
PATH-SENSITIVE, VALUE-FLOW OPTIMIZATIONS OF PROGRAMS

by

Rastislav Bodı́k

Diploma, Technical University Kosice, Slovakia, 1992

M.S., University of Pittsburgh, 1994

Submitted to the Graduate Faculty of

Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

1999

c
 Copyright by Rastislav Bodı́k

1999

ii

UNIVERSITY OF PITTSBURGH

FACULTY OF ARTS AND SCIENCES

This thesis was presented

by

Rastislav Bodı́k

It was defended on

November 1 1999

and approved by

Prof. Rajiv Gupta

Prof. Mary Lou Soffa

Prof. Mark Moir

Dr. Michael Schlansker (HP Labs)

Committee Chairperson

iii

PATH-SENSITIVE, VALUE-FLOW OPTIMIZATIONS OF PROGRAMS
Rastislav Bodı́k, Ph.D.

University of Pittsburgh, 1999

Current compiler optimizers are conservative and inflexible. As a result, even “highly optimized” programs

execute half of their instructions redundantly, only to recompute previously computed values. Ideally, these

values should be remembered and laterreused, removing recomputations.

Unfortunately, this reuse strategy fails often. The culprit is intermittent reuse—one that exists only along

some execution paths leading to the redundant instruction.This path-specific reuse is frequent, but to remove

it, the optimizer may need to pay theexponentialprice of optimizing each path separately.

This thesis describes how to defeat this exponential path explosion, in its various forms: how to analyze paths

separately only when it matters, via demand analysis; how togenerate less path-specific code, via optimal

profiling feedback; and how to avoid profiling individual paths, via adding confidence to imprecise profiles.

The result is a path-sensitive optimization framework thatis powerful enough to remove nearly all redundan-

cies, yet practical enough to permit an industrial-strength implementation.

More specifically, this thesis attacks the various forms of path explosion by dividing the optimizer into three stages, each

responsible for one aspect of path sensitivity. Therepresentationexposes the reuse of values, theanalysiscollects paths

with exposed reuse, and thetransformationexploits the collected reuse by removing the redundancies.

The representation stage models the flow of a recomputed value. By symbolically naming the value, it reduces the (hid-

den) value flow into a (exposed) data flow. As a result, recomputation can be detected essentially as reaching definitions.

The representation, called theValue Name Graph, obtains path-sensitivity by forming value names separately for each

path. However, paths are analyzed separately only when analyzing them together could hide some value reuse.

The analysis stage marks paths with value reuse and weighs the marked paths with a run-time profile to guide the subse-

quent transformation. Unfortunately, to perform precise weighing, frequencies of marked paths must be known. To make

profile-guiding practical, this thesis develops a family ofestimatoralgorithms, which require onlyedgefrequencies, a

cheaper but inherently imprecise alternative to path frequencies. Estimators bound the inherent error, thus providing both

confidence and practicality.

To effect a complete removal of recomputations while moderating the exponential code growth caused by generating

path-specific code, the transformation stage combines three orthogonal program transformation methods. The expensive

path duplicationis resorted to only when the growth-freecode motionfails to transform the program, and only when the

profile-drivencontrol speculationcannot profitably impair some paths to optimize other paths.

iv

Acknowledgements

I want to thank all people who provided guidance, help, and support while I was working on this

dissertation. Most of all, I am indebted to my advisors, Prof. Rajiv Gupta and Prof. Mary Lou Soffa, for their

continuous support, motivating encouragement, and great patience. Rajiv Gupta generated my initial interest

in compiler optimization, via his classes and by presentingto me challenging problems. Later, both of them

worked very hard on keeping me motivated, they taught me how to clearly present my ideas and solutions

and how to focus on the important problems. Without their guidance, this thesis would never be completed.

I am also grateful for the interactions with other committeemembers. Mark Moir carefully read a

draft of the thesis and pointed out many mistakes and suggested many improvements. The discussions with

Mike Schlansker served as a strong reminder that the resultsof my thesis should be applicable in practice.

At many stages of its development, this dissertation benefited from discussions with and comments

from Glenn Ammons, Sadun Anik, Tom Ball, Alain Deutsch, Evelyn Duesterwald, Richard Johnson, Jim

Larus, Bob Rau, Mooly Sagiv, V.C. Sreedhar, Bernhard Steffen, Frank Tip, Peng Tu, Mark Wegman, David

Whalley, and many others, including anonymous reviewers. Thank you all for your suggestions! (Needless

to say, all mistakes in this dissertation are my own responsibility.)

The empirical evaluation of my thesis would be much less complete without the availability of the

elcor compiler from HP Labs and theIMPACT compiler from the University of Illinois. Their developers

generously provided and supported the experimental infrastructure and offered assistance during implemen-

tation and experiments. In particular, I am indebted for theadvice I received from Sadun Anik, Ben-Chung

Cheng, Brian Dietrich, John Gyllenhaal, and Scott Mahlke.

My scientific curiosity was greatly boosted by the teachers whose classes I took in grad school. An

especially strong motivation to pursue a teaching career were the classes of Kirk Pruhs and John Shen. I am

also very grateful for the career advice and encouragement of Jim Larus and Mooly Sagiv.

During my seven years in grad school, I was blessed to have hadmany great friends, office mates,

and colleagues. Thanks to them, returning to Pittsburgh from any trip always felt like coming home. The

memories of the first years in grad school will forever be connected with Dave Cottingham, Phil Kamp, and

Sylvain Lauzac. Very special thanks go to Majd Sakr for beingalways around to answer (flawlessly) the

hardest questions.

v

Last but not least, I want to express thanks to my family, for their love and support. I am especially

grateful to my parents, for the values they taught me and for the environment they provided for my work.

I am glad that they supported my numerous hobbies, because they eventually lead to my current interest in

computer science. Thanks to my “little” brother Peter, I wasable the experience early on the joy of teaching

someone and watching him grow. Not less importantly, Peter constantly keeps to remind me (unwittingly)

that, whatever you do, you should have fun! I hope he will maintain this attitude throughout his life. Finally,

I want to thank my wife Zuzana for her care and cheerfulness. Not only made her unconditional support

possible to finish this dissertation, but she also has been a great motivation for me: I wish I had half the

inventiveness and time-management discipline that she has.

vi

Table of Contents

List of Figures x

List of Tables xiv

1 Introduction 1
1.1 Motivation: programs often redundantly recompute values 1
1.2 Benefits of removing redundant instructions 3
1.3 Compiler optimization� program optimization . 3
1.4 Path specific optimization opportunities 5
1.5 The challenge: exponential path explosion 6
1.6 My thesis 7

2 PathFinder: the Optimization Framework 8
2.1 The optimizer stages 8
2.2 Background and Related Work 10

2.2.1 Value-Flow Representation 11
2.2.2 Data-Flow Analysis 12
2.2.3 Program Transformation 13
2.2.4 Path-Sensitive Optimization Frameworks 14

2.3 Contributions and the structure of the thesis 15
2.4 Preliminaries 16

3 Value-Flow Program Representation 18
3.1 The goals 18
3.2 What is value flow? 20

3.2.1 Value flow versus data flow 20
3.2.2 A formal definition of value flow 21
3.2.3 Program optimization problems characterizable as value flow 23

3.3 Existing techniques for value-flow detection 23
3.3.1 Dataflow analysis 23
3.3.2 Value numbering 24
3.3.3 Symbolic evaluation 24
3.3.4 Summary: a need for integration 24

3.4 Value Name Graph 25
3.4.1 Constructing the VNG 27

3.4.1.1 Initial parameters 29
3.4.1.2 Step 1: placing the value threads 31
3.4.1.3 Step 2: collapsing the value threads 34
3.4.1.4 Step 3: dataflow transfer functions 36

3.5 Separable VNG 39
3.6 Applications of the VNG 40

3.6.1 Recurrent array accesses 40
3.6.2 Distributive non-linear constant propagation 40

3.7 Related work 41
3.8 Experiments 44

4 Path-Sensitive Dataflow Analysis 46
4.1 Value reuse (the analyzed property) 46

vii

4.2 Availability and anticipability (dataflow problems) . .. 47
4.3 Marking the value reuse (dataflow lattice) 48
4.4 The equation system (transfer functions) 49
4.5 Computing dataflow solution (the solver) 50

5 Estimators: High-Fidelity Profiling using Low-Cost Profiles . 51
5.1 Motivation and related work 52

5.1.1 The problem statement 52
5.1.2 The applications of estimators. 53
5.1.3 An ideal estimator. 54
5.1.4 Program profiles. 54
5.1.5 Related work: existing estimators. 56

5.2 The hierarchy of estimators 57
5.3 Overview of estimators. 60
5.4 Estimators for separable VNGs 63
5.5 Estimators for a general VNG 72
5.6 Experiments 75
5.7 Correlation profiling 76
5.8 Conclusion 77

6 Intra-procedural Removal of Redundancies 78
6.1 Overview 79
6.2 Analysis of the Morel-Renviose algorithm 83
6.3 PRE for a separable VNG 87

6.3.1 Profile-independent PRE 87
6.3.1.1 PRE(MR): Code motion + restructuring 87
6.3.1.2 PRE(M): Code motion .92
6.3.1.3 PRE(R): Restructuring 97
6.3.1.4 A code growth experiment. 98

6.3.2 Profile-guided transformation 99
6.3.2.1 PRE(MS): code motion + speculation 99
6.3.2.2 PRE(Mr): Selective restructuring 102
6.3.2.3 PRE(Msr): motion + selective restructuring + selective speculation 103

6.4 PRE for an arbitrary VNG 105
6.4.1 Code motion + speculation 105

6.5 Miscellaneous issues 106
6.5.1 Reducible restructuring 106
6.5.2 Spurious exceptions 107

6.6 Experiments 107
6.7 Conclusion and related work 110

7 Inter-procedural Removal of Redundancies 114
7.1 Demand-driven interprocedural dataflow analysis 115

7.1.1 Application: inter-procedural branch correlation 115
7.1.2 Motivation 116
7.1.3 The demand-driven algorithm 117

7.1.3.1 Query propagation .. . 118
7.1.3.2 Computing procedure summary nodes 119

7.2 Inter-procedural transformation: example and motivation 122
7.3 Inter-procedural PRE(R) algorithm 125

7.3.1 Intra-procedural branch removal 125
7.3.2 Inter-procedural restructuring 126

7.4 Implementation Details 127
7.4.1 Exit splitting 128
7.4.2 Entry/exit splitting of virtual procedures 128

7.5 An application: inter-procedural conditional-branchelimination 129
7.6 Related Work 133

7.6.1 Branch elimination 133
7.6.2 Other benefits of entry/exit splitting 133

viii

8 Experimental Evaluation 137
8.1 Instantiating the framework: register promotion 137
8.2 Ideal amount of value flow 139
8.3 Completeness of value-flow analysis 142
8.4 Miscellaneous 143
8.5 Other methods for value-flow optimization 144

9 Conclusion and Future Work 146
9.1 Summary of Contributions 146
9.2 Lessons and Observations 148
9.3 Future Work 149

Bibliography 153

ix

List of Figures

1.1 A fragment from Merge Sort. The load ofB[k℄ and theif comparestatement are redundant.
Both redundancies are path-specific and hence these redundant statements cannot be simply
removed from the program. 2

1.2 Two benefits of removing value-flow redundancies:reducing the critical path of data de-
pendences; reducing the hardware resource requirements ofthe program. 4

1.3 The spectrum of approaches to value-flow optimization.The spectrum extends from static
(compile-time) techniques to dynamic (run-time) techniques. 5

1.4 Two flavors of path sensitivity: partial and diluted. 6

1.5 Exponential path explosion:in analysis, and in transformation. 7

2.1 The PathFinder stages and their function.. 9

3.1 The FIRSTM IN program. 19

3.2 The benefits of optimizing FIRSTM IN . The instruction schedule of the loop, before and
after the removal of loadA[min℄. The schedule shows only the instructions on the critical
path of data and control dependences. 20

3.3 Data flow versus value flow.(a) The procedure with two instance of value reuse, betweenS2 andS5, and betweenS3 andS4. (b) Values computed by the two pairs of equivalent
statements, expressed as a function of the procedure parametera. 21

3.4 Compared to data flow edges, value flow edges are “intangible.” While def-use edges can
be identifiedlexically, i.e., from the text of the program, the value-reuse edges require some
form of symbolicmanipulation of the program, to expose the algebraic equivalences. 23

3.5 Three orthogonal value-flow detection techniques.Dataflow analysis is a path-sensitive
technique, as it can mark paths along which a value is recomputed. However, the recompu-
tation of the value is detected only when all computations involved use the same name for
the value. The strength of symbolic evaluation is that it canconnect, by means of algebraic
simplification, identical computations even when they compute the value under a different
lexical name. Finally, value numbering add another symbolic manipulation dimension, by
discovering which names are synonymous. 25

3.6 The Value Name Graph for the FIRSTM IN program. 27

3.7 The VNG (in graph form) for the F IRSTM IN program from Figure 3.6. 27

3.8 The VNG after Step 1 (right). The thick lines arevalue threadsthat connect equivalent com-
putations. In contrast, traditional dataflow analysis (left) builds threads using only the lexical
name of the computed value. The lexical names are killed (shown with the scissors), which
prevents the (less powerful) “lexical threads” from connecting equivalent computations. . . 28

x

3.9 Step 2: collapsing value threads.. 29

3.10 The three steps of VNG construction. 30

3.11 The algorithm for constructing the Value Name Graph. 32

3.12 Step 1 of VNG construction: symbolic back-substitution. 33

3.13 Step 1 of the VNG construction: example . 34

3.14 GVN fails to find the equivalence ofx0 and y2. In contrast, the SVN succeeds, but it has a
higher cost. 35

3.15 Step 2: collapse value threads using value numbering. .. 37

3.16 Step 2 of the VNG construction: example . 38

3.17 The VNG can detect recurrent array accesses.On the left is the CFG of the source pro-
gram. On the right is the VNG of the same program. 40

3.18 Constant propagation using the VNG. 41

3.19 Related work. Existing techniques for value-flow detection can be compared on the basis of
which of the three orthogonal mechanisms they employ and to what extent they exploit their
power. .42

5.1 The estimation problem statement:What is the amount of reuse among the loads of[x ℄?
Constituent sub-problems: what kind of program profile should be collected at run-time?
How to combine the collected profile with the static analysis? 53

5.2 The running example annotated with edge profile. 58

5.3 The estimators and their precision ordering. 61

5.4 The PRE estimator. 64

5.5 Example of the PRE estimator.. 65

5.6 Computing the estimates on the running example.. 67

5.7 The CMP estimators for separable VNGs.e 2 fCMP1;CMP
;CMPr ;CMPfg The for-
mulas for computing the uncertain component of the estimate(Leu andUeu) are given in Fig-
ure 5.8. .. 68

5.8 The CMP-based estimators for separable VNGs:algorithms for computing the uncertain
component of the estimate. In the formulas,enM , enN , andexM (are overloaded to) mean
the frequencies of the corresponding CMP entries and exits.namely,enMi denotes theith
Must-available entry of the CMP reagion,enMj;i denotes theith entry of thejth connected
CMP subregion. maxflow(u; v) denotes the maximum flow between verticesu andv in the
shown networks.CMP1 assumes all CMPs are one, i.e., that all entries and exits aremutually
reachable.CMP
 separates connected CMPs, eliminating some false reachability. CMPr
exploits intra-CMP reachability, using a max-flow computation. CMPf exposes to the max-
flow all intra-CMP edges, including their actual profile weights. 69

5.9 Computing the estimate on a general VNG.The figures represent a concrete example of
the estimators in Figure 5.8. 72

xi

5.10 The CMP-based estimators for bi-distributive VNGs: algorithms for computing the uncer-
tain component of estimates. The algorithms generalize thealgorithms for separable VNGs
(see Figure 5.8).CMP1 adds the amount of flow duplicated in the CMP region, denoted�
to both the produced flow and the stolen flow.CMP
 is similar, except� is computed for
each connected sub-region.CMPr adds more flow to the consumers by adding a “channel”
between the super-nodes and the consumers. The flow capacityof the added nodeÆ is �.
Dotted lines mark edges inherited from the separable CMPr . CMPf computes the bounds
using a generalized version of the max-flow problem, in whichsome nodes duplicate, rather
than distribute the incoming flow. 74

5.11 An experimental comparison of estimator precisions.For each benchmark, the plot shows
the precision of four estimators (the CMPf estimator was not implemented). The precision
is given by the dark bar: the bottom of the dark bar gives the lower bound returned by the
estimator (normalized); the top of the dark bar is the upper bound. The eight benchmarks on
the left are integer programs; the four benchmarks on the right are floating-point programs. . 76

6.1 The example loop. 80

6.2 PRE through integration of code motion, control flow restructuring, and control speculation. 81

6.3 The principle of the code-motion PRE transformation.. 84

6.4 The reasons for the failure of the code-motion PRE. 84

6.5 The design space for our PRE algorithm. The algorithm can use any (combination) of
the three program transformation techniques. The algorithm can lie anywhere in the design
triangle. It resulting properties depend on how biased it toa constituent technique. 85

6.6 The various variants of PRE algorithms. 86

6.7 Removing obstacles to code motion via restructuring. 90

6.8 The PRE(MR) algorithm. 91

6.9 The PRE(MR) algorithm, continued. 92

6.10 The R phase of PRE(MR):remove the CMP region via control flow restructuring. 93

6.11 The PRE(M) algorithm. 95

6.12 The PRE(R) algorithm. 97

6.13 Code growth of the three profile-independent PRE algorithms. 98

6.14 PRE(MS): a simple version of speculation-profitability test. Optimal speculation is found
using estimators from Chapter 5. 100

6.15 The PRE(MS) algorithm. 101

6.16 The PRE(Mr) algorithm. 103

6.17 An example of PRE(Mr). AssumeT (R) parameterized
 = 1. Tightening code-growth
constant to
 = 0:5 results in the program in Figure 6.2(e). 104

6.18 An example of PRE(Msr) optimization. 105

6.19 Reducible restructuring. 106

6.20 Relative completeness of three PRE algorithms. 108

xii

6.21 Benefit of various PRE algorithms on a lexical value-flow representation.: dynamic op-
count decrease due tostrictly partial redundancies. Each algorithm also completely removes
full redundancies. 110

6.22 A summary of our results. PRE:We extended the traditional code-motion transformation
with two transformation methods, achieving an aggressive PRE. Model: We showed how to
use code motion and restructuring within the safe optimization model, in which no program
path can be impaired. The use of speculation requires a relaxed optimization model, in which
path can be impaired.Profiling: We showed that, when code motion is combined with spec-
ulation, an edge profile is as precise as the path profile. Whenrestructuring is profile-guided,
path-profile is more precise than edge profile. 111

6.23 Related work and contributions. 113

7.1 The example program using the GNU C library (version 1.09). 117

7.2 The interprocedural static correlation analysis. 120

7.3 Interprocedural CFG in call site normal form. 121

7.4 An example of interprocedural correlation analysis. . .. 122

7.5 The roll-back algorithm. 123

7.6 The example program using the GNU C library. 124

7.7 Partial inlining of fgetc. 125

7.8 Intra-procedural restructuring. 126

7.9 Inter-procedural restructuring. The labelF denotes query answerMust and the labelU
denotes query answerNo. 127

7.10 Implementation of Exit Splitting. 128

7.11 Characteristics of statically detectable branch correlation. 131

7.12 Contribution to branch removal vs. code duplication requirements for each correlated condi-
tional. .. . 132

7.13 Reduction in executed conditional nodes vs. program code growth, for various values of the
per-conditional code duplication limit. 134

8.1 The experimental setup.. 139

8.2 Dynamically detected load reuse.(Inlining: up to 50% code growth; Spec95 input set:train.)141

8.3 Effects of symbolic language and pointer aliasing on the amount of detected reuse.. . . 142

8.4 The spectrum of program optimization approaches.Are the three optimization technolo-
gies equipped with unique strengths or can one replace the others? 144

8.5 Comparing the power of value-flow analysis and value prediction. 145

xiii

List of Tables

3.1 The size of name spaceS as a function ofW , and other characteristics of the VNG relevant
to analysis efficiency. 45

5.1 Control-flow profiles. 55

6.1 Experience with PRE based on control flow restructuring.. 109

7.1 Benchmark programs. 130

7.2 The cost of correlation analysis. 131

8.1 Sensitivity of load reuse level to program input. The columnl+s gives the number of
executed loads and stores. 142

xiv

Chapter 1

Introduction

1.1 Motivation: programs often redundantly recompute values

This thesis develops a framework for a broad class ofvalue-flowoptimizations of programs. Com-

mon to these optimizations is removal of program instructions that recompute values that are already known,

because they have already been computed in the program (by some other instruction or by a prior execution of

the same instruction), or because they can be computed at compile time. When two instructions compute the

same value, we say that thevalue flowsbetween them. In the following program, the value of the expressionA[i℄ flows to the expressionA[i�1℄ (computed one iteration later), and to the expressionA[i�2℄ (computed

two iterations later).

for i=3,N do

A[i] = A[i-1] + A[i-2]

end for

Redundant value recomputations offer a conceptually simple yet powerful optimization: rather than

recomputing the new value, the old one isreused. The most common way to reuse the value is to keep it in a

register until it is needed again. In the example program, the expressionsA[i � 1℄ andA[i� 2℄ redundantly

recompute the value. The computation (involving address computation and a memory load) can be removed

using two registers used to carry the value ofA[i℄ for two iterations, as shown below. On the entry to any

loop iteration, the registersr1, r2 carry the values ofA[i� 1℄ andA[i� 2℄, respectively.

r1 = A[2]

r2 = A[1]

for i=3,N do

t = r1 + r2

r2 = r1

r1 = A[i] = t

end for

Redundant recomputations occur frequently. Based on value-flow redundancy elimination, current

compilers remove about 30% of executed arithmetic instructions [BC94] and 10% of executed conditional

branches [MW95b]. To estimate the amount of redundancypresentin the program, we can refer to hard-

ware run-time prediction mechanisms. Based on rememberingold values and predicting new ones, these

techniques predict correctly as much as 80% of values [SVS96] and 95% of conditional branches [YP91].

Clearly, what can be predicted is in some sense redundant. Even though not all of the predicted values can

1

2

while ... do

if compare(A[i], B[k])

C[top++] = A[i++]

else

C[top++] = B[k++]

end if

end while

function compare(x, y)

if x.f < y.f

return 1

else

return 0

end if

end compare

Figure 1.1:A fragment from Merge Sort. The load ofB[k℄ and theif comparestatement are redundant.
Both redundancies are path-specific and hence these redundant statements cannot be simply removed from
the program.

be removed by a compiler, the high prediction rates suggeststhat programs are inherently highly redundant,

which encourages us to develop techniques that improve the compiler optimizations.

Figure 1.1 shows a fragment from a Merge Sort program. It illustrates why there is so much

redundancy, but also why optimizing it away is not a trivial task, either for the programmer or for the compiler.

Thewhile loop merges two sorted arraysA andB. In each loop iteration, it compares their top elements and

moves the smaller one to the accumulator array C. The memory access to the top elements is redundant: ifA[i℄ is the smaller element, thenB[k℄ is not moved and soB[k℄ in the next iteration refers to the same array

element. TheB[k℄ expression produces the same value; it is a value-flow redundancy. As in the first example,

the optimizer should remember the previous value ofB[k℄ in a register, reuse it and remove the load ofA[i℄.
Unfortunately, such an optimization is not directly applicable becauseB[k℄ produces the same

value only along one path through the loop. Along the other path, k is incremented, after whichB[k℄ will

refer to a different array element and hence must be loaded from the memory.

The Merge Sort example exhibits also another redundancy. Observe that theif statement in the

while loop always branches in the same direction as theif statement in the functioncompare. This branch

correlation is also a case of value-flow redundancy, becausethe two conditional expressions always compute

the same Boolean value. Because we always know the directionof the redundant branch, we would like to

bypass and transfer the control from the return points directly to the branches of theif statement. Here again,

we cannot simply remove the redundant conditional branch. To bypass it, we need to know along which path

we arrived at the branch. Compare the (failed) optimizations ofB[k℄ and theif statement. While the former

is optimizable only along some paths, the latter is optimizable along all paths; still, the latter is a path-specific

optimization because each path offers a different optimization of theif statement. Another noteworthy dif-

ference is that theB[k℄ optimization removes adatadependency, and theif redundancy removes acontrol

dependency. Removal of either type of dependency may speedup the program (the benefit of removing data

dependencies is illustrated in the following section).

In summary, value-flow redundancy exists even in reasonablywell-written programs, but is often

hard to remove. For the programmer, their removal would require awkward (and error-prone) usage of tem-

porary variables. For the compiler, it would require distinguishing individual program paths, a non-trivial

task, as elaborated later in this chapter. In fact, the two redundancies in the Merge Sort above are beyond the

power of existing optimizers, but the optimizer presented in this thesis can remove them.

3

1.2 Benefits of removing redundant instructions

In general, the removal of redundant instructions may speedup the program in two ways:

1. Reduce hardware requirements of the program.When the redundant instruction is removed, there are

fewer instructions to execute. As a result, there is less contention for hardware resources (functional

units, registers, cache ports), which allows scheduling the remaining instructions earlier.

2. Shorten the critical path of data dependences.Because the reused value is available sooner than the

recomputed one, instructions that need the value can be scheduled earlier. Essentially, removing an

instruction breaks some paths of data dependences among instructions. When the redundancy removal

breaks the critical path (i.e., the longest path), it may be possible to schedule the program in fewer

machine cycles.

Note that the instruction schedule is improved regardless of whether it is created statically (by a compiler) or

dynamically (by an out-of-order processor). Value flow optimization is thus beneficial for both statically and

dynamically scheduled processors. Also observe that, while the resource constraints restriction can be over-

come with wider processors (making the first benefit of somewhat less important for future high-performance

processors), the critical path constraint is a manifestation of the data-flow limit of the program and hence can-

not be overcome without program transformation (making thesecond restriction more important for future

processors).1

Figure 1.2 illustrates the two optimization benefits on the running example. The cycle-by-cycle

diagram compares the schedule of the unoptimized program with the program in which only the redundantA[i� 1℄ was removed (b), and with the program in which bothA[i� 1℄ andA[i� 2℄ were removed (c). Each

iteration of the loop body depicts only those operations that influence the speed of the loop (the loads, the

add, and the store). We measure the loop speed using the iteration initiation rate, i.e., the number of processor

cycles after which a new loop iteration can be started; the fewer cycles, the faster the loop execution. To

demonstrate the effect of insufficient hardware resources,assume that the processor can issue at most one

memory instruction (load or store) per cycle.

In the unoptimized program, theadd instructions from subsequent iterations lie on a critical path

of data dependences. The iteration-to-iteration length ofthis path is three cycles, composed of add, store, and

load latencies. The critical path does not allow issuing a new iteration faster than every three cycles. After

removing the load ofA[i � 1℄ (b), the adds communicate the value directly via a register.The length of the

critical path has been shortened to one cycle. As a result, the next iteration can be issued each two cycles.

Note that the optimal issue rate of one iteration per cycle (as permitted by the minimized critical path) has not

been achieved because only one memory instruction can execute per cycle, whereas each iteration has two

such instructions. After the load ofA[i�2℄ is removed (c), resource requirements are reduced. Each iteration

contains only one memory operation, allowing the issue rateof one cycle. In summary, the final optimization

benefited from reducing both the critical path and the resource requirements. Both of them resulted from the

value-flow optimization.

1.3 Compiler optimization� program optimization

The previous sections made three important points:1We note that recently proposed hardware techniques are ableto attack the data-flow limit [SVS96, SS97, LS97].
However, in Section 1.3 we argue that, like compiler optimizations, they do so via a form of program transformation.

4

+

A[i]

A[i-2]

cycle +

A[i]

A[i-2]

+

A[i]

A[i-2]

+

A[i-2]

A[i-1]

A[i-1]

1

2

3

4

5

6

7

8

9

+

A[i] +

A[i] +

A[i]

b) critical path reduced c) HW resources freed

A[i] A[i-2]A[i-1]for i=3, N { + }

+

A[i]

A[i-2]

A[i-1] +

A[i]

A[i-2]

=

A[i]

a) unoptimized execution

loop iteration

1 2 value flow (iteration distance)

Figure 1.2:Two benefits of removing value-flow redundancies:reducing the critical path of data depen-
dences; reducing the hardware resource requirements of theprogram.

1. Programs are highly value-flow redundant.

2. Removal of value-flow redundancies has important benefits.

3. Current compilers are not very good at removing the redundancies.

Because of (1) and (2), redundancy elimination is perhaps the most important optimization for instruction-

level parallelism. Because of (3), it should not come as a surprise thatcompiler optimizationis not the only

technology forprogram optimizationthat targets value flow. Indeed, there are at least two others: dynamic

program specializationandprocessor architecture. Based on different principles than value reuse, together

with compiler optimization they represent a spectrum that places this thesis in a broader research context.

Figure 1.3 contrasts the three approaches to value-flow optimization. What is common to all of

them is that they first analyze the program and then transformit. What differs is how the optimization labor is

divided between compile-time and run-time. Consider how they optimize a loop that contains a loop-invariant

statement, i.e., a statement that computes the same value ineach iteration, and thus is redundant.

In compiler optimization, the analysis finds this redundantstatement and then transforms the pro-

gram so that when it is run, the loop-invariant value is computed only once and then stored in a register from

which it can be reused when needed later.

Dynamic program specialization delays the transformationuntil run-time [APC+96,KEH91,GMP+97,

CN96, MCB99]. Rather than reusing the value from a register,the value (once known at run time) is hard-

coded into the loop, by means of run-time code generation. The result is a loop specialized for the given

(loop-invariant) value. Delaying the transformation until run-time has an important benefit. Since the known

5

processor
architecture

predict

dynamic program
specialization

hard-code

compiler
optimization

reuse

compile time
run time

find invariants

… & remove them
hard-code

Analyze

Transform

learn

predict

find redundancies

compute once

specialized
loopreuse

compute once

static dynamic

Figure 1.3:The spectrum of approaches to value-flow optimization.The spectrum extends from static
(compile-time) techniques to dynamic (run-time) techniques.

value can be hard-coded into the program, there is no need to occupy a register, a scarce resource. The down

side is the cost of run-time program transformation.

Processor architecture of modern superscalar processors perform a fully run-time optimization,

usingvalue prediction[SVS96, LS97]. They observe computed values, learn how theychange, and predict

future ones. When the value is predicted correctly, the program is effectively transformed, because future

instructions can execute earlier. However, when the value is mis-predicted, we pay a penalty of having to

re-execute mis-predicted instructions. (Processor architecture also usesinstruction reuse, a non-predicting

technique that avoids recomputation of values by memoizingprevious arguments of instructions [SS97].)

The three technologies form a spectrum, ranging from a purely static to a purely dynamic approach

to optimization. Each of the three approaches offers uniqueadvantages. The focus of this thesis is the

compiler optimization: its important advantage is zero run-time cost; there is no run-time code generation

or mis-predictions. The disadvantage is that the compiler is blind to run-time values. Hence, one of the

driving motivations behind this research is to explore how much redundancy can be removed by analyzing

the program text alone (see Section 8.5). In the long run, such compiler-centric research may indicate what

kind of optimization should be delayed to run-time, and how it should be performed.

1.4 Path specific optimization opportunities

Among the three technologies in Figure 1.3, compiler optimization is the oldest. In fact, the prob-

lem of redundancy removal is as old as the first compilers [Coc70]. One reason why optimizers are still far

from saturating their possibilities is that they are not sufficiently path-sensitive.

The obstacles posed by paths have two distinct flavors. First, the optimizer may fail when the re-

dundancy is “partial,” i.e., when the optimization is possible only along some program paths. In Figure 1.4(a),

one can replace the computation ofa+2 with a simple constant 7 along one incoming path but not alongthe

other. Because the value ofa is not known along that path, the value ofa+ 2 must be computed at run-time.

We say thata+ 2 is partially redundant.

6

if (..)

b=0 c=1 b=1 c=0

print(b+c)

read a

if (..)

print(a+2)

a = 5

a) partial: optimization possible
only along some paths.

b) diluted: optimization visible only
when paths are examined separately.

Figure 1.4:Two flavors of path sensitivity: partial and diluted.

The second flavor of path-sensitivity is more tricky, as shown in Figure 1.4(b). Whileb+
 equals

1 along all paths, common analyzers would discover this factonly if each path is analyzed separately. When

analyzed together, this fact would be diluted, because neither the variableb nor
 has a single unique constant

value along all paths considered together. The values ofb and
 are either 0 or 1, and so they are not considered

to be a constant. Consequently, their sum is assumed not to bea constant. This problem is known asnon-

distributivityof a dataflow problem. Non-distributive (formulations of) dataflow problems produce imprecise

information because they dilute the information about individual control flow paths.

1.5 The challenge: exponential path explosion

The reasons why analyzers do not examine program paths separately is that there is an exponen-

tial number of paths, even in a program with no loops. To stay practical, analyzers treat paths together,

summarizing their results whenever paths meet, diluting optimization opportunities.

Unfortunately, paths explode exponentially not only in analysis, but also in program transformation,

when we want to exploit the optimizable paths. To enable the optimizations in Figure 1.5(b), two paths had

to be physically separated via code duplication. This duplication may cause an exponential code growth: we

obtained three copies of theprint(1) node, even though all three copies have the same contents. The result is

that the code may grow exponentially in the number of programnodes.2

Given the inevitable exponential cost, the imperative for path-sensitive optimization is to exploit

individual program paths only as far as it is practical. At the core of this thesis is a battle against exponential

path explosion: because of the adverse effects of code growth, the more we manage to suppress the growth,

the more practical the optimization. While some practical path-sensitive optimizers exist, there is much room

for improvement, as our experiments will document. This thesis advances the boundary of what is practical

in value-flow optimizations. As a result, we can double the benefit over existing optimizers (see Section 6.6).

2Real programs have loops and thus an unbounded number of paths. Even though we optimize cyclic paths, we still
pay just an exponential cost.

7

print(a+2)

if (..)

b=0 c=1 b=1 c=0

read aa = 5

if (..)

read a

if (..)

print(a+2)

a = 5

if (..)

b=0 c=1 b=1 c=0

print(b+c)

print(a+c)

different optimization opportunities.
a) Analysis: each path may offer

print(a+c)

if (..)

b=0 c=1 b=1 c=0

b) Transformation: each different
path may need to be isolated.

print(6) print(5)

print(1)print(1) print(1)

print(7)

Figure 1.5:Exponential path explosion: in analysis, and in transformation.

1.6 My thesis

The goal of this thesis is to develop compiler optimization algorithms that will target value-flow

problems. The distinguishing feature of these algorithms will be that they are path-sensitive. More specifi-

cally, we want to demonstrate thatpath-sensitivity can be made

1. effective:in that it improves the optimizer’s power,

2. practical: in that the path-sensitive optimizer will be immune to the exponential blow-up,

3. broad: in that path-sensitivity will be applicable to all value-flow optimization problems.

Chapter 2

PathFinder: the Optimization Framework

The remainder of this thesis presents PathFinder, a framework for derivingpath-sensitive, value-

flowcompiler optimizations. The termpath-sensitivedenoteshowthe optimization is performed: PathFinder

exploits bothdilutedandpartial path-specific optimization opportunities, i.e., it attacks both flavors of path-

sensitivity (see Section 1.4).

The termvalue-flowdescribeswhat computations are targeted by PathFinder. The PathFinder

framework can derive optimizers for the value-flow class of computations, which include standard optimiza-

tions such as the removal of common subexpressions, loop invariants, partial redundancies, array bound

checks, conditional branches, redundant loads and stores,dead code and also constant propagation (see Sec-

tion 1.1). PATHFINDER generalizes these optimizations, by providing a uniform framework, and improves

their power, by making them path-sensitive.

2.1 The optimizer stages

When designing the path-sensitive value-flow framework, itwas required that it

1. handle both path-sensitivity flavors, and

2. can be parameterized and tuned for the various optimization tasks, including targeting arithmetic ex-

pressions, memory access operations, conditional branches, etc.

The two goals were accomplished by separating the optimizerinto three stages, shown in Figure 2.1. In this

optimizer architecture,� value-flow representationexposes the reuse of values,� dataflow analysiscollects paths with exposed reuse, and the� program transformationexploits the collected reuse by removing the redundancies.

In finer detail, the representation builds a program model—agraph that connects equivalent computations.

The novel representation, called theValue Name Graph, answers two questions: which computations are

value equivalent, and along which path the equivalence holds. The representation is responsible for avoiding

dilution of path-specific value flow (recall the second flavor of path-sensitivity shown in Figure 1.4(b)). The

dilution is avoided by naming the value as it flows through theprogram, as if each path was analyzed sepa-

rately. This naming technique improves the optimization also when paths need not be considered separately,

through the use of symbolic names that expose non-trivial relationships among instructions.

8

9

Value-flow
representation

Data-flow analysis

Transformation

exploit

collect

expose
model the flow of values

– which computations are equivalent ?
– along which paths ?

traverse the representation
– can a value be reused on some path ?
– how often? (profiling)

remove redundancies
– separate paths
– move instructions

d
ilu

te
d

p
ar

ti
al

Figure 2.1:The PathFinder stages and their function.

The dataflow analysis stage traverses the representation and collects value reuse opportunities, by

marking optimizable paths. The analysis answers the question ”is there a path along which this computation

could reuse a value?” Furthermore, using run-time program profiling, it determines how frequently this reuse

occurs at run time. Effectively, the analysis separates optimizable paths from other program paths, which

corresponds to thepartial path sensitivity.

The transformation takes the redundancies collected by theanalysis and removes them, using ei-

ther physical path separation (as shown in Figure 1.5) or by moving the redundant instructions, which is a

desirable, more economical alternative that does not duplicate program structure. Like the analysis stage, the

transformation handles thepartial path-sensitivity. However, while the analysis marks the optimizable paths

and weighs them with a profile, the transformation decides how to transform the paths.

The most important consequence of staging is separation of the various goals of the optimizer and

the various forms of exponential path cost:

Representationgoals:Æ avoid dilution of path-specific opportunities, butÆ do not model all possible paths separately.

Analysisgoals:Æ collect all reuse exposed by the representation, butÆ do not incur too much cost. The cost has two components:

Analysis cost:because the representation models some paths separately, it may be larger than the

original program.

Profiling cost: for path-specific profile-guidance, we need the frequenciesof optimizable paths;

there may be too many paths requiring profiling.

Transformationgoals:Æ remove all redundancies collected by the analysis (completeness), but

10Æ do not cause too much code growth, due to duplicating statements on paths with distinct opti-

mization opportunities (code growth).

After the trade-offs between goals and costs are divided into stages, they become manageable. In fact, the

overall contribution of this thesis is that we can achieve the various (potentially exponentially exploding)

goals of the optimizer, while keeping the cost at a practicallevel.

2.2 Background and Related Work

One component of this thesis is defining the class of value-flow optimizations and identifying its

members. Another component is characterizing optimization algorithms from this class by isolating or-

thogonal issues inherent in the various optimization algorithms. The goal of this section is to first describe

common value-flow optimizations and their shared properties and then to characterize them by analyzing the

approaches underlying these optimizations.

The class of value-flow optimizations is comprised of optimizations that analyze the flow of values

in a program in order to remove operations that compute a value that is redundant because: a) it was previously

computed, or b) there is a less expensive way to compute the value, or c) it will not be used in the remainder

of the program.

Partial Redundancy Elimination(PRE) is a generalization of global common subexpressions and

loop-invariant code motion optimization [MR79]. The aim ofPRE is to delete expression computations

that recompute a value produced previously by other expressions; that is, an expression is redundant if its

value flows to it from a previous identical computation (which can be its own previous dynamic instance).

Both Scalar Replacement[CCK90] andRegister Promotion[LC97] remove memory operations that access

memory cells previously loaded by another load operation. Also called load/store elimination, these two

optimizations, rather than detecting the flow of expressionvalues, are concerned with value flow of (identi-

cal) addresses for the memory operations.Conditional Branch Eliminationeliminates conditional branches

that are redundant because their outcome is known along someincoming paths [MW95b, BGS97a]. In this

optimization, the value of interest is the value of the branch condition. Array bound check optimization is

a special case of this optimization.Constant Propagationremoves expressions producing values known at

compile-time. Conceptually, constant expressions are redundant because there is a compile-time expression

from which the value flows to the (redundant) constant expression executed at run time.Strength Reduction

is another value-flow optimization [DI80, KRS93]. Rather than reusing the flowing value directly, it is used

to find a cheaper way to compute the result of the expression.Partial Dead Code Elimination[KRS94b]

eliminates statements that compute a value that will not be used in the remainder of the program.

While all these optimizations share the paradigm of exploiting value-flow redundancies, the var-

ious techniques developed to perform the optimizations differ in how they analyze value-flow patterns and

how they modify the program to remove redundancies that exist only on some paths. To summarize existing

approaches, three components of the value-flow optimizer have been identified: value-flow representation,

program analysis, and program transformation. Each existing technique uses some form of value represen-

tation that prescribes algebraic rules for modeling the value flow. Then, the analysis traverses the value

representation to connect redundant computations, i.e., to identify value-flow patterns. Finally, the program

transformation component modifies the program to remove redundant computations.

This thesis divides the process of value-flow optimization into three components in order to sep-

arate issues that are independent. Such separation leads toa better understanding of underlying problems,

11

cleaner algorithms, and more general parameterization of the framework. Although few existing techniques

explicitly separate these three components, the followingthree subsections distill the contribution of prior

work with respect to the representation, analysis, and transformation. Rather than elaborating on the value-

flow optimizationsdescribed above, the following discussions analyzes the principles behind some important

algorithmsimplementing the optimizations.

2.2.1 Value-Flow Representation

The simplest value representation useslexical expressions:two computations are value-equivalent

only if they have the same nameand the name is not invalidated (killed) along the path. For example, the

assignmentsx:=a+b andy:=a+b evaluate expressions with an identical lexical namea+b; if neithera norb is

redefined between the two assignments, the two assignments compute the same value under the lexical model.

Note that the actual verification of the rule is left for the program analysis component (Section 2.2.2) which

traverses all paths between the two assignments. The lexical value representation is used in many basic

and advanced optimizations: subexpression elimination, loop-invariant code motion [ASU86], and partial

redundancy elimination [MR79,Dha91,KRS92].

The lexical model is overly restrictive. It fails to uncovervalue equivalence when two different

variables carry the same value. For example, following an assignmentx:=y, expressions2*x and2*y are

value-equivalent, although lexically different.Value numberingis a method for finding equivalences of lexical

expressions in the presence of such copy assignments [CS69]. The value numbering model relaxes the lexical

identity to the identity of syntax tree representations of expressions:2*x may be equal to2*y (but not to

2+x). The validity rule is also relaxed:2*x is equivalent to2*y if x was assigned toy or vice versa, or if their

assignments computed expressions that are (transitively)equivalent in the value numbering model.

While value numbering traces value flow across copy assignments, it fails when the assignment has

a more complex right-hand side. For example, array expressionsA[i+1℄ andA[i℄ are identical ifi is updated

between the two computations with the assignmenti := i + 1. The value equivalence ofA[i + 1℄ andA[i℄
can be determined usingsymbolic manipulationand simple algebraic rules. Various methods for symbolic

value models have been proposed. Rau develops a conceptual framework [Rau91] in the spirit of abstract

interpretation [CC77] in which repeated back-substitution of names along loop back-edges can detect loop-

carried value equivalences on a path-per-path basis. The framework concentrates on formalizing the problems

that arise in naming and comparing symbolic expressions originating in different loop iterations; it does not

develop practical solutions to these problems.

Reif and Lewis provide a formalism for using back-substituted symbolic expression names on

the program control flow graph for determining constant values [RL77]. More recently, a symbolic back-

substitution technique based on the Gated Single Static Assignment (GSA) representation [BMO90] was

presented by Tu and Padua [TP95]. To name values in a path-sensitive fashion, they assign path predicates

to symbolic expressions using GSA gating functions. This approach can be effective in answering queries

on pairs of symbolic expressions, especially when the resulting symbolic expressions have simple gating

functions. In order to use this representation for data-flowanalysis, a powerful Boolean symbolic evaluation

system may be needed. Johnson and Schlansker describe how such a system can be constructed and utilized

in solving predicated flow problems [JS96].

Briggs and Cooper propose a simple symbolicreassociationthat improves value numbering by

reordering nodes in the abstract syntax trees on which valuenumbers are computed [BC94]. For example,

12

by transforminge1 = (a +
) + b into the canonical(a + b) +
, it can be found equivalent with anothere2 = (a+ b) +
.
Finally, there are data-flow frameworks for array value-flowanalysis, intended primarily for load/store

elimination [BG96, DGS97]. By focusing their application domains to single loops with affine functions of

loop induction variables, they model flow between recurrentarray elements, such asA[i℄ adA[i+ 1℄.
This thesis presents a value-flow representation, calledValue Name Graph, that combines the ca-

pabilities of syntax-based value numbering and symbolic evaluation methods.

2.2.2 Data-Flow Analysis

Data-flow analysis is a bridge between the value-flow representation and the program transforma-

tion. By traversing each path between potentially equivalent computations, the analysis verifies the algebraic

rules posed by the representation, for example, whether a variable has been redefined. Being a tool for

summarizing global program properties, data-flow analysisidentifies value flow patterns (whether a value is

computed on incoming or outgoing paths), which is then used to guide the program transformation phase of

value-flow optimizations. The following discussion shows that each existing technique that is not restricted

to individual basic blocks uses global data-flow information, directly or indirectly.

Elimination of redundancies usually requires computationof a few data-flow problems to guide

the transformation. Global common subexpression elimination computes availability of lexical expressions

and removes the statement if the value it produces is available along all incoming paths [ASU86]. Partial

redundancy elimination (PRE) based on code motion of redundant statements is formulated as a bidirec-

tional data-flow problem [MR79]. Modern PRE formulations decompose the bidirectional problem into two

unidirectional problems: availability and anticipability (also called very busy expressions) [KRS94a].

To determine which redundant statements can be removed, theapproach in [RWZ88] uses the no-

tion of dominators: if a computation is dominated by a value-equivalent computation, then it can be removed

because its value has been computed on all incoming execution paths. Data-flow analysis is used here to

calculate the dominator relation. Global value numbering [AWZ88] verifies the value model using the Static

Single Assignment form (SSA) [CFR+91]. Because SSA encompasses information on whether a variable is

redefined between two program points, it can connect definitions and uses of the same variable. The SSA is

computed from the dominator relation and hence contains thedata-flow component, too.

Program analysis can navigate the transformation process better if, besides proving equality of

computations, it also gives an estimate of the benefit gainedby the optimization. Such benefit can be de-

rived from a program profile, traditionally represented in the form of execution frequencies of control flow

graph edges. Ramalingam developed a data-flow analysis framework that computes the probability of a fact

occurring, rather than only Boolean existence information[Ram96]. Unfortunately, the framework does not

explain how to apply frequency-based problems to maximize optimization profitability. This thesis provides

such a methodology.

Because advanced program analysis is costly in time, prior research has developed methods for re-

ducing its cost. Hanket al. propose a region-based compiler architecture in which procedures are partitioned

into disjoint segments that are analyzed and optimized separately [HHR95]. By selecting appropriate region

sizes, the usually quadratic complexity of optimization algorithms will be prevented from exploding beyond

practicality. Duesterwaldet al. developed an orthogonal approach which, instead of limiting the analysis

scope, examineson demandonly those program statements that may affect the result [DGS97]. This thesis

uses the demand-driven approach for performing inter-procedural value-flow analysis.

13

2.2.3 Program Transformation

In the long history of research and implementation of value-flow optimizations, four distinct trans-

formations for removing value-flow redundancy have been be identified: code deletion, code motion, control

flow restructuring, and control speculation. In an interprocedural domain, inlining and cloning have also been

applied to enable exploitation of opportunities that existon interprocedural paths.

Codedeletionis the simplest form of removing a redundant statement: if the value of the state-

ment is previously computed along each incoming path, then the statement can simply be removed. To

verify that the redundancy exists along all paths, the optimization can be restricted to basic blocks, as in

subexpression elimination [ASU86] or value numbering [CS69]. For applying deletion globally (across mul-

tiple basic blocks), data-flow analysis is applied to confirmthat the value is available along all paths, as in

global subexpression elimination [ASU86]. Alternatively, dominators can be used, as in global value num-

bering [RWZ88].

Deletion is impossible when a statement is redundant along astrict subset of all incoming paths.

Code motion is a technique that hoists the partially redundant statement so that it is removed from paths on

which it is redundant. Effectively, hoisting introduces compensation code on non-redundant paths, chang-

ing partial redundancy into full redundancy, which enablesdeleting the statement from its original position.

Loop-invariant code motion is the simplest form of such motion transformation. Morel and Renviose gener-

alized it to arbitrary control flow graphs by formulating thecode motion problem as a bi-directional data-flow

analysis problem [MR79]. Knoopet al. found a uni-directional formulation for this problem [KRS94a].

The necessary code motion may be blocked when it would changeprogram semantics or impair

the program for certain inputs. When code motion fails to eliminate all partial redundancies, control flow

restructuring can be applied. In value-flow optimization, restructuring is based on separating the optimizable

paths from the unoptimizable paths, which is accomplished by duplicating all statements along the path

that needs to be separated. A simple form of restructuring istail duplication [HMC+92] which separates

frequently executed paths to improve scheduling by separating control flow merge points. Restructuring is

also necessary when redundant operations are unhoistable,such as unconditional branches [MW92a] and

conditional branches [MW95b,BGS97a].

Guptaet al. apply control speculation, which is a transformation that inserts computations onto

paths that did not compute these computations in the unoptimized program. As a result, some paths are

optimized and some are impaired. To control the impairment,a run-time program profile is used [GBF98]. A

form of speculative PRE was also explored in [HH97,CKL+98].

Other kinds of value-flow optimizations are also built on oneor more of these four transformations.

Elimination of partially dead values presented in [KRS94b]maximizes optimization that is possible with

code motion alone. Dead values that cannot be removed with code motion must be eliminated through

restructuring, as shown in [BG97]. Strength reduction (an extension of PRE) has so far been presented as a

code-motion optimization [DI80,KRS93].

Clearly, the four transformations differ in their power andcost [BGS98a]. Deletion is only appli-

cable on fully redundant operations, and hence is not suitable for path-sensitive optimizations. While code

motion is economical in that it does not increase code size, it is less powerful than restructuring, which can

eliminate all redundancies but may incur significant code explosion. Control speculation does not remove all

redundancies and it impairs some paths, but it introduces noduplication. The goal of this dissertation was to

integrate the transformations so that the more economical transformations are used whenever possible, and

14

the costly one (control flow restructuring via code duplication) is resorted to only when its result would be

expected to result in a significant run-time speed-up.

