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ABSTRACT OF THE DISSERTATION

Exploiting Asynchrony for Performance and Fault Tolerance
in Distributed Graph Processing

by

Keval Dinesh Vora

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2017

Dr. Rajiv Gupta, Chairperson

While various iterative graph algorithms can be expressed via asynchronous parallelism,

lack of its proper understanding limits the performance benefits that can be achieved via

informed relaxations. In this thesis, we capture the algorithmic intricacies and execution

semantics that enable us to improve asynchronous processing and allow us to reason about

semantics of asynchronous execution while leveraging its benefits. To this end, we specify

the asynchronous processing model in a distributed setting by identifying key properties

of read-write dependences and ordering of reads that expose the set of legal executions

of an asynchronous program. And then, we develop techniques to exploit the availability

of multiple legal executions by choosing faster executions that reduce communication and

computation while processing static and dynamic graphs.

For static graphs, we first develop a relaxed consistency protocol to allow the use

of stale values during processing in order to eliminate long latency communication opera-

tions by up to 58%, hence accelerating the overall processing by a factor of 2. Then, to

efficiently handle machine failures, we present a light-weight confined recovery strategy that

vi



quickly constructs an alternate execution state that may be different from any previously

encountered program state, but is nevertheless a legal state that guarantees correct asyn-

chronous semantics upon resumption of execution. Our confined recovery strategy enables

the processing to finish 1.5-3.2× faster compared to the traditional recovery mechanism

when failures impact 1-6 machines of a 16 machine cluster.

We further design techniques based on computation reordering and incremental

computation to amortize the computation and communication costs incurred in processing

evolving graphs, hence accelerating their processing by up to 10×. Finally, to process

streaming graphs, we develop a dynamic dependence based incremental processing technique

that identifies the minimal set of computations required to calculate the change in results

that reflects the mutation in graph structure. We show that this technique not only produces

correct results, but also improves processing by 8.5-23.7×.

Finally, we demonstrate the efficacy of asynchrony beyond distributed setting by

leveraging it to design dynamic partitions that eliminate wasteful disk I/O involved in

out-of-core graph processing by 25-76%.

vii



Contents

List of Figures xi

List of Tables xiv

1 Introduction 1
1.1 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Processing Static Graphs . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Processing Dynamic Graphs . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.3 Out-of-core Graph Processing . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Relaxed Consistency Model 15
2.1 Asynchronous Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Relaxed Object Consistency Model . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Relaxed Consistency Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Definitions and Notation . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.3 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.1 System Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.2 Benchmarks and Inputs . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5.1 Benefits of Exploiting Staleness . . . . . . . . . . . . . . . . . . . . . 40
2.5.2 Bounded Staleness vs. RCP . . . . . . . . . . . . . . . . . . . . . . . 42
2.5.3 Design Choices of RCP . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5.4 Comparison with Other Systems . . . . . . . . . . . . . . . . . . . . 50

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Confined Recovery 55
3.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2 Confined Recovery for Asynchronous model via Lightweight checkpointing . 63

3.2.1 PR-Consistent Recovery: Single Failure Case . . . . . . . . . . . . . 69

viii



3.2.2 PR-Consistent Recovery: Multiple Failures . . . . . . . . . . . . . . 72
3.2.3 Capturing PR-Ordering . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.3.1 Recovery Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.3.2 Partitioning Snapshots: Impact on Recovery . . . . . . . . . . . . . 90
3.3.3 Optimizing Recovery from Multiple Failures . . . . . . . . . . . . . . 92
3.3.4 Checkpointing: Impact on Network Bandwidth . . . . . . . . . . . . 92

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 Evolving Graph Processing 96
4.1 Evolving Graph and Iterative Processing . . . . . . . . . . . . . . . . . . . . 98

4.1.1 Evolving Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.1.2 Computation over Evolving Graphs . . . . . . . . . . . . . . . . . . 99

4.2 Temporal Layout of Evolving Graphs . . . . . . . . . . . . . . . . . . . . . . 103
4.3 Fetch Amortization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3.1 Fetch Amortization via Computation Re-ordering . . . . . . . . . . . 107
4.3.2 Mutable Vertex Values . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.3.3 Vertex Activations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.3.4 Convergence Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3.5 Caching & Message Aggregation . . . . . . . . . . . . . . . . . . . . 110

4.4 Processing Amortization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.4.1 Processing Amortization via Feeding . . . . . . . . . . . . . . . . . . 112
4.4.2 Applicability & Correctness . . . . . . . . . . . . . . . . . . . . . . . 114

4.5 Graph Processing Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.5.1 ASPIRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.5.2 GraphLab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.5.3 Other Graph Processing Frameworks. . . . . . . . . . . . . . . . . . 123

4.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.6.2 Performance of FA & PA in GraphLab/ASPIRE . . . . . . . . . . . 126
4.6.3 Sensitivity to Cache Size . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.6.4 Sensitivity to number of snapshots (∆) . . . . . . . . . . . . . . . . . 134
4.6.5 Sensitivity to similarity in snapshots . . . . . . . . . . . . . . . . . . 137
4.6.6 Comparison with Chronos . . . . . . . . . . . . . . . . . . . . . . . . 139

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5 Streaming Graph Processing 142
5.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.1.1 Problem 1: Incorrectness . . . . . . . . . . . . . . . . . . . . . . . . 148
5.1.2 Problem 2: Degraded Performance . . . . . . . . . . . . . . . . . . . 151
5.1.3 How to Distinguish Algorithms . . . . . . . . . . . . . . . . . . . . . 152
5.1.4 Correcting Approximations using KickStarter . . . . . . . . . . . . . 153

5.2 Trimming Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.2.1 KickStarter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.2.2 Trimming via Tagging + Resetting . . . . . . . . . . . . . . . . . . . 155

ix



5.2.3 Trimming via Active Value Dependence Tracking . . . . . . . . . . . 158
5.2.4 Trimming for Performance . . . . . . . . . . . . . . . . . . . . . . . . 166
5.2.5 Safety and Profitability Arguments . . . . . . . . . . . . . . . . . . . 166

5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
5.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
5.3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
5.3.3 Trimming for Correctness . . . . . . . . . . . . . . . . . . . . . . . . 172
5.3.4 Trimming for Performance . . . . . . . . . . . . . . . . . . . . . . . . 175
5.3.5 Effectiveness of the Trimmed Approximation . . . . . . . . . . . . . 176
5.3.6 Sensitivity to Edge Deletions & Batch Size . . . . . . . . . . . . . . 178
5.3.7 Dependence Tracking Overhead . . . . . . . . . . . . . . . . . . . . . 179

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6 Out-of-core Processing 180
6.1 The Case for Dynamic Partitions . . . . . . . . . . . . . . . . . . . . . . . . 183
6.2 Processing Dynamic Shards with Delays . . . . . . . . . . . . . . . . . . . . 190
6.3 Accumulation-based Computation . . . . . . . . . . . . . . . . . . . . . . . 195

6.3.1 Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
6.3.2 Model Applicability and Correctness . . . . . . . . . . . . . . . . . . 200
6.3.3 Generalization to Edge-Centricity . . . . . . . . . . . . . . . . . . . 205

6.4 Optimizing Shard Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
6.4.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
6.4.2 I/O Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

6.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
6.5.1 Overall Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
6.5.2 I/O Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
6.5.3 Comparisons with X-Stream . . . . . . . . . . . . . . . . . . . . . . . 220

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

7 Related Work 223
7.1 Graph Processing Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

7.1.1 Static Graph Processing . . . . . . . . . . . . . . . . . . . . . . . . . 223
7.1.2 Evolving Graph Processing . . . . . . . . . . . . . . . . . . . . . . . 226
7.1.3 Streaming Graph Processing . . . . . . . . . . . . . . . . . . . . . . 228

7.2 Weak Memory Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

8 Conclusions and Future Work 234
8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

8.2.1 Graph Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 236
8.2.2 Graph Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
8.2.3 Other Graph Applications . . . . . . . . . . . . . . . . . . . . . . . . 237

Bibliography 238

x



List of Figures

1.1 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 An example subgraph for SSSP. . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Execution instances showing intermediate values of d(c) for statically set

staleness thresholds of 0, 1 and 2. . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 Real-world graph datasets used for evaluation of graph mining and analytics

benchmarks and sparse matrices used for PDE benchmarks. . . . . . . . . . 36
2.5 Speedups achieved by RCP over SCP on clusters of 2, 4, 8, and 16 nodes. . 42
2.6 Execution times of RCP and Stale-n (n = 1, 2, 3) on a 16-node cluster nor-

malized wrt SCP+RW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.7 Number of remote fetches that stall computation threads normalized wrt

SCP+RW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.8 Percentage of objects used with staleness n. . . . . . . . . . . . . . . . . . . 44
2.9 Number of iterations performed before converging normalized wrt SCP+RW. 45
2.10 Number of protocol messages normalized wrt SCP+RW. . . . . . . . . . . . 46
2.11 Execution times of SCP with and without piggy-backed updates and RCP

for different write configurations normalized wrt single write versions. . . . 48
2.12 Execution times of SCP with and without piggy-backed updates and RCP

for different write configurations normalized wrt SCP. . . . . . . . . . . . . 49
2.13 Execution times of SCP with and without piggy-backed updates and RCP

for different object sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.14 Maximum staleness for objects used in RCP with varying communication delay. 50
2.15 Execution times for BSP based implementations normalized wrt their asyn-

chronous versions that use RCP. . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1 Example graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 Recovery from single failure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3 Recovery from multiple failures. . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.4 Event sequence with incorrect access of value x. . . . . . . . . . . . . . . . . 82
3.5 System design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.6 CoRAL vs. BL: Single failure execution times normalized w.r.t. BL. . . . . 88

xi



3.7 CoRAL vs. BL: Recovery for single failure from initial state. Execution times
normalized w.r.t. BL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.8 CoRAL vs. BL: Varying number (1 to 6) of machine failures. Execution
times for PR on UK normalized w.r.t. BL. . . . . . . . . . . . . . . . . . . . 90

3.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.10 BL vs. CoRAL: 99th percentile network bandwidth for varying RF (1 to 6)

normalized w.r.t. no checkpointing case. . . . . . . . . . . . . . . . . . . . . 93
3.11 BL vs. CoRAL: Network usage for PR on UK. . . . . . . . . . . . . . . . . 94

4.1 Example evolving graph G = 〈G1, G2, G3〉. . . . . . . . . . . . . . . . . . . . 99
4.2 Temporal Layout of Evolving Graphs . . . . . . . . . . . . . . . . . . . . . . 103
4.3 Evolving Graph G for example evolving graph in Figure 4.1. . . . . . . . . . 105
4.4 Effect of Processing Amortization. . . . . . . . . . . . . . . . . . . . . . . . 113
4.5 Edge deletion examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.6 Speedups achieved by FA, PA, and FA+PA in GraphLab. The execution

times (in sec) for PR/SSSP on original version of GraphLab (Baseline) are:
4,117/2,900 for Twitter-25 and 7,148/1,490 for Delicious-100. . . . . . . . . 127

4.7 Speedups achieved by FA, PA, and FA+PA in ASPIRE (a,c,e); Reduction
in Remote Fetches for FA, Vertex Computations for PA, and Reduction in
Remote Fetches for FA+PA over FA (b,d,f). The execution times (in sec)
for PR/SSSP on original version of ASPIRE (Baseline) are: 16,245/7,244 for
Delicious-20 and 9,282/2,340 for DBLP-40. . . . . . . . . . . . . . . . . . . 129

4.8 Effect of varying cache size on FA, PA and FA+PA (a,c,e); Remote fetches
saved by FA,PA and FA+PA (b,d,f) . . . . . . . . . . . . . . . . . . . . . . 132

4.9 Effect of varying ∆ on FA (a) and FA+PA (b); Reduction in Remote Fetches
for FA (c); and Increase in Vertex Computation for FA+PA (d). . . . . . . 135

4.10 Effect of varying ∆ for different cache sizes on FA (a) and FA+PA (b). . . . 136
4.11 Effect of varying the overlap across consecutive snapshots on PA and FA+PA.138
4.12 Execution times for PR using FA+PA normalized w.r.t. FA+IP. . . . . . . 140

5.1 Three different scenarios w.r.t. the use of intermediate values after an edge
update. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.2 Streaming graph processing. . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.3 Two path discovery algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.4 Using either the intermediate or the initial value for vertex D leads to in-

correct results (which are underlined); the initial value for each vertex is 0.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.5 Numbers of vertices with incorrect results. . . . . . . . . . . . . . . . . . . 151
5.6 While using the intermediate value for vertex B yields the correct result,

the computation can be very slow; the initial value at each vertex is a large
number MAX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.7 (a) Dependence tree for Figure 5.4(a) before the edge deletion; (b)-(d) trim-
ming reorganizes the dependence tree. . . . . . . . . . . . . . . . . . . . . . 161

5.8 Time taken to answer queries. . . . . . . . . . . . . . . . . . . . . . . . . . . 173

xii



5.9 Trimming for performance: time taken to compute answer queries by TAG
and VAD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.10 Reduction in # of vertices reset by VAD compared to VAD-Reset. . . . . . 176
5.11 Numbers of reset vertices with different deletion percentages in the batch. . 177
5.12 Query time and dependence tracking overhead. . . . . . . . . . . . . . . . . 178

6.1 An example graph partitioned into shards. . . . . . . . . . . . . . . . . . . . 184
6.2 An illustration of sliding windows and the PageRank execution statistics. . 186
6.3 Useful data in static shards. . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
6.4 Dynamic shards for the example graph in Figure 6.1a created for iteration 3,

4 and 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.5 Processing using dynamic shards. . . . . . . . . . . . . . . . . . . . . . . . 194
6.6 Speedups achieved per iteration. . . . . . . . . . . . . . . . . . . . . . . . . 213
6.7 Read and write size for different benchmarks normalized w.r.t. the baseline. 215
6.8 The dynamic shard sizes for HS normalized w.r.t. the ideal shard sizes as the

algorithm progresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
6.9 The dynamic shard sizes for MSSP normalized w.r.t. the ideal shard sizes as

the algorithm progresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
6.10 Edge utilization rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
6.11 Max disk space used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
6.12 Speedups achieved (left) and per-iteration savings in execution time achieved

(right) by ODS and X-Stream over Baseline using PR. . . . . . . . . . . . 220

xiii



List of Tables

2.1 Convergence based Iterative Algorithms. . . . . . . . . . . . . . . . . . . . . 35
2.2 Real-world graphs & matrices used in experiments. . . . . . . . . . . . . . 37
2.3 Execution times (in sec) of SCP and RCP for various graph mining and

analytics benchmarks on a 16-node cluster. . . . . . . . . . . . . . . . . . . 39
2.4 Execution times (in sec) of SCP and RCP for PDE benchmarks on a 16-node

cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5 Execution times (in sec) of SSSP, PR, GC, CC, and NP using RCP and

GraphLab (GL) on a 16-node cluster. An x indicates that execution did not
complete either because it crashed or continued for over 60 minutes. . . . . 50

3.1 SSSP example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 Key characteristics of existing graph processing systems and our CoRAL

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3 Violation of PR-Semantics disrupting monotonicity in SSSP. . . . . . . . . . 67
3.4 State of execution till t5; highlighted rows indicate latest locally consistent

snapshots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.5 Recovering vertices v3, v4 and v5. . . . . . . . . . . . . . . . . . . . . . . . . 74
3.6 Recovering vertices v0 to v5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.7 Real world input graphs and benchmarks used. . . . . . . . . . . . . . . . . 84
3.8 Execution times (sec). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.9 CoRAL vs. BL execution times (sec) for single machine failure. . . . . . . . 88

4.1 Execution of SSSP on snapshot G1 (Figure 4.1a). . . . . . . . . . . . . . . 101
4.2 Execution of SSSP on snapshot G2 (Figure 4.1b). . . . . . . . . . . . . . . 101
4.3 Execution of SSSP on snapshot G3 (Figure 4.1c). . . . . . . . . . . . . . . 102
4.4 Fetched Vertices for SSSP on G1, G2, and G3. . . . . . . . . . . . . . . . . 106
4.5 Average % fetch overlap across consecutive snapshots over different datasets

(names include number of snapshots) for SSSP algorithm. . . . . . . . . . . 106
4.6 Average % overlap of vertex values across consecutive graph snapshots of

Slashdot input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.7 Various vertex-centric graph algorithms. . . . . . . . . . . . . . . . . . . . 119

xiv



4.8 Real-world evolving graphs taken from KONECT [70] repository for experi-
ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.9 Benchmark programs used in experiments. . . . . . . . . . . . . . . . . . . 124
4.10 Amortization Techniques v/s Chronos. . . . . . . . . . . . . . . . . . . . . 139

5.1 Monotonic algorithms & their aggregation functions. . . . . . . . . . . . . 157
5.2 Real world input graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
5.3 Various vertex-centric graph algorithms. . . . . . . . . . . . . . . . . . . . 169
5.4 shouldPropagate conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . 169
5.5 Trimming for correctness: query processing time (in sec) for SSWP and CC,

shown in the form of min-max (average). . . . . . . . . . . . . . . . . . . . . 169
5.6 Trimming for correctness: # reset vertices for SSWP and CC (the lower the

better) in the form of min-max (average). . . . . . . . . . . . . . . . . . . . 170
5.7 Trimming for performance: query processing times (in sec) for SSSP and

BFS in the form: min-max (average). . . . . . . . . . . . . . . . . . . . . . . 174
5.8 Trimming for performance: number of reset vertices for SSSP and BFS in

the form: min-max (average). . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.1 A list of algorithms used as subjects in the following works and their aggrega-
tion functions if implemented under our model: GraphChi [73], GraphLab [85],
ASPIRE [129], X-Stream [103], GridGraph [153], GraphQ [134], GraphX [45],
PowerGraph [44], Galois [92], Ligra [114], Cyclops [22], and Chaos [102]. . . 201

6.2 A comparison between PageRank executions with and without delays under
the accumulation-based model; for each vertex and edge, we use a pair [a,
b] to report its pre- (a) and post-iteration (b) value. Each vertex u (v) has
a value 0 before it receives an initial value Iu (Iv) in Iteration 0; EX and AP

represent function Extract and Apply, respectively. . . . . . . . . . . . . . 202
6.3 Input graphs used; PMSize and SS report the peak in-memory size of each

graph structure (without edge values) and the number of static shards created
in GraphChi, respectively. The in-memory size of a graph is measured as the
maximum memory consumption of a graph across the five applications; LJ
and NF are relatively small graphs while UK, TT, FT, YW are billion-edge
graphs larger than the 8GB memory size; YW is the largest real-world graph
publicly available; all graphs have highly skewed power-law degree distributions.207

6.4 Input graphs used; PMSize and SS report the peak in-memory size of each
graph structure (without edge values) and the number of static shards created
in GraphChi, respectively. The in-memory size of a graph is measured as the
maximum memory consumption of a graph across the five applications; LJ
and NF are relatively small graphs while UK, TT, FT, YW are billion-edge
graphs larger than the 8GB memory size; YW is the largest real-world graph
publicly available; all graphs have highly skewed power-law degree distributions.208

6.5 A comparison on execution time (seconds) among Baseline (BL), ADS, and
ODS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

6.6 PR, BP and HS on YW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

xv



Chapter 1

Introduction

Recent advancements in data analytics model data as graphs to capture domain-

specific data relationships, giving rise to an important class of graph processing problems.

While various parallel graph algorithms have been developed to perform useful analyses,

the large sizes of real-world graphs necessitate the use of clusters that provide the compute

and memory capacity needed to efficiently process the large graphs.

Iterative graph algorithms compute values for vertices in the graph by starting

with an initial set of values and iteratively computing new values until they stabilize to

a solution (i.e., until convergence). While graph algorithms can be expressed in different

ways, the vertex-centric model enables users to express computations for a single vertex,

allowing them to think like a vertex by only looking at the neighborhood of the given

vertex [86]. The simplicity of this model has led to its wide acceptance by various graph

processing frameworks [84, 44, 73] which require users to only provide vertex functions,

while the framework takes care about the rest of the processing details like, parallelization,
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communication, synchronization, etc. Furthermore, this model has formed a basis for other

models to easily express computations, like the popular edge-centric model where more

parallelism can be directly exposed to the runtime system [103, 102].

Iterative processing in graph algorithms can be performed using synchronous and

asynchronous processing models as described next. The synchronous or the bulk syn-

chronous parallel (BSP) [126] model processes the graph in steps such that each step makes

a single pass over all the vertices to compute new values based on the values of neighbor-

ing vertices from previous step. This model can be viewed as having disjoint computa-

tion and communication phases such that vertex values computed in a given computation

phase are visible to the neighboring vertices via the subsequent communication phase. The

asynchronous model [8, 20], on the other hand, allows vertex values to be independently

computed based on available values from neighboring vertices. Hence, asynchronous model

eliminates the need of synchronized steps which allows vertex computations to proceed

without frequently coordinating with other computations.

Even though it is well known that asynchronous processing is faster than syn-

chronous processing [84], the BSP model is a preferred choice mainly because of two rea-

sons; first, it is difficult to develop and maintain an asynchronous processing framework; and

second, it is easier to analyze the convergence and correctness of synchronous algorithms

compared to their asynchronous counterparts. While availability of various asynchronous

graph processing frameworks alleviates the effects due to the first reason, limited analysis

of asynchronous execution has left asynchronous processing fairly unexplored, limiting its

benefits in various contexts of graph processing.
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Hence, this dissertation explores asynchronous processing in detail to understand

its algorithmic intricacies and execution semantics, enabling us to improve asynchronous

processing and make it easier to reason about asynchronous execution semantics while

leveraging its benefits. We first specify the asynchronous processing model in a distributed

setting by identifying key properties of read-write dependences and order of reads to expose

the set of legal executions for asynchronous programs. And then, we develop key techniques

to exploit the availability of multiple legal executions by choosing faster executions to accel-

erate the overall processing via reduction in both, communication and computation while

processing static and dynamic graphs. Finally, we also demonstrate how the asynchrony

can be exploited to improve out-of-core graph processing by eliminating wasteful disk IO.

1.1 Dissertation Overview

ASPIRE [OOPSLA’14] 

CoRAL [ASPLOS’17a] 

EvoG [TACO’16] 

KickStarter [ASPLOS’17b] 

DynamicShards [ATC’16] 
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Figure 1.1: Dissertation Overview
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In this dissertation, we exploit the inherent asynchrony present in various graph

algorithms to further improve asynchronous graph processing. Figure 1.1 shows the overview

of this dissertation. We develop novel processing techniques to improve the performance

and fault tolerance of distributed asynchronous graph processing by carefully characterizing

important algorithmic properties like progressive reads semantics and monotonicity. In

doing so, we first address the challenges in processing static graphs, i.e., whose structure

does not change over time, and then, tackle the issues in processing dynamic graphs.

1.1.1 Processing Static Graphs

Static graphs model relationships that do not change over time. Hence, the struc-

ture of the graph, i.e., the edges and vertices in the graph remain same throughout the

execution of the graph algorithm. We first design a relaxed consistency model to tolerate

long latency communication operations while processing static graphs and then develop a

confined recovery strategy to quickly recover from machine failures during processing.

Relaxed Consistency Model

Various iterative graph algorithms (e.g., graph mining, graph analytics, PDE solvers) can

be expressed via asynchronous parallelism by relaxing certain read-after-write data depen-

dences. This allows the threads to perform computations using stale (i.e., not the most

recent) values of data objects.

In a distributed environment, the graph is partitioned across a set of machines

and each machine operates on the subgraph residing on that machine. Hence, the access

latency experienced by threads in the system varies based upon the machine at which the
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object is physically stored. Therefore the key to obtaining high-performance on a cluster is

successfully tolerating the high inter-machine communication latency. On our Tardis cluster

which has 16 compute nodes, the latency of accessing an object increases by 2.3× if instead

of being found in the local software cache it has to be brought from a remote machine. We

observe that to tolerate the long inter-machine communication latency, the asynchronous

nature of algorithms can be exploited as follows. When a thread’s computation requires an

object whose stale value is present in the local cache, instead of waiting for its most recent

copy to be fetched from a remote machine, the stale value can be used. By tracking the

degree of staleness of cached objects in terms of the number of object updates that have

since been performed, we can limit the extent to which use of stale values is permitted.

However, fruitfully exploiting this idea is challenging due to the following:

• Allowing high degree of staleness can lead to excessive use of stale values which in turn

can slow down the algorithm’s convergence, i.e. significantly more iterations may be

needed to converge in comparison to the synchronous version of the algorithm. This

can wipe out the benefits of exploiting asynchrony.

• Allowing low degree of staleness limits the extent to which long latency fetch operations

can be tolerated as the situation in which the cached value is too stale to be used

becomes more frequent causing delays due to required inter-machine fetches.

We address the above challenge by designing a relaxed memory consistency model

and cache consistency protocol that simultaneously maximize the avoidance of long latency

communication operations and minimize the adverse impact of stale values on convergence.

This is achieved by the following two ideas:
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• First, we use a consistency model that supports bounded staleness and we set the

permissible bound for using stale values to a high threshold. By doing so, we increase

the likelihood of avoiding long latency fetch operations because if a stale value is present

in the cache it is highly likely to be used.

• Second, we design a cache consistency protocol that incorporates a policy that re-

freshes stale values in the cache such that when a stale value is used to avoid a long

latency operation, the likelihood of the value being minimally stale is increased. Thus,

this refresh policy avoids slowing down the convergence of the algorithm due to use of

excessively stale values.

Hence, significant performance improvements are obtained by effectively tolerating

inter-machine fetch latency. Based upon such a relaxed memory consistency model, we

present a vertex centric approach for programming asynchronous algorithms in a distributed

environment. We demonstrate that for a range of asynchronous graph algorithms and PDE

solvers, on an average, our approach outperforms algorithms based upon: prior relaxed

memory models that allow stale values by at least 2.27× and Bulk Synchronous Parallel

(BSP) model by 4.2×.

Confined Recovery

Fault tolerance in distributed graph processing systems is provided by periodically snap-

shotting the vertex/edge values of the data-graph during processing, and restarting the

execution from the previously saved snapshot during recovery [86, 135]. The cost of fault

tolerance includes: overhead of periodic checkpoints that capture globally consistent snap-

6



shots [19] of a graph computation; and repeating computation whose results are discarded

due to the roll back during the recovery process. For synchronous graph processing systems,

solutions that lower these overheads have been proposed. Pregel [86] performs confined re-

covery that begins with the most recently checkpointed graph state of the failed machine

and, by replaying the saved inputs used by boundary vertices, recovers the lost graph state.

Zorro [96] avoids checkpointing and directly recovers the lost graph state at the cost of

sacrificing accuracy of computed solutions.

However, development of efficient fault tolerance techniques for asynchronous graph

processing lags behind. To perform recovery, asynchronous processing systems roll back the

states of all the machines to the last available snapshot and resume the computation from

that point. This is because of inherent non-determinism in asynchronous processing which

discards the possibility of reconstructing lost execution state using the saved inputs. Hence,

fault tolerance in asynchronous graph processing systems has the following two drawbacks:

• Redundant computation: Since recovery rolls back the states of all machines to the

latest snapshot, when processing is resumed, the computation from snapshot to the

current state is repeated for machines that did not fail.

• Increased network bandwidth usage: The local snapshots are saved on remote ma-

chines, either on the distributed file system or in memory. All machines bulk transfer

snapshots over the network simultaneously. This stresses the network and increases

peak bandwidth usage. The problem gets worse in case of a multi-tenant cluster.

We develop CoRAL, a highly optimized recovery technique for asynchronous graph

processing that is the first confined recovery technique for asynchronous processing. We
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observe that the correctness of graph computations using asynchronous processing rests

on enforcing the Progressive Reads Semantics (PR-Semantics) which results in the graph

computation being in PR-Consistent State. Therefore recovery need not roll back graph

state to a globally consistent state; it is sufficient to restore state to a PR-Consistent state.

We leverage this observation in two significant ways. First, non-failing machines do not

rollback their graph state, instead they carry out confined recovery by reconstructing the

graph states of failed machines such that the computation is brought into a PR-Consistent

state. Second, globally consistent snapshots are no longer required, instead locally consistent

snapshots are used to enable recovery.

We show that our technique recovers from failures and finishes processing 1.5× to

3.2× faster compared to the traditional asynchronous checkpointing and recovery mecha-

nism when failures impact 1 to 6 machines of a 16 machine cluster. Moreover, capturing

locally consistent snapshots significantly reduces intermittent high peak bandwidth usage

required to save the snapshots – the average reduction in 99th percentile bandwidth ranges

from 22% to 51% while 1 to 6 snapshot replicas are being maintained.

1.1.2 Processing Dynamic Graphs

We now describe the techniques developed to accelerate processing of dynamic

graphs. Dynamic graphs model relationships with temporal properties. Hence, they al-

low the graph structure to change over time by capturing structural mutations in form of

addition and deletion of vertices and edges. These structural mutations lead to change

in the vertex values which can be quickly computed using incremental processing, i.e., by

reusing the previous results to reduce redundant computations. While incremental process-
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ing accelerates overall execution, we need to ensure that graph algorithm are amenable to

incremental processing so that the incremental computation converges to correct results.

We first develop optimizations to amortize the computation and communication

costs while processing evolving graphs and then develop a dynamic dependence based in-

cremental processing technique to quickly process streaming graphs.

Evolving Graph Processing

There is a great deal of interest in carrying out graph analytics tasks over evolving graphs,

i.e. repeatedly computing the results of analysis at various points in time to study how

different characteristics of vertices (e.g., their PageRank, shortest path, widest path, com-

munity, etc.) change over time. The analysis of an evolving graph is expressed as the

repeating of graph analysis over multiple snapshots of a changing graph – different snap-

shots are analyzed independently of each other and their results are finally aggregated.

Due to the fast-changing nature of a modern evolving graph, the graph often has

a large number of snapshots; analyzing one snapshot at a time can be extremely slow even

when done in parallel, especially when these snapshots are large graphs themselves. For

instance, one single snapshot of the Twitter graph [17] has over 1 billion edges, and there

are in all 25.5 billion edges in all its snapshots we analyzed.

We develop temporal execution techniques that significantly improve the perfor-

mance of evolving graph analysis, based on an important observation that different snap-

shots of a graph often have large overlap of vertices and edges. By laying out the evolving

graph in a manner such that this temporal overlap is exposed, we identify two key opti-

mizations that aid the overall processing:
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• We reorder the computations based on loop transformation techniques to amortize

the cost of fetch across multiple snapshots while processing the evolving graphs. In

particular, we develop Fetch Amortization that simultaneously processes ∆ snapshots

(Gi+1, Gi+2 . . . Gi+∆) so that fetches of vertices common among some of the ∆ snap-

shots can be aggregated to amortize fetch cost across snapshots.

• We enable feeding of values computed by earlier snapshots into later snapshots to

amortize the cost of processing vertices across multiple snapshots. In particular, we

develop Processing Amortization which works as follows: while snapshot Gi−1 is being

processed, when processing of Gi is initiated for simultaneous processing, processing

amortization feeds current vertex values from snapshot Gi−1 into Gi as initializations

to accelerate the processing of Gi.

Furthermore, the two optimizations are orthogonal i.e., they amortize different

costs, and hence, we identify and exploit the synergy between them by allowing feeding of

values from all vertices, including those that haven’t attained their final values, to amortize

the processing cost, while simultaneously reordering computations to amortize the fetch

cost. We demonstrate the effectiveness of these optimizations by incorporating them in

GraphLab and ASPIRE. Our experiments with multiple real evolving graphs and algorithms

show that, on average fetch amortization speeds up execution of GraphLab and ASPIRE

by 5.2× and 4.1× respectively. Amortizing the processing cost yields additional average

speedups of 2× and 7.9× respectively.
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Streaming Graph Processing

The main idea behind streaming graph processing systems is to interleave iterative process-

ing of the graph with the application of batches of graph updates. The iterative processing

maintains an intermediate approximate result (intermediate for short) of the computation

on the most recent version of the graph. When a query arrives, the accurate result for the

current version of the graph where all batched updates have been applied is obtained by

performing the iterative computation starting at the intermediate results, hence leveraging

incremental computation to achieve efficiency. The intuition behind it is straightforward:

the values right before the updates are a better (closer) approximation of the actual re-

sults than the initial vertex values and, hence, it is quicker to reach convergence if the

computation starts at the approximate values.

However, the above intuition has an implicit assumption that is often overlooked:

an intermediate value of a vertex is indeed closer to the actual result than the initial value

even when the graph mutates. We observe that this assumption always holds for strictly

growing graphs if the graph algorithm performs monotonic computation (e.g., SSSP, BFS,

Clique, etc.), because adding new edges preserves the existing graph structure on which

intermediate values were computed. However, if graph is mutated via edge deletions, the

graph structure changes may break monotonicity and invalidate the intermediate values

being maintained.

Depending on the nature of the monotonic graph algorithms, these invalid inter-

mediate values can impact the correctness of final results and degrade the performance of

incremental processing. To illustrate, consider a path discovery algorithm where the inter-
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mediate path computed before the deletion (i.e., intermediate result) no longer exists and

the new path to be discovered (i.e., final result) is “worse” than the intermediate path. If

the algorithm only updates the vertex value (i.e., path discovered) when a new “better”

path is found, the algorithm will stabilize at the non-existent old path and never converge

to the correct result. On the contrary, consider a self-healing monotonic algorithm where

the computation can go “backward” after an edge deletion to stabilize at the correct result.

In this case, starting the computation at the intermediate result may not always be prof-

itable. It could have taken a much less effort to reach the correct result had the computation

started at the initial value after edge deletion.

To address the above issues, we present a novel runtime technique called Kick-

Starter that computes a safe and profitable approximation (i.e., trimmed approximation)

for a small set of vertices upon an edge deletion. KickStarter is the first technique that can

achieve safety and profitability for a general class of monotonic graph algorithms, which

compute vertex values by performing selections (discussed shortly). After an edge deletion,

computation starting at the trimmed approximation (1) produces correct results and (2)

converges at least at the same speed as that starting at the initial value.

The key idea behind KickStarter is to identify values that are (directly or transi-

tively) impacted by edge deletions and adjust those values accordingly before they are fed

to the subsequent computation. To achieve this, KickStarter characterizes the dependences

among values being computed and tracks them actively as the computation progresses.

However, tracking dependences online can be very expensive; how to perform it efficiently

is a significant challenge. We overcome this challenge by making an observation on mono-
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tonic algorithms. In many of these algorithms, the value of a vertex is often selected from

one single incoming edge, that is, the vertex’s update function is essentially a selection func-

tion that compares values from all of the incoming edges (using max, min, or other types of

comparisons) and selects one to compute the value of the vertex. This algorithmic feature

indicates that the value of a vertex only depends on the value of one single in-neighbor,

resulting in simplified dependences and reduced tracking overhead.

Upon an edge deletion, this dependence information will be used first to find a

small set of vertices impacted by the deleted edges. It will also be used to compute safe

approximate values for these vertices. Our results using four monotonic algorithms and five

large real-world graphs show that KickStarter not only produces correct results, but also

accelerates existing processing algorithms such as Tornado [112] by 8.5–23.7×.

1.1.3 Out-of-core Graph Processing

Beyond leveraging asynchrony for distributed graph processing, we further demon-

strate its efficacy across different processing environments by identifying a key opportunity

to improve graph processing in an out-of-core setting [73, 103].

Despite much effort to exploit locality in the partition design, existing systems use

static partition layouts, which are determined before graph processing starts and remain

the same throughout processing. Repeatedly loading data from disks using these static

partitions creates significant I/O inefficiencies, which impacts the overall graph processing

performance. Hence, we explore the idea of exploiting algorithmic asynchrony by reordering

computations, using which we further design dynamic partitions to reduce the above I/O

inefficiency in out-of-core graph systems. Dynamic partitions truly capture the dynamic
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working set of the algorithm so that only those graph elements which are relevant at a

given point in time are loaded from the disk. We also develop a delay-based accumulative

programming/execution model that enables incremental vertex computation by expressing

computation in terms of contribution increments flowing through edges, hence maximizing

the potential of dynamic shards to avoid disk I/O. Our experiments with five common graph

applications over six real graphs demonstrate that using dynamic shards in GraphChi [73]

accelerates the overall processing by up to 2.8×.

1.2 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 presents the relaxed

memory consistency model and cache consistency protocol to tolerate communication laten-

cies in distributed processing. Chapter 3 describes a confined recovery strategy to quickly

recover from machine failures and further develops a bandwidth-sensitive locally consistent

checkpointing strategy. Chapter 4 presents temporal execution techniques to reduce com-

putation and communication involved in evolving graph analysis. Chapter 5 discusses a

dynamic dependence based incremental processing technique to process streaming graphs.

Chapter 6 demonstrates the effectiveness of asynchrony in out-of-core graph processing.

Chapter 7 discusses various research works in the literature and Chapter 8 concludes the

thesis as well as discusses directions for future work.
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Chapter 2

Relaxed Consistency Model

Various iterative graph algorithms (e.g., graph mining, graph analytics, PDE

solvers) can be expressed via asynchronous parallelism by relaxing certain read-after-write

data dependences. This allows the threads to perform computations using stale (i.e., not

the most recent) values of data objects. In a distributed environment, the graph is parti-

tioned across a set of machines (nodes) and each machine operates on the subgraph residing

on that machine. Hence, the access latency experienced by threads in the system varies

based upon the machine at which the object is physically stored. On our Tardis cluster

which has 16 compute nodes, the latency of accessing an object increases by 2.3× if instead

of being found in the local software cache it has to be brought from a remote machine.

Therefore the key to obtaining high-performance on a cluster is successfully tolerating the

high inter-machine communication latency.

In this chapter, we exploit the asynchronous nature of algorithms to tolerate the

long inter-machine communication latency. In particular, we leverage the availability of mul-
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tiple legal executions due to inherent relaxable read-write dependences in order to quickly

use the locally available values as described next.

When a thread’s computation requires an object whose stale value is present in

the local cache, instead of waiting for its most recent copy to be fetched from a remote

machine, the stale value can be used. By tracking the degree of staleness of cached objects

in terms of the number of object updates that have since been performed, we can limit the

extent to which use of stale values is permitted. However, fruitfully exploiting this idea is

challenging due to the following:

• Allowing high degree of staleness can lead to excessive use of stale values which in turn

can slow down the algorithm’s convergence, i.e. significantly more iterations may be

needed to converge in comparison to the synchronous version of the algorithm. This

can wipe out the benefits of exploiting asynchrony.

• Allowing low degree of staleness limits the extent to which long latency fetch oper-

ations can be tolerated as the situation in which the cached value is too stale to be

used becomes more frequent causing delays due to required inter-machine fetches.

We address the above challenge by designing a relaxed memory consistency model

and cache consistency protocol that simultaneously maximize the avoidance of long latency

communication operations and minimize the adverse impact of stale values on convergence.

This is achieved by the following two ideas:

• First, we use a consistency model that supports bounded staleness and we set the

permissible bound for using stale values to a high threshold. By doing so, we increase
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the likelihood of avoiding long latency fetch operations because if a stale value is present

in the cache it is highly likely to be used.

• Second, we design a cache consistency protocol that incorporates a policy that re-

freshes stale values in the cache such that when a stale value is used to avoid a long

latency operation, the likelihood of the value being minimally stale is increased. Thus,

this refresh policy avoids slowing down the convergence of the algorithm due to use

of excessively stale values.

Hence, significant performance improvements can be obtained by effectively toler-

ating inter-machine fetch latency.

The focus of our work is on asynchronous graph algorithms and we rely upon an

object-based Distributed Shared Memory (DSM) to provide better programmability. In this

chapter, we study a vertex centric approach for programming asynchronous algorithms with

ease using DSM that is based upon a memory consistency model that incorporates bounded

staleness. We design a consistency protocol that tracks staleness and incorporates a policy

for refreshing stale values to tolerate long latency of communication without adversely

impacting the convergence of the algorithm. Our experiments show that the use of this

fetch policy is critical for the high performance achieved. Finally, we demonstrate that, on

an average, our asynchronous versions of several graph algorithms outperform algorithms

based upon: prior relaxed memory models that allow stale values by at least 2.27x and Bulk

Synchronous Parallel (BSP) [126] model by 4.2x.

The rest of the chapter is organized as follows. Section 2.1 shows how we express

asynchronous parallel algorithms. In Section 2.2, we present the relaxed object consistency
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model that incorporates the use of stale objects for fast access and the design of our DSM

system that implements the relaxed execution model. The key component of DSM, the

relaxed consistency protocol, is presented in Section 2.3. We discuss the implementation of

our prototype, experimental setup, and results of evaluation in Section 2.4 and Section 2.5.

2.1 Asynchronous Parallelism

We consider various iterative algorithms that move through the solution search

space until they converge to a stable solution. In every iteration, the values are computed

based on those which were computed in the previous iteration. This process continues until

the computed values keep on changing across subsequent iterations. The asynchronous

model for parallel computation allows multiple threads to be executed in parallel using a

set of possibly outdated values accessible to those threads. By using an outdated value,

a thread avoids waiting for the updated value to become available. Algorithm 1 shows a

basic template for such convergence based iterative algorithms. A set of threads execute

the do-work method which iteratively performs three tasks: fetch inputs, compute new

values, and store newly computed values. At the end of do-work, if a thread detects that

the values have not converged, it votes for another iteration. This process ends when no

thread votes for another iteration, which is detected in the main method.

The dsm-fetch method fetches an object from the DSM (line 7). For example,

in a vertex centric graph algorithm, the vertex to be processed is initially fetched using this

method. Then, to fetch its neighbors, again, dsm-fetch is used (line 10). In synchronous

versions of these algorithms, this dsm-fetch method incurs very high latency because it
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may result in a remote fetch to access the most recent value. However, when these algorithms

are implemented using the asynchronous computational model, some of the objects used in

the computation are allowed to reflect older values, i.e., they do not reflect the most recent

changes. Hence, these methods may return a stale vertex value.

On a DSM, objects can be physically stored at different machines and the ap-

plication remains unaware of the underlying placement of these objects. This leads to

non-uniform object access time i.e., objects placed on local machine are available faster

than those placed on remote machines. As expected, the task of fetching and storing data

(marked in red) on a distributed environment involves network access which incurs very

high overhead.

Let us consider the single source shortest path (SSSP) algorithm which computes

the shortest path from a given source node to each node in a graph. To guarantee con-

vergence, the iterative algorithm assumes that the graph does not have a negative cycle.

