candielenfrom the No-entries. The proof is based on showing that
without speculation all the stolen reuse must be “covereitfi (gpeculative) insertions. In other words, all
No-available paths through the CMP region must be mddst-available via (speculative) insertioris.

This constructive proof directly suggests the PRE(MS) aigm. The central idea is to place the insertions
at the least frequent set of CMP edges that ensure thitusit-exits areMust-available. This set of edges

is found using the estimator algorithm. Namely, the optisdculative insertions are those edges that are
saturated in the network flow problem computed by the GM&timator. If a path through the CMP contains
multiple such edges, we select the one closest to the exitbtiin shortest live ranges. To summarize, an
estimator computes not only the maximum speculation bebefiallso determines the insertion points.

1. Dataflow analysisAs in PRE(MR).
2. S)speculation.

(a) Compute the CMPestimate. (CMP computes the tightest estimate for a separable VNG,
for a single computation. Hence is lower bound computes theimmum speculation bene
fit.)

(b) Find the min-cut on the flow networlN" , X*), such that the edges in the min-cut are| as
close toX™ as possible. These will become the insertion edges.

3. Recompute dataflow analysiédd the new speculative insertion points infd and recompute
AVAIL

4. M) code motionSame as in PRE(M).

Figure 6.15The PRE(MS) algorithm.

An important consequence of Theorem 6.3 is that the bestulgism can be found from the edge
profile. The speculative benefit is independent from bramehetation and edge profiles are as precise as
path profiles in the case of speculative-motion PRE.

Corollary 6.1 (Edge profile is S-precise)Edge profile is sufficient to find the optimal optimizationttbaes
speculation (but not restructuring).

Proof outline. The proof follows from the fact that PRE(MS), an algorithriven by edge profile, results in
best dynamic PRE. OJ
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6.3.2.2 PRE(Mr): Selective restructuring

PRE(Mr) extends PRE(MR) binhibiting restructuringin response to code duplicati@ostand
the expected dynamlzenefit The resulting profile-guided algorithm duplicates a CM§@a only when the
incurred code growth is justified by a corresponding ruretgnain from eliminating the redundancies.

We model the profitability of duplicating a CMP regidhwith a cost-benefit threshold predicate
T(R), which holds true if region’s optimization benefit exceedastant multiple of the region size. Our
metric of benefit is the dynamic amount of computations whediseination will be enabled afteR is dupli-
cated, which we denoRRen{R). That is,

T(R) <4 RemR) > c . siz€ R) wherec is a constant parameter.

WhenT'(R) = true for each regionR, the algorithm is equivalent to the (complete) PRE(MR). Whe
T(R) = falsefor each region, the algorithm reduces to the code-motiug®RE(M).

Obviously, the predicat& determines only a sub-optimal tradeoff between exploBRIE oppor-
tunities and limiting the code growth. In particular, it dagot explicitly consider the instruction cache size
and the increase in register pressure due to introducedit@mypvariables. We have chosen this fornYaoh
order to avoid modeling complex interactions among comgtigges. In practicd; is usually supplemented
with a code growth budget (e.g., in [ASG97], code is allonedrow by about 20%).

The benefitRen{R) of a CMP region is computed using an estimator, which bouhdse¢use
flowing across a CMP region. In PRE(Mr) we assume that theeentinnected region is duplicated (as
compared to the possibility of copying some paths from tigéorg or the entire CMP region). Therefore, the
CMP¢ estimator is the appropriate one to use for computing (themds of)Ren{R).

The algorithm PRE(Mr) that duplicates only profitable CMBioas is given below. It is struc-
tured as its complete counterpart, PRE(MR): after datafloalyeis, we proceed to eliminate CMP regions,
separately for each value naraeWhile in PRE(MR) it was sufficient to treat all nodes from agle CMP
together (all of them were duplicated), selective dupiaabenefits from dividing the CMP into disconnected
subregions, as is done in the CNM&stimator. After all profitable regions are eliminated,iation-blocking
effect of CMP regions remaining in the program must be cagtudll that is needed is to apply the PRE(M)
on the improved control flow graph. Hoisting that remains ¢éopibevented by some CMP node after the
selective restructuring was performed, will be avoideddgomputing the M-availabilityAVAILM), which
forcesNo-availability whenever a CMP is detected.

Our PRE(Mr) algorithm does not address the important proliéwhich names should be re-
structured first. Because each CFG node may be duplicatathladimes, causing its exponential replica-
tion, it is desirable to optimize most beneficial reuse péitiss before there are too many copies of each
node. One possible heuristic is to order names (in line 1gdbas the reuse computed with an estimator. Per-
forming PRE(Mr) optimally (i.e., maximiz&en{R) while guaranteeing thaf'(R) holds) seems NP-hard,
due to the need to consider multiple names simultaneously.

In Chapter 5, edge profiles were used to estimate the b&wesfibf duplicating a region. An alter-
native is to usgath profile§ABL97,BL96a], which are convenient for establishing cbshefit optimization
trade-offs when restructuring must be used. To arrive atahge of the region benefit with a path profile, it is
sufficient to sum the frequenciesMiist-Must paths, which are paths that cross any region entry edgesthat i
Must-available and any exit edge thatN&ist-anticipated. These are precisely the paths along whiakeval
reuse exists but is blocked by the region. While there is goeantial number of profiled acyclic paths, only
5.4% of procedures execute more than 50 distinct path®#c®s [GBF97b]. This number drops to 1.3%
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1. Dataflow analysisAs in PRE(MR).

2. r) Partial restructuring:remove profitable CMP regions.

1 for each computation e, in some benefit order do

2 for each connected subregion R; of CMP[e] do
determine optimization benefemn(R;)

3 carry out frequency analysis of AVAIL on R; using CMP¢
if subregion is profitable, duplicate it

5 if T(R;) then duplicate R;

6 end for

7 end for

3. M) Code motionPerform PRE(M), including the recomputation®fAILY .

Figure 6.16:The PRE(Mr) algorithm.

when low-frequency paths accounting for 5% of total frequyeare removed. Since we can afford to ap-
proximate by disregarding these infrequent paths, summafigidual path frequencies constitutes a feasible
algorithm for many CMP regions. Furthermore, because theggsulate branch correlation, path profiles
compute the benefit more precisely than frequency analgsisdon correlation-insensitive edge profiles.

Sub-CMP restructuringMoreover, the notion of individual CMP paths leads to a héRRRE(Mr).
Considering the CMP region as an indivisible duplicatioit ismoverly conservative. While it may not be
profitable to restructure the entire region, the region naayain a fewMust-Must paths that are frequently
executed and are inexpensive to duplicate. Our goal is tatfiedargest subset (frequency-wise) of region
paths that together pass the thresholdT&st). An example illustrating the PRE(Mr) algorithm is given in
Figure 6.17. The table in the figure lid#ust-Must (i.e., optimizable) paths that have been executed at least
once, together with their execution frequencies. The talde lists the size of each basic block and shows
which basic blocks must be duplicated to enable optiminadioa given path. The task is to select a subset
of paths such that the benefit (i.e., the sum of their fregieshand the path duplication cost (i.e., the sum of
sizes of selected basic blocks) satisfy the predi¢dfe) with the constant = 1. Selecting paths 1, 2, and 4
satisfiesI'( R) because the benefit is 50 and the cost of duplicating basi&®io, @, R, S, T' is 45.

The task ofpartial restructuringis to localize a subgraph of the CMP that has a small size but
contains many hatlust-Must paths. By duplicating only such a subregion, we are effettipeeling off
only hot and short paths. In Figure 6.2(e), only the (presulyniaot) path through the nodg was separated.
Again, the problem of finding aoptimal subregion, one whose benefit is maximized but passe® (ke
predicate and is smaller than a constant budget, seems idPfrarthermore, path separation for multiple
expressions simultaneously should be considered. Howeeempirically very small number of hot paths
promises an efficient exhaustive-search algorithm.

6.3.2.3 PRE(Msr): motion + selective restructuring + seldove speculation

PRE(Msr) integrates both restructuring and speculatioran either select a profitable subgraph of
the CMP for each, or restructure to enable speculation I@ilyito how restructuring enables code motion).
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CMP([c+d]) profitable part of CMP([c+d])

4

4

a) source program b) after optimal PgPRE

non-zero-freq. path | _ basic block (size)

[&]

Q@
Must-Must freq. dlo|r Q|R|S|T
path 25150 5555
1: [8,Q,0] 20 |y X
2:[4,5,T,0,q] 20 [y || x X | X
3:[4,517,0,P,Q,b) | 10 X | X | X X | X
4:[3,Q,R,S,T,0,a] | 10 |y || x X | x| x]x

| Total selected: | 50 | ] 45 |

Figure 6.17:An example of PRE(Mr). AssumeT'(R) parameterized = 1. Tightening code-growth
constant ta: = 0.5 results in the program in Figure 6.2(e).

This section presents the principles that can lead to ariezffibeuristics, based on path profiles, as in the
sub-CMP version of PRE(MR).

Integrating partial speculation and restructuring offedslitional opportunities for improving the
cost-benefit ratio. We are no longer restricted to peelifichof Must-Must paths and/or selectinijo-
entries for speculation. When the high frequency dfi@ entry prevents speculation, we can peel off a
hot No-available path emanating from the entry, thereby redueimgy edge frequency and allowing the
speculation, at the cost of some code duplication.

Figure 6.18(a) shows an example program annotated with ga pbfile. Because peeling hot
Must-Must paths from the highlighte@MP([c+ d]) would duplicate all blocks except we try speculation.
To eliminate the redundancy at the CMP exit edgeith frequencyez(Y") = 100, a computation must be
inserted intdNo-entriesB andC. While B is low-frequency (10)C' is not (100), hence the speculation is
disadvantageous, @3:(Y) = 100 < ex(B) + ex(C) = 10 + 100. Now assume that the exit branch in
Q is strongly biased and the pafli ), X has a frequency of 100. That is, after edgds executed, the
execution will always follow toX. We can peel off thidzNo-No path, as shown in (b), effectively moving
the speculation point’ off this path. After peeling, the frequency 6f becomes 0 and the speculation is
profitable,ez(Y) = 100 > ex(B) + ex(C) = 10 + 0.
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~ speculation
- profitable
not profitable

CMP([c+d]) No-path peeled off

a) source program b) speculation made profitable

Figure 6.18:An example of PRE(Msr) optimization.

To summarize the relationship between the three profildegapproaches, the overall goal is to
enable for code motion a maximum of paths with value reMies(-Must paths). This can be done by peel-
ing the path from the region, at the cost of duplicating aflibélocks in the path. The duplication cost may
be shared among various duplicated paths. Alternativeltigd speculation enables reuse alonghilist-
Must paths sinking into &ust exit, by inserting the computation into an appropriate $&l@entry edges.
Finally, the cost of speculating at an entry can be reducqueleling off aNo-No path.

It remains to be shown that all PRE algorithms presentedsrstction are live-range optimal.

Theorem 6.4 (Shortest live ranges)Given the CMP-restructured (or original) control flow graPRE(MR)
(PRE(M)) is optimal in that it minimizes the live range lehgbf inserted temporary variables.

Proof. An initialization pointinsertcannot be delayed either because it would become partediyndant,
destroying completeness, or because its temporary vatigbked in the immediate successor.

6.4 PRE for an arbitrary VNG

We present here the extension of the PRE(MS) algorithm fogtmeral VNG representation. We
restrict our attention to this algorithm because our expents suggests that it is most practical of all. It
achieves near complete redundancy removal of redundaaickeso code growth, and it is simple to imple-
ment (no restructuring is needed).

6.4.1 Code motion + speculation

PRE(MS) for general VNGs proceeds as PRE(MS) for separaki@s/ It relies on an estimator to
determine where to place the speculative insertions in 1€ @gions. Unfortunately, even though all five
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CMP[a+b]
copied for reducibility

single loop
entry node

a) source program b) reducible ComPRE of [a+b]

Figure 6.19:Reducible restructuring.

estimators in Chapter 5 were in both the separable and treg@darm, not all general estimators are suitable
for determining the placement of insertions. The reasohasthe two best estimators (CMRnd CMF)

are based on computing maximum flow on a network whose steides not directly reflect the CFG of the

program, and hence the saturation of the network edges thaneed as a criterion for the insertion, as it
was in the separable PRE(MS).

Fortunately, the CMPestimator supports the necessary speculation decisiasuexperiments
show, its lower bound is almost as precise as that of Clélifitl hence the reliance on CK¥Boes not seem
to be much of a sacrifice.

The general PRE(MS) algorithm reflects its underlying GM#timator. Its insertion candidate
points are the entries of the CMP region, but not the inner GMBes. Each connected CMP region is
estimated separately. When its lower bound is greater them then the speculation across the connected
region is beneficial and the algorithm inserts speculatreputation into all CMRNo-entries.

6.5 Miscellaneous issues

This section covers a two PRE issues that mainly concernntipdementation in a production
compiler. First, we sketch how to deal with the irreductiilof the CFG that may be introduced by the
restructuring-based algorithms. Second, we outline hcadapt speculation-based algorithms for exploiting
the control speculation features of the IA-64 processdritecture [Dul98].

6.5.1 Reducible restructuring

Duplicating a CMP region may destroy reducibility of the tohflow graph. In Figure 6.2(c),
for example, PRE(MR) resulted in a loop with two distinctrgnmtodes. Even though PRE(R)preserves
reducibility on the same loop (Figure 6.2(b)), like othestracturing-based optimizations [AL98, BGS97a,
Ste96], it is also plagued by introducing irreducibility.n®©way to deal with the problem is to perform
PRE after all optimizations that require single-entry Isolowever, many algorithms for scheduling (which
should ideally follow PRE) rely on reducibility.
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After PRE(MR), a reducible graph can be obtained with adddl code duplication. An effective
algorithm for normalizing irreducible programs is giverfd96]. To suppress an unnecessary invocation of
the algorithm, we can employ a simple test of whether irrdality may be created after a region duplica-
tion. The test is based upon examining only the CMP entry aitcedges, rather than the entire program.
Assuming we start from a reducible graph, restructuring mike a loopL irreducible only if multiple
CMP exit edges sink intd., and at least one region entry is outsidé€i.e., is not dominated by.’'s header
node). If such a region is duplicated, target nodes of regidnedges may become the (multiple) loop entry
nodes. Consider the loop in Figure 6.19(a). Two of the thréts ef CMP[a + b] fall into the loop. After
restructuring, they will become loop entries, as shown guFe 6.2(c).