2.2.4 Path-Sensitive Optimization Frameworks

A few path-sensitive value-flow optimizations developed todate are either highly specific or amor-

phous enough to escape the three-stage classification (representation–analysis–transformation). Consequently,

we present them as frameworks.

Holley and Rosen [HR81] were first to recognize the benefit of maintaining program assertions that

are specific to individual execution paths during the analysis. In theirqualifieddata-flow framework, control

flow paths on which a variable has different constants are separated through (virtual) code duplication. Path

duplication results in exposing path-specific contexts, which are then used not only to remove conditional

branches whose outcomes are known in a given context, but primarily to improve def-use computation. Be-

cause removing redundant branches also removes some paths that would never be executed, def-use pairs

realizable exclusively along infeasible paths are not spuriously collected on the expanded control flow graph.

Originally developed to improve analysis on programs with IBM register-indirect jumps, the analysis does

not scale to general branch elimination where many variables must be analyzed. A practical solution to multi-

variable analysis is offered in [BGS97c] by means of demand branch correlation analysis, which reduces the

cost of finding redundant value-flow patterns.

Rather than associating path-specific data-flow facts with execution paths in the graph-theoretic

sense, Johnson and Schlansker represent the execution paths as Boolean expressions derived from predicates

of conditional branches on those paths [JS96]. Intended foroptimization of programs with predicated ex-

ecution [MLC+92], their analysis is primarily applicable for removing spurious dependencies that prohibit

operation reordering or register allocation [ED95]. However, relaxing or strengthening the predicate condi-

tion guarding the execution of an operation corresponds to moving the operation in the control flow graph,

and hence can achieve optimization.

Steffen [Ste96] presents an extension of the Holley-Rosen approach. In hisproperty-oriented ex-

pansionframework, path separation is driven not only based on constants of variables but also on particular

assignments being or not being previously computed on a path. This allows elimination of branches (as

in [HR81]) as well as of entire assignments. Steffen also observes that some code duplication may be unnec-

essary and re-merges back unnecessarily split paths using finite state automaton minimization.

Ammons and Larus [AL98] extend Holley’s and Rosen’s qualified analysis by separating the paths

not on variable assertions but instead on frequently executed paths which are separated from each other

to maintain thehot path-specific context. Profile-directed graph expansion isa practical alternative to the

Holley-Rosen and Steffen property-oriented expansion approaches: while some path contexts are sacrificed,

those along dynamically important paths are preserved. Theframework is presented as a constant prop-

agation optimization. After the analysis, the algorithm recombines separated paths that present no useful

opportunities.

In a global view, preliminary research conducted as part of this research has identified four main

issues withpath-sensitivevalue-flow optimizations: a) solvingnon-distributiveproblems without conser-

vative approximation (e.g., non-linear constant propagation), b) collectingpath-specific opportunities(e.g.,

variable has a different constant along each path), c)exploitingspecific opportunities (e.g., enabling folding

of path-dependent constants through restructuring), and d) directing the analysis effort towards hot paths.

15

The approach of Ammons and Larus attacks all four issues uniformly by separation of hot paths,

their subsequent individual analysis, and recombination.Instead, the approach proposed by this thesis is to re-

serve restructuring for the actual transformation. This implies a different overall strategy: a) non-distributive

problems are solved precisely alongall paths by customizing the data-flowname space[BA98], b) distinct

path-specific opportunities are collected through demand-driven analysis as in branch elimination [BGS97a],

c) all profitable opportunities are exploited with economical transformations (code motion and speculation),

and d) infrequent program regions will be avoided using the profile-guided demand-driven analysis.

Guptaet al. [GBF97b,GBF98,GBF97a] also use path profiles to carry out path-sensitive optimiza-

tion. Similar to the method of Ammons and Larus, path profilesare used to maintain path-specific context

along each hot path. The results of the analysis are then usedto integrate code-motion with control specula-

tion. In contrast to the method of Ammons and Larus, the transformation is delayed until after the results of

the analysis are known.

2.3 Contributions and the structure of the thesis

In each of the stages of the PATHFINDER framework, this thesis develops new techniques. Next,

we summarize these contributions, on a per-chapter basis.

Chapter 3 Representation. This chapter develops theValue Name Graph (VNG), a novel program rep-

resentation that models the flow of recomputed values. By symbolically naming each value of interest, the

VNG reduces the (hidden) value flow into the (exposed) data flow. As a result, recomputation is detected

essentially as reaching definitions. The representation names the value on demand, for a set of optimized

computations. Although the names are formed separately foreach path, obtaining path-sensitivity, any two

paths are analyzed separately only when it matters, i.e., when the value has a different name along these two

paths.

Chapter 4 Dataflow analysis.This chapter develops a dataflow analysis technique for marking optimizable

paths. This marking is used to guide the subsequent transformation. Rather than enumerating all optimizable

paths, the analysis encodes them with polynomial complexity in a way from which the transformation can

recover them. The solution is based on a lattice that informswhether, at a given point, the value flow exists

along all, some, or no paths. This chapter also shows how to perform value-flow analysis inter-procedurally.

Chapter 5 Dataflow analysis (with profiling).To assist in making the transformation trade-offs, the anal-

ysis weighs the marked paths with a run-time profile. Unfortunately, precise weighing requires frequencies

of all paths. To make profile-guiding practical, this thesisdevelops a family ofestimatoralgorithms based on

edgefrequencies, a cheaper but inherently imprecise alternative. When weighing the reuse, estimators bound

the inherent error, adding confidence to imprecise profiles.

Chapter 6 Transformation (intra-procedural).This chapter develops a transformation that (nearly) com-

pletely removes all redundant recomputations, at almost zero code growth. The transformation combines

three orthogonal methods. We resort to the expensivepath duplicationtechnique only when the growth-free

code motionfails to transform the program, and only when the profile-drivencontrol speculationcannot prof-

itably impair some paths to optimize others. The spectrum ofalgorithms is based on a single abstraction, a

16

Code-Motion-Preventing (CMP) Region, which identifies adverse effects of the control flow on the desired

optimization.

Chapter 7 Transformation (inter-procedural). This chapter develops a transformation that completely

removes redundancies that are interprocedural, i.e., those where the value flows across procedure boundaries.

Rather than resorting to (expensive) inlining, we separateoptimizable paths by generating multiple procedure

entry points and multiple exit points (which may return to different points in the caller). Thanks to entry/exit

splitting, paths can be separated across procedure boundaries, even when the call site invokes one of many

procedures, as in virtual procedure calls.

Chapter 8 Empirical evaluation. This chapter compares the power of our framework with that ofan

ideal value-flow optimizer, using the optimization of redundant loads. We developed a run-time program

monitoring algorithm that exposed the amount of value reusepresent in the program. This ideal amount was

compared with the amount detected by our analysis. We observed that we captured at least 80% of the reuse

present in the program.

Overall, the techniques presented in this thesis improve not only the effectiveness but also the

efficiency of the optimizer. The improvement stems from the following:� the thesis develops ageneric frameworkfrom which new optimizations can be derived,� the power of the representation and transformation algorithms results from combining techniques with

orthogonal strengths,� the trade-offs of the program transformation areprofile-directed, and� to evaluate the power of the framework, we performed a limit study which served as an ideal reference

point.

2.4 Preliminaries

This section presents the necessary definitions. The readeris assumed to have some background in

dataflow analysis [Muc97] and Single Static Assignment program form [CFR+91]; the rest of the thesis is

developed from first principles.

We use a control flow graph (CFG) as the underlying program representation because it is the

most commonly used intermediate program representation inboth production and research compilers. Fur-

thermore, because CFG directly exposes program’s control flow paths, it enables an intuitive and efficient

formulation of code motion, and has thus become the standardrepresentation for expressing redundancy

elimination [KRS94a].

Definition 2.1 (Directed graph) Directed graphG is a pair(N;E) whereN is the node set andE is the

edge set,E � N �N . Immediate predecessor and successors of nodes are defined with mapspredandsucc:

pred(n) = fmj(m;n) 2 Eg; succ(n) = fmj(n;m) 2 Eg. A finite pathof G is a sequencehn1; : : : ; nki of

nodes such that(ni; ni+1) 2 E for all 1 � i < k. The empty path is denotedhi. The length of a pathp is

denoted by�p. A subpathq of pathp is a continuous subsequence ofp starting at theith element ofp and

ending atjth element ofp, denoted byq = p[i; j℄, 1 � i; j < �p. If i > j, thenp[i; j℄ = hi. If the subpath

excludes theith (jth) element, we will writeq = p℄i; j℄ (q = p[i; j[). �

17

Definition 2.2 (Control flow graph) A control flow graphG = (N;E; start; end) is a directed graph(N;E),
in which nodesn 2 N represent individual program statements (instructions).The nodes are assumed

to contain three-address statementsvj := vk operatorvl built on the variable setV = fvig of the pro-

gram [ASU86]. Edges(m;n) 2 E represent the non-deterministic branching structure of the program.

Nodesstart andendare the unique start node and end node ofG; they are assumed to have no predecessors

and no successors, respectively. It is assumed that every noden 2 N lies on a pathp = hstart; endi. �

Chapter 3

Value-Flow Program Representation

The value-flow representation is a value-centric model of the program; it exposes value-equivalent

instructions. Specifically, it finds control flow paths alongwhich avalue flowsbetween instructions comput-

ing the value.

Typically, when analyzing programs for value recomputation, each value is identified with its lex-

ical name. When two expressions match the name, they computethe same value. But what name should be

used when the value flows between equivalent expressions that have different names? The program repre-

sentation presented in this chapter overcomes the naming problem by synthesizing names that fully trace the

flow of a value and by performing data-flow analysis on this synthesized name space.

The PATHFINDER analysis integrates three orthogonal techniques: symbolic interpretation, value

numbering, and data-flow analysis. Symbolic interpretation first creates all necessary names, and the value

numbering technique then determines which names are synonymous. The result is expressed in a new

program representation, called theValue Name Graph(VNG). Once the VNG is constructed, any conven-

tional data-flow analysis can answer two fundamental optimization questions: which computations are value-

equivalent, and along which control flow paths?

The VNG is path-sensitive: value reuse is detected even wheneach path requires different names,

for example due to conditionally incremented loop induction variables. The VNG can be parameterized for

redundancy optimizations such as common subexpression elimination, constant propagation, or load/store

elimination. By phrasing these optimizations on the VNG, weobtain greater optimization power and broader

applicability.

This chapter begins by presenting two goals of the representation in Section 3.1. Next, Section 3.2

contrasts the flow of data with the flow of values, and defines value flow formally. Section 3.3 briefly de-

scribes the most common approaches for detecting value flow,focusing on their strengths and weaknesses.

Section 3.4 presents the construction of the VNG, and explains why the VNG is a synergy of three orthog-

onal existing approaches. Finally, Section 3.7 compares the VNG with other value-flow representations and

Section 3.8 experimentally evaluates its scalability, andthus also its practicality.

3.1 The goals

Value-flow representation exposes the recomputation of a value in the program, to facilitate value-

flow analyses and optimizations. In the PATHFINDER path-sensitive value-flow optimizer, the representation

has two distinct goals:

1. Which instructions compute the same value? (avalue-flowgoal)

18

19

val := A[0]
min := i := 0
do

if (A[i] < A[min])
min := i

i := i+1
while (i<N) p1

p2

p3

load A[0]

min:=i:=0

load A[i]

load A[min]

min:=i

i:=i+1

a) the source program. b) the value flow ofA[min℄.
Figure 3.1:The FIRSTM IN program.

2. Along which paths do they compute the same value? (apath-sensitivegoal)

Both goals are important to perform the optimization, as illustrated by the program in Figure 3.1(a). The

program, FIRSTM IN, traverses an arrayA and computes into variablemin the index of the smallest element

in the array. A close examination of the program reveals thatthe load ofA[min℄ is redundant, due to the fact

that the value ofA[min℄ has been loaded from the memory by some other instruction along each path leading

to the redundant load. The redundancy can be shown on a per-path basis as follows. Along pathp1 (taken

whenA[i℄ 6< A[min℄), the expressionA[min℄ in the current and the following iterations refers to the same

memory location; hence, the later load is redundant. Along pathp2 (taken whenA[i℄ < A[min℄), the variable

min is redefined andA[min℄ no longer refers to the same array element. However, along this path,A[i℄ in

the current iteration equalsA[min℄ in the following iteration. Hence, pathp2 offers a reuse betweenA[i℄ andA[min℄. Finally, along pathp3 (taken when the loop is entered), the value ofA[min℄ equalsA[0℄ loaded before

the loop. In conclusion, because pathsp1, p2, p3 “cover” all possible paths leading to the load ofA[min℄,
whichever path is taken toA[min℄, its value has already been loaded previously and can be reused.

This detected redundancy enables the removal of the load ofA[min℄, which in turn enables schedul-

ing the loop better, at twice the iteration issue rate.1 The 100% speed-up is due to reducing the critical path

of data and control dependences in the loop, as explained in Section 1.2. Figure 3.2 shows the schedule for

the critical path of the FIRSTM IN loop, before and after the removal of load ofA[min℄.
The moral of the FIRSTM IN example is that a traditional, path-insensitive analysis fails to discover

the redundancy that leads to the optimization. The reason for its failure is that when pathsp1 andp2 are

considered together, it is impossible to detect that each path has a different source of value reuse (the source

on p1 is A[min℄, and the source onp2 is A[i℄). In other words, while both paths are optimizable, they are

optimizable in a different way. Without path sensitivity, these optimization opportunities are diluted, as at

most one of the two sources can be discovered by the path-insensitive analysis.

In conclusion, both goals of the representation are necessary for a powerful optimization. It is not

enough to detect value flow. It must be detected in a path-sensitive way.1Assuming theif statement is compiled into a conditional move instruction [Sit93,Dul98].

20

the source program:

val := A[0]
min := 0
i := 0
do

if (A[i] < A[min])
min := i

i := i+1
while (i<N)

r := val := A[0]
min := 0
i := 0
do

if (A[i] < r)
min := i
r := A[i]

i := i+1
while (i<N)

the schedule (per cycle):

1 adr := A + min
2 r := load adr
3 if r < A[i]
4 min := i

1 if r < A[i]
2 min := i; r := A[i]

before optimization after optimization

Figure 3.2:The benefits of optimizing FIRSTM IN . The instruction schedule of the loop, before and after
the removal of loadA[min℄. The schedule shows only the instructions on the critical path of data and control
dependences.

3.2 What is value flow?

This section explains why detecting value flow is hard. It distills some properties of value flow,

shows why it is not explicitly exposed by the program text, and contrasts value flow with data flow (which is

explicitly exposed by the program). Overall, this section attempts to outline the properties that a value-flow

representation needs in order to achieve the two goals stated in the previous section. These properties are

relied upon in the following section, to explain the insufficiency of existing value-flow representations. This

section concludes with a list of practical analysis problems that can be phrased as value-flow problems and

thus solved in the PATHFINDER framework.

3.2.1 Value flow versus data flow

Proceduref in Figure 3.3(a) exhibits two instances of value reuse. Regardless of the procedure

parametera, two pairs of statements always compute the same value:S2; S5 andS3; S4. Their value-

equivalence becomes visible when the value they compute is expressed in terms of the procedure parametera, as shown in Figure 3.3(b).2

Although contrived, the example illustrates why analyzingvalue flowis harder than analyzingdata

flow. The distinction between the two is typically not acknowledged, perhaps because a simple approximation

of value flow can be computed as the well-known dataflow problem of available expressions, as described

later in Section 3.3.1. However, we argue that the two flows are qualitatively different.

Dataflow analysis problems typically examine properties ofvariables. For example, the problem

of reaching definitions is to compute, for each variablev and each program noden, the set of definitions ofv
that may reachn. Similarly, the liveness problem is to compute whether the data in the variablev will be used

in some instruction on some path fromn to end. Dataflow analysis is well-suited for such variable-centric

problems because the definitions and uses of variables are obvious from the program text. In our example,2Note that variablesa andx each have two distinct live ranges. For example,a is defined as an actual parameter
and also in statementS3. This duplicate (but feasible) use of a variable name is intentional; it serves to demonstrate, in
Figure 3.8, that one cannot rely on the names of variables alone when naming a value computed by a statement.

21

f (a) fS1: b := -2*aS2: x := b - aS3: a := 2*b - xS4: x := b - aS5: z := a + xg S2 = S5 = �3aS3 = S4 = �a
a) b)

Figure 3.3:Data flow versus value flow.(a) The procedure with two instance of value reuse, betweenS2
andS5, and betweenS3 andS4. (b) Values computed by the two pairs of equivalent statements, expressed as
a function of the procedure parametera.

the fact thatx is live on the exit of the statementS2 is evident from the fact thatx is defined inS2 and used

in S3.
On the other hand, value flow problems are concerned with properties ofvalues; we want to know

which instructions compute the same value. Compared to variables, values are “invisible” entities: while

each variable has a unique lexical name, a value may a) require multiple names and b) may not even be stored

in any variable as itflowsbetween the value-equivalent statements. Consider the value flow betweenS2 andS5 in Figure 3.3: a) the value has a different lexical name at thetwo statements (x versusz); and b) betweenS4 andS5, no variable stores the value—the value will be “resurrected” only whenS5 executes.

In summary, while the flow of data is lexically exposed, by thedefinitions and uses of variables, the

program text does not directly identify value-equivalent statements. This qualitative difference is illustrated in

Figure 3.4, where data-flow related statements are connected with def-use edges (left), and value-equivalent

statements are connected with “value-reuse” edges (right). The value-reuse edges are not obvious from the

program text. Instead, they require some form of algebraic manipulation.

To turn the above discussion into desirable properties of the path-sensitive value-flow representa-

tion, we can state the following:� The representation must add edges to the program that will connect the equivalent statements, reflecting

their algebraic equivalence. The edges need not be added physically; they may be represented by

assigning equivalent computations identical labels (of some form).� These “equivalence” edges must be placed in a path-sensitive way, as shown in Figure 3.1(b), where

pathsp1 andp2 represent the “equivalence” edges. These edges are path-sensitive, meaning that the

computations connected with the edges are equivalent only along some paths between the computa-

tions.

The edges can be viewed as def-use edges. With such a view, theflow of values will appear as flow of data.

Thus, the representation reduces value flow problems to dataflow problems. This is precisely the approach

taken by the Value Name Graph.

3.2.2 A formal definition of value flow

Our framework optimizes any problem from a class ofvalue-flowoptimization problems. To define

the value-flow class, we need to first introduce the language of symbolic names that will be used to construct

value threads of the Value Name Graph.

22

Definition 3.1 (Symbolic Language)A symbolic languageis a tuple(S; !; b), whereS is a set of symbolic

names that represent values computed by program statementsof interest;! 2 S is a distinguished symbolic

name denoting values that cannot be represented with any namee 2 S n f!g; andb : N � S ! S is a back-

substitution function that maps a symbolic nameeex at the exit of a CFG noden 2 N to a corresponding

symbolic nameeen at the entry ofn. b(n; !) = ! for every noden 2 N . �
A symbolic namee 2 S is a finite string over an arbitrary alphabet. Typically, thealphabet is a

suitable subset of program variable names, literals, constants, integers, and operators. See Section 3.4.1.1 for

a discussion on how the symbolic language should be selectedfor a particular value-flow optimization. We

present next two simple examples of the symbolic language.

Example 3.1 The following languageS1 expresses values computed by arithmetic statements composed of

additions and subtractions. A symbolic namee belongs toS1 iff some of the following conditions holds:e =
0 +
1v1 + : : :+
kvke = !
wherevi is a program variable,1 � i < k, and
j is an integer,0 � j < k. The symbolic language can be

used by the value-flow program representation to represent arithmetic expressionsE defined by the following

grammar:3 E = vij
j (E +E)j (E �E)
The back-substitution function can be extended to transform symbolic names across CFG paths

rather than nodes: Ifp = hn1; : : : ; nki is a CFG paths, thenb(e) = b(nk; b(nk�1; : : : ; b(n1; e))). Now we

are ready to use the symbolic language to define the flow of values.

Definition 3.2 (Value Flow) Let p = hni; : : : ; nji be a CFG path andei ; ej be the values computes by the

statements in nodesni; nj , respectively. We say that the value computed in nodeni flowsalong pathp to

the value computed in nodenj if for every pathq = hstart; nii there isk such thatb(q[k; �q ℄; b(p; ej)) =b(q[k; �q ℄; ei) 6= !. �
An analysis problem belongs to the value-flow class if a symbolic language can be specified that

allows to specify the problem by means of value flow (as in the Definition 3.2).

Example 3.2 In Figure 3.3, the value computed inS4 flows to S4 becauseb(hS1; S3i; b(hS3; S4i; x)) =b(hS1; S3i; a) = �a 6= !.3Note that a symbolic namee may algebraically simplify its source expressionE. Therefore, care must be taken
to ensure that the (arithmetic) evaluation of any symbolic namee is equal to the (machine) evaluation of its source
expressionE, in particular due to overflows of the finite machine representation of integers.

23

x := b -a

a := 2*b - x

x := b -a

z := a + x

b := -2*a
b

a

x

x

data flow value flow

Figure 3.4:Compared to data flow edges, value flow edges are “intangible.” While def-use edges can be
identifiedlexically, i.e., from the text of the program, the value-reuse edges require some form ofsymbolic
manipulation of the program, to expose the algebraic equivalences.

3.2.3 Program optimization problems characterizable as value flow

We list below a few common problems that fall into the value flow class and can thus be solved in

a value-flow framework.� value recomputation (expression, loads),� branch correlation (and hence array bound checking),� constant propagation,� some type inference problems.

3.3 Existing techniques for value-flow detection

This section reviews three existing techniques for detecting value flow: dataflow analysis, value

numbering, and symbolic evaluation. These three techniques are orthogonal because each can detect different

kinds of value-equivalent statements. The (incomparable)strengths of these techniques are described here

primarily because our value-flow representation integrates the three techniques in a way that preserves their

advantages and removes their limitations, as will be described in Section 3.4.

3.3.1 Dataflow analysis

While dataflow analysis is in its nature most suitable for analysis of the flow ofdata, it is the most

commonly used technique for detecting (an approximation of) the flow of values [KU77]. For example,

the well-knowndataflow problem ofavailable expressionscomputes an approximation of thevalue-flow

problem of availability of values. In available expressions, each value is identified with its lexical name,

typically the right-hand-side of an assignment. When two lexical names match, the expressions compute

24

identical values (unless the lexical name is killed along the path, i.e., one of the variables appearing the

lexical name is redefined). Because the analysis uses only one name per value, it cannot detect computations

that are equivalent but have different names. For example, the equivalence ofA[i℄ andA[min℄ along pathp2 in Figure 3.1 will not be detected by available expressions.On the other hand, when dataflow analysis

finds equivalence, it does so in a path-sensitive fashion. For instance, in the same example, the equivalence

of A[min℄ alongp1 is detected and, as a result, the pathp1 can be “marked” by the dataflow analysis as a

path along which the expressionA[min℄ is available. In summary, dataflow analysis is path-sensitive but not

value-sensitive.

3.3.2 Value numbering

Value numbering partially overcomes the naming problem of dataflow analysis. For each value,

it builds an abstract syntax tree, which serves as its “name.” Two names are equivalent if their syntax trees

match: they have identical shape, including operators at inner nodes, and identical variables at leaves of

the tree. Value numbering is local (works in basic blocks) and therefore not path-sensitive. Global Value

Numbering extends value numbering along all paths, but it still requires that the equivalence holds along all

incoming paths [AWZ88]. In summary, value numbering is suited for discovering which names refer to the

same value (are synonymous), but is not path-sensitive (i.e., the equivalent computations must be synonymous

along all paths connecting them). Furthermore, value numbering is not able to perform (arbitrary) algebraic

manipulations of value names.

3.3.3 Symbolic evaluation

There are various ways to symbolically execute a computation. Here we are alluding to methods

that perform algebraic simplifications of expressions. Constant propagation algorithms are such methods.

They may fold constants into expressions and evaluate them,essentially simplifying the expressions. Another

method is to perform a symbolic backward substitution of program expressions. In contrast to constant

propagation, the algebraic simplification is symbolic, rather than arithmetic. Such symbolic simplification

does not easily extend to path-sensitivity (it is not clear how to handle paths on which a value has different

names). However, Tu and Padua were able to make symbolic manipulation global (i.e., working on all paths)

using a version of SSA form [TP95]. In summary, symbolic manipulation of programs is suited for creating

the names for a value of an expression, and for performing simplification on the symbolic names. Such

manipulations, however, are not path-sensitive.

3.3.4 Summary: a need for integration

The three techniques described above are orthogonal—each can be used to detect a certain class of

value redundancies [ARZ92]. Their strengths, summarized in Figure 3.5, are integrated in our representation,

as follows. We use symbolic evaluation to name the value as itflows through the program. Such names will

sufficiently describe the value, even when it is not residentin any variable. Value numbering will compact the

symbolic names. Together, the two will build a representation that will reduce value flow into the data flow.

Finally, dataflow analysis will be used to mark paths along which reuse exists, obtaining path sensitivity.

25

value numbering
find synonyms

symbolic evaluation
algebraic simplification

data-flow analysis
+ finds paths with reuse

- only one name per value

Figure 3.5:Three orthogonal value-flow detection techniques.Dataflow analysis is a path-sensitive tech-
nique, as it can mark paths along which a value is recomputed.However, the recomputation of the value is
detected only when all computations involved use the same name for the value. The strength of symbolic
evaluation is that it can connect, by means of algebraic simplification, identical computations even when they
compute the value under a different lexical name. Finally, value numbering add another symbolic manipula-
tion dimension, by discovering which names are synonymous.

3.4 Value Name Graph

The preceding sections have set the stage for the presentation of the program representation. Sec-

tion 3.1 distilled two goals of the program representation that are needed for an effective optimization, Sec-

tion 3.2 explained why value flow is not exposed by the traditional program representation, and Section 3.3

showed that, while existing approaches do not offer a sufficient solution, they offer complementary qualities

whose integration could form the basis of the desired representation. TheValue Name Graph (VNG)is ex-

actly such an integration. This section first intuitively explains the VNG and then presents the three steps of

its construction.

Our representation is called a Value Name Graph because it exposes the value flow by properly

naming the (recomputed) values that flow between equivalentcomputations. The central idea is to create

sufficient names so that a value can be identified even when it flows outside the scope of the lexical name

under which it is originally computed. Where the original name is not valid, an equivalent symbolic name

is used. The symbolic names formvalue threads, which conceptually represent the value-flow arrows in

Figure 3.1(b). The VNG is the collection of these value threads. Propagating dataflow facts along these

threads achieves� symbolic analysis, because the threads represent symbolic value names, and� apath-sensitive value-flow analysis, because a thread is formed for each individual program path.

The synthesized names are created using symbolic substitutions, using a backwards propagation

of the lexical name of the value, as follows. Clearly, when a value is computed by an instruction, it can be

identified with its “lexical” name. Consider the value computed in the statementS5 in the example below; the

value is identified with the nameb+x. We want to propagate the name backwards and modify it whenever it

becomes invalid. While this (lexical) name is valid at the entry of S5, it is not valid at the entry ofS4, because

the value ofx beforeS4 is different than beforeS5—we say thatS4 invalidates the nameb+ x.

26S1: b := -2*a
 name1(S5) = �3aS2: x := b - a
 name2(S5) = b� aS3: a := 2*b - x
 name3(S5) = xS4: x := b - a
 name4(S5) = 2b� aS5: z := b + x
 name5(S5) = b+ x

Whenever the propagated value name is invalidated by an assignment to a variable in the name,

another (symbolic) name for the value is synthesized using back-substitution. AcrossS4, the nameb + x
changes to2b� a, becausex is substituted withb� a. As long as the symbolic name can be expressed in a

selected language of symbolic names, this process identifies the value along its entire flow. The sequence of

created names forms a value thread. The central property of the VNG is that the computations that lie on the

same thread compute the same value. In the example,S2 andS5 lie on the same thread (because name2(S2)
= name2(S5)).

While the value threads achieve the goal of identifying identical computations, they contain too

many symbolic names to be useful as a practical representation. The final Value Name Graph is compact; it

encodes the value threads using scalar variables. Each computation is rewritten to refer to a scalar variableCi. When two computations refer to the sameCi, they are on the same value thread. The VNG for the

above example is given below; equivalent computations refer to the same scalar variable (see Figure 3.3).

Technically, the VNG below is not a graph. Instead, it is a programform that encodes the graph. We will use

the graph and the program form interchangeably.S1: C1S2: C2S3: C3S4: C3S5: C2
Effectively, the scalar variablesCi are “compacted” symbolic names. Sometimes, a value thread

requires multiple names, even after compaction. This situation occurs whenever a value must be named in a

path-sensitive way, i.e., when a value has a different symbolic name along two overlapping control flow paths.

Collapsing the symbolic names into a single scalar variablenamesCi would dilute the advantage of path-

sensitive naming. When multiple scalar names are required,the VNG connects them using�-assignments.4

The�-assignments switch between the compacted names, forming (compacted) value threads. Figures 3.6

and 3.7 show the VNG for the FIRSTNAME program. Each access to arrayA is renamed to refer to a

scalar variableCi, and the equivalent computations are connected across�-assignments. For example, the

value flow betweenA[i℄ andA[min℄ alongp2 in Figure 3.1(b) is manifested as a def-use chain:C1, C3 :=�(C2; C1), C2 := �(C0; C3). The def-use chain identifies the CFG path along which the computations are

equivalent. In particular, the�-assignments specify that the chain follows only the pathp2. Note that the

VNG not only connects equivalent instructions but also doesit along the appropriate paths.

Thus, the general rule is that two computations produce the same value when they are connected

with a def-use chain across the�-assignments. The flow of values appears as flow of data, that is, as de-

pendences between definitions and uses of the scalar variable Ci and can be encoded in dataflow transfer

functions.4The �-assignments are introduced when a “scalar” representation the VNG is converted into the SSA
form [CFR+91]. In SSA form, each scalar variable is defined (i.e., assigned to) exactly once, which is achieved by
renaming program variables at each definition.�-assignments connect, wherever control flow paths merge, the values
originating at two different assignments of the same program variable.

27S1:val := A[0]S2:min := 0S3:i := 0S4:doS5: if (A[i] < A[min])S6: min := iS7: i := i+1S8:while (i<N)
A[0℄ ! C0A[i℄ ! C1A[min℄ ! C2 .. := C0C2 := �(C0; C3)

do
if (C1 < C2)

...C3 := �(C2; C1)
while ()

the original program the transformation its Value Name Graph

Figure 3.6: The Value Name Graph for the FIRSTM IN program.

A
[i

+1
]

min:=i:=0
A

[i
]

A
[m

in
]

A
[0

]

i:=i+1

min:=i

load A[min]

load A[i]

load A[0]

Figure 3.7:The VNG (in graph form) for the F IRSTM IN program from Figure 3.6.

In effect, the VNG converts the problem ofavailability of valuesinto the problem of reaching def-

initions (transitive across�-assignments). In summary, the design of the Value Name Graph was influenced

by the two goals from Section 3.1. The result is the followingsalient properties:

1. The value-flow goal.The VNG elevates the (invisible) value flow to the (visible) data flow level. By

transforming value flow to data flow, the VNG exposes value recomputations in the form of references

to (the same) scalar variables, allowing us to answer the question “which instructions compute the same

value?”

2. The path-sensitive goal. The VNG supports dataflow analysis. Being a path-sensitive technique,

dataflow analysis can mark the paths along which a value is recomputed.

Additionally, because the VNG is a sparse representation similar to the SSA form, it can be im-

planted into existing SSA-based PRE implementations, improving their precision [LCK+98].

3.4.1 Constructing the VNG

Let us start with an overview of the VNG construction. The construction has three steps, each cor-

responding to one of the three underlying approaches. First, thesymbolic evaluationplaces the value thread,

28

x x-a a+b2b-a -a-3a

S1: b := -2*a

S2: x := b - a

S3: a := 2*b - x

S4: x := b - a

S5: z := b + x

2a

2b-x b-a

b+x

✂✂

✂✂

✂✂ ✂

✂✂

b+x b-a 2b-x2a

traditional: lexical name space VNG: symbolic name space

Figure 3.8:The VNG after Step 1 (right). The thick lines arevalue threadsthat connect equivalent com-
putations. In contrast, traditional dataflow analysis (left) builds threads using only the lexical name of the
computed value. The lexical names are killed (shown with thescissors), which prevents the (less powerful)
“lexical threads” from connecting equivalent computations.

by synthesizing the names that are necessary to trace the value flow. Second,value numberingcompacts the

value threads, by determining which symbolic names are synonyms for the same value. The result of the first

two steps is the VNG. The third step forms the dataflow transfer functions using the scalar namesCi. The

algorithm is summarized in Figure 3.11.

Step 1: placing the value threads.The symbolic names are created by propagating the lexical

name of the analyzed computation backwards. At each assignment that invalidates the current name, the

assignment’s right-hand-side expression is substituted into the current name and algebraically simplified.

The propagation effectively creates a “symbolic” slice of the original computation.

The above example shows only the value thread for the value computed byS5; Figure 3.8 completes

the example. It shows, in graph form, the value threads for all computations in the program. The graph shown

is an intermediate form of the VNG that is never explicitly constructed. At this intermediate stage, VNG nodes

are a cross product of CFG nodes with the synthesized symbolic names. The VNG edges show how the value

name changes, forming the value threads. The highlighted nodes represent the analyzed computations.

Note, however, that even by placing computations on value threads, the naming of the computed

values is not adequate. Consider the values computed by statementsS2 andS4. Although the two values are

not equivalent, they are given the same name (b� a). The two (identically named) values may differ because

the nameb�a at pointS2 refers to variablea that has a different value thana at pointS4. Because one cannot

rely on variable names alone to provide a global naming for values, in the Step-1 VNG, two computations

can safely be considered identical only when they have the same name at the same program point. Step 2

removes this deficiency by providing a global naming of values.

Step 2: collapsing the value threads.The first step formed the threads, which exposed the re-

computation ofS2 by S5. This recomputation was detected becauseS5 andS2 lie on the same value thread.

Note, however, that whileS3 andS4 are equivalent, they are not on the same value thread; there is no chain

29

x x-a a+b2b-a -a-3a

b+x b-a 2b-x2a

C1

C2C0

S1: b := -2*a

S2: x := b - a

S3: a := 2*b - x

S4: x := b - a

S5: z := b + x

Figure 3.9:Step 2: collapsing value threads.

of data flow dependences between them and hence dataflow analysis fails to find them equivalent. The lack

of a connecting value thread is explained by the fact that thelexical name ofS3 (2b� x) did not match with

name ofS4 propagated toS3 by back-substitution (x � b). These two names are howeversynonymsfor the

same value, as can be seen when they are expressed as a function of the procedure formal parametera; both

are equal to�a. The problem is that the back-substitution process matchedthe names ofS3 andS4 only at a

predecessor ofS3.
This delayed match is inherent in the symbolic back-substitution process. It is corrected by the

value numbering step, which collapses threads whose names are synonymous. Two names are synonymous if

the back-substitution reduces them to the same symbolic name. The collapsed threads are shown in Figure 3.9.

After the threads are collapsed, the equivalent computationsS3 andS4 lie on the same thread and dataflow

analysis can find the recomputation. Note the change in the value names. While the first step used the

synthesized symbolic names, the second step names the valuewith the scalar namesCi. The scalar names

directly correspond to the congruence classes formed during value numbering.

Step 3: dataflow analysis.Once the graph is constructed, recomputations of the same value are

placed on the same (collapsed) threads. Computations are converted to accesses to scalar names and the

dataflow analysis determines availability of a value as a GEN/KILL analysis. The analysis is a bit vector

analysis, except for�-assignments, where the dataflow facts are propagated between bits corresponding to

the�-ed names.

Figure 3.10 summarizes the construction of the VNG using thethree orthogonal techniques. The

following subsections describe the construction of the VNGin detail.

3.4.1.1 Initial parameters

The VNG is parameterizable. It can be constructed to expose value flow among arithmetic ex-

pressions, memory load operations, conditional branches,etc. The VNG can be tailored for each kind of

recomputation by specifying the symbolic language that generates the names of the values during back-

substitution. While the arithmetic recomputations in the preceding examples required a name that was an

expression composed of variable names and operators+;�;�; =, the analysis of conditional branches may

30

value

numbering

symbolic
evaluation

data-flow
analysis

create
value
threads

collapse
synonymous
threads

solve
data-flow
problems

VNG

lexical
names

Figure 3.10:The three steps of VNG construction.

require a name with relational operators, for examplex < 0. Yet another language of names is needed for

analysis of repeated memory accesses to pointer-based datastructures.

The seed set of computations of interest. The first VNG parameter is the set of computations whose

recomputation is the focus of the analysis. These analyzed computations serve to seed the back-substitution

process; the value threads will start unrolling backwards from them. The computations of interest form aseed

setO of pairs(n; e), where the namee denotes a computation of interest at the CFG noden. (The language

of symbolic namesS will be defined shortly.)O = f(n; e) j n 2 N; e 2 Sg
Note that whilee is a lexical name, we assume it belongs to the language of symbolic names.

Example 3.3 The seed setO for the example program in Figure 3.3 consists of the entire right-hand-side

expressions, for each node of the program:O = f(S1;�2 � a); (S2; b� a); (S3; 2 � b� x); (S4; b� a); (S5; a+ x)g
The seed set for the program in Figure 3.6 consists of the addresses for the array accesses (assumingsizeof(A[i℄) =4): O = f(S1; adr(A)); (S5; adr(A) + 4� i); (S5; adr(A) + 4�min)g �
The language of symbolic names Given a seed setO , we have to decide upon a symbolic languageP
from which we will draw the symbolic names for creating the value threads. For example, the patternP may

restrict the symbolic names to the forma�v+b, wherea andb are program literals andv is a scalar variable.

Selection ofP is mainly an issue of the implementation, where one desires asuitable trade-off among a few

issues that influence the accuracy and complexity of the analysis:

31

suitability: The format of a symbolic name should suit the kind of computations in the seed set, as mentioned

above: arithmetic expressions will need arithmetic operators to describe their values, while memory

accesses have to describe indirect memory accesses. One could certainly permit all operators and an

arbitrarily deep nesting of expressions; however, such a freedom of expression may create too many

names during the back-substitution process, which may prove impractical. In practice, we observed

that simple names are expressive enough for a given kind of seed computations.

semantics:How is the symbolic name evaluated? Doesx + y mean the usual addition of values? Doesx+ y equaly + x? Is there a canonical form such that two equal expressions “always” have the same

representation? For example, the canonical form forx+z+y may be the alphabetically sortedx+y+z,

which enables matching it withz + x+ y.

interpretation: Which program statements modify the name and how? In other words, what happens when

the back-substitution “inserts” a name into a symbolic name: what are the substitution and simplifi-

cation rules? For example, are we willing to substitute only“copy” assignmentsx := y or also more

complex ones, such asx := y + z. In the latter case, the complexity of the synthesized namesmay

grow beyond polynomial.

termination: When the symbolic language is infinite, the back-substitution may not terminate, as new names

continue to be created. To force termination, let us introduce a parameterw, which stops the back-

substitution after all control flow paths withw or fewer cycles have been examined.

implementation:The format of the name must permit efficient implementation.For example, can two sym-

bolic names be compared in constant time? Can simplificationbe performed efficiently?

Recall that the languageP is extended with a special name! that denotes all values that cannot be expressed

within the selected symbolic language.

Example 1. Consider the problem of determining redundant address computations for accesses to one-

dimensional arrays. ChoosingP =
0 +Pvi2V
ivi is sufficient to represent address expressions for array

accesses such asA[5 � i+ j + 3℄, even multi-dimensional accesses such asA[i+ 1℄[j + k℄, but notA[i � j℄.
The setO contains address operands from all load and store nodes because they are the eventual consumers

of address computations.

To accommodate indirect addressing, the symbolic languageof value names is enriched with a

pointer dereferencing operator� and back-substitution rules for loads and stores. Loads increase the indirec-

tion level: when a namet+ 1 is propagated backwards acrosst := load L, it will change to�L+ 1. Stores

may reduce the indirection: acrossstore L; t, the name�L+ 1 will change tot+ 1.

Memory addresses are represented with symbolic namesE =
0 +
1v1 + : : :+
nvn+E0, where
i are literals,vi are program variables, andE0 = �(E) j �. The termE0 adds addressing indirection. In

the actual implementation, one may want to set a maximum number of indirection levels, in order to limit

the number of symbolic names created during back-substitution. In our experiments, we used level 0 (no�
operator in the address name) and level 1 (one� operator in the address). �
3.4.1.2 Step 1: placing the value threads

The first step synthesizes the names for the analyzed values.The output of the first step is the set

of symbolic namesS1 � P and the value transfer setVT describing how the value threads transfer (switch)

32

Input:
control flow graph G = (N;E; start; end):
seed set O ,
substitution function substitute(n; e) : N � P ! P ,
loop iteration window w.

Output:
value name graph G = (N ;E ;start; vngend),
set of synthesized names S � P .

begin
Step 1: route the value threads (Figure 3.12)
Step 2: collapse the threads (Figure 3.15)

convert threads to SSA form
collapse threads using global value numbering

Step 3: dataflow analysis
define dataflow transfer functions (Section 3.4.1.4)
solve dataflow problem (Chapter 4)

end

Figure 3.11:The algorithm for constructing the Value Name Graph.

between symbolic names.VT is defined as follows:(n; e ; e 0) 2 VT if the namee was back-substituted intoe0 at CFG noden.

The setVT represents the value threads without explicitly building the VNG nodes and edges shown

in Figure 3.8(b). Instead, the VNG is represented by specifying only VNG edges that connect different names

(where backsubstitution modified the propagated name). This is accomplished by representing each symbolic

namee 2 S1 with a “symbolic” variable[e ℄. The switches between names are represented as assignments

between those variables, as shown in Figure 3.13(c): We say that(e :=n e 0) if (n; e ; e 0) 2 VT.

Note that the second step of the construction will transformthe symbolic names[e ℄ assignments

into the SSA form and collapse them using value numbering (see Section 3.4.1.3).

The algorithm, shown in Figure 3.12, is a sequence of backward traversals of the CFG. Starting

from each of the seed computations, the traversal propagates their original (lexical) names and updates them

accordingly across each affecting node by performing back-substitution. Each traversal places value threads

along all acyclic paths; it stops at loop back-edges. The following traversal continues from the loop back-

edges, extending the threads across loop iteration boundaries. The multiple traversals thus create threads that

model value flow along all possible paths acrossw loop iterations. Settingw to 3 will discover equivalences

among address computations that occur within any three consecutive loop iterations.

We now describe the algorithm in Figure 3.12 in more detail. The algorithm first initializes the

traversal worklist with the seed computations (line 2). Note that the worklist maintains names on theexit of

a node; therefore, the traversal starts from the predecessors of the seed computations. Then,w + 1 traversals

are performed, each using a separate worklist (lines 4–18).This termination is similar towidening[CC77].

The VNG thus models the flow of a value along anyw consecutive loop iterations, which provides sufficient

scope for optimizations in the instruction-level parallelism domain.

Line 8 forces the back-substitution to fail at the CFG start nodestart as a way of asserting the most

conservative assumptions when the program is entered. The functionsubstitute(n; e) determines how name

33

Input:
control flow graph G = (N;E; start; end):
seed set O ,
substitution function substitute(n; e) : N � P ! P ,
loop iteration window w.

Output:
synthesized symbolic names S1 � P
value transfers A = f(ei :=n ej) j n 2 N; ei ; ej 2 S1g.

begin
1: A := ;
2: worklist0 := f(m; e) j (n; e) 2 O ;m 2 pred(n)g
3: for i = 1 to w + 1 do worklisti := ;
4: for i = 0 to w do
5: while worklisti not empty do
6: remove a pair (n; e) from worklisti
7: visited[n; e℄ := true
8: if n = start then e0 := !
9: else e0 := substitute(n; e)
10: if e0 6= e then add (e :=n e 0) to A, add e 0 to S1
11: for each m 2 pred(n) such that visited[m; e0℄ = false do
12: if (m;n) 2 backedges(E) then
13: add (m; e0) to worklisti+1
14: else
15: add (m; e0) to worklisti
16: end for
17: end while
18: end for
19: for each (e; n) 2 worklistw+1 do
20: add (e :=n !) to A
21: end for
end

Figure 3.12: Step 1 of VNG construction: symbolic back-substitution.e changes across noden (line 9). When the name changes acrossn, line 10 outputs the assignment denoting

that the thread changes names atn. Lines 11–16 continue the traversal onto predecessors, passing names that

cross back edges into the next traversal (line 13), as discussed above.backedges(E) is defined to be the set of

CFG edges that are backedges insomedepth-first traversal of the CFG. Such a definition marks all backedges

of irreducible loops. The visited flag marks that the namee has visited the exit of noden (line 7). The flag

prevents propagation of a name twice (line 11). Finally, lines 19–21 terminate the threads that are left “in the

air” along the back-edges after the traversal sequence was forcefully terminated afterw+1 traversals. These

unfinished threads are grounded to!, asserting the same conservative assumptions as on the start nodestart

at line 8.

Figure 3.13(c) shows the Step-1 VNG for the program in Figure3.13(a). Figure 3.13(b) shows the

VNG in (conceptual) graph form. We illustrate the back-propagation usingp4, the address operand of the

load in node 9. When propagatingp4 across the assignmentp4 := p3+1 in node 7, the right-hand sidep3+1
is substituted into the current namep4. We obtainp3 + 1, which becomes another name for the analyzed

34

(a) the source program. (b) the (conceptual) VNG. (c) the VNG after Step 1.

p: global

if ()

*p-- = v;

w = *++p;

loadpt := pp- -

storep
*t := v
loadp
++p
storepw := �p

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

p1 = load Lpt1 = p1p2 = p1 � 1
store Lp; p2

store t1; vp3 = load Lpp4 = p3 + 1
store Lp, p4
w = load p4 t1p1p2 + 1p3 + 1 p4�Lp�Lp + 1Lp

[p1 ℄ := [�Lp ℄ load [Lp ℄[t1 ℄ := [p1 ℄[p2 + 1 ℄ := [p1 ℄[�Lp + 1 ℄ := [p2 + 1 ℄ store [Lp ℄
store [t1 ℄[p3 + 1 ℄ := [�Lp + 1 ℄ load [Lp ℄[p4 ℄ := [p3 + 1 ℄
store [Lp ℄
load [p4 ℄

Figure 3.13:Step 1 of the VNG construction: example

address of the load (9). After crossingp3 := load Lp in node 6,�Lp is substituted forp3 and�Lp + 1
becomes yet another name for the address (Lp is the address of the global variablep). The name will be

further changed at nodes 4, 3, and 1. (Note that Figure 3.13(b) shows the VNG construction only along the

thenpath.) The address operands of remaining memory operationswill also undergo this back-propagation.

The process of name creation is demand-driven, as only the necessary names are created.

3.4.1.3 Step 2: collapsing the value threads

The second step collapses threads placed by the first step. Collapsing can be viewed as post-

processing of the back-substitution. It places on the same thread those computations that back-substitution

found equivalent but did not place on the same thread. These are computations that were symbolically reduced

to the same name, but the reduction occurred “upstream” fromthe two computations, as is the case forS3
andS4 in Figure 3.8. Technically, the collapsing is performed by finding, at each noden, which symbolic

names reduce to the same symbolic name. These names are synonyms for the same value and are placed into

an equivalence class, which effectively collapses all threads placed into the class. The names of the classes

serve as the symbolic names for the final VNG.

Thread collapsing is thus expressed as a partitioning of thesymbolic name space into equivalence

classes, at each CFG node. Therefore, the second step is called Symbolic Value Numbering (SVN), for its

35S1:x0 := �(..;..)S2:if ()S3: y0 := x0S4:elseS5: y1 := x0S6:end ifS7:y2 := �(y0;y1)S8:x0 ... y2
Figure 3.14:GVN fails to find the equivalence ofx0 and y2. In contrast, the SVN succeeds, but it has a
higher cost.

similarity with the standard Global Value Numbering (GVN) that also discovers which names refer to the

same value [AWZ88]. To compare our SVN with the GVN, we observe that, like the GVN,� the SVN computes which value names are synonymous, representing synonyms as partitions;� the SVN computes synonyms globally, accounting for all program paths leading to a given CFG node;� the SVN uses a compact SSA encoding of names, to maintain a single, global partitioning, rather than

a separate one at each CFG node.

Unlike GVN, however,� the SVN detects synonyms based on their symbolic (algebraic) equivalence, rather than from their

structural (syntactic) equivalence.� the SVN uses a more precise (but also more expensive) partitioning algorithm, as explained below.

The symbolic value numbering has two sub-steps. First, the Step-1 VNG is transformed into the

Static Single Assignment (SSA) form [AWZ88]. Second, the SSA-ed symbolic names are globally par-

titioned. Recall that after Step 1, the VNG is represented asassignments between[e ℄ variables, denoted(e :=n e 0). When converted to SSA form, each[e ℄ variable will be assigned exactly once.5 The SSA

form is achieved by creating multiple copies of each variable, one for each assignment, and by connecting

the copies with�-assignments inserted at control flow merge points that can be reached by two different

assignments of the same variable. The property desired fromthe SSA transformation is that the insertion of�-assignments effectively breaks threads into thelargestsnippets on which the synonyms relation remains

the same. As a result, the collapsing need not be expressed ateach node, but on the snippets, in single global

partitioning. Because the[e ℄ variables are ordinary scalar variables, any existing SSA construction algorithm

can be used [CFR+91, SG95]. The SSA transformation changes the symbolic namespace fromS1 into an

SSA-ed name space denotedS2 .

To partition the SSA-ed names, one could employ the GVN algorithm [AWZ88]. However, GVN

computes an imprecise solution in cases that may occur oftenon the VNG. Consider Figure 3.14. In this

program, GVN fails to find the equivalence ofx0 andy2, but SVN succeeds.5Except for[!℄, which is never assigned, because it is never back-substituted into.

36

Our partitioning algorithm represents the synonyms as a graph, in which edges connect equivalent

names. The algorithm is optimistic. It starts with all namesassumed equal and then removes edges that

cannot safely be assumed synonymous. An edge([ei ℄; [ej ℄) is removed when there is a control flow path on

which [ei ℄ is reduced to! (back-substitution failed) before[ei ℄ and[ej ℄ reduced to the same non-! name.

After the fixed point is reached, theO(jS2 j2)-sized graph is converted toO(jS2 j)-sized equivalence-class

partitioning, to save memory. The more economical class partitioning cannot be used before the fixed point

is reached because the graph does not necessarily representan equivalence relation. Therefore, equivalences

must be represented at the granularity of edges, not partitions.