Figure 2.1 shows an example sub-graph along with the distance values calculated for nodes

a and b at the end of iterations i = 0, 1, 2, 3 and the initial value for c at the end of iteration

i = 0. Since the algorithm is implemented based on asynchronous parallelism, a perfectly

valid execution scenario can be as follows:

c 
20 

12 16 

a 

b 

0 1 2 3 

d(a) 20 15 15 15 

d(b) 28 20 10 10 

d(c) 40 ? ? ? 

Figure 2.1: An example subgraph for SSSP.
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Algorithm 1 A basic template for Iterative Algorithms

1: function do-work(thread-id)
2: curr ← get-start-index(thread-id)
3: end ← get-end-index(thread-id)
4: error ← ε
5: while curr < end do
6: oid ← get-object-id(curr)
7: object ← dsm-fetch(oid)
8: r-objects ← ∅
9: for r-id ∈ object.get-related-object-ids() do

10: r-objects ← r-objects ∪ dsm-fetch(r-id)
11: end for
12: old-value ← object.get-value()
13: comp-value ← f (object, r-objects)
14: object.set-value(comp-value)
15: dsm-store(object)
16: error = max(error, |old-value − comp-value|)
17: curr ← curr + 1
18: end while
19: /* Local termination condition */
20: if error > ε then
21: vote to continue
22: end if
23: end function
24:

25: function main
26: initialize-dsm(object-set)
27: do
28: parallel-for all threads do
29: do-work(thread-id)
30: end parallel-for
31: barrier
32: /* Global termination condition */
33: while at least one thread votes to continue
34: end function
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• During i = 1, c observes d0(a) = 20 and d0(b) = 28. Hence, d(c) is set to min(20 +

20, 16 + 28) = 40.

• During i = 2, only updated value d1(b) = 20 is observed by c and d(c) is set to

min(20 + 20, 16 + 20) = 36.

• During i = 3, c observes that d2(a) = 15, but it remains oblivious to the change in

d(b) which leads to d(c) to be set to min(20 + 15, 16 + 20) = 35.

• During i = 4, c observes that d2(b) = 10 and that d2(a) is still the same. Hence, d(c)

is set to min(20 + 15, 16 + 10) = 26.

In the above execution, d(c) was always computed using d(a) and d(b), one of

which did not reflect recent changes. Using older values made the intermediate values of

d(c) inconsistent. However, if the updated values of both d(a) and d(b) are guaranteed to

be observed during future iterations, the algorithm converges to its correct solution. Hence,

an intuitive and straightforward way to hide fetch latencies in these algorithms is to allow

the use of previously fetched older values. This can be achieved by using delta coherence as

shown in [21], that allows objects which are no more than x versions out-of-date. However,

statically maintaining x as a threshold will not yield the expected performance benefits.

Figure 2.2 shows execution instances when staleness threshold is statically set to

0, 1 and 2. When the threshold is 0, change in d(b) from 28 to 22 at the end of iteration 1 is

immediately seen in iteration 2. This change gets hidden when the threshold > 0; for e.g.,

with threshold = 1, d(b) = 21 is noticed directly in iteration 3 and d(b) = 22 is never seen.

As we can see in Figure 2.2, setting the staleness threshold to 1 or 2 allows computations to
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0 1 2 3 4 5 6 7 8 

d(a) 20 - 16 - - 15 14 13 - 

d(b) 28 22 21 - - 18 17 9 - 

d(c) 40 - 38 36 - - 34 33 25 threshold = 0 

d(c) 40 - - 37 - - 35 33 - threshold = 1 

d(c) 40 - - - - - 34 - - threshold = 2 

Figure 2.2: Execution instances showing intermediate values of d(c) for statically set
staleness thresholds of 0, 1 and 2.

avoid immediate fetches; however, the computations choose to work with stale values (for

e.g., in iterations 4 and 5) even when algorithms could have progressed using fresher values.

These computations can be considered redundant or wasteful. Note that d(a) and d(b) can

continue to remain unchanged (as in iterations 3 and 4) across a long series of consecutive

iterations, making the situation worse for any threshold > 0. A key observation is that if

any subset of the set of values is used to compute the new value updates across subsequent

iterations, the algorithm can be deemed to have progressed across these iterations. Hence,

it is important for the updated values to be observed by required computations in order to

make a faster progress towards the correct stable solution.

Also, when a requested object’s staleness has already crossed the static threshold,

a DSM fetch is required. This enforces a limit on the number of remote fetches that can be

avoided. For example, for a threshold x, every xth access to an object can potentially cause

a fetch from its global copy which may be present on a remote location.

22



Note that SSSP’s monotonic nature along with the miniature subgraph in the

example allows the discussion at hand to be simple; however, the observations drawn from

this example apply to other more complex situations too.

To formalize the discussion, we define following terms:

• Current Object is one whose value reflects the most recent change.

• Stale Object is one which was current at some point in time before the present time.

• Staleness of an object is the number of recent changes which are not reflected in

the object’s value.

In our example, during i = 2, d1(a) = 20 is a current object and d0(b) = 28 is a

stale object. It is easy to follow that the staleness value of current objects is always 0.

In summary, we draw the following conclusions for asynchronous versions of con-

vergence based iterative algorithms.

• Since these algorithms do not enforce strict data dependence constraints (in particular,

read-after-write dependences for objects), they can tolerate use of stale objects.

• To maintain a good convergence rate, it is recommended that these algorithms rely

more on the current values of objects and less on the stale values of objects.

Even though these conclusions inherently seem contradictory, they give us a key

insight that maintaining a right mix of current and stale objects along with carefully bal-

ancing staleness of these objects can lead to better performance of these algorithms on

DSM.
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By allowing computations to use stale objects, the path to the final solution in

the solution search space may change. This means that the total number of iterations

required to converge to the final solution may also vary. However, since local caches can

quickly provide stale objects, data access will be faster and time taken to execute a single

iteration will drastically reduce. This reduction in time can result in significant speedups

for various iterative algorithms if we minimize the staleness of values available without

stalling computation threads. Note that since stale objects are often used for computations,

termination of these iterative algorithms needs to be handled carefully and additional checks

must be performed along with the algorithm specific termination conditions (discussed

further in Section 2.3).

This analysis motivates the need for a relaxed model that can provide fast access

to, possibly old, data that is minimally stale in order to achieve better performance for

convergence based iterative algorithms.

2.2 Relaxed Object Consistency Model

The relaxed object consistency model we present accomplishes two goals. First, it

achieves programmability by providing a single writer model that makes it easy to reason

about programs and intuitive to write correct asynchronous parallel algorithms. Second,

it enables high performance through low latency access of objects which requires careful

(minimal) use of stale objects. To achieve the above goals, we have identified four constraints

that together describe our consistency model and are enforced by our cache consistency

protocol. Next we present these constraints and an overview of how they are enforced.
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Object consistency constraints for Programmability. We define our consistency

model with respect to a single object, i.e. we do not enforce any ordering among operations

on different objects even if they are potentially causally related. For each object, we rely

upon having a single writer, i.e. the same machine is responsible for updating a partic-

ular data item in every iteration. Our iterative object centric approach for programming

asynchronous algorithms naturally maps to the single writer discipline and allows the pro-

grammer to intuitively reason about the program. We enforce the single writer discipline by

fixing the assignment of computations to machines such that threads on the same machine

update the same set of objects in every iteration. Although our consistency model does not

enforce any ordering on the writes to an object from different machines, the programmer

does not need to be concerned about this as chaotic writes to the same object by multiple

machines are prohibited by ensuring that there is only a single writer for each object. Using

the single writer discipline gives us another advantage – our consistency protocol does not

have to deal with multiple writes to same objects. This simplifies the consistency protocol

by eliminating the need to maintain write/exclusive object states. Now we are ready to state

two of our constraints on writes and reads to each object and describe their enforcement.

(Local Updates) Local writes must be immediately visible. This constraint enforces

an ordering on multiple writes to an object by the same machine. To satisfy this constraint

and provide strict ordering of writes to an object by its single writer, threads in our system

do not maintain any thread-local cache and all writes directly go to the global copy of the

object. Our system employs machine level caches to make remote objects locally available;

these caches are write through to make writes visible across different machines.

25



(Progressive Reads) Once an object is read by a thread, no earlier writes to it can

be read by the same thread. This constraint makes our model intuitive to programmers by

guaranteeing that the updated values for an object will be seen in the order of its writes.

Since we only have one global copy of an object at its home machine, any stale-miss or a

refresh on stale-hit (described later) at another machine will make its local copy current.

As we see, the above two constraints are primarily required to guarantee correct-

ness and allow programmers to intuitively reason about program execution.

Object consistency constraints for Performance. For high performance we must

permit the use of stale objects and avoid long latency communication operations. The

constraints we present next involve the use of stale object values.

(Bounded Staleness) A read is guaranteed to receive an object whose staleness is

no more than a particular threshold. A bound on staleness allows the threads to notice

the updated values at some point in the future. This constraint is satisfied by altering the

definition of a cache hit as described in the next section. The strictness of this bound can

be relaxed using asynchronous invalidate messages, as done in our protocol.

(Best Effort Refresh) A series of reads by the same thread for the same object should

preferably reflect updated values, independent of the threshold. The previous constraint

alone does not guarantee that updates will be observed by threads that depend on those

updates. Hence, this final constraint is introduced to allow threads to quickly observe the

updated values which helps the algorithm to progress at a faster rate. This final constraint

is enforced by our cache consistency protocol which specifically employs a mechanism for

asynchronously refreshing objects on stale-hits to allow fast access to updated objects.
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Any DSM implementation that wishes to satisfy our object consistency model must

satisfy the first three constraints. This does not mean that the fourth constraint can be

ignored. Even though the fourth constraint is a loose constraint, the protocol is expected

to do its best to satisfy this constraint.

2.3 Relaxed Consistency Protocol

Next we introduce the new consistency protocol which satisfies the model proposed

in the previous section. In Section 2.3.1, we introduce various notations and terms which

will be used to discuss the working of the protocol in Section 2.3.2.

2.3.1 Definitions and Notation

Formally, M = {m0,m1, . . . ,mk−1} is the set of k machines (nodes) in the cluster.

The mapping function h maps an object o to its home machine mi i.e., on DSM, if o resides

on mi, then h(o) = mi.

Every machine mi ∈M has a cache ci which locally stores objects and tracks their

staleness. An entry in the cache is of the form 〈o, staleness〉 where o is the actual object

and staleness is its staleness value. Since we do not use thread-level caching, these caches

provide the fastest data access.

Every machine mi ∈ M has a directory di to track the set of machines which

access the objects mapped to that machine. A directory entry for an object o is of the form

doi = {mj | mj ∈M and o ∈ cj} ∀ o such that h(o) = mi.
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Also, we keep a threshold t which is used to determine the usability of locally

available o. Hence, o can be considered

current if staleness = 0

stale if 0 < staleness ≤ t

invalid if staleness > t

We change the meaning of a hit and a miss in the cache as follows. If the requested

object in local cache is either current or stale, it is a hit. Otherwise, it is a miss. Hence, for

an object o requested at a machine mi, we determine a hit or a miss as follows:

hit if o ∈ ci and staleness ≤ t

miss otherwise

For ease of discussion, we further categorize a hit and a miss. For a requested

object which is present in the local cache, it is a current-hit, a stale-hit or a stale-miss if

the object in cache is current, stale or invalid, respectively. If the requested object is not

in the local cache, it is simply a cache-miss. Hence, for an object o requested at a machine

mi, the result can be one of the following:

current-hit if o ∈ ci and staleness = 0;

stale-hit if o ∈ ci and 0 < staleness ≤ t;

stale-miss if o ∈ ci and staleness > t;

cache-miss if o /∈ ci.
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2.3.2 Protocol

In this section, we discuss the basic working of our protocol using the terms intro-

duced in the previous section. The traditional directory based coherence mechanism [76, 18]

is useful to enforce strict consistency. Our protocol extends the directory based protocol

to control the degree of coherence, as required at runtime. In the following discussion, we

assume that machine mi requests for object o.

On a cache-miss, mi first sends a read request to mj = h(o). On receiving the

read request from mi, mj sets doj ← doj ∪ {mi}. After fetching o from the DSM, mi adds

〈o, 0〉 to ci . While adding 〈o, 0〉 to ci, if ci is full, object o′ is evicted from ci based on the

Least Recently Used (LRU) replacement policy. To evict o′, mi sends an eviction message

to mp = h(o′). On receiving the eviction message from mi, mp sets do
′

p ← do
′

p \ {mi}.

When mi writes o back to the DSM, it sends a write message to mj = h(o) and

continues immediately. On receiving the write message from mi, mj asynchronously sends

an invalidation message to all mq ∈ doj \ {mi} and sets doj ← doj ∪ {mi}. When mq receives

invalidation for o, it sets 〈o, staleness〉 ← 〈o, staleness + 1〉 in cq. We use invalidate-on-

writes instead of broadcasting updates so that we can avoid consecutive updates to be

propagated to remote nodes which makes the intermediate updates, before the object is

actually read, redundant.

On a stale-miss, the current value of o is fetched from the DSM and mi sets

〈o, staleness〉 ← 〈ocurr, 0〉 in ci.

On a current-hit, the local copy of o is used by mi. No further processing is

required in this case.
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On a stale-hit, the local copy of o is used by mi and a DSM fetch request is

issued asynchronously to refresh the local copy of o. When the current value of object is

received from the DSM, mi sets 〈o, staleness〉 ← 〈ocurr, 0〉 in ci.

By allowing cache misses in the traditional protocol to be considered as cache hits

in our protocol, o ∈ ci can remain outdated until its staleness ≤ t. To allow visibility

of more recent values of o for subsequent reads on mi, the protocol incorporates refresher

threads. The refresher thread observes that mi has read a stale value of o from ci as its

staleness > 0; hence, it initiates a fetch to update o ∈ ci with its current value from the

DSM. This prevents o from remaining outdated for long time and thus causes subsequent

reads to receive fresher values.

Uncached Shared

Stale

Cache-Miss / Write
[Local Node]

Staleness = 0

Evict
[Local Node]

Hit / Write
[Local Node]

Stale-Hit
[Local Node] Invalidate

[Directory]
++Staleness

Evict
[Local Node]

Stale-Miss
[Local Node]

Staleness = 0

Refresh
[Local Node]

Staleness = 0

Invalidate
[Directory]
++Staleness

(a) State transition diagram for cache entries. The operations
are shown in black on the transition and the source of those
operations are shown in gray.

Shared

Write
do = do U {mi} 

Evict
do = do \ {mi} 

Read
do = do U {mi} 

(b) State transition diagram for directory
entries. The protocol messages are shown
in black on the transitions and the op-
erations to maintain the set of machines
currently accessing the object are shown
in gray.

Figure 2.3
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Figure 2.3a shows the state transition diagram for object entries in machine caches.

The gray text in parentheses indicates the source of the event and the small text at the

bottom of the transitions show how an object’s staleness is maintained. The shared state

represents that the object is current. On receiving an invalidation message for a current

object, the state of object changes to stale state. Every invalidation message increments

the staleness by 1. A hit occurs when the object is either in shared or stale state and the

staleness of the object is at most equal to the threshold value. If the current staleness is

greater than the threshold value, a stale-miss occurs and the current value is fetched. This

allows the state of the object to be changed to shared state. Figure 2.3b shows the state

transition diagram for object entries in directories. The gray text on transitions indicates

how the set of machines locally accessing the object is maintained. Since the global copies

in DSM are always current, the object is always considered to be in shared state. The

set of machines having copies of the object (stale or current) is maintained appropriately

during the incoming read, write, and evict requests. Each write request leads to invalidation

messages to respective set of machines.

Termination Semantics. Since stale objects will often be used during computations,

termination of iterative algorithms needs to be handled carefully. Along with the algorithm

specific termination conditions, additional checks must be performed to make sure that the

final values are not computed using stale values, i.e., all the required updates are visible to

all machines. This is achieved by making sure that there are no outstanding invalidate or

refresh messages and that all the objects used for computation in last iteration were current

objects.
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2.3.3 Optimizations

The above protocol satisfies the relaxed object consistency model proposed in

Section 2.2. To further enhance the overall performance of the system, we perform the

following standard optimizations over the protocol.

Work Collocation. Since the single writer model requires a unique node to perform all

computation that updates a given object throughout the execution, the home node can itself

be used as the single writer. In other words, computation for objects can be assigned to the

nodes that maintain the global copy of those objects. This eliminates the write latency of

remote objects and reduces the protocol traffic as write messages are converted into local

signals on the home machine.

Message Aggregation. When multiple messages are sent to the same destination node,

these messages can be aggregated into fewer number of messages (similar to bulk transfer

in [80]). Message aggregation can significantly reduce the latencies incurred by transfer

of multiple small messages since individually sending small messages is significantly slower

than sending fewer number of large messages.

Message Flattening. When same requests are made for the same destination node,

messages can be flattened to remove redundant requests and send minimal messages to the

destination node. Message flattening becomes useful when multiple computations depend

on a remote high degree vertex (flattening read and refresh messages) or when same objects

are updated multiple times (flattening invalidation messages).
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Object replication. If the nature of computation is known prior to execution, the objects

required for computations on a given node can be replicated in the machine caches during

startup to reduce remote access requests for warming up the caches in the the first iteration.

2.4 Experimental Setup

In this section, we discuss few details of our system, the benchmark programs and

the inputs used to evaluate our relaxed consistency protocol.

2.4.1 System Prototype

Next we describe our prototype implementation including the design of the DSM,

runtime, and the cluster it runs on.

DSM. To avoid the complexities introduced by false sharing and coherence granularity,

we built an object based DSM in C++ similar to dyDSM [66]. The objects are distributed

across the cluster such that there is exactly one global copy of each object in the DSM.

METIS [61] is used to partition graphs across various machines to minimize edge-cuts. The

relaxed consistency protocol was implemented in the DSM to relax the strict consistency

and leverage stale values. Each node maintains a directory which is populated during

initialization based on the objects placed on that node. Also, each node maintains a fixed

size local cache for faster object access. The size of the local cache is large enough to hold

objects required for computations on the local machine. However, we do not replicate all

objects in these caches during initialization and allow them to fill up only with objects that

are needed on that node.
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The protocol is implemented via a set of threads on each node where each thread

is responsible for a separate function. These threads primarily communicate through the

read, write, evict, and invalidation messages and perform required operations to maintain

the directory and cache metadata. The protocol messages are communicated using MPI

send/recv commands. Message aggregation is used to combine multiple messages for the

same destination in order to reduce communication latencies.

The heart of our protocol is the way it satisfies the Best Effort Refresh constraint

enforced by our model. A separate refresher thread is responsible for updating the objects

that will be required in the near future. The refresher thread blocks on a refresh-queue

which maintains object-ids of objects that need to be refreshed. It picks up the object-id

from this refresh-queue and issues a fetch from dyDSM. After receiving the current object,

the refresher thread updates the stale copy in local cache with its current value.

Runtime. To evaluate the effectiveness of our protocol, we have developed a runtime

that facilitates writing of parallel algorithms that run using the DSM. Each node has a

single computation thread which repetitively executes the do-work method as presented

in Algorithm 1. The workload is distributed across all the nodes during initialization and

later, the computation thread works on the same workload in every iteration. Hence, this

implementation satisfies the single writer model. Since the computation thread is expected

to block when the required protocol read, write, and evict requests are sent to the home

machine, sending of these messages is taken care by the computation thread itself.

The computation thread is responsible for communicating the need to refresh ob-

jects which it will require in near future. On a stale-hit, the computation thread uses the
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Application Type

Heat Simulation (HS) Partial Differential
Wave Simulation (WS) Equations (PDEs)

Graph Coloring (GC)

Graph Mining
Connected Components (CC)

Community Detection (CD) [83]
Number of Paths (NP)

PageRank (PR) [94]
Graph AnalyticsSingle Source Shortest

Path (SSSP)

Table 2.1: Convergence based Iterative Algorithms.

locally available stale object. However, before using this stale object, it enqueues the object-

id in the refresh-queue. Since the refresh thread will update the object with its current value

in the local cache, the next request for this object by the computation thread will reflect

its refreshed value, allowing computations to observe updated values. Staleness of objects

used for computation is checked to ensure that termination is done correctly. Also, message

queues are checked to be empty to make sure that there are no outstanding messages.

To transfer objects to and from the DSM, the runtime provides DSM-Fetch and

DSM-Store methods. This hides the internal details of the protocol and allows parallel

algorithms to directly execute over the DSM using these two methods.

System. We evaluate our protocol on Tardis which is a commercial 16-node cluster, run-

ning CentOS 6.3, Kernel v2.6.32-279. Each node has 64 GB memory and is connected to a

Mellanox 18 port InfiniBand switch.
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Figure 2.4: Real-world graph datasets used for evaluation of graph mining and analytics
benchmarks and sparse matrices used for PDE benchmarks.

2.4.2 Benchmarks and Inputs

We use a wide range of modern applications (as listed in Table 2.1) and evaluate

their asynchronous implementations. These applications are based on vertex centric model
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Graph Edges Vertices

Orkut [138] 234, 370, 166 3, 072, 441
LiveJournal [138] 68, 993, 773 4, 847, 571

Pokec [121] 30, 622, 564 1, 632, 803
HiggsTwitter [29] 14, 855, 875 456, 631
RoadNetCA [78] 5, 533, 214 1, 971, 281
RoadNetTX [78] 3, 843, 320 1, 379, 917

AtmosModl [28] 10, 319, 760 1, 489, 752
3DSpectralWave [28] 30, 290, 827 680, 943
DielFilterV3Real [28] 89, 306, 020 1, 102, 824

Flan1565 [28] 114, 165, 372 1, 564, 794

Table 2.2: Real-world graphs & matrices used in experiments.

where each vertex iteratively computes a value (e.g., colors for GC, ranks for PR, and

shortest paths for SSSP) and the algorithm stops when these vertex values become stable.

We obtained these algorithms from various sources, implemented them in C++, and inserted

the DSM fetch and store calls. Because of their vertex centric nature, they follow the

same template as shown in Algorithm 1. These applications belong to important domains

(e.g., scientific simulation and social network analysis) and are divided into following three

categories.

(i) Partial Differential Equations. The algorithms for solving partial differential equa-

tions (PDEs) are convergence based iterative algorithms which makes them suitable for

asynchronous parallelism. We implemented two benchmarks which solve specific PDEs,

namely, heat simulation (HS) and wave simulation (WS). Both the benchmarks iteratively

determine the value of current cell based on the values of neighboring cells. The algorithms

converge when all the cell values stabilize based on a pre-specified tolerance.
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(ii) Graph Mining. These set of applications analyze various structural properties of

graphs. We implemented four applications in this category: Graph Coloring (GC), Con-

nected Components (CC), Community Detection (CD), and Number of Paths (NP). CC

and CD are based on iterative label propagation [152]. The vertices are assigned labels

which are initialized during setup. In every iteration, the label of a vertex is chosen based

on its current label and the labels of its neighboring vertices. For CC and CD, the vertices

start with unique labels; however, subsequent iterations in CC choose the minimum label

whereas those in CD choose the most frequent labels [83]. For GC, the vertices are initial-

ized with an invalid color and in subsequent iterations, a vertex is assigned a unique color

which is not assigned to any of its neighbors. If two neighboring vertices are assigned the

same color, one of the vertex (chosen arbitrarily but fixed) is assigned a new unique color.

For NP, all vertices except the source vertex have number of paths initialized to 0 and for

source vertex, it is initialized to 1. In subsequent iterations, vertices calculate the number

of paths by adding those of their neighbors.

(iii) Graph Analytics. These applications model their problems as a graph and are

targeted to address specific queries which are not dependent on the structure of graphs

alone. PageRank (PR) and Single Source Shortest Path (SSSP) fall in this category. For

SSSP, all vertices except the source vertex have their distance initialized to∞ and for source

vertex, it is initialized to 0. In subsequent iterations, distance to a vertex is calculated by

summing up the distances of all neighboring vertices and the weights on corresponding edges

connecting those vertices and then, choosing the minimum sum. PR is a popular algorithm

which iteratively computes the rank of a page based on the ranks of its neighbors [94].
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Input Data Sets. We ran the benchmarks on publicly available [77, 28] real-world graphs

and matrices listed in Table 4.8. The graph inputs are used to evaluate the Graph Mining

and Analytics benchmarks, whereas the matrices are used for PDEs.

Orkut LiveJournal Pokec HiggsTwitter RNCA RNTX

CD
SCP 1, 530 1, 141 572 70 2.64 1.10
RCP 974 307 238 36 1.95 1.17

CC
SCP 1, 846 1, 045 316 261 77 62
RCP 710 316 154 78 69 66

GC
SCP 1, 568 629 228 72 0.53 0.56
RCP 733 254 101 35 0.95 0.64

NP
SCP 182 141 81 31 139 174
RCP 124 117 39 12 140 179

PR
SCP 4, 191 3, 754 1, 767 602 12 7.19
RCP 2, 710 2, 047 275 88 11 8.39

SSSP
SCP 1, 735 759 248 49 74 71
RCP 714 317 118 39 72 73

Table 2.3: Execution times (in sec) of SCP and RCP for various graph mining and
analytics benchmarks on a 16-node cluster.

The graphs cover a broad range of sizes and sparsity (as shown in Fig. 2.4) and

come from different real-world origins. Orkut, LiveJournal and Pokec are directed social

networks which represent friendship among the users. HiggsTwitter is a social relation-

ship graph among twitter users involved in tweeting about the discovery of Higgs particle.

RoadNetCA (RNCA) and RoadNetTX (RNTX) are the California and Texas road networks

respectively, in which the roads are represented by edges and the vertices represent the

intersections. AtmosModl, 3DSpectralWave, DielFilterV3Real and Flan1565 are sparse ma-

trices (as shown in Fig. 2.4) which represent models from various domains like atmospheric

models, electromagnetics, hexahedral finite elements, and 3D consolidation problem. The

graph inputs are used to evaluate the Graph Mining and Analytics benchmarks, whereas

the matrices are used for PDEs.
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2.5 Experimental Results

Now we present a detailed evaluation of our system including comparison with

closely related protocols and systems.

2.5.1 Benefits of Exploiting Staleness

To study the benefit of using stale values we compare the performance of the

following two protocols:

• RCP: This is the Relaxed Consistency Protocol developed in this work. The threshold

is set to a very high number 1 (=100) and refresher threads are used; and

• SCP: This is the Strict Consistency Protocol that does not allow the use of stale

values at all and is based upon the traditional directory-based write through cache

coherence strategy. This is used as the baseline, to evaluate the above protocols that

allow the use of stale values.

In order to better understand the effectiveness of our protocol, we do not use the

object replication optimization during this evaluation.

Across inputs. Table 2.3 and Table 2.4 compare the execution times (in sec) for SCP and

RCP on a 16-node cluster. On an average, RCP achieves 4.6x speedup over SCP for PDE

benchmarks and 2.04x speedup for graph mining and analytics benchmarks. The speedups

vary across different benchmark and input combinations: for example, speedups for PR

1Since our RCP protocol does a good job in satisfying the Best Effort Refresh constraint, the need of
using low threshold values is eliminated. Through experiments, we found that thresholds above 4 do not
show any difference mainly because the refresher threads quickly eliminate objects with higher staleness
values.
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Atmos- 3DSpec- DielFilter- Flan-
Modl tralWave V3Real 1565

HS
SCP 110 464 75 180
RCP 23 40 29 93

WS
SCP 61 237 106 218
RCP 14 28 48 149

Table 2.4: Execution times (in sec) of SCP and RCP for PDE benchmarks on a 16-node
cluster.

across different inputs range from 1.02x to 6.8x whereas for HS, they vary from 1.9x to

11.6x. Note that RCP and SCP give similar performance for RoadNetCA and RoadNetTX.

This is because these graphs are sparse and do not have a skewed degree distribution (Figure

2.4e and Figure 2.4f); hence, partitioning them over the DSM leads to very few edge cuts.

Thus, SCP does not suffer much from remote fetch latencies that are tolerated by RCP.

Across configurations. The speedups achieved by RCP over SCP, on clusters of different

sizes, are shown in Figure 2.5. These speedups are based upon the Pokec graph input for

graph analytics and mining algorithms and the AtmosModl matrix input for PDEs. On

average, RCP achieves 1.6x speedup on 2 nodes, 1.9x speedup on 4 nodes, 2.6x on 8 nodes

and 3.3x on 16 nodes. Since RCP mainly focuses on reducing remote fetches by using locally

available stale values, speedups achieved by RCP increase as the cluster grows. This is also

the reason for achieving no performance benefits for few benchmarks (e.g., CD, NP) when

the cluster is small; the overheads of the system mask the little benefits achieved by the

protocol.
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Figure 2.5: Speedups achieved by RCP over SCP on clusters of 2, 4, 8, and 16 nodes.

2.5.2 Bounded Staleness vs. RCP

The delta coherence [21] protocol supports bounded staleness by allowing use of

objects which are no more than x versions out-of-date. In other words, it allows the use

of stale values by statically using x as the staleness bound, but it does not use refresher

threads. In this section we demonstrate that via the use of stale values delta coherence

can tolerate remote access latency, but the use of stale values slows down the algorithm’s

convergence. In the remainder of this section, Stale-n refers to the delta coherence protocol

with a staleness bound of n. In order to separate out the benefits achieved from latency

tolerating property of RCP, we relax the writes in SCP similar to that in RCP. We denote

SCP with relaxed writes as SCP+RW. Writes in Stale-n are also similarly relaxed. The

detailed results presented are based upon the Pokec graph input for graph analytics and

mining algorithms and the AtmosModl matrix input for PDEs.

The execution times of RCP and Stale-n (n = 1, 2, 3), normalized with respect

to the SCP+RW, are shown in Figure 2.6. RCP consistently achieves better performance
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Figure 2.6: Execution times of RCP and Stale-n (n = 1, 2, 3) on a 16-node cluster
normalized wrt SCP+RW.

than all other protocols considered. On an average, RCP executions times are lower than

SCP+RW by 48.7%. The performance of Stale-n varies across different thresholds because

when the threshold is increased, the convergence gets adversely affected (e.g., PR, SSSP).

No staleness value (n = 1, 2, 3) consistently performs the best for Stale-n. On an average,

the best performing Stale-n, which sometimes performs better than SCP+RW (e.g., WS),

increases execution time over SCP+RW by 10.5% while the worst performing Stale-n always

performs worse than SCP+RW. On an average, RCP gives 56% reduction in execution time

over the best Stale-n.

To further analyze the relative performances of RCP and Stale-n, we present ad-

ditional data, once again normalized with respect to SCP+RW. Let us consider the fraction

of remote fetches that fall on the critical path of execution, i.e. they cause the computation

thread to stall while waiting for the remote fetch to complete. From the results shown in

Figure 2.7 we determine, that on an average, computation thread under RCP blocks for
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Figure 2.7: Number of remote fetches that stall computation threads normalized wrt
SCP+RW.
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Figure 2.8: Percentage of objects used with staleness n.

only 41.83% of remote fetches which are due to compulsory cache misses. In contrast, the

best Stale-n causes stalls on 85.6% of remote fetches. Since remote fetches are long latency

operations, we expect RCP to perform better than both SCP+RW and best Stale-n.

Figure 2.8 shows the distribution of staleness of values used. We observe that in

RCP the staleness of values is typically 0 or 1 – in fact on an average 97.4% of values

have staleness of 0 and 2.2% of values have staleness of 1. Stale-2 and Stale-3 use slightly

more stale values in CC, CD and PR. It is interesting to see that in GC, RCP uses more

stale values than Stale-2 and Stale-3 ; this is mainly because Stale-2 and Stale-3 use stale
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Figure 2.9: Number of iterations performed before converging normalized wrt SCP+RW.

color values to quickly stabilize and hence, color values do not change much. However,

in RCP, as color values are received through refresh, the stabilized colors do get changed,

in turn leading to more changes and hence, stale values. Using stale values slows down

the convergence of these algorithms which can be seen from the data in Figure 2.9. On

an average, RCP requires 49.5% more iterations than SCP+RW while Stale-2 and Stale-3

require 146.4% and 176.2% more iterations than SCP+RW. Note that Stale-n versions for

NP did not terminate within 5 times the time required when run with SCP+RW ; hence,

for these cases, we do not show the data for remote fetches, iterations, and staleness values.

It is interesting to note that even though Stale-n effectively tries to avoid remote

fetches on the critical path, it is often done at the cost of delaying convergence. This delay

in convergence, in turn, results in more remote fetches. Thus, the overall performance can

be adversely affected (e.g., HS, PR). On the other hand, even though Stale-n sometimes

converges in nearly same number of iterations (e.g., WS), the overall performance gains are

less when compared to benefits achieved from RCP. This is mainly because the computation
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thread often blocks when the staleness of local objects crosses beyond the threshold n and

hence the reduction in remote fetches is not as significant as in RCP. This interplay between

reduction in remote fetches and increase in the number of iterations for convergence makes

the best choice of n to be specific for each benchmark. This can be clearly observed by

comparing WS and PR: Stale-2 performs better than Stale-1 for WS whereas the latter

performs better than the former for PR. Hence, in Stale-n, selecting the value of n is

benchmark specific and hard to do. RCP releases users from such concerns and outperforms

Stale-n in each case.
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Figure 2.10: Number of protocol messages normalized wrt SCP+RW.

Finally, we compare the communication overhead of RCP, Stale-n, and SCP+RW

by measuring the number of protocol messages required in each case. As shown in Figure

2.10, in most cases, RCP requires fewer protocol messages compared to SCP+RW and in

the remaining cases, it requires less than 5% additional messages. This is mainly because

there is a drastic reduction in the number of remote fetch requests for RCP (as seen in

Figure 2.7), most of which are reduced to asynchronous refresh requests. PR using RCP
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requires only 22.8% messages of that required by SCP+RW because invalidate and refresh

messages are far fewer than the reduction in the remote fetch requests. Even though WS

and HS also experience a similarly large reduction in remote fetch requests using RCP,

they require sufficiently more invalidate and refresh messages which leads to their overall

communication costs to be nearly same as SCP+RW.

2.5.3 Design Choices of RCP

To better understand our design choices for the relaxed consistency protocol, we

evaluate the protocols using synthetic benchmarks that exploit different application specific

properties. The synthetic benchmarks are designed similar to other benchmarks which

mainly fetch neighboring vertices and compute new vertex values. The data is based upon

the HiggsTwitter graph input and the programs were run for a pre-configured number of

iterations.

Piggy-backing Updates vs. RCP Invalidates. Figure 2.11 shows the effect of allowing

multiple writes on RCP, SCP and SCP with piggy-backed updates (SCP+PB) where the

updates are sent to remote nodes along with invalidation messages. The execution times

are normalized with respect to configurations where an object is written once per iteration.

We observe that even though SCP+PB performs better than SCP, the execution times

for both the configurations increase drastically when objects are written more often in an

iteration. It is interesting to note that the benefits achieved from SCP+PB over SCP

reduce as the number of times objects are written per iteration increases; this happens

because redundant updates are sent by SCP+PB which becomes costly. On the other hand,
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RCP easily tolerates multiple writes and consistently performs similar to the baseline. The

resulting execution times normalized with respect to SCP are shown in Figure 2.12.
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Figure 2.11: Execution times of SCP with and without piggy-backed updates and RCP for
different write configurations normalized wrt single write versions.

Sensitivity of RCP to Object Sizes. In Figure 2.13, we compare the performance of

SCP, SCP+PB, and RCP for different object sizes. Object sizes are varied by adding a

bloat to the base object which, by itself, only consists of a double value (8 bytes). We can

see that sending updates with invalidates performs similar to when only invalidates are sent

and RCP consistently performs better than the other 2 configurations.

Sensitivity of RCP to Communication Delay. In Figure 2.14 we show the impact of

fetch latency on the maximum staleness of object values used for computations. We observe

that as the fetch latencies are increased, the maximum staleness varies. As expected, we

notice that most of the objects have low staleness values, leaving very few objects which
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Figure 2.12: Execution times of SCP with and without piggy-backed updates and RCP for
different write configurations normalized wrt SCP.
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Figure 2.13: Execution times of SCP with and without piggy-backed updates and RCP for
different object sizes.

are very stale. Hence, it is important to control the staleness using an upper bound which

avoids potential staleness runaways in such cases.
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Figure 2.14: Maximum staleness for objects used in RCP with varying communication
delay.

SSSP PR GC CC NP

Orkut
RCP 161 822 92 90 2.35

GraphLab 239 829 248 102 140

LiveJournal
RCP 21 343 17 22 133

GraphLab 15 295 X 66 150

Pokec
RCP 9.47 169 8.81 7.1 1.74

GraphLab 8.7 159 173 40 76

HiggsTwitter
RCP 2.5 15 3.59 4.1 0.48

GraphLab 5.5 X 263 16 32

RoadNetCA
RCP 49 7.70 0.93 56 16

GraphLab 60 88 50 220 37

RoadNetTX
RCP 44 5.05 0.53 50 15

GraphLab 18 78 60 115 X

Table 2.5: Execution times (in sec) of SSSP, PR, GC, CC, and NP using RCP and
GraphLab (GL) on a 16-node cluster. An x indicates that execution did not complete

either because it crashed or continued for over 60 minutes.

2.5.4 Comparison with Other Systems

To exhibit the effectiveness of exploiting asynchrony, we compare the performance

of asynchronous algorithms running using RCP with the performance of the popular bulk

50



synchronous parallel (BSP) model as it is supported by existing graph processing frame-

works. In addition, we also compare the performance of our system with GraphLab [85], a

popular distributed graph processing framework.
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Figure 2.15: Execution times for BSP based implementations normalized wrt their
asynchronous versions that use RCP.

RCP vs. Bulk Synchronous Parallel. The Bulk Synchronous Parallel (BSP) is a

computation model that was proposed to efficiently parallelize applications on a set of

processors [126]. Algorithms based on this model perform a series of supersteps where

each superstep is composed of the following phases: Computation - multiple processes

and threads concurrently execute several computations using locally available data values;

Communication - the computed data values are made available to required processes and

threads; and Synchronization - a barrier is executed by all the processes to conclude the

superstep.

Recent advances in developing generic frameworks for parallel applications heavily

rely on this model. However, by maintaining a separate communication phase, the updated
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values are forcibly propagated throughout the system, which unnecessarily introduces sig-

nificant overhead for asynchronous algorithms.

Figure 2.15 shows the execution times of BSP based implementations for our

benchmarks normalized with respect to their corresponding asynchronous versions that

make use of our proposed protocol. On an average, our asynchronous algorithms are faster

than BSP based algorithms by 4.2x. Apart from PR, BSP versions take 2.8x to 5.2x

more than their asynchronous versions using our protocol. PR takes 7.9x more time with

BSP mainly because it spends more time in the communication phase compared to other

benchmarks. Again, BSP version for NP did not terminate within 10 times the time required

when run with RCP and hence, we do not show its performance.

Comparison with GraphLab. GraphLab [85] is a popular graph processing framework

which is closest to our work because it provides shared memory abstractions to program

over a distributed environment. We compare the performance of GraphLab with RCP using

five benchmarks – SSSP, PR, GC, CC, and NP – four of which are provided in the graph

analytics toolkit distributed with the GraphLab software. Since GraphLab provides both

synchronous and asynchronous versions of some of these programs, we report the best times

obtained here. In order to have a fair comparison, similar to replication of boundary vertices

in GraphLab, caches were pre-populated with replicas of boundary vertices to eliminate

latencies incurred by cache warmups.

In Table 2.5 we report the absolute execution times (in sec) for SSSP, PR, GC,

CC, and NP using RCP and GraphLab for the four power law graph inputs, as GraphLab

has been designed to efficiently handle such graphs. The relative performance of GraphLab
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and RCP varies significantly across inputs and benchmarks. We observe that for the Orkut

and HiggsTwitter inputs RCP consistently outperforms GraphLab. For the LiveJournal

and Pokec inputs, GraphLab provides superior performance for SSSP and PR. Finally, for

GC and CC benchmarks RCP consistently outperforms GraphLab across different inputs.

Overall, the performance of RCP compares favorably with GraphLab for power law graphs.

It should be noted that RCP is based on the the Relaxed Consistency Model which is

orthogonal to GraphLab’s consistency models. Hence, this model can also be incorporated

in GraphLab.

Although GraphLab has been designed primarily for power law graphs, we did test

it for other inputs. As shown in Table 2.5, on the RoadNetTX graph the above benchmarks

took 0.5 sec to 50.9 sec using RCP and 18.3 sec to 115.6 sec on GraphLab. We also coded

other benchmarks on GraphLab and compared their performance for different inputs. For

both NP and WS, RCP consistently outperformed GraphLab.

2.6 Summary

In this chapter, we demonstrated an effective solution for exploiting the asyn-

chronous nature of iterative algorithms for tolerating communication latency in a DSM

based cluster. We designed a relaxed object consistency model and the RCP protocol.

This protocol tracks staleness of objects, allows threads to utilize stale values up to a given

threshold, and incorporates a policy for refreshing stale values. Together, these features

allow an asynchronous algorithm to tolerate communication latency without adversely im-

pacting algorithm’s convergence. We demonstrated that for a wide range of asynchronous
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graph algorithms, on an average, our approach outperforms: prior relaxed memory models

that allow stale values by at least 2.27×; and BSP model by 4.2×. In the next chapter,

we will see how asynchrony can be leveraged to efficiently handle machine failures that can

occur during processing.
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Chapter 3

Confined Recovery

In the previous chapter, we saw how asynchrony can be exploited by relaxing con-

sistency to expose different legal executions based on different combination of stale values.

While such a processing model improved the overall performance, distributed systems are

susceptible to machine failures and hence, it is important for the graph processing systems to

incorporate fault tolerance mechanisms to handle such failures. In this chapter, we develop

an efficient fault tolerance technique based on the key observation that the asynchronous

model allows multiple legal executions and hence, it is acceptable to recover the execution

state such that it is legal under the asynchronous model.

Fault tolerance in distributed graph processing systems is provided by periodically

snapshotting the vertex/edge values of the data-graph during processing, and restarting

the execution from the previously saved snapshot during recovery [86, 135, 96]. The cost

of fault tolerance includes: overhead of periodic checkpoints that capture globally consis-

tent snapshots [19] of a graph computation; and repeating computation whose results are
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discarded due to the roll back during the recovery process. For synchronous graph pro-

cessing systems, solutions that lower these overheads have been proposed [86]. However,

development of efficient fault tolerance techniques for asynchronous graph processing lags

behind. To perform recovery, asynchronous processing systems roll back the states of all the

machines to the last available snapshot and resume the computation from that point. This

is because of inherent non-determinism in asynchronous processing which discards the pos-

sibility of reconstructing lost execution state using the saved inputs. Hence, fault tolerance

in asynchronous graph processing systems has the following two drawbacks:

• Redundant computation: Since recovery rolls back the states of all machines to the

latest snapshot, when processing is resumed, the computation from snapshot to the

current state is repeated for machines that did not fail.