Rather than applying a global algorithm like [JC96], a sfifiorward approach to make the af-
fected loop reducible is to peel off a part of its body. Thelg®#o extend the replication scope so that the
region exits sink onto a single loop node, which will thendree the new loop entry. Such a node is the
closest common postdominator (within the loop) of all thiendling region exits and the original loop entry.
Figure 6.19(a) highlights node+d whose duplication after CMP restructuring will restoreueithility of the
loop. The postdominator of the offending exits is ndglevhich becomes the new loop header.

6.5.2 Spurious exceptions

The 1A-64 architecture [Dul98] introducetelayed exceptiong mechanism to support control
speculation of instructions that may raise exceptionsh gigcdivisions or memory access instructions. In
general, when the compiler reorders these instructionsvimythat they may be executed on paths that
would not execute them in the original program (e.g., theytasisted above a conditional branch), their
exception may be spurious, which changes the semanticsafriginal program. As was mentioned in
Section 6.3.2.1, speculative PRE in particular introdakegproblem of spurious exceptions.

To preserve the semantics, 1A-64 allows an raised exceptidoe delayed: when the excepting
instruction is marked adelaying its exception is suppressed and propagated as a speciatthafed to the
register that stores the result of the excepting instractithe delayed exception may be raised later, when
some instruction marked &atchingreads from the flagged register. Such an exception-catamstrgiction
is usually placed in the original program point of the reeedis(excepting) instruction, so that the exception
is raised exactly when it would be in the original program.

In the PRE context, two steps must be performed to allow dpgon of excepting instructions on
the 1A-64 architecture.

1. Speculative inserted computations that may raise elcepiust be marked atelaying This step is
trivial in all our speculation-based algorithms.

2. The delayed exceptions must taughtin a way that preserves exception semantics. This can be ac-
complished by marking as catching atemodes that can consume the value produced by a speculative
insertion point. Recall that all user computations areaegd with temporaries, so the exceptions will
be caught with copy instructions of the fotm= ¢, wheret is the temporary.

6.6 Experiments

The experiments evaluating the transformation algorithvese performed using the HP Labs
VLIW back-end compileelcor, which was fed 8EC95 benchmarks that were previously compiled, edge-
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Figure 6.20:Relative completeness of three PRE algorithms.

profiled, and inlined (only B8Ec95(int)) by thelmpactcompiler. Table 6.1 shows program sizes in the total
number of nodes and expressions. Each node corresponds totermediate statement. Memory require-
ments are indicated by the colummax space, which gives the largest nodes-expressions product among
all procedures. The running time of our rather inefficienpiementation behaved quadratically in the num-
ber of procedure nodes; for a procedure with 1,000 nodes?Rte time was about 5 seconds on PA-8000.
Typically, the complete PRE ran faster than the subsequesd dode elimination.

The first experiment compares the removal power (i.e., cetapess) of three PRE algorithms
on removal of redundant load instructions. The VNG servethasvalue-flow program representation for
the experiment. The plot in Figure 6.20 shows the dynamicuarhof computations removed by PRE(M),
PRE(MS), and PRE(R)(and hence also PRE(MR)). Clearly,dbeing relationship holds

PRE(M) < PRE(MS)< PRE(MR)= PRE(R)

wherea < b means: removes no more computations thtaim dynamic terms$. The first experiment answers
this relationship in quantitative terms.

In the graph, the removal power is normalized on the powerlob& CSE, a patlirsensitive
algorithm for redundancy elimination. The graph exposesgiimportant points.

1. Due to the normalization of the amount of reuse, the (dyogareuse below 1.0 is path-insensitive
(available along all paths) and all reuse above 1.0 is patisive (available along a strict subset of
paths).

Integer programs contain a lot of strictly partial reuse Vidiich path-sensitive algorithms are impor-
tant.

SWe assume here that the profile-guided PRE(MS) is optimizetlexecuted on the same program input. This
assumption held in our experiments, too.
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Table 6.1: Experience with PRE based on control flow restrirgg.

2. Ininteger programs, the obstacles to code motion aréfisignt.

PRE(M) optimizes less than half of all strictly partial rediancies. Therefore, it is worth improving
the traditional PRE approaches.

3. The performance of the complete PRE was estimated usinGMP estimator. The bottom of right-
most bar in the plot shows the lower bound of the estimate.tdjpef the bar shows the upper bound.
The complete reuse is somewhere between the bounds. Allbthet the lower bound of the estimate
equals the benefit of speculation (Theorem 6.3).

PRE(MS) is very close to the performance of the (completd(RFR) algorithm. Therefore, restruc-
turing may not be necessary, at least for load removal.

The third point is especially good news. If this empiricauk holds true for other value flow optimizations,
then PRE(MS) is able to remove the third exponential pattofadue to the number of path with various
optimization opportunities, as introduced in Section B8ll, some value-flow optimizations are inherently
restructuring-based, e.g., branch elimination (see &&a).

Next, we present other experimental results that show tked tedevelop PRE that goes beyond
the code motion. In contrast to Figure 6.20, these expeltisngare performed using laxical value-flow
program representation.

Disabling effects of CMP regions The column labeledptimizable gives the percentage of expressions that
reuse value along some path; 13.9% of (static) expressiavresartially redundant computations. The next
columnprevented-CMP reports the percentage of optimizable expressions whasplete optimization by
code motion is prevented by a CMP region. Code-motion PRHailito fully optimize 30.5% of optimizable
expressions. For comparison, colupnmevented-POE reports expressions that will require restructuring in
PRE(R).

Loop invariant expressions. Next, we determined what percentage of loop invariant (kpressions can
be removed from their invariant loops with code motion. Thiumnloop invar shows the percentage of
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Figure 6.21: Benefit of various PRE algorithms on a lexical value-flow repesentation. : dynamic
op-count decrease due #irictly partial redundancies. Each algorithm also completely removes full
redundancies.

optimizable expressions that pass our test of loop-inmagaThe following column gives the percentage of
LI expressions that have a CMP region; an average of 72.5% odinputations cannot be hoisted from all
enclosing invariant loops without restructuring.

Eliminated computations. Finally, we report the amount of removed computations. Exrgeriment differs
from the one in Figure 6.20 in that PRE is performed on theckxiepresentation of arithmetic instructions,
rather than on the symbolic (VNG) representation of redabhtteads. The columglobal CSE reports the
dynamic amount of computations removed by global commomsutession elimination; this corresponds
to all full redundancies. The coluncomplete PRE gives the dynamic amount of all partially redundant
statements. The fact that strictly partial redundanciesrdaute only 1.7% (the difference betwesomplete
PRE andglobal CSE) may be due to the style dfnpacts intermediate code (e.g., multiple virtual registers
for the same variable). We expect a more powerful redundanalysis to perform better. Figure 6.21 plots
the dynamic amount of strictly partial redundancies renddwevarious PRE techniques. Code-motion PRE
yields only about half the benefit of a complete PRE. Furtlmeenspeculation results in near-complete PRE
for most benchmarks, even without special hardware sugipestsafe speculation). Speculation was carried
out on the CMP as whole. Note that the graph accounts for thardic impairment caused by speculation.
The measurements indicate that an ideal PRE algorithm ghistgligrate both speculation and restructuring.
Using restructuring when speculation would waste a larggqoof benefit will provide an almost complete
PRE with small code growth.

6.7 Conclusion and related work

In summary, this chapter makes the following contributions

e \We present an approach for integrating three orthogongrpro transformation methods: code mo-
tion, control flow restructuring, and control speculatie developed a family of PRE algorithms that
combine the three methods:
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Figure 6.22:A summary of our results. PRE:We extended the traditional code-motion transformatich wi
two transformation methods, achieving an aggressive RRigel: We showed how to use code motion and
restructuring within the safe optimization model, in which program path can be impaired. The use of
speculation requires a relaxed optimization model, in Whgath can be impairedProfiling: We showed
that, when code motion is combined with speculation, an @dgfe is as precise as the path profile. When
restructuring is profile-guided, path-profile is more psedhan edge profile.

e PRE(MR) is a PRE algorithm that momplete(i.e., it exploits all opportunities for value reuse) and
greatly reduces the code growth necessary to achieve tiredlésomplete) code motion. For a large
class programs (those with separable VNGSs), the code griewtimimal.

e PRE(MS) is profile-guided PRE that integrates code moticth ggeculation. Because it does not
use restructuring, it achieves zero code growth. Our empis show that its optimization is near
complete. The important contribution of the PRE(MS) altfori is that it determines the speculation
points and the benefit (i.e., the difference of improved amgidired path frequencies):

o such that the benefit is maximized (for separable VNGSs),
o without enumerating the improved and impaired paths,

o from an edge profile, as precisely as using the execution.trac

e PRE(Msr) balances the three techniques. It resorts toudgting only when speculation cannot be
done (sufficiently) beneficially.

e PRE(M) is a natural restriction of the PRE(MR) algorithmpitoduces optimization equivalent to the
optimal code-motion PRE [KRS94a], but we believe it is easieinderstand.

e Ourexperiments compare a) the optimization power and g goalwth of PRE(M), PRE(MS), PRE(MR),
PRE(R)(the pure-restructuring PRE).

Figure 6.22 summarizes this chapter using three planesdithdée the algorithm design space.

The PRE plane: We extended the traditional code-motiorstoamation with two transformation methods,
achieving an aggressive PRE.
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The optimization model plane: We showed how to use code matim restructuring within the safe opti-
mization model, in which no program path can be impaired. 0$eof speculation requires a relaxed
optimization model, in which path can be impaired.

The profiling plane: We showed that, when code motion is coebivith speculation, an edge profile is as
precise as the path profile. When restructuring is profilielenls path-profile is more precise than edge
profile.

The observation is that edge profile is sufficient to find optispeculation deserves a further
comment. Since edge profile is speculation-precise, ta@the power of path profiles, partial restructuring,
rather than (speculative) code motion alone, must be ugaed.bEcomes more intuitive once we realize that
without control flow restructuring, one is restricted to simter only an individual edge (but not a path) for
expression insertion and removal. To compare the CMP-baaki@dl speculation with the speculative PRE
in [GBF98], we show how to efficiently compute the benefit bfidag the CMP region and how to apply
edge profiles with the same precision as path profiles. Inliacyode, we achieve the same precision; in
cyclic code, we are more precise in the presence of loopechreuse.

In this chapter, we defined tledde-motion-preventin@CMP) region, which is a VNG subgraph
localizing adverse effects of control flow on the desiredugaleuse. The notion of the CMP is applied to
enhance and integrate the three existing PRE transforngatiche following ways,

1. Code motion and restructuring are integrated to remdved@lndancies at minimal code growth cost
(PRE(MRY)).

2. Morel and Renviose’s original method is expressed astaatesl (motion-only) case of the complete
algorithm (PRE(M)).

3. We develop an algorithm whose power adjusts continuatwben the motion-only and the complete
PRE in response to the program profile and the utility fumcfig PRE(Mr)).

4. We demonstrate that speculation can be navigated piebisedge profiles alone (PRE(MS)).

5. Path profiles are used to integrate the three transfasnsadind balance their power at the level of CMP
paths.

Figure 6.23 summarizes related work and out contributidbhs.PRE research started with the inde-
pendent works of Wegman and Wegbreit who developed PRE@Rjitims [Weg75a, Weg75b]. Later, Stef-
fen created a complete PRE(R) algorithm that removed ngtexgressions but also conditional branches [Ste96].
Due to the exponential code growth, none of the algorithmmiglémented in a production compiler, to the
best of our knowledge.

Morel and Renviose created the first practical PRE algor{iMiR79]. To limit the code growth,
the algorithm was based on code motion. Their algorithm w#es much improved [DRZ92, Dha91, DS88]
until the research “stabilized” on lazy code motion, nowsidered the standard PRE(M) algorithm [KRS92,
KRS94a]. Our contribution in the PRE(M) area is an intuitfeemulation of an algorithm that produces
identical optimization as the lazy code motion.

Between the PRE(M) and PRE(R) algorithm lies our anothetrimrion—the PRE(MR) algo-
rithm that is as complete as the PRE(R) algorithms but minésithe code growth by performing code
motion as much as possible.
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Figure 6.23:Related work and contributions.

Recently, various researches extended code-motion PREpétulations [HH97,GBF98,LCkO8,
SJ98]. None of them achieves both optimal speculation diesren the inexpensive edge profiles.

Finally, our last contribution is the ability to combine #iree transformation methods, producing
a balanced PRE, in response to the profile and the chargicien$the optimized program. This integrated
PRE is enabled by the CMP region, which serves as a singlelyimdgabstraction for all our algorithms.



Chapter 7

Inter-procedural Removal of Redundancies

This chapter is concerned with inter-procedural value fl@ften, a value is computed in one
procedure and recomputed in another, as a result of a mgahalgramming style. To exploit such an inter-
procedural redundancy, the optimizer requires a integaocal analysis and transformation.

First, this chapter presents inter-procedural versioratditbw analysis on the VNG. The analysis
is distinguished in two respects. First, it is demand-driy computing only the dataflow solution required
by the transformation stage, it reduces the cost of the aisalwhen compared to an exhaustive analysis.
Second, the analysis does not require a completely comsttirtterprocedural VNG. Instead, the VNG is
constructed on demand, only the portion that is needed bgleheand-driven analysis. The demand-driven
construction of the VNG significantly reduces the cost oflgsia, but has the drawback that the demand-
VNG does not use value numbering. The VNG is built only on bsghkstitution and dataflow analysis, which
are folded together into a single demand-driven pass.

The second part of this chapter deals with inter-procedraatformation. Inter-procedural redun-
dancies cannot be optimized with the techniques present&hapter 6, as computations must be moved
across procedure boundaries. While inlining can be usedrioentrate the reuse into a single procedure, it
may be prohibitively expensive in practice due to its codaagn. A code-growth-free alternative is inter-
procedural code motion [Kno98]. Unfortunately, inter-pedural code motion may fail just like its intra-
procedural counterpart. Furthermore, some very attacptimizations (branch removal, revitalization of
calls) cannot be carried out with code motion.

