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ABSTRACT

The need in low power processor design is growing due to the reliability problem
for high frequency, high temperature processor chips and the expanding market for
battery powered mobile devices. The memory hierarchy is a known source of signif-
icant power consumption. This dissertation develops low power techniques for two
parts in the memory hierarchy, namely the data cache and the off-chip data bus. The
proposed techniques are based on new observations of the memory residing frequent
values.

The study on memory values shows that a small set of frequent values occupy
a substantial fraction of memory spaces allocated to an executing program. Those
values remain fairly stable over a program run. Moreover, the frequent values are
distributed in the memory quite uniformly and periodically. Techniques in identify-
ing the set of frequent values through software method and hardware methods are
developed. Those techniques are adopted in the low power applications for the data
cache and data bus.

A conventional data cache is redesigned into frequent value cache (FVC) so that
power consumption is reduced for every access of frequent values. However, this
comes with a cost of extra cycles for nonfrequent value accesses. To overcome the
loss in speed, a load marking technique is developed so that for a substantial number
of nonfrequent value accesses there is no degradation in speed. Experimental results
of the FVC design show an energy reduction of 28.8% in L1 data cache is achieved.

On the off-chip data bus, an F'V encoding technique is developed exploring fre-
quent values. The encoding scheme reduces the total bus switching by using “one-hot”
codes for frequent values. Variations of the F'V encoding technique are also designed
to achieve maximum switching reduction across different configurations and different

benchmarks. The FV encoding technique can reduce the total number of bus switch-
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ing counts 1.5 to 4 times more than that is achieved by other data bus encoding
schemes.

In addition to the frequent value based cache design, a cache access limiting mech-
anism is developed to achieve low power from a different angle. A subset of cache
accesses is removed by reusing their results in history. The reuse hardware is fine
tuned to keep the overhead minimum while achieving low power in the data cache.

The reuse hardware for the data cache can achieve 11% net cache energy saving.
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Chapter 1

Introduction

1.1 Motivation for Low Power Processor Design

Recently, power consumption has become one of the biggest challenges in high-
performance desktop systems. This is because the drive toward increasing levels
of performance has pushed clock frequencies higher and has increased the processor
complexity. Both increases come at a cost of high power consumption. The costs as-
sociated with packaging, cooling and power delivery have thus jumped to the forefront
in the microprocessor industry.

To get an idea of the trends in power consumption of today’s processor consider
the following table taken from the power study on Alpha processors [65]. The Alpha
processor family is multi-issue, out-of-order execution high performance processor.
We can see clearly the drastic growth of the power and its density as well. This
increase would also negatively impact the processor reliability if the power dissipation
keeps increasing at this rate. Even though reducing the supply voltage is well known as
an efficient way of controlling power consumption, its benefits are more than offset by
the increased complexity and frequency. This calls for creative architecture solutions

that can focus on high level trade offs between power and performance.

Alpha Model || Power(W) | Frequency(MHz) | Die size(mm?) | Voltage(V)

21064 30 200 234 3.3
21164 50 300 299 3.3
21264 90 975 314 2.2
21364 >100 >1000 340 1.5

TABLE 1.1. Power Trends for Compaq Alpha
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The need to limit the power consumption is also crucial for portable computer
platforms such as cellular phones, palm handhelds and pocket PCs because those
devices are battery powered. Given the type of applications being written for mobile
devices, there is an increasing demand for delivering high quality multimedia output.
Since the advances in battery technology are limited, designing low power processors
that can operate with a light weight battery for long duration is imperative. Table
1.2 shows the trends in power consumption for typical embedded processors: ARM7
to ARM10 [3]. They are simpler designed in-order execution pipelined processors.
We can see from the table that the range of power consumption is only the order
of MilliWatt. The reason for this big difference is due to much simpler architecture
design. Future embedded processors will have more complex structure such as deeper
pipeline length and branch prediction. The designs will resemble high performance
processors but under different constraints. Therefore, limiting the power consumption

is also becoming more and more important for embedded processors.

ARM Model || Power(mW/MHz) | Frequency(MHz) | Die size(mm?) | Voltage(V)

ARM720T 0.2 <100 1.8 0.9
ARM920T 0.35 <230 6.0 0.9
ARM1020E 0.8 <375 6.9 0.9

TABLE 1.2. Power Trends for ARM Family (0.13um technology)

Let us look at the power distribution of the Alpha 21264 and ARM 920T. Figure
1.1 is taken from the power study in Alpha processors [65] and Figure 1.2 is taken
from a tutorial on low-power processor [54].

In the Alpha 21264, the EBox and IBox represent the integer and floating point
execution processor core. The summed power expenditure of those two is 47%, much
higher than the ARM processor core (25%). This is because the 21264 has complex
four-issue out-of-order speculative execution pipelines while the ARM 920T has only

a single-issue in-order execution pipeline. The more complex the design the higher
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Mbox Cbox
12%
19% °
Dbox
Jbox 14%
7%
Ebox
16%
Ibox
32%

CBox: Bus Interface Unit, Data and Control Buses

DBox: Data Cache

EBox: Integer Units

[Box: Integer Mapper and Queue, FP Mapper and Queue, Instruction Data
Path

JBox: Instruction Cache

MBox: Memory Controller (Load/Store Queues, TLB etc.)

FiGure 1.1. Power Distribution for Alpha 21264

power it consumes. The IMMU, DMMU, PATag RAM and the CP15 in ARM 920T
contribute in various memory requests and handlings, similar to the function of the
MBox of the 21264. The total power of those components is 12%, less than the 19%
for MBox in 21264. One reason for that is the ARM uses the virtual address caches
to partially avoid the address translation. The BIU and SysCtl in ARM 920T is
comparable to the CBox of 21264. The former has total 11% of power consumption
and the latter has 12%.

From the power distribution in both figures, we can see that the execution core

and the cache memory system take up most power out of the total. This thesis focuses



CP15 8% 3% 404 Others

2% 4%

D
PATag Cache
RAM 19%
1%
ARM
25%
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D Cache: Data Cache

I Cache: Instruction Cache

D MMU: Data Memory Management Unit

I MMU: Instruction Memory Management Unit
ARM 9: ARM execution core

PATag: Physical Address Tag RAM

CP15: Control Coprocessor

BIU: Bus Interface Unit

SysCtl: System Controller

Clocks: Clock driver and network

FiGURE 1.2. Power Distribution for ARM920T
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on reducing the power in the cache memory system. It is notable that caches consume
significant amount of power in both processors, totaling up to 44% for ARM 920T
and 21% for Alpha 21264. The instruction and data caches in ARM 920T amount
for larger portion of power because they adopt higher associativity to amend the low
hit rate due to smaller cache sizes.

The off-chip buses are also a significant source of power loss, although not dom-
inant. They are usually very wide—the standard PC memory bus includes 64 data
lines and 32 address lines. Each has capacitance that is orders of magnitude higher
than the internal bus and requires substantial driving power. It is not unusual for a
chip to expend 15-20% of its power on these off-chip drivers [42].

Overall, the memory system is critical in processor design because it affects both
the performance and the power consumption. Usually there is a trade off between
performance and the power. The modern designs tend to enlarge the cache sizes
at different level to maximize the performance, driven by the increasing speed gap
between CPU and memory. Larger cache sizes and higher clock frequency will in turn

increase the power consumption of the memory system in the future processors.

1.2 Thesis Contributions

The previous section discussed the power distribution for two representative proces-
sors. Even though the two processors have completely different designs, they both
exhibit a common feature that the memory hierarchy is one of the dominant sources
of power dissipation. This includes the on-chip level one caches, the off-chip buses,
and the off-chip lower level cache/memory hierarchies. This thesis investigates revo-
lutionary low power solutions targeting different points in the memory hierarchy.
Figure 1.3 gives the high level picture of the major three low power solutions
developed for a typical microprocessor. The first reuse mechanism is applied to all

the memory instructions. A memory instruction is considered reusable if for read
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2.
Restructuring
to reduce
D-Cache Activity

1.
Instruction Filtering
to reduce
D-Cache Accesses

3.

Value Encoding
to reduce

Bus Activity

CPU Memory

On Chip Cache Accesses Off Chip Data Bus

Ficure 1.3. Low power designs included in this thesis

operations we can obtain its result without accessing the cache, or for write operations
accessing the cache is unnecessary. The reuse checking is performed just before the
instruction accesses the data cache. Upon successful reuse, it turns back to prepare
for committing, saving one access to the data cache.

The data cache restructuring is tailored for the data array inside the D-cache.
The array is partitioned into two sub-arrays, one with a shorter word width and the
other with a longer word width. Data accesses are categorized so that a majority of
them can be satisfied by only activating the shorter word width array and the rest
of the accesses need both but at longer time. This design trades a little performance
for big power savings since accessing the full data array consumes more energy than
accessing a partial array.

The encoding algorithm is applied on the off-chip data bus as shown in Figure
1.3. It encodes the values streams evicted from the on-chip data cache and the
value streams transferred from the off-chip memory. The algorithm exploits temporal
locality of the values appeared on the data bus and transforms the values into codes so
that the number of switching wires ! between neighboring values are reduced as much

as possible. Experiments showed that the proposed algorithm outperforms other

Lwires that change state from last cycle to current cycle, i.e. switch from low state to high state
or high state to low state
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existing encoding schemes while maintaining low overhead in encoder and decoder.

The second and the third low power solutions are based on the frequent value
phenomenon that is discovered throughout the memory hierarchy. It is a characteristic
of the values that appear in the memory that are relevant to a program. The essential
idea is that a small set of distinct values happen very frequently in memory. Similarly,
many values transfered across the bus occur repeatedly also. We called this the
frequent value phenomenon and studied its interesting properties to better apply it
to our low power designs.

In summary, the major contributions in this thesis are as follows.

1. A memory instruction reuse mechanism is developed to limit accesses to the
L1 data cache, reducing the total energy of the data cache with only small

overhead.

2. A restructuring of the L1 data cache scheme is proposed. With the newly
designed cache, the accesses that are due to frequent values spend only one
third or less of the energy than usual. This new design is also applicable to
higher level cache or memory in the hierarchy. The redesigned cache slows

down the processor by no more than 4%.

3. An efficient encoding algorithm is developed for off-chip data buses. This en-
coding algorithm is able to reduce the switching activity on the data bus by

around 30%.

1.3 Thesis Organization

In Chapter 2, the background of the low power research in different types of pro-
cessors is first briefly introduced. Then the related research in low power cache and
memory, existing bus encoding research and the previous work in computation reuse

is discussed.
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Starting from Chapter 3 is the body of the thesis. First is the elaboration on the
discovery of the frequent value phenomenon. Three distinct properties of frequent
values are established through extensive experimental results. Chapter 4 provides
technical methods in identifying the frequent values in various applications. Three
methods in accordance with different application scenarios are proposed. Those meth-
ods contribute in the low power cache and bus designs in later chapters.

Chapter 5 illustrates the frequent value cache design specifics including constraints
we endeavor to meet and the difficulties we solve. Chapter 6 develops the bus encoding
algorithm to its fullest extent. A number of variations are included to reduce both
the switching activity and the coder overhead.

In Chapter 7, the memory instruction reuse techniques is described. It first
presents the reuse opportunities that exist in programs and then develops algorithms
to catch the potential possibilities. It also includes methods to fine tune the reuse

hardware to achieve low overhead.
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Chapter 2
Background and Related Work

A great amount of research has been performed in the design of energy efficient
systems. The techniques developed can be broadly categorized into circuit level tech-
niques and architecture level techniques. These two types of techniques are comple-
mentary and therefore can be combined to maximize energy savings. In this chapter,
some common methods used in circuit level low power design are first summarized.
Then some important architecture level techniques are discussed. Various existing
low power techniques in cache design, bus encoding, and computation reuse are dis-
cussed respectively. Finally, the simulation environments and metrics used in low

power research including the environment used in this thesis are described.

2.1 Circuit and Logic Level Techniques

The low level power optimization methods scale technology related parameters in
different ways. The major parameters determining power consumption are: supply
voltage, operating frequency, effective capacitance and switching activity. Equation
2.1 gives the first order approximation of power consumption at CMOS circuitry level
[42].

P AxCxV*xf (2.1)

The above model measures the dynamic power consumption caused by the charg-
ing and discharging of the capacitive load on gate outputs. Dynamic power is the
dominating part of overall power consumption in current technologies. In the above
equation, A is the number of switching of the gates, C'is the total effective capacitance

seen at the gate outputs, V' is the supply voltage and f is the operation frequency of
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the system. There have been many approaches proposed to reduce the value of these
different factors or their combinations in this equation in order to lower P.

Besides dynamic power, the static power is also consumed even when there is
no activity. It is the product of the supply voltage and the leakage current which
is independent of clock rate and is present once the processor is powered on. Even
though static power is not a dominant factor, under certain circumstances the leakage
current could go up, increasing the static power. Since the dynamic power is the
major portion in the total power consumption, some typical approaches in reducing

the dynamic power are summarized and limitations are discussed next.

Voltage Scaling

Equation 2.1 shows that there is a quadratic relationship between power and supply
voltage. Reducing V is therefore an effective way to reduce power. A large body of
research that has been devoted to this technique [14].

However, voltage scaling has its own trade off. Reducing the supply voltage causes
the circuit to run slower [6]. This will eventually make the applications run for a
longer time, which in turn consumes more energy since energy is the product of power
and time. Moreover, scaling supply voltage will increase leakage current and leakage
power which is another factor to diminish the advantages. High leakage current also
makes it difficult to design dynamic circuits, caches, sense-amps, etc. Because of the
fundamental limitations stated above, voltage scaling in future techniques will have

only marginal practical impact.

Reducing Frequency

Another way to reduce the power is by reducing the clock frequency. The power will
decrease almost linearly in operating frequency. It has also been found that a lower

discharging rate will help maximize the total amount of battery energy. Therefore,
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lowering the clock frequency could prolong the time between battery recharges [41].
However, programs run slower with lower frequency and the total energy consumed

may or may not decrease. The following equation explains the reason.
E=PxT=PxIxCPI/ f (2.2)

In the above equation, F stands for energy, P represents power, T is time, I is the
total number of dynamic instructions of a program, C'PI means the average number
of cycles needed by each instruction and f is the clock frequency. It is clear from
the equation that E depends on both P and T. T is proportional to I x CPI and
the inverse of f. Given a program and an architecture, the product of I and CPI
remains same under different f. Therefore, lowering f will increase 1" but decrease

P. Consequently, the variation in F is difficult to predict if simply the f is reduced.

Reducing Capacitance

The third parameter in 2.1 is the effective total capacitance. Current methods to
reduce C' is through downsizing the transistor, reducing the number of fan-out gates,
and decreasing the wire capacitance. However, transistor scaling is limited by device
physics and silicon-compatible material constraints [64]. The wire capacitance is very
difficult to compute due to the layout and the cross-talk between close by wires [6].
Next we will see how reducing the activities can have significant impact on lowering

power consumption.

Reducing Switching Activities

The fourth factor is the dynamic switching activity. Minimizing this factor is effective
in power reduction when the chip technology and the supply voltage is set. Reducing
switching activities is also a very flexible in design as the architects have the most
design space at different levels to reduce useless switching. The idea here is to mini-

mize activities of certain functional units or chip areas that are not performing useful
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computation. Typical techniques at the hardware level that have appeared in the

literature are the following.

1. Clock Gating The power consumed by the clock network, which includes the
clock generator, the clock drivers, the clock distribution tree, the latches and the
clock loading due to all clocked elements, is more than 40% in high-performance
processors [62]. Clock gating, for this reason, has been widely employed to turn
off those parts of the clock tree to latches or flip-flops that are not being used in
each cycle [9, 25, 27]. It can be implemented by adding special “enable/disable”
signal gates to the clock network. And the low area and performance overhead

is paid off by the significant amount of power reduction.

Unfortunately, there are a number of issues that must be considered in clock
gating. The most important concern is that the disabled block may not power
up in time, or that modified clocks may generate glitches. Other issues such as
clock skews and high transition current all make clock gating more difficult to

design new CPUs.

2. Sleep (Standby) Modes Many state-of-art processors have built-in sleep
(standby) modes. Typically, the clock is stopped for all but certain sections
of the processor after the default period of inactivity. The processor does not
perform any work or performs very little work while asleep resulting in signifi-
cant power savings. However, there is a long latency for the system to wake up
so it is profitable to put the system into sleep mode only when it is expected to

sleep for a relatively long time.

2.2 Architecture Level Techniques

Most architecture techniques trade off a little performance for lower power consump-

tion, achieving overall energy reduction (see equation 2.2. Typical approaches include
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using simpler or smaller functional units, turning off part of functional units when
they are not in use, removing certain redundancy and reusing computation results.
Below, some novel techniques that are applied to different architecture components

are briefly summarized.

2.2.1 Low Power Designs for Processor Core

For most high performance processors such as Alphas and Pentiums, the bulk of
power goes into the pipeline issue logic. Various techniques have been proposed
targeting this high power component. Since the primary goal of those processors
is high performance, most techniques reduce the issue logic activities without much
degradation in instruction throughput. Bahar et al. developed the Pipeline Balancing
algorithm to dynamically adjust issue width on demand [5]. The algorithm is based
on the observation that application programs do not always execute at their peak
IPC. Therefore, the issue logic does not need to operate always at full width. In
another design [22], it was observed that the issue logic wasted energy in trying to
wake up empty instruction queue slots and already ready for execution instructions.
Instead of limiting the searching width, they proposed to dynamically resize the
instruction queue. This approach cuts off the power in wake-up activities that were
performed beyond the dynamic queue length. In addition to resizing the issue width
and instruction queue length, a more aggressive method in tuning resource sizes was
developed [46]. In that method, the power sinks on data path as instruction queue,
reorder buffer and load store queue were all allowed to vary sizes according to the
needs of the executing program.

There are other techniques in reducing the power of the pipeline. For example,
compressing the significant bits of values flowing through the pipeline can be used to
reduce the ALU, register files and internal latches activities [13]. The technique is

even extended to instruction and data caches as well.
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Next, some representative low power solutions for caches the have appeared in the

literature are described.

2.2.2 Energy Efficient Cache Designs

A Conventional Cache. Figure 2.1 plots the typical m-way set associative cache
structure. It consists of Tag arrays, Data arrays, some comparators, multiplexers and
internal latches. The major power spent in the cache is the tag comparison and data
reads and writes. The tag comparison involves reading m tags from the Tag arrays
and performing m comparisons. Data reads and writes involve activating m cache

lines from the Data arrays and selecting the right word in the right line.

AN AN
1..m way 1..m way |
/ / |

N N

Address

Tag |index I)ffse! |

Output

FIGURE 2.1. The structure of a general cache (derived from the standard set-
associative cache structure [29])

Energy Efficient Designs. The problem of reducing the energy consumption of
the conventional cache can be explored from different angles and in different cache

components.
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1. Reducing Power for Set Associative Caches. Traditional caches are de-
signed for maximum performance. For example, a set associative cache out-
performs a direct mapped cache because it decreases cache misses by probing
multiple entries of the cache in parallel. However, a cache hit appears in only
one entry, meaning that the energy spent in probing other entries are wasted.
The Way-Prediction and Selective Direct-Mapped schemes were proposed to
solve this problem [48]. Alternatively, certain cache ways can be disabled when
the program has modest cache activity [2]. Even though the performance de-
graded due to less number of available cache ways, an overall energy saving was

still achieved.

2. Reducing Power for Tag Path. The tag path of the cache consumes rela-
tively high power. It mainly comes from the comparators that try to determine
a hit or a miss. For this reason, methods were proposed to reduce the num-
ber of tag checks [45, 67]. One approach is that the compiler determines those
loads and stores that are guaranteed to access the same cache line [67]. Those
instructions can directly access the data arrays without tag checks. Since the
instruction addresses are usually sequential, such a removal can be applied to
the instruction cache effectively [45]. This technique can be implemented purely

at the hardware level.

3. Reducing Power for Data Arrays. To diminish the energy spent in data
arrays, one can either reduce the dynamic energy or the static energy. Dynamic
energy is consumed when a cache line is driven for reading or writing data. It
can be cut down by limiting the length of a line that needs to be driven. More
specifically, only one word in a line, indicated by the offset field in the address,
needs to be driven for reads and writes [24]. This involves wiring changes to
the data arrays. The scheme saves energy in driving the other words that are

discarded later in the same line.
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Static energy is always consumed even when there is no activity. Kaxiras et. al.
and Flautner ef. al. introduced techniques to shut off the cache lines or bring
them to a drowsy state [21, 35]. The lines being shut down are those that will
not likely be accessed in the near future. Both techniques significantly reduced

the static cache energy.