• Increased network bandwidth usage: The local snapshots are saved on remote ma-

chines, either on the distributed file system or in memory. All machines bulk transfer

snapshots over the network simultaneously. This stresses the network and increases

peak bandwidth usage. The problem gets worse in case of a multi-tenant cluster.

In this chapter, we leverage the availability of multiple legal executions due to

inherent asynchrony in order to quickly construct a legal execution state (upon failure) that

may be different from the prior execution states. We construct such an alternate state by

rolling back the states of only the failed machines, hence not impacting the progress made

by other machines that did not fail.

We present CoRAL, a highly optimized recovery technique for asynchronous graph

processing that is the first confined recovery technique for asynchronous processing. We
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observe that the correctness of graph computations using asynchronous processing rests

on enforcing the Progressive Reads Semantics (PR-Semantics) which results in the graph

computation being in PR-Consistent State. Therefore recovery need not roll back graph

state to a globally consistent state; it is sufficient to restore state to a PR-Consistent state.

We leverage this observation in two significant ways. First, non-failing machines do not

rollback their graph state, instead they carry out confined recovery by reconstructing the

graph states of failed machines such that the computation is brought into a PR-Consistent

state. Second, globally consistent snapshots are no longer required, instead locally consistent

snapshots are used to enable recovery.

Finally, we demonstrate using real-world graphs show that our technique recovers

from failures and finishes processing 1.5× to 3.2× faster compared to the traditional asyn-

chronous checkpointing and recovery mechanism when failures impact 1 to 6 machines of a

16 machine cluster. Moreover, capturing locally consistent snapshots significantly reduces

intermittent high bandwidth usage required to save the snapshots – the average reduction

in 99th percentile peak bandwidth ranges from 22% to 51% while 1 to 6 snapshot replicas

are being maintained.

The remainder of the chapter is organized as follows. Section 3.1 discusses the

traditional globally consistent snapshot model and the recovery strategies used by vari-

ous systems. Section 3.2 introduces the confined recovery and locally consistent snapshot

model. We discuss the implementation of our prototype, experimental setup, and results of

evaluation in Section 3.3.
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3.1 Background and Motivation

Distributed graph processing systems provide fault tolerance to handle machine

failures that can occur in the midst of a graph computation. The failure model assumes fail-

stop failures, i.e. when a machine fails, it does not lead to malicious/unexpected behavior

at other machines. Once a machine in a cluster fails, its workload can be distributed across

remaining machines in the cluster or the failed machine can be replaced by another server.

Fault tolerance is provided via checkpointing and rollback based recovery mech-

anism [36]. The checkpoints, that are performed periodically, save a globally consistent

snapshot [19] of the state of a graph computation. A captured snapshot represents the

state of the entire distributed graph computation such that it includes a valid set of values

from which the processing can be resumed. Therefore recovery, that is performed when a

machine fails, rolls back the computation to the latest checkpoint using the saved snapshot

and resumes execution. For capturing a globally consistent snapshot, both synchronous

and asynchronous checkpointing methods exist [87]. Synchronous checkpointing suspends

all computations and flushes all the communication channels before constructing the snap-

shot by capturing the graph computation state at each machine whereas asynchronous

checkpointing incrementally constructs the snapshot as the computation proceeds. The

frequency of capturing snapshots balances checkpointing and recovery costs [139].

A globally consistent snapshot of a distributed graph computation is defined below.

Definition 3.1.1. Given a cluster C = {c0, c1, ..., ck−1}, a Globally Consistent Snapshot of

C is a set of local snapshots, denoted as S = {s0, s1, ..., sk−1}, such that it satisfies [P-LCO]

and [P-GCO], as specified below.
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[P-LCO]: Each si ∈ S represents a consistent state of the subgraph processed

by ci ∈ C (i.e., vertex/edge values iteratively computed by ci) that is computable by the

processing model from the initial state of the graph.

[P-GCO]: S represents a globally consistent state of the entire graph that is

computable by the processing model from the initial state of the graph.

Note that a local snapshot of a machine simply consists of vertex/edge values

computed by that machine; the structure of the graph, along with any static vertex and

edge values, are not captured in the snapshot because they remain the same throughout

the computation.
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Figure 3.1: Example graph.

c0 c1 c2
Step v0 v1 v2 v3 v4 v5 v6 v7 v8
t0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
t1 0 10 1 ∞ ∞ ∞ ∞ ∞ ∞
t2 0 10 1 2 ∞ ∞ 11 ∞ ∞
t3 0 7 1 2 3 ∞ 11 12 ∞
t4 0 4 1 2 3 4 8 12 13
t5 0 4 1 2 3 4 5 9 5
t6 0 4 1 2 3 4 5 6 5

Table 3.1: SSSP example.
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Execution Checkpointing Checkpointing Recovery
Model Model Consistency Model Model

Sync Async Sync Async
Globally Locally All Minimal

Consistent Consistent Rollback Rollback
Pregel 3 7 3 7 3 7 7 3

GraphLab 3 3 3 3 3 7 3 7

GPS 3 7 3 7 3 7 3 7

GraphX 3 7 3 7 3 7 3 7

Imitator 3 7 Replication Consistent Replication None
Zorro 3 7 None None 7 3

CoRAL 7 3 7 3 7 3 7 3

Table 3.2: Key characteristics of existing graph processing systems and our CoRAL system.

Consider the graph shown in Figure 3.1. Vertices v0 through v8 are partitioned

across machines c0, c1, and c2. After partitioning, the edges that cross machines translate

into remote reads. A vertex having at least one neighbor residing on a different machine

is called a boundary vertex – in this example, vertices v1 and v2 are boundary vertices

of machine c0. The boundary vertices are usually replicated on remote machines so that

they are readily available to remote neighbors for their computation. Table 3.1 shows

how computation of shortest paths proceeds with v0 as source. The table shows steps t0

through t6 of the computation. Let us assume that a globally consistent checkpoint captures

(highlighted) values at step t3. Now, if c2 fails at t5, instead of starting from the state at

t0 (first row), all the execution states are rolled back to the snapshot taken at t3 and the

processing is resumed from this rolled back state.

Next we summarize the pros and cons of existing checkpointing and recovery meth-

ods to motivate our approach.
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(1) Synchronous processing systems like Pregel, GPS [105], GraphLab’s synchronous

model, and Trinity’s synchronous model [109] use synchronous checkpointing that captures

globally consistent snapshot by initiating the checkpointing process at the start of a global

iteration (super step). Therefore the values captured are values that exist at the beginning

of a global super step. Pregel performs confined recovery that requires rolling back the

state of only the failed machine as follows. After capturing a snapshot, at each machine,

the inputs read from other machines for boundary vertices are saved so that they can be

replayed during recovery to construct the execution state of the failed machine at the point

of failure. Trinity models confined recovery using buffered logging while [111] performs

confined recovery in a distributed manner.

Two additional approaches for fast recovery have been proposed. Zorro [96] is

motivated by the observation in other works (GraphX [45], Giraph [25], and Distributed

GraphLab [84]) that users often disable the fault tolerance to accelerate processing. Thus

it chooses to discard the checkpointing process altogether to eliminate its overheads. Upon

failures, the recovery process constructs an approximate execution state using the repli-

cated boundary vertices residing on remaining machines. Hence, it achieves fast recovery at

the cost of sacrificing accuracy [96]. Imitator [135] maintains in-memory replicated globally

consistent execution state throughout the execution so that recovery from failure is immedi-

ate. The cost of this approach is the overhead of maintaining consistent replicas in memory

all the time. Finally, GraphX [45] relies on Spark [142] for tracking the lineage of data in

memory, i.e., saving the intermediate results of high-level operations over data; however,

when the lineage tree becomes very large, it resorts to checkpointing.
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Although for synchronous processing systems recovery has been optimized, their

overall performance can be significantly lower than that of asynchronous processing sys-

tems [27, 129]. Next, we discuss asynchronous systems.

(2) Asynchronous processing systems like GraphLab’s asynchronous model uses asyn-

chronous checkpointing technique that captures the vertex/edge values by developing a

mechanism based on the Chandy-Lamport snapshot algorithm [19] that is also used in

other domains like Piccolo [95]. While the snapshots captured by such asynchronous check-

pointing reflect values coming from global states at different centralized clock times, the

order in which the values are captured with respect to communication and computation per-

formed guarantee that the snapshot is globally consistent. Trinity’s asynchronous model,

on the other hand, interrupts execution to capture the global snapshot.

While Pregel’s confined recovery is useful as it only rolls back the state of the failed

machine, it is applicable only for synchronous processing environments since the order in

which iterations progress is deterministic. For asynchronous execution, the lost execution

state cannot be reconstructed using the saved inputs because the order in which vertex

computations observe and process the input values varies over the execution, thus making

this technique inapplicable. As a result, to perform recovery, asynchronous processing

systems roll back the states of all the machines to the last available snapshot and resume

the computation from that point. This approach has following two drawbacks:

– Redundant computation: Since recovery rolls back the states of all machines to

the latest snapshot, when processing is resumed, the computation from snapshot to the

current state is repeated for machines that did not fail.
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– Increased network bandwidth usage: The local snapshots are saved on remote

machines, either on the distributed file system or in memory. All machines bulk transfer

snapshots over the network simultaneously. This stresses the network and increases peak

bandwidth usage. The problem gets worse in case of a multi-tenant cluster.

Summary. Table 3.2 summarizes the key characteristics of above frameworks. The

existing systems rely upon globally consistent snapshots for recovery. Apart from the

synchronous solutions of Pregel and Zorro, none of the works perform minimal rollback.

GraphLab’s asynchronous engine captures globally consistent snapshots and rolls back the

state of all the machines. Solutions that do not rely on recovery via rollback to a checkpoint,

either incorporate consistent replication (Imitator) or relax the correctness guarantees that

leads to imprecise results in case of failures (Zorro).

3.2 Confined Recovery for Asynchronous model via Lightweight

checkpointing

The goal of our work is to develop a technique that: (1) uses asynchronous pro-

cessing model as it provides high performance; (2) performs minimal rollback and avoids

network bandwidth problem due to checkpointing; and (3) achieves complete recovery so

that the final solutions are guaranteed to be accurate. Next we present CoRAL, a Confined

Recovery technique for iterative distributed graph algorithms being executed under the

Asynchronous processing model that uses Lightweight checkpoints.
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Characteristics of Asynchronous Graph Computation. Under the asynchronous

model [129, 131], graph computations are inherently non-deterministic because the model

relaxes read-write dependences to allow machines to use stale values of remote vertices such

that all machines can continue processing independently by skipping intermediate updates

from remote vertices. As a consequence, under the asynchronous model, there are multiple

legal executions, all of which upon convergence produce the same final results.

Asynchronous execution typically orders the values read for each vertex x via the

Progressive Reads Semantics (PR-Semantics) such that over time, x is assigned different

values v(x, 0), v(x, 1), · · · , v(x, n) by the machine on which it resides and these values are

used (read) during processing on other machines.

Definition 3.2.1. PR-Semantics ensures that if a read of x performed by a thread observes

the value v(x, i), the subsequent read of x by that same thread must observe value v(x, j)

such that it either satisfies [V-SAM] or [V-FUT] as given below:

[V-SAM]: j = i, that is, the same value is observed; or

[V-FUT]: j > i, that is, a fresher value is observed on the second read.

This means that, once a value for any data item is read by a thread, no earlier values of that

data item can be read by the same thread. The PR-Semantics ensures that each thread

observes the values for a given data item in the same order as they were produced, and

hence, convergence and correctness of asynchronous algorithms can be reasoned about.

Definition 3.2.2. An execution state E = {e1, e2, ..., ek−1} of a graph computation is PR-

Consistent if it is reached by performing the graph computation using an asynchronous

processing model that follows the PR-Semantics.
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Thus, following a failure, the recovery process must construct the state of the

subgraph(s) lost due to machine failure(s) such that the resulting computation is in a PR-

Consistent state. Resuming execution from a PR-Consistent state guarantees that all future

remote reads adhere to PR-Semantics.

The reliance of graph processing algorithms on PR-Semantics and PR-Consistent

state can be found in literature. In [37] the self-stabilizing nature of PageRank algorithm

is proven assuming that the underlying system guarantees progressive reads. Below we

derive an equivalence between a PR-Consistent execution and a legal asynchronous bounded

staleness based execution [129, 131].

Theorem 3.2.1. Every PR-Consistent execution state of graph computation starting from

an initial state I is equivalent to an execution state under some legal staleness based asyn-

chronous execution [129, 131] starting from I.

Proof. The full PR-Consistent execution can be viewed as a sequence of intermediate PR-

Consistent execution states E0 → E1 → E2 → ...→ En starting at the initial state I = E0.

Hence, we prove this theorem using induction on Ei(0 ≤ i ≤ n).

Base Case (Ei = E0 = I): E0 is PR-Consistent since no reads are performed. It is the

same starting execution state for staleness based asynchronous execution.

Induction Hypothesis (Ei = Ek, k > 0): Ek is PR-Consistent and is equivalent to an

execution state under some legal staleness based asynchronous execution.

Induction Step (Ei = Ek+1): Ek+1 is a PR-Consistent execution state constructed after

Ek based on values read from vertices in Vk+1. Without loss of generality, let us consider

a vertex x ∈ Vk+1 whose latest value read prior to computation of Ek+1 is v(x, p). When
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performing a computation requiring the value of x, the current value of x is first read and

then used in the computation. From Definition 3.2.1, we know that the value read for

computation of Ek+1 is v(x, q) such that q ≥ p. Between the reading of this value and its

use, the value of x can be changed to v(x, r) by another computation, i.e., r ≥ q. This leads

to the following cases:

– Case 1 (q = r): The second read returned v(x, q) = v(x, r). In the equivalent staleness

based execution, this read is considered to have returned the current or the freshest value

available for x, and hence is usable, which results in the same computation being performed.

– Case 2 (q < r): The second read returned v(x, q) 6= v(x, r). In the equivalent staleness

based execution, such a value is considered to be stale by r−q versions, and is still usable in

the asynchronous model where staleness bound bxk+1 is at least r−q. Note that the staleness

bound does not impact correctness, it merely impacts the performance of asynchronous

execution [129].

The above reason can be applied to all the vertices in Vk+1 whose values are used

to compute Ek+1. Let s = max
0>j≤k+1

(max
x∈Vj

( bxj ) ) be the maximum staleness of reads across

all the vertex values read in Case 2. Across all the possibilities, the computations in PR-

Consistent execution and an asynchronous staleness based execution with staleness bound

of at least s (i.e., ≥ s) are equivalent since they are based on same values, and hence, they

result in the equivalent or same execution state Ek+1.

Corollary 3.2.1. The final execution state reached by a PR-Consistent execution is equiv-

alent to the final execution state under some legal staleness based asynchronous execution

[129, 131].
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To further illustrate the efficacy of PR-Semantics, we consider SSSP, a popular

example of monotonic graph algorithms (other examples include Connected Components,

K-Core, etc.) where vertex values exhibit monotonicity which cannot be preserved without

PR-Semantics. Table 3.3 shows the effect of violating the PR-Semantics at t5 in our SSSP

example from Figure 3.1. If at t5, c0 observes the old value of v4 =∞ after having observed

v4 = 3 at t4, the value of v1 is computed as 7 via v3 as shown below.

path(v1) = min(path(v3) + weight(v3, v1),

path(v4) + weight(v4, v2))

= min(2 + 5,∞+ 1) = 7

c0 c1 c2
Step v0 v1 v2 v3 v4 v5 v6 v7 v8
t0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
t1 0 10 1 ∞ ∞ ∞ ∞ ∞ ∞
t2 0 10 1 2 ∞ ∞ 11 ∞ ∞
t3 0 7 1 2 3 ∞ 11 12 ∞
t4 0 4 1 2 3 4 8 12 13
t5 0 7 1 2 3 4 5 9 5

Table 3.3: Violation of PR-Semantics disrupting monotonicity in SSSP.

This violates the monotonicity property of SSSP because the shortest path value for v2,

instead of decreasing, increases from 4 to 7.

Overview of PR-Consistent Recovery. The above characteristics of asynchronous

graph processing lead to new more relaxed notion of recovery, called PR-Consistent recovery,

that allows use of confined recovery using lightweight checkpoints. Its key features follow.
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(1) Confined Recovery : Given sf and cf such that sf is the state of the subgraph

on machine cf just before it fails. The state of the subgraph on cf following recovery, say sr,

need not be the same as sf . However, both sf and sr must correspond to legal executions

during which the PR-Semantics is preserved. We exploit this flexibility to achieve Confined

Recovery, i.e. the subgraph states at non-failing machines is not rolled back.

(2) Lightweight Checkpoints: Deriving the recovered state sr does not require

globally consistent snapshots. It simply requires periodically taken local snapshots of all

machines which we refer to as Locally Consistent Snapshots. The global ordering across

the local snapshots, called PR-Ordering, must be captured to enforce PR-Semantics during

confined recovery for multiple machine failures. The sufficiency of locally consistent snap-

shots solves the problem of increased network bandwidth usage due to bulk network transfer

for saving snapshots during checkpointing. The decision to capture a local snapshot at a

given point in time can be made either by a central coordinator to minimize the number of

snapshots being simultaneously saved, or locally by the machine in which snapshot is to be

captured.

(3) Fast Recovery : Once a machine in a cluster fails, its workload is distributed

across remaining machines in the cluster which then collectively reconstruct the state sr

in parallel. To further reduce checkpointing overhead and speedup recovery, the replicated

snapshots are stored in-memory on remote machines. Both of these design decisions are

based on RAMCloud’s approach [93] for fast replication and recovery; however, our tech-

nique is applicable if a failed machine is replaced by a cold server and snapshots are stored

on a distributed file system.
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In summary, CoRAL captures light-weight Locally Consistent Snapshots and PR-

Ordering information that allow the recovery of the state(s) corresponding to failed ma-

chine(s) such that reconstructed state is PR-Consistent from which execution can be cor-

rectly resumed.

3.2.1 PR-Consistent Recovery: Single Failure Case

For ease of understanding, in this section we show how PR-Consistent state is

restored in case of a single machine failure and in the next section we present the additions

required to handle multiple simultaneous machine failures.

We introduce the concept of Locally Consistent Snapshots and then present a

recovery algorithm that uses them to construct the PR-Consistent state following a failure.

Since a globally consistent checkpoint captures a valid graph state, following a failure,

rolling back entire graph state to such a captured state is sufficient to restore execution to

a PR-Consistent state. However, restoring state via a globally consistent snapshot is too

strong of a requirement, i.e. it is not necessary for satisfying PR-Semantics after recovery.

In fact, allowing global inconsistencies in the captured graph state is acceptable due to the

relaxed nature of asynchronous execution model semantics.

A locally consistent checkpoint represents this relaxed notion of a distributed snap-

shot. Next we define a locally consistent snapshot of the system.

Definition 3.2.3. Given a cluster C = {c0, c1, ..., ck−1}, a Locally Consistent Snapshot

S = {s0, s1, ..., sk−1}, is defined as a set of local snapshots such that it satisfies [P-LCO] as

specified below.
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[P-LCO]: Each si ∈ S represents a consistent state of the subgraph processed by

ci ∈ C that is computable by the processing model from the initial state of the graph.

Note that locally consistent checkpoints do not enforce consistency requirement

across different local snapshots and hence, eliminate the need to save snapshots at the same

time; by staggering their collection over time, the stress on network bandwidth is lowered.

Also, since failures can occur while a snapshot is being captured and transferred to remote

machines, the snapshot should not be committed until the entire snapshot has been received.

The recovery process has two primary goals: first, the execution state should be

restored to a PR-Consistent state; and second, the execution state of the machines which

are not affected by failures must not be rolled back, i.e., the recovery process should be

confined to workload of the failed machine.

Formally, let Ec = {ec0, ec1, ..., eci , ..., eck−1} represent the latest execution state of

machines in C right before failure of a single machine ci ∈ C. Due to failure, the local

execution state eci is lost and the remaining available execution state is Ecf = Ec\{eci}. The

recovery process must reconstruct the local execution state eri of ci such that, Er = Ecf∪{eri }

represents a PR-Consistent state while, eri may be different from eci . Figure 3.2 shows this

recovery process – when eci is lost, the subgraph is processed using values from si and

available inputs from Ec (i.e., Ecf ) to generate eri .

Next we consider the recovery algorithm. Let si be the last snapshot captured for

ei during checkpointing. Näıvely constructing eri by directly using values from si does not

represent a PR-Consistent state because ∀ecj ∈ Ecf , the values in ecj can be based on fresher

values from ci which became available after capturing si and hence, further reads from
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Figure 3.2: Recovery from single failure.

eri will violate the PR-Semantics. We use =PR to denote the PR-Consistent relationship

between two local execution states, i.e., if ea and eb are PR-Consistent, then ea =PR eb.

Hence, we want to construct eri such that ∀ecj ∈ Ecf , eri =PR ecj .

Algorithm 2 Recovery from single failure.

1: si: Snapshot of failed machine ci
2: Ecf : Current execution state of remaining machines
3: function recover ( )
4: ei ← loadSubGraph(si)
5: readBoundaryVertices(ei, E

cf )
6: eri ← processUntilConvergence(ei)
7: Er ← Ecf ∪ {eri }
8: return Er

9: end function

Algorithm 2 constructs a PR-Consistent state Er. The algorithm first loads the

subgraph which was handled by the failed machine and initializes it with: values from si

(line 4); and current values of boundary vertices coming from Ecf (line 5). Note that this

initialization of boundary vertex replicas does not violate PR-Semantics because values in si

are based on older values of boundary vertices which were available when si was captured.

Then the created subgraph ei is iteratively processed in isolation until convergence (line

71



6) – this is the crucial step in the algorithm. Fully processing ei ensures that the effects

of fresher boundary vertex’ values are fully propagated throughout the subgraph. Hence,

the values in eci before failure were either older than or at most same as the values in eri .

This means, any further reads from eri performed by any ecj ∈ Ecf return fresher values and

hence, do not violate PR-Semantics, i.e., ∀ecj ∈ Ecf , eri =PR ecj . Hence, eri is included in

Ecf (line 7) to represent the PR-Consistent state Er which is used to resume processing.

3.2.2 PR-Consistent Recovery: Multiple Failures

Recovering from a failure impacting multiple machines introduces an additional

challenge. To recover a PR-Consistent state, we must ensure that the recovery process

operates on the snapshots of failed machines such that it does not violate the PR-Semantics.

This means, the PR-Consistent state must be constructed by carefully orchestrating the

order in which snapshots are included and processed for recovery. Hence, we introduce the

concept of PR-Ordering of Local Snapshots, which is required to carry out PR-Consistent

confined recovery following failure of multiple machines.

PR-Ordering of Local Snapshots. To recover a state after which any further reads will

adhere to progressive reads semantics, we must capture the read-write dependences between

data elements across different local snapshots that were truly imposed due to PR-Semantics.

Capturing this information at the level of each data item is expensive due to two reasons:

1) the space of the snapshots blows up with number of inter-machine dependencies, which

in graph processing is based on the edge-cut; and 2) capturing such information requires

synchronization between the local machine and all other machines.
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PR-Semantics naturally enforces dependency ordering across data values. We lift

this dependency ordering to a higher level of abstraction – the local snapshots. If we only

track the ordering incurred due to progressive reads across the local snapshots, the amount

of information maintained per snapshot reduces drastically. This brings us to the definition

of ordering of local snapshots.

A PR-Ordering of snapshots, denoted as ≤PR, defines an ordering across local

snapshots based on the order of reads performed by data-elements within the snapshot.

Definition 3.2.4. The PR-Ordering of a pair of local snapshots, denoted as si ≤PR sj ,

indicates that the values in si for machine ci were computed based on values from machine

cj which were available no later than when sj for cj was captured.

In other words, si ≤PR sj ensures that values captured in si were based on reads of data from

cj prior to capturing sj . This naturally leads us to the following observation. While PR-

Ordering is a pairwise ordering across local snapshots, we prove that a total PR-Ordering

is required to perform recovery of PR-Consistent state.

Formally, let Ec = {ec0, ec1, ..., eck−1} represent the latest execution state of machines

in C right before failure of machines in F ⊂ C. Let El = {eci | ci ∈ F} be set of local

execution states lost due to failure, leaving the remaining available execution state to be

Ecf = Ec \ El. The goal of the recovery is to reconstruct the set of local execution states

Erf = {eri | ci ∈ F} of failed machines such that, Er = Ecf∪Erf represents a PR-Consistent

state while, ∀ci ∈ F , eri may be different from eci .
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c0 c1 c2
Step v0 v1 v2 v3 v4 v5 v6 v7 v8
t0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
t1 0 10 1 ∞ ∞ ∞ ∞ ∞ ∞
t2 0 10 1 2 ∞ ∞ 11 ∞ ∞
t3 0 7 1 2 3 ∞ 11 12 ∞
t4 0 4 1 2 3 4 8 12 13
t5 0 4 1 2 3 4 5 9 5

Table 3.4: State of execution till t5; highlighted rows indicate latest locally consistent
snapshots.

Step v0 v1 v2 v3 v4 v5 v6 v7 v8
t6 0 7 1 ∞ ∞ ∞ 5 9 5
t6 0 7 1 2 ∞ 6 5 9 5
t7 0 7 1 2 3 6 5 9 5
t8 0 7 1 2 3 4 5 9 5

Table 3.5: Recovering vertices v3, v4 and v5.

Next we illustrate the necessity of PR-Ordering during recovery using our SSSP

example. Let us assume that c0 and c1 fail after t5. The locally consistent snapshots

captured at c0 and c1 are highlighted in Table 3.4. Thus, during recovery, the local state

of c2 is that at t5 while the latest available snapshots s0 and s1 from c0 and c1 represent

their execution states at t3 and t1 respectively. By examining the dependences in the

computation, we easily determine that s1 ≤PR s0 ≤PR c2. Therefore, s1 is processed first

using values from s0 and c2 resulting in values shown in Table 3.5. After t8, recovery

for s0 can read from the computed results for v3, v4 and v5 because s0 is PR-Consistent

with these values. Finally, as s0 is PR-Consistent with c2, processing occurs for values v0

to v5 alone, as shown in Table 3.6. After t9, all the values are PR-Consistent with each

other, i.e., recovery is complete and processing resumes from this state. Note that if we

had ignored PR-Ordering monotonicity would be violated. For example, if we had first

performed computation over s0, then by reading v3 = ∞ from s1, v4 would have been

computed as 10, violating monotonicity as 10 > 7.
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Step v0 v1 v2 v3 v4 v5 v6 v7 v8
t8 0 7 1 2 3 4 5 9 5
t9 0 4 1 2 3 4 5 9 5

Table 3.6: Recovering vertices v0 to v5.

Theorem 3.2.2. A total PR-Ordering of S is a necessary condition to recover from failures

impacting machines in F , for all possible F ⊂ C, to a PR-Consistent state using a locally

consistent snapshot S.

Proof. We must show that if the execution state recovers to a PR-Consistent state using

S, then a total PR-Ordering of S must be available. We prove this by contraposition. Let

us assume that a total PR-Ordering of S is not available and hence, snapshots of failed

machines ci, cj ∈ F , i.e., si, sj ∈ S, are not ordered under ≤PR. Without loss of generality,

we focus on how the local execution state for ci can be restored to eri using si so that

E = Ecf ∪ {eri } is PR-Consistent. When eri is initialized with si, E cannot be guaranteed

to be PR-Consistent because ∀eck ∈ Ecf , eck ≤PR si cannot be guaranteed. Hence, eri must

be processed further after it is initialized using values from si. While processing eri , values

of boundary vertices from cj can be either (Case 1) read from sj or (Case 2) not read.

Case 1 : Processing of eri reads from sj . In this case PR-Semantics cannot be

guaranteed since si �PR sj may be true. Hence, eri represents an inconsistent state.

Case 2 : Processing of eri does not read from sj . In this case after eri is computed,

∀eck ∈ Ecf , eck ≤PR eri cannot be guaranteed because eck could have observed a fresher

value from eci prior to failure which was in turn calculated from ej after sj was captured.

Moreover, recovery of local execution state for cj cannot be initiated at this point due to

the same choice of whether it could or could not read from eri .
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Figure 3.3: Recovery from multiple failures.

This means, eri cannot be constructed such that PR-Consistency for E = Ecf∪{eri }

is guaranteed. Since failures can impact machines in any non-empty F ∈ PowerSet(C),

recovery of execution state of any failed machine such that it is PR-Consistent with eck,

∀eck ∈ Ecf is not possible if total PR-Ordering of S is not available.

Now that we know that the total PR-Ordering of S is required for recovery, we

aim to construct the PR-Consistent state assuming that such a total PR-Ordering of S is

available. The basic idea is to recover the execution states of individual machines one by

one (see Figure 3.3), in an order such that PR-Semantics is never violated.

Algorithm 3 shows recovery from multiple failures. The PR-Consistent execution

state (Erf ) is constructed by repetitively performing the adding and forwarding of the

saved states from failed machines. The addition of execution states using saved snapshots

is done in PR-Order (line 5) to guarantee that PR-Consistency is always retained in Erf .

During forwarding, the processing reads inputs, i.e., boundary vertices, from two sources

(line 13): the snapshots from failed machines that are not yet incorporated in Erf (i.e.,

76



Algorithm 3 Recovery from multiple failures.

1: Sf : Local snapshots captured on failed machines
2: Ecf : Execution state of remaining machines at the time of failure
3: function recover ( )
4: Erf ← ∅
5: P f ← sortAscending(Sf )
6: while P f 6= ∅ do
7: B Adding Phase
8: si ← getFirst(P f )
9: remove(P f , si)

10: eri ← loadSubGraph(si)
11: Erf ← Erf ∪ {eri }
12: B Forwarding Phase
13: readBoundaryVertices(Erf , P f , Ecf )
14: processUntilConvergence(Erf )
15: end while
16: Er ← Erf ∪ Ecf

17: return Er

18: end function

∀si ∈ P f ), and from current execution states of remaining machines (i.e., ∀eci ∈ Ecf ). At

the end of the while loop (lines 6-15), Erf represents the workload of failed machines that is

PR-Consistent with the current execution state of the remaining machines (Ecf ) and hence,

the two execution states are merged (line 16) to form the required Er.

Theorem 3.2.3. Algorithm 3 recovers a PR-Consistent execution state.

Proof. We prove this by first showing that at any point in the algorithm, Erf is PR-

Consistent, and then proving that at the end, Erf becomes PR-Consistent with Ecf , re-

sulting in Er to be PR-Consistent.

The algorithm uses Sf = {si | ci ∈ F}; without loss of generality, let sa ≤PR

sb ≤PR sc ≤PR ... ≤PR sp be the total PR-Ordering of Sf . At each step, the algorithm

adds a snapshot into the recovery process in this PR-Order (see Figure 3.3).
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Initially, Erf = ∅ and era is initialized with values from sa. This era is added to

Erf . Due to the available PR-Ordering, era can read boundary vertices available from si,

∀si ∈ Sf \ {sa}. Also, era can read from eci , ∀eci ∈ Ecf . Hence, processing Erf by allowing

it to read boundary vertices from these sources does not violate PR-Semantics.

Since the forwarding phase fully processes Erf until convergence, era is now based

on values from sb and from other sources which were available even after sb was captured.

On the other hand, when sb was captured, its values were based on reads from ca which

were not based on fresher values from other sources. Hence, sb ≤PR era which further leads

to era =PR sb. This means, when erb is added to Erf , Erf is still PR-Consistent.

Again, erb can read from si, ∀si ∈ Sf \ {sa, sb}, and also from eci , ∀eci ∈ Ecf which

allows processing of Erf to read boundary vertices from these sources without violating PR-

Semantics. After the forwarding phase, using the same argument as above, we can show

that era =PR erb =PR sc which allows erc to be added to Erf while ensuring Erf remains

PR-Consistent.

At every step of this construction process, |Erf | increases by 1. When |Erf | = |F |,

we achieve Erf such that it is only based on values from Ecf and hence, ∀eri ∈ Erf and

∀ecj ∈ Ecf , ecj ≤PR eri which further leads to Erf =PR Ecf . Hence, the constructed

Er = Erf ∪ Ecf is a PR-Consistent execution state.

Maintaining PR-Ordering after Recovery. After the recovery process, ∀si ∈ S, si ≤PR

Erf . Hence, the future snapshots captured after the recovery process are also PR-Ordered

with snapshots in S. In case of any further failures, the available snapshots in S before the

previous failure can be used along with the newly captured snapshots following recovery.
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Thus, the snapshots in S and newly captured snapshots collectively guarantee that local

states of all machines are available.

Cascading Failures. Failures can occur at any point in time during execution and hence,

the recovery process can be affected by new failures at remaining machines. Such cascading

failures need to be handled carefully so that the PR-Consistent state constructed by the

recovery process includes the workload from newly failed machines.

Since Algorithm 3 incrementally constructs Erf while maintaining the invariant

that it is always PR-Consistent, the snapshots of newly failed nodes cannot be directly

incorporated in the recovery process. This is because Erf is processed based on values from

Ecf and allowing a new snapshot to join the recovery process will cause older values to be

read by Erf thus violating PR-Semantics. Moreover, the new snapshots cannot be made PR-

Consistent with Erf since that in turn requires these snapshots to be PR-Consistent with

Ecf . Hence, upon cascading failures, the recovery process discards the partially constructed

Erf and resumes the process by recreating the linear plan (P f ) consisting of all the failed

nodes and then incrementally constructing the PR-Consistent execution state Erf .

Machines Participating in Recovery. In a fail-stop failure model, the snapshots must

be replicated on different machines so that they are available for recovery. There are two

main ways to replicate a snapshot: either replicate it in entirety on a remote machine, or

partition the snapshot into smaller chunks and distribute them across different machines.

Both strategies have pros and cons. Placing the snapshot entirely on a single machine

allows confined recovery for single machine failure with minimal communication. However,
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this comes at the cost of workload imbalance during post-recovery processing. Partitioning

the snapshot and scattering the chunks across the remaining machines provides better load

balancing.

3.2.3 Capturing PR-Ordering

Since the PR-ordering captures the causality relationship across different machines,

we use logical timestamps to enable ordering of snapshots. We rely on a light-weight cen-

tralized timestamp service to ensure that correct global ordering of logical timestamps is

possible. The role of the timestamp service is to atomically provide monotonically in-

creasing timestamps; this does not require synchronization between the machines, allowing

asynchronous processing and checkpointing to continue concurrently.

The ordering is captured using a lightweight 3-phase protocol by ensuring that the

local execution state to be checkpointed does not change with respect to any new remote

input coming during the checkpointing process. The first phase is the Prepare phase that

blocks the input stream representing remote reads, and then gets a logical timestamp for

the snapshot from the distributed coordinator. The second phase is the Snapshot phase

during which the execution state of the snapshot is actually captured. This phase overlaps

computation over vertices while capturing the local snapshot by enforcing that vertex values

are saved before they are updated (as in GraphLab [84]) which leads to a locally consistent

snapshot (i.e., ensures [P-LCO]). Finally, the third phase is the Resume phase which marks

the end of snapshot with the acquired logical timestamp and unblocks the input stream

to allow future reads. Algorithm 4 summarizes the above protocol for performing local

checkpointing which generates correct PR-Ordering across the captured snapshots. The
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getNextLogicalTimeStamp() function atomically provides a monotonically increasing

logical timestamp.

Algorithm 4 Local checkpointing algorithm.

1: function checkpoint ( )
2: B Prepare Phase
3: blockIncomingMessages( )
4: ts ← getNextLogicalTimeStamp( )
5: B Snapshot Phase
6: snapshotUpdate( )
7: B Resume Phase
8: save(END-CHECKPOINT, ts)
9: unblockIncomingMessages( )

10: end function
11:

12: function snapshotUpdate ( )
13: for v ∈ V do
14: B Snapshot Vertex
15: if v is to be checkpointed then
16: save(v)
17: end if
18: B Process Vertex
19: if v is to be processed then
20: process(v)
21: end if
22: end for
23: end function

Theorem 3.2.4. Algorithm 4 generates a correct total PR-Ordering of local snapshots ε S.

Proof. We first show that the generated PR-Ordering is a total ordering, and then show its

correctness.

Total Ordering: Each of the local snapshots captured is assigned a unique timestamp via

the distributed coordinator. Hence, ∀si, sj ∈ S, their timestamps, tsi and tsj are ordered,

i.e., either tsi < tsj or tsj < tsi . By mapping this timestamp ordering between tsi and tsj

81



getNextLogicalTimeStamp() 

getNextLogicalTimeStamp() 

tsi

tsj

Remote	  Input	  

ci	  

cj	  

Coordinator	  

ra	  

rb	   rc	  

rd	  

re	  

rf	   rg	  

rh	   ri	  

rj	  

value	  of	  x	  

Figure 3.4: Event sequence with incorrect access
of value x.

to the PR-Ordering between si and sj , we achieve either si ≤PR sj or sj ≤PR si. Since this

mapping is done for every pair of snapshots in S, S is totally ordered under ≤PR.

Correct PR-Ordering: We prove this by contradiction. Let us assume that si ≤PR sj

is an incorrect PR-Ordering. This ordering is a result of mapping from timestamp relation

tsi < tsj . Since the logical timestamps are monotonically increasing in the order of arrival

of requests, the timestamp request from node ci should have arrived before than that from

node cj in real time space.

Without loss of generality, Figure 3.4 shows the sequence of events representing

our current case. Note that ra through rj indicate real time points in the global real time

space. We know the following orderings are valid.

ra < rb (send-receive ordering) (3.1)

rb < rf (request arrival ordering) (3.2)

rf < rg (causality ordering) (3.3)

rg < rh (send-receive ordering) (3.4)
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Moreover, since our assumption is that si �PR sj , there should be a value x which

is read from cj to ci (indicated via dotted arrow) with the following ordering constraints:

rj < ra (prepare phase ordering) (3.5)

rh < ri (prepare phase ordering) (3.6)

ri < rj (send-receive ordering) (3.7)

Combining Equations 1-6 leads to rj < ri which contradicts Equation 7. Hence,

our assumption is false, i.e., si ≤PR sj is a correct PR-Ordering.

Theorem 3.2.5. Algorithm 4 generates a strict total PR-Ordering across local snapshots

in S, i.e., ∀si, sj ∈ S, if si ≤PR sj, then sj �PR si.

Proof. The ≤PR ordering is mapped from the ordering of logical timestamps assigned us-

ing getNextLogicalTimeStamp() function which atomically provides monotonically in-

creasing timestamps.

Theorem 3.2.5 indicates two things: first, the locally consistent checkpointing

process generates local snapshots that are considered to be inconsistent with other local

snapshots; even if the snapshots captured are truly globally consistent, the monotonic nature

of timestamps assigned to snapshots does not capture this information. Secondly, the

schedule for recovery from multiple failures is deterministic.

Missing Snapshots. Failures can occur even before the first set of snapshots from the af-

fected machines are available. Recovery from such failures is done from the initial state of the
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affected machine’s workload. To ensure PR-Semantics is adhered to during the recovery pro-

cess, a total PR-Ordering must be available across the initial states for different machines’

workload and the captured snapshots. Such PR-Ordering is available naturally by viewing

the initial states to have read no values from other workloads. Let I = {i0, i1, ..., ik−1}

represent the set of initial local states of machines in cluster C.

Corollary 3.2.2. ∀ii ∈ I and ∀sj ∈ S, ii ≤PR sj.

Moreover, the total PR-Ordering among the individual initial states can be cap-

tured as follows.

Corollary 3.2.3. ∀ii, ij ∈ I, ii ≤PR ij and ij ≤PR ii. This means, ii =PR ij.

Corollary 3.2.3 captures the PR-equivalence across initial states which means,

processing an initial state using values from other initial states adheres to PR-Semantics.

For simplicity, we consider the initial states as snapshots captured at the beginning of

processing and assume the PR-Ordering based on the ordering of machine ids, i.e., if ∀ci, cj ∈

C, if i < j then ii ≤PR ij .

Checkpoint Frequency (sec)
Graphs #Edges #Vertices PR MSSP CC KC

Twitter (TT) [72] 1.5B 41.7M 200 30 100 200 (k = 10)
UKDoman (UK) [11] 1.0B 39.5M 100 30 100 50 (k = 20)
LiveJournal (LJ) [5] 69M 4.8M 10 2 1 10 (k = 50)

Table 3.7: Real world input graphs and benchmarks used.
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LJ UK TT

PR 22.8 301.6 474.9
MSSP 4.1 54.9 50

CC 4.2 102.2 78.3
KC 30.8 162.7 364.5

Table 3.8: Execution times (sec).
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Figure 3.5: System design.

3.3 Evaluation

System Design. We incorporated CoRAL in an asynchronous iterative graph processing

system based on ASPIRE [129] as shown in Figure 3.5. A fault tolerant layer is designed to

handle distributed coordination across multiple machines and provide asynchronous com-

munication. The distributed coordinator is based upon Apache Zookeeper [55]. It manages

membership of machines, detects machine failures, and invokes callbacks to CoRAL mod-

ule. It also provides atomic timestamp service required for capturing PR-Ordering, and

synchronization primitives like barriers for programmability. The asynchronous communi-

cation layer is built using non-blocking primitives provided by ZeroMQ [146].

The application layer includes the graph processing engine which operates on the

given graph. The graph is partitioned using GraphLab’s partitioner that greedily minimizes
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the edge-cut. The CoRAL checkpointing and recovery module periodically captures locally

consistent snapshots of the graph state and ensures total ordering by coordinating with

Zookeeper. Upon failures, it recovers the lost graph state using confined recovery.

Experimental Setup. Our evaluation uses four algorithms: PageRank (PR) [94], Mul-

tipleSourceShortestPaths (MSSP), ConnectedComponents (CC) [152], and KCoreDecom-

position (KC) taken from different sources [84, 129]. The algorithms are oblivious to the

underlying fault tolerance mechanisms used in our evaluation and hence, no modifications

were done to their implementations. They were evaluated using real-world graphs listed in

Table 5.2 and running them until convergence. The k parameter for KC is also listed.