The details of the algorithm are in Figure 3.15. The input is the equality graph. The graph is

optimistically initialized; edges connect every two SSA variables whose live ranges overlap. Thus, the graph

is a live-range interference graph. It is built during the SSA construction. The algorithm starts by identifying

pairs of names that are definitely not synonymous and then propagates their inequality through the def-use

chain of the SSA variables, until no more edges can be removed. Line 1 finds all names[ei ℄ that failed to

be back-substituted, at any noden. Line 2 then finds all names[ej ℄ that are live at that node. Names[ei ℄
and[ej ℄ must be different and are inserted into the worklist. Takingedges from the worklist, the algorithm

removes an edge (line 9) if the edge has not been removed yet (line 8). For each removed edge([ei ℄; [ej ℄),
their inequality is propagated to all uses of[ei ℄ and[ej ℄, in a forward direction along the def-use chain, across�-assignments and the back-substitution assignments(ei :=n ej).

Returning to the running example, Figure 3.16(a) shows the SSA form of the Step-1 VNG shown

in Figure 3.13(c). In our example, only[�Lp + 1 ℄ needs an SSA subscript and a�-node; the live ranges of

other[e ℄ variables do not cross the control-flow merge point. The SVN algorithm partitions the[e ℄ names

into congruence classes as shown in the figure. The names of the classes are the symbolic names used by the

final VNG, which is shown in Figure 3.16(b). Note that the optimized computations have been rewritten to

refer to the names of the equivalence classes.

Notice that the Step-1 VNG cannot find reuse between the equivalent nodes 5 and 9, because

they are not on the same value thread (see Figure 3.13(b)). After the threads have been collapsed, the two

nodes refer to the same thread, which is represented as a chain of data dependences fromC2 to C3 (see

Figure 3.16(b)).

3.4.1.4 Step 3: dataflow transfer functions

The previous two steps constructed the nodes and edges of theVNG. To solve dataflow problems

on the VNG, it remains to construct the dataflow transfer functions and the equation system for computing

dataflow problems. In this section, we show how to compute availability of values, a forward problem. The

availability computation presented here is path-insensitive, because it only determines whether the value is

available alongall paths. A solution to this problem is sufficient for performing global common subexpres-

sion elimination (Global CSE) on the VNG, i.e., for eliminating fully redundant computations. Chapter 4

presents a path-sensitive formulation of dataflow analysison the VNG, which will be used to perform partial

redundancy elimination.

First, we define the VNG constructed by the first two steps. Recall that, after the second step, every

symbolic namee can be defined only by�-nodes, which were introduced when the VNG was converted into

the SSA form.

Definition 3.3 (Value Name Graph) LetG = (N;E; start; end) be a control flow graph andS be the name

space. The names inS are the names of congruent class names created in Step 2, together with the name!.

37

Input:
IG = (IN; IE), interference graph for the SSA’ed name variables:

IN = S2 ,
IE � (IN � IN): ([ei ℄; [ej ℄) 2 IE iff [ei ℄ and [ej ℄ are both live at some CFG node n.

Output:S , the symbolic name space of the final VNGS2 ! S , partitioning of SSA’ed name space into equivalence classes.

begin
1: for each (ei :=n !) do
2: for each [ej ℄ that is live at node n do
3: add (ei; ej) to worklist

4: end for
5: end for
6: while worklist not empty do
7: remove edge ([ei ℄; [ej ℄) from worklist
8: if ([ei ℄; [ej ℄) 2 IE then
9: remove edge ([ei ℄; [ej ℄) from IE
10: for each assignment ([ek ℄ :=n [ei ℄) or [ek ℄ :=n �(: : : ; [ei ℄; : : :) do
11: add ([ek ℄; [ej ℄) to worklist

12: end for
13: for each assignment ([ek ℄ :=n [ej ℄) or [ek ℄ :=n �(: : : ; [ej ℄; : : :) do
14: add ([ei ℄; [ek ℄) to worklist

15: end for
16: end if
17: end while
18: partition IN into classes: each connected subgraph of IG is one class Ci
end

Figure 3.15: Step 2: collapse value threads using value numbering.

38

(a) the SSA form of the step-1 VNG. (b) the final VNG.

[p1 ℄ := [�Lp ℄ load [Lp ℄[t1 ℄ := [p1 ℄[p2 + 1 ℄ := [p1 ℄[�Lp + 1 ℄1 := [p2 + 1 ℄ store [Lp ℄
store [t1 ℄[�Lp + 1 ℄2 := �([�Lp + 1 ℄0; [�Lp + 1 ℄1)[p3 + 1 ℄ := [�Lp + 1 ℄2 load [Lp ℄[p4 ℄ := [p3 + 1 ℄
store [Lp ℄
load [p4 ℄

Congruence classes:C0: f[�Lp + 1 ℄0gC1: f[Lp ℄gC2: f[�Lp ℄; [p1 ℄; [t1 ℄; [p2 + 1 ℄; [�Lp + 1 ℄1gC3: f[�Lp + 1 ℄2; [p3 + 1 ℄; [p4 ℄g

load C1
store C1
store C2C3 := �(C0; C2)
load C1
store C1
load C3

Figure 3.16:Step 2 of the VNG construction: example

TheValue Name Graph (VNG)is a graphG = (N ;E ; start; end), whereN is the set of nodes,N = N�S .E is the set of edges,E � N �N such that((m; e 0); (n; e)) 2 E iff m 2 pred(n) and� e is defined in noden (which must be a�-nodee := �(e1; : : : ; ei; : : : ; ek)) andm is theith immedi-

ate predecessor ofn ande 0 = ei, or� e is not defined inn ande = e 0.
The start nodestart is connected to all nodes(start; e), for all e 2 S . Similarly, end terminates all CFG

nodes, by connecting all VNG nodesn such thatn = (end; e) VNG nodes.�
Thepredandsuccfunctions are defined on VNG as usual.

Definition 3.4 (Thread) A threadis a path in the VNG graph. In contrast, apathis a path on the CFG graph.

Note the relationship between threads and paths. For each threadp , there is exactly onesiblingpathp, which

can be obtained with a functionpath: p = path(p). �
Clearly, while each thread has one sibling path, along each path there are multiple threads, each for a different

value.

Each VNG noden = (n; e) corresponds to a value with symbolic namee flowing across a CFG

noden. We can now compute the availability of these values. The availability propertyAVAIL is computed

on a binary latticef>;?g. The meet operator̂ returns the lower element:> ^ ? = ?. A computation

39n = (n; e) is fully redundant (and can be removed) ifAVAILin[n ℄ = >. Let us assume that the value is

computed by all VNG nodes in the seed setO .

AVAILout[start℄ = ?
AVAILout[n ℄ = fAVAILn (AVAILin[n ℄)
AVAILin[n ℄ = ^m2pred(n)AVAILout[m ℄fAVAILn (x) =df

(> if n 2 O , (generate the value)x otherwise (propagate the value)

Killing stores. Dataflow analysis on the VNG is closely coupled with the back-substitution step. Recall

that the VNG threads detect reuse aggressively—because back-substitution may be defined to ignore may-

aliasing, the threads extend uninterrupted across potentially killing stores. As a result, the VNG detects

instructions that always read from the same location but it does not reflect that a storemaychange the contents

of this location between these two reads. Treating may-aliasing kills separately is an intentional design

decision, because some hardware mechanisms enable reuse exploitation even in the presence of (infrequent)

kills, using a data-speculative load [KSR94,GKKG98,RCT+98].

May-aliasing can be easily accounted for in dataflow analysis on the VNG. Using our running

example, assume thatp4 may equalLp. Because[p4 ℄ belongs to congruent classC3 and[Lp ℄ belongs toC1,
each store toC1 must kill reuse in classC3 and vice versa. Therefore, in Figure 3.16(a), the store in node 8

would kill the reuse for the load in node 9. To account for killing statements, we modify the transfer functionfAVAIL: fAVAIL(n;e) (x) =df

8><>: > if n 2 O (generate the value)? if e may be aliased withn’s value (kill the value)x otherwise

Depending on the optimizer, this kill may entirely destructthe reuse, preventing register promotion, or may

mark only the reuse as unsafe.

3.5 Separable VNG

This section introduces a restricted case of the value name graph. The purpose is to simplify

the presentation of the profiling and transformation algorithms in the following chapters. The restricted

version, calledseparable, behaves just like a CFG with lexical (Morel-Renviose-style) redundancies. This

simplification allows us to present the algorithms first at anintuitive level, and then extend them for the

generalVNG.

Definition 3.5 (Separable VNG) A value name graphG = (N ;E ; start; end) is calledseparableif all

symbolic names can be analyzed separately, i.e., their threads do not interfere. Formally, for each edgee = ((n; e); (m; e 0)) 2 E , eithere = e 0 or e = ! or e 0 = !. �

40

A[i+2] --> T

start

T

A
[0

]
A

[i
]

A
[1

]
A

[i
+1

]

A
[i

+2
]

A
[2

]

T

W=3

i:=0

load A[i+2]

load A[i]

i:=i+1

Figure 3.17:The VNG can detect recurrent array accesses.On the left is the CFG of the source program.
On the right is the VNG of the same program.

3.6 Applications of the VNG

This section shows how the VNG can be parameterized to various value-flow analysis problems. It

presents the detection of recurrent array accesses and a version of constant propagation.

3.6.1 Recurrent array accesses

Because the back-substitution traverses a few consecutiveloop iterations, the VNG naturally ex-

poses the redundancy of recurrent array accesses. In fact, the VNG is a generalization of thestretched

loop [BG96]. Figure 3.17(a) contains two such accesses. The VNG for the loop is in Figure 3.17(b). In

the VNG, the equivalent array accesses are connected with a thread that extends across three loop iterations.

For the analysis and transformation stages of the PathFinder optimizer, such inter-iteration threads are no

different than “acyclic” ones, and thus are handled uniformly.

3.6.2 Distributive non-linear constant propagation

The traditional formulation of Constant Propagation(CP) does not distribute across the meet op-

erator; therefore, algorithms for this data-flow problem need to trade precision for effectiveness [CCKT86,

GT93]. Recently, a distributive formulation of alinear version of CP was presented [SRH96]. The linear ver-

sion is restricted in that only assignments with at most one variable in the right-hand side (e.g.,x:=2*y+3)

are interpreted. Using VNG, one can formulate a distributive, non-linear CP algorithm which can handle

arbitrary assignments (within the domain of the symbolic patternP). We are not aware of any other such

algorithm.

The VNG-based constant propagation (VNGCP) is performed asa by-product of the VNG con-

struction by grouping names into equivalence classes together with program constants: if any name is back-

substituted to a constant, then there must be a path along which an operand from the seed setO has a constant

value. The subsequent value numbering step verifies that if anamee is in a class with a constantd, then the

41

if (..)
a := 5
b := 3

else
a := 3
b := 5

end if
x := a * b

if (..)([3 � a ℄ := [15 ℄)([a � b℄ := [3 � a ℄)
else([5 � a ℄ := [15 ℄)([a � b℄ := [5 � a ℄)
end if([x ℄ := [a � b ℄)

a) isx a constant? b) Step-1 VNG

if (..)([3 � a ℄0 := [15 ℄)([a � b ℄0 := [3 � a ℄0)
else([5 � a ℄0 := [15 ℄)([a � b ℄1 := [5 � a ℄0)
end if[a � b ℄2 := �([a � b ℄0; [a � b℄1)([x ℄0 := [a � b ℄2)

C0 = f[15 ℄;[3 � a ℄0; [5 � a ℄0;[a � b℄0; [a � b ℄1;[a � b℄2; [x ℄0g
c) SSA form of Step-1 VNG d) after value numbering

Figure 3.18:Constant propagation using the VNG.

value ofe equalsd along all program paths. No data-flow analysis (Step 3) is required because the value

numbering already verified that the name is a constant along all incoming paths. Figure 3.18 presents an

example. After the value numbering step of the VNG construction, the congruent class contains the symbolic

name[15 ℄, a constant, and also the symbolic name[x ℄0. These two names are synonymous, and hencex is

the constant 15.

It should be noted that the distributivity comes at the cost of exponential worst-case complexity, due

to the number of symbolic names that the VNG may contain. However, the symbolic approach to constant

propagation has two advantages, compared to existing CP algorithms. First, because it is based onsymbolic

names, the VNGCP can find constants whose value is known only at link-time. For example,x may be found

to beA + 4, whereA is the address of an array. Second, the freedom to chooseP permits discovery of

constants across assignments with arbitrary right-hand side expressions; adjustingP allows one to tune the

tradeoff between the cost and the power of the analysis.

3.7 Related work

A number of approaches for detecting equality among values have been developed. The prior work

can best be compared with our representation on the basis of what subset of the three underlying mechanisms

it employs and to what degree their power is exploited. The three-dimensional cube serves well to relate the

existing techniques (Figure 3.19).

Let us start with techniques that are based on the lexical names of values. To improve their power,

they add a degree of dataflow analysis.

42

symbolic evaluation

value numbering

data-flow analysis

Cocke, Schwartz ‘70 .. Local VN

Reif, Lewis ‘77.......... Global VN

Rosen, et al ‘88 VN-PRE

Steffen, et al ‘90 VFG

Stretched Loop B
odik, et al ‘96

Array analysis Duesterwald, et al ‘93

Symbolic analysis .. Tu, Padua ‘70

PRE Morel, Renvoise
‘79

Briggs, Cooper ‘94 Effect. PRE

Global CSE
LoopInv

CSE

VNG

Figure 3.19:Related work. Existing techniques for value-flow detection can be compared on the basis of
which of the three orthogonal mechanisms they employ and to what extent they exploit their power.

Local common subexpression elimination (CSE).When none of the three methods is used, equivalent com-

putations are identified only using their lexical names. Without dataflow analysis, one is restricted to

basic blocks. This path-insensitive (local), name-insensitive (lexical) technique is in the origin of the

three-dimensional cube.

Global common subexpression elimination (Global CSE).By adding some dataflow analysis power, one

can verify if subexpressions are equal alongall paths, but still in a path-insensitive manner [Coc70].

Loop-invariant code motion (LoopInv). By even smarter global dataflow analysis, one can find loop-

invariant computations. Since loop-invariants are redundant only alongsomepaths, this technique is

partially path-sensitive.

Partial redundancy elimination (PRE).PRE uses dataflow analysis to its full extent—it identifies computa-

tions that are equivalent only along some paths [MR79]. Note, however, that along all these paths, the

equivalent computations are required to have the same (lexical) name.

The techniques based on value numbering follow an analogical historical improvement, through adding the

path-sensitive power of dataflow analysis.

Local value numbering (Local VN).Restricted to a basic block, local value numbering does not consider

any program paths.

Global value numbering (GVN).This method detects syntactic equivalences that hold alongall program

paths. While the commonly-used algorithm for GVN [AWZ88] does not employ dataflow analysis to

verify the all-paths equivalence, it uses the SSA form, which essentially encodes a result of dataflow

analysis (def-use chains) in a compact way. The same is true of [RL77], which uses a precursor of the

SSA form.

Value-numbering-driven PRE (VN-PRE).Rosenet al. present a PRE algorithm that is driven by syntactic

equivalences, rather than lexical ones [RWZ88].

43

Instead of using lexical names, the redundancy eliminationapproach in [Cli95] solves data-flow problems

on the name space of global value numbers [AWZ88].

Value Flow Graph (VFG).Steffenet al. [SKR90] make value numbering fully path-sensitive. Their graph

representation is similar to the VNG. In fact, it, too, can beviewed as placing value threads. The

difference is that their threads are based on equivalence ofsyntactic terms, whereas ours are based on

algebraic equivalence.

While adding path-sensitivity to lexical and syntactic (value numbering) names was systematic, there seem

to be only a few techniques for performing symbolic evaluation along paths.

Symbolic analysis. Tu and Padua use agatedSSA (GSA) form to reason about symbolic expressions

along all program paths simultaneously [TP95]. Rather thanprojecting symbolic expressions onto the

CFG points, they assign path predicates to symbolic expressions using the gating functions of GSA.

This approach can be effective in answering queries on pairsof symbolic expressions, especially when

the resulting symbolic expressions have simple gating functions. In order to use this representation

for data-flow analysis, a powerful Boolean symbolic evaluation system may be needed. Johnson and

Schlansker describe how such a system can be constructed andutilized in solving predicated flow

problems [JS96].

Array Analysis. Duesterwald, Gupta, and Soffa encoded the algebraic information about array index ex-

pressions into dataflow transfer functions. As a result, loop-carried (both recurrent and loop-invariant)

array accesses are detected [DGS93].

Stretched loop. Bodik and Gupta detect loop-carried array accesses with more path-sensitivity. The

stretched loop is a (virtually) unrolled loop that reduces array analysis (on affine indices) into the

scalar variable domain. In the simpler domain, a PRE-style dataflow analysis can be applied [BG96].

The application domains of both [DGS93] and [BG96] are limited to single loops in which loop indices

are incremented unconditionally and address expressions of interest for load/store operations are affine

functions of such loop indices. The VNG can analyze nested loops with arbitrary control flow and

conditionally incremented induction variables.

Effective PRE.Briggs and Cooper perform PRE dataflow equations on a name space that uses a limited

form of symbolic evaluation (reassociation) and a form of value numbering. Because VNG does not use

reassociation, it is not strictly better than the EffectivePRE technique [BC94]. Expression reassociation

is orthogonal to the methodology behind the VNG. By using VNGon a re-associated program, one can

benefit from the combined power of the two approaches.

In contrast to existing methods, the VNG combines the power of all three techniques. The authors are not

aware of any existing technique that would combine all threeapproaches into a systematic analysis tool.

The VNG was inspired by the conceptual framework described by Rau [Rau91] in the spirit of

abstract interpretation [CC77]. He describes how repeatedback-substitution of names along loop back-edges

can detect loop-carried value equivalences on a path-by-path basis. Rau’s paper presents the problems that

arise in naming and comparing symbolic expression originating in different loop iterations; the PATHFINDER

framework offers a practical solution to these problems.

44

3.8 Experiments

The practicality of the VNG representation depends largelyon the size of the symbolic name spaceS . When the language of symbolic namesP is infinite, the worst-case size of the name spaceS is exponential

in the number of CFG nodes, even when the number of back-substitution iterationsw is a constant. This

would translate into exponential worst-case time and spacecomplexity of our analysis. Fortunately, our

experiments show that the size ofS is in practice moderate. In fact, for the value-flow analysisof array

accesses, it is smaller than the number of program variables.

Rather than reporting the size of the final name spaceS , we measure the size ofS1 , the name

space created in the first step of the construction. BecauseS1 is larger thanS , its size safely estimates the

complexity of the analysis on the VNG, but also the complexity of the VNG construction, namely the SSA

transformation and the value numbering step.

The experiments evaluated the size ofS1 and other VNG properties on a VNG tailored for an

elimination of redundant loads and stores. The seed setO contained all source operands of all load and store

instructions. The languageP was chosen to express address expressions for one-dimensional array accesses,

henceP =
0 +Pvi2V
ivi. The VNG was implemented in the HP Labs VLIW backend compilerelcor.

To determine the rate at which the name spaceS1 grows as a function ofw, we built the VNG for

various values ofw. Column 0 in Table 3.1 is the initial size ofS1 , whenS1 = O . The column labeledi shows the size ofS1 after i iterations of back-substitution. The VNG was built for 151 procedures of 12

programs and we report those procedures with the steepest growth rate ofS1 . The first three benchmarks

come from spec92,grep is a Unix utility, and themm’s are simple matrix multiplies, with static and dynamic

memory allocation, respectively. Before the VNG analysis was applied, all classical optimizations [ASU86]

were applied on these procedures.

In a majority of procedures in Table 3.1, the growth rate ofS1 is linear; in a few, the rate only

slightly exceeds a linear curve. For exponential growth to be observed, a large fraction of variables involved

in the analysis would have to be back-substituted into a different expression along each branch of an if-

statement in a loop body. The address expression computation in the programs we considered did not have

such a property.

ColumnV shows the number of variables (virtual registers) referenced in the procedure. The fol-

lowing two columns give the size ratio ofS1 andV , for w = 2 andw = 3. These two values have been

selected because they are most likely to be used in practice;there are few opportunities for loop-carried value

reuse beyond an iteration distance of two [GKT91]. Surprisingly, the name space is much smaller than the

setV . While the growth rate ofS1 may be non-linear and its actual size may be larger for optimizations

other than load/store elimination, we expect the size ofS1 to be comparable toV , which enables efficient

analysis. If some symbolic patternsP permit dramatic name space growth in practice, the size ofS1 can

be restricted during its demand-driven construction by terminating the back-substitution as soon as a prede-

termined number of names has been created. Such an approach was successfully used in the demand-driven

analysis in [BGS97a].

To provide some intuition as to why the symbolic names grow moderately, Table 3.1 also presents

the percentage of CFG nodes on which back-substitution was performed, for at least one symbolic name

(columnbs). ColumnN gives the number of CFG nodes in each procedure. Each node contains a single

intermediate statement. The experiments show that more than 80% of nodes do not influence the name of the

analyzed address expressions for array accesses.

45

Benchmarks back-substitution iterationsw N bs V S=V S=V
program procedure 0 1 2 3 4 5 6 7 [%] w = 2 w = 3
alvinn initialize 9 17 27 41 59 81 107 137 181 6.6 106 0.25 0.39

input hidden 8 14 21 28 35 42 49 56 52 17.3 48 0.43 0.58
hiddenoutput 6 10 17 24 31 38 45 52 47 14.9 46 0.37 0.52
outputhidden 16 28 56 89 127 170 218 271 100 26.0 70 0.83 1.27
hiddeninput 4 7 13 19 25 31 37 43 36 16.7 27 0.48 0.70

compress main 154 210 221 232 243 254 265 276 1045 12.9 633 0.35 0.37
decompress 47 76 90 101 112 123 134 145 241 20.3 166 0.54 0.61
prratio 7 12 12 12 12 12 12 12 65 7.7 52 0.23 0.23
output 61 89 91 93 95 97 99 101 252 23.0 197 0.46 0.47

ear InitCorrelation 37 51 52 53 54 55 56 57 158 18.9 122 0.43 0.43
SendInputToCorr 18 27 32 37 42 47 52 57 65 27.7 55 0.58 0.67
FFTCorrelation 64 105 130 157 188 221 256 293 338 19.5 260 0.50 0.60
HartleyCorr 42 72 91 111 133 156 180 205 232 19.0 177 0.51 0.63
StretchDisplay 38 58 73 90 109 130 153 178 187 20.9 141 0.52 0.64
main 86 131 157 183 209 235 261 287 668 14.1 455 0.34 0.40
EARSTEP 87 121 141 161 181 201 221 241 337 22.8 246 0.57 0.65

grep execute 156 301 479 659 839 1019 1199 1379 2193 15.4 1081 0.44 0.61
mm main 16 29 53 86 128 179 239 308 183 17.0 124 0.43 0.69
mm dyn main 25 36 44 52 60 68 76 84 213 15.9 145 0.30 0.36

Average 347 17.7 270 0.45 0.52

Table 3.1: The size of name spaceS as a function ofW , and other characteristics of the VNG relevant to
analysis efficiency.

Chapter 4

Path-Sensitive Dataflow Analysis

Section 3.4.1.4 presented a dataflow analysis on the VNG. That analysis was path-insensitive; it

merely verified whether a property (value availability) holds along all paths or not. This chapter presents

a dataflow analysis that is path-sensitive. It finds (and marks) optimizableprogram paths—i.e., paths along

which some value can be reused. The results of the analysis guide the remaining stages of the optimizer.

Because there are exponentially many optimizable paths, the central issue is how to represent them

compactly, with only polynomial cost. A compact marking is accomplished with a lattice that distinguishes

whether all, some, or none of the paths through a given node are optimizable. From such a compact encoding,

the transformation stage of PathFinder can recover individual optimizable paths.

This chapter starts by defining the optimization property (value reuse) that should be marked on

the VNG. Next, Section 4.2 defines two dataflow problems that,when solved, identify whether a path has the

optimization property. Section 4.3 defines a lattice that allows computing the two dataflow problems in a path-

sensitive way and Section 4.4 gives the dataflow equations for computing the problems. Section 4.5 discusses

the solvers that can compute the fixed-point solution, and also deals with some issues of the implementation.

4.1 Value reuse (the analyzed property)

The VNG representation exposes thevalue flow—it shows how the name of the value changes as

it flows through the program, via the construction of value threads. For the purpose of optimization, we are

interested in subthreads along which the value flowsbetweencomputations that we wish tooptimize. We call

these subthreadsreuse threadsto reflect the fact these subthreads connect computations that always compute

the same value (which can be reused). The reuse threads correspond to optimizable paths: we want to identify

them during the analysis, and separate them during the optimization.

Reuse threads are defined using three kinds of VNG nodes:generators, which compute the value;

users, which both compute the value and can reuse it; andkills, which kill the value. A reuse thread is a

kill-free subthread between a generator node and a user node.

Note that each user node is a generator, but no generator is a user. This distinction is introduced

to describe value reuse among computations whose value may flow via memory (in particular, load and store

instructions). Similarly, only value flow via memory requires kill nodes, which are introduced to account for

potential aliases that were (aggressively) disregarded during back-substitution that was used to construct the

VNG, as discussed in Section 3.4.1.4. In contrast, to describe value reuse among computations whose value

doesnot flow via memory (e.g., arithmetic operations), it would be sufficient to use the notion of user nodes.

The following example illustrates the three kinds of nodes.

46

47

Example 4.1 (Value reuse among memory operations.)Consider the problem ofredundant load removal.

In this problem, a load of a memory location is redundant if this load can reuse a prior access to the same

memory location. The prior access (either a load or a store) “computes” the value of the memory location

by placing it into a memory register from which the redundantload operation can fetch it without accessing

memory.

To describe such optimization, the user nodesU are all load instructions (the “optimizable” oper-

ations) because they can consume the value generated by a prior access. GeneratorsD are both loads and

stores(n; e). Kills are all stores that could not be disambiguated.

Definition 4.1 (Reuse Threads)Given a tuple(G;D ;U ;K), where� G = (N ;E) is a VNG,� D is the set ofgeneratorVNG nodesn = (n; e),D �N , that generate the valuee ,� U is the set ofuserVNG nodesn = (n; e), U � D , a subset of generator nodes that (generate but

also) consume the valuee ,� K is the set ofkill VNG nodes,K �N ;K \U = ;, that may “modify” the value,

the set ofreuse threads, denotedR, is a (potentially infinite) set of finite-length VNG threadsp originating

at a generator nodeni and sinking onto a user nodenk such that threadp contains a generator node or a kill

node, R(G;D ;U ;K) = fp j �p > 0 ;p [0 ℄ 2 D ;p [�p ℄ 2 U ;p [j℄ 62 D [K ; 0 < j < �pg�
The condition�p > 0 ensures that a user node (which is both a generator and a user)does not generate

a value for its immediate consumption (along a zero-length path). A node can reuse its own value only if

that value was generated in the past (along a cycle in the VNG); such situation occurs when the user node

represents a loop-invariant computation.

4.2 Availability and anticipability (dataflow problems)

Reuse threads are identified via two dataflow problems—availability and anticipability—introduced

in [MR79]. A value isavailablealong an incoming path if the value was generated on the path and was not

subsequently killed. A value isanticipatedalong a path if it will be used on that path before it is generated or

killed. While availability is a forward problem, anticipability is a backward problem. These two properties

are usually defined on the CFG. The two problems are defined on the VNG as follows.

Definition 4.2 (path-based availability of generators)A valuee is available at a CFG noden along a CFG

pathp = hstart; ni if there is a VNG threadr = hstart; (n; e)i that “runs along”p (i.e.,p = path(r)) such

that the value (flowing along the threadr) is generated on a kill-free suffixr 0 of r , i.e., r 0 = r [i; �r ℄ for

somei such thatr [i℄ 2 D andr [j℄ 62 K for all j, i < j < �r . �
Path-based anticipability is defined analogously.

48

Lemma 4.1 LetG = (N;E; start; end) be a CFG,G = (N ;E ; start; end) be a VNG onG, andR be a set

of reuse threads onG. A noden = (n; e) 2 N belongs to a reuse threadp 2 R iff value e is

1. available at the CFG noden 2 N along some CFG pathhstart; ni, and

2. anticipated at the CFG noden 2 N along some pathhn; endi. �
4.3 Marking the value reuse (dataflow lattice)

Definition 4.2 introduced the dataflow problems in a path-based manner; computing availability

and anticipability for each path would give us a path-sensitive dataflow solution, at an exponential cost. To

mark the reuse threads on the VNG at polynomial cost, we definea node-based characterization of the two

problems. This characterization distinguishes whether the value is available at a node along all paths, no

paths, or (strictly) some paths.

Our versions of availability and anticipability predicates are thus not Boolean. Instead they can

take one of three values:Must , No, andMay , which mean that a value holds on all paths (must be available

at the node), no paths (is not available), or some paths (may be available, depending on the path taken).

Definition 4.3 (node-based availability, anticipability) The availability ofe at the entry ofn w.r.t. the

incoming paths is defined as:

AVAILin[(n; e)℄ = 8><>: Must all

No if e is available along no paths fromstart to n.

May some

The anticipability ofe at the entry ofn w.r.t. the incoming paths is defined as:

ANTICin[(n; e)℄ = 8><>: Must all

No if e is anticipated along no paths fromn to end.

May some

where “some paths” means strictly some paths. �
Note thatMay is not a “don’t know” answer. Instead it signifies that noden is on paths both with and

without the property. The three values are sufficient for thetransformation stage to recover the path-specific

information.

To compute the three-valued dataflow solutions, we define a lattice that gives a partial order over

Must, May , No, and a> element, which is used as a “safe guess” when computing the solution with an

iterative dataflow solver.

Definition 4.4 (Path-Sensitive Lattice)LatticeL is a tupleL = (P;u;t), whereP = f>;Must;No;May ; g
is a partially ordered set,u;t are the (path-sensitive) “meet” and “union” operators, respectively.1 The partial

order onP is given below.

T

No Must

May1The “meet” operator returns the greatest lower bound; the “union” operator returns the smaller upper bound.

49�
4.4 The equation system (transfer functions)

Forward problems The forward problem of availability is computed using a transfer functionfAVAIL. The

equation system is given below.

AVAILout[n ℄ = fAVAILn (AVAILin[n ℄)
AVAILin[n ℄ = um2pred(n)AVAILout[m ℄f(AVAIL)n (x) =df

8><>: Must if n 2 D
No if n 2 Kx otherwise

Backward problems On aseparableVNG, backward problems are set up analogously to the forwardones

(separable VNG is defined in Definition 3.5, page 39). For general VNGs, however, dataflow facts may merge

not only when control-flow paths merge, but also when threadsmerge (which can happen at the arguments of

a�-node). This thread merge has a different effect than the control-flow one, which createsMay whenMust

meets withNo, combining paths in a path-sensitive way. In contrast, the thread merge combines threads

that share the samesibling path (see Definition 3.4). It is sufficient that one of the threads has the property.

Therefore, whenMust meets withNo the result isMust.

The thread merge uses the “union” operatort, which is defined using the following order> > Must > May > No:
Example 4.2 (Backward Dataflow Analysis)Consider the example below. The threads fora+ b anda+

meet on the CFG edge betweenS2 andS5. This merge influences the computation of anticipability. The

values computed inS6 andS7 are anticipated atS2. Note that the solution of anticipability does not change

if S6 or S7 is removed.�S1:if () thenS2: c := bS3:elseS4: ...S5:end ifS6:.. := a + bS7:.. := a + c

a+ b !
3a+
 !
5 S1:if () thenS2:
1 anticipated hereS3:elseS4: ...
3 := �(
1 ;
2)
5 := �(
1 ;
4)S5:end ifS6:
3S7:
5
the original program the Value Name Graph

Equipped with the union operatort, we can set up the equation system.

50

ANTICin[n ℄ = fANTICn (ANTICout[n ℄)
ANTICout[(n; e)℄ = um2succ(n)t(m;e0)2succ((n;e))ANTICin[(m; e 0)℄fANTICn (x) =df

8><>: Must if n 2 U
No if n 2 K [(D nU)x otherwise

4.5 Computing dataflow solution (the solver)

The maximal fixed-point of the equation systems can be found with an iterative dataflow solver. An

effective alternative to an iterative algorithm is a demand-driven analyzer [DGS97,SRH96].

The four lattice values are efficiently encoded using two bits. Each valuev is represented as a pair(vall; vsome), where the first bit is true if the property holds on all paths and the second if the property holds

on some (possibly all) paths (this meaning does not hold for>, which serves only as an initial guess of the

dataflow solution and never appears in the final solution).v vall vsome> 1 0
Must 1 1
No 0 0
May 0 1

Given this encoding, the “meet” operatoru performs the bit-wiseandonvall, and the bit-wiseor onvsome.v uw = (vall; vsome) u (wall; wsome)= (vall andwall; vsomeor wsome):

Chapter 5

Estimators: High-Fidelity Profiling using
Low-Cost Profiles

When an optimizing compiler has knowledge of the run-time behavior of the program (e.g., the

execution frequencies of statements), it can avoid making transformations that would result in a small run-

time benefit. The most common types of program profiles areedgeprofiles andpathprofiles, which measure

how frequently the edges/paths are executed for a given set of inputs.

A typical profile-directed optimizer works in two steps. First, a profiler measures the run-time

behavior of the program. Second, the program transformation consults the generated profile, toestimatethe

run-time benefit of alternative transformation choices. Ina path-sensitive setting, these two steps are currently

incompatible:edgeprofiles are inexpensive to collect but their estimates are imprecise and path-insensitive.

Pathprofiles produce more precise, path-sensitive estimates, but they are expensive to collect and non-trivial

to consult and incorporate into dataflow analysis.

This chapter bridges profiling and optimization. It presents a technique that uses edge profiles,

an inexpensive, path-insensitive measurement of program’s control-flow behavior, and produces a profile-

weighted dataflow information—information that is a) informative: compatible with the value-flow optimizer

and b) practical: inexpensive, yet precise.

Informativeness:Dataflow analysis on the Value Name Graph answers essentially Boolean ques-

tions: “given a computation at noden, does a value flow along some path ton?” When this question is an-

swered in relative terms, using the expected execution frequency of the value flow, program transformations

can perform a cheaper program optimization (i.e., one that requires less code growth due to code duplication),

as will be shown in Chapter 6. This chapter presents a set ofestimatoralgorithms for computing suchfre-

quency informationby combining Boolean dataflow information with a program profile. In this dissertation,

the frequency information has two uses: it guides the program transformation (Chapter 6) and evaluates the

performance of the entire framework by quantifying the amount of value-flowexposedby the static analysis

(Chapter 8).

Practicality: Practicality was the primary design goal behind the PATHFINDER estimators and was

achieved through two novel contributions. First, estimators were designed to work from edge profiles, which

have low profiling cost and are widely supported. Unfortunately, edge profiles are inherently imprecise, be-

cause they cannot reconstruct frequencies of individual program paths. To add confidence to profile-directed

optimization, the estimators bound the inherent imprecision that surfaces in the computed frequency. The

bound is achieved by assuming an optimistic and a pessimistic scenario of the profiling error.

The second contribution is that the estimators form a hierarchy of increasing precision. The hier-

archy provides a practical solution to profile-weighted analysis: when a simple estimator returns bounds that

51

52

are too loose, the compiler can invoke a better estimator. The better estimator will obtain bounds guaranteed

to be no worse, while reusing (some) information already computed by the simpler estimator, decreasing both

the compile time and the implementation effort. The tunableprecision is obtained via two algorithmic prin-

ciples: a) localizing program regions vulnerable to the edge-profile error, and b) reducing the error through

various notions of control flow reachability.

Another contribution is the experiments with edge profiles.While our estimators cannot eliminate

the inherent edge-profile error, by computing its bounds they restrict it, and also quantify the fundamental

limitations of edge profiles. The experiments show that the inherent error is small (at least for load reuse).

With good algorithms, the error can be considerably reduces: our second best estimator was able to bound

the error down to 5%, a 4-fold improvement over our simplest estimator. Hence, when used properly, edge

profiles seem to provide sufficient precision and a simple implementation.

This chapter starts by stating the problem, motivating an ideal estimator, and reviewing the related

work. Section 5.2 intuitively introduces the principles behind our estimator algorithms. The following two

sections present the estimator algorithms, first for separable VNGs (Section 5.4), and then for general VNGs

(Section 5.5). Section 5.6 empirically evaluates the precision of our estimators. Edge-profile precision is

limited; for absolute precision, a more detailed profile is needed. Section 5.7 sketches a novel profiling

algorithm that is fully path-sensitive, yet does not require profiling complete program paths. Section 5.8

concludes by summarizing our results and providing recommendations for deployment of estimators in a

production compiler.

5.1 Motivation and related work

Before describing the estimator algorithms, this section states the problem of estimating, from a

profile, the run-time benefit of an optimization. This section also highlights the inherent issues and describe

how they are tackled by existing techniques.

5.1.1 The problem statement

Recall that, on the VNG, value reuse is manifested as areuse thread, a kill-free VNG path connect-

ing a generator and a user of the same value. Each execution ofa reuse thread corresponds to exactly one

reuse opportunity. Note that each programpathmay execute multiple reusethreadsrunning along this paths,

giving rise to multiple opportunities (see Definition 3.4 onpage 38).

Informally, theestimation problemis to determine how many reuse threads are executed by a given

program input. Notice that, for the moment, we are not restricting ourselves to a specific profile format to

measure the behavior of the program on the given input. In fact, selecting (or designing) the profile is an

inherent part of solving the estimation problem. To this end, Section 5.1.4 evaluates existing profile formats,

justifying our selection of edge profiles. On the other hand,Section 5.7designsa new profile format.

Figure 5.1 introduces a running example. The estimation problem is illustrated on a program frag-

ment in VNG form (see Chapter 3), in which the three loads havebeen detected to always refer to the same

memory location, denoted with a symbolic name[x ℄. NodeA, C, andE are users (and thus also generators)

of the value. NodesB andD kill the value, as they may write to[x ℄, according to some alias analysis. When-

ever the program executes two loads ofx without intercepting a killing store, the later load is redundant and

can be eliminated.

53

l

g

h

i

m

j k

E load x

C

D

B

f

load x

load xA

kill x

kill x

Figure 5.1: The estimation problem statement: What is the amount of reuse among the loads of[x ℄?
Constituent sub-problems: what kind of program profile should be collected at run-time? How to combine
the collected profile with the static analysis?

The estimation problem is to determine how many times the program input executes a reuse thread,

which in the figure are[A; f; C℄, [C; j;m;E℄, [A; f; h; i; j;m;E℄, and[A; f; h; i; [k; l℄+;m;E℄, where ‘+’

denotes the usual non-zero repetition. Each time any of these threads is taken, exactly one load ofx can be

removed. Note that because the VNG is separable and has only one symbolic name ([x ℄), threads can be

referred to as paths.

5.1.2 The applications of estimators.

An algorithm that solves the estimation problem is called anestimator. In this dissertation, estima-

tors have two-fold application:

Profile-directed transformation.Chapter 6 develops PRE transformation algorithms that overcome the limi-

tations of the traditional PRE that is based on codemotionvia

1. CFGrestructuring(this algorithm is called PRE(MR); it is expensive but achieving optimal re-

moval of redundancies), or

2. controlspeculation(this algorithm is called PRE(MS); it is inexpensive but is sub-optimal).

To decide between the two options, their expected run-time benefit must be known.

Because restructuring removes all redundancies, the run-time benefit of restructuring equals the amount

of reuse in the program, which is exactly the precise estimate bounded by the estimator. For specula-

tion, it turns out that, for each estimator, one can determine how to carry out the speculation transforma-

tion in such a way that its benefit equals exactly the lower bound of the estimate. Thus, by comparing

54

the lower and the upper bounds, estimators identify when speculation is too sub-optimal, facilitating

trade-offs between restructuring and speculation.

Evaluation of the VNG.Chapter 8 uses the estimators to measure the accuracy of the VNG at finding value

recomputation. By incorporating the profile into dataflow analysis, an estimator computes, in dynamic

terms, the amount of reuseexposedby the representation and subsequentlycollectedby the dataflow

analysis (see Section 2.1). Chapter 8 compares such an estimate with the (ideal) amount of value flow

presentin the program, obtained usingreuse profiling, done on the same input. The algorithm for

reuse profiling is also developed in Chapter 8. Comparing theexposed/collected amount with the ideal

amount shows what fraction of the reuse detected by the reuseprofiler was found by the static analysis,

and therefore indicates the precision of the framework.

5.1.3 An ideal estimator.

The process of designing the estimator involves designing or selecting a profile format and devel-

oping an algorithm that combines the profile with the result of the dataflow analysis. An ideal estimator

algorithm should have the following properties.� Accuracy: the dynamic optimization opportunities counted by the estimator should equal the oppor-

tunities that occurred in the given execution of the program, unaffected by profile imperfections and

estimator’s approximations.� Dataflow independence:the profile should collect measurements that are independent of what dataflow

facts will be counted by the estimator (reuse of loads, or constants). Dataflow independence enables

reusing the profile for other optimizations, and eliminatesthe need to perform the profiling step (re-

peatedly) between the analysis and estimation stages.� Low-cost profiling:the estimator should use a profile format that requires simple program instrumen-

tation and incurs low execution overhead during profiling.� Low-cost profile processing:the information needed by the estimator should be simple andinexpensive

to extract from the profile.� Sharability: rather than requiring specialized algorithms, the estimator should rely on algorithms that

are commonly implemented in optimizing compilers, to reduce implementation effort. Also, the profile

information should be general enough to be shared by other parts of the compiler.

5.1.4 Program profiles.

The first step in developing an estimator is to select (or design) a run-time program profile. Let

us review next the most commonly used profile formats, describe the information they collect and highlight

their properties.

The use of profiles and profile types Program profiling was originally developed to enhancecontrol-flow

optimizations. Such optimizations use the profile to learn about control-flow behavior of the program, i.e.,

about the frequency with which its procedures or statementsare executed. Control-flow profiles are used for

i) performing compile-time branch prediction, ii) identifying frequently executed (hot) program regions, with

55

profile type information profiling profile accuracy processing
collected cost overhead size

edgeprofile CFG edges 1-3% �(E) low low
pathprofile acyclic CFG paths 30% not reported medium medium

whole-program pathprofile control trace > 100% 1–10MB full ??

Table 5.1:Control-flow profiles.

the goal of enlarging the scope of traditional optimizations, via inlining or trace scheduling, or iii) focusing

the effort of static analysis to hot program regions [AdJPS98,AL98,BGS98a].

In contrast to control-flow optimizations, estimators focus on thevalue-flowbehavior of the pro-

gram. Instead of determining the frequency of control-flow paths, they compute the frequency of value-flow

paths (called threads in the VNG representation), which arecontrol-flow paths along which reuse exists.

What these paths are is determined by the (static) value-flowanalysis.

Accordingly, this section divides profiles into control-flow profiles and value-flow profiles. Control-

flow profiles have received much more attention. There are three profile formats relevant to solving the

estimation problem:edgeprofiles,pathprofiles, andwhole-program pathprofiles. Value-flow profiles ob-

serve values computed by the program. The most common kinds includeaddress profilingandvaluepro-

filing. The former are used to assist in static instruction scheduling, the latter in compiler-supported value-

prediction [RCT+98]. Because value-flow profiles are more expensive than control-flow profiles, and because

they are not independent of the dataflow information to be estimated, we made a deliberate decision to base

our estimators upon a control-flow profiles.

Next, let us discuss control-flow profiles, through the optimizations for which they were developed.

The various profile types were developed because, dependingon the optimization, a different program region

is profiled. Profile-based static branch prediction attempts to predict the direction of a branch from previous

program runs [MH86, FF92]. Such optimization requires the counts of nodes or edges in the control flow

graph. A profile capturing such information is called anedge profile. Edge profiling is also used by procedure

inlining [CMCH92,AGS97], which requires execution frequencies of each call site.

More sophisticated static branch predictors measure the correlation among multiple branches, re-

quiring profiling of control flow paths [YS94]. Suchpath profilesare also useful in forming an instruc-

tion scheduling region, although most schedulers approximate the information with edge profiles [LFK+93,

HMC+92,MLC+92].

The above path profiles collect statistics on short [YS94] oracyclic [BL96a] CFG paths. Recently,

Larus [Lar99] developedwhole-program pathprofiling that captures the entire control flow trace of the pro-

gram. His profiling algorithms compresses the trace by forming a grammar whose (only) string is the executed

trace.

Profiling techniques. The control-flow profiles are summarized in Table 5.1. Next, let us briefly review

existing approaches for collecting the control-flow profiles. The most common technique used is instrument-

ing the program with instructions that increment counters.The algorithms differ in how these counters are

incremented and maintained. For edge profiling, the most efficient technique issamplingthe execution of

the program, which is a more efficient but less precise technique than instrumentation. Of the three profiles,

sampling was used only for edge profiling.

Edge profiles. An edge profile can be collected using program instrumentation with overhead

of about 16% [BL94]. With a hardware-based sampling approach, edge profiles cost only 1–3% over-

56

head [ABD+97]. Recently, a software-based sampling approach was developed, via transient (removable)

instrumentation [TS99], or transient interpretation of native instructions [BDB99]. Their cost is comparable

to that of the hardware-based approach (a few percent).

Path profiles. Path profiles can be collected relatively efficiently, even when compared to the low

cost of edge profiling. A path profile can be obtained with about 30% overhead [BL96a].

Whole-program path profiles.Larus’s compression technique is the best complete profiling tech-

nique. It achieves low memory consumption by compressing the trace (on-line) into a grammar, on which

path frequencies can be determined without decompressing the trace. Still, compared to edge and path pro-

files, the cost of collecting whole-program paths is relatively high (a slowdown of more than 100%). The

compressed profile size is also considerable (24MB for 126.gcc).

5.1.5 Related work: existing estimators.

Let us review next the existing estimators. The related workis divided based on the kind of profile

information used. A common property all of them is that they are based on control-flow profiles. There-

fore, they are dataflow independent: they profile the programbefore performing any value-flow analysis and

estimation.

Edge profiles Ramalingam [Ram96] offers the only existing systematic method for estimating a dataflow

solution. Using edge profiles, hisfrequency analysisderives the probability of a data-flow fact holding at a

CFG node. The probability replaces the less informative Boolean data-flow lattice. The frequency analysis

can be directly applied on the VNG representation: after value flow has been converted into data flow, it is

represented in a domain that frequency analysis can handle.� Accuracy. Unlike our estimators, frequency analysis does not bound the inherent edge-profile error;

without quantifying the error, it is not clear how close the frequency analysis is to the actual estimate.� Sharability. While frequency analysis requires an elimination-style dataflow analysis solver (not

commonly implemented in existing compilers), our estimators rely on control flow reachability or

network flow algorithms, which are easier to implement.� Processing cost.Operating on real numbers, rather than on bit-vectors, frequency analysis is expected

to be rather slow. Our estimators delay the floating-point computation until the value-flow patterns are

abstracted and summarized. Our estimators offer an alternative to frequency dataflow analysis; they

are not as general (not all our estimators can compute the per-node estimate) but are cheaper and fit the

needs of PRE transformations.

Path profiles Gupta et al [GBF97a,GBF97b,GBF98] present various versions of profile-directed PRE, for

exploiting various hardware features. Common to all these algorithms is that they are guided using Ball-Larus

path profiles [BL96a, BMS98]. While the algorithms do not explicitly compute an estimate, the estimate is

computed implicitly, “on-the-fly” during the dataflow analysis.� Accuracy. Unfortunately, even path profiles remedy the correlation problem only partially, as they

measure execution frequencies only of acyclic program paths. As a result, estimating value flow along

cyclic paths incurs the same branch correlation error, as the measured paths may not fully overlap

with the detected reuse paths. Thus, they capture only part of the correlation needed to reconstruct the

frequency of the value-flow path.

57� Processing cost.The algorithms maintain dataflow information independently for each executed path

in the program, hence the slowdown factor due to making the optimization profile-directed roughly

equals the number of acyclic paths with non-zero execution frequency. Experiments in [GBF98] show

that 1.4% of procedures in a subset of Spec95 executed more than 100 paths, and that 35% of proce-

dures executed at least 5 paths.� Sharing. The algorithms are phrased mostly as bit-vector problems and do not require special dataflow

solvers. Collected path profiles can be reused in the instruction scheduler and procedure inliner.

Whole-program path profiles The Larus whole-program path profiler [Lar99] can be used as an estimator.

He provides an algorithm for determining the frequency of a subpath, from the compressed profile.� Accuracy. Whole path profiles completely eliminate the branch correlation error. They, therefore,

represent an ideal profile for value-flow optimizations.� Processing cost. Unfortunately, there are currently no algorithms for determining the frequency

of an set of sub-paths, represented as a regular expression,like the paths[A; f; h; i; [k; l℄+;m;E℄ in

Figure 5.1. Such cyclic paths commonly carry value reuse andmust be estimated by the optimizer.

A hope for an ideal estimator? To summarize the above discussion of existing work, no practical, accurate

estimator exists. Two accurate estimator approaches can beimmediately suggested, but they are both imprac-

tical. The first is to is to follow the dataflow analysis with acompleteredundancy elimination (Chapter 6),

which is followed by re-profiling, to obtain an optimized dynamic computation count. Because complete

redundancy removal is based on restructuring the CFG, such an approach is impractical and—due to the

code growth incurred during restructuring—potentially infeasible. The second approach is to enumerate all

value-reuse paths detected by value-flow analysis and look up their frequencies in the trace produced by

the whole-program path profile. Because dataflow analysis may detect infinitely many reuse threads (due to

loops), we need to (somehow) stop their enumeration when it is certain that the further threads will not be

contained in the thread. In conclusion, it appears that one must accept (and deal with) the error that is inherent

in program profiling. This section presents estimator algorithms that reduce this inherent error and guarantee

its bounds.

5.2 The hierarchy of estimators

This section outlines our estimators and defines concepts common to all our estimator algorithms.

We describe the properties of our estimators and show how they achieve (nearly) all the goals of the ideal

estimator.

The estimators follow three main design choices, each necessitating the following one.

1. Use edge profiles. For pragmatic reasons, our estimators are based on edge profiles. Because edge

profiles are inexpensive to collect and store, we achievelow-profiling cost. Because they measure only

control-flow behavior of the program, we achievedataflow independenceof profiling. Because edge

profiles are widely used, e.g., for procedure inlining and instruction scheduling, we can justify (and

amortize) the profiling cost, achievingsharability.

