
A DEMAND-DRIVEN APPROACHFOR EFFICIENT INTERPROCEDURALDATA FLOW ANALYSISbyEvelyn DuesterwaldM.S., University of Pittsburgh, 1991
Submitted to the Graduate Faculty ofArts and Sciences in partial ful�llmentof the requirements for the degree ofDoctor of Philosophy

University of Pittsburgh1996

c
Copyright by Evelyn Duesterwald1996ii

A DEMAND-DRIVEN APPROACH FOR EFFICIENTINTERPROCEDURAL DATA FLOW ANALYSISEvelyn Duesterwald, PhDUniversity of Pittsburgh, 1996Despite the increasing importance of data
ow analysis, today's applications in com-piler optimizations and software tools still rely on traditional exhaustive analysis algorithms.Exhaustively computing data
ow information, especially if interprocedural analysis is in-volved, is known to be costly. This dissertation develops and experimentally evaluates a newapproach to interprocedural data
ow analysis that is demand-driven rather than exhaus-tive. Demand-driven analysis reduces the time and space overhead of exhaustive algorithmsby limiting the analysis e�ort to the collection of information that is actually needed.A general framework is developed for deriving demand-driven interprocedural analysisalgorithms from a standard algebraic description of the data
ow problem. This frameworkmodels a demand for data
ow information as a set of queries. A system of query prop-agation rules is derived that formally describes the resolution of a query. The frameworkincludes a generic demand-driven algorithm that determines the response to a query by apolynomially bounded number of applications of these rules.Experimental results are presented that demonstrate the bene�ts of the demand-drivenapproach in practice. Experimentation with two analysis problems, namely reaching def-initions and copy constant propagation, shows that demand-driven analysis performs wellin practice and reduces the time and space requirements when compared with exhaustiveanalysis. Additional experimentation evaluates the demand-driven approach when usedin a speci�c software engineering application. The experiments show that demand-drivenanalysis, if used in the context of data
ow integration testing, is signi�cantly faster thanexhaustive analysis and even outperforms an improved version of the exhaustive analysisthat is based on incremental updates.While experimentation demonstrates that demand-driven analysis can achieve consid-erable improvements over traditional exhaustive algorithms, the analysis may still includeredundant computations. To eliminate these remaining redundancies, the technique ofiii

congruence partitioning is developed. Congruence partitioning is performed to optimizethe performance of data
ow analysis in a preparatory phase prior to the actual solutioncomputation. Congruence partitioning prevents redundant computations by directly ma-nipulating and reducing the solution equation system. A general framework for congruencepartitioning is presented that can be used to optimize the performance of either exhaustiveor demand-driven analysis algorithms.

iv

ACKNOWLEDGEMENTSMy foremost thanks go to my co-advisor Mary Lou So�a. I thank her for �rst puttingthe idea of pursuing a PhD in my mind during my exchange student year and for being mymentor and a continuous source of support and inspiration in the years thereafter. I alsowould like to thank my co-advisor Rajiv Gupta for his support and guidance throughoutmy graduate studies. And thanks go to the other members of my committee Jaspal Subhlokand Robert Daley.I would hardly be where I am right now if it were not for my friends and I thank all ofthem. Lastly, I want to dedicate this page to Juan Leon in remembrance of a late hour atthe Squirrel Hill Cafe.

v

ContentsAbstract iiiAcknowledgements vTable of Contents viList of Figures xList of Tables xii1 Introduction 11.1 Current Problems : 11.2 Previous Approaches for Reducing Analysis Cost : : : : : : : : : : : : : : : 31.2.1 Parallel Data Flow Analysis : 31.2.2 Forwarding Techniques : 41.2.3 Incremental Data Flow Analysis : 61.2.4 Demand-Driven Data Flow Analysis : : : : : : : : : : : : : : : : : : 61.3 Overview of the Research : 91.3.1 A Demand-Driven Analysis Framework : : : : : : : : : : : : : : : : 101.3.2 Congruence Partitioning : 111.4 Organization of the Dissertation : 122 Background 132.1 Program Representation : 132.2 Data Flow Frameworks : 142.2.1 The Intraprocedural Solution (Kam/Ullman) : : : : : : : : : : : : : 172.2.2 The Interprocedural Solution (Sharir/Pnueli) : : : : : : : : : : : : : 172.2.3 Abstract Interpretation : 202.3 Data Flow Analysis Algorithms : 202.3.1 Iterative Algorithms : 202.3.2 Elimination Algorithms : 212.3.3 Other Methods : 223 Overview 233.1 Example: Copy Constant Propagation : 233.1.1 Exhaustive Analysis : 253.1.2 Demand-Driven Analysis : 26vi

3.2 The Demand-Driven Analysis Framework : : : : : : : : : : : : : : : : : : : 273.2.1 Component 1: Data Flow Queries : : : : : : : : : : : : : : : : : : : 273.2.2 Component 2: Query Propagation Rules : : : : : : : : : : : : : : : : 283.2.3 Component 3: Generic Analysis Algorithm : : : : : : : : : : : : : : 293.2.4 Generality : 293.3 Applications : 303.3.1 Compiler Optimizations : 303.3.2 Software Tools : 323.4 Parallelizing Demand-Driven Data Flow Analyses : : : : : : : : : : : : : : : 334 A Framework for Demand-Driven Data Flow 354.1 Framework Components : 354.1.1 A Query Propagation Algorithm : 424.1.2 Reverse Summary Functions : 424.1.3 Caching : 464.2 Procedures with Parameters : 474.2.1 Binding Functions : 484.2.2 Aliasing : 514.3 Parallelizing Demand-Driven Data Flow Analyses : : : : : : : : : : : : : : : 524.4 Non-Distributive Frameworks : 554.4.1 Approximate Demand-Driven Analysis : : : : : : : : : : : : : : : : : 554.4.2 Framework Variation : 574.5 Related Work on Demand-Driven Analysis : : : : : : : : : : : : : : : : : : : 615 A Demand-Driven Analyzer for Gen-Kill Problems 645.1 Gen-Kill Problems : 655.2 A Framework Instance for Gen-Kill Problems : : : : : : : : : : : : : : : : : 665.2.1 Specialized Queries and Propagation Rules : : : : : : : : : : : : : : 665.2.2 Demand-Driven Algorithm for Gen-Kill Problems : : : : : : : : : : : 685.2.3 Asymptotic Cost : 695.3 Application: Demand-Driven DU-Chain Analyzer : : : : : : : : : : : : : : : 725.3.1 Interprocedural REACH Analysis : 725.3.2 DU-Chains on Demand : 775.4 Query Advancing : 795.5 Experiments : 815.5.1 Experiment 1: Caching Demand-Driven versus Exhaustive : : : : : : 845.5.2 Experiment 2: Non-Caching Demand-Driven versus Exhaustive : : : 895.5.3 Experiment 3: Query Advancing : 915.5.4 Summary : 92vii

6 A Demand-Driven Analyzer for Copy Constant Propagation 956.1 Copy Constant Propagation : 956.2 A Framework Instance for CCP : 966.2.1 Demand-Driven Algorithm for CCP : : : : : : : : : : : : : : : : : : 986.2.2 Asymptotic Cost : 1026.2.3 Query Advancing : 1026.3 Experiments : 1036.3.1 Experiment 1: Caching Demand-Driven versus Exhaustive : : : : : : 1036.3.2 Experiment 2: Non-Caching Demand-Driven versus Exhaustive : : : 1086.3.3 Experiment 3: Query Advancing : 1106.3.4 Summary : 1127 Application in Software Testing 1147.1 Motivation : 1147.2 Data Flow Testing : 1157.3 Integration Testing : 1167.3.1 Computing Cross Chains : 1207.4 Experiments : 1217.4.1 Experiment 1: Demand-Driven versus Exhaustive Analysis : : : : : 1227.4.2 Experiment 2: Demand-Driven versus Incremental Analysis : : : : : 1277.5 Summary : 1308 Congruence Partitioning 1318.1 Overview : 1328.2 A Framework for Congruence Partitioning : : : : : : : : : : : : : : : : : : : 1338.2.1 Example : 1348.2.2 Congruence Relations : 1378.2.3 Congruence by Idempotence : 1388.2.4 Partitioning Algorithm : 1408.2.5 Congruence by Common Subexpression : : : : : : : : : : : : : : : : 1468.2.6 Minimality : 1478.3 Data Flow Solutions by Congruence Partitioning : : : : : : : : : : : : : : : 1488.4 Comparison with Sparse Evaluation Graphs : : : : : : : : : : : : : : : : : : 1508.5 Related Work : 1518.6 Summary : 1548.6.1 Congruence Partitioning and Exhaustive Analysis : : : : : : : : : : 1548.6.2 Congruence Partitioning and Demand-Driven Analysis : : : : : : : : 1559 Concluding Remarks 1569.1 Summary : 156viii

9.2 Merit of the Work : 1579.3 Future Directions : 158Bibliography 162

ix

List of Figures1.1 A
ow graph fragment with initial and optimized exhaustive equation system. 41.2 Date
ow analyzer (DFA) design. : 51.3 The a�ected equations for incremental update after a change at node 5. : : 71.4 The partial and optimzed partial equation systems for a demand at node 5. 71.5 Demand-driven analyzer design. : 81.6 Demand-driven analyzer with congruence partitioning. : : : : : : : : : : : : 102.1 A program and its ICFG. : 142.2 Data
ow at a node n : 152.3 Relevant data
ow sets for REACH analysis of Figure 2.1. : : : : : : : : : : 193.1 The CCP lattice L (i) and the de�nition of the meet operator (ii). : : : : : 243.2 The ICFG for a sample program. : 264.1 Equation systems in the exhaustive Sharir-Pnueli framework. : : : : : : : : 364.2 A node
ow function and its reverse function at a node n : : : : : : : : : : 384.3 Generic demand-driven analysis procedure. : : : : : : : : : : : : : : : : : : 434.4 Procedure Compute�r to compute reverse summary functions. : : : : : : : : 444.5 Procedure EnterCache for updating the cache. : : : : : : : : : : : : : : : : 464.6 Program with reference and value parameter passing and its ICFG. : : : : : 494.7 Analysis re�nements for reference and value parameter passing. : : : : : : : 504.8 Expression node in constant propagation. : : : : : : : : : : : : : : : : : : : 564.9 Demand-driven analysis algorithm variation for CP. : : : : : : : : : : : : : 594.10 Procedure SummaryMark called by Mark CP. : : : : : : : : : : : : : : : : : 605.1 Specialized propagation rules for Gen-Kill problems. : : : : : : : : : : : : : 675.2 Specialized procedure summary computation for Gen-Kill problems. : : : : 685.3 Specialized demand-driven analysis algorithm for Gen-Kill problems. : : : : 705.4 Procedure GenKill�r to compute Gen-Kill procedure summaries. : : : : : : 715.5 Program with data
ow sets for REACH analysis. : : : : : : : : : : : : : : 735.6 Interprocedural du-chains with global variables x and y. : : : : : : : : : : : 755.7 Demand-driven du-chain computation. : 78x

5.8 Query advancing in REACH analysis. : 805.9 Caching (optimzied) demand-driven analysis vs exhaustive analysis. : : : : 875.10 Non-Caching (optimzied) demand-driven analysis vs exhaustive analysis. : : 906.1 Example for CCP : 976.2 Specialized propagation rules (i) and reverse summary functions (ii) for CCP. 996.3 Demand-driven algorithm for CCP. : 1006.4 Procedure CCP�r(p; y; val) for CCP. : 1016.5 Caching (optimzied) demand-driven analysis vs exhaustive analysis. : : : : 1066.6 Caching (optimzied) demand-driven analysis vs exhaustive analysis. : : : : 1097.1 Example program with interprocedural du-chains. : : : : : : : : : : : : : : 1177.2 Cross-on-entry and cross-on-exit du-chains. : : : : : : : : : : : : : : : : : : 1187.3 Procedure ComputeCross. : 1197.4 Call graph with non-integrated call sites shown in dashed lines. : : : : : : : 1207.5 Measured speedups of demand-driven over exhaustive analysis. : : : : : : : 1257.6 Measured speedup curves of demand-driven over exhaustive analysis. : : : : 1267.7 Measured speedups of demand-driven over incremental analysis. : : : : : : : 1287.8 Measured speedup curves of demand-driven over incremental analysis. : : : 1298.1 The translation of equations into graphs. : 1348.2 A sample program and its control
ow graph : : : : : : : : : : : : : : : : : 1358.3 Data
ow equations and graphical representation : : : : : : : : : : : : : : : 1368.4 Idempotence congruences in equation systems : : : : : : : : : : : : : : : : : 1388.5 Original and reduced equation systems : 1408.6 Reverse DFST partition of the equation graph : : : : : : : : : : : : : : : : 1418.7 Algorithm to construct a reverse DFST partition. : : : : : : : : : : : : : : : 1428.8 Idempotence partitioning algorithm. : 1438.9 Initial and �nal partition : 1448.10 An adaption of Hopcroft's algorithm for minimizing �nite automata. : : : : 1478.11 Algorithm to construct an ordered reverse DFST partition. : : : : : : : : : 1508.12 A
ow graph fragment (i) and the induced equation system for CP (ii) : : : 1528.13 Idempotence congruence partiton and the reduced equation system : : : : : 153
xi

List of Tables3.1 Flow functions for CCP. : 254.1 Reverse
ow function for CCP. : 404.2 Re�ned
ow functions for CCP. : 534.3 Re�ned reverse
ow functions for CCP. : 535.1 Du-chains for the example from Figure 5.1. : : : : : : : : : : : : : : : : : : 775.2 Benchmark programs : 835.3 Exhaustive analysis. : 855.4 Demand-driven analysis with caching versus exhaustive analysis. : : : : : : 865.5 Demand-driven analysis without caching versus exhaustive analysis. : : : : 885.6 Tradeo�: caching versus non-caching. : 895.7 Query Advancing - Caching. : 915.8 Query Advancing - Non-caching. : 926.1 Flow functions and reverse
ow functions for CCP. : : : : : : : : : : : : : : 966.2 Exhaustive analysis. : 1046.3 Demand-driven analysis with caching versus exhaustive analysis. : : : : : : 1056.4 Demand-driven analysis with caching vs. exhaustive analysis (full solution). 1086.5 Demand-driven analysis without caching versus exhaustive analysis. : : : : 1106.6 Tradeo�: caching versus non-caching. : 1116.7 Query Advancing - Caching. : 1126.8 Query Advancing - Non-caching. : 1137.1 Benchmark programs. : 1227.2 Analyis Times in seconds. : 1237.3 Speedups : 124
xii

Chapter 1IntroductionStatic data
ow analysis is the process of determining program properties that hold forsome or for all executions of a program. Various questions about the way variables andother program objects are used in a program are formulated as data
ow problems. Solvinga data
ow problem precisely, without actually executing the program, is an uncomputableproblem. Thus, the computed data
ow solution necessarily provides only an approximationof the actual program behavior during execution.Since its introduction in the early 70s, the use of data
ow analysis has grown con-siderably. Data
ow analysis was �rst developed for optimizing compilers to enable e�-cient register allocation and a large number of machine independent global optimizations[ASU86]. Today's utilization of data
ow analysis goes far beyond its initial application inoptimizations, and current compilers spend an increasingly large portion of the compilationtime in gathering global data
ow information. The advent of parallel computer architec-tures has created new challenges for compiler writers which must be addressed in orderto fully exploit the potential bene�ts of these architectures. The generation of parallelcode is heavily dependent on data
ow information to perform such tasks as vectoriza-tion and parallelization [AK87, PW86, FOW87], partitioning [SH86], and code scheduling[Set76]. In addition, data
ow analysis has also become the primary component of manysoftware engineering applications such as editing [RTD83], veri�cation [CC77a], debugging[Wei84, DGS92a], software testing [RW85, HS89a, DGS92b], program integration [HPR89],and parallel program analysis [CS89, EP89, SS88, DS91].1.1 Current ProblemsAlong with the growing importance of data
ow analysis in today's applications comes anincreased concern about the high time and space requirements of computing and main-taining all data
ow information that is needed. Computing data
ow solutions, especiallyif interprocedural analysis is involved, is costly. Experimental studies show that perform-ing certain data
ow analyses over even medium-sized programs can take several hours1

2[GN93, Lan92].The problem with the considerable time and space overhead of data
ow analysis be-comes even more critical when it is considered that a program is typically analyzed morethan once. The need for multiple analyses may result from several sources. First, today'scompilers require data
ow information for an increasing number of independent tasks, eachof which may require a distinct data
ow problem to be solved. A program is then analyzedmultiple times, each time to provide the solution to a di�erent data
ow problem. Second,the solution to a single data
ow problem may need to be computed more than once as aresult of code transformations. If code transformations are applied to a program, the data
ow information in the program changes and previously computed data
ow solutions mayno longer be valid. Data
ow must be either updated or re-computed following the applica-tion of code transformations. Furthermore, the order in which various code transformationsare applied is often guided by heuristics. Thus, repeated phases of computing data
ow andtransforming the code may be necessary for certain transformations to be e�ective. Finally,data
ow information may also be invalidated through program edits by the user. Duringprogram development, program edits are expected and must be e�ciently handled. If it isnot possible to correctly update a previously computed data
ow solution after a programedit, the respective analysis may have to be repeated to provide the new data
ow solution.In spite of the increasing need for e�cient data
ow analysis algorithms, current data
ow applications typically still rely on traditional exhaustive algorithms for computing data
ow solutions. Phrased in the traditional data
ow framework [KU77], the solution to adata
ow problem is expressed as the �xed point of a system of data
ow equations. Eachequation expresses the solution at one program point in terms of the solutions at immedi-ately preceding (or succeeding) points. As a result, data
ow solutions are computed in aninherently exhaustive fashion: that is, information is computed at all program points. Suchan exhaustive solution de�nition is likely to result in very large equation systems limitingboth the time and space e�ciency of even the fastest �xed point evaluation algorithm.Exhaustive data
ow solutions are not only costly to compute, they are also inappro-priate in applications that actually utilize only a part of the data
ow information. Forexample, several code transformations in optimizing compilers are applicable to only cer-tain structures in a program such as loops. Thus, data
ow information is needed onlyfor selected portions of the program. Even if optimizations are applicable everywhere inthe program, one may want to reduce the overall optimization overhead by restricting theirapplication to only the most frequently executed regions of the program (e.g., frequentlycalled procedures or inner loops). Other applications that require data
ow informationonly selectively are found in software development tools. Interactive software tools that aidin debugging and understanding of complex code require information about various aspectsof a program. Typically, the information requested by a user is not exhaustive but selec-tive, i.e., data
ow for only selected points of the program is needed. For example, during

3debugging a user may want to know where a certain value is de�ned in the program. Alsothe actual amount of data
ow information that is needed to satisfy the user's requests isnot �xed before the software tool executes. However, exhaustively precomputing all data
ow information that might be requested by the user can be very costly, especially for largeprograms.This thesis explores the de�ciencies of current exhaustive data
ow analyzers and de-velops two new systematic approaches to improve the performance of data
ow analyzersfor today's applications. The �rst approach is a demand-driven approach to data
ow anal-ysis. A demand-driven approach reduces the analysis overhead by limiting the analysise�ort to the collection of information that is actually needed by the application. Althoughdemand-driven analysis can e�ectively reduce the analysis overhead, the analysis may notbe computationally minimal and may still perform redundant computations. Further im-provements are possible by optimizing the analysis e�ort on the lower level of intermediatecomputations. The second approach that is developed in this dissertation, congruence par-titioning, addresses the elimination of low-level redundancies in the data
ow computation.Together, demand-driven analysis and congruence partitioning enable improvements in thedata
ow analyzer that go well beyond the capabilities of previous methods to reduce theanalysis cost.1.2 Previous Approaches for Reducing Analysis CostSeveral approaches have been developed to improve the performance of traditional exhaus-tive data
ow analysis. Consider Figure 1.1 (i) that shows a fragment of a program's control
ow graph. A hypothetical but realistic data
ow equation system for a forward data
owproblem is shown in Figure 1.1 (ii). Each equation X(n) in the system expresses the data
ow solution at node n. The operator u denotes the meet operator that is applied to mergeequation values at con
uence points in the graph.The exhaustive approach determines the data
ow solution by computing the �xedpoint of all equations in the system simultaneously. Previous approaches to improve thisexhaustive �xed point computation fall into one of two classes: approaches that are aimedat optimizing the exhaustive solution computation and approaches that completely departfrom exhaustively computing data
ow and instead pursue a partial solution computation.Approaches that fall into the former class are parallel data
ow analysis and forwardingtechniques. Example of the latter class are incremental and demand-driven data
ow anal-yses.1.2.1 Parallel Data Flow AnalysisIf a multiprocessor system is available, data
ow analysis can be sped up by parallelizingthe data
ow computation [GZZ89, GPS90, LMR91, KGS94]. Parallel analysis algorithms

4
1

2

3 4

5

6

7 8

9

X(1) = initX(2) = X(1)X(3) = f3(X(2)))X(4) = X(2)X(5) = f5(X(4))X(6) = X(5) uX(9)X(7) = f7(X(6))X(8) = f8(X(6))X(9) = X(7) uX(8)
X(1) = initX(3) = f3(X(1)))X(5) = f5(X(1))X(6) = X(5) uX(10)X(7) = f7(X(6))X(8) = f8(X(6))X(9) = X(7) uX(8)(i) (ii) exhaustive (iii) optimized exhaustiveFigure 1.1: A
ow graph fragment with initial and optimized exhaustive equation system.are obtained by decomposing the data
ow problem into a series of subproblems that canbe solved in parallel. The results obtained for the subproblems are then combined to obtainthe complete data
ow solution. The various parallel data
ow algorithms that have beendeveloped di�er in the way they decompose a data
ow problem. Although, moderateamounts of parallelism may be detected using these techniques, the parallel analyses do notscale well for large numbers of processors due to insu�cient parallelism in the exhaustivedata
ow solution de�nition.1.2.2 Forwarding TechniquesOther sequential approaches achieve performance improvements by reducing the amount ofintermediate computation that is performed during the analysis. Some of the intermediatecomputations can be suppressed by directly forwarding information from the points whereit is generated to the points where it is used. Consider the equation system in Figure 1.1(ii). Instead of repeatedly evaluating the copy equations X(2) and X(4) during the �xedpoint iteration, their values can be directly forwarded to the equations that need them. Theresulting reduced equation system, after forwarding has been applied and the two equationsX(2) and X(4) have been eliminated, is shown in Figure 1.1 (iii).Figure 1.2 illustrates the coupling of forwarding techniques with data
ow analysis.Figure 1.2 (i) depicts the traditional analysis design, where data
ow analysis is applied inan isolated phase and all analysis results are fed to the application afterwards. Figure 1.2 (ii)

5
DFA

program

DFA problem
equations solution application

data flow(i) Exhaustive analyzer
DFA

program

DFA problem
equations solution applicationequations

restructured
direct

forwarding

data flow(ii) Analyzer an optimizing forwarding preparatory phase.Figure 1.2: Date
ow analyzer (DFA) design.shows the analysis design with a forwarding phase. Forwarding techniques are applied priorto the actual analysis in order to restructure and optimize the solution de�nition for a faster�xed point computation.Forwarding techniques [CFR+91, FOW87, BMO90, DRZ92, JP93, CCF90] use someform of a derived graph representation that provides direct connections (i.e., forwardingedges) between the points that generate information and the points where the informationis needed. However, these graph based approaches are limited to certain kinds of data
owproblems that can actually take advantage of the introduced direct connection edges. Avail-able expressions is an example of a data
ow problem that does not bene�t from the directconnection edges provided by these graphs. An exception are the sparse evaluation graphs(SEG) [CCF90] that are explicitly constructed for each data
ow problem to be solved. Al-though SEGs are general, they are not equally e�ective for all problems. For example, theSEG for the problem of live variables is likely to result in little or no improvements unlessthe live variable problem is broken into a series of N subproblems, one for each programvariable, hence requiring the construction of one graph for each program variable.Furthermore, although forwarding techniques can e�ectively reduce the amount of inter-mediate computation during the analysis, the bene�ts of these techniques are limited by theassumption that the data
ow solution is to be computed everywhere in the program. Thus,the analysis may still spend time and space in unnecessary computations if the applicationactually requires only a subset of the complete data
ow solution.

61.2.3 Incremental Data Flow AnalysisAnalyses that explicitly depart from exhaustive solution computations have previously beendeveloped in an incremental context to handle evolving or changing software. The goal ofincremental data
ow analysis [Ros81, Zad84, RP88, PS89, RR91] is to avoid costly re-computations of the exhaustive solution in response to small changes in a program. Insteadof fully re-analyzing a program from scratch each time a change is made to the program, apreviously computed exhaustive solution, that has become invalid as a result of the change,is incrementally updated. Given a point where a change occurred, incremental analysistechniques identify the portion of the global solution that is invalidated by the change andcorrect or re-compute data
ow information only for the identi�ed portion.Figure 1.3 illustrates the incremental analysis approach. Figure 1.3 (i) shows the control
ow graph fragment from Figure 1.1 but this time assuming that a program change occurredat node 5 that invalidated the previous value of equation X(5). Instead of re-evaluatingthe complete equation system from Figure 1.1 (i), incremental analysis identi�es and re-evaluates only the portion of the equation system that is a�ected by the change at node5. The a�ected equations are shown in Figure 1.3 (ii) and the
ow graph portion thatcorresponds to these a�ected equations is shown in bold in Figure 1.3 (i).The illustration in Figure 1.3 shows that, unlike forwarding techniques or parallelization,incremental analysis e�ectively avoids exhaustive computations and leads to a partial analy-sis. However, incremental data
ow analysis can only avoid exhaustive re-computations anddoes not address the problem of having to compute a costly exhaustive solution initially.1.2.4 Demand-Driven Data Flow AnalysisDeveloping an approach that, like incremental analysis, e�ectively avoids exhaustive com-putations but that is also applicable for the initial solution computation leads to a demand-driven analysis design. As shown in Figure 1.5 demand-driven data
ow analysis is no longerperformed in isolation from the application. Instead, demand-driven analysis is interleavedwith the application in such a way that the computation of data
ow is performed onlyif triggered by a request from the application. A demand-driven analysis is partial ratherthan exhaustive and evaluates only the portion of the data
ow solution that is needed tosatisfy the actual demands.Consider Figure 1.4 and assume that only the solution at node 5 is demanded. Sinceonly the value for equation X(5) is of interest, other equations in the system that do notcontribute to this value do not need to be evaluated. The portion of the equation systemthat is actually needed to compute equation X(5) is shown in Figure 1.4 (ii). The portion ofthe
ow graph that corresponds to this partial equation system is shown in bold in Figure1.4 (i).Demand-driven analysis is a promising approach to reduce the analysis overhead inapplications that require data
ow only selectively (i.e, only at some program points) and/or

7
1

2

3 4

5

6

7 8

9

X(5) = f5(X(4))X(6) = X(5) uX(9)X(7) = f7(X(6))X(8) = f8(X(6))X(9) = X(7) uX(8)(i) (ii) incrementalFigure 1.3: The a�ected equations for incremental update after a change at node 5.
9

87

6

5

43

2

1 X(1) = initX(2) = X(1)X(4) = X(2)X(5) = f5(X(4)) X(1) = initX(5) = f5(X(1))(i) (ii) partial (iii) optimized partialFigure 1.4: The partial and optimzed partial equation systems for a demand at node 5.