4. Reducing Power Based on Values. There are some designs that are based
on the contents stored in the cache. Villa et al. found that data caches contain
a lot of zeroes [63]. They introduced a compression method for zeroes inside
the cache such that they can be represented by only a single bit. Reading or

writing a single bit is much cheaper than 32 bits in energy consumption.

5. Other Techniques. Miscellaneous techniques including specializing caches
[31], sequentializing cache accesses [28] code compression for instruction caches

[38] are all valuable.

This thesis presents two power reduction techniques. The first technique focuses
on reducing the power spent by data arrays. The average cache access power is
reduced through data array restructuring. The second technique focuses on limiting

the number of accesses to the cache through the reuse of instructions.

2.2.3 Bus Encoding Techniques

Existing bus encoding algorithms can be categorized into address bus encoding, data
bus encoding, and general purpose bus encoding. There are some very good encoding
algorithms for address buses, especially instruction address buses, because most of
the address stream is sequential. However, a similar regularity does not exist in
data buses since it is assumed that the value stream on the data buses is randomly
distributed. Thus, the encoding algorithms for the data bus are mostly limited to

statistic investigation. The general purpose encoding algorithms do not result in
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significant switching reduction. This is because the data value streams and address
streams exhibit very different characteristics. It is therefore difficult to develop a

general algorithm that is effective for both.

General Purpose Encoding. A very simple encoding algorithm called Bus-Invert
was proposed by Stan et al. [59]. In this scheme, either the original address or its
binary inverse is sent on the bus depending on the Hamming distance between the
current address and the previous transmitted value. The rule is to always send the
value that would cause the number of switching that is less than half of the total bus
width. This scheme is applicable to both address and data buses and is adopted in
many other encoding schemes because of its simplicity. Ramprasad et al. developed
a framework [50] for generic encoder-decoder architecture. They also proposed an

adaptive method that requires huge hardware overhead.

Address Bus Encoding. Gray coding [61] has been proposed to minimize the
switching on the instruction address bus. The encoding scheme ensures that when
the address is sequential, there is only one switch between two consecutive address
words. T0-C coding was developed by Aghaghiri et al. [1]. It freezes the bus when
the addresses are sequential. The bus transmits values normally when the address
is non-sequential. The Working-Zone-Encoding [43] is developed based on memory
reference locality. The memory regions being referenced by a program are divided into
working zones. Instead of transmitting a sequence of complete addresses that exhibit
locality, in this technique, the offset of current reference with respect to the previous
reference to the same working zone is sent over the bus, along with an identifier of

that zone.

Data Bus Encoding. As mentioned earlier, there are not many encoding schemes

for the data buses. Even though the generic methods can be adopted, the achievable
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switching reduction is modest. Benini et. al. presented the adaptive encoding in which
new codes are generated based on the past N data samples [7]. This mechanism has
huge hardware overhead so they developed further techniques in scaling down the
sampling and encoding sizes.

This thesis introduces a new encoding scheme for data buses that is based on ob-
servations of the data streams sent on the bus. The frequent value characteristics are
utilized into the encoding algorithms. The algorithm achieves a significant reduction

in switching counts.

2.2.4 Computation Reuse

The reuse mechanism has been exploited in many papers [4, 18, 30, 53, 57]. It is based
on the empirical observations that many instructions, and groups of instructions,
having the same inputs and outputs are executed repeatedly. Those instructions
can be identified either dynamically [4, 30, 53, 57] or statically [18]. In dynamical
instruction reuse, the inputs and outputs of the instructions are memorized in some
hardware together with necessary tags. On successful reuse test, the result can be
obtained directly from the hardware instead of the functional units [57] and [4]. More
aggressively, the reusability was extended to block level [30]. There the authors
exploited the inputs of a basic block and reuse the result of the block. This approach
incurs expensive hardware overhead since all the block inputs and outputs need to be
saved.

This thesis exploited a reuse technique for memory instructions. It aims at getting
the results at an early stage in the pipeline so that the dependent instructions can
read the value earlier. Consequently, an access to the cache can be saved to reduce

the cache power dissipation.
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2.3 Simulation Tools

For computer architecture researchers, realizing novel designs in hardware is too ex-
pensive and time consuming, especially in an early stages of development. Therefore,
most research relies on simulation tools that run at a tractable amounts of time for
real sized programs, and provide reasonable accuracy. Most of all simulation tools
are easily extensible.

The SimpleScalar tool set [11] is a widely used simulator in the modern processor
architecture research community. The tool set simulates a slightly simpler MIPS-
IV architecture and provides from an extremely simple and fast functional simulator
to a detailed out-of-order issue processor simulator. The tool set contains a GCC
based compiler and utilities that help generate MIPS object code. The advantage
of SimpleScalar is that it is fast, flexible and efficient. Written in C code, the tool
allows users to easily incorporate new designs into the simulator within a reasonable
amount of time.

The success of SimpleScalar has made its power evaluation extension easy. Simple-
Power [75] is the in-order 5-stage SimpleScalar simulator augmented with an energy
estimation tool. It uses transition sensitive energy models to estimate the energy
spent by processor components based on their states transition. SimplePower’s limi-
tation is that no energy estimation is available for out-of-order superscalar processors.
The problem is solved in Wattch [10] which can model energy for different types of
complex processors simulated by SimpleScalar. Wattch models the dynamic energy
consumption of each major processor component and computes the accumulative en-
ergy every cycle. Though fast and simple, Wattch has been criticized for its large
error in computing energy consumption for typical processors. Other processor en-
ergy simulators such as TEM?P?EST [19] and AccuPower [47] are more accurate but
are not available for public use yet.

The study of the memory hierarchy calls for similar cache and memory simulators.
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Some early cache simulation tools such as CacheProf [55] and Dinero IV [20] are
effective functional simulators that produce mainly cache references, hits and misses
information. Those tools are trace-driven for fast running time. They do not provide
cache timing information which is desired for performance analysis. The newer version
of SimpleScalar now has its own cache simulator of up to two levels. Cache and
memory hit/miss latencies are calculated so that the performance impact of memory
hierarchy can be easily studied.

As the interest in energy efficient memory hierarchy designs increased, energy
models for cache and memory also emerged. The CAPE [34] tool used an analytical
model to estimate the power dissipation in caches. This model is then adopted in
SimplePower with enhancements that includes the off chip memory energy as well.
By far, the most popular cache timing and power tool is the CACTI series [66].
CACTT 1.0 [32] models access time for non-fully associative caches. CACTI 2.0
added [52] modeling support for fully-associative caches, a power model, technology
scaling, multiported caches, and improved tag comparison circuits, as well as other
improvements to CACTI 1.0. CACTI 3.0 [56] includes modeling support for the
area and aspect ratio of caches, caches with independently addressed banks, reduced
sense-amp power dissipation, and other improvements to CACTI 2.0. The Wattch
[10] simulator incorporated CACTI 2.0 into its cache energy models. CACTI has
been extended to XCACTI by Renau et. al. in [31]. The XCACTI provides energy
measurement for not only read operations, but also write operations, write back and
line fill operations on cache misses.

In this thesis, a cycle level simulator FAST developed by Onder et. al. [44] is used
for processor cores. FAST can automatically generate simulators from an architecture
description language (ADL). It currently supports the MIPS ISA which is also written
in ADL. Three types of simulators are used: (1) a simple fast functional simulator
that simply executes instructions one by one as if they are going through a single

staged pipeline (Figure 2.2); (2) an in-order processor simulator which simulates the
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FIGURE 2.3. A Pipelined Simulator.

standard five stages pipeline (Figure 2.3) and (3) an out-of-order superscalar simu-
lator (Figure 2.4). The first simulator is used mainly to generate trace information
such as the memory instruction sequence for studying the cache access behavior. The
second simulator is used in investigating embedded processor designs and the third
is for exploring high performance superscalar processor designs. The research work
contained in this thesis contributes to the FAST system in that the memory hierar-
chies are added to the previous processor cores. The memory extension can simulate
as many levels of cache as possible, either unified or split, from direct-mapped to fully
associative cache. Moreover, the memory system can output accurate latency infor-
mation as well as energy consumption statistics which is obtained through plugging
in the XCACTI energy model (Figure 2.3 and 2.4). In designing new energy efficient
caches, the XCACTI tool is also modeled such that it complies with the modified

caches. The enhanced FAST system allows us to investigate the memory hierarchy
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impacts on both performance and energy consumption. We also extracted energy
models from Wattch for non-cache structures such as array structure in modeling the

energy in hardwares such as a simple indexing table.
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FIGURE 2.4. A Superscalar Simulator.

2.4 Energy Measurement Metrics

Using correct metrics in experimental evaluation is crucial and has been studied by
Gonzalez and Horowitz [25]. Earlier researchers have used only the energy metric
in evaluating new designs. Unfortunately, this is misleading since the energy can
be reduced dramatically by slowing down the processor or cutting down the supply
voltage as we have discussed earlier. Therefore, Gonzalez and Horowitz proposed an
energy *delay metric to combine both factors. The delay factor is the total execution
time of a program, usually measured in terms of number of cycles. The energy*delay
metric better describes the improvement or deterioration of new designs that trade
performance for energy. Since then, this metric is widely used in the low power
research community.

The following chapters contain the body of this thesis starting with our frequent

value observations which is described next.
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Chapter 3

Frequent Value Phenomenon

Recent research has demonstrated that values produced by executing instructions
exhibit a high degree of value locality, that is, multiple executions of the same in-
struction often produce the same value [23, 40]. Value locality has been exploited in
the design of value reuse and prediction mechanisms for superscalar processors.

In this chapter another kind of locality is identified, termed frequent value locality;
this is also quite prevalent in programs. The first aspect of the frequent value locality
is that if the values involved in memory accesses are tracked, it can be observed that at
any given point in the program’s execution, a small number of distinct values occupy
a large fraction of these referenced locations. In fact it is observed that on average in
fifteen of the Spec95 ! [58]. programs, eight distinct values occupy 48% of all allocated
memory locations throughout the execution of the program. The second aspect of
this phenomenon is that the set of frequent values remains quite stable throughout
the execution of the program. The third and final aspect of frequent value locality is

that frequent values are scattered fairly uniformly throughout the memory.

3.1 Characteristics of Frequent Values

The frequent value locality phenomenon characterizes the behavior of values being
held in live memory locations of running programs. The following three properties

of the values characterize frequent value locality. These properties are demonstrated

'The Spec95 benchmark suites were released by the Standard Performance Evaluation Corp.
(SPEC) on August 21, 1995. The suites provided the worldwide standard for measuring and com-
paring computer performance across different hardware platforms. The Spec95 comprises two sets
(or suites) of benchmarks: CINT95 for compute-intensive integer performance (8 programs) and
CFP95 for compute-intensive floating point performance (10 programs). The Spec benchmarks were
selected from existing application and benchmark source code running across multiple platforms.
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by analyzing the behavior of 15 Spec95 benchmarks when run on reference inputs.
The left 3 benchmarks do not go through the FAST simulator due to incompatible

libraries, therefore are not experimented in this experiments.

3.1.1 Property I: Frequent Value Occurrences

A small number of frequently occurring values, called frequent wvalues, occupy a
substantial fraction of memory locations allocated to an executing program.

To establish the above property we ran the benchmarks and examined the values
in memory locations every 10 million instructions and averaged the frequencies of the
values over the entire set of collected samples. During each sampling point, the entire
memory space was scanned through and every distinct value was ranked according
to its occurrence frequency. The memory locations that were considered at a given
point included those that were of interest to the program. In particular, the currently
allocated stack and heap memory locations were considered. After the completion
of the program’s execution, for each encountered value, its average frequency across
all sampling points was computed. The resulting average frequencies of all values
were sorted in descending order. Values at the top of the list are more frequent
than the values that appear later in the list. A significant amount of time collecting
this data was needed as a program run typically involved execution of several billion
instructions.

Figure 3.1 shows that 12 out of 15 benchmarks exhibit this property and on an
average around 48% of memory locations are occupied by the top eight frequently
occurring values in the 15 Spec95 benchmarks that were used in this study. The top
8 frequent values are listed in Table 3.1. Examination of these values shows that
there is a mix of small values (that can be represented using 16 bits) and large values
(which require more than 16 bits). While the same small values (e.g., zero) are often

observed across different programs, the same is not true for large values. This is
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because the large values are often memory addresses or string constants. Figure 3.2

shows what fraction of locations were occupied by small frequent values and large

frequent values. In some programs the large values occupy a substantial number of

locations.
[ Benchmark || 1 | 2 | 3 | 4 | 5 | 6 | 7 8 |
099.go 0 351a 4 1 2 3 349 1cl
124. m88ksim 0 4022ada0 1c 40229030 | 4022a610 60d12 8048bf7d | 1db82340
126.gcc 0 e’ 403 80004 40252734 10001 20 1b
129.compress 0 Jitiiiiig 65687420 | 20656874 | 61687420 90a0ala 68742065 | 20656820
130.1 0 3 1 4 6 1000000 5 40280df4
132.ijpeg 0 1 jiiid 10000 ffff0000 Jiitiiits 10001 1fHF
134.per1 “XXXX” “X x ” 0 1 XX ” “X XX” “XX X” “ X X” “XX”
102.swim 47435000 | 47435001 474341tf 47435002 47434ffe 47435003 47434ffd 47435004
103.su2cor 0 3fe00000 40040000 | 807bcdaf 3fd5{8el 40290000 3fec71bc 390cf5ba
104.hydro2d 0 3fecccce cceeeeee 3fe33333 “3333” 3ff00000 “0000” bc400000
107.mgrid 0 80000000 | 3c300000 | bc300000 | 3c400000 | bc400000 | bc200000 | 40000000
110.applu 0 2752547 4189374c | bfel6c8b | 43958106 | 3f7b089a 3f90e560 80000000
125.turb3d 0 80000000 “nr 300000 “n?” 1 6 3bc79cal
141.apsi 0 3fb99bed d443f3ee d443f3ef d443f£3f0 3fb99999 | 9999999a “r
145.fpppp 9999999a | 3fc99999 0 33333333 | 3fd33333 | 47aeld7c 3fb47ael 3fad7ael

TABLE 3.1. Frequently occurring values ordered by decreasing frequency.

We have identified several reasons for the frequent value phenomenon. The first

reason is that programs usually contain many constants such as character constants
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FIGURE 3.2. Amount of memory occupied by small vs. big values.

and NULL pointer value, or, near constant values such as boolean variables which
toggle between 0 and 1. Our study shows that they not only exist in register but also
in memory as well, even when the program is compiled at -03 optimization level. The
second reason is that many programs contain dynamically allocated data structures
such as hash tables or binary trees. Accessing to different nodes frequently requires
to start from the same head of the bucket or the root of the tree. The third reason
is that the frequent values sometimes come from the inputs of a program such as a
text file input of a compiler. There are only limited keywords for a language that
repeatedly occur in the file. And the compiler usually loads the bulk of the file into
the memory before compiling.

Currently, the frequent values are observed in the 32-bit machine applications. If
the word width is increased to 64 bits, the frequent values will not be affected greatly
for the following reasons. First, the small program constants will be represented
in 64 bits by simply having sign extension in the high ordered bits. Second, the
string constants will also be frequent except that they have different lengths. More

specifically, if a frequent string is shorter than 32 bits it will still be frequent in a
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64-bit machines with the same length because values are word-aligned. If a frequent
string required multiple 32-bit words (each 32-bit substring must be frequent also),
it is then represented in half number of 64 bits in the 64-bit machine. If the frequent
values are memory addresses, their binary representations will be different in two
different types of machines. However, the existence of frequent values is a property of
a program. Those 32-bit frequent memory addresses will still be frequent in a 64-bit

machine except that the binaries are in different forms.

3.1.2 Property II: Frequent Value Stability

The set of frequently occurring values remains fairly stable over a program run which
implies that frequent values can be identified and exploited during a program run.

To observe this property the occurrences of frequent values throughout the pro-
gram execution were studied. The graphs in Figure 3.3 and 3.4 show the behaviors
of the benchmarks over their entire execution. To generate these graphs, the top
ten frequent values were first found using the methodology already described above.
Next the programs were run again and during these runs, at each sampling point, for
each of the top ten frequent values, the number of memory words that contain the
frequent value is noted down.

In the graphs the X axis represents time and the Y axis represents the memory
occurrence characteristic of the various frequent values. To make the graphs more
readable we did not plot these graphs for entire execution of the program but instead
carefully reduced the duration to a period in the middle of program’s execution.
However, when the scope of the data presented is narrowed, the data for the entire
execution is first examined and we only narrowed the duration for which the data
is presented if the behavior of the program was similar for the remainder of the
execution. In these graphs the top-most line represents the total number of allocated

memory locations. The subsequent curves give us an idea of how many locations
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correspond to the top ten most frequently occurring values. The difference between
the first (top most) and second curve is the number of locations with the top most
frequent value. The difference between the first and third curve is the number of
locations containing to the top two frequent values and so on. From the results it can
be seen that the fraction of allocated locations occupied by a given number of frequent
values remains fairly stable throughout the program execution. This is because the

same values continue to occur frequently over the entire execution of the program.

3.1.3 Property III: Frequent Value Distribution

The frequent values are distributed fairly uniformly throughout memory which implies
that no matter which part of memory is accessed, it is likely to encounter these values.

To establish the above property, the distribution of frequently occurring values in
memory is plotted as shown in Figure 3.5 and 3.6. The data in these graphs represents
the snapshot of memory at a point when the programs were nearly half way through
their execution. The referenced memory was broken into blocks of 800 consecutive
locations each and the percentage of frequent values in each block of 800 locations
was plotted as a point in the graph. A threshold of top 8 frequent values is selected
in these graphs. As can be seen, for nearly all of the programs the frequent values
are scattered across the memory and for many programs the distribution of frequent

values across the memory is quite uniform.

3.2 Frequent Value Locality vs. Value Locality

Although the frequent value locality phenomenon is related to recently discovered
concepts of value locality and value prediction [40], there are important differences
between them. Value locality addresses the likelihood of a previously-seen value recur-
ring repeatedly within a storage location. The authors limited their study to only the

general-purpose or floating-point registers that are targets of integer, floating-point
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and memory instructions. The study is a register value locality and characterizes
only the values encountered during multiple executions of specific instructions.
Unlike the study on only streams of instructions, our frequent value locality char-
acterizes the behavior of values present across the memory allocated to the program,
throughout the execution of the program. Substantial number of experiments were
conducted and interesting spatial and temporal properties of frequent values were
discovered. The work presents a thorough insight of frequent values that are useful
in exploring memory value related applications. Register value locality is exploited
for carrying out value prediction and speculative execution of instructions to speed
up a program’s execution. Frequent value locality can be exploited in designing the

memory hierarchy to achieve better power or performance behavior.

3.3 Summary

In this chapter, the frequent value phenomenon has been demonstrated by character-
izing it into three distinct properties. The claims are supported through elaborative
experimental data obtained from running 15 Spec95 benchmarks. The chapter first
showed the existence of the frequent values across most of the programs tested. Then
the stability of the frequent values during the execution time line was illustrated.
Finally, the distribution of the top frequent values in the memory spaces at the mid
point of execution was shown.

Though the set of ideal frequent values have been presented in this chapter, it is
important to develop application driven techniques in finding those frequent values.

And we will introduce those techniques in the next chapter.
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Chapter 4
Identifying Frequent Values

4.1 Frequent Value Identification Introduction

The data in Figure 3.1 showed that the large frequent values always vary from program
to program and small frequent values can also differ across programs. Since there is
no universal set of frequent values, methods for identifying these values must be
developed. Before describing the different methods for finding frequent values, it is
useful to understand the nature of applications that will make use of these methods.

While it has been discussed the frequent value locality in context of memory
contents of a program over its entire execution, the observations have much broader
implications. Given that frequent values were observed across the memory, it is
also expected that these values would be frequently encountered at all points in the
memory hierarchy, for example in the on chip data cache, on the data bus that brings
data into the on chip cache, and of course in the main memory itself. At different
points in the memory hierarchy at which frequent value locality is being exploited,
different types of frequent value finding methods may be appropriate.