58

m

g
65 10

40

20

30

25

75

900

85540 5

l

h

i

150

100

j

75

35

35

50

55

k

E

C

D

B

f

load x

load x

kill x

---load xA

Figure 5.2:The running example annotated with edge profile.

2. Compute error bounds.Unfortunately, edge profiles contain an inherent profiling error. Because they

do not capture branch correlation, they cannot reconstructpath frequencies accurately to the actual

execution. Consider the running example annotated with an edge profile, shown in Figure 5.2. One

of the paths with value-reuse is[A; f; h; i; j;m;E℄. The edge profile cannot precisely determine its

frequency; according to the edge profile, the path frequencycan range from 30 to 40 (because the path[B; g; h; i; j;m;E℄ might contribute 10 to the count on the edge(i; j)), which is a large profiling error.

While edge profiles prevent our estimators from achieving trueaccuracy, the estimators presented here

gain confidence in edge-profiles by computing not a single (imprecise) estimate, but instead a lower

and an upper bound of the accurate estimate, by assuming a pessimistic and an optimistic control flow

scenario. Because the bounds limit the inherent error, the accurate estimate lies somewhere between

them. The tighter the bounds are to each other, the more precise the estimate we obtain.

3. Hierarchy of estimators. The amount of the profiling error that appears in the resulting estimate

depends on:

(a) The inherent edge profile error.Even though the edge profile is imprecise, when the control-flow

behavior of the program is skewed highly towards a small number of paths, the edge profile may

describe these dominant paths very precisely. Consider an extreme example, in which each CFG

node is executed at most once. In such a program, the edge profile is as precise as the complete

trace.

(b) The control-flow complexity of value-flow threads.Value-flow threads do not always require

more than the edge profile. Consider nodeD in Figure 5.2. IfD did not kill the reuse of[x ℄,
there would be more value-flow paths, but their overall pattern would be simpler to quantify using

59

the edge profile: the load inE would be redundant always except when it was preceded byB, so

the estimate for the load is its frequency (150) less the frequency ofB (50).

Because the amount of error induced in the estimate varies due to these two factors, the full power of

our algorithm may not always be needed. Therefore, estimators provide a scalable solution: while one

cannot influence the factor (a), one can focus on (b) and tighten—with a scalable effort—the estimator

bounds in those places of the program where the threads have acomplex control-flow pattern.

The scalability is achieved via five estimator algorithms that differ in their error-bounding precision

and run-time complexity, as shown in Figure 5.3. The practical reason for developing a hierarchy of

increasingly better estimators is that when a simpler (and faster) estimator yields loose bounds, one can

run the next better (but slower) estimator, with the guarantee that the new bounds will not be worse.

Resorting to a stronger algorithm only when necessary results in low processing cost. Furthermore,

our estimators share a common paradigm, and rely on information or algorithms used also by other

PathFinder stages, thus providingsharability.

Having established our design choices (computingerror boundsof edge profilesin a hierarchical

manner), we can formulate theedge-profileestimation problem. From now on, the term profile refers to

the edge profile. Lett[start; end℄ be a control trace (i.e., the sequence of executed nodes) andoccurs(p; t)
the number of times a pathp occurs in the tracet, that is, the execution frequency ofp in the executiont.
Similarly, we defineoccurs(p ; t), for a value-flow threadp : occurs(p ; t) = occurs(path(p); t).
Definition 5.1 (Edge Profile) Given a CFGG = (N;E; start; end) and a profilefreq : E ! Z, a tracet in-

ducesthe profilefreq , denotedt=freq , iff for eache = (n;m) 2 E; freq(e) = occurs([n;m℄; t). Conversely,

a tracet is permittedby a profilefreq if t inducesfreq . �
Recall the Definition 4.1 of value reuse threads (page 47), which are VNG sub-threads, originating at a

generatorVNG noden 2 D , sinking onto auserVNG nodem 2 U , without crossing akill VNG nodek 2 K .

The trace determines the dynamic amount of value-flow in the program. It precisely determines the

estimate, i.e., how often a user node is executed such that itis preceded by a generator node without crossing

a kill node. The estimation problem is then to bound the estimate. The bounds are computed by considering

a pessimistic (and an optimistic) control flow scenario permitted by the profile. In other words, the goal is

to find the smallest (and the largest) amount of value flow, among all possible traces permitted by the edge

profile.

Definition 5.2 (The Estimation Problem) Theestimation problemS is a tupleS = (G;R; freq), where� freq is an edge profile on a control flow graphG = (N;E; start; end), freq : E ! Z,� G = (N ;E ; start; end) is a value name graph onG.� R = (G;D ;U ;K) be the set of reuse threads (see Definition 4.1 on page 47)R(G;D ;U ;K) = fp j �p > 0 ;p [0 ℄ 2 D ;p [�p ℄ 2 U ;p[j℄ 62 D [K ; 0 < j < �pg

60

Theestimation problemS = (G;R; freq) is to compute the lower and upper boundsL andU on the amount

of reuse permitted by the edge profilefreq :

L = minftjt=freqgXp2Roccurs(p ; t)
U = maxftjt=freqgXp2Roccurs(p ; t): �

Example 5.1 Figure 5.2 illustrates the estimation problemS = (G;R; freq). The reuse threadsR cor-

respond to the optimization opportunities for the removal of redundant load operations ofx . Whenever the

program follows a reuse thread, exactly one load operation can be removed. The reuse threads to be estimated

are specified using the generator (loads or stores), user (loads), and kill (stores) sets:D = fA;C;EgU = fA;C;EgK = fDg
The problem is to compute the minimum and the maximum number of these reuse opportunities as permitted

by the annotated profile. In other words, we want to find maximum and minimum assignments of frequencies

to the reuse threads such that the frequency assignments arepermitted by the edge profile. Even without

enumerating all reuse threads, the reader can convince herself that in the example the maximum assignment

is 115, and the minimum assignment is 100. �
According to Definition 5.2, the boundsL andU are tight; i.e., the relative error(U � L)=L can

be entirely attributed to the imperfections of the edge profile (although the error size depends also on the

shape of value-flow threads, as explained in bullet 3b on page58). The best estimator is tight only on a

separable VNG with a single symbolic value, like the VNG in Figure 5.2. On a general VNG, the estimation

problem may be NP-hard, and our estimators compute its approximation. The estimators do not guarantee a

competitive ratio for their approximations. However, their precision can be measured using the relative error(U � L)=L, and in practice, the relative error of the second best estimator was about 5%.

5.3 Overview of estimators.

Computing the estimate as prescribed by Definition 5.2 wouldinvolve iterating across a) all traces

permitted by the profile, and b) all possible reuse threads fromR. Such a direct approach is impractical,

as there may be too many permitted traces and infinitely many reuse threads, such as those denoted by[A; f; h; i; [k; l℄+;m;E℄ in Figure 5.2.

Rather than dealing with individual traces and threads, ourestimators findsummary program points

that “summarize” groups of paths with identical value-flow properties. The properties are: a) value is gener-

ated along incoming paths, b) value is generated along no incoming paths, and c) value can be reused along

all outgoing paths.

Lemma 5.1 (Summary Points)LetG be a VNG andR = (G;D ;U ;K) a set of reuse threads onG.

61

PRE

CMP1
CMP

CMPr
CMPfm

o
re

p
re

ci
se

Figure 5.3:The estimators and their precision ordering.

1. Producers.If a VNG edgea is aproducer, then the reuse is generated (by a generator fromD) along

all control flow paths reaching the source ofa .

2. Stealers. If a VNG edgea is a stealer, then the reuse is generated along no all control flow paths

reaching the source ofa .

3. Consumers.If a VNG edgea is aconsumer, then the value (that flows across the edgea) will be used

(by a user fromU) along all control flow paths originating at the sink ofa . �
The estimators differ how they place the summary points. In each estimator, the sets of producers, stealers,

and consumers are denotedPr , St , Co, respectively. The remainder of this section focuses on theplacement

of summary points.

To compute the actual value of the upper bound, our estimators determine how much reuse can

flow between generators and the set of consumers points. To arrive at the lower bound, they determine how

much (reuse-free) flow can reach from stealers to the consumers, stealing[BMS98] the reuse flowing from

the sources.

Note the contrast between generators/users/kills (Definition 4.1) and producers/consumers/stealers

(Definition 5.1). While the first triplestatesthe problem by specifying the value flow patterns in the VNG,

the latter triplerepresentsthe problem statement to enable an efficient and accurate computation of estimate

bounds. Producers summarize generators, consumers summarize users, and stealers summarize kills and

other reuse-free path.

An overview of our estimators. The estimators differ in how they compute these three sets and how pre-

cisely they account for the possible value flow among them. That is, they differ in how much error (in ad-

dition to the inherent error) they allow when constructing their pessimistic/optimistic reuse scenarios. Next,

we present a brief overview of the individual estimators, starting from the conceptually simplest one. The

estimator hierarchy is given in Figure 5.3; the estimator names will be explained below.

PRE is the simplest estimator. Mirroring closely the Partial Redundancy Elimination transformation (see

Section 6.2), producers are taken to be those instructions that generate the reuse, that is, the instruc-

tions fromD ; consumers are the partially redundant computations, thatis, the user nodes fromU ;

and stealers are the points where an operation must be inserted by PRE to compensate partial redun-

dancy. To determine which generators (or stealers) may produce (or steal) reuse for each consumer

computation, PRE uses graph reachability.

62

The PRE estimator uses a trivial placement of summary points. A smarter placement can improve

the bounds by exploiting an observation that some reuse threads can be estimated precisely even from the edge

profile. For example, if a producer is post-dominated (followed on each control flow path) by a consumer

(with no intervening kill), then all reuse from the producermust reach the consumer, and no reuse can be

stolen. Consequently, the producer frequency represents aprecise estimate for all threads that connect the

producer and the consumer, considering them all in concert.For such threads,anyedge profile is precise;

they can be safely excluded from worst-case control flow scenarios.

Thus, the central idea behind the remaining estimators is toisolate the reuse threads for whichany

edge profile is precise and focus on reducing the error in error-containing threads. This (effective) factoring

of threads is accomplished by placing the summary points as close to each other as possible: starting from

the PRE’s position of summary points, producers and stealers are delayed (i.e., moved forward) and the

consumers are hoisted (i.e., moved backward). When these points meet, then all threads represented by them

can be precisely summarized by the frequency of the meeting edge. Conversely, when these points do not

meet, error remains, but we at least minimized the lengths ofconsidered threads, minimizing the number of

branches on these threads, and thus reducing the branch-correlation error induced in the solution.

It is interesting to note that the closest placement of summary nodes coincides with theCMP re-

gion,1 described in detail in Chapter 6, where it is used to identifyobstacles to the complete PRE transfor-

mation. The CMP region is the smallest multiple-entry, multiple-exit region in which the entry edges can be

divided between producers and stealers, and the exits between consumers and (strict) non-consumers. Being

the smallest such region, it finds the desired closest placement of summary points.

The CMP region precisely divides (the reuse in) the VNG into uncertain and definite. Each node

in the CMP has an error, as the reuse is produced only alongsomeincoming pathsand can be consumed

only alongsomeoutgoing paths. Consequently, without the knowledge of branch correlation in the CMP, it

is not possible to determine how much incoming reuse actually flowed to consumers in the profiled program

execution. Conversely, each node outside the CMP region is error-free, as the value iseither produced (or

stolen) alongall incoming pathsor is consumed alongall outgoing paths; in either case, the edge profile is

sufficient.

To summarize, the CMP region contains all the branch-correlation error inherent in the edge profile.

Therefore, the four CMP estimators focus on reducing the error contained in the CMP region, with different

variations on the optimistic/pessimistic approach, as follows:

CMP1 estimator conservatively assumes that there is a single CMP(hence the1 in the name), in which all

entries and exits are mutually reachable. This false reachability may connect consumers to spurious

producers and stealers, yielding loose bounds.

CMP
 attacks false reachability by partitioning the CMP region into connected CMP subregions, using

graph reachability between CMP entries and exits. The individual connected CMPs are treated with

the CMP1 estimator.

CMPr exploits entry-exitreachability further. Compared to CMP
, it removes false reachability even within

each connected CMP by computing the amount of value flow as a network flow problem.1CMP region stands forCode-Motion-Preventingregion. By using the termCMP before it is introduced later in
Chapter 6, we are getting ahead of ourselves. Chapter 6 must follow this chapter because it relies on the estimators
presented here to develop its transformation algorithms. The name CMP reflects the transformation and not the estimation
for historical reasons: the transformation algorithms were developed earlier [BGS98a] than the estimators [BGS98b].

63

CMPf exposes to the networkflow computation of all the CFG edges in the CMP, not just the summary

entry-exit reachability information, thus exploiting a refined notion of reachability that accounts for

how much reuse can flow between CMP entries and exits, and not just whether they are reachable.

The following two sections present the detailed estimator algorithms, Section 5.4 for separable

VNGs, to simplify the presentation, and Section 5.5 for general VNGs.

5.4 Estimators for separable VNGs

This section assumes aseparableVNG, i.e., a VNG without�-nodes, and hence without any

dataflow transfers between value names. Without transfers,each name can be handled separately as a “slice”

of the VNG, with CFG properties. To handle general VNGs, onlyminor algorithmic extensions are needed,

but we delay them to the next section, once the basic principles are clear.

Recall the following notation introduced in the previous section. Given an estimation problemS =(G;R; freq), an estimator algorithme 2 fPRE;CMP1;CMP
;CMPr;CMPfg returns upper and lower

bounds on the accurate estimate, denotedUe andLe, respectively. The problemS specifies the value flow

using three sets of VNG nodes: generatorsD , usersU , and killsK ; the estimate measures the frequency ofK -free threads betweenD andU . All estimators summarize value flow by finding a placement ofsummary

points: producersPr , stealersSt , and consumersCo. Also, we overload the edge profile by extending its

domain to VNG nodes and edges in a straightforward way,freq : (E [N [N [E)! Z.

Recall the Definition 4.2 of availability and anticipability, two dataflow properties that describe

whether a value flow was computed on an incoming path, or can bereused on an outgoing path, respectively.

Using the lattice defined in Definition 4.4, these propertieshave the following meaning.

AVAILin[n ℄ = 8><>: Must all

No if x is available along no paths.

May some

Anticipability (ANTIC) is defined analogously.

The placement of summary points will be computed from the dataflow solution of availability and

anticipability (see Definition 4.3 on page 48). The following lemma shows that, whatever the particular

selection of producers, each producer must beMust-available. Similar relationships hold for consumers and

stealers.

Lemma 5.2 (n ;m) 2 Pr) AVAILout[n℄ = Must(n ;m) 2 Co) ANTICin[m℄ = Must(n ;m) 2 St) AVAILout[n℄ = No

Proof. According to Definition 5.1, each producer generates the value each time it is executed. Therefore,

the value must be generated on each path leading to the producer. Hence, its availability solution isMust.

Similar arguments apply for consumers and stealers. �

64Pr := f(n ;m) 2 E j n 2 DgCo := f(n ;m) 2 E jm 2 U gSt := f(n ;m) 2 E j AVAIL[n ℄ = No ^ AVAIL[m ℄ = MaygPr(
) := f(n ;m) 2 Pr j 9p = hm ;
i : p \ (D [K [St) = ;gSt(
) := f(n ;m) 2 St j 9p = hm ;
i : p \ (D [K [St) = ;g
LPRE(
) := maxf0; freq(
) � Xs2St(
) freq(s)g
UPRE(
) := minffreq(
); Xr2Pr(
) freq(r)g

LPRE := X
2Co LPRE(
)
UPRE := X
2Co UPRE(
)

Figure 5.4:The PRE estimator.

The PRE estimator. The PRE estimator calculates the estimate independently for each consumer point;

given the individual estimates, the total estimate is obtained as their sum. The PRE estimator mirrors the

PRE transformation (see Chapter 6):� consumersCo are VNG edges that sink onto optimizable statements (user nodes).� producersPr are the sources of redundancy,Pr = D . Computed independently for each consumer

point
 2 Pr , the producers of each consumer
, denotedPr (
) � Pr , are VNG edges that emanate

from those generators nodes that may reach
 without crossing a kill, i.e., those generators that are

backwards reachable from
 along some (kill-free) thread.� the set of stealers for a given consumer
, denotedSt(
), are those VNG edges onto which a compu-

tation must be inserted to make (the partially redundant)
 fully redundant. Stealers are also computed

using graph reachability.

To compute the upper bound for a consumer
, we assume the most optimistic control flow scenario: all

produced values that can reach
 actually flow to
. In such a scenario, the frequency of reuse threads

betweenPr(
) and
 equals the lower ofPr(
)’s and
’s frequencies. The lower bound assumes the worst

case: all flow from reachable stealers flows to
, minimizing the frequency with which
 executes with a

value flowing from producers, stealing value flowing from producers. The formulas for computing the PRE

estimate are shown in Figure 5.4. Note that themax operator inLPRE(
) serves to make the lower bound

non-negative.

Example 5.2 (The PRE estimator)Let us apply the PRE estimator to the VNG in Figure 5.5. (See Ex-

ample 5.1 for the definition of the problem.) The producers, consumers, and stealers for the PRE estimator

65

55

100

35

150

l

g

h

i

50

j

65 10

40

20

30

25

75

900

85540 5

m

k

75

35

producer

Summary points:

consumer

stealerload x

C

D

B

f

load x

kill x

A

E

load x --

Figure 5.5:Example of the PRE estimator.

are Pr = f(A; f); (C; j); (E; :)gCo = f(:; A); (f; C); (m;E)gSt = f(g; h); (g; k); (D;m))g
The bounds for consumersA andC are trivial, asA is not redundant (has no reaching producers)

andC is fully redundant (has no stealers):

LPRE(A) = UPRE(A) = 0
LPRE(C) = UPRE(C) = 35:

The edge-profile error affects only the (partially redundant) consumerE, whose producers and stealers arePr(E) = f(A; f); (C; j)g;St(E) = f(g; h); (g; k); (D;m)g;
yielding bounds for the consumerE

LPRE(E) = maxf0; freq(
) � Xs2St(
) freq(s)g = maxf0; 150� (10; 40; 55)g = 45
UPRE(E) = minffreq(
); Xr2Pr (
) freq(r)g = minf150; 100+ 35g = 135:

66

The total estimate is

LPRE = X
2Pr LPRE(
) = 0 + 35 + 45 = 80
UPRE = X
2Pr UPRE(
) = 0 + 35 + 135 = 170;

which is a(170� 80)=80 = 112:5% error. The smallest (tightly bounded) error is 15%. �
The CMP estimators. This large error produced by the PRE estimator is not entirely due to the error of

the edge profile. Instead, the loose bounds are caused by PRE’s crude placement of summary points, which

suffers from “overbooking” of a producer to multiple consumers. In the running example, nodeA acts as

a producer common to consumersC andE, which together consume more value flow thanA can produce

(whileA produces only 100 units,C andE together consume35 + 150 units, see Figure 5.5). Overbooking

can be removed by dividing the producer’s contribution among paths leading from the producer to its different

consumers. In the CMP estimators, the contribution is divided bydelaying[KRS94a] the producer. Delaying

moves the producer forward along all paths as far as it remains a producer according to Definition 5.1, i.e., as

far as each path through it generates the value. Figure 5.6(a) shows how producer(:; A) is delayed into the

edges(f; C) and(f; h), which become the new producers, effectively dividing the contribution ofA among

consumersC andE.

Note that consumers, too, cause PRE’s imprecision. In the example, the consumerE claims to

be able to consume 150 units (equal to its weight), while only95 units can reach it, due to the kill nodeD
which blocks 55 units of value flow. This flawed flow accountingis fixed byhoistingthe consumers. Hoisting

moves consumers backwards as far as they remain consumers, much like delaying moves the producers.

After producers are delayed and consumers are hoisted, all summary points are optimally placed.

(Note that, unlike its producers and consumers, PRE’s placement of stealers was already optimal.) The

placements are optimal in the sense that the summary points cannot be moved closer to each other without

being forced onto a path that contradicts their definition (Definition 5.1). As a result, the paths between

producers/stealers and consumers are as short as possible,minimizing the number of conditional branches

on these paths and thus also the branch-correlation error appearing in the estimates. Indeed, where produc-

ers/consumers and stealers meet, creating unit-length paths, edge profile introduces no error. For example,

the frequency of the unit-length producer-consumer path[(C; j)℄ can be trivially and precisely determined

from any edge profile. On the other hand, where the summary points do not meet, error may appear in the

estimate.

To put these principles on a solid footing, we observe that the summary points enclose a VNG

region. The region has multiple entry edges and multiple exit edges. Its entries can be divided between

producers and stealers, and its exits can be divided betweenconsumers or (strict) non-consumers. Because

the summary points are optimally placed, the region is the smallest region that contains all the profiling

error. It turns out that this region precisely coincides with the CMP region to be presented in Chapter 6. The

CMP maximizes the number of paths that can be excluded from the worst-case assumptions about branch

correlations: any thread passing outside the CMP region canbe estimated precisely from any edge profile.

Conversely, any path that crosses the region may have profiling error (for some profiles).

Let us rephrase now the definition of the CMP region (to be stated in Definition 6.4) using the

terminology of this chapter. Formally, the CMP is a subgraphof the VNG, delimited by entry end exit edges,

such that on each node from the CMP region, its value is generated on some (but not all) incoming threads,

67

reuse on memory location x.with an edge profile.

frequency reachability.

f

control-flow reachability.

r

xN

N

M

Mx

n
n

5
40

j

55

m

20

855

900

75

25

40

10

30

65

100

exits:

entries:

l

g

h

i

k

m

150

35

75

8

8

65 10

40

40

20

4075

900

5

65 10

855

20

40

50

CMP(x)

35

No-Avail

No-Antic
Must-Antic

Must-Avail

delay producers

hoist

load x

load x load x

kill x

M

load x

load x

load x

actual flow capacity (the weak link is exposed)

M
X

infinite flow capacity

M
X

N
N

(c) CMP estimator, based on

N
M

(d) CMP estimator, based on

N

(a) The source program annotated

N

(b) The CMP region for the

C

D

BA

CMP region

E

f

kill x

N

kill x kill x

Figure 5.6:Computing the estimates on the running example.

68

and will be used on some (but not all) outgoing threads. The CMP region is identified by solving the problems

of anticipability and availability, as defined in Definition4.2.

Definition 5.3 (CMP Region) LetG = (N ;E ; start; end) be a VNG. The CMP region ofG is the set of

nodesn � N such that for alln in the CMP region,AVAILin[n ℄ = May andANTICin[n ℄ = May . �
Lemma 5.3 (Entry/Exit Edges of the CMP Region.)The CMP region has a set of entry edges and exit

edges. Each entry is either� Must-available, denotedenM , acting as producers, or� No-available, denotedenN , acting as stealers.

Similarly, exits are either� Must-anticipated, denotedexM , acting as consumers, or� No-anticipated, denotedexN , not participating in the estimator calculations. �
The CMP region divides the value flow intodefiniteanduncertaincomponents. The definite com-

ponentSd has no error and equals the sum of frequencies of all definite producersPrd, defined in Figure 5.7

below. The salient property of each definite producer is thatall value flow it produces will be consumed. The

bounds of the uncertain component are computed in the CMP region and are given in Figure 5.8.Prd := f(u ; v) j AVAILout[u ℄ = Must ^ (AVAILin[v ℄ = May _ v 2 U) ^ ANTICin[v ℄ = MustgSd := Xn2Prd freq(n)
Ue := Sd + Ueu
Le := Sd + Leu

Figure 5.7:The CMP estimators for separable VNGs.e 2 fCMP1;CMP
;CMPr;CMPfg The formulas
for computing the uncertain component of the estimate (Leu andUeu) are given in Figure 5.8.

Example 5.3 (CMP Region, Definite Estimate)The CMP region for the running VNG example is shown in

Figure 5.6(b). The CMP region excludes from the worst-case considerations threads[A; f; C℄ and[C; j; E℄,
because their estimate can be computed from an edge profile precisely, using thedefiniteproducer points,

which are Prd = f(f; C); (C; j)g
Each of these definite producers provides 35 units of reuse. Because these producers are definite, their reuse

will be fully consumed, byC and byE, respectively. Thus, the definite reuse isSd = 70:
The definite reuse remains the same for all CMP estimators. �

The CMP estimators differ in how they computeUCMPu (x) andLCMPu (x), which are the bounds of

the uncertain component of the estimate. Each of the CMP estimators uses a different notion of reachability;

by reducing the amount of flow that may reach the consumers from the producers (or stealers), the estimators

obtain can refine the upper (or lower bounds). The approachestaken by the CMP estimators are compared in

Figure 5.8.

69

enM2 enM3
enM1

exM2 exM3
exM1 enN2enN1

xN2
xN1 enM2 ;1 enM2 ;2

enM1 ;1
exM2 ;1 exM2 ;2

exM1 ;1 enN2 ;1enN1 ;1
xN2 ;1

xN1 ;1
CMP1 CMP

Uu minfPi nMi ;Pi xMi g PiminfPj nMi;j ;Pj xMi;j g
Lu maxf0;Pi xMi �Pi nNi g Pimaxf0;Pj xMi;j �Pj nNi;jg

ENM
EXM
ENN

ENM
EXM
ENN

CMPr CMPf
Uu maxflow(ENM ;EXM)
Lu Pi xMi �maxflow(ENN ;EXM)

Figure 5.8:The CMP-based estimators for separable VNGs:algorithms for computing the uncertain com-
ponent of the estimate. In the formulas,enM , enN , andexM (are overloaded to) mean the frequencies of the
corresponding CMP entries and exits. namely,enMi denotes theith Must-available entry of the CMP rea-
gion,enMj;i denotes theith entry of thejth connected CMP subregion. maxflow(u; v) denotes the maximum
flow between verticesu andv in the shown networks.CMP1 assumes all CMPs are one, i.e., that all entries
and exits are mutually reachable.CMP
 separates connected CMPs, eliminating some false reachability.
CMPr exploits intra-CMP reachability, using a max-flow computation. CMPf exposes to the max-flow all
intra-CMP edges, including their actual profile weights.

70

The CMP1 estimator. This is the simplest CMP-based estimator. CMP1 identifies CMP entries and exits

and, to minimize its computational cost, assumes that each CMP entry-exit pair is mutually reachable. The

upper-bound scenario resulting from this assumption is that all enM entries are producers for allexM con-

sumers. The lower bound follows the same conservative assumption that the CMP region is fully connected.

The bounds are computed as in the PRE estimator. Figure 5.8 gives the formulas.

CMP1 is very efficient; it computes only theANTIC andAVAIL data-flow solutions. Entries and

exits are identified by examining the two data-flow solutionslocally at each node. The cost of computing the

solutions and the entries and exits is amortized, as they arealso needed by the PRE transformation (Chapter 6).

Example 5.4 (CMP1) For the running example in Figure 5.6(b), CMP1 yields

LCMP1u = maxf0; (40 + 20)� (10 + 40)g = 10
UCMP1u = minf65; 40+ 20g = 60:

The total estimate is

LCMP1 = Sd + LCMP1u = 70 + 10 = 80
UCMP1 = Sd + UCMP1u = 70 + 60 = 130;

which improves PRE’s upper bound by removing overbooking ofthe producerA, reducing the error from112:5% to (130 � 80)=80 = 62:5%. Note that, while CMP1 is better than PRE in this example, it is not

strictly superior in general, as indicated in the hierarchygraph in Figure 5.3. �
The CMP
 estimator. This estimator improves the precision of CMP1 by eliminating some false entry-exit

reachability assumed by CMP1. To this end, it identifies connected CMP subregions, thus partitioning pro-

ducer, stealer, and consumer sets. Smaller sets result in less overestimation when considering the worst-case

scenarios. The bounds are computed separately for each connected CMP, and then summed. In the experi-

ments, this partitioning of the CMP region produced the highest increase in precision. As a result, CMP
 is

the recommended estimator for practical applications, dueto its cost-precision balance (see Section 5.6 for

further empirical observations).

The CMP
 estimator is more complex than CMP1. In addition to computingAVAIL, ANTIC and

identifying CMP entries and exits, it must compute 1) reachability of CMP entry-exit pairs, producing a

reachability graph, and 2) find connected subgraphs of the reachability graph, to find connected CMP sub-

regions. Fortunately, these two analyses are also needed inthe PRE transformation, to guide the profile-

directed speculation (see Section 6.3.2.1).

Example 5.5 (CMP
) In the running example, the CMP region is connected, hence the CMP
 estimate is

identical to that of CMP1. �
The CMPr estimator. This estimator adds more precise handling of intra-CMP reachability. Each CMP

region is represented as a bipartite graph in whichentry andexit nodes are connected if there is a thread

connecting them (see Figure 5.8). The bipartite graphs are connected into a network using three super-nodes

ENM , ENN , andEXM that connect all producers, stealers, and consumers, respectively. The flow capacities

of edges connecting the super-nodes mirror the frequency ofCMP entry and exit edges; the capacity of

intra-CMP edges is (conservatively) set as infinite. Equipped with this network, we compute the upper reuse

71

bound as the maximum flow betweenENM andEXM . Similarly, the amount of reuse that can be stolen from

consumers is given by the max-flow betweenENN andEXM .

Compared to CMP
, the CMPr estimator does not identify connected sub-regions, but instead

computes the more costly network-flow. Note that the networkconstruction implicitly partitions the CMP

into connected sub-regions.

Example 5.6 (CMPr) The network for our running example is shown in Figure 5.6(c). Because CMP exit

edge(i; j) is not reachable from CMP entry edge(g; k), less reuse can be stolen than in CMP
, which

improves its lower bound:

LCMPr = Sd + LCMPru= Sd +maxf0;Xi xMi �maxflow(ENN ;EXM)g= 70 +maxf0; (40 + 20)� 30g= 100;
UCMPr = Sd + UCMPru= Sd + maxflow(ENM ;EXM)= 70 + 60= 130;

which is a(130� 100)=100 = 30% error. �
The CMPf estimator. While an entry-exit pair may be graph-reachable (i.e., reachable along a thread), it

may not be sufficientlyfrequency-reachable. In Figure 5.6(b), such a pair is the CMP entry(f; h) and the

CMP exit(l; E). The only path connecting them contains aweak link—the edge(i; k) with a low frequency

of 5. Even though there is enough value flow on the entry, the weak link prevents this flow from saturating

the exit(l; E)—only 5 units of reuse can be exploited. To account for weak links, it suffices to expose to

the max-flow computation the inside structure of the CMP at the edge level, including edge frequencies, as

shown in Figure 5.6(d).

Example 5.7 (CMPf) After the weak link is accounted for, the upper bound of the previous estimator is

improved:

LCMPr = Sd + LCMPru= Sd +maxf0;Xi xMi �maxflow(ENN ;EXM)g= 70 +maxf0; (40 + 20)� 30g= 100;
UCMPr = Sd + UCMPru= Sd + maxflow(ENM ;EXM)= 70 + 45= 115;

which is a(115 � 100)=100 = 15% error. Note that, for this example, CMPf estimator produced tight

bounds; that is, there exist control tracest1; t2 that induce the edge profileP and t1’s “estimate” equals

LCMPr , andt2’s “estimate” equalsUCMPr . �

72

c := b

a+b

a+b

a+c

a+b

a+b

a+c

a) The CFG of the program. c) The VNG of the program
and its CMP region.

D

C

B

A

p
p p
1 3

2

25

50

50

100

75

25
50

50

25

g

25

25 75
75

50 50

100 100

B

C

D

h h h’

25

i

g

25

e

f

i i’

b) The paths through the CFG.

control-flow paths value threads

Figure 5.9:Computing the estimate on a general VNG.The figures represent a concrete example of the
estimators in Figure 5.8.

5.5 Estimators for a general VNG

The previous section presented estimators for aseparableVNG. On a separable VNG, threads can

be considered in isolation, like bits in a separable bit-vector problem. In ageneralVNG, threads may be split

(even when underlying control flow paths do not split), signifying that a value is identified under multiple,

synonymous names. Such thread splitting qualitatively changes the VNG properties. In particular, what is

considered “overbooking” of a generator by the consumers ona separable VNG may be considered legal on

the general VNG. This section extends our five estimators to handle the complications of the general VNGs.

The example in Figure 5.9 illustrates the issues raised by general VNGs. Consider the control flow

pathsp1 andp2 shown in Figure 5.9(b). Along these paths, the nodesC andD are equivalent, yet in the VNG

they are (correctly) not placed on the same thread. The VNG isshown in Figure 5.9(c). NodesC andD are

not the same thread because they are not synonymous along allincoming paths. They differ along pathp3; as

a result, the thread going acrossg is split into h andh0.
The consequence of such thread splits is that a generator node can “provide” more value flow than

its own execution frequency. Consider the nodeB in Figure 5.9. NodeB is a generator with frequency 25,

yet it provides enough value flow for bothC andD, which are consumers with a frequency of 25each. The

reason whyB can “feed” bothC andD is that its value flow is duplicated when it crosses nodeg, where

the thread is split. As a result of the split, the incoming value flow isduplicatedonto the outgoing threads

(i.e., onto nodesh andh0). A general VNG has thus two kinds of thread splits. First, the split ati is induced

by control flow, just like in the separable VNG. At control-flow split, the frequency of value flow isdivided

73

among outgoing threads. Second, the split atg is induced by synonyms. At a synonym split, the frequency is

duplicated.

On a general VNG, the flow entering the region need not equal the flow leaving the region, which

was the case on a separable VNG. The reason is that value flow may be duplicated in the region. Consider the

CMP region in Figure 5.9(c). The sum of entry edge frequencies is 150, but the sum of exit edge frequencies

is 200. The difference between exit and entry frequencies equals the amount of “flow duplication” in the CMP

region. The amount of this duplication is an important value; it will be used to generalize our estimators.

The PRE estimator. The formulas for computing the PRE estimate are the same as for the separable

VNGs shown in Figure 5.4. The algorithm remains the same as before because each consumer still finds

all its producers and stealers. Compared to the separable setting, the only difference is that some of the

overbooking is actually legal value flow, due to flow duplication, as discussed above.

The CMP estimators. Two extensions are needed to handle merging threads. First,when hoisting the

consumer summary points, it must be guaranteed that they areplaced at points from which exactly one user

is reachable along each outgoing control flow path, even in the presence of thread merging. Second, it must

be accounted for duplication of flow in the region. Because the frequency of CMP exits may be greater than

the frequency of CMP entries, the entries alone do not tell ushow much flow can be produced or stolen.

1. Placement of consumers. When hoisting the consumer points, it must be guaranteed that

consumers are placed at points from which exactly one user can is reachable a) along each outgoing control

flow path, rather than b) along each value namethread, a condition used in the separable setting, in which a)

and b) coincide. The justification for the refinement is that,using b), multiple users can be reached along a

single control flow path. Therefore, the frequency of the consumer point under-represents the amount of users

reachable from the consumer. In Figure 5.9(c), the consumers cannot be hoisted across nodeg because the

consumers would be merged into one consumer whose frequencywould bar less than those of the summarized

users. (Use a better example, in which the edges emanating from thread-merge node areMust-anticipated.)

2. Flow duplication in the CMP region. Let r be a CMP region,fN be the sum ofr’s entry

edge frequencies,fN =Pni freq(ni), andfX be the sum ofr’s exit edge frequencies,fX =Pxi freq(xi).
Then,� = fX � fN gives the amount of flow duplicated in the CMP region. Becausethe duplication

happens inside the region, a fraction of� carries the value reuse and a fraction is reuse-free, depending

on whether the flow originated at producer entries or stealerentries. In CMP1, CMP
, and CMPr, these

fractions cannot be determined (because the inside of the CMP region is not examined) and hence these

estimators (conservatively) increase by� both the producers frequencies and the stealer frequencies. In

contrast, because the CMPf estimator exposes the individual inner edges of the region,it can account for

how much of the duplicated flow is from producers versus from stealers. Instead of computing the�, CMPf
reduces the estimate into a generalized version of the network flow problem, defined below.

For theCMP estimators, the formulas in Figure 5.7 remain valid in the generalized setting. The

formulas for the uncertain component ofCMPestimators change, as shown Figure 5.10. The CMP1 estimator

computes� for all entries and exits together, assuming all belong to the same connected CMP region. The

CMP
 estimator finds the connected sub-regions and computes�i for eachith sub-region. The CMPr
estimator accounts for the duplicated flow by adding a nodeÆ to the network that reflects the intra-CMP

reachability. The added node, denotedÆ, increases the amount of flow that can reach the consumer exits, both

from the producer super-nodeENM and the stealer super-nodeENN .

74

enM2 enM3
enM1

exM2 exM3
exM1 enN2enN1

xN2
xN1 enM2;1 enM2;2

enM1;1
exM2;1 exM2;2

exM1;1 enN2;1enN1;1
xN2;1

xN1;1
CMP1 CMP
� =Pi exMi +Pi xNi �Pi enMi �Pi enNi �i =Pj exMi;j +Pj xNi;j �Pj enMi;j �Pj enNi;j

Uu minf�+Pi enMi ;Pi exMi g Piminf�i +Pj enMi;j ;Pj exMi;jg
Lu maxf0;Pi exMi ���Pi enNi g Pimaxf0;Pj exMi;j ��i �Pj enNi;jg

ENM
EXM
ENNÆ ENM

EXM
ENN

CMPr CMPf� =Pi exMi +Pi xNi �Pi enMi �Pi enNi
Uu maxflow(ENM ;EXM)
Lu Pi xMi �maxflow(ENN ;EXM)

Figure 5.10:The CMP-based estimators for bi-distributive VNGs: algorithms for computing the uncertain
component of estimates. The algorithms generalize the algorithms for separable VNGs (see Figure 5.8).
CMP1 adds the amount of flow duplicated in the CMP region, denoted� to both the produced flow and
the stolen flow.CMP
 is similar, except� is computed for each connected sub-region.CMPr adds more
flow to the consumers by adding a “channel” between the super-nodes and the consumers. The flow capacity
of the added nodeÆ is �. Dotted lines mark edges inherited from the separable CMPr . CMPf computes
the bounds using a generalized version of the max-flow problem, in which some nodes duplicate, rather than
distribute the incoming flow.

75

The CMPf estimator The CMPf estimator exposes to the max-flow computation all inner CMP edges.

To account for flow duplication, let us introduce a generalized max-flow problem, calledmax-dup-flow, in

which some nodes in the network rather than preserve the incoming flow onto the outgoing edges (in the

usual way), while others canduplicateit.

Definition 5.4 (Duplicating Flow Network) A duplicating flow networkG = (Np; Nd; E) is a directed

graph whose verticesN are divided intoflow-preservingverticesNp andflow-duplicatingverticesNd, N =Np [Nd; Np \Nd = ;. Each edge(n;m) 2 E;E � N �N has a non-negativecapacity
(n;m) � 0. For

convenience, we assign the capacity of 0 to all nonexistent edges. We distinguish two special nodess; t 2 Ns,
which are thesourceandsinkof the network, respectively.

Definition 5.5 (Max-Dup-Flow Problem) Let G = (Np; Nd; E) be a duplicating flow network (with an

implied capacity function
, sources and sinkt). A flow in G is an integer-valued functionf : E ! Z that

satisfies the following four properties:

1. Capacity constraint: 8(n;m) 2 E : 0 � f(n;m) �
(n;m)
2. Flow preservation (at flow-preservation nodesNs):8n 2 Ns � fs; tg : Xm f(m;n) =Xk f(n; k)
3. Flow duplication (at flow-duplication nodesNd):8n 2 Nd : Xm f(m;n) = maxk f(n; k)

Reducing the estimation problem to the max-dup-flow problem. The reduction of the estimation

problem to the max-dup-flow problem is straightforward. Foreach VNG noden that is a synonym split

node (likeg in Figure 5.9(c)), a flow-duplicating node is created. For all other VNG nodes, we create a

flow-preserving node.

Computing the Max-Dup-Flow problem.While we do not have an algorithm for computing the

max-dup-flow precisely. Instead, an approximation is computed by reducing the max-dup-flow problem to

the standard max-flow. The reduction is similar to that used in CMPr. The reduction adds� units of flow

to the CMP region but, compared to CMPr does it in a more fine-grained fashion. Rather than connecting

to the nodeÆ the exis of the CMP region, it connects toÆ the flow-duplicating nodes from the CMP region.

This accounts for (some) weak links in the CMP region.

5.6 Experiments

Figure 5.11 compares the precision of the estimators. For each benchmark, the figure plots the

weighted reuse obtained by four estimators (CMPf was not implemented). The reuse is broken up into

four parts; the left two bars together represent the definitereuse componentRd, on which all benchmarks

are normalized. The third and fourth bars are the lower and the upper bounds on the uncertain reuse. The

76

0

0.5

1

1.5

2

go

m
88

ks
im gcc

co
m

pr
es

s
li

ijp
eg per

l

vo
rte

x

to
m

ca
tv

sw
im

su
2c

or

hyd
ro

2d

PRE CMP1

CMPc

CMPr

CMPf

error

smaller
error

INT FP

Figure 5.11:An experimental comparison of estimator precisions.For each benchmark, the plot shows
the precision of four estimators (the CMPf estimator was not implemented). The precision is given by the
dark bar: the bottom of the dark bar gives the lower bound returned by the estimator (normalized); the top of
the dark bar is the upper bound. The eight benchmarks on the left are integer programs; the four benchmarks
on the right are floating-point programs.

floating-point benchmarks (the four on the right) have nearly no uncertain reuse, due to simple control flow.

On the other hand, the reuse in integer benchmarks has a significant uncertain component. It can be observed

that with good algorithms, the profiling error can be greatlyreduced. Note that while, in theory, CMP
 is

not strictly more precise than PRE (as the precision ordering shows), it performs much better in practice. In

fact, CMPr is appreciably better than CMP
 only ongcc. Hence, due to its simplicity, CMP
 may be the

estimator of choice. Overall, the average error was 15% for PRE and 5% for CMPr.
An important observation was that the estimator precision is strongly dependent on the pointer

aliasing information. By interrupting some reuse paths, the killing stores induce more CMP regions, with

more entries and exits, increasing the amount of uncertain reuse. For the comparison in Figure 5.11, we

selected the configuration of load-reuse analysis that caused the largest estimator errors (kill set = each array

and pointer store, and each procedure call; see Section 5.6).

5.7 Correlation profiling

The CMP-based Correlation Profiling estimator is not based on edge profiles. Instead, it assumes

profile information that correlates CMP entries and exits sufficiently to avoid the profiling error. We present

it to show what profile information may fully eliminate the profiling error.

Using the CMP region, we can specify what information from a profiler would enable computing

the reuse with no branch-correlation error. Coming back to Figure 5.6(b), we can observe that the precise

amount of uncertain reuse equals the number of times a producer entryenM is followed by a consumer exitexM . Therefore, measuring the pair-wise correlation between CMP entries and exits captures all branch

correlation that affects the amount of reuse. After the data-flow analysis identifies the CMP regions, the

77

profiler can instrument the program to collect this pair-wise information. Whether such a pair-wise profiling

can be (efficiently) performed prior to knowing the shapes ofCMP regions in the profiled program is an open

question.

5.8 Conclusion

The estimators presented in this chapter compute, given an edge profile, the (bounds of) cumulative

frequencies of the reuse threads detected by the value flow analysis. The estimators are conceptually simple:

they do not reconstruct the path frequencies but instead findprogram points that summarize the paths. The

points are value-flow-dependent; if value flow-patterns aresimple (e.g., value-flow holds on all paths, or can

be handled with code-motion PRE), the edge profile errors maynot appear, for any given edge profile.

The experimental results suggest that imprecise, data-flow-independent profiling followed by smart

estimation algorithms is a very successful strategy for profile-directed optimization. If one desires to use a

more precise, data-flow-dependent profiling, then the correlation profiling described in Section 5.7 seems to

be the alternative of choice.

More specifically, the experiments suggest that the CMP
 estimator offers an ideal balance be-

tween precision and computational cost. On average, CMP
 was able to bound the inherent profiling error

down to about 6.5%, a sufficient precision for profile-directed optimization. Compared to the more complex

estimators, CMP
 has linear asymptotic complexity.

By bounding the branch correlation error, the estimators expose the inherent imprecision of edge

profiles. Our experiments suggest that:� Edge profiles are precise for load-reuse optimization. If this result extends to other value-flow prob-

lems, we do not need path-profiles, which are one of the exponential factors in value-flow optimiza-

tions.� Considering that the inherent edge-profile error is small, as suggested by our experiments, the maxi-

mum amount of error in the result of Ramalingam’s frequency analysis will be correspondingly small

(the result of his analysis always falls between our lower and upper bounds).

Chapter 6

Intra-procedural Removal of Redundancies

This chapter describes the last stage of the PATHFINDER optimizer—program transformation—

whose task is to perform the actual optimization of the program. Given the redundant computations de-

tected by the previous stages, a program transformation stage modifies the program so that values are reused,

rather than redundantly recomputed. Such a transformationis known as Partial Redundancy Elimination

(PRE) [MR79], because it removes redundancies that are onlypartial (i.e., path-specific). Because partial

redundancies include common subexpressions and loop-invariant computations, PRE has become the most

important component of global optimizers.

Ideally, the transformation should remove all computations detected as redundant. While such a

completetransformation is possible (decidable), it may require a different code transformation along each

optimizable program path, which requires a separation of individual optimizable paths, which may in turn

incur prohibitive growth in the program code size. To avoid code growth, practical PRE algorithms restrict

their toolset tocode motion, a method that moves redundant instructions but does not separate paths. The price

of practicality is, however, the failure to remove the redundancies completely. Experimental observations

show that the penalty is severe. In static terms, 73% of loop-invariant statements cannot be eliminated from

loops by code motion alone. In dynamic terms, the traditional (code-motion) PRE eliminates only half of

redundancies that are strictly partial.

This chapter focuses on achieving a (nearly) complete PRE while incurring an acceptable code

growth. This goal is achieved by combining the strengths of three transformation methods—code motion,

control flowrestructuring, and controlspeculation—integrated in a parameterizable way that induces a family

of transformation algorithms, all built on the same abstraction. The algorithms are characterized either as

profile-independent or profile-guided.

The main profile-independent algorithm integrates the economical code motion with the more pow-

erful restructuring. In contrast to existing complete techniques, the algorithm resorts to restructuring merely

to remove obstacles to code motion, rather than to carry out the entire optimization. For a large class of

problems, this algorithm achieves minimal code growth.

When a program profile is available, additional code growth reduction is possible by sacrificing

completeness where it is dynamically insignificant. Based on the profile-based estimators from Chapter 5,

the main profile-guided algorithm combines code motion withcontrol speculation. Speculation overcomes

the obstacle to code motion not by separating paths, but by inserting computations on program paths that did

not execute them in the original program. Estimators ensurethat after this (potentially counterproductive)

transformation, the program is improved more than it is impaired. In fact, estimators can maximize the

optimization benefit of speculation.

78

79

The last algorithm balances all three transformations: when the economical code motion fails and

the unsafe speculation impairs the program, restructuringis used. In practice, the algorithms presented in this

chapter can achieve a near-complete redundancy removal with very little code growth.

This chapter is concerned with the reuse ofintra-procedural value flow.Inter-procedural redun-

dancies will be attacked in the following chapter.

6.1 Overview

The PATHFINDER stages presented so fardetectedthe reuse of values: in turn, the representation

exposed value flow using threads, the analysis marked value reuse on the threads, and the estimators weighted

the reuse threads with profile information. The task of the last stage is toexploitthe value reuse, by transform-

ing the original program so that values are reused rather than redundantly recomputed. This transformation,

known as Partial Redundancy Elimination (PRE), was first proposed by Morel and Renviose [MR79].

By removing computations that are partially redundant, PREis responsible for handling thepartial

flavor of path-sensitivity, i.e., the reuse that is available only along some paths (see Section 1.4). Formally,

partially redundant computations are VNGuser nodes for which reuse was detected along some (but not

necessarily all) paths. See Definition 4.1 for the description of reuse threads.

Definition 6.1 (Partial Redundancy) A VNG noden 2 U �N is partially redundantif there is a reuse

threadp [m ;n) 2 R.

It can be shown that a computationn is partially redundant when

AVAILin[n ℄ 2 fMust _Mayg
(see Definition 4.3.)

PRE is attractive because, by targeting computations that are redundant only along some program

paths, it subsumes and generalizes two important value-reuse optimization: global common subexpression

elimination and loop-invariant code motion. Furthermore,because the VNG uniformly represents all kinds

of value flow (e.g., value recomputation, repeated loads, correlated branches), PRE serves in our value-flow

framework as a unified program transformation technique.

The ideal optimization goal is to remove all computations detected as redundant. While such a

program transformation is possible, it may require isolation of optimizable program paths, which may in-

cur prohibitive code growth, due to the exponential path explosion, as shown in Section 1.5. Therefore,

practical PRE algorithms are based oncode motion, an economical transformation that reorders instructions

but does not change the shape of the control flow graph, prohibiting the expensive isolation of individual

paths [BC94, CCK+97, DRZ92, Dha91, DS88, DS93, KRS94a, MR79]. The price of therestriction to code

motion, however, is the failure to remove all detected redundancies. In theory, even the optimal code-motion

algorithm [KRS94a] breaks down on loop invariants in while-loops, unless preceded by do-until conversion

(which is based on path separation). In practice, one half of(dynamic) computations that are strictly par-

tially redundant (i.e.,not redundant along some paths) are left unoptimized due to code-motion obstacles,

according to our experiments.

This chapter achieves a (nearly) complete PRE by first conceptually analyzing the Morel-Renviose

code-motion algorithm, and then by systematically addressing its limitations. The result is a family of PRE

algorithms that combines strengths of three transformation methods:code motion(economical), control flow

80

restructuring(powerful), and controlspeculation(potentially harmful). The three methods are abbreviated

with M, R, S, respectively.

As the first step towards a complete PRE with affordable code growth, we present an algorithm

that integrates the code motion with restructuring, denoted PRE(MR). The algorithm allows a complete

removal of redundant expressions while minimizing code duplication. In contrast to existing complete tech-

niques [Weg75b,Weg75a,Ste96], it resorts to restructuring merely to remove obstacles to code motion, rather

than to carry out the entire optimization, thus eliminatingunnecessary code duplication. The resulting code

growth is minimal for a large class of problems. On SPEC95, we found the code growth to be three times

smaller than that of the pure restructuring approaches (denoted PRE(R)).

No prior work systematically treated the integration of code motion and transformation. The

PRE(MR) algorithm controls the extent of code duplication by restricting it to acode-motion preventing

(CMP) region, which localizes adverse effects of control flow on the desired code motion. Figure 6.2(a–c)

illustrates our first algorithm, PRE(MR), through optimization of the loop in Figure 6.1.

while (true) f
if (O)
 + d
else if (P)

break

if (Q)
 + d
else

R

Sa + bg
Figure 6.1:The example loop.