This chapter presents an inter-procedural version of teueturing-based PRE(R) algorithm.
Rather than attempting to combine code motion and transftiom (to minimize code growth), we focus on
achieving a complete removal of inter-procedural redunte(without resorting to inlining of procedures).
Note that entry/exit splitting of virtual call sites is nastricted to branch elimination, as presented in this
chapter. It may be used for any value-flow optimization, aR&R) algorithm.

The goal of an inter-procedural PRE(R) is to separate reattes phat cross procedure boundaries.
To this end, our PRE(R) algorithm performs procedem@ry splittingandexit splitting The former transfor-
mation creates multiple entry points in a procedure; thedatllows a procedure to return to one of several
return points in the caller. We show how to use the two tramsédions in concert, to separate interprocedural
paths and convert partial redundancy into full redundanbych achieves a complete optimization.

As an application of on entry/exit splitting, we developdrprocedural Conditional-Branch Elim-
ination (ICBE). Relying on inter-procedural value-flow &rsis presented in the first part of this chapter,
ICBE removes branches that are correlated with other bemadle., branches whose outcomes are known
along some execution paths from prior branch outcomes agrasents. Clearly, static branch correlation
is a special case of value reuse (of the branch conditioreyalCBE eliminates correlated branches along
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the correlated paths (i.e., reuse paths) by means of cotleaesing, which may involve splitting procedure

entries and exits. We describe the benefits of our interguioal branch elimination optimization and ex-
perimentally show that, for the same amount of code growthestimated reduction in executed conditional
branches is about 2.5 times higher than when artlaprocedural conditional branch elimination is applied.

7.1 Demand-driven interprocedural dataflow analysis

This section presents an inter-procedural version of datathalysis on an inter-procedural VNG.
The analysis is distinguished in a few respects.

1. The analysis idemand-drivenBy computing only the dataflow solution required by the sfanmation
stage, it reduces the cost of the analysis, when comparen éxfzaustive analysis. In practice, the
optimizer may decide to analyze only the frequently exetusernodes.

2. The analysis can berminated early before the (demanded) solution is completely computede Th
analysis is stopped after a budgeted amount of nodes haveviwed. The unexplored paths are
assumed to have a conservative solution.

3. The VNG isconstructed on the flgluring the dataflow analysis. Only the portion that is nedaled
the demand-driven analysis is (virtually) constructecthwthe goal of avoiding the construction of
potentially very large interprocedural VNG. An (undesiglzonsequence of this (desirable) delayed
VNG construction is that the value numbering is not invokedadllapse the VNG threads, resulting in
lower accuracy.

7.1.1 Application: inter-procedural branch correlation

We use the demand VNG analysis to fis@tically correlated conditional branchesA branch
is statically correlated (along a path) if the branch outeaan be determined (along that path) at compile
time, from prior statements or branch outcomes. Branctetation is another name for partial redundancy of
branches; the former name reflects that the direction ofttlerrdant branch depends on the direction of some
other branch(es). Correlated branches can be eliminaiettfre optimizable path through code restructuring
presented in Chapter 6 and Chapter 7. The former chaptersshomwto separate the optimizable paths intra-
procedurally. The latter chapter presents inter-procdeparation of paths, by means of on proceéuniey
splitting andexit splitting

Interprocedural Conditional Branch Elimination (ICBE)stenumber of benefits, including

e enhancing instruction scheduling and software pipelining
e improving speculative execution and hardware branch ptiedi, and
e optimizing C++/Java virtual functions.

Recent research in branch prediction [Kra94, SLM96, YGS85dfiling [BL96a], and the elimination of
conditional branches [MW95b] has reported the existencggrfificant amounts of correlation among con-
ditional branches, presenting opportunities for optirtiwes. Previous work on conditional branch elimi-
nation through static correlation [MW95b] demonstratedssantial performance improvements despite its
restricted focus on eliminating conditionals within loofgsxperimentally, we show that substantially more
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static correlation is detected at compile time when prograre analyzed interprocedurally. Using programs
from the SPEC95 suite, we discovered that interprocedwialotion of correlation enables elimination of
3% to 18% of executed conditionals, which is a factor of al@obiimprovement over strictly intraprocedural
analysis. As illustrated below, this high correlation amdmanches when procedures are considered is due
to the modular fashion in which we write procedures:

e Inaprocedure, the value returned is often selected by stai&ément. This value may again be checked
by the caller. For example, consider a call to a procedurterémoves an element from a linked list.
The procedure tests whether the list is empty and, if sormetil. The caller performs an identical
test on the return value to determinaifwas returned. The later test is fully correlated with theiear
one.

e In order to keep the procedure interface simple by passiwgafguments, procedures frequently in-
clude checks on the parameters that are also performed lpallee or even by previous calls to the
same procedure. For example, procedures from the samgylim@dule may be called one after an-
other, propagating values. These procedures often pedorrelated tests on the propagated values.
With the ICBE optimization, the repeated testing can beielited.

This research implemented the analysis and experimetnaigtigated the amount of interproce-
dural correlation detected and the cost of the analysis.n@asurements performed on a subsetrE®5
programs provide insight into the interprocedural cotietathat can be detected statically and its usability
for compiler optimizations. It was found that not only themer of conditionals with some correlated paths
greatly increases with inter-procedural analysis, bui #ie effect of branch elimination is more significant
because many short, frequently taken interproceduraélaied paths exist. This observation serves as a
motivation for performing the VNG analysiister-procedurally

It was also observed that some correlated branches aréated-along long (usually inter-procedural)
program paths. Such correlations require time-demandhiatysis. A simple heuristic for controlling the ex-
tent of the demand-driven analysis was developed and dealuthe analysis of each branch was allowed to
examine only a few hundred nodes. Paths that were not coehplatalyzed were (conservatively) assumed
to have no value reuse. Suehrly terminationreduced the analysis cost by an order of magnitude, while it
sacrificed the detection of only a fraction of correlatiomt®&that the missed correlation was mostly present
along long paths and hence it would not be exploitable anywaag to much duplication required in the
transformation stage. This observation serves as a miotivét construct the VN@n demandSince, under
the successful early termination heuristic, the valueegaaths are not examined completely, it is desirable
to build only the portion of the VNG thatill be analyzed.

7.1.2 Motivation

We illustrate interprocedural branch correlation on a $agblication program that uses thtlio
GNU C library. The program is shown in Figure 7.1. FunctMAIN first opens a text file by a call fopen
and then iterates through each character in the file BQF is reached. The characters are obtained by a call
to fgetc, which returns a character from a buffer that is filled byiogffillbuf.

Consider first the conditional bran@®0 in MAIN. This branch is redundant along all incoming
paths, hence it can be fully removed. Let us analyze the {haées leading to the branch. Along the path
starting at the node in fgetc, the branch will always exit the main loop, because the nog¢urns the value
EOF. Hence, therue outcome of the branch is correlated with the nadeAlong the path from the node
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(a) The source program.

Figure 7.1: The example program using the GNU C library (oer4.09).

¢, the branch will always continue the main loop, because #hgewc fetched from the buffer is unsigned
and hence always different than the cons&@F, which is—1. Hence, thealse outcome of the branch is
correlated with the node The examination of the proceduiibuf (not shown in the figure) would show
that the paths from the nodeeither returrEOF or an unsigned character, just like the nodesdb.

In summary, the outcome of the branch is redundant along@ining paths. This section presents
an analysis that detects this kind of inter-proceduraledation. While the branch is optimizable along all
paths, the optimization differs along the incoming patlmsr(e paths are true-correlated and some a false-
correlated). The optimization is possible via interpraged separation of the paths, which is a program
transformation presented in Chapter 7.

Next, consider the conditionalxl, P2, andP3 in the functionfgetc. Within the inter-procedural
loop created imain, these branches are loop-invariant, because their oukara¢he same in each iteration.
The examination ofopen (not shown in the figure) would show that, for each path eniagditom fopen,
eitherfp=NULL or fpZNULLAfp- >magic=IOMAGIC holds. In either case, all three correlate. As a result,
they are not only loop-invariant, but they are also redubdéong all paths and thus can be fully removed.
Summarizing the example, in the original loop, five conditibbranches are executed in each iteration. After
the optimization, only one conditional remains.

7.1.3 The demand-driven algorithm

As already mentioned, the demand analysis builds the VNGherily, but using only two of its
three components—back-substitution and dataflow analydigch are folded together into (essentially) a
single demand-driven pass. Value numbering, which coflajibe value threads, is not engaged because
it does not fit the demand-driven paradigm. To understandaehsons for it, recall the three steps of the
(exhaustive) VNG construction and analysis.
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1. Place threads starting from the user (i.e., optimized)maations, using symbolic back-substitution,
in abackwarddirection.

2. Collapse threads, using value numbering, faravard direction.
3. Solve dataflow problems, infarward or backwarddirection.

Branch correlation is computed as the problem of availgbdf branch conditions, &orward problem.

To compute a forward dataflow problem on demand, the demawdrdanalysis proceeds in a backward
direction [DGS97]. This reversed direction allows us talftdgether the (backward) placing of threads (the
first step of the VNG construction) with a demand-driven ig@rf its third step (computing availability).
Thus, given a user computatienthe demand-driven VNG analysis performs two steps.

1. Place threads leading tp using symbolic back-substitution, inbeackwarddirection. While placing
the threads, look also for computations that generate bthkilvalue ofe, thussolvingthe availability
of c.

2. Complete the dataflow analysis@fby markingthe threads leading towith its availability solution.
This step proceeds infarward direction.

The unsuitability of value numbering can now be explaindter€ are two reasons. First, the demand analysis
folds the first and the third steps of the exhaustive constmicbypassing the second step, which cannot be
combined with them because it proceeds in the oppositeti@tireSecond, because we build threads only for
the optimized computations, there are no threads with wifief could be merged.

Figure 3.8 on page 29 illustrates which reuse is capturedelnyashd VNG analysis. Whes is
being analyzed on demand, it is found to recompute the vdl$g,decause they lie on the same thread. In
contrast, wherf, is analyzed on demand, its recomputationSek value is missed, because that requires
placingsSs’s thread (this is the second reason above), and collapsisithread (this is the first reason above).

One more important issue must be explained. Clearly, theritbesl demand-approach works only
for forward dataflow problems. For backward problems, tlfedversed) demand-driven direction is not
aligned with the backward direction of back-substituti®his deficiency is not significant in some situations.
First, for removal of conditional branches, the solutiomidicipability (a backward problem) is not needed,
as will be explained in Chapter 7. Similarly, some versiospdéculative PRE do not require anticipability
(namely, the PRE estimator in Chapter 5). Second, backwanlgms can actually be computed on the
VNG that is built on demand, albeit imprecisely: once the#us have been placed by the demand analysis,
backward problems can be computed on them. Because notedld have been placed, a (conservatively)
imprecise solution may be obtained.

7.1.3.1 Query propagation

Our demand-driven VNG analysis is presented in the confiextanch-correlation detection. Our
analysis is demand-driven from a given conditional noddy tre nodes that may lie on a correlated path are
visited and only the relevant data flow information is congglufThe analysis is initialized by raising a query
at the conditional that corresponds to asking a questioth&sutcome of the conditional with the predicate
(vrelop ¢) known along some incoming paths?” The form of the raisedgisefv relop ¢), wherev is a
variable and: a constant. Note that the query format can be made arbjtradre general, without affecting
the algorithm presented here. In fact, the query formatespwonds directly to the language of symbolic



119

namesP from which we draw the symbolic names for the VNG construttishich we are allowed to pick
freely.

The query is then propagated from the conditional backwalaisg all paths in the ICFG until it
can be resolved on these paths. Resolving a query at a nodlegg®one of three answefRUE, FALSE,
UNDEF. The first two answers are a minor extension of kihast value in the path-sensitive lattice (see
Definition 4.4). They indicate that the path along which thery reached the node is correlatetRUE
means that the outcome of the conditional along the patlés(ire., the true outcome must be taken). The
answerFALSE means the opposite (i.e., the false outcome must be takdm).UNDEF means that the
outcome is unknown because the variable is assigned an wnkralue.

For resolving a query, we have identified four sources ofcstatrrelation.

A query is always resolve@RUE or FALSE at a node that assigns a constant to the varialftem
the query.

¢ A conditional branch that involves the variableThe assertions on variables that exist on the true and
false out-edges of the conditional may define the outcoméeptedicate in the query. Note that a
conditional correlates with itself if there is a path aroanldop along which the query variable is not
defined.

e A type conversion from an unsigned to signed value, as in Xaeele in Figure 7.2. The result is
always non-negative, which may determine the branch pagslmutcome.

e After a pointer variable is dereferenced, its value is guie@d to be non-zero; otherwise a segmenta-
tion fault would have occurred.

During the propagation, a copy assignment to the querybigrimay be encountered, e.g.= w. When this
happens, the query is modified to reflect this assignmentdéfoontinues to propagate. This simple form of
symbolic back-substitution is essential to capture asséarts to and from temporaries, common subexpres-
sions, procedure return values, and parameter passingcdxsaquence of this substitution, multiple distinct
queries can be raised at a single node. For the query forneat éilrove(v relop ¢), at mostV number of
queries will be raised at each node, whérés the number of program variables. For more general query
formats, thew-limiting of back-substitution will have to terminate theery propagation (see Section 3.12
on page 33).

After the analysis terminates, the resolved queries ated@ack along the paths they traversed.
The goal is to collect all resolved answers to each quergda#é a node. Starting at the successors of
nodes where a query was resolved, answers are propagamaddand merged by a set-union operation at
control flow merge nodes. At any node, including the condailatself, each query may have from one to all
three possible answers froff RUE, FALSE, UNDEF}. For example, if the query raised at the conditional
has answer§RUE and FALSE, then there are some correlated paths leading to the condlitivhere the
outcome is true, some correlated paths where it is false nanghths along which it is unknown. Such a
conditional has full correlation.