8
program

DFA problem
equations

application

query response

partial

DFAFigure 1.5: Demand-driven analyzer design.sparsely (i.e., only a subset of the information at each selected point). Furthermore, ademand-driven analysis approach naturally provides the capability to service user requestsin interactive software tools such as debuggers where the nature and extent of user queriesmay vary depending on the user and the program.Like incremental analysis, demand-driven analysis is an application-directed approachthat reduces analysis overhead by computing partial solutions rather than exhaustive ones.However, the resulting partial analyzers are not necessarily computationally minimal. Thepartial solution computation may still include redundancies, which are revealed when takinga closer look at the intermediate computations. Eliminating these remaining redundanciesis the goal of forwarding techniques. In fact, demand-driven analysis and forwarding tech-niques are orthogonal approaches that are targeted at di�erent types of redundancies inthe data
ow computation. Consider again Figure 1.4. The partial equation system in (ii)still contains unnecessary intermediate computations in the form of copies that could beeliminated through forwarding. The resulting optimized partial equations after forwardingis shown in Figure 1.4 (iii). Thus, in order to enable aggressive improvements of data
owanalyzers, both approaches should be considered.Recently, two approaches to demand-driven analysis have been presented by Reps, Hor-witz and Sagiv [RSH94, RHS95, SRH95a]. In these approaches, a demand-driven analysisis modeled as a certain kind of graph-reachability problem. The graph for the reachabilityproblem, the exploded supergraph, is obtained as an expansion of a program's control
owgraph by including an explicit graphical representation of each node's
ow function. Adisadvantage of the graph-reachability approach is the need to construct an exploded su-pergraph for each data
ow problem to be solved. The size of the exploded supergraph canbe substantial and, correspondingly, so can be the time needed for the graph construction.The authors report that during experimentation with the graph-reachability analyzer forcopy constant propagation, the analyzer ran out of virtual memory for some C programs ofabout 1,300 lines [SRH95b]. Although a recent variation of the graph-reachability approach

9[SRH95a] results in a more compact version of the exploded supergraph for copy constantpropagation, the size of the graph is not reduced for other problems, such as the classicalbit vector problems.Another problem with the graph-reachability framework results from the dependenceon a specialized graphical program representation. By departing from the standard �xedpoint solution de�nition, the graph-reachability approach makes it di�cult to combine thedemand-driven analysis with other analysis improvements techniques that are �xed pointbased, such as the forwarding or parallelization techniques.1.3 Overview of the ResearchThis research develops and experimentally evaluates two systematic approaches to improvethe performance of traditional data
ow analyzers. This �rst approach, which representsthe core of this research, consists of the development of a new demand-driven framework forinterprocedural data
ow analysis. To avoid the de�ciencies of previous approaches aimed atreducing analysis cost, the demand-driven analysis framework satis�es the following designgoals:� Generality: The demand-driven approach is applicable to a general class of data
owproblems.� Practicality: The demand-driven technique is e�cient in practice, which is demon-strated through experimentation.� Application-independence: The developed approach is applicable in classical compilerapplications as well as in applications for software tools.� Fixed point based: The approach does not require the construction of a specializedgraphical program representation and models the problem based on well-understood�xed point computations.� Integratable: The demand-driven analysis algorithms can easily be integrated withother �xed point based techniques, such as forwarding.� Parallelizable: The developed demand-driven algorithms have a natural paralleliza-tion.Although the practicality and usefulness of the demand-driven approach is establishedas part of this research through both analytical examinations and experimentation, thereis still room for further improvements. To complement the demand-driven approach andto address the elimination of the remaining ine�ciencies in the data
ow computation, thisresearch also includes the development of a second approach. This second approach consistsof a framework for a new generalized forwarding technique: congruence partitioning. A

10
program

DFA problem
equations

application

query response

min.
equationscongruence

partitioning

partial

DFAFigure 1.6: Demand-driven analyzer with congruence partitioning.congruence partitioning is computed to reduce the size of a data
ow equations by identifyingand eliminating congruent equations from the system. Congruence partitioning is as generalas the previously most general approach to forwarding, that is, sparse evaluation graphs[CCF90]. Thus, congruence partitioning is applicable to any monotone data
ow problem.However, congruence partitioning is more powerful than previous techniques and enablesoptimizations of an equation system that can not be achieved using any of the previousmethods.The demand-driven analysis approach and congruence partitioning constitute two com-plimentary approaches for improving data
ow analysis. The two approaches can be pursuedindividually or in combination. The coupling of congruence partitioning with a demand-driven analyzer is illustrated in Figure 1.6. In this combination congruence partitioning isapplied �rst in order to construct a reduced de�nition of the solution. Instead of exhaustivelyevaluating the reduced equation system a demand-driven analyzer is used to compute onlywhat is needed by the application. The demand-driven framework and the framework forcongruence partitioning together enable improvements in interprocedural data
ow analysisthat go well beyond the improvements achievable by previous techniques.The remainder of this section provides a brief overview of the two approaches presentedin this thesis.1.3.1 A Demand-Driven Analysis FrameworkThe �rst approach developed in this thesis consists of an algebraic framework for derivingdemand-driven interprocedural analysis algorithms. This framework models the demand-driven analysis of a program as a query system. A demand for a speci�c subset of theexhaustive solution is formulated as a set of queries. Queries are issued by the applicationand may be generated automatically (e.g., in compiler optimization) or manually by the user(e.g., in an interactive software tool). A query is a pair q =< y; n > speci�ed by a set of data

11
ow facts y and a program point n. Query q =< y; n > raises the question as to whetherthe set of facts y is part of the exhaustive solution at program point n. A response, true orfalse, to the query q is determined by propagating q from point n in the reverse directionof the original exhaustive analysis until all points have been encountered that contributeto the determination of the response for q. This query propagation is formally modeled asa partial reversal of the original exhaustive data
ow analysis. The framework includes ageneric algorithm that implements the partial reversal and provides a demand-driven querypropagation procedure.The generic demand-driven algorithm is precise for the class of distributive data
owproblems with �nite lattices. If applied to a monotone problem the algorithm can still beused to provide approximate but safe information. Alternatively, a less e�cient but preciseframework variation is presented to handle non-distributive data
ow problems.The practical bene�ts of the demand-driven framework are demonstrated through nu-merous experiments. An experimental study of demand-driven algorithms for two problems,namely reaching de�nitions and copy constant propagation, was conducted to evaluate theperformance of demand-driven analysis independently of a particular application. To com-plete the experimental study, a second set of experiments was carried out that evaluatesdemand-driven analyzers in a speci�c software engineering application.As an additional bene�t, the developed demand-driven algorithms have a natural paral-lelization. Individual queries can be propagated and resolved in parallel without requiringa separate phase to explicitly uncover parallelism. Unlike previous techniques for data
owanalysis parallelization, the amount of parallelism in the data
ow computation is indepen-dent of the program structure and depends only on the size of the program and the numberof generated queries.1.3.2 Congruence PartitioningThe second approach developed in this thesis consists of a framework for a new generalizedforwarding technique: congruence partitioning. Congruence partitioning reduces the sizeof a data
ow equation system through the discovery of congruence relationships amongsolution equations. Two equations are congruent if their �xed points are equal. Thus, atleast one of two congruent equations is redundant and can therefore be eliminated. Byrepeatedly applying this elimination process, an equivalent but smaller equation systemcan be constructed that includes only a single equation from each class of congruent equa-tions. The congruence partitioning framework includes e�cient partitioning algorithms forcomputing di�erent kinds of congruence relations.Congruence partitioning is applicable to both exhaustive and demand-driven analyzers.As with other forwarding techniques, congruence partitioning is applied as a preparatoryphase prior to the actual analysis in order to restructure and optimize the data
ow solutionde�nition. However, congruence partitioning is more powerful than previous forwarding

12techniques in that it enables more aggressive equation system reductions.1.4 Organization of the DissertationThe remainder of this dissertation is organized as follows. Chapter 2 provides the back-ground in global data
ow analysis. An overview of the demand-driven analysis frameworkalong with a discussion of the applications of demand-driven data
ow analysis is given inChapter 3. Chapter 4 provides the technical details of the demand-driven analysis frame-work and describes the individual framework components.The experimental evaluation of the demand-driven approach is presented in Chapters 5through 7. Chapters 5 and 6 consider speci�c analysis problems and show that the generalframework can be e�ciently implemented for these problems. Chapter 5 presents and exper-imentally evaluates demand-driven analyzers for the class of Gen-Kill problems. Chapter6 presents a demand-driven analyzer for copy constant propagation and its experimentalevaluation. Chapter 7 examines the demand-driven approach in a software engineering ap-plication, namely data
ow integration testing. A new and e�cient demand-driven approachto data
ow integration testing is developed and experimentally evaluated.The second approach for improving data
ow analysis developed in this dissertationis presented in Chapter 8. Chapter 8 presents the formal framework for congruence par-titioning and includes a discussion of how congruence partitioning can be coupled withthe demand-driven analyzers from the previous sections. The dissertation is concluded inChapter 9 with a summary and a discussion of future directions.

Chapter 2BackgroundSince their introduction in the 70s, data
ow analyses have formally been modeled in al-gebraic frameworks called data
ow frameworks. The study of data
ow frameworks wasmotivated by the need for a uniform model for the design and development of program anal-ysis techniques. This chapter surveys the pertinent background in global data
ow analysis.First, the program representation commonly used in data
ow analysis is presented in Sec-tion 2.1. Section 2.2 presents the algebraic frameworks for intra- and interprocedural data
ow analysis. The algorithms that are commonly used to solve problems formulated inthese frameworks are presented in Section 2.3.2.1 Program RepresentationA program consisting of a set of possibly recursive procedures is represented by an interpro-cedural control
ow graph (ICFG). An ICFG is a collection of control
ow graphs G1; : : : ; Gk,such that Gi = (Ni; Ei) is a control
ow graph representing procedure pi. The nodes inNi represent the statements in procedure pi and the edges in Ei represent the transfer ofcontrol among the statements in pi. Two distinguished nodes entryi and exiti representthe unique entry and exit nodes of pi. The set E = [fEi j 1 � i � kg denotes the set of alledges in the ICFG and N = [fNi j 1 � i � kg denotes the set of all nodes. It is assumedthat jEj = O(jN j). The sets pred(n) = fmj(m;n) 2 Eig and succ(n) = fmj(n;m) 2 Eigdenote the sets of immediate predecessors and successors of node n, respectively. For a callsite node s, call(s) denotes the procedure called from s. A program and its ICFG are shownin Figure 2.1.During the analysis only valid execution paths should be considered. An execution pathis a sequence of nodes � = n1 : : :nk , such that for 1 � i < k either (i) (ni; ni+1) 2 E (in-traprocedural control), (ii) call(ni) = p for some procedure p and ni+1 = entryp (procedureinvocation), or (iii) ni = exitp for some procedure p and there exists m 2 pred(ni+1) suchthat call(m) = p (procedure return). Furthermore to be valid, each procedure exit nodeexitp in � must be followed by a successor node of the matching call site n with call(n) = p13

14
entry

exit
exit

entry

1

2

3

4

5

8

9

10

a:=1

read(b)
b:=1 a:=b

procedure main

declare a,b;

a:=1;

read(b);

call p;
end

procedure p

else b:=1;

call p;
endif;

end

begin

begin

6

7

11

procedure p

main

if (cond) then a:=b

if (cond)

call p
call pFigure 2.1: A program and its ICFG.that most recently occurred in � prior to exitp. A path is not valid if it enters a procedurep from one call site but upon reaching p's exit node returns to a di�erent call site.Consider the example in Figure 2.1. The path 1; 2; 3; 4; 6; 7; 10; 11; 5 is a valid executionpath but the path 1; 2; 3; 4; 6; 7; 10; 11; 11; 5 is not valid. Invalid paths violate the callingcontext of procedures and may lead to imprecise information if considered during the analy-sis. The set of interprocedurally valid execution paths from a node n to a node m is denotedby IVP(n;m).Another structure commonly used in interprocedural analysis is the call graph of aprogram. A call graph is a directed graph G = (N;E), where the nodes in N representthe procedures in the program and there exists an edge (p; q) 2 E for each call site in aprocedure p that calls a procedure q. Since there may be multiple call sites in p calling q,the call graph G is a multi graph. A path in a call graph is called a call chain.2.2 Data Flow FrameworksAn algebraic framework for data
ow analysis was introduced by Kildall [Kil73]. Re�ne-ments and extensions of the original framework were suggested by others, including Kamand Ullman [KU77, KU76] and Graham and Wegman [GW76]. Data
ow frameworks arealso called monotone frameworks based on the monotonicity of the information
ow func-tions in the framework. A function f is monotone if x � y implies f(x) � f(y).A comprehensive overview of data
ow frameworks is presented in [MR90].

15
x ∈ L

n f n

f n (x)∈ LFigure 2.2: Data
ow at a node nA data
ow framework is a pair D = (L; F), where:� (L;u;v;?;>) is a complete lattice representing the universe of program facts with apartial order v, a least element ? (bottom), a greatest element > (top), and a meetoperator u, such that for all x; y; z 2 L:x u x = x (idempotence)x u y = y u x (commutativity)x u (y u z) = (xu y)u z (associativity)� F � ff : L 7! Lg is a set of monotone
ow functions over L that contains the identityfunction id and that is closed under composition and pointwise meet:8f; g 2 F : f � g 2 F and if h(x) = g(x)u f(x) then h 2 F:A function f 2 F is called u-distributive (i.e., distributive with respect to the meet u) iff(x u y) = f(x) u f(y). If the meet operator u is clear from the context, the function issimply called distributive. If all functions in F are distributive, D is called a distributivedata
ow framework.An instance of a framework D = (L; F) is given by a pair I = (G;m), where:� G = (N;E) is an ICFG,� m : N 7! F is a mapping that maps each node in the ICFG to a function in F .The function m(n) mapped to a node n (also denoted fn) models the data
ow whenexecution passes through node n. As illustrated in Figure 2.2, if x 2 L holds on entry ofa node n then fn(x) 2 L holds on exit from node n. For a given path p = n0; n1; : : : ; nkfunction application along this path is denoted as: fp = fk � : : : � f1 � f0.The problems that can be phrased in a data
ow framework have been classi�ed alongvarious dimensions. According to their analysis direction, data
ow problems are classi�edas either forward or backward problems. In a forward problem information is propagated

16in the direction of control while in a backward problem information
ows in the directionopposite to control. Both forward and backward problems can be uniformly modeled in theabove framework by representing a backward problem as a forward problem on the reversecontrol
ow graph. Bidirectional problems require information propagated in both a forwardand a backward direction. The problem of partial redundancy elimination was originallyformulated as a bidirectional problem [MR79]. However, recently two new formulationshave been presented to solve partial redundancy elimination in a sequence of forward andbackward analyses [KS92, DRZ92]. A general method for breaking bidirectional problemsinto a sequence of uni-directional problems was presented in [DRZ92].Another common approach is to classify data
ow problems as union or intersectionproblems. Union and intersection problems are problems in which the lattice L has apowerset structure. In a union problem the meet operator is conventional set union, whereasthe meet operator in an intersection problem is set intersection. The meet lattice structuremost naturally models intersection problems. However, by duality [Bir84] every unionproblem can be phrased in a meet lattice.Data
ow problems are formulated as either intraprocedural or interprocedural problems.An intraprocedural problem only considers the data
ow within each procedure. Interproce-dural problems analyze, in addition, the interactions among procedures at call sites. Usually,intraprocedural data
ow problems (e.g., live variables) also have an interprocedural ver-sion. However, there are also problems, such as the alias problem for reference parameters[Coo85] that only exist at the interprocedural level.Finally, data
ow problems are also classi�able in terms of their algebraic complexity.The most general characterization is the class of monotone problems with the subclass ofdistributive problems. An important subclass of the distributive problems is the class of bitvector problems. In a bit vector problem, there exists a natural mapping from the lattice Lto the set f0; 1gn, such that each element in L can be represented by a bit vector of length n.Bit vector problems have e�cient implementations since operations on lattice elements canbe implemented as boolean operations on bit vectors. Another particular simple subclassof the distributive problems are the partitionable problems (also called locally separable in[RHS95]). A problem is partitionable if it can be broken into a sequence of separate simpleanalyses, one for each program object, such as variables or expressions. A partitionableproblem is characterized by a restricted form of
ow functions. Each
ow function f is ofthe form: f(x) = c or f(x) = x u c, where c is a constant in L. The four classic data
ow problems: reaching de�nitions (REACH), available expressions (AVAIL), live variables(LIVE) and very busy expressions (BUSY) are examples of partitionable problems. Theseproblems are also called Gen-Kill problems since their original
ow functions (i.e., thefunctions prior to partitioning) are of the form: f(x) = (x�Kill)[Gen, where Gen and Killare constant subsets in L. Note that the four classic problems are also bit vectors problems.

17However, not every bit vector problem is partitionable. Faint variables1 is an example of aproblem that can be implemented using bit vectors but that is not partitionable.2.2.1 The Intraprocedural Solution (Kam/Ullman)The solution for an instance of a data
ow framework is an assignment of lattice elementsto program nodes. The optimal solution is the meet-over-all-paths (mop) solution, whichprecisely captures the
ow of information along each valid execution path. The assignmentmop : N 7! L is de�ned as:mop(entrymain) = ?mop(n) = up2IVP (entrymain ;n) fp(?) (2:1)The solution mop assigns to each node the set of data
ow facts (i.e., lattice elements)that hold on node entry for every valid execution path leading to the node. The bottomvalue ? at node entrymain indicates that no information holds on program entry. Since themop solution is in general undecidable, data
ow algorithms provide an approximation tothe mop solution. Kam and Ullman showed in their standard intraprocedural framework[KU77] that a unique and decidable approximation to the mop solution is computed as thegreatest �xed point (gfp) of the following system of data
ow equations:X(entrymain) = ?X(n) = fn(um2pred(n)X(m)): (2:2)The equation X(n) describes the data
ow facts that hold on entry of node n. The greatest�xed point can be computed over the equation system by initialing all equations with thetop value > and then iteratively lowering the initial values by repeatedly evaluating theequations until the system converges.In a monotone data
ow framework D, there always exists a unique gfp of the equationsystem (2.2). The gfp solution is always lower in the lattice than the mop solution and istherefore a safe approximation. If D is distributive, the gfp solution is equal to the mopsolution. If D is non-distributive then there exists an instance of D in which gfp is strictlylower than mop [KU77].2.2.2 The Interprocedural Solution (Sharir/Pnueli)During intraprocedural analysis the propagation of information is restricted to the control
ow paths within each procedure. Interprocedural analysis considers in addition the propa-gation of information across procedure boundaries at call and return points. Several formal1A variable v is a faint variable if v is dead or if v is de�ned in terms of another variable that is faint.

18frameworks for interprocedural analysis have been developed [CC77c, Ros81, JM73, SP81,KS92]. This section presents Sharir and Pnueli's functional approach to interproceduralanalysis which also serves as the basis for the demand-driven analysis framework presentedin Chapter 3.Sharir and Pnueli [SP81] presented a two-phase approach to interprocedural analysisthat ensures that only valid execution paths are considered and the calling context of eachprocedure is preserved. During the �rst phase the data
ow e�ect of each procedure isanalyzed independent of its calling context. The results of this phase are procedure summaryfunctions as de�ned in equation system (2.3). The summary function �(entryp;exitp) : L 7! Lfor procedure p maps data
ow facts from the entry node entryp to the corresponding setof facts that hold upon procedure exit. The summary functions are de�ned inductively bycomputing for each node n in p the function �(entryp;n) that maps an element x 2 L to thecorresponding element �(entryp;n)(x) 2 L that holds on entry to node n assuming that xholds upon procedure entry.�(entryp ;entryp)(x) = x�(entryp ;n)(x) = um2pred(n)8>><>>: fm � �(entryp;m)(x) if m is not a call site�(entryq ;exitq) � �(entryp;m)(x) if call(m)=q (2:3)The actual calling context of a called procedure is propagated during the second phasebased on the summary functions. The data
ow solution X(n) at a node n in a procedure pis determined by mapping the solution X(entryp) that holds on entry of p to node n usingthe summary function �(entryp ;n). The equation system (2.4) de�nes the data
ow solutionX(n) that holds on entry of node n.X(entrymain) = ?For each procedure p:X(entryp) = ucall(m)=pX(m)For non-entry nodes n:X(n) = um2pred(n)8>><>>: fm(X(m)) if m is not a call site�(entryq ;exitq)(X(m)) if call(m)=q (2:4)For �nite lattices Sharir and Pnueli propose an e�cient algorithm to solve the equationsystems 2.3 and 2.4. If the lattice is �nite the equation system 2.3 is �nite so that thesolution can be computed using a standard iterative �xed point algorithm based on the

19Gen and Kill setsnode n Genn Killn1 - -2 a2 a103 b3 b84 - -5 - -6 - -7 - -8 b8 b39 - -10 a10 a211 - -
Summary function for pnode n �(6;n)(X)6 X7 X8 X9 (X � fb3g) [fb8g10 X11 X [fb3; a10g Reaching de�nitionsnode n X(n)1 -2 -3 a24 a2; b35 a2; a10; b3; b86 a2; b3; b87 a2; b3; b88 a2; b3; b89 a2; b3; b810 a2; b3; b811 a2; a10; b3; b8Figure 2.3: Relevant data
ow sets for REACH analysis of Figure 2.1.initial value > for equations �(entryp ;n)(x) for each node n in procedure p and each latticeelement x. Once the summary function equation system has been solved, the actual solutionequations in system 2.4. are computed during a second phase using the computed summaryfunction values.To illustrate the de�nition of the interprocedural analysis framework consider the prob-lem of determining the sets of interprocedural reaching de�nitions (REACH) in a program.The de�nition of a variable v is a reaching de�nition at a node n if there exists a validexecution path from the de�nition to node n that does not re-de�ne v. REACH is theproblem of computing at each node the set of de�nitions that reach that node.REACH is a union problem for which the lattice is the powerset lattice of the set ofde�nitions (DEF) in the program. The meet is set union ("[") and > = ; and ? = DEF.The partial order in this lattice is reverse set inclusion ("�"). The framework for REACHis distributive and an instance is given by an ICFG for a particular program and a mappingof
ow functions fn to each node n such that:fn(X) = (X �Killn) [Genn:Killn is the set of de�nitions that are killed at n, that is, the de�nitions that cannot reachthe end of node n because of a re-de�nition contained in n. Genn is the set of generatedde�nitions, that is, the de�nitions that occur in node n without a subsequent re-de�nitionat n. The Gen and Kill sets for the example in Figure 2.1 are shown in Figure 2.3. Todistinguish multiple occurrences of the same variable, de�nitions of variables are subscriptedwith the number of the node that contains the de�nition.For a set of de�nitions X , the summary function value �(entryp ;exitp)(X) denotes the set

20of de�nitions that reach the exit of procedure p assuming that the de�nitions in X reachthe entry of p. Figure 2.3 shows the solutions to the equation systems for the summaryfunction �(6;11) for procedure p from Figure 2.1.2.2.3 Abstract InterpretationData
ow frameworks provide a uniform way to model and specify program analyzers.However, they do not include explicit mechanisms to facilitate formal correctness proofsof the modeled program analyses. To formally prove correctness it is necessary to relatethe program invariants derived by an analyzer to the program's formal semantics that areassumed to correctly describe the actual program behavior. Cousot and Cousot [CC77a,CC79] developed a variant of the classical data
ow framework called abstract interpretationthat explicitly incorporates formal semantics. An abstract interpretation models data
owanalysis as an approximation of the program's formal semantics, which are in general notcomputable. The formal semantics are expressed by a lattice of sets of possible programstates. The simpler lattice actually used in a particular data
ow analysis is viewed asan abstraction (i.e., an approximation) of the precise semantics. Transfer between thetwo lattices is achieved through abstraction and concretization functions. Based on thisconnection between an abstraction and a concretization function, program facts derivedduring data
ow analysis are proven to be correct approximations of the program's formalsemantics.2.3 Data Flow Analysis AlgorithmsAlgorithms for global data
ow analysis fall into two major classes: iterative algorithmsand elimination algorithms. The algorithms in either class deliver the greatest �xed pointsolution of the respective data
ow equation system. In iterative algorithms, the equationsare repeatedly evaluated until the evaluation converges to a �xed point. Elimination algo-rithms compute the �xed point by decomposition and reduction of the control
ow graphto obtain subsequently smaller systems of equations. If not stated otherwise, all asymptoticcomplexities of data
ow algorithms presented in this sections are based on intraproceduralanalysis.2.3.1 Iterative AlgorithmsIterative algorithms for global data
ow analysis originate with Kildall's worklist iteration[Kil73]. In worklist iteration, nodes are successively removed from a worklist and the asso-ciated equations are evaluated. If, as a result, the lattice value changes at the currently in-spected node, all successors of that node are added to the list. Worklist iteration terminateswhen the list is empty, resulting in a worst-case running time for intraprocedural analysis

21of O(jN j � height(L)) node visits, where height(L) denotes the height 2 of semi-lattice L.Sharir and Pnueli proposed a worklist algorithm for their interprocedural two-phase equa-tion systems. For �nite lattices, the algorithm requires O(MaxCall�height(L)�jLj� jN j)time, where MaxCall is the maximal number of call sites calling a single procedure.Reverse postorder iteration [KU76, HU73] is an iterative algorithm that proceeds inmultiple passes over the control
ow graph. Kam and Ullman have shown that for rapid3data
ow frameworks, reverse postorder iteration requires d + 3 passes, where d is themaximum number of back edges in a cycle-free path (the maximal loop nesting depth instructured programs). In practice, values for d are usually less than or equal to three[Knu71]. Kam and Ullman's notion of rapidity [KU76] is a property of the function space.Intuitively, rapidity implies that all information can be propagated along acyclic paths. Aclassical problem that is not rapid is constant propagation.Other iterative algorithms include node listings [Ken75], which are speci�cations of theorder in which the nodes in the graph are visited and several variants of iterative algorithmspresented by Horwitz, Demers and Teitelbaum [HDT87].2.3.2 Elimination AlgorithmsThe key idea in elimination algorithms is to reduce the original system of equations tosubsequently smaller systems by structure-driven graph transformations and correspondingsubstitutions in the equation system. If no further reductions are possible, the resultingequation system is evaluated, and the solution to the original system is obtained throughpropagation by reversing the reduction process. A comprehensive survey of eliminationalgorithms for data
ow analysis appears in [RP86].In interval analysis [AC77, Coc70] the control
ow graph is subsequently partitionedinto subgraphs called intervals. An interval is replaced by a single node that contains theinformation local to the interval. The partitioning continues until the graph is reduced toa single node for which the data
ow solution can easily be obtained. An improvementover Allen and Cocke's original interval analysis is presented by Hecht and Ullman calledT1 � T2 analysis [HU73], based on two graph transformations T1 and T2. T1 � T2 analysisproceeds in O((d+ 2) � jEj) time, where d refers to the depths of the graph as describedin the previous section. Both Allen and Cocke's interval analysis and T1 � T2 analysis arerestricted to reducible control
ow graphs. An extension that can handle irreducible
owgraphs was presented by Graham and Wegman [GW76]. Graham and Wegman's analysisproceeds in O(jEj log jEj) time for fast 4 problems.2The height of a lattice L denotes the length of the longest chain in L.3A data
ow problem is called rapid if 8g; f 2 F;8x 2 L : f � g (?)w g(?) u f(x) u x.4A data
ow problem is fast if 8f 2 F;8x 2 L : f(x) u x v f(f(x)).

222.3.3 Other MethodsSome approaches to data
ow analysis do not assume an algebraic lattice framework. Sym-bolic evaluation techniques derive program invariants by associating symbolic values withprogram variables and by computing algebraic closed form expressions over these sym-bolic values. Using a specialized program representation called the global value graph[RL77, RT82] e�cient techniques for symbolic evaluation have been developed for a re-stricted class of data
ow problems.Another approach that does not assume a lattice framework is Tarjan's path algebra[Tar81b, Tar81a]. The
ow of information is computed by parsing a path expression, i.e.,a regular expression representation of program paths, where each expression operator isassociated with an information transfer function.Recently, Reps, Horwitz and Sagiv presented a new graph oriented approach to interpro-cedural data
ow analysis [RHS95]. In this approach, a data
ow problem is transformedinto a specialized graph-reachability problem. The graph for the reachability problem, theexploded supergraph, is obtained as an expansion of a program's control
ow graph by includ-ing an explicit graphical representation of each node's
ow function. The graph-reachabilityapproach is applicable to distributive data
ow problems with a lattice that is the powersetof a �nite set.

Chapter 3OverviewThe core of this research is the development of a formal framework for demand-driveninterprocedural data
ow analysis. This chapter provides an overview of the demand-driven approach and is organized as follows. Section 3.1 motivates the demand-drivenapproach using the example of copy constant propagation. An outline of the demand-driven framework and its components is presented in Section 3.2. The chapter concludeswith a discussion of the bene�ts of the demand-driven approach for the parallel executionof data
ow analysis.3.1 Example: Copy Constant PropagationAs an illustration of the demand-driven approach consider the problem of copy constantpropagation (CCP). CCP is a distributive version of the general (non-distributive) constantpropagation analysis [Kil73]. Unlike general constant propagation, CCP does not evaluatearithmetic expressions. A variable v is a copy constant if v is assigned a constant value orif v is assigned a copy of another variable that is a copy constant.The CCP lattice for a program with k variables is the product lattice Lk, where thecomponent lattice L is de�ned as shown in Figure 3.1 (i). Note that the component latticein CCP is �nite, since the only possible constant values for a copy constant are the constantliterals that occur in the program text. Each lattice element is a k-tuple x = (x1; : : :xk)with a component xi 2 L for variable vi. The meet operator u and the dual join operatort are de�ned pointwise according to the partial order depicted in Figure 3.1 (ii).A base element in Lk is a tuple (x1; : : : ; xk) with a single non-bottom component xi:xi = c and xj = ? for j 6= i. Such a base element is also written as:[vi=c] = (?; : : : ;?; xi = c;?; : : : ;?)Similarly, any element x 2 Lk that results as a �nite join of base elements is written as:x = [v1 = c1] t : : :t [vl = cl] = [vi = ci; : : : ; vl = cl]23

24
−−|

. . .

−−|

any integer

undefined

c1 ci constant literal(i)u ? ci >? ? ? ?cj ? ci if ci = cj cj? otherwise> ? ci >(i)Figure 3.1: The CCP lattice L (i) and the de�nition of the meet operator (ii).The distributive
ow functions in CCP are de�ned pointwise for each component:f(x1; : : : ; xk) = (f(x1; : : : ; xk)1; : : : ; f(x1; : : : ; xk)k):The component function f(x1; : : : ; xk)j with respect to variable vj is de�ned in Table 3.1 forvarious types of assignments. For example, for a constant assignment vi := c the componentfunction is de�ned as f(x1; : : : ; xk)i = c indicating that variable vi has constant value cafter the execution of the assignment. The assignment has no e�ect on the values of othervariables vj . Thus, their component functions are identity functions, i.e., f(x1; : : : ; xk)j =xj . For the same reason, the component functions for a conditional expression are alsoidentity functions.The
ow functions for CCP are illustrated for the control
ow graph shown in Figure3.2, where each
ow function for a non-call node is shown next to the node. Each latticeelement is a triple (xa; xb; xc), such that the components xa; xb and xc denote the latticevalues for variables a,b and c, respectively.

25statement at node n function fn(x)j, where x = (x1; : : : ; xk)const. assignment: vi := c fn(x)j = 8<: c if i = jxj otherwisecopy: vi := vl fn(x)j = 8<: xl if i = jxj otherwiseexpr. assignment: vi := expr. fn(x)j = 8<: ? if i = jxj otherwiseread(vi) fn(x)j = 8<: ? if i = jxj otherwiseTable 3.1: Flow functions for CCP.3.1.1 Exhaustive AnalysisConsider Figure 3.2 and the question as to whether variable b is a copy constant at thewrite statement at node 7. Standard analysis provides an answer by an exhaustive forwardpropagation that provides copy constant information for all variables at all nodes in thegraph. At each node n the complete solution vector X(n) = (xa; xb; xc) is computed, wherexa; xb and xc are the lattice values that have been determined for variables a, b, and c at noden. The solution vectors are computed by propagating a program entry value throughout theprogram. This propagation involves the repeated application of the
ow functions to thecurrent values at each node. The program entry value is simply X(entrymain) = (?;?:?)denoting that no variable has a value upon program entry.Each time a node is visited during the propagation the complete solution vector isevaluated. Note that when propagating in a forward direction, all available informationmust be collected since prior to reaching node 7 it cannot be determined that informationat a predecessor node is not relevant. In particular, when encountering the call to procedureq in node 1 and the call to procedure p in node 5, the two procedures must be fully analyzedin order to ensure that the complete information that may reach node 7 has been collected.

26
exit

call p

...