Let us assume that no statement in the loop in Figure 6.2 defines variablesa, b,
, or d. Hence, the

computationsa + b and
 + d are loop invariant.1 Althougha + b is loop-invariant, it cannot be removed

from the loop with code motion alone because it would be executed on the path[En;O; P;Ex℄, which does

not executea + b in the original program. If the frequency of this path is higher than that of paths that

executea + b , the optimization could slow down the program. To avoid counterproductive transformations,

the traditional PRE disallows suchunsafecode motion.

The desired optimization is possible only if the CFG is restructured. The pure-restructuring PRE

duplicates each node on which the value ofa + b is available strictly partially (i.e., not along all paths). Such

a duplication splits partial redundancy into full redundancy and no redundancy [Weg75b, Weg75a, Ste96].

The resulting program is shown in Figure 6.2(b). Whilea + b is fully optimized, restructuring unnecessarily

peeled off the entire loop body.1The program in Figure 6.2(a) induces a separable VNG; it can thus be viewed both as a CFG with expressionsa+ b,
+ d, and as a VNG with computations nameda + b,
 + d .

81

sp
ec

ula
tio

n

Ex

e:e:

duplicated to allow code motion of e:[a+b]

duplicated to make e:[a+b] fully redundant

Ex

En

code motion

Ex

En

Ex

Ex

code motion

En

Ex

En

duplicated for partial optimization of [c+d]

Ex

Ex

duplicated for complete optimization of [c+d]

En

En

e:

Ex

code motion + restructuring.

a+bt=

S

P

a+b

R

Q

P

d) optimization of [a+b], via

t

S

c+d

u=c+d

c+d

c+d

O

O

t=

Q

c+d P

O

c+d

u

Q

R

Q

P

O

c+d

c+d

c+d

t=a+b

u

t

S

S

R

Q

c+d

t

S

P c+d

b) optimization of [a+b].
 via restructuring.

t=

O

a+b

R

Q

P

O

S

t

u

R

Q

P

O

P

S

c) our optimization of [a+b], via

t

a+bt=

c+du=

f) a trade-off variant of e).
code motion + speculation.

R R

P

O

code motion + restructuring.

S

t

QQ

c+du=

a) the source program.

t=a+b

R

O

e) optimization of [c+d], via

a+b

Figure 6.2: PRE through integration of code motion, controlflow restructuring, and control speculation.

82

In contrast, our PRE(MR) algorithm achieves completeness with much smaller duplication scope,

see Figure 6.2(c). We apply the more economical code-motiontransformation to its full extent, resorting to

restructuring merely to enable the desired code motion—in this case, the hoisting ofa + b out of the loop. To

hoista + b , it is sufficient to isolate the offending path[En;O; P;Ex℄. The necessary scope of duplication is

computed as the CMP region, short for code-motion-preventing region, which is highlighted in Figure 6.2(c).

The restructuring is achieved by duplicating the region, after which hoisting can be performed without im-

pairing the offending path. As no opportunities for value reuse ofa + b remain, the resulting optimization

of a + b is complete. Yet, in contrast to Figure 6.2(b), only two basic blocks have been duplicated.

Profile-guided PRE Using the dynamic count of eliminated computations as the measure of optimization

benefit, our profile-guided algorithms trade (some) optimization for (much) code duplication. To reduce code

growth, we use profiling, in two different ways:� To identify infrequently executed pathswith reuse. Reuse along these paths is not worth the restructur-

ing cost.� To identify infrequently executed program pathswithout reuse. These paths may be effectively be

disregarded when hoisting computations. (Hoisting into these paths constitutes control speculation).

The first profile-guided algorithm, denoted PRE(MS), combines motion with speculation. It does

not use restructuring; instead, when code motion fails to compensate partial redundancy into full redundancy,

the compensation is done speculatively, by inserting computations onto program paths that did not contain

them in the original program.2 Such insertion is speculative because when these paths are taken, the cost of

the insertion will not be amortized by a removed computation.

With speculation, some paths are impaired so that others canbe optimized. The net benefit of

speculation depends on the difference of frequencies of theimproved and the impaired paths, computed from

the profile. In our example, if the profile reveals that the offending (impaired) path[En;O; P;Ex℄ is less

frequent than the paths that executea + b , thena + b will be speculatively hoisted from the loop, as shown

in Figure 6.2(d).

The next profile-guided PRE algorithm makes the complete PRE(MR) more practical by limiting

its code growth. The algorithm, denoted PRE(Mr), restructures selectively. It sacrifices those value-reuse op-

portunities that are infrequent but require significant code duplication. The PRE(Mr) algorithm is illustrated

on the optimization of
 + d ; Figure 6.2(d) serves as the starting point. Figure 6.2(e) shows the (complete)

optimization of
 + d , performed by PRE(MR) by duplicating the shaded CMP region and subsequently

performing the code motion of
 + d . Because the program control flow structure affects the optimization

of
 + d more adversely that it affectsa + b (i.e., the CMP region for
 + d is larger than that ofa + b),

more code is duplicated. If the size of duplication outweighs the run-time gains, according to some utility

function, the PRE(MR) algorithm can be scaled back to selecta smaller set of nodes to duplicate, yielding

the PRE(Mr) algorithm. An example of such an incomplete PRE is in Figure 6.2(f), where the size of basic

blockS is assumed to be greater than would be justified by the frequency of value reuse flowing throughS.

Finally, this chapter presents the PRE(Msr) algorithm, which balances all three methods. PRE(Msr)

uses restructuring only when speculation cannot be done beneficially. Experiments show that PRE(Msr) is

near-complete PRE with very little code growth.2Control speculation can be viewed as anunsafeversion of code motion.

83

Minimal Do-Until Conversion Do-Until Conversion (DUC) is a common pre-processing transformation

for enabling code motion of loop invariants out of while-do loops that would otherwise prohibit the desired

code motion [Muc97]. DUC is based on path separation; it converts while-do loops into do-until loops by

duplicating a part of the loop body (the loop exit condition). DUC enables optimization of some (but not all)

loop invariants. Additionally, its duplication scope is larger than necessary.

It is interesting to note that the PRE(MR) algorithm subsumes and (fully) generalizes DUC. Con-

sider the loop in Figure 6.2(a). A commonly used DUC will fail. A smarter DUC will peel off (unnecessarily)

the entire loop iteration, just like the PRE(R)algorithm shown in Figure 6.2(b). No known DUC can enable

the hoisting of
 + d .

In contrast, PRE(MR) produces the necessary do-until conversion: Figure 6.2(c) shows the conver-

sion necessary to hoista + b, and Figure 6.2(e) shows the conversion required by
 + d . The PRE(MR)

conversion is minimal: with any less duplication, the statements could not be hoisted. While Figures 6.2(c,e)

show separate conversions fora + b and
 + d , the two conversions can be naturally composed, as described

later in this chapter.

However, we note that, while PRE(MR) is successful in reducing code growth, the profile-guided

speculation-based PRE(MS) works much better: our experiments show that it removes nearly all redundan-

cies, without any code growth. Furthermore, PRE(MR) may generate irreducible programs, like the one in

Figure 6.2(c). Irreducibility may be produced by other restructuring algorithms, including PRE(R), although

it did not manifest itself in Figure 6.2(b). Irreducibilitycan be corrected; Section 6.5.1 presents a simple,

reducibility-preserving version of PRE(MR).

Organization of this chapter Section 6.2 establishes the groundwork by analyzing the limitations of the

standard, code-motion PRE and by motivating our solution. The PRE algorithms are presented next. As

in Chapter 5, the presentation is simplified by first assuminga separable VNG (Section 6.3), and then a

general VNG (Section 6.4). Within each section, the algorithms are divided into profile-independent and

profile-guided. Section 6.5 handles various practical issues, such as irreducible graphs and hardware support.

Section 6.6 experimentally evaluates the algorithms and Section 6.7 concludes with a summary of the results

and discussion of related work.

6.2 Analysis of the Morel-Renviose algorithm

To motivate the approach taken here, this section intuitively describes the principle of the code-

motion PRE (denoted PRE(M)), conceptually analyzes when and why it fails, and finally explains the ap-

proach for overcoming these limitations.

Figure 6.3 illustrates the principle of PRE(M). The computation a + b is partially redundant be-

cause there is a reuse thread leading to it. In CFG terms, there is a control flow path on whicha + b is

computed without being killed. PRE(M) optimizesa + b by hoisting it away from the reuse thread. Hoisting

inserts a computation on incoming non-reuse threads to turnthe partial redundancy ofa + b into full redun-

dancy. The transformation is completed by initializing a fresh temporary variablet to carry the reused value

and replacing the original computation with a reference tot.
Figure 6.4 illustrates when and why code-motion fails. Figure 6.4(a) shows partially redundanta + b and its reuse thread. In this program,a + b can be hoisted out of the reuse thread, as shown in

Figure 6.4(b). However, a slight modification of the programcauses the code motion to fail. When the

84

t := a+b

e: a+b

a+b t := a+b

te:

insert

initialize

replace

a) a+b is partially redundant. b) the optimization of a+b.

reuse thread

Figure 6.3:The principle of the code-motion PRE transformation.

meet.
where reuse and free therads

(dashed arrow).

e: e:e: e:

O

t=

a+bt

O O O

a+bt=

t

a) source program b) after PRE(M),
a+b hoisted from
the reuse thread.

c) a version of a),
with reuse and
free thread.

a+b is inserted onto
the free thread.

d) PRE(M) fails, as
with a reuse thread

desired code motion

but code motion blocked

a+b

a+b

Figure 6.4:The reasons for the failure of the code-motion PRE.

do-until loop is changed into a while-do loop shown in Figure6.4(c), the desired hoisting fails. Hoisting

fails becausea + b would have to be placed on afreepath—one that does not compute the value ofa + b,

and thus cannot reuse its value and amortize the cost of the insertion. To avoid impairment of the free path,

PRE(M) disables suchunsafecode motion; the code motion is blocked before it can enter the free path, as

shown in Figure 6.4(d).

This figure also shows the consequences of the unsafe hoisting of a + b . The insertion ofa + b
is a case ofcontrol speculation, asa + b is executed even when the program will not execute the original

computation—we arespeculatingthat thecontrol will reach the original computation, which would amortize

the cost of the speculative insertion. Because PRE(M) is profile-insensitive, it cannot safely and beneficially

use speculation.

To summarize the above discussion, PRE based on code motion has two orthogonal deficiencies:

1. The safe optimization model is too conservative.To guarantee that the program “never runs slower,”

the optimization allows improving reuse paths but only whenother paths are not impaired.

2. The program transformation used is not aggressive enough.Code motion is the only program trans-

formation technique applied; when it is blocked, the optimization opportunity is missed.

Our approach attacks both deficiencies:

1. Relax the optimization model. We allow control speculation. To guarantee3 that the program is

improved more than it is impaired, the speculation is profile-driven.3As natural for profile-directed optimization, we guaranteethat the program is not impaired only for the program
input(s) used to generate the profile.

85

code motion

control speculation

restructuring

+ no code growth
- misses opportunities

+ complete
- code growth

+ no code growth
- impairs some paths

M

S

R

Figure 6.5:The design space for our PRE algorithm. The algorithm can use any (combination) of the
three program transformation techniques. The algorithm can lie anywhere in the design triangle. It resulting
properties depend on how biased it to a constituent technique.

2. Enhance the program transformation.We allow the use of control restructuring. Restructuring isless

economical than code motion, but we use it only when code motion fails.

Our PRE algorithm thus uses three transformation techniques. These techniques are orthogonal; each is

useful in a different situation.

M) Code motiondoes not cause any code growth, but can be blocked before it can fully remove the redun-

dancy.

R) Control flow restructuringcan alone remove all redundancies but the cost is high code growth.

S) Control speculationdoes not cause any code growth, but it impairs some paths and hence can be

counter-productive.

Our PRE algorithms always try4 to optimize with code motion as much as possible (it is both safe and

economical). When code motion fails, then—depending on i) the optimized program and ii) the desired

optimization properties—our PRE can employ restructuringor speculation (or both). The optimized program

influences PRE with the shape of its reuse threads and its profile. The properties of the optimization depend

on which transformations are applied. Figure 6.5 shows the design space of our PRE algorithms, as formed

by the three methods. The resulting algorithm can lie anywhere in the design triangle. Its resulting properties

depend on how biased it is to the particular transformation methods.

We present five variants of the transformation algorithm, all characterized in Figure 6.6. Two

algorithms are profile-independent and three are profile-guided. We also formulate the (profile-independent)

PRE(R) algorithm, in order to facilitate an empirical comparison of PRE(MR) with a pure-restructuring PRE

approach.

The two goals of a PRE algorithm are as follows:

1. Completeness:it is desirable to exploit all reuse detected on the VNG. Whenthe used transformation

methods do not permit completeness (as in the case of code-motion), the goal is to maximize the

removal of redundancies. Such a “best” optimization is defined differently for profile-independent and

for profile-guided algorithms:4On a separable VNG, code motion is used to themaximumdegree possible.

86

M R

S

PRE(M)

PRE(MS)

PRE(Mr)

PRE(Msr)

PRE(MR) PRE(R)

Figure 6.6:The various variants of PRE algorithms.

Definition 6.2 (Best static PRE (profile-independent))A programP 0 is thebest static optimization

of a programP if no other transformationP 00 of P exists (using the allowed methods) such that a pathp executes less computations inP 00 than inP 0. �
Because the measure of optimization quality is each individual program path, the best program may

not always exist.

Definition 6.3 (Best dynamic PRE (Profile-guided))A programP 0 is thebest dynamic optimization

of a programP if no other transformationP 00 of P exists (using the allowed methods) such that the

dynamic number of user computations isP 00 is less than inP 0. �
Because a single measure of quality is used for the entire program, the best transformation must always

exist.

2. Shortest-live ranges:it is desirable to insert the compensating computations at program points such

that the live ranges of the inserted temporaries are as shortas possible. More precisely, given the set

of bestoptimizations, the live-range optimal is one in which each live range is no longer than the

corresponding range in any other best program.

For each PRE algorithm developed in this chapter, a different optimality goal is appropriate, de-

pending on the transformation methods applied (M, R, S), anddepending whether profiling is used.

PRE(M): Find beststaticoptimization a) without changing the shape of the CFG and b) by moving only the

optimized computations (not any other computations in the program).

PRE(MR): Find a complete optimization that minimizes the number of duplicated CFG nodes.

PRE(R): Same optimality goal as PRE(MR).

PRE(MS): Same optimality goal as PRE(M), but in terms of bestdynamicoptimization.

PRE(Mr): Find a dynamic optimization that maximizes a utility function. The utility function reflects a ratio

of code-growth cost with the dynamic optimization benefit.

PRE(Msr): Same optimality goal as PRE(Mr), but allow speculation.

87

6.3 PRE for a separable VNG

As in the previous chapter, the algorithms are presented first for separable VNGs and then for

general VNGs. On a separable VNG, each value thread uses onlyone name throughout the entire program.

Such simple VNGs require simpler algorithms and achieve optimal optimizations, typically at polynomial-

time cost. In contrast, for general VNGs, we either do not have an optimal transformation algorithm, or the

transformation is intractable. This section is devoted to the separable VNGs. Section 6.4 presents extensions

needed for generality, focusing on the PRE(MS) algorithm, which appears to be the most useful in practice.

6.3.1 Profile-independent PRE

We will first consider the profile-independent variants of PRE. These algorithms guarantee that,

whatever the path frequencies, the optimized program will never execute more computations than the unopti-

mized program. Thus, these algorithms operate within thesafe optimization modelin which no program path

can be impaired. To achieve completeness without impairingany path, code motion obstacles must be over-

come with restructuring. Our goal, then, is to minimize the restructuring cost, i.e., the code growth measured

as the number of duplicated CFG nodes.

In turn, this section presents PRE(MR), PRE(M), and PRE(R).The first algorithm is the complete

PRE that minimizes code duplication. The second algorithm uses our abstractions to derive an intuitive

formulation of the optimal code-motion PRE [KRS94a]. The last algorithm is the restructuring-only PRE,

presented to serve as a reference point for our experiments.

6.3.1.1 PRE(MR): Code motion + restructuring

PRE(MR) integrates code motion and control flow restructuring. To reduce code growth, restruc-

turing is only a secondary transformation exploited by PRE(MR). It is used merely to enable hoisting across

CFG nodes that prevent the desired code motion. The central idea of PRE(MR) algorithm is to identify the

smallest set of motion-blocking nodes and duplicate them, restructuring the CFG. After the restructuring, the

motion obstacles disappear.

To identify the offending nodes, we determine a predicatePrevented(n) that characterizes whether

a VNG noden blocks the desired code motion. The predicate is based on thesolutions to the standard

dataflow problems of anticipability and availability (see Definition 4.2). The problems are computed on the

Must-May -No lattice defined in Section 4.4.

The Preventedpredicate is derived as follows. A computation is partiallyredundant if its value

is computed on some incoming control flow path by a previous computation. Code motion eliminates the

(partial) redundancy by hoisting the redundant computation along all paths until it reaches an edge where the

reused value is redundant along eitherall paths ornopaths. In the former case, the computation is removed;

in the latter, it is inserted, to make the original computation fully redundant (recall Figure 6.3). Unfortunately,

code motion may be blocked before such edges are reached by nodes that prevent the code motion. These

nodes are characterized by the following set of conditions:

1. Hoisting of a computation ofe from the exit to the entry of a VNG noden = (n; e) is desiredwhen

an opportunity for value-reuse exists, which is true when both of the following conditions hold:

a) The valuee is computed on some, but not all, control flow paths leading ton. In such a case,

hoisting must continue acrossn to move the computation to CFG edges where it is either always

88

or never redundant. Such a situation is true iff

AVAILout[n ℄ = May :
b) The valuee is consumed by a user node on some control flow pathp emanating fromn, i.e., there

is a computation to be optimized (and hoisted from) the pathp. Such a situation exists iff

ANTICout[n ℄ 6= No:
Hence,

Desired[n ℄, AVAILout[n ℄ = May ^ ANTICout[n ℄ 6= No:
2. Hoisting of a computation ofe acrossn is disabledwhen the computation would impair some control

flow path, because the path cannot amortize the computation,as the following two conditions elaborate:

c) The hoisted computation is not fully redundant and hence there is an incoming path from which

it cannot be removed, which is true iff

AVAILin[n ℄ 6= Must ; and

d) The hoisted computation cannot make other computation redundant, on some path leavingn,

ANTICin[n ℄ 6= Must :
Hence,

Disabled[n ℄, AVAILin[n ℄ 6= Must ^ ANTICin[n ℄ 6= Must :
A noden prevents the code motion forewhen the motion is both desired and disabled. By way of conjunction,

we get the code motion-preventing condition:

Prevented[n ℄ , Desired[n ℄ ^ Disabled[n ℄, AVAILout[n ℄ = May ^ AVAILin[n ℄ 6= Must ^
ANTICout[n ℄ 6= No ^ ANTICin[n ℄ 6= Must

BecauseAVAILout[n ℄ = May , noden is neither a generator nor a kill node (n 62 D ;n 62 K , see Defini-

tion 4.1), from which one can show that

Prevented[n ℄ , AVAILin[n ℄ = May ^ ANTICin[n ℄ = May :
The predicatePrevented[n ℄ characterizes the smallest set of nodes that block the code motion. For the desired

code motion to be enabled, the blocking condition of these nodes must be “removed” via restructuring. The

Code-Motion-Preventing (CMP) Regionis the set of such nodes.

Definition 6.4 (CMP Region) LetG = (N ;E ; start; end) be a value name graph. TheCMP regionof G,

denotedG�, is a subgraph ofG such thatG� = (N �;E�; I ;O), whereN � =df fn 2 N j Prevented[n ℄g nodesE� =df E \ (N � �N �) edgesI =df f(n ;m) 2 E j n 62 N � ^m 2 N�g entry edgesO =df f(n ;m) 2 E j n 2 N � ^m 62 N�g exit edges. �

89

The entry and exit edges are used to attach a copy of the CMP region to the rest of the program during

restructuring. The set of CMPentryedges,I , can be factored into two sets: entry edges on which the value

is available along all incoming paths or no incoming paths. These two sets are denotedIM andI N:8(m ;n) 2 IM : AVAILout[m ℄ = Must calledMust entry edges,8(m ;n) 2 I N : AVAILout[m ℄ = No calledNo entry edges.

Similarly, exit edges can be factored into those on which the value is consumed (anticipated) along either all

outgoing paths or no outgoing paths. These two sets are denotedOM andON:8(m ;n) 2 OM : ANTICin[n ℄ = Must calledMust exit edges,8(m ;n) 2 ON : ANTICin[n ℄ = No calledNo exit edges.

Observe that eachreusethread must enter the CMP region through aMust entry and leave through aMust

exit. Similarly, afree thread must enter through aNo entry and leave through aNo exit.

To explain how PRE(MR) removes obstacles presented by the CMP region, let us assume for sim-

plicity that the VNG contains only one name,a + b , which allows us to view the VNG as a CFG (i.e.,

threads coincide with paths). We will deal with multiple names once the central idea is clear. In PRE(MR),

the obstacles of the CMP region are removed by duplicating the entire region, as illustrated in Figure 6.7.

The goal of duplicating the CMP region is to factor theMay-availability that holds in the original region

into Must-availability andNo-availability, each holding in one copy of the region. AfterMay-availability no

longer holds in the region, the paths withMust- andNo-availability have been separated.

To see whyMay -availability can be split intoMust- and No-availability in the two respective

region copies, observe that a) no region entry edge isMay -available, and b) the solution of availability within

the region depends solely on solutions at entry edges, because the value is neither computed nor killed within

the region. Hence, the desired factoring can be carried out by attaching to each region copy the subset of

eitherMust or No entry edges, which separates the offending paths, as shown in Figure 6.7(b). The exit

edges are duplicated and attached to both copies of the region. After the CMP region is duplicated, the

conditionPreventedis false on each node, enabling the desired code motion, as shown in Figure 6.7(c).

Let us remove the restriction that the VNG has a single value name. It is now possible that a CFG

noden prevents code motion of multiple names, denotede1 ; : : : ; ek, wherek > 1. Such a node (and its

duplicates) may need to be duplicated up tok-times, producing up to2k copies ofn. The first two copies ofn, denotednMust andnNo, separate the reuse/free paths fore1 . After enabling the hoisting ofe1, the paths

for the remaining names may still meet atnMust and/ornNo. Further duplication of these copies separates

bothe1 ande2 paths, producing nodesnMust;Must ; nMust;No; nNo;Must ; nNo;No. This process continues until

there is a copy ofn for each subset ofe1 ; : : : ; ek.

Some of the node duplicates may not be necessary. For example, if reuse paths fore1 match those

of e2 , then nodesnMust;No; nNo;Must need not be created. There are two alternatives how to restructure the

program and create only the needed nodes. The first is to restructure along namee1 and then recompute

AVAIL. If paths for some other nameei have been split in the process, itsPreventedcondition will disappear.

The restructuring then continues with names whosePreventedpredicate still holds.

The PRE(MR) algorithm presented uses the second alternative: to avoid recomputing theAVAIL

solution, it creates all2k copies of each node, to perform restructuring for all names simultaneously. Spurious

copies will be manifested as unreachable CFG nodes and will be removed in a cleanup phase. The PRE(MR)

algorithm has the following three steps:

90

ANTIC=No
ANTIC=Must

AVAIL=No
AVAIL=Must

a) code motion prevented by CMP region

b) CMP region diluted via code duplication

code motion becomes possible

code motion prevented where

CMP

code motion hoisted a+b

c) complete PRE of [a+b]

a+b

a+b

a+bt=

a+bt=

t

a+b

where reuse and free paths meet.

x

a+b

after paths are separated

from the reuse paths

a+b P

SR

a+b

Q ANTIC=May
AVAIL=May

Q

a+bt= P

a+bt= S

R

t

ANTIC=May ANTIC=May

AVAIL=NoAVAIL=Must

Q

a+b P

SR

a+b

ANTIC=May ANTIC=May
AVAIL=NoAVAIL=Must

Figure 6.7:Removing obstacles to code motion via restructuring.

91

1. Compute availability of generators and anticipability of users.The computation of the two prob-

lems is described in Chapter 4.

2. R: Remove the CMP region via control flow restructuring.The algorithm, shown in Figure 6.10,

has three parts: node duplication (lines 1–12), edge adjustment (lines 13-17), and removal of

unreachable nodes (lines 18–24). The algorithm, as presented, builds a restructured CFGGr
from the original CFGG. However, the algorithm can be easily altered to modifyG in-place.

The functionCMP(n) maps each CFG node into the set of value names that belong to the CMP

region atn. This function directs how many copies of each node are created at line 3: one copy

of each CFG node is created for each combination ofMust or No paths that must be separated at

noden, that is, one copy for each subset ofCMP(n). Note that ifCMP(n) is an empty set, only

one copy is created, denotedn;, which is the case for thestart andendCFG nodes. Each node

is duplicated together with its dataflow solutionsAVAIL andANTIC. Lines 6 and 9 effectively

separate the reuse and free paths, by adjusting theAVAILdataflow solution.

Given the duplicated nodes with adjustedAVAIL solutions, line 15 places edges between nodes

with compatibleAVAILsolutions, creating the restructured CFG. Line 14 tests whether two CFG

nodes have compatible solutions. Essentially, the test prevents aMust-available node to be con-

nected with aNo-available node, ensuring thatMust and No paths are separated. Note that

AVAILout[mi℄ is the vector ofAVAIL solutions for all symbolic names fromS . The lattice partial

order� was defined in Definition 4.4. The function��1 : (E � 2S) ! 2S permutes the names

in the dataflow vector, to reflect how the value names change at� nodes. At separable VNGs, this

function is an identity.

Finally, unreachable nodes are detected using a work list algorithm, by propagating control flow

from thestart;, the start node ofGr.
Figure 6.8:The PRE(MR) algorithm.

Theorem 6.1 (Completeness of PRE(MR))PRE(MR) is optimal in that it minimizes the number of com-

putations on each path.

Proof. First, each original computation is replaced with a temporary (Eq. 6.1). Second, no computation is

inserted where its value is available along any incoming path. Hence, no user computation in the optimized

program is partially redundant.�
Within the domain of the Morel and Renviose code-motion transformation, where PRE is ac-

complished by hoisting optimization candidates (but not hoisting any other statements) [MR79], PRE(MR)

achieves minimum code growth.5 This follows from the fact that after CMP restructuring, no node is un-

reachable and no program node can be removed or merged with some other node without destroying any

value reuse.5Outside this domain, further code growth reduction is possible, for example, by moving some instructions out of the
CMP prior to its duplication.

92

3. M: Optimize the program via code motion.The code motion transformation is carried out by

replacing each generator computationn = (n; e) 2 D with a temporary variablete (eq. 6.1).

The temporary is initialized with a computation, which can be inserted at three different points:

Eq. 6.2: at eachNo-available edge that sinks onto aMay-available node. This insertion will

compensate the partial redundancy into the full redundancy. The insertion edge must also

be Must-anticipated to verify that an optimized computation was hoisted to the insertion

edge.

Eq. 6.3: before each user computation that is not partially redundant.

Eq. 6.4: before eachgeneratorcomputation that is not ausercomputation (e.g., a store instruc-

tion in redundant load optimization). Recall that such computations cannot reuse the value

although they can generate it.

The last two cases initialize temporaries for computationsthat have been replaced but have not

been hoisted.

Replace(n; e) , (n; e) 2 D (6.1)

Insert((n;m)) , AVAILout[n ℄ = No ^ AVAILin[m ℄ = May ^ ANTICin[m ℄ = Must

(6.2)_ AVAILin[m ℄ = No ^m 2 U (6.3)_m 2 D nU (6.4)

Figure 6.9:The PRE(MR) algorithm, continued.

Algorithm complexity. The cost of restructuring (Step 2) dominates the dataflow analysis (Step 1) and the

code motion (Step 3). Due to duplication, the size ofNr may beO(2S) times larger thanN , whereS is the

number of VNG symbolic names. In practice, the algorithm wassignificantly slowed down only on some

very large procedures (of size more than 1000 nodes). This explosion is to be expected, due to the exponential

number of possible program paths. Yet, PRE(MR) is very successful in reducing code growth. As will be

shown in Section 6.3.1.4, its code growth is less than half ofthat caused by PRE(R).

6.3.1.2 PRE(M): Code motion

Besides enabling an efficient complete PRE, the abstractionof the CMP region also facilitates an

intuitive formulation of an optimal code-motion PRE. Recall from Section 6.2 that PRE(M) is optimal when

a) it achievesbest staticoptimization, i.e., it removes all redundancies that can beoptimized with code

motion alone, and

b) it is live-range optimal, i.e., the live ranges of inserted temporary variables are as short as possible.

Existing optimal algorithms [DS93,KRS94a,CCK+97] work in two phases.

93

Input:
control flow graph G = (N;E; start; end)
value name graph G = (N ;E ;S)
CMP region G� = (N�;E�; IN ;OUT)

Output:
CFG Gr = (Nr; Er; start;; end;)

Auxiliaries:
CMP : N ! 2S ;CMP(n) = fej(n; e) 2 N�g
CreateNr: duplicate CMP nodes and adjust their dataflow solutions

1 for each n 2 N do
2 for each C 2 2CMP(n) do

copy the CFG node, including its dataflow solutions AVAIL, ANTIC

3 make a copy of n, denoted n0
4 add n0 to Nr
5 for each e 2 C do
6 AVAILin[(n0; e)℄ := AVAILout [(n0; e)℄ := Must
7 end do
8 for each e 2 CMP(n) nC do
9 AVAILin[(n0; e)℄ := AVAILout [(n0; e)℄ := No
10 end do
11 end do
12 end do

CreateEr: connect the (new) nodes inNr
13 for each pair (mi; nj) such that (m;n) 2 E do
14 if AVAILout [mi℄ �S ��1(m;n)(AVAILin[nj ℄) then
15 add (mi; nj) to Er
16 end if
17 end for

Remove fromGr nodes unreachable fromstart;, the start node ofGr.
18 add start; to Reachable; add start; to worklist
19 while worklist is not empty do
20 remove a node n from worklist
21 A := fmj(n;m) 2 Er ^m 62 Reachableg
22 Reachable:= Reachable[A;worklist := worklist[A
23 end while
24 Nr := Reachable;Er := Er \ (Reachable� Reachable)

Figure 6.10:The R phase of PRE(MR):remove the CMP region via control flow restructuring.

94

1. Partially redundant computations are hoisted as high as permitted by code-motion obstacles. Such a

transformation produces the best static optimization.

2. Hoisted computations are rolled back as low as possible without undoing the optimization. Such a

transformation results in the best static optimizationwith the shortest live ranges of temporaries.

In [KRS92,KRS94a], the two phases are calledbusycode motion andlazycode motion, respectively.

The two-phase approach complicates the comprehension of the algorithm, for two reasons. First,

being an artifact of the dataflow equations, the busy code motion looks different (and hence counter-intuitive)

than the desired final transformation. Second, although thelazy code motion is a separate, corrective step, it

has to be considered in concert with the first phase to be understood.

In contrast, our PRE(MR) algorithm operates in a single phase. It retains the single-phase property

even when its restructuring component is disabled, which makes it a PRE(M) algorithm. Such a constraint

provides a natural formulation of an optimal code motion. Most importantly, PRE(M) is derived from the

same framework as our other PRE algorithms (i.e., it is basedon the CMP region and theMust-May-No

lattice), and hence it can be inexpensively implemented as aspecial case of a more general PRE algorithm.

We also note that the computational cost of our PRE(M) is equal to that of the two-phase algorithms.

First, we explain why PRE(MR) is a single-phase algorithm. Next, we show how to restrict

PRE(MR) to PRE(M) without losing the intuitive single-phase property. The two-phase PRE hoists ag-

gressively until code motion is blocked. In other words, hoisting continues upwards even after the hoisted

computation has been hoisted from its reuse path. Such a blind hoisting overshoots, and hence is corrected

by the second phase, which rolls back (delays) the hoisted computations .

In contrast, the PRE(MR) algorithm hoists only as far as necessary. The hoisting stops as soon as

the hoisted computation leaves its reuse path. The hoistingis stoppedearly, thanks to our more expressive

lattice: hoisting continues whileAVAIL is May (still on a reuse path), but stops as soon asAVAIL turns toNo

(no longer on a reuse path) orMust (on a reuse path but fully redundant). Stopping early results in shortest

live ranges, avoiding the need for roll-back of insertions.

To derive PRE(M) from PRE(MR), one needs to do more than disable restructuring of the CMP

region. Our PRE(M) is based on the observation that the reuseflowing across the CMP region is exactly

the reuse that code motion cannot exploit. The critical issue thus is how to prevent hoisting into paths that

emanate from exits of a CMP region (such hoisting is precisely what would have to be rolled back). It is

sufficient to ensure thatAVAIL on a CMP exit is alwaysNo, indicating that no reuse is available to code

motion across the region. This is the only modification of PRE(MR) needed to derive PRE(M).

The PRE(M) algorithm uses the dataflow propertyAVAILM , which holds when a value exploitable

by code motion is available at a node. TheANTICproperty is as in PRE(MR).

Definition 6.5 (Availability of Generators Accessible to Code Motion) The M-availability ofe at the en-

try of n w.r.t. the incoming paths is defined as:

AVAILMin [(n; e)℄ =8><>: Must if e is available alongall paths fromstart to n,

May if e is available alongsomepaths fromstart to n,

No if e is available only along paths that contain a node from a CMP region.�
It can be shown thatAVAILMin [n ℄ 2 fMust ;Mayg iff all reuse flowing ton can be removed with code motion.

To summarize, PRE(M) has two steps: dataflow analysis and code motion.

95

1. Compute availability of generators, anticipability of users. We compute the standard anticipabil-

ity, as in PRE(MR). Availability accounts for the killing effect of CMP nodes, which are treated

as kill nodes. The flow function for theAVAILM problem follows. The third line kills reuse ifn
is a CMP node.fn(x) = 8>>>><>>>>: Must if n 2 D , (value generated)

No if n 2 K , (value killed)

No if Prevented[n ℄, (CMP region)x otherwise.

2. M) Optimize the program via code motion.Given a maximal fixed point solution toANTIC and

AVAILM , the transformation proceeds as in PRE(MR), except thatAVAILM replacesAVAIL.

Figure 6.11:The PRE(M) algorithm.

Theorem 6.2 (Computational optimality of PRE(M)) Given the restriction of immutable shape of the con-

trol flow graph, PRE(M) achieves optimization that isbestunder code motion.

Proof outline. The proof is based on showing that any reuse that remains after PRE(M) requires crossing the

CMP region and hence code motion would be blocked.�
To understand the concept behind the PRE(M) algorithm, we need only to understand the definition of

AVAILM and its flow function.

While PRE(M) is easy to understand, it requires computationof three dataflow problems (ANTIC,

AVAIL, andAVAILM), each requiring two bits in dataflow vectors per value name.In contrast, equivalent

two-phase algorithms compute three problems of one bit each(availability, anticipability, delayability). Next,

we show how to compute PRE(M) with the same efficiency. The efficiency is improved by computing not

AVAILM but a “weaker” predicate that requires only one bit.

To computeAVAILM , we need the solution ofAVAILandANTIC, which are required by the predi-

catePrevented. To avoid computing bothAVAILandAVAILM , it is tempting to combine the detection of CMP

nodes and their killing effects into a single dataflow problem. The following transfer function forAVAILM
does exactly that; thePreventedpredicate does not use the value ofAVAIL, but instead it uses the value of

AVAILM that is being computed (AVAILM appears as the valuex, in the third line).f 0n(x) = 8>>>><>>>>: Must if n 2 D ,

No if n 2 K ,

No if x = May ^ ANTICin[n ℄ = May , Prevented[n ℄x otherwise.

It can be shown that the maximal fixed point solutions forfn andf 0n are both equal toAVAILM . Unfortunately,f 0n is not monotone: givenANTICin[n ℄ = May ; x1 = Must ; x2 = May , we havex1 w x2 but fn(x1) =
Must 6w fn(x2) = No. Therefore, an iterative dataflow solver may produce (conservatively) imprecise

values ofAVAILM [KU77], i.e., we may obtain the solutionMay instead ofNo.

96

Instead, we define another availability property, denotedAVAILMw , which is “weaker” thanAVAILM
but sufficient for computing theInsertpredicate correctly.AVAILMw is defined as follows:

AVAILMw = Must)df AVAILM = Must (6.5)

AVAILMw = May)df AVAILM = May (6.6)

AVAILMw = No)df AVAILM = No _ ANTIC= No (6.7)

It can be shown thatAVAILMw can be used instead ofAVAIL in the predicateInsert, without changing its value.

The reason for the condition 6.7 is thatAVAILMw can be computed efficiently using three Boolean

(i.e., one-bit) problems:ANall , AVall , andAVsome, defined as follows:

ANall ,df ANTIC= Must

AVall ,df AVAILMw = Must

AVsome ,df AVAILMw 6= No

Clearly, the pair(AVall ;AVsome) expresses the solution ofAVAILM . The true and false values are denoted>
and?, respectively.

AVAILM = Must , (AVall ;AVsome) = (>;>)
AVAILM = May , (AVall ;AVsome) = (?;>)
AVAILM = No , (AVall ;AVsome) = (?;?)

To computeANall , AVall , andAVsome, we observe thatANall is the well-known (Boolean) must-anticipability

property, which holds when the value is anticipated along all outgoing paths. Similarly,AVall is the must-

availability, which follows fromAVAILMw = Must , AVAIL = Must, which in turn follows from the

fact that noMust-available node is in the CMP region.

OnceANall andAVall are solved,AVsomeis computed with the following transfer function.fAVsome(n)(x) = 8>>>><>>>>: > if n 2 D ,? if n 2 K ,? if AVall = ?^ ANall = ?, Preventedw [n ℄x otherwise.

It can be shown thatfAVsome indeed computes the maximal fixed point forAVsome(fAVsome is false iff all incoming

paths either have no reuse or are notMust-anticipated, or they kill the reuse withK or a CMP node).

Intuitively, the conditionPreventedw is weaker thanPrevented(i.e., it is true more often)

Preventedw ,df AVall = ?^ ANall = ?,df AVAIL 6= Must ^ ANTIC 6= Must

Prevented , AVAIL= May ^ ANTIC= May

Therefore, the weaker condition kills reuse at CMP nodes andsome other nodes as well. However, both are

equivalent for our purpose, as it is safe to kill when there isno reuse (AVAIL = No) or when there is no

hoisting (ANTIC= No). The weaker predicatePreventedw is beneficial because computing and testing non-

Must requires one bit, while two bits are required to testMay . As a result, we obtain the same implementation

97

complexity as the algorithms in [DS93, KRS94a]: three data-flow problems must be solved, each requiring

one bit of solution per expression.

In conclusion, the CMP region is a convenient abstraction for terminating hoisting when it would

unnecessarily extend the live ranges. It also provides an intuitive way of explaining the shortest-live-range

solution without applying the corrective step based on delayability [KRS94a]. Furthermore, the CMP-based,

motion-only solution can be implemented as efficiently as existing shortest-live-range algorithms.

6.3.1.3 PRE(R): Restructuring

PRE(R) removes all redundancies, relying exclusively on path separation. As mentioned above,

PRE(R)’s aggressiveness is undesirable because it duplicates code when the more economical code motion

could be used instead. We present PRE(R) here in order to explain more formally why some duplication

is unnecessary, and also because it is used in this subsection as a reference point for our experiment that

compares the code growth of PRE(M), PRE(MR), and PRE(R).

PRE(R) turns partial redundancy into full redundancy not bycompensating the partial redundancy,

but by separating out reuse paths. Compared to PRE(MR), however, reuse paths are separated not only where

they meet afree path—a requirement for enabling code motion—but all the wayto the partially redundant

computation, which causes more code growth than PRE(MR). Formally, while PRE(MR) duplicates when

Prevented[n ℄ = AVAILin[n ℄ = May ^ ANTICin[n ℄ = May ,

PRE(R) duplicates when a reuse is only partial

PartialReuse[n ℄ = AVAILin[n ℄ = May ^ ANTICin[n ℄ 6= No= Prevented[n ℄ _ (AVAILin[n ℄ = May ^ ANTICin[n ℄ = Must)
That is, PRE(R) duplicates nodes on whichAVAILin[n ℄ = May ^ ANTICin[n ℄ = Must. On these nodes, the

partially redundant computation could instead be hoisted.

PRE(R) can be expressed as a form of PRE(MR), in which the restructuring phase duplicates not only

the CMP region, but its supersetfn j PartialReuse[n ℄g.
1. Dataflow analysis:As in PRE(MR).

2. R) Restructuring:As in Figure 6.10, except that line 2 duplicates node for which PartialReuseis

true.

3. Optimization:No code motion, as all computation are either fully redundancy on not redundant;

merely remove fully redundant computations. Still, predicatesInsert andReplaceremain as in

PRE(MR).

Figure 6.12:The PRE(R) algorithm.

There are at least three algorithms that fit the PRE(R) category [Weg75b,Weg75a,Ste96]. Although

not formulated via region duplication, they peel off reuse paths. To decide where the redundancy is only

partial, all of them use a form ofAVAIL.

98

�

��

��

��

��

���

���

���

���

���

go

m
88

ks
im gcc

co
m

pre
ss li

ijp
eg per

l

vo
rte

x IN
T

sw
im

su
2c

or

hyd
ro

2d
fp

pp

wav
e5 FP

Spec
95

[%]
0%

M

S

R

INT FP

Figure 6.13:Code growth of the three profile-independent PRE algorithms.

6.3.1.4 A code growth experiment.

The purpose of the experiment is to evaluate the performanceof PRE(MR) in terms of reducing the

code-growth cost incurred by PRE(R). Both PRE(R) and PRE(MR) effect a complete removal, but PRE(MR)

should duplicate less code in practice. Figure 6.13 compares their code growth. Indeed, combining code

motion with restructuring reduces the amount of duplication to less than one half of the pure restructuring

approach. On average for our SPEC95 benchmarks, our PRE(MR)algorithm was able to reduce the code

growth of PRE(R) from 80% to about 33%.

Compare the ratio of PRE(R)/PRE(MR) code growth on the integer (INT) versus the floating-point

(FP) benchmarks. The scientific FP programs exhibit more regular control flow structure than the control

flow sensitive INT programs (they have relatively more loopsthan if statements) and so code motion is more

successful on FP, requiring little restructuring. In otherwords, using pure restructuring on the FP programs

was more of an overkill than on the INT programs. In fact, as will be shown in Section 6.6, on FP benchmarks

code motion alone was able to remove nearly all redundancies(measured as the dynamic amount).

In our experiment, the code size was measured as the size of basic blocks (i.e., the number of

instructions in the basic block). The final code size did not include the amount of inserted statements (see the

Insertpredicate), which may also grow the program code slightly. For this reason, in Figure 6.13, the code

growth of PRE(M) is shown to be 0.

The code growth of both PRE(MR) and PRE(R) depends on the amount of redundancies and the

shape of their reuse paths. In this experiment, the value-flow representation was very restricted; it detected

only the class of lexically identical arithmetic expressions (as is common in traditional PRE). Namely, a

three-address instructiona op b was considered partially redundant when it was preceded on some control

flow path by an identical instructiona op b, anda, b were not redefined since that previous computation. The

operatoropwas any arithmetic and logic operator in the PlayDoh [KSR94]instruction set. Loads, stores, and

conditional branches were not analyzed.

On some large procedures, the code growth exploded beyond practical means. To make the ex-

periment feasible, the algorithm was terminated when the procedure size reached 3,000 instruction. The

99

comparison of the two algorithms was made only on proceduresthat did not exceed the limit, in either algo-

rithm.

Despite decreasing the cost of PRE(R) to less than a half, PRE(MR)’s growth (33%) is still a very

significant code increase. In a production compiler, the allowable growth ranges around 20% [AGS97]. Keep

in mind also that the code size is a precious resource, much like processor registers; the code-growth budget

needs to be shared among procedure inlining and loop unrolling, which typically have higher payoffs than

PRE and hence would be allocated a larger fraction of the budget. Furthermore, recall that our experiment

targeted only the lexical redundancies; using the VNG representation, PRE(MR) would grow the code much

more than 33%.

In conclusion, because the PRE(MR) algorithm achieves the smallest possible code growth (within

the Morel-Renviose domain), we conjecture that, with knownprogram transformation methods, further code

growth reduction must be achieved via sacrificing some reuseopportunities. However, in the absence of

profile information, code growth cannot be further reduced without impairing the optimization. This obser-

vation suggests the necessity of profiling, which selects opportunities to be sacrificed. Profile-guided PRE is

developed next.

6.3.2 Profile-guided transformation

While the CMP region is the smallest set of nodes whose duplication enables the desired code

motion, its size is often prohibitive in practice. In this section, relying on the profile for estimation of the

run-time optimization benefit, PRE is made more practical byavoiding code replication that is� unprofitable (PRE(Mr): too little benefit for too much duplication) Section 6.3.2.2, or� can be replaced with careful speculative impairment of freepaths, Section 6.3.2.1, or� both, Section 6.3.2.3.

6.3.2.1 PRE(MS): code motion + speculation

Once PRE is profile-driven, the measure ofbestoptimization changes. Rather than improving each

path as much as possible, the goal is to minimize the overall number of dynamic optimizations, as measured

by the supplied profile (recall Definitions 6.2, 6.3). PRE(MS) is an algorithm that finds such bestdynamic

optimization. While PRE(MR) is optimal in the absence of profile information (in that is minimizes code

growth), PRE(MS) is optimal in thepresenceof run-time profile (in that it maximizes the dynamic benefit for

a given profile).

Because PRE(MS) is profile-driven, it is also speculative inanother sense: since the program is

optimized under a specific run-time profile (and therefore also under a specific program input), we provide

no guarantee that the transformation will actually not slowthe program down for another input. However,

our preliminary experiments indicate that PRE(MS) is extremely stable across various profiling inputs.

Next, we describe the principle of combining code motion with speculation. In PRE(M), hoisting

of a computatione is blocked whenever it would enter a free pathp that does not computee in the original

program. Suchspeculativecode motion is disabled because executinge along pathp could

1. raise spurious exceptions when computinge (e.g., overflow, page fault), and

2. outweigh the dynamic benefit of removing the original computation ofe .

100

code motion

AVAIL=Must

AVAIL=No

ANTIC=Must

speculative ANTIC=No

-- removal

-- insertion

ex(e4)-ex(e2)

+ex(e4)

Optimization benefit:

-ex(e2)

a+b

a+b

CMP(a+b)

ex(e4)

ex(e2)

e4e3

e2e1

Figure 6.14:PRE(MS): a simple version of speculation-profitability test. Optimal speculation is found
using estimators from Chapter 5.

Of course, the first restriction does not hold for instruction that cannot cause exceptions, such as additions or

memory operations that can be proven to access a valid address. Excepting instructions can be optimized with

modern processors, which supportdelayed exceptions[Dul98]. Special versions of excepting instructions are

provided which suppress raising the exception until the generated value is actually used [MCB+93]. Using

delayed exceptions in PRE is a simple extension described inSection 6.5.2.

The second problem is harder. To guarantee that speculationis profitable, PRE(MS) utilizes the

CMP region to determine the positions of speculative insertion points that� make speculation profitable, and� minimize live ranges of temporary variables.

Figure 6.14 illustrates the PRE(MS) algorithm. While the version of the algorithm discussed here is not

computationally optimal (it does not maximize the benefit),it illustrates well the principle of combining code

motion and speculation.

In PRE(MS), instead of duplicating the CMP region, we hoist the expression into allNo-available

entry edges. This makes all exits fully available, enablingcomplete removal of original computations along

theMust exits. In the example,a + b is moved into theNo-available region entry edgee2. This hoisting is

speculative becausea + b is now executed on each path going throughe2 ande3, which previously did not

contain the expression.

To determine whether such a speculative hoisting is beneficial, we examine the execution frequen-

cies of entry and exit edges, as follows. After the speculative hoisting, the dynamic amount of computations

is decreased by the execution frequencyfreq(e4) of theMust-anticipated exit edge (following which a com-

putation was removed), and increased by the frequencyfreq(e2) of theNo-available entry edge (into which

the computation was inserted). Speculation is profitable ifthe insertion is less frequent than the removal, i.e.,

the total execution frequency ofMust-anticipable exit edges exceeds that ofNo-available entry edges.

The algorithm sketched above is not computationally optimal. Optimality is achieved via two

observations. First, it is not necessary to speculate into all No entry edges. When aMust exit cannot be

reached from aNo entry, the entry need not be speculated to enable the optimization of that exit. If the

entry has a high frequency, avoiding its speculation may increase the difference between improvement and

impairment. Consider Figure 5.6(c) in the previous chapter. It is more profitable to speculate only into the(g; h) entry (benefit is 30); speculating to allNo entries yields a benefit of 10.

Second, CMP entries are not the only possible speculation points [Tu99]. Optimal speculation

points may lie within the CMP region. Consider Figure 5.6(d), but assume that theAVAIL solution on CMP

101

entries is reversed (i.e.,(f; h) is No-available, and(g; h), (g; k) areMust-available). In such a modified

program, it is more profitable to speculate into the inner edge (i; k), at the benefit of 15, than into the entry

edge(f; h), at the (negative) benefit of -5.

The two observations lead to the main result about PRE(MS):

Theorem 6.3 The maximal benefit of speculation equals the lower bound of the most precise estimator.

Proof outline. Recall that the lower bound of an estimator is computed as thefrequency of theMust-exits

minus the frequency of reuse that can bestolen from theNo-entries. The proof is based on showing that

without speculation all the stolen reuse must be “covered” with (speculative) insertions. In other words, all

No-available paths through the CMP region must be madeMust-available via (speculative) insertions.�
This constructive proof directly suggests the PRE(MS) algorithm. The central idea is to place the insertions

at the least frequent set of CMP edges that ensure that allMust-exits areMust-available. This set of edges

is found using the estimator algorithm. Namely, the optimalspeculative insertions are those edges that are

saturated in the network flow problem computed by the CMPf estimator. If a path through the CMP contains

multiple such edges, we select the one closest to the exits toobtain shortest live ranges. To summarize, an

estimator computes not only the maximum speculation benefit, but also determines the insertion points.

1. Dataflow analysis.As in PRE(MR).

2. S) speculation.

(a) Compute the CMPf estimate. (CMPf computes the tightest estimate for a separable VNG,

for a single computation. Hence is lower bound computes the maximum speculation bene-

fit.)

(b) Find the min-cut on the flow network(NM ;XM), such that the edges in the min-cut are as

close toXM as possible. These will become the insertion edges.