To evaluate the effectiveness of locally consistent checkpointing and recovery mech-

anism, we set the checkpointing frequency in our experiments such that 3-6 snapshots are

captured over the entire execution lifetime. The checkpoint frequencies used in our evalu-

ation are shown in Table 5.2. While capturing locally consistent snapshots allows relaxing

the time at which different local checkpoints can be saved, for KC we limit this relaxation

to within the same k so the snapshot is fully captured within the same engine invocation.

All experiments were conducted on a 16-node cluster on Amazon EC2. Each node

has 8 cores, 64GB main memory, and runs 64-bit Ubuntu 14.04 kernel 3.13.

Techniques Compared. We evaluate CoRAL using ASPIRE distributed asynchronous

processing framework. ASPIRE guarantees PR-Semantics and it performs well compared to

other frameworks as shown in [129]. For comparison with other systems, the raw execution

times (in seconds) for ASPIRE are shown in Table 3.8.
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Our experiments compare two fault tolerant versions that are as follows: CoRAL

captures locally consistent snapshots and performs confined recovery to PR-Consistent state;

and BL is the baseline technique used by asynchronous frameworks like GraphLab [84]. It

captures globally consistent snapshots based on the the Chandy-Lamport snapshot algo-

rithm [19] and recovers by rolling back all machines to the most recent checkpoint.

To ensure correct comparison between the two versions, failures are injected to

bring down the same set of machines when same amount of progress has been achieved by

the iterative algorithms. We check the execution state that is present immediately after

failure to confirm that the vertex values are essentially the same (within tolerable bound

for floating point values) for BL and CoRAL so that recovery starts from the same point.

We also evaluate our recovery mechanism by starting the program assuming that failure

has already occurred; we do this by feeding the same execution state (vertex values) as

initializations and starting the recovery process; the performance results are same in this

case too. CoRAL guarantees correctness of results; thus, final results of BL and CoRAL for

each experiment are 100% accurate.

3.3.1 Recovery Overhead

Single Failure. We measured the execution times of CoRAL and BL when a single failure

occurs during the program run. The execution times after the occurrence of failures (i.e.,

recovery and post recovery), normalized with respect to execution time for BL, are shown

in Figure 3.6. The complete execution times (in seconds) including the execution prior to

failure are given in Table 3.9.

87



Figure 3.6: CoRAL vs. BL: Single failure execution times normalized w.r.t. BL.

LJ UK TT

PR
BL 31.24 334.78 603.12

CoRAL 24.85 322.71 398.92

MSSP
BL 8.73 69.72 57.00

CoRAL 6.19 53.25 40.50

CC
BL 6.80 121.62 173.04

CoRAL 6.80 102.20 84.56

KC
BL 64.68 195.24 612.36

CoRAL 44.35 157.82 539.46

Table 3.9: CoRAL vs. BL execution times (sec) for single machine failure.

We observe that CoRAL quickly recovers and performs faster compared to BL in

all cases – on an average across inputs, CoRAL is 1.6×, 1.7×, 1.3× and 2.3× faster than

BL for PR, MSSP, CC, and KC respectively. We also found that the recovery process of

CoRAL is lightweight – on an average across benchmarks, the recovery process takes 22.5%,

3.5%, and 3.3% of the total execution time for inputs LJ, UK, and TT. More importantly,

the percentage time taken by the recovery process reduces as graph size increases.

Furthermore, in some cases we observed that for CoRAL, the overall execution time

starting from the beginning of the iterative processing goes below the original execution time

– for example, for both PR and MSSP on TT, the overall execution time reduces by 15.7%

and 18.8%. This is because the CoRAL recovery constructs a PR-Consistent state with

fresher values that is closer to the final solution, so the convergence is achieved faster.
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Figure 3.7: CoRAL vs. BL: Recovery for single failure from initial state. Execution times
normalized w.r.t. BL.

The preceding experiment showed the combined benefit of lightweight checkpoint-

ing and confined recovery. Next we conducted an experiment to determine the benefit of

confined recovery alone. We turned off checkpointing and upon (single) failure rolled back

execution to initial default values – CoRAL only rolls back state of failed machine while BL

must roll back states of all machines. Figure 3.7 shows that on an average across inputs,

CoRAL executes for only 0.4×, 0.4×, 0.3× and 0.6× compared to BL for PR, MSSP, CC,

and KC respectively. While BL recovery is fast as it simply reverts back to the initial state,

the computation performed gets discarded and much time is spent on performing redundant

computations. Moreover, we observed an increase in the overall execution time (starting

from the beginning of processing) for BL by 1.1–1.9× which is due to the same amount of

work being performed by fewer machines after failure. CoRAL, on the other hand, does not

discard the entire global state, and hence finishes sooner.

Multiple Failures. Figure 3.8 shows the performance for multiple failures for PR bench-

mark on UK graph. We simultaneously caused failure of 1 through 6 machines to see the

impact of our strategy. As we can see, CoRAL performs 1.5–3.2× faster than BL. We

89



Figure 3.8: CoRAL vs. BL: Varying number (1 to 6) of machine failures. Execution times
for PR on UK normalized w.r.t. BL.

observed that the overall execution times for BL after occurrence of failures increase up to

1.2×, whereas CoRAL takes only 0.2–0.8× of time to recover and finish processing. This is

because CoRAL does not discard the progress of machines that are not impacted by failure.

Note that the execution times increase as the number of simultaneously failing

machines increase. This is due to two reasons. First, the remaining (non-failed) state

becomes smaller and the lost states become larger, causing more work during recovery and

post-failure. Second, after failure, the processing continues on fewer leftover machines, i.e.

computation resources decrease. It is also interesting to note that CoRAL’s recovery time

also increases with increase in the number of simultaneously failed machines due to the

linear nature of our recovery strategy.

3.3.2 Partitioning Snapshots: Impact on Recovery

During checkpointing, a local snapshot can be saved by partitioning them and

placing individual chunks on different machines, or by placing the entire snapshot on a

single machine. Based upon the manner in which snapshots are saved, only the machines on
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which snapshots are locally available can quickly perform recovery. While partitioning the

snapshot allows more machines to participate in the recovery process, placing the snapshots

without partitioning reduces the communication during the recovery process – for example,

for a single machine failure, communication is not required during the recovery process

where PR-Consistent state is constructed by iteratively processing until convergence.

Figure 3.9a evaluates this design choice by showing the speedups achieved during

recovery using the partitioning strategy over maintaining the snapshot as a whole. The re-

sults show that allowing multiple machines to take part during recovery process overshadows

the communication increase and accelerates recovery. Also the speedups are higher when

greater number of machines fail. While not partitioning leads to an increase in the recovery

workload by only a constant factor (i.e., size of a single snapshot), when more machines fail,

the communication required to process the workload increases which limits the speedups.

(a) Speedup in CoRAL recovery due to
partitioning snapshots.

(b) Recovery time with and without optimization
normalized w.r.t. single failure case.

Figure 3.9
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3.3.3 Optimizing Recovery from Multiple Failures

Various works suggest users often disable checkpointing (GraphX [45], Giraph [25],

and Distributed GraphLab [84]) to eliminate its overheads. The PR-Consistent state can

be constructed even when no snapshots are captured using initial state, i.e., default values.

Moreover, Corollary 3.2.3 suggests that the execution state using default values is already

PR-Consistent. Hence, the recovery process can be further optimized to incorporate the

states of all the failed machines together, instead of adding them one by one. When the

entire failed state is fully processed, it becomes PR-Consistent with the available current

execution states of the machines not impacted by failure. Hence, computation can resume

using this PR-Consistent state.

Figure 3.9b shows the time taken by the CoRAL recovery using initial state, with

and without the above optimization. The optimization further speeds up the recovery

process by an order of magnitude. This observation can be incorporated in the checkpointing

strategy itself – if checkpointing guarantees subsets of local snapshots to be PR-Consistent,

the snapshots in those subsets can be incorporated together during the recovery process,

instead of adding them one by one.

3.3.4 Checkpointing: Impact on Network Bandwidth

We now evaluate the benefits of using locally consistent checkpointing. During

checkpointing, the captured snapshots are saved remotely so that they are available upon

failure. This leads to an increase in network usage. In Figure 3.10, we measure the 99th
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percentile 1 network bandwidth for BL and CoRAL by varying the replication factor (RF)

from 1 to 6, normalized w.r.t. no replication 2.

Figure 3.10: BL vs. CoRAL: 99th percentile network bandwidth for varying RF (1 to 6)
normalized w.r.t. no checkpointing case.

As we can see, the peak bandwidth consumption increases rapidly with increase in

RF for BL because the consistent checkpointing process saves all the snapshots at the same

time, which leads to simultaneous bulk network transfers. The peak bandwidth consump-

tion for CoRAL does not increase as rapidly – this is because CoRAL staggers the capturing

of different snapshots over time, and hence, the snapshots are transferred to remote ma-

chines at different points in time at which they become available. On an average across

all benchmark-input configurations, there is a 22% to 51% reduction in 99th percentile

bandwidth using CoRAL as RF is varied from 1 to 6.

1The performance trend is similar for higher percentile values.
2The network statistics were measured using tcpdump.
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Figure 3.11: BL vs. CoRAL: Network usage for PR on UK.

There is a noticeable increasing trend for CoRAL on KC – this is mainly because

the checkpointing process in KC can be relaxed only during computation for a given core,
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which in certain cases became a rather narrow window over which all the snapshots had to

be transferred.

Figure 3.11 shows the bandwidth consumption for PR on UK with RF varying

from 3 to 6. Here All (red lines) indicate total bandwidth usage while Checkpointing

(blue lines) indicate bandwidth consumed due to checkpointing alone. As we can see, for

BL, the bandwidth periodically increases; moreover, the intermittent spikes are due to the

checkpointing process. This is mainly because the local snapshots from all machines are

sent and received at the same time. For CoRAL, the checkpointing process on different

machines can take place at different times and hence, the transfer of local snapshots is

spread over time, reducing the effect of bulk transfer and reducing network contention.

3.4 Summary

In this chapter, we studied the semantics of asynchronous distributed graph pro-

cessing that enable supporting fault tolerance at reduced costs. We further discussed how

confined recovery is achieved following failures by constructing alternate PR-Consistent

state without discarding any useful work performed on non-failing machines. CoRAL uses

locally consistent snapshots that are captured at reduced peak network bandwidth usage

for transferring snapshots to remote machines. Our experiments confirmed reductions in

checkpointing and recovery overhead, and low peak network bandwidth usage.

So far in this thesis we developed techniques to improve processing of graphs whose

structure does not change. In the next chapter, we will see how asynchrony can be used to

improve processing of dynamic graphs.

95



Chapter 4

Evolving Graph Processing

So far in this thesis, we developed techniques to improve processing of graphs

whose structure does not change; however, an important feature of real-world graphs is

that they are constantly evolving (e.g., social networks, networks modeling the spreading

of diseases, etc.) [101, 136]. Such dynamic graphs are useful to capture dynamic properties

and interesting trends that change over time. In this chapter, we exploit the asynchronous

nature of graph algorithms to efficiently process evolving graphs where details about the

graph evolution are available to perform temporal graph analyses. In particular, we develop

strategies for computation reordering and incremental processing to reduce the overall com-

munication and computation costs incurred during evolving graph processing.

The analysis of an evolving graph is expressed as the repeating of graph analysis

over multiple snapshots of a changing graph – different snapshots are analyzed indepen-

dently of each other and their results are finally aggregated. Note that evolving graph pro-

cessing is different from streaming graph processing (Chapter 5) where iterative processing
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continues over a dynamic graph structure that keeps on changing, hence terminating to the

final solution for the most updated graph.

Due to the fast-changing nature of a modern evolving graph, the graph often has

a large number of snapshots; analyzing one snapshot at a time can be extremely slow even

when done in parallel, especially when these snapshots are large graphs themselves. For

instance, one single snapshot of the Twitter graph [17] has over 1 billion edges, and there

are in all 25.5 billion edges in all its snapshots we analyzed.

In this chapter, we develop temporal execution techniques that significantly im-

prove the performance of evolving graph analysis, based on an important observation that

different snapshots of a graph often have large overlap of vertices and edges. By laying out

the evolving graph in a manner such that this temporal overlap is exposed, we identify two

key optimizations that aid the overall processing: first, we reorder the computations based

on loop transformation techniques to amortize the cost of fetch across multiple snapshots

while processing the evolving graphs; and, second we enable feeding of values computed

by earlier snapshots into later snapshots to amortize the cost of processing vertices across

multiple snapshots. Furthermore, the two optimizations are orthogonal i.e., they amortize

different costs, and hence, we identify and exploit the synergy between them by allowing

feeding of values from all vertices, including those that haven’t attained their final values,

to amortize the processing cost, while simultaneously reordering computations to amortize

the fetch cost.

Our optimizations are general and can be plugged into a variety of distributed or

shared-memory graph processing systems. We incorporated our temporal execution tech-
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niques in GraphLab [85] and ASPIRE [129] to add support for evolving graph processing in

these frameworks. Our experiments with multiple real evolving graphs and graph process-

ing algorithms on a 16-node cluster demonstrate that, on average fetch amortization speeds

up the execution of GraphLab and ASPIRE by 5.2× and 4.1× respectively. Amortizing the

processing cost yields additional average speedups of 2× and 7.9× respectively.

The rest of this chapter is organized as follows. Section 4.1 discusses the evolving

graph and its iterative processing details. Section 4.2 discusses the space-efficient represen-

tation for evolving graphs. Section 4.3 and Section 4.4 discuss the optimizations to amortize

the communication and computation costs incurred in evolving graph processing. Section

4.5 discusses how the amortization techniques are incorporated in different frameworks and

Section 4.6 presents the experimental setup and the result analysis.

4.1 Evolving Graph and Iterative Processing

In this section, we first formalize evolving graphs and then discuss how they are

iteratively processed. We will develop the temporal amortization techniques in subsequent

sections using the processing details introduced in this section.

4.1.1 Evolving Graph

An evolving graph G is a graph that undergoes structural changes over time. These

structural changes take place via addition and deletion of edges and vertices. Formally, an

evolving graph G = 〈G1, G2, ..., Gk〉 is a sequence of k graph snapshots taken at different

points in time. In general the structural changes that cause a transition from snapshot
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Gi−1 to snapshot Gi involve both addition and deletion of edges and vertices. Note that

a change in edge weight can be viewed as a deletion of the edge followed by its insertion

with a different weight. Figure 4.1a, Figure 4.1b, and Figure 4.1c together show an evolving

graph consisting of three graph snapshots taken at t1, t2, and t3 respectively.
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(a) Snapshot G1 at t1.
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(b) Snapshot G2 at t2.
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(c) Snapshot G3 at t3.

Time

Figure 4.1: Example evolving graph G = 〈G1, G2, G3〉.

4.1.2 Computation over Evolving Graphs

We briefly discuss the iterative vertex centric processing over a simple graph and

then describe how it is performed over an evolving graph.

Iterative Vertex Centric Processing

In this work we focus on iterative vertex-centric graph algorithms, used in a wide range of

modern mining and analytics tasks. In a vertex centric graph algorithm, computation is

written from the perspective of a single vertex. For a given vertex, all the neighboring vertex

values are fetched and a new value is computed using these fetched values. If the value of a

vertex changes, its neighbors become active, i.e., they are scheduled to be processed in the

next iteration. This process terminates when all the vertices in the graph become inactive.
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In a given iteration, vertices are processed in parallel such that a vertex is com-

pletely processed by the same set of threads on the same machine. This results in a simple

and intuitive parallel algorithm shown in function EXECUTE() in Algorithm 5. Since the

techniques presented in this work are general and independent of any specific graph pro-

cessing environment, we present the execution plan using high-level load/store primitives

– fetching/storing data from/to (local or remote) machines is achieved transparently using

the FETCH/STORE operations (lines 3, 6 and 14), which can have different implementations

on different platforms; for example, a message-passing based system like Pregel [86] may

use SEND/RECEIVE to transfer values across machines. Since only those vertices which are

scheduled to be processed in a given iteration must be computed, GET-ACTIVE-VERTEX (line

2) returns the next vertex to be processed in the current iteration. While processing this

vertex, the neighboring values are obtained using GET-NEIGHBORS (line 5) which internally

fetches the neighboring vertex values residing on local and remote machines. Upon com-

putation, if the change in the value of a vertex exceeds threshold ε (line 11), the neighbors

of the vertex are activated for future processing by ACTIVATE-NEIGHBORS (line 12). It is

interesting to note that the computations performed (line 9) are typically quite simple and

threads are often seen waiting for values to be fetched (from local/remote memory/disk). In

other words, these iterative graph algorithms are typically network-bound when executed

on a distributed environment.
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Algorithm 5 Iterative Algorithm on an Evolving Graph.

1: function execute(Gi)
2: for vid ∈ get-active-vertex(Gi) do
3: vertex ← fetch(vid, Gi)
4: nbrs ← ∅
5: for nid ∈ get-neighbors(vertex) do
6: nbrs ← nbrs ∪ fetch(nid, Gi)
7: end for
8: old-value ← vertex.get-value( )
9: comp-value ← f (vertex, nbrs)

10: vertex.set-value(comp-value)
11: if |old-value − comp-value| > ε then
12: activate-neighbors(vertex)
13: end if
14: store(vertex, Gi)
15: end for

16: end function

17: function main(G)
18: for each graph Gi ∈ G do
19: initialize(Gi)
20: activate-vertices(Gi)
21: do
22: parallel-for all threads do
23: execute(Gi)
24: end parallel-for
25: barrier( )

/* Global termination condition */
26: while there are active vertices
27: output-vertex-values(Gi)
28: end for
29: end function

Evolving Graph Processing

Analyzing an evolving graph involves repeating the iterative graph analysis computation

over each graph snapshot. The MAIN() function in Algorithm 5 shows how an evolving

graph is processed by invoking the same iterative EXECUTE() (line 23) function over different

graph snapshots, one at a time. Since the results of iterative analysis are required for each

of the graph snapshots, OUTPUT-VERTEX-VALUES() (line 27) is invoked immediately after

processing of a given graph snapshot terminates.

Step
Vertex Distances Active
a b c d e Vertices

0 ∞ ∞ ∞ 0 ∞ -
1 ∞ 2 4 0 ∞ b,c
2 ∞ 2 4 0 3 e
3 9 2 4 0 3 a
4 9 2 4 0 3 b,c,d

Table 4.1: Execution of SSSP on snapshot
G1 (Figure 4.1a).

Step
Vertex Distances Active

a b c d e f g Vertices

0 ∞ ∞ ∞ 0 ∞ ∞ ∞ -
1 ∞ 2 4 0 ∞ ∞ ∞ b,c
2 ∞ 2 4 0 3 6 5 e,f,g
3 7 2 4 0 3 6 5 a,b,g
4 7 2 4 0 3 6 5 b,c,d

Table 4.2: Execution of SSSP on snapshot
G2 (Figure 4.1b).
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Step
Vertex Distances Active

a b c d e f g h i Vertices

0 ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ -
1 ∞ 2 4 0 ∞ ∞ ∞ ∞ ∞ b,c
2 ∞ 2 4 0 3 6 5 5 3 e,f,g,h,i
3 9 2 4 0 3 6 5 5 3 a,b,f,g,i
4 9 2 4 0 3 6 5 5 3 b,c,d

Table 4.3: Execution of SSSP on snapshot G3 (Figure 4.1c).

As an example, the iterative Single Source Shortest Path (SSSP) computation for

evolving graph snaphots G1, G2, and G3 are shown in Tables 4.1, 4.2, and 4.3 respectively.

Computation on G1 proceeds as follows. Initially, all the vertices are set to∞ and the source

vertex (vertex d) is set to 0. The outgoing neighbors of d are b and c which are active in

iteration 1. Their values are computed by fetching them and their incoming neighbors, i.e.,

vertices a, b, c and d. Since both b and c change, their outgoing neighbors (vertex e) become

active in iteration 2. Processing terminates when there are no more active vertices. After

processing completes for G1, snapshot G2 and later, snapshot G3 is processed in similar

manner (Table 4.2 and Table 4.3).

Note that evolving graph processing is inherently different from streaming graph

processing [35]; streaming graph processing does not rely on strict notion of graph snap-

shots and iterative processing continues while the graph structure changes rapidly, hence

terminating to the final solution for the most updated graph. Evolving graph processing,

on the other hand, involves processing all the intermediate graph snapshots and producing

the final converged results for each of the snapshots.

Since graphs being processed are large, significant effort is involved both in fetch-

ing of values into memory of processing sites and carrying out the required computation.
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We recognize two opportunities (Section 4.3 and Section 4.4) to amortize these costs across

multiple graph snapshots of an evolving graph. Note that the opportunities and proposed

techniques are independent of any graph processing framework and any processing environ-

ment (distributed, shared-memory, out-of-core, etc.).

v0	   v1	   v0	   v1	   v0	   v1	  

v0	   v1	  

Neighbor	  
Neighbor	  +	  Liveness	  

Vertex	  vi	  

Snapshot	  0	   Snapshot	  1	   Snapshot	  2	  

Figure 4.2: Temporal Layout of Evolving Graphs

4.2 Temporal Layout of Evolving Graphs

Computations performed over a static graph are typically vertex centric and hence,

computation of a given vertex requires values of its neighboring vertices. To preserve locality

in this case, graph processing systems typically lay out the graph structure using a variant

of adjacency list format. Such a representation can be directly used to represent evolving

graphs by laying out individual graph snapshots one after the other so that locality within

each of the graph snapshot is preserved.
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However, consecutive graph snapshots have high structural overlap which can be

exploited to make the representation space efficient. Moreover, this structural overlap across

snapshots can be used to expose the underlying temporal locality which can be further used

to accelerate processing. Hence, we extend the traditional adjacency list based represen-

tation so that the represented graph structure is a union of all graph snapshots. This is

analogous to using structure-of-arrays (SoA) layout instead of array-of-structures (AoS)

layout where the graph snapshots collectively represent an array.

Figure 4.2 shows how we represent evolving graphs. The overall structure holds

the union of all the captured graph snapshots while the information about the individual

snapshots is maintained using liveness intervals tagged over edges. A liveness interval is

represented by a begin and end timestamp and each edge in the evolving graph has a vector

of such liveness intervals which allows tracking multiple additions and deletions of same

edges throughout the lifetime of the application. These vectors are sorted based on the

begin timestamps to allow quick access of required data using a forward-only pointer. Note

that vertices do not need liveness intervals because the presence of a vertex in a snapshot

can be determined by presence of its edges.

Every graph snapshot has an associated timestamp at which it was captured, i.e.,

it is the time up to which all the updates have been applied to the snapshot. An edge is

considered part of the snapshot if the snapshot’s timestamp falls in between the begin and

end timestamps for some pair in the edge’s liveness vector. Every edge also has a vector of

immutable values to capture different edge-weights for different lifetimes.
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Figure 4.3: Evolving Graph G for example evolving graph in Figure 4.1.

Figure 4.3 shows an example of evolving graph G = 〈G1, G2, G3〉 with 3 graph

snapshots that are shown in Figure 4.1. The individual snapshots G1, G2, and G3 taken at

t1, t2, and t3 are shown in Figure 4.1a, 2b and 2c respectively.

Space Complexity

An evolving graph with k snapshots, G = 〈G1, G2, ..., Gk〉 consumes O
(
k×(|V |+ |E|)

)
space

when it is represented as a sequence of separate snapshots. On the other hand, our unified

representation consumes O
(
|V |+(p×|E|)

)
space, where p is the maximum number of times

any edge in the graph is updated. Typically, p � k and hence, our unified representation

is space efficient.

Compactly representing evolving graphs using lifetime intervals naturally exposes

the temporal locality present across graph snapshots which can be exploited by changing

the order in which processing occurs, as discussed in subsequent sections.
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Step
Fetched Vertices

G1 G2 G3

1 a,b,c,d a,b,c,d,f a,b,c,d,f
2 b,e b,c,e,f,g b,c,e,f,g,h,i
3 a,e a,b,d,e,f,g a,b,d,e,f,g,h,i
4 a,b,c,d a,b,c,d,f a,b,c,d,f

Table 4.4: Fetched Vertices for SSSP on G1,
G2, and G3.

Evolving Graph Overlap

Twitter-25 66.0%
Delicious-100 58.8 %

DBLP-100 42.4 %
Amazon-100 44.8 %
StackEx-100 53.5 %
Epinions-100 51.2 %
Slashdot-70 47.2 %

Table 4.5: Average % fetch overlap across
consecutive snapshots over different
datasets (names include number of

snapshots) for SSSP algorithm.

4.3 Fetch Amortization

The high structural overlap across multiple snapshots leads to similar patterns in

fetch requests for vertices when the individual snapshots are processed. Table 4.4 provides

the lists of Fetched Vertices for each iteration during the SSSP computation performed on

three graph snapshots in Section 4.1. On comparing the Fetched Vertices columns for the

corresponding (same) iterations of consecutive graph snapshots, we observe that a significant

number of vertices that are fetched are common.

The high degree of fetch overlap can also be observed in real datasets. Table 4.5

presents the degree of fetch overlap across consecutive snapshots when computing SSSP for

real world evolving graphs (see Table 4.8 in Section 4.6.1 for description of graphs). As we

can see the fetch overlap is very high – over 49% of vertices are common among consecutive

snapshots. This naturally leads us to the following question:

Can we re-order computations such that overlapping fetches can be batched together?
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4.3.1 Fetch Amortization via Computation Re-ordering

The temporal layout of evolving graph which exposes the high structural overlap

across multiple snapshots can be efficiently utilized to aggregate the fetch requests of same

vertices across different snapshots. We achieve this by computation re-ordering enabled

using loop transformation techniques.

In the original processing model (Algorithm 5), the outer for loop (line 18) pro-

cesses graph snapshots one after the other while the inner do-while loop (line 21) processes

a single snapshot. These two loops can be transformed such that the inner loop processes a

batch of snapshots at the same time while the outer loop iterates through different batches

of snapshots to be processed. Now, while simultaneously processing the batch of snapshots,

the fetch requests for different versions of the same vertex can be aggregated together by

fusing multiple versions of inner-most loop which processes active vertices (line 2) such that

processing of multiple versions of the same vertex belonging to different snapshots occur at

the same time. This allows aggregating the fetch requests performed for multiple versions

of same vertices.

The above idea is generalized by simultaneously processing ∆ consecutive graph

snapshots in parallel.

Fetch Amortization (FA). Fetch amortization simultaneously processes ∆ snapshots

(Gi+1, Gi+2 . . . Gi+∆) so that fetches of vertices common among some of the ∆ snapshots

can be aggregated to amortize fetch cost across snapshots.
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Algorithm 6 shows the iterative parallel algorithm that incorporates fetch amorti-

zation. Note that this algorithm processes ∆ snapshots in parallel denoted by G∆. When

a thread invokes EXECUTE on a vertex, it performs an aggregate fetch via MULTI-FETCH (as

opposed to FETCH) to get all its ∆ snapshots (lines 3 and 6), computes the new values for

the ∆ snapshots (lines 8-15), and then performs an aggregate store via MULTI-STORE to

update the ∆ snapshots (line 16). When one graph snapshot is fully processed (Gstable),

it is replaced by another snapshot (Gnext) so that the algorithm is always processing ∆

snapshots in parallel (lines 28-35).

The above computation reordering is legal because processing of individual snap-

shots occur independently and hence, there are no dependences between iterations of the

outer for loop. This means, upon unrolling the outer for loop, the inner do-while loops

can be fused together by maintaining multiple versions of vertex values and capturing indi-

vidual snapshot’s convergence and vertex activations as described below.

4.3.2 Mutable Vertex Values

To incorporate FA, the in-memory representation of the evolving graph should

support simultaneous processing of ∆ graph snapshots. Hence, mutable vertex values are

vector-expanded to store ∆ values which are being computed simultaneously. If ∆ snapshots

are simultaneously processed in parallel, the memory consumption increases to O
(
(∆×|V |)+

(p × |E|)
)
. This increase in memory consumption limits the degree up to which multiple

graph snapshots can be processed together. As we will see in Section 4.6, we process 10

snapshots together for this reason.
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Algorithm 6 Incorporating Fetch Amortization.

1: function execute( G∆)
2: for vid ∈ get-active-vertex(G∆) do
3: vertices ← multi-fetch(vid, G∆)
4: nbrs ← ∅
5: for nid ∈

get-neighbors(vertices, G∆) do
6: nbrs ← nbrs ∪

multi-fetch(nid, G∆)
7: end for
8: for each vertex ∈ vertices do
9: old-value ← vertex.get-value( )

10: comp-value ← f (vertex, nbrs)
11: vertex.set-value(comp-value)
12: if |old-value − comp-value| > ε

then
13: activate-neighbors(vertex)
14: end if
15: end for
16: multi-store(vertices,G∆)
17: end for
18: end function

19: function main(G,∆)
20: G∆← G[0 ... ∆− 1]
21: initialize(G∆)
22: activate-vertices(G∆)
23: do
24: parallel-for all threads do
25: execute(G∆)
26: end parallel-for
27: barrier( )
28: for each Gstable ∈ G∆ with

no active vertex do
29: output-vertex-values(Gstable)
30: Gnext ← get-next-graph(G)
31: initialize(Gnext)
32: activate-vertices(Gnext)
33: G∆ ← G∆ \ {Gstable}
34: G∆ ← G∆ ∪ {Gnext}
35: end for
36: while there are

unprocessed graphs in G
37: end function

4.3.3 Vertex Activations

During execution, not all ∆ versions of the vertex may be activated to be processed

since activations are dependent on computed values which may not be same for different

versions. Hence, vertex activations for different versions need to be explicitly tracked which

is done using additional bits in the worklist that maintains active vertices. While remote

activation messages can be sent across machines as soon as they become available, multiple

activations of same vertex for different versions can also be aggregated together. Hence, we

send out the remote activation messages after all the ∆ versions of the vertex are processed,

i.e., at the end of the iteration which processes the vertex (line 15).
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While synchronous processing model requires that only active vertices in a given

iteration are processed in that iteration, asynchronous processing model relaxes this notion

and tolerates computations on vertices even when they are not activate. In this case,

activations can be tracked at vertex level which eliminates the need to maintain additional

bits in the activation work-list.

4.3.4 Convergence Detection

To quickly determine whether or not processing has converged, individual machines

either maintain a convergence flag which is set to false whenever vertices are activated to be

processed in the next iteration, or rely on checking the activation queue. This convergence

information is exchanged between machines, typically via parallel reduction, to determine

whether all machines should stop processing. Since FA processes ∆ snapshots in parallel,

we maintain a vector of convergence flags, one for each snapshot being processed, and set

a given flag to false whenever the corresponding version of any vertex is activated to be

processed. Now, instead of exchanging the convergence information using scalar reduction,

the vector-expanded convergence flags from all the machines are reduced together. Deter-

mining convergence separately for each of the ∆ snapshots allows pipelined execution of

snapshots where snapshots which are fully processed are replaced by new snapshots which

are to be processed next (lines 28-35).

4.3.5 Caching & Message Aggregation

Distributed graph processing environments typically rely on caching to make re-

mote values (vertices, etc.) locally available. When caches are used to store vertex values,
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Benchmark Overlap

PageRank 87.9 %
Single Source Shortest Path 99.3 %
Single Source Widest Path 80.2 %

Circuit Simulation 76.7 %
Heat Simulation 99.8 %
Graph Coloring 97.5 %

Table 4.6: Average % overlap of vertex values across consecutive graph snapshots of
Slashdot input.

the overall fetches from remote machines is reduced. However, this benefit does not come

for free – the cache management protocol itself generates additional messages to maintain

the data values coherent. A major part of the additional messages are invalidates with

piggy-backed updates (as in the case of ASPIRE & GraphLab). Hence, once the stores

of multiple snapshots of a vertex are aggregated by fetch amortization, the corresponding

cache protocol messages for those versions of the same vertex, going to the same destination,

are also aggregated. This reduces the overheads incurred by the caching protocol itself.

While fetch amortization can be directly incorporated in ASPIRE using the iterative exe-

cution algorithm presented in Algorithm 6, we have also integrated fetch amortization in

GraphLab, details of which will be discussed in Section 4.5.

4.4 Processing Amortization

In our SSSP example from Section 4.1.2, comparing the final results for vertices

of snapshots G1 (Table 4.1) and G2 (Table 4.2) reveals that values of vertices b, c, d, and e

are the same for both snapshots. Vertex a is the only common vertex whose result value is

not the same for the two snapshots; note vertices f and g are present only in G2. Similarly,
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on comparing the results computed for G2 (Table 4.2) with G3 (Table 4.3) we observe that

resulting values for vertices b, c, d, e, f, and g are the same.

To further confirm the above observation, we measured the average percentage of

vertex values that are found to be the same across consecutive snapshots for seven iterative

algorithms (listed in Table 4.9) on the Slashdot graph. The results in Table 4.6 show that

this is a high percentage – on an average across consecutive snapshots, over 76% of vertices

had values for a given snapshot identical to those for the previous snapshot. Hence, we

explore the following question:

Can we leverage the results (potentially partially computed) for previous graph snapshots

to accelerate processing of later snapshots?

Moreover, when we compare unstable values i.e., the intermediate results, from

step 2 in G2 (Table 4.2) with final results of G3 (Table 4.3), we observe that the values of

most available vertices in G1 (all except vertex a) are exactly same. This means, unstable

results from previous snapshots may also be used in order to accelerate processing of later

snapshots. This allows amortizing processing costs simultaneously while leveraging the first

opportunity, i.e., processing consecutive snapshots in batches by using unstable results from

previous snapshots to process later snapshots.

4.4.1 Processing Amortization via Feeding

Based upon the above observations we propose processing amortization technique

in which the computed values (from stable and unstable vertices) for a given snapshot can
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Figure 4.4: Effect of Processing Amortization.

be used to accelerate processing of the next snapshot by avoiding repeated computation

of same values. In presence of fetch amortization, when processing of a snapshot finishes,

the new snapshot which is included in the working set of snapshots being processed can be

fed from its previous snapshot (analogous to pipelined processing), which might not have

converged to its stable solution (see Figure 4.4). The advantage of doing this is twofold:

it removes redundant computations so that the needed (non-redundant) processing can be

performed sooner; and vertices stabilize faster because the computed values used from pre-

vious snapshot are already close to stability.

Processing Amortization (PA). While snapshot Gi−1 is being processed, when pro-

cessing of Gi is initiated for simultaneous processing, processing amortization feeds cur-

rent vertex values from snapshot Gi−1 into Gi as initializations to accelerate the pro-

cessing of Gi.

Algorithm 7 shows the iterative processing with processing amortization. When processing

of snapshot Gstable completely finishes (i.e., there are no active vertices), and the processing

of a new snapshot Gnext is initiated, instead of initializing vertices of Gnext to their standard

initial values, they are copied from the latest snapshot Gprev which is still being processed
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(lines 14-15). This step involves copying the entire working set which includes the follow-

ing three components: the vertex values mapped to the machines; activations for vertices;

and, any caches holding vertex values. Vertices which are active for Gprev potentially have

unstable values and hence, it is necessary to activate them for Gnext.

Note that the values that are fed from Gi−1 to Gi may not have stabilized yet

as Gi−1 is in the midst of processing (see Figure 4.4). However, as our experiments show,

this optimization yields benefits because Gi−1 has often made enough progress towards

stability that it helps accelerate Gi’s termination. On the other hand, in absence of fetch

amortization, the values fed by PA from Gi−1 to Gi are always stable.

Algorithm 7 Incorporating Process Amortization.

1: function main(G,∆)
2: G∆ ← G[0 ... ∆− 1]
3: initialize(G∆)
4: activate-vertices(G∆)
5: do
6: parallel-for all threads do
7: execute(G∆)
8: end parallel-for
9: barrier( )

10: for each Gstable ∈ G∆ with
no active vertex do

11: output-vertex-values(Gstable)

12: Gprev ← get-latest-
graph(G∆)

13: Gnext ← get-next-graph(G)
14: initialize(Gnext ← Gprev)
15: ACTIVATE-VERTICES(Gnext ←

Gprev)
16: G∆ ← G∆ \ {Gstable}
17: G∆ ← G∆ ∪ {Gnext}
18: end for
19: while there are

unprocessed graphs in G
20: end function

4.4.2 Applicability & Correctness

Even though processing amortization shows potential to accelerate evolving graph

processing, it is important to ensure that the technique guarantees correct results for each

of the graph snapshots. To better understand the set of feasible algorithms, we identify
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the characteristics of graph algorithms and then reason about correctness of each of the

algorithms considered in our evaluation.

Mutation Properties

Feeding of values across consecutive snapshots can be viewed as mutation in the

graph structure while the overall computation progresses. Hence, we study the impact of

PA on correctness of results by reasoning about the behavior of graph algorithms when the

structure of the graph is mutated, i.e., when vertices and edges are added and deleted to

progress from one snapshot to the next. Determining properties in this manner is similar

to the study performed in [13] related to incremental data flow analysis algorithms.

Note that vertex addition occurs when an edge with new end vertex is added.

Similarly, vertex deletion occurs when all its edges get deleted. Hence, we model vertex

addition/deletion via addition/deletion of its edges.

(A) Global Mutation Property: We define two properties that directly char-

acterize the results obtained by the iterative algorithms based on their behavior and the

values using which they start computing the results.

[P-INIT] Convergence to correct results is independent of vertex initializations.

[P-MONO] Intermediate results exhibit monotonic trend under a given ordering.

For algorithms exhibiting [P-INIT], when the graph structure mutates in the middle of

computation, subsequent processing operates on vertex values coming from computations

performed prior to the mutation. These values can be considered as new vertex initial-

izations using which the processing converges to stable values. This means, feeding values
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does not affect the correctness of results even when graph structure changes because the

fed values are considered as vertex initializations which do not impact correct convergence;

only the path to achieve final convergence changes by feeding different values. Hence, it

is easy to see that [P-INIT] is a sufficient condition for an algorithm to be able to use PA

correctly. However, note that [P-INIT] is not a necessary condition.

Algorithms exhibiting [P-MONO] can be reasoned about in a similar manner as

monotonic data-flow functions [13] where the algorithms aim to achieve a maximum or a

minimum fixed point based on a cost-metric. Such algorithms need to be carefully evalu-

ated to determine whether processing can recover from local maxima/minima and correctly

converge to global maxima/minima when edges are added and deleted in the middle of pro-

cessing. We illustrate such a reasoning with the Connected Components algorithm which

is based on iterative label propagation [152] as shown below.

v.value =


v.id ... when iteration = 0

min(v.value, min
e∈edges(v)

(e.other.value)) ... otherwise

The above function starts with an approximation where every vertex is in a separate com-

ponent and then iteratively merges components by picking the minimum component value

available across the vertex’s neighborhood. When edge addition occurs, the subsequent

iteration computes over the vertices of the edge which incorporate the new neighbor’s com-

ponent value. If the two vertices have different component values, [P-MONO] ensures that

the vertex with the larger value will get reassigned the smaller value from the new neigh-

bor, effects of which are propagated throughout the graph. When edge deletion occurs,
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the deleted edge can split a component into two separate components as shown in Figure

4.5a. In this case, recomputing the component value for vertex 2 incorrectly results in value

0 because its remaining neighbors, i.e., vertices 3 and 4, still exhibit the old component

values. This means Connected Components can safely leverage PA only on growing graphs,

i.e., those that evolve purely using addition of new edges.

(B) Local Mutation Property: Contrary to the above properties, we define

[P-EDGE] at the level of vertex functions.

[P-EDGE] Computation for a vertex only depends on values coming from its edges.

Algorithms exhibiting [P-EDGE] majorly compute values based on graph structure and

hence, they rely lesser on previously computed values. This allows the computation to

self-correct values and propagate the corrections throughout the graph in iterative manner.

We illustrate the effectiveness of [P-EDGE] using Single Source Shortest Paths (SSSP)

algorithm; below are two variants for expressing SSSP which correctly compute shortest

paths on a given graph snapshot.

A) v.value =



0 ... when v is source

∞ ... when iteration = 0

min(v.value, min
e∈inEdges(v)

(e.weight+ e.source.value)) ... otherwise

B) v.value =



0 ... when v is source

∞ ... when iteration = 0

min
e∈inEdges(v)

(e.weight+ e.source.value) ... otherwise
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The above functions initially set source to 0 and start with an approximation where all

vertices are unreachable from the source, i.e., the path length is ∞. Then, they iteratively

compute shorter paths for every vertex based on available shortest paths in its neighbor-

hood 1. The only difference between two variants is that while computing the new path

value, variant A considers its previous path value whereas variant B does not, i.e., variant

A does not exhibit [P-EDGE] whereas variant B does.
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(b) Single Source Shortest Paths.

Figure 4.5: Edge deletion examples.

When edge addition occurs, the target of newly added edges compute new values

and if the newly added edge results in shorter paths, both the variants compute the corrected

path, effects of which are iteratively propagated throughout the graph. When edge deletion

occurs, however, the two variants behave differently as illustrated in Figure 4.5b. Upon

deletion of edge (1, 2), variant A still incorrectly retains its shortest path as 4 (note that

simply resetting its value to ∞ does not resolve the issue because of the back-edge from

vertex 3). Variant B, on the other hand, corrects its path value to 10 (0 → 5 → 2) due to

[P-EDGE]. This means, variant A can safely leverage PA only on growing graphs whereas

variant B can do so on evolving graphs which include deletion of edges too.

1Edge weights are positive for path problems.
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Algorithm Vertex Function

PR v.rank ← 0.15 + 0.85×
∑

e∈inEdges(v)

e.source.rank

SSSP v.path← min
e∈inEdges(v)

(e.source.path+ e.weight)

GC

conflict← ∨
e∈edges(v)

((v.color = e.other.color) and (v.id < e.other.id))

decrease← true if ∃c < v.color s.t. ∀e∈edges(v)(e.other.color 6= c)
if conflict = true or decrease = true then:

v.color ← c : where ∀e∈edges(v)(e.other.color 6= c)

HS v.value←

∑
e∈inEdges(v)

C1×e.source.value+C2

|inEdges(v)|

SSWP v.path← max
e∈inEdges(v)

(min(e.source.path, e.weight))

CS v.value←

∑
e∈inEdges(v)

e.weight×e.source.value∑
e∈inEdges(v)

e.weight

Table 4.7: Various vertex-centric graph algorithms.

It is interesting to note that [P-EDGE] is neither a necessary nor a sufficient

property to guarantee correctness of results when using PA. However, it is important to

reason about [P-EDGE] because it defines a subset of vertex algorithms for which PA may

be safely used.