...

call q1

2

3

4

5

6

7

10

f2(xa,xb,xc)=(0,xb,xc)

f6(xa,xb,xc)=(−−| ,xb,xc)

f3(xa,xb,xc)=(xa,xa,xc)

f4(xa,xb,xc)=(xa,xb,xb)

a:=0

b:=a

c:=b a:=b+c

write(b)

read(b)

procedure main

9
write(a,b,c)

11

f10(xa,xb,xc)=(xa,−−| ,xc)

f9(xa,xb,xc)=(xa,xb,xc)

procedure p
8

entry

Figure 3.2: The ICFG for a sample program.3.1.2 Demand-Driven AnalysisNow consider how a demand-driven analysis determines whether variable b is a copy constantat node 7. Unlike exhaustive analysis, demand-driven analysis is goal-directed. A solutionto the problem is determined by a partial backward search that is started at node 7 andthat proceeds in the reverse direction of the exhaustive analysis backwards along each paththat leads to node 7. During this backward search only information that is actually relevantfor the current problem is collected. The search terminates as soon as a solution has beenfound. Assume the backward search for the constant value of variable b in Figure 3.2 �rstproceeds along the left branch in procedure main and visits node 4. The computation atnode 4 cannot a�ect the data
ow value for variable b. Hence, no information is collected,and the search continues at predecessor node 3. An inspection of node 3 reveals that forvariable b to be a copy constant, variable a must be a copy constant at node 3. Hence,the search continues at node 2 with the new problem of determining whether a is a copyconstant. Since node 2 contains a constant assignment to variable a, the search terminatessuccessfully with the information that b is a copy constant with the value 0 along thetraversed path. Next the remaining path along the right branch in procedure main istraversed, starting at node 6. Again, the computation at node 6 cannot a�ect the valueof b, and the search continues at node 5. Since node 5 contains a call to procedure p, the

27search in main is interrupted to collect information about the called procedure p. Next,procedure p is analyzed starting at the exit node 11 and proceeding backwards towards p'sentry node. When reaching node 10, it is determined that b cannot be a copy constant atthe exit of procedure p. This information is passed back to the call node 5 in main. At thispoint, the overall search terminates with the result that b is not a copy constant at node 7since a path was encountered along which b is not constant.The illustration of the demand-driven search procedure shows that there are three waysin which demand-driven analysis avoids unnecessary computations that must be performedin the exhaustive analysis. First, when visiting a node, the information that is not relevantto the current demand does not have to be collected in a demand-driven analysis. Second,nodes that cannot contribute to the demanded solution do not even have to be visited.Third, procedures are analyzed only if needed, that is, only if it has been determined thatinformation from the procedure does a�ect the demanded solution. For example in Figure3.2, the demand-driven analysis does not analyze procedure q since the backward searchrevealed that information from q cannot possibly a�ect the solution to the problem at node7.3.2 The Demand-Driven Analysis FrameworkThe demand-driven analysis framework developed in this dissertation generalizes and for-mally de�nes the backward search from the previous section. The generalized framework isobtained by providing the answers to the following questions:� What kind of information can be collected in a demand-driven way?� What are the search operations performed at each node and when does the searchterminate?� Are there e�cient algorithms to implement the backward search?The demand-driven analysis framework contains one component to answer each of thesequestions:Component 1: De�nition of a data
ow query.Component 2: Set of query propagation rules.Component 3: Generic iterative query propagation algorithm.3.2.1 Component 1: Data Flow QueriesDemands for data
ow information are modeled by data
ow queries. Thus, a data
owquery describes the kind of information that can be determined in a demand-driven fashion

28at a given program node n. The general format of a query is:< y; n >;where y is a lattice element and n is a program node. Query q =< y; n > raises thequestion as to whether lattice element y is part of the exhaustive solution X(n) at node n,i.e., whether y v X(n).Example: Consider again the question as to whether variable b in Figure 3.2 is a copyconstant with the constant value 0 at node 7. This question is modeled by the data
owquery: < [b = 0]; 7 >.3.2.2 Component 2: Query Propagation RulesThe demand-driven analysis describes the search for the solution for a data
ow demandthat is expressed by a query q =< y; n >. This search is fully characterized by a set ofquery propagation rules. Consider again the query < [b = 0]; 7 > for the CCP example fromFigure 3.2. The query propagation rules describe how the initial query < [b = 0]; 7 > ispropagated backwards in the program and �nally resolved. To specify the query propagationrules in general terms, the second framework component is responsible for the following twofunctions:� reversal of the function space and� procedure summary computation.The reversal of the function space is needed to generalize and formally de�ne the querypropagation through a node. Consider the query < [b = 0]; 3 > in the CCP example fromFigure 3.2. When propagating the query past node 3, the query changes and the new queryraised at the predecessor node 2 is: < [a = 0]; 2 >. The transformation from the initialquery < [b = 0]; 3 > to the new query < [a = 0]; 2 > simply expresses that for variable bto be a copy constant with value 0 at node 3, variable a has to be a copy constant withvalue 0 at node 2. To provide a general description of the transformation of a query as it ispropagated through the program requires the reversal of the
ow functions.The reversal of the function space provides the means to establish the complete prop-agation rules for the intraprocedural case. To handle programs with multiple proceduresrequires additional mechanisms to process procedure calls. Exhaustive analysis, as modeledby the Sharir/Pnueli framework [SP81], analyzes a program with procedure calls throughprocedure summary computations. The demand-driven framework follows the same ap-proach. However, unlike exhaustive summary computation, the summary computation forthe demand-driven analysis is a partial and reverse summary computation. The reverse pro-cedure summaries express the side e�ects of procedure calls on the queries that are raisedat call sites and are computed only if needed to propagate a query across a call.

29Together, the
ow function reversal and reverse summary computations enable the spec-i�cation of a set of query propagation rules that model the complete demand-driven analysisof a program.3.2.3 Component 3: Generic Analysis AlgorithmThe framework contains, as a third component, a generic demand-driven algorithm. A top-level procedure Query takes as input a query and returns the answer true or false to thequery. Procedure Query implements the query propagation rules based on the reversal ofthe
ow functions at each node. When a procedure call is encountered during the propa-gation another procedure Compute�r is invoked to provide the reverse procedure summaryinformation for the called procedure. The overall demand-driven algorithm, implemented bythe two procedures Query and Compute�r, is presented in two versions: a caching version,which includes a cache memory for storing intermediate query results to enable fast re-usein future query evaluations, and a non-caching version that does not store intermediateresults.In the worst case, in which the amount of information demanded is equal to the exhaus-tive solution, the asymptotic time and space complexities of the demand-driven algorithmare no worse than for the corresponding iterative exhaustive algorithm in the Sharir/Pnueliinterprocedural analysis framework.3.2.4 GeneralityThe demand-driven analysis framework is applicable to monotone interprocedural data
ow problems with �nite lattices. If the program under analysis consists of only a singleprocedure, the analysis algorithm naturally reduces to an intraprocedural algorithm. Forintraprocedural problems, the �niteness of the lattice is not required and the framework isapplicable to all monotone problems. The derived demand-driven algorithms are as preciseas their exhaustive counterparts if the data
ow problem is distributive. If the problem ismonotone but not distributive, precision of the demand-driven algorithms may be lost. Theloss of information that is caused by non-distributive
ow functions will be examined indetail and it will be shown that the demand-driven algorithms can still be used to provideapproximate but safe query responses for non-distributive problems. In addition, a two-phase variation of the framework is presented that is capable of handling non-distributivedata
ow problems precisely.The class of distributive and �nite data
ow problems that can be handled preciselyincludes, among others, the interprocedural versions of the four classical partitionable bitvector problems: REACH (reaching de�nitions), AVAIL (available expressions), LIVE (livevariables) and BUSY (very busy expressions), as well as to non-partitionable problems, such

30as copy constant propagation, linear constant propagation 1 or faint variables and to othercommon interprocedural problems, such as procedure side-e�ect analysis [CK88].3.3 ApplicationsConceptually demand-driven analysis can be employed to replace traditional exhaustiveanalysis in any application. However, the e�ciency of using demand-driven analysis mayvary depending on the nature of the application. Generally, the bene�ts of using a demand-driven analysis in place of an exhaustive analysis are higher when the demanded fractionof the complete data
ow solution is small. While demand-driven analysis algorithms havethe same asymptotic worst-case complexities as the corresponding exhaustive analysis al-gorithms, they may not always be faster in practice. In fact, if an application demandsthe complete exhaustive solution, demand-driven analysis is likely to perform slower thanexhaustive analysis by some constant factor.The following sections review several applications in compiler optimization and softwaretools and examine their suitability for using a demand-driven analysis approach.3.3.1 Compiler OptimizationsThe program optimizations that bene�t the most from demand-driven analysis are op-timizations that utilize data
ow information only selectively in a program. There areseveral situations that give rise to selective data
ow utilization in optimization.Region optimizationSome optimizations are only applicable to certain portions of the program. A common andimportant example are loop optimizations. Loop optimizations include classical transfor-mations, such as loop-invariant code motion [ASU86], as well as parallelizing loop transfor-mations, such as scalar expansion2. Safely applying a loop optimization requires both thedata
ow solution that results inside the loop and the data
ow from outside that a�ectsthe solution at the entry and exit points of the loop. For example, scalar expansion requiresinformation about the liveness of variables at the exit of the loop. Classical algorithmsfor loop-invariant code motion[ASU86] require information about the liveness of variablesreferenced by the statements that are to be moved as well as information about variablede�nitions that reach statements inside the loop from outside.Even if an optimization is applicable everywhere in a program, one may want to reducethe overall optimization costs by restricting the optimization to the most frequently executed1Linear constant propagation is an extension of copy constant propagation that, in addition to copies,also considers assignments of the form x := y + c, where c is a constant.2The purpose of scalar expansion is to create a private copy of a scalar variable accessed in a loop foreach loop iteration, thereby removing a dependency among the loop iterations.

31portions of the program. For example, common subexpression elimination or code hoistingmay only be applied to the loops in the program, or only to the most frequently calledprocedures. It is generally possible to optimize a selected code region by performing analysisonly over the selected region. However, the worst case assumptions that would have to bemade concerning the data
ow information that enters the code region from outside couldprevent the discovery of otherwise safe optimization opportunities. Demand-driven analysisprovides an e�cient way for retrieving all relevant information that is external to the selectedcode region without having to analyze the complete program.Sparse optimization opportunitiesAnother source of selective data
ow utilization are global optimizations that are likely tobe enabled at only a few points in the program. An example of such a global optimizationis copy propagation. A program is not likely to initially contain a large number of copies;however copy instructions are often created as a result of other transformations, for example,as the result of common subexpression elimination. Instead of performing copy propagationexhaustively and thereby possibly analyzing large portions of the program that do not evencontain copies, copies may be propagated on demand directly after their creation. Eachtime a copy is created as the result of a transformation, demand-driven analysis can beused to retrieve the available copy [ASU86] information that is needed to directly propagatethe copy.Sparse data
ow usageFinally, demand-driven analysis is useful in global optimizations that require only a smallfraction of the exhaustive solution at each program point. An example is the constructionof def-use chains. Determining the def-use chains in a program requires the computationof reaching de�nitions. Among other uses, def-use chains are needed to construct programdependence graphs [FOW87]. The exhaustive reaching de�nition solution determines allde�nitions of all variables that reach each program point. However, the construction of def-use chains requires at each point only the reaching de�nitions of the variables that are used atthat point. Reaching de�nition information of variables that are not even live at a programpoint is irrelevant and does neither directly nor indirectly contribute to the construction ofdef-use chains. The experimental results presented in Chapter 6 demonstrate that demand-driven analysis is more e�cient than exhaustive analysis for constructing def-use chains ina program.With respect to any optimization, demand-driven analysis has the advantage that itbypasses the incremental solution update problem. An exhaustively computed solution be-comes invalid after code transformations are applied to the program. Thus, in order tocontinuously apply optimizations, the exhaustive solution must be updated after each code

32transformation using incremental data
ow techniques3. After complex code transforma-tions, the update of the data
ow solution may be costly and may even result, in the worstcase, in a complete re-computation of the solution.Although demand-driven analysis appears to be a promising and e�cient approach ina large number of optimizations, there are also optimizations that do not favor a demand-driven approach. Whether demand-driven analysis is suitable for an optimization dependsprimarily upon the way data
ow information is required at a node. Recall that data
owqueries formulate information requests with true/false answers. This true/false type queryformat provides a natural formulation for questions asking for membership of a selectedcandidate in the exhaustive solutions. For example, a query such as: "Is variable v liveat this point?". There are optimizations whose information requests are not naturallysatis�able with true/false type queries. Using true/false type queries in these optimizationsmay be ine�cient and may result in querying the complete exhaustive solution at a node.For example consider the question: "What are the aliases of variable v at node n?". If noadditional information is available every variable may be a potential alias of v. True/falsetype queries retrieve alias information for requests of the form "Are v and w aliases at noden?". Thus, using true/false type queries may require one query for each potential aliasof v to �nd all of v's actual aliases. Another example is the data
ow problem of partialredundancy elimination (PRE) [MR79, KRS92]. A part of PRE is the optimal placementof each expression. The optimal placement of an expression is determined as the earliestplacement that is safe for the expression [KRS92]. Prior to solving the data
ow problemany program point may be a candidate for optimal placement. Thus, the points at whichdata
ow information is actually needed is not �xed prior to the analysis. The use ofdemand-driven analysis would require the issuing of queries exhaustively at every point inorder to �nd the optimal placement.In general, if an application, like the alias problem or PRE, requires an exhaustivenumber of queries to be raised, an exhaustive algorithm is likely to be more e�cient inpractice.3.3.2 Software ToolsData
ow analysis is often used to improve the capabilities and performance of softwaretools. Examples of data
ow based software tools are editors [RTD83], debuggers [Wei84]and tools for software testing [FW88, DGS92b]. Furthermore, data
ow analysis hasbeen proven especially useful in tools for the software maintenance stage [GS92, GHS92].Demand-driven analysis is a suitable approach to improve the performance of software toolsfor several reasons:3See also the discussion on incremental data
ow analysis in Chapter 1.

33Service user requests on-lineSoftware tools are often interactive. In an interactive tool, the user issues speci�c infor-mation requests with respect to one or more selected program points rather than inquiringinformation at all points. For example, when debugging, a user may want to know whatdata values reach a use of a variable at a certain program point or what statements impactthe value of a variable at a certain point. The extent of data
ow information requested bythe user is not �xed before the debugging tool executes but may vary depending on the userand the program. Unlike an exhaustive analysis approach, a demand-driven approach en-ables control over the analysis e�ort through the amount of information actually requestedby the user.Avoiding incremental updatesAs in compiler optimizations, using demand-driven analysis in software tools bypasses theincremental update problem. Many tools are used while the program is under developmentand thus changes in the program are expected and must be e�ciently handled. Using an ex-haustive analysis approach either requires costly re-computations of the exhaustive solutioneach time a change is made to the program or it requires the storage and maintenance ofthe exhaustive solution throughout the program development. Maintaining the exhaustivesolution throughout the program development may be costly in that the solution must beupdated in response to each program change using incremental data
ow analysis techniques[Ros81, Ryd83, RC87, Bur87, PS89]. In contrast, using a demand-driven analysis requiresneither storage of exhaustive information nor does it require solution updates. Instead,each time data
ow information is needed in the tool, the information is computed in ademand-driven mode based on the latest version of the program.3.4 Parallelizing Demand-Driven Data Flow AnalysesIn order to reduce the overhead of performing data
ow analysis, research has been directedtowards the parallelization of the data
ow analysis algorithms. Several parallel versionsof exhaustive analysis algorithms have been developed. Typically, the parallelization ofexhaustive analysis algorithms requires a separate preparatory phase in order to discoverand exploit the parallelism available in the data
ow computation [GZZ89, GPS90, LMR91,KGS94]. Based on the discovered parallelism, parallel versions of data
ow algorithms areobtained by decomposing the data
ow problem into a series of subproblems which can besolved in parallel.In contrast to previous work, the query propagation algorithm for demand-driven anal-ysis is naturally parallelizable and does not require a separate phase to reveal the availableparallelism. The individual queries in a program can be analyzed independently and in par-allel. The parallelization simply uses a dispatcher process to distribute the queries among

34the participating processors. The processors then analyze their assigned queries in parallel.Unlike previous work in analysis parallelization, the degree of parallelism in demand-drivenanalysis does not depend on the program structure but solely on the size of the programand the number of queries.

Chapter 4A Framework for Demand-DrivenData FlowThis chapter presents a general lattice based framework for demand-driven interprocedu-ral data
ow analysis and is organized as follows. The demand-driven framework and itscomponents that model the query propagation through analysis reversal are presented inSection 4.1. The framework components are �rst described for programs with parameter-less procedures. Framework extensions to handle procedures with parameters includingthe handling of aliasing introduced by reference parameters are discussed in Section 4.2.Section 4.3 presents several strategies to parallelize the demand-driven analysis. The frame-work provides a precise interprocedural analysis algorithm for data
ow problems that aredistributive. Section 4.4 discusses how to e�ectively handle non-distributive data
ow prob-lems. This chapter concludes with a discussion of related work in Section 4.5.4.1 Framework ComponentsA general framework for demand-driven data
ow analysis is obtained by formulating theanalysis problem as a problem of resolving data
ow queries with respect to the exhaustivesolution. The solution equation system according to the Sharir-Pnueli exhaustive analysisframework1 is restated in Figure 4.1.A data
ow query q raises the question as to whether a speci�c set of data
ow factsy 2 L is a safe approximation of the exhaustive solution at a selected program node n. Alattice element y is a safe approximation of the solution X(n) if y is lower in the latticethan X(n).De�nition 4.1 (Data
ow query) Let y 2 L and n 2 N . A data
ow query q isspeci�ed by a pair q =< y; n > and denotes the truth value of the term: y v X(n).1See also Section 2.2.2. 35

36Summary function equations:�(entryp ;entryp)(x) = x�(entryp ;n)(x) = um2pred(n)8>><>>: fm � �(entryp;m)(x) if m is not a call site�(entryq ;exitq) � �(entryp;m)(x) if call(m)=q (4:1)Solution equations:X(entrymain) = ?For each procedure p:X(entryp) = ucall(m)=pX(m) (4.2)For non-entry nodes n:X(n) = um2pred(n)8>><>>: fm(X(m)) if m is not a call site�(entryq ;exitq)(X(m)) if call(m)=qFigure 4.1: Equation systems in the exhaustive Sharir-Pnueli framework.

37Example: Recall the informal discussion of data
ow queries in Chapter 3 that consideredthe question as to whether a variable b is a copy constant at a particular node n. The leastlattice element that expresses that b has some arbitrary but �xed constant value c is theelement [b=c] = (xa=?, xb = c, xc=?) (i.e., variables a and c may assume any value).Thus, the question corresponds to the query q =<[b=c]; n >.Consider now the problem of determining the answer (true or false) for a query q withouthaving to exhaustively evaluate the equation systems 4.1 and 4.2 from Figure 4.1. Infor-mally, the answer to q=<y; n> is obtained by propagating q from node n in the reversedirection of the original analysis until all nodes have been encountered that contribute tothe answer for q. This propagation process is modeled as a partial reversal of the originaldata
ow analysis. To de�ne the analysis reversal, the following cases are examined in thepropagation of a query q =< y; n >:� q =< y; entrymain > (program entry node): No further propagation of query q ispossible. Since X(entrymain) = ? by de�nition, it follows that q evaluates to true ify = ? and to false otherwise.� q =< y; entryp > for some procedure p (procedure entry node): Query q raises thequestion as to whether y holds on entry of every invocation of procedure p. It followsthat q can be translated into the boolean conjunction of queries < y;m > for everycall site m calling procedure p.� q =< y; n >, where node n is some arbitrary non-entry node: For simplicity, assume�rst that n has a single predecessor m. Equation system 4.2 shows that y v X(n)if and only if y v h(X(m)), where h is either a node
ow function or a summaryfunction if m represents a call site. In either case h is monotone, so that h(?) vh(X(m))v h(>) and the following two special cases result for query q:y v h(?) =) q evaluates to truey 6v h(>) =) q evaluates to falseIf none of these two special cases apply, the query q translates into a new queryq0 =< z;m > for node m. The lattice element z to be queried on entry of nodem should be the least element z (i.e., smallest set of facts), such that z v X(m)implies y v h(X(m)). The appropriate query element z for the new query q0 can bedetermined using the function hr which is the reverse of function h [HL92].De�nition 4.2 (Reverse function) Given a complete lattice L and a monotone functionh : L 7! L. The reverse function hr : L 7! L is de�ned as:hr(y) = u fx 2 L : y v h(x)g

38
n

f n

x

f n (x) y

f n
r(y)

f n
rb :=0Figure 4.2: A node
ow function and its reverse function at a node nThe reverse function hr maps an element y to the least element x, such that y v h(x). Notethat if no such element exists hr(y) = > (unde�ned).Example: The mappings of a
ow function and its reverse function are illustrated inFigure 4.2. Consider the example of CCP and assume that y in Figure 4.2 denotes thelattice element [a = 0; b = 0] expressing that variables a and b have value 0. The reversefunction value f rn([a = 0; b = 0]) describes the least lattice element that has to hold on entryof node n for a and b to have value 0 on exit of node n. There are several entry latticeelements that are su�cient to establish the element [a = 0; b = 0] on node exit. For example,the two values [a = 0] and [a = 0; b = 0; c = 0; d = 0] since [a = 0; b = 0] v f([a = 0])and [a = 0; b = 0] v f([a = 0; b = 0; c = 0; d = 0]). The reverse function maps element[a = 0; b = 0] to the least su�cient entry element. Thus, f rn([a = 0; b = 0]) = [a = 0].If the function h is u-distributive then the following relationship holds between the functionh and its reverse hr [Cou81, HL92]:y v h(x) () hr(y) v x (GC1)The relationship (GC1) uniquely determines the reverse function and de�nes a semi-dualGalois connection [Bir84] between h and its reverse hr . The relationship GC1 can equiva-lently be expressed by the following two inequalities:h r � h(x) v x and h � h r(x) w x (GC2)Note that the u-distributivity is necessary for establishing this relationship. Thus, unlessotherwise stated, it is assumed that
ow functions are u-distributive. Next, the relationshipbetween a
ow function and its reverse function will be examined to determine how it canbe exploited during the query propagation.First, consider the following properties of the function reversal. It can be easily shown

39that the u-distributivity of h implies the t-distributivity of the reverse function hr:hr(xt y) = hr(x) t hr(y)Furthermore, the reverse functions are strict:hr(?) = ?The following lemma states the relevant properties with respect to the composition, themeet and the join of functions.Lemma 4.1 ([HL92]) Let g and h be two u-distributive functions.(i) (g � h)r = hr � gr(ii) (g u h)r = gr t hrProof: (i) By (GC1) the following two equivalences hold:g(x) w y () g r(y) v x and h(x) w y () h r(y) v x:Substituting h(x) for x in the �rst equivalence and substituting g r(y) for y in the secondequivalence yields:g(h(x)) w y () g r(y) v h(x) and h(x) w g r(y)() h r(g r(y)) v x:Combining the two equivalences yields therefore:g(h(x)) w y () h r(g r(y)) v x;which shows by (GC1) that (h r � g r) is the reverse function of (g � h).Consider now property (ii) and assume (guh)(x) w y. By the distributivity of the meetu we obtain: g(x) w y and h(x) w y:Hence, applying (GC1) yields: g r(y) v x and h r(y) v x:Therefore also: (g r t h r)(y) = g r(y)t h r(y) v xwhich shows that (g r t h r) is the reverse function of (g u h). 2Example: Table 4.1 shows the de�nition of the reverse
ow functions for CCP. By the t-distributivity of the reverse functions, it is su�cient to de�ne f rn for only the base elementsin the lattice Lk. For each element [v1 = c1; : : : ; vl = cl] that is obtained as a �nite joinover base elements the reverse function value results as f r([v1 = c1; : : : ; vl = cl]) = f r([v1 =c1]) t : : : t f r([vl = cl]). The reverse function value f rn ([vi=c]) denotes the least latticeelement, if one exists, that must hold on entry of node n in order for variable vi to havethe constant value c on exit of n. If f rn ([vi=c]) = ?, the trivial value ? is su�cient onentry of node n (i.e., variable vi always has value c on exit). For example, f rn ([vi=c]) = ?if node n contains the assignment vi := c. The value f rn ([vi=c]) = > indicates that thereexists no entry value which would cause variable vi to have the value c on exit. The valuef rn ([vi=c]) = > results, for example, if node n contains a constant assignment to variablevi but the assigned constant value di�ers from c.

40statement at node n reverse
ow function f rn ([vi = c1])constant assignment vj :=c2 f rn ([vi=c1]) = 8>><>>: ? if i=j and c1=c2> if i=j and c1 6=c2[vi=c1] otherwisecopy: vj :=vl f rn ([vi=c1]) = 8<: [vl=c1] if i=j[vi=c1] otherwiseexpr. assignment vj := expr. f rn ([vi=c1]) = 8<: > if i=j[vi=c1] otherwiseread(vj) f rn ([vi=c1]) = 8<: > if i=j[vi=c1] otherwiseTable 4.1: Reverse
ow function for CCP.The following theorem states the rules that are used to translate and propagate queriesby reversing the data
ow at each node. The operator ^ denotes boolean conjunction.Theorem 4.1 (Query Propagation) LetD = (L; F) be a u-distributive data
ow frame-work and let q =< y; n > be a data
ow query in D. The following equivalences hold forthe propagation of query q:(i) < ?; n > () true< >; n > () false(ii) For each procedure p< y; entryp > () 8>>><>>>: false if p has no call sites^call(m)=p < y;m > otherwise(iii) For a non-entry node n:

41< y; n > () ^m2pred(n)8><>: < f rm(y); m > if m is not a call site< �r(entryp;exitp)(y); m > if call(m) = pProof: By de�nition the query can be rewritten based on the solution de�nition X(n)from equation system 4.2 as: < y; n >() y v X(n). Thus, rule (i) follows immediately.Consider the remaining two rules:(ii) If n = entryp and p has no call sites then rule (ii) follows immediately. Otherwise,< y; entryp > () y v X(entryp)() y v ucall(m)=pX(m)() y v X(m) for all m with call(m) = p() ^call(m)=p < y;m >;which implies rule (ii).(3) If n is a non-entry node we obtain:< y; n > () y v um2pred(n)8><>: fm(X(m)) if m is not call site�(entryq ;exitq)(X(m)) if call(m) = q() (y v fm(X(m)) for all m 2 pred(n) that are not call sites andy v �(entryq ;exitq)(X(m)) for all m 2 pred(n) with call(m) = q.By applying condition (GC1) we obtain:() (f rm(y) v X(m) for all m 2 pred(n) that are not call sites and�r(entryq ;exitq)(y) v X(m) for all m 2 pred(n) with call(m) = q.() 8>>><>>>: ^m2pred(n) < f rm(y); m > if m is not a call site and^m2pred(n) < �r(entryq ;exitq)(y); m > if call(m) = q.Clearly, it is impossible that y v X(n) if there exists a predecessor m 2 pred(n), such thatf rm(y) = > or �r(entryq ;exitq)(y) = >. Furthermore, the monotonicity of the functions f rm and�r(entryq ;exitq) implies that y v X(n) if for all m 2 pred(n): f rm(y) = ? or �r(entryq ;exitq)(y) =?. Thus, rule (iii) follows. 2.The query propagation as described by Theorem 4.1 requires the application of reversefunctions. If node m is not a call site, the reverse function f rm can be determined by

42locally inspecting the
ow function fm. Otherwise, if node m calls a procedure p thereverse summary function �r(entryp ;exitp) is determined. The next section presents the querypropagation algorithm assuming that all necessary reverse summary functions are available.The determination of reverse summary functions is discussed in Section 4.1.2.4.1.1 A Query Propagation AlgorithmThe demand-driven algorithm that implements the query propagation is shown in Figure4.3. Procedure Query takes as input a query q and returns the answer for q after a �nitenumber of applications of the propagation rules. Procedure Query uses a worklist that isinitialized with the node n from the input query q =< y; n >. A variable query[n] is usedat each node n to store the queries raised at n. At any step during the computation, theanswer to q is equivalent to the boolean conjunction of the answers to the queries currentlyin the worklist. During each step a node n is removed from the worklist and the query< query[n]; n > is translated according to the propagation rule that applies to node n.The new queries resulting from this translation are merged with the previous queries atthe respective nodes. A node n from a newly generated query is added to the worklistunless the newly generated query was already previously raised at node n (lines 9-10 and17-18). Note that procedure Query terminates immediately after a query evaluates to false.If a query evaluates to false, it is not necessary to evaluate all remaining queries in theworklist since the overall answer to the input query must also be false. Thus, procedureQuery can terminate early and the remaining contents of the worklist are simply discarded.Otherwise, if no query evaluates to false, procedure Query terminates with the answer trueif the worklist is exhausted and all queries have evaluated to true.To determine the complexity of the query algorithm, the number of join operations andreverse function applications is counted. A join/reverse function application is performedat a node n in lines 9, 14 and 17 only if the query at a successor of n has changed (or atthe entry node of a procedure p if n is a call site of p), which can happen O(height(L))times. Hence, procedure Query requires in the worst case O(height(L)�jN j) join operationsand/or reverse function applications.If the program under analysis consists of only a single procedure (the intraproceduralcase), procedure Query provides a complete implementation of the demand-driven data
ow analysis. The interprocedural case requires an e�cient method to compute the reversesummary functions.4.1.2 Reverse Summary FunctionsThis section discusses an algorithm to compute individual reverse summary function val-ues in order to extend procedure Query to the interprocedural case. A straightforwardbut ine�cient way to compute reverse summary functions is to �rst determine all originalsummary functions by evaluating the summary function equation system 4.1 from Figure

43Procedure Query(y; n)input: a lattice element y 2 L and a node noutput: the answer true or false to the query < y; n >begin:1. for each m 2 N do query[m] ?2. query[n] y; worklist fng;3. while worklist 6= ; do4. remove a node m from worklist;5. case m = entrymain:6. if query[m] = ? return(false);7. case m = entryq for some procedure q:8. for each call site m0 such that call(m0) = q do9. query[m0] query[m0]t query[m];10. if query[m0] changed then add m0 to worklist;11. endfor;12. otherwise:13. for each m0 2 pred(m) do14. new 8><>: f rm0 (query[m]) if m0 is not a call site�r(entryq;exitq)(query[m]) if call(m0)=q15. if (new = >) then return(false)16. else if (new = ?) then17. query[m0] query[m0] t new;18. if query[m0] changed then add m0 to worklist;19. endif;20. endfor;21. endwhile;22. return(true);end Figure 4.3: Generic demand-driven analysis procedure.

44Procedure Compute�r(y; p)input: a lattice element y 2 L and a procedure poutput: the reverse summary function value �r(entryp;exitp)(y)begin1. if M [exitp; y] = y then /* result previously computed */2. return(M [entryp; y]);3 worklist f(exitp; y)g; M [exitp; y] = y;4. while worklist 6= ; do5. remove a pair (n; x) from worklist and let z M [n; x];6. case n is a call site and call(n) = q:7. if M [exitq; z] = z then8. for each m 2 pred(n) do9. Propagate(m;x;M [entryq; z]);10. else /* trigger computation of �r(entryq;exitq)(z) */11. M [exitq; z] z and add (exitq ; z) to worklist;12. case n = entryq for some procedure q:/* Propagate z to call sites if needed */13. for each call site m such that call(m) = q and M [m;x0] = x for some x0 do14. for each m0 2 pred(m) do Propagate(m0; x0; z);15. otherwise:/* n is not a call site and not an entry node */16. for each m 2 pred(n) do Propagate(m;x; f rn (z));17. endwhile;18. return(M [entryp; y]);end /* propagate new to M [n; y] */Procedure Propagate(n; y; new)input: a node n, lattice elements y and newbegin1. M [n; y] M [n; y]t new;2. if M [n; y] changed then add (n; y) to worklist;end Figure 4.4: Procedure Compute�r to compute reverse summary functions.