7.1.3.2 Computing procedure summary nodes

The interprocedural analysis used iaterprocedural control flow graph (ICFGbhat combines
CFGs of all program procedures by connecting procedurgéesrdnd exits with their call sites, as depicted
in Figure 7.3. All edges in the figure define the predecessctessor relation for nodes. Each procedure
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initialize Q[n] to {} at each node n
form the initial query ¢, = (v, relop, ¢, nil)
raise_query(pred(b), q»)
while worklist is not empty do
remove pair (node n, query ¢) from worklist
case n is entry node of a procedure p:
if ¢ is a summary node query then A[n, q] := TRANS; add q to g.sne.entriesn]
else if n has no predecessors then A[n, q] :== UNDEF
for each call site node predecessor m of entry node n do
if ¢ is a summary node query for jth exit of p then
if g.sne.qin is raised at jth exit of m then raise_query(m, q)
elseraise_query(m,q)
end for
case n is call site exit node:
let ex be the procedure exit predecessor of n
let . be the call site predecessor of n and en the entry node invoked by m
if summary node entry snelex, ¢] does not exist then
let g5, be a copy of ¢
snelex, q] := (qsn, ex,{}); gsn.sne := snelex, q|
raise_query(ez, gsn)
else if snelex, g].entries[en] does not exist then
snelex, q].entriesfen] := {}
raise_query(ex, snelex, q]-qin )
end if
add Alex, snelex, q].qin] \ {TRANS} to A[n, q]
for each query ¢, in snelex, g].entries[en] do raise_query(m, qa)
otherwise:
answer := resolve(n, q)
if answer € {TRUE, FALSE, UNDEF} then A[n, ¢] := {answer}
else for each m € pred(n) do raise_query(m, substitute(n, q))
end case
end while

Procedure raise_query(node n, query q)
if ¢ & Q[n] then add ¢ to Q[n]; add pair (n, ¢) to worklist
end

Figure 7.2: The interprocedural static correlation arialys
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Figure 7.3: Interprocedural CFG in call site normal form.

can have multiplgprocedure entrynodes and multipl@rocedure exinodes (to support the transformation
from Chapter 7). The successors ofall site node are the procedure entry node and the assoctaied
site exitnodes. The analysis algorithm requires the ICFG to be imtrenal call site formwhere a) each
call site node has a single procedure entry successor arath)call site exit node has exactly one call site
predecessor and one procedure exit predecessor. It is @dshat the above nodes are dummy nodes with
no program statements.

The computation of summary nodes is motivated by the dendaindn framework of [DGS95],
which computes procedure summary nodes also on demandjen torimprove the efficiency of interpro-
cedural analysis. Since in the analysis the queries areagaipd through procedures backwards, summary
node entries are stored at procedure exit nodes and for e&ch ipised at the exit node we maintain: a) the
answers resolved in the procedure, and b) the correspogdaries at the entry of the procedure, if the query
propagated all the way to the entry node. All queries rais@tacedure exit nodes are used to compute sum-
mary nodes and are, therefore, treated specially. Wisemenary node quemngaches a procedure entry, it is
not propagated to the callers, but resolved with the fourid kf query answeTRANS. This answer marks
paths through the procedure along which the query was notvext The procedure isansparentalong
such paths and the summary node lookup must propagate sj(tesiekward) and collect answers (forward)
across call sites of transparent procedures. The analgsidlés both call-by-value and call-by-reference
parameters.

The analysis algorithm is given in Figure 7.2. The algoritbomputes summary nodes without
interrupting the analysis. Each query is a tuplerelop, ¢, sne), wheresne is used by summary node queries
to keep a pointer to their summary node entries; for non-sammueries, this field isil. The summary
node entry for query; raised at exit nodez is a tuplesnelex, q] = (gsn, ex, entries), whereg, is the
summary node query raised on the procedure exit medendentriesen] is the set of queries propagated to
a particular entry noden. (In this algorithm, a procedure is allowed to have multgiry nodes, to support
entry splitting (Chapter 7)). The analysis is started a by raising the initial query at the predecessor
of the conditional to be analyzed. Line 4 terminates theyaimlwhen no node with an unresolved query
remains. Lines 6—13 handle procedure entry nodes. Sumrodeygueries are resolved herelRANS and
are added to the summary node entry as having reached theufgrentry node, as described above. The
non-summary query is propagated to all call sites of thisygtines 9 and 12). The summary node query is
propagated only when the computation of the summary nodenitéged at the exit of the call site (lines
9-11). Lines 14-26 process a call site exit nad®redecessors afare determined according to Figure 7.3.
If summary node lookup in line 17 fails, a new summary nodeydntcreated and a summary node queny
is raised. Lines 21-23 update the summary node after a uesit of a procedure entry/exit node. Line 25
resolves the query based on the answers saved in the sumatiryand line 26 propagates the query across
the procedure when a transparent path through the procegists. Finally, any other kind of node may be
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) (x=0,nil) A[(x=0,nil)]={U}

(x=0,nil) F A[(x=0,nil)]={F}
(x=0, nll) f() (x=0.sne1) A[(x=0,nil)]={F,U} [0 Al(x=0.snel)]={Tr}
(x—O snel) i A[(x=0,snel)]={U}

(x=0,nil) ” ql (x=0,snel) A(x=0,nil)]={F,U} % A[ql (x=0,sneL)]={U,Tr}
e snel: ql, G, {} sneli ql, G, entries[E]={(x=0,snel)}
FoT

(a) source program (b) analysis (c) rollback

Figure 7.4: An example of interprocedural correlation gsisl

a source of correlation (lines 27-30). Functi@solveattempts to resolve a query. If it fails, the query is
propagated after it is back-substituted. The algorithntfidlecting the analysis answers by propagating the
forward can be easily derived from the analysis algorithm.

The analysis is illustrated with an example in Figure 7.4.e Tour possible query answers are
abbreviated in the figure ag, F, U, andTr, for query answer§RUE, FALSE, UNDEF, and TRANS.
The analysis of conditional nod® is initiated by raising a query : (z = 0,nil) at the predecessor &
(Figure7.4(b)). The entryil signifies that the query does not compute a summary node. egitngex is
a global variable, it cannot be propagated across the imtcaplural edgéC, D). Instead, it is raised at the
exit of procedurd, where it initiates computation of a summary node eniry;. The summary node entry
is computed by raising a summary node query (z = 0, sne;) at the procedure exit node. The query
is resolved at nod€ to UNDEF because an unknown value is assigned.td’he nodes where a query is
resolved are highlighted in the figure. The scope of the sutpimade is limited to the procedure and hence
q1 s resolved at the procedure entry nodeTRANS. Also, the query is recorded in thaitries[G] field
of the summary node entry. Whenever a summary node querligsdlee procedure entry, a corresponding
query is raised at the call site node. In our case, queryz = 0,nil) is raised at nod€. This query is
subsequently resolved at nodeandB to UNDEF andFALSE, respectively.

The analysis is followed by the rollback phase (Figure })4(Ehe answer for a queryis stored
in A[g] and consists of all answers forreaching the node. Note that tkiNDEF answer forg at nodeD
was propagated from node through theTRANS answer of the summary node query. The algorithm fpr
performing the roll-back is shown in Figure 7.5.

7.2 Inter-procedural transformation: example and motivation

We illustrate the utility of entry/exit splitting on a smalfogram that calls a library procedure.
In this program, many branches are redundant, as their m@s@re determined by prior statements (as-
signments or other branches). We show that with our intecguaiural restructuring, ICBE eliminates the
execution of these branches, even without resorting taingi. The program, shown in Figure 7.2(a), was
used in Section 7.1 to illustrate inter-procedural valegsfanalysis. We use it here to demonstrate how our
transformation can remove the redundancies detected bariadysis.

The program calls thetdio GNU C library (glibc version 1.09). FunctiddAIN first opens a text
file by a call tofopen and then iterates through each character in the file B is reached. The characters
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Collect answers to queries raised during the analysis of branch b

add ¢, = (v, relop, ¢, nil), the initial query raised at branch b, to Q[b]
let worklist be the set of nodes n s.t. a query was resolved at a predecessor of n
while worklist is not empty do
remove a node n from worklist
for each query ¢ from Q[n] do
if n is jth exit of call site m invoking ith entry of procedure p then
let e be the jth exit of procedure p
add Ale, snele, q].¢in] \ {TRANS} to A[n, g]
for each query ¢, in snele, g].entries[i] do add A[m, g.] to A[n, q]
else if ¢ was not resolved at node n then
for each m € pred(n) do add A[m, substitute(n, q)] to A[n, q]
end if
end for
if an answer has been added to A[n, ¢ for any ¢ then add sucdn) to worklist
end while

Figure 7.5:The roll-back algorithm.

are obtained by a call tigetc, which returns one character from its buffer until the buiéeempty, when it
is refilled by callingfillbuf.

Consider first the condition&0 in MAIN, which tests the loop-exit condition= EOF. As was
elaborated in detail in Section 7.1, the outcomepfis always true along the path fromto Py, and it is
always false along the path fromto P,. Assuming for now that the code of functidifibuf is unavailable
to the optimizer, nothing can be deduced about its returneyadnd hence the behavior 8§ cannot be
determined along the path from notléo . In summary, the conditiondf, is partially redundant along
two out of three (sub)paths reaching it. In other words, thalyssis discovered a static correlation &
whenevemr or ¢ is executedP,’s outcome is known.

To optimize Py, the two reuse paths must be separated. The separationgfietle two paths
(a) from other paths, to isolate the optimization conditfatong the isolated paths, the branch will be by-
passed), and (b) from each other, because the branch witl jioto a different target along each path. How-
ever, procedures pose obstacles to such desired path i@paRrocedures are traditionally viewed as in-
herently single-entry/single-exit regions of code, whickans that all paths through the procedure must pass
through the unique entry and exit points. To exploit intesgedural opportunities for conditional branch
elimination, the correlated paths crossing procedureyfntit must be isolated by splitting procedure en-
try/exit nodes.

To separate the paths across procedure return, we pegfotisplitting which creates two exits in
the called procedure. After the exit is split, the condifibA, is bypassed (i.e., eliminated) each time it is
executed, except after the buffer is refilled at nbdeee Figure 7.2(b)). Exit splitting can be implemented by
passing to the callee additional return addresses; in@e¢té, we present a more efficient implementation
technique whose cost is independent of the number of exits.

Next, we optimize conditional$’, P», and P; in function fgetc. For all three conditionals,
the analysis detected reuse originating in procedopen, where eithefp = NULL, or fp # NULL A
fp- >magic = IOMAGIC holds along any path. In either case, all three conditiomafully redundant (that
is, they can be eliminated along all paths, although sejparet necessary (recall the reason (b) above). Our



MAIN int FGETC(fp)
unsigned char uc

intc

fp = fopen(“file","r")

P2 | fp->magic == GLUEMAGIC

\
fp =*fp->p
P3| fp->magic == IOMAGIC

¢ = fgetc(fp)

fp->bufp < fp->get_limit

P4
b[ ¢ = fillbf(fp) } [“C f*"">b“fp++} c
False True c=uc
- — /
errno = EINVAL
. [ o™
#define EOF -1

#define NULL 0

(a) The source program.

MAIN intc int FGETC(fp)

unsigned char uc

P2y intc

fp 1= NULL

P4(fp->bufp < fp->get_limit

b[ ¢ = fillouf(fp) ] [UE z *ufg->bufp++] c

(b) After optimization ofPO.

IN3 |;| j int FGETC(fp)  [IN2]
P1:fp 1= NULL
) ; Q .
MAIN intc P2 fp->magic == GLUEMAGIC :
) : W
fp = *fp->p
g LAl
P3: fp->magic == IOMAGICv
P4(_ fp->bufp < fp->get_limit
¢ = fillbuf(fp) [uc = *fp->bufp++]
ouTy [ouT?) c=uc
errmo = EINVAL
return EOF t t
process ¢ \ ;E urn c re u*rn Cc
out

(c) Elimination ofP1, P2, P3; exit splitting onfillbuf.

Figure 7.6:The example program using the GNU C library.
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MAIN

fp = fopen(“file","r")

FGETC

P4l fp->bufp < fp->get_limit

uc = *fp->bufp++
c=uc

process c

process ¢

Figure 7.7:Partial inlining of fgetc.

optimizer splits the exit ofopen and the entry ofgetc to bypass these conditionals. The result is shown in
Figure 7.2. If no other call site of this entry exists, thetetaents infgetc that are reachable only from its
original entry can be deleted if no other call site of thisgeiists.

Let us assume now that the codefitibuf is available to the optimizer. With this information,
the analysis detects thétibuf returns eithelEOF or an unsigned value. In either case, the outcome of
P, is determined. After exit splitting dfillbuf, the conditionalP, is completely eliminated, as shown in
Figure 7.2(c).

To appreciate the power of the inter-procedural transftionaconsider the amount of branches
removed. In the unoptimized program, each loop iterati@ctetes five conditional branches. After the opti-
mization, only one conditional remains. This optimizat@amnot be carried out by intra-procedural branch
elimination [MW95b], unless inlining is applied. Furtheone, ICBE reduces the code size of procedure
fgetc, which enables its (partial) inlining iINtMAIN, where the resulting (reduced) loop can be efficiently
software-pipelined (see Figure 7.7).

7.3 Inter-procedural PRE(R) algorithm

Because this chapter illustrates inter-procedural vime-optimization by means of redundant
branches (and not arithmetic computations, as in the puswibapters), we start by showing that the CMP
region naturally supports thetraprocedural removal of branches. We then proceed to extendiMP-based
restructuring to the inter-procedural setting.

7.3.1 Intra-procedural branch removal

Let us first briefly review the value-flow analysis for condlital branches, which was described in
Section 7.1. For each conditional branch, along each gathalue-flow analysis may detect exactly one of
three “events:” the branch outcome is always eithae, or falsg or not known at compile time. To phrase
the three-valued branch redundancy into our two-vallas¢/No) value-flow framework, we treat the true
and the false branch outcomes independently, as two coreplamnybranch exitswhich either are redundant
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® AVAIL=Must
O AVAIL=No

FoT B ANTIC=Must
O ANTIC=No

Figure 7.8:Intra-procedural restructuring.

along a given path or they are not redundant. For exampleaheitional branch
Py :¢c=EOF
in Figure 7.6 is split into two branch exits
Pl:c¢=EOF and P/ = -P! : ¢ # EOF.

Each branch exit can now be analyzed usingthest/No/May lattice. Given a patlp leading to a branch,
the solution of availability AVAIL) has the following meaning:

Must: the branch exit is redundant along a path, i.e., the branitivéibe taken whenever the path is taken,
and so the branch condition need not be evaluated.

No: the branch is not redundant along the path, i.e., wheneegpdth is taken, the branch condition must
be evaluated to determine whether the branch exit (or theommentary exit) will be taken.