In this chapter a number of different approaches ranging from software profiling
techniques to hardware profiling techniques that can be used to find frequent values
are discussed. Different methods are suitable for different applications depending on
the constraints under which the application must operate. This chapter describes the

following three scenarios for finding frequent values and evaluates their effectiveness:

— Find Once for a Given Program. 'This method finds a fized frequent value
set through a profiling run which is then used by the application in all later

execution runs. This is a purely software based approach. Thus once the values
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are known, they must be communicated to any hardware based application
either through compiler generated code or operating system support. Moreover,
if the frequent value set is sensitive to the program input, i.e., the frequent
value sets obtained from different inputs differ greatly, this approach will cause

deterioration in designs that employ one fixed set of frequent values.

— Find Once Per Run of the Program. This method finds a fized frequent value set
during each execution run of the program. The set of values is found through
limated online profiling during the initial execution of the program after which
the values are fixed and profiling ceases. These values are then used by the
application during for remainder of the execution. In other words the fized
frequent wvalue set is found during each execution and therefore the frequent
value set being sensitive to program input is not a problem for this method.
This approach uses specialized hardware for finding the values. Therefore no
compiler or operating system support is required to communicate the values to

the hardware.

— Continuously Changing During Program Run. This method maintains a chang-
ing frequent value set by carrying out continuous profiling of the program during
each execution run. Moreover profiling is carried out by specialized hardware.
Under this method an application can benefit from adaptation of the frequent

value set during a given run.

The two low power applications that are considered later in this thesis, and the
manner in which they fit into the above scenarios, are briefly described below to
further motivate the need for algorithms that fit the above scenarios. As can be seen,

these two applications operate at different points along the memory hierarchy.

— Low Power Frequent Value Cache: The design of a low power data cache is

presented, which stores frequent values in encoded form to reduce the dynamic
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activity in the data cache. This application must use a fized set of frequent
values because the encoding must remain fixed for the duration of the program.
This is because a change in encoding would require at a minimum flushing
the cache. The situation for context switch will be discussed in Section 5.5.2.
Moreover, here it is more interesting to find frequently occurring values in the
data stream between the CPU and the data cache which will be referred to as

the frequently accessed values.

— Frequent Value Encoding for Low Power Data Bus: The design of a bus encoding
technique is described, which is aimed at reducing the switching activity on
the external data bus of the CPU. This application can take advantage of a
continuously changing set of frequent values since the encoding is localized to
the data bus. In other words, no other part of the system has to be aware
that encoding is being carried prior to sending a value across the data bus and
decoding is performed immediately after receiving the value at the other end of
the data bus. Moreover, here it is more interesting to find frequently occurring
values in the data stream between the on-chip cache and off-chip memory which

will be referred to as frequently transferred values.

Note that since the data streams relevant to the above applications flow across dif-
ferent points in the memory hierarchy (between CPU and on-chip data cache and
between on-chip cache and off-chip memory), they correspond to values stored in a
program’s allocated memory. Therefore it is expected that these data streams exhibit
frequent value locality. In other words the presence of frequently accessed values and
frequently transferred values should be true.

Given the above applications it is clear that the first two scenarios for finding fre-
quent values are relevant for finding frequently accessed values while the third scenario
can be used for finding frequently transferred values. Therefore in the remainder of

this section after describing the algorithms for finding frequent values under the three
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scenarios, we evaluate them in the appropriate context of frequently accessed values
or frequently transferred values. All evaluations in this chapter are based upon 15
programs from the Spec95 benchmark suite which were run on the reference inputs,

unless stated otherwise.

4.2 Software Method — Find once for a given program

The method for finding frequent values under this scenario is simple but time consum-
ing. Since this process is performed only once for a given program, it can be justified
that one spends a significant amount of time on finding frequent values. I instrument
the program to intercept all data values involved in load and store instructions as
these are the values that constitute the data stream between the CPU and the data
cache. A hash table is maintained in which all the encountered values along with their
frequencies are stored. The hash table size is not allowed to grow beyond an upper
limit which was 300 MB in the implementation. For some programs the table size
was large enough too hold all values encountered during the execution but for others
the size was not the case. When the hash table reached its limit, two-thirds of the
least frequently occurring values are removed from it and then continued processing
future accessed values. The values discarded have a maximum occurrence count of
200 which is less than 107%% of total accesses at the time. Therefore it is highly
unlikely that any frequent values would be discarded.

The results of implementing this method and applying it to Spec95 programs are
described next. Consider the data in Figure 4.1 which shows what percentage of
total accesses involve frequently accessed values — a maximum set size of 128 values is
considered during program runs based on reference inputs. As can be seen, the data
stream of accessed values contains frequently occurring values on average 128 values
account for over 50% of all accesses.

The data presented in Figure 4.1 is ideal data since in collecting the above data
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FIGURE 4.1. Access percentage attributed to top 128 frequent values.

both the profiling runs and the execution runs were carried out using the same inputs
(reference inputs). Since the frequently accessed values will be found by running the
program once on some input and used later during program runs on other inputs,
it is interesting to see how much is lost due to the sensitivity of frequent values to
program inputs. Therefore an experiment was carried out in which the profiling run
on training inputs was used to identify frequently accessed values. Then accesses to
these values were measured during program run on reference inputs. The results are
shown in Figure 4.2 and 4.3. For a varying number of frequent values the accesses
to frequent values as a percentage of total accesses during program run on reference
inputs is plotted. One curve is based upon use of frequent values found from the
profiling run on training inputs and for comparison the other ideal curve used the
reference inputs during the profiling run. As can be seen, for most programs this

approach does quite well as the train curve is close to the ideal curve.
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4.3 Hardware Method I — Find once per run of the program

As mentioned earlier, the algorithm for finding frequently accessed values during each
program run is meant for implementation in hardware. Therefore I use a small table
of frequent values in this method. To find the top n values, the table contains 2n
entries, each having a wvalue field and a counter field as shown in Figure 4.4. The
value field stores the data value encountered during monitoring and the counter field

contains a c bit saturating counter.

Value ‘ ‘
\
counter

FIGURE 4.4. Value table entry.

The algorithm for finding the frequent values using the value table is given in
pseudo code in Figure 4.5. Each time a data value is involved in an access by the
CPU, the table values are updated as follows. If the value is already present in entry
1, then the counter at entry 7 is incremented by one. When the counter saturates, the
entry 7 is swapped with entry :—1. The purpose of this activity is to let frequent values
gradually percolate to the top part of the table. When a new value is encountered,
and there is no free entry in the table, a victim entry in the table needs to be selected
to free up the space. An entry is freed from the bottom half of the table with the
smallest counter value because the bottom part is expected to contain values seen
less often in comparison to values in the top half of the table.

Our method is inspired by the conventional software value profiling technique in
[12]. However, value profiling technique does not use swapping. It simply maintains
frequency counts for values in the table and periodically clears half of the table to
allow new values to enter into the table. When the half of the table is cleared, the
values are sorted according to their associated frequency counts and half of the values

with counts lower than the other half are removed. The sorting operation makes this
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void UpdateValueTable(v){
search the table for a match of the Value field and v
if (Table[:].Value == v) then{
Table[i].counter++;
if (Table[i].counter saturates)
swap Table[:] and Table[i — 1]

}

if (v is not in the table){ /* Insert v into table */
find from the lower half of the table an entry j with the smallest counter
replace table[j].Value with v
clear table[j].counter

FIGURE 4.5. Algorithm for finding the frequent values using the value table.

existing technique unsuitable for hardware implementation. Our algorithm does not
require sorting. Instead it uses swapping to approximate the effect of sorting. The
swapping process approximately sorts the list such that bottom half contains less
frequently seen values. When replacing a value from the bottom half, the counter
value is used to free up an entry corresponding to a less frequently seen value from
among the values in the bottom half of the table.

The approach to approximating sorting is very effective in practice as the ex-
periments comparing conventional value profiling with the proposed hardware value
profiling show in Figure 4.6. The two algorithms are compared by comparing the qual-
ity of their frequently accessed value sets, which is expressed in terms of percentage
of cache accesses that can be attributed to the values in the set. In the experiments
the swapping interval is varied by varying the counter width ¢ from 1 bit to 3 bits.
A longer interval means frequent values climb up in the table at a slower pace and a
shorter interval leads to faster convergence but may cause excessive swapping between
two entries which already contain frequent values. From Figure 4.6 it is interesting

to see that a counter lengths of 1 and 2 bits give nearly the same results—on average
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41% of the cache accesses are coming from top 128 frequent values captured by using
either 1 bit or 2 bits counter; however, a 3 bit counter degrades a little—the top
128 frequent values account for about 36% of the cache accesses. This is because the
interval between swaps is longer causing a slower pace for frequent values to move
up. Therefore in the rest of the experiments, a 2 bit counter is chosen which achieves
similar results as a 1 bit counter without introducing unnecessary swaps. When com-
pared with value profiling technique [12], the proposed algorithm produces nearly the
same results as conventional algorithm and in many cases performs even better (e.g.,

for 129.compress, 132.1ijpeg, 124.m88ksim, 102.swim and 103.su2cor).
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F1GURE 4.6. Comparison of value profiling technique and the proposed hardware
method for capturing 32, 64 and 128 frequent values.

Next the effectiveness of this method in finding frequently accessed values is shown.
The effectiveness of this algorithm depends on the degree of profiling. One can expect
that a greater amount of profiling will usually be more effective. However, the more

profiling the program does, the less time it has left for exploiting the frequently
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accessed values. Therefore in the experiments the amount of profiling was varied
from 1 million to 800 million instructions for most programs of moderate size. The
results are presented in Figure 4.7 and 4.8. For each benchmark a set of curves
corresponding to different profiling levels specified in terms of number of instructions
is presented. In parenthesis the fraction of total program execution spent on profiling
is shown. Even though in the experiments I varied the profiling levels between 1 and
800 million instructions, in these plots the profiling periods displayed were selected
to show interesting areas of the graph. In some cases many short profiling intervals
are shown while in others more longer profiling intervals are shown.

To obtain the results, different sized frequent value tables, from 2 to 256 entries
for capturing 1 to 128 values, were implemented into our architecture simulator for
profiling. Every so often the values captured in each table were recorded for exam-
ination of how the frequent value set is developed as the a program runs. In the
end, the quality of the frequent values recorded at each stage is measured in terms of
the percentage of cache accesses they contribute. Those data were then presented in
graphic forms as shown in Figure 4.7 and 4.8.

The results imply that the programs can be divided into two categories. For
many of the programs the degree of profiling makes only a small difference (e.g.,
124 .m88ksim). In other words the frequently accessed values can be identified using
a small amount of profiling and greater amounts of profiling are not necessary. The
reason for this behavior is that usually a very small subset of frequently accessed values
account for most of the frequent value accesses and these values are so frequent that
they are seen immediately as execution begins. For example, looking at Figure 4.1,
it can be seen that in the case of 124.m88ksim the top 128 values account for 92%
of all accesses; however, the topmost value alone accounts for 74% of all accesses.
For other programs increasing the profiling interval beyond a certain threshold makes
a significant difference (e.g., 129.compress). This is because for these programs

typically a larger number of frequent values need to identified accurately because they
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all account for a significant number of accesses. The larger the number of important
frequent values, the longer it may take to find them as some of these values may
show up a bit later in the execution. For example, Figure 4.1 shows that in the
case of 129.compress, the top 128 values account for nearly 27% of all accesses, but
the top most value accounts for only 5% of accesses. In fact, to get close to 27% of
accesses it is important to accurately identify the top 32 frequently accessed values

for 129.compress.

4.4 Hardware Method II — Adaptive FV Finder

Let us now consider the hardware algorithm for maintaining a continuously changing
set, of frequent values. A table with as many entries as the number of frequent values
that are to be identified is maintained. The LRU replacement policy is used for
filling and updating the frequent value table. To gain time ordering information, a
reference bit and a n-bit timestamp for each value recorded in the F'V Finder is used.
The reference bit is set when the value appears at the input. At regular intervals, the
reference bit is shifted right into the high-order bit position of the n-bit timestamp
causing all bits in the timestamp also to be shifted right and the lowest-order bit in
the timestamp being discarded. This operation is performed for all entries in the table
and at the same time all the reference bits are reset. Thus, the timestamp keeps the
history of value occurrences for the last n time periods. For example, the timestamp
of 000 means this value did not appear during the last three time intervals, timestamp
100 means it was just seen in the last interval, and the timestamp 000 with reference
bit set means it is encountered in the current time slot. When an entry is required
and a value is to be evicted, the entry that is selected is the one with the smallest
timestamp and clear reference bit. The new value is put in with a fresh reference
bit and timestamp (all 0’s) in this selected entry. Figure 4.9 shows the algorithm in

pseudo code for the hardware, assuming that there are N entries for the reference
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bit array, ref|[], and the timestamp array, ts[]. Figure 4.10 is the pseudo code for

replacing an old value with a new value in the F'V Finder.

void UpdateFVFinderStatus() {
clock _tick ——;
if (clock_tick == 0) {
for (1 =0;i<N;i++){
tsft] = ts[i] >> 1;
the highest-order bit of ts[i| = ref[i];
}

clock_tick = update_period;

}

Ficure 4.9. LRU algorithm for the adaptive frequent value finder.

Figure 4.11 gives an example to illustrate the above algorithm using a sequence of
data values shown in the table labeled with Time and Value. The Value row shows
the sequence of values coming at clock time indicated by the Time row. For simplicity,
it is assumed that there are only 4 entries in the coder (FV Finder) each having a
3-bit timestamp and a 1-bit reference bit. Initially the coder is empty. After ¢7, the
contents of the coder along with the reference bit and timestamp are shown in (a).
Suppose that the period of the LRU updating is 8 clock ticks. Therefore, at time ¢8,
the timestamps and the reference bits need to be updated. The results are shown in
(b). At t9, a new value 0240457 f80 comes in, but all the entries in the coder are filled.
A victim needs to be selected and replaced by the new value. (b) shows that the value
—1 has the smallest timestamp 000 and a clear reference bit, therefore it is chosen as
the victim. After the replacement, the new value is inserted into the 2nd entry and
its timestamp is cleared and the reference bit is set as shown in (c). At ¢10, another
new value 7 comes in replacing the value Ozae2 because it has the smallest timestamp
and its reference bit is 0. The resulting coder, timestamp and reference bit are shown
in (d). The values in the frequent value table, together with the timestamp, give an

idea on what values most recently occurred and therefore might be seen again soon.
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void Insert(v) {
if ( there are still empty entry #e in the table ) {
insert v to the empty entry e;

ts[e] = 000;
refle] = 1;
return;

}

/* Find the entry with the smallest timestamp and clear reference bit */
min = 1111;
ind = -1;
for (i =0;i<N;i++) {
temp = ref[i] concatinated with ts[i];
if ( temp < min ) {
min = temp;
ind = 1;

}

insert v into the table entry at index ind;
ts[ind] = 000;
reflind] = 1;

}

FIGURE 4.10. Inserting new values. Assume a 3-bit timestamp and 1 reference bit.

Time: [t1| t2| t3| t4 |t5] t6] t7/t8 t9 t10
Value:|0 | -1] 1 |Oxae2({0 | O | 0 | 1 |0x40457f80| 7
Coder ref. ts Coder ref. ts
0 1 101 0 0 110
-1 0 001 -1 0 000
1 1 010 1 0 101
Oxae2| 0 010 Oxae2| 0 001
(@ (b)

Coder ref. ts Coder ref. ts
0 0 110 0 0 110
0x40457f80 | 1 000 0x40457f80 | 1 000
1 0 101 1 0 101
Oxae2 [0 001 7 1 000

(©) (d)
(a) The contents of coder, reference bit(ref) and timestamp(ts) at t8.
(b) Updating ref. and ts: Shift ref. right to the highest order bit of ts,
shifting rest of ts right by one bit.
(c) Att9, value -1 is replaced by new value 0x4045780.
(d) At t10, value Oxae2 is replaced by new value 7.

FI1GURE 4.11. Example of frequent value identification.
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FIGURE 4.12. Data bus traffic due to 32 frequent values.

Since the above approach is used for the bus encoding application, I evaluated it
in context of the data stream between on-chip cache and off-chip memory. I measured
percentage of data traffic that could be attributed to the changing set of 32 frequently
transferred values found using the above algorithm. Figure 4.12 shows the results of
this experiment. On average, 32% of the traffic was attributed to the frequently
transferred values. It is interesting to note that in the case of the 129.compress
benchmark, when a fixed set of frequently accessed values was used, they did not
account for a substantial number of accesses; but when a changing set of frequently
transferred values are used, they account for nearly 68% of the total traffic. Therefore,
while for some benchmarks a fixed set of frequent values may be adequate, for others

a changing set may provide better results.
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4.5 Summary

In this chapter, one software and two hardware techniques for identifying frequent
values efficiently have been introduced. The software technique is suitable for appli-
cations whose frequent values are not sensitive to program inputs. Therefore, finding
them incurs a one-time overhead and future runs can benefit from them easily. The
hardware techniques are transparent to the user and adapt to different programs.
Next, I will discuss one of the major applications that is based on the frequent
value phenomenon in level one on-chip data caches. A novel energy efficient design

that explores the frequent values inside the cache will be introduced.
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Chapter 5
The Frequent Value Data Cache Design

On-chip cache memory consumes a significant amount of energy, which many re-
searchers have paid attention to. A variety of cache designs are being developed to
conserve energy (2, 13, 24, 36, 37, 49, 51, 74].

In this chapter a new approach is presented to reduce dynamic energy consumed by
a data cache which is complimentary to many of the previously proposed solutions for
the same problem. It presents the design and evaluation of an energy efficient .1 data
cache, called the frequent value cache (FVC), which achieves energy savings through
data compression. In the previous chapters, it has been shown that a small number
of distinct frequent values often occupy a large portion of program memory and
therefore account for a large portion of memory accesses. This chapter demonstrate
how this frequent value phenomenon can be exploited in designing a cache that trades
off performance with energy efficiency.

In the FVC, frequent values are represented by fewer than 32 bits as they are stored
in encoded form while all other values are stored in unencoded form using all 32 bits
of a word. The data array is partitioned into two arrays such that if a frequent value
is accessed only the first shorter data array is accessed, while for nonfrequent values
both data arrays must be accessed. Since frequent values are encountered quite often,
this approach greatly reduces the energy consumed by the data cache. The reduction
in energy is achieved at the cost of an additional cycle needed to access nonfrequent
values. Therefore, FVC design represents a trade-off between lower dynamic energy
consumption for frequent value accesses and higher access times for nonfrequent value
accesses.

The detailed access time and energy models for FVC have been developed by
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modifying XCACTI [31]. The studies demonstrate that for a wide range of config-
urations for set-associative data caches — including varying associativity, cache size,
line size, and number of frequent values — the FVC compares favorably with a con-
ventional data cache design. The time spent on encoding and decoding of values does
not impact the cache access time for associative caches.

Prior works propose other cache designs that exploit presence of frequent values
[76, 69]. However, none of those designs are low power cache designs but rather they
are aimed at improving the hit rate of the data cache. By storing data in compressed
form greater amounts of data is held in the caches to increase the hit rate. The design
in [76] provides an extra small regularly structured cache that stores the frequent
values. In [69], the data cache stores compressed lines so that the effective capacity
of the data cache is increased and the miss rate is also reduced. Both of the above
designs increase the cache cycle time. In this chapter, the new design does not increase
the cache cycle time. By restructuring the data array to take advantage of frequent
values the average energy consumption for every cache access is reduced. Unlike the
other designs, the miss rate from the new FVC stays the same as the original one.
In [63] a cache energy reduction technique based upon encoding only zero value was
introduced. Since FVC design considers a set of values for encoding, the amount of
energy reduction achieved is significantly higher.

This chapter is organized as follows. Section 5.1 presents the FVC design. The
FVC’s access times are analyzed in Section 5.2 and energy consumption in Section
5.3. In Section 5.4, frequent value identification is discussed. Section 5.5 contains

experimental results.

5.1 FV Cache Overview

From the perspective of the frequent value cache, data values are divided into two

categories: a small number of frequent values, say n, that typically ranges from 4



69

values to 128 values, and all remaining values that are referred to as nonfrequent val-
ues. The frequent values are stored in encoded form and therefore can be represented
in logon number of bits, which ranges from 2 bits for 4 frequent values to 7 bits for
128 frequent values. The nonfrequent values are stored in unencoded form in 32 bit
words. The set of frequent values remains fixed for a given program run.