454.1 and then reverse each function. This section describes a more e�cient algorithm thatdirectly computes the reverse functions. This algorithm mirrors the operations performedin Sharir and Pnueli's worklist algorithm for evaluating equation system 4.1 [SP81], exceptthat summary functions are computed in reverse direction. Assuming that (i) the cost of ameet and a join are same and that (ii) the cost of
ow function application and of reverse
ow function application are the same, the algorithm presented in this section has the sameworst case complexity as Sharir and Pnueli's algorithm for the original summary functions.As in Sharir and Pnueli's algorithm the tabulation strategy requires the lattice to be �nite.First, an inductive de�nition of the reverse summary functions is derived from equationsystem 4.1. Reversing the order in which summary functions are constructed and applyingLemma 4.1 yields the following de�nition of the reverse summary function �r(entryp;exitp) foreach procedure p:Reverse summary function equations:�r(exitp;exitp)(y) = y�r(n;exitp)(y)= tm2succ(n)8><>: f rm � �r(m;exitp)(y) if m is not call site�r(entryq ;exitq) � �r(m;exitp)(y) if call(m) = q (4:3)Figure 4.4 shows an iterative worklist algorithm Compute�r that, if invoked with a pair(p; y), returns the value �r(entryp ;exitp)(y) after a partial evaluation of the reverse equationsystem 4.3. Individual function values are stored in a table M : N � L 7! L such thatM [n; y] = �r(n;exitp)(y). The table is initialized with the value ? and its contents areassumed to be preserved between subsequent calls to procedure Compute�r. Thus, resultsof previous calls are re-used and the table is incrementally computed during a sequenceof calls. After calling Compute�r with a pair (p; y) a worklist is initialized with the pair(exitp; y). The contents of the worklist indicate the table entries whose values have changedbut the new values have not yet been propagated. During each step a pair is removed fromthe worklist, its new value is determined and all other entries whose values might havechanged as a result are added to the worklist.Consider the cost of k calls to Compute�r. Storing the table M requires space forjN j � jLj lattice elements. To determine the time complexity consider the number of joinoperations (in procedure Propagate) and of reverse
ow function applications (at the callto Propagate in line 16). The loop in lines 4-17 is executed O(height(L)� jLj � jN j) times,which is the maximal number of times the lattice value of a table entry can be raised,i.e., the maximal number of additions to the worklist. In the worst case, the currentlyinspected node n is a procedure entry node. Processing a procedure entry node results incalls to Propagate for each predecessor of a call site for that procedure. Thus, the k callsto Compute�r require in the worst case O(max(k; (MaxCall� height(L)� jLj � jN j)) joinand/or reverse function applications, where MaxCall is the maximal number of call sites

46Procedure EnterCache(cache; q; val)input: cache, query q =< y; n >, query result val 2 ftrue; falseg,and the set of nodes S at which the propagation terminated.output: updated cachebegin1. if val = false `bf then2. eliminte all nodes from S at which the propagation terminated with true;3. endif4. for each node m reachable from some node in S do5. if query[m] w ? /* query[m] v ? serves as visited
ag */6. enter cache[m; query[m]] = false;7. endif8y. endforend Figure 4.5: Procedure EnterCache for updating the cache.calling a single procedure.Assuming that each access to a reverse summary function in procedure Query is replacedby an appropriate call to Compute�r, the total cost of procedure Query is O(MaxCall �height(L) � jLj � jN j) join and reverse node
ow function applications and O(jN j � jLj)space to store lattice elements.4.1.3 CachingThis section discusses a variant of procedure Query that uses a cache memory to improvethe performance of the query evaluation over a sequence of queries. Processing a sequenceof k queries requires k separate invocations of procedure Query, which may result in therepeated evaluation of the same intermediate queries. Repeated query evaluation can beavoided by maintaining a cache. Enhancing procedure Query to include caching requiresonly minor extensions. The cache consists of entries cache[n; y] for each node n and latticeelement y. The entry cache[n; y] contains the previous result, if any, of evaluating the query< y; n >. Otherwise, if query < y; n > has not yet been evaluated, the entry cache[n; y] ismarked empty.The query propagation is modi�ed such that each time before a newly generated queryq is added to the worklist, the cache is consulted. The query q is added to the worklistonly if the answer for q is not found in the cache. Entries are added to the cache after eachterminated query evaluation as described in procedure EnterCache shown in Figure 4.5.

47First, consider the case that the query evaluation terminates early with a false answer.Let n be the node at which the propagation terminates with false. Recall, that during thepropagation a query is translated into an equivalent conjunction of queries at predecessornodes. Hence, a false evaluation for the query at node n implies a false value for thequeries that were generated at nodes that are reachable from n, Thus, the cache entrycache[m; query[m]] = false is added (line 4) at all reachable nodes m. Note that at thispoint the entries cache[m; z] for all elements z such that z w query[m], could also be set tofalse. The query propagation may have traversed additional paths that ended in a node witha true answer. However, since the query propagation terminated early with a false answerit cannot be safely assumed that true is indeed the �nal answer along the true terminatingpaths. Thus, no cache entries other than the false entries are added to the cache.Now consider the case that the query evaluation completes with an exhausted worklistand a true answer along each traversed path. The fact that all traversed paths lead to atrue evaluation implies that the query value at each visited node must be true. Thus, thecache is updated at every visited node m such that: cache[m; query[m]] = true (line 6). Inaddition, all entries cache[n; z] for z v query[n] can also be set to true.The inclusion of caching has the e�ect of incrementally building the data
ow solutionduring a sequence of calls to Query. Caching does not increase the time or space complexityof procedure Query. Storing the cache requires O(jN j � jLj) space and updating the cachecan at most double the amount of work performed during the query evaluation. Moreover,the worst case complexity of k invocations of Query with result caching is the same for anynumber k, where 1 � k � jLj � jN j and jLj � jN j is the number of distinct queries.4.2 Procedures with ParametersThe demand-driven analysis concepts developed in the previous sections have not consid-ered parameter binding mechanisms at call sites. When executing a procedure call, thevalue of each actual parameter in the address space of the calling procedure is bound to acorresponding formal parameter in the address space of the called procedure. To handleprocedures with parameters, these bindings among variable values must also be re
ectedduring data
ow analysis. In the same way as values of actual parameters are bound toformal procedure parameters during execution, the lattice elements that refer to actualparameters are bound to the corresponding lattice elements for formal parameters duringdata
ow analysis. This section shows how to re�ne Theorem 4.1 and the equation system4.3 for computing reverse summary functions to correctly account for parameter bindingsat procedure calls.

484.2.1 Binding FunctionsAs programs with global and local scoping are considered, the address space Addr(p) of aprocedure p is de�ned as:Addr(p) = Global [Formal(p)[Local(p);where Global is the set of global variables, Formal(p) is the set of formal parameters ofprocedure p and Local(p) is the set of variables local to p. The set Formal(p) of formalparameters is further divided into a set Formalinout(p) of reference parameters and a setFormalin(p) of value parameters, i.e.:Formal(p) = Formalinout(p)[Formalin(p)Binding functions are de�ned to model how the values of variables in the address spaceof a calling procedure are bound to variables in the address space of a called procedure. Abinding function bs is de�ned for each call site s to map the value of a variable v from thecalling procedure to the set of variables bs(v) in the called procedure to which the value ofv is bound at s. To analyze the data
ow when control returns to a calling procedure, itwill also be necessary to consider the reverse binding b�1s that binds a value from the calledprocedure to the corresponding variable in the calling procedure.De�nition 4.3 (Binding functions) Let s 2 call(q) be a call site in a procedure p thatpasses the actual parameters (ap1; : : :apj) to the formal parameters (fp1; : : :fpj) in proce-dure q. Let v 2 Addr(p) and let w 2 Addr(q). The binding function bs for call site s isde�ned as: bs(fvg) = (fvg \Global)[8><>: ffpig if v = api; otherwiseThe reverse binding function b�1s for s is de�ned as:b�1s (fwg) = (fwg \ Global) [8><>: fapig if w = fpi and fpi 2 Formalinout(q); otherwiseThe bindings for a set of variables is computed as bs(V) = Sv2V bs(fvg) and analogouslyb�1s (V) = Sv2V b�1s (fvg). Note that the reverse binding function b�1s only binds the values ofglobal variables and reference parameters to variables in the calling procedures. The valuesof local variables or value parameters are no longer accessible after control has returned tothe calling procedure.Example: Consider the program in Figure 4.6. Variables a and b are global, and procedurep has one reference parameter f and one value parameter g. The bindings of variables at

49
entry

exit

1

2

3

4

5

a:=1

procedure main

a:=1;

end
end

begin begin entry

exit

7

6

8

9

call p(a,b);

call p(a,b)

b:=2; write(f);
a:=g;

b:=2 write(f)

a:=g

procedure p(inout: f,in: g) main p(inout:f,in:g)

Figure 4.6: Program with reference and value parameter passing and its ICFG.the call site at node 4 in procedure main are: b4(fag) = fa; fg and b4(fbg) = fb; gg. Thereverse bindings are: b�14 (ffg) = b�14 (fag) = fag, b�1s (fbg) = fbg and b�14 (fgg) = ;.Binding functions are de�ned over sets of variables. However, data
ow analysis requiresthe binding of lattice elements at call sites. Thus, for each data
ow problem it is assumedthat two functions ~bs and ~b�1s are de�ned to be the natural counterparts of bs and b�1sthat apply to the lattice elements in the data
ow problem. Hence, function ~bs maps alattice element from the calling procedure to a corresponding lattice element in the calledprocedure according to the value binding described by function bs. Analogously, function~b�1s maps lattice elements from the called procedure to the corresponding lattice element inthe calling procedure. For a node n that is not a call site the binding functions bn; b�1n ;~bnand ~b�1n are simply the identity function.Example: Consider the binding functions in CCP. For each lattice base element of theform [vi = c] the two functions are de�ned as:~bs([vi=c]) = tvj2bs(fvig) [vj=c]~b�1s ([vi = c]) = 8><>: [vj = c] if fvjg = b�1s (fvig)? otherwiseBased on the binding functions ~bs and ~b�1s , the demand-driven analysis framework can bere�ned to handle programs with reference and value parameters. Re�ning the framework

50Re�ned reverse summary equations using binding funcions:�r(exitp;exitp)(y) = y�r(n;exitp)(y)= tm2succ(n)8>><>>: f rm � �r(m;exitp)(y) if m is not a call site(~b�1m � �r(entryq ;exitq) � ~bm) � �r(m;exitp)(y) if call(m) = q(i)Re�ned propagation rules:(i) < ?; n > () true< >; n > () false(ii) < y; entryp > () 8>>><>>>: false if p has no call sites or ~b�1m (y) = ;^call(m)=p < ~b�1m (y); m > otherwise(iii) < y; n > () ^m2pred(n)8>><>>: < f rm(y); m > if m is not a call site n< (~b�1m � �r(entryp;exitp) � ~bm)(y); m > if call(m) = q(ii)Figure 4.7: Analysis re�nements for reference and value parameter passing.

51requires re�nement of the query propagation rules from Theorem 4.1 and re�nement ofthe equation system 4.3 for the reverse summary functions by appropriately incorporating
ow binding functions when propagating data
ow information between procedures. Theresulting re�ned equations are shown in Figure 4.7.4.2.2 AliasingThe previous section discussed the necessity for re
ecting the bindings among variables thatresult from parameter passing during the analysis. The presence of reference parameterscauses an additional complication for data
ow analysis by introducing the potential ofaliasing.Two variables x and y are aliases in a procedure p if x and y may refer to the samelocation during some invocation of p. Reference parameters may introduce aliases throughthe binding mechanisms between actual and formal parameters. There are two ways inwhich an alias pair may be created by reference parameters. First, if a global variable x ispassed to a formal parameter f then the alias pair (x; f) is created in the called procedure.Second, passing the same variable to two distinct formal parameters f1 and f2 creates thealias pair (f1; f2) in the called procedure.Example: In Figure 4.6, the call at node 4 in procedure main passes the global variable ato the reference parameter f creating the alias pair (a; f) in procedure p.Ignoring the potential of aliasing may lead to unsafe query responses. Consider again Figure4.6 and the example of CCP. If it is not known that (f; a) is an alias pair in procedure pthen the re-de�nition of the value of f at node 7 through the alias a will be missed. As aconsequence, variable f would be incorrectly reported to still have the value 1 at the writestatement in node 8 although the value of f at node 8 is actually 2 through the assignmentof the alias a at node 7.This section discusses how separately computed information about the potential aliasesin a program is used to re�ne the query propagation and ensure safe query responses. Aliasinformation is typically computed in form of the two summary relations MayAlias(p) andMustAlias(p) for each procedure p [Coo85]. A pair (x; y) is contained in MayAlias(p) ifx is aliased to y in some invocation of p. A pair (x; y) is in MustAlias(p) if x is aliasedto y in all invocations of p. The sets MayAlias(x; p) = fy j (x; y) 2 MayAlias(p)g andMustAlias(x; p) = fy j (x; y) 2 MustAlias(p)g denote the sets of may aliases and mustaliases of variable x, respectively. Furthermore, for a node n contained in a procedure p:MayAlias(x; n) =MayAlias(x; p) and MustAlias(x; n) = MustAlias(x; p).The precise determination of alias sets is an NP-complete problem [Mye81]. There-fore, alias sets are necessarily approximative in practice. The most conservative but safe

52approximation of the two alias sets are as follows.MayAlias(x; p) = fxg [Global [Formal(p)MustAlias(x; p) = fxgMore precise estimates of the actual alias relations in a program are determined throughadditional analysis. The computation of alias relations induced by reference parameters canbe modeled as a data
ow problem over a program's call graph [Coo85]. Moreover, the data
ow problem to compute MayAlias(p) and MustAlias(p) is a distributive problem with a�nite lattice. Thus, the demand-driven analysis concepts from the previous sections canbe employed to compute the alias pairs as needed during the query propagation. Alterna-tively, an exhaustive algorithm for computing the alias sets that iterates over the program'scall graph may be used to compute the potential alias pairs for all procedures prior tothe analysis [Coo85]. The analysis re�nements presented in this section assume that thesets MayAlias(p) and MustAlias(p) are available without making any assumptions on theiraccuracy or on the method used to compute them.Consider now how the alias information is used to re�ne CCP analysis. A variable x isconsidered a constant at a node n if either x or one of x's must aliases is assigned a constantvalue. A potential constant value of variable x is assumed to be killed at a node n if xor any of x's may aliases is assigned a non-constant expression. Table 4.2 and Table 4.3display the re�ned
ow functions and the re�ned reverse
ow functions for CCP.Example: Consider again Figure 4.6 and the
ow function for node 7 in procedure p. There�ned function results as: f7(x)a = f7(x)f = xg = 2 since f is a must alias of a. Thereverse function at node 7 is de�ned as: f r7 ([f = c]) = f r7 ([a = c]) = [g = c].The analysis re�nements described in this section are also applicable and safe if aliasingresults from sources other than reference parameters. Other sources of aliasing in a programinclude pointer variables and array references. For example, the execution of the statementa := &b in a C program creates the alias pair (�a; b). Several techniques have been developedto approximate alias information in programs with pointer variables [LH88, CWZ90, LR92,CBC93, Deu94, EGH94, WL95]. The results of these alias analyses can be used to establishthe two relations MayAlias and MustAlias and enable the re�nements described in thissection.4.3 Parallelizing Demand-Driven Data Flow AnalysesAs an additional bene�t, the demand-driven analysis concepts developed in this thesisprovide a novel approach to the parallelization of data
ow analysis. Unlike standardexhaustive data
ow analysis algorithms, the query propagation algorithm for demand-driven analysis is naturally parallelizable. Since individual queries are propagated through

53statement at node n re�ned
ow function fn(x)j, where x = (x1; : : : ; xk)vi := c fn(x)j = 8>>><>>>: c if vj 2MustAlias(vi; n)xj u c if vj2(MayAlias(vi; n)�MustAlias(vi; n))xj otherwisevi := vl fn(x)j = 8>>><>>>: xl if vj 2 MustAlias(vi; n)xj u xl if vj2(MayAlias(vi; n)�MustAlias(vi; n))xj otherwiseread(vi) orvi := expr: fn(x)j = 8<: ? if vj 2MayAlias(vi; n)xj otherwiseTable 4.2: Re�ned
ow functions for CCP.statement at node n re�ned reverse
ow function f rnvj := c2 f rn ([vi=c1]) = 8>>><>>>: ? if vi 2 MustAlias(vj ; n) and c1 = c2> if vi2MayAlias(vj ; n) and c1 6= c2[vi=c1] otherwisevj := vl f rn ([vi=c1]) = 8>>><>>>: [vl=c1] if vi 2MustAlias(vj; n)[vi=c1, vl=c1] if vi2(MayAlias(vj; n)�MustAlias(vj ; n))[vi=c1] otherwiseread(vj) orvj := expr: f rn ([vi=c1]) = 8<: > if vi2MayAlias(vj; n)[vi=c1] otherwiseTable 4.3: Re�ned reverse
ow functions for CCP.

54the program independently, the propagation of several queries can be performed in parallel.Thus, a parallelization of the demand-driven analysis algorithm results naturally by simplydistributing the set of generated queries among the available processors.Several parallel versions of the demand-driven algorithm can be implemented based ondi�erent degrees of information sharing among the participating processors. This sectionconsiders three di�erent parallelization strategies.� No Cache/Private Cache ModelIn the �rst strategy the participating processors operate in isolation either using a privatecache or using no cache. This parallelization strategy is straightforward and requires nocommunication among the processors. However, since the participating processors operatein isolation no information can be shared. Hence, the same intermediate query results maybe computed by several processors.Consider the estimated parallel analysis time if no cache is used based on p processorsand a program with q queries assuming that each processor is assigned d qpe queries. Letav(T 1d) be the average demand-driven single-query analysis time over all queries in a programusing no cache. The average parallel analysis time Pav(p; q) without caching for q queriesusing p processes results as: Pav(p; q) = q � av(T 1d)p :Note, that Pav is an optimistic estimate that assumes perfect load balancing among theprocessors. To determine a pessimistic worst case estimate of the parallel analysis time, letmax(T 1d) be the maximal demand-driven single-query analysis time over all queries in theprogram. The maximal parallel analysis time Pmax(p; q) without caching for q queries andp processes results as: Pmax(p; q) = q �max(T 1d)p :Pmax is a worst case estimate that can only result if a single processor is assigned onlyqueries that require the maximum single-query analysis time.Let Tseq be the analysis time for the program if a sequential algorithm is used. Theaverage speedup Sav(p; q) of the parallel execution over the sequential analysis is given by:Sav(p; q) = TseqPav(p; q):The corresponding guaranteed least speedup Smin(p; q) that results is given by:Smin(p; q) = TseqPmax(p; q):Note that for a �xed number of queries the speedup grows continuously with the numberof processors and the number of queries.

55� Shared Cache ModelThe second parallelization strategy avoids duplication of computed results through the useof a shared cache. The participating processors communicate through the shared cache andcooperatively process the complete query sequence. The use of a shared cache is transparentin each processor (except for possible access delays). Importantly, the cache managementis particularly simple. The analysis results determined by di�erent processors for the samecache entry must be identical since all processors analyze the same program. Thus, therecannot be contention for read and/or write accesses to the cache.The average parallel execution time that results if a shared cache is used can be estimatedas: Pav(p; q) = q � av(T 1d=c)pwhere T 1d=c is the single-query analysis time based on using a cache. Note that the averagesingle-query analysis time over a sequence of queries, if caching is used, may vary with thelength of the sequence. A preliminary experimental examination of the average single-queryanalysis time for query sequences of di�erent lengths revealed no clear correlation betweensequence length and average single-query analysis time.� Hybrid Cache ModelFinally, there is also the possibility of a hybrid cache model, where in addition to a sharedcache, also a private cache is maintained in each processor. Access to the shared cache isonly necessary as a result of a cache miss in the private cache. Again, the cache managementis simple since the values in each private cache and the shared cache must be identical ifthey are present in both caches.4.4 Non-Distributive FrameworksThe demand-driven framework assumes that data
ow problems are distributive. Thedistributivity of the
ow functions in the problem is necessary to ensure that the querypropagation rules from Theorem 4.1 yield as precise information as the original exhaustiveanalysis does. This section considers demand-driven analysis for data
ow problems withnon-distributive
ow functions. First, the developed framework is shown to be applicableto non-distributive data
ow problems but at the cost of reduced precision. Section 4.3.2discusses a two-phase framework variation that provides precise query responses for non-distributive problems.4.4.1 Approximate Demand-Driven AnalysisIf applied to distributive data
ow problems, the query propagation rules from Theorem4.1 are precise and decidable. Given a data
ow query q =< y; n >, query q evaluates

56
(−−| , −−| , −−|)

(−−| , 1, 4)(−−| , 2, 3)

a := b +cFigure 4.8: Expression node in constant propagation.to true or false after a �nite number of applications and q evaluates to true if and only ifelement y is part of the solution at node n, i.e., if and only if y v X(n). If the originalanalysis framework is monotone but not distributive, information may be lost during thequery propagation. Speci�cally, the information loss occurs during the reversal of non-distributive
ow functions. Recall the relationship (GC1) between a distributive functionf and its reverse function f r:y v f(x) () f r(y) v x: (GC1)If the function f is monotone but not distributive, then the relation between f and itsreverse f r is weaker than in the distributive case; only the following implication holds:y v f(x) =) f r(y) v x:As a result of this weaker relationship the query propagation rules no longer provide equiv-alent translations. Based on the weaker set of propagation rules that results in the presenceof non-distributive functions h, queries are only semi-decidable. If a query q =< y; n >evaluates to false then y 6v X(n). However, nothing can be said if q evaluates to true.If appropriate worst case assumptions are made for true responses, the query algorithmcan still be used to provide approximate information in the presence of non-distributive
ow functions.Example: To illustrate the loss of precision that results from non-distributive
ow functionsconsider the example of constant propagation. Unlike copy constant propagation, regularconstant propagation includes the evaluation of arithmetic expressions. Consider the
owfunction for the assignment statement shown in Figure 4.8. Assume there are only threevariables in the program, such that each lattice element is a triple (xa; xb; xc) with onecomponent for each of the three variables a, b, and c. The
ow function fcp for constant

57propagation associated with the assignment is of the form:fcp(xa; xb; xc)a = 8><>: xb + xc if both xb and xc denote constant values? otherwisefcp(xa; xb; xc)b = xbfcp(xa; xb; xc)c = xcNote that fcp is not distributive. To illustrate the non-distributivity consider the situationdepicted in Figure 4.8, where the element (?; 2; 3) is propagated to the node along the leftincoming branch and the element (?; 1; 4) is propagated along the right incoming branch.Applying the
ow function fcp to each incoming value in isolation yields fcp(?; 2; 3;) =(5; 2; 3) and fcp(?; 1; 4;) = (5; 1; 4). Thus, with respect to each branch the lattice value onexit of the node indicates correctly that variable a has the constant value 5: fcp(?; 2; 3;)ufcp(?; 1; 4;) = (5;?;?). However, if the information that reaches the node along the twoincoming paths is merged prior to applying the
ow function, it will not be discovered thatvariable a has value 5: fcp((?; 2; 3;)u (?; 1; 4;)) = fcp(?;?;?) = (?;?;?). Hence, fcp isnot distributive.Now consider the reverse function f rcp if applied to the lattice element [a = 5] denotingthat a has the constant value 5. By de�nition f rcp([a = 5]) is the meet over all elements(xa; xb; xc) such that f rcp(xa; xb; xc) v [a = 5]. There are in�nitely many values for variablesb and c such that the execution of the assignment a := b + c yields the constant value 5.Since the meet over an in�nite set is by de�nition ?, it follows that f rcp([a = 5]) = (?;?;?).4.4.2 Framework VariationThis section presents a framework variation that enables precise query evaluation even inthe presence of non-distributive functions. Theoretically, non-distributivity in the functionspace could be handled by making the analysis distributive as described in [CC79]. Atadditional analysis cost, a non-distributive framework can be transformed into a distributiveone by operating on sets of lattice elements as opposed to operating on individual latticeelements. In this formulation the meet operator corresponds to a union of lattice elementsrather than some form of merge operation. The union operation ensures that no informationis lost and that the
ow functions are distributive. In the example from Figure 4.8 the meetof the two lattice elements (?; 2; 3) and (?; 1; 4) would be the collection f(?; 2; 3); (?; 1; 4)g.If the
ow function fcp for the assignment statement is applied to this collection, the factthat a is a constant after the assignment will be recognized: fcp(f(?; 2; 3); (?; 1; 4)g) =f(5; 2; 3); (5; 1; 4)g. However, the expansion of the original lattice into a powerset structurecan quickly result in an exponential explosion during the analysis, rendering this approachtoo costly to be of practical use.

58An alternative more practical strategy to deal with non-distributivity results by slightlydeparting from concepts of precise analysis reversal. The loss of information as a result offunction reversal can always be recognized. The �rst time information is lost during thepropagation of a query q =< y; n > through a node n happens only if the relationship(GC2) that de�nes a semi-dual Galois connection between fn and its reverse f rn is violatedsuch that: fn � f rn (y) 6v y (4:4)Consider for example the constant propagation function fcp for the assignment statementfrom Figure 4.8. For the element y = [a = c]: fcp(f rcp([a = c])) = fcp((?;?;?)) = (?;?;?),which violates (GC2).If (GC2) is violated at a node n, information has been lost and the query q =< y; n >cannot safely be propagated across the node. Speci�cally, it is no longer possible to translateq into an equivalent set of new queries at preceding nodes. However, it may be possible toguess the new queries at preceding nodes that would be su�cient to provide an answer forq. Guessing su�cient queries di�ers from translating a query into equivalent queries. Theguessed queries are su�cient if, assuming an answer for the guessed queries was available,an answer for q could be found. However, the relationship between the answers for theguessed queries and the answer for q is left unspeci�ed. To illustrate this strategy consideragain the assignment statement in constant propagation:a := b+ cAssume that the query q =< [a = 0]; n > is raised on exit of this statement. Since the
ow function for the statement is not distributive, the query cannot be translated into anequivalent new query for the entry of the statement. However, it is possible to guess asu�cient query. The answer for q results directly once it has been determined whether thetwo operands b are c are constants. Thus, the new query generated at the predecessors mof n is q0 =< [b =?; c =?]; m >. Note that the new query is merely approximate since nospeci�c constant values for variables b and c can be established. Thus, the lattice element[b =?; c =?] expresses that variables b and c have unknown constant values. After all guessedqueries have been identi�ed during the backward propagation, an additional analysis phaseis performed in a forward direction to determine the actual constant values for the identi�edqueries. Thus, if b and c are indeed constants, the second phase provides their values andthe original query q can be resolved.The complete two-phase algorithm is shown in procedure IsConstant shown in Figure 4.9.The �rst phase is a backward analysis during which all queries that are guessed as su�cientare marked. The marked queries describe the set of data
ow queries whose answers providean answer for the original input query. Procedure Mark CP implements the �rst markingphase in an iterative worklist algorithm that terminates when no more queries can bemarked as su�cient. If during the marking phase a procedure call is encountered, marking

59Procedure IsConstant (v; n)input: a variable v and a node noutput: if v is constant at n then constant value c, otherwise falsebeginMark CP (v; n); /* Phase 1 */Perform constant propagation over only the marked portion of the program; /* Phase 2: */endProcedure Mark CP (v; n)input: a variable v and a node nbegin1. for each m 2 N do mark[m] ;;2. mark[n] fvg; worklist fng;3. while worklist 6= ; do4. remove a node m from worklist;5. case m = entrymain:6. if mark[m] not empty then return(false);7. case m = entryq for some procedure q:8. for each call site m0 such that call(m0) = q do9. add mark[m] to mark[m0];10. if mark[m0] changed then add m0 to worklist;11. endfor;12. otherwise:13. for each m0 2 pred(m) do14. if m is a call site and call(m) = q then15. New SummaryMark CP(w; q);16. else if a variable in mark[m] is de�ned at m then17. add variables used at m to mark[m0];18. else19. add mark[m] to mark[m0];20. if mark[m0] changed then add m0 to worklist;21. endfor;22. endwhile;end Figure 4.9: Demand-driven analysis algorithm variation for CP.

60
Procedure SummaryMark CP(v; p)input: a variable v and a procedure pbegin1. if v 2M [exitp; v] then return(M [entryp; v]); /* previously marked already */2. worklist f(exitp; v)g; M [exitp; v] = fvg;3. while worklist 6= ; do4. remove a pair (n;w) from worklist and let X M [n;w];5. case call(n) = q: /* n is a call site */6. for each variable u 2 X do7. if u 2 mark[exitq; u] then for each m 2 pred(n) do8. PropagateMark(m;w;M [entryq; u]);9. else /* trigger marking called procedure */10. M [exitq; u] fug and add (exitq; u) to worklist;11. case n = entryq for some procedure q: /* n is entry node; propagate X to call sites if needed */12. for each call site m such that call(m) = q and w 2M [m;u] for some variable u do13. for each m0 2 pred(m) do PropagateMark(m0; u;X);14. otherwise: /* n is not a call site and not an entry node */15. if w is de�ned at n then New set of variables used at n;16. else New fwg ;17. for each m 2 pred(n) do PropagateMark(m;w;New);18. endwhile;19. return(M [entryp; v]);endProcedure PropagateMark(n; v;New) /* propagate new to mark[n; v] */input: a node n, a variable v and a set of variables Newbegin1. M [n; v] M [n; v][New;2. if M [n; v] changed then add (n; v) to worklist;end Figure 4.10: Procedure SummaryMark called by Mark CP.