When theAVAIL solution for a branch i8lay, then there is a path along which the brancMisst (can be
bypassed) and also a path along which the branbloiémust be evaluated).

On the VNG, each of the complementary branch exits is as®abigith the out-edges of the condi-
tional branch node, as shown in Figure 7.8(a). The figureaggpicts the CMP region for such a conditional
expression. Note that the branch exit coincides withhhst-exit edge of the CMP region. The reason for
this coincidence is that the branch exit is oMy -anticipated at the branch node (the branch exit will be
computed along one path through the node but not the othé§.cdnsequence is that code motion is not
applicable for the removal of redundant conditional brascfinoisting will immediately hit the CMP region)
and so restructuring must be used instead.

The CMP region for the branch exit indicates how to restmagtjust like it does for any other
computation. After the CMP region is duplicated, the copy must evaluate the branch. In tdest copy
of the region the branch outcome is known and hence we caartdisct the complementary branch exit as
unreachable and eliminate the branch itself, which coredute transformation.

The interprocedural CMP region is computed on an intergtod VNG representation, which is
computed on the ICFG (see Figure 7.3) similarly to the wayMN& is computed on the CFG.

7.3.2 Inter-procedural restructuring

Entry splittingoccurs when the correlated path is entering the proceduadh a procedure entry
node. Entry splitting always involves call site splittirigxit splittingoccurs when a correlated path crosses a
procedure exit node. Exit splitting always involves spigtcall site exit nodes.
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source program after analysis — after analysis — call site exit node split ~—=

procedure exit node split — call site normalization | — call site normalization Il optimized program
+ redundant P removed

Figure 7.9: Inter-procedural restructuring. The label ' denotes query answaédust and the labelV
denotes query answalo.

Thanks to the ICFG representation and the normal call sita,fthe duplication of the procedure
entry and exit nodes require little special handling. A#ttis required is to consult the procedure summary
function when attaching the edges that connect a call sitie math its call site exit nodes. This handling is
added to lines 13-17 in Figure 6.10. This code also nornmtize call site into the normal form shown in
Figure 7.3.

Figure 7.9 illustrates inter-procedural restructuringgufe 7.9(a) shows the source program and
Figure 7.9(b) annotates the nodes of the ICFG with answettsetgueries raised in the analysis from Fig-
ure 7.4. Figure 7.9(c) marks the CMP region. The triangleotesalrans entry edge. Note that the noée
does not belong to the CMP region, although it lies on bdttuat-path (reuse path) and orNm-path (free
path). The nod& need not be split because the call site nGdeill be split, which “sufficiently” splits the
two paths. This fact is reflected in tA&/AIL solution of the nodéE, which containdrans, a single answer.
Figure 7.9(d/e) show the ICFG after the CMP region in theecAlhllee is duplicated, respectively. Notice
how the call-site-related edges are attached. In particthla edges@,D) and (C,D’) exist because the call
site nodeC may follow in the callee both @rans-path (producing &ust solution on the call site exit node)
and aNo-path. Finally, Figure 7.9(f,g) put the restructured ca#é éto the normal form.

7.4 Implementation Details

This section elaborates on some important implementagtald of entry/exit splitting. First, we
present an efficient implementation of exit splitting. Sstove show how entry/exit splitting can be applied
to call sites that invoke one of multiple procedures (e.igtyal procedures in object-oriented languages).
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Figure 7.10:implementation of Exit Splitting.

7.4.1 Exit splitting

A naive implementation of exit splitting would pass the aitgive return addresses to the callee
as additional procedure arguments. The dynamic numbestiictions added to implement exit splitting in
this style is proportional to the number of procedure exitgotentially high cost.

Figure 7.10 outlines a method whose cost is independeneafiumber of exits. Rather than being
passed as arguments, the alternative addresses are plabedeturn-points array a static memory block
initialized at link time and stored in the text segment. Téim addresses can be stored in the (immutable)
text segment because the addresses remain the same thubtlnghentire execution, for each call site.

The return-points array starts immediately below the ¢tl(gsr) instruction. Such placement has
the benefit that the (machine-dependent) return registarotedr in the figure) points to the beginning of
the array, allowing a fast access to alternative returnest#rs. Given the access to the array, each of the
procedure returns fetches its return address using a uimideg to the return-points array. The cost of exit
splitting is thus a single load operation, executed jusbteethe return operation.

7.4.2 Entry/exit splitting of virtual procedures

Entry/exit splitting enables optimization of multi-tatgell sites, such as call sites of virtual proce-
dures in object-oriented languages. Such call sites arergiynot amenable to procedure inlining, which is
a preferred (albeit potentially expensive) transformafar enabling inter-procedural optimizations. Inlining
is not always allowed at virtual call sites because they magke a different procedure each time they are
executed, depending on the type of the receiver object. #hem the call site invokes at most one procedure,
the analyzer is not always able to safely confirm this fact.

Virtual call sites invoke the callee indirectly, by fetchiits address from a table pointed to by the
receiver object. Various organizations of the virtual lopkave been developed, but for our purpose we can
assume that the address of the procedure entry is obtainedi&xing the lookup table with the type of the
receiver object and the method name:

ProcEntry= TablgType MethodNamg
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Entry splitting is possible even for such indirect calls, by siyipldexing the lookup table with the type and
the call site*

ProcEntry= TablgType CallSitd

With such indexing, when two call sites b that call the same method of typet invoke a different entry
of ¢t :: m after entry splitting was performed, the table can distislgiihe two entries. Most importantly,
this lookup scheme does not require tha@ndb invoke a different entry ofn. for all possible receiver types.
In particular, when type&' was not optimized, then all call sites will invoke the origirentry of the method

t'" :: m. This simply means that :: m will forgo the path-specific optimization opportunitieseated
by splitting the paths leading to the original call site (wdé¢he entries were split). Conversely, when a
(optimized) method” :: m cannot take advantage the opportunities, its originalemiit be called from all
call sites.

The algorithm. To transform a virtual call site, the inter-procedural PRE&lgorithm need not
be modified at all. We only require that the ICFG represemtationnects each call site nodes with all its
possible callees (i.e., the call site nhode will have mudtipliccessors and the call site exit node will have
multiple predecessors). A prerequisite for entry/exitt8pl of multi-target call sites is that the number of
callees is relatively small. When many procedures can bakew, it is useful to know which of the callees
are frequently executed, to allow a profile-guide selectibmethods.

7.5 An application: inter-procedural conditional-branch elimination

This section puts together the demand-driven analysis fsattion 7.1 and the transformation
presented in this Section 7.3. We develop an optimizatiomeimoval of inter-procedurally correlated con-
ditional branches. Because an PRE(R) algorithm is potnéapensive, our approach is profile-guided: we
eliminate the conditionals based on their benefit (compsitggthe PRE estimator) and the code duplication
cost.

For each conditional branch considered, the ICBE optiriarnaperforms analysis followed by
restructuring. First, the conditional is analyzed to detexrelated paths and to determine the amount of
code duplication required to eliminate the conditionatdfrelation is found and the demands on code growth
are acceptable, the program is restructured to create glthg which the conditional and instructions that
compute its predicate condition are eliminated.

find conditionals matching analyzable pattern (v relop ¢)
select conditionals with high execution count, if profile available
for each selected conditional branch b do
detect intra and inter-procedural correlation on conditional b
if correlation found and required code duplication is below given limit then
restructure program
end if
end for

Implementation. The analysis and transformation algorithms were implestnt an interpro-
cedural compiler that is based on the retargetable comlpder [FH95]. The implementation considered

! Another alternative is to index the table with the type, mdthame, and the index of the procedure entry. This will
save table space in certain situations.
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the correlation of those conditionals that compared a seadable (not a structure member) with a con-
stant. Overall, 45% of conditionals in the benchmark progg@ould be analyzed using this pattern. The
implementation included both an intraprocedural cori@ainalysis, which used MOD and USE [CK88]
procedure summary information at call sites, and the iptecedural analysis, which detected both intra-
and inter-procedural correlations. The analysis recaghanly two of the four sources of correlation: con-
stant assignments and conditional branches.

Benchmarks. The experiments were performed on the integee®5 suite. Sincé cc does not generate
correct code for the.26. gcc benchmark, we uselcc itself as a compiler benchmark program. The
programs are characterized in Table 7.1. The number of guwes, both defined in the program as well as
the library procedures called are given in the table. Theetation analysis did not analyze library procedures
and thus assumed the worst case behavior at their call E&eh node in our representation corresponds to
a dag of multiple operations and may be viewed as a high-levéé. Therefore, the ratio of the number
of conditional nodes to the number of all nodes that are eabtelis higher than usually reported (last 2
columns). Note that the number of all nodes in column 5 inefudnexecutable label nodes. The dynamic
profile information was collected from thieef input set.

Benchmark || source procedures nodes cond/prog %]

program lines | defined] library all | cond] static [ dynamic
099.go 29 246 372 11] 38806|5304| 21.4 29.0
124.m88ksim|| 19 915 252 35| 21657]2416| 16.5 30.9
129.compress 1934 24 6 957 89| 135 20.9
130.1i 7597 357 26 || 10718| 875 12.9 26.7
132.ijpeg 31211 467 30 || 25420| 2355( 12.2 11.7
134.perl 26 871 276 69 || 50596 5623| 16.6 20.1
147 vortex 67 202 923 63 || 104154| 9646 12.9 28.0
Icc.3.5 26 467 470 21| 49775| 5863 18.1 32.1

Table 7.1: Benchmark programs.

Behavior of statically detectable correlation.First, we conducted experiments to determine the amount of
statically detectable correlation for paths restricted fwrocedure and for paths that cross procedure bound-
aries. The top-left graph in Figure 7.11 depicts the numbeonditionals that exhibisomecorrelation; that
is, those whose outcome is known along some, but not nedgsghincoming paths. Using the total number
of conditionals in a program as a base, the graph shows forgagram the percentage of conditionals that
were analyzable using our implementation, the percenthgeralitionals that were found correlated using
intraprocedural analysis and the percentage that werelfoamelated using interprocedural analysis. The re-
sults show that at least twice as many correlated branckates@cted using interprocedural analysis than by
using intraprocedural analysis. The top-right graph prissthne same information weighted by the execution
count of each conditional, showing that correlation is diete on conditionals that execute frequently.

The bottom two graphs in Figure 7.11 show the number of camits that hadull correlation.
The outcome of such conditionals is known along all pathsfamte they can be completely eliminated;
however code duplication might be necessary if BORUE andFALSE correlations are discovered. Here,
the benefit of interprocedural analysis is even more eviddnonly fully correlated conditionals were to
be optimized, the programs would execute between 3% and &88%oclonditionals, while intraprocedural
analysis enables reduction of only up to 8%. The fact thaemseful correlation exists when procedures are
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Benchmark time [sec] memory[MB] node-query pairs

program overall | analysis|| progrep| analysis total [ percond
099.g0 98.4 83.8 50.4 1.7 198 180 120.1
124.m88ksim 56.1 40.0 67.3 1.9 236 252 168.8
129.compress 21 0.7 10.4 0.3 6 620 120.4
130.1i 9.8 4.6 35.9 0.8 27 201 102.6
132.ijpeg 33.3 19.8 52.7 0.6 32961 335
134.perl 135.2 117.0 49.6 2.6 317719 197.6
147 vortex 1070.2| 1016.9 119.3 3.4 1378890 241.5
Icc.3.5 166.4 138.1 60.5 2.4 352089 217.5

Table 7.2: The cost of correlation analysis.

Conditionals with correlation Conditionals with correlation
static count dynamic count
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Figure 7.11:Characteristics of statically detectable branch correlaion.

considered supports our hypothesis that we write proceduign isolated fashion with repeated computation
in the caller and callee.

The branch elimination optimizer replicates code to elmgnconditionals by creating separate
paths. Since the amount of code duplication increases Wéltistance between the correlated branch and
the source of the correlation, the extent of code duplicatiuist be estimated before the interprocedural
optimization is applied. Figure 7.12 plots the cost-benefdtionship for each correlated conditional. Each
point in the graphs represents one conditional with a catiei. The x-coordinate of the point is the number
of nodes that are created due to code duplication when thditemmal is eliminated. The y-coordinate shows
the amount of dynamic instances of conditionals that weoédad by the elimination of this conditional. A
comparison with the intraprocedural results reveals thiastantially more correlation is detected when pro-
cedures are considered, as the full-correlation graphgjur®& 7.11 suggest. But interprocedural correlation
also requires more code duplication in many cases becaesmtlelation may span a large part of the call
graph. However, the amount of frequently executed coedlabnditionals with low duplication needs, posi-
tioned in the upper-left quadrant, has increased with imteredural analysis. These conditionals make ICBE
more beneficial than intraprocedural elimination becausie iess code growth a higher reduction in elimi-
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Figure 7.12: Contribution to branch removal vs. code dapilin requirements for each correlated
conditional.

nated branches can be achieved. The number of eliminatedrdginstances of each optimized conditional
was estimated from the execution counts of the nodes wherartalysis query was resolved.

Early terminationis a heuristic that terminates the query propagation aftegrgain number of
nodes have been visited. The outstanding queries are alVeestoUNDEF. In the experiments, the anal-
ysis was terminated after visiting 2000 nodes. As a reshét,analysis was a magnitude faster on some
benchmarks (vortex), while only a small fraction (withinoaib 15undiscovered. Figure 7.12 provides an ex-
planation: a majority of optimizable nodes require a smalbant of duplication (and hence a small amount
of query propagation steps). Not analyzing the expensinelitionals loses some opportunities but gains a
lot of analysis speed (notice that the x-axis is logarithmic
Eliminated Branches. The goal of eliminating only conditionals causing reasda@ode growth is easily
achieved in our approach, for ICBE optimizes conditionals by one, performing first the analysis and then
the restructuring optimization for each conditional. Timeoaint of code growth necessary to optimize the
conditional is determined during the analysis phase. Téteueturing phase is executed only if the number of
new nodes that must be created is less than a predetermiriedAle optimized the benchmarks with various
values of the per-conditional duplication limit. Each ciaiwthal was optimized only if the number of node
duplicates required for its optimization did not increaéewhereN ranged from 5 to 200. Figure 7.13 shows
the amount of conditionals eliminated and the incurred aoevth. Each point in a graph corresponds to
one duplication limit value. Note the different y-rangestie bottom row.