3. Recompute dataflow analysis.Add the new speculative insertion points intoD and recompute

AVAIL.

4. M) code motion.Same as in PRE(M).

Figure 6.15:The PRE(MS) algorithm.

An important consequence of Theorem 6.3 is that the best speculation can be found from the edge

profile. The speculative benefit is independent from branch correlation and edge profiles are as precise as

path profiles in the case of speculative-motion PRE.

Corollary 6.1 (Edge profile is S-precise)Edge profile is sufficient to find the optimal optimization that uses

speculation (but not restructuring).

Proof outline. The proof follows from the fact that PRE(MS), an algorithm driven by edge profile, results in

best dynamic PRE. �

102

6.3.2.2 PRE(Mr): Selective restructuring

PRE(Mr) extends PRE(MR) byinhibiting restructuringin response to code duplicationcostand

the expected dynamicbenefit. The resulting profile-guided algorithm duplicates a CMP region only when the

incurred code growth is justified by a corresponding run-time gain from eliminating the redundancies.

We model the profitability of duplicating a CMP regionR with a cost-benefit threshold predicateT (R), which holds true if region’s optimization benefit exceeds aconstant multiple of the region size. Our

metric of benefit is the dynamic amount of computations whoseelimination will be enabled afterR is dupli-

cated, which we denoteRem(R). That is,T (R),df Rem(R) >
 : size(R) where
 is a constant parameter.

WhenT (R) = true for each regionR, the algorithm is equivalent to the (complete) PRE(MR). WhenT (R) = falsefor each region, the algorithm reduces to the code-motion-only PRE(M).

Obviously, the predicateT determines only a sub-optimal tradeoff between exploitingPRE oppor-

tunities and limiting the code growth. In particular, it does not explicitly consider the instruction cache size

and the increase in register pressure due to introduced temporary variables. We have chosen this form ofT in

order to avoid modeling complex interactions among compiler stages. In practice,T is usually supplemented

with a code growth budget (e.g., in [ASG97], code is allowed to grow by about 20%).

The benefitRem(R) of a CMP region is computed using an estimator, which bounds the reuse

flowing across a CMP region. In PRE(Mr) we assume that the entire connected region is duplicated (as

compared to the possibility of copying some paths from the region, or the entire CMP region). Therefore, the

CMP
 estimator is the appropriate one to use for computing (the bounds of)Rem(R).

The algorithm PRE(Mr) that duplicates only profitable CMP regions is given below. It is struc-

tured as its complete counterpart, PRE(MR): after dataflow analysis, we proceed to eliminate CMP regions,

separately for each value namee . While in PRE(MR) it was sufficient to treat all nodes from a single CMP

together (all of them were duplicated), selective duplication benefits from dividing the CMP into disconnected

subregions, as is done in the CMP
 estimator. After all profitable regions are eliminated, themotion-blocking

effect of CMP regions remaining in the program must be captured. All that is needed is to apply the PRE(M)

on the improved control flow graph. Hoisting that remains to be prevented by some CMP node after the

selective restructuring was performed, will be avoided by recomputing the M-availability (AVAILMw), which

forcesNo-availability whenever a CMP is detected.

Our PRE(Mr) algorithm does not address the important problem of which namese should be re-

structured first. Because each CFG node may be duplicated multiple times, causing its exponential replica-

tion, it is desirable to optimize most beneficial reuse pathsfirst, before there are too many copies of each

node. One possible heuristic is to order names (in line 1) based on the reuse computed with an estimator. Per-

forming PRE(Mr) optimally (i.e., maximizeRem(R) while guaranteeing thatT (R) holds) seems NP-hard,

due to the need to consider multiple names simultaneously.

In Chapter 5, edge profiles were used to estimate the benefitRemof duplicating a region. An alter-

native is to usepath profiles[ABL97,BL96a], which are convenient for establishing cost-benefit optimization

trade-offs when restructuring must be used. To arrive at thevalue of the region benefit with a path profile, it is

sufficient to sum the frequencies ofMust-Must paths, which are paths that cross any region entry edge that is

Must-available and any exit edge that isMust-anticipated. These are precisely the paths along which value

reuse exists but is blocked by the region. While there is an exponential number of profiled acyclic paths, only

5.4% of procedures execute more than 50 distinct paths in SPEC95 [GBF97b]. This number drops to 1.3%

103

1. Dataflow analysis.As in PRE(MR).

2. r) Partial restructuring:remove profitable CMP regions.

1 for each computation e, in some benefit order do
2 for each connected subregion Ri of CMP[e℄ do

determine optimization benefitRem(Ri)
3 carry out frequency analysis of AVAIL on Ri using CMP

if subregion is profitable, duplicate it
5 if T (Ri) then duplicate Ri
6 end for
7 end for

3. M) Code motion.Perform PRE(M), including the recomputation ofAVAILMw .

Figure 6.16:The PRE(Mr) algorithm.

when low-frequency paths accounting for 5% of total frequency are removed. Since we can afford to ap-

proximate by disregarding these infrequent paths, summingindividual path frequencies constitutes a feasible

algorithm for many CMP regions. Furthermore, because they encapsulate branch correlation, path profiles

compute the benefit more precisely than frequency analysis based on correlation-insensitive edge profiles.

Sub-CMP restructuring.Moreover, the notion of individual CMP paths leads to a better PRE(Mr).

Considering the CMP region as an indivisible duplication unit is overly conservative. While it may not be

profitable to restructure the entire region, the region may contain a fewMust-Must paths that are frequently

executed and are inexpensive to duplicate. Our goal is to findthe largest subset (frequency-wise) of region

paths that together pass the threshold testT (R). An example illustrating the PRE(Mr) algorithm is given in

Figure 6.17. The table in the figure listsMust-Must (i.e., optimizable) paths that have been executed at least

once, together with their execution frequencies. The tablealso lists the size of each basic block and shows

which basic blocks must be duplicated to enable optimization of a given path. The task is to select a subset

of paths such that the benefit (i.e., the sum of their frequencies) and the path duplication cost (i.e., the sum of

sizes of selected basic blocks) satisfy the predicateT (R) with the constant
 = 1. Selecting paths 1, 2, and 4

satisfiesT (R) because the benefit is 50 and the cost of duplicating basic blocksO;Q;R; S; T is 45.

The task ofpartial restructuringis to localize a subgraph of the CMP that has a small size but

contains many hotMust-Must paths. By duplicating only such a subregion, we are effectively peeling off

only hot and short paths. In Figure 6.2(e), only the (presumably hot) path through the nodeQ was separated.

Again, the problem of finding anoptimal subregion, one whose benefit is maximized but passes theT (R)
predicate and is smaller than a constant budget, seems NP-hard. Furthermore, path separation for multiple

expressions simultaneously should be considered. However, the empirically very small number of hot paths

promises an efficient exhaustive-search algorithm.

6.3.2.3 PRE(Msr): motion + selective restructuring + selective speculation

PRE(Msr) integrates both restructuring and speculation. It can either select a profitable subgraph of

the CMP for each, or restructure to enable speculation (similarly to how restructuring enables code motion).

104

Ex Ex

u=

u=c+d

c+d

R

Q

P

O

S

R

Q

P c+d

c+d

O

S

b) after optimal PgPREa) source program

CMP([c+d]) profitable part of CMP([c+d])

R

Q

O

S

u

u

T TT

non-zero-freq. path basic block (size)

Must-Must freq. se
le

ct O P Q R S T
path 25 50 5 5 5 5
1: [3,Q,b] 20 y x
2: [4,S,T ,O,a] 20 y x x x
3: [4,S,T ,O,P ,Q,b] 10 x x x x x
4: [3,Q,R,S,T ,O,a] 10 y x x x x x
Total selected: 50 45

Figure 6.17:An example of PRE(Mr). AssumeT (R) parameterized
 = 1. Tightening code-growth
constant to
 = 0:5 results in the program in Figure 6.2(e).

This section presents the principles that can lead to an efficient heuristics, based on path profiles, as in the

sub-CMP version of PRE(MR).

Integrating partial speculation and restructuring offersadditional opportunities for improving the

cost-benefit ratio. We are no longer restricted to peeling off hot Must-Must paths and/or selectingNo-

entries for speculation. When the high frequency of aNo entry prevents speculation, we can peel off a

hot No-available path emanating from the entry, thereby reducingentry edge frequency and allowing the

speculation, at the cost of some code duplication.

Figure 6.18(a) shows an example program annotated with an edge profile. Because peeling hot

Must-Must paths from the highlightedCMP([
+d℄) would duplicate all blocks exceptS, we try speculation.

To eliminate the redundancy at the CMP exit edgeY with frequencyex(Y) = 100, a computation must be

inserted intoNo-entriesB andC. While B is low-frequency (10),C is not (100), hence the speculation is

disadvantageous, asex(Y) = 100 < ex(B) + ex(C) = 10 + 100. Now assume that the exit branch inQ is strongly biased and the pathC;Q;X has a frequency of 100. That is, after edgeC is executed, the

execution will always follow toX . We can peel off thisNo-No path, as shown in (b), effectively moving

the speculation pointC off this path. After peeling, the frequency ofC becomes 0 and the speculation is

profitable,ex(Y) = 100 > ex(B) + ex(C) = 10 + 0.

105

X
CX

YY

X

BA

C

BA

P c=..

O

c+d

Q

R

S

T

CMP([c+d])

a) source program b) speculation made profitable

P c=..

O

Q Q

c+dS

R
0

T

No-path peeled off

not profitable
profitable

speculation

100

100

100100

100

0

1090

100100

1000
100

Figure 6.18:An example of PRE(Msr) optimization.

To summarize the relationship between the three profile-guided approaches, the overall goal is to

enable for code motion a maximum of paths with value reuse (Must-Must paths). This can be done by peel-

ing the path from the region, at the cost of duplicating all basic blocks in the path. The duplication cost may

be shared among various duplicated paths. Alternatively, partial speculation enables reuse along allMust-

Must paths sinking into aMust exit, by inserting the computation into an appropriate set of No entry edges.

Finally, the cost of speculating at an entry can be reduced bypeeling off aNo-No path.

It remains to be shown that all PRE algorithms presented in this section are live-range optimal.

Theorem 6.4 (Shortest live ranges).Given the CMP-restructured (or original) control flow graph, PRE(MR)

(PRE(M)) is optimal in that it minimizes the live range lengths of inserted temporary variables.

Proof. An initialization pointInsertcannot be delayed either because it would become partially redundant,

destroying completeness, or because its temporary variable is used in the immediate successor.�
6.4 PRE for an arbitrary VNG

We present here the extension of the PRE(MS) algorithm for the general VNG representation. We

restrict our attention to this algorithm because our experiments suggests that it is most practical of all. It

achieves near complete redundancy removal of redundanciesat zero code growth, and it is simple to imple-

ment (no restructuring is needed).

6.4.1 Code motion + speculation

PRE(MS) for general VNGs proceeds as PRE(MS) for separable VNGs. It relies on an estimator to

determine where to place the speculative insertions in the CMP regions. Unfortunately, even though all five

106

single loop

Ex

copied for reducibility
CMP[a+b]

entry node

En

Ex

En

a+bt=

O

c+d
O

R

Q

P

O

c+d

c+d

a) source program

c+d

S

a+b

P

R

Q

c+d

t

S

P

b) reducible ComPRE of [a+b]

t=a+b

Figure 6.19:Reducible restructuring.

estimators in Chapter 5 were in both the separable and the general form, not all general estimators are suitable

for determining the placement of insertions. The reason is that the two best estimators (CMPr and CMPf)

are based on computing maximum flow on a network whose structure does not directly reflect the CFG of the

program, and hence the saturation of the network edges cannot be used as a criterion for the insertion, as it

was in the separable PRE(MS).

Fortunately, the CMP
 estimator supports the necessary speculation decisions. As our experiments

show, its lower bound is almost as precise as that of CMPr and hence the reliance on CMP
 does not seem

to be much of a sacrifice.

The general PRE(MS) algorithm reflects its underlying CMPf estimator. Its insertion candidate

points are the entries of the CMP region, but not the inner CMPedges. Each connected CMP region is

estimated separately. When its lower bound is greater than zero, then the speculation across the connected

region is beneficial and the algorithm inserts speculative computation into all CMPNo-entries.

6.5 Miscellaneous issues

This section covers a two PRE issues that mainly concern the implementation in a production

compiler. First, we sketch how to deal with the irreducibility of the CFG that may be introduced by the

restructuring-based algorithms. Second, we outline how toadapt speculation-based algorithms for exploiting

the control speculation features of the IA-64 processor architecture [Dul98].

6.5.1 Reducible restructuring

Duplicating a CMP region may destroy reducibility of the control flow graph. In Figure 6.2(c),

for example, PRE(MR) resulted in a loop with two distinct entry nodes. Even though PRE(R)preserves

reducibility on the same loop (Figure 6.2(b)), like other restructuring-based optimizations [AL98, BGS97a,

Ste96], it is also plagued by introducing irreducibility. One way to deal with the problem is to perform

PRE after all optimizations that require single-entry loops. However, many algorithms for scheduling (which

should ideally follow PRE) rely on reducibility.

107

After PRE(MR), a reducible graph can be obtained with additional code duplication. An effective

algorithm for normalizing irreducible programs is given in[JC96]. To suppress an unnecessary invocation of

the algorithm, we can employ a simple test of whether irreducibility may be created after a region duplica-

tion. The test is based upon examining only the CMP entry and exit edges, rather than the entire program.

Assuming we start from a reducible graph, restructuring will make a loopL irreducible only if multiple

CMP exit edges sink intoL, and at least one region entry is outsideL (i.e., is not dominated byL’s header

node). If such a region is duplicated, target nodes of regionexit edges may become the (multiple) loop entry

nodes. Consider the loop in Figure 6.19(a). Two of the three exits of CMP[a + b℄ fall into the loop. After

restructuring, they will become loop entries, as shown in Figure 6.2(c).

Rather than applying a global algorithm like [JC96], a straightforward approach to make the af-

fected loop reducible is to peel off a part of its body. The goal is to extend the replication scope so that the

region exits sink onto a single loop node, which will then become the new loop entry. Such a node is the

closest common postdominator (within the loop) of all the offending region exits and the original loop entry.

Figure 6.19(a) highlights nodec+d whose duplication after CMP restructuring will restore reducibility of the

loop. The postdominator of the offending exits is nodeQ, which becomes the new loop header.

6.5.2 Spurious exceptions

The IA-64 architecture [Dul98] introducesdelayed exceptions, a mechanism to support control

speculation of instructions that may raise exceptions, such as divisions or memory access instructions. In

general, when the compiler reorders these instructions in away that they may be executed on paths that

would not execute them in the original program (e.g., they are hoisted above a conditional branch), their

exception may be spurious, which changes the semantics of the original program. As was mentioned in

Section 6.3.2.1, speculative PRE in particular introducesthe problem of spurious exceptions.

To preserve the semantics, IA-64 allows an raised exceptionto bedelayed:when the excepting

instruction is marked asdelaying, its exception is suppressed and propagated as a special flagattached to the

register that stores the result of the excepting instruction. The delayed exception may be raised later, when

some instruction marked ascatchingreads from the flagged register. Such an exception-catchinginstruction

is usually placed in the original program point of the reordered (excepting) instruction, so that the exception

is raised exactly when it would be in the original program.

In the PRE context, two steps must be performed to allow speculation of excepting instructions on

the IA-64 architecture.

1. Speculative inserted computations that may raise exceptions must be marked asdelaying. This step is

trivial in all our speculation-based algorithms.

2. The delayed exceptions must becaughtin a way that preserves exception semantics. This can be ac-

complished by marking as catching allusernodes that can consume the value produced by a speculative

insertion point. Recall that all user computations are replaced with temporaries, so the exceptions will

be caught with copy instructions of the formx := t, wheret is the temporary.

6.6 Experiments

The experiments evaluating the transformation algorithmswere performed using the HP Labs

VLIW back-end compilerelcor, which was fed SPEC95 benchmarks that were previously compiled, edge-

108

0 0.5 1 1.5 2 2.5

go

m88ksim

gcc

compress

li

ijpeg

perl

vortex

tomcatv

swim

su2cor

hydro2d M

S

R

Loads removed, dynamic count, normalized

Global CSE
path-

insensitive

INT

FP

Figure 6.20:Relative completeness of three PRE algorithms.

profiled, and inlined (only SPEC95(int)) by theImpactcompiler. Table 6.1 shows program sizes in the total

number of nodes and expressions. Each node corresponds to one intermediate statement. Memory require-

ments are indicated by the columnmax space, which gives the largest nodes-expressions product among

all procedures. The running time of our rather inefficient implementation behaved quadratically in the num-

ber of procedure nodes; for a procedure with 1,000 nodes, thePRE time was about 5 seconds on PA-8000.

Typically, the complete PRE ran faster than the subsequent dead code elimination.

The first experiment compares the removal power (i.e., completeness) of three PRE algorithms

on removal of redundant load instructions. The VNG served asthe value-flow program representation for

the experiment. The plot in Figure 6.20 shows the dynamic amount of computations removed by PRE(M),

PRE(MS), and PRE(R)(and hence also PRE(MR)). Clearly, the following relationship holds

PRE(M)� PRE(MS)� PRE(MR)= PRE(R)

wherea � bmeansa removes no more computations thanb, in dynamic terms.6 The first experiment answers

this relationship in quantitative terms.

In the graph, the removal power is normalized on the power of Global CSE, a path-insensitive

algorithm for redundancy elimination. The graph exposes three important points.

1. Due to the normalization of the amount of reuse, the (dynamic) reuse below 1.0 is path-insensitive

(available along all paths) and all reuse above 1.0 is path-sensitive (available along a strict subset of

paths).

Integer programs contain a lot of strictly partial reuse, for which path-sensitive algorithms are impor-

tant.6We assume here that the profile-guided PRE(MS) is optimized and executed on the same program input. This
assumption held in our experiments, too.

109

benchmark program size CM prevented loop inv dynamic

spec95int
spec95fp

pr
oc

ed
ur

es

no
de

s
(k

)

ex
pr

es
si

on
s

(k
)

m
ax

sp
ac

e
(M

)

op
tim

iz
ab

le
(%ofexpr) pr

ev
en

te
d-

C
M

P
(%ofoptim) pr

ev
en

te
d-

P
O

E
(%ofoptim) lo

op
in

va
r

(%ofoptim) in
va

r-
pr

ev
en

t
(%ofLI) gl

ob
al

C
S

E
(%ofall) co

m
pl

et
e

P
R

E
(%ofall)

099.go 372 153.6 37.3 5.8 10.2 29.6 45.4 7.1 83.4 9.5 11.7
124.m88ksim 252 79.5 17.4 4.2 13.1 32.7 45.4 13.0 78.0 7.6 9.4
126.gcc 1661 917.2 158.2 38.0 8.0 34.2 45.0 2.5 69.8 3.7 4.6
129.compress 24 3.0 0.8 0.1 13.7 20.4 43.4 9.7 45.5 11.5 14.5
130.li 357 37.4 8.4 2.0 11.8 22.4 34.4 10.4 69.9 6.8 8.0
132.ijpeg 472 81.8 22.8 1.2 13.9 24.1 45.3 5.1 78.1 4.3 5.1
134.perl 276 135.0 25.5 40.4 9.6 39.5 51.8 11.9 93.5 4.8 6.8
147.vortex 923 325.9 65.7 5.8 16.6 29.5 36.1 6.3 81.6 11.1 13.0
Avg: spec95int 542.1 216.7 42.0 12.2 12.1 29.1 43.4 8.2 75.0 7.4 9.1
101.tomcatv 1 0.8 0.2 0.2 21.4 26.4 50.9 13.2 71.4 10.2 13.3
102.swim 7 1.6 0.6 0.1 17.0 29.2 46.2 10.4 100.0 10.7 12.0
103.su2cor 37 10.6 3.9 2.5 15.3 29.8 53.8 14.5 43.7 12.8 13.0
104.hydro2d 43 8.5 2.4 0.4 16.8 21.7 42.7 5.9 41.7 1.9 6.0
145.fpppp 37 13.6 6.7 19.6 14.6 52.2 57.7 43.0 91.9 7.1 7.7
146.wave5 110 33.3 12.3 5.3 12.4 34.8 47.8 4.9 66.2 7.1 7.8
Avg: spec95fp 39.2 11.4 4.4 4.7 16.2 32.4 49.8 15.3 69.2 8.3 10.0
Avg: spec95 326.6 128.7 25.9 9.0 13.9 30.5 46.1 11.3 72.5 7.8 9.5

Table 6.1: Experience with PRE based on control flow restructuring.

2. In integer programs, the obstacles to code motion are significant.

PRE(M) optimizes less than half of all strictly partial redundancies. Therefore, it is worth improving

the traditional PRE approaches.

3. The performance of the complete PRE was estimated using the CMP
 estimator. The bottom of right-

most bar in the plot shows the lower bound of the estimate. Thetop of the bar shows the upper bound.

The complete reuse is somewhere between the bounds. Also recall that the lower bound of the estimate

equals the benefit of speculation (Theorem 6.3).

PRE(MS) is very close to the performance of the (complete) PRE(MR) algorithm. Therefore, restruc-

turing may not be necessary, at least for load removal.

The third point is especially good news. If this empirical result holds true for other value flow optimizations,

then PRE(MS) is able to remove the third exponential path factor, due to the number of path with various

optimization opportunities, as introduced in Section 1.5.Still, some value-flow optimizations are inherently

restructuring-based, e.g., branch elimination (see Section 7).

Next, we present other experimental results that show the need to develop PRE that goes beyond

the code motion. In contrast to Figure 6.20, these experiments were performed using alexical value-flow

program representation.

Disabling effects of CMP regions. The column labeledoptimizable gives the percentage of expressions that

reuse value along some path; 13.9% of (static) expressions have partially redundant computations. The next

columnprevented-CMP reports the percentage of optimizable expressions whose complete optimization by

code motion is prevented by a CMP region. Code-motion PRE will fail to fully optimize 30.5% of optimizable

expressions. For comparison, columnprevented-POE reports expressions that will require restructuring in

PRE(R).

Loop invariant expressions. Next, we determined what percentage of loop invariant (LI) expressions can

be removed from their invariant loops with code motion. The column loop invar shows the percentage of

110

go

m
88

ks
im gcc

co
m

pre
ss li

ijp
eg per

l

vo
rte

x

AVG−int

tom
ca

tv
sw

im

su
2c

or

hy
dr

o2
d
fpp

pp

wav
e5

AVG−fp
AVG

0.0

1.0

2.0

3.0

4.0

5.0

D
yn

am
ic

 c
om

pu
ta

tio
ns

 e
lim

in
at

ed
 [

%
]

code−motion PRE

safe speculative PRE

unsafe speculative PRE

complete PRE

Figure 6.21: Benefit of various PRE algorithms on a lexical value-flow representation. : dynamic
op-count decrease due tostrictly partial redundancies. Each algorithm also completely removes full
redundancies.

optimizable expressions that pass our test of loop-invariance. The following column gives the percentage of

LI expressions that have a CMP region; an average of 72.5% of LI computations cannot be hoisted from all

enclosing invariant loops without restructuring.

Eliminated computations. Finally, we report the amount of removed computations. Thisexperiment differs

from the one in Figure 6.20 in that PRE is performed on the lexical representation of arithmetic instructions,

rather than on the symbolic (VNG) representation of redundant loads. The columnglobal CSE reports the

dynamic amount of computations removed by global common subexpression elimination; this corresponds

to all full redundancies. The columncomplete PRE gives the dynamic amount of all partially redundant

statements. The fact that strictly partial redundancies contribute only 1.7% (the difference betweencomplete

PRE andglobal CSE) may be due to the style ofImpact’s intermediate code (e.g., multiple virtual registers

for the same variable). We expect a more powerful redundancyanalysis to perform better. Figure 6.21 plots

the dynamic amount of strictly partial redundancies removed by various PRE techniques. Code-motion PRE

yields only about half the benefit of a complete PRE. Furthermore, speculation results in near-complete PRE

for most benchmarks, even without special hardware support(i.e., safe speculation). Speculation was carried

out on the CMP as whole. Note that the graph accounts for the dynamic impairment caused by speculation.

The measurements indicate that an ideal PRE algorithm should integrate both speculation and restructuring.

Using restructuring when speculation would waste a large portion of benefit will provide an almost complete

PRE with small code growth.

6.7 Conclusion and related work

In summary, this chapter makes the following contributions:� We present an approach for integrating three orthogonal program transformation methods: code mo-

tion, control flow restructuring, and control speculation.We developed a family of PRE algorithms that

combine the three methods:

111

code motion

speculation

restructuring

traditional
aggressive

PRE

relaxed

safe

Model

edge = path
edge < path

Profiling

Figure 6.22:A summary of our results. PRE:We extended the traditional code-motion transformation with
two transformation methods, achieving an aggressive PRE.Model: We showed how to use code motion and
restructuring within the safe optimization model, in whichno program path can be impaired. The use of
speculation requires a relaxed optimization model, in which path can be impaired.Profiling: We showed
that, when code motion is combined with speculation, an edgeprofile is as precise as the path profile. When
restructuring is profile-guided, path-profile is more precise than edge profile.� PRE(MR) is a PRE algorithm that iscomplete(i.e., it exploits all opportunities for value reuse) and

greatly reduces the code growth necessary to achieve the desired (complete) code motion. For a large

class programs (those with separable VNGs), the code growthis minimal.� PRE(MS) is profile-guided PRE that integrates code motion and speculation. Because it does not

use restructuring, it achieves zero code growth. Our experiments show that its optimization is near

complete. The important contribution of the PRE(MS) algorithm is that it determines the speculation

points and the benefit (i.e., the difference of improved and impaired path frequencies):Æ such that the benefit is maximized (for separable VNGs),Æ without enumerating the improved and impaired paths,Æ from an edge profile, as precisely as using the execution trace.� PRE(Msr) balances the three techniques. It resorts to restructuring only when speculation cannot be

done (sufficiently) beneficially.� PRE(M) is a natural restriction of the PRE(MR) algorithm. Itproduces optimization equivalent to the

optimal code-motion PRE [KRS94a], but we believe it is easier to understand.� Our experiments compare a) the optimization power and b) code growth of PRE(M), PRE(MS), PRE(MR),

PRE(R)(the pure-restructuring PRE).

Figure 6.22 summarizes this chapter using three planes thatdivide the algorithm design space.

The PRE plane: We extended the traditional code-motion transformation with two transformation methods,

achieving an aggressive PRE.

112

The optimization model plane: We showed how to use code motion and restructuring within the safe opti-

mization model, in which no program path can be impaired. Theuse of speculation requires a relaxed

optimization model, in which path can be impaired.

The profiling plane: We showed that, when code motion is combined with speculation, an edge profile is as

precise as the path profile. When restructuring is profile-guided, path-profile is more precise than edge

profile.

The observation is that edge profile is sufficient to find optimal speculation deserves a further

comment. Since edge profile is speculation-precise, to exploit the power of path profiles, partial restructuring,

rather than (speculative) code motion alone, must be used. This becomes more intuitive once we realize that

without control flow restructuring, one is restricted to consider only an individual edge (but not a path) for

expression insertion and removal. To compare the CMP-basedpartial speculation with the speculative PRE

in [GBF98], we show how to efficiently compute the benefit by defining the CMP region and how to apply

edge profiles with the same precision as path profiles. In acyclic code, we achieve the same precision; in

cyclic code, we are more precise in the presence of loop-carried reuse.

In this chapter, we defined thecode-motion-preventing(CMP) region, which is a VNG subgraph

localizing adverse effects of control flow on the desired value reuse. The notion of the CMP is applied to

enhance and integrate the three existing PRE transformations in the following ways,

1. Code motion and restructuring are integrated to remove all redundancies at minimal code growth cost

(PRE(MR)).

2. Morel and Renviose’s original method is expressed as a restricted (motion-only) case of the complete

algorithm (PRE(M)).

3. We develop an algorithm whose power adjusts continually between the motion-only and the complete

PRE in response to the program profile and the utility function T (PRE(Mr)).

4. We demonstrate that speculation can be navigated precisely by edge profiles alone (PRE(MS)).

5. Path profiles are used to integrate the three transformations and balance their power at the level of CMP

paths.

Figure 6.23 summarizes related work and out contributions.The PRE research started with the inde-

pendent works of Wegman and Wegbreit who developed PRE(R) algorithms [Weg75a,Weg75b]. Later, Stef-

fen created a complete PRE(R) algorithm that removed not only expressions but also conditional branches [Ste96].

Due to the exponential code growth, none of the algorithm is implemented in a production compiler, to the

best of our knowledge.

Morel and Renviose created the first practical PRE algorithm[MR79]. To limit the code growth,

the algorithm was based on code motion. Their algorithm was later much improved [DRZ92, Dha91, DS88]

until the research “stabilized” on lazy code motion, now considered the standard PRE(M) algorithm [KRS92,

KRS94a]. Our contribution in the PRE(M) area is an intuitiveformulation of an algorithm that produces

identical optimization as the lazy code motion.

Between the PRE(M) and PRE(R) algorithm lies our another contribution—the PRE(MR) algo-

rithm that is as complete as the PRE(R) algorithms but minimizes the code growth by performing code

motion as much as possible.

113

M

S

R Wegbreit ’75

Wegman ’75

Steffen ’96

Morel, Renviose ’79

Dhamdhere, ...
Knoop et al ’92

“lazy” code motion

Complete PRE with minimal code-growth

• in the absence of profile

Intuitive formulation
• without being “lazy”

Horspool, Ho ’97
Lo et al ’98

Gupta et al ’98
heuristic

Maximal PRE at no code-growth

• optimal, using edge profile

Balanced PRE

• near-complete,
• small code growth

Figure 6.23:Related work and contributions.

Recently, various researches extended code-motion PRE with speculations [HH97,GBF98,LCK+98,

SJ98]. None of them achieves both optimal speculation and relies on the inexpensive edge profiles.

Finally, our last contribution is the ability to combine allthree transformation methods, producing

a balanced PRE, in response to the profile and the characteristics of the optimized program. This integrated

PRE is enabled by the CMP region, which serves as a single underlying abstraction for all our algorithms.

Chapter 7

Inter-procedural Removal of Redundancies

This chapter is concerned with inter-procedural value flow.Often, a value is computed in one

procedure and recomputed in another, as a result of a modularprogramming style. To exploit such an inter-

procedural redundancy, the optimizer requires a interprocedural analysis and transformation.

First, this chapter presents inter-procedural version of dataflow analysis on the VNG. The analysis

is distinguished in two respects. First, it is demand-driven. By computing only the dataflow solution required

by the transformation stage, it reduces the cost of the analysis, when compared to an exhaustive analysis.

Second, the analysis does not require a completely constructed interprocedural VNG. Instead, the VNG is

constructed on demand, only the portion that is needed by thedemand-driven analysis. The demand-driven

construction of the VNG significantly reduces the cost of analysis, but has the drawback that the demand-

VNG does not use value numbering. The VNG is built only on back-substitution and dataflow analysis, which

are folded together into a single demand-driven pass.

The second part of this chapter deals with inter-proceduraltransformation. Inter-procedural redun-

dancies cannot be optimized with the techniques presented in Chapter 6, as computations must be moved

across procedure boundaries. While inlining can be used to concentrate the reuse into a single procedure, it

may be prohibitively expensive in practice due to its code growth. A code-growth-free alternative is inter-

procedural code motion [Kno98]. Unfortunately, inter-procedural code motion may fail just like its intra-

procedural counterpart. Furthermore, some very attractive optimizations (branch removal, revitalization of

calls) cannot be carried out with code motion.

This chapter presents an inter-procedural version of the restructuring-based PRE(R) algorithm.

Rather than attempting to combine code motion and transformation (to minimize code growth), we focus on

achieving a complete removal of inter-procedural redundancies (without resorting to inlining of procedures).

Note that entry/exit splitting of virtual call sites is not restricted to branch elimination, as presented in this

chapter. It may be used for any value-flow optimization, as a PRE(R) algorithm.

The goal of an inter-procedural PRE(R) is to separate reuse paths that cross procedure boundaries.

To this end, our PRE(R) algorithm performs procedureentry splittingandexit splitting. The former transfor-

mation creates multiple entry points in a procedure; the latter allows a procedure to return to one of several

return points in the caller. We show how to use the two transformations in concert, to separate interprocedural

paths and convert partial redundancy into full redundancy,which achieves a complete optimization.

As an application of on entry/exit splitting, we develop Inter-procedural Conditional-Branch Elim-

ination (ICBE). Relying on inter-procedural value-flow analysis presented in the first part of this chapter,

ICBE removes branches that are correlated with other branches, i.e., branches whose outcomes are known

along some execution paths from prior branch outcomes or assignments. Clearly, static branch correlation

is a special case of value reuse (of the branch condition value). ICBE eliminates correlated branches along

114

115

the correlated paths (i.e., reuse paths) by means of code restructuring, which may involve splitting procedure

entries and exits. We describe the benefits of our inter-procedural branch elimination optimization and ex-

perimentally show that, for the same amount of code growth, the estimated reduction in executed conditional

branches is about 2.5 times higher than when onlyintraprocedural conditional branch elimination is applied.

7.1 Demand-driven interprocedural dataflow analysis

This section presents an inter-procedural version of dataflow analysis on an inter-procedural VNG.

The analysis is distinguished in a few respects.

1. The analysis isdemand-driven. By computing only the dataflow solution required by the transformation

stage, it reduces the cost of the analysis, when compared to an exhaustive analysis. In practice, the

optimizer may decide to analyze only the frequently executed usernodes.

2. The analysis can beterminated early, before the (demanded) solution is completely computed. The

analysis is stopped after a budgeted amount of nodes have been visited. The unexplored paths are

assumed to have a conservative solution.

3. The VNG isconstructed on the flyduring the dataflow analysis. Only the portion that is neededby

the demand-driven analysis is (virtually) constructed, with the goal of avoiding the construction of

potentially very large interprocedural VNG. An (undesirable) consequence of this (desirable) delayed

VNG construction is that the value numbering is not invoked to collapse the VNG threads, resulting in

lower accuracy.

7.1.1 Application: inter-procedural branch correlation

We use the demand VNG analysis to findstatically correlated conditional branches. A branch

is statically correlated (along a path) if the branch outcome can be determined (along that path) at compile

time, from prior statements or branch outcomes. Branch correlation is another name for partial redundancy of

branches; the former name reflects that the direction of the redundant branch depends on the direction of some

other branch(es). Correlated branches can be eliminated from the optimizable path through code restructuring

presented in Chapter 6 and Chapter 7. The former chapter shows how to separate the optimizable paths intra-

procedurally. The latter chapter presents inter-procedural separation of paths, by means of on procedureentry

splittingandexit splitting.

Interprocedural Conditional Branch Elimination (ICBE) has a number of benefits, including� enhancing instruction scheduling and software pipelining,� improving speculative execution and hardware branch prediction, and� optimizing C++/Java virtual functions.

Recent research in branch prediction [Kra94, SLM96, YGS95], profiling [BL96a], and the elimination of

conditional branches [MW95b] has reported the existence ofsignificant amounts of correlation among con-

ditional branches, presenting opportunities for optimizations. Previous work on conditional branch elimi-

nation through static correlation [MW95b] demonstrated substantial performance improvements despite its

restricted focus on eliminating conditionals within loops. Experimentally, we show that substantially more

116

static correlation is detected at compile time when programs are analyzed interprocedurally. Using programs

from the SPEC95 suite, we discovered that interprocedural detection of correlation enables elimination of

3% to 18% of executed conditionals, which is a factor of about2.5 improvement over strictly intraprocedural

analysis. As illustrated below, this high correlation among branches when procedures are considered is due

to the modular fashion in which we write procedures:� In a procedure, the value returned is often selected by an if-statement. This value may again be checked

by the caller. For example, consider a call to a procedure that removes an element from a linked list.

The procedure tests whether the list is empty and, if so, returnsnil. The caller performs an identical

test on the return value to determine ifnil was returned. The later test is fully correlated with the earlier

one.� In order to keep the procedure interface simple by passing few arguments, procedures frequently in-

clude checks on the parameters that are also performed by thecaller or even by previous calls to the

same procedure. For example, procedures from the same library module may be called one after an-

other, propagating values. These procedures often performcorrelated tests on the propagated values.

With the ICBE optimization, the repeated testing can be eliminated.

This research implemented the analysis and experimentallyinvestigated the amount of interproce-

dural correlation detected and the cost of the analysis. Ourmeasurements performed on a subset of SPEC95

programs provide insight into the interprocedural correlation that can be detected statically and its usability

for compiler optimizations. It was found that not only the number of conditionals with some correlated paths

greatly increases with inter-procedural analysis, but also the effect of branch elimination is more significant

because many short, frequently taken interprocedural correlated paths exist. This observation serves as a

motivation for performing the VNG analysisinter-procedurally.

It was also observed that some correlated branches are correlated along long (usually inter-procedural)

program paths. Such correlations require time-demanding analysis. A simple heuristic for controlling the ex-

tent of the demand-driven analysis was developed and evaluated: the analysis of each branch was allowed to

examine only a few hundred nodes. Paths that were not completely analyzed were (conservatively) assumed

to have no value reuse. Suchearly terminationreduced the analysis cost by an order of magnitude, while it

sacrificed the detection of only a fraction of correlation. Note that the missed correlation was mostly present

along long paths and hence it would not be exploitable anyway, due to much duplication required in the

transformation stage. This observation serves as a motivation to construct the VNGon demand. Since, under

the successful early termination heuristic, the value reuse paths are not examined completely, it is desirable

to build only the portion of the VNG thatwill be analyzed.

7.1.2 Motivation

We illustrate interprocedural branch correlation on a small application program that uses thestdio

GNU C library. The program is shown in Figure 7.1. FunctionMAIN first opens a text file by a call tofopen

and then iterates through each character in the file untilEOF is reached. The characters are obtained by a call

to fgetc, which returns a character from a buffer that is filled by calling fillbuf.

Consider first the conditional branchP0 in MAIN. This branch is redundant along all incoming

paths, hence it can be fully removed. Let us analyze the threepaths leading to the branch. Along the path

starting at the nodea in fgetc, the branch will always exit the main loop, because the nodea returns the value

EOF. Hence, thetrue outcome of the branch is correlated with the nodea. Along the path from the node

117

False True

#define NULL 0

#define EOF -1

P1

P2

return c

OUT

c = ucb
uc =*fp->bufp++

fp->bufp < fp->get_limitP4

P3 fp->magic == IOMAGIC

IN

fp != NULL int c
unsigned char uc

int FGETC(fp)

fp = *fp->p

fp->magic == GLUEMAGIC

return EOF
errno = EINVAL

fp = fopen("file","r")

IN int c

OUT

c = fgetc(fp)

MAIN

c == EOFP0

process c

a

cc = fillbf(fp)

(a) The source program.

Figure 7.1: The example program using the GNU C library (version 1.09).
, the branch will always continue the main loop, because the valueuc fetched from the buffer is unsigned

and hence always different than the constantEOF, which is�1. Hence, thefalseoutcome of the branch is

correlated with the node
. The examination of the procedurefillbuf (not shown in the figure) would show

that the paths from the nodeb either returnEOF or an unsigned character, just like the nodesa andb.
In summary, the outcome of the branch is redundant along all incoming paths. This section presents

an analysis that detects this kind of inter-procedural correlation. While the branch is optimizable along all

paths, the optimization differs along the incoming paths (some paths are true-correlated and some a false-

correlated). The optimization is possible via interprocedural separation of the paths, which is a program

transformation presented in Chapter 7.

Next, consider the conditionalsP1, P2, andP3 in the functionfgetc. Within the inter-procedural

loop created inmain, these branches are loop-invariant, because their outcomes are the same in each iteration.

The examination offopen (not shown in the figure) would show that, for each path emanating from fopen,

eitherfp=NULL or fp6=NULL^fp->magic=IOMAGIC holds. In either case, all three correlate. As a result,

they are not only loop-invariant, but they are also redundant along all paths and thus can be fully removed.

Summarizing the example, in the original loop, five conditional branches are executed in each iteration. After

the optimization, only one conditional remains.

7.1.3 The demand-driven algorithm

As already mentioned, the demand analysis builds the VNG on the fly, but using only two of its

three components—back-substitution and dataflow analysis, which are folded together into (essentially) a

single demand-driven pass. Value numbering, which collapses the value threads, is not engaged because

it does not fit the demand-driven paradigm. To understand thereasons for it, recall the three steps of the

(exhaustive) VNG construction and analysis.

118

1. Place threads starting from the user (i.e., optimized) computations, using symbolic back-substitution,

in a backwarddirection.

2. Collapse threads, using value numbering, in aforward direction.

3. Solve dataflow problems, in aforward or backwarddirection.

Branch correlation is computed as the problem of availability of branch conditions, aforward problem.

To compute a forward dataflow problem on demand, the demand-driven analysis proceeds in a backward

direction [DGS97]. This reversed direction allows us to fold together the (backward) placing of threads (the

first step of the VNG construction) with a demand-driven version of its third step (computing availability).

Thus, given a user computation
, the demand-driven VNG analysis performs two steps.

1. Place threads leading to
, using symbolic back-substitution, in abackwarddirection. While placing

the threads, look also for computations that generate or kill the value of
, thussolvingthe availability

of
.
2. Complete the dataflow analysis of
, by markingthe threads leading to
 with its availability solution.

This step proceeds in aforward direction.

The unsuitability of value numbering can now be explained. There are two reasons. First, the demand analysis

folds the first and the third steps of the exhaustive construction, bypassing the second step, which cannot be

combined with them because it proceeds in the opposite direction. Second, because we build threads only for

the optimized computations, there are no threads with whichthey could be merged.

Figure 3.8 on page 29 illustrates which reuse is captured by demand VNG analysis. WhenS5 is

being analyzed on demand, it is found to recompute the value of S2, because they lie on the same thread. In

contrast, whenS4 is analyzed on demand, its recomputation ofS3’s value is missed, because that requires

placingS3’s thread (this is the second reason above), and collapsing this thread (this is the first reason above).

One more important issue must be explained. Clearly, the described demand-approach works only

for forward dataflow problems. For backward problems, their(reversed) demand-driven direction is not

aligned with the backward direction of back-substitution.This deficiency is not significant in some situations.

First, for removal of conditional branches, the solution toanticipability (a backward problem) is not needed,

as will be explained in Chapter 7. Similarly, some version ofspeculative PRE do not require anticipability

(namely, the PRE estimator in Chapter 5). Second, backward problems can actually be computed on the

VNG that is built on demand, albeit imprecisely: once the threads have been placed by the demand analysis,

backward problems can be computed on them. Because not all threads have been placed, a (conservatively)

imprecise solution may be obtained.

7.1.3.1 Query propagation

Our demand-driven VNG analysis is presented in the context of branch-correlation detection. Our

analysis is demand-driven from a given conditional node: only the nodes that may lie on a correlated path are

visited and only the relevant data flow information is computed. The analysis is initialized by raising a query

at the conditional that corresponds to asking a question “isthe outcome of the conditional with the predicate(v relop
) known along some incoming paths?” The form of the raised query is (v relop
), wherev is a

variable and
 a constant. Note that the query format can be made arbitrarily more general, without affecting

the algorithm presented here. In fact, the query format corresponds directly to the language of symbolic

119

namesP from which we draw the symbolic names for the VNG construction, which we are allowed to pick

freely.

The query is then propagated from the conditional backwardsalong all paths in the ICFG until it

can be resolved on these paths. Resolving a query at a node produces one of three answers:TRUE, FALSE,

UNDEF. The first two answers are a minor extension of theMust value in the path-sensitive lattice (see

Definition 4.4). They indicate that the path along which the query reached the node is correlated.TRUE

means that the outcome of the conditional along the path is true (i.e., the true outcome must be taken). The

answerFALSE means the opposite (i.e., the false outcome must be taken). The UNDEF means that the

outcome is unknown because the variable is assigned an unknown value.

For resolving a query, we have identified four sources of static correlation.� A query is always resolvedTRUE or FALSE at a node that assigns a constant to the variablev from

the query.� A conditional branch that involves the variablev. The assertions on variables that exist on the true and

false out-edges of the conditional may define the outcome of the predicate in the query. Note that a

conditional correlates with itself if there is a path arounda loop along which the query variable is not

defined.� A type conversion from an unsigned to signed value, as in the example in Figure 7.2. The result is

always non-negative, which may determine the branch predicate outcome.� After a pointer variable is dereferenced, its value is guaranteed to be non-zero; otherwise a segmenta-

tion fault would have occurred.

During the propagation, a copy assignment to the query variable may be encountered, e.g.,v := w. When this

happens, the query is modified to reflect this assignment before it continues to propagate. This simple form of

symbolic back-substitution is essential to capture assignments to and from temporaries, common subexpres-

sions, procedure return values, and parameter passing. As aconsequence of this substitution, multiple distinct

queries can be raised at a single node. For the query format fixed above,(v relop
), at mostV number of

queries will be raised at each node, whereV is the number of program variables. For more general query

formats, thew-limiting of back-substitution will have to terminate the query propagation (see Section 3.12

on page 33).

After the analysis terminates, the resolved queries are rolled back along the paths they traversed.

The goal is to collect all resolved answers to each query raised at a node. Starting at the successors of

nodes where a query was resolved, answers are propagated forward and merged by a set-union operation at

control flow merge nodes. At any node, including the conditional itself, each query may have from one to all

three possible answers fromfTRUE;FALSE; UNDEFg. For example, if the query raised at the conditional

has answersTRUE andFALSE, then there are some correlated paths leading to the conditional where the

outcome is true, some correlated paths where it is false, andno paths along which it is unknown. Such a

conditional has full correlation.

7.1.3.2 Computing procedure summary nodes

The interprocedural analysis used aninterprocedural control flow graph (ICFG)that combines

CFGs of all program procedures by connecting procedure entries and exits with their call sites, as depicted

in Figure 7.3. All edges in the figure define the predecessor-successor relation for nodes. Each procedure

120

Analyze predicate (v relop
) in conditional branch node b
1 initialize Q[n℄ to fg at each node n
2 form the initial query qb = (v; relop;
; nil)
3 raise query(pred(b); qb)
4 while worklist is not empty do
5 remove pair (node n, query q) from worklist
6 case n is entry node of a procedure p:
7 if q is a summary node query then A[n; q℄ := TRANS; add q to q:sne:entries[n℄
8 else if n has no predecessors then A[n; q℄ := UNDEF
9 for each call site node predecessor m of entry node n do
10 if q is a summary node query for jth exit of p then
11 if q:sne:qin is raised at jth exit of m then raise query(m; q)
12 else raise query(m; q)
13 end for
14 case n is call site exit node:
15 let ex be the procedure exit predecessor of n
16 let m be the call site predecessor of n and en the entry node invoked by m
17 if summary node entry sne[ex; q℄ does not exist then
18 let qsn be a copy of q
19 sne[ex; q℄ := (qsn; ex; fg); qsn:sne := sne[ex; q℄
20 raise query(ex; qsn)
21 else if sne[ex; q℄:entries[en℄ does not exist then
22 sne[ex; q℄:entries[en℄ := fg
23 raise query(ex; sne[ex; q℄:qin)
24 end if
25 add A[ex; sne[ex; q℄:qin℄ n fTRANSg to A[n; q℄
26 for each query qa in sne[ex; q℄:entries[en℄ do raise query(m; qa)
27 otherwise :
28 answer := resolve(n; q)
29 if answer 2 fTRUE;FALSE;UNDEFg then A[n; q℄ := fanswerg
30 else for each m 2 pred(n) do raise query(m;substitute(n; q))
31 end case
32 end while

Procedure raise query(node n; query q)
33 if q 62 Q[n℄ then add q to Q[n℄; add pair (n; q) to worklist

end

Figure 7.2: The interprocedural static correlation analysis.

121

procedure Pcall site of P

procedure exit nodes

cal site exit nodes

call site node

P

procedure entry nodes

another call site of P

Figure 7.3: Interprocedural CFG in call site normal form.

can have multipleprocedure entrynodes and multipleprocedure exitnodes (to support the transformation

from Chapter 7). The successors of acall site node are the procedure entry node and the associatedcall

site exitnodes. The analysis algorithm requires the ICFG to be in thenormal call site form, where a) each

call site node has a single procedure entry successor and b) each call site exit node has exactly one call site

predecessor and one procedure exit predecessor. It is assumed that the above nodes are dummy nodes with

no program statements.

The computation of summary nodes is motivated by the demand-driven framework of [DGS95],

which computes procedure summary nodes also on demand, in order to improve the efficiency of interpro-

cedural analysis. Since in the analysis the queries are propagated through procedures backwards, summary

node entries are stored at procedure exit nodes and for each query raised at the exit node we maintain: a) the

answers resolved in the procedure, and b) the correspondingqueries at the entry of the procedure, if the query

propagated all the way to the entry node. All queries raised at procedure exit nodes are used to compute sum-

mary nodes and are, therefore, treated specially. When asummary node queryreaches a procedure entry, it is

not propagated to the callers, but resolved with the fourth kind of query answer,TRANS. This answer marks

paths through the procedure along which the query was not resolved. The procedure istransparentalong

such paths and the summary node lookup must propagate queries (backward) and collect answers (forward)

across call sites of transparent procedures. The analysis handles both call-by-value and call-by-reference

parameters.

The analysis algorithm is given in Figure 7.2. The algorithmcomputes summary nodes without

interrupting the analysis. Each query is a tuple(v; relop;
; sne), wheresne is used by summary node queries

to keep a pointer to their summary node entries; for non-summary queries, this field isnil. The summary

node entry for queryq raised at exit nodeex is a tuplesne[ex; q℄ = (qsn; ex; entries), whereqsn is the

summary node query raised on the procedure exit nodeex andentries[en℄ is the set of queries propagated to

a particular entry nodeen. (In this algorithm, a procedure is allowed to have multipleentry nodes, to support

entry splitting (Chapter 7)). The analysis is started at line 3 by raising the initial query at the predecessor

of the conditional to be analyzed. Line 4 terminates the analysis when no node with an unresolved query

remains. Lines 6–13 handle procedure entry nodes. Summary node queries are resolved here toTRANS and

are added to the summary node entry as having reached the particular entry node, as described above. The

non-summary query is propagated to all call sites of this entry (lines 9 and 12). The summary node query is

propagated only when the computation of the summary node wasinitiated at the exit of the call site (lines

9–11). Lines 14–26 process a call site exit noden. Predecessors ofn are determined according to Figure 7.3.