The cache data array is partitioned into two data arrays as shown in Figure 5.1.
The low-bit array contains the lower order logon bits of each word and the high-bit
array contains the remaining 32 — logsn bits. Frequent values are stored in encoded
form in the low-bit array while nonfrequent values are split into the lower order logon
bits and the higher order 32 —logyn bits using the space in both arrays. To distinguish
between a code for a frequent value and a trailing part for a nonfrequent value in the
low-bit array, an additional flag bit is needed corresponding to each word in a cache
line. The extra bit was stored along with every word in the low-bit array so that the
word width becomes logon + 1. The original frequent values are stored in an n-entry

decoder indexed by the logyn-bit frequent value code.

Conventional cache data array Frequent value cache data array
log,n log,n Extra 32-log,n

32 bits bits bits  bit bits
3 k= -

n entry
decoder

> + +

low-bit

array high-bit array N
Accessed in
. the 15t cycle
A J/ N— —~ A J/
v . v for frequent
Accessed in one cycle Accessed in  Accessed in the 2nd cycle  values
for all values the 15 cycle only for nonfrequent values

for all values

FIGURE 5.1. An example of partitioning the data array of 32 bits per word (bpw), 4
words per line (wpl) into two arrays of logen + 1 bpw, 4 wpl and 32 — logen bpw, 4
wpl each. The n-entry decoder is used to store the original frequent values.
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5.1.1 Accessing the FVC

When reading a word from the cache, initially it simply reads from the low-bit array.
Since every word read out contains a flag bit, it is first examined to determine what
comes next. If the flag is clear it means that the desired word is in unencoded form
so the remaining bits should be read out from the high-bit array to form the original
value. On the other hand, if the flag is set it means that the desired word is a
frequent value and it is stored in encoded form. In this case it proceeds to decode the
value. Since the access to the high-bit array is avoided, cache activity is significantly
reduced.

Since the retrieval of logsn bits from the low-bit array and that of 32 — logon bits
from the high-bit data array is serialized, it takes longer to read a nonfrequent value
from the FVC than it would have taken to read the same value from a conventional
data cache. Let us assume that on a hit it takes a single cycle to read a value from
a conventional data cache. In contrast, for FVC a frequent value is read in one cycle
while a nonfrequent value is read in two cycles. In other words, in the first cycle the
logaon bits from the low-bit array are accessed and if the value is a nonfrequent one, in
the second cycle the remaining bits from the high-bit data array are accessed. Under
this scenario reading nonfrequent values takes twice as long as that for frequent values.
However, this is the worst case scenario as accessing most caches takes multiple cycles
and consequently reading nonfrequent values does not have to double the total access
time.

A write to the FVC is performed in a similar manner. Before a value is written, it
is first encoded through an encoder. If encoding is successful, it means that the value
is a frequent value and thus logsn bit code is stored in the low-bit array and the flag
bit is set. In this case, accessing the high-bit array is avoided. If the encoding fails,
the value to be written is a nonfrequent value and thus both low-bit and high-bit

data arrays are accessed as well as the flag bit is cleared.
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5.1.2 The FVC design

Figure 5.2 shows a detailed FVC design. Instead of one data array in a conven-
tional cache, there are two data arrays. Let us discuss in detail how the read/write

operations as well as corresponding decode/encode operations are performed.

Address -bi
[ 1 | Tag Low-bit High-bit array

Decoder y \

Register

File s
Non-FV

Miss
Internal latches ] lRequired Word

FI1GURE 5.2. The FVC design.

During a read operation the low-bit array is first read out and the flag bit deter-
mines the next step. When the flag bit is set, the logon code is decoded. The decoder
is in effect a multi-ported register file that contains frequent values. This decoder
register file is shared among the multiple cache ways. The code is used to index the
register file to retrieve the corresponding 32-bit frequent value. Reading a frequent
value is done after the 32-bit flows through the output multiplexer. However, if the
flag bit is clear (indicating a nonfrequent value), it turns off the decoder letting the
partial data value flow to an internal latch where the remaining part of the value is
filled from reading the high-bit array in the second cycle. The full value is obtained
by concatenating the two parts completing an infrequent value read.

In a traditional cache implementation the entire line is first read out from the

data array, then the desired word within the line is selected at the time it reaches
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the output multiplexer. If the same scheme is used in the FVC design, the decoding
of frequent values cannot begin until the required word is selected out which is the
very end of a cache access. Consequently decoding will increase the cache access time
which is not desirable. Therefore the FVC adopts the subbanking scheme proposed by
[24] in which the subbank containing the target word can be read independently. The
width of each subbank is the physical word width and each subbank can be activated
independently. This design facilitates the FVC implementation in that the decoding
for frequent values can begin immediately after accessing the low-bit array since only
the word at the desired location is read out instead of the whole line. The actual
measurements of FVC access time can be found in section 5.2 and the subbanking
scheme is used in the experiments as the baseline configuration.

During a write operation the value must be encoded. The encoding of a frequent
value to be written is carried out before the cache access since the value to be written
may be known as early as the decode/operand fetch stage. The encoding hardware
for write accesses is shown in Figure 5.3. It is a CAM ' that can match an incoming
frequent value and output its location in binary form. The “CAM Array” shown in
the figure stores the most often encountered 16 frequent values and the “RAM?” stores
the binary representation (ID) of each entry corresponding to the “CAM Array”, that

is, for 16 frequent values the ID needs 4 bits each.

32 bit word

CAM Array
16 x 32 bits

=y
o

o
=X

=Er 3

FIGURE 5.3. 16 Value FV CAM.

'CAM—Content Addressable Memory. A memory structure that can output a value’s address
based on the input value.
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The frequent value encoder shown in Figure 5.3 is part of a slightly larger hardware
unit that contains extra control information that is responsible for finding frequent
values. During a given program run, frequent values are first found through this
hardware by monitoring the values accessed for a certain amount of time after which
the values are fixed and monitoring is stopped. For the remainder of the program’s
execution, these fixed frequent values are stored in encoded form. At this point, the
values captured by the frequent value finder are sent to the decoder register file. When
frequent value encoding/decoding is being carried out the contents of the decoder
register file and the encoding CAM are the same. The details of the frequent value
finder are discussed in Section 5.4.

The XCACTT [31] has been modified to incorporate a model of the above FVC
design. The XCACTTI tool adds the energy model for cache writes, write-backs and
line-fills. This is what is needed in order to correctly measure the FVC energy. The
baseline cache uses the subbanking technique presented in [24]. The major change
in XCACTI to accommodate subbanking is the organization parameter Ny, which
indicates how many times the data array has been split with vertical cut lines. In
the FVC model Ng,,; is fixed to the number of words per line. This way the address
decoder to the data array will automatically pick the right subbank to drive. For
FVC design, accessing a frequent value differs from a baseline access in that the
word width is narrowed down to code size plus one. Accessing an infrequent value
increases each word width by one. Those will affect the delay in decoder, wordline,
bitline, etc., since the number of bit columns, the wire lengths connecting different
lines in a set and other parameters changed. For the frequent value register file,
I extracted the data array access model from XCACTI and modified it so that it
complies with register files. The method used is similar to the one used in [10]. T used
those models to compare the access time and energy behavior of the FVC for a range
of configurations for a conventional cache and FVC - including varying associativity,

cache size, line size, and the number of frequent values. Next some details of this
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study are presented to demonstrate the feasibility and effectiveness of the FVC design.

All of the data presented in this chapter is for 0.18 pum technology.

5.2 FVC Access Time

Let us study the timing behavior of an FVC and a conventional cache in greater
detail and then see how their access times compare. In a conventional cache design
the decoder drives both the tag array and the data array in parallel. The Tag array
does the tag matching and the data array reads out the words from the intended
locations. Typically, the tag matching takes longer than the data read. If the tag
matching fails, the results of the data read are discarded; otherwise the data word
is sent to the CPU. In case of FVC, while the tag is compared against the reference
address tag, the data is read out of the low-bit data array. The single bit indicating
whether the value is frequent or nonfrequent is also read and if the bit indicates that
it is an encoded frequent value, the decoding of the value is then initiated. Therefore,
since the read is completed before the results of the tag match are known, the decoding
operation is carried out in parallel with tag matching.

It should be ensured that the access time of the FVC is no greater than the access
time of the baseline cache. Since the tag path is not changed, the tag matching time
is the same for baseline and FVC caches. Therefore, in order for the access time of
the FVC to be equal to that of the conventional cache, the sum of the times spent
by the FVC on retrieving a frequent value from the low-bit data array (7ata_path_deiay
without output multiplexer) and the decoding of the frequent value (Tecoqe) should

be no greater than the time spent tag matching (T}qg path_detay), that is:
Tdata_path_delay + Tdecode S T%ag_path_delay-
Figure 5.4(a) shows the timing behavior of the FVC for frequent and nonfrequent

value reads assuming that the FVC satisfies the above constraint. It should be noted

that no timing constraint arises due to encoding of values during write operations
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because the value being written is encoded before the cache access. Figure 5.4(b)
depicts the situation for nonfrequent value reads. Since accessing the high-bit array
is serialized with the low-bit array access, the total time in reading the data array
can not be less than the tag matching time. Therefore it is carried in the following

cycle.

* 1 cycle :I

Perform tag matching

|
Read low-bit array | Decode value
|

(a) Frequent value read access

* 1 cycle =I~ 1 cycle "

Perform tag matching
————————— q———————- Read high-bit array
Read low-bit array |

(b) Non frequent value read access

FIGURE 5.4. Read access operation.

Whether or not the above timing constraint is satisfied is determined by the
configuration of the FVC. The Tjecoqe is @ function of decoder size which in turn
depends upon the number of frequent values used—the larger the number the longer
the decoding time. The difference between the T}qg path_deiay and the Tyarq path delay 19
a function of cache size and associativity.

Table 5.1 shows the increase in access time, if any, that is caused due to the need
to perform a decode operation upon a frequent value access. Recall that the access
time is the critical path delay in the cache. The first number is the tag matching
time while the second number is the increase in access time for the FVC design.
In this study, I limit the variation of the cache organization parameters so that the

cache data array is not chopped up into too many subarrays since it has already been
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Ways — 2 4 8
L — 8b 16b 8 [ 16b 8b 16b 8b [ 16b
C (bits) |
2 4.3840 | 2.43+0.01 | 2.85+0 | 2.26+0 | 2.36+0 | 2.11+0 [ 2.22+0 | 1.99+0
3 4.38+0.01 | 2.43+0.08 || 2.85+0 | 2.26+0 | 2.36+0 | 2.1140 [ 2.22+0 | 1.99+0
4 4.58+0.07 | 2.43+0.15 || 2.854+0 [ 2.26+0 | 2.36+0 | 2.11+0 [ 2.22+0 | 1.99+0
5 4.38+0.14 | 2.43+0.21 || 2.8540 [ 2.26+0 | 2.36+0 | 2.11+0 [ 2.22+0 | 1.99+0
6 4.58+0.24 | 2.43+0.31 || 2.85+0.03 | 2.26+0.06 | 2.36+0 | 2.11+0 [ 2.22+0 | 1.99+0
7 4-88+0.32 | 2.43+0.40 || 2.85+0.11 | 2.26+0.14 || 2.36+0.04 | 2.11+0.04 || 2.2240 | 1.9940
16 Kbyte Cache
Ways — 2 4 8
L— 8b 16b 8b [ 16b 8b 16b 8b [ 16b
C (bits) |
2 8.89+0 | 4.87+0.02 || 4.80+0 | 2.86+0 | 2.9440 | 2.374+0 | 2.52+0 | 2.28+40
3 8.89+0.01 | 4.37+0.09 || 4.804+0 | 2.86+0 [ 2.94+0 [ 2.374+0 [ 2.5240 | 2.2840
4 8.89+0.09 | 4.37+0.16 || 4.80+0 | 2.86+0 [ 2.94+0 [ 2.37+0 [ 2.5240 | 2.28+0
5 8.89+0.15 | 4.37+0.22 || 4.80+0 | 2.86+0 [ 2.94+0 [ 2.374+0 [ 2.5240 | 2.2840
6 8.89+0.25 | 4.37+0.32 || 4-80+0.02 | 2.86+0.09 || 2.94+0.01 | 2.37+0.02 || 2.52+0 | 2.2840
7 8.89+0.33 | 4.37+0.41 || 4-80+0.10 | 2.86+0.17 || 2.94+0.09 | 2.37+0.10 || 2.52+0 | 2.284-0
32 Kbyte Cache
Ways — 2 4 8
L— 16b 32b 16b |  32b 16b 32b 16b | 32b
C (bits) |
2 8.89+0.01 | 4.37+0.09 || 4.79+0 | 2.87+0 | 2.96+0 | 2.43+0 [ 2.56+0 | 2.414+0
3 8.89+0.08 | 4.37+0.16 || 4.79+0 | 2.87+0 | 2.96+0 | 2.43+0 | 2.56+0 | 2.414+0
4 8.89+0.16 | 4.37+0.24 || 4.79+0 | 2.87+0 | 2.96+0 | 2.43+0 [ 2.56+0 | 2.414+0
5 8.89+0.22 | 4.37+0.30 || 4.79+0.01 | 2.87+0.06 || 2.96+0 | 2.43+0 [ 2.56+0 | 2.414+0
6 8.89+0.32 | 4.37+0.40 || 4.79+0.11 | 2.87+0.16 || 2.96+0.06 | 2.43+0.04 || 2.56+0 | 2.41+-0
7 8.89+0.41 | 4.37+0.49 || 4-79+0.19 | 2.87+0.25 || 2.96+0.14 | 2.43+0.13 || 2.56+0 | 2.41+0
64 Kbyte Cache
Ways — 2 4 8
L — 16b 32b 16b | 32b 16b | 32b 16b [ 32b
C (bits) |
2 22.7}+0.02 | 8.87+0.11 ]| 9.29+0 | 4.79+0 [ 4.89+0 | 3.00+0 [ 3.13+0 [ 2.67+0
3 22.7}+0.09 | 8.87+0.18 || 9.29+0 | 4.79+0 [ 4.89+0 | 3.00+0 [ 3.13+0 | 2.67+0
4 22.74+0.17 | 8.87+0.26 | 9.2940 | 4.79+0.02 | 4.89+0 | 3.00+0 || 3.13+0 [ 2.67+0
5 22.7}+0.23 | 8.87+0.32 || 9.29+0.03 | 4.79+0.09 || 4.89+0 | 3.00+0.01 || 3.13+0 | 2.67+0
6 22.7)+0.34 | 8.87+0.42 || 9.29+0.13 | 4.79+0.19 || 4.89+0.09 | 3.00+0.12 || 3.13+0 | 2.67+0
7 22.74+0.42 | 8.87+0.51 || 9.29+0.22 | 4.79+0.28 || 4.89+0.18 | 3.00+0.21 || 3.13+0.06 | 2.67+0

TABLE 5.1. Finding configurations with 1-cyle frequent value access and decode.



7

divided vertically into subarrays of one word width. As can be seen, for a wide range
of configurations (shown in bold) there is no increase in access time as the second
number is 0. This is because the decode time is quite small varying from 0.41ns for 2
bit decoding to 0.678ns for 7 bit decoding of frequent values. Since the tag path delay
is greater than the data path delay, often there is enough time left over to carry out
decoding. In many other cases while there is an increase in access time, the increase
is very small. Finally, for direct mapped caches typically FVC design is not attractive
as the increase in access time is significant. In summary, FVC is expected to perform
well for cache configurations used in power efficient processors — high associativity

and modest size.

5.3 FVC Dynamic Energy Model

A dynamic energy estimation model for the FVC cache has been developed. The
energy estimation model is separated into two parts. In the first part energy estimates
on a per cache access basis are computed. This computation is based on the detailed
characteristics of the cache design shown in Figure 5.2 and depends on the cache
configuration. The second part of the model estimates the total cache energy expended

during a program run. Therefore it depends on runtime behavior of the program.

5.3.1 Per access energy

The energy calculations for the baseline cache is briefly described and it is compared
with the energy calculations for the FVC. The equations for these calculations are
presented in Table 5.2 to Table 5.4 where energy per access (EPA) is analyzed care-
fully. There are three main energy components for the conventional cache: energy
consumed by the data array, energy consumed by the tag array, and energy needed
to drive the output multiplerer. The energy consumed by the tag array is the same

for both the baseline cache and the FVC, when they have the same associativity and
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capacity. Moreover, this energy must be spent for both frequent and nonfrequent
value accesses. The same is true for the energy that is spent on driving the output
multiplexer as in all cases output is 32 bits. The two main differences in energy
computations are described next.

The first difference in energy computations arises in computing the data array
energy associated with an access. One of the primary factor that determines the
various components of the data array energy is the length of the word line. In case
of the baseline cache, the wordline length, wl, is simply computed from the bits per
word and the associativity. In case of a frequent value access in the FVC, wl changes
to wl’, where wl’ is less than wl because the high-bit data array (32 — logon bits
per word) is not accessed and it also offsets the energy spent on the extra flag bit.
Similarly for a nonfrequent value access, wl changes to wl”, where wl” is greater than
wl since the flag bits need to be accessed irrespective of the frequent property of the
value. Another major factor is the number of bitlines that need to be driven every
time the data array is accessed. Similar to the reduction in word line length, the
bitlines are reduced from 32 to logan + 1 bits per word access. For example, if the
codes for frequent values are only 4 bits, the amount of decrease in driving the bitlines
is (32—4—1)/32 = 84%. For nonfrequent values, there is one more bitline increase
which is 1/32 = 3%.

The second difference in energy computation arises due to the decoding and encod-
ing operations that must be carried out during read and write operations. Decoding
is associated with every frequent value read access and each decoding is an access to
the decoder register file. Reading nonfrequent values does not trigger decoding since
it is blocked by the flag bit. Encoding is associated with every write access since the
information of the value being encoded is not known a priori. The energy spent in
encoding, Ef, encode; 15 the energy of a CAM access which differs greatly from the
decoding energy, Ef, gecode, and they are computed separately.

It is clear now that there is savings in energy when a frequent value is accessed
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Energy spent on a single access on a hit in a baseline cache

EPAcache

EP Adata =

EPAtag -

where,

wl =

EPAgju,(wl) + EPAug + EPAgutput (wl)

EPAq_gecoder (W) + EP Ag_wordiine(W1) + EPAy_pistine(W1) +

EPAi sense—amp(W1) + EPAq_sense—ext—driver(W1)

EPA;_gecoder + EPAi_wordiine + EP At _pitiine + EPAs_sense—amp +
EPA ompare + EP Ayatid—driver + EP Adrive—muz + EP Asetect—block

EPAu10(wl) means EP Agq, increases with wl

word line wire length in bits = 32 x Associativity

TABLE 5.2. Per access energy model(1).

Energy spent on a single frequent value access on a hit in FVC

EPAF
EPAfWrite

v

EPAy,
EPA" (wl)

data

where,

wl’

EPAfv + Efv—decode
EPAfU + Efu—encode
EPA, (wl') + EP Ay + EP Aguipur(w1)

data

= EPAdfdecoder (Wll) + EPAdfwardline (WII) + EPAdfbitline (WII) +

EPAd—sense—amp(Wll) + EPAd—sense—ewt—driver(Wl,)

= FVC low — bit array word line wire length in bits

(logan + 1) x Associativity < wl

TABLE 5.3. Per access energy model(2).

Energy spent on a single nonfrequent value access on a hit in FVC

EPARwd — EPA,,

nfv

EPAE}CJite = EPAnfU + Efvfencode

EPA,;, = EPAY (wl")+ EP Ay + EP Agutpur(Wl)

data

where,

(wl") = Total FVC word line wire length in bits
= 33 x Associativity > wl

TABLE 5.4. Per access energy model(3).
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while there is an increase in energy consumed when a nonfrequent value is accessed.
However, the savings are much greater than the increase. The per access energy char-
acteristics of all of the configurations are also analyzed. In Figure 5.5 the percentage
reductions in energy consumed on a frequent value read access are given (L is the line
size and C' is the number of bits for encoding frequent values). As can be seen from
the results, the reduction per access ranges from 34% to 84%. For writes, it is a little
bit lower. The reductions are higher for greater degree of associativity.