Correctness of Algorithms

Using the properties described above, we now study each of our benchmark algo-

rithms considered in our evaluation (listed in Table 4.9) to discuss about their correctness

while incorporating PA. Table 5.3 shows the vertex functions for each of the algorithms

(vertex initializations are eliminated for simplicity).

(A) Shortest & Widest Paths:

Our Single Source Shortest Paths (SSSP) algorithm is the variant B from the above discus-

sion that exhibits [P-EDGE]. As discussed above, it can safely leverage PA. Single Source
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Widest Paths (SSWP), similar to SSSP, exhibits [P-EDGE]. However as discussed above,

[P-EDGE] is not a sufficient condition to guarantee correctness while using PA and hence,

we will see that edge deletions can impact the correctness of results of SSWP. When edge

addition occurs, the target vertex recomputes its value based on the available edges and the

newly added edge can increase the fed path value (due to monotonic nature of max), which

is further observed by its neighbors to be propagated throughout the graph. Hence, correct

results are guaranteed when PA is used with edge additions. However, when edge deletion

occurs, the target vertex can incorrectly compute its path value to be same as the fed value

from an alternate path which previously passed through itself, disallowing the vertex to step

out of its previous approximation. Note that this does not occur in SSSP because positive

edge weights ensure that such incorrect cyclic feeding does not occur. Hence, we evaluate

PA on SSWP with growing evolving graphs (i.e., allowing edge additions only).

(B) Graph Coloring:

Graph Coloring (GC) is an interesting algorithm which effectively corrects vertex color val-

ues based on the neighbors values. In particular, when edge addition occurs, if the new

neighboring vertices have the same color values, the vertex with the lower id updates its

value to a new color value based on its neighbors, effects of which iteratively propagate

throughout the graph. When edge deletion occurs, the neighboring vertices are reset to

default color values (to guarantee minimality) and recomputed to receive new color values

based on the remaining neighborhood. Hence, even after structural mutations are observed

across snapshots, the fed incorrect values are treated as initializations using which correct

coloring solution is computed, i.e., GC exhibits [P-INIT] allowing PA to be safely used.
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(C) PageRank, Heat Simulation, Circuit Simulation:

It is well known that for algorithms like PageRank (PR), the initial vertex values do not

matter [37], i.e., they exhibit [P-INIT]. This allows PR to safely leverage PA. Similarly, both

Circuit Simulation (CS) and Heat Simulation (HS) do not require vertex initializations ex-

cept for their source/ground vertices which are not computed upon during processing; hence,

they also exhibit [P-INIT] and can safely incorporate PA while processing.

Beyond the set of benchmarks considered in our evaluation, we studied many dif-

ferent vertex programs in order to ensure applicability of PA. Various algorithms including,

but not limited to, K-Means, Wave Simulation, Reachability, Maximal Independent Set,

Triangle Counting, NumPaths, BFS, and Diameter can safely incorporate PA, ensuring its

wider applicability.

4.5 Graph Processing Systems

The amortization techniques proposed in this work are independent of any spe-

cific graph processing system (and its internals) that can process a given graph snapshot

at a time. Various graph processing systems have been developed across different process-

ing environments, some of which include Pregel [86], GraphLab [85] [44], ASPIRE [129],

GraphX [45] and GraphChi [73]. To evaluate the efficacy of our proposed techniques, we

incorporate our amortization techniques in two of those systems, namely GraphLab and AS-

PIRE. We briefly discuss these two frameworks and how we incorporate the amortization

techniques to process evolving graphs 2.

2Details about system runtime, caching, programming, performance numbers, etc. for each of the frame-
works can be found in their respective publications.
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4.5.1 ASPIRE

ASPIRE [129] uses an object based DSM where the objects (vertices and edges)

are distributed across the cluster such that there is exactly one global copy of each object in

the DSM. The machine-level caches are kept coherent using a directory based protocol which

provides strict consistency [46]. Since the vertex values are usually small, invalidates are

piggy-backed with the updated data. Other standard optimizations like Work Collocation

(or locality in [30]) and Message Aggregation (similar to bulk transfer in [80]) are enabled.

The graph is partitioned across machines to minimize edge-cuts for reducing com-

munication using the well-known ParMETIS [62] partitioner. The runtime holds a flag per

vertex indicating whether a vertex is active for the next iteration. For a particular vertex,

the programmer can determine whether to activate neighbors on out-going, in-coming, or

both edges. After each iteration, a check is made to see whether computation for a graph

snapshot is complete. If not, the activation vectors are exchanged between the machines so

that each machine aggregates the vertices it needs to work on in the next iteration. Before

starting the next iteration, a check is made to ensure that all the invalidates have been

acted upon. This guarantees that updated values are visible and correctly used in the next

iteration.

In order to incorporate FA, we take advantage of ASPIRE’s single-writer model

by having the same thread process multiple snapshots of the same vertex at the same time.

This allows remote fetches, stores and all the cache protocol messages to be automatically

aggregated across multiple snapshots of same vertices. To transfer objects to and from the

DSM, the runtime provides DSM-Fetch, DSM-MultiFetch and DSM-Store, DSM-MultiStore
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APIs. This hides the internal details of the runtime and allows parallel algorithms to directly

execute over the DSM.

4.5.2 GraphLab

GraphLab [85] [44] is a popular distributed graph processing framework which pro-

vides shared memory abstractions to program over a distributed environment. It provides

synchronous and asynchronous engines to process the graph and allows users to express com-

putations in gather-apply-scatter (GAS) model. Similarly to ASPIRE, boundary vertices

are cached (named as ghost vertices) on different machines to make them locally available

and the graph is partitioned using a balanced p-way partitioning strategy to minimize cuts

and balance computation.

Since processing is done on a set of machines, FA is used to tolerate network

latencies especially for ghost vertices, which need to be continuously synchronized. This is

done by vectorizing the vertex values and updating the vertex functions to process multiple

versions of same vertex. PA is incorporated by feeding values from the most recent snapshot

to the next snapshot; we only allow this feeding when all the executing snapshots become

stable because GraphLab prevents dynamic changes to all vertex values and graph structure

while the engine is processing.

4.5.3 Other Graph Processing Frameworks.

Incorporating both amortization techniques in various graph processing frame-

works requires knowledge about their processing engines and how computations are ex-

pressed (vertex centric, edge centric, etc.). This is because different frameworks are de-
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Evolving Graph V E

Twitter-25 [17] 8.4B 25.5B
Delicious-100 [31] 1.6B 15.2B

DBLP-100 [79] 92.7M 963.8M
Amazon-100 [81] 144M 299.8M
StackEx-100 [117] 27.6M 70.7M
Epinions-100 [88] 9.4M 47.5M
Slashdot-70 [43] 2.1M 7.5M

Table 4.8: Real-world evolving graphs taken from KONECT [70] repository for
experiments.

Benchmark Type

PageRank (PR)
Graph

Analytics &
Mining

Single Source Shortest Path (SSSP)
Single Source Widest Path (SSWP)

Graph Coloring (GC)
Circuit Sim. (CS)

PDE
Heat Sim. (HS)

Table 4.9: Benchmark programs used in experiments.

veloped in order to exploit different processing environments and hence, they operate in

different manner. However, we identify two simple techniques which can be easily used to

incorporate both transformations in a new processing framework.

For FA, the values associated with graph structure (vertices and edges) can be

vectorized to hold multiple versions in order to allow simultaneous processing of multiple

snapshots. Also, the user defined processing function for a given algorithm can be vectorized

so that it operates over a vector of vertex/edge values instead of traditional scalar values. For

PA, the simplest technique is to orchestrate pipelined batch processing of graph snapshots

by invoking the processing engine multiple times, each time using values from previous

results. However, in order to fully leverage PA, the processing engine itself needs to be

modified so that it becomes aware of this pipelined processing technique and feeding of

values occurs internally as soon as processing of any graph snapshot ends.
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4.6 Experimental Evaluation

4.6.1 Experimental Setup

Real-world Datasets. Our experiments use real-world evolving graphs taken from

the KONECT [70] repository. Table 4.8 lists the input data sets and their sizes that range

from 25.5 billion to 7.5 million edges. Similar to as in [49], we develop snapshots by first di-

viding the entire evolution into half; the first snapshot is this midpoint and then subsequent

snapshots are created by batching the remaining edge additions and deletions. The num-

ber of snapshots is included in each input’s name in Table 4.8. We also create a synthetic

graph called StackEx+D to simulate edge deletions using StackEx. In this case, the edges

to be deleted are randomly selected from a given graph snapshot and the next snapshot is

constructed using equal number of edge deletions and additions.

Benchmarks. To evaluate our techniques, we use a wide range of modern applica-

tions (as listed in Table 4.9) that belong to important domains such as scientific simulation

and social network analysis. These applications are based on the vertex centric model where

each vertex iteratively computes a value (e.g., colors for GC, ranks for PR [94], and short-

est paths for SSSP) and the algorithm terminates when values become stable, i.e., all the

algorithms were run fully until completion.

System. The experiments were run on a 16-node cluster running CentOS 6.3, Ker-

nel v2.6.32 with each node having two 8-core Xeon E5-2680 processors (16 cores) operating

at 2.7GHz and 8X4GB (32 GB) DDR3-1600MHz memory. The nodes are connected via

56Gbit/s FDR InfiniBand interconnect.
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The first set of performance results (i.e., entire Figure 4.6) are averaged (arithmetic

mean) across 10 runs and since the observed deviation was typically less than 2%, the

remaining results are averaged across 3 runs.

4.6.2 Performance of FA & PA in GraphLab/ASPIRE

We evaluate the benefits of the proposed techniques in distributed systems, AS-

PIRE and GraphLab 3, by comparing the performance of the following versions of the

benchmarks:

• GraphLab/ASPIRE is the original version that does not employ our amortization

techniques.

• FA is the version in GraphLab/ASPIRE that employs fetch amortization.

• PA is the version in GraphLab/ASPIRE that employs processing amortization.

• FA+PA is the version in GraphLab/ASPIRE that employs both techniques.

We carried out this performance comparison using all six benchmarks in ASPIRE

and three benchmarks in GraphLab – PR, SSSP, and SSWP. For FA and FA+PA, we choose

the number of snapshots to be simultaneously processed (∆) to be 10 (more experiments

with varying ∆ are further presented in Section 4.6.4.). Since ParMETIS requires high

amount of memory to partition very large graphs, we ran ASPIRE with first 40/20 snapshots

for DBLP/Delicious graphs and do not evaluate using the Twitter-25 graph. GraphLab’s

synchronous engine outperforms its asynchronous engine in all cases and hence, we report

the times obtained from its synchronous engine.

3We used the latest available version of GraphLab (v2.2).
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Figure 4.6 and Figure 4.7 show the speedups achieved by FA, PA, and FA+PA

when incorporated in GraphLab and ASPIRE respectively. On an average, FA in GraphLab

achieves 5.2× speedup over original GraphLab and further addition of PA yields additional

2× speedup over FA in GraphLab. Similarly, on an average, adding FA to ASPIRE yields

a speedup of 4.06× over the original version of ASPIRE and further addition of PA results

in additional 7.86× speedup over FA alone.
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(a) Speedups by FA.
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(b) Speedups by PA.
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(c) Speedups by FA+PA.

Figure 4.6: Speedups achieved by FA, PA, and FA+PA in GraphLab. The execution times
(in sec) for PR/SSSP on original version of GraphLab (Baseline) are: 4,117/2,900 for

Twitter-25 and 7,148/1,490 for Delicious-100.
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Figure 4.7(b)(d)(f) show the reduction in remote fetches and vertex computations

performed when amortizations are enabled. Overall, the speedups achieved by the amorti-

zation techniques vary across the benchmark-input combinations. However, it is interesting

to note that the improvement from FA is usually higher for SSSP and SSWP than for

PR even though the remote fetches saved by FA are more for PR than both SSSP and

SSWP. On an average, FA in ASPIRE gives 4.3/4.4× speedups over the original versions

for SSSP/SSWP whereas for PR the corresponding speedup is 3×. This is because PR is

more compute-intensive compared to SSSP and SSWP; hence, even though reductions in

remote fetches are higher for PR, vertices take more time to stabilize to their final values

for PR compared to SSSP and SSWP, leading to more work to be done in each intermediate

iteration. Similarly, speedups for HS are lower with PA compared to those with FA. This is

because HS is more sensitive to structural changes in the graph and hence, the fed values are

less useful, causing fair amount of work to be performed (as can be seen in Figure 4.7(d))

to reach stability.

It is interesting to observe that in GraphLab, FA+PA performs better than PA

whereas the trend is reverse in ASPIRE on large graphs. This is due to the fundamental

difference in how the remote vertex values are locally maintained in these two systems.

In FA+PA, when a new snapshot gets included to be processed with the other snapshots,

vertex values for the new snapshot get fed from the previous snapshot. In ASPIRE, this

change in value is reflected on remote machines in the subsequent iteration (immediately

after the inclusion of the new snapshot) when the values are accessed, which causes the

computation to wait for the changed values to become available. For PA, on the other
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(b) Remote fetches by FA.
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(c) Speedups by PA.
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(d) Vertex Computations by PA.
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(e) Speedups by FA+PA.
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(f) Remote fetches by FA+PA.

Figure 4.7: Speedups achieved by FA, PA, and FA+PA in ASPIRE (a,c,e); Reduction in
Remote Fetches for FA, Vertex Computations for PA, and Reduction in Remote Fetches

for FA+PA over FA (b,d,f). The execution times (in sec) for PR/SSSP on original version
of ASPIRE (Baseline) are: 16,245/7,244 for Delicious-20 and 9,282/2,340 for DBLP-40.
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hand, the fed values are the same and hence, remote machines already have correct values

in their software caches when processing of the new snapshot begins. The above behavior

does not occur in GraphLab because remote vertex values are kept consistent with local

copies as soon as new edges get added since they represent computation dependences.

We achieve consistent speedups across all inputs, including both with and without

edge deletions. On StackEx+D-100 (which includes edge deletions), on an average, FA in

GraphLab and ASPIRE gives 3.6× and 3.2× speedups respectively over their original ver-

sions and further addition of PA achieves additional speedups of 1.8× and 7.9× respectively.

No data is provided for PA and FA+PA for SSWP on StackEx+D-100 because PA is not

applicable on SSWP in the presence of edge removals.

While Figure 4.6 reports the overall speedups, we also separated the processing

times from the evolving graph management times. When only the processing times are

considered, on an average, FA speeds up processing by 5.3× in GraphLab while PA achieves

additional speedups of 2.6×.

Note that simultaneously processing too few graph snapshots fails to fully realize

the benefits of FA while processing excessive numbers of graph snapshots can also lead to

suboptimal performance. Simultaneously processing too many graph snapshots causes many

vertices to be active even though only some of the snapshots of those vertices are active. This

delays processing for a given snapshot because different snapshots of other vertices need to

be processed. Therefore the number of graph snapshots that are simultaneously processed

is a parameter that must be tuned for a given distributed environment. As discussed in

Section 4.3.1, the degree up to which multiple graph snapshots can be processed together
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is bound by available memory. Based upon our experiments by varying the number of

snapshots that are simultaneously processed we found that simultaneously processing 10

snapshots gives good performance overall. Therefore the experimental data reported above

used these settings when running FA and FA+PA.

From the results we observe that amortization optimizations are very effective as

they significantly improve the performance of both GraphLab and ASPIRE. The results for

FA clearly show the need to tolerate communication latencies by amortizing fetches in both

GraphLab and ASPIRE; the results for PA clearly show that amount of computation is

significantly reduced by feeding values across snapshots.

4.6.3 Sensitivity to Cache Size

Both caching and amortization optimizations reduce remote fetches. Hence, it is

important to study their interplay and how the benefits achieved from the amortization

techniques are affected when caching is available in the system. To study how the benefits

of amortizations vary with caching, we experiment using ASPIRE and vary the machine-

level software cache sizes to be 100%, 10%, 5%, 1% of the number of vertices as well as

when no cache is used. The ASPIRE runtime incorporates machine-level caches to make

the remote vertices locally available for processing. The cache coherence protocol provides

strict consistency [46] and cache invalidates are piggy-backed with updated vertex values.

Since earlier we observed that the benefits achieved from FA and PA are similar

across all inputs, we now select one of the inputs (Slashdot) to further perform this sensi-

tivity study in detail. Finally, we ran all six applications in Table 4.9 for each configuration.
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Figure 4.8: Effect of varying cache size on FA, PA and FA+PA (a,c,e); Remote fetches
saved by FA,PA and FA+PA (b,d,f)
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From Figure 4.8a, we first observe that, although both caching and FA can reduce

remote fetches, they complement each other quite well. Consider the case where the cache

size is 100%. When FA uses 10 snapshots plus caching, it provides speedups ranging from

2.35× to 5.92× over the ASPIRE Baseline 4 with caching enabled. For the 10%, 5% and

1% cache size, the corresponding speedups range from 2.79× to 5.32×, 4.32× to 6.39×

and 5.5× to 7.7×. In other words, FA provides substantial speedups beyond caching by

reducing remote fetches. The main reason for these speedups is the significant number of

remote fetches saved by FA (shown in Figure 4.8b); as cache size decreases from 100% to 0%,

the average savings increase from 54% to 82%. It is interesting to note that the speedups

with FA are higher with 1% compared to other cases which is due to the inefficiency of the

small cache which provides higher miss-rate; on an average, cache with size 1% provides

84.56% miss-rate compared to 34.78% to 10.12% miss-rate provided by caches with size 5%

to 100%. Hence, the overheads of maintaining smaller cache of 1% size effectively enables

larger scope for savings which are captured by FA.

Alternatively, we also find that the 10% cache size is enough to capture most

of the benefits of caching — further increasing the cache size from 10% to 100% would

reduce the average miss rates only from 14.82% to 10.12% for the Baseline algorithm. The

corresponding average speedups of FA plus caching over Baseline plus caching increase from

3.7× to 3.8× as the cache size decreases from 100% to 10%; moreover, this 10× increase

in cache size does not yield much additional benefits. Note that the 5% cache size, on the

other hand, is not enough to capture benefits comparable to that with the 10% cache size.

4Baseline refers to the ASPIRE version without FA and PA.
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The average hit rate for the Baseline algorithm with the 5% cache size is 34.78%, and hence,

the average speedups of FA plus caching over Baseline plus caching increase to 5.12×.

Figure 4.8c shows the speedups achieved by PA with varying cache sizes. The

speedups increase with increase in cache sizes; this is mainly because of the elimination of

redundant computations by PA which makes the computation more communication bound,

allowing larger caches to provide more speedups by saving more remote fetches (shown in

Figure 4.8d). Again, the overheads of smaller cache with size 1% along with higher miss-rate

reduces the speedups achieved compared to other cases.

Finally, as seen in Figure 4.8e FA+PA provides highest speedups with different

cache sizes mainly because of the very high amount of remote fetches saved (as shown in

Figure 4.8f) by both the amortization strategies.

4.6.4 Sensitivity to number of snapshots (∆)

We also varied the number of snapshots processed simultaneously, i.e., ∆ from one

to twenty. As discussed in Section 4.3.1, the degree up to which multiple graph snapshots

can be processed together is bound by available memory. Hence, we do not go beyond

simultaneously processing 20 snapshots. We again select Slashdot and use all six bench-

marks to perform this sensitivity study. In the first set of experiments, we disabled the

machine-level caches to decouple the effects of caching from our amortization techniques.

Later, we enabled the machine-level caches and vary both, the number of snapshots and

the cache sizes, to study the interplay between them.
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(b) Speedups by FA+PA.
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(c) Remote fetches by FA.
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(d) Vertex Computations by FA+PA.

Figure 4.9: Effect of varying ∆ on FA (a) and FA+PA (b); Reduction in Remote Fetches
for FA (c); and Increase in Vertex Computation for FA+PA (d).

The effects of varying ∆ on the overall performance are shown in Figure 4.9.

Clearly, our approach scales well with the number of snapshots. Figure 4.9a shows that as

∆ increases, the benefits of FA show up. The reduction in remote fetches achieved by FA

in those cases is shown in Figure 4.9c; as we can see, the speedups are mainly achieved due

to this reduction.

It is interesting to note that bulk of the reduction in remote fetches is achievable

when ∆ = 8. Hence, we observe nearly linear speedup for FA up till ∆ = 8. Beyond ∆ = 8,

some benchmarks exhibit saw-tooth trend where the benefits of increasing ∆ by small steps
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are not clearly visible. The reason for this is the decline in reduction of remote fetches for

corresponding intermediate ∆ steps beyond ∆ = 8 which can be seen in Figure 4.9c.

Figure 4.9b shows the benefits achieved by FA+PA with increase in ∆. As we

already know, PA eliminates redundant computations and FA with increased ∆ reduces

the overall remote fetches performed. It is interesting to note from Figure 4.9d that as ∆

increases, the amount of processing required increases compared to PA with ∆ = 1.
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Figure 4.10: Effect of varying ∆ for different cache sizes on FA (a) and FA+PA (b).

This is mainly because for ∆ > 1, unstable values are fed across snapshots, and

these unstable values are further away from the final values for new snapshots, hence requir-

ing more work to stabilize these newly fed snapshots. However, this increase in processing is

overshadowed by savings in remote fetches, hence resulting in an overall increase in speedups

with increase in ∆. Note that the speedups for GC nearly flatten-out for higher ∆ values

because of the high impact of structural changes across snapshots which are far apart in

evolution resulting in more color changes across the graph.

136



Finally, Figure 4.10a and Figure 4.10b show the execution times for PR for varying

∆ with different cache sizes on FA and FA+PA respectively, normalized w.r.t. ∆ = 1

without PA. As we can see, the performance benefits are achieved in all cases with different ∆

and cache size combinations. As expected, increasing ∆ reduces the overall execution time;

again, majority of performance benefits are achieved when ∆ is increased up to a certain

point, after which, lesser additional benefits are seen – in particular, while the performance

continues to improve beyond ∆ = 8-10, the improvement is not significant. This means, the

difference in execution times for higher values of ∆ is very less and hence, we can achieve

majority of the performance benefits from our techniques without determining the ideal ∆

value for each of the cache sizes.

4.6.5 Sensitivity to similarity in snapshots

While PA is useful to eliminate redundant computations by feeding values across

snapshots, we study its effectiveness when consecutive graph snapshots are made struc-

turally dissimilar. In this experiment, we vary the percentage of overlapping edges, i.e.,

edges that are same, across consecutive snapshots from 90% (high overlap) to 50% (low

overlap) and measure the speedups achieved by PA with and without FA (∆ = 10). We

again select Slashdot and use all six benchmarks to perform this sensitivity study. Since we

are interested in effectiveness of the amortization strategy itself, we enabled machine-level

caches to hold the required remote vertices on each machine.

The effects of varying the percentage of overlapping edges are shown in Figure 4.11.

As we can see, PA accelerates the overall processing in all cases; even if consecutive snapshots
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Figure 4.11: Effect of varying the overlap across consecutive snapshots on PA and FA+PA.

are structurally dissimilar by up to 50%, feeding of values provides a better initialization by

eliminating redundant computations and hence, convergence is achieved faster. As expected,

the speedups increase with increase in structural overlap mainly because the fed values are

more close to final results and hence, require lesser computation. The speedups do not

increase as clearly for PR and GC as those compared to SSSP, SSWP, CS and HS when
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the overlap increases from 50% to 90%. This is because the number of remote fetches

performed by PR and GC without the amortization techniques is high enough to minimize

the difference between relative reduction achieved using the amortization techniques as

similarity varies.

4.6.6 Comparison with Chronos

Table 4.10 highlights the differences between our amortization techniques and

Chronos [49]. While Chronos incorporates batch scheduling and incremental processing,

it is designed to improve the L1 data cache and last level cache performance in a shared

memory environment. As shown in [49], the benefits are lower in a distributed setting (an

average speedup of 4.06×) mainly because it is constrained by the network overheads. Our

amortization techniques on the other hand collectively reduce the network overheads and

provide average speedups of 28.9× and 10.3× in ASPIRE and GraphLab.

Aspect Chronos Amortization Techniques

Temporal Layout
Enhance locality for Expose structural similarity to
cache performance aggregate remote fetches

Snapshots Static Dynamic
Batch Processing Fixed batching Variable batching using pipelining
Feeding Unstable Values Absent Present
Message Aggregation Absent Present

Table 4.10: Amortization Techniques v/s Chronos.

Since Chronos itself is a temporal graph processing system, we directly compare

the performance of PA with the incremental processing (IP) technique. In presence of FA,

IP is performed by feeding stable values from the most recent snapshot in the previous

batch to all the snapshots in the next batch. This requires Chronos to wait for all the
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snapshots in the previous batch to finish before the next batch can begin execution. PA, on

the other hand, enables faster processing by feeding unstable (partially computed) values

which are available from the most recent snapshot. This allows the batch of snapshots being

processed to be dynamically adjusted as snapshots finish processing, eliminating the need

to stall processing of future snapshots.
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Figure 4.12: Execution times for PR using FA+PA normalized w.r.t. FA+IP.

We incorporated IP in ASPIRE by processing snapshots batch after batch so that

only final results from the most recent snapshots in the previous batch are fed to all the

snapshots in the next batch. Figure 4.12 shows the execution times for PR using FA+PA

normalized w.r.t. that using FA+IP across multiple evolving graphs created from StackEx

input by varying the number of edge updates required to determine new snapshots. On

an average, FA+PA performs 16.5% faster than FA+IP mainly because PA does not stall

processing of snapshots which allows those snapshots to be computed in parallel as other

snapshots are being processed.
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4.7 Summary

In this chapter, we leveraged the asynchrony to accelerate evolving graph process-

ing using two optimizations. Fetch Amortization reduces remote fetches by aggregating

similar messages that get exposed due to computation reordering. Processing Amortization

accelerates termination of iterative algorithms by carefully using incremental computations.

Our experiments with multiple real evolving graphs and graph algorithms on a 16-node clus-

ter demonstrate that, on average fetch amortization speeds up the execution of GraphLab

and ASPIRE by 5.2× and 4.1× respectively. Amortizing the processing cost yields addi-

tional average speedups of 2× and 7.9× respectively. In the next chapter, we will consider

another case of dynamic graphs, called streaming graphs, and develop techniques based on

the incremental computation strategy to process them efficiently.
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Chapter 5

Streaming Graph Processing

In the previous chapter we saw how evolving graphs can be efficiently processed

using computation reordering and incremental computation techniques. In this chapter, we

will focus on another scenario involving dynamic graph processing, namely streaming graph

processing. To provide timely responses to online data analytic queries, streaming graph

processing incorporates continuous computation over dynamic graphs as their structure

keeps on changing. This means, there are no distinct graph snapshots to be processed as in

evolving graphs; however, a single graph whose structure keeps on changing rapidly needs

to be processed efficiently to compute results for the most updated graph structure.

In this chapter, we will exploit the algorithmic asynchrony to develop an incre-

mental processing technique so that computations can benefit from previously calculated

results. However, näıvely using incremental computation can impact: a) the correctness of

the solution; and, b) the performance of the overall processing. Hence, we will develop a

dynamic dependence based incremental processing technique that efficiently computes query

results while simultaneously providing 100% correctness guarantees.
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The need to analyze streaming graphs has led to the development of systems

such as Tornado [112] and others. The core idea of these systems is to interleave iterative

processing with the application of batches of updates to the graph. The iterative processing

maintains an intermediate approximate result (intermediate for short) of the computation

on the most recent version of the graph. When a query arrives, the accurate result for

the current version of the graph where all batched updates have been applied is obtained

by performing iterative computation starting at the intermediate results. In other words,

computations at the vertices with edge updates are performed directly on their most recent

intermediate values computed before the updates arrive. This style of processing leverages

incremental computation to achieve efficiency. The intuition behind it is straightforward:

the values right before the updates are a better (closer) approximation of the actual results

than the initial vertex values and, hence, it is quicker to reach convergence if the computation

starts from the approximate values.

Problems

However, the above intuition has an implicit assumption that is often overlooked: an in-

termediate value of a vertex is indeed closer to the actual result than the initial value even

when the graph mutates. We observe that this assumption always holds for strictly growing

graphs if the graph algorithm performs a monotonic computation (e.g., SSSP, BFS, Clique,

label propagation algorithms, etc.), because adding new edges preserves the existing graph

structure on which intermediate values were computed. However, if graph is mutated via

edge deletions, the graph structure changes may break monotonicity and invalidate the

intermediate values being maintained.
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Figure 5.1: Three different scenarios w.r.t. the use of intermediate values after an edge
update.

Figure 5.1 depicts three scenarios w.r.t. the use of approximate results in the pro-

cessing of streaming graphs. Since we focus on monotonic graph algorithms, each spectrum

shows the unidirectional change of vertex values. Let us examine how the computation

is impacted by the use of intermediate values. In Figure 5.1(a), the intermediate result

is between the initial value and the final accurate result. This scenario is a valid use of

intermediate result because it is closer to the final result than the initial value. Performing

monotonic computations on a strictly growing graph falls in this category.

Figure 5.1(b), however, shows an opposite scenario where the final result is between

the initial and the intermediate values. An edge deletion may fall into this category. To

illustrate this situation, consider a path discovery algorithm where the intermediate path

computed before the deletion (i.e., intermediate result) no longer exists and the new path

to be discovered (i.e., final result) is “worse” than the intermediate path. If the algorithm

144



only updates the vertex value (i.e., path discovered) when a new “better” path is found,

the algorithm will stabilize at the non-existent old path and converge to an incorrect result.

Figure 5.1(c) shows a slightly different scenario than Figure 5.1(b) where the al-

gorithm, despite being monotonic, is also self-healing. In this case, the computation goes

“backward” after an edge deletion and finally stabilizes at the correct result. However,

starting the computation at the intermediate result is clearly unprofitable. It would have

taken much less effort to reach the correct result had the computation was restarted at the

initial value. Detailed examples illustrating these cases are presented in Section 5.1.

It may appear that the problem can be solved by always resetting the value of a

vertex to its initial value at the moment one of its incoming edges is deleted and making

its computation start from scratch. This approach would still lead to incorrect results

because computations at many other vertices are transitively dependent upon the deleted

edge; thus, only resetting the value at the deleted edge does not handle these other vertices

appropriately (Section 5.1). Resetting all vertex values solves the problem at the cost of

completely disabling incremental computation and its benefits.

Our Approach

In this chapter, we present a novel runtime technique called KickStarter that computes a

safe and profitable approximation (i.e., trimmed approximation) for a small set of vertices

upon an edge deletion. KickStarter is the first technique that can achieve safety and prof-

itability for a general class of monotonic graph algorithms, which compute vertex values by

performing selections (discussed shortly). After an edge deletion, computation starting at

the trimmed approximation (1) produces correct results and (2) converges at least at the

same speed as that starting at the initial value.
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The key idea behind KickStarter is to identify values that are (directly or tran-

sitively) impacted by edge deletions and adjust those values before they are fed to the

subsequent computation. A straightforward way to do so is to tag the target vertices of the

deleted edges and to carefully propagate the tags to the rest of graph. The values for all

the tagged vertices are reset (to the initial value) to ensure correctness.

Although tagging guarantees correctness, it is performed conservatively as it is

unaware of how the intermediate results are dynamically computed. Hence, it typically

tags vertices excessively, leaving only a small set of vertices with usable approximate values.

To overcome this drawback, KickStarter characterizes the dependences among values being

computed and tracks them as the computation progresses. However, tracking dependences

online can be very expensive; how to perform it efficiently is a significant challenge.

We overcome this challenge by making an observation on monotonic algorithms.

In many of these algorithms, the value of a vertex is often selected from one single incoming

edge, that is, the vertex’s update function is essentially a selection function that compares

values from all of the incoming edges (using max, min, or other types of comparisons) and

selects one of them as the computed value of the vertex. This observation applies to all

monotonic algorithms that we are aware of, including the eight algorithms listed later in

Table 6.1. This feature indicates that the current value of a vertex only depends on the

value of one single in-neighbor, resulting in dependences that can be efficiently tracked.

Upon an edge deletion, the above dependence information will be used first to find

a small set of vertices impacted by the deleted edges. It will also be used to compute safe

approximate values for these vertices. The detailed explanation of the dependence tracking
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Figure 5.2: Streaming graph processing.

and the trimming process can be found in Section 5.2. We have evaluated KickStarter using

four monotonic algorithms and five large real-world graphs. Our results show that Kick-

Starter not only produces correct results, but also accelerates existing processing algorithms

such as Tornado [112] by 8.5–23.7×.

The rest of the chapter is organized as follows. Section 5.1 discusses the correctness

and performance issues involved in streaming graph processing. Section 5.2 describes the

incremental processing techniques based on trimming via dynamic dependence tracking.

Finally Section 5.3 presents the experimental setup and detailed analysis of results.

5.1 Background and Motivation

In a typical streaming iterative graph processing system such as Tornado [112],

the implementation employs a main loop that continuously and iteratively processes the

changing graph to compute intermediate results for the most recent snapshot of the graph.

Figure 5.2 illustrates this processing loop. While graph update requests constantly flow

in, updates are batched (∆Si) and not applied until the end of an iteration. Upon a user
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1: function sswp(Vertex v)
2: maxPath← 0
3: for e ∈ inEdges(v) do
4: p← min(e.src.path,
5: e.weight)
6: if p > maxPath then
7: maxPath ← p
8: end if
9: end for

10: v .path ← maxPath
11: end function

1: function sssp(Vertex v)
2: minPath ←∞
3: for e ∈ inEdges(v) do
4: p← e.src.path+
5: e.weight
6: if p < minPath then
7: minPath ← p
8: end if
9: end for

10: v .path ← minPath
11: end function

(a) Single source widest path. (b) Single source shortest path.

Figure 5.3: Two path discovery algorithms.

query (for a certain property of the graph), the main loop forks a branch loop that uses

the intermediate values computed at the end of the previous completed iteration of the

main loop (e.g., σ3 in Figure 5.2) as its starting values. The branch loop then iteratively

processes the graph until convergence. The final results are returned to the user.

5.1.1 Problem 1: Incorrectness

We use a Single Source Widest Path (SSWP) example to show that näıvely using

the above algorithm in presence of edge deletions can lead to incorrect results. SSWP solves

the problem of finding a path between the designated source vertex and every other vertex

in a weighted graph, maximizing the weight of the minimum-weight edge in the path. It has

many applications in network routing where the weight of an edge represents the bandwidth

of a connection between two routers. The algorithm can be used to find an end-to-end path

between two Internet nodes that has the maximum possible bandwidth.

Figure 5.3(a) illustrates a vertex-centric implementation of SSWP. Next, we show

that, for the simple graph given in Figure 5.4(a), feeding the computation with either the
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Figure 5.4: Using either the intermediate or the initial value for vertex D leads to
incorrect results (which are underlined); the initial value for each vertex is 0.

intermediate value or the initial value in presence of deletion of edge A → D generates

incorrect results. Figure 5.4(b) reports the value of each vertex before and after deletion

when the approximate value is used (i.e., 20) for vertex D. Before the edge update, A→ D

is the key edge that contributes to the value 20 at D and G. After it is deleted, G and E

become the only in-neighbors of D. Since G’s value is still 20, D’s value is not updated; so

are the values of the other vertices. The computation stabilizes at the pre-deletion values,

generating incorrect results.

Figure 5.4(c) shows that resetting the value of D to its initial value 0 does not solve

the problem either. Clearly, despite the change, D’s value will be incorrectly updated back

due to the influence from G. The reason behind these problems is that the three vertices

B, D, and G form a cycle and the computation of their values depends on each other. Only

setting D’s value is not enough to correct the wrong influence from the other nodes.

Precisely, for a given widest path u → v, the vertex function maintains the in-

variant that v .path ≤ u.path. Hence, for a cycle v → w → ... → k → v in the graph, the

maintained invariant is k.path ≤ ... ≤ w.path ≤ v.path. Suppose the actual solution for this

entire path is u.path = v .path = w .path = k .path = m. When the edge u → v is deleted,
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the vertex function computes a new value for v using its remaining incoming edges, one of

which is k → v. At this point, v would still receive value m from edge k → v. If m is greater

than the values coming from v’s other in-neighbors, v .path will still be set to m. This is

incorrect since the value m of vertex k was originally computed from the value of v itself.

Similar incorrect behaviors can be observed for ConnectedComponents (CC) (see

Table 5.3) — if there is a cycle, all vertices in the cycle can end up having the same

component ID which would create wrong influence after edge deletions.

Motivation from Real Graphs

Figure 5.5 shows the numbers of vertices that have wrong values in the query results for

SSWP and CC on the LiveJournal and UKDomain graphs (see Table 5.2 for details of the

graphs). Edge updates are batched in our experiments. At the end of each batch, we send

a query that asks for the values of all vertices in the new version of the graph obtained by

applying the current batch of edge updates. The details of the experiment setup can be

found in Section 5.3.

The vertices that have wrong results are identified by using the results of Kick-

Starter as an oracle. Observe that the number of such vertices is noticeably high. Fur-

thermore, the inaccuracies for each batch are carried over into the main processing loop,

affecting future query results – this can be seen from the fact that there are increasing

numbers of vertices with wrong values as more queries (batches) are performed (processed).
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Figure 5.5: Numbers of vertices with incorrect results.

5.1.2 Problem 2: Degraded Performance

Consider the SSSP algorithm in Figure 5.3(b). While this algorithm produces the

correct result, it would have severe performance problem if the approximate value is used

upon the deletion of edge A → B in the graph shown in Figure 5.6(a). The deletion of

the edge renders the vertices B and C disconnected from the rest of the graph. Using the

intermediate values 6 and 8 for the forward computation would bump up these values at

each iteration (Figure 5.6(b)); the process would take a large number of iterations to reach

the final (correct) result (MAX). This is exactly an example of the scenario in Figure 5.1(c).
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Figure 5.6: While using the intermediate value for vertex B yields the correct result, the
computation can be very slow; the initial value at each vertex is a large number MAX.

5.1.3 How to Distinguish Algorithms

The above examples showed two types of monotonic algorithms, those that may

produce incorrect results and others that produce correct results but may have significantly

degraded performance in the presence of edge deletions. While the problems in both types

are caused by cycles in the graph, different algorithm implementations may lead to different

consequences (i.e., incorrectness vs. performance degradation). We observe that the key

difference between them is in their vertex update functions. In the first type of algorithms

such as SSWP, the update function only performs value selection (i.e., no computation

on the value is done). Hence, when a cycle is processed, there is a potential for a value

being propagated along the cycle without being modified and eventually coming back and

inappropriately influencing the vertex that loses an edge, producing incorrect results.

The update function of the second type of algorithms performs computation on

the selected value. For example, SSSP first selects a value from an in-neighbor and then

adds the edge weight to the value. The addition ensures that when a value is propagated
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along the cycle, it appears as a different value at the vertex via which the original value had

entered the cycle. In this case, the vertex function disallows cyclic propagation and hence,

upon deletion, it becomes impossible for the algorithm to stabilize at a wrong value. To

summarize, whether the update function of an algorithm contains actual computation can

be used as a general guideline to reason about whether the algorithm can produce incorrect

values or would only cause performance problems.

5.1.4 Correcting Approximations using KickStarter

For both the correctness and performance issues, KickStarter trims the approx-

imation such that correct results can be computed efficiently. For our SSWP example,

KickStarter generates A(∞) B(5) C(10) D(0) E(5) F(7) G(5) using which, it

would take the computation only one iteration to converge at the correct results. Similarly,

for our SSSP example, KickStarter generates A(5) B(MAX) C(MAX) which is exactly the

correct result. The detailed trimming algorithm will be presented in Section 5.2.

5.2 Trimming Approximations

This section describes KickStarter’s trimming techniques. We begin with an

overview and then discuss the algorithm.

5.2.1 KickStarter Overview

Given a graph G = (V,E), let an approximation AG = a0, a1, ..., an−1 be a set of

values for all vertices in V , i.e., ∀ai ∈ AG, ai is the value for vertex vi ∈ V and |A| = |V |.
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For an iterative streaming algorithm S, a recoverable approximation AS
G is an approximation

with which the final correct solution on G can be computed by S. A simple example of a

recoverable approximation is the set of initial vertex values, i.e., values at the beginning

of the processing. Note that due to the asynchronous nature of streaming algorithms, at

any point during the computation, multiple recoverable approximations may exist, each

corresponding to a distinct execution path leading to convergence with same correct result.

KickStarter Workflow

For monotonic streaming algorithms (e.g., SSWP), the approximation maintained in the

presence of edge additions is always recoverable. Hence, upon a query, running the com-

putation on the updated graph with the approximation before the edge addition always

generates the correct result. However, when edge deletion occurs, the approximation before

a deletion point may be irrecoverable. Thus, to generate a recoverable approximation, we

add a trimming phase right after the execution is forked (i.e., the branch loop in Figure 5.2)

for answering a user query. In this phase, the current approximation from the main loop is

trimmed by identifying and adjusting unsafe vertex values. The trimmed approximation is

then fed to the forked execution.

After the query is answered, the result from the branch loop is fed back to the

main loop as a new approximation to accelerate the answering of subsequent queries.

Technique Overview

KickStarter supports two methods for trimming. The first method identifies the set of

vertices s possibly affected by an edge deletion using a tagging mechanism that also exploits
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algorithmic insights. For the vertices in s, their approximate values are trimmed off and

reset to the initial values (e.g., a large value for SSSP and 0 for SSWP). This method

guarantees safety by conservatively tagging values that may have been affected. However,

conservative trimming makes the resulting approximation less profitable.

In the second method, KickStarter tracks dynamic dependences among vertices

(i.e., the value of which vertex contributes to the computation of the value of a given

vertex) online as the computation occurs. While tracking incurs runtime overhead, it leads

to the identification of a much smaller and thus a more precise set of affected vertices s.

Furthermore, because the majority of vertices are unaffected by edge deletions and their

approximate values are still valid, trimming uses these values to compute a set of safe and

profitable approximate values that are closer to the final values for the vertices in s.

Our presentation proceeds in following steps: Section 5.2.2 presents the first ap-

proach where trimming is performed by tag propagation; Section 5.2.3 presents the second

approach where dynamic value dependences are captured and trimming is performed by

calculating new approximate values for the affected vertices. An argument of safety and

profitability is provided in Section 5.2.5.