If summary node lookup in line 17 fails, a new summary node entry is created and a summary node queryqsn
is raised. Lines 21–23 update the summary node after a previous split of a procedure entry/exit node. Line 25

resolves the query based on the answers saved in the summary node and line 26 propagates the query across

the procedure when a transparent path through the procedureexists. Finally, any other kind of node may be

122

f()

(a) source program (c) rollback(b) analysis

TF

x:=?

x:=1

call F()

E

G

T

P

(x=0,nil)
G

x:=?

E f()

x = 0

F

G

B

A

C

D

P

F

E
f()

A[(x=0,nil)]={U}

A[(x=0,sne1)]={Tr}

q1, G, entries[E]={(x=0,sne1)}

A[q1:(x=0,sne1)]={U,Tr}

A[(x=0,sne1)]={U}

sne1:

A[(x=0,nil)]={F}

A[(x=0,nil)]={F,U}

A[(x=0,nil)]={F,U}

B

A

F

P

C

D

E

G

(x=0,nil)

(x=0,sne1)

(x=0,sne1)

q1: (x=0,sne1)

q1, G, {}

main()

sne1:

F T

U

F

Tr

U

(x=0,nil)

(x=0,nil)

Figure 7.4: An example of interprocedural correlation analysis.

a source of correlation (lines 27–30). Functionresolveattempts to resolve a query. If it fails, the query is

propagated after it is back-substituted. The algorithm forcollecting the analysis answers by propagating the

forward can be easily derived from the analysis algorithm.

The analysis is illustrated with an example in Figure 7.4. The four possible query answers are

abbreviated in the figure asT, F, U, andTr, for query answersTRUE, FALSE, UNDEF, andTRANS.

The analysis of conditional nodeP is initiated by raising a queryq : (x = 0; nil) at the predecessor ofP

(Figure7.4(b)). The entrynil signifies that the query does not compute a summary node entry. Sincex is

a global variable, it cannot be propagated across the intraprocedural edge(C;D). Instead, it is raised at the

exit of proceduref, where it initiates computation of a summary node entrysne1. The summary node entry

is computed by raising a summary node queryq1 : (x = 0; sne1) at the procedure exit nodeG. The query

is resolved at nodeF to UNDEF because an unknown value is assigned tox. The nodes where a query is

resolved are highlighted in the figure. The scope of the summary node is limited to the procedure and henceq1 is resolved at the procedure entry node toTRANS. Also, the query is recorded in theentries[G℄ field

of the summary node entry. Whenever a summary node query reaches the procedure entry, a corresponding

query is raised at the call site node. In our case, queryq : (x = 0; nil) is raised at nodeC. This query is

subsequently resolved at nodesA andB to UNDEF andFALSE, respectively.

The analysis is followed by the rollback phase (Figure 7.4(c)). The answer for a queryq is stored

in A[q℄ and consists of all answers forq reaching the node. Note that theUNDEF answer forq at nodeD

was propagated from nodeC through theTRANS answer of the summary node query. The algorithm fpr

performing the roll-back is shown in Figure 7.5.

7.2 Inter-procedural transformation: example and motivation

We illustrate the utility of entry/exit splitting on a smallprogram that calls a library procedure.

In this program, many branches are redundant, as their outcomes are determined by prior statements (as-

signments or other branches). We show that with our inter-procedural restructuring, ICBE eliminates the

execution of these branches, even without resorting to inlining. The program, shown in Figure 7.2(a), was

used in Section 7.1 to illustrate inter-procedural value-flow analysis. We use it here to demonstrate how our

transformation can remove the redundancies detected by that analysis.

The program calls thestdio GNU C library (glibc version 1.09). FunctionMAIN first opens a text

file by a call tofopen and then iterates through each character in the file untilEOF is reached. The characters

123

Collect answers to queries raised during the analysis of branch b
add qb = (v; relop;
; nil), the initial query raised at branch b, to Q[b℄
let worklist be the set of nodes n s.t. a query was resolved at a predecessor of n
while worklist is not empty do

remove a node n from worklist
for each query q from Q[n℄ do

if n is jth exit of call site m invoking ith entry of procedure p then
let e be the jth exit of procedure p
add A[e; sne[e; q℄:qin℄ n fTRANSg to A[n; q℄
for each query qa in sne[e; q℄:entries[i℄ do add A[m; qa℄ to A[n; q℄

else if q was not resolved at node n then
for each m 2 pred(n) do add A[m;substitute(n; q)℄ to A[n; q℄

end if
end for
if an answer has been added to A[n; q℄ for any q then add succ(n) to worklist

end while

Figure 7.5:The roll-back algorithm.

are obtained by a call tofgetc, which returns one character from its buffer until the buffer is empty, when it

is refilled by callingfillbuf.

Consider first the conditionalP0 in MAIN, which tests the loop-exit condition
 = EOF. As was

elaborated in detail in Section 7.1, the outcome ofP0 is always true along the path froma to P0, and it is

always false along the path from
 to P0. Assuming for now that the code of functionfillbuf is unavailable

to the optimizer, nothing can be deduced about its return value, and hence the behavior ofP0 cannot be

determined along the path from nodeb to P0. In summary, the conditionalP0 is partially redundant along

two out of three (sub)paths reaching it. In other words, the analysis discovered a static correlation ofP0:

whenevera or
 is executed,P0’s outcome is known.

To optimizeP0, the two reuse paths must be separated. The separation peelsoff the two paths

(a) from other paths, to isolate the optimization condition(along the isolated paths, the branch will be by-

passed), and (b) from each other, because the branch will jump into a different target along each path. How-

ever, procedures pose obstacles to such desired path separation. Procedures are traditionally viewed as in-

herently single-entry/single-exit regions of code, whichmeans that all paths through the procedure must pass

through the unique entry and exit points. To exploit inter-procedural opportunities for conditional branch

elimination, the correlated paths crossing procedure entry/exit must be isolated by splitting procedure en-

try/exit nodes.

To separate the paths across procedure return, we performexit splitting, which creates two exits in

the called procedure. After the exit is split, the conditional P0 is bypassed (i.e., eliminated) each time it is

executed, except after the buffer is refilled at nodeb (see Figure 7.2(b)). Exit splitting can be implemented by

passing to the callee additional return addresses; in Section 7.4, we present a more efficient implementation

technique whose cost is independent of the number of exits.

Next, we optimize conditionalsP1, P2, andP3 in function fgetc. For all three conditionals,

the analysis detected reuse originating in procedurefopen, where eitherfp = NULL, or fp 6= NULL ^
fp->magic = IOMAGIC holds along any path. In either case, all three conditionalsarefully redundant (that

is, they can be eliminated along all paths, although separation is necessary (recall the reason (b) above). Our

124

False True

#define NULL 0

#define EOF -1

P1

P2

return c

OUT

c = ucb
uc =*fp->bufp++

fp->bufp < fp->get_limitP4

P3 fp->magic == IOMAGIC

IN

fp != NULL int c
unsigned char uc

int FGETC(fp)

fp = *fp->p

fp->magic == GLUEMAGIC

return EOF
errno = EINVAL

fp = fopen("file","r")

IN int c

OUT

c = fgetc(fp)

MAIN

c == EOFP0

process c

a

cc = fillbf(fp)

(a) The source program.

b c

IN

a

unsigned char uc
int c

P4

P3

P2

P1

errno = EINVAL
return EOF return c return c

c = uc
uc = *fp->bufp++

fp->bufp < fp->get_limit

fp->magic == IOMAGIC

fp = *fp->p

fp->magic == GLUEMAGIC

fp != NULL

IN int FGETC(fp)

OUT

MAIN int c

fp = fopen("file","r")

process c

P0 c == EOF

OUT2

c = fgetc(fp)

OUT1 OUT3

OUT2OUT3 OUT1

c = fillbuf(fp)

(b) After optimization ofP0.

OUT2OUT1

IN

OUT2

IN2

errno = EINVAL
return EOF

OUT3 OUT1

OUT1 OUT2

c = fillbuf(fp)

return c

c = uc

OUT1

uc = *fp->bufp++

IN2

OUT

fp = fopen("file","r")

P3

P4

fp->magic == GLUEMAGIC

fp->magic == IOMAGIC

fp->bufp < fp->get_limit

fp = *fp->p

P2MAIN int c

fp != NULLP1

int FGETC(fp)

FILE * FOPEN() IN

.......

IN3
c = fgetc(fp) fgetc(fp)

OUT1 OUT3OUT3

return c

IN

process c

IN3

(c) Elimination ofP1, P2, P3; exit splitting onfillbuf.

Figure 7.6:The example program using the GNU C library.

125

OUT

IN3
fgetc(fp)

OUT1 OUT2
OUT3

MAIN

c = fillbuf(fp)

IN

P4

OUT1 OUT2

FGETC

process c

uc = *fp->bufp++
c = uc

fp->bufp < fp->get_limit

fp = fopen("file","r")

process c

Figure 7.7:Partial inlining of fgetc.

optimizer splits the exit offopen and the entry offgetc to bypass these conditionals. The result is shown in

Figure 7.2. If no other call site of this entry exists, the statements infgetc that are reachable only from its

original entry can be deleted if no other call site of this entry exists.

Let us assume now that the code offillbuf is available to the optimizer. With this information,

the analysis detects thatfillbuf returns eitherEOF or an unsigned value. In either case, the outcome ofP0 is determined. After exit splitting offillbuf, the conditionalP0 is completely eliminated, as shown in

Figure 7.2(c).

To appreciate the power of the inter-procedural transformation, consider the amount of branches

removed. In the unoptimized program, each loop iteration executes five conditional branches. After the opti-

mization, only one conditional remains. This optimizationcannot be carried out by intra-procedural branch

elimination [MW95b], unless inlining is applied. Furthermore, ICBE reduces the code size of procedure

fgetc, which enables its (partial) inlining intoMAIN, where the resulting (reduced) loop can be efficiently

software-pipelined (see Figure 7.7).

7.3 Inter-procedural PRE(R) algorithm

Because this chapter illustrates inter-procedural value-flow optimization by means of redundant

branches (and not arithmetic computations, as in the previous chapters), we start by showing that the CMP

region naturally supports theintraprocedural removal of branches. We then proceed to extend the CMP-based

restructuring to the inter-procedural setting.

7.3.1 Intra-procedural branch removal

Let us first briefly review the value-flow analysis for conditional branches, which was described in

Section 7.1. For each conditional branch, along each path, the value-flow analysis may detect exactly one of

three “events:” the branch outcome is always eithertrue, or false, or not known at compile time. To phrase

the three-valued branch redundancy into our two-valued (Must/No) value-flow framework, we treat the true

and the false branch outcomes independently, as two complementarybranch exits, which either are redundant

126

AVAIL=No

ANTIC=No

ANTIC=Must

AVAIL=Must

T

C

P

A

C D

B

F T

BA

D C DC

FTF

P

C D

P

TFT

A

P

B

XF

D

x=0

x:=1 x:=?

C D

Figure 7.8:Intra-procedural restructuring.

along a given path or they are not redundant. For example, theconditional branchP0 :
 = EOF

in Figure 7.6 is split into two branch exitsP t0 :
 = EOF and P f0 = :P t0 :
 6= EOF:
Each branch exit can now be analyzed using theMust/No/May lattice. Given a pathp leading to a branch,

the solution of availability (AVAIL) has the following meaning:

Must: the branch exit is redundant along a path, i.e., the branch exit will be taken whenever the path is taken,

and so the branch condition need not be evaluated.

No: the branch is not redundant along the path, i.e., whenever the path is taken, the branch condition must

be evaluated to determine whether the branch exit (or the complementary exit) will be taken.

When theAVAIL solution for a branch isMay , then there is a path along which the branch isMust (can be

bypassed) and also a path along which the branch isNo (must be evaluated).

On the VNG, each of the complementary branch exits is associated with the out-edges of the condi-

tional branch node, as shown in Figure 7.8(a). The figure alsodepicts the CMP region for such a conditional

expression. Note that the branch exit coincides with theMust-exit edge of the CMP region. The reason for

this coincidence is that the branch exit is onlyMay -anticipated at the branch node (the branch exit will be

computed along one path through the node but not the other). The consequence is that code motion is not

applicable for the removal of redundant conditional branches (hoisting will immediately hit the CMP region)

and so restructuring must be used instead.

The CMP region for the branch exit indicates how to restructure, just like it does for any other

computation. After the CMP region is duplicated, theNo copy must evaluate the branch. In theMust copy

of the region the branch outcome is known and hence we can disconnect the complementary branch exit as

unreachable and eliminate the branch itself, which concludes the transformation.

The interprocedural CMP region is computed on an interprocedural VNG representation, which is

computed on the ICFG (see Figure 7.3) similarly to the way theVNG is computed on the CFG.

7.3.2 Inter-procedural restructuring

Entry splittingoccurs when the correlated path is entering the procedure through a procedure entry

node. Entry splitting always involves call site splitting.Exit splittingoccurs when a correlated path crosses a

procedure exit node. Exit splitting always involves splitting call site exit nodes.

127

Tr,UUF

UF

U

F

U

F,U

F,U

F,U

F

U

F T

F()

Tr,U

Tr UF

U

Tr

F

U

P

P

f()

call site normalization I call site normalization II

U

U UTr

after analysisafter analysissource program

procedure exit node split optimized program

call site exit node split

F U

UUF UTr

+ redundant P removed

F

U

F U

U

U U
UTr

F

P

A

G’D D’

C’C E

B

F

G

call F()

E

G

x == 0

F T

A

B

C C’ E

F

GD’D

�
�
�
�

P

x:=1

G

x:=?

E

TF

x == 0

x:=?

x:=?

x:=1 B

A

C E

F

GD

P

��
��
��
��

E

P

TF

U

F

Tr

U

F,U

G

x:=?

G’

E

G

E

G

G’

C C’

B

A

E

F

G

P

D D’’ D’

G’

U

F

G’

F T

P

f()

�
�
�
�

call F() call F()

U

Tr

U

F

Tr

G’

A

B

C E C’

F

G D’D

P

D’’’D’’

U

Figure 7.9: Inter-procedural restructuring. The labelF denotes query answerMust and the labelU
denotes query answerNo.

Thanks to the ICFG representation and the normal call site form, the duplication of the procedure

entry and exit nodes require little special handling. All that is required is to consult the procedure summary

function when attaching the edges that connect a call site node with its call site exit nodes. This handling is

added to lines 13–17 in Figure 6.10. This code also normalizes the call site into the normal form shown in

Figure 7.3.

Figure 7.9 illustrates inter-procedural restructuring. Figure 7.9(a) shows the source program and

Figure 7.9(b) annotates the nodes of the ICFG with answers tothe queries raised in the analysis from Fig-

ure 7.4. Figure 7.9(c) marks the CMP region. The triangle denotes aTrans entry edge. Note that the nodeE

does not belong to the CMP region, although it lies on both aMust-path (reuse path) and on aNo-path (free

path). The nodeE need not be split because the call site nodeC will be split, which “sufficiently” splits the

two paths. This fact is reflected in theAVAIL solution of the nodeE, which containsTrans, a single answer.

Figure 7.9(d/e) show the ICFG after the CMP region in the caller/callee is duplicated, respectively. Notice

how the call-site-related edges are attached. In particular, the edges (C,D) and (C,D’) exist because the call

site nodeC may follow in the callee both aTrans-path (producing aMust solution on the call site exit node)

and aNo-path. Finally, Figure 7.9(f,g) put the restructured call site into the normal form.

7.4 Implementation Details

This section elaborates on some important implementation details of entry/exit splitting. First, we

present an efficient implementation of exit splitting. Second, we show how entry/exit splitting can be applied

to call sites that invoke one of multiple procedures (e.g., virtual procedures in object-oriented languages).

128

return-points array

F(a,b)

A

B C

A
B
C

B:

C:

A:
push a
push b

jsr F

retret

r=4(r) r=8(r) r=0(r)

ret

F
r

code segment

Figure 7.10:Implementation of Exit Splitting.

7.4.1 Exit splitting

A naive implementation of exit splitting would pass the alternative return addresses to the callee

as additional procedure arguments. The dynamic number of instructions added to implement exit splitting in

this style is proportional to the number of procedure exits,a potentially high cost.

Figure 7.10 outlines a method whose cost is independent of the number of exits. Rather than being

passed as arguments, the alternative addresses are placed in thereturn-points array, a static memory block

initialized at link time and stored in the text segment. The return addresses can be stored in the (immutable)

text segment because the addresses remain the same throughout the entire execution, for each call site.

The return-points array starts immediately below the call site (jsr) instruction. Such placement has

the benefit that the (machine-dependent) return register (denotedr in the figure) points to the beginning of

the array, allowing a fast access to alternative return addresses. Given the access to the array, each of the

procedure returns fetches its return address using a uniqueindex to the return-points array. The cost of exit

splitting is thus a single load operation, executed just before the return operation.

7.4.2 Entry/exit splitting of virtual procedures

Entry/exit splitting enables optimization of multi-target call sites, such as call sites of virtual proce-

dures in object-oriented languages. Such call sites are generally not amenable to procedure inlining, which is

a preferred (albeit potentially expensive) transformation for enabling inter-procedural optimizations. Inlining

is not always allowed at virtual call sites because they may invoke a different procedure each time they are

executed, depending on the type of the receiver object. Evenwhen the call site invokes at most one procedure,

the analyzer is not always able to safely confirm this fact.

Virtual call sites invoke the callee indirectly, by fetching its address from a table pointed to by the

receiver object. Various organizations of the virtual lookup have been developed, but for our purpose we can

assume that the address of the procedure entry is obtained byindexing the lookup table with the type of the

receiver object and the method name:

ProcEntry= Table[Type;MethodName℄

129

Entry splitting is possible even for such indirect calls, by simply indexing the lookup table with the type and

thecall site.1

ProcEntry= Table[Type;CallSite℄
With such indexing, when two call sitesa; b that call the same methodm of type t invoke a different entry

of t :: m after entry splitting was performed, the table can distinguish the two entries. Most importantly,

this lookup scheme does not require thata andb invoke a different entry ofm for all possible receiver types.

In particular, when typet0 was not optimized, then all call sites will invoke the original entry of the methodt0 :: m. This simply means thatt0 :: m will forgo the path-specific optimization opportunities created

by splitting the paths leading to the original call site (where the entries were split). Conversely, when a

(optimized) methodt00 :: m cannot take advantage the opportunities, its original entry will be called from all

call sites.

The algorithm. To transform a virtual call site, the inter-procedural PRE(R) algorithm need not

be modified at all. We only require that the ICFG representation connects each call site nodes with all its

possible callees (i.e., the call site node will have multiple successors and the call site exit node will have

multiple predecessors). A prerequisite for entry/exit splitting of multi-target call sites is that the number of

callees is relatively small. When many procedures can be invoked, it is useful to know which of the callees

are frequently executed, to allow a profile-guide selectionof methods.

7.5 An application: inter-procedural conditional-branch elimination

This section puts together the demand-driven analysis fromSection 7.1 and the transformation

presented in this Section 7.3. We develop an optimization for removal of inter-procedurally correlated con-

ditional branches. Because an PRE(R) algorithm is potentially expensive, our approach is profile-guided: we

eliminate the conditionals based on their benefit (compute using the PRE estimator) and the code duplication

cost.

For each conditional branch considered, the ICBE optimization performs analysis followed by

restructuring. First, the conditional is analyzed to detect correlated paths and to determine the amount of

code duplication required to eliminate the conditional. Ifcorrelation is found and the demands on code growth

are acceptable, the program is restructured to create pathsalong which the conditional and instructions that

compute its predicate condition are eliminated.

find conditionals matching analyzable pattern (v relop
)
select conditionals with high execution count, if profile available
for each selected conditional branch b do

detect intra and inter-procedural correlation on conditional b
if correlation found and required code duplication is below given limit then

restructure program
end if

end for

Implementation. The analysis and transformation algorithms were implemented in an interpro-

cedural compiler that is based on the retargetable compilerlcc [FH95]. The implementation considered1Another alternative is to index the table with the type, method name, and the index of the procedure entry. This will
save table space in certain situations.

130

the correlation of those conditionals that compared a scalar variable (not a structure member) with a con-

stant. Overall, 45% of conditionals in the benchmark programs could be analyzed using this pattern. The

implementation included both an intraprocedural correlation analysis, which used MOD and USE [CK88]

procedure summary information at call sites, and the inter-procedural analysis, which detected both intra-

and inter-procedural correlations. The analysis recognized only two of the four sources of correlation: con-

stant assignments and conditional branches.

Benchmarks. The experiments were performed on the integer SPEC95 suite. Sincelcc does not generate

correct code for the126.gcc benchmark, we usedlcc itself as a compiler benchmark program. The

programs are characterized in Table 7.1. The number of procedures, both defined in the program as well as

the library procedures called are given in the table. The correlation analysis did not analyze library procedures

and thus assumed the worst case behavior at their call sites.Each node in our representation corresponds to

a dag of multiple operations and may be viewed as a high-levelnode. Therefore, the ratio of the number

of conditional nodes to the number of all nodes that are executable is higher than usually reported (last 2

columns). Note that the number of all nodes in column 5 includes unexecutable label nodes. The dynamic

profile information was collected from theref input set.

Benchmark source procedures nodes cond/prog[%℄
program lines defined library all cond static dynamic
099.go 29 246 372 11 38 806 5 304 21.4 29.0
124.m88ksim 19 915 252 35 21 657 2 416 16.5 30.9
129.compress 1 934 24 6 957 89 13.5 20.9
130.li 7 597 357 26 10 718 875 12.9 26.7
132.ijpeg 31 211 467 30 25 420 2 355 12.2 11.7
134.perl 26 871 276 69 50 596 5 623 16.6 29.1
147.vortex 67 202 923 63 104 154 9 646 12.9 28.0
lcc.3.5 26 467 470 21 49 775 5 863 18.1 32.1

Table 7.1: Benchmark programs.

Behavior of statically detectable correlation.First, we conducted experiments to determine the amount of

statically detectable correlation for paths restricted toa procedure and for paths that cross procedure bound-

aries. The top-left graph in Figure 7.11 depicts the number of conditionals that exhibitsomecorrelation; that

is, those whose outcome is known along some, but not necessarily all, incoming paths. Using the total number

of conditionals in a program as a base, the graph shows for each program the percentage of conditionals that

were analyzable using our implementation, the percentage of conditionals that were found correlated using

intraprocedural analysis and the percentage that were found correlated using interprocedural analysis. The re-

sults show that at least twice as many correlated branches are detected using interprocedural analysis than by

using intraprocedural analysis. The top-right graph presents the same information weighted by the execution

count of each conditional, showing that correlation is detected on conditionals that execute frequently.

The bottom two graphs in Figure 7.11 show the number of conditionals that hadfull correlation.

The outcome of such conditionals is known along all paths andhence they can be completely eliminated;

however code duplication might be necessary if bothTRUE andFALSE correlations are discovered. Here,

the benefit of interprocedural analysis is even more evident. If only fully correlated conditionals were to

be optimized, the programs would execute between 3% and 19% less conditionals, while intraprocedural

analysis enables reduction of only up to 8%. The fact that more useful correlation exists when procedures are

131

Benchmark time [se
℄ memory[MB℄ node-query pairs
program overall analysis progrep analysis total per cond
099.go 98.4 83.8 50.4 1.7 198 180 120.1
124.m88ksim 56.1 40.0 67.3 1.9 236 252 168.8
129.compress 2.1 0.7 10.4 0.3 6 620 120.4
130.li 9.8 4.6 35.9 0.8 27 201 102.6
132.ijpeg 33.3 19.8 52.7 0.6 32 961 33.5
134.perl 135.2 117.0 49.6 2.6 317 719 197.6
147.vortex 1070.2 1016.9 119.3 3.4 1 378 890 241.5
lcc.3.5 166.4 138.1 60.5 2.4 352 089 217.5

Table 7.2: The cost of correlation analysis.

go
m88ksim

compress
li

ijpeg
perl

vortex
lcc

0.0

20.0

40.0

60.0

%
 o

f a
ll

co
nd

iti
on

al
s

Conditionals with correlation
static count

intraproc. analysis

interproc. analysis

analyzable conditionals

go
m88ksim

compress
li

ijpeg
perl

vortex
lcc

0.0

10.0

20.0

30.0

%
 o

f a
ll

co
nd

iti
on

al
s

Conditionals with full correlation
static count

go
m88ksim

compress
li

ijpeg
perl

vortex
lcc

0.0

5.0

10.0

15.0

20.0

%
 o

f a
ll

co
nd

iti
on

al
s

Conditionals with full correlation
dynamic count

go
m88ksim

compress
li

ijpeg
perl

vortex
lcc

0.0

20.0

40.0

60.0

80.0

%
 o

f a
ll

co
nd

iti
on

al
s

Conditionals with correlation
dynamic count

Figure 7.11:Characteristics of statically detectable branch correlation.

considered supports our hypothesis that we write procedures in an isolated fashion with repeated computation

in the caller and callee.

The branch elimination optimizer replicates code to eliminate conditionals by creating separate

paths. Since the amount of code duplication increases with the distance between the correlated branch and

the source of the correlation, the extent of code duplication must be estimated before the interprocedural

optimization is applied. Figure 7.12 plots the cost-benefitrelationship for each correlated conditional. Each

point in the graphs represents one conditional with a correlation. The x-coordinate of the point is the number

of nodes that are created due to code duplication when the conditional is eliminated. The y-coordinate shows

the amount of dynamic instances of conditionals that were avoided by the elimination of this conditional. A

comparison with the intraprocedural results reveals that substantially more correlation is detected when pro-

cedures are considered, as the full-correlation graphs in Figure 7.11 suggest. But interprocedural correlation

also requires more code duplication in many cases because the correlation may span a large part of the call

graph. However, the amount of frequently executed correlated conditionals with low duplication needs, posi-

tioned in the upper-left quadrant, has increased with interprocedural analysis. These conditionals make ICBE

more beneficial than intraprocedural elimination because with less code growth a higher reduction in elimi-

132

1 10 100 1000 10000 100000
code duplication [nodes]

0.01

0.1

1

10
interprocedural

1 10 100 1000 10000 100000
code duplication [nodes]

0.01

0.1

1

10

re
m

ov
ed

 c
on

di
tio

na
ls

 [%
 o

f a
ll

co
nd

. (
dy

na
m

ic
)]

intraprocedural

Figure 7.12: Contribution to branch removal vs. code duplication requirements for each correlated
conditional.

nated branches can be achieved. The number of eliminated dynamic instances of each optimized conditional

was estimated from the execution counts of the nodes where the analysis query was resolved.

Early terminationis a heuristic that terminates the query propagation after acertain number of

nodes have been visited. The outstanding queries are all resolved toUNDEF. In the experiments, the anal-

ysis was terminated after visiting 2000 nodes. As a result, the analysis was a magnitude faster on some

benchmarks (vortex), while only a small fraction (within about 15undiscovered. Figure 7.12 provides an ex-

planation: a majority of optimizable nodes require a small amount of duplication (and hence a small amount

of query propagation steps). Not analyzing the expensive conditionals loses some opportunities but gains a

lot of analysis speed (notice that the x-axis is logarithmic).

Eliminated Branches. The goal of eliminating only conditionals causing reasonable code growth is easily

achieved in our approach, for ICBE optimizes conditionals one by one, performing first the analysis and then

the restructuring optimization for each conditional. The amount of code growth necessary to optimize the

conditional is determined during the analysis phase. The restructuring phase is executed only if the number of

new nodes that must be created is less than a predetermined limit. We optimized the benchmarks with various

values of the per-conditional duplication limit. Each conditional was optimized only if the number of node

duplicates required for its optimization did not increaseN , whereN ranged from 5 to 200. Figure 7.13 shows

the amount of conditionals eliminated and the incurred codegrowth. Each point in a graph corresponds to

one duplication limit value. Note the different y-ranges inthe bottom row.

In this experiment, the analysis was terminated after 1000 node-query pairs were examined (see

line 5 in Figure 7.2) even though not all queries were resolved. Since in each program there are numerous

conditionals that test global variables, early termination of demand-driven analysis avoids far-reaching prop-

agation of their queries and dramatically reduces the analysis time. The early termination is made possible by

demand-driven analysis. All queries remaining after the analysis termination limit is reached are conserva-

tively resolved toUNDEF. Terminating the analysis after 1000 nodes is sufficient to find correlated branches

that require up to approximately 300 duplicated nodes. Eventhough not all correlation is detected with early

termination, the missed opportunities are likely to be prohibitive due to high code duplication demands. Ter-

minating the analysis early thus seems to be a practical improvement. However, note that for some values

of the duplication limit, the inter-procedural analysis may produce worse optimization for the134.perl

benchmark than its intra-procedural counterpart. The reason is that the analysis termination limit was reached

133

by examining the callees, missing the intra-procedural opportunity. This problem can be alleviated by exper-

imentally increasing the analysis termination limit. Notethat the results in Figure 7.11 and Figure 7.12 were

computed with an infinite termination limit.

We can conclude that: 1) for a given code increase, ICBE can eliminate significantly more dynamic

conditionals than its intra-procedural counterpart; 2) when more code growth can be tolerated, ICBE offers

opportunities for additional branch elimination; and 3) the per-conditional limit on code duplication is an

effective way to control overall code growth. A better heuristic for deciding whether to apply the optimization

would also consider the amount of conditionals eliminated,as opposed to the incurred code growth alone, as

was done in our experiments.

7.6 Related Work

7.6.1 Branch elimination

Intraprocedural elimination of conditional branches in loops was developed by Mueller and Whal-

ley [MW95b]. ICBE extends their technique in several respects. First, it can detect and eliminate partial

redundancy of branches in loop nests and across procedure boundaries. Second, even in the scope of a single

procedure, ICBE is more powerful because it can detect redundancy that is apparent by examining multiple

basic blocks along a path, as opposed to a redundancy due to a single basic block detected in their analysis.

In addition, in ICBE, the analysis cost and the code growth incurred due to program restructuring can be con-

trolled. Mueller and Whalley [MW92a] also investigated avoiding unconditional jumps by code replication.

Krall [Kra94] developed code replication techniques to improve the accuracy of semi-static branch prediction

to the accuracy of dynamic prediction.

7.6.2 Other benefits of entry/exit splitting

The primary benefit of ICBE is the reduction in the instruction count (and the schedule length)

through the elimination of correlated conditionals and theoperations that compute their predicate. In this

section we discuss how both the correlation analysis and theinter-procedural restructuring can be applied in

other areas of compiler optimization.

Procedure inlining. Most inter-procedurally visible opportunities for branchelimination can be exploited

by inlining and subsequent application of intra-procedural elimination of conditionals [MW95b]. However,

without the knowledge of correlated paths in the call graph,the pre-pass inlining process must resort to

exhaustive inlining, at least in the critical program regions. Short of folding all procedures into a single, flat

procedure, there is no guarantee that all statements involved in a correlation will end up within the same

procedure, which is necessary to remove the branch. Clearly, pre-pass inlining incurs large code growth.

Inlining becomes more practical when it is directed by our inter-procedural correlation analysis.

After correlation of a branch is detected, the procedures involved in the correlation can be merged by post-

analysis inlining. Such a solution to ICBE may be desirable in an existing compiler where inlining and

intra-procedural branch elimination are already supported. The code growth of post-analysis inlining may be

further lowered by performing full ICBE (with inter-procedural restructuring), followed bypartial inlining

[HHR95], in which only frequently executed paths through the optimized procedure are inlined. However,

inlining of recursive, virtual, or library procedures may not be feasible. In this case, our inter-procedural

restructuring can be applied to carry out ICBE.

134

1 10 100
0

5

10

(d
yn

am
ic

)

 [%
]

124.m88ksim

1 10 100
0

5

10
129.compress

intraproc
interproc

1 10 100
code size increase [%]

0

5

10

15

20
��099.go

1 10 100
0

5

10
lcc.3.5

1 10 100
code size increase [%]

0

5

10

15

20
��147.vortex

1 10 100
0

5

10

��134.perl

1 10 100
0

5

10

co
nd

iti
on

al
s

el
im

in
at

ed

132.ijpeg

1 10 100
0

5

10
130.li

Figure 7.13: Reduction in executed conditional nodes vs. program code growth, for various values of the
per-conditional code duplication limit.

135

Regardless of the exact ICBE scenario, the correlation analysis produces an upper bound on the

code growth required to eliminate the conditional and, if profile information is available, provides also a

profile-based estimate of the cost-effectiveness of the optimization before it is applied. The inlining algo-

rithm in [AGS97] inlines procedures one by one based on theirexecution rate until a code growth budget is

exhausted. Our correlation analysis can be used in the inliner to give procedures that generate correlation

a higher priority so that correlated branches can be removedafter inlining [Car95, DH88]. Our restructur-

ing algorithm can be used to eliminate correlated branches after the code growth budget for inlining has

been exhausted because its code growth demands are smaller than those of inlining. Richardson and Ganap-

athi [RG89] observed that the benefit of inlining comes mainly from eliminated procedure call overhead. Our

analysis is able to identify procedures whose inlining willcreate intra-procedural optimization opportunities

for branch removal.

Virtual calls sites. Object-oriented languages complicate inter-procedural compilation because call sites in-

voking member procedures of polymorphic types may transfercontrol to one of many procedures, depending

upon the concrete type of the receiver object. Since such call sites require expensive dynamic dispatching,

methods for their elimination through concrete type inference have been developed [AH95, PC94, PC95].

In these methods, demand-driven inter-procedural analysis determines for each call site the set of “reaching

concrete types.” Subsequent program restructuring separates out paths and clones procedures with the goal

of creating call sites reached by a single type of the receiver.

There is an analogy between concrete type inference and our work in that both methods compute

at optimizable nodes the set-union of all optimization opportunities and enable optimization by making the

opportunities unique through path separation. While ICBE collects values of variables that determine branch

outcomes, type inference is interested in the types of receiver objects. With respect to the restructuring algo-

rithms, however, our transformation is more powerful than cloning because exit splitting is able to separate

out paths that cross the exit node, which cloning cannot achieve. Section 7.4.2 described how entry/exit split-

ting is performed at virtual call sites. The entry/exit splitting can prove valuable for object-oriented languages

because the cost of passing additional return addresses is small compared to that of a dynamic dispatch.

While concrete type analysis is very successful in enablinginlining at virtual call sites, some call

sites will still require dynamic dispatch. In this case, we can use entry/exit splitting, as described in Sec-

tion 7.4.2.

Fine-grain computer architectures. The elimination of conditional branches is especially important for

wide-issue superscalar and VLIW architectures, in which instructions are pre-fetched and executed spec-

ulatively across conditional branches based on predictions of their outcomes. With increasing processor

parallelism, branch density in the stream of instructions is becoming critical because expensive mechanisms

are required to predict and issue multiple conditional branches in a single cycle [Joh91]. Our experiments

have shown that between 3% and 18% of executed conditionals can be eliminated by ICBE, reducing branch

density.

A mispredicted branch stalls the processor for many cycles and pollutes the instruction cache. Research in

correlation-based hardware branch prediction [YGS95] shows that unpredictable branches exhibit correlation

with earlier branches. Some unpredictable branches can arguably be eliminated by ICBE. Consider, for

example, a procedure that removes an element from a linked list. When the average list length is low, the

conditional that tests for an empty list is unpredictable. Nevertheless, the test is correlated with the conditional

that tests the return value in the caller. Optimization of unpredictable branches has an especially high payoff.

ICBE can also be used to improve the effectiveness of software pipelining [LH96, RG81] by re-

ducing the number of conditionals and other statements in the loop body, as illustrated by the example in

136

Figure 7.7. Elimination of branches can significantly speed-up the loop schedule when conditionals that form

recurrent cycles of control dependencies are eliminated. Branches testing a flag whose value is assigned

within the loop are examples of such conditionals.

Assisting hardware branch prediction. Run-time prediction schemes have been proposed that predict the

outcome of a branch using its correlation with the lastk branches [SLM96]. Since the exact source of the

correlation is not known, allk outcomes are maintained and used for prediction, slowing down the learning

process of the predictor. If the correlation is statically detectable, our analysis can provide the prediction

hardware with directions about which recent branch(es) should be used for prediction.

Procedure cloning. Our analysis can improve the effectiveness of procedure cloning by performing inter-

procedural analysis and applying intra-procedural restructuring. Instead of inter-procedural restructuring,

information about the correlation that crosses procedure boundaries is used to clone copies of a procedure.

To clone a procedure, the call node is split into multiple nodes, each of which has a call to a clone. Each

clone copy can be modified to take advantage of the correlation. In previous work [CHK92], cloning is based

upon constants while our approach will take advantage of correlation for cloning.

Library procedures. Even when it is not possible to compile the library procedures together with the ap-

plication program, we can take advantage of correlation that crosses the application-library boundary. The

library procedures can be pre-split by optimization with respect to characteristic application programs and

the summary nodes describing the resulting entry/exit splitting can be conveniently stored with the library

interface for later lookup during the optimization of the user program. For example, a separate exit from

malloc would exist that would be taken when the return value isNULL. Since a large portion of correlation

exists across calls to the same or related library procedures, the characteristic program may be as small as

the one in Figure 7.6. The original unoptimized procedure entry must be maintained for library procedures.

When this entry is invoked, all procedure exits return control to the standard return address so that compilers

without ICBE can also use the library.

Inter-procedural optimizations. Because path separation and entry/exit splitting eliminate control flow

merge points, conservative merging of data flow informationat procedure boundaries is reduced. As a result,

other optimizations, such as procedure cloning, partial redundancy and dead code elimination, may be more

effective following inter-procedural restructuring. TheICBE optimization can be used to optimize array

bounds checks [KW95, Gup90] which typically exhibit correlation. Finally, branch elimination can be used

as a component of aggressive program transformations, suchas slicing-based partial dead code elimination

[BG97].

Chapter 8

Experimental Evaluation

This chapter experimentally evaluates the power of the PATHFINDER framework. We develop an

instance of the framework—specialized for removal of redundant load operations—and measure its various

properties. In particular, we focus on comparing PATHFINDER with an ideal optimizer. In an ideal optimizer,

value-flowanalysisdetectsall reuse apparent from the program text, and the value-flowtransformationre-

movesall detected reuse. Our main focus is to measure the completeness of the VNG representation, which

decides the success of value-flow analysis of the PATHFINDER framework. Completeness of the transforma-

tion stage was evaluated in Chapter 6, where PRE(MS) was shown to be near-complete.

To gauge the completeness of the VNG representation, we needan ideal program analysis, one that

exposes all reuse present in the program. Because detectingall reuse is an undecidable problem, such ideal

analysis cannot be carried out statically. We obtain the ideal performance via dynamic program analysis. By

observing the run-time stream of memory references, we collect all PRE-exploitable reuse and treat it as the

ideal analysis performance. To compare the (static) value-flow representation with the (dynamic) ideal value

reuse, we use the estimators that compute, given a data-flow solution and a program profile, the dynamic

amount of reuse detected by the static analysis. Our experiments show that about 55% of loads executed in

SPEC95exhibit reuse. Of those, our analysis exposes about 80%.

This chapter starts by describing register promotion, an optimization that removes redundant load

instructions. Next, the suitability of register promotionfor evaluating the PATHFINDER framework is justi-

fied. Next, a method for measuring the amount of value reuse inherent in a program is presented, along with

empirical measurements of the ideal reuse. Finally, this chapter compares the amount of reuse removed by

PATHFINDER with the ideal amount.

8.1 Instantiating the framework: register promotion

Without comparison, caches are the besthardwaredefense against the von Neumann memory bot-

tleneck. Capitalizing on data locality, caches win byreusingrecent memory accesses. How can compilers

benefit from these reuse opportunities? In the ideal case, the compiler promotes repeatedly accessed memory

locations to registers. Register promotion is the bestcompilersolution for reducing the memory traffic. By

removing redundant loads, register promotion decreases the dynamic operation count and shortens instruction

schedules. This section describes register promotion and shows how it is derived from PATHFINDER. We

also outline our evaluation approach and justify reasons for selecting register promotion as the basis of the

evaluation.

137

138

Register promotion entails three subproblems. First,load-reuse analysisfinds loads and stores that

access the same address, together with the execution paths along which the reuse exists. In our framework,

load-reuse analysis consists of the VNG representation (Chapter 3) and the dataflow analysis carried out

on the representation (Chapter 4). Second,alias analysisverifies that the reuse detected by the VNG is

not disrupted by intervening stores. In our framework, the effects of killing stores are incorporated into

the dataflow analysis. Finally, a programtransformationstores the prior memory access in a register and

replaces the redundant load with a register reference. In our framework, transformation is phrased as partial

redundancy elimination (Chapter 6).

There are three reasons for using register promotion as the basis for for the evaluation of PATHFINDER.� Removing memory accesses is an important optimization.Memory operations are very expensive to

execute in parallel, because they require multiple ports tothe hardware cache. In comparison, a register

access is, in most cases, a much cheaper operation.

Additionally, there are many load-reuse opportunities.As our experiments show, many load opera-

tions are redundant and most of them can be removed.� Removing loads is an enabling optimization.When values are passed between arithmetic and logical

instructions via memory—by means of loads and stores—the optimization scopes broken up by the

memory accesses is too small for detecting arithmetic valueflow.� We can develop relatively precise dynamic analysis.From the point of view of the dynamic (run-time)

analysis, there is a value flow between two memory loads if they access the same memory location.

In contrast, it appears that a dynamic detection of branch correlation would have a lower precision,

because it would involve “mining” for correlation among Boolean values, rather than (unique) memory

addresses.

This chapter focuses mainly on the first component of register promotion, load-reuse representation

and analysis. Because an optimization is only as powerful asits analysis, improving the precision of the

analysis is of high significance. The second component, alias analysis, has a different aim: while load-reuse

analysis detects memory references thatmustgo to the same location, alias analysis finds those thatmay, thus

identifying killing stores. Recent research indicates that, for register promotion, a simple alias analysis may

be sufficient [DMM98,LC97]. The third component, PRE transformation, was evaluated in Section 6, where

it was shown to near-completely eliminate alldetectedreuse. In this chapter we concentrate on evaluating the

amountof detected reuse by the VNG representation. We say that an analysis isPRE-completeif it detects

all reuse that the PRE transformation can exploit.

Typically, optimizations are evaluated by reporting the amount of computations removed. Un-

fortunately, such absolute measure says little about how much potential remains unexploited. Instead, our

evaluation measures the level of PRE-completeness: how faris the analysis from an ideal one? Because

detecting load reuse is in general undecidable, we can only hope to find an approximation of the ideal reuse

amount. For that purpose, we perform dynamic analysis of theprogram. Dynamic analysis is a simulation-

based limit study: by observing the dynamic stream of memoryreferences, we find all reuse available under

a given input and use it as an upper bound of the PRE-exploitable reuse in the program.

In microprocessor-based optimizations, simulation limitstudies have long been guiding the re-

search direction and evaluating the designs. As a result, research processors offer impressive solutions to

some compiler problems: memory disambiguation [CE98] and redundancy elimination [LS97]. In compiler

optimization, too, limit studies can identify untapped potential, point to bottlenecks, and evaluate algorithms.

139

load-reuse
analysis simulator

estimator

transformation

program input

comparison

reuse level

weighted solution

data-flow solution

profile

Chapter 3,4 Section

Chapter 5

SectionChapter 6

Figure 8.1:The experimental setup.

While the (static) load-reuse analysis identifies redundant loads and their reusepaths, the (dynamic)

limit study yields therun-time numberof redundantly executed loads. To compare these disparate quantities,

we weight the static reuse using the program profile generated by the simulator. The result is the run-time

amount of statically detected redundant loads.

Figure 8.1 outlines our experimental setup. Value-flow analysis composed of the VNG and the

dataflow analysis carries out a static analysis of the program. The dynamic analyzer composed of a simulator

runs the program on some input and outputs two pieces of dynamic information. The first is the reuse level,

measured as the percentage of all executed loads that can reuse the value from a prior memory access. The

second information is an edge profile collected during the simulation run of the program. The simulation-

based dynamic analysis is described in Section 8.2. The profile is combined with the dataflow analysis

solution, producing the dynamic amount of reuse detected bythe static analysis. The analysis-detected reuse

can then be compared with the ideal reuse level. The results are reported in Section 8.3. In PATHFINDER, the

profile-weighted reuse is used, besides evaluating the analysis, to navigate the transformation.

8.2 Ideal amount of value flow

This section focuses on load reuse visible at run time. We present a simulation-based limit study

that has multiple uses:a) measuring the amount of reuse in programs (how large is the optimization potential

of register promotion?),b) evaluating the load-reuse analysis by providing a reference point (how close is

the analysis to its ideal performance?), andc) tuning the analysis (which are the redundantly executed load

instructions?). In this section, we describe the design of our simulation and show that a large fraction (55%)

of loads executed in Spec95 exhibits reuse opportunities.

The primary use of the limit study is to evaluate the precision (completeness) of the load-reuse

analysis. The precision is measured as the level of completeness. An analysis isT -completeif it detects all

reuse that can be removed from the program with a program transformationT . In our context,T is thepartial

redundancy elimination (PRE)presented in Chapter 6. PRE is a code-motion transformationthat can exploit

reuse even when it exists only on a subset of execution paths incoming to the redundant load. Therefore, PRE

has become the basis of modern register promotion techniques [CK94a,BG96,SJ98,LCK+98].

140

Unfortunately, detecting load reuse is in general undecidable [Ram94] and so no compile-time

PRE-complete load-reuse analysis exists. Therefore, we use an empirical, run-time analysis that measures

the reuse in the program as the program executes. In order to provide a close approximation of PRE-

completeness, this simulation-based limit study should collect all reuse that PRE can remove, but no reuse

that is beyond the power of PRE. The simulation should thus mimic the character of the PRE transformation.

As described in detail in Chapter 6, PRE removes redundancy by hoisting the partially redundant

load against all control flow paths until it reaches a memory operation that generates the reuse. At this point,

the contents of the promoted memory location is stored in a register that carries the contents to the original

load. When PRE is performed on the VNG representation, load reuse is not restricted to acyclic paths; the

reused value can be carried (using multiple registers) across a small number of loop iterations. (Recall the

parameterw that instructs the back-substitution to build the VNG alongw consecutive loop iterations (see

Figure 3.11).) In summary, the PRE operational restrictionis that the redundant load can reuse a result of

some other static instruction (or itself), such that the result is a small number (w) of dynamic instances old.

The simulation algorithm reflects this PRE property. The run-time reuse is detected by remem-

bering for each static memory instruction itsaccess history:the dynamic stream of its recent addresses. A

dynamic instance of a load is then redundant if a prior load orstore accessed the same location without an

intervening store. If an intervening store did occur, the load is still redundant; the intervening store becomes

the reuse source.

The simulation technique has two contradictory goals. On the one hand, the limit study should

yield anupper bound:each reuse that can be removed with PRE must be detected. On the other hand, the

bound should betight: if a reuse for a given static load is intermittent (e.g., because it is sporadic or input

dependent), it should be filtered out asnoise. In the example below, the reuse between recurrent array accesses

(i.e., between the store ofA[i + 2℄ and the load ofA[i℄) is PRE-exploitable by allocating two registers that

will carry the value for two iterations [CCK90,CK94a,BG96]:

for (i=0; i<N-2; i++) f A[i+2] = A[i]; g
On the other hand, the reuse below is noise. While some consecutive loads from the hash table may access

the same location, the reuse is not guaranteed to occur each time the program takes the path across the loop

back edge. Therefore, PRE cannot exploit this reuse.

while (c=read()) f .. = hashtab[hash(c)]; g
To verify the PRE requirement that a path carries its reuse each time it is followed, the simulator would have

to do extensive bookkeeping of followed paths. Consequently, we favor a noisier (i.e., less tight) upper bound

over an expensive simulation. To reduce the noise, we limit the number of memory cells remembered in

the access history of each static load and store. A small number h (1 to 4) of recent accesses is sufficient

to capture most loop carried reuses, like the first example above [CK94b]. The simulation parameterh is a

counterpart of the VNG parameterw.

PRE is inherently an instruction-level optimization. It isnot capable of exploiting loop-level reuse,

like the one between loadsa andb below. Hoistingb does not work. Instead, the loops must be merged using

loop fusion [CMT94], after which PRE can harvest the reuse.

for (i=0; i<N; i++) f a: .. = A[i]; g
for (i=0; i<N; i++) f b: .. = A[i]; g

141

0

20

40

60

80

100

go

m
88

ks
im gc

c

co
m

pr
es

s
li

ijp
eg

vo
rte

x

to
m

ca
tv

sw
im

su
2c

or

hy
dr

o2
d

L
o

ad
s

re
d

u
n

d
an

t
d

u
e

to
 r

eu
se

(%

 o
f

al
l d

yn
am

ic
 lo

ad
s)

all reuse (history=4)
all reuse (history=1)
intraproc reuse (history=4)
intraproc reuse (history=1)

-1.0

-0.5

0.0

0.5

1.0

1.5

L
o

ad
/s

to
re

 d
yn

am
ic

co

u
nt

 (
no

rm
al

iz
ed

)

loads

stores

source program; after optimization; after register allocation.

Figure 8.2:Dynamically detected load reuse.(Inlining: up to 50% code growth; Spec95 input set:train.)

The simulation algorithm will (correctly) not identify theloadb to be redundant (unlessN � h) because the

access history remembers only lasth accesses made by loada. Hence, the simulation is consistent with the

power of PRE.

Reuse Level. Figure 8.2 plots the amount of simulation-observed load reuse. For each benchmark,

the experiment was carried out at three points in the compilation: for the original program, after optimiza-

tions, and after register allocation. The compiler used wasImpact [CMC+91]; the optimizations included the

local, global, and loop invariant redundant load elimination, as well as superblock optimizations [HMC+92].

Note that while in the floating-point benchmarks (the four onthe right) the removal of many loads was ac-

companied by the decrease of observable reuse, in the integer benchmarks the optimizer left many redundant

loads unoptimized, which suggests that programs with complex control flow require more powerful, path-

sensitive optimizations and/or better alias information.Also note the increase in observed reuse after register

allocation, which is due to spill-code loads (the target processor was PA-7100).

We show the amount of reuse for the history depth 1 and 4. Increasing the history depth raises the

observable reuse much more in integer programs than in the scientific ones (where more recurrent accesses

would be expected to be captured with the increased historyh). A manual examination of simulation results

strongly suggests that the additional reuse collected at the deeper access history is mainly noise, similar to

the intermittent reuse in the hash-table example above. Also shown in the graph is the fraction of reuse in

which both the generator and the redundant load belong to thesame procedure. These reuse patterns are not

strictly intra-procedural, as the procedure might have returned and been called during the reuse. However,

these “intra-procedural” reuse levels serve as a referencepoint for our intra-procedural load-reuse analysis

(Section 8.3).