61within the called procedure is performed as well by invoking procedure SummaryMark CPshown in Figure 4.10. The second phase consists of subsequently resolving all markedqueries by accordingly combining the identi�ed constant values. Note that this secondphase corresponds to a regular forward constant propagation analysis. However, unlikeexhaustive constant propagation analysis that starts at program entry and propagates allconstant information throughout the entire program, the second phase only propagates theconstants to resolve previously guessed queries by considering only the marked portion ofthe program.This two-phase approach is not limited to constant propagation. The strategy of using apreparatory backward analysis in order to reduce the analysis e�ort of the original forwardanalysis provides a general variation of the demand-driven approach to handle any monotonedata
ow problem. However, the two-phase approach is less e�cient than the direct analysisreversal. In the worst case, the entire program is marked su�cient during the �rst phase, inwhich case the complete exhaustive original analysis would be performed during the secondphase. Thus, if the data
ow problem is distributive the demand-driven approach of choiceis the reversal based analysis framework developed in the previous sections.4.5 Related Work on Demand-Driven AnalysisA number of variations on the notion of demand-driven analysis and the notion of a par-tial backward propagation of information have appeared in the literature. The conceptsof deriving data
ow information by backward propagation of assertions was described us-ing operational semantics by Cousot [Cou81] and later developed and implemented in adebugging system for higher-order functions [Bou93]. The analysis for discovering linkedconditions in programs described in [SMHY93] is also based on backward propagation ofassertions starting from test sites in conditionals.One component of the developed demand-driven approach is the tabulation procedureCompute�r from Figure 4.4 for computing reverse summary function values. ProcedureCompute�r implements the demand-driven evaluation of the relevant equation values ofthe summary function equation system. The algorithm is essentially a reversed version ofSharir and Pnueli's tabulation algorithm [SP81] to compute the original forward summaryfunctions. A similar partial �xed point computation of only relevant equations was alsodescribed in the chaotic iteration algorithms [CC77c] and the minimal function graphs forapplicative programs [JM73].Reverse
ow functions, which are used in the query propagation rules in Theorem 4.1,have previously been discussed in [HL92] to demonstrate that an abstract interpretationmay be performed in either a forward or a backward direction. The relationship betweenforward and backward directions of an analysis was also discussed by Cousot [Cou81].The previous work most closely related to the demand-driven framework developed in

62this thesis are the three approaches to demand-driven interprocedural analysis presented byReps [Rep94] and Reps, Horwitz and Sagiv [RSH94, RHS95, SRH95a]. In the �rst approachby Reps [Rep94], a limited class of data
ow problems, the locally separable problems, areencoded as logic programs. Demand algorithms are then obtained by utilizing fast logicprogram evaluation techniques developed in the logic-programming and deductive-databasecommunities. In a more recent work by Reps et al. [RHS95], the �rst approach is generalizedto a larger class of problems. In this second approach, a data
ow problem is transformedinto a special kind of graph-reachability problem. The graph for the reachability problem,the exploded supergraph, is obtained as an expansion of a program's control
ow graphby including an explicit graphical representation of each node's
ow function. While thesecond approach by Reps, Horwitz and Sagiv [RHS95] is closely related to the demand-driven framework developed in this thesis, there are a number of important di�erences.Unlike the demand-driven approach by Reps, Horwitz and Sagiv, which is a graph basedapproach, this thesis presents a framework that models demand-driven analysis based on�xed point computations. Fixed point computations are well understood and many e�cientalgorithms for computing �xed points are available. A drawback of the graph-reachabilityapproach is the need to construct an exploded supergraph for each data
ow problem to besolved. The size of the exploded supergraph, and therefore also its construction time, canbe substantial. The authors report that during experimentation with the graph-reachabilityanalyzer for CCP, the analyzer ran out of virtual memory for some C programs of about1,300 lines [SRH95b]. In comparison, the representation of the CCP
ow functions usingthe algorithm developed in this chapter requires only a constant number of pointers to thesymbol table entries of the variables de�ned and used at each (intermediate code) statement.A further di�erence from the framework developed in this thesis concerns the applica-bility of the approaches. The graph-reachability approach imposes more restrictions on theclass of problems that can be handled than the approach developed in this thesis. Specif-ically, the graph-reachability approach is limited to the class of distributive problems witha lattice that is a powerset over a �nite domain set. Although distributive functions arealso necessary in the approach developed in this thesis to ensure precise data
ow solu-tions, the developed algorithms still provide approximate information in the presence ofnon-distributive functions. Furthermore, the framework presented in this chapter is lessrestrictive with respect to the lattice structure in that it is applicable to any �nite lattice.Moreover, the restriction to a �nite lattice does not even apply for intraprocedural analyses.Recently, Sagiv, Reps and Horwitz presented a new variation of the graph-reachabilityapproach that uses a two phase algorithm [SRH95a]. This new approach can handle alarger class of distributive data
ow problems than the framework developed in this chapterin that it also permits in�nite lattices if the distributive function space does not containin�nite decreasing chains. This new variation also results in a more compact version of theexploded supergraph for CCP. However for the classical Gen-Kill problems, the size of the

63exploded supergraph is the same as in their previous approach.The utility of demand-driven analysis has also been demonstrated in a number of algo-rithms that have been developed for speci�c analysis problems. Babich and Jazayeri [BJ78]presented a demand-driven algorithm for intraprocedural live variable analysis based onattribute grammars. Strom and Yellin [SY93] presented a demand based analysis for type-state checking. The authors experimentally demonstrate that a goal-directed backwardanalysis is more e�cient than a forward analysis for typestate checking that eagerly col-lects all available information that may or may not be of relevance. Question propagation,a phase in the algorithm for global value numbering [RWZ88], performs a demand-basedbackward search in order to locate redundant expressions. This backward search, like ourquery algorithm, performs the analysis from the points of interest (i.e., the points wherean expression is suspected to be redundant) and it also uses early termination to end thesearch. Blume and Eigenmann presented a demand-driven algorithm for range propagation[BE95]. Range propagation is performed over only the portion of the program that is of rel-evance for the current information request. This relevant portion is extracted in a separateinitial phase in a demand-driven fashion. In procedure cloning [CHK92], procedure clonesare created during the analysis on demand whenever it is found that an additional clone willlead to more accurate information. Cytron and Gershbein [CG93] described an algorithmfor the incremental incorporation of alias information into SSA form. The actual optimiza-tion problem to be performed on the SSA form triggers the expansion of the SSA form toinclude only the necessary alias-information. Similar ideas have also been implemented inthe demand-based expansion algorithm of factored def-def chains [CCF92].

Chapter 5A Demand-Driven Analyzer forGen-Kill ProblemsIn the previous chapter a framework for demand-driven data
ow analysis was presentedbased upon which a generic demand-driven analysis algorithm was developed. It remains toshow that the demand-driven analysis algorithm has e�cient implementations in practice.Since the generic demand-driven algorithm is expressed in very general terms, a straight-forward implementation may not be the most e�cient one for a given data
ow problem. Itmay be possible to improve the algorithm's e�ciency by exploiting the speci�c propertiesof the data
ow problem under consideration.This chapter presents an e�cient specialization of the generic demand-driven algorithmfor Gen-Kill problems. The class of Gen-Kill problems includes the four classical prob-lems REACH (reaching de�nitions), AVAIL (available expressions), LIVE (live variables),and BUSY (very busy expressions). A Gen-Kill problem is characterized by algebraicallysimple
ow functions that allow for e�cient implementations of exhaustive analyses basedon bit vectors. This chapter demonstrates that characteristics of Gen-Kill problems alsoenable particularly e�cient implementations of demand-driven analysis framework. It willbe shown that specializing the demand-driven framework to the class of Gen-Kill problemsresults in a signi�cant reduction of the asymptotic cost of the demand-driven algorithm.To demonstrate the practicality of the specialized Gen-Kill framework, an experimentalevaluation of a demand-driven REACH analyzer is presented. The demand-driven REACHanalyzer is evaluated in the context of computing du-chains in a program. The computa-tion of du-chains is required for most data
ow applications in optimizations and softwareengineering tools. A du-chain connects a program point that de�nes a variable with a pointthat uses the de�ned value.The demand-driven REACH analyzer was implemented along with a standard exhaus-tive analyzer as part of an experimental system. Experimental results are presented fortwo versions of the demand-driven analyzer: a caching version that uses a cache memory to64

65store intermediate results for fast reuse, and a non-caching version that does not store inter-mediate results. Experimentation was performed to compare the performance of computingdu-chains for a program using the caching and non-caching versions of the demand-drivenanalyzer and the exhaustive analyzer.This chapter is organized as follows. The class of Gen-Kill problems is de�ned in Section5.1. Section 5.2 presents the specialization of the demand-driven framework for Gen-Killproblems and discusses its asymptotic cost. Section 5.3 presents an instance of Gen-Killframework for REACH analysis and shows how the resulting demand-driven REACH an-alyzer is used to construct the du-chains in a program. An optional optimization of thedemand-driven analysis that can further reduce the analysis e�ort is described in Section5.4. Section 5.5 presents the experimental study.5.1 Gen-Kill ProblemsA Gen-Kill problem describes data
ow facts that are subsets of a �nite set D of programobjects. Consider the four classical Gen-Kill problems. In problem REACH the set D ofprogram objects is the set of de�nitions in the program, in LIVE the set D is the set ofvariables in the program, and in AVAIL and BUSY the set D is the set of expressions thatoccur in the program.Gen-Kill problems are characterized by a simple de�nition of their
ow functions. Givena node n, the
ow function fn in a Gen-Kill problem is of the form:fn(X) = (X �Killn) [Genn;where Killn and Genn are constant subsets of D that depend entirely on the node n. Givena program object d 2 D, the bit valued components of the sets Genn and Killn with respectto d can be de�ned for each node n as follows:Gendn = 8><>: true if d 2 Gennfalse otherwiseKilldn = 8><>: true if d 2 Killnfalse otherwiseGen-Kill problems are either intersection or union problems. In an intersection problem(e.g., AVAIL, BUSY) the meet operator u corresponds to set intersection and the dual joinoperator t corresponds to set union. In a union problem (e.g., REACH, LIVE) the roles ofthe meet and the join operators are interchanged.Example: REACH is a union problem, where D is the set of de�nitions in the program.The set Genn is the set of de�nitions that are generated at node n and Killn is the set of

66de�nitions of variables that are rede�ned at n (i.e., killed at n). Hence, the
ow functionfn(X) = (X �Killn) [Genn expresses that a de�nition d 2 D reaches the exit of node nif d is generated at n (i.e., d 2 Genn) or if d reaches the entry of node n and is not killedat n (i.e., d 62 Killn).If the program objects in D relate to program variables, as in the four classical Gen-Killproblems, the setD is structured according to the structure of the variable space. Accordingto the usual scoping rules, the set of variables addressable in a procedure p is given by:Addr(p) = Global [Formal(p)[Local(p):Thus, if a program object d 2 D relates to a variable v 2 Addr(p), then d is a global, aformal or a local program object. The set D(p) of program objects in a procedure p can beanalogously structured: D(p) = Dglobal [Dformal(p)[Dlocal(p):Example: Consider the problem REACH, where the set D is the set of de�nitions in theprogram. Given a procedure p, the set D(p) of objects visible in procedure p is given bythe sets:Dglobal = fd 2 D j d is a de�nition of a variable v 2 GlobalgDformal(p) = fd 2 D j d is a de�nition of a variable v 2 Formal(p)gDlocal(p) = fd 2 D j d is a de�nition of a variable v 2 Local(p)g5.2 A Framework Instance for Gen-Kill ProblemsExploiting the algebraically simple de�nition of Gen-Kill problems leads to an e�cient spe-cialization of the general analysis framework from Chapter 4. A specialized instance ofthe general framework is obtained by specializing the individual components of the frame-work: (1) the query de�nition, (2) the query propagation rules, and (3) the generic analysisalgorithm. The specialization presented here assumes C-style programs with local andglobal scoping and procedures with value parameters. Extensions for handling referenceparameters are straightforward and are based upon the handling of procedure parametersas described in Chapter 4.5.2.1 Specialized Queries and Propagation RulesConsider �rst the specialized de�nition of a query. A query q in a Gen-Kill problem is ofthe form q =< d; n >, where d 2 D is a program object and n is a program node. Notethat the general query de�nition from Chapter 4 allows the �rst component of a query tobe any element of the powerset lattice over D.

67(i) For each procedure p:< d; entryp > () 8>><>>: false if p has no call sites or d 2 Dlocal(p)^call(m)=p < ~b�1m (d); m > otherwise(iii) For a non-entry node n that is not a call site:< d; n > () ^m2pred(n)8>>><>>>: true if Gendm = truefalse if Killdm = true and Gendm = false< d;m > otherwiseFigure 5.1: Specialized propagation rules for Gen-Kill problems.Specializing the query propagation rules results in a number of simpli�cations. Unlikethe general case, the reverse
ow function in a Gen-Kill problem can be determined staticallybased on the local Kill dn and Gen dn sets. The specialized query propagation rules for a queryinvolving a program object d 2 D are shown in Figure 5.1. Note that rule (iii) in Figure5.1 does not include the case that node n represents a procedure call. An extension ofrule (iii) to include procedure calls is obtained by extending the de�nition of the variablesKilldn and Gen dn . If node n represents a call site then variables Killdn and Gen dn expresssummary information about the execution of the called procedure. Speci�cally, Killdn andGen dn express whether d is killed or generated as a result of executing the procedure calledat node n.The summary information for a procedure q is determined by computing vectors K dq [n]and G dq [n] for nodes n in q. Hence, the vectorsK dq [n] and G dq [n] are the specialized instancesof the reverse procedure summary functions �r from Chapter 4. In an intersection problem,these vectors are de�ned as follows:K dq [n] = true if, for some successor m of n, data
ow fact d is killed along some pathleading to m (i.e., K dq [m] = true) or d is directly killed at the successor m (i.e.,Killdm = true).G dq [n] = true if, for each successorm of n, data
ow fact d is generated and not subsequentlykilled along each path leading to m (i.e., G dq [m] = true) or d is directly generated andnot killed at the successor m (i.e., Gendm = true).The analogous de�nitions for a union problem are:

68Kdq [exitp] = falseKdq [n] = Meetm2succ(n)8>>><>>>: Kdq [m]_ Killdm if m is not a callKdq [m]_K dr [entryr] if m 2 call(r) and d 2 DglobalKdq [m] otherwiseGdq [exitp] = falseGdq [n] = Joinm2succ(n)8>>>>><>>>>>: Gdq [m]_ (Gen dm ^ :(Kdq [m])) if m is not a callGdq [m]_ (G dr [entryr]^ :(Kdq [m])) if m 2 call(r) andd 2 DglobalGdq [m] otherwiseFigure 5.2: Specialized procedure summary computation for Gen-Kill problems.K dq [n] = true if, for each successor m of n, data
ow fact d is killed along each path leadingto m or d is directly killed at the successor m.G dq [n] = true if, for some successor m of n, data
ow fact d is generated and not subse-quently killed along some path leading to m or d is directly generated and not killedat the successor m.The formal de�nition of the vectors is shown in Figure 5.2, where the de�nition of the oper-atorsMeet and Join depends upon whether the current data
ow problem is an intersectionproblem or a union problem. In an intersection problem, Meet is de�ned as the booleanconjunction (^) and Join is de�ned as the boolean disjunction (_). In a union problem,the roles of Meet and Join are interchanged, such that Meet = _ and Join = ^. In anintersection problem the initial values for the equations in Figure 5.2 are: Gdp[n] = true andKdp [n] = false, and in a union problem: Gdp[n] = false and Kdp [n] = true.The summary information at a call site s 2 call(p) for a program object d 2 D is fullydescribed by the vector of values on procedure entry: K dp [entryp] and Gdp[entryp]. Basedon this summary information, the query propagation rules are complete and include thepropagation across a call site s 2 call(p) by setting the variables Killds and Gends such thatKillds = K dp [entryp] and Gen ds = Gdp[entryp].5.2.2 Demand-Driven Algorithm for Gen-Kill ProblemsThe specialized framework components lead to a simpli�ed version of the demand-drivenalgorithm. Procedure Query GenKill shown in Figure 5.3 is derived from the generic pro-

69cedure Query and evaluates the propagation rules from Figure 5.1. The generic summarycomputation procedure Compute�r specializes to procedure GenKill�r for computing thevectorsKdq and Gdq , as shown in Figure 5.4. Both procedures, Query GenKill and GenKill�rassume an intersection problem. The corresponding versions of the procedures for unionproblems can be similarly developed.To create the instances of the two demand-driven analysis procedures Query GenKilland GenKill�r for a particular Gen-Kill problem, such as REACH, it is su�cient to specifythe following parameters:� The set of program objects D.� The meet and join operators t and u (either set union or set intersection).� The local variables Genn and Killn at every node n that is not a call site.5.2.3 Asymptotic CostConsider the asymptotic cost of the two procedures Query GenKill and GenKill�r. GenKill�rdetermines the summary values for the vectors Kdq and Gdq as the �xed point of the equa-tion system in Figure 5.2. A worklist is initialized with the triple (d; exitq; q) to trigger thecomputation of Kdq [entryq] and Gdq [entryq]. During each step a triple (d; n; q) is removedfrom the worklist, the corresponding equations Kdq [n] and Gdq [n] are evaluated and if theirvalues have changed, the triple for each dependent equation that may be a�ected by thechange is added to the worklist. In programs with value parameters, each initial requestfor summary information refers to a global variable and can only trigger further summaryvariable requests for the same global variable. Thus, at most O(jN j) equations are evalu-ated and the evaluation of each equation can result in the inspection of at most MaxCallother equations, where MaxCall is the maximal number of call sites calling a procedure. Itfollows that a single request for summary information requires O(MaxCall�jN j) time. Thecost of k requests is O(min(k; jDglobalj) �MaxCall � jN j) and O(jDglobalj � jN j) space isneeded to store the summary vectors.1Next, consider the maximal number of queries generated in procedure Query GenKillbased on the input query q =< d; n >. If d relates to a local variable, at mostMaxN queriesare generated, where MaxN is the maximal number of nodes in any procedure. If d relatesto a global variable, the maximal number of generated queries is jN j since one query for theglobal may be generated at every node. Finally, if d relates to a formal parameter, the initialquery may change when propagating it through a procedure entry node to the call sites.In the worst case, the initial query generates additional queries with respect to all other1In programs that contain reference parameters, summary information is needed for both, global variablesand formal reference parameters. The asymptotic complexity for k requests changes to O((jDglobalj +MaxDformal)�MaxCall� jN j) time and O((jDglobalj+MaxDformal)� jN j) space, where MaxDformal isthe maximal number of program objects in any procedure that relate to formal parameters.

70
Procedure Query GenKill(d; n)input: a program object d 2 D and a node noutput: the answer true or false to the query < d; n >begin1. for each m 2 N do query[m] ;2. query[n] fdg; worklist f(d; n)g;3. while worklist 6= ; do4. remove a pair (y;m) from worklist;5. case m = entrymain:6. if query[m] is not empty then then return(false);7. case m = entryp for some procedure p:8. for each call site m0 such that call(m0) = p do9. if ~b�1m0 (fyg) 6= ; then /* if y does not relate to a variable local to p */10. if ~b�1m0 (fyg) 62 query[m0] then11. add ~b�1(fyg) to query[m0];12. add (~b�1(fyg);m0) to worklist;13. endif;14. endfor;15. otherwise:16. for each m0 2 pred(m) do17. if m0 is a call site then18. compute summaries Genym0 and Killym0 ;19. if Killym0 = 1 then return(false);20. if Genym0 = 0 then /* continue */21. if y 62 query[m0] then22. add y to query[m0] and add (y;m0) to worklist;23. endfor;24. endwhile;25. return(true);end Figure 5.3: Specialized demand-driven analysis algorithm for Gen-Kill problems.

71Procedure GenKill�r(d; p)input: a program object d and a procedure poutput: the summary variables Gdp[entryp] and Kdp [entryp]begin1. if visited[entryp ; d] 1 then return; /* result previously computed */2. worklist f(d; exitp; p)g;3. Gdp[exitp] 0 and Kdp [exitp] 0;4. while worklist 6= ; do5. remove a triple (y; n; q) from worklist;6. visited[n; y] 1;7. case n is a call site with call(n) = r:8. if visited[entryr ; y] = 1 then9. for each m 2 pred(n) do10. Propagate(m; d; (Kyq [n] _Kyr [entryr]); (Gyq [n]_ (Gyr [entryr] ^ :(Kyq [n])));11. else /* trigger computation of summaries for r */12. Gyr [exitr] 0 and Kyr [exitr] 0;13. add (y; exitr ; r) to worklist;14. case n = entryq :/* Propagate to call sites if needed */15. for each call site m in a procedure r, such that call(m) = q and visited[m; y] = 1 do16. for each m0 2 pred(m) do17. Propagate(m0; y; (Kyq [m] _Kyp [entryp]); (Gyq [m] _ (Gyp[entryp]^ :(Kyq [m])));18. otherwise:/* n is not a call site and not an entry node */19. for each m 2 pred(n) do20. Propagate(m; y; (Kyp [n]_Killyn); (Gyp[n]_ (Genyn ^ :(Kyp [n])));21. endwhile;22. return;endProcedure Propagate(p; n; y; kill; gen) /* propagate kill and gen to Kyp [n] and Gyp[n] */input: a procedure p, a node n, a variable y, and bit values kill and genbegin1. Kyp [n] Kyp [m] _ kill;2. Gyp[n] Gyp[n]^ gen;3. if Kyp [n] of Gyp[n] changed then add (y; n; p) to worklist;end Figure 5.4: Procedure GenKill�r to compute Gen-Kill procedure summaries.

72variables. Hence, up to MaxD�jN j queries may be generated, where MaxD is the maximalsize of the program object set D in any procedure. Each generation of a query results inthe inspection of at most MaxCall other queries. Thus, the total cost of generating queriesin procedure Query GenKill, including the cost of GenKill�r, is O(MaxD�MaxCall� jN j)time and O(MaxD� jN j) space to store the generated queries and summary vectors.In comparison, the asymptotic complexities of the general framework from Chapter4 are O(height(L) � jLj � MaxCall � jN j) time and O(jLj � jN j) space. In a Gen-Killproblem the lattice L corresponds to the powerset of the program object set D. Hence,a straightforward implementation of the general framework for a Gen-Kill problem wouldhave resulted in exponential cost in the size of object set D: O(jDj� 2jDj�MaxCall� jN j)time and O(2jDj � jN j) space.5.3 Application: Demand-Driven DU-Chain AnalyzerThis section illustrates an instance of the demand-driven Gen-Kill framework for REACHanalysis. The resulting demand-driven REACH analyzer is considered in the context ofdu-chain computation. Informally, a du-chain is a pair (d; u) that connects a de�nition d ofa variables with a use u of the de�ned value.The program in Figure 5.5 is used to illustrate the du-chain computation. To distinguishmultiple de�nitions and uses of the same variable, the node number is used as a subscript,i.e., xn denotes the reference of variable x at node n.5.3.1 Interprocedural REACH AnalysisThe computation of interprocedural du-chains and interprocedural reaching de�nitions iscomplicated since de�nitions may reach uses across procedure boundaries. Moreover, inprograms with parameter passing, de�nitions and uses of the same value may refer tothe value using di�erent variable names. To correctly establish reaching de�nitions acrossprocedure boundaries, the variable bindings that result from parameter passing must beconsidered. To formally describe the bindings that occur along an execution path, thesequence of active procedures whose execution has not yet terminated along the path isconsidered.De�nition 5.1 (Active Call Sequence) Let � be a valid execution path. The activecall sequence for � is obtained from � by eliminating all nodes except the call sites ofprocedures that have not terminated when execution reaches the end of �.The value of a variable may be bound to variables in a calling or a called procedure asde�ned below.De�nition 5.2 (Binding) Let p be a procedure and let s be a call site in p calling aprocedure q, i.e., s 2 call(q). Furthermore, let v and w be variables in the address spaces of

73declare x; /* global */procedure proc1 procedure proc2(in: f) procedure proc3(in: g)declare y; /* local */ begin beginbegin if f=0 then call proc3(f); if g=10 then x:=g+1;read(x,y); end endif x=1 then call proc3(x);y:=x+y;call proc2(y);write(x,y);end
y:=x+y

write(x,y)

read(x,y)

11

16

15

g=10

exit

13

12

10

7

6

4

3

2

1

f=0

x=1

exit

entryentryentry

x:=g+1

exit

9

5

8

14

proc1

call proc2(y)

call proc3(x)

call proc3(f)

proc2(in: f) proc3(in: g)

Data
ow sets for REACH analysisprocedure p = proc1 procedure p = proc2n Genn Killn RD(n) n Genn Killn RD(n) Gx2p Gx15p Kx2p Kx15p1 - - - 9 - - x2; x15; y2; y5 false true false false2 x2; y2 x15; y5 - 10 - - x2; x15; y2; y5 false true false false3 - - x2; y2 11 x15 - x2; x15; y2; y5 false true false false4 x15 - x2; y2 12 x15 - x2; x15; y2; y5 false true false false5 y5 y2 x2; x15; y2 procedure p = proc36 x15 - x2; x15; y5 n Genn Killn RD(n) Gx2p Gx15p Kx2p Kx15p7 - - x2; x15; y5 13 - - x2; x15; y2; y5 true true false false8 - - x2; x15; y5 14 - - x2; x15; y2; y5 false true false false15 x15 x2 x2; x15; y2; y5 false true false false16 x15 x2 x2; x15; y2; y5 false true false falseFigure 5.5: Program with data
ow sets for REACH analysis.

74p and q, respectively.(i) The value of v in p is bound to w in q via s if w 2 bs(v).(ii) The value of w in q is bound to v in p via s if v 2 b�1s (w).Let S = s1; : : : ; sk be an active call sequence of a valid execution path �, such that s1 iscontained in a procedure p1 and si calls a procedure pi+1 for 1 � i < k. Furthermore, let vand w be variables in the address spaces of p1 and pk+1, respectively.(iii) The value of v in p1 is bound to w in pk+1 via S if there exists a sequence ofvariables v1; : : : ; vk+1 with v1 = v and vk+1 = w, such that the value of vi is bound to vi+1via si for 1 � i < k.(iv) The value of w in pk+1 is bound to v in p1 via S if there exists a sequence ofvariables v1; : : : ; vk+1 with v1 = v and vk+1 = w such that the value of vi+1 is bound to vivia si for 1 � i < k.The value of a variable is always bound to the variable itself via the empty call sequence.Example: Consider the program in Figure 5.5, where all parameters are passed by value.The value of variable x is bound to parameter g in proc3 via the call at node 4. The valueof variable y is not bound to any variable in proc3 since y is local and not passed as aparameter. However, the value of y is bound to the parameter f in proc2 via the call atnode 6.Note that the notion of binding di�ers from that of aliasing, which was previously discussedin Chapter 4. Binding refers to the binding of values to new variables upon procedureinvocation. Aliasing refers to the binding of variables references, such that two variablesmay be bound to the same memory location. For example, if a global variable x is passedto a parameter f by reference, then x and f are aliases and the value of x is bound to f .However, if x is passed to f by value then the value of x is also bound to f but x and f arenot aliases of one another.A formal de�nition of reaching de�nitions is based on the notion of killing, or alterna-tively, kill-free nodes as de�ned below.De�nition 5.3 (Kill-free) A node n is called kill-free for variable v if node n does notcontain a de�nition of a variable that is a must-alias of v at node n. A path � is calledkill-free for variable v if every node in � is kill-free for v.Interprocedural reaching de�nitions and the symmetric problem of interprocedural reachableuses can now be de�ned as follows.De�nition 5.4 (Interprocedural reaching de�nition) A de�nition d of a variable v isa reaching de�nition of a variable w at node n if:(i) there exists a valid execution path � from d to node n with an active call sequenceS = s1; : : : ; sk such that variable v is bound to a sequence of variables v1; : : : ; vk = w via Sand

75
entry

exit

entry

call proc2(x)

1

2

3

4

7

8

proc1

exit
5

write(x)

x:=0 f:=1

y:=f+x

6

9

proc2(in: f)

Figure 5.6: Interprocedural du-chains with global variables x and y.(ii) the following subpaths in � are kill-free: the subpath from d to s1 is kill-free for v,the subpaths si : : : si+1 are kill-free for vi for 1 � i < k, and the subpath sk : : :n is kill-freefor w.De�nition 5.5 (Interprocedural reachable use) A use u of a variable v is a reach-able use of a variable w at node n if:(i) there exists a valid execution path � from n to the use u with an active call sequenceS = s1; : : : ; sk such that variable w is bound to a sequence of variables v1; : : : ; vk = v via Sand(ii) the following subpaths in � are kill-free: the subpath n : : : s1 is kill-free for w, thesubpaths si : : : si+1 are kill-free for vi for 1 � i < k, and the subpath from sk to the use u iskill-free for v.The sets of reaching de�nitions and reachable uses of a variable v at a node n are denotedRD(v; n) and RU(v; n). Furthermore, the sets of reaching de�nitions and reachable uses ofany variable at a node n, where n is contained in a procedure p, are de�ned as:RD(n) = [v2Addr(p)RD(v; n)RU(n) = [v2Addr(p)RU(v; n)Example: Consider the example in Figure 5.6 and the question as to whether the de�nitionf7 of formal value parameter f at node 7 reaches node 4 in procedure proc1 after the callto proc2. Since f is a parameter, its scope ends with the end of procedure proc2. Moreover,since f is not a reference parameter, its value is not bound to any variable in procedure

76proc1. Thus, de�nition f7 does not reach a node along any path outside procedure proc2.Now, consider de�nition y8 at node 8. Since y is a global variable, its scope extends beyondprocedure proc2 and the value assigned to y in procedure proc2 is still bound to y at nodesoutside proc2. Thus, the de�nition y8 reaches nodes 4 and 5 in procedure proc1.The de�nition of interprocedural reaching de�nitions and reachable uses also provide aformal characterization of the du-chains in a program.De�nition 5.6 (Du-chain) Let d be a de�nition of variable v at a node n and let u be ause of variable w at nodem. The pair (d; u) is a du-chain if d 2 RD(w;m) (or equivalently,if u 2 RU(v; n)).Example: Consider Figure 5.6 and the questions as to whether (x2; f8) establish a du-chain. The value of the global x is bound to the formal f but node 7 is not kill-free forf . Hence, x2 is not a reaching de�nition of f at node 8 and (x2; f8) is not a du-chain.However, every node in the path from node 2 to node 8 is kill-free for variable x. Thus, x2is a reaching de�nition for variable x at node 8 and the pair (x2; x8) is a du-chain.In a program that consists of multiple procedures, du-chains may cross procedure bound-aries. To determine whether a du-chain crosses procedure boundaries, the kill-free pathsassociated with the du-chain are examined. For a du-chain (d; u) there may be severaldistinct kill-free paths from d to u. Some of these paths may cross procedure boundarieswhile others may remain intraprocedural paths. For a du-chain to be an interproceduralchain it should have at least one kill-free path that crosses procedure boundaries. However,the existence of a kill-free path that crosses procedure boundaries is not su�cient to makea du-chain interprocedural. Consider for example the du-chain (y2; y5) for the local variabley in Figure 5.5. There are two kill-free paths for the chain, one path in proc1: 2,3,5 andone path across procedure proc3. Despite the existence of a kill-free path across proc3, thedu-chain (y2; y5) does not qualify as an interprocedural chain since variable y is local toproc1 and not passed as a parameter. Intuitively, a du-chain is interprocedural if the chainextends across a procedure invocation that potentially a�ects the value of the pair. Toformalize this notion potential kill nodes of a variable are introduced.De�nition 5.7 (Potential kill) A node n is called a potential kill node for variable vif variable v has at least one must-alias in the procedure that contains node n.Clearly, for a global variable any node is a potential kill node. However, for a localvariable of a procedure p that is not passed as reference parameter no node outside p canbe a potential kill node. To qualify as an interprocedural du-chain, the chain must passthrough at least one potential kill node that lies in a di�erent procedure.De�nition 5.8 (Interprocedural du-chain) Let (d; u) be a du-chain, where d is a de�-nition of a variable v contained in a procedure p. The chain (d; u) is an interprocedural

77de�nition du-chainsintraprocedural interproceduralx2 (x2; x3); (x2; x4); (x2; x5) (x2; x5); (x2; x7); (x2; g14); (x2; g15)x15 (x15; x5); (x15; x7)y2 (y2; y5)y5 (y5; y6); (y5; y7) (y5; f10); (y5; f11); (y5; g14); (y5; g15)Table 5.1: Du-chains for the example from Figure 5.1.du-chain if the de�nition d reaches the use u along a kill-free path that contains at leastone node outside p that is a potential kill node for v.De�nition 5.9 (Intraprocedural du-chain) Let (d; u) be a du-chain, where d is a de�-nition of a variable v contained in a procedure p. The chain (d; u) is an intraproceduraldu-chain if the de�nition d reaches the use u along a kill-free path that contains no nodesoutside p that are potential kill nodes for v.Example: Table 5.1. shows the complete sets of intra- and interprocedural du-chains forthe program in Figure 5.5. The pair (x15; x5) is an interprocedural pair since node 5 is apotential kill node for the pair that is contained in a di�erent procedure than the de�nitionx15. The pair (x2; x5) is also interprocedural since every node in proc3 is a potential killnode for the pair. In contrast, the pair (y2; y5) is not interprocedural. Since y is local, nonode outside proc1 can be a potential kill node.Note that a du-chain with multiple kill-free paths may be both intra- and interprocedural.For example, the pair (x2; x5) in Figure 5.5 is an intraprocedural du-chain due to the kill-free path 2,3,5. The pair (x2; x5) is also an interprocedural du-chain due to the kill-freepath 2,3,4,13,14,15,16,5 with the potential kill nodes 13, 14, 15 and 16.5.3.2 DU-Chains on DemandThe standard approach for computing du-chains is to �rst compute exhaustive sets ofreaching de�nitions at each program point. The actual du-chains are then established in asecond phase by selecting the appropriate de�nitions from the computed sets at every useof a variable. At each point, the de�nitions of variables that are not live at that point areuseless and need not be computed. The computation of these useless reaching de�nitions canbe avoided if a demand-driven approach is used. In a demand-driven approach, reachingde�nitions are computed only at the program points, where they are needed, that is, at