5.2.2 Trimming via Tagging + Resetting

A simple way to identify the set of impacted vertices is vertex tagging. This can be

easily done as follows: upon a deletion, the target vertex of the deleted edge is tagged using

a set bit. This tag can be iteratively propagated — when an edge is processed, KickStarter

tags the target of the edge if its source is tagged. The value of each tagged vertex is set

back to its initial value in the branch loop execution.
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While tagging captures the transitive impact of the deleted edge, it may tag many

more vertices than is necessary. Their values all need to be reset (i.e., the computation done

at these vertices is not reused at all), although the approximate values for many of them

may still be valid. To illustrate, consider the example in Figure 5.4. Upon the deletion of

edge A→ D, this approach will tag all the vertices in the graph, even though approximate

values for at least C and F are valid.

To further reduce the number of tagged vertices, KickStarter relies on algorithmic

insights in propagating the tag across the vertices. The intuition here is to tag a vertex

only if any of its in-neighbors that actually contributes to its current value is tagged. Since

determining where the contribution comes from requires understanding of the algorithm

itself, the developer can expose this information by providing a vertex-centric propagation

function. For example, the following function shows tagging of vertices in SSWP:

tag(v) ←
∨

e∈inEdges(v)s.t.
min(e.weight,e.source.value)=v.value

tag(e.source) (5.1)

Our insight is that in a typical monotonic algorithm, the value of a vertex is often

computed from a single incoming edge. That is, only one incoming edge offers contributions

to the vertex value. For example, in SSSP, the value of a vertex depends only on the smallest

edge value. This observation holds for all monotonic graph algorithms that we are aware of,

including the seven listed in Table 6.1. For these algorithms, the computation is essentially

a selection function that computes the vertex value by selecting single edge value.
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Algorithms Selection Func.

Reachability or()
ShortestPath, ConnectedComponents,

min()MinimalSpanningTree, BFS,
FacilityLocation
WidestPath max()

Table 5.1: Monotonic algorithms & their aggregation functions.

At the moment tagging is performed, an edge deletion has already occurred and

all its impacted values have already been computed. Here we want to understand which

edge contributes to the value of a vertex. The propagation function essentially encodes a

“dynamic test” that checks “backward” whether applying the selection on a particular edge

can lead to the value. However, since it is a backward process (e.g., that guesses the input

from the output), there might be multiple edges that pass this test. To guarantee safety, if

the source of any of these edges is tagged, the vertex needs to be tagged. This is reflected

by the ∨ (or) operator in Eq. 5.1.

Use of this technique in our example no longer tags vertices A and C. However,

while propagation functions reduce the number of tagged vertices, tagging is still a “pas-

sive” technique that is not performed until a deletion occurs. This passive nature of tagging

dictates that we must reset values for all the tagged vertices although many of them have

valid approximate values at the time of tagging — KickStarter cannot determine safe ap-

proximate values for these vertices during tagging. For example, in Figure 5.4, even though

vertex F has the correct approximate value 7, it gets tagged and then its value has to be

reset to 0. In fact, F receives the same value from two different paths: A → C → F and A

→ D → E → F . Tagging does not distinguish these paths and hence, it ends up marking

F regardless of the path the tag comes from.
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Next, we discuss an alternative mechanism that actively captures the “which neigh-

bor contributes to a vertex value” relationships, making it possible for us to compute safe

approximate values for the impacted vertices.

5.2.3 Trimming via Active Value Dependence Tracking

In this approach we employ active, “always-on” dependence tracking, regardless

when and where edge deletions occur. Through the recorded dependences, we can precisely

identify the vertices impacted by a deleted edge. More importantly, the captured depen-

dences form a data slice, following which safe approximate values can be computed. In

contrast, tagging was not active but rather turned on only when a deletion occurred and

thus it cannot compute approximate values.

Value Dependence

We first formalize a contributes-to relation ( 7→) to capture the essence of this type

of value dependences. Given two vertices u and v, u 7→ v if there is an edge from u to v and

u’s value individually contributes to the value of v. A transitive closure 7→∗ over 7→ thus

involves all transitive contributes-to relationships. Based on 7→∗, we formalize a leads-to

relation (
LT−−→) to capture the desirable transitive dependences as described above. For two

vertices u and v, u
LT−−→ v iff. (1) u 7→∗ v and (2) v 67→∗ u.

The second condition is important because it ensures that computation of v is not

based on vertices whose values were computed using v’s previous values (i.e., a dependence

cycle). Our goal is to guarantee safety: if a safe approximate value needs to be calculated

for v upon an edge deletion, the calculation must avoid the effects of v’s previous values
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by not considering any incoming neighbor u such that v 7→∗ u. It is actually a property of

a monotonic graph algorithm — to guarantee convergence, the algorithm maintains mono-

tonicity invariants across values of each vertex and values of the neighbors. For example,

computation in SSSP has the invariant that if u 7→ v, then v’s value is no smaller than u’s

value. All the algorithms listed in Table 6.1 maintain such monotonicity invariants.

Note that the leads-to relation is a subset of the set of normal flow data depen-

dences. A flow dependence, induced by a write followed by a read operating at the same

location, may or may not give rise to a leads-to relationship, since
LT−−→ is defined at a high

level over vertices of the graph.

While
LT−−→may be automatically computed by runtime techniques such as dynamic

slicing [149, 147], such techniques are often prohibitively expensive, incurring runtime over-

head that causes a program to run hundreds of times slower. Since graph algorithms are

often simple in code logic, we leverage the developer’s input to compute
LT−−→. We design

a simple API contributesTo that allows the developer to expose contribute-to (7→) re-

lationships when writing the algorithm. For example, for SSWP, the edge on which the

vertex value depends is the last edge that triggers the execution of Line 7 in Figure 5.3(a).

The developer can add an API call right after that line to inform KickStarter of this new

relationship which led to computation of the new value.

Note that we only rely on the developer to specify direct 7→ relationships, which

incurs negligible manual effort. The transitive closure computation is done automatically

by KickStarter. The freedom from dependence cycles is actually provided by monotonicity.
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Representing Leads-to Relation as Dependence Trees As individual contributes-

to relationships are profiled, these relationships form a dependence graph D = (V D, ED),

which shares the same set of vertices as the original graph G = (V,E). Each edge in D

represents a 7→ relationship and the edge set ED is a subset of E. We maintain one single

dependence graph across iterations. However, dependence profiling is not accumulative —

if a new value of a vertex is computed and it results from a different in-neighbor, a new

dependence edge is added to replace the old dependence edge for the vertex.

This dependence graph D encodes the
LT−−→ relation and has two crucial properties.

(1) It is acyclic – this follows the definition of leads-to relation which ensures that if there

is a directed path from u to v in D, then there must be no directed path from v back to

u in D. (2) Every vertex v ∈ V D has at most one incoming edge, i.e., if u 7→ v, then

∀w ∈ V D \ {u}, w 67→ v. This can be derived from the fact that the selection function only

selects one edge to compute the vertex value and the computation of a new value at the

vertex replaces the old dependence edge with a new edge.

The above properties imply that D is a set of dependence trees. Figure 5.7(a)

shows a dependence tree for the SSWP algorithm in Figure 5.4 before deletion of A→ D.

Computing New Approximate Values

Taking the set of dependence trees as input, KickStarter computes new approxi-

mate values for the vertices that are affected by deletions. First of all, KickStarter identifies

the set of vertices impacted by a deleted edge. This can be done simply by finding the sub-

tree rooted at the target vertex of the deleted edge.
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Figure 5.7: (a) Dependence tree for Figure 5.4(a) before the edge deletion; (b)-(d) trimming
reorganizes the dependence tree.

To compute values for profitability, KickStarter employs three strategies: (1) it

ignores deletions of edges which do not have corresponding dependence edges in D. This

is safe because such edges did not contribute to the values of their target vertices; (2) if

a deleted edge does have a corresponding dependence edge in D, KickStarter computes

a safe alternate value for its target vertex. While resetting the approximate value of the

vertex is also safe, KickStarter tries to compute a better approximate value to maximize

profitability; and (3) once a safe alternate value is found for the vertex, KickStarter may

or may not continue trimming its immediate children in D, depending on whether this new

approximate value disrupts monotonicity.

Since the first strategy is a straightforward approach, we focus our discussion here

on the second and third strategies.
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Finding Safe Approximate Values Given a vertex affected by a deletion, KickStarter

finds an alternate approximate value that is safe. Our key idea is to re-execute the update

function on the vertex to compute a new value, starting from the target vertex of the deleted

edge. One problem here is that, as we have already seen in Figure 5.4, there may be cycles

(e.g., B, G, and D in Figure 5.4(a)) in the actual graph (not the dependence graph) and,

hence, certain in-neighbors of the vertex may have their values computed from its own

value. This cyclic effect would make the re-execution still produce wrong values.

To eliminate the affect of cycles, KickStarter re-executes the update function at

vertex v on a subset of its incoming edges whose source vertices do not depend on v. More

precisely, we pass a set of edges e such that v 67→∗ e.src into the update function to recompute

v’s value. In Figure 5.4, after A → D is deleted, we first re-execute the SSWP function in

Figure 5.3(a) at vertex D. The function does not take any edge as input — neither G→ D

nor E → D is considered since both the values of G and E depend on D in the dependence

tree shown in Figure 5.7(a). D’s value is then reset to 0.

Determining this subset of incoming edges for vertex v can be done by performing

a dependence tree traversal starting at v and eliminating v’s incoming edges (on the original

graph) whose sources are reachable. However, such a traversal can be expensive when the

sub dependence tree rooted at v is large. Hence, we develop an inexpensive algorithm that

conservatively estimates reachability using the level information in the dependence trees.

For vertex v, let level(v) be the level of v in a dependence tree. Each root vertex

gets level 0. The tree structure dictates that ∀w : v 7→∗ w, level(w) > level(v). Hence,

as a conservative estimation, we construct this subset of incoming edges by selecting every
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edge such that the level of its source vertex u is ≤ the level of v. This approach guarantees

safety because every in-neighbor w of v such that v 7→∗ w is excluded from the set. It is

also lightweight, as the level information can be maintained on the fly as the tree is built.

When to Stop Trimming Once a safe value is found for a vertex, KickStarter checks

whether the value can disrupt monotonicity. For example, if this value is higher (lower)

than the previous vertex value in a monotonically decreasing (increasing) algorithm, the

monotonicity of the current value is disrupted, which can potentially disrupt the mono-

tonicity of its children vertices. In such a case, the resulting approximation may not be

recoverable yet because cycles in the original graph can cause the effects of the previous

value to inappropriately impact the computation at the children vertices. Hence, trimming

also needs to be done for the children vertices.

On the other hand, if the monotonicity for the current vertex is not disrupted

by the new value, the trimming process can be safely terminated because the approximate

value for the current vertex is recoverable. Since the current vertex is the only one that

contributes to the values of its children vertices, the values of the child vertices would

become recoverable during the forward graph computation. As an example, for SSWP,

if the old value for a vertex v is vold and its new value is vnew, whether to continue the

trimming process can be determined by the following rule:

continue←


true ... if vnew < vold

false ... otherwise

(5.2)
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Example As new approximate values are computed, the dependence trees are adjusted

to reflect the new dependences. Figure 5.7(b)-(d) show how the structure of the dependence

tree in Figure 5.7(a) changes as trimming progresses. First, the subset of incoming edges

selected for D, referred to as Ds, is an empty set, and hence, D’s value is reset to 0 (i.e.,

the initial value) and D becomes a separate root itself (Figure 5.7(b)) because it does not

depend on any other vertex. Since this value is smaller than its old value (20), monotonicity

is disrupted and thus D’s immediate children, E and B, need to be trimmed. Es consists

of the incoming edges from C and D. The re-execution of the update function gives E a

safe value 5, making E a child of C in the dependence tree (Figure 5.7(c)). Similarly, Bs

consists of the incoming edges from A and D. B then receives the safe value 5, making

itself a child of A in the tree (Figure 5.7(c)). Similarly, trimming continues to G, which

receives a safe approximate value 5 from B (Figure 5.7(d)).

Putting It All Together: The Parallel Trimming Algorithm Trimming can be

done in parallel on vertices since the computations involved in determining safe approximate

values are confined to a vertex and its immediate neighbors. Hence, trimming itself can be

expressed as vertex-centric computation and performed on the same graph engine.

Algorithm 8 presents the overall vertex-centric trimming algorithm. It first creates

a subset of incoming edges (Lines 2-9) which can be used to generate a safe approximate

value. Then it executes the same vertex function used to perform the actual graph compu-

tation to find a safe approximate value (Line 12). Note that when this is done, the value

dependence exposed by the developer will be captured. Finally, the old and new vertex val-
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Algorithm 8 Vertex-centric trimming algorithm.

1: function trim(Vertex v)
2: B Construct the subset of incoming edges
3: vs ← ∅
4: for e ∈ incomingEdges(v) do
5: if e.source.level ≤ v .level then
6: vs.insert(e)
7: end if
8: end for
9: incomingSet ← constructSubset(v .value, vs)

10:

11: B Find safe alternate value
12: v .newValue ← vertexFunction(incomingSet)
13:

14: B Continue trimming if required
15: continueTrim ←
16: shouldPropagate(v .value, v .newValue)
17: if continueTrim = true then
18: scheduleChildren(v)
19: end if
20:

21: v .value ← v .newValue
22: v.update(incomingSet)
23: end function

ues are used to determine whether trimming should be done to the children of the vertex.

The algorithm requires algorithmic insights which are provided by the developer using a

comparator function (Line 15). Depending upon the result of the function, the immediate

children in the dependence trees may or may not be scheduled to be processed.

Since multiple deletions can be present in the same update batch, trimming can

be performed in such a way that it starts from the highest level of the dependence tree and

gradually moves down, rather than starting at multiple deletion points which may be at

different tree levels. This way multiple trimming flows get merged into a single flow.
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5.2.4 Trimming for Performance

As shown in Figure 5.6, certain deletions can render the approximate values of the

affected vertices far away from their final results, causing the branch loop to take a long time

to converge. The trimming technique described in Section 5.2 is automatically applicable

in such cases to accelerate convergence. For example, in the case of SSSP (Figure 5.6),

since the algorithm is monotonically decreasing, our dependence based trimming will keep

trimming vertices when their new values are larger than their old values. In Figure 5.6 (a),

after A→ B is deleted, B’s value is reset to MAX since the subset of incoming edges used to

reexecute the update function at B is empty because C depends on B and thus C → B is

not considered. This significantly accelerates computation since C’s value can only be set

to MAX as well (due to the influence from B).

5.2.5 Safety and Profitability Arguments

Safety

It is straightforward to see that tagging + resetting provides safety because it resets vertex

values conservatively. For the dependence-based trimming, as long as the developer appro-

priately inserts the dependence-tracking API call into the program, all value dependences

will be correctly recorded. For monotonic algorithms that use one single incoming edge to

compute the value of a vertex, these dependence relationships yield a set of dependence

trees. When an edge is deleted, the subtree rooted at the target vertex of the deleted edge

thus includes a complete set of vertices that are directly or transitively impacted by the

deleted edge. Given this set of impacted vertices, we next show that trimming produces a

safe (recoverable) approximation.
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Theorem 5.2.1. Trimming based on value dependence trees produces a safe approximation.

Proof. We prove the safety of trimming by analyzing the set of values used for computing

the new approximations and showing that these values themselves are not unsafe approxi-

mations, that is, they are not over-approximations for monotonic increasing algorithms and

under-approximations for monotonic decreasing algorithms. Let us consider the deletion

of an edge a → b, which triggers the trimming process. We prove the theorem by con-

tradiction. Suppose the approximation produced is unsafe and let v be the vertex whose

approximate value becomes unsafe after trimming is performed. If we were to back-track

how the unsafe approximation got computed during trimming, there must be an earliest

point at which an unsafe value was introduced and propagated subsequently to v. Let c be

such an earliest vertex. Since c’s value was safe prior to the deletion of a→ b but it became

unsafe afterwards, c is dependent on a→ b. This means b
LT−−→ c, and now, c

LT−−→ v.

In this case, prior to the edge deletion, the dependence relationship b
LT−−→ c must

have been captured. When the deletion occurs, the trimming process considers the entire

subtree rooted at b in the collected dependence trees, which includes the path from b to

c. Our algorithm computes a new value for c if its predecessor’s value changes against the

monotonic direction. This leads to the following two cases:

Case 1 — The value of c’s predecessor indeed changes against monotonicity. In this case,

c’s value is recomputed. As described earlier, only those incoming values that are not in

the subtree rooted at c are considered for computing c’s new value, which ensures that all

the vertices whose values were (directly or indirectly) computed using c’s old value do not

participate in this new computation. The incoming values selected for computation must
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Graphs #Edges #Vertices

Friendster (FT) [40] 2.5B 68.3M
Twitter (TT) [17] 2.0B 52.6M

Twitter (TTW) [72] 1.5B 41.7M
UKDomain (UK) [11] 1.0B 39.5M
LiveJournal (LJ) [5] 69M 4.8M

Table 5.2: Real world input graphs.

have safe approximation themselves because c is the earliest vertex whose approximation

became unsafe. Hence, using safe, but fewer, incoming values for c can only lead to a safe

approximate value for c due to mononicity (e.g., a value higher than the accurate value in

a decreasing monotonic algorithm).

Case 2 — The value of c’s predecessor does not change against monotonicity. In this case,

c’s old approximate value is already safe w.r.t. its predecessor.

Combining Case 1 and 2, it is clear to see that there does not exist any vertex c

whose value can become unsafe and flow to v in our algorithm. Simple induction on the

structure of the dependence tree would suffice to show any vertex v’s value must be safe.

Profitability

It is easy to see that any safe approximate value is at least as good as the initial value.

Since the value already carries some amount of computation, use of the value would reuse

the computation, thereby reaching the convergence faster than using the initial value.
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Algorithm Issue vertexFunction

SSWP Correctness v .path ← max
e∈inEdges(v)

(min(e.source.path, e.weight))

CC Correctness v .component ← min(v .component , min
e∈edges(v)

(e.other .component))

BFS Performance v .dist ← min
e∈inEdges(v)

(e.source.dist + 1)

SSSP Performance v.path← min
e∈inEdges(v)

(e.weight+ e.source.path)

Table 5.3: Various vertex-centric graph algorithms.

Algorithm shouldPropagate

SSWP newValue < oldValue
CC newValue > oldValue

BFS newValue > oldValue
SSSP newValue > oldValue

Table 5.4: shouldPropagate conditions.

5.3 Evaluation

This section presents a thorough evaluation of KickStarter on real-world graphs.

5.3.1 Implementation

KickStarter was implemented in the ASPIRE [129] distributed graph processing

system. The graph vertices are first partitioned across nodes and then processed using a

vertex-centric model. The iterative processing incorporates a vertex activation technique us-

ing bit-vectors to eliminate redundant computation on vertices whose inputs do not change.

LJ UK TTW TT FT

SSWP
RST 7.48-10.16 (8.59) 81.22-112.01 (90.75) 94.18-102.27 (99.28) 170.76-183.11 (176.87) 424.46-542.47 (487.04)
TAG 11.57-14.71 (13.00) 1.73-62.1 (21.42) 27.38-125.91 (71.26) 262.88-278.42 (270.29) 474.64-550.25 (510.52)
VAD 3.51-5.5 (4.48) 1.17-1.18 (1.17) 21.54-34.38 (27.55) 66.85-130.84 (75.88) 113.3-413.51 (143.72)

CC
RST 6.43-7.93 (7.19) 133.92-166.33 (148.80) 105.16-111.46 (107.54) 113.92-126.35 (126.35) 212.43-230.26 (221.05)
TAG 10.98-12.81 (11.86) 170.91-203.54 (183.93) 176.91-201.12 (185.84) 193.77-249.93 (208.90) 331.79-386 (360.34)
VAD 4.89-5.85 (5.30) 1.81-7.75 (4.37) 31.78-33.24 (32.54) 21.98-22.58 (22.29) 38-39.36 (38.56)

Table 5.5: Trimming for correctness: query processing time (in sec) for SSWP and CC,
shown in the form of min-max (average).
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LJ UK TTW TT FT

SSWP
TAG 3.1M-3.2M (3.1M) 8.9K-9.7M (4.1M) 1.1K-29.5M (13.4M) 28.5M-28.6M (28.6M) 49.5M-49.5M (49.5M)
VAD 20.1K-90.8K (60.8K) 2.9K-93.0K (33.4K) 1.0K-4.5K (2.3K) 2.4K-1.1M (106.4K) 20.7K-13.6M (1.3M)

CC
TAG 3.2M-3.2M (3.2M) 25.9M-25.9M (25.9M) 31.3M-31.3M (31.3M) 32.2M-32.2M (32.2M) 52.1M-52.1M (52.1M)
VAD 1.1K-3.1K (1.9K) 320-1.6K (1.0K) 116-463 (212) 241-463 (344) 294-478 (374)

Table 5.6: Trimming for correctness: # reset vertices for SSWP and CC (the lower the
better) in the form of min-max (average).

Updates are batched in an in-memory buffer and not applied until the end of an

iteration. Value dependence trees are constructed by maintaining the level information for

each vertex along with “downward” pointers to children vertices that allow trimming to

quickly walk down a tree. A query is performed after a batch of updates is applied. The

query asks for the values of all vertices in the updated graph. Different types of edge updates

are handled differently by KickStarter: edge deletion removes the edge and schedules the

edge target for trimming; and standard treatment is employed for edge additions.

5.3.2 Experimental Setup

We used four monotonic graph algorithms in two categories as shown in Table 5.3

and Table 5.4: SingleSourceWidestPaths (SSWP) and ConnectedComponents (CC) may

produce incorrect results upon edge deletions whereas SingleSourceShortestPaths (SSSP)

and BreathFirstSearch (BFS) produce correct results with poor performance. vertex-

Function shows the algorithms of vertex computation, while shouldPropagate reports

the termination conditions of the trimming process.

The algorithms were evaluated using five real-world graphs listed in Table 5.2. Like

[112], we obtained an initial fixed point and streamed in a set of edge insertions and deletions

for the rest of the computation. After 50% of the edges were loaded, the remaining edges

were treated as edge additions that were streamed in. Furthermore, edges to be deleted

170



were selected from the loaded graph with a 0.1 probability; deletion requests were mixed

with addition requests in the update stream. In our experiments, we varied both the rate

of the update stream and the ratio of deletions vs. additions in the stream to thoroughly

evaluate the effects of edge deletions.

All experiments were conducted on a 16-node Amazon EC2 cluster. Each node

has 8 cores and 16GB main memory, and runs 64-bit Ubuntu 14.04 kernel 3.13.

Techniques Compared We evaluated KickStarter by comparing the following four ver-

sions of the streaming algorithm:

• TAG uses the tagging + resetting based trimming (Section 5.2.2).

• VAD uses our value dependence based trimming (Section 5.2.3).

• TOR implements Tornado [112]. This approach is used as the baseline for BFS and

SSSP, as TOR generates correct results for these algorithms.

• RST does not perform trimming at all and instead resets values of all vertices. This

technique serves as the baseline for SSWP and CC because TOR does not generate

correct results for them (as already shown in Figure 5.5 in Section 5.1).

To ensure a fair comparison among the above versions, queries were generated in

such a way that each query had the same number of pending edge updates to be processed.

Unless otherwise stated, 100K updates with 30% deletions were applied before the processing

of each query.
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5.3.3 Trimming for Correctness

We first study the performance of our trimming techniques, TAG and VAD, to

generate correct results for SSWP and CC — Table 5.5 shows the average, minimum, and

maximum execution times (in seconds) to compute the query results using TAG, VAD, and

RST (baseline).

We observe that VAD consistently outperforms RST. On average, VAD for SSWP

and CC performs 17.7× and 10× faster than RST, respectively. These significant speedups

were achieved due to the incremental processing in VAD that maximizes the use of computed

approximate values, as can be seen in Table 5.6 — only a subset of vertices have to discard

their approximate values (via resetting). Since RST discards the entire approximation

upon edge deletions (i.e., resetting all impacted vertices), computation at every tagged

vertex starts from scratch, resulting in degraded performance.

Finally, for the UK graph, VAD performs noticeably better for SSWP than for CC

mainly because safe approximate values computed for SSWP were closer to the final solution

than those for CC. The reason is as follows. For CC, if the component ID for a vertex in a

component changes, this change is likely to get propagated to all the other vertices in that

component. This means that when trimming finds a safe approximate value, the value may

still be changed frequently during the forward execution. For SSWP, on the other hand, if

the path value for a vertex changes, the change does not affect many other vertices. Hence,

only small local changes may occur in vertex values before the computation converges. As

a result, SSWP took less time than CC to finish the branch loop (less than a second in all

cases for SSWP vs. between 1 and 4 seconds for CC).
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Next, we compare the tagging+resetting algorithm TAG with VAD and RST.

In most cases, TAG outperforms RST. However, TAG performs worse than RST for CC

because the overhead of using TAG outweighs the benefit provided by trimming — due to

TAG’s conservative nature, a very large portion of the graph is tagged and their values are

reset. This can be seen in Table 5.6 where there are millions of vertices whose values are

reset in CC.

Under TAG, the number of vertices whose values are reset is significantly higher

than that under VAD (see Table 5.6). Hence, VAD consistently outperforms TAG. Note

that the reason why VAD works well for CC is that since CC propagates component IDs,

many neighbors of a vertex may have the same component ID and thus trimming based

(a) SSWP on UK (b) CC on UK

(c) SSWP on UK (d) CC on UK

Figure 5.8: Time taken to answer queries.
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on value dependence may have more approximate values to choose from. As a result, VAD

resets far fewer vertices than TAG.

Figures 5.8a and 5.8b show the performance of RST, TAG, and VAD for the first

10 queries for SSWP and CC on UK. The performance of TAG is more sensitive to edge

deletions than VAD – for SSWP, while the solutions for many queries were computed quickly

by TAG, some queries took significantly longer processing time. VAD, on the other hand,

is less sensitive to edge deletions because it is able to attribute the effects of the deletions

to a smaller subset of vertices.

LJ UK TTW TT FT

SSSP
TOR 1.27-102.88 (39.10) 2.84-119.03 (24.90) 17.62-131.9 (112.57) 42.13-584.64 (190.78) 90.59-179.83 (163.99)
TAG 3.25-4.49 (3.97) 2.03-2.94 (2.19) 46.06-52.5 (48.96) 98.59-118.23 (105.73) 131.22-150.16 (142.60)
VAD 2.12-3.22 (2.55) 1.33-1.5 (1.41) 28.68-32.33 (30.21) 41.35-48.65 (44.19) 93.74-101.67 (97.22)

BFS
TOR 1.17-77.05 (7.17) 1.24-588.09 (142.55) 23.94-1015.76 (199.23) 55-283.71 (120.45) 190.52-2032.38 (881.17)
TAG 3.47-4.43 (3.88) 1.81-5.14 (1.97) 51.08-58.3 (54.36) 110.75-192.71 (127.54) 143.21-334.07 (166.60)
VAD 1.96-3.37 (2.59) 1.21-3.88 (1.42) 32.02-34.86 (32.96) 69.43-91.88 (74.27) 107.4-136.73 (114.56)

Table 5.7: Trimming for performance: query processing times (in sec) for SSSP and BFS
in the form: min-max (average).

Finally, Figures 5.8c and 5.8d compare the performance of the two phases of the

branch loop execution: trimming (TRIM) and computation (COMP). Since CC is more

sensitive to edge additions and deletions compared to SSWP, it took longer processing

time to converge to the correct result. Hence, for CC, the percentages of the time spent

by both TAG and VAD on the trimming phase are lower than those on the computation

phase. SSWP, on the other hand, needs less time to converge because the approximate

values available for incremental processing are closer to the final values; hence, the time

taken by the trimming phase becomes comparable to that taken by the computation phase.
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LJ UK TTW TT FT

SSSP
TAG 8.2K-59.8K (25.9K) 4.1K-193.4K (36.4K) 19.7K-183.7K (89.4K) 6.2K-196.7K (51.5K) 19.8K-31.2K (25.4K)
VAD 1.7K-40.1K (7.0K) 2.9K-52.2K (16.6K) 2.1K-77.7K (19.6K) 836-110.9K (11.1K) 4.5K-12.5K (8.0K)

BFS
TAG 10.8K-354.5K (79.0K) 1.3K-483.0K (35.5K) 20.9K-1.2M (457.6K) 44.2K-8.6M (1.1M) 19.1K-4.5M (469.8K)
VAD 5.5K-116.6K (36.4K) 3.2K-469.9K (41.2K) 860-3.1K (1.6K) 742-1.4K (1.1K) 2.7K-5.2K (3.4K)

Table 5.8: Trimming for performance: number of reset vertices for SSSP and BFS in the
form: min-max (average).

Nevertheless, as Table 5.5 shows, the trimming phase has very little influence on the overall

processing time due to its lightweight design and parallel implementation.

5.3.4 Trimming for Performance

This set of experiments help us understand how different trimming mechanisms can

improve the performance of query processing for BFS and SSSP. For these two algorithms,

as explained in Section 5.1, although the baseline TOR (Tornado) produces correct results,

it can face performance issues. Table 5.7 shows the average, minimum, and maximum

execution times (in seconds) to compute the query results for SSSP and BFS by TOR,

TAG, and VAD.

VAD consistently outperforms TOR. For example, VAD for SSSP and BFS are

(a) SSSP on UK (b) BFS on UK

Figure 5.9: Trimming for performance: time taken to compute answer queries by TAG
and VAD.
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overall 23.7× and 8.5× faster than TOR, respectively. Figure 5.9a and Figure 5.9b show

the performance for answering the first 10 queries for SSSP and BFS. Since TOR leverages

incremental processing, its performance for some queries is competitive with that of VAD.

However, different edge deletions impact the approximation differently and in many cases,

TOR takes a long time to converge, leading to degraded performance.

While TAG consistently outperforms TOR, its conservative resetting of a larger set

of vertex values (as seen in Table 5.8) introduces overhead that reduces its overall benefit.

5.3.5 Effectiveness of the Trimmed Approximation

To understand whether the new approximate values computed by trimming are

beneficial, we compare VAD with a slightly modified version VAD-Reset that does not

compute new approximate values. This version still identifies the set of impacted vertices

using dependence tracking, but simply resets the values of all vertices in the set. Figure 5.10

shows the reductions in the numbers of reset vertices achieved by VAD over VAD-Reset.

The higher the reduction, the greater is the computation reused. This comparison was done

(a) SSWP on UK (b) CC on UK

Figure 5.10: Reduction in # of vertices reset by VAD compared to VAD-Reset.
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on the first 10 queries for SSWP and CC over the UK graph. We observe that the reduction

varies significantly between SSWP and CC. This is mainly due to the different shapes of the

dependence trees constructed for CC and SSWP. For CC, the dependence trees are fat (i.e.,

vertices have more children) and, hence, if a vertex’s value is reset, the trimming process

needs to continue resetting many of its children vertices, hurting performance significantly.

In fact, 5.7K-25.9M vertices were reset for CC under VAD-Reset.

As CC propagates component IDs and the IDs in a vertex’s neighborhood are often

the same (because the vertices in a neighborhood likely belong to the same component),

good approximate values are often available under VAD, which greatly reduces the number

of reset vertices (to 320-1.3K). For SSWP, on the other hand, its dependence trees are

thinner (i.e., vertices have less children), and hence VAD-Reset does a reasonably good

job as well, resetting only 3.4K-151K vertices. This number gets further reduced to 2.9K-

85.2K when VAD is used. We have also observed that the benefits achieved for SSWP vary

significantly across different queries; this is due to the varying impacts of deletions that

affect different regions of dependence trees and thus availability of safe approximate values.

(a) SSWP on UK (b) CC on UK

Figure 5.11: Numbers of reset vertices with different deletion percentages in the batch.
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5.3.6 Sensitivity to Edge Deletions & Batch Size

We study the sensitivity of the trimming effectiveness to the number of deletions

performed in the update stream. In Figure 5.11, we vary the percentage of deletions in

an update batch from 10% to 50% while maintaining the same batch size of 100K edge

updates. While the trend varies across different queries and algorithms, it is important to

note that our technique found safe approximations in many cases, keeping the number of

reset values low even when the number of deletions increases.

(a) Time taken by queries with varying batch size
for SSWP on UK

(b) Dependence tracking overhead

Figure 5.12: Query time and dependence tracking overhead.

In Figure 5.12a, we varied the number of edge updates applied for each query

from 100K to 1M while setting the deletion percentage to 30%. Clearly, the increase in

the number of edge updates, and hence in the number of edge deletions, do not have much

impact on the performance of the forked branch loop. This is mainly because the number

of reset vertices remains low — it increases gradually from 31K to 230K.
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5.3.7 Dependence Tracking Overhead

Finally, we study the overhead of our dependence tracking technique by measuring

the performance of the system with only edge additions. Since the handling of edge additions

does not need trimming, the difference of the running time between VAD and TOR is

the tracking overhead. Figure 5.12b shows the overall execution times for queries under

VAD normalized w.r.t. TOR with only the edge addition requests. That is, the deletion

percentage is set to 0%. In this case, all the four algorithms leverage the incremental

processing in TOR and hence the maintained approximation is never changed. The error

bars in Figure 5.12b indicate the min and max values to help us understand the performance

variations. The overall performance is only slightly influenced (max overhead bars are

slightly above 1 in most cases) and the query answering time under VAD increases by 13%.

5.4 Summary

In this chapter, we exploited the algorithmic asynchrony to efficiently process

streaming graphs. To leverage from computed results, we developed a dynamic dependence

based incremental processing technique that quickly identifies the minimal set of vertices to

be trimmed so that the results become safe and profitable. Furthermore, we trim the unsafe

values by adjusting them instead of resetting them to initial values, hence making use of

previous computed values. KickStarter quickly computes query results while simultaneously

providing 100% correctness guarantees in presence of edge deletions.
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Chapter 6

Out-of-core Processing

So far in the thesis we studied how the asynchronous model can be used to de-

velop various runtime techniques and optimizations to process static and dynamic graphs

in a distributed setting. While these techniques can be further specialized to perform dif-

ferent kinds of analyses over a cluster, in this chapter we further demonstrate the efficacy

of asynchronous model across processing environments beyond a distributed setting. We

choose the popular out-of-core processing environment that employs disks for processing

large amounts of data due to main memory constraints. In such a setting, we identify key

opportunities to leverage the algorithmic asynchrony so that large scale graph processing

can be further improved.

Out-of-core graph systems can be classified into two major categories based on

their computation styles: vertex-centric and edge-centric. At the heart of both types of

systems is a well-designed, disk-based partition structure, along with an efficient iterative,

out-of-core algorithm that accesses the partition structure to load and process a small
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portion of the graph at a time and write updates back to disk before proceeding to the next

portion. As an example, GraphChi [73] uses a shard data structure to represent a graph

partition: the graph is split into multiple shards before processing; each shard contains

edges whose target vertices belong to the same logical interval. X-Stream [103] partitions

vertices into streaming partitions. GridGraph [153] constructs 2-dimensional edge blocks to

minimize I/O.

Despite much effort to exploit locality in the partition design, existing systems

use static partition layouts, which are determined before graph processing starts. In every

single computational iteration, each partition is loaded entirely into memory, although a

large number of edges in the partition are not strictly needed.

Consider an iteration in which the values for only a small subset of vertices are

changed. Such iterations are very common when the computation is closer to convergence

and values for many vertices have already stabilized. For vertices that are not updated, their

values do not need to be pushed along their outgoing edges. Hence, the values associated

with these edges remain the same. The processing of such edges (e.g., loading them and

reading their values) would be completely redundant in the next iteration because they

make zero new contribution to the values of their respective target vertices.

Repeatedly loading these edges creates significant I/O inefficiencies, which impacts

the overall graph processing performance. This is because data loading often takes a major

portion of the graph processing time. As an example, over 50% of the execution time for

PageRank is spent on partition loading, and this percentage increases further with the size

of the input graph (Section 6.1).
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Key Idea

We aim to reduce the above I/O inefficiency in out-of-core graph systems by exploring the

idea of dynamic partitions that are created by omitting the edges that are not updated.

While our idea is applicable to all disk-based systems, in this work we focus

on dynamically adjusting the shard structure used in GraphChi. We choose GraphChi

as the starting point because: (1) it is a representative of extensively-used vertex-centric

computation; (2) it is under active support and there are a large number of graph programs

already implemented in it; and (3) its key algorithm has been incorporated into GraphLab

Create [47], a commercial product of Dato, which performs both distributed and out-of-core

processing. Hence, the goal of this work is not to produce a brand new system that is faster

than all existing graph systems, but instead, to show the generality and effectiveness of our

optimization, which can be implemented in other systems as well.

Challenges

Using dynamic partitions requires much more than recognizing unnecessary edges and re-

moving them. There are two main technical challenges that need to be overcome.

The first challenge is how to perform vertex computation in the presence of missing

edges that are eliminated during the creation of a dynamic partition. Although these edges

make no impact on the forward computation, current programming/execution models all

assume the presence of all edges of a vertex to perform value updates. To solve the problem,

we begin with proposing a delay-based computation model (Section 6.2) that delays the

computation of a vertex with a missing edge until a special shadow iteration in which all

edges are brought into memory from static partitions.
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Since delays introduce overhead, to reduce delays, we further propose an accumulation-

based programming/execution model (Section 6.3) that enables incremental vertex computa-

tion by expressing computation in terms of contribution increments flowing through edges.

As a result, vertices that only have missing incoming edges can be processed instantly

without needing to be delayed because the increments from missing incoming edges are

guaranteed to be zero. Computation for vertices with missing outgoing edges will still be

delayed, but the number of such vertices is often very small.

The second challenge is how to efficiently build partitions on the fly. Changing

partitions during processing incurs runtime overhead; doing so frequently would potentially

make overheads outweigh benefits. We propose an additional optimization (Section 6.4)

that constructs dynamic partitions only during shadow iterations. We show, theoretically

(Section 6.4) and empirically (Section 6.5), that this optimization leads to I/O reductions

rather than overheads. Our experiments with five common graph applications over six

real graphs demonstrate that using dynamic shards in GraphChi accelerates the overall

processing by up to 2.8× (on average 1.8×). While the accelerated version is still slower

than X-Stream in many cases (Section 6.5.3), this performance gap is reduced by 40% after

dynamic partitions are used.

6.1 The Case for Dynamic Partitions

Background

A graph G = (V,E) consists of a set of vertices, V , and a set of edges E. The vertices are

numbered from 0 to |V | − 1. Each edge is a pair of the form e = (u, v), u, v ∈ V . u is
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1	  0	   2	  

4	   3	   5	   6	  

(a) Example graph.

Src	   Dst	   Value	  

0	   1	   e0	  
1	   2	   e1	  
3	   2	   e2	  
4	   1	   e3	  
5	   1	   e4	  

2	   e5	  
6	   2	   e6	  

Src	   Dst	   Value	  

0	   4	   e7	  
1	   3	   e8	  
2	   3	   e9	  

5	   e10	  
3	   4	   e11	  

5	   e12	  
4	   5	   e13	  
5	   3	   e14	  
6	   4	   e15	  

Src	   Dst	   Value	  

0	   6	   e16	  
3	   6	   e17	  
5	   6	   e18	  

Shard	  0	   Shard	  1	   Shard	  2	  

Iter	  0,	  1,	  2	  

(b) Shards representation.

Figure 6.1: An example graph partitioned into shards.

the source vertex of e and v is e’s destination vertex. e is an incoming edge for v and an

outgoing edge for u. The vertex-centric computation model associates a data value with

each edge and each vertex; at each vertex, the computation retrieves the values from its

incoming edges, invokes an update function on these values to produce the new vertex value,

and pushes this value out along its outgoing edges.

The goal of the computation is to “iterate around” vertices to update their values

until a global “fixed-point” is reached. There are many programming models developed to

support vertex-centric computation, of which the gather-apply-scatter (GAS) model is

perhaps the most popular one. We will describe the GAS model and how it is adapted

to work with dynamic shards in §6.3. A vertex-centric system iterates around vertices to

update their values until a global “fixed-point” is reached.

In GraphChi, the IDs of vertices are split into n disjoint logical intervals, each of

which defines a shard. Each shard contains all edge entries whose target vertices belong to

its defining interval. In other words, the shard only contains incoming edges of the vertices

in the interval. As an illustration, given the graph shown in Figure 6.1a, the distribution of
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its edges across three shards is shown in Figure 6.1b where vertices 0–2, 3–5, and 6 are the

three intervals that define the shards. If the source of an edge is the same as the previous

edge, the edge’s src field is empty. The goal of such a design is to reduce disk I/O by

maximizing sequential disk accesses.

Vertex-centric computation requires the presence of all (in and out) edges of a

vertex to be in memory when the update is performed on the vertex. Since edges of a

vertex may scatter to different shards, GraphChi uses an efficient parallel sliding window

(PSW) algorithm to minimize random disk accesses while loading edges. First, edges in a

shard s are sorted on their source vertex IDs. This enables an important property: while

edges in s can come out of vertices from different intervals, those whose sources are in the

same interval i are located contiguously in the shard defined by i.

When vertices v in the interval of s are processed, GraphChi only needs to load s

(i.e., memory shard, containing all v’s incoming edges and part of v’s outgoing edges) and

a small block of edges from each other shard (i.e., sliding shard, containing the rest of v’s

outgoing edges) – this brings into memory a complete set of edges for vertices belonging

to the interval. Figure 6.2a illustrates GraphChi’s edge blocks. The four colors are used,

respectively, to mark the blocks of edges in each shard whose sources belong to the four

intervals defining these shards.

Motivation

While the PSW algorithm leverages disk locality, it suffers from redundancy. During com-

putation, a shard contains edges both with and without updated values. Loading the entire
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(a) Shards and sliding windows used in GraphChi.
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Figure 6.2: An illustration of sliding windows and the PageRank execution statistics.
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Figure 6.3: Useful data in static shards.

shard in every iteration involves wasteful effort of loading and processing edges that are

guaranteed to make zero new contribution to the value computation. This effort is signifi-

cant because (1) the majority of the graph processing cost comes from the loading phase,

and (2) at the end of each iteration, there are a large number of edges whose values are un-

changed. Figure 6.2b shows a breakdown of the execution times of PageRank in GraphChi

for five real graphs, from the smallest LiveJournal (LJ) with 69M edges to Friendster (FT)

with 2.6B edges. Further details for these input graphs can be found in Table 6.4.

186



In these experiments, the I/O bandwidth was fully utilized. Note that the data

loading cost increases as the graph becomes larger – for Friendster, data loading contributes

to over 85% of the total graph processing time. To understand if the impact of data loading

is pervasive, we have also experimented with X-Stream [103]. Our results show that the

scatter phase in X-Stream, which streams all edges in from disk, takes over 70% of the total

processing time for PageRank on these five graphs.