As expected, the reduction in per access energy is greater when fewer number of
bits are used to encode frequent values. However, this does not imply that the least
number of bits should be used to encode frequent values. When the cumulative cache
energy is considered, this trend need not hold. This is because as the number of bits
is increased a greater number of values can be encoded and therefore the fraction of
total accesses that are frequent value accesses also increases.

The increase in per-access energy consumed for a nonfrequent value access is small
in comparison to the reduction achieved for a frequent value. These increases are
computed separately for read and write operations. This is because a write is more
expensive as it requires an associative search in the CAM encoder. It is found that
the increase in energy for a nonfrequent value read ranges from 0.0005% to 0.0678%
for the configurations considered. This increase is mainly due to the access to the
extra flag bit that is required in FVC. In contrast, the increase in energy used by a
nonfrequent value write ranges from 0.776% to 4.68%. However, as can be seen, these
increases are small in comparison to the energy savings that result during frequent

value accesses.

5.3.2 Total Cache Energy

Given the per-access energy costs computed in Table 5.2, the equations shown in

Figure 5.6 can now be derived for computing the total energy consumed by the cache



8 Kbyte Cache

Ways — 1 2 4 8
L — 8b | 16b || 8b [ 16b || 8b | 16b | 8b | 16b
C (bits) |
2 42.6 | 55.5 | 60.3 | 66.9 || 70.6 [ 74.9 || 78.0 | 80.1
3 41.9 | 54.3 | 58.3 [ 64.7 [ 68.2 | 72.5 || 75.4 | 77.5
4 39.5 [ 51.5 | 56.1 [ 62.2 || 65.7 [ 69.8 | 72.7 [ 74.8
5 38.4 [ 49.6 | 53.6 [ 59.4 || 63.0 [ 66.9 | 70.0 [ 71.9
6 35.6 | 46.1 | 50.9 | 56.3 || 60.1 | 63.9 || 67.1 | 68.9
7 34.1]43.6 || 47.9 | 52.9 || 57.0 | 60.6 || 64.0 | 65.7
16 Kbyte Cache
Ways — 1 2 4 8
L — 8b [ 16b || 8b [ 16b || 8b | 16b | 8b | 16b
C (bits) |
2 43.8 | 52.4 || 56.9 | 67.4 || 69.2 | 75.0 || 76.7 | 80.0
3 43.1 | 51.3 || 55.0 [ 65.1 | 66.9 | 72.6 || 74.2 | 77.3
4 40.8 | 48.8 | 53.0 [ 62.7 [ 64.5 | 70.0 || 71.6 | 74.6
5 39.9 [ 47.3 | 50.8 | 60.1 | 61.9 | 67.2 || 68.9 | 71.8
6 37.4 [ 44.5 | 48.6 [ 57.3 || 59.2 | 64.3 || 66.1 | 68.9
7 36.2 [ 42.6 | 46.1 [ 54.2 || 56.4 [ 61.2 | 63.2 [ 65.9
32 Kbyte Cache
Ways — 1 2 4 8
L — 16b | 32b | 16b | 32b || 16b | 32b | 16b | 32b
C (bits) |
2 53.4 | 63.8 || 65.0 [ 75.1 [ 74.9 | 79.6 || 79.8 | 82.6
3 52.3 | 62.2 | 62.9 [ 72.6 || 72.4 | 77.0 || 77.2 | 80.0
4 49.8 | 59.5 || 60.6 | 70.0 || 69.9 | 74.3 || 74.5 | 77.3
5 485 | 57.6 | 58.2 [ 67.2 [ 67.2 | 71.5 || 71.8 | 74.5
6 45.8 | 54.6 || 55.7 | 64.3 [ 64.4 | 68.5 || 69.0 | 71.6
7 44.3 | 52.4 | 53.1 [ 61.3 | 61.5 | 65.5 || 66.1 | 68.6
64 Kbyte Cache
Ways — 1 2 4 8
L — 16b | 32b | 16b | 32b || 16b | 32b | 16b | 32b
C (bits) |
2 55.4 | 65.0 | 66.2 [ 74.1 || 73.9 | 81.2 || 80.1 | 84.0
3 54.3 [ 63.3 || 64.0 [ 71.7 || 71.5 | 785 || 77.5 | 81.4
4 51.7 [ 60.7 || 61.7 [ 69.1 [ 68.9 | 75.8 || 74.9 | 78.7
5 50.5 | 58.8 || 59.4 [ 66.5 || 66.4 | 73.0 || 72.2 | 76.0
6 47.8 [ 56.0 || 57.1 [ 63.8 || 63.7 [ 70.1 [| 69.4 | 73.2
7 46.5 | 54.0 || 54.6 | 61.0 || 61.0 | 67.2 || 66.6 | 70.3

FIGURE 5.5. % energy savings for frequent value accesses.
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Etve = Ernit + Ewnit + Erwmiss
ERhit = HRUead X EPA?fad-i-HRead > EPARead

nfuv nfv
N -
v Vv

frequent value read non frequent value read

_ Write Write Write Write
Bwne = HJe x EPAYrite 4 giirite x ppAW:
N - N -
TV TV
frequent value write non frequent value write

ERWmiss = Ewriteback+Ewritein
Ewriteback = Mndr—lines X EPAf'u + Mdr—lines X EPAnfv + DRfv—values X Ef'u—decode

vV WV
cache line not dirty cache line dirty

Ewritein - (wpl X Efvfencode + EPAnfv) X (Mdrflines + Mndrflines)

FIGURE 5.6. Total energy consumed by FVC.

in a given program run. These computations are based on the number of read and
write accesses which are hits, number of references that are misses, and the memory
update policy. It is assumed that the cache uses a writeback policy and a single dirty
bit is maintained for each cache line to decide when the writeback is needed.

The total energy is divided into three parts: energy consumed by read hits (Egps),
write hits (Ewnpit), and misses (Egrwmiss)- Since I have already computed the energy
per read /write access on a hit for a frequent/nonfrequent value (EPAfe*d, EP A e,
EPAJ%s, EPAJY, respectively), the computation of total read/write energy on
hits for a program run can be easily computed by measuring the total number of
read/write hits to frequent/nonfrequent values (H /¢, HJcod, HYTr"e and H)7ite),
as shown in Figure 5.6.

The energy consumed by misses consists of two parts: energy for performing the
write back operation (Eyritepack) and energy consumed by line fill of the new line
fetched from the L2 cache (Ejnesin). The writeback energy is computed separately
for dirty lines and non-dirty lines. If the cache line is not dirty, some price is still

paid for reading it from the cache. This is because the reading of the low-bit array is

carried out in parallel with tag matching. Therefore even if there is a miss, and the
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line is not dirty, the cache has already spent EPAy, energy in reading the portion
of a word line. If the line is dirty, then the entire cache line is read first, including
the portion in high bit array, and it expends EPA,, energy. In addition, before
performing the writeback operation, the frequent values in the line must be decoded.
By measuring the number of misses of dirty lines (Mg, _jines), misses of non-dirty lines
(Mpdr—tines), and number of frequent values in dirty lines (DRjfy_yaines), the total
energy expended by the writeback operations performed in the program run can be
easily computed.

It is assumed that the above process does not take more time than usual since
preparing for writeback and reading new lines from lower level memory is usually
carried out in parallel. The lower level memory access time is a lot longer than the
higher level memory. Therefore there is enough time to prepare the lines for writing
back. The energy for writing in the new line is simply the cost of updating the entire
cache line (EPA,,) and encoding the values in the line. Note that even if a value
is a nonfrequent value, energy is spent on the encoding operation because the way
to determine that a value is nonfrequent is by attempting to encode it. Note that
line fill does not take longer time than usual since if it was a read operation that
initiated the line fill, the referenced value is passed directly to the CPU whenever it is
read out from the lower level memory. Performing encoding is done only afterwords
so this process does not affect program speed. On the other hand, if the line fill is
initiated by a write operation, the instruction finishes execution once it has deposited
its value into the cache. The actions inside the cache usually do not affect program

speed unless there are back to back cache accesses.

5.4 Finding Frequent Values for FVC

The approach to finding frequent values is to provide a hardware FV Finder which

monitors the values in initial stages of program execution and then uses the frequent
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values found using limited monitoring for the remainder of the program execution.
Next I will introduce the new hardware FV Finder design and then I will study the

impact of monitoring time on the quality of frequent values that are found.

5.4.1 The Design

The hardware FV Finder was briefly introduced in section 4.3. However, applying
the finder into the FVC needs to be explained in details. I first repeat briefly the
algorithm used in the FV finder and then see how it works in the FVC.

A small table of frequent values is used in this method. To find the top n values,
the table contains 2n entries each having a wvalue field and a counter field as shown
in Figure 5.7. The walue field stores the data value encountered during monitoring
and the counter field contains an ¢ bit saturating counter. Each time a data value is
involved in an access by the CPU the table values are updated as follows. Suppose
that a value already present in entry 7, its counter is incremented by one. When the
counter saturates, the entry ¢ is swapped with entry ¢ —1. The purpose of this activity

is to let frequent values gradually percolate to the top part of the table.

32 bit word
16X

x2 .
bit 4 bit 4Bt ID_ >

RAM
| Value |counter| ¢

CAM Array
32 x 32 bits

FIGURE 5.7. FV finder entry.

FIGURE 5.8. 32 entry FV finder and 16
FV encoder.

When a new value is encountered, and there is no free entry in the table, a victim
entry needs to be selected to free up the space. An entry from the bottom half of the

table with the smallest counter is selected since the bottom half contains less frequent



85

values. When the counter field is short, selecting smallest counter is not expensive
to implement either. I have experimented with the appropriate number of bits used
in counter and found that the performance of a 2-bit counter is satisfactory. There-
fore, selecting the smallest counter could be implemented as a priority multiplexer
— selecting from the four states, {0, 1, 2, 3}, in descending priority. When there
are multiple qualifying entries, an arbitrary one can be picked easily. After a certain
amount of monitoring time, the frequent values can be obtained from the top half of

the table.

5.4.2 Combining with the Encoder

Due to the nature of finding frequent values, the FV finder is implemented as a CAM.
Section 5.1.2 has mentioned that this CAM can be combined with the encoder CAM.
The complete hardware is used for different functionalities as follows. During the
early period of program execution it acts as a F'V finder. Later the monitoring stops
and the hardware acts as a frequent value encoder. This is feasible since when the F'V
finder has identified the set of frequent values on the top half of the table, the lower
half can be shut off and the top half can continue as the encoder (see Figure 5.8). The
encoder needs the content of the F'V finder and there is no need in replicating storage
for frequent values. However, it is necessary to pass the captured frequent values to
the decoder shown in Figure 5.2. Decoder initialization is a one time activity and can

be done in a few cycles.

5.4.3 Study of Monitoring Time

The experiments described in Chapter 4 have shown the effectiveness of the FV
finder. Here I compare the results with the ideal set which is obtained by software
monitoring with unlimited resources through complete program run. The metric used

for comparison is still the percentage of cache accesses involving the captured frequent
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values. The number of frequent values were varied from 1 to 128. The experimental
results are presented in Figure 5.9 and 5.10.

In these figures, the legend shows the monitoring duration of the FV finder in
terms of the number of instructions. In parenthesis the monitoring duration is given
in terms of the percentage of the total executed instructions. Generally, the longer
the FV finder runs, the greater is the number of frequent value cache accesses as the
frequent value set is more accurately determined. The curve on the top represents the
data for an ideal set of frequent values. If most of the curves are close to the ideal curve
it means that the FV finder is very effective. From the graphs we can see that 8 out of
the 11 tested benchmarks belong to this category. For these benchmarks the degree
of monitoring has little impact on the quality of the frequent value set identified.
This is because for these programs frequent values can be divided into two categories:
a small number of values that are encountered extremely frequently throughout the
program’s execution and a much larger set of values that are encountered nearly
equally frequently during the program’s execution. A very small amount of monitoring
is needed to identify values in the first category. A small amount of variation is due
to the difference in the set of values identified from the second category as frequent
values.

For the remaining three benchmarks — 130.1i, 132.ijpeg and 134.perl, the
results from the FV finder differ from the ideal result greatly. There could be a
number of reasons for this difference. First, the FV finder may not have run for
enough time to capture the top frequent values as some of these values may show up
later in the program execution. Second, the FV finder may not have enough entries
to capture the accurate set of frequent values at any point. This could be verified by
comparing the results with that obtained from software profiling where it is assumed
that the F'V finder has as many entries as needed. Figure 5.11 shows that for 130.1i
and 134.perl, with unlimited resources the top frequent values do appear as early

as the first 5% of program execution time. Therefore, the inaccuracy in Figure 5.10
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Ficure 5.11. Comparing frequent value set identified using software method.

is probably due to the simple design of the F'V finder. Figure 5.11 also shows that for
132.1jpeg, even with infinite bookkeeping, the frequent values do not become stable
not until about 15% of program has run. For this case, the FV finder only needs to
run longer to capture the right set of the frequent values. Therefore, the greater the
duration of monitoring, the better is the resulting set of identified frequent values.
Notice that in the above study the FV finder ran for the first few percent of pro-
gram instructions which indicates that the number of memory accesses is even fewer.

Since the only instructions that affect the energy consumption and the performance
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of the FV finder are memory instructions, I will run it for the first 5% of memory
accesses in the experiments. This is reasonable even when there is no total instruction
information since it is shown above that for most programs, running the FV finder

for short amount of time is sufficiently good.

5.5 Experiments
5.5.1 Experimental Setup

Low power processors being developed at present (e.g., StrongArm), have simple
in-order pipelines and reasonably small associative caches. The simplicity of these
designs is the key to achieving low power. Therefore the FVC is also evaluated in
that context.

The baseline processor supports a five stage in-order pipeline with the MIPS ISA.
The simulator is based upon the system described in [44] into which the XCACTI
2.0 was integrated with modifications necessary for FVC. The XCACTI 2.0 is also
modified to model energy on every write, energy in write back and line fill operation
so that the formulas in total energy model (Figure 5.6) are accurately applied. All the
benchmarks are compiled with gec version 2.7.2 for a MIPS compatible processor using
optimization level -O3. The cache parameters used in this study are given below. In
addition, the L1 data cache latency is 1 cycle for the baseline and 1-2 cycles for the
FVC corresponding to frequent-nonfrequent value accesses. The number of frequent
values used was 16, 32 and 64. The L1 instruction cache latency is 1 cycle and
L2 cache latencies are 6 cycles. The cache sizes used vary from small (8 Kbyte) to
modest (64 Kbyte). The number of frequent values used are 16, 32, and 64. For these
L1 cache configurations of FVC there is no increase in access times as the decoding
of frequent values can be carried out according to the timing constraints presented
earlier.

I ran the above configurations for the same set of benchmarks in section 5.4
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Level | Size (KB) | Line Size (B) | Ways
Data L1 8 16 4
Cache 64 32 8
L2 128 64 8
Instruction L1 8 16 4
Cache 64 32 8
L2 128 64 8

TABLE 5.5. Cache Configuration

using reference inputs. During the first 5% of the memory accesses the cache acts
as a traditional cache and the FV finder captures the frequent values. After that,
the cache acts as a FVC and the FV finder shuts down the lower half of the table
and uses the content of the upper half for encoding. It is observed that the FV
finder performs better than the study whose results were presented in the preceding
section because it is now running for a longer duration of time. I further show
increases in processor execution time delay, percent of decrease in cache energy alone,

decrease in energy xdelay (the product of the first two metrics), and decrease in power

(energy/delay).

5.5.2 Experimental Results

FVC Hits Due to Frequent Values. Figure 5.12 plots the percent of frequent
value hits, including reading and writing of frequent values to the cache, in the 95%
of the memory accesses performed after frequent values have been found. Bigger
caches have more hits therefore a higher FV hit ratio. It is found that the results
for 130.11 and 134.perl improved by about 10% which means monitoring for longer
time is beneficial. As expected, for the rest of the benchmarks there are slightly better
frequent value hit rates than Figure 5.9-5.10.

Cache Results. The saving in cache energy, increase in program execution time,

saving in energy delay product and power are shown in Figures 5.13-5.16. Generally,
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FIGURE 5.12. Cache hits that are FV over the 95% cache accesses.

programs with higher F'V hit rates save more energy (see Figure 5.13) and slow down
less (see Figure 5.14). As can be seen, on average this increase in execution time
is 3.7%/ 3.5%/ 3.3% for 16/ 32/ 64 frequent values respectively for a 64Kb FVC.
The savings in energy energyxdelay, and power are substantial. For a 64Kb FVC,
on an average, there is 26%/ 27.6%/ 28.8% reduction in cache energy, 23%/ 24.8%/
26.1% reduction in energy x delay, and 28.9%/ 30.3%/ 31.3% reduction in power
for 16/32/64 frequent values, respectively. The savings are larger for larger number
of frequent values and for larger sized cache. This means that the increased energy
spent in coding and decoding for larger number of frequent values is offset by greater
savings due to a greater number of frequent value accesses. The only benchmark
that presents high slowdown (8~9%) from Figure 5.14 is 107 .mgrid. First of all, it
does not have abundant frequent value cache accesses from the study in Figure 5.10
so it cannot benefit much from the FVC design. Secondly, with the similar FV hit
rates as 132.1ijpeg shown in Figure 5.12, the reason 107.mgrid has more slowdown
might be because the large amount of immediate data dependency between loads and

the following instructions. The other two benchmarks 132.1jpeg and 129.compress
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present increase in energy xdelay. This is also due to the low FV hit rates as it can

be seen from figure 5.12. However, the increases are within only 1.75%.
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In another experiment I used Wattch [10] to compute the percentage of energy
spent by the L1 data cache using the configuration in Table 5.5. For example, gcc
uses 14.8% of the total energy in the L1 data cache, and the energy saving from using
FVC is 33.4% (see Figure 5.13 for 64KB using 64 values) of the original L1 data
cache, which corresponds to 4.9% savings of the total processor energy. The total
execution time is increased by 3.3% which roughly means that besides L1 data cache,
the energy spent by rest of the processor is increased by 2.8%. Therefore the net
savings in energy was 2.1%. This one example shows that using FVC does provide

net energy savings.

FV Finder Energy. I also used Wattch to estimate the energy spent for the F'V
finder. I applied their CAM model and 2-bit register for the counters. The energy for
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the FV finder ranges from 0.3% to 6.07% of the total data cache energy used by an
8K to 64K FVC. This is because the FV finder runs for only first 5% of the memory

accesses therefore does not introduce much overhead.

Discussion on Multiprogramming Environment. So far the experiments are
limited to a single program environment. In many situations however, a CPU runs
multiple programs in a time sharing manner. Those programs will share the cache as
well. To handle this multiprogrammed environment in the FVC design, a mechanism
must be designed so that the frequent values of each program are not lost every time it
is taken off the CPU. Fortunately, this is not difficult to solve. All the frequent values
can be saved as the status of the program during context switch, just like saving the
registers. In this way, all the frequent values are safely stored and do not need to be
found again when the program obtains the CPU next time. During a context switch,

the FVC needs to reset all the flag bits in the low bit array so that it starts fresh for



96

the new program. Since the new program is likely to incur many cache misses after
the context switch, the FVC can be rapidly tuned to full functionality since cache

misses will force the linefill to perform encoding.

Load marking for minimizing delay increase. For the programs that have
lower frequent value cache access rates, such as 107.mgrid, the delay increases are
higher than the other programs as shown in Figure 5.14. This is because most of the
nonfrequent value accesses take two cycles, lengthening the average cache access time.
To keep the number of cache access that require two cycles instead of one minimum,
a load marking scheme is further developed as the following.

The loads that are involved in nonfrequent value accesses most of the time are
marked. When these loads are encountered at runtime, the two data arrays are read
simultaneously. Thus, this approach enables reading of nonfrequent values in one
cycle by the marked loads. Therefore, the overall increase in delay is reduced. If only
those loads that are rarely involved in frequent value accesses, the energy savings will
be effected minimally.