Input Variance. Profile-directedoptimizationand simulation-directedoptimization designare

valuable only if the program input exercises input-independent, pervasive program characteristics. How

142

benchmark input reuse% reuse from% l+s
before opti train / test h = 4 loads stores 106
m88ksim dcrand.big 87.9 68.2 48.6 34

dhry.big 74.5 90.4 13.6 135
compress 104 q 2131 79.2 56.1 71.4 13

ref! 5:105 e 2231 71.3 57.2 64.4 520
li boyer-test 77.9 70.4 50.4 55

8 queens 87.4 76.2 43.6 324

Table 8.1:Sensitivity of load reuse level to program input.The columnl+s gives the number of executed
loads and stores.

0

10

20

30

40

50

60

70

80

90

100

go

m
88

ks
im gc

c

co
mpr

es
s li

ijp
eg

vo
rte

x

to
m

ca
tv

sw
im

hy
dr

o2d

su
2c

or

*p

**p

calls

array & pointer stores + calls

all stores + calls

ideal alias info

reuse killed by:

100% = reuse seen by simulator

Figure 8.3:Effects of symbolic language and pointer aliasing on the amount of detected reuse.

much does reuse vary across different inputs? We modified theinputs on several benchmarks and compared

the observed reuse. The results are shown in Table 8.1. The input-based variation of the reuse level is within

18%, which may suggest that reuse is largely input independent. The greatest difference is inm88ksim, in

which each input directs the execution into different procedures. For the same reason, this benchmark has

less reuse generated by stores in thetest input (fractions add up to more than 100%, as a reuse instance

may be generated by multiple instructions, a load and a store). We have manually examinedcompress and

discovered that the lower reuse in the larger input is due to fewer noisy loads. Input variance may therefore

be useful as a noise reduction mechanism; by taking intersection of reuse detected on different inputs, we

may determine regular, statically detectable reuse.

Memory Requirements of the Simulator. While the simulation limit study is considerably more

expensive than control flow profiling, it is used once (to design and tune the analysis) unlike the cheaper

profiling which is repeated (to optimize each program). Still, the simulation speed was acceptable, at about

9.4 seconds per 1 million loads and stores executed (on PA–8000). The memory required varied greatly. The

largest data structures were needed byswim (103MB + 32MB hash table) and the smallest bycompress

(4MB + the same hash table).

8.3 Completeness of value-flow analysis

This section experimentally evaluates thestaticvalue-flow analysis in relation to thedynamiclimit

study from Section 8.2. Because our implementation of the analysis is intra-procedural, the reference point

for comparison is the intra-procedurally observed reuse. To minimize noise in the baseline, we use the reuse

collected at the access historyh = 1. We analyzed the unoptimized source programs. In summary, for each

143

benchmark, the baseline for comparison is the “X” mark in the leftmost column in Figure 8.2. Figure 8.3

plots the amount of reuse discovered by the analysis. The plotted amount was computed as the average of the

lower and upper bounds returned by the CMPr estimator.

The load-reuse analysis was carried out under varying assumptions. The two highest lines in Fig-

ure 8.3 show the reuse detected at 1-level and 0-level address indirection, respectively. Our implementation

considered only indirect loads, not stores, which may explain the lack of indirect reuse in some benchmarks.

To determine the reuse-detection power of the analysis, these two lines assumed perfect aliasing under which

no stores along a reuse paths would kill the detected reuse. While not all of this aggressively detected reuse

can be promoted to registers, it can be exploited with alternative reuse mechanisms, such as data-speculative

loads, as noted in Section 8.1. Overall, the comparison withthe limit study shows that our analysis is about

80% PRE-complete.

Aliasing. We also studied the killing effects of intervening stores and procedure calls. Because

our compiler does not perform alias analysis, we consideredthree hypothetical levels of pointer aliasing

precision, specified as follows: first, we assumed that only procedure calls killed the detected reuse; second,

we added to the kill set all stores except for stores to globalvariables; third, all stores and procedure calls

killed the reuse. Due to aggressive inlining, only a small amount of reuse was lost at procedure calls (the

white bar segments). However, array and pointer stores remove almost one third of reuse (the dark, middle

segments). While this pessimistic hypothetical aliasing gives disappointing results, other researchers showed

that even a simple alias analysis may produce memory disambiguation that is near-optimal for purposes of

register promotion [DMM98,LC97].

Finally, we experimented with noise-reduction heuristics. We classified as noise all redundant loads

whose observed reuse included many dynamically insignificant generators, but no dynamically frequent ones.

Even with a conservative noise-reduction criterion, we filtered out about 20% of noisy reuse ingo and 10%

in ijpeg, as compared to the baseline in Figure 8.3. This allows us to conclude that our load-reuse analysis

is successful; on average, at least 80% of observed reuse is captured.

8.4 Miscellaneous

A powerful load-reuse analysis is beneficial even when the register promotion itself is prevented

(due to aliasing or lack of registers). In such a case, the PREtransformation step can employ alternative,

albeit less effective, reuse mechanisms. When promotion isunsafe due to interfering stores, the redundant

load can be replaced with adata-speculative load, which works as a register reference when the kill did

not occur, but as a load when it did [KSR94,GKKG98,BG96,Wu96]. When registers are not available, load

reuse can be exploited usingsoftware cache control[KSR94,GKKG98,RCT+98]. By directing which loaded

values remain in the cache and which bypass it, the compiler can improve the sub-optimal hardware cache

replacement strategy.

We have experimentally investigated how demanding PRE is with respect to the number of registers

consumed. Theregister pressureat a CFG node is the number memory locations whose reuse path crosses that

node; each memory location needs one register. We averaged the register pressure over all nodes, weighting

each node by its profile frequency. For the 0-level perfect aliasing analysis configuration, the highest average

register pressure was 34 registers forsu2cor. Such an amount of registers will be soon available in general-

purpose processors.

144

processor
architecture

SUHGLFW

dynamic program
specialization

KDUG�FRGH

compiler
optimization

UHXVH

FRPSLOH�WLPH
UXQ�WLPH

ILQG�LQYDULDQWV

«�	�UHPRYH�WKHP
KDUG�FRGH

$QDO\]H
7UDQVIRUP

OHDUQ
SUHGLFW

ILQG�UHGXQGDQFLHV

FRPSXWH�RQFH
VSHFLDOL]HG

ORRSUHXVH

FRPSXWH�RQFH

VWDWLF G\QDPLF

Figure 8.4:The spectrum of program optimization approaches.Are the three optimization technologies
equipped with unique strengths or can one replace the others?

8.5 Other methods for value-flow optimization

We conclude this chapter by comparing PATHFINDER (a representative of the compiler optimiza-

tion technology) withvalue prediction(a representative of architectural approaches to program optimiza-

tion) [SVS96,SS97,LS97]. Before we describe the experiment, it is helpful to refresh the program optimiza-

tion spectrum, shown in Figure 8.4. Qualitatively, the three technologies—compiler optimization, dynamic

optimization, and processor architecture—operate on different principles. In particular, they differ greatly in

how they exploit the program text (static analysis) and how they exploit the values computed by the program

(dynamic analysis). The major question that our final experiment attempts to answer is how different these

technologies are quantitatively. In particular, what are the redundant computations (and how many are there)

that one technology can remove but the other can’t?

The experiment compares the dynamic amount of reuse removedby PATHFINDER with the dy-

namic amount of values predicted by three different value predictors: the last value predictor [LS97], two-

delta stride predictor [SVS96], and context predictor [SVS96]. The first two predictors allocated one element

(to store the last value and stride) per static instruction.The size of the context predictor table was 64MB.

The prediction and compiler optimization was performed only on (the results of) load instructions. The

measurements are plotted in Figure 8.5. The following conclusions and notes can be made:

1. Except for the most expensive (context) predictor, thereis a significant number of computations that

can be removed only with the compiler.

2. Many of the computations predicted with the stride predictor could probably be removed with loop

unrolling or strength reduction. The latter could be considered a form of value-flow optimization: it

removed instructions that compute the value of some previous instruction plus some offset.

145

processor
architecture

predict

compiler
optimization

reuse

redundancy
removal

value
prediction

“last value”

“stride”

“context”
expensive! 64MB table

value predictor:

loads removed/predicted (dynamic count)

Figure 8.5:Comparing the power of value-flow analysis and value prediction.

It would also be interesting to compare PATHFINDER with instruction reuse[SS97,SS98], a hard-

ware technique that does not predict the future values (likevalue prediction), but looks them up in a what we

could call avalue-reuse table(much like compiler-based value-reuse does). The value-reuse table is indexed

by the values of the arguments of the operation that is being reused. In that sense, instruction reuse is even

more similar to compiler optimization than value prediction.

Chapter 9

Conclusion and Future Work

Value-flow optimizations are the backbone of compiler techniques for enhancing instruction-level

parallelism. As a unifying paradigm, these optimizations exploit the program property that the results of some

operations have been previously computed. If value recomputation is detected, the redundant operations can

be removed or substituted with cheaper ones. As a result, program code is improved in at least two ways. First,

by eliminating useless computations, instruction schedulers can use freed hardware resources to construct

shorter schedules. Second, when operations are deleted from the critical path of program dependencies, the

optimization achieves faster execution even when resources are not the bottleneck.

Observations of values computed during program execution suggests that compilers miss numerous

value-based optimization opportunities: even in highly optimized programs, up to 40% of executed instruc-

tions compute the same value as their previous dynamic instance. As shown by our experiments, for most

instructions, the source of this redundant recomputation are program expressions that are equivalent only

along some—but frequent—execution paths. Because not all executions of an expression are optimizable,

this some-pathsredundancy is beyond conventional optimizers: conservative analyzers fail to expose it, and

inflexible transformations fail to remove it.

9.1 Summary of Contributions

This thesis unified, generalized, and improvedvalue-flowoptimizations. Particular emphasis was

placed onpath-sensitivity,with the aim of complete exploitation of opportunities thateither may not exist

along all execution paths or become visible only when individual paths are examined separately (or both).

This goal was accomplished by first defining a class of value-flow problems and then by identifying its

member optimizations. The value-flow class is broad and practically significant; a partial list includes loop-

invariant code motion, constant propagation, load/store elimination, and branch removal. As the next step,

problems shared among optimizations in the value-flow classhave been identified, enabling development

of an optimization framework in which common optimization issues can be addressed uniformly across the

entire class.

The main result of this thesis is an optimization framework for deriving path-sensitive versions of

value-flow optimizations. The major obstacle that preventsa construction of apracticalpath-sensitive frame-

work is exponentialcost incurred when the (exponentially many)individual program paths are optimized.

This exponential cost comes in three forms:� Analysis cost:each program path may have adifferentoptimization opportunity.� Transformation cost:only someprogram paths may offer an optimization opportunity.

146

147� Profiling cost: to perform cost-benefit trade-offs, we may require the execution frequency of each

program path.

This thesis presents techniques that make these three costspractical, while maintaining the optimization

power at nearly optimal level. Specifically, the exponential cost was attacked by dividing the PATHFINDER

optimizer into three stages: program representation, dataflow analysis, and program transformation. In each

of the stages, this thesis develops new techniques. Their contributions are summarized next.� Representation. We developed theValue Name Graph (VNG), a novel program representation that

models the flow of a recomputed value. By symbolically namingthe value, the VNG reduces the

(hidden) value flow into the (exposed) data flow. The representation, calledValue Name Graph, names

the value on demand, for a set of optimized computations. Although the names are formed separately

for each path, obtaining path-sensitivity, the paths are analyzed separately only when it matters, i.e.,

when the value has a different name.

By analyzing paths separately only when they offer different optimization opportunities (when the

value has a different name), our representation reduces theexponentialanalysis cost.� Profile-weighted dataflow analysis.To navigate the transformation trade-offs, the dataflow analysis

must weigh the optimizable paths with a run-time profile. To make profile-guiding practical, this thesis

develops a family ofestimatoralgorithms based onedgefrequencies, a cheap but inherently imprecise

alternative to path profiles that measure frequencies of individual paths. When weighing the reuse,

estimators bound the inherent error of the edge profile, adding confidence to imprecise profiles.

By using the (linear-size) edge profile, the exponentialprofiling cost is avoided, while achieving esti-

mation precision close to that based on path profiles.� Transformation (intra-procedural).We developed a transformation that (nearly) completely removes

all computations detected as redundant. The transformation combines three orthogonal methods. We

resort to the expensivepath duplicationonly when the growth-freecode motionfails to transform the

program, and only when the profile-drivencontrol speculationcannot profitably impair some paths

to optimize others. The spectrum of algorithms is based on a single abstraction, aCode-Motion-

Preventing (CMP) Region, which contains identifies adverse effects of the control flow on the desired

optimization. Our experiments show that the version of transformation that combines code motion and

speculation is highly successful: it removes nearly all redundancies and, because it does not perform

restructuring, achieves zero code growth.

Thus, by exploiting code motion and control speculation, redundancies are removed without duplicat-

ing individual program paths, reducing thetransformation cost.� Transformation (inter-procedural).

We developed a transformation that completely removes redundancies that are inter-procedural, i.e.,

those where the value flows across procedure boundaries. Rather than resorting to (expensive) inlining,

we separate optimizable paths by generating multiple procedure entry points and multiple exit points

(which may return to different points in the caller). Thanksto entry/exit splitting, paths can be separated

across procedure boundaries, even when the call site invokes one of many procedures, as in virtual

procedure calls.

148

By splitting procedure entries and exits, fewer paths are duplicated than when procedure inlining is

used, which reduces the transformation cost, similarly to the intra-procedural transformation.

We compared the power of the framework with that of an ideal value-flow optimizer, using the

optimization of redundant loads. We developed a run-time program monitoring algorithm that exposed the

amount of value reuse present in the program. This ideal amount was compared with the amount detected by

our analysis. We observed that we captured at least 80% of thereuse present in the program.

Besides removal of redundant memory loads, the framework was employed to derive optimizations

of arithmetic expressions and an inter-procedural versionof removal of conditional branches, with promising

results. We believe that the PATHFINDER framework can be used successfully also to derive other optimiza-

tions, such as removal of redundant array bounds checks or for constant propagation.

9.2 Lessons and Observations

This section highlights some of the observations made during the development of this dissertation.

The class of value-flow optimizations is large. Even though the seminal work on Partial Redundancy

Elimination (PRE) by Morel and Renviose [MR79] considered only optimization of arithmetic expressions,

other kinds of computations can be targeted via rather natural extensions of their analysis and transformation

algorithms. The computations that belong to the value-flow class include memory load operations, condi-

tional branches, communication statements, memory pre-fetch operations, and others. Common to all these

kinds of computations is that their effects can be repeated (e.g., a load may read a memory location whose

content was already loaded by some other instruction; a branch instruction may evaluate a Boolean expres-

sion that was already evaluated by some other branch instruction; a communication statement may receive

data that was already received by the program); because the effects of these computations can be repeated,

redundant computations may exists (these are those computations that repeat the effects), which allows their

optimization.

The definition of value flow developed by this thesis (Definition 3.2) unites computations that

can reuse previously computed values into a single class. This definition allows phrasing many previously

unrelated optimizations in a general value-flow framework.For example, constant propagation can be viewed

(and performed) as a value-flow optimization. In contrast tothe more traditional redundancy optimizations,

the value reuse assumed by constant propagation is an “abstract” one. Rather than reusing the value from a

prior computation, an expression that evaluates to a constant “reuses” the value of the constant which can be

viewed as computed by the compiler at compile time. Despite this difference, constant propagation can be

directly formulated in the PATHFINDER framework.

Besides providing a uniform optimization infrastructure,the definition of a unifying value-flow

class offers new views to existing program analysis problems. For example, detecting which conditional

branches are redundant also answers the question of which branches are correlated to each other [BGS97a],

which in turn answers the question of which program paths areinfeasible (i.e., are guaranteed to be never

executed by the program) [BGS97c].

The class of value-flow optimizations can be generalized beyond the scope assumed in this thesis.

Consider the elimination of statements that computedead values, which are values that are never used by the

program (along some program paths emanating from the (partially) dead statement [BG97]). Elimination of

149

dead values is analogous to exploiting value reuse, with thedifference that value reused is an optimization

with respect to the past, and the dead value elimination is anoptimization with respect to the future.

Another extension of the value-flow class is based on a generalization of the reuse of previous

values. Rather thandirectly reusing a value computed previously, the optimizer can use the previous value to

simplifya computation. Consider the computation of4� i. If a valuet = 4� (i� 1) is known (e.g., from a

previous iteration of a loop), it is usually cheaper to compute4+ t than4� i. Such an optimization is called

strength reductionand has been developed to operate also in a path-sensitive manner [KRS93].

Path-sensitivity is important. To perform an effective value-flow optimization, it is important to perform

the optimization in a path-sensitive manner. As our experiments show (see Section 6.6), on some benchmarks

more than half of all the optimization opportunities (measured in dynamic terms) require a path-sensitive

optimizer. Furthermore, the standard approach to path-sensitive optimization [MR79] may be inadequate, as

it can exploit less than a half of all path-specific opportunities. In contrast, our optimizer can remove nearly

all of the opportunities.

Exponential path explosion can be avoided. The large amount of path-specific optimization opportunities

would suggest that the optimizer may need to pay the cost of considering each program path separately. We

have observed, however, that this cost can be very well managed. This dissertation divided the path-sensitive

cost into three categories:� Analysis cost. This is the cost of analyzing each program path separately (or analyzing it in a way

that gives the same precision as if each path was analyzed separately). The solution presented in this

dissertation, the Value Name Graph, analyzes any two paths separately only when any value flowing

along them “behaves” differently on each path. While the worst-case time and space complexity of

the Value Name Graph is exponential in the number of program nodes, the graph size is usually small

enough to be used in a practical compiler.� Profiling cost. This is the cost of obtaining the execution frequency for each path in the program. A

straightforward approach to path-sensitive profiling is tomeasure the execution count for each acyclic

path, with an exponential worst-case cost. This dissertation developed techniques that use the (linear-

size) edge profile with the nearly the same precision as a path-sensitive profile.� Transformation cost.This cost corresponds to the code size growth that is caused by separating pro-

gram paths. Path separation is (usually) necessary to isolate optimizable paths from other program

path, so that the optimizable paths can be transformed without affecting the other paths. This disser-

tation developed profile-guided methods for path-sensitive program transformation that cause no code

growth, yet exploit nearly all optimization opportunities.

9.3 Future Work

This section proposes some future directions for value-flowoptimization. The ideas outlined here

emerge from the observation thatcompiler optimizationis just one technology for program optimization.

Other related technologies areprocessor architectureand program specialization. As explained in Sec-

tion 1.3, for the purpose of value-flow optimization (in particular, redundancy removal), the three technologies

offer complementary solutions. Therefore, to obtain significant advances in power and practicality of program

150

optimization, one needs to explore relationships among these technologies and develop new ones, building

on recent contributions of compiler optimizations and microprocessor architecture. As outlined below, such

new technologies are both enabled and demanded by emerging computer technologies.

These three methods differ in how they divide optimization work between compile time (static

work) and run time (dynamicwork). The division has a profound influence: static methodscannot exploit the

program input available only at run time, but can be more complex and slower than dynamic ones. Compiler

optimizations are static: the program is analyzed and rebuilt. The architecture is dynamic: on the fly, the

processor “learns” about the program and predicts future results of its instructions, effectively removing

predictable (redundant) ones [SVS96,SS98]. Dynamic versions of program specialization are hybrids: static

analysis finds values unchanging during the execution; oncethe concrete values are known at run time, they

are hardcoded into the program, specializing it for its current input [GMP+98].

Each method has unique strengths, none can subsume the others. Therefore, their integration is

mutually beneficial. This observation is not widely recognized, and the respective communities do not coop-

erate enough. Yet, fueled by technology changes, the integration will eventually take place. Future work in

program optimization should complement the impact of technology on shaping the integration with a careful

consideration of fundamental optimization principles. Specifically, it is important to understand the static-

dynamic nature of optimization and exploit it with properlybalanced techniques. Below are possible projects

leading towards these goals, listed from more static to moredynamic approaches.

1. Redundancy removal of loops and procedures.This dissertation is focused on redundancy of

individual statements. Redundant loops or procedure callswere neither recognized nor removed. Extend-

ing the optimization to such larger program constructs willbenefit programs written using object-oriented

technology, where large-grain redundancy may occur frequently.

2. New paradigms for dynamic optimizations.The advent of mobile Java code necessitates optimiz-

ing programs as they are running. While up to a ten-fold speedup can be gained with dynamic program spe-

cialization [GMP+98], the same holds for instruction-level parallelism methods (ILP), which are static [95].

These two approaches are orthogonal and should both be exploited. Unfortunately, ILP methods are too

costly for run time. A careful combination of compiler optimizations and dynamic program specialization

may help by planting into run time only optimizations that are uniquely dynamic.

3. Observational analysis.Static compiler analysis examines the program abstractly,without exe-

cuting it. Current dynamic optimizers analyze the same way,only faster. To prove program properties, they

examine only the code, not the values it computes. This is a waste of run-time possibilities: besides examin-

ing anabstractedexecution, they could also observe theconcreteone. The goal is to design such a dynamic

analysis. Based on observation of computed values, it may find opportunities invisible in the program code

alone and also be cheaper than pure abstract analysis.

4. Hybrid hardware-software optimizations.Hardware prediction of values is efficient for simple

redundancies. To find correlations between instructions, much hardware is needed. A hybrid with com-

piler technology may help. A static analysis will find correlated pairs and the hardware will carry out the

transformation, by remembering the generated value sequence.

Thanks to embedded computing, hybrid optimizations can be brought to life and to the market.

Through the emerging hardware-software co-design technology, we can smuggle onto the chip non-traditional

features to support the optimization. As a result, the low cost embedded processors might enjoy some of the

server-class power.

151

5. Redundancy-centric processors.The dependence of successful modern processors on hardware

prediction indicates huge amounts of redundancy in programs: what can be predicted is redundant! Future

processors should perhaps be redundancy-centric. Insteadof learning and predicting, they could analyze the

program, avoiding the penalty paid at each mis-prediction.

Bibliography

Bibliography

[ABD+97] Jennifer M. Anderson, Lance M. Berc, Jeffrey Dean, Sanjay Ghemawat, Monika R. Hen-
zinger, Shun-Tak A. Leung, Richard L. Sites, Mark T. Vandevoorde, Carl A. Waldspurger, and
William E. Weihl. Continuous profiling: Where have all the cycles gone?ACM Transactions on
Computer Systems, 15(4):357–390, November 1997.

[ABL97] Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting hardware performance counters
with flow and context sensitive profiling. InProceedings of the ACM SIGPLAN ’97 Conf. on
Prog. Language Design and Impl., pages 85–96, 1997.

[AdJPS98] Andrew Ayers, Stuart de Jong, John Peyton, and Richard Schooler. Scalable cross-module op-
timization. InProceedings of the ACM SIGPLAN’98 Conference on Programming Language
Design and Implementation (PLDI), pages 301–312, Montreal, Canada, 17–19 June 1998.

[AGS97] Andrew Ayers, Robert Gottlieb, and Richard Schooler. Aggressive inlining.SIGPLAN Notices,
1997. Proceedings of the ACM SIGPLAN ’97 Conference on Programming Language Design
and Implementation.

[AH95] Ole Agesen and Urs Hölzle. Type feedback vs. type inference: A comparison of optimization
techniques for object-oriented languages. InOOPSLA’95 Conference Proceedings, pages 91–
107, Austin, TX, 1995.

[AL98] Glenn Ammons and James L. Larus. Improving data-flow analysis with path profiles. InPro-
ceedings of the ACM SIGPLAN ’98 Conference on Programming Language Design and Imple-
mentation, 1998.

[APC+96] Joel Auslander, Matthai Philipose, Craig Chambers, Susan J. Eggers, and Brian N. Bershad.
Fast, effective dynamic compilation. InProceedings of the ACM SIGPLAN ’96 Conference on
Programming Language Design and Implementation, pages 149–159, 21– May 1996.

[ARZ92] F. Allen, B.K. Rosen, and K. Zadeck.Optimization in Compilers, Chapter 6, Value Numbering
(unpublished). ACM Press/Addison Wesley, 1992.

[ASG97] A. Ayers, R. Schooler, and R. Gottlieb. Aggressive inlining. In Proceedings of the ACM SIG-
PLAN ’97 Conf. on Prog. Language Design and Impl., pages 134–145, June 1997.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.Compilers Principles, Techniques, and Tools.
Addison Wesley, 1986.

[AWZ88] Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck.Detecting equalities of variables in
programs. In15th Annual ACM Symposium on Principles of Programming Languages, pages
1–11, San Diego, California, January 1988.

[BA98] Rastislav Bodik and Sadun Anik. Path-sensitive value-flow analysis. InConference Record of the
25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, January
1998.

[BC94] Preston Briggs and Keith D. Cooper. Effective partial redundancy elimination. InProceedings
of the Conference on Programming Language Design and Implementation, pages 159–170, June
1994.

153

154

[BDB99] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Transparent dynamic optimization:
The design and implementation of Dynamo. Technical Report HPL–99–78, Hewlett-Packard
Laboratories, 1999.

[BG96] Rastislav Bodik and Rajiv Gupta. Array data flow analysis for load-store optimizations in fine-
grain architectures.International Journal of Parallel Programming, 24(6):481–512, December
1996.

[BG97] Rastislav Bodik and Rajiv Gupta. Partial dead code elimination using slicing transformations.
In Proceedings of the ACM SIGPLAN ’97 Conf. on Prog. Language Design and Impl., pages
159–170, June 1997.

[BGS97a] Rastislav Bodik, Rajiv Gupta, and Mary Lou Soffa. Interprocedural conditional branch elimi-
nation. InProceedings of the ACM SIGPLAN ’97 Conf. on Prog. Language Design and Impl.,
pages 146–158, June 1997.

[BGS97b] Rastislav Bodik, Rajiv Gupta, and Mary Lou Soffa. Refining data flow information using infea-
sible paths. InESEC97, pages 361–377. LNCS Nr. 1301, Springer–Verlag, September1997.

[BGS97c] Rastislav Bodik, Rajiv Gupta, and Mary Lou Soffa. Refining data flow information using infea-
sible paths. InESEC97, pages i–. LNCS Nr. 1301, Springer–Verlag, September 1997.

[BGS98a] Rastislav Bodik, Rajiv Gupta, and Mary Lou Soffa. Complete removal of redundant expressions.
In Proceedings of the ACM SIGPLAN ’98 Conference on Programming Language Design and
Implementation, pages 1–14, June 1998.

[BGS98b] Rastislav Bodik, Rajiv Gupta, and Mary Lou Soffa. Load-reuse analysis: Design and evaluation.
In Proceedings of the ACM SIGPLAN ’99 Conference on Programming Language Design and
Implementation, May 1998.

[BL94] Thomas Ball and James R. Larus. Optimally profiling and tracing programs.ACM Transactions
on Programming Languages and Systems, 16(4):1319–1360, July 1994.

[BL96a] Thomas Ball and James R. Larus. Efficient path profiling. In29th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 46–57, 1996.

[BL96b] Thomas Ball and James R. Larus. Efficient path profiling. In29th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, Paris, France, 1996.

[BMO90] R. A. Ballance, A. B. Maccabe, and K. J. Ottenstein. The program dependence web: a repre-
sentation supporting control-, data-, and demand-driven interpretation of imperative programs.
In Proceedings of the ACM SIGPLAN ’90 Conference on Programming Language Design and
Implementation, volume 25, pages 257–271, June 1990.

[BMS98] Thomas Ball, Peter Mataga, and Mooly Sagiv. Edge profiling versus path profiling: The show-
down. InConference Record of the 25th ACM SIGPLAN-SIGACT Symposiumon Principles of
Programming Languages, January 1998.

[Car95] Paul R. Carini. Automatic inlining. Technical Report IBM Research Report RC-20286, IBM
T.J. Watson Research Center, November 1995.

[CC77] P. Cousot and R. Cousot. Abstract intrepretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. InConference Record of the 4th ACM
Symposium on Principles of Programming Languages, pages 238–252, January 1977.

[CCK90] David Callahan, Steve Carr, and Ken Kennedy. Improving register allocation for subscripted
variables. InProceedings of the ACM SIGPLAN ’90 Conference on Programming Language
Design and Implementation, pages 53–65, June 1990.

[CCK+97] F. Chow, S. Chan, R. Kennedy, S.-M. Liu, R. Lo, and P. Tu. A new algorithm for partial redun-
dancy elimination based on SSA form. InProceedings of the ACM SIGPLAN ’97 Conf. on Prog.
Language Design and Impl., pages 273–286, June 1997.

155

[CCKT86] David Callahan, Keith D. Cooper, Ken Kennedy, and Linda Torczon. Interprocedural constant
propagation. InProceedings of the SIGPLAN ’86 Symposium on Compiler Construction, pages
152–161, July 1986.

[CE98] George Chrysos and Joel Emer. Memory dependence prediction using store sets. InProceedings
of the 25th Annual International Symposium on Computer Architecture (ISCA-98), volume 26,3
of Computer Architecture News, pages 142–153, New York, June 1998. ACM Press.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Effi-
ciently computing static single assignment form and the control dependence graph.ACM Trans-
actions on Programming Languages and Systems, 13(4):451–490, October 1991.

[CHK92] K. Cooper, M. Hall, and K. Kennedy. Procedure cloning. In Intl. Conf. on Computer Languages,
Oakland, CA, 1992.

[CK88] Keith D. Cooper and Ken Kennedy. Interprocedural side-effect analysis in linear time.SIG-
PLAN Notices, 23(7):57–66, July 1988.Proceedings of the ACM SIGPLAN ’88 Conference on
Programming Language Design and Implementation.

[CK94a] Steve Carr and Ken Kennedy. Scalar replacement in the presence of conditional control flow.
Software Practice and Experience, 24(1):51–77, January 1994.

[CK94b] Steven Carr and Ken Kennedy. Improving the ratio of memory operations to floating-point
operations in loops.ACM Transactions on Programming Languages and Systems, November
1994.

[CKL+98] Fred Chow, Robert Kennedy, Shin-Ming Liu, Raymond Lo, and Peng Tu. Register promotion
by partial redundancy elimination of loads and stores. InProceedings of the ACM SIGPLAN ’98
Conference on Programming Language Design and Implementation, pages 26–37, Montreal,
Canada, May 1998.

[Cli95] Cliff Click. Global code motion/global value numbering. In Proceedings of the ACM SIGPLAN
’95 Conference on Programming Language Design and Implementation, pages 246–257, La
Jolla, California, June 18–21, 1995.

[CMC+91] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W.Hwu. IMPACT: An architectural
framework for multiple-instruction-issue processors. InProceedings of the 18th International
Symposium on Computer Architecture (ISCA), volume 19, pages 266–275, New York, NY, June
1991. ACM Press.

[CMCH92] Pohua P. Chang, Scott A. Mahlke, William Y. Chen, and Wen-Mei W. Hwu. Profile-guided
automatic inline expansion for C programs.Software—Practice and Experience, 22(5):349–
369, May 1992.

[CMT94] S. Carr, K. McKinley, and C.-W. Tseng. Compiler optimizations for improving data locality.
In Proceedings of the Sixth International Conference on Architectural Support forProgramming
Languages and Operating Systems (ASPLOS), San Jose, CA, October 1994.

[CN96] Charles Consel and François Noël. A general approach for run-time specialization and its ap-
plication to C. In ACM, editor,Conference record of POPL ’96, 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages: papers presented at the Symposium: St.
Petersburg Beach, Florida, 21–24 January 1996, pages 145–156, New York, NY, USA, 1996.
ACM Press.

[Coc70] John Cocke. Global common subexpression elimination. In Proceedings of a Symposium on
Compiler Optimization, volume 5, pages 20–24, July 1970.

[CS69] John Cocke and Jacob T. Schwartz.Programming Languages and Their Compilers: Preliminary
Notes. Courant Inst of Math. Sci., NYU, NY, NY, 1969.

[DGS93] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. A practical data flow framework for
array reference analysis and its use in optimizations. InProceedings of the ACM SIGPLAN ’93
Conference on Programming Language Design and Implementation, pages 68–77, June 1993.

156

[DGS95] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. Demand-driven computation of in-
terprocedural data flow. InConference Record of POPL ’95: 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 37–48, San Francisco, California,
January 1995.

[DGS97] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. A practical framework for demand-
driven interprocedural data flow analysis.ACM Transactions on Programming Languages and
Systems, 19(6):992–1030, November 1997.

[DH88] Jack. W. Davidson and Anne. M. Holler. A study of a C function inliner.Software, Practice and
Experience, 18(8):775–790, August 1988.

[Dha91] D. M. Dhamdhere. Practical adaptation of the globaloptimization algorithm of Morel and Ren-
voise.ACM Transactions on Programming Languages and Systems, 13(2):291–294, April 1991.

[DI80] D. M. Dhamdhere and J. R. Isaac. A composite algorithmfor strength reduction and code move-
ment optimization.International Journal of Computer and Information Sciences, 9(3):243–273,
June 1980.

[DMM98] Amer Diwan, Kathryn S. McKinley, and J. Eliot B. Moss. Type-based alias analysis. InProceed-
ings of the ACM SIGPLAN’98 Conference on Programming Language Design and Implemen-
tation (PLDI), pages 106–117, Montreal, Canada, 17–19 June 1998.SIGPLAN Notices33(5),
May 1998.

[DRZ92] D. M. Dhamdhere, Barry K. Rosen, and Kenneth F. Zadeck. How to analyze large programs
efficiently and informatively. InProceedings of the ACM SIGPLAN ’92 Conference on Pro-
gramming Language Design and Implementation, pages 212–223, July 1992.

[DS88] K. Drechsler and M. Stadel. A solution to a problem with Morel and Renvoise’s “global op-
timization by suppression of partial redundancies”.ACM Transactions on Programming Lan-
guages and Systems, 10(4):635–640, October 1988.

[DS93] K. Drechsler and M. Stadel. A variation of Knoop, Rüthing, and Steffen’slazy code motion.
ACM SIGPLAN Notices, 28(5):635–640, May 1993.

[Dul98] Carole Dulong. The IA-64 architecture at work.Computer, 31(7):24–32, July 1998.

[ED95] Alexandre E. Eichenberger and Edward S. Davidson. Register allocation for predicated code. In
Proceedings of the 28th Annual International Symposium on Microarchitecture, pages 180–191,
Ann Arbor, Michigan, November 29–December 1, 1995. IEEE Computer Society TC-MICRO
and ACM SIGMICRO.

[95] W.M. Hwu et al. Compiler technology for future microprocessors.IEEE, 83:1625–1640, 1995.

[FF92] Joseph A. Fisher and Stefan M. Freudenberger. Predicting conditional branch directions from
previous runs of a program. InProceedings of the Fifth International Conference on Architec-
tural Support for Programming Languages and Operating Systems, pages 85–95, Boston, Mas-
sachusetts, October 12–15, 1992. ACM SIGARCH, SIGOPS, SIGPLAN, and the IEEE Com-
puter Society.

[FH95] Christopher W. Fraser and David R. Hanson.A retargetable C compiler: design and implemen-
tation. Benjamin/Cummings, 1995. ISBN 0-8053-1670-1.

[GBF97a] R. Gupta, D. Berson, and J.Z. Fang. Path profile guided partial dead code elimination using
predication. InInternational Conference on Parallel Architectures and Compilation Techniques,
pages 102–115, November 1997.

[GBF97b] R. Gupta, D. Berson, and J.Z. Fang. Resource-sensitive profile-directed data flow analysis for
code optimization. In30th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 358–368, December 1997.

[GBF98] R. Gupta, D. Berson, and J.Z. Fang. Path profile guided partial redundancy elimination using
speculation. InIEEE International Conference on Computer Languages, May 1998.

157

[GKKG98] Benjamin Goldberg, Hansoo Kim, Vinod Kathail, andJohn Gyllenhaal. The tri-
maran compiler infrastructure for instruction level parallelism research. Technical Report
http://www.trimaran.org, Hewlett-Packard Laboratories, University of Illinois, NYU,
1998.

[GKT91] G. Goff, K. Kennedy, and C.-W. Tseng. Practical Dependency Testing. InProceedings Confer-
ence on Programming Language Design and Implementation, pages 15–29, Ottawa, CDN, June
1991. ACM SIGPLAN. SIGPLAN Notices, 26(6).

[GMP+97] B. Grant, M. Mock, M. Philipose, C. Chambers, and S. Eggers. Annotation-directed run-time
specialization in C. InProceedings of the ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation (PEPM-97), volume 32, 12 ofACM SIGPLAN Notices,
pages 163–178, New York, June 12–13 1997. ACM Press.

[GMP+98] B. Grant, M. Mock, M. Philipose, C. Chambers, and S.J. Eg-
gers. The UW Dynamic Compilation Project. Technical Report
http://www.cs.washington.edu/research/projects/unisw/DynComp/www,
University of Washington, 1998.

[GT93] Dan Grove and Linda Torczon. Interprocedural constant propagation: A study of jump func-
tion implementations. InProceedings of the ACM SIGPLAN ’93 Conference on Programming
Language Design and Implementation, pages 90–99, June 1993.

[Gup90] Rajiv Gupta. A fresh look at optimizing array bound checking.SIGPLAN Notices, 25(6):272–
282, June 1990.Proceedings of the ACM SIGPLAN ’90 Conference on Programming Language
Design and Implementation.

[HH97] R.Nigel Horspool and H.C. Ho. Partial redundancy elimination based on a cost-benefit analy-
sis. InProceedings of 8th Israeli Conference on Computer Systems and Software Engineering
(ICSSE’97), pages 111–118, Herzliya, Israel, June 1997. IEEE ComputerSociety.

[HHR95] Richard E. Hank, Wen-Mei W. Hwu, and B. Ramakrishna Rau. Region-based compilation: An
introduction and motivation. In28th Annual IEEE/ACM International Symposium on Microar-
chitecture, Ann Arbor, Michigan, 1995.

[HMC+92] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann, R. G. Ouel-
lette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M.Lavery. The superblock: an
effective technique for VLIW and superscalar compilation.In The Journal of Supercomputing,
volume (this issue). 1992.

[HR81] L. Howard Holley and Barry K. Rosen. Qualified data flowproblems. IEEE Transactions on
Software Engineering, 7(1):60–78, January 1981.

[JC96] Johan Janssen and Henk Corporaal. Controlled node splitting. In Compiler Construction, 6th
International Conference, volume 1060 ofSpringer Lecture Notes in Computer Science, pages
44–58, Sweden, April 1996.

[Joh91] William Johnson.Superscalar Microprocessor Design. Prentice Hall, 1991. ISBN 0-13-875634-
1.

[JS96] Richard Johnson and Michael Schlansker. Analysis techniques for predicated code. InPro-
ceedings of the 29th Annual International Symposium on Microprogramming, pages 100–113,
December 1996.

[KEH91] David Keppel, Susan J. Eggers, and Robert R. Henry. Acase for runtime code generation.
Technical Report 91-11-04, Department of Computer Scienceand Enginnering, University of
Washington, November 1991.

[Kno98] Jens Knoop.Optimal Interprocedural Program Optimization: A New Framework and Its Appli-
cation, volume 1428 ofLecture Notes in Computer Science Tutorial. Springer–Verlag, Heidel-
berg, Germany, 1998. PhD dissertation, Department of Computer Science, University of Kiel,
1993.

158

[Kra94] Andreas Krall. Improving semi-static branch prediction by code replication.SIGPLAN Notices,
29(6):97–106, June 1994.Proceedings of the ACM SIGPLAN ’94 Conference on Programming
Language Design and Implementation.

[KRS92] Jens Knoop, Oliver Rüthing, and Bernhard Steffen.Lazy code motion. SIGPLAN Notices,
27(7):224–234, July 1992. Proceedings of the ACM SIGPLAN ’92 Conference on Programming
Language Design and Implementation.

[KRS93] Jens Knoop, O. Rüthing, and Bernhard Steffen. Lazystrength reduction.International Journal
of Programming Languages, 1:71–91, 1993.

[KRS94a] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Optimal code motion: Theory and practice.
ACM Transactions on Programming Languages and Systems, 16(4):1117–1155, July 1994.

[KRS94b] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Partial dead code elimination. InProceed-
ings of the Conference on Programming Language Design and Implementation, pages 147–158,
New York, NY, USA, June 1994. ACM Press.

[KSR94] Vinod Kathail, Michael S. Schlansker, and B. Ramakrishna Rau. Hpl playdoh architecture spec-
ification: Version 1.0. Technical Report HPL–93–80, Hewlett-Packard Laboratories, 1994.

[KU77] J. B. Kam and J. D. Ullman. Monotone data flow analysis frameworks. Acta Informatica,
7:305–317, 1977.

[KW95] Priyadarshan Kolte and Michael Wolfe. Elimination of redundant array subscript range checks.
SIGPLAN Notices, 30(6):270–278, June 1995.Proceedings of the ACM SIGPLAN ’95 Confer-
ence on Programming Language Design and Implementation.

[Lar99] James R. Larus. Whole program paths. InProceedings of the ACM SIGPLAN ’99 Conference
on Programming Language Design and Implementation, pages 259–269, 1999.

[LC97] John Lu and Keith Cooper. Register promotion in C programs. InProceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI-97), volume
32, 5 ofACM SIGPLAN Notices, pages 308–319, New York, June15–18 1997. ACM Press.

[LCK+98] Raymond Lo, Fred Chow, Robert Kennedy, Shin-Ming Liu, and Peng Tu. Register promotion
by sparse partial redundancy elimination of loads and stores. In Proceedings of the ACM SIG-
PLAN’98 Conference on Programming Language Design and Implementation (PLDI), pages
26–37, Montreal, Canada, 17–19 June 1998.

[LFK+93] P. Geoffrey Lowney, Stefan M. Freudenberger, Thomas J. Karzes, W. D. Lichtenstein, Robert P.
Nix, John S. O’Donnell, and John C. Ruttenberg. The MultiflowTrace Scheduling compiler.
The Journal of Supercomputing, 7(1-2):51–142, May 1993.

[LH96] Daniel M. Lavery and Wen-mei W. Hwu. Modulo scheduling of loops in control-intensive non-
numeric programs. InProceedings of the 29th Annual International Symposium on Microarchi-
tecture, pages 126–137, Paris, France, December 2–4, 1996.

[LS97] M. H. Lipasti and J. P. Shen. The performance potential of value and dependence prediction.
Lecture Notes in Computer Science, 1300:1043–??, 1997.

[MCB+93] S. A. Mahlke, W. Y. Chen, R. A. Bringmann, R. E. Hank, W.M. W. Hwu, B. R. Rau, and M. S.
Schlansker. Sentinel scheduling for VLIW and superscalar processors.ACM Transactions on
Computer Systems, 11(4):376–408, 1993.

[MCB99] Renaud Marlet, Charles Consel, and Philippe Boinot. Efficient incremental run-time specializa-
tion for free.ACM SIGPLAN Notices, 34(5):281–292, May 1999.

[MH86] Scott McFarling and John Hennessy. Reducing the costof branches. InProceedings of the 13th
Annual International Symposium on Computer Architecture, pages 396–403, Tokyo, Japan, June
2–5, 1986. IEEE Computer Society TCCA, ACM SIGARCH, and the Information Processing
Society of Japan.

159

[MLC+92] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann. Effective compiler
support for predicated execution using the hyperblock. In Wen mei Hwu, editor,Proceedings
of the 25th Annual International Symposium on Microarchitecture, pages 45–54, Portland, OR,
December 1992. IEEE Computer Society Press.

[MR79] E. Morel and C. Renviose. Global optimization by supression of partial redundancies.CACM,
22(2):96–103, 1979.

[Muc97] Steven S. Muchnik.Advanced Compiler Design and Implementation. Addison Wesley, 1997.

[MW92a] Frank Mueller and David B. Whalley. Avoiding unconditional jumps by code replication. InPro-
gramming Language Design and Implemenation Conference, pages 322–330. ACM SIGPLAN,
ACM Press, June 1992.

[MW92b] Frank Mueller and David B. Whalley. Avoiding unconditional jumps by code replication.SIG-
PLAN Notices, 27(7):322–330, July 1992.Proceedings of the ACM SIGPLAN ’92 Conference
on Programming Language Design and Implementation.

[MW95a] Frank Mueller and David B. Whalley. Avoiding conditional branches by code replication. In
ACM SIGPLAN Conference on Programming Language Design and Implementation, volume 30
of ACM SIGPLAN Notices, pages 56–66. ACM SIGPLAN, ACM Press, June 1995.

[MW95b] Frank Mueller and David B. Whalley. Avoiding conditional branches by code replication.SIG-
PLAN Notices, 30(6):56–66, June 1995.Proceedings of the ACM SIGPLAN ’95 Conference on
Programming Language Design and Implementation.

[PC94] J. Plevyak and A. A. Chien. Precise concrete type inference for object-oriented languages.j-
SIGPLAN, 29(10):324–, 1994.

[PC95] John Plevyak and Andrew A. Chien. Type directed cloning for object-oriented programs. In
Eighth Annual Workshop on Languages and Compilers for Parallel Computing, Lecture Notes
in Computer Science, volume 1033, pages 566–580, Columbus, Ohio, August 1995.

[Ram94] G. Ramalingam. The undecidability of aliasing.ACM Transactions on Programming Languages
and Systems, 16(5):1467–1471, September 1994.

[Ram96] G. Ramalingam. Data flow frequency analysis. InProceedings of the ACM SIGPLAN ’96 Conf.
on Progr. Language Design and Implementation, pages 267–277, June 1996.

[Rau91] B. R. Rau. Data flow and dependence analysis for instruction level parallelism. InProceedings of
the Fourth International Workshop on Languages and Compilers for Parallel Computing, LNCS,
pages 236–250. Springer-Verlag, 1991.

[RCT+98] Glenn Reinman, Brad Calder, Dean Tullsen, Gary Tyson, and Todd Austin. Profile guided load
marking for memory renaming. Technical Report UCSD-CS98-593, University of California,
San Diego, 1998.

[RG81] B. Ramakrishna Rau and C. D. Glaeser. Some schedulingtechniques and an easily schedu-
lable horizontal architecture for high performance scientific computing. InProc. 14th Annual
Workshop on Microprogramming, pages 183–198, 1981.

[RG89] Stephen Richardson and Mahadevan Ganapathi. Interprocedural analysis versus procedure inte-
gration. Information Processing Letters, 32(3):137–142, 1989.

[RL77] J. H. Reif and H. R. Lewis. Symbolic evaluation and theglobal value graph. InConference
Record of the Fourth annual ACM Symposium on Principles of Programming Languages, pages
104–118. ACM, ACM, January 1977.

[RWZ88] Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Global value numbers and redundant
computations. In15th Annual ACM Symposium on Principles of Programming Languages, pages
12–27, San Diego, California, January 1988.

160

[SG95] Vugranam C. Sreedhar and Guang R. Gao. A linear time algorithm for placing�-nodes. InCon-
ference Record of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’95), pages 62–73, January 1995.

[Sit93] Richard L. Sites. Alpha AXP architecture.Communications of the ACM, 36(2):33–44, February
1993.

[SJ98] A. V. S. Sastry and Roy D. C. Ju. A new algorithm for scalar register promotion based on SSA
form. ACM SIGPLAN Notices, 33(5):15–25, May 1998.

[SKR90] Bernhard Steffen, Jens Knoop, and O. Rüthing. The value flow graph: A program representa-
tion for optimal program transformations. InProceedings of the 3rd European Symposium on
Programming (ESOP’90), volume 432, pages 389–405, Denmark, May 1990.

[SLM96] Stuart Sechrest, Chih-Chieh Lee, and Trevor Mudge.Correlation and aliasing in dynamic branch
predictors. InProceedings of the 23rd Annual International Symposium on Computer Architec-
ture, pages 22–32, Philadelphia, Pennsylvania, May 22–24, 1996.

[SRH96] Mooly Sagiv, Thomas Reps, and Susan Horwitz. Precise interprocedural dataflow analysis with
applications to constant propagation.Theoretical Computer Science, 167(1–2):131–170, 1996.

[SS97] Avinash Sodani and Gurindar S. Sohi. Dynamic instruction reuse. InProceedings of the 24th An-
nual International Symposium on Computer Architecture (ISCA-97), volume 25,2 ofComputer
Architecture News, pages 194–205, New YOrk, June2–4 1997. ACM Press.

[SS98] Avinash Sodani and Gurindar S. Sohi. Understanding the differences between value prediction
and instruction reuse. InProceedings of the 31th Annual International Symposium on Microar-
chitecture, Dallas, TX, December 2–4, 1998.

[Ste96] Bernhard Steffen. Property oriented expansion. InProc. Int. Static Analysis Symposium
(SAS’96), volume 1145 ofLNCS, pages 22–41, Germany, September 1996. Springer.

[SVS96] Yiannakis Sazeides, Stamatis Vassiliadis, and James E. Smith. The performance potential of
data dependence speculation and collapsing. InProceedings of the 29th Annual International
Symposium on Microarchitecture, pages 238–247, Paris, France, December 2–4, 1996. IEEE
Computer Society TC-MICRO and ACM SIGMICRO.

[TP95] P. Tu and D. Padua. Gated SSA-Based demand-driven symbolic analysis for parallelizing com-
pilers. In Conference proceedings of the 1995 International Conference on Supercomputing,
Barcelona, Spain, July 3–7, 1995, pages 414–423, 1995.

[TS99] Omri Traub and Michael D. Smith. Ephemeral instrumentation for lightweight program profil-
ing. In submitted to the 32nd Annual International Symposium on Microprogramming, Decem-
ber 1999.

[Tu99] Peng Tu. Personal communication. 1999.

[Weg75a] B. Wegbreit. Property extraction in well-foundedproperty sets.IEEE Transactions on Software
Engineering, 1(3):270–285, September 1975.

[Weg75b] Mark Wegman.THESIS. PhD thesis, University of California, Berkeley, 1975.

[Wu96] Youfeng Wu. Conflict Ratio Profiling for Memory References. Technical Report MRL Compiler
Technical Report 96012, Intel Corp., 1996.

[YGS95] Cliff Young, Nicolas Gloy, and Michael D. Smith. A comparative analysis of schemes for cor-
related branch prediction. InIntl. Symposium on Computer Architecture, Italy, 1995.

[YP91] Tse-Yu Yeh and Yale N. Patt. Two-level adaptive training branch prediction. InProceedings of
the 24th Annual International Symposium on Microarchitecture, pages 51–61, Albuquerque,
New Mexico, November 18–20, 1991. ACM SIGMICRO and IEEE Computer Society TC-
MICRO.

161

[YS94] Cliff Young and Michael D. Smith. Improving the accuracy of static branch prediction using
branch correlation. InProceedings of the Sixth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, pages 232–241, San Jose, California,
October 4–7, 1994. ACM SIGARCH, SIGOPS, SIGPLAN, and the IEEE Computer Society.