78Procedure DU-Chains(P)input: a program Poutput: the set of du-chains for Pbegin1. for each node n in P do2. if n contains the use u of a variable v then3. compute RD(v; n);4. collect the du-chains: f(d; u) j d 2 RD(v; n)g5. endif6. endforend Figure 5.7: Demand-driven du-chain computation.every use of a variable. The algorithm to compute du-chains on demand is outlined inFigure 5.7. To collect the required sets of reaching de�nitions in line 3 the instance of thedemand-driven GEN-KILL framework for REACH is used.The Gen-Kill framework instance for REACH is created by specifying the frameworkparameters as follows:� D = set of de�nitions in the program� u = \ (set intersection) and t = [(set union)� Genn = set of de�nitions generated at node n� Killn = set of de�nition killed at node nUsing this framework instance for REACH, the set RD(v; n) of reaching de�nitions canbe computed by issuing a corresponding query for algorithm Query GenKill.Example: Consider the demand-driven REACH analysis of the program example in Figure5.5. The variables Genn and Killn at each node n are shown in the table in Figure 5.5. Theresults of the summary vectors Gdp and Kdp for the two procedures proc2 and proc3 are alsoshown in the table. For example, the entry Kx15proc3[13] = false expresses that de�nition x15is not killed during the execution of proc3 and Gx15proc3[13] = true expresses that de�nitionx15 reaches the exit of procedure proc3. Note that proc1 is not called by another procedureand, therefore, requires no summary information.Using the summary vector, the values for Genn and Killn at the call sites at nodes 4,

796 and 11 result as: Gen4 = fx15g; Kill4 = ;;Gen6 = fx15g; Kill6 = ;;Gen11 = fx15g; Kill11 = ;:Consider now a request for the set RD(x; 5) of reaching de�nitions of variable x at the en-try of node 5. This request is expressed by the two queries ?(x2; 5) and ?(x15; 5). Since thesetwo queries request de�nitions of the same variable, they can be resolved simultaneouslyduring a single query propagation. Thus, the combined query ?(x; 5) for any de�nitions ofvariable x is considered. Since x 2 Global, propagation across the call proc3(x) at node4 requires computation of the summary variables Kx2proc3[13] = false and Kx15proc[13] = false,which indicate that the query is not killed. The summary variable Gx15proc3[13] = true denotesthat de�nition x15 is generated during the execution of procedure proc3. Hence, de�nitionx15 can be collected as a reaching de�nition and the search for the remaining reaching def-initions continues with the new query ?(x; 4). Note that, at this point, there is only onefurther potential reaching de�nition for variable x left (i.e., de�nition x2). Next, the newquery is propagated through node 3, where Kill x23 = false and Killx153 = false. Since node 2contains de�nition x2, the search terminates with the set of reaching de�nitions fx2; x15g.5.4 Query AdvancingThis section describes a simple but e�ective optimization of the query propagation. Theoptimization is applicable to Gen-Kill problems in which the Gen and/or Kill points arebased on de�nitions or uses of variables, i.e., REACH and LIVE. Based on some additionalinformation about procedure execution, the duration of the query propagation is shortenedby skipping program portions through query advancing. For simplicity, this section assumesthat parameters are passed by value only.Example (Advancing across call): Consider the example in Figure 5.8 and a queryfor the reaching de�nitions of the global variable x at node 7, i.e., < x; 7 >. Propagatingquery < x; 7 > across the call site at node 6 would require the computation of summaryinformation about the called procedure proc3. However, if it is known that procedure proc3,and any procedure subsequently called by proc3, does not contain a node with a de�nitionof variable x, the summary information can be determined without analysis: no de�nitionsof x can be killed or generated. Thus, the summary computation can be skipped and thequery < x; 7 > can be directly forwarded across the procedure call as shown by the dashedarrow.Example (Advancing to entry): Next, consider the propagation of the new query <x; 5 > to the call site in procedure proc1. Based on the propagation rules from Chapter 4,

80
entry

exit

entry
1

2

3

4

7

8
exit

5

6
b:=a−c

proc1

call proc2

proc2

entry

proc3

c:=a+b

exitwrite(x)

call proc3
10

11

9

Figure 5.8: Query advancing in REACH analysis.the query < x; 5 > would be translated into a new query at node 3. However, if it knownthat procedure proc1 (and any procedure subsequently called by proc1) does not contain anode with a de�nition of variable x, it is not necessary to propagate the new query throughprocedure proc1. Instead the query can be directly forwarded to the entry node of proc1 asshown by the dashed arrow in Figure 5.8.The additional information needed for these two advancing optimizations are the
ow-insensitive procedure summary sets Mod(p) for procedures p [CK88]. The set Mod(p) con-tains the variables that may be modi�ed by the execution of procedure p because either pdirectly modi�es the variable or the variable is modi�ed by a procedure subsequently calledby p. Let DMmod(p) be set of variables that are directly modi�ed in procedure p. The setMod(p) is then de�ned by the following equation:Mod(p) = DMod(p)[([p calls qMod(q))The set DMod(p) is locally determined by a simple inspection of the de�nitions that arecontained in procedure p (e.g., during parsing). The local sets DMod(p) are then propagatedby iterating over the program's call graph using a simple iterative worklist algorithm. Inthe absence of recursion, an iterative algorithm computes the sets Mod(p) in time linear inthe number of edges in the call graph (i.e., number of procedure calls). Recursion createscycles in the call graph which increases the worst case cost of the iterative algorithm to bequadratic in the size of the call graph.The summary information Mod(p) is called
ow-insensitive since determining the in-formation does not require
ow analysis and the control
ow within each procedure can beignored. In contrast, summary information, such as the vectors Gdq and Kdq in the Gen-Killframework, is called
ow-sensitive. Flow-sensitive summary information requires the con-trol
ow within a procedure to be analyzed. Consider for example the information in the

81vector Gdq in REACH. The value Gdq [n] expresses that there exists a control
ow path fromnode n to the exit of procedure q along which de�nition d is generated and not subsequentlykilled.Using the Mod(p) sets the two jump optimizations are de�ned as follows:� Advancing across callsPropagating a query q =< d; n > for the de�nition d of a variable x across a call sitem 2 call(p) requires summary information only if x 2 Mod(p). Otherwise, q can bedirectly forwarded across the call:< d; n >() ^m 2 pred(n);m 2 call(p) 8>>>>><>>>>>: false if x2Mod(p)^ Gendm = truetrue if x2Mod(p)^Killdm=true ^ Gendm=false< d;m > otherwise^m 2 pred(n);m not a call 8>>>>><>>>>>: false Gendm = truetrue Killdm = true and Gendm = false< d;m > otherwise� Advancing to entryWhen propagating a query q =< d; entryp > for the de�nition d of a variable x intoa procedure r that calls p then q can be directly forwarded to entryr if x 62 Mod(r).< d; entryp > () 8>>>>>><>>>>>>: false if x 2 Local(p)^call(m) = p, wherem is in procedure r 8><>: < ~b�1m (d); entryr > if x 62 Mod(r)< ~b�1m (d); m > otherwiseThe two query advancing optimizations are not limited to REACH analysis but are appli-cable to any Gen-Kill problem in which the generation and killing of a program object arebased on de�nitions and uses of variables. To apply query advancing in problems in whichgeneration and/or killing is based on variable uses simply requires a di�erent kind of
ow-insensitive summary information. Instead of the sets Mod(p), the similar
ow-insensitivesets Ref (p) are used. Ref (p) contains the variables that are referenced as a use in procedurep or in any procedure subsequently called by p:Ref (p) = DRef (p)[([p calls qRef (q));

82where DRef (p) is the set of variables that are directly used in procedure p.Note that exhaustive analysis cannot be optimized by in a similar way. Query advancingis enabled through the goal-directed search of demand-driven analysis. Exhaustive analysisis not goal-directed and collects all data
ow facts that are generated. Unless a proceduregenerates no data
ow facts (i.e., contains neither de�nitions nor uses of variables), itsanalysis cannot be skipped.5.5 ExperimentsAn experimental study was conducted to evaluate the practical bene�ts of computing du-chains based on the demand-driven REACH analyzer. The study's primary objective was tocompare the performance of the demand-driven du-chain algorithm with that of a standardexhaustive algorithm. Additional experiments were carried out to evaluate the trade-o�between the bene�ts and overhead of (i) the caching capability and (ii) query advancing inthe demand-driven algorithm.The experiments are based on implementations of the following three algorithms:(CACHE) Caching demand-driven du-chain algorithm as described in the previous sectionbased on a caching version of the demand-driven REACH analyzer.(DD) A non-caching version of the demand-driven du-chain algorithm (CACHE).(EX) An exhaustive du-chain algorithm. The exhaustive algorithm computes du-chainsby standard exhaustive reaching de�nition analysis based on the interproceduralSharir/Pnueli framework [SP81]. Since the Sharir/Pnueli framework also serves asthe basis for the demand-driven analysis framework, it provides a natural exhaustivecounterpart to the demand-driven algorithms (CACHE) and (DD).The exhaustive analysis is implemented using e�cient bit vector representations of data
ow sets. Note that bit vector operations cannot be used to implement the demand-drivenanalyzers since analysis is performed with respect to individual queries, i.e., individual bitvector positions. The demand-driven algorithms (CACHE) and (DD) optionally includequery advancing.The three algorithms were implemented in C as part of the PDGCC compiler project atthe University of Pittsburgh. The PDGCC system contains a C front end that provides astatement level control
ow graph of each procedure based on a three-address intermediaterepresentation of the program. The current versions of the three algorithms perform anal-ysis over scalar variables only. The inclusion of structured variables is the subject of futureextensions. The implemented algorithms assume programs that are free of pointer inducedaliasing. Pointer references in C programs are handled by assuming that the address opera-tor \&" destroys the value of the variables to which it is applied. This treatment of pointerreferences may not be safe in the presence of aliasing. To guarantee safety, a write via a

83pointer should consider every variable that may be pointed to as overwritten. To avoidoverly conservative worst case estimates of the set of variables that may be pointed to bya pointer, additional alias information must be collected and incorporated into the analysisas described in Chapter 4.An aspect of a compiler front end with implications on analysis performance is thetreatment of temporary variables. The PDGCC front end was designed to generate single-assignment temporary variables. Thus, temporaries are not recycled for future re-use. Theuse of single-assignment temporaries avoids the creation of arti�cial data dependenciesamong statements which may be bene�cial for tasks such as register allocation. However,the generation of single-assignment temporaries may also increase the size of the addressspace. Large address spaces impact on the performance of data
ow algorithms whose com-plexity depends on the number of addressable variables. Furthermore, single-assignmenttemporaries are typically used in a fairly controlled way. The uses and de�nitions of tem-poraries are likely to be in nearby statements. Thus, temporaries may not actually requireglobal analysis and could instead be analyzed locally. For example, it may be possible todetermine the du-chains for a temporary variable immediately after the temporary has beencreated. However, if the program changes and re-analysis is to be expected, the localityproperty of references to temporaries may be destroyed and a subsequent re-analysis of theprogram may have to consider temporary variables.In order to avoid a bias in the experimental results towards a particular strategy for han-dling temporary variables, the experiments are conducted in two versions. One version thatconsiders the complete address space in each procedure, including all compiler generatedtemporaries, and one version that only includes source-level variables into the analysis.The experiments were run on a SUN SPARCstation 5 with 32 MB of RAM. Table 5.2shows the 17 C programs that were used during the study. Programs 7-17 are core routinesof Unix utility sources. Table 5.2. shows for each program the number of source code lines,the number of nodes in the control
ow graph, the number of procedures, the number of calls,and parameters concerning the size of the variable space. The column indicated as MaxVarshows the maximal number of variables in any one procedure including temporaries. Themaximal number of source-level variables (excluding temporaries) is shown in parentheses.The last column shows the number of global variables.All reported analysis times are user cpu times in seconds. The cpu times were determinedusing the Unix library routine getrusage. The reported analysis times re
ect the mean valueover �ve test runs. If query advancing was enabled in the demand-driven analyzer, themeasured analysis times include the time to compute the GMod vectors. Analysis times donot include the time for the preparatory pass over the program to set up analysis speci�cparameters that are required in both the exhaustive and the demand-driven analyses. Theseparameters, that include the collection of local Gen and Kill sets, could also be determinedduring parsing.

84BenchmarksNo. program #code lines #nodes #procedures #calls MaxVar #globals1 bubble 64 105 5 4 29 (9) 62 quicksort 65 141 6 7 32 (12) 53 hanoi 69 117 3 5 28 (11) 34 queens 84 150 4 4 38 (8) 35 heapsort 99 173 2 1 72 (24) 06 nsieve 115 192 2 2 40 (18) 67 cat 240 377 5 4 61 (15) 78 calendar 352 731 10 14 53 (10) 49 getopt 395 739 5 6 80 (12) 410 linpack 564 686 12 30 140 (17) 011 di� 818 899 12 33 211 (41) 2712 patch 753 1316 14 13 141 (38) 2713 tar 1214 1451 27 68 182 (49) 4514 gzip 1245 2495 37 97 173 (48) 4515 grep 1488 2906 32 72 127 (29) 1616 sort 1528 3554 35 145 151 (19) 1017 dc 1576 3298 67 230 91 (19) 10Table 5.2: Benchmark programs. Parentheses indicate measurements that exclude tempo-raries.All reported space measurements include only the amount of memory that is allocatedfor data
ow vectors, cache memory and other auxiliary structures that are needed foranalysis purposes, such as the storage of the Gmod sets if query advancing was used.5.5.1 Experiment 1: Caching Demand-Driven versus ExhaustiveThe �rst experiment compares the performance of the exhaustive du-chain analyzer with theperformance of the caching demand-driven analyzer when used to compute all du-chains.The exhaustive du-chain algorithm was performed over all test programs. The resultingexhaustive analysis time Tex and space consumption Sex for each program are listed inTable 5.3.The caching demand-driven analyzer with query advancing was executed for a set ofqueries that enables the construction of all du-chains in a program. This set contains onequery for the reaching de�nitions at each use of a variable, that is, at most two queries ateach node which corresponds to O(jN j) queries. These queries were generated in randomorder over the program. Table 5.3 shows the number of generated queries and the totalnumber of du-chains in each program.The demand-driven analysis time T optcache accumulated over all queries is shown in Table

85Exhaustive Analysis (Du-chain)program time (secs) space (Kbytes)Tex Sexbubble 0.03 (0.02) 10.500 (9.240)quicksort 0.03 (0.03) 14.572 (12.880)hanoi 0.02 (0.02) 12.216 (10.812)queens 0.04 (0.02) 15.348 (13.548)heapsort 0.09 (0.06) 22.756 (18.604)nsieve 0.03 (0.04) 20.196 (20.196)cat 0.20 (0.08) 43.424 (34.376)calendar 0.17 (0.08) 82.164 (64.620)getopt 0.98 (0.39) 105.372 (78.768)linpack 0.53 (0.30) 227.312 (171.872)di� 6.85 (2.26) 311.135 (180.012)patch 2.05 (0.75) 230.424 (167.256)tar 4.28 (2.12) 326.072 (220.712)gzip 1.64 (0.91) 525.136 (405.376)grep 4.56 (1.36) 437.704 (333.088)sort 5.91 (1.85) 531.744 (361.720)dc 1.11 (0.66) 416.508 (337.356)

Queries (Du-chain)program queries du-chainsbubble 69 (31) 91 (55)quicksort 94 (49) 160 (119)hanoi 60 (36) 72 (41)queens 105 (56) 119 (60)heapsort 118 (77) 190 (147)nsieve 105 (72) 145 (112)cat 165 (64) 215 (104)calendar 236 (51) 275 (70)getopt 268 (159) 1059 (929)linpack 1160 (668) 1543 (1002)di� 555 (185) 685 (268)patch 599 (307) 1075 (740)tar 578 (260) 847 (500)gzip 1161 (543) 2068 (1350)grep 805 (331) 1048 (508)sort 1065 (421) 1570 (815)dc 1271 (553) 1958 (1011)Table 5.3: Exhaustive analysis time (Tex) and space (Sex) and the number of queries and du-chains for each benchmark. Parentheses indicate measurements that exclude temporaries.5.4. The analysis T optcache is based on the caching version of the demand-driven algorithmswith query advancing. Table 5.4 also shows the accumulated space consumption and thecache �ll. The cache �ll is the percentage of the exhaustive reaching de�nition solution thathas been accumulated in the cache at the end of the demand-driven analysis. Thus, thecache �ll indicates the portion of the exhaustive solution that is actually needed to constructall du-chains. The cache �ll values in Table 5.4 show that actually only a small portion ofthe exhaustive solution is relevant. The remaining portion of the solution consists of uselessreaching de�nitions that are propagated beyond the points where the de�ned variable is livein the current procedure. Demand-driven analysis naturally suppresses the computation ofthese useless reaching de�nitions.22Note that the same redundancies in the exhaustive solution would result if, instead of reaching de�nitionanalysis, the directional dual live-use analysis were used to compute the du-chains. In exhaustive live-useanalysis, the use of a variable may be propagated past the points where the variable is live. Avoiding thepropagation of useless live-use information would require dynamically changing the bit vector sizes duringthe analysis each time a variable becomes dead. The overhead of changing bit vector sizes is likely to quicklyoutweigh the savings that may result from avoiding useless propagation.

86Caching Demand-Driven Analysis (Du-chain) Savingsprogram time (secs) space (Kbytes) cache �ll speedup space : % of SexT optcache S optcache TexT optcache S optcache�100Sexbubble 0.02 (0.01) 10.548 22% (35%) 1.5 (2.0) 100.5%quicksort 0.05 (0.02) 15.072 19% (30%) 0.6 (1.5) 103.4%hanoi 0.03 (0.02) 12.380 20% (36%) 0.7 (1.0) 101.3%queens 0.05 (0.04) 15.492 17% (41%) 0.8 (0.5) 100.9%heapsort 0.12 (0.10) 22.436 25% (49%) 0.75 (0.6) 98.6%nsieve 0.05 (0.04) 21.152 17% (28%) 0.6 (1.0) 104.7%cat 0.09 (0.07) 41.924 16% (35%) 2.2 (1.1) 96.5%calendar 0.08 (0.03) 69.900 7% (19%) 2.1 (2.6) 85.1%getopt 0.32 (0.28) 99.988 16% (44%) 3.1 (1.3) 94.9%linpack 0.49 (0.33) 222.716 13% (51%) 1.1 (0.9) 97.9%di� 0.60 (0.48) 249.712 7% (18%) 11.4 (4.7) 80.3%patch 1.01 (0.93) 201.884 19% (31%) 2.0 (0.8) 87.6%tar 1.29 (1.20) 266.684 17% (23%) 3.3 (1.7) 81.8%gzip 1.82 (1.62) 419.292 15% (20%) 0.9 (0.5) 79.8%grep 0.84 (0.67) 365.152 12% (21%) 5.4 (1.7) 83.4%sort 1.03 (0.94) 443.880 13% (35%) 5.7 (1.9) 83.5%dc 0.71 (0.61) 373.460 9% (14%) 1.6 (1.1) 89.7%Table 5.4: Accumulated demand-driven analysis time and space with caching (T optcache andSoptcache), the cache �ll, the speedup of the demand-driven analyzer with caching over theexhaustive analyzer and the demand-driven analyzer space utilization as a percentage ofthe exhaustive analysis space. Parentheses indicate measurements that exclude temporaries.When considering the complete variable space (i.e., including temporaries), the relevantportion ranges from 7% to only 25%. As expected, when temporaries are excluded, therelevant portion is higher, ranging from 14% to 51%. Temporary variables are likely to gen-erate large portions of unneeded information since temporary variables are usually de�nedand used at nearby points but their de�nitions may be propagated far beyond their usepoints. However, Table 5.4 shows that even after excluding temporaries from the analysis,on average more than half of the solution is not needed.Figure 5.9 (i) displays the speedups TexT optcache of the demand-driven analyzer with cachingover the exhaustive analyzer. The demand-driven analyzer computes du-chains faster thanthe exhaustive analyzer in 11 out of 17 test programs. Importantly, except for one program(gzip), the slowdown of the demand-driven analyzer occurs only for short programs. Thedemand-driven analysis achieves speedups for the larger programs by factors ranging from1.1 up to 11.4. Very short programs (less than 100 lines) are less likely to bene�t from ademand-driven analysis since the savings of information collection in demand-driven analysis

87Non-Caching Demand-Driven Analysis (Du-chain) Savingsprogram time (secs) T opt space (Kbytes) S opt speedup TexT opt space: S opt�100Sexbubble 0.03 (0.02) 9.996 1.0 (1.0) 95.2%quicksort 0.07 (0.03) 14.256 0.4 (1.0) 97.8%hanoi 0.03 (0.02) 11.516 0.7 (1.0) 94.2%queens 0.06 (0.02) 14.612 0.7 (1.0) 95.2%heapsort 0.17 (0.15) 20.196 0.5 (0.4) 88.7%nsieve 0.10 (0.05) 19.304 0.3 (0.8) 95.6%cat 0.11 (0.10) 37.060 1.8 (0.8) 85.3%calendar 0.07 (0.05) 64.684 2.4 (1.6) 78.7%getopt 0.64 (0.60) 82.468 1.5 (0.6) 78.3%linpack 0.86 (0.73) 203.756 0.6 (0.4) 89.7%di� 1.09 (0.90) 184.856 6.3 (2.5) 59.4%patch 1.58 (1.43) 159.548 1.3 (0.5) 69.2%tar 1.87 (1.75) 200.204 2.3 (1.2) 61.3%gzip 2.84 (2.52) 336.348 0.5 (0.3) 64.0%grep 1.16 (1.05) 289.552 3.9 (1.2) 66.2%sort 1.27 (1.08) 352.600 4.6 (1.7) 66.3%dc 1.04 (0.80) 326.940 1.1 (0.8) 78.5%Table 5.5: Accumulated demand-driven analysis time and space without caching (T optand Sopt), the speedup of the demand-driven analyzer without caching over the exhaustiveanalyzer and the demand-driven analyzer space utilization as a percentage of the exhaustiveanalysis space. Parenthesis indicate measurements that exclude temporaries.does not outweigh the overhead of starting up repeated query propagations. Moreover,exhaustive analysis of very short programs is usually fast.The speedup column in Table 5.4 shows in parentheses the speedups that result iftemporary variables are excluded and only source code level variables are analyzed. Thesespeedups are graphically displayed in Figure 5.9 (ii). The exclusion of temporaries causesa larger portion of the exhaustive solution to be computed (i.e., a higher cache �ll) and,therefore, results in lower speedups. However, demand-driven analysis is still faster thanexhaustive analysis in 12 out of the 17 programs.Table 5.4 also shows the space savings of the demand-driven analyzer as a percentageof the exhaustive space. The demand-driven analysis requires less space to store data
owinformation in almost all programs. The lower space requirements are to be expected sincedemand-driven analysis computes less information than exhaustive analysis. The spacesavings are primarily due to the fact that demand-driven analysis permits the suppressionof unnecessary summary computations. Again the savings of demand-driven analysis arenot achieved for the very short programs. In these short programs the savings in sum-mary computations did not outweigh the additional storage requirements for the generated

88
bubble 1.5

quicksort 0.6

hanoi 0.7

queens 0.8

heapsort 0.75

nsieve 0.6

cat 2.2

calendar 2.1

getopt 3.1

linpack 1.1

diff 11.4

patch 2.0

tar 3.3

gzip 0.9

grep 5.4

sort 5.7

dc 1.60.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

 (i) Speedup of caching demand-driven over exhaustive TexT optcache (full variable space)
bubble 2.0

quicksort 1.5

hanoi 1.0

queens 0.5

heapsort 0.6

nsieve 1.0

cat 1.1

calendar 2.6

getopt 1.3

linpack 0.9

diff 4.7

patch 0.8

tar 1.7

gzip 0.5

grep 1.7

sort 1.9

dc 1.10.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

 (ii) Speedup of caching demand-driven over exhaustive TexT optcache (temporaries excluded)Figure 5.9: Caching (optimzied) demand-driven analysis vs exhaustive analysis.

89queries at each node. Table 5.4 does not show the space consumption and space savings ofthe demand-driven analyzer if temporaries variables are not considered during the analysis.Excluding temporary variables results in a reduction in the space utilization of both the ex-haustive analysis and the demand-driven analyzer. Since the space consumption is reducedin both the exhaustive and the demand-driven analyzer, the proportional space savings ofthe demand-driven analyzer over the exhaustive analyzer vary only insigni�cantly from thevalues shown in Table 5.4.5.5.2 Experiment 2: Non-Caching Demand-Driven versus ExhaustiveA second experiment was conducted to determine the e�ect of caching on the performance ofthe demand-driven analyzer. The non-caching demand-driven analysis (with query advanc-ing) was executed with the same set of queries as in the �rst experiment. The accumulatedanalysis times T opt are shown in Table 5.5. Table 5.5 also shows the accumulated spaceconsumption S opt. The speedups TexT opt of the demand-driven analyzer over the exhaustiveanalyzer for both the full variable space and the source variable space are shown in Table5.5 and are graphically displayed in Figures 5.10 (i) and (ii). As expected, disabling cachingresulted in a slight slowdown of the demand-driven analyzer and, at the same time, in aslightly lower space utilization since no cache memory is allocated. A direct evaluationof the caching overhead is shown in Table 5.6. Table 5.6 shows the speedup T optT optcache of thedemand-driven analyzer with caching over the demand-driven analyzer without caching.Except for one of the short programs (queens), adding the caching capability resulted inmoderate speedup factors of up to 2.6. The analysis of program queens resulted in too fewcache hits, causing the savings to be less than the overhead of the cache management.5.5.3 Experiment 3: Query AdvancingThe third experiment evaluates the e�ects of query advancing. Query advancing was con-sidered for both the caching and the non-caching demand-driven analyzer. The results areshown in Table 5.7 and Table 5.8.Consider �rst the results for the caching demand-driven analyzer in Table 5.7. The �rsttwo columns show the accumulated demand-driven analysis time and space that result ifquery advancing is disabled. The analysis time and space measurements are accumulatedover the same set of queries that was used in the �rst two experiments. The third columnshows the speedup of the caching demand-driven analyzer with query advancing over thecaching demand-driven analyzer without query advancing. The speedup measurementsindicate that query advancing is worthwhile, resulting in speedups by factors of up to 1.9 in14 out of 17 programs while essentially requiring no additional space. Since query advancingprimarily applies to global variables, the speedups for the source level variables analysis tendto be higher than for the complete variables space analysis, where temporaries are included.The evaluation of query advancing without caching yielded similar results as shown

90
bubble 1.0

quicksort 0.4

hanoi 0.7

queens 0.7

heapsort 0.5

nsieve 0.3

cat 1.8

calendar 2.4

getopt 1.5

linpack 0.6

diff 6.3

patch 1.3

tar 2.3

gzip 0.5

grep 3.9

sort 4.6

dc 1.10.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

 (i) Speedup of non-caching demand-driven over exhaustive TexT optcache (full variable space)
bubble 1.0

quicksort 1.0

hanoi 1.0

queens 1.0

heapsort 0.4

nsieve 0.8

cat 0.8

calendar 1.6

getopt 0.6

linpack 0.4

diff 2.5

patch 0.5

tar 1.2

gzip 0.3

grep 1.2

sort 1.7

dc 0.80.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

 (ii) Speedup of non-caching demand-driven over exhaustive TexT optcache (temporaries excluded)Figure 5.10: Non-Caching (optimzied) demand-driven analysis vs exhaustive analysis.