In this experiment, the analysis was terminated after 1Qfiferquery pairs were examined (see
line 5 in Figure 7.2) even though not all queries were regbh\&ince in each program there are numerous
conditionals that test global variables, early terminattbdemand-driven analysis avoids far-reaching prop-
agation of their queries and dramatically reduces the aistiyne. The early termination is made possible by
demand-driven analysis. All queries remaining after thalysis termination limit is reached are conserva-
tively resolved tdJNDEF. Terminating the analysis after 1000 nodes is sufficienti ¢orrelated branches
that require up to approximately 300 duplicated nodes. Eveagh not all correlation is detected with early
termination, the missed opportunities are likely to be [iitive due to high code duplication demands. Ter-
minating the analysis early thus seems to be a practicalongpnent. However, note that for some values
of the duplication limit, the inter-procedural analysisym@oduce worse optimization for tHe34. per |
benchmark than its intra-procedural counterpart. Theore&sthat the analysis termination limit was reached
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by examining the callees, missing the intra-proceduraboomity. This problem can be alleviated by exper-
imentally increasing the analysis termination limit. Ndtat the results in Figure 7.11 and Figure 7.12 were
computed with an infinite termination limit.

We can conclude that: 1) for a given code increase, ICBE danirelte significantly more dynamic
conditionals than its intra-procedural counterpart; 2pwimore code growth can be tolerated, ICBE offers
opportunities for additional branch elimination; and 3¢ fher-conditional limit on code duplication is an
effective way to control overall code growth. A better heticifor deciding whether to apply the optimization
would also consider the amount of conditionals eliminassdypposed to the incurred code growth alone, as
was done in our experiments.

7.6 Related Work

7.6.1 Branch elimination

Intraprocedural elimination of conditional branches iage was developed by Mueller and Whal-
ley [MW95b]. ICBE extends their technique in several resped-irst, it can detect and eliminate partial
redundancy of branches in loop nests and across procedume&ies. Second, even in the scope of a single
procedure, ICBE is more powerful because it can detect @ahey that is apparent by examining multiple
basic blocks along a path, as opposed to a redundancy duérngl@ lsasic block detected in their analysis.
In addition, in ICBE, the analysis cost and the code growtliired due to program restructuring can be con-
trolled. Mueller and Whalley [MW92a] also investigated &ling unconditional jumps by code replication.
Krall [Kra94] developed code replication techniques to ioye the accuracy of semi-static branch prediction
to the accuracy of dynamic prediction.

7.6.2 Other benefits of entry/exit splitting

The primary benefit of ICBE is the reduction in the instruntmount (and the schedule length)
through the elimination of correlated conditionals and diperations that compute their predicate. In this
section we discuss how both the correlation analysis anthtBeprocedural restructuring can be applied in
other areas of compiler optimization.

Procedure inlining. Most inter-procedurally visible opportunities for branelimination can be exploited
by inlining and subsequent application of intra-procetlelianination of conditionals [MW95b]. However,
without the knowledge of correlated paths in the call graple, pre-pass inlining process must resort to
exhaustive inlining, at least in the critical program regioShort of folding all procedures into a single, flat
procedure, there is no guarantee that all statements iegtdiva correlation will end up within the same
procedure, which is necessary to remove the branch. Cl@aeypass inlining incurs large code growth.

Inlining becomes more practical when it is directed by oderisprocedural correlation analysis.
After correlation of a branch is detected, the proceduresived in the correlation can be merged by post-
analysis inlining. Such a solution to ICBE may be desirablan existing compiler where inlining and
intra-procedural branch elimination are already supgbfitae code growth of post-analysis inlining may be
further lowered by performing full ICBE (with inter-procedl restructuring), followed bypartial inlining
[HHR95], in which only frequently executed paths through tptimized procedure are inlined. However,
inlining of recursive, virtual, or library procedures magtrbe feasible. In this case, our inter-procedural
restructuring can be applied to carry out ICBE.
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per-conditional code duplication limit.
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Regardless of the exact ICBE scenario, the correlationyaisaproduces an upper bound on the
code growth required to eliminate the conditional and, dfiee information is available, provides also a
profile-based estimate of the cost-effectiveness of thenigdtion before it is applied. The inlining algo-
rithm in [AGS97] inlines procedures one by one based on #aedcution rate until a code growth budget is
exhausted. Our correlation analysis can be used in theemiingive procedures that generate correlation
a higher priority so that correlated branches can be remafted inlining [Car95, DH88]. Our restructur-
ing algorithm can be used to eliminate correlated brancktes the code growth budget for inlining has
been exhausted because its code growth demands are simatiehbse of inlining. Richardson and Ganap-
athi [RG89] observed that the benefit of inlining comes mafirdm eliminated procedure call overhead. Our
analysis is able to identify procedures whose inlining wiate intra-procedural optimization opportunities
for branch removal.
Virtual calls sites. Object-oriented languages complicate inter-procedunalpilation because call sites in-
voking member procedures of polymorphic types may traredatrol to one of many procedures, depending
upon the concrete type of the receiver object. Since sudhsites require expensive dynamic dispatching,
methods for their elimination through concrete type infere have been developed [AH95, PC94, PC95].
In these methods, demand-driven inter-procedural arsatietermines for each call site the set of “reaching
concrete types.” Subsequent program restructuring stgsaoat paths and clones procedures with the goal
of creating call sites reached by a single type of the receive

There is an analogy between concrete type inference and alrinvthat both methods compute
at optimizable nodes the set-union of all optimization apyities and enable optimization by making the
opportunities unique through path separation. While ICBEects values of variables that determine branch
outcomes, type inference is interested in the types ofvecebjects. With respect to the restructuring algo-
rithms, however, our transformation is more powerful thloming because exit splitting is able to separate
out paths that cross the exit node, which cloning cannoeaehiSection 7.4.2 described how entry/exit split-
ting is performed at virtual call sites. The entry/exit #piig can prove valuable for object-oriented languages
because the cost of passing additional return addressesiiscompared to that of a dynamic dispatch.

While concrete type analysis is very successful in enabiifiging at virtual call sites, some call
sites will still require dynamic dispatch. In this case, vam aise entry/exit splitting, as described in Sec-
tion 7.4.2.
Fine-grain computer architectures. The elimination of conditional branches is especially imiaot for
wide-issue superscalar and VLIW architectures, in whidirirctions are pre-fetched and executed spec-
ulatively across conditional branches based on predistafrntheir outcomes. With increasing processor
parallelism, branch density in the stream of instructieisécoming critical because expensive mechanisms
are required to predict and issue multiple conditional bhas in a single cycle [Joh91]. Our experiments
have shown that between 3% and 18% of executed conditioaalbe eliminated by ICBE, reducing branch
density.
A mispredicted branch stalls the processor for many cyatespmllutes the instruction cache. Research in
correlation-based hardware branch prediction [YGS95hstthat unpredictable branches exhibit correlation
with earlier branches. Some unpredictable branches caralg be eliminated by ICBE. Consider, for
example, a procedure that removes an element from a linkedWhen the average list length is low, the
conditional that tests for an empty list is unpredictablevéitheless, the test is correlated with the conditional
that tests the return value in the caller. Optimization ginedictable branches has an especially high payoff.

ICBE can also be used to improve the effectiveness of softywarelining [LH96, RG81] by re-
ducing the number of conditionals and other statementsdridbp body, as illustrated by the example in
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Figure 7.7. Elimination of branches can significantly spapdhe loop schedule when conditionals that form
recurrent cycles of control dependencies are eliminate@néhes testing a flag whose value is assigned
within the loop are examples of such conditionals.

Assisting hardware branch prediction. Run-time prediction schemes have been proposed that pthdic
outcome of a branch using its correlation with the lagtranches [SLM96]. Since the exact source of the
correlation is not known, alt outcomes are maintained and used for prediction, slowingndbe learning
process of the predictor. If the correlation is staticalgtettable, our analysis can provide the prediction
hardware with directions about which recent branch(es)ishioe used for prediction.

Procedure cloning. Our analysis can improve the effectiveness of procedung@mgpby performing inter-
procedural analysis and applying intra-procedural restining. Instead of inter-procedural restructuring,
information about the correlation that crosses procedatmbaries is used to clone copies of a procedure.
To clone a procedure, the call node is split into multiple emdeach of which has a call to a clone. Each
clone copy can be modified to take advantage of the corraldtigprevious work [CHK92], cloning is based
upon constants while our approach will take advantage a&tation for cloning.

Library procedures. Even when it is not possible to compile the library proceduogether with the ap-
plication program, we can take advantage of correlation¢h@sses the application-library boundary. The
library procedures can be pre-split by optimization witepect to characteristic application programs and
the summary nodes describing the resulting entry/exittsyi can be conveniently stored with the library
interface for later lookup during the optimization of theeugrogram. For example, a separate exit from
malloc would exist that would be taken when the return valudUifi_L. Since a large portion of correlation
exists across calls to the same or related library procsdtiie characteristic program may be as small as
the one in Figure 7.6. The original unoptimized proceduteyemust be maintained for library procedures.
When this entry is invoked, all procedure exits return colrtts the standard return address so that compilers
without ICBE can also use the library.

Inter-procedural optimizations. Because path separation and entry/exit splitting elingircantrol flow
merge points, conservative merging of data flow informaéibprocedure boundaries is reduced. As a result,
other optimizations, such as procedure cloning, part@linelancy and dead code elimination, may be more
effective following inter-procedural restructuring. THEBE optimization can be used to optimize array
bounds checks [KW95, Gup90] which typically exhibit coat@n. Finally, branch elimination can be used
as a component of aggressive program transformations,asislicing-based partial dead code elimination
[BGI7].



Chapter 8

Experimental Evaluation

This chapter experimentally evaluates the power of tREHIFINDER framework. We develop an
instance of the framework—specialized for removal of rathnt load operations—and measure its various
properties. In particular, we focus on comparimg PFINDER with an ideal optimizer. In an ideal optimizer,
value-flowanalysisdetectsall reuse apparent from the program text, and the value-itamsformatiorre-
movesall detected reuse. Our main focus is to measure the complstehtt'e VNG representation, which
decides the success of value-flow analysis of tieHFINDER framework. Completeness of the transforma-
tion stage was evaluated in Chapter 6, where PRE(MS) wasrstwhe near-complete.

To gauge the completeness of the VNG representation, weareieldal program analysis, one that
exposes all reuse present in the program. Because detedtiegise is an undecidable problem, such ideal
analysis cannot be carried out statically. We obtain theligerformance via dynamic program analysis. By
observing the run-time stream of memory references, weduddlll PRE-exploitable reuse and treat it as the
ideal analysis performance. To compare the (static) vAbverepresentation with the (dynamic) ideal value
reuse, we use the estimators that compute, given a data-dlloios) and a program profile, the dynamic
amount of reuse detected by the static analysis. Our expatgishow that about 55% of loads executed in
SpeEC95exhibit reuse. Of those, our analysis exposes about 80%.

This chapter starts by describing register promotion, gmopation that removes redundant load
instructions. Next, the suitability of register promotifam evaluating the RrHFINDER framework is justi-
fied. Next, a method for measuring the amount of value reuserémt in a program is presented, along with
empirical measurements of the ideal reuse. Finally, thégotdr compares the amount of reuse removed by
PATHFINDER with the ideal amount.

8.1 Instantiating the framework: register promotion

Without comparison, caches are the bestdwaredefense against the von Neumann memory bot-
tleneck. Capitalizing on data locality, caches winrbysingrecent memory accesses. How can compilers
benefit from these reuse opportunities? In the ideal caseammpiler promotes repeatedly accessed memory
locations to registers. Register promotion is the lmesbpilersolution for reducing the memory traffic. By
removing redundant loads, register promotion decreasab/iamic operation count and shortens instruction
schedules. This section describes register promotion laodsshow it is derived from A THFINDER. We
also outline our evaluation approach and justify reasonsdtecting register promotion as the basis of the
evaluation.
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Register promotion entails three subproblems. Hosiil-reuse analysinds loads and stores that
access the same address, together with the execution parigsvehich the reuse exists. In our framework,
load-reuse analysis consists of the VNG representatioagteh 3) and the dataflow analysis carried out
on the representation (Chapter 4). Secaalihs analysisverifies that the reuse detected by the VNG is
not disrupted by intervening stores. In our framework, tffects of killing stores are incorporated into
the dataflow analysis. Finally, a programansformationstores the prior memory access in a register and
replaces the redundant load with a register reference. diframework, transformation is phrased as partial
redundancy elimination (Chapter 6).

There are three reasons for using register promotion as#is tor for the evaluation ofA?HFINDER.

e Removing memory accesses is an important optimizatidiemory operations are very expensive to
execute in parallel, because they require multiple portisedardware cache. In comparison, a register
access is, in most cases, a much cheaper operation.

Additionally, there are many load-reuse opportunitieAs our experiments show, many load opera-
tions are redundant and most of them can be removed.

e Removing loads is an enabling optimizatiodhen values are passed between arithmetic and logical
instructions via memory—by means of loads and stores—tliengation scopes broken up by the
memory accesses is too small for detecting arithmetic \iidue

e We can develop relatively precise dynamic analy$isom the point of view of the dynamic (run-time)
analysis, there is a value flow between two memory loads if Hoeess the same memory location.
In contrast, it appears that a dynamic detection of branctetzdion would have a lower precision,
because it would involve “mining” for correlation among Bean values, rather than (unique) memory
addresses.

This chapter focuses mainly on the first component of registamotion, load-reuse representation
and analysis. Because an optimization is only as powerfitsasnalysis, improving the precision of the
analysis is of high significance. The second componens alialysis, has a different aim: while load-reuse
analysis detects memory references thastgo to the same location, alias analysis finds thosenttagt thus
identifying killing stores. Recent research indicateg,tfa register promotion, a simple alias analysis may
be sufficient[DMM98, LC97]. The third component, PRE tramsfation, was evaluated in Section 6, where
it was shown to near-completely eliminate@ditectedeuse. In this chapter we concentrate on evaluating the
amountof detected reuse by the VNG representation. We say thatagsasmisPRE-completd it detects
all reuse that the PRE transformation can exploit.