The potential of the above idea is indicated by the study whose results are pre-
sented in Figure 5.17. For each statically distinct load, through profiling, we col-
lected the percentage of dynamic accesses by the load that involve nonfrequent value
accesses. Next we set a threshold value for the maximum percentage of nonfrequent
value accesses allowed by the dynamic instances of a static load. This threshold is
referred as the nonfrequent value access threshold (T). Each static load is classified as
a nonfrequent value load if fewer than T% of its dynamic instances performing nonfre-
quent value accesses; otherwise it is classified as a frequent value load. In Figure 5.17,
the values along x-axis represent different threshold values. The values along y-axis
represent the number of load instances, as a percentage of total number of dynamic
loads, that are due to the loads that are classified as nonfrequent value loads for a

given threshold.
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Two observations can be made from the data in Figure 5.17. First that most loads
are involved in some nonfrequent value accesses. Second and even more important
observation is that there are some static loads that always access nonfrequent values.
They are chosen as nonfrequent loads and are marked in the program. By accessing
both data arrays simultaneously for these loads, no reduction in data cache energy
savings will occur. At the same time the increase in delay will be reduced as values
will be obtained in a single cycle by these loads.

Experiments are rerun for some of the programs to see if there is a significant
difference in the delay increase due to load marking. Figure 5.18 shows the results
for the benchmarks been tested. The second column shows what percentage of the
dynamic loads that arise from marked static loads. The third column shows the
increase in delay before applying the load-marking scheme (taken from Figure 5.14).
The last column shows the increase in delay after applying the load-marking scheme.
In this experiment a 64K-byte FVC with 64 frequent values is used.

As can be seen, the results of load marking are quite positive. The benchmark

having the highest slowdown (i.e., 107 .mgrid) without load marking now has a sig-
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Benchmarks loads | Delay Increase
marked | before | after
107 .mgrid 56% 8.6% | 5.1%
129.compress 47% 2.4% | 1.4%
126.gcc 34% 31% | 1.8%
130.1i 18% 3.3% | 2.6%

Ficurk 5.18. Effects of load-marking on delay.

nificantly lower increase in delay—5.1% as opposed to 8.6%. Other two programs
also show significantly reduced delay increases of 1.8% and 2.6%. Note that the load
marking scheme does not affect the energy consumption since all the marked loads
consume the same amount of energy as they did before load marking. Thus, the load

marking scheme is an effective way to reduce the FVC delay increase.

5.6 Summary

This chapter has introduced a frequent value cache design. The FVC stores frequent
values in encoded form so that they only need a few bits instead of the full 32 bits
in representation. With this encoding, the data array part of the cache is split into a
smaller array and a larger array. The smaller array holds the short encoded form for
frequent values and partial word of the same width for the nonfrequent values. The
larger array holds the remaining part of the word for both frequent and nonfrequent
values. A detailed access time and access energy study of FVCs was carried out
with varying configurations. The hardware design of a frequent value finder was also
developed and shown to be simple and effective. From additional experiments it can
be concluded that for a wide range of configurations for set-associative data caches,
the FVC compares favorably with a conventional data cache design. This is because
the time spent on encoding and decoding of values does not impact the cache access
time and the reduction in dynamic energy consumed by a frequent value read access

is quite high.



99

Chapter 6

Frequent Value Data Bus Encoding
Scheme

In CMOS circuits most power is dissipated as dynamic power for charging and dis-
charging of internal node capacitances. Thus, researchers have investigated tech-
niques for minimizing the number of transitions inside the circuits. The capaci-
tances at I/O pins are orders of magnitude higher than internal capacitances. Thus,
the power dissipated at the I/O pins is even greater than that dissipated at inter-
nal capacitances. Therefore techniques for minimizing switching at external address
and data buses (see Figure 1.3), even at the expense of a slight increase in switch-
ing at internal capacitances, have been investigated for reducing power consumption
[7, 8,15, 17, 43, 50, 60, 61].

Many of the encoding schemes, such as the bus-invert coding [60], are general
purpose and can be applied to both address and data buses. General purpose tech-
niques can only provide modest reductions in switching activity. This is because the
characteristics of values sent over data and address buses vary and thus using the
same technique for both types of buses is not the most effective solution. To obtain
greater reductions special characteristics must be identified for information transmit-
ted over address and data buses. Using such a specialized approach significant success
has resulted from research into minimizing switching at external address buses. In
particular, the technique described in [43] is particularly effective as it reduces the
address bus activity by as much as 66% for some benchmarks. The key to achieving
such high reductions by this technique is its ability to exploit memory reference lo-
cality. The memory regions being referenced by a program are divided into working

zones. Instead of transmitting a sequence of complete addresses that exhibit local-
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ity, in this technique, the offset of the current reference with respect to the previous
reference to the same working zone is sent over the bus, along with an identifier of
that zone. Since the offsets are quite small, in comparison to complete addresses, the
“one-hot” encoding, which generates codes with zero’s and a single one, can be used
to transmit them and thus the number of switching transitions is greatly reduced.

The goal of this chapter is to develop a technique for data buses that is as ef-
fective as the above technique is for address buses [43]. The working zone technique
is effective because it exploits the characteristic of address locality. Until now an
effective specialized approach for a CPU’s external data buses has been illusive. This
is because no suitable characteristic for values transmitted over a data bus has been
found. Unlike memory references that exhibit locality, the data values do not exhibit
similar locality. In fact the values transmitted over the data bus may vary widely
across the range of representable values.

The chapter is organized as follows. Section 6.1 presents the base FV encod-
ing scheme in detail and shows the experimental results. Section 6.2 describes how
to reduce encoder overhead. In Section 6.3 the effectiveness of the coders are dis-
cussed. And in Section 6.4 the encoding scheme for different processor configurations
are tested. Section 6.5 compares the FV encoding algorithms with related research.

Conclusions are given in section 6.6.

6.1 FV Data Bus Encoding

The design of the encoder and decoder used to reduce the switching activity on the
data bus is now presented. The overall approach is as follows. The frequent values are
transmitted over the bus in encoded form while the nonfrequent values are transmitted
in their original unencoded form. The set of frequent values are kept in a table
implemented as a CAM by both the encoder and the decoder. This table is searched

and if the value to be transmitted is found in it, then the value is regarded as a frequent
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value which is then transmitted in encoded form. In order to ensure that the decoder
can determine whether the transmitted value is in encoded form or not, an additional
control signal must be sent from the encoder to the decoder in some situations. As
will be described later in this section, the proposed method for maintaining frequent
values is such that the contents of the frequent value tables at both the encoder and
the decoder are always identical. In the remainder of this chapter the base encoding
scheme is first described in detail and then some enhancements to this base scheme

are described.

6.1.1 The Base FV Encoding Scheme

The method for encoding frequent values has the flavor of one-hot encoding with one
important difference. The FV encoding scheme overcomes the major drawback of
one-hot encoding in that it does not require 2" wires, where n is the number of bits
representing the value, to transfer the data. Instead it achieves low switching activity
by using the same number of wires as the data bus width. In the experiments 32-wire
bus width is assumed.

The above goal is achieved as follows. The “hot” wire generated from the encoder
is not used to represent the true decimal value being transfered but rather it indicates
in which entry of the frequent value table in the encoder or decoder the frequent value
can be found. In other words, if the i** entry in the frequent value table is found to
contain the same value as the one being transmitted, then the i** output wire is set
to 1 and all the remaining wires are set as 0. This is how a one-hot code is formed
and sent over the data bus, completing the coding process (see Figure 6.1a). When
the decoder receives the code from the bus, it reads out the value from the ** entry
indicated by the code. It will be shown later how this method for maintaining the
contents of the tables at the encoder and decoder ensures that the contents of the two

tables are identical and thus the value is correctly decoded. Under the above scheme,
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if frequent values are transmitted back to back, then at most two bits switch while
all other bits remain zero. This is how F'V encoding reduces switching activity.

The nonfrequent values are transmitted in unencoded form. If a value to be
transmitted is a nonfrequent value it cannot be found in the encoder CAM. Thus, the
encoder does not attempt to generate a code. Instead, it simply passes the original
value onto the data bus. When the decoder receives the value and finds more than one
hot wire in it, it concludes that the transmitted value is not encoded (see Figure 6.1b).

It is possible that a nonfrequent value being transmitted in unencoded form con-
tains a single high bit and all of its remaining bits are zeros. The FV encoding scheme
ensures that the decoder does not erroneously decode this value by sending a single bit
control signal from the encoder telling the decoder to skip decoding (see Figure 6.1c).

The experimental results also include the switching overhead from sending the control

signal.
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F1GURE 6.1. Encoding-decoding setup.
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6.1.2 Keeping Encoder and Decoder FV Tables Consistent

Both the encoder and the decoder are effectively frequent value finders. Section 4.4
shows the algorithms they follow. It is extremely important to keep the sender side
encoder and the receiver side decoder consistent all the time. The same replacement
policy is used for both to assure they contain the same values. In more detail, if there
are multiple entries that have the same timestamp, both the encoder and the decoder
follow the same rule for picking up a victim, i.e., the first victim they encounter
during searching. By doing so, it can be guaranteed that both sides contain not only
the same values but also the same indexes for every value. The grounds for this to
be true is that they have the same timestamp value and reference bit. This can be
easily achieved by using the same time interval for updating the timestamp and the
reference bit.

Next, the enhancements of the basic FV encoding schemes are introduced. The

improved techniques can further reduce the bus switching activity greatly.

6.1.3 Enhancements of Base FV Encoding Scheme

XORing Values. The base encoding scheme reduces switching to at most 2 bits
if a frequent value being transmitted is also preceded by a frequent value. While the
base encoding scheme gives good performance when frequent values are encountered
back to back, a pattern of intervening frequent and nonfrequent values is not favorable
to the base scheme. In Figure 6.2 the percentage of traffic due to frequent values that
are also preceded by frequent value transmissions is given. On average this number is
16%. From the data presented earlier in Figure 4.12 it can be seen that on average the
frequent values account for 32% of the overall traffic. Therefore on an average 16%
of transmitted values are frequent values that are preceded by nonfrequent values.
The base F'V algorithm can also reduce switching between nonfrequent and fre-

quent value transmissions using a decorrelator described in [8, 43]. If one takes the
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FIGURE 6.2. Occurrence of frequent values in sequence.

XOR of the current value to be transmitted (Code,) and the previously transmitted
value (Send,_1), then this has the effect of flipping only those wires of the bus that
were low when Send, ; was sent and are high in Code,. Therefore if Code, cor-
responds to a frequent value, it contains only one high bit and therefore no matter
whether it is preceded by a frequent value or a nonfrequent value (i.e., Send, ; is
frequent or nonfrequent) the switching activity is only 1 bit. In other words, trans-
mission of a frequent value always results in switching of one bit. The combination
of FV encoding and XORing current code with the previous value sent over the data

bus is shown in Figure 6.3.

Equality Test. XORing the values can help reduce switching when different codes
are to be transmitted in sequence. However, it also brings unnecessary switching when
the same code is transferred repeatedly. For example, if a code with the ¢th bit hot

was transferred n times continuously, the switching on bus will toggle n times at the
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FI1GURE 6.3. Reducing switching by XORing values.

1th wire. This increases switching since transferring the same code should not induce
any switching while in the FV+XOR encoding, it does cause 1 switch, and eventually
it can increase overall switching. Figure 6.4 shows how often this situation arises.
It gives the percentage of traffic due to transmission of a code that is immediately
followed by the same code. On average this situation accounts for 16% of the traffic.
It is observed that this characteristic is observed at low levels in most benchmarks.
However, for a few benchmarks (e.g., compress and turb3d) this situation is very
common. As a result, for these benchmarks in particular, the switching caused due
to repeated transmission of the same code should be avoided.

The additional switching can be removed easily as shown in Figure 6.5. The
encoder can keep a register of the last value (Value,_1) transferred and compare it
with the current value (Value,). If the two values match, the code for the last value
(Code,—1) on the bus can be sent again. The receiving side, without knowing the
equality property of the current value, puts the code through the correlator. Since the
code is the same as the last code, the correlator, namely XOR, will compute the result
0 as Code,,. There are now two cases where C'ode,, can be 0: one is when Send,,_; is
sent twice back to back as it just explained; and the other is when Value, is 0 and 0 is
not a frequent value and therefore not encoded. One can disambiguate the two cases

by hardwiring an entry in the encoder/decoder to 0 to make 0 a permanent frequent
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FIGURE 6.4. Transmission of identical code in sequence.

value which is therefore always transmitted in encoded form. This leaves only one
possibility for C'ode,, to be 0, which corresponds to the case when the same value is
being transfered again and therefore the decoder can simply output the last value it
produced. Note that in this process, the sending side did not initiate the activity of
the encoder or the decorrelator and the receiving side used only the correlator. That
way the energy spent in the encoder and the decoder is also saved.

Yes

Encoder

Send,_; Value,

Decorrelator

FI1GURE 6.5. Dealing with equal code transfer.
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Hamming Distance Based Exclusion of Frequent Values. So far in the dis-
cussions I have considered all encountered values as candidates for being frequent
values. However, it should be noted that not all frequent values are equally effective
in reducing switching activity. The impact of encoding a frequent value is proportional
to the hamming distance between the unencoded frequent value and the correspond-
ing one-hot code assigned to it. The hamming distance between a small unsigned
value and a one-hot code is quite small. Therefore whether these small unsigned val-
ues are transmitted in unencoded form or in a one-hot encoded form, the number of
switches that will occur will be very close. It is possible that by excluding such values
from consideration during frequent value identification, better performance may be
achieved. First, their exclusion will allow entries in the frequent value table to be
used by other values which are not as frequent but have a greater hamming distance
from the one-hot code they are assigned. Second, the encoding and decoding activity
will be reduced because the frequent value table need not be accessed for these values

at all.

An Example. Figure 6.1 illustrates how the FV encoding scheme and its enhance-
ments are able to reduce the switching activity. It compares the switching activity for
a sample sequence of values without encoding and with different levels of encoding.
Here it is assumed that the initial value on the data bus is 0 which is followed by two
frequent values, one nonfrequent value, and finally two more frequent values shown in
the first column of the first table in Figure 6.1. All values are written in hexadecimal
format. If no encoding is carried out the number of bit transitions for this sequence
is 32, as shown in the first table. This number reduces to 9 when the frequent values
are encoded using the base FV encoding scheme. The reduction arises due to trans-
mission of one hot-codes as opposed to original values with large numbers of high
bits. The application of XOR reduces bit transitions by one bit during transmission

of second, third and fourth values. However, it also increase the bit transitions for
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Transmitted Binary Value | Switching Comments
Without Encoding
0xff 8 frequent value
Oxfff 4 frequent value
0x300 10
Oxftf 10 frequent value
Oxftf 0 frequent value
Total Switching | 32 | |
Y
Transmitted Binary Value | Switching Comments
With FV Encoding
0x1 1 one-hot code for 0xff
0x2 2 one-hot code for Oxftf
0x300 3
0x2 3 one-hot code for Oxfff
0x2 0 one-hot code for Oxfff
Total Switching | 9 | |

4

Transmitted Binary Value | Switching Comments
With FV Encoding + XOR
0x1 1 one-hot code for Oxff
0x3 1 xor of 0x2 and 0x1
0x303 2 xor of 0x300 and 0x3
0x301 1 xor of 0x2 and 0x303
0x303 1 xor of 0x2 and 0x301
Total Switching | 6 | |

4

Transmitted Binary Value Switching Comments
With FV Encoding + XOR + Equal

0x1

1 one-hot code for Oxff
0x3 1 xor of 0x2 and 0x1
0x303 2 xor of 0x300 and 0x3
0x301 1 xor of 0x2 and 0x303
0
5

0x301 same value, no transition
| Total Switching | | |

TABLE 6.1. An example illustrating reduction in switching transitions using FV
encoding. The value stream in the first table contains two frequent values: Oxff and
Oxfff whose one-hot codes are 0x1 and 0x2 respectively.
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the last value from no bits to 1 bit transition. By performing the equal test this
additional bit transition can be avoided leading to the final bit transition count of 5

bits.

6.1.4 Experiments

Testing Different Components and Their Combinations. The experiments
were conducted by executing the SPEC95INT, SPECI5FP, and a subset of mediabench
programs for embedded applications. I measure the reductions in switching activity
on the external data bus due to FV encoding and its enhancements. I tested the
impact of each component in the FV encoding scheme in reducing switching. The
purpose is to answer the question: are all the components needed and if yes how
much benefit does each one bring? To see this, I first considered the following three

configurations of a frequent value based encoding algorithm:
1. F'V Encoding Only — This is the base F'V encoding algorithm.

2. FV Encoding + XOR — This is the base FV encoding algorithm enhanced with

the correlator on sender side and decorrelator on receiver side.

3. FV Encoding + XOR + Equal — This is the complete encoding algorithm in-
cluding the base FV encoding algorithm with the two enhancements of XORing

values and performing equality test.

The results are shown in Figure 6.6. On average, the first configuration that uses
only the base F'V encoding scheme provides nearly 13% reduction in switching activity.
The second configuration that uses the base F'V encoding scheme and the XORing of
values, on average, doubles the reduction in switching activity to nearly 26%. This
is consistent with the previous observations. Recall that, on an average, half of the
frequent value occurrences are preceded by frequent value occurrences while the other

half are preceded by nonfrequent values. The base FV encoding scheme reduces the
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Using 32 frequent values
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FI1GURE 6.6. Effectiveness of F'V encoding and its enhancements.

switching for the former category of frequent value occurrences while the XOR reduces
switching for the latter category of frequent value occurrences.

The complete encoding algorithm does outperform the above configurations. On
average, it achieves 30% reduction in switching activity. Therefore, overall, the equal-
ity test reduces switching by a small additional amount. However, for some bench-
marks the equality test is crucial for obtaining good performance. For the compress
and turb3d benchmarks the equality test provides a significant increase in perfor-
mance because a sequence of equal values is encountered very frequently. In fact, as
can be seen, the switching reduction obtained using the final configuration is more
than twice that of the reduction achieved using the second configuration. In fact, in
both these cases using the F'V encoding scheme alone gives better performance than
additional XORing of values.

Next let us consider the impact of excluding frequent values based upon hamming
distance between the frequent values and their encoding. The following three pair of

configurations of the encoding algorithm were considered:
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1. FV Encoding vs. FV Encoding + FEzclusion — This is the comparison of the
base F'V encoding scheme with and without exclusion of values 0 through 16 as
candidates for frequent values (i.e., these values are never added to the frequent

value table).

2. FV Encoding + XOR vs. FV Encoding + XOR + FExclusion — This is the base
FV encoding algorithm enhanced with XORing of values. The two versions
compared are the ones with and without exclusion of values 0 through 16 from

the frequent value table.

3. FV Encoding + XOR + Equal vs. FV Encoding + XOR + Equal + FEzclusion
— This is the base FV encoding enhanced with both XORing of values and
equal test. The two versions compared are the ones with and without exclusion
of values 1 through 16 from the frequent value table. Recall that the equal
test requires hardwiring the value 0 into the frequent value table. It is for this

reason only values 1 through 16 are excluded from the frequent value table.

Figure 6.7 shows that the reduction in switching activity is slightly improved for
the first two algorithms. This is because some values that now reside in the frequent
value table more often replace small values with very few high bits. However, the
performance of the third algorithm is unchanged. That is, the F'V encoding algorithm
enhanced with XORing and equal test performs equally well with or without exclusion
of values. In the remainder of this section, for all experiments involving measurement
of reductions in switching activity, I use the FV encoding algorithm with XORing

and equal test as the basis for experimentation.

Performance Without On-chip Cache. In all of the experiments described so
far it is assumed that there is an 8K byte on-chip instruction and an 8K byte on-
chip data cache. The experiments are also repeated without on-chip caches. The

architecture is sketched in Figure 6.8. This is because in many embedded and DSP
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FIGURE 6.7. Impact of excluding values on switching reduction.

processors from AT&T Microelectronics, Motorola, Zilog and Texas Instruments there

is no on-chip cache. The results in Figure 6.9 show that in the absence of an on-chip

cache the reductions in switching activity are even greater. The average reduction for

32 values increases from 30% to 49%.

The performance improvement is due to the

data locality within cache lines, which was caught by instruction/data caches and is

now being exploited by the encoder and decoder.

Data

Memor
Bus y

(1) Without On Chip Cache

Data
Bus

Off chip
Memory
hierarchy

(2) With On Chip Cache

FIGURE 6.8. Architecture models with and without on-chip caches.
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With on chip cache: FV Encoding + XOR + Equal
Without on chip cache: FV Encoding + XOR + Equal
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FI1GURE 6.9. FV encoding performance with on-chip cache versus without on-chip
cache.