To understand how many edges contain necessary data, we calculate the percent-

ages of edges that have updated values across iterations. These percentages are shown

in Figure 6.3a. The percentage of updated edges drops significantly as the computation

progresses and becomes very low when the execution comes close to convergence. Signif-

icant I/O reductions can be expected if edges not updated in an iteration are completely

eliminated from a shard and not loaded in the next iteration.

Figure 6.3b illustrates, for three applications PageRank (PR), MultipleSourceShort-

estPath (MSSP), and ConnectedComponents (CC), how the size of an ideal shard changes

as computation progresses when the LiveJournal graph is processed. In each iteration, an

ideal shard only contains edges that have updated values from the previous iteration. Ob-

serve that it is difficult to find a one-size-fits-all static partitioning because, for different

algorithms, when and where useful data is produced changes dramatically, and thus different

shards are needed.
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Src	   Dst	   Value	  

0	   1	   e0	  
1	   2	   e1	  
3	   2	   e2	  
4	   1	   e3	  
5	   1	   e4	  

2	   e5	  
6	   2	   e6	  

Shard	  0	  

Iter	  0,	  1,	  2	  

Src	   Dst	   Value	  

1	   2	   e1	  
3	   2	   e2	  
4	   1	   e3	  
5	   1	   e4	  

2	   e5	  
6	   2	   e6	  

Shard	  0	  
Src	   Dst	   Value	  

1	   2	   e1	  
5	   1	   e4	  

2	   e5	  
6	   2	   e6	  

Shard	  0	  
Src	   Dst	   Value	  

3	   2	   e2	  
4	   1	   e3	  
5	   1	   e4	  

2	   e5	  

Shard	  0	  

Initial	  Shards	   Iteration	  3	   Iteration	  4	   Iteration	  5	  

Src	   Dst	   Value	  

2	   3	   e9	  
5	   e10	  

3	   4	   e11	  
5	   e12	  

4	   5	   e13	  
5	   3	   e14	  

Src	   Dst	   Value	  

1	   3	   e8	  
2	   3	   e9	  

5	   e10	  
5	   3	   e14	  
6	   4	   e15	  

Src	   Dst	   Value	  

1	   3	   e8	  
2	   3	   e9	  

5	   e10	  
3	   4	   e11	  

5	   e12	  
4	   5	   e13	  
5	   3	   e14	  
6	   4	   e15	  

Src	   Dst	   Value	  

0	   4	   e7	  
1	   3	   e8	  
2	   3	   e9	  

5	   e10	  
3	   4	   e11	  

5	   e12	  
4	   5	   e13	  
5	   3	   e14	  
6	   4	   e15	  

Shard	  1	  

Iter	  0,	  1,	  2	  

Shard	  1	   Shard	  1	   Shard	  1	  

Shard	  2	  

Iter	  0,	  1,	  2	  

Shard	  2	   Shard	  2	   Shard	  2	  
Src	   Dst	   Value	  

0	   6	   e16	  
3	   6	   e17	  
5	   6	   e18	  

Src	   Dst	   Value	  

3	   6	   e17	  
5	   6	   e18	  

Src	   Dst	   Value	  

5	   6	   e18	  

Src	   Dst	   Value	  

3	   6	   e17	  
5	   6	   e18	  

Figure 6.4: Dynamic shards for the example graph in Figure 6.1a created for iteration 3, 4
and 5.

Overview of Techniques

The above observations strongly motivate the need for dynamic shards whose layouts can be

adapted. Conceptually, for each static shard s and each iteration i in which s is processed,

there exists a dynamic shard di that contains a subset of edges from s whose values are

updated in i. Figure 6.4 shows the dynamic shards created for Iteration 3, 4 and 5 during
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the processing of the example graph shown in Figure 6.1a. After the 2nd iteration, vertex 0

becomes inactive, and hence, its outgoing edges to 4 and 6 are eliminated from the dynamic

shards for the 3rd iteration. Similarly, after the 3rd iteration, the vertices 3 and 4 become

inactive, and hence, their outgoing edges are eliminated from the shards for Iteration 4. In

Iteration 4, the three shards contain only 10 out of a total of 19 edges. Since loading these

10 edges involves much less I/O than loading the static shards, significant performance

improvement can be expected. To realize the benefits of dynamic shards by reducing I/O

costs, we have developed three techniques:

(1) Processing Dynamic Shards with Delays – Dynamic shards are iteratively pro-

cessed like static shards; however, due to missing edges in a dynamic shard, we may have to

delay computation of vertices. We propose a delay based shard processing algorithm that

places delayed vertices in an in-memory buffer and periodically performs shadow iterations

that process the delayed requests by bringing in memory all edges for delayed vertices.

(2) Programming Model for Accumulation-Based Computation – Delaying the com-

putation of a vertex if any of its edge is missing can slow the progress of the algorithm.

To overcome this challenge we propose an accumulation-based programming model that

expresses computation in terms of incremental contributions flowing through edges. This

maximizes the processing of a vertex by allowing incremental computations to be performed

using available edges and thus minimizes the impact of missing edges.

(3) Optimizing Shard Creation – Finally, we develop a practical strategy for bal-

ancing the cost of creating dynamic shards with their benefit from reduced I/O by adapting

the frequency of shard creation and controlling when a shadow iteration is triggered.
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6.2 Processing Dynamic Shards with Delays

Although dynamic shard provides a promising solution to eliminating redundant

loading, an immediate question is how to compute vertex values when edges are missing.

To illustrate, consider the following graph edges: u → v → w. Suppose in one iteration

the value of v is not changed, which means v becomes inactive and the edge v → w is not

included in the dynamic shard created for the next iteration. However, the edge u → v is

still included because a new value is computed for u and pushed out through the edge. This

value will be reaching v in the next iteration. In the next iteration, the value of v changes

as it receives the new contribution from u → v. The updated value of v then needs to be

pushed out through the edge v → w, which is, however, not present in memory.

To handle missing edges, we allow a vertex to delay its computation if it has a

missing edge. The delayed computations are batched together and performed in a special

periodically-scheduled iteration called shadow iteration where all the (in- and out-) edges of

the delayed vertices are brought in memory. We begin by discussing dynamic shard creation

and then discuss the handling of missing edges.

Creating Dynamic Shards

Each computational iteration in GraphChi is divided into three phases: load, compute, and

write-back. We build dynamic shards at the end of the compute phase but before write-back

starts. In the compute phase, we track the set of edges that receive new values from their

source vertices using a dirty mark. During write-back, these dirty edges are written into

new shards to be used in the next iteration. Evolving graphs can be supported by marking

the dynamically added edges to be dirty and writing them into new dynamic shards. The
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shard structure has two main properties contributing to the minimization of random disk

accesses: (1) disjoint edge partitioning across shards and (2) ordering of edges based on

source vertex IDs inside each shard. Dynamic shards also follow these two properties: since

we do not change the logical intervals defined by static partitioning, the edge disjointness

and ordering properties are preserved in the newly generated shards. In other words, for

each static shard, we generate a dynamic shard, which contains a subset of edges that are

stored in the same order as in the static shard. Although our algorithm is inexpensive,

creating dynamic shards for every iteration incurs much time overhead and consumes large

disk space. We will discuss an optimization in Section 6.4 that can effectively reduce the

cost of shard creation.

Processing Dynamic Shards

Dynamic shards can be iteratively processed by invoking the user-defined update function

on vertices. Although a dynamic shard contains fewer edges than its static counterpart, the

logical interval to which the shard belongs is not changed, that is, the numbers of vertices

to be updated when a dynamic shard and its corresponding static shard are processed are

the same. However, when a dynamic shard is loaded, it contains only subset of edges for

vertices in its logical interval. To overcome this challenge, we delay the computation of a

vertex if it has a missing (incoming or outgoing) edge. The delayed vertices are placed in

an in-memory delay buffer. We periodically process these delayed requests by bringing in

memory all the incoming and outgoing edges for vertices in the buffer. This is done in a

special shadow iteration where static shards are also loaded and updated.
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Algorithm 9 Algorithm for a shadow iteration.

1: S = {S0, S1, ..., Sn−1}: set of n static shards
2: DS i = {DS i

0,DS i
1, ...,DS i

n−1}: set of n dynamic shards for Iteration i
3: DS = [DS 0,DS 1, ...]: vector of dynamic shard sets for Iteration 0, 1, . . .
4: Vi: set of vertex IDs belonging to Interval i
5: DB : delay buffer containing IDs of the delayed vertices
6: lastShadow : ID of the last shadow iteration
7: function shadow-processing(Iteration ite)
8: for each Interval k from 0 to n do
9: load-all-shards(ite, k)

10: parallel-for Vertex v ∈ DB ∩ Vk do
11: update(v) //user-defined vertex function
12: end parallel-for
13: produce S′k by writing updates to the static shard Sk
14: create a dynamic shard DS ite

k for the next iteration
15: end for
16: remove DS lastShadow . . .DS ite−1

17: lastShadow ← ite
18: clear the delay buffer DB
19: end function
20:

21: function load-all-shards(Iteration ite, Interval j )
22: load-memory-shard(Sj)
23: parallel-for Interval k ∈ [0, n] do
24: if k 6= j then
25: load-sliding-shard(Sk)
26: end if
27: end parallel-for
28: for each Iteration k from lastShadow to ite − 1 do =
29: load-memory-shard-and-overwrite(DSk

j )
30: parallel-for Interval i ∈ [0, n] do
31: if i 6= j then
32: load-sliding-shard-and-overwrite(DSk

i )
33: end if
34: end parallel-for
35: if k = ite − 1 then
36: mark-dirty-edges( )
37: end if
38: end for
39: end function
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Since a normal iteration has similar semantics as those of iterations in GraphChi,

we refer the interested reader to [73] for its details. Here we focus our discussion on shadow

iterations. The algorithm of a shadow iteration is shown in Algorithm 9. A key feature

of this algorithm is that it loads the static shard (constructed during pre-processing) to

which each vertex in the delay buffer belongs to bring into memory all of its incoming and

outgoing edges for the vertex computation. This is done by function Load-All-Shards

shown in Lines 21–39 (invoked at Line 9).

However, only loading static shards would not solve the problem because they

contain out-of-date data for edges that have been updated recently. The most recent data

are scattered in the dynamic shards DS lastShadow . . .DS ite−1 where lastShadow is the ID of

the last shadow iteration and ite is the ID of the current iteration. As an example, consider

Shard 0 in Figure 6.4. At the end of iteration 5, the most recent data for the edges 1→ 2,

3→ 2, and 0→ 1 are in DS 4
0, DS 5

0, and S0, respectively, where DS i
j represents the dynamic

shard for interval j created for iteration i, and Sj denotes the static shard for interval j.

To guarantee that most recent updates are retrieved in a shadow iteration, for each

interval j, we sequentially load its static shard Sj (Line 22) and dynamic shards created

since the last shadow iteration DS lastShadow . . .DS ite−1 (Line 29), and let the data loaded

later overwrite the data loaded earlier for the same edges. Load-All-Shards implements

GraphChi’s PSW algorithm by loading (static and dynamic) memory shards entirely into

memory (Lines 22 and 29) and a sliding window of edge blocks from other (static and

dynamic) shards (Lines 23–27 and 30–34). If k becomes the ID of the iteration right before

193



the shadow iteration (Lines 35–37), we mark dirty edges to create new dynamic shards for

the next iteration (Line 14).

After the loop at Line 8 terminates, we remove all intermediate dynamic shards

(Line 16) and set lastShadow to ite (Line 17). These shards are not needed, because the

static shards are already updated with the most recent values in this iteration (Line 13).

One can view static shards as “checkpoints” of the computation and dynamic shards as

intermediate “increments” to most recent checkpoint. Finally, the delay buffer is cleared.

pre-proc.
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S1

Sn-1

Sn

...

DS
0

0

DS
0

1

Iteration 0

DS
0

n-1

DS
0

n

...
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i+1

n
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Figure 6.5: Processing using dynamic shards.

Figure 6.5 illustrates the input and output of each computational iteration. Static

shards S0 . . . Sn are statically constructed. Each regular iteration i produces a set of dynamic

shards DS i
0 . . .DS i

n, which are fed to the next iteration. A shadow iteration loads all static

shards and intermediate dynamic shards, and produces (1) updated static shards S′0 . . . S
′
n

and (2) new dynamic shards DSi+1
0 . . . DSi+1

n to be used for the next iteration.

It may appear that the delay buffer can contain many vertices and consume a lot

of memory. However, since the amount of memory needed to represent an incoming edge

is higher than that to record a vertex, processing dynamic shards with the delay buffer is

actually more memory-efficient than processing static shards where all edges are available.
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Delaying a vertex computation when any of its edge is missing can cause too many

vertices to be delayed and negatively impact the the computation progress. For example,

when running PageRank on UKDomain, Twitter, and Friendster graphs, immediately after

the dynamic shards are created, 64%, 70%, and 73% of active vertices are delayed due to

at least one missing incoming or outgoing edge. Frequently running shadow iterations may

get data updated quickly at the cost of extra overhead, while doing so infrequently would

reduce overhead but slow down the convergence. Hence, along with dynamically capturing

the set of edges which reflect change in values, it is important to modify the computation

model so that it maximizes computation performed using available values.

Section 6.3 presents an optimization for our delay-based computation to limit

the number of delayed computations. The optimization allows a common class of graph

algorithms to perform vertex computation if a vertex only has missing incoming edges.

While the computation for vertices with missing outgoing edges still need to be delayed, the

number of such vertices is much smaller, leading to significantly reduced delay overhead.

6.3 Accumulation-based Computation

This section presents an accumulation-based programming/execution model that

expresses computation in terms of incremental contributions flowing through edges. Our

insight is that if a vertex is missing an incoming edge, then the edge is guaranteed to pro-

vide zero new contribution to the vertex value. If we can design a new model that performs

updates based on contribution increments instead of actual contributions, the missing in-

coming edge can be automatically treated as zero increment and the vertex computation

can be performed without delay.
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We discuss our approach based on the popular Gather-Apply-Scatter (GAS) pro-

gramming model [73, 85, 44] where vertex computation is divided in three distinct phases:

the gather phase reads incoming edges and produces an aggregated value using a user-

defined aggregation function; this value is fed to the apply phase to compute a new value

for a vertex; in the scatter phase, the value is propagated along the outgoing edges.

6.3.1 Programming Model

Our accumulation-based model works for a common class of graph algorithms

whose GAS computation is distributive over aggregation. The user needs to program the

GAS functions in a slightly different way to propagate changes in values instead of actual

values. In other words, the semantics of vertex data remains the same while data on each

edge now encodes the delta between the old and the new value of its source vertex. This

semantic modification relaxes the requirement that all incoming edges of a vertex have to

be present to perform vertex computation.

The new computation semantics requires minor changes to the GAS programming

model. (1) Extract the gathered value using the old vertex value. This step is essentially an

inverse of the apply phase that uses its output (i.e., vertex value) to compute its input (i.e.,

aggregated value). (2) Gather edge data (i.e., from present incoming edges) and aggregate

it together with the output of extract. Since this output represents the contributions of

the previously encountered incoming edges, this step incrementally adds new contributions

from the present incoming edges to the old contributions. (3) Apply the new vertex value

using the output of gather. (4) Scatter the difference between the old and the new vertex

values along the outgoing edges.
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To turn a GAS program into a new program, one only needs to add an extract

phase in the beginning that uses a vertex value v to compute backward the value g gathered

from the incoming edges of the vertex at the time v was computed. g is then aggregated with

a value gathered from the present incoming edges to compute a new value for the vertex.

To illustrate, consider the PageRank algorithm that has the following GAS functions:

[GATHER] sum ← Σe∈in(v)e.data

[APPLY] v.pr ← (0.15 + 0.85 ∗ sum)/v.numOutEdges

[SCATTER] ∀e ∈ out(v) : e.data ← v.pr

Adding the extract phase produces:

[EXTRACT] oldsum ← (v.pr ∗ v.numOutEdges − 0.15)/0.85

[GATHER] newsum ← oldsum + Σe∈in(v)e.data

[APPLY] newpr ← (0.15 + 0.85× newsum)/v.numOutEdges;

oldpr ← v.pr ; v.pr ← newpr

[SCATTER] ∀e ∈ out(v) : e.data ← newpr − oldpr

In this example, extract reverses the PageRank computation to obtain the old

aggregated value oldsum, on top of which the new contributions of the present incoming

edges are added by gather. Apply keeps its original semantics and computes a new PageR-
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ank value. Before this new value is saved on the vertex, the delta between the old and new

is computed and propagated along the outgoing edges in scatter.

An alternative way to implement the accumulation-based computation is to save

the value gathered from incoming edges on each vertex (e.g., oldsum) together with the

vertex value so that we do not even need the extract phase. However, this approach

doubles the size of vertex data which also negatively impacts the time cost due to the

extremely large numbers of vertices in real-world graphs. In fact, the extract phase does

not create extra computation in most cases: after simplification and redundancy elimination,

the PageRank formulas using the traditional GAS model and the accumulation-based model

require the same amount of computation:

pr =


0.15 + 0.85× sum . . . traditional

v.pr + 0.85× sum . . . accumulation-based

Impact on the Delay Buffer

Since the contribution of each incoming edge can be incrementally added onto the vertex

value, this model does not need the presence of all incoming edges to compute vertex

values. Hence, it significantly decreases the number of vertices whose computation needs

to be delayed, reducing the need to frequently run shadow iterations.

If a vertex has a missing outgoing edge, delay is needed. To illustrate, consider

again the u → v → w example in the beginning of Section 6.2. Since the edge v → w is

missing, although v gets an updated value, the value cannot be pushed out. We have to

delay the computation until a shadow iteration in which v → w is brought into memory.
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More precisely, v’s gather and apply can still be executed right away; only its scatter

operation needs to be delayed, because the target of the scatter is unknown due to the

missing outgoing edge.

Hence, for each vertex, we execute gather and apply instantly to obtain the result

value r. If the vertex has a missing outgoing edge, the vertex is pushed into the delay buffer

together with the value r. Each entry in the buffer now becomes a vertex-value pair. In

the next shadow iteration, when this missing edge is brought into memory, r will be pushed

through the edge and be propagated.

Since a vertex with missing outgoing edges can be encountered multiple times

before a shadow iteration is scheduled, the delay buffer may contain multiple entries for

the same vertex, each with a different delta value. Näıvely propagating the most recent

increment is incorrect due to the accumulative nature of the model; the consideration of all

the entries for the vertex is thus required. Hence, we require the developer to provide an

additional aggregation function that takes as input an ordered list of all delta values for a

vertex recorded in the delay buffer and generates the final value that can be propagated to

its outgoing edges (details are given in Section 6.3.2).

Although our programming model exposes the extract phase to the user, not all

algorithms need this phase. For example, algorithms such as ShortestPath and Connected-

Components can be easily coded in a traditional way, that is, edge data still represent actual

values (i.e., paths or component IDs) instead of value changes. This is because in those

algorithms, vertex values are in discrete domains and gather is done by monotonically

selecting a value from one incoming edge instead of accumulating values from all incoming
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edge values. For instance, ShortestPath and ConnectedComponents use selection functions

(min/max ) to aggregate contributions of incoming edges.

To make the differences between algorithm implementations transparent to the

users, we allow users to develop normal GAS functions without thinking about what data to

push along edges. The only additional function the user needs to add is extract. Depending

on whether extract is empty, our system automatically determines the meaning of edge

data and how it is pushed out.

6.3.2 Model Applicability and Correctness

It is important to understand precisely what algorithms can and cannot be im-

plemented under the accumulation-based model. There are three important questions to

ask about applicability: (1) what is the impact of incremental computation on graph al-

gorithms, (2) what is the impact of delay on those algorithms, and (3) is the computation

still correct when vertex updates are delayed?

Impact of Incremental Computation

An algorithm can be correctly implemented under our accumulation-based model if the

composition of its apply and gather is distributive on some aggregation function. More

formally, if vertex v has n incoming edges e1, e2, . . . en, v’s computation can be expressed

under our accumulation-based model iff there exists an aggregation function1 f s.t.

apply(gather(e1, . . . , en)) = f(apply(gather(e1)), . . . , apply(gather(en)))
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Algorithms Aggr. Func. f

Reachability, MaxIndependentSet or

TriangleCounting, SpMV, PageRank,
sumHeatSimulation, WaveSimulation,

NumPaths

WidestPath, Clique max

ShortestPath, MinmialSpanningTree,
minBFS, ApproximateDiameter,

ConnectedComponents

BeliefPropagation product

BetweennessCentrality, Conductance, user-defined
NamedEntityRecognition, LDA, aggregation
ExpectationMaximization, function
AlternatingLeastSquares

GraphColoring, CommunityDetection N/A

Table 6.1: A list of algorithms used as subjects in the following works and their aggregation
functions if implemented under our model: GraphChi [73], GraphLab [85], ASPIRE [129],
X-Stream [103], GridGraph [153], GraphQ [134], GraphX [45], PowerGraph [44], Galois [92],
Ligra [114], Cyclops [22], and Chaos [102].

For most graph algorithms, we can easily find a function f on which their compu-

tation is distributive. Table 6.1 shows a list of 24 graph algorithms studied in recent graph

processing works and our accumulation-based model works for all but two. For example,

one of these two algorithms is GraphColoring, where the color of a vertex is determined

by the colors of all its neighbors (coming through its incoming edges). In this case, it is

impossible to compute the final color by applying gather and apply on different neighbors’

colors separately and aggregating these results. For the same reason CommunityDetection

cannot be correctly expressed as an incremental computation.

Once function f is found, it can be used to aggregate values from multiple entries of

the same vertex in the delay buffer, as described earlier in Section 6.3.1. We provide a set of

built-in f from which the user can choose, including and , or , sum, product ,min,max ,first ,

1The commutative & associative properties from gather get naturally lifted to aggregation function f .
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Iteration
V/E 0 1 2 3 4 (Shadow)
u [0, Iu] [Iu, Iu] [Iu, a] [a, b] [b, x]

No Delay u→ v [0, Iu] [Iu, 0] [0, a− Iu] [a− Iu, b− a] [b− a, x− b]
v [0, Iv] [Iv,AP(EX(Iv)+Iu)] [AP(EX(Iv)+Iu), AP(EX(Iv)+Iu)] [AP(EX(Iv)+Iu), AP(EX(Iv)+a)] [AP(EX(Iv)+a), AP(EX(Iv)+b)]

Delay u→ v [0, Iu] [Iu, 0] Missing Missing [b− Iu, x− b]
v [0, Iv] [Iv, AP(EX(Iv)+Iu)] [AP(EX(Iv)+Iu), AP(EX(Iv)+Iu)] [AP(EX(Iv)+Iu), AP(EX(Iv)+Iu)] [AP(EX(Iv)+Iu), AP(EX(Iv)+b)]

Table 6.2: A comparison between PageRank executions with and without delays under the
accumulation-based model; for each vertex and edge, we use a pair [a, b] to report its pre-
(a) and post-iteration (b) value. Each vertex u (v) has a value 0 before it receives an initial
value Iu (Iv) in Iteration 0; EX and AP represent function Extract and Apply, respectively.

and last . For instance, PageRank uses sum that produces the final delta by summing up

all deltas in the buffer, while ShortestPath only needs to compute the minimum of these

deltas using min. The user can also implement her own for more complicated algorithms

that perform numerical computations.

For graph algorithms with non-distributive gather and apply, using dynamic par-

titions delays computation for a great number of vertices, making overhead outweigh benefit.

In fact, we have implemented GraphColoring in our system and only saw slowdowns in the

experiments. Hence, our optimization provides benefit only for distributive algorithms.

Impact of Delay

To understand the impact of delay, we draw a connection between our computation model

with the staleness-based (i.e., relaxed consistency) computation model [129, 27]. The

staleness-based model allows computation to be performed on stale values but guaran-

tees correctness by ensuring that all updates are visible at some point during processing

(by either using refresh or imposing a staleness upper-bound). This is conceptually simi-

lar to our computation model with delays: for vertices with missing outgoing edges, their

out-neighbors would operate on stale values until the next shadow iteration.
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Since a shadow iteration “refreshes” all stale values, the frequency of performing

these shadow iterations bounds the maximum staleness of edge values. Hence, any algorithm

that can correctly run under the relaxed consistency model can also safely run under our

model. Moreover, the frequency of shadow iterations has no impact on the correctness of

such algorithms, as long as they do occur and flush the delayed updates. In fact, all the

algorithms in Table 6.1 would function correctly under our delay-based model. However,

their performance can be degraded if they cannot employ incremental computation.

Delay Correctness Argument

While our delay-based model shares similarity with the staleness-based model, the correct-

ness of a specific algorithm depends on the aggregation function used for the algorithm.

Here we provide a correctness argument for the aggregation functions we developed for

the five algorithms used in our evaluation: PageRank, BeliefPropagation, HeatSimulation,

ConnectedComponents, and MultipleSourceShortestPath; similar arguments can be used

for other algorithms in Table 6.1.

We first consider our implementation of PageRank that propagates changes in

page rank values along edges. Since BeliefPropagation and HeatSimulation perform similar

computations, their correctness can be reasoned in the same manner. For a given edge

u→ v, Table 6.2 shows, under the accumulation-based computation, how the values carried

by vertices and edges change across iterations with and without delays.

We assume that each vertex u (v) has a value 0 before it is assigned an initial

value Iu (Iv) in Iteration 0 and vertex v has only one incoming edge u → v. At the end

of Iteration 0, both vertices have their initial values because the edge does not carry any
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value in the beginning. We further assume that in Iteration 1, the value of vertex u does

not change. That is, at the end of the iteration, u’s value is still Iu and, hence, the edge

will not be loaded in Iteration 2 and 3 under the delay-based model.

We compare two scenarios in which delay is and is not enabled and demonstrate

that the same value is computed for v in both scenarios. Without delay, the edge value in

each iteration always reflects the change in u’s values. v’s value is determined by the four

functions described earlier. For example, since the value carried by the edge at the end of

Iteration 0 is Iu, v’s value in Iteration 1 is updated to apply(gather(extract(Iv), Iu))).

As gather is sum in PageRank, this value reduces to AP(EX(Iv) + Iu). In Iteration 2, the

value from the edge is 0 and thus v’s value becomes AP(EX(AP(EX(Iv) + Iu)) + 0). Because

EX is an inverse function of AP, this value is thus still AP(EX(Iv) + Iu). Using the same

calculation, we can easily see that in Iteration 4 v’s value is updated to AP(EX(Iv) + b).

With delay, the edge will be missing in Iteration 2 and 3, and hence, we add two

entries (u, a − Iu) and (u, b − a) into the delay buffer. During the shadow iteration, the

edge is loaded back into memory. The aggregation function sum is then applied on these

two entries, resulting in value b − Iu. This value is pushed along u → v, leading to the

computation of the following value for v:

AP(EX(AP(EX(Iv) + Iu)) + (b− Iu))

⇒ AP(EX(Iv) + Iu + b− Iu)

⇒ AP(EX(Iv) + b)

which is the same as the value computed without delay.
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This informal correctness argument can be used as the base case for a formal

proof by induction on iterations. Although we have one missing edge in this example, the

argument can be easily extended to handle multiple missing edges since the gather function

is associative.

For ShortestPaths and ConnectedComponents, they do not have an extract func-

tion and their contributions are gathered by the selection function min. Since a dynamic

shard can never have edges that are not part of its corresponding static shard, vertex values

(e.g., representing path and component IDs) in the presence of missing edges are always

greater than or equal to their actual values. It is easy to see that the aggregation function

min ensures that during the shadow iteration the value a of each vertex will be appropriately

overridden by the minimum value b of the delayed updates for the vertex if b ≤ a.

6.3.3 Generalization to Edge-Centricity

Note that the dynamic partitioning techniques presented in this work can be easily

applied to edge-centric systems. For example, X-Stream [103] uses an unordered edge list

and a scatter-gather computational model, which first streams in the edges to generate

updates, and then streams in the generated updates to compute vertex values. To enable

dynamic partitioning, dynamic edge lists can be constructed based on the set of changed

vertices from the previous iterations. This can be done during the scatter phase by writing

to disk the required edges whose vertices are marked dirty.

Hence, later iterations will stream in smaller edge lists that mainly contain the

necessary edges. Similarly to processing dynamic shards, computations in the presence

of missing edges can be delayed during the gather phase when the upcoming scatter phase
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cannot stream in the required edges. These delayed computations can be periodically flushed

by processing them during shadow iterations in which the original edge list is made available.

GridGraph [153] is a recent graph system that uses a similar graph representation

as used in GraphChi. Hence, our shard-based techniques can be applied directly to parti-

tions in GridGraph. As GridGraph uses very large static partitions (that can accommodate

tens of millions of edges), larger performance benefit may be seen if our optimization is

added. Dynamic partitions can be generated when edges are streamed in; computation

delayed due to missing edges can be detected when vertices are streamed in.

6.4 Optimizing Shard Creation

To maximize net gains, it is important to find a sweet spot between the cost of

creating a dynamic shard and the I/O reduction it provides. This section discusses an

optimization and analyzes its performance benefit.

6.4.1 Optimization

Creating a dynamic shard at each iteration is an overkill because many newly

created dynamic shards provide only small additional reduction in I/O that does not justify

the cost of creating them. Therefore, we create a new dynamic shard after several iterations,

allowing the creation overhead to be easily offset by the I/O savings.

Furthermore, to maximize edge reuse and reduce delay frequencies, it is useful

to include into dynamic shards edges that may be used in multiple subsequent iterations.

We found that using shadow iterations to create dynamic shards strikes a balance between

206



Inputs Type #Vertices #Edges PMSize #SS

LiveJournal (LJ) [5] Social Network 4.8M 69M 1.3GB 3
Netflix (NF) [9] Recomm. System 0.5M 99M 1.6GB 20

UKDoman (UK) [11] Web Graph 39.5M 1.0B 16.9GB 20
Twitter (TT) [72] Social Network 41.7M 1.5B 36.3GB 40

Friendster (FT) [40] Social Network 68.3M 2.6B 71.6GB 80
YahooWeb (YW) [137] Web Graph 1.4B 6.6B 151.3GB 120

Table 6.3: Input graphs used; PMSize and SS report the peak in-memory size of each graph
structure (without edge values) and the number of static shards created in GraphChi,
respectively. The in-memory size of a graph is measured as the maximum memory con-
sumption of a graph across the five applications; LJ and NF are relatively small graphs
while UK, TT, FT, YW are billion-edge graphs larger than the 8GB memory size; YW
is the largest real-world graph publicly available; all graphs have highly skewed power-law
degree distributions.

I/O reduction and overhead of delaying computations – new shards are created only during

shadow iterations; we treat edges that were updated after the previous shadow iteration as

dirty and include them all in the new dynamic shards. The intuition here is that by con-

sidering an “iteration window” rather than one single iteration, we can accurately identify

edges whose data have truly stabilized, thereby simultaneously reducing I/O and delays.

The first shadow iteration is triggered when the percentage of updated edges p in

an iteration drops below a threshold value. The frequency of subsequent shadow iterations

depends upon the size of the delay buffer d — when the buffer size exceeds a threshold, a

shadow iteration is triggered. Hence, the frequency of shard creation is adaptively deter-

mined, in response to the progress towards convergence. We used p = 30% and d = 100KB

in our experiments and found them to be effective.
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Inputs #Vertices #Edges SizeToMem

LiveJournal (LJ) 4.8M 69M 0.2×
Netflix (NF) 0.5M 99M 0.2×

UKDoman (UK) 39.5M 1.0B 2.4×
Twitter (TT) 41.7M 1.5B 5.2×

Friendster (FT) 68.3M 2.6B 10.2×
YahooWeb (YW) 1.4B 6.6B 21.6×

Table 6.4: Input graphs used; PMSize and SS report the peak in-memory size of each graph
structure (without edge values) and the number of static shards created in GraphChi,
respectively. The in-memory size of a graph is measured as the maximum memory con-
sumption of a graph across the five applications; LJ and NF are relatively small graphs
while UK, TT, FT, YW are billion-edge graphs larger than the 8GB memory size; YW
is the largest real-world graph publicly available; all graphs have highly skewed power-law
degree distributions.

6.4.2 I/O Analysis

We next provide a rigorous analysis of the I/O costs. We show that the overhead

of shard loading in shadow iterations can be easily offset from the I/O savings in regular

non-shadow iterations. We analyze the I/O cost in terms of the number of data blocks

transferred between disk and memory. Let b be the size of a block in terms of the number

of edges and E be the edge set of the input graph. Let AE i (i.e., active edge set) represent

the set of edges in the dynamic shards created for iteration i. Here we analyze the cost of

regular iterations and shadow iterations separately for iteration i.

During regular iterations, processing is done using the static shards in the first

iteration and most recently created dynamic shards during later iterations. Each edge can

be read at most twice (i.e., when its source and target vertices are processed) and written

once (i.e., when the value of its source vertex is pushed along the edge). Thus,
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Ci ≤


3|E|
b with static shards

3|AE i|
b with dynamic shards

(6.1)

In a shadow iteration, the static shards and all intermediate dynamic shards are read, the

updated edges are written back to static shards, and a new set of dynamic shards are

created for the next iteration. Since we only append edges onto existing dynamic shards in

regular iterations, there is only one set of dynamic shards between any consecutive shadow

iterations. Hence, the I/O cost is:

Ci ≤
3|E|
b

+
2|AELS |

b
+
|AE i|
b

(6.2)

where AELS is the set of edges in the dynamic shards created by the last shadow iteration.

Clearly, Ci is larger than the cost of static shard based processing (i.e., 3|E|
b ).

Eq. 6.1 and Eq. 6.2 provide a useful insight on how the overhead of a shadow

iteration can be amortized across regular iterations. Based on Eq. 6.2, the extra I/O cost

of a shadow iteration over a regular static-shard-based iteration is 2|AELS |
b + |AE i|

b . Based

on Eq. 6.1, the I/O saving achieved by using dynamic shards in a regular iteration is

(3|E|
b −

3|AE i|
b ).

We assume that d shadow iterations have been performed before the current iter-

ation i and hence, the frequency of shadow iterations is i
d (for simplicity, we assume i is

multiple of d). This means, shadow iteration occurs once every i
d − 1 regular iterations.
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In order for the overhead of a shadow iteration to be wiped off by the savings in

regular iterations, we need:

(
i

d
− 1)× (

3|E|
b
− 3|AE i|

b
) ≥ 2|AELS |

b
+
|AE i|
b

After simplification, we need to show:

(
i

d
− 1)× 3|E| − (

3i

d
− 2)× |AE i| − 2|AELS | ≥ 0 (6.3)

Since AELS is the set of edges in the dynamic shards before Iteration i, we have |AELS | ≤

|AE i| as we only append edges after that shadow iteration. We thus need to show:

(
i

d
− 1)× 3|E| − (

3i

d
− 2)× |AE i| − 2|AE i | ≥ 0

=⇒ |E|
|AEi |

≥
i
d

i
d − 1

The above inequality typically holds for any frequency of shadow iterations i
d > 1. For

example, if the frequency of shadow iterations i
d is 3, |E|

|AEi | ≥ 1.5 means that as long as

the total size of static shards is 1.5 times larger than the total size of (any set of) dynamic

shards, I/O efficiency can be achieved by our optimization. As shown in Figure 6.3a, after

about 10 iterations, the percentage of updated edges in each iteration goes below 15%.

Although unnecessary edges are not removed in each iteration, the ratio between |E| and

|AEi | is often much larger than 1.5, which explains the I/O reduction.
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6.5 Evaluation

Our evaluation uses five applications including PageRank (PR) [94], Multiple-

SourceShortestPath (MSSP), BeliefPropagation (BP) [60], ConnectedComponents (CC) [152],

and HeatSimulation (HS). They belong to different domains such as social network analysis,

machine learning, and scientific simulation. They were implemented using our accumulation-

based GAS programming model. Six real-world graphs, shown in Table 6.4, were chosen as

inputs for our experiments.

All experiments were conducted on an 8-core commodity Dell machine with 8GB

main memory, running Ubuntu 14.04 kernel 3.16, a representative of low-end PCs regular

users have access to. Standard Dell 500GB 7.2K RPM HDD and Dell 400GB SSD were used

as secondary storage, both of which were connected via SATA 3.0Gb/s interface. File system

caches were flushed before running experiments to make different executions comparable.

Two relatively small graphs LJ and NF were chosen to understand the scalability

trend of our technique. The other four graphs UK, TT, FT, and YW are larger than

memory by 2.4×, 5.2×, 10.2×, and 21.6× respectively.

6.5.1 Overall Performance

We compared our modified GraphChi extensively with the Baseline (BL) GraphChi

that processes static shards in parallel. To provide a better understanding of the impact

of the shard creation optimization stated in Section 6.4, we made two modifications, one

that creates dynamic shards aggressively (ADS) and a second that uses the optimization

in Section 6.4 (ODS). We first report the performance of our algorithms over the first five

graphs on HDD in Table 6.5.
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G Version PR BP HS MSSP CC

LJ
BL 630 639 905 520 291

ADS 483 426 869 535 296
ODS 258 383 321 551 263

NF
BL 189 876 238 1,799 190

ADS 174 597 196 1,563 177
ODS 158 568 164 1,436 178

UK
BL 31,616 19,486 21,620 74,566 14,346

ADS 23,332 15,593 35,200 76,707 14,742
ODS 14,874 14,227 12,388 67,637 12,814

TT
BL 83,676 47,004 75,539 109,010 22,650

ADS 61,994 38,148 67,522 97,132 21,522
ODS 47,626 28,434 30,601 84,058 21,589

FT
BL 130,928 100,690 159,008 146,518 50,762

ADS 85,788 84,502 176,767 143,798 50,831
ODS 87,112 51,905 63,120 127,168 42,956

Table 6.5: A comparison on execution time (seconds) among Baseline (BL), ADS, and
ODS.

We ran each program until it converged to evaluate the full impact of our I/O op-

timization. We observed that for each program the numbers of iterations taken by Baseline

and ODS are almost the same. That is, despite the delays needed due to missing edges, the

accumulation-based computation and shard creation optimizations minimize the vertices

that need to be delayed, yielding the same convergence speed in ODS. ADS can increase

the number of iterations in a few cases due to the delayed convergence. On average, ADS

and ODS achieve an up to 1.2× and 1.8× speedup over Baseline.

PR, BP, and HS are computation-intensive programs and they operate on large

working sets. For these three programs, on average ADS speeds up graph processing by

1.53×, 1.50× and 1.22×, respectively. ODS performs much better providing speedups of

2.44×, 1.94×, and 2.82× respectively. The optimized version ODS performs better than

the aggressive version ADS because ODS is likely to eliminate edges after the computation
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Figure 6.6: Speedups achieved per iteration.

of their source vertices becomes stable, and thus edges that will be useful in a few iterations

are likely to be preserved in dynamic shards. ODS consistently outperforms the baseline.

While ADS outperforms the baseline in most cases, eliminating edges aggressively delays

the algorithm convergence for HS on UK (i.e., by 20% more iterations).

MSSP and CC require less computation and they operate on smaller and constantly

changing working sets. Small benefits were seen from both ADS (1.15× speedup) and ODS

(1.30× speedup), because eliminating edges achieves I/O efficiency at the cost of locality.

Figure 6.6 reports a breakdown of speedups on iterations for PR, BP, and HS.

Two major observations can be made here. First, the performance improvement increases

as the computation progresses, which confirms our intuition that the amount of useful data

decreases as the computation comes close to the convergence. Second, the improvements

from ADS exhibit a saw-tooth curve, showing the need of the optimizations in ODS: frequent

drops in speedups are due to frequent shard creation and shadow iterations. These time

reductions are entirely due to reduced I/O because the numbers of iterations taken by ODS

and Baseline are almost always the same.
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PR BP HS

BL 153h:33m 80h:19m 147h:48m
ODS 92h:26m 54h:29m 92h:7m

Speedup 1.66× 1.47× 1.60×

Table 6.6: PR, BP and HS on YW.

Since the YW graph is much larger and takes much longer to run, we evaluate

ODS for PR, BP and HS whose performance is reported in Table 6.6. ODS achieves a 1.47

– 1.60× speedup over Baseline for PR, BP and HS.

Performance on SSD

To understand whether the proposed optimization is still effective when high-bandwidth

SSD is used, we ran experiments for PR and BP on a machine with the same configuration

except that SSD is employed to store shards. We found that the performance benefits are

consistent when SSD is employed: on average, ADS accelerates PR, BP and HS by 1.25×,

1.18× and 1.14× respectively, whereas ODS speeds them up by 1.67×, 1.52× and 1.91×.

Note that our techniques are independent of the storage type and the performance

benefits are mainly achieved by reducing shard loading time. This roughly explains why a

lower benefit is seen on SSD than on HDD – for example, compared to HDD, the loading

time for FT on SSD decreases by 8%, 11% and 7% for PR, BP and HS, respectively.

6.5.2 I/O Analysis

Data Read/Written

Figure 6.7 shows the amount of data read and written during the graph processing in the

modified GraphChi, normalized w.r.t. Baseline. Reads and writes that occur during shadow
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Figure 6.7: Read and write size for different benchmarks normalized w.r.t. the baseline.

iterations are termed shadow reads and shadow writes. No shadow iteration has occurred

when some applications were executed on the Netflix graph (e.g., in Figures 6.7 (b), (c),

(e), and (f)), because processing converges quickly and dynamic shards created once are

able to capture the active set of edges until the end of execution.
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Clearly, ODS reads/writes much less data than both Baseline and ADS. Although

shadow iterations incur additional I/O, this overhead can be successfully offset from the

savings in regular iterations. ADS needs to read and write more data than Baseline in some

cases (e.g., Friendster in Figure 6.7c, Twitter in Figure 6.7d and Figure 6.7e). This shows

that creating dynamic shards too frequently can negatively impact performance.

Size of Dynamic Shards

To understand how well ADS and ODS create dynamic shards, we compare the sizes of

intermediate dynamic shards created using these two strategies. Figure 6.8 and Figure 6.9

shows the change of the sizes of dynamic shards as the computation progresses, normalized

w.r.t. the size of an ideal shard. The ideal shard for a given iteration includes only the

edges which were updated in the previous iteration, and hence, it contains the minimum

set of edges necessary for the next iteration. Note that for both ADS and ODS, their shard

sizes are close to the ideal sizes. In most cases, the differences are within 10%.

It is also expected that shards created by ODS are often larger than those created

by ADS. Note that patterns exist in shard size changes for ADS such as HS on LJ (Fig-

ure 6.8a) and FT (Figure 6.8e). This is because the processing of delayed operations (in

shadow iterations) over high-degree vertices causes many edges to become active and be

included in new dynamic shards.