91Trade-o�: Caching vs. Non-Caching (Du-chain)program speedup ToptToptcache % space overhead (Soptcache�100)Soptbubble 1.5 (2.0) 105.5%quicksort 1.4 (1.5) 105.7%hanoi 1.0 (1.0) 107.5%queens 1.2 (0.5) 106.0%heapsort 1.4 (1.5) 111.0%nsieve 2.0 (1.2) 109.6%cat 1.2 (1.4) 113.1%calendar 0.9 (1.6) 108.1%getopt 2.0 (2.1) 121.2%linpack 1.8 (2.2) 109.3%di� 1.8 (1.8) 135.1%patch 1.6 (1.5) 126.5%tar 1.5 (1.4) 133.2%gzip 1.5 (1.5) 124.6%grep 1.4 (1.3) 126.1%sort 1.2 (1.1) 125.9%dc 1.5 (1.3) 114.2%Table 5.6: The accumulated speedup of the demand-driven analyzer with caching over thedemand-driven analyzer without caching and the space overhead of the caching demand-driven analysis as a percentage of the space used by the non-caching demand-driven ana-lyzer.Table 5.8. Query advancing resulted in speedups by factors of up to 2 in 13 out of 17programs. As for the caching analyzer, the speedups were higher in most programs whenthe analysis excluded temporary variables.Overall, including query advancing in the demand-driven analysis is shown to be worth-while, resulting in speedups in almost all programs for both the caching and the non-cachinganalyzer versions.5.5.4 SummaryThe experimental results demonstrate that demand-driven analysis performs well in prac-tice. The �rst experiment showed that demand-driven analysis computes du-chains fasterthan exhaustive analysis in the majority of cases (in 11 out of 17 programs). In 12 out of17 programs demand-driven analysis also uses less space for storing data
ow informationthan exhaustive analysis. Importantly, the speedups and space savings of the demand-driven analysis over the exhaustive analysis result even when du-chains are computed overthe entire program. Naturally, the bene�ts of using a demand-driven approach would be

92Query Advancing (Du-chain) - Cachingprogram time T space S speedup TT opt space: (S opt�100)Sbubble 0.02 (0.02) 10.564 1.0 (2.0) 100.1%quicksort 0.03 (0.03) 15.524 0.6 (1.5) 102.9%hanoi 0.03 (0.02) 12.700 1.0 (1.0) 102.5%queens 0.06 (0.03) 16.456 1.2 (0.7) 106.2%heapsort 0.14 (0.12) 22.396 1.2 (1.2) 99.8%nsieve 0.04 (0.05) 21.608 0.8 (1.2) 102.1%cat 0.17 (0.13) 42.980 1.9 (1.8) 102.5%calendar 0.14 (0.14) 79.692 1.7 (4.6) 114.0%getopt 0.33 (0.27) 100.580 1.1 (0.96) 100.5%linpack 0.46 (0.33) 222.432 0.9 (1.0) 99.8%di� 0.84 (0.73) 256.004 1.4 (1.5) 102.5%patch 1.17 (1.13) 203.480 1.2 (1.2) 100.7%tar 1.70 (1.62) 268.280 1.3 (1.35) 100.5%gzip 2.92 (2.81) 424.380 1.6 (1.7) 98.8%grep 1.39 (1.25) 387.872 1.7 (1.8) 106.2%sort 1.35 (1.17) 463.280 1.3 (1.2) 104.3%dc 1.13 (0.62) 390.800 1.6 (1.1) 104.6%Table 5.7: The accumulated caching demand-driven analysis time and space without queryadvancing (T and S), the speedup of the caching demand-driven analyzer with query ad-vancing over the caching demand-driven analyzer without query advancing and the spaceutilization of the caching demand-driven analyzer with query advancing as a percentage ofthe space used by the caching demand-driven analyzer without query advancing. Parenthe-ses indicate measurements that exclude temporaries.even higher if only a fraction of the complete set of du-chains were needed.The second experiment showed that, except for very short programs, demand-drivenanalysis bene�ts from caching. Again, the reported bene�ts result if demand-driven analysisis used to compute all du-chains. If only a fraction of the du-chains in a program is needed,caching is likely to be less bene�cial since there may not be su�ciently many cache hits tocompensate for the cache management overhead.The third experiment evaluated the bene�ts of query advancing and showed that queryadvancing is worthwhile in that it enabled speedups in 14 our of 17 programs despite theadditional overhead of computing the summary information. However, the speedups thatresulted from query advancing were moderate (less than a factor of 2 in all cases). Thus,query advancing does not provide a signi�cant improvement in the demand-driven du-chainanalysis.An additional inspection of the benchmark programs with the highest and lowest speedupswas carried out in order to identify the program characteristics that mostly a�ected the an-

93Query Advancing (Du-chain) - Non-Cachingprogram time T space S speedup TT opt space: (S opt�100)Sbubble 0.03 (0.03) 9.964 1.0 (1.5) 99.6%quicksort 0.06 (0.03) 14.660 0.9 (1.0) 102.8%hanoi 0.04 (0.02) 11.836 1.3 (1.0) 102.7%queens 0.08 (0.09) 15.640 1.3 (4.5) 107.0%heapsort 0.14 (0.14) 20.156 0.8 (0.9) 99.8%nsieve 0.06 (0.06) 19.760 0.6 (1.2) 102.3%cat 0.17 (0.15) 38.148 1.5 (1.5) 102.9%calendar 0.14 (0.13) 69.612 2.0 (2.6) 107.6%getopt 0.69 (0.59) 83.060 1.1 (0.9) 100.7%linpack 0.85 (0.66) 203.472 0.9 (0.9) 99.8%di� 1.20 (1.08) 185.956 1.1 (1.2) 100.5%patch 1.72 (1.70) 160.928 1.1 (1.1) 100.8%tar 2.23 (2.12) 201.560 1.2 (1.2) 100.6%gzip 4.23 (3.83) 340.476 1.4 (1.5) 98.7%grep 1.73 (1.69) 303.536 1.5 (1.6) 104.8%sort 2.06 (1.84) 371.048 1.6 (1.7) 105.2%dc 1.45 (0.80) 344.160 1.4 (1.0) 102.2%Table 5.8: The accumulated non-caching demand-driven analysis time and space withoutquery advancing (T and S), the speedup of the non-caching demand-driven analyzer withquery advancing over the demand-driven analyzer without query advancing and the spaceutilization of the non-caching demand-driven analyzer with query advancing as a percentageof the space used by the non-caching demand-driven analyzer without query advancing.Parentheses indicate measurements that exclude temporaries.alyzers' performance. In general, the speedups of the demand-driven analyzer over theexhaustive analyzer are highest if the lengths of the propagation paths for the individualqueries are the shortest. The length of query propagation paths in REACH depends primar-ily on reference locality properties. If variables are de�ned and used in nearby statementsthe propagation paths are short. The following program characteristics could be identi�edas having a direct impact on the analyzers' performances.� Program size. The speedup of demand-driven analysis over exhaustive analysis tendsto increase with the length of the program. Reference locality properties usually donot depend on the program size, so that the average length of query propagation pathsdoes not grow at same rate as the program length. Thus, higher speedups are likelyfor large programs, since the average query propagation time may not change muchwith program size while the cost of exhaustive analysis does.� Nesting depth of control structures: Programs with deeply nested control structuresmay generate long query propagation paths and are generally more expensive to an-

94alyze than straight-line code. However, the depth of control structures negativelya�ects the performance of both demand-driven and exhaustive analysis.� Number of global variables: The length of query propagation paths for local variablesand temporaries is bounded by the size of the procedure in which the respective queriesare raised. In contrast, the query propagation paths for global variables may extendacross several procedures. Thus, a large number of global variables may result in morequeries with long propagation paths. However, global variables also give opportunitiesfor query advancing across calls and, thus, also contribute to the speedup of demand-driven analysis.� Number of procedures: In contrast to exhaustive analysis, demand-driven analysis withquery advancing bene�ts from large numbers of procedures. Query advancing allowsthe analysis to skip complete procedures which would not be possible if procedureswere, for example, in-lined.� Structure of the call graph: The structure of the call graph determines the maximallength of query propagation paths for global variables. In the best case, the call graphstructure is a two-level tree, i.e., every procedure is called only once from the mainprocedure. In this case, the propagation paths for a global variable can not extendbeyond the length of two procedures resulting in fast query evaluations. Cycles inthe call graph, i.e., recursion, can create long query propagation paths. However,recursion also negatively impacts on the performance of exhaustive analysis.� Density of the call graph: The density of the call graph, that is, the average numberof calls per procedure has a negative e�ect on both demand-driven and exhaustiveanalysis. A high number of calls may trigger additional procedure summary com-putations. In demand-driven analysis, long call chains in very dense call graphs cancreate long query propagation paths for global variables.Exceptionally high speedups of demand-driven analysis over exhaustive analysis, as forexample in program di�, result in programs that combine several of the speedup supportingprogram characteristics. However, the presence of these characteristics in a program arenot su�cient to guarantee a speedup. Some of the above program characteristics have bothnegative and positive e�ects on the demand-driven analyzer's performance (e.g., number ofglobal variables, density of the call graph). Thus, the above listing identi�es trends andfurther studies with larger program sets would be necessary to provide complete insightsinto the impact of program characteristics on the analyzers' performance.

Chapter 6A Demand-Driven Analyzer forCopy Constant PropagationThis chapter continues the practical evaluation of the demand-driven approach by presentingexperimentation with a demand-driven analyzer for copy constant propagation (CCP). CCPanalysis is more complex than the analysis of Gen-Kill problems. Like Gen-Kill problems,CCP is a distributive problem. However, CCP is not partitionable and is therefore morecostly to analyze exhaustively than a Gen-Kill problem. The experimentation presented inthis chapter shows that the speedups of demand-driven CCP analysis over exhaustive CCPanalysis are even higher than in the experiments with the REACH analyzers. These resultssupport the hypothesis that the more expensive an analysis is the higher are the bene�ts ofreducing the analysis e�ort with a demand-driven approach.This chapter is organized as follows. Section 6.1 brie
y reviews the formal de�nitionof CCP, which was already introduced in Chapter 3. Section 6.2 describes the instance ofthe demand-driven framework for CCP along with an analysis of its asymptotic cost. Theexperiments with the CCP analysis are reported in Section 6.3.6.1 Copy Constant PropagationRecall that the lattice in CCP for a program with k variables is a product lattice Lk . Eachlattice element is a k-tuple x = (x1; : : :xk) with a component xi 2 L for variable vi. Thecomponent value xi is either > (unde�ned), ? (any integer) or any of the constant literalsc that occur in the program text.1 A base element in Lk is of the form [vi = c] denoting alattice element (x1; : : : ; xk) with a single non-bottom component xi: xi = c and xj = ? forj 6= i.The
ow functions in CCP and the reverse
ow functions, �rst shown in Chapter 3 arerestated in Table 6.1 for various types of statements.1See Figure 3.1 for a display of the lattice in CCP.95

96statement at n
ow function reverse
ow functionfn(x)j , where x = (x1; : : : ; xk) f rn ([vi = c1]), where ci is some constantvi := c fn(x)j = 8<: c if i = jxj otherwise f rn ([vi=c1]) =8>><>>: ? if i=j and c1=c2> if i=j and c1 6=c2[vi=c1] otherwisevi := vl fn(x)j = 8<: xl if i = jxj otherwise f rn ([vi=c1]) =8<: [vl=c1] if i=j[vi=c1] otherwisevi := expr.read(vi) fn(x)j = 8<: ? if i = jxj otherwise f rn ([vi=c1]) =8<: > if i=j[vi=c1] otherwiseTable 6.1: Flow functions and reverse
ow functions for CCP.Example: Consider the program example in Figure 6.1. The program consists of three pro-cedures proc1, proc2 and proc3. The address spaces of the three procedures areAddr(proc1) =fa; bg, Addr(proc2) = fa; fg and Addr(proc3) = fa; g; hg. The lattice elements for proce-dure proc1 are tuples (xa; xb), where xa and xb denote the lattice values for the global aand the local variable b. Similarly, the lattice elements for procedures proc2 and proc3 aretuples of the form (xa; xf) and (xa; xg; xh), respectively. The CCP solution on entry of eachnode is shown in Figure 6.1. Figure 6.1 also shows the reverse
ow functions next to eachnon-call site node in the control
ow graph.6.2 A Framework Instance for CCPAn instance of the demand-driven framework for CCP is obtained by specializing the threeframework components: (1) the query de�nition, (2) the query propagation rules, and (3)the generic analysis algorithm. As in the previous chapter, the analysis for CCP assumesC-style programs with global and local variables and procedures with value parameters.According to the general framework, a query q in CCP asks for a speci�c lattice ele-ment, i.e., a speci�c constant value c of a variable v at a node n. For example, the queryq =< [v = 0]; n > raises the question: \Is variable v a copy constant at node n with value0?". Using this query format, queries with respect to each constant literal may be nec-

97declare a; /* global */procedure proc1 procedure proc2(in: f)) procedure proc3(in: g,in: h)declare b; /* local */ begin beginbegin call proc3(f,f); h:=g;b:=0; end enda:=1;call proc2(a);call proc3(b,a);end
entry entry entry

exit

exit

h:=g

exit

1

2

3

4

5

6

7

8

9

10

11

12
f9

r([f=c])=[f=c]

f10
r ([g=c])=[g=c]

f10
r ([h=c])=[h=c]

f12
r ([g=c])=[g=c]

f12
r ([h=c])=[h=c]

f11
r ([g=c])=[g=c]

f11
r ([h=c])=[g=c]

f7
r([f=c])=[f=c]

proc1

call proc3(f,f)
b:=0

a:=1

call proc2(a)

call proc3(b,a)

f7
r([a=c])=[a=c]

f9
r([a=c])=[a=c]

f10
r ([a=c])=[a=c]

f11
r ([a=c])=[a=c]

f12
r ([a=c])=[a=c]

f1
r([a=c])=[a=c]

f1
r([b=c])=[b=c]

f3
r([b=c])=[b=c]

f6
r([b=c])=[b=c]

f6
r([a=c])=[a=c]

f2
r([a=c])=[a=c]

f2
r([b=0])=−−|

f2
r([b=c])=−−| (b≠0)

f3
r([a=1])=−−|

f3
r([a=c])=−−| (a≠1)

proc2(in: f) proc3(in: g,in: h)

CCP solution (on entry)proc1 proc2n (xa; xb) n (xa; xf)1 (?;?) 7 (1; 1)2 (?;?) 8 (1; 1)3 (?; 0) 9 (1; 1)4 (1; 0) proc35 (1; 0) n (xa; xg; xh)6 (1; 0) 10 (1;?; 1)11 (1;?; 1)12 (1;?;?)
Reverse summary functionsproc2n �r(n;9)([a = c]) �r(n;9)([f = c])7 [a = c] [f=c]8 [a = c] [f=c]9 [a = c] [f=c]proc3n �r(n;12)([a = c]) �r(n;12)([g = c]) �r(n;12)([h = c])10 [a = c] [g=c] [g=c]11 [a = c] [g=c] [g=c]12 [a = c] [g=c] [h=c]Figure 6.1: Example for CCP

98essary to determine whether a variable has constant value. Generating such a potentiallyhigh number of queries is not only costly, it is actually unnecessary. The propagation ofmultiple queries < [v = 0]; n >;< [v = 1]; n >; : : : that only di�er in their constant valueis identical except for the response upon termination. Thus, these queries can be combinedinto a single query of the form:\Is variable v a copy constant at node n?". The combinedquery is written as: q =< [v = c]; n >;where c represents an unknown but �xed constant value.The specialized query propagation rules are shown in Figure 6.2 (i). The de�nition ofthe reverse summary function is shown in Figure 6.2 (ii). Reverse summary functions arecomputed for global variables only since in programs with value parameters side e�ects ofprocedure execution can only a�ect global variables.2 Since the execution of a procedurep has no e�ect on variables that are local to the calling procedure, the reverse summaryfunction for local variables is simply the identity function.6.2.1 Demand-Driven Algorithm for CCPThe specialization of the generic query algorithm Query for CCP is shown in Figure 6.3.Procedure Query CCP takes as input a query of the form \Is variable v a copy constantat node n?". Query < [v = c]; n > evaluates to true at node n if n assigns any constantto variable v, in which case the constant value is remembered. If all generated queriesevaluate to true the join over the remembered constant values is examined. If this joinyields a constant, the constant value is returned. Otherwise, the returned response is false.The corresponding instance of the generic procedure CCP�r, shown in Figure 6.4, par-tially evaluates the reverse summary function equation system from Figure 6.2 (ii).Example: Procedure Query CCP is illustrated using the program example in Figure 6.1 forthe query q =< [h = c]; 10 > raising the question as to whether the formal h of procedureproc3 is a copy constant on entry of each invocation of proc3. Initially, worklist = f10gand query[10] = [h = c]. Query[10] is propagated to queries for the corresponding actualparameters at call sites resulting in: query[5] = [a = c] and query[8] = [f = c]. Processingquery[8] causes the propagation of [f = c] to node 7 and in turn to actual parameters atthe call site at node 4, i.e., query[4] = [a = c]. Assume query[5] is propagated next acrossthe call to procedure proc2 at node 4. Since a is global, the reverse summary function value�r(7;9)([a = c]) is determined. Since �r(7;9)([a = c]) = [a = c], the query < [a = c]; 5 >propagates to node 4: query[4] = [a = c]. Applying the reverse function at node 3 yieldsf r3 ([a = c]) = ?. Thus, when propagating the query through node 4, it evaluates to trueand 1 is remembered as the actual constant assigned. Since the worklist is exhausted, the2In programs with reference parameters, reverse summary functions are also computed for formalparameters.

99(i) < ?; n > () true< >; n > () false(ii) For each procedure p:< [v = c]; entryp >() 8>><>>: false if p has no call sites or v 2 Local(p)^call(m)=p < [b�1m (v) = c]; m > otherwise(iii) For each non-entry node n:< [v = c]; n >() ^m2pred(n)8>>><>>>: < f rm([v = c]; m > if m is not a call site< �r(entryq ;exitq)([v = c]); m > if call(m) = q and v is global< [v = c]; m > otherwise(i)For each procedure p and global v:�r(exitp;exitp)([v = c]) = [v = c]For each node n 6= exitp in p and global v:�r(n;exitp)([v = c]) = tm2succ(n)8<: f rm � �r(m;exitp)([v=c]) if m is not a call site�r(entryq ;exitq)([v=c]) � �r(m;exitp)([v=c]) if call(m) = q(ii)Figure 6.2: Specialized propagation rules (i) and reverse summary functions (ii) for CCP.

100Procedure Query CCP (v; n)input: a variable v and a node noutput: the constant value c if v is a copy constant at n, otherwise falsebegin1. for each m 2 N do query[m] ;;2. query[n] [v] ; worklist f(v; n)g; val = ?;3. while worklist 6= ; do4. remove a pair (w;m) from worklist and let p be the procedure containing m;5. case m = entrymain:6. return(false);7. case m = entryq for some procedure q:8. for each call site m0 such that call(m0) = q do9. if b�1m0 (w) 6= ; then /* if w is not local to q */10. query[m0] query[m0] [~b�1m (query[m]);11. if query[m0] changed then add (b�1m0 (w);m0) to worklist;12. endfor;13. otherwise:14. for each m0 2 pred(m) do15. new 8>>>>><>>>>>: f rm0 (query[m]) if m0 is not a call siteb�1m0 (CCP�r(q; bm0(w); val) if call(m0) = q and w 2 Globalquery[m] if m0 is a call site and w 62 Global16. let newvar be the variable named in new;17. if new = ? and m0 is not a call site then /* m0 must assign a sonstant value c tro w */18. val val t c, where c is the const. assigned at m0;19. if(new = >) or (val = >)then return(false)20. else if new = ? then /* query still unresolved */21. query[m0] query[m0]t new;22. if query[m0] changed then add (newvar;m0) to worklist ;23. endif;24. endfor;25. endwhile;26. if val < > then return(val) else return(false);end Figure 6.3: Demand-driven algorithm for CCP.

101Procedure CCP�r(p; y; val)input: procedure p, variable y and variable val to hold const. valueoutput: summary value �r(rp;ep)(y).begin1. worklist ;; res ?;2. let y = [v1; : : : ; vk], where vi 2 Addr(p);3. for each vi, where 1 � i � k do4. ifM [ep; vi] = ? then add (ep; vi) to worklist;5. M [ep; vi] = [vi]; endif;6. while worklist 6= ; do7. remove a pair (n;w) from worklistand let p0 be the proc. containing n;9. let [w1; : : : ; wj] = M [n;w];10. case n 2 Ncall and call(n) = q:11. for each wi, where 1 � i � j do12. if wi 2 Global or wi is an actual param. at n then13. for each z 2 bn([wi]) do14. ifM [eq; z] = [z] then15. for each m 2 pred(n) do Propagate(m;w; b�1n (M [rq; z]));17. if M [rq; z] = ? thenM [p0; w]:val M [p0; w]:val tM [q; z]:val;19. elseM [eq; z] [z]; add (eq ; z) to wor klist; endif;20. endfor;21. else /* skip call site if u not passed */22. for each m 2 pred(n) do Propagate (m;w; [wi]);23. endfor;24. case n = rq for some procedure q:25. for each m 2 Ncall such that call(m) = q and b�1m ([w]) 2M [m; z] for some z do27. let p00 be the proc. containing m;28. for each m0 2 pred(m) do Propagate(m0; z; b�1m (M [n;w]);30. if M [rq; w] = ? then M [p00; z]:val M [p00; z]:val tM [q; w]:val;32. otherwise:33. for each m 2 pred(n) do34. Propagate(m;w; f rm(M [n;w]);35. if f rn (M [n;w]) = ? then36. M [p0; w]:val M [p0; w]:val t c, where c is the const. assigned at m;38. endwhile;39. for each vi, where 1 � i � k do40. res res tM [rp; vi]; val val tM [p; vi]:val; endfor;41. return(res);endProcedure Propagate(n; v; new) /* propagate new to M [n; v] */input: node n, variable v and set of variables newbegin1. M [n; v] M [n; v]t new;2. if M [n; v] changed then add (n; v) to worklist; endifend ; Figure 6.4: Procedure CCP�r(p; y; val) for CCP.

102overall response is 1, indicating that the formal h of procedure q always has the value 1 onentry of procedure q.6.2.2 Asymptotic CostConsider the execution time of procedure Query CCP. At each node, at most MaxAddrqueries can be generated, where MaxAddr is the size of the maximal address space in anyprocedure. Thus, during an invocation of Query CCP a total of O(MaxAddr� jN j) queriescan be generated resulting in O(MaxAddr � jN j) join and reverse function applications inprocedure Query CCP.Now consider the execution time of procedure CCP�r. By the distributivity of thereverse summary functions, it is su�cient to maintain table entries only for base elementsresulting in jGlobalj � jN j entries.3 Each entry may contain a set of base elements and istherefore of sizeMaxAddr. To keep track of the actual constant values encountered, the tableM includes an extra �eld M [p; v]:val for each procedure p and each variable v. The �xedpoint computation of table entries requires in the worst case O(jGlobalj�MaxAddr� jN j)table updates. As in the general case, each table update may trigger up to MaxCall joinand/or reverse function applications, where MaxCall is the maximal number of call sitescalling a single procedure. Assuming join and reverse function applications are performedpointwise, each join or function application requires O(jMaxAddrj) time resulting in thetotal time of O(MaxCall� jGlobalj�MaxAddr2� jN j) for procedure GenKill�r. Thus, theoverall time requirements are O(MaxCall� jGlobalj �MaxAddr2 � jN j).4As in the example of Gen-Kill analysis in Chapter 5, the specialization of the frameworkinstance to CCP yields a signi�cantly more e�cient algorithm than a straightforward adop-tion of the generic algorithm. The asymptotic time complexity of the generic algorithmQuery depends on the size of lattice. The lattice in CCP has O((l+ 2)MaxAddr) elements,where l is number of constant literals in the program text. Thus, a straightforward adoptionof the generic algorithm to CCP would result in an exponential time algorithm.6.2.3 Query AdvancingThe query propagation in procedure Query CCP can be optimized using the same type ofquery advancing techniques as described for Gen-Kill problems in Chapter 5. Similar to theREACH analyzer, the generation of data
ow information in CCP is based on de�nitions ofvariables. Thus, the
ow-insensitive procedure summary sets DMOD(p) that were used toenable query advancing in reaching de�nitions can also be used to enable query advancingin CCP.3In programs that contain reference parameters, summary information is needed for both, global variablesand formal reference parameters, resulting in O(jGlobal +MaxFormal � jN j) entries, where MaxFormal isthe maximal number of formal parameters in any procedure.4For programs with reference parameters the overall time requirements are O(MaxCall�MaxAddr3�jN j).

103� Advancing across callsPropagating a query q =< [v = c]; n > for a global variable v across a call sitem 2 call(p) requires summary information only if v 2 Mod(p). Otherwise, q can bedirectly forwarded across the call:� Advancing to entryConsider the propagation of a query q =< [v = c]; entryp > for a variable v into aprocedure r that calls p. If v 62 Mod(r) then q can be directly forwarded to entryr6.3 ExperimentsAn experimental study was conducted to evaluate the practical bene�ts of computing copyconstant information using demand-driven analysis. The �rst experiment compares theperformance of demand-driven CCP analysis with that of a standard exhaustive algorithm.The second experiment evaluates the bene�ts of caching and the third experiment examinesthe bene�ts of query advancing.The following three algorithms were implemented:(CACHE) Caching demand-driven CCP algorithm as described in the previous sectionwith the option of query advancing.(DD) A non-caching version of the demand-driven CCP algorithm with the option of queryadvancing.(EX) An exhaustive CCP algorithm that is based on interprocedural analysis frameworkby Sharir and Pnueli [SP81].The three algorithms were implemented as part of the PDGCC compiler project. Theexperimental evaluation of the three CCP analysis algorithms was carried out under thesame conditions as the experimentation with du-chain analysis. For a detailed descriptionof the implementation and experimentation context, including a description of the 17 Cbenchmarks that served as input to the analysis algorithms, see Section 5.5. As in Chapter 5,the experiments were run in two versions: one version that considers the complete variablesspace including compiler generated temporaries and one version that considers only source-level variables.6.3.1 Experiment 1: Caching Demand-Driven versus ExhaustiveThe �rst experiment compares the performance of the caching demand-driven CCP analyzerwith that of the exhaustive analyzer. The experiment was carried out under the assumptionthat copy constant information for a variable is required only at program points that containa reference of the variable. Thus, the demand-driven analyzer is applied to a set of queries

104Exhaustive Analysis (CCP)program time (secs) space (Kbytes)Tex Sexbubble 0.08 (0.04) 66.828 (28.508)quicksort 0.17 (0.10) 190.656 (77.288)hanoi 0.05 (0.03) 75.764 (34.060)queens 0.10 (0.04) 145.324 (41.068)heapsort 0.71 (0.10) 382.340 (69.220)nsieve 0.33 (0.18) 282.756 (125.78)cat 0.25 (0.10) 334.800 (110.400)calendar 0.26 (0.09) 463.432 (119.144)getopt 2.44 (0.71) 2,003.272 (338.648)linpack 2.80 (0.61) 3,556.032 (469.520)di� 3.88 (0.99) 5,344.124 (1,342.140)patch 93.53 (51.96) 24,459.728 (7,691.752)tar 13.44 (6.91) 9,518.464 (4,813.808)gzip 62.16 (31.55) 49,777.040 (21,696.240)grep 3.45 (1.52) 4,277.056 (1,679.680)sort 19.93 (7.20) 12,541.632 (2,854.096)dc 14.35 (9.69) 10,296.716 (3,673.300)

Queries (CCP)program queries constantbubble 127 (51) 11 (11)quicksort 170 (76) 9 (9)hanoi 120 (63) 7 (7)queens 181 (82) 15 (15)heapsort 230 (138) 29 (25)nsieve 199 (138) 51 (47)cat 324 (121) 16 (16)calendar 507 (102) 20 (10)getopt 459 (203) 18 (16)linpack 2014 (909) 112 (109)di� 1055 (283) 76 (68)patch 1146 (446) 94 (83)tar 1046 (335) 42 (32)gzip 2101 (714) 135 (91)grep 1481 (495) 157 (65)sort 1930 (589) 92 (75)dc 2325 (784) 49 (46)Table 6.2: Exhaustive analysis time (Tex) and space (Sex) and the number of queries andthe number of constants found for each benchmark. Parentheses indicate measurementsthat exclude temporaries.that contains one query for each occurrence of a scalar variable in the program. The orderin which these queries were processed was chosen randomly.Table 6.3 shows the number of queries generated for each program and the numberof constants that were discovered. The parentheses indicate the corresponding numbersfor the source-level analysis that excludes temporaries. Unlike the problem of du-chaincomputation, excluding temporary variables from CCP analysis a�ects the solution sincetemporaries with constant values may be used to de�ne other variables. As shown in Table6.3, fewer constants may result. However, local analysis may be su�cient to reveal constanttemporaries. The study, therefore, reports analysis times for both the complete variablespace and the source-level variable space.Table 6.2 shows for each program the analysis time Tex and the space consumption Sexof the exhaustive CCP analyzer. The demand-driven analysis time T optcache accumulated overall queries is shown in Table 6.3. The analysis T optcache is based on the caching version of thedemand-driven analyzer with query advancing. Table 6.3 also shows the accumulated space

105Caching Demand-Driven Analysis (CCP) Savingsprogram time (secs) space (Kbytes) cache �ll speedup space: % of SexT optcache S optcache TexT optcache S optcache�100Sexbubble 0.05 (0.02) 66.492 14 (33%) 1.6 (2.0) 99.4%quicksort 0.05 (0.04) 85.512 15% (33%) 3.4 (2.5) 44.8%hanoi 0.04 (0.03) 43.736 16% (35%) 1.2 (1.0) 57.7%queens 0.07 (0.03) 92.904 12% (43%) 1.4 (1.3) 63.9%heapsort 0.18 (0.13) 238.672 18% (54%) 3.9 (0.7) 62.4%nsieve 0.08 (0.06) 101.672 15% (37%) 4.1 (3.0) 35.9%cat 0.11 (0.09) 192.308 10% (28%) 2.2 (1.1) 57.4%calendar 0.15 (0.04) 324.276 4% (16%) 1.7 (2.2) 69.9%getopt 0.80 (0.29) 1,608.344 4% (25%) 3.0 (2.4) 80.2%linpack 0.80 (0.47) 1,577.688 6% (50%) 3.5 (1.2) 44.3%di� 1.03 (0.62) 3,108.972 4% (17%) 3.7 (1.5) 58.1%patch 2.11 (1.16) 4,206.108 5% (12%) 44.3 (44.7) 17.1%tar 1.89 (1.16) 4,180.120 8% (13%) 7.1 (5.9) 43.9%gzip 4.97 (2.83) 9,333.080 4% (7%) 12.5 (11.1) 18.7%grep 1.21 (0.78) 2,483.448 6% (16%) 2.8 (1.9) 58.0%sort 1.45 (0.82) 3,252.552 5% (21%) 13.7 (8.7) 25.9%dc 1.58 (0.74) 2,944.576 5% (12%) 9.0 (13.1) 128.5%Parentheses indicate measurements that exclude temporaries.Table 6.3: Accumulated demand-driven analysis time and space with caching (T optcache andSoptcache), the cache �ll, the speedup of the demand-driven analyzer with caching over theexhaustive analyzer and the demand-driven analyzer space utilization as a percentage ofthe exhaustive analysis space. Parentheses indicate measurements that exclude temporaries.consumption and the cache �ll. The cache �ll values in Table 6.3 show that the portionof the exhaustive solution that is actually needed to compute copy constant informationis even smaller than in du-chain analysis. When considering the complete variable space(i.e., including temporaries), the relevant portion ranges from 4% to only 18%. Whenexcluding temporaries the relevant portion is higher, ranging from 7% to 54%. As for du-chain analysis, the remaining unneeded portion of the solution consists of irrelevant copyconstant information of variables that are no longer live in the containing procedure.Fig. 6.5 (i) displays the speedups TexTd=c of the demand-driven analyzer with caching overthe exhaustive analyzer. The demand-driven analyzer computes copy constant informationfaster than the exhaustive analyzer in all programs with speedup factors ranging from 1.2up to 44.3. The speedup for program patch is exceptionally high (44.3). A closer inspectionof program patch revealed that the speedup is primarily due to the suppression of a largenumber of procedure summary computations that are performed in the exhaustive analysis.

106
bubble 1.6

quicksort 3.4

hanoi 1.2

queens 1.4

heapsort 3.9

nsieve 4.1

cat 2.2

calendar 1.7

getopt 3.0

linpack 3.5

diff 3.7

tar 7.1

gzip 12.5

grep 2.8

sort 13.7

dc 9.0

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

 (i) Speedup of caching demand-driven over exhaustive TexT optcache (full variable space)
bubble 2.0

quicksort 2.5

hanoi 1.0

queens 1.3

heapsort 0.7

nsieve 3.0

cat 1.1

calendar 2.2

getopt 3.0

linpack 1.2

diff 1.5

tar 5.9

gzip 11.1

grep 1.9

sort 8.7

dc 13.1

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

 (i) Speedup of caching demand-driven over exhaustive TexT optcache (temporaries excluded)Figure 6.5: Caching (optimzied) demand-driven analysis vs exhaustive analysis.