Typically, optimizations are evaluated by reporting theoamt of computations removed. Un-
fortunately, such absolute measure says little about hoshnpotential remains unexploited. Instead, our
evaluation measures the level of PRE-completeness: hoig the analysis from an ideal one? Because
detecting load reuse is in general undecidable, we can ape to find an approximation of the ideal reuse
amount. For that purpose, we perform dynamic analysis optbgram. Dynamic analysis is a simulation-
based limit study: by observing the dynamic stream of memefigrences, we find all reuse available under
a given input and use it as an upper bound of the PRE-expleitabise in the program.

In microprocessor-based optimizations, simulation listitdies have long been guiding the re-
search direction and evaluating the designs. As a resskareh processors offer impressive solutions to
some compiler problems: memory disambiguation [CE98] addindancy elimination [LS97]. In compiler
optimization, too, limit studies can identify untappedgttal, point to bottlenecks, and evaluate algorithms.
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Figure 8.1:The experimental setup.

While the (static) load-reuse analysis identifies redutlbaals and their reugmaths the (dynamic)
limit study yields theun-time numbebf redundantly executed loads. To compare these dispavattities,
we weight the static reuse using the program profile gengtatghe simulator. The result is the run-time
amount of statically detected redundant loads.

Figure 8.1 outlines our experimental setup. Value-flow ysialcomposed of the VNG and the
dataflow analysis carries out a static analysis of the progiidhe dynamic analyzer composed of a simulator
runs the program on some input and outputs two pieces of digriaformation. The first is the reuse level,
measured as the percentage of all executed loads that ceatreuvalue from a prior memory access. The
second information is an edge profile collected during theutation run of the program. The simulation-
based dynamic analysis is described in Section 8.2. Thelgiisficombined with the dataflow analysis
solution, producing the dynamic amount of reuse detectatidygtatic analysis. The analysis-detected reuse
can then be compared with the ideal reuse level. The reseltgported in Section 8.3. ImPHFINDER, the
profile-weighted reuse is used, besides evaluating thgsinatlo navigate the transformation.

8.2 Ideal amount of value flow

This section focuses on load reuse visible at run time. Wegmrtea simulation-based limit study
that has multiple usesi) measuring the amount of reuse in programs (how large isgtimzation potential
of register promotion?)}) evaluating the load-reuse analysis by providing a refezgoint (how close is
the analysis to its ideal performance?), ajduning the analysis (which are the redundantly executed lo
instructions?). In this section, we describe the desigruosamulation and show that a large fraction (55%)
of loads executed in Spec95 exhibits reuse opportunities.

The primary use of the limit study is to evaluate the precigicompleteness) of the load-reuse
analysis. The precision is measured as the level of commaese An analysis i§-completéf it detects all
reuse that can be removed from the program with a prograrsfianation’’. In our context]" is thepartial
redundancy elimination (PREresented in Chapter 6. PRE is a code-motion transformttaircan exploit
reuse even when it exists only on a subset of execution patbsiing to the redundant load. Therefore, PRE
has become the basis of modern register promotion techs\[(k94a, BG96, SJ98, LCKI8].
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Unfortunately, detecting load reuse is in general unddéd@fRam94] and so no compile-time
PRE-complete load-reuse analysis exists. Therefore, weansmpirical, run-time analysis that measures
the reuse in the program as the program executes. In orderotadp a close approximation of PRE-
completeness, this simulation-based limit study shoultcball reuse that PRE can remove, but no reuse
that is beyond the power of PRE. The simulation should thusiothe character of the PRE transformation.

As described in detail in Chapter 6, PRE removes redundantyisting the partially redundant
load against all control flow paths until it reaches a memagration that generates the reuse. At this point,
the contents of the promoted memory location is stored irgester that carries the contents to the original
load. When PRE is performed on the VNG representation, leade is not restricted to acyclic paths; the
reused value can be carried (using multiple registers)sacacsmall number of loop iterations. (Recall the
parametetv that instructs the back-substitution to build the VNG alengonsecutive loop iterations (see
Figure 3.11).) In summary, the PRE operational restricigotinat the redundant load can reuse a result of
some other static instruction (or itself), such that thelitds a small number) of dynamic instances old.

The simulation algorithm reflects this PRE property. The-tiore reuse is detected by remem-
bering for each static memory instruction éscess historythe dynamic stream of its recent addresses. A
dynamic instance of a load is then redundant if a prior loasdtore accessed the same location without an
intervening store. If an intervening store did occur, thedlds still redundant; the intervening store becomes
the reuse source.

The simulation technique has two contradictory goals. @nahe hand, the limit study should
yield anupper bound:each reuse that can be removed with PRE must be detected.e@théer hand, the
bound should béight: if a reuse for a given static load is intermittent (e.g., leseait is sporadic or input
dependent), it should be filtered outrasse In the example below, the reuse between recurrent arr&agaes
(i.e., between the store of[i + 2] and the load ofd[i]) is PRE-exploitable by allocating two registers that
will carry the value for two iterations [CCK90, CK94a, BG96]

for (i=0; i1<N-2; i++) { Ali+2] = Ali]; }

On the other hand, the reuse below is noise. While some cotigetoads from the hash table may access
the same location, the reuse is not guaranteed to occur ieaehhte program takes the path across the loop
back edge. Therefore, PRE cannot exploit this reuse.

while (c=read()) { .. = hashtab[hash(c)]; }

To verify the PRE requirement that a path carries its reusk ge it is followed, the simulator would have
to do extensive bookkeeping of followed paths. Consequemé favor a noisier (i.e., less tight) upper bound
over an expensive simulation. To reduce the noise, we lingittumber of memory cells remembered in
the access history of each static load and store. A small Bumkl to 4) of recent accesses is sufficient
to capture most loop carried reuses, like the first exampbe@pCK94b]. The simulation parametgtis a
counterpart of the VNG parameter

PRE is inherently an instruction-level optimization. Inist capable of exploiting loop-level reuse,
like the one between loadsandb below. Hoistingh does not work. Instead, the loops must be merged using
loop fusion [CMT94], after which PRE can harvest the reuse.

for (i=0; i<N, i++) {a .. =Ail; }
for (i=0; i<N, i++) { b .. =Ail; }
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Figure 8.2:Dynamically detected load reuse(Inlining: up to 50% code growth; Spec95 input sedin.)

The simulation algorithm will (correctly) not identify tHead b to be redundant (unle$$< h) because the
access history remembers only lashaccesses made by load Hence, the simulation is consistent with the
power of PRE.

Reuse Level. Figure 8.2 plots the amount of simulation-observed loadee&or each benchmark,
the experiment was carried out at three points in the comilafor the original program, after optimiza-
tions, and after register allocation. The compiler usedwgmct [CMCH91]; the optimizations included the
local, global, and loop invariant redundant load elimioatias well as superblock optimizations [HM@2].
Note that while in the floating-point benchmarks (the fourtlea right) the removal of many loads was ac-
companied by the decrease of observable reuse, in the ifdegehmarks the optimizer left many redundant
loads unoptimized, which suggests that programs with cermgbntrol flow require more powerful, path-
sensitive optimizations and/or better alias informati&iso note the increase in observed reuse after register
allocation, which is due to spill-code loads (the targetpssor was PA-7100).

We show the amount of reuse for the history depth 1 and 4. &sang the history depth raises the
observable reuse much more in integer programs than in téetéic ones (where more recurrent accesses
would be expected to be captured with the increased higtor manual examination of simulation results
strongly suggests that the additional reuse collectedeatii®per access history is mainly noise, similar to
the intermittent reuse in the hash-table example aboveo gi®wn in the graph is the fraction of reuse in
which both the generator and the redundant load belong tsaime procedure. These reuse patterns are not
strictly intra-procedural, as the procedure might haverretd and been called during the reuse. However,
these “intra-procedural” reuse levels serve as a referpairg for our intra-procedural load-reuse analysis
(Section 8.3).

Input Variance. Profile-directedoptimizationand simulation-directedptimization desigrare
valuable only if the program input exercises input-indejestt, pervasive program characteristics. How
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Figure 8.3:Effects of symbolic language and pointer aliasing on the ammt of detected reuse.

much does reuse vary across different inputs? We modifieththas on several benchmarks and compared
the observed reuse. The results are shown in Table 8.1. Phelrased variation of the reuse level is within
18%, which may suggest that reuse is largely input independéne greatest difference is m88ksi m in
which each input directs the execution into different prhaes. For the same reason, this benchmark has
less reuse generated by stores inttlest input (fractions add up to more than 100%, as a reuse instance
may be generated by multiple instructions, a load and a)stéfe have manually examinednpr ess and
discovered that the lower reuse in the larger input is duewef noisy loads. Input variance may therefore
be useful as a noise reduction mechanism; by taking inteéosecf reuse detected on different inputs, we
may determine regular, statically detectable reuse.

Memory Requirements of the Simulator. While the simulation limit study is considerably more
expensive than control flow profiling, it is used once (to dasind tune the analysis) unlike the cheaper
profiling which is repeated (to optimize each program).|,Stie simulation speed was acceptable, at about
9.4 seconds per 1 million loads and stores executed (on RX)80The memory required varied greatly. The
largest data structures were neededsky m(103MB + 32MB hash table) and the smallestdynpr ess
(4MB + the same hash table).

8.3 Completeness of value-flow analysis

This section experimentally evaluates 8taticvalue-flow analysis in relation to th#/namiclimit
study from Section 8.2. Because our implementation of tladyais is intra-procedural, the reference point
for comparison is the intra-procedurally observed reusenihimize noise in the baseline, we use the reuse
collected at the access histary= 1. We analyzed the unoptimized source programs. In sumnmrgach
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benchmark, the baseline for comparison is the thark in the leftmost column in Figure 8.2. Figure 8.3
plots the amount of reuse discovered by the analysis. Theegdlamount was computed as the average of the
lower and upper bounds returned by the CM#3timator.

The load-reuse analysis was carried out under varying ggsums. The two highest lines in Fig-
ure 8.3 show the reuse detected at 1-level and O-level agliréisection, respectively. Our implementation
considered only indirect loads, not stores, which may erifee lack of indirect reuse in some benchmarks.
To determine the reuse-detection power of the analysisettveo lines assumed perfect aliasing under which
no stores along a reuse paths would kill the detected reubée Wot all of this aggressively detected reuse
can be promoted to registers, it can be exploited with adtidre reuse mechanisms, such as data-speculative
loads, as noted in Section 8.1. Overall, the comparison tivégHimit study shows that our analysis is about
80% PRE-complete.

Aliasing. We also studied the killing effects of intervening stored @anocedure calls. Because
our compiler does not perform alias analysis, we considéiezk hypothetical levels of pointer aliasing
precision, specified as follows: first, we assumed that ordgg@dure calls killed the detected reuse; second,
we added to the Kkill set all stores except for stores to glehehbles; third, all stores and procedure calls
killed the reuse. Due to aggressive inlining, only a smalbant of reuse was lost at procedure calls (the
white bar segments). However, array and pointer storesvemlonost one third of reuse (the dark, middle
segments). While this pessimistic hypothetical aliasinggdisappointing results, other researchers showed
that even a simple alias analysis may produce memory digaration that is near-optimal for purposes of
register promotion [DMM98, LC97].

Finally, we experimented with noise-reduction heuristig classified as noise all redundantloads
whose observed reuse included many dynamically insignifiganerators, but no dynamically frequent ones.
Even with a conservative noise-reduction criterion, weffdt out about 20% of noisy reusegn and 10%
ini j peg, as compared to the baseline in Figure 8.3. This allows usriolade that our load-reuse analysis
is successful; on average, at least 80% of observed reuaptisred.

8.4 Miscellaneous

A powerful load-reuse analysis is beneficial even when théster promotion itself is prevented
(due to aliasing or lack of registers). In such a case, the BP&isformation step can employ alternative,
albeit less effective, reuse mechanisms. When promotionssife due to interfering stores, the redundant
load can be replaced with data-speculative logdwhich works as a register reference when the Kkill did
not occur, but as a load when it did [KSR94, GKKG98, BG96, Wu98hen registers are not available, load
reuse can be exploited usiagftware cache contrdk SR94, GKKG98,RCT 98]. By directing which loaded
values remain in the cache and which bypass it, the compleliraprove the sub-optimal hardware cache
replacement strategy.

We have experimentally investigated how demanding PREtsn@spect to the number of registers
consumed. Theegister pressurat a CFG node is the number memory locations whose reusernpates that
node; each memory location needs one register. We averageddister pressure over all nodes, weighting
each node by its profile frequency. For the 0-level perfeasaig analysis configuration, the highest average
register pressure was 34 registersfa2cor . Such an amount of registers will be soon available in génera
purpose processors.



compiler dynamic program processor

optimization specialization architecture
reuse hard-code predict

Analyze-m-[fmd redundancues}" **1 learn

y [compuTe once] v

Transform [ .. & remove them 1., ..+ predict
X “*+ hard-code ¢*
compute once
compile time [ P J ¥
run time specialized
static a’ynam'/'c

Figure 8.4:The spectrum of program optimization approaches.Are the three optimization technologies
equipped with unigue strengths or can one replace the &hers

8.5 Other methods for value-flow optimization

We conclude this chapter by comparingfRFINDER (a representative of the compiler optimiza-
tion technology) withvalue prediction(a representative of architectural approaches to progtimiza-
tion) [SVS96, SS97,LS97]. Before we describe the expertpieis helpful to refresh the program optimiza-
tion spectrum, shown in Figure 8.4. Qualitatively, the ¢éhtechnologies—compiler optimization, dynamic
optimization, and processor architecture—operate oewifft principles. In particular, they differ greatly in
how they exploit the program text (static analysis) and Huosytexploit the values computed by the program
(dynamic analysis). The major question that our final expent attempts to answer is how different these
technologies are quantitatively. In particular, what &ertedundant computations (and how many are there)
that one technology can remove but the other can’t?

The experiment compares the dynamic amount of reuse remov&dTHFINDER with the dy-
namic amount of values predicted by three different valesligtors: the last value predictor [LS97], two-
delta stride predictor [SVS96], and context predictor [98F The first two predictors allocated one element
(to store the last value and stride) per static instructibime size of the context predictor table was 64MB.
The prediction and compiler optimization was performedyam (the results of) load instructions. The
measurements are plotted in Figure 8.5. The following amichs and notes can be made:

1. Except for the most expensive (context) predictor, theeesignificant number of computations that
can be removed only with the compiler.