Edge Utilization

Figure 6.10 reports the average edge utilization rates (EUR) for ADS and ODS, and com-

pares them with that of Baseline. The average edge utilization rate is defined as the per-
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Figure 6.8: The dynamic shard sizes for HS normalized w.r.t. the ideal shard sizes as the
algorithm progresses.
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the algorithm progresses.
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Figure 6.10: Edge utilization rates.

centage of updated edges in a dynamic shard, averaged across iterations. Using dynamic

shards highly improves the edge utilization: the EURs for ADS and ODS are between 55%

and 92%. For CC on NF, the utilization rate is 100% even for ODS, because computation

converges quickly and dynamic shards are created only once. Clearly, ADS has higher EURs

than ODS because of its aggressive shard creation strategy. Using static shards throughout

the execution leads to a very low EUR for Baseline.

Disk Space Consumption

Figure 6.11 reports the maximum disk space needed to process dynamic shards normalized

w.r.t. that needed by Baseline. Since we create and use dynamic shards only after vertex

computations start stabilizing, the actual disk space it requires is very close to (but higher

than) that required by Baseline. This can be seen in Figure 6.11 where the disk consumption

increases by 2-28%. Note that the maximum disk space needed is similar for ADS and ODS,

because dynamic shards created for the first time take most space; subsequent shards are

either smaller (for ADS), or additionally include a small set of active edges (for ODS), which

is insignificant to affect the ratio.
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Figure 6.11: Max disk space used.

Delay Buffer Size

With the help of the accumulation-based computation, the delay buffer often stays small

throughout the execution. Its size is typically less than few 100KBs. The peak consumption

was seen when ConnectedComponent was run on the Friendster graph, and the buffer size

was 1.5MB.

6.5.3 Comparisons with X-Stream

Figure 6.12 compares the speedups and the per-iteration savings achieved by ODS

and X-Stream over Baseline when running PR on large graphs. The saving per iteration

 0

 1

 2

 3

 4

UK TT FT

Sp
ee

d
u

p

ODS XStream

0%

25%

50%

75%

100%

UK TT FT

Sa
vi
n
gs

ODS XStream

Figure 6.12: Speedups achieved (left) and per-iteration savings in execution time achieved
(right) by ODS and X-Stream over Baseline using PR.
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was obtained by (1) calculating, for each iteration in which dynamic shards are created,

Baseline−ODS
Baseline , and (2) taking an average across savings in all such iterations. While the

per-iteration savings achieved by dynamic shards are higher than those by X-Stream, ODS

is overall slower than X-Stream (i.e., ODS outperforms X-Stream on UK but underperforms

it on other graphs).

This is largely expected due to the fundamentally different designs of the vertex-

and edge-centric computation models. Our optimization is implemented in GraphChi, which

is designed to scan the whole graph multiple times during each iteration, while X-Stream

streams edges in and thus only needs one single scan. Hence, although our optimization

reduces much of GraphChi’s loading time, this reduction is not big enough to offset the time

spent on extra graph scans. Furthermore, in order to avoid capturing a large and frequently

changing edge set (as described in Section 6.4.1), our optimization for creating and using

dynamic shards gets activated after a certain number of iterations (e.g., 20 and 14 for TT

and FT, respectively), and these (beginning) iterations do not get optimized.

Although X-Stream has better performance, the proposed optimization is still

useful in practice for two main reasons. First, there are many vertex-centric systems being

actively used. Our results show that the use of dynamic shards in GraphChi has significantly

reduced the performance gap between edge-centricity and vertex-centricity (from 2.74× to

1.65×). Second, our performance gains are achieved only by avoiding the loading of edges

that do not carry updated values and this type of inefficiency also exists in edge-centric

systems. Speedups should be expected when future work optimizes edge-centric systems

using mechanisms proposed in Section 6.3.3.
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6.6 Summary

In this chapter, we demonstrated the efficacy of asynchrony for improving out-

of-core graph processing by developing dynamic partitions that changes the layout of the

partition structure to reduce disk I/O. We leveraged the computation reordering technique

to develop a delay based processing model along with accumulative computation that fully

utilizes dynamic partitions. Our experiments with GraphChi demonstrated that this opti-

mization has significantly shortened its I/O time and improved its overall performance.

While we chose the out-of-core setting to showcase the effectiveness of leveraging

the asynchronous model beyond the distributed processing environment, similar techniques

can be developed for various other processing environments like ones including GPUs, FP-

GAs, non-volatile memories, etc.
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Chapter 7

Related Work

This chapter discusses various research works in the literature that address similar

issues. We first discuss various works that focus on graph processing and then briefly discuss

general purpose solutions based on the relaxed consistency philosophy.

7.1 Graph Processing Solutions

We first discuss various techniques developed to process static graphs, and then

present solutions to process dynamic graphs.

7.1.1 Static Graph Processing

There have been many advances in developing frameworks for distributed graph

processing. Google’s Pregel [86] provides a synchronous vertex centric framework for large

scale graph processing which uses message passing instead of a shared memory abstraction.

GraphLab [84] provides a framework for asynchronous execution of machine learning and
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data mining algorithms on graphs. It allows users to choose among three different data

consistency constraints to balance program correctness and performance. PowerGraph [44]

provides efficient distributed graph placement and computation by exploiting the struc-

ture of power-law graphs. It provides both, synchronous and asynchronous execution and

enforces serializability by avoiding adjacent vertex programs from running concurrently.

Pregelix [12] is a distributed graph processing system based on an iterative dataflow design

to handle both in-memory and out-of-core workloads. GraphX [45] is a graph processing

framework built using the Apache Spark [143] distributed dataflow system. [123] presents

a graph centric programming model which exposes the partition structure to accelerate

convergence by bypassing intermediate messages. Cyclops [22] provides a distributed im-

mutable view, granting vertices read-only accesses to their neighbors and allowing unidi-

rectional communication from master vertices to their replicas. GoFFish [115] presents a

sub-graph centric framework that enables programming flexibility while providing commu-

nication efficiency. Arabesque [122] focuses on graph mining by providing efficient sub-graph

exploration using filter-process computational model based on problem-specific exploration

criteria. Chaos [102] utilizes disk space on multiple machines to scale graph processing.

Ligra [114] presents a simple shared memory abstraction for vertex algorithms

which is particularly good for problems similar to graph traversal. [92] presents a shared-

memory based implementations of these DSLs on a generalized Galois [69] system and

compares its performance with the original implementations. These frameworks are based

on the Bulk Synchronous Parallel (BSP) [126] model and the MapReduce [30] philoso-

phy which allow users to write code from a local perspective and let the system translate
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the computations to larger datasets. However, they do not provide support for program-

ming asynchronous algorithms by using stale values (Chapter 2). The ideas we presented

throughout this thesis can be incorporated in above frameworks to support asynchronous

algorithms. GRACE [132], a shared memory based graph processing system, uses message

passing and provides asynchronous execution by using stale messages. Since shared-memory

processing does not suffer from communication latencies, these systems can perform well

for graphs which can fit on a single multicore server. [71] develops techniques to efficiently

transform the input graph into a smaller graph and presents a two-phase processing model

to leverage incremental computation by using values computed on the transformed graphs

while processing the original input graph.

GraphChi [73] provides efficient disk-based graph processing on a single machine

for input graphs that cannot fit in memory. As mentioned in Chapter 6, shards are cre-

ated during pre-processing and are never changed during graph computation, resulting in

wasteful I/O. Our work exploits dynamic shards whose data can be dynamically adjustable

to reduce I/O. Efforts have been made to reduce I/O using semi-external memory and

SSDs. Bishard Parallel Processor [91] aims to reduce non-sequential I/O by using separate

shards to contain incoming and outgoing edges. This requires replication of all edges in the

graph, leading to disk space blowup. X-Stream [103] uses an edge-centric approach in order

to minimize random disk accesses. In every iteration, it streams and processes the entire

unordered list of edges during the scatter phase and applies updates to vertices in the

gather phase. Using our approach, dynamic edge-lists can be created to reduce wasteful

I/O in the scatter phase of X-Stream. GridGraph [153] uses partitioned vertex chunks
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and edge blocks as well as a dual sliding window algorithm to process graphs residing on

disks. It enables selective scheduling by eliminating processing of edge blocks for which

vertices in the corresponding chunks are not scheduled. However, the two-level partitioning

is still done statically. Conceptually, making partitions dynamic would provide additional

benefit over the 2-level partitioning. FlashGraph [150] is a semi-external memory graph

engine that stores vertex states in memory and edge-lists on SSDs. It is built based on the

assumption that all vertices can be held in memory and a high-speed user-space file system

for SSD arrays is available to merge I/O requests to page requests. TurboGraph [50] is

an out-of-core computation engine for graph database to process graphs using SSDs. Since

TurboGraph uses an adjacency list based representation, algorithms need to be expressed

as sparse matrix-vector multiplication, which has a limited applicability because certain

algorithms such as triangle counting cannot be expressed in this manner. Graspan [133] is

a disk-based graph system that processes program graphs with constant edge additions.

7.1.2 Evolving Graph Processing

This work, similar to our work [127], considers the scenario where an evolving graph

is represented as a sequence of snapshots that are then analyzed. Chronos [49] is a storage

and execution engine to process temporal graphs. It employs a graph representation that

places vertex data from different snapshots together. It exploits the cache locality created

by the above graph representation by interleaved (parallel) processing of snapshots in a

single- and multi-threaded environment leading to improved L1 data cache and last level

cache performance. Both Chronos and FA (Chapter 4) exploit synergy between different

graph snapshots by collocating vertex values, in memory versus in messages respectively.
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In presence of FA, Chronos performs incremental processing by feeding stable values from

the most recent snapshot in the previous batch to all the snapshots in the next batch. This

requires Chronos to wait for all the snapshots in the previous batch to finish before the next

batch can begin execution. In comparison, our PA (Chapter 4) allows faster processing by

feeding potentially unstable (partially computed) values which are available from the most

recent snapshot. In addition, in our work we also consider the interplay between FA, PA, and

caching in distributed and shared-memory environments. GraphInc [14] is a system which

allows incremental processing of graphs by employing memoization of incoming messages

to remove redundant vertex computations for same sets of messages.

GraphScope [119] focuses on the encoding of time-evolving graphs to efficiently

perform community discovery and change detection. Kan et al. [59] present indexing tech-

niques for detecting simple spatio-temporal patterns in evolving graphs – unlike our work

these queries are simple and do not involve iterative algorithms. TEG [38] focuses on

partitioning time evolving graphs across nodes of a cluster for distributed processing and

implements reachability and subgraph queries. In [65], a distributed graph database system

is developed to manage historical data for evolving graphs, supporting temporal queries

and analysis. Many algorithmic approaches are being developed for improving efficiency.

Ren et al. [98] propose Find-Verify-Fix approach where from a sequence of snapshots a

representative snapshot is constructed. To process a query, first representative snapshot is

used and if there is success, the real snapshots are queried to verify and fix the response.

Like our work, the Find-Verify-Fix approach also recognizes the synergy between analysis

performed on different snapshots. However, this approach is effective when only the struc-
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tural properties of graphs are being considered. Desikan et al. [32] propose an incremental

PageRank algorithm for evolving graphs that partitions graph into a part whose PageRank

values will remain unchanged and the remaining subgraph. This algorithm exploits the

underlying principle of first order markov model on which PageRank is based.

7.1.3 Streaming Graph Processing

Custom solutions develop specialized streaming algorithms to solve different prob-

lems. They incorporate correctness in the algorithm design either by relaxing the problem

constraints or by dealing with edge mutations in specific ways. STINGER [35] uses a novel

data structure which enables quick insertions and deletions while allowing parallel traversal

of vertices and edges. [34] develops an approximation method for maintaining clustering

coefficients using bloom filters. [33, 99] incorporate techniques to correctly maintain con-

nected components information using STINGER by using set intersection of neighborhood

vertices to quickly determine connectivity and construct a spanning tree for each component

to check for reachability up to root. While checking reachability is expensive, the algorithm

relies on multiple concurrent graph traversals to maximize parallelism. In comparison, our

trimming solution (Chapter 5) in KickStarter [128] does not need expensive traversals since

it relies on level checking. Other custom solutions for connectivity checks upon deletions

are: [113] relies on two searches to find component splits whereas [100, 54] maintain graph

snapshots for each iteration and use LCA and coloring technique. [141] presents a novel

clustering algorithm which is aware of the evolution whereas Fennel [125] proposes a novel

partitioning algorithm. [118] proposes greedy, chunking and balancing based heuristics to

partition streaming graphs.
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Generalized Streaming Graph Processing systems allow users to express graph

algorithms. When a query arrives in Tornado [112], it takes the current graph snapshot and

branches the execution to a separate loop to compute results using incremental processing.

Kineograph [24] is a distributed streaming graph processing system which enables graph

mining over fast-changing graphs and uses incremental computation along with push and

pull models. [120] proposes the GIM-V incremental graph processing model based upon

matrix-vector operations. [98] constructs representative snapshots which are initially used

for querying and upon success uses real snapshots. Naiad [90] incorporates differential data

flow to perform iterative and incremental algorithms.

Various generalized data stream processing systems [124, 144, 48, 7, 1, 145, 97,

4] have been developed that operate on unbounded structured and unstructured streams

which allow window operations, incremental aggregation and instant querying to retrieve

timely results. They allow users to develop their own streaming algorithms; note that users

must ensure correctness of algorithms. [104] identifies errors in data-stream processing

and improves the accuracy of sketch-based algorithms like Count-Min, Frequency-Aware

Counting, etc.

7.2 Weak Memory Models

Extensive research has been conducted on weak memory models that relax consis-

tency. A hierarchy of these models can be found in [89] and [53]. We have already discussed

the relevant ones; here we provide a complete characterization of the models.
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A number of models are too strong for asynchronous algorithms. Release con-

sistency [42] and its variants like lazy release consistency [63, 140] relax consistency by

delaying visibility of updates until certain specially labeled accesses. Causal memory [2] is

weaker than Lamport’s sequential consistency [75] which guarantees that processes agree

on the relative ordering of operations that are potentially causally related [74]. Entry con-

sistency [10] guarantees consistency only when a thread enters a critical section defined

by synchronization variables. Scope consistency [57] enforces that all updates in the previ-

ous consistency session are visible at the start of current consistency session for the same

scope. Even though entry consistency and scope consistency can be used to mimic relaxed

coherence, by manually controlling synchronization variables and consistency scopes, none

of these models inherently relax the consistency.

Other models are too weak and hence not a good fit for asynchronous algorithms.

Pipelined RAM (PRAM) [106] provides fast data access similar to our proposed model: on

a read, it simply returns the local copy and on write, local values are updated and the

new value is broadcast to other processors. However, it allows inconsistent data-views be-

cause relative order of updates from different processes can vary. Also, it enforces a strict

constraint that all processors must agree on the order of all observed writes by a single

processor. This means, broadcast of these updates cannot be skipped, and hence, as shown

in [51], the time taken for flow of updates in PRAM increases rapidly as the number of

processes increase. This increase in flow of updates can delay the convergence of asyn-

chronous algorithms. Our pull-based model (Chapter 2) allows object values to be skipped

since it does not constrain the order of observed writes to different objects and hence, is
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more flexible to provide faster convergence. Slow memory [56] makes the consistency model

weak enough for a read to return some previously written value. This allows the cache to

be non-coherent, but requires programming effort to guarantee convergence.

Mermera [52] tries to solve the same problem for iterative asynchronous algorithms

by using slow memory. Programs written on mermera handle the correctness and conver-

gence issue by explicitly maintaining a mix of slow writes, coherent writes, and specialized

barriers (to flush slow writes). Also, slow memory is based on delayed updates; if it is im-

plemented to support a DSM which is not update based, once the stream of delayed updates

enters the memory, local copies will be invalidated and the same issue (waiting for remote

fetch) arises. To enable ease of programming and allow intuitive reasoning about execution,

our consistency model (Chapter 2) guarantees the progressive reads semantics [129, 130]

while still allowing relaxation of consistency for use of stale objects.

Finally, a number of models support bounded staleness. This is same as delta

coherence as used in InterWeave [21], that allows use of objects that are no more than x

versions out-of-date. Even though this mechanism proved to be useful to reduce network

usage, maintaining a static staleness upper bound x is not useful; a low value of x will

only hide few remote fetches because stale objects will quickly become useless while a high

value of x can significantly delay the convergence as updates are slowly propagated through

the system, allowing many wasteful computations. This issue is also faced by the stale

synchronous parallel (SSP) model [26]. SSP defines staleness as the number of iterations

since the object at hand received its value. Their experiments show that the convergence

behavior begins to degrade when the staleness bound is increased past a certain value.
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Hence, statically bounding staleness is not the correct approach to improve performance of

asynchronous iterative algorithms. The challenge is to allow use of stale objects when up-to-

date values are not available but, at the same time, minimize the staleness of such objects.

Delta consistency introduced in [116] has a similar approach as delta coherence, but enforces

a temporal bound on staleness. This requires mechanisms for temporal synchronization to

compute the global virtual time (GVT). Again, since there is no global ordering for writes

from different processors to the same location, correctness semantics need to be externally

ensured. Also, none of these models proactively try to maintain low staleness by fetching

and updating values. This means, fetches on critical paths are blocked often because the

values become too stale which limits their performance benefits.

DSM Coherence Frameworks

Many coherence frameworks, for page as well as object based systems, support multiple

coherence schemes to effectively deal with variety of behaviors. Shasta [107] is a page based

DSM that provides flexibility of varying coherence granularity for shared data structures.

CASHMERe [67] provides a scalable shared memory which uses page sized coherence blocks.

It uses an asynchronous protocol but, the focus is not towards relaxation of coherence.

TreadMarks [64] is designed to reduce communication for maintaining memory consistency.

It uses lazy release consistency and multiple writer based protocols that provide strict con-

sistency guarantee and incurs less communication. In [3] dynamic adaption between single

writer and multiple writer protocols is proposed to balance false sharing with computation

and memory costs. This work is tangential to our goal which is improving performance of

asynchronous iterative algorithms by allowing controlled use of stale objects.
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In Chapter 2, we deal at a higher abstraction level by using object based DSM like

Orca [6] and Munin [15]. Munin uses coherence mechanisms based upon object types. Also,

relaxation of coherence in Munin is limited in between synchronization points and at them

the delayed updates are flushed to remote copies. Object View [82] shares similar goals

as Munin and Orca; it provides extensions to Java to specify intended use of objects by

computation threads. This allows runtime to use low-overhead caching protocols customized

to application requirements. Problem Oriented Object Memory [68] allows relaxation of

strict consistency by letting objects to fall in different consistency models. Since we aim to

specifically improve performance of asynchronous algorithms, we do not distinguish objects

based on usage types. Cachet [110] dynamically adapts across multiple micro-protocols that

are optimized based upon access patterns. [16] focuses on reducing communication required

to maintain consistency among distributed memories. [151, 58, 108] and others try to relax

consistency using basic memory models previously described. Since they inherently aim to

provide a consistent DSM, relaxation of consistency is not explored in these works.
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Chapter 8

Conclusions and Future Work

8.1 Contributions

In this thesis, we study and leverage the algorithmic asynchrony to improve large-

scale graph processing. We first specified the asynchronous processing model in a distributed

setting by identifying key properties based on read-write dependences and order of reads to

expose the set of legal executions for asynchronous programs. This allowed us to capture

the algorithmic intricacies and execution semantics, enabling us to improve asynchronous

processing and making it easier to reason about asynchronous execution semantics while

leveraging from its benefits. And then, we developed key techniques to exploit the avail-

ability of multiple legal executions by choosing faster executions to accelerate the overall

processing via reduction in both, communication and computation while processing static

and dynamic graphs.
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Static Graph Processing

We presented an effective solution for exploiting the asynchronous nature of iterative algo-

rithms for tolerating communication latency in a cluster. We designed a relaxed consistency

model and the RCP protocol that allows threads to utilize stale values, and incorporates a

policy for refreshing stale values. Together, these features allow an asynchronous algorithm

to tolerate communication latency without adversely impacting algorithm’s convergence.

We studied the semantics of asynchronous distributed processing that enable fault toler-

ance at reduced costs. We developed confined recovery strategy upon machine failures by

constructing alternate PR-Consistent state without discarding any useful work performed

on non-failing machines. CoRAL uses locally consistent snapshots that are captured at

reduced peak network bandwidth usage for transferring snapshots to remote machines.

Dynamic Graph Processing

We leveraged the asynchrony to accelerate evolving graph processing using two optimiza-

tions. Fetch Amortization reduces remote fetches by aggregating similar messages that get

exposed due to computation reordering. Processing Amortization accelerates termination

of iterative algorithms by carefully using incremental computations. We also developed an

efficient runtime technique to process streaming graphs. We achieved this by exploiting the

algorithmic asynchrony to develop KickStarter, a dynamic dependence based incremental

processing technique that efficiently computes query results while simultaneously providing

100% correctness guarantees in presence of edge deletions.

235



Out-of-core Processing

Finally, we demonstrated the efficacy of asynchrony across execution environments beyond

a distributed setting. In particular, we improved out-of-core graph processing by developing

dynamic partitions that changes the layout of the partition structure to reduce disk based

I/O. We leveraged the computation reordering technique to develop a delay based processing

model along with accumulative computation that fully utilizes dynamic partitions.

8.2 Future Work

While this thesis demonstrated the effectiveness of leveraging asynchrony by mod-

ifying the execution semantics to accelerate performance, algorithmic asynchrony can also

be exploited by modifying aspects of the data graph. Furthermore, such asynchrony can

be exploited across various other domains which demand computations beyond traditional

vertex/edge-centric algorithms.

8.2.1 Graph Transformation

While acceleration via graph reduction has been explored in [71], the work requires

multiple processing phases to compute the final results because the transformations do

not maintain the structural details of the graph. However, novel transformations can be

developed such that the transformed graph maintains the structural details to a level that

needs minimal processing phases, while still producing accurate results. Taking a step

further, transformations can be developed such that synchronous graph algorithms which

strictly limit the processing semantics can also leverage from this technique while providing

the same processing guarantees.
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8.2.2 Graph Partitioning

To process the graph in a distributed environment, it is first partitioned across dif-

ferent nodes in the cluster and each node becomes responsible to process the subgraph par-

titioned to that node. Various graph partitioning strategies have been explored [84, 44, 129,

23] which minimize the overall communication while balancing computation across all the

nodes. Algorithmic aware partitioning strategies can be developed that relax the traditional

communication and load balancing constraints, but expose the algorithmic asynchrony in

form of structural properties of the partitioned subgraphs. Furthermore, such partitioning

strategies can be used to further develop novel processing models that can leverage the

exposed properties of the partitioned subgraphs.

8.2.3 Other Graph Applications

Graphs, being ubiquitous, require processing across various domains like software

debugging [148, 39] and privacy across networks [41]. These domains introduce new prop-

erties and constraints over both, the graph being processed and the algorithms that process

the graphs. For example, software control flow graphs are structurally different from social

network graphs, exposing an input characteristic that can be exploited for processing. Sim-

ilarly, various bug detection and privacy algorithms like graph de-anonymization examine

graph sub-structures that are usually larger than the bounded-neighborhood for a given

vertex or edge, making them difficult to express and parallelize. Since limited study has

been performed to generalize these kinds of graph algorithms, characterizing the read-write

dependences can expose various relaxable computations making room for asynchrony to be

introduced and exploited.
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[70] Jérôme Kunegis. Konect: The koblenz network collection. In Proceedings of the 22Nd
International Conference on World Wide Web Companion, WWW ’13 Companion,
pages 1343–1350, Republic and Canton of Geneva, Switzerland, 2013. International
World Wide Web Conferences Steering Committee.

[71] Amlan Kusum, Keval Vora, Rajiv Gupta, and Iulian Neamtiu. Efficient Processing
of Large Graphs via Input Reduction. In ACM HPDC, 2016.

[72] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is Twitter, a
social network or a news media? In WWW, pages 591–600, 2010.

243



[73] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. Graphchi: large-scale graph compu-
tation on just a pc. In Presented as part of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12), pages 31–46, 2012.

[74] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, 1978.

[75] Leslie Lamport. How to make a mulitprocessor computer that correctly executes
multiprocess programs. In Readings in computer architecture, pages 574–575. Morgan
Kaufmann Publishers Inc., 2000.

[76] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and John Hen-
nessy. The directory-based cache coherence protocol for the dash multiprocessor. In
Proceedings of the 17th Annual International Symposium on Computer Architecture,
ISCA ’90, pages 148–159, New York, NY, USA, 1990. ACM.

[77] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

[78] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. Com-
munity structure in large networks: Natural cluster sizes and the absence of large
well-defined clusters. Internet Mathematics, 6(1):29–123, 2009.

[79] Michael Ley. The dblp computer science bibliography: Evolution, research issues,
perspectives. In SPIRE, pages 1–10, 2002.

[80] Wen-Yew Liang, Chun ta King, and Feipei Lai. Adsmith: An efficient object-based
distributed shared memory system on pvm. In PVM. Proceedings of the 1996 In-
ternational Symposium on Parallel Architecture (ISPAN 96, pages 173–179. Press,
1996.

[81] Ee-Peng Lim, Viet-An Nguyen, Nitin Jindal, Bing Liu, and Hady Wirawan Lauw.
Detecting product review spammers using rating behaviors. In CIKM, pages 939–
948, 2010.

[82] Ilya Lipkind, Igor Pechtchanski, and Vijay Karamcheti. Object views: language
support for intelligent object caching in parallel and distributed computations. In
Proceedings of the 14th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, OOPSLA ’99, pages 447–460, New York, NY,
USA, 1999. ACM.

[83] Xin Liu and Tsuyoshi Murata. Advanced modularity-specialized label propagation
algorithm for detecting communities in networks. Physica A: Statistical Mechanics
and its Applications, 389(7):1493–1500, 2010.

[84] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and
Joseph M. Hellerstein. Distributed graphlab: A framework for machine learning and
data mining in the cloud. Proc. VLDB Endow., 5(8):716–727, April 2012.

244



[85] Yucheng Low, Joseph E Gonzalez, Aapo Kyrola, Danny Bickson, Carlos E Guestrin,
and Joseph Hellerstein. Graphlab: A new framework for parallel machine learning.
arXiv preprint arXiv:1408.2041, 2014.

[86] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, Grzegorz Czajkowski, and Google Inc. Pregel: A system for large-
scale graph processing. In SIGMOD, pages 135–146, 2010.

[87] D. Manivannan and M. Singhal. Quasi-synchronous checkpointing: Models, charac-
terization, and classification. IEEE Transactions on Parallel and Distributed Systems,
10(7):703–713, July 1999.

[88] Paolo Massa and Paolo Avesani. Controversial users demand local trust metrics: An
experimental study on epinions.com community. In Proceedings of the 20th National
Conference on Artificial Intelligence - Volume 1, AAAI’05, pages 121–126. AAAI
Press, 2005.

[89] David Mosberger. Memory consistency models. ACM SIGOPS Operating Systems
Review, 27(1):18–26, 1993.

[90] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and
Mart́ın Abadi. Naiad: A timely dataflow system. In SOSP, pages 439–455, 2013.

[91] Kamran Najeebullah, Kifayat Ullah Khan, Waqas Nawaz, and Young-Koo Lee.
Bishard parallel processor: A disk-based processing engine for billion-scale graphs.
Journal of Multimedia & Ubiquitous Engineering, 9(2):199–212, 2014.

[92] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight infrastructure
for graph analytics. In SOSP, pages 456–471, 2013.

[93] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout, and Mendel
Rosenblum. Fast crash recovery in ramcloud. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, SOSP ’11, pages 29–41, New York, NY,
USA, 2011. ACM.

[94] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank
citation ranking: Bringing order to the web. Technical report, Stanford University,
1998.

[95] Russell Power and Jinyang Li. Piccolo: Building fast, distributed programs with
partitioned tables. In Proceedings of the 9th USENIX Conference on Operating Sys-
tems Design and Implementation, OSDI’10, pages 293–306, Berkeley, CA, USA, 2010.
USENIX Association.

[96] Mayank Pundir, Luke M. Leslie, Indranil Gupta, and Roy H. Campbell. Zorro: Zero-
cost reactive failure recovery in distributed graph processing. In SoCC, pages 195–208,
2015.

245



[97] Frederick Reiss, Kurt Stockinger, Kesheng Wu, Arie Shoshani, and Joseph M. Heller-
stein. Enabling real-time querying of live and historical stream data. In Proceedings of
the 19th International Conference on Scientific and Statistical Database Management,
SSDBM ’07, pages 28–, Washington, DC, USA, 2007. IEEE Computer Society.

[98] Chenghui Ren, Eric Lo, Ben Kao, Xinjie Zhu, and Reynold Cheng. On querying
historical evolving graph sequences, 2011.

[99] Jason Riedy and Henning Meyerhenke. Scalable algorithms for analysis of massive,
streaming graphs, 2012.

[100] Liam Roditty and Uri Zwick. A fully dynamic reachability algorithm for directed
graphs with an almost linear update time. SIAM Journal on Computing, 45(3):712–
733, 2016.

[101] Ryan A. Rossi, Brian Gallagher, Jennifer Neville, and Keith Henderson. Modeling
dynamic behavior in large evolving graphs. In WSDM, pages 667–676, 2013.

[102] Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy Zwaenepoel.
Chaos: Scale-out graph processing from secondary storage. In SOSP, pages 410–424,
2015.

[103] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-Stream: Edge-centric graph
processing using streaming partitions. In SOSP, pages 472–488, 2013.

[104] Pratanu Roy, Arijit Khan, and Gustavo Alonso. Augmented sketch: Faster and more
accurate stream processing. In Proceedings of the 2016 International Conference on
Management of Data, SIGMOD ’16, pages 1449–1463, New York, NY, USA, 2016.
ACM.

[105] Semih Salihoglu and Jennifer Widom. GPS: A graph processing system. In SSDBM,
pages 22:1–22:12, 2013.

[106] Lipton Richardand Jonathan S Sandberg. Pram: A scalable shared memory. Technical
report, Technical Report TR-180-88, Princeton Univ., Dept. Comp. Sci, 1988.

[107] Daniel J. Scales and Kourosh Gharachorloo. Design and performance of the shasta
distributed shared memory protocol. In ICS, pages 245–252, 1997.

[108] Martin Schulz, Jie Tao, and Wolfgang Karl. Improving the scalability of shared
memory systems through relaxed consistency. In Proceedings of the Second Workshop
on Caching, Coherence, and Consistency (WC302), 2002.

[109] Bin Shao, Haixun Wang, and Yatao Li. Trinity: A distributed graph engine on a
memory cloud. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’13, pages 505–516, New York, NY, USA, 2013.
ACM.

246



[110] Xiaowei Shen, Arvind, and Larry Rudolph. Cachet: an adaptive cache coherence pro-
tocol for distributed shared-memory systems. In Proceedings of the 13th international
conference on Supercomputing, ICS ’99, pages 135–144, New York, NY, USA, 1999.
ACM.

[111] Yanyan Shen, Gang Chen, H. V. Jagadish, Wei Lu, Beng Chin Ooi, and Bogdan Mar-
ius Tudor. Fast failure recovery in distributed graph processing systems. Proc. VLDB
Endow., 8(4):437–448, December 2014.

[112] Xiaogang Shi, Bin Cui, Yingxia Shao, and Yunhai Tong. Tornado: A system for real-
time iterative analysis over evolving data. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD ’16, pages 417–430, New York, NY,
USA, 2016. ACM.

[113] Yossi Shiloach and Shimon Even. An on-line edge-deletion problem. Journal of the
ACM (JACM), 28(1):1–4, 1981.

[114] Julian Shun and Guy E. Blelloch. Ligra: A lightweight graph processing framework
for shared memory. In PPoPP, pages 135–146, 2013.

[115] Yogesh Simmhan, Alok Kumbhare, Charith Wickramaarachchi, Soonil Nagarkar, San-
tosh Ravi, Cauligi Raghavendra, and Viktor Prasanna. Goffish: A sub-graph centric
framework for large-scale graph analytics. In European Conference on Parallel Pro-
cessing, pages 451–462. Springer, 2014.

[116] Aman Singla, Umakishore Ramachandran, and Jessica Hodgins. Temporal notions of
synchronization and consistency in beehive. In Proceedings of the ninth annual ACM
symposium on Parallel algorithms and architectures, pages 211–220. ACM, 1997.

[117] Stack exchange inc. stack exchange data explorer: http://data.stackexchange.com/.

[118] Isabelle Stanton and Gabriel Kliot. Streaming graph partitioning for large distributed
graphs. In Proceedings of the 18th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 1222–1230. ACM, 2012.

[119] Jimeng Sun, Christos Faloutsos, Spiros Papadimitriou, and Philip S. Yu. GraphScope:
Parameter-free mining of large time-evolving graphs. In KDD, pages 687–696, 2007.

[120] Toyotaro Suzumura, Shunsuke Nishii, and Masaru Ganse. Towards large-scale graph
stream processing platform. In WWW Companion, pages 1321–1326, 2014.

[121] Lubos Takac and Michal Zabovsky. Data analysis in public social networks. In
International Scientific Conference and International Workshop Present Day Trends
of Innovations, pages 1–6, 2012.

[122] Carlos H. C. Teixeira, Alexandre J. Fonseca, Marco Serafini, Georgos Siganos, Mo-
hammed J. Zaki, and Ashraf Aboulnaga. Arabesque: A system for distributed graph
mining. In SOSP, pages 425–440, 2015.

247



[123] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda, and
John McPherson. From” think like a vertex” to” think like a graph. PVLDB, 7(3):193–
204, 2013.

[124] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M Pa-
tel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham, et al.
Storm@ twitter. In Proceedings of the 2014 ACM SIGMOD international conference
on Management of data, pages 147–156. ACM, 2014.

[125] Charalampos Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan Vo-
jnovic. Fennel: Streaming graph partitioning for massive scale graphs. In Proceedings
of the 7th ACM international conference on Web search and data mining, pages 333–
342. ACM, 2014.

[126] Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM,
33(8):103–111, August 1990.

[127] Keval Vora, Rajiv Gupta, and Guoqing Xu. Synergistic analysis of evolving graphs.
ACM Transactions on Architecture and Code Optimization, 13(4):32:1–32:27, October
2016.

[128] Keval Vora, Rajiv Gupta, and Guoqing Xu. Kickstarter: Fast and accurate com-
putations on streaming graphs via trimmed approximations. In Proceedings of the
Twenty-Second International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’17, pages 237–251, New York, NY, USA,
2017. ACM.

[129] Keval Vora, Sai Charan Koduru, and Rajiv Gupta. ASPIRE: Exploiting asynchronous
parallelism in iterative algorithms using a relaxed consistency based DSM. In Pro-
ceedings of the 2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA ’14, pages 861–878, New York, NY,
USA, 2014. ACM.

[130] Keval Vora, Chen Tian, Rajiv Gupta, and Ziang Hu. Coral: Confined recovery
in distributed asynchronous graph processing. In Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’17, pages 223–236, New York, NY, USA, 2017. ACM.

[131] Keval Vora, Guoqing Xu, and Rajiv Gupta. Load the edges you need: A generic i/o
optimization for disk-based graph processing. In Proceedings of the 2016 USENIX
Conference on Usenix Annual Technical Conference, USENIX ATC ’16, pages 507–
522, Berkeley, CA, USA, 2016. USENIX Association.

[132] Guozhang Wang, Wenlei Xie, Alan Demers, and Johannes Gehrke. Asynchronous
large-scale graph processing made easy. In CIDR, 2013.

[133] Kai Wang, Aftab Hussain, Zhiqiang Zuo, Guoqing Xu, and Ardalan Amiri Sani. Gras-
pan: A single-machine disk-based graph system for interprocedural static analyses of

248



large-scale systems code. In Proceedings of the Twenty-Second International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’17, pages 389–404, New York, NY, USA, 2017. ACM.

[134] Kai Wang, Guoqing Xu, Zhendong Su, and Yu David Liu. GraphQ: Graph query
processing with abstraction refinement—programmable and budget-aware analytical
queries over very large graphs on a single PC. In USENIX ATC, pages 387–401, 2015.

[135] Peng Wang, Kaiyuan Zhang, Rong Chen, and Haibo Chen. Replication-based fault-
tolerance for large-scale graph processing. In IEEE/IFIP DSN, pages 562–573, 2014.

[136] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of /‘small-world/’
networks. Nature, 393(6684):440–442, 06 1998.

[137] Yahoo! Webscope Program. http://webscope.sandbox.yahoo.com/.

[138] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based
on ground-truth. Knowledge and Information Systems, 42(1):181–213, 2015.

[139] John W. Young. A first order approximation to the optimum checkpoint interval.
Commun. ACM, 17(9):530–531, September 1974.

[140] Byung-Hyun Yu, Zhiyi Huang, Stephen Cranefield, and Martin Purvis. Homeless
and home-based lazy release consistency protocols on distributed shared memory.
In Proceedings of the 27th Australasian Conference on Computer Science - Volume
26, ACSC ’04, pages 117–123, Darlinghurst, Australia, Australia, 2004. Australian
Computer Society, Inc.

[141] Mindi Yuan, Kun-Lung Wu, Gabriela Jacques-Silva, and Yi Lu. Efficient processing
of streaming graphs for evolution-aware clustering. In CIKM, pages 319–328, 2013.

[142] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Mur-
phy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In
USENIX NSDI, pages 2–2, 2012.

[143] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. Spark: cluster computing with working sets. HotCloud, 10:10–10, 2010.

[144] Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion Stoica. Discretized
streams: an efficient and fault-tolerant model for stream processing on large clusters.
In Presented as part of the, 2012.

[145] Erik Zeitler and Tore Risch. Massive scale-out of expensive continuous queries, 2011.

[146] ZeroMQ. http://zeromq.org/.

[147] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. Pruning dynamic slices with con-
fidence. In Proceedings of the 27th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 169–180, 2006.

249

http://webscope.sandbox.yahoo.com/


[148] Xiangyu Zhang and Rajiv Gupta. Matching execution histories of program versions.
In Proceedings of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software En-
gineering, ESEC/FSE-13, pages 197–206, New York, NY, USA, 2005. ACM.

[149] Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. Precise dynamic slicing algorithms.
In Proceedings of the 25th International Conference on Software Engineering, pages
319–329, 2003.

[150] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E Priebe, and
Alexander S Szalay. FlashGraph: processing billion-node graphs on an array of com-
modity ssds. In FAST, pages 45–58, 2015.

[151] Yuanyuan Zhou, Liviu Iftode, Jaswinder Pal Sing, Kai Li, Brian R. Toonen, Ioannis
Schoinas, Mark D. Hill, and David A. Wood. Relaxed consistency and coherence gran-
ularity in dsm systems: a performance evaluation. In Proceedings of the sixth ACM
SIGPLAN symposium on Principles and practice of parallel programming, PPOPP
’97, pages 193–205, New York, NY, USA, 1997. ACM.

[152] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with
label propagation. Technical Report CALD-02-107, Carnegie Mellon University, 2002.

[153] Xiaowei Zhu, Wentao Han, and Wenguang Chen. GridGraph: Large scale graph
processing on a single machine using 2-level hierarchical partitioning. In USENIX
ATC, pages 375–386, 2015.

250


	List of Figures
	List of Tables
	Introduction
	Dissertation Overview
	Processing Static Graphs
	Processing Dynamic Graphs
	Out-of-core Graph Processing

	Dissertation Organization

	Relaxed Consistency Model
	Asynchronous Parallelism
	Relaxed Object Consistency Model
	Relaxed Consistency Protocol
	Definitions and Notation
	Protocol
	Optimizations

	Experimental Setup
	System Prototype
	Benchmarks and Inputs

	Experimental Results
	Benefits of Exploiting Staleness
	Bounded Staleness vs. RCP
	Design Choices of RCP
	Comparison with Other Systems

	Summary

	Confined Recovery
	Background and Motivation
	Confined Recovery for Asynchronous model via Lightweight checkpointing
	PR-Consistent Recovery: Single Failure Case
	PR-Consistent Recovery: Multiple Failures
	Capturing PR-Ordering

	Evaluation
	Recovery Overhead
	Partitioning Snapshots: Impact on Recovery
	Optimizing Recovery from Multiple Failures
	Checkpointing: Impact on Network Bandwidth

	Summary

	Evolving Graph Processing
	Evolving Graph and Iterative Processing
	Evolving Graph
	Computation over Evolving Graphs

	Temporal Layout of Evolving Graphs
	Fetch Amortization
	Fetch Amortization via Computation Re-ordering
	Mutable Vertex Values
	Vertex Activations
	Convergence Detection
	Caching & Message Aggregation

	Processing Amortization
	Processing Amortization via Feeding
	Applicability & Correctness

	Graph Processing Systems
	ASPIRE
	GraphLab
	Other Graph Processing Frameworks.

	Experimental Evaluation
	Experimental Setup
	Performance of FA & PA in GraphLab/ASPIRE
	Sensitivity to Cache Size
	Sensitivity to number of snapshots ()
	Sensitivity to similarity in snapshots
	Comparison with Chronos

	Summary

	Streaming Graph Processing
	Background and Motivation
	Problem 1: Incorrectness
	Problem 2: Degraded Performance
	How to Distinguish Algorithms
	Correcting Approximations using KickStarter

	Trimming Approximations
	KickStarter Overview
	Trimming via Tagging + Resetting
	Trimming via Active Value Dependence Tracking
	Trimming for Performance
	Safety and Profitability Arguments

	Evaluation
	Implementation
	Experimental Setup
	Trimming for Correctness
	Trimming for Performance
	Effectiveness of the Trimmed Approximation
	Sensitivity to Edge Deletions & Batch Size
	Dependence Tracking Overhead

	Summary

	Out-of-core Processing
	The Case for Dynamic Partitions
	Processing Dynamic Shards with Delays
	Accumulation-based Computation 
	Programming Model
	Model Applicability and Correctness
	Generalization to Edge-Centricity 

	Optimizing Shard Creation
	Optimization
	I/O Analysis

	Evaluation
	Overall Performance
	I/O Analysis
	Comparisons with X-Stream

	Summary

	Related Work
	Graph Processing Solutions
	Static Graph Processing
	Evolving Graph Processing
	Streaming Graph Processing

	Weak Memory Models

	Conclusions and Future Work
	Contributions
	Future Work
	Graph Transformation
	Graph Partitioning
	Other Graph Applications


	Bibliography