6.2 Reducing Coder Overhead

The on-chip overhead of performing encoding and decoding is dominated by the
accesses to the frequent value table, which involves associatively searching for the
values and in case a value is not found, the frequent value table is updated using the
LRU replacement policy. In this section the performance of various algorithms are

compared from the perspective of this on-chip overhead.

6.2.1 Reducing Access to the Coder

Two of the six variations of encoding algorithms that were considered in the preceding
section, namely the base FV encoding scheme and FV encoding with XORing, access
the frequent value table for each value that is transmitted over the bus. However,
the remaining four algorithms which use the equal test or exclusion of values or both
avoid accesses to the frequent value table. This is because in both of these cases

the frequent value encoding and decoding processes is bypassed. I measured the
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reduction in accesses to the frequent value table that these four algorithms achieve
over the other two algorithms. The results of this study are presented in Figure 6.10.
As can be seen, these reductions are substantial. The exclusion of values significantly
reduces the accesses performed by base FV encoding and FV encoding with XORing.
The reduction in accesses due to the equal test is generally less than that achieved by
the exclusion of values 0 through 16 for these algorithms. However, for the compress
and turb3d benchmarks the equal test reduces the accesses to the frequent value
table dramatically.

From the perspective of reducing switching activity on the data bus the two algo-
rithms that perform equally well are ones which uses all of the techniques (i.e., FV
Encoding, XORing, equal test, and excluding values 1 through 16 from frequent value
table) and the one that uses all techniques except that of excluding values. However,
as expected, the former algorithm performs, on average, slightly fewer accesses to the
frequent value table than the latter algorithm. Therefore it can be concluded that
the algorithm which uses all of the techniques, that is, FV encoding, XORing, equal

test, and exclusion of values is best overall.

FV Encoding + Excluding O to 16
FV Encoding + XOR + Excluding O to 16

o5 FV Encod!ng + XOR +_Equa|
FV Encoding + XOR + Equal + Excluding 1 to 16
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115

6.2.2 Reducing Coder Updating Activity

As mentioned earlier, an alternative to dynamically identifying frequent values is to
identify them first during a profiling run and then use these fixed values during all
future program runs. This fixed frequent value set approach avoids spending energy
on updating the frequent value table. I compared the reduction in switching that
can be obtained using fixed frequent values with that obtained using the dynamic
algorithm described in this chapter. The results are presented in Figure 6.11. As
can be seen, the reductions using dynamically detected frequent values is significantly
greater. On average, using the enhanced dynamic FV encoding scheme 30% reduction
in switching activity is obtained while with a fixed FV encoding the reduction is only
18%. Moreover for several of the benchmarks, including su2cor, hydro2d, fpppp and
waveb, the difference is dramatic. This is because for those programs, there are a lot
of values that are frequent for only a short time and those values can be captured by
the dynamic algorithm but not the fixed algorithm. Therefore the dynamic approach

to reducing on-chip overhead is not very attractive.

6.2.3 Reducing Coder Size

Varying Number of Frequent Values. I also investigated the effect of the en-
coder and decoder size on performance by varying the number of frequent values
allowed. The FV encoding algorithm can be applied to the entire data bus width if
the maximum reduction in switching is desired. It can also be applied to a subset of
bus wires when minimum hardware expense is demanded. Minor changes are needed
when only a subset of bus wires are encoded. For example, assume that only the first
8 bus wires are involved in encoding. Both the encoder and the decoder have only 8
entries. A full value is taken into the encoder and if it is encoded successfully, a code
is sent out with respect to those 8 wires. The remaining wires always carry a zero for

encoded values. If the value is not encoded, the original value is sent along the bus
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FIGURE 6.11. Dynamic frequent values versus fixed frequent values.

and the coders update their content accordingly. The receiver side can resolve both
cases in the same way as before without confusion.

The number of entries in the coders were varied as 8, 16 and 32. The results are
given in Figure 6.12. In some benchmarks, including tomcatv, su2cor and waveb,
it can be clearly seen that reductions in switching activity increase significantly with
an increase in allowable number of frequent values. In other benchmarks the vast
majority of reductions can be achieved simply by using 8 frequent values. The average

reduction increases from 23% for 8 values to 30% for 32 values.

Byte Level Encoding. So far the discussion on encoding and decoding schemes is
based on word level frequent values. In many multimedia benchmarks where data is
operated in unit of bytes, frequent byte values may be more abundant than frequent
word values. FV encoding can easily adapt to handle frequent byte values so that
it is friendly to multimedia benchmarks as well. To do this, I simply encode each

byte in a 32-bit word independently. The 32 entries in the frequent value table can
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FV Encoding + XOR + Equal: 8, 16 and 32 values
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FIGURE 6.12. Varymg number of frequent values.

be distributed among the four byte positions, that is, 8 frequent byte values are
maintained corresponding to each byte position. In other words, the original word
level encoder and decoder are broken into 4 byte level encoders and decoders, each
with its own decorrelator and correlator.

The performance of frequent byte encoding as compared to frequent value encoding
depends on program characteristics. For example, if more frequent bytes are found
than frequent words, byte level encoding may out perform word level encoding. On
the other hand if the benchmark contains mostly frequent words, byte level encoding
will hurt performance. This is because the frequent word would now be split into four
frequent bytes each of which will require one high bit during its transfer.

The results in Figure 6.13 shows the gain and the loss of using byte level encoding.
For a program like fpppp, which has a high level of frequent bytes, the performance is
dramatically improved using byte level encoding — instead of 5% increase in switching
I now observe a 24% reduction in switching. On the other hand, for a benchmark like
compress for which the word value encoding performs very well, byte level encoding

does not perform as well as word level encoding. On average a little improvement of
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3% was obtained using byte level encoding.
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FIGURE 6.13. Byte level frequent value encoding.

6.3 Accuracy of Frequent Value Identification in Encoder
6.3.1 Approximate LRU versus perfect LRU replacement

The identification of frequent values is based on an approximate LRU policy which
uses a timestamp. The size of the timestamp can be varied to achieve different levels
of LRU replacement accuracy. Intuitively larger timestamps should provide a better
estimation of the least frequently used information and thus perform well during
replacement. I performed an experiment in which I compared the encoding rates
when using a one bit timestamp (i.e., approximate LRU) with the encoding rates
obtained when using an unlimited sized timestamp (i.e., perfect LRU). The results of
this experiment shown in Figure 6.14 disproved the early intuition as it shows that a

timestamp as small as one bit can perform as well as an unlimited timestamp.
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FV Encoding + XOR + Equal: Approx. LRU
FV Encoding + XOR + Equal: Perfect LRU
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FIGURE 6.14. Comparison with perfect LRU.

The intuition behind the above result is as follows. The data transfered on the
data bus between CPU and memory is due to transfer of cache lines that contain
multiple words. Although these words flow through the encoder and decoder one by
one, since they arrive at the bus in close succession, there is little or no difference in
their timestamp values. Therefore, even the perfect LRU replacement policy cannot
differentiate between these values. Picking any one of them may not actually yield
a best result. The result shown in Figure 6.14 proves that a coarse timestamping

method is sufficient in practice.

6.3.2 Approximate LRU versus optimal replacement

I also conducted another experiment to see how close does approximate LRU comes
to optimal replacement. An optimal replacement policy is implemented in which I
replace the entry that will not be used for the longest period of time in the future.

The optimal policy will yield the best switching reduction because it will guarantee



120

the highest hit rate in the encoder. To implement this scheme I ran each program
twice. The value trace is collected during the first run and used in the second run
to carry out optimal replacement. Every time I need to perform a replacement, I
go into the value trace to find the frequent value in the table that appears furthest
in the future in the value trace. This is a slow process since the value traces were
extremely long. Therefore only a subset of the benchmarks (11 out of 22) were tested
in this experiment. The results presented in Figure 6.15 show that on an average
the switching reduction by the LRU implementation with a one bit timestamp is
exceeded by the optimal policy by around 11% which is quite reasonable. This is
because the optimal policy is an offline policy and therefore no online policy will be

able to perform nearly as well.
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FI1GURE 6.15. Comparison with optimal replacement policy.
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6.4 Comparisons with Other Techniques

There has been abundant research done on reducing address bus switching, based
either on the sequentiality of program counters [8, 17, 61] or on regularity of memory
accesses [43]. The work that applies to data buses falls in two categories: (a) general
purpose techniques that apply to both data and address buses; and (b) techniques
specifically developed for data buses. Now I compare the proposed technique with
techniques in each of these categories.

A well known general technique for reducing switching is the bus-invert coding
scheme. In this scheme the Hamming distance between the present bus value and the
next value is computed. If this is greater than half the number of total bits, then the
data value is transmitted in inverted form. An additional bit, the invert signal, is also
sent to indicate how the data is to be interpreted at the other end. This technique was
also implemented to compare its performance with enhanced FV encoding for data
buses. The results in Figure 6.16 shows that on an average bus-invert scheme reduces
switching by 13.4% and 9.6% in presence and absence of on-chip cache respectively.
In contrast the enhanced FV encoding with 32 dynamic values reduces switching by
30.5% and 49.8% in presence and absence of on-chip cache respectively. Thus, the
enhanced FV encoding scheme provides 2 to 4 times greater reduction in switching

than bus-invert coding method.

6.5 Summary

In this chapter it has been demonstrated that by exploiting the characteristic of fre-
quently transmitted values, one can design the FV encoding scheme to reduce the
switching activity on an external data bus substantially. The reductions are even
greater for processors without on-chip caches. Furthermore it has been demonstrated
that the frequent values at any point during execution can be effectively identified us-

ing a simple hardware mechanism. The online frequent value identification algorithm
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FIGURE 6.17. FV versus adaptive encoding.
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compares quite favorably with an offline optimal algorithm. By allowing the set of
frequent values to change during execution I obtain reductions in switching that are
substantially greater than reductions achieved by a scheme that uses a fixed set of
frequent values for the entire execution. Finally it has been demonstrated that FV

encoding outperforms both bus-invert coding [60] and the adaptive scheme of [7].
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Chapter 7

Computation Reuse

It is well known that, one source of chip energy consumption is the data cache which
continues to grow in size and area with each new generation of high performance
processors. Chapter 5 has proposed a design that reduces energy for average cache
access. In this chapter, another method that aims to reduce the number of accesses
directed to cache by providing a small and simple structure which intercepts what is
called “reusable instructions” before they go into the cache.

An opportunity has been identified for reducing cache activity which can lead
to reductions in energy consumed by the cache as well as improvements in executed
instructions per cycle (IPCs) for a class of programs with significant levels of load and
store reuse opportunities. In particular, it is observed that even programs compiled
with optimization contain very high levels of load and store reuse opportunities. For
example, in SPEC95 benchmarks compiled using gcc with the -03 option average of
31% of the loads load the same value as their last instances and 42% of all stores
do not change the memory content. This is a direct consequence of limitations of
register allocation and compile-time analysis techniques - specially highly conservative
memory disambiguation techniques used by compilers make it necessary to introduce
load and store instructions to guarantee program correctness. If this reuse could be
exploited to avoid memory references, cache activity as well as address and data bus
switching will be reduced leading to lower energy consumption.

Extensive research has been carried out on load and store reuse techniques that
are speculative in nature [33, 39]. However, speculative techniques often do not
reduce memory activity. This is because such techniques may reference the memory

to detect mis-speculation which implies they are not energy efficient. Non-speculative
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load and store reuse techniques are more appropriate for energy efficient design. For
example, the instruction reuse technique developed by Sodani and Sohi [57] when
considered in context of load and store instructions can simultaneously improve IPCs
and reduce cache activity. This approach is adopted in this chapter. However, it is a
challenging task even though this approach will reduce cache activity. This is because
a load-store reuse filter for removing memory references will itself consume energy.
To get an overall reduction in energy consumed one must save more energy in the
cache than is consumed by the reuse mechanism. Experiments with an aggressive
reuse mechanism resulted in a net increase in energy used because energy consumed
by the reuse mechanism greatly exceeded the savings in cache energy. Also if the
program contains little reuse, while the reuse filter will continue to consume energy,
little savings in cache energy will result. Therefore the design goal is to minimize the
increase in net energy consumed in such situations.

This chapter presents the design of a reuse mechanism which has been carefully
tuned to achieve two objectives. The first objective is to develop a reuse filter that
is able to capture and eliminate a large fraction of load and store instructions. The
second objective is to adjust the reuse filter so that it performs in an energy-efficient
manner. In programs with significant levels of reuse opportunities, it is desired to
achieve net energy savings while for other programs it is desired to minimize the net
increase in energy consumed.

The first objective is achieved by designing reuse hardware which is able to capture
reuse opportunities arising from multiple sources. For example, a load can be reused
through three distinct categories of memory instructions executed earlier. This will
be discussed in Section 7.1.1. The second objective is achieved in two ways. First,
the reuse hardware is designed such that the history of previously executed load and
store operations is accessed through indexed tables - associative lookups are kept
to a minimum. Second, the proposed algorithm is not too aggressive, and in fact

if it fails to detect reusability, it backs off from certain types of detections so that
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the energy consumed by reuse detection hardware can be kept to a minimum. The
experiments demonstrate that for programs with high levels of reuse, up to 55% of
the IPC improvements and up to 47% of the net cache energy savings is achieved.
Even more importantly, in programs where little reuse is found, the net energy loss
is held to less than 3%.

A small subset of load and store reuse is also captured by the store buffer. For
example, a load may not need to go to memory because it may find the value it
requires in the store buffer. Similarly, if multiple pending stores to the same address
location are pending in the store buffer, all but the last of these writes need not be
sent to memory. However, it should be remembered that detection of reuse in these
situations will involve associative searches of the store buffer. These operations are
clearly quite energy consuming. In contrast, the reuse hardware that is designed in
this chapter mainly involves indexed operations because direct mapped structures are
used instead of associative structures. Therefore the proposed approach will not only
capture far greater amounts of reuse opportunities than the store buffer, but it is also
energy efficient.

The remainder of the chapter is organized as follows. Section 7.1 describes the
different forms of load and store reuse and present the result of a study that measured
the amounts of reuse in Spec95 benchmarks. In Section 7.2 I present the hardware
design of the reuse mechanism and develop an energy-efficient algorithm for using this

mechanism. In Section 7.3 the results of the performance evaluation are presented.

7.1 Load and Store Reuse Study

This section presents the results of experimental studies designed to measure the de-
gree of load and store reuse present in programs. Most of all, the study has identified
different categories of load and store reuse opportunities and measured the contribu-

tions of each of these categories. This study is important not only because it tells how
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much reuse opportunities are present, but it also guides the design of hardware that
focuses on capturing those forms of reuse opportunities that are present in substantial

amounts. Therefore the resulting design obtained is energy-efficient.

7.1.1 Types of Load and Store Reuse Opportunities

The classification of reuse opportunities is shown in Figure 7.1. A load can be avoided
using reuse if the value that it loads from an address was loaded or stored from the
same address by a prior memory instruction and the contents of that location has
not changed since. An instance of a load instruction can be reused because of a
prior instance of the same or different load instructions, or a prior instance of a store
instruction. In the examples of these situations in Figures 7.1(a-c) if the addresses,
and values, involved in these pairs of instructions are the same, the second instruction

which is a load can reuse the result from the earlier instruction.

PCi: Load R1, addr
PCy: Load R1, addr

(a) Same Load Reuse.

PCy: Load R1, addr

PC5: Load R2, addr

(b) Different Load Reuse.

PC;: Store R1, addr
PC5: Load R2, addr

(c) Store Load Reuse.

PC: Store R1, addr
PCj: Store R1, addr

(d) Same Store Resue.

PCi: Store R1, addr
PC5: Store R2, addr

(e) Different Store Reuse.

PC;: Load R1, addr
PC5: Store R2, addr

(f) Load Store Reuse.

FiGUuRrE 7.1. Classification of Load and Store Reuse.

A store is avoidable if the value it writes to a location is already present in that
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location. The store reuse can be classified as that arising at a previous instance of the
same or different store, and previous instance of a load. Examples of these situations
are shown in Figures 7.1(d-f). The second instruction, which is a store, need not be
executed if the history of the prior load/store instruction is available and therefore it
can be determined that the store is writing into the address the same value that the

address already contains.

7.1.2 An Aggressive Reuse Mechanism

An aggressive algorithm was first implemented which tries to capture maximum pos-
sible reuse. A separate table structure was used to save the histories of past loads
and stores. The algorithm first used associative searches on the address fields of these
tables to determine if a load or store was reusable. This approach allowed it to cap-
ture all forms of reuse described above. The sizes of the history tables used were 256
entries each. The outcome of this experiment is shown in Figure 7.2. While signif-
icant IPC improvements were observed, more energy is consumed instead of energy
savings. This is because the reuse mechanism uses much more energy than what is
consumed due to the cache activity.

In order to develop an energy-efficient design the studies were carried out to help
design such a mechanism. The first study measured the amount of different types of
reuse opportunities so that I could focus on those types which will give most benefit.
The next study further guides the selection of table sizes and the decisions relating
to the complexity of algorithms for capturing different types of load and store reuse

opportunities.

7.1.3 Amounts of Load and Store Reuse of Different Types

The results of the study of load and store reuse in Spec95 benchmarks is shown in

Figures 7.3 and 7.4. First let us consider the characteristics of load reuse opportu-
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nities. A load may be reusable due to multiple conditions in Figure 7.1 being true.
For example, a load may satisfy conditions with both a store instruction or its own
history instances, and reuse from the latter case is of lower cost. Therefore the reuse
detection process is prioritized as the following: it first looks for same load reuse,
then different load reuse, and finally store to load reuse. Each load is put only in
the first category that it is found to satisfy. The results are shown in Figure 7.3, on
average, nearly 95.6% of total executed loads present reusability. Moreover the break-
down in each three categories is substantial. Under this definition nearly all loads
are reusable. This is because before a value is loaded it is almost certainly computed
and stored at some earlier point in the program. Therefore if a load is not same or
different load reusable, it most certainly is store to load reusable. The remaining few
percent goes to other reasons such as memory initialization by system calls. Tradi-
tionally, reuse techniques have focused on exploiting same load reuse. However, as it
can be seen that the other two categories of load reuse are also very important. The
implementation designed in this chapter exploits all three types of load reusability.
Now lets look at the results of the store reuse study in Figure 7.4. On average, in
these benchmarks 42% of all executed stores are reusable. As can be seen, most of the
reuse is same store reuse. There is also some reuse due to different stores. However,
the store reuse due to loads is almost nonexistent. Therefore, in the further studies

in this section only those two types of reuse are considered.

7.1.4 History Table Sizes and Linking Parameters

The above experiments have already helped in restricting the attention to those cat-
egories of reuses that will provide the most benefit. Next, experiments are conducted
to guide the selection of table sizes and the decisions relating to the complexity of
algorithms for capturing different load /store reuse. The first consideration is different

tables sizes to save load and store history since the energy consumed by these tables
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increases with their size. Experiments found that separate load and store history ta-
bles both of sizes of 32 or 64 entries are quite sufficient. If the table sizes are further
increased the energy consumed grows much more rapidly than the increase in the
amount of reuse. It is also important to design reuse hardware which minimizes high
energy consuming associative searches and mainly uses indexed accesses whenever
possible. For this purpose, other than the same load/store reuse cases, I explicitly
link the two instructions involved in the reuse. An instruction may be able to reuse
results from many different instructions. Thus it is unclear how many links need to
be allowed. Again creating more links will cause increased energy consumption both
in their creation and use.

Figures 7.5 and 7.6 show the tests on two benchmarks, one in SPECO5INT and
one in SPEC95FLOAT. It was found through these experiments that linking a load
with one other load is sufficient—linking it with more loads finds only small amounts
of additional reuse. The benefit of linking a store to different prior stores is also

evaluated and it turned out that providing such links is not very useful.

7.2 Reuse Hardware and Update Algorithms

This section presents the design of the Reuse Unit (RU), the hardware structure for
detecting and filtering load and store instructions. The various pieces of the reuse
unit are not always needed by every memory instruction. The algorithm selectively
prevents their use to reduce activity and save energy if it determines that their use

will not result in additional load and store filtering.

7.2.1 The RU Structure

In Figure 7.7 the high level block diagram of the RU is first shown in the upper half.
Next I describe the various structures in the RU and then later I describe how it is

maintained through different operations plotted in the bottom half.