2. Many of the computations predicted with the stride prdicould probably be removed with loop
unrolling or strength reduction. The latter could be coasid a form of value-flow optimization: it
removed instructions that compute the value of some previmiruction plus some offset.
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It would also be interesting to comparat® FINDER with instruction reus¢SS97, SS98], a hard-
ware technique that does not predict the future values lkee prediction), but looks them up in a what we
could call avalue-reuse tablémuch like compiler-based value-reuse does). The valusertable is indexed

by the values of the arguments of the operation that is beinged. In that sense, instruction reuse is even
more similar to compiler optimization than value prediatio



Chapter 9

Conclusion and Future Work

Value-flow optimizations are the backbone of compiler téghes for enhancing instruction-level
parallelism. As a unifying paradigm, these optimizatioxgleit the program property that the results of some
operations have been previously computed. If value receatipn is detected, the redundant operations can
be removed or substituted with cheaper ones. As a resufrgmocode is improved in at least two ways. First,
by eliminating useless computations, instruction schedutan use freed hardware resources to construct
shorter schedules. Second, when operations are deletadtieocritical path of program dependencies, the
optimization achieves faster execution even when ressueenot the bottleneck.

Observations of values computed during program executiggests that compilers miss numerous
value-based optimization opportunities: even in highlyimmzed programs, up to 40% of executed instruc-
tions compute the same value as their previous dynamicriostaAs shown by our experiments, for most
instructions, the source of this redundant recomputatienpagogram expressions that are equivalent only
along some—hut frequent—execution paths. Because noxetiudons of an expression are optimizable,
this some-pathsedundancy is beyond conventional optimizers: consesvatnalyzers fail to expose it, and
inflexible transformations fail to remove it.

9.1 Summary of Contributions

This thesis unified, generalized, and improvedue-flowoptimizations. Particular emphasis was
placed onpath-sensitivitywith the aim of complete exploitation of opportunities tlegther may not exist
along all execution paths or become visible only when irthiiail paths are examined separately (or both).
This goal was accomplished by first defining a class of valoe-firoblems and then by identifying its
member optimizations. The value-flow class is broad andtisedly significant; a partial list includes loop-
invariant code motion, constant propagation, load/stbneiation, and branch removal. As the next step,
problems shared among optimizations in the value-flow dies® been identified, enabling development
of an optimization framework in which common optimizati@siies can be addressed uniformly across the
entire class.

The main result of this thesis is an optimization framewankderiving path-sensitive versions of
value-flow optimizations. The major obstacle that prevardsnstruction of gractical path-sensitive frame-
work is exponentialcost incurred when the (exponentially mangdlividual program paths are optimized.
This exponential cost comes in three forms:

e Analysis costeach program path may havelifferentoptimization opportunity.

e Transformation costonly someprogram paths may offer an optimization opportunity.

146
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e Profiling cost: to perform cost-benefit trade-offs, we may require the ettecurequency of each
program path.

This thesis presents techniques that make these three mastical, while maintaining the optimization
power at nearly optimal level. Specifically, the expondrtiest was attacked by dividing the\PHFINDER
optimizer into three stages: program representationfldatanalysis, and program transformation. In each
of the stages, this thesis develops new techniques. Thetrilootions are summarized next.

e Representation. We developed th&alue Name Graph (VNGa novel program representation that
models the flow of a recomputed value. By symbolically nantimg value, the VNG reduces the
(hidden) value flow into the (exposed) data flow. The reprediem, calledvalue Name Grapmames
the value on demand, for a set of optimized computationdodigh the names are formed separately
for each path, obtaining path-sensitivity, the paths asdyaed separately only when it matters, i.e.,
when the value has a different name.

By analyzing paths separately only when they offer differgptimization opportunities (when the
value has a different name), our representation reduce{tanentiaknalysis cost

e Profile-weighted dataflow analysisTo navigate the transformation trade-offs, the dataflowyaisa
must weigh the optimizable paths with a run-time profile. Takenprofile-guiding practical, this thesis
develops a family oéstimatoralgorithms based oadgefrequencies, a cheap but inherently imprecise
alternative to path profiles that measure frequencies a¥ichadal paths. When weighing the reuse,
estimators bound the inherent error of the edge profile radchnfidence to imprecise profiles.

By using the (linear-size) edge profile, the exponermralfiling costis avoided, while achieving esti-
mation precision close to that based on path profiles.

e Transformation (intra-procedural).We developed a transformation that (nearly) completelyoss
all computations detected as redundant. The transformatimbines three orthogonal methods. We
resort to the expensiyeath duplicationonly when the growth-freeode motiorfails to transform the
program, and only when the profile-driveontrol speculatiorcannot profitably impair some paths
to optimize others. The spectrum of algorithms is based omglesabstraction, &ode-Motion-
Preventing (CMP) Regigmwhich contains identifies adverse effects of the contral fhm the desired
optimization. Our experiments show that the version of¢gfanmation that combines code motion and
speculation is highly successful: it removes nearly alurethncies and, because it does not perform
restructuring, achieves zero code growth.

Thus, by exploiting code motion and control speculatioduredancies are removed without duplicat-
ing individual program paths, reducing ttransformation cost

e Transformation (inter-procedural).

We developed a transformation that completely removesn@ahcies that are inter-procedural, i.e.,
those where the value flows across procedure boundaridseiRbaan resorting to (expensive) inlining,
we separate optimizable paths by generating multiple pla@eentry points and multiple exit points
(which may return to different points in the caller). Thakentry/exit splitting, paths can be separated
across procedure boundaries, even when the call site isvaike of many procedures, as in virtual
procedure calls.
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By splitting procedure entries and exits, fewer paths aggicated than when procedure inlining is
used, which reduces the transformation cost, similarlyéoititra-procedural transformation.

We compared the power of the framework with that of an ide&lerlow optimizer, using the
optimization of redundant loads. We developed a run-tinoggiam monitoring algorithm that exposed the
amount of value reuse present in the program. This ideal atveas compared with the amount detected by
our analysis. We observed that we captured at least 80% oétlse present in the program.

Besides removal of redundant memory loads, the framewoskangployed to derive optimizations
of arithmetic expressions and an inter-procedural versfaamoval of conditional branches, with promising
results. We believe that thesPHFINDER framework can be used successfully also to derive othemigzr
tions, such as removal of redundant array bounds checks oofstant propagation.

9.2 Lessons and Observations

This section highlights some of the observations made duhie development of this dissertation.

The class of value-flow optimizations is large. Even though the seminal work on Partial Redundancy
Elimination (PRE) by Morel and Renviose [MR79] consideratiyamptimization of arithmetic expressions,
other kinds of computations can be targeted via rather abgvtensions of their analysis and transformation
algorithms. The computations that belong to the value-flagsinclude memory load operations, condi-
tional branches, communication statements, memory pici-fgperations, and others. Common to all these
kinds of computations is that their effects can be repeaay,(a load may read a memory location whose
content was already loaded by some other instruction; achranstruction may evaluate a Boolean expres-
sion that was already evaluated by some other branch itistni@ communication statement may receive
data that was already received by the program); becausdféueseof these computations can be repeated,
redundant computations may exists (these are those cotigmgtéhat repeat the effects), which allows their
optimization.

The definition of value flow developed by this thesis (Defoniti3.2) unites computations that
can reuse previously computed values into a single clasis diiinition allows phrasing many previously
unrelated optimizations in a general value-flow framew®éid. example, constant propagation can be viewed
(and performed) as a value-flow optimization. In contragh®omore traditional redundancy optimizations,
the value reuse assumed by constant propagation is andatisine. Rather than reusing the value from a
prior computation, an expression that evaluates to a con$tuses” the value of the constant which can be
viewed as computed by the compiler at compile time. Despitedifference, constant propagation can be
directly formulated in the FrHFINDER framework.

Besides providing a uniform optimization infrastructutiee definition of a unifying value-flow
class offers new views to existing program analysis probleifor example, detecting which conditional
branches are redundant also answers the question of wlackloes are correlated to each other [BGS97a],
which in turn answers the question of which program pathsrdeasible (i.e., are guaranteed to be never
executed by the program) [BGS97c].

The class of value-flow optimizations can be generalizedbéyhe scope assumed in this thesis.
Consider the elimination of statements that complatad valueswhich are values that are never used by the
program (along some program paths emanating from the @figytidead statement [BG97]). Elimination of
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dead values is analogous to exploiting value reuse, witltiffierence that value reused is an optimization
with respect to the past, and the dead value elimination gpéimization with respect to the future.

Another extension of the value-flow class is based on a gkratian of the reuse of previous
values. Rather thadirectly reusing a value computed previously, the optimizer canhlus@rtevious value to
simplifya computation. Consider the computationtof i. If a valuet = 4 x (i — 1) is known (e.g., from a
previous iteration of a loop), it is usually cheaper to coteu+ ¢ than4 x i. Such an optimization is called
strength reductiomnd has been developed to operate also in a path-sensitiveem#&RS93].

Path-sensitivity is important. To perform an effective value-flow optimization, it is impent to perform

the optimization in a path-sensitive manner. As our expenitashow (see Section 6.6), on some benchmarks
more than half of all the optimization opportunities (measlin dynamic terms) require a path-sensitive
optimizer. Furthermore, the standard approach to patkitdenoptimization [MR79] may be inadequate, as

it can exploit less than a half of all path-specific opportiesi In contrast, our optimizer can remove nearly
all of the opportunities.

Exponential path explosion can be avoided. The large amount of path-specific optimization opportesiti
would suggest that the optimizer may need to pay the costrdidering each program path separately. We
have observed, however, that this cost can be very well neghadhis dissertation divided the path-sensitive
cost into three categories:

e Analysis cost. This is the cost of analyzing each program path separatelsi(alyzing it in a way
that gives the same precision as if each path was analyzedasely). The solution presented in this
dissertation, the Value Name Graph, analyzes any two pafterately only when any value flowing
along them “behaves” differently on each path. While thestxgase time and space complexity of
the Value Name Graph is exponential in the number of progrades, the graph size is usually small
enough to be used in a practical compiler.

¢ Profiling cost. This is the cost of obtaining the execution frequency foheaath in the program. A
straightforward approach to path-sensitive profiling ist@asure the execution count for each acyclic
path, with an exponential worst-case cost. This dissertateveloped techniques that use the (linear-
size) edge profile with the nearly the same precision as agsthitive profile.

e Transformation cost. This cost corresponds to the code size growth that is caussdgarating pro-
gram paths. Path separation is (usually) necessary tagsofgimizable paths from other program
path, so that the optimizable paths can be transformed utithifecting the other paths. This disser-
tation developed profile-guided methods for path-seresfiogram transformation that cause no code
growth, yet exploit nearly all optimization opportunities

9.3 Future Work

This section proposes some future directions for value-fiptimization. The ideas outlined here
emerge from the observation thedmpiler optimizationis just one technology for program optimization.
Other related technologies apgocessor architecturand program specialization As explained in Sec-
tion 1.3, for the purpose of value-flow optimization (in pewtar, redundancy removal), the three technologies
offer complementary solutions. Therefore, to obtain digant advances in power and practicality of program
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optimization, one needs to explore relationships amonggtiechnologies and develop new ones, building
on recent contributions of compiler optimizations and mpocessor architecture. As outlined below, such
new technologies are both enabled and demanded by emengimmuter technologies.

These three methods differ in how they divide optimizaticorkvbetween compile timestatic
work) and run timedynamiowork). The division has a profound influence: static methzatsot exploit the
program input available only at run time, but can be more derand slower than dynamic ones. Compiler
optimizations are static: the program is analyzed and lebtihe architecture is dynamic: on the fly, the
processor “learns” about the program and predicts futusali® of its instructions, effectively removing
predictable (redundant) ones [SVS96, SS98]. Dynamic eBssdf program specialization are hybrids: static
analysis finds values unchanging during the execution; tmeceoncrete values are known at run time, they
are hardcoded into the program, specializing it for its entinput [GMP-98].

Each method has unique strengths, none can subsume thse. oftterefore, their integration is
mutually beneficial. This observation is not widely recag, and the respective communities do not coop-
erate enough. Yet, fueled by technology changes, the mtiegrwill eventually take place. Future work in
program optimization should complement the impact of tedtgy on shaping the integration with a careful
consideration of fundamental optimization principles.e8fically, it is important to understand the static-
dynamic nature of optimization and exploit it with propeblglanced techniques. Below are possible projects
leading towards these goals, listed from more static to rdgnamic approaches.

1. Redundancy removal of loops and procedur€bis dissertation is focused on redundancy of
individual statements. Redundant loops or procedure wadle neither recognized nor removed. Extend-
ing the optimization to such larger program constructs béhefit programs written using object-oriented
technology, where large-grain redundancy may occur fretiyie

2. New paradigms for dynamic optimizatiofifie advent of mobile Java code necessitates optimiz-
ing programs as they are running. While up to a ten-fold sppedn be gained with dynamic program spe-
cialization [GMP"98], the same holds for instruction-level parallelism nogih (ILP), which are static9p].
These two approaches are orthogonal and should both beitexpldJnfortunately, ILP methods are too
costly for run time. A careful combination of compiler optirations and dynamic program specialization
may help by planting into run time only optimizations that aniquely dynamic.

3. Observational analysisStatic compiler analysis examines the program abstraeitlyput exe-
cuting it. Current dynamic optimizers analyze the same waly faster. To prove program properties, they
examine only the code, not the values it computes. This isstenaf run-time possibilities: besides examin-
ing anabstractedexecution, they could also observe ttancreteone. The goal is to design such a dynamic
analysis. Based on observation of computed values, it mdyofaportunities invisible in the program code
alone and also be cheaper than pure abstract analysis.

4. Hybrid hardware-software optimizationslardware prediction of values is efficient for simple
redundancies. To find correlations between instructionsgshrhardware is needed. A hybrid with com-
piler technology may help. A static analysis will find coatld pairs and the hardware will carry out the
transformation, by remembering the generated value seguen

Thanks to embedded computing, hybrid optimizations canrbeadht to life and to the market.
Through the emerging hardware-software co-design tedgyplve can smuggle onto the chip non-traditional
features to support the optimization. As a result, the lost embedded processors might enjoy some of the
server-class power.
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5. Redundancy-centric processoinie dependence of successful modern processors on hardware
prediction indicates huge amounts of redundancy in programmat can be predicted is redundant! Future
processors should perhaps be redundancy-centric. Insté@aning and predicting, they could analyze the
program, avoiding the penalty paid at each mis-prediction.
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