107Summary computations can be suppressed in the demand-driven analysis either by meansof query advancing or because the query propagation paths are short and do not containprocedure calls.The speedups and cache �ll measurements that result when excluding temporary vari-ables from the analysis are shown in parentheses in Table 6.3. Excluding temporariesresulted in a higher cache �ll indicating that a larger fraction of exhaustive solution wascomputed. Corresponding to the higher cache �ll, the speedups of the demand-drivenanalysis over the exhaustive analysis tend to be lower. However, except for one program,demand-driven analysis is still faster than exhaustive analysis with speedup factors rangingfrom 1.1 up to 44.7.As in the experimentation with du-chain analysis, demand-driven CCP analysis requiresless space to store data
ow information in almost all programs. Table 6.3 shows the spacesavings of the demand-driven analyzer as the percentage of the exhaustive space require-ments. Demand-driven analysis of program patch, which achieved the highest speedup, alsoresulted in the lowest space usage requiring only 17% of the exhaustive analysis space. Thelow space usage indicates that demand-driven analysis required less procedure summarycomputations which is also the primary reason for the observed speedup.Full Solution on DemandThe performance of the demand-driven CCP analyzer was evaluated based on the assump-tion that copy constant information about a variable is needed only at the nodes thatcontain a use of that variable. This assumption is reasonable for applications in compileroptimizations and software tools since copy constant information is primarily used to sim-plify expressions (constant folding) or portions of code (i.e., procedure cloning).Conceptually, the demand-driven analyzer may be used to retrieve copy constant infor-mation about any variable at any node. Although demand-driven analysis is not a suitableapproach for retrieving exhaustive data
ow solutions, an additional experiment was carriedout to determine the worst case performance of demand-driven analysis if used to computethe complete exhaustive solution. The caching demand-driven analyzer with query advanc-ing was executed on an exhaustive set of queries that contained one query for each variableat each node. The accumulated demand-driven analysis time T optcache is shown in Table 6.4.Table 6.4 also shows the slowdown of the demand-driven analysis with respect to the ex-haustive analysis and the demand-driven analysis' space requirements as a percentage of theexhaustive space requirements. Table 6.4 shows that, in the worst case (program calendar),the slowdown was by a factor of 22.8. Surprisingly, there are two cases (programs patchand gzip) where demand-driven analysis still performed better than exhaustive analysisalthough the full exhaustive solution was demanded. As previously discussed the primarycause for the high speedup for program patch is the suppression of summary computationsthat are performed in the exhaustive analysis. The suppression of summary computations

108Demand-Driven Analysis: Full Solution (CCP) Overheadprogram time (secs) space (Kbytes) slowdown space: % of SexT optcache S optcache T optcacheTex (S optcache�100)Sexbubble 0.53 (0.15) 119.380 6.6 (3.7) 178.6%quicksort 0.59 (0.19) 108.496 3.4 (1.9) 56.9%hanoi 0.60 (0.12) 44.896 12.0 (4.0) 59.2%queens 0.80 (0.16) 95.976 8.0 (4.0) 66.0%heapsort 2.12 (0.61) 239.312 2.9 (6.1) 62.5%nsieve 1.39 (0.37) 156.320 4.2 (2.1) 55.2%cat 3.10 (0.59) 203.508 12.4 (5.9) 60.7%calendar 5.93 (0.73) 391.688 22.8 (8.1) 84.5%getopt 11.68 (1.59) 2,052.656 4.7 (2.2) 102.4%linpack 23.16 (2.52) 1,609.024 8.2 (4.1) 42.2%di� 51.97 (10.26) 3,559.236 13.3 (10.3) 66.6%patch 32.00 (16.80) 4,832.412 0.3 (0.3) 19.7%tar 43.61 (19.89) 27,280.584 3.2 (2.8) 286.6%gzip 60.82 (27.80) 14,971.952 0.9 (0.8) 30.0%grep 33.95 (10.28) 3,142.128 9.8 (6.7) 73.0%sort 50.51 (8.99) 3,677.584 2.5 (1.2) 29.3%dc 51.97 (7.75) 3,559.236 3.6 (0.7) 34.5%Table 6.4: Accumulated demand-driven analysis time and space with caching (T optcache andSoptcache) when computing the full solution, the cache �ll, the slowdown of the demand-driven analyzer with caching with respect to the exhaustive analyzer and the demand-drivenanalyzer space utilization as a percentage of the exhaustive analysis space. Parenthesesindicate measurements that exclude temporaries.in patch, as well as in gzip, is indicated by the lower space requirements that result althoughthe complete exhaustive solution is collected.6.3.2 Experiment 2: Non-Caching Demand-Driven versus ExhaustiveThe second experiment was carried out to determine the e�ect of caching on the perfor-mance of the demand-driven analyzer. The non-caching demand-driven analyzer with queryadvancing was executed with the same set of queries as in the �rst experiment. The accu-mulated analysis times T opt are shown in Table 6.5. Table 6.5 also shows the accumulatedspace consumption S opt. The speedups of the demand-driven analyzer over the exhaustiveanalyzer for both the full variable space and the source variable space are shown in Table6.5 and are graphically displayed in Figures 6.6 (i) and (ii). Analogous to the experimentswith du-chain analysis, disabling caching resulted in a slight slowdown of the demand-drivenanalyzer and at the same time in slightly lower space utilization since no cache memory

109
bubble 2.0

quicksort 1.8

hanoi 1.6

queens 1.1

heapsort 3.5

nsieve 2.7

cat 1.4

calendar 1.8

getopt 2.2

linpack 2.5

diff 2.7

tar 4.9

gzip 12.0

grep 2.2

sort 10.0

dc 8.3

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

 (i) Speedup of caching demand-driven over exhaustive TexT optcache (full variable space)
bubble 2.0

quicksort 2.5

hanoi 1.5

queens 1.3

heapsort 0.7

nsieve 2.0

cat 1.1

calendar 1.1

getopt 1.2

linpack 0.8

diff 1.1

tar 4.4

gzip 10.3

grep 1.4

sort 7.5

dc 10.7

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

 (ii) Speedup of caching demand-driven over exhaustive TexT optcache (temporaries excluded)Figure 6.6: Caching (optimzied) demand-driven analysis vs exhaustive analysis.

110Non-Caching Demand-Driven Analysis (CCP) Savingsprogram time (secs) T opt space (Kbytes) S opt speedup TexT opt % space: S opt�100Sexbubble 0.04 (0.02) 39.240 2.0 (2.0) 58.7%quicksort 0.09 (0.04) 82.808 1.8 (2.5) 43.3%hanoi 0.03 (0.02) 39.240 1.6 (1.5) 51.7%queens 0.09 (0.03) 87.448 1.1 (1.3) 60.1%heapsort 0.20 (0.14) 232.336 3.5 (0.7) 60.7%nsieve 0.12 (0.09) 88.680 2.7 (2.0) 31.3%cat 0.17 (0.09) 161.396 1.4 (1.1) 48.2%calendar 0.14 (0.08) 289.360 1.8 (1.1) 62.4%getopt 1.10 (0.55) 1,438.120 2.2 (1.2) 71.7%linpack 1.09 (0.69) 1,418.448 2.5 (0.8) 39.8%di� 1.39 (0.94) 2,360.244 2.7 (1.1) 44.1%patch 2.55 (1.55) 3,887.372 36.6 (33.5) 15.8%tar 2.70 (1.57) 3,734.432 4.9 (4.4) 39.2%gzip 5.14 (3.04) 8,815.544 12.0 (10.3) 17.7%grep 1.52 (1.08) 1,899.440 2.2 (1.4) 44.4%sort 1.99 (0.96) 2,378.416 10.0 (7.5) 18.9%dc 1.71 (0.90) 2,606.608 8.3 (10.7) 25.3%Table 6.5: Accumulated demand-driven analysis time and space without caching (T optand Sopt), the speedup of the demand-driven analyzer without caching over the exhaustiveanalyzer and the demand-driven analyzer space utilization as a percentage of the exhaustiveanalysis space. Parenthesis indicate measurements that exclude temporaries.is allocated. A direct evaluation of the caching overhead is shown in Table 6.6. Table 6.6shows that the speedups of the demand-driven analyzer with caching over the demand-driven analyzer without caching. Except for one of the short programs (hanoi), adding thecaching capability resulted in moderate speedup factors of up to 2. The analysis of programhanoi caused too few cache hits to pay o� the overhead of the cache management.6.3.3 Experiment 3: Query AdvancingThe third experiment evaluates the e�ect of query advancing in CCP analysis. The resultsare shown in Table 6.7 for the caching CCP demand-driven analyzer and in Table 6.8 forthe the non-caching version. Consider �rst the results for query advancing in the cachingdemand-driven CCP analyzer in Table 6.7. The �rst two columns show the accumulateddemand-driven analysis time and space requirements that result if query advancing is dis-abled. The third column shows the speedup of the caching demand-driven analyzer withquery advancing over the caching demand-driven analyzer without query advancing. Thespeedup measurements indicate that query advancing is worthwhile resulting in speedup in

111Trade-o�: Caching vs. Non-Caching (CCP)program speedup ToptToptcache % space overhead (Soptcache�100)Soptbubble 0.8 (1.0) 169.4%quicksort 1.8 (1.0) 103.2%hanoi 0.7 (0.6) 111.4%queens 1.2 (1.0) 106.2%heapsort 1.1 (1.1) 102.7%nsieve 1.5 (1.5) 114.6%cat 1.5 (1.0) 119.1%calendar 0.9 (2.0) 112.0%getopt 1.3 (1.8) 111.8%linpack 1.3 (1.4) 111.2%di� 1.3 (1.5) 131.7%patch 1.2 (1.3) 108.1%tar 1.4 (1.3) 111.9%gzip 1.0 (1.1) 105.8%grep 1.2 (1.3) 130.7%sort 1.3 (1.1) 136.7%dc 1.1 (1.2) 112.9%Table 6.6: The accumulated speedup of the demand-driven analyzer with caching over thedemand-driven analyzer without caching and the space overhead of the caching demand-driven analysis as a percentage of the space used by the non-caching demand-driven ana-lyzer.all programs by factors of up to 6.3 while essentially requiring no additional space. Theparentheses indicate the speedups that result if temporaries are excluded from the analysis.Excluding temporaries resulted in slightly lower speedups.The evaluation of query advancing if caching is not used led to similar results as shownin Table 6.8. Query advancing resulted in speedups by factors of up to 5.9 in 15 out of17 programs. Again, excluding temporaries a�ected the speedups only. In the source-levelanalysis, speedups by factors of up to 7.9 could be achieved in 14 out of 17 programs.Overall, including query advancing in demand-driven CCP analysis was shown to beworthwhile as it resulted in speedups in all programs for the caching analyzer and inspeedups in almost all programs for the non-caching analyzer. In comparison to the exper-imental results for du-chain analysis, the bene�ts of query advancing are higher in CCP.Higher speedups are expected because the query propagation paths in CCP are usuallylonger than in du-chain analysis. Longer propagation paths are more likely to containprocedure calls which represent the opportunities for query advancing.

112Query Advancing (CCP) - Cachingprogram time T space S speedup TT opt space: (S opt�100)Sbubble 0.05 (0.02) 76.012 1.0 (1.0) 87.4%quicksort 0.10 (0.05) 140.652 2.0 (1.2) 60.7%hanoi 0.05 (0.05) 63.648 1.2 (1.6) 68.7%queens 0.11 (0.04) 155.900 1.5 (1.3) 59.5%heapsort 0.18 (0.13) 238.632 1.0 (1.0) 100.0%nsieve 0.12 (0.09) 181.336 1.5 (1.5) 56.0%cat 0.41 (0.20) 695.788 3.7 (2.2) 27.6%calendar 0.47 (0.17) 981.432 3.1 (4.2) 33.0%getopt 0.86 (0.31) 1,635.616 1.1 (1.1) 98.3%linpack 0.80 (0.49) 1,577.404 1.0 (1.0) 100.0%di� 1.47 (1.08) 3,818.512 1.4 (1.7) 81.4%patch 5.79 (2.69) 11,917.592 2.7 (2.3) 35.2%tar 6.54 (3.89) 13,594.516 3.4 (3.3) 30.7%gzip 29.91 (15.82) 54,745.756 6.0 (5.5) 17.0%grep 7.96 (4.12) 15,493.968 6.3 (5.2) 13.6%sort 6.21 (2.79) 12,060.096 4.2 (3.4) 26.9%dc 5.56 (2.89) 10,111.556 3.5 (3.9) 29.1%Table 6.7: The accumulated caching demand-driven analysis time and space without queryadvancing (T and S), the speedup of the caching demand-driven analyzer with query ad-vancing over the caching demand-driven analyzer without query advancing and the spaceutilization of the caching demand-driven analyzer with query advancing as a percentage ofthe space used by the caching demand-driven analyzer without query advancing. Parenthe-ses indicate measurements that exclude temporaries.6.3.4 SummaryThe experimental results demonstrated that the demand-driven CCP analyzer performswell in practice. The �rst experiment showed that demand-driven CCP analysis is fasterthan exhaustive analysis even if copy constant information is demanded at all uses in theprogram. Except for one program, demand-driven analysis also used less space for storingdata
ow information than exhaustive analysis. Based on these results, applications ofconstant propagation information, in particular if utilized only selectively, clearly bene�tfrom a demand-driven analysis approach. Even if the demand-driven analyzer is used tocompute copy constant information exhaustively over the program, the resulting slowdownis moderate, on average by a factor of 6.The second experiment showed that, except for three shorter programs, demand-drivenanalysis bene�ts from caching. However, if only very few queries are raised caching is lesslikely to be bene�cial since there may not be su�ciently many cache hits to compensate forthe cache management overhead.

113Query Advancing (CCP) - Non-Cachingprogram time T space S speedup TT opt space: (S opt�100)Sbubble 0.07 (0.02) 73.940 1.7 (1.0) 53.0%quicksort 0.13 (0.06) 137.764 1.4 (1.5) 60.1%hanoi 0.06 (0.03) 58.992 2.0 (1.5) 66.5%queens 0.14 (0.09) 151.580 1.5 (3.0) 57.6%heapsort 0.20 (0.13) 232.296 1.0 (0.9) 100.0%nsieve 0.16 (0.11) 168.344 1.3 (1.2) 52.6%cat 0.42 (0.21) 669.508 2.4 (2.3) 24.1%calendar 0.51 (0.18) 935.064 3.6 (2.2) 30.9%getopt 1.02 (0.51) 1,464.816 0.9 (0.9) 98.1%linpack 0.97 (0.64) 1,418.164 0.8 (0.9) 100.0%di� 1.96 (1.32) 3,068.096 1.4 (1.4) 76.9%patch 6.02 (2.96) 11,599.008 2.3 (1.9) 33.5%tar 7.32 (4.21) 13,139.940 2.7 (2.6) 28.4%gzip 30.81 (16.14) 54,247.364 5.9 (5.3) 16.2%grep 8.54 (4.62) 14,938.288 5.6 (7.9) 12.7%sort 7.32 (3.69) 11,225.008 3.6 (3.8) 21.1%dc 5.73 (3.08) 9,781.204 3.3 (3.4) 26.6%Table 6.8: The accumulated non-caching demand-driven analysis time and space withoutquery advancing (T and S), the speedup of the non-caching demand-driven analyzer withquery advancing over the demand-driven analyzer without query advancing and the spaceutilization of the non-caching demand-driven analyzer with query advancing as a percentageof the space used by the non-caching demand-driven analyzer without query advancing.Parentheses indicate measurements that exclude temporaries.The third experiment examined the bene�ts of query advancing and showed that queryadvancing is worthwhile. In spite of the additional overhead of computing the
ow-insensitivesummary information, query advancing lead to speedups by factors of up to 6.3.The previous chapter identi�ed several program characteristics that either positively ornegatively a�ected the performance of demand-driven du-chain analysis.5 The identi�edcharacteristics a�ect demand-driven CCP in the same way.In comparison with the experimental results for du-chain analysis, the speedups andspace savings of the demand-driven CCP analyzers were generally higher. The primarycause for this e�ect is that exhaustive CCP analysis has a more costly implementationthan exhaustive REACH analysis. Unlike the exhaustive REACH analyzer, the exhaustiveanalyzer for CCP does not use bit vector implementations and processes each variable ateach node separately. However, the implementation of the demand-driven analyzers forboth problems do not use bit vectors, making higher speedups for CCP more likely.5See section 5.5.4.

Chapter 7Application in Software TestingThis chapter demonstrates the utility of demand-driven analysis in a software developmentapplication. The application considered is data
ow testing at the integration level. Data
ow testing relies heavily on the support of data
ow analysis for computing the du-chainswhich serve as the test case requirements for a program. During intergration testing, data
ow analysis is performed repeatedly since new test requirements must be identi�ed ateach integration step. As a result, the accumulated cost of performing data
ow analysiscan considerably contribute to the overhead of testing. Previous approaches to data
owtesting are either based on costly exhaustive computations or based on incremental updates.This chapter presents a new approach to data
ow integration testing that is based on thedemand-driven du-chain analyzer developed in Chapter 5. Results of a set of experimentsdemonstrate the practical bene�ts of the new demand-driven approach by showing thatdemand-driven analysis can outperform both exhaustive and incremental analysis if usedin the context of integration testing.This chapter is organized as follows. Section 7.1 discusses the analysis problems inintegration testing and outlines how demand-driven analysis can be used to solve them.The pertinent background in data
ow testing is presented in Section 7.2. Section 7.3describes the demand-driven analyzer for use in integration testing in detail. Experimentalresults are reported in Section 7.4 and Section 7.5 summarizes the contributions of thischapter.7.1 MotivationData
ow testing uses coverage criteria to select sets of du-chains in a program that serveas the test case requirements [Nta84, CPRS85, FW88]. While short programs may betested all at once, the testing of larger programs usually takes place in several phases andat di�erent levels of program abstraction. The individual program units are tested �rst inisolation during unit testing. Then, their interfaces are tested separately during one or moreintegration steps [HS89b]. 114

115The data
ow analysis requirements that arise during testing vary with di�erent testingphases. Unit testing requires the determination of the intraprocedural du-chains withineach unit. Since the complete set of intraprocedural du-chains is needed, using standardexhaustive intraprocedural data
ow analysis appears appropriate. The situation is di�erentwhen considering the analysis needs during the procedure integration. Each integration steprequires the determination of only those du-chains that cross the most recently integratedprocedure interfaces to establish the new test requirements. Exhaustively re-computingdu-chains at the beginning of each integration step is ine�cient and may easily result inoverly high analysis times. This chapter shows that the analysis needs that arise duringintegration testing can be handled in a far more e�cient way using demand-driven analysis.The problem of avoiding costly re-computations of information in response to a programchange is not unique to integration testing. It arises in virtually all data
ow applicationsthat deal with evolving software. Previously, incremental data
ow algorithms have beenproposed to address this problem [Ros81, Zad84, RP88, PS89]. Incremental analysis avoidsexhaustive re-computations by performing the appropriate updates of a previously com-puted exhaustive solution. Incremental analysis techniques can also be used in integrationtesting to extend the solution after each integration step with the newly established reachingde�nitions. However, incremental analysis still requires the exhaustive reaching de�nitionsolution to be computed initially and to be maintained between integration steps in addi-tion to the du-chains. Moreover, the incremental update of the solution at each integrationstep may be costly since information is propagated from the new interfaces throughout theprogram, including to portions that may have no relevance for the current integration step.This chapter presents a new approach to integration testing that uses demand-drivenanalysis to e�ciently provide the newly established data
ow information during each inte-gration step. A set of experiments was conducted to experimentally evaluate the bene�tsof demand-driven analysis in the context of integration testing. The performance of thedemand-driven analyzer during the integration process is experimentally compared withthe performance of (i) an exhaustive analyzer, and (ii) an analyzer based on incrementalupdates. The experiments show that demand-driven analysis is faster than exhaustive anal-ysis by factors ranging from 2.6 up to 25. If caching is used the speedups increase evenfurther up to a factor of 30. The demand-driven analyzer also outperforms the incrementalanalyzer in 8 out of 12 programs by factors up to 5. Again, if caching was used, the speedupsincrease and the demand-driven analyzer outperforms the incremental analyzer in all butone program.7.2 Data Flow TestingData
ow testing uses coverage criteria [RW85] to select subpaths in the program for testingbased on sets of du-chains. After the du-chains in a program have been computed, test cases

116are generated, manually or automatically, to exercise du-chains according to a selectedcoverage criterion. For example, the all-defs criterion requires that for each de�nition apath to at least one reachable use is exercised in some test case. The all-uses criterionrequires that for each de�nition, paths to all reachable uses are exercised.Recall that du-chains are determined based on the sets RD(v; n) and RU(v; n) of reach-ing de�nitions and reachable uses. Given a de�nition d of a variable v at node n and a useu of variable w at node m, the pair (d; u) is a du-chain if d 2 RD(w;m) or, equivalently ifu 2 RU(v; n).1In integration testing, the program under analysis changes during each integration stepsince more procedures are integrated at each step. To distinguish the sets of reachingde�nitions and reachable uses that result at di�erent integration stages of a program, thecurrent version of the program P is added as a parameter:RD(v; n; P) = RD(v; n) for program P , andRU(v; n; P) = RU(v; n) for program P .Figure 7.1 re-displays the program example from Chapter 5 that will be used to illustratethe integration testing process. The table in Figure 7.1 shows again the complete set ofintra- and interprocedural du-chains for the program. Note that pair (x2; x5) is both aninter- and an intraprocedural du-chain.7.3 Integration TestingThe objective of data
ow integration testing is to structure the overall testing process intoseveral phases by explicitly separating the testing of intra- and interprocedural du-chains.During unit testing each procedure is tested in isolation based on only the intraproceduraldu-chains within the procedure. After the individual units have been processed the inter-actions among procedures are tested separately during procedure integration. Integrationtesting takes place in several integration steps. During each step, one or more proceduresare selected according to an integration strategy, such as bottom-up or top-down integration[Mye76]. The testing at each integration step is only concerned with the interproceduraldu-chains that cross an interface of the procedures that are currently being integrated.Prior to the integration of a procedure p, certain assumptions must be made about theinterfaces to both the procedures that call p and the procedures that are called from p.Temporary de�nitions are inserted to provide initial values for each formal parameter andeach global variable that is used in procedure p. Furthermore, if p contains procedure calls,worst case assumptions must be made about the possible side e�ects of procedures that arecalled but that are not yet integrated. Thus, it is assumed that no def-clear paths exist1See Section 5.3.1 for further details.

117
y:=x+y

write(x,y)

read(x,y)

11

16

15

g=10

exit

13

12

10

7

6

4

3

2

1

f=0

x=1

exit

entryentryentry

x:=g+1

exit

9

5

8

14

proc1

call proc2(y)

call proc3(x)

call proc3(f)

proc2(in: f) proc3(in: g)

de�nition du-chainsintraprocedural interproceduralx2 (x2; x3); (x2; x4); (x2; x5) (x2; x5); (x2; x7); (x2; g14); (x2; g15)x15 (x15; x5); (x15; x7)y2 (y2; y5)y5 (y5; y6); (y5; y7) (y5; f10); (y5; f11); (y5; g14); (y5; g15)Figure 7.1: Example program with interprocedural du-chains.through a non-integrated procedure. As the integration proceeds, temporary de�nitions areremoved and actual def-clear paths through called procedure are identi�ed and considered.Example: Consider the example in Figure 7.1. During unit testing the two temporaryde�nitions fin and gin are added for the formal parameters f in procedure proc2 and forthe formal g in procedure proc3, respectively. Each call site is assumed to kill the valueof the global value x. Figure 7.1 shows the intraprocedural du-chains that result for eachprocedure. In addition, the temporary du-chains (fin; f10),(fin; f11), (gin; g14) and (gin; g15)are considered during unit testing.Next consider the testing performed at each integration step. Assume for simplicity, that

118procedure p procedure qbegin begin... ...v1 := 0; w1 := v2;s: call q;:=w2; end...endFigure 7.2: Cross-on-entry and cross-on-exit du-chains.during each step a single procedure q is integrated with one of its calling procedures p.To integrate procedure q with procedure p the temporary de�nitions for formal and globalvariables in procedure q are removed and every call site in procedure p that calls q isconsidered. The testing of the current integration step concerns only the interproceduraldu-chains that are established by the integration of q with p. These newly establisheddu-chains are captured in the set Cross (p; q) de�ned as follows:De�nition 7.1 (Cross Chains) Let p be a procedure that calls a procedure q. The set ofcross chains Cross (p; q) that are established by integrating q with p is the set of inter-procedural du-chains that have a def-clear path that contains the entry and/or exit node ofprocedure q.Example: Consider the integration of procedure proc2 with procedure proc1 in Figure 7.1and assume that procedure proc3 has not yet been integrated. The du-chains that crossthe entry node or exit node of proc2 are Cross (q; p) = f(x2; x7); (y5; f10); (y5; f11)g. Note,that du-chains that cross both, entry/exit nodes of procedure proc2 and entry/exit nodesof procedure proc3 are not included since proc3 has not yet been integrated.A du-chain in Cross (p; q) may cross several interfaces. However, a du-chain will not beconsidered for testing unless there exists a def-clear path that only crosses interfaces ofprocedures that have already been integrated. A du-chain with multiple def-clear pathsthat cross di�erent procedure interfaces, is correspondingly also relevant for testing duringmultiple integration steps and may, thus, be tested repeatedly.To de�ne the set Cross (p; q) in terms of data
ow sets requires a closer look at theway a du-chain crosses a procedure interface. Consider Figure 7.2 and the integration ofprocedure q with procedure p at the call site s in p. Let P and P 0 be the programs prior toand after the integration. Thus, P 0 is obtained from P by removing temporary de�nitionsfrom q and by including the call site s in p that calls q. The du-chains (v1; v2) and (w1; w2)

119Procedure ComputeCross (p; q)input: p; q: procedures in a program P ;output: the set Cross (p; q)begin1. Cross := ;;2. let P and P 0 be the programs prior to and after integrating q, respectively3. for each call site s in p where s 2 call(q) do4. for each variable v such that bs(v) 6= ; do5. compute Def = RD(v; s; P);6. compute Use = [w2bs(v)RU(w; entryq ; P 0);7. add f(d; u) j d 2 Def; u 2 Useg to Cross;8. endfor9. for each variable v 2 Global do10. compute Def = RD(v; exitq; P);11. compute Use = RU(v; s; P 0);12. add f(d; u) j d 2 Def; u 2 Useg to Cross;13. endfor;14. endfor;end Figure 7.3: Procedure ComputeCross.in Figure 7.2 are both contained in Cross (p; q). However, the chain (v1; v2) is in Cross (p; q)because it crosses the entry of q and (w1; w2) is in Cross (p; q) because it crosses the exit ofq. Let (d; u) be a cross chain that crosses a call site s and assume for simplicity that d andu are a de�nition and a use of a global variable v. The chain crosses the boundaries to theprocedure called at s in one of two ways:Cross-on-entry: The de�nition d reaches the call site s in P and the use u is reachablein P 0 from the entry of the called procedure:d 2 RD(v; s; P) and u 2 RU(v; entryq; P 0).Cross-on-exit: The de�nition d reaches the q's exit in P and u is a reachable use at thecall in P 0: d 2 RD(v; exitq; P) and u 2 RU(v; s; P 0).Cross(p; q) results as the set of cross-on-entry and cross-on-exit chains. Note that a du-chain (d; u) that crosses both the entry and the exit of the currently integrated procedure

120
s p q

r

mainFigure 7.4: Call graph with non-integrated call sites shown in dashed lines.classi�es only as a cross-on-entry chain since d 62 RD(v; exitq; P) prior to the integration.Procedure ComputeCross in Figure 7.3 summarizes the computation of the cross-on-entry and cross-on-exit chains for global and local variables taking possible parameter bind-ings into account.Example: Consider again the integration of procedure proc2 with procedure proc1 in Figure7.1 assuming that procedure r has not yet been integrated. The set Cross (proc1; proc2) iscomputed as: (cross-on-entry)RD(x; 6; P) = fx2g and RU(x; 9; P 0) = fx7g and RD(y; 6; P)= fy5g andRU(f; 9; P 0) = ff10; f11g resulting in the set of chains f(x2; x7); (y5; f10); (y5; f11)g.There are no cross-on-exit chains prior to the integration of procedure proc3.7.3.1 Computing Cross ChainsThe e�ciency of procedure ComputeCross from Figure 7.3 depends primarily on the al-gorithm that is used to compute the data
ow sets RD(v; n; P) and RU(v; n; P) at eachintegration step. There are various analysis approaches that may be pursued.Exhaustive AnalysisPreviously, Harrold and So�a discussed data
ow testing in the presence of procedures andpresented an exhaustive analysis approach to compute du-chains over the complete program[HS90]. An exhaustive approach requires re-analysis of the program at the beginning ofeach integration step to account for new procedure interfaces. However, the exhaustivecomputation at each integration step can be slightly optimized by performing exhaustiveanalysis only over the procedures that are a�ected by the current integration step. Assumea procedure q is currently integrated with a procedure p. Let r be another procedure,such that neither p nor q calls procedure r directly or indirectly through some call chainof currently integrated procedure. Furthermore, assume procedure r calls neither p nor qdirectly or indirectly. This situation is depicted in the call graph in Figure 7.4. Thereare no interprocedural execution paths that connect procedure r and an interface between

121p and q. Consequently, no data
ow information can be propagated from procedure r toprocedures p and q or vice versa. Hence, procedure r is not a�ected by the integration of pand q, and the data
ow of r remains unchanged. It follows that the exhaustive re-analysisafter integrating procedure q with procedure p can be limited to the procedures that areconnected to q or p through a call chain of currently integrated procedures. For examplein Figure 7.4, exhaustive re-analysis only has to consider procedures p and q. While thisoptimization strategy may result in the exclusion of some procedures from the analysis ateach integration step, the set of a�ected procedures is still analyzed exhaustively.Incremental AnalysisExhaustive re-computations at the beginning of each integration step can be avoided byusing an incremental analysis approach [Ros81, Zad84, RP88, PS89]. If incremental analysisis used, the complete exhaustive reaching de�nition solution must be maintained betweensubsequent integration steps. The number of established reaching de�nitions and resultingdu-chains can only increase as the integration proceeds. Thus, the reaching de�nitionsolution that was valid at a previous integration step may be incomplete for the current stepbut does not contain any false reaching de�nitions. Hence, the incremental update problemis particularly simple and requires only additions to the solution and no deletions. Assumingthe exhaustive solution computation is based on �xed point iteration (e.g., [SP81]), anincremental version of the exhaustive solution computation is obtained in a straightforwardway. The solution from the previous integration step is incrementally updated by simplyusing it as the initial value to re-start the �xed point iteration for the current integrationstep.Demand-Driven AnalysisThe �nal approach uses demand-driven analysis. Two demand-driven analyzers are requiredto implement procedure ComputeCross: a demand-driven analyzer for reaching de�nitionsand a demand-driven analyzer for reachable uses. Chapter 5 described the demand-drivenanalyzer for computing reaching de�nition sets RD(v; n; P). The analogous demand-drivenanalyzer for computing the symmetric sets RU(v; n; P) of reachable uses can be similarlydeveloped. Based on the demand-driven analyzers, each access of a data
ow setRD(v; n; P)or RU(v; n; P) in procedure ComputeCross is simply replaced by a call to the appropriatedemand-driven analysis routine.7.4 ExperimentsA set of experiments was conducted to evaluate the performance of the various analysisapproaches if used to provide the relevant data
ow information during integration testing.The analyzers were evaluated in the context of bottom-up integration testing. Bottom-up

122BenchmarksNo. program #code lines #nodes #procedures #calls #du-chains #integr. steps1 queens 89 150 4 4 119 42 cat 240 377 5 4 165 43 calendar 352 731 10 14 236 94 getopt 395 739 5 6 268 45 linpack 564 686 12 30 1160 146 di� 899 1561 12 33 685 117 patch 753 1316 14 13 599 128 gzip 1387 3024 38 123 1461 689 tar 1451 1756 27 68 847 3710 grep 1488 2906 32 72 1048 4711 sort 1528 3554 35 145 1570 8012 dc 1576 3298 67 230 1958 153Table 7.1: Benchmark programs.integration testing processes the procedures in a program in depth-�rst (bottom-up) orderof the program's call graph. During each integration step one edge (q; p) in the call graph isprocessed and the new du-chains are determined as described by procedure ComputeCrossfrom Figure 7.3.The following four analysis algorithms were implemented:(CACHE) Demand-driven du-chain analyzer based on the caching versions of demand-driven analyzers for reaching de�nitions and reachable uses.(DD) A non-caching version of the demand-driven du-chain algorithm (CACHE).(EX) The exhaustive du-chain algorithm from Chapter 5 based on bit vector implementa-tions.(INCR) An incremental version of the exhaustive algorithm