60

147.vortex(INTEGER)

—_—

=550 A

%

N
o
|

Redundant Loads Captured
=
o

——no link
=1 link

-+ 2 links
-« 4 links
-8 links

(o2}
o

32 64 128 256 512
Table Sizes

141.apsi (FLOATING)

a
o
I

IN
o
|

N
o
I

Redundant Loads captured [%]
= w
o o

o

——0 link

-1 link
2 links
4 links

FIGURE 7.5. Impact of Table Sizes and Number of Links on Load Reuse.

32 64 128 256 512

Table Sizes

134



135

147.vortex

=
[ee]

=
o
I

|

X
=3
15
g 10 A —+no link
o —#-1 link
g s/ 2 links
= 4 links
3 —-8 links
S 6
=3
°
&
4
2 -
0 L L L L L
32 64 128 256 512
Table Sizes
141.apsi
14 p
135 X
S
5 13
g
g ——no link
5 12% 7 =1 link
§ 2 links
s 129 4 links
n
S11.5
©
c
=}
3 1
14
10.5 A
10 . . . . .
32 64 128 256 512
Table Sizes

FiGure 7.6. Impact of Table Sizes and Number of Links on Store Reuse.



136

| Update <——completed load ; Updat e - coml eted | oad
instruction !

LLT > LT LT T PR

Load Store —
instruction > Result instruction > REdundancy Test > Resut

SLLT > ST SLLT _SoePel ST
/___ completed store — /( ‘ /___ completed store
| Update instruction Updale instruction
Load Reuse Store Redundancy Removal
(a) Block Diagram.
LT LLT LT SLLT ST
hdhed pc (2) mismatch Haed PC
Tink d I IR
(1) hashed PC | (2) maich : 3 match _
By v @) reindex | ® - (2) index ©) maIchv‘v
() read out
(4) read out (4) read out
Same load reuse Different load reuse Load reuse from store
store instruciton load instruciton
Cvi] A ]
ST SLLTorLLT search search SLLTorLLT search  search
Diff| reuseg reset STorLT PC
failure or alid bit .
J AT W ! - (€]
(2) match — address match address & value matgh
(1) hashed PEF——a—7 v Storetg MLink] value mismatch Y —
| loadreuse s idl bit l
(3) read ou failure
Remove reusable store Link invalidation Table entry invalidation Update links

(b) RU Operations; A stands for address, V stands for value

F1GURE 7.7. The Reuse Unit (RU).



137

LOAD TABLE (LT)

LT stores histories of loads that have already been executed. It is designed as a small
indexed array so that it can achieve low access times and energy. Each entry contains
the effective address, data value at that address, and a mem-valid bit. The mem-
valid bit flags the validity of the current contents of the entry. The entry is invalid if

nothing has been stored in it or if the value stored in the entry is stale.

LOAD LINK TABLE (LLT)

This table is needed to capture different load reuse opportunities. It is also an indexed
structure which provides a link between a load and another load whose results can be
reused. The link is in the form of an LT index corresponding to the load at which the
reuse originates. The LLT contains the same number of entries as the LT and there
is a one-to-one correspondence between the LT and LLT entries. An additional bit
in each LLT entry is used to indicate the usability of the link stored in that entry. A
link marked unusable is not used to index the LT. This bit helps in reducing energy

consumed by eliminating unnecessary look ups of the LT.

STORE TABLE (ST)

ST is the counterpart of LT - it stores the history of past stores that have been
executed. It serves two purposes. First, it provides a means for detecting store to
load reuse. And second, it helps in the detection of same store reuse. It is also a
small indexed array. The ST contains fields for the memory address, its value, and

the mem-valid bit.
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STORE to LOAD LINK TABLE (SLLT)

This table aids in detecting store to load value reuse. It basically links each load in
LT with an entry in ST. Like the LLT, there is also a single bit corresponding to

every link which indicates whether the link is usable or not.

7.2.2 Reuse Procedure

Now it is time to describe the complete reuse mechanism. A load’s PC is hashed into
an LT entry in order to attempt same load reuse. If this entry is valid, the address
stored in the table and the load’s effective address are compared for reusability. The
load can use the value stored in the entry if the address comparison succeeds. The
load’s PC is hashed into an LLT entry for different load reuse. If the link in LLT is
marked as usable, the corresponding entry pointed to by the link will be tested in
the same manner as the same load reuse test. If the load passes this check it has
succeeded in different load reuse. Otherwise, the load’s PC is hashed into SLLT to
attempt store to load reuse.

Filtering of stores is carried by simply using the ST history. Filtering of a store
means it is not sent to or deleted from the store queue and therefore it never reaches
the cache.

On completion of each load/store instruction, the LT/ST table is updated by
setting the address and value fields and also setting the mem-valid bit. LLT links are
set up only if they are needed, that is, only if same load reuse has failed I create these
links to attempt to find different load reuse. Similarly the SLLT link for a load is set
up only if the load fails to find different load reuse. The LLT and SLLT links are set
up following an associative search of the address fields in LT and ST. A link is set to
be usable when it is first created. It remains set if it is used successfully, that is, its
use results in filtering. A link is marked unusable when the reuse test using that link

fails.
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The above strategies of creating an LLT link only if same load reuse fails, creating
an SLLT link only if different reuse fails, and marking links as unusable if their
use fails to detect reuse all greatly reduce RU activity and were therefore extremely

important in obtaining an enerqy efficient design.

7.2.3 Integration into Superscalar Pipeline.

The reuse mechanism is incorporated into a superscalar pipeline as shown in Fig-
ure 7.8. An extra stage, the load store reuse (LSR) stage, is introduced immediately
preceding the data cache access stage. This stage uses the RU to determine if the
load or store instruction is reusable and therefore need not be sent to the cache. If
the instruction is not found to be reusable because all reuse tests fail, it is sent to
the cache. Therefore the load/store instructions that are not reusable pay an extra
penalty of one cycle in this implementation. The ones that are found to be reusable

benefit because they are completed in one cycle.
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FIGURE 7.8. Superscalar Processor with Reuse Hardware.

7.3 Performance Evaluation

The techniques described in this chapter have been implemented and the experimental
setup used is described. The experiments are based on an 8-issue superscalar processor

with the pipeline structure shown in Figure 7.8. The baseline processor has one less
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stage since it does not carry out load and store filtering. Therefore if load /store reuse
always fails, the processor will take one more cycle than the baseline processor for
each data cache access. The data cache is a 32 Kb direct-mapped cache with 32 byte
line size and 6 cycle miss penalty. There are 2 read and 2 write ports to the data
cache.

The table sizes used in these studies are 32 and 64 for both load and store history
tables. The cache energy models were obtained from the SimplePower [75] simulator
and the energy models for the reuse hardware were implemented using the models for
array and CAM structures used in Wattch [10], both using 0.8 micron technology.

Experiments were run where the number of cycles for data cache access was
varied—2 and 6 cycle accesses were considered. This was motivated by the obser-
vation that future generation processors are devoting increasing number of stages to
data cache access due to reduced cycle times which are too small to perform cache
accesses in a single cycle. All data except the IPC improvements are presented as-
suming that data cache access takes 2 stages. This is because all other data shows
very small changes when the number of stages is changed.

Now let us examine the results obtained. First, the degree of reuse captured is
shown. Second, the reduction in cache activity in terms of references that go to the
data cache and the amount of address and data bus switching is presented. Third,
the energy savings in the cache and the energy used by the reuse hardware is also
presented. Based on this the net cache energy savings are computed. Finally the IPC

improvements are presented.

7.3.1 Loads and Stores Reused

On average over all the benchmarks nearly 25% and 31% of all loads from a table of
32 and 64 entries were eliminated by the proposed mechanism (see Figure 7.9). This

number is quite substantial and most importantly it can be seen that all three types



141

of reuse play an important role in the overall performance. On average nearly 12%
of stores were also eliminated.

As expected, the reuse opportunities captured is lower than the figures observed
in the ideal study. This is because the ideal study did not take into account the
timing issues. It was assumed that an instruction could always benefit from a prior
instruction. However, in a superscalar processor the prior instructions may not have
completed execution and thus reuse may not be captured. In addition, limited table
sizes, the delays in establishing links, the limitation on the number of links, etc. all

contribute to the loss.

7.3.2 Cache Activity Reduction

The successful filtering of load/store instructions reduces cache related activity in two
ways: first the read and write accesses to the cache are reduced and second the bus
activity of the data and address busses is reduced. From the results in Figure 7.10
it can be seen that the number of cache accesses are reduced by nearly 15% and 18%
when history tables of sizes 32 and 64 entries are used. The address bus switching is
reduced by nearly 15% and 19% while the data bus switching activity is reduced by
22% and 28% for the 32 and 64 entry tables respectively. Therefore the load/store

filtering yields a significant reduction in cache related activity.

7.3.3 Energy Savings

The energy consumed by the cache with and without reuse hardware were both mea-
sured. The energy consumed by the reuse hardware was measured as well. In Fig-
ure 7.11. the first graph gives the reduction in energy consumed by the cache. As can
be seen the reductions are substantial and on the average 15% and 18% reductions
were observed for table sizes of 32 and 64 respectively. The second graph gives the

energy consumed by the reuse hardware as a percentage of energy used by the cache.
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As one can see, the reuse hardware design is quite energy efficient, as the 32 (64) entry
table consumes energy that is only 4% (7%) of the energy consumed by the cache.
The net savings in cache energy is defined as the difference between the cache
energy savings and the energy consumed by the reuse hardware. The net energy
savings are plotted in Figure 7.12. As can be seen the savings are substantial ranging
from a few percent to as much as 47%. For benchmarks with low levels of reuse with
table size of 64 there is a net loss in energy. However, the loss is less than 3% in these
cases. Thus the reuse hardware designed can provide substantial energy savings when
high levels of reuse is captured and very little increase in energy is observed when

little reuse is found.
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7.3.4 IPC Improvements

Next the IPC improvements that are observed due to load and store filtering is pre-

sented. Figure 7.13 shows these improvements assuming that data cache access takes
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2 and 6 cycles respectively. As it can be seen the longer the cache latency, the greater
the savings are due to load and store filtering. The average IPC improvements range
between 3% and 15% for different values of data cache access cycles. For programs
with high levels of reuse the IPC improvements are substantial - even as high as 55%.
On the other hand for programs with very low levels of reuse, reductions in IPC were
observed because the baseline processor has one less stage and therefore completes

cache accesses one cycle earlier. The reductions in IPC are mostly less than 5%.

7.4 Summary

This chapter demonstrated that programs contain significant levels of load and store
reuse opportunities. By filtering loads and stores significant energy savings can be
achieved. While a number of techniques have been proposed to exploit reuse for
program performance, these techniques are typically accompanied by an increase in
energy consumption. In contrast the reuse unit design presented here simultaneously

provides execution speedups and energy savings.
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Chapter 8

Conclusion

As the demand in energy efficient processor designs increases, there is an expanding
need for energy efficient memory systems since the memory hierarchy is one of the
major sources of energy consumption. This dissertation has presented new energy effi-
cient techniques for different components along the memory hierarchy. The proposed
techniques include frequent value data cache, frequent value data bus encoding and
memory instruction reuse. In addition to the energy efficient techniques, this disser-
tation also presents a thorough examination of values in a program’s memory based
on which of the techniques are deployed. In the following sections, the contributions

are summarized and the directions for future research are proposed.

8.1 Dissertation Contributions

The main contribution of the work follows the line of frequent value locality. The
characteristics found for frequent values led the way to the energy efficient cache de-
sign and the data bus encoding scheme. The new cache design explored the spatial
locality of the frequent values and the new data bus encoding scheme explored its
temporal locality. Techniques on how to identify the frequent values in the above
scenario were also developed. Another contribution of this dissertation is the mem-
ory instruction reuse technique which explored the value locality for load and store
instructions. Next, the frequent value locality and each contributive techniques are

summarized.

e Frequent Value Phenomenon The values stored in the memory exhibit a

high degree of redundancy in the sense that a small set of values keeps reoc-
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curring both spatially and temporally. They are frequent values. Spatially, the
frequent values occupy a large fraction of memory spaces almost anytime dur-
ing program execution. They tend to distribute uniformly as well. Temporally,
the frequent values exist from the beginning of the execution time till the end.
To obtain the above conclusions, excessive experiments were conducted to fully

explore the memory values across a set of very different benchmarks.

Identifying Frequent Values Finding the frequent values in different ap-
plications can be achieved through either software or hardware. The software
method runs the program using one input set and captures a set of frequent val-
ues for later use with other program inputs. This method is good for programs
whose frequent values are input insensitive. The hardware method captures the
frequent value set while the program is running. It can either run for only the
beginning part or run throughout the program execution. The performance of
both methods is satisfactory from the experimental study. The two hardware

methods are used in the energy efficient cache and data bus designs.

Frequent Value Cache Design The spatial locality of frequent values are
used in new cache designs. The frequent values loaded into the cache are stored
in a compressed form. Compressing the frequent values is not intended to keep
more values in the cache, instead, it enables a restructured data array to operate
at low power whenever a frequent value is accessed. Care is taken to ensure the
restructuring of the cache does not incur longer time for every access. For
nonfrequent value accesses, the cache takes more cycles to finish. Even though
this introduces slowdowns, the load marking technique which marks dynamic
loads of low frequent value accuracy as nonfrequent helps keep the speed loss

at a minimum.

Frequent Value Data Bus Encoding The temporal locality of frequent val-

ues is employed in designing low power data buses. The rationale is that the
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data bus commutes the value including frequent values between data cache and
memory. The values flowing through the bus are encoded for low switching
activity. To perform encoding and decoding, a simple frequent value based
coder is crafted for good results and low overhead. Enhancements of the base
encoding including XORing values, equality tests and excluding values are all
developed for comparison and achieving maximum switching reduction. To keep
the overhead of the encoder and decoder low, various methods are given such
as using a fixed set of frequent values, and reducing coder accesses and size.
The performance of the coders is also contrasted with one that runs an opti-
mal replacement policy. Finally, the F'V encoding scheme is compared against
other data bus encoding techniques and shows significant improvements in bus

switching reduction.

e Memory Instructions Reuse As an additional contribution to further reduce
the cache energy, this dissertation has explored another type of opportunity.
This opportunity enables a filtering mechanism that reduces cache accesses by
satisfying the memory instructions through a smaller and simpler reuse unit
rather than the cache. The reuse unit itself costs some energy but it is less than
a cache access. The unreused instructions, however, waste the energy spent
in attempting a reuse. The reuse mechanism is fine tuned so that the reuse
unit does not consume unnecessary energy on reuse checking and information
updating. When a substantial number of instructions can be reused an overall

energy savings can be achieved.

8.2 A View to the Practicability of the Proposed Techniques

Involving least amount of modification to the processor and the rest of
the system. Both the FVC and the FV encoding scheme are self-contained, in the

sense that they do not require significant modifications to the existing architecture
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other than the cache and the bus. The FVC technique involves mainly the redesign
of the conventional cache, which is almost transparent to the rest of the processor
and memory hierarchy. The only change in the processor core is the frequent value
finder whose location is flexible with respect to the pipeline stages. The FV bus
encoding scheme logically needs the encoder and decoder at the two ends of data bus.
Practically, the encoder and decode can reside in the memory controller in the CPU
and on the bus. This modification is completely transparent to the rest of the system.
As other data bus encoding schemes, the FV bus encoding also requires an additional

control signal that goes between the memory controllers at the two ends of data bus.

Area cost and complexity. An important factor in considering the practicability
of the proposed technique is the additional die area required and the complexity in
implementation. For the FVC, the data array itself needs rewiring, the corresponding
bitline, wordline drivers and sense amplifiers need to be repositioned. The additional
hardware added are the F'V decoder which is an array of registers, and the frequent
value finder which is a CAM. To have a rough idea on how much area those hardwares

could take, consider the floorplan of the Alpha 21264 processor given in Figure 8.1.

Compag Corpaation

FiGure 8.1. Alpha 21264 Die Photo and Floorplan.
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Alpha 21264 contains a 64K byte on-chip L1 data cache. From the given figure,
the area of this data cache is about 1/6 of the total chip area. Assuming the cache
area is proportional to its capacity, a 32-entry register file with 4 byte in each entry
is about only 1/2° of the cache size (register file cell structure is similar to cache data
array cell structure). Similarly, a 64-entry CAM array is about 1/2® of the size of the
data cache. Therefore, the additional hardwares added to the FVC design are nearly
negligible in terms of area cost. Similarly, the encoder and the decoder in the FV
encoding scheme also take very little space compared to the rest of the chip.

It is also very easy to design the extra hardware as the logic contained is very
simple. Both register files and CAMs are standard architecture structures. Extending
their functionality can be a good training process for college freshmen majoring in

Electric Engineering.

The significance of low-power memory techniques. For both the high per-
formance processors and the embedded processors, the memory system consumes
significant amount of power if the processor core, the memory hierarchy and the disks
are viewed as a “system”. Within the processor, the main power-hungry units are still
the L1 caches and the clock. Beyond the processor, a conventional disk contributes
34% to the average power and a low-power disk contributes 23% [26]. The memory
subsystem, including the L1, L2 instruction cache, data cache and the off-chip mem-
ory, consumes 30-34% of the total system power. For single-issue processors such
as embedded processors, the memory subsystem has a higher average power than
the processor core [26]. Therefore, designing low-power memory subsystem has a

significant impact on various future processors and systems.
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8.3 Future Directions for Research

This research has focused on a uniprocessor configuration where there is only a single
processor and the memory system is “private” to the CPU. In a multiprocessor en-
vironment, assuming a centralized shared-memory architecture, different processors
may communicate through the shared memory data. In this scenario, the memory
contents may have different characteristics than the uniprocessor memory. In the fol-
lowing, the possible extensions of the current frequent value study and the associated

energy efficient designs in such a multiprocessor environment are discussed:

¢ Re-examine Frequent Values Locality in the Multiprocessor Config-
uration. While the frequent value property still holds for the private data
of each single processor, the characteristics in the shared memory data may
change. This is because the shared values can be read or written by more than
one processor, indicating a stronger sense of being frequent. Consequently, the
definition of a value being frequent should be associated with the number of
processors sharing this data. This leads to a different methodology in exploring

and identifying the frequent values.

e Changing of the Data Cache. The data caches attached to each processor
in the multiprocessor architecture is usually larger than the uniprocessor cache.
This is because larger caches can help reduce the memory bandwidth which is a
critical resource in the multiprocessor architecture. Therefore it is desired that
the caches consume less energy. For improved performance, the shared data are
often duplicated in different individual processor caches or migrated between
memory and caches for better accessing time as well as less contention. These
movements of shared data may introduce new dynamic behavior of frequent
values. It would therefore be interesting to see how the frequent values change
by the cache coherence protocols, how they affect the cache energy consumption,

if the old techniques still apply, whether different processor caches share some
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frequent values, etc.

The address tags inside each cache which stores shared data may exhibit frequent
address property. This is because the coherence protocol needs to locate a shared
cache block via address tag comparisons for every processor. Therefore this
property provides opportunities for designing energy efficient tag checks based

on the frequent address property.

Exploiting the Bus Shared Among Multiprocessors. It is natural to fore-
see that the data bus shared by all processors preserves frequent value temporal
locality. This is due to the communication among processors sharing memory
data values. The communication can be through the memory or directly be-
tween two processors. Either way the data need to go through the data bus.
However, the F'V encoding technique developed in this dissertation can not be
directly applied since the bus has multiple senders and receivers and it is diffi-
cult to keep all the encoders and decoders consistent. Therefore it is challenging
to derive an encoding scheme in a multiprocessor architecture whose data bus

transmits abundant frequent data values.

Besides the data value locality on the data bus, the address bus now may also
exhibit the address value locality. As mentioned above, the coherence protocol
sends the addresses for shared data on the address buses to locate it in a partic-
ular cache. This activity adds the frequent address locality on top of the address
bus in the uniprocessor. Moreover, traditional address bus encoding schemes
fail in a multiprocessor architecture because now the address streams may not
be sequential. They are interleaved by the snooping addresses generated by the
cache coherence protocol. As a result, the FV encoding scheme can be applied
to the address buses since it does not require the sequentiality of the address
streams. Yet, careful algorithms need to be developed to keep the encoder and

the decoder simple and consistent.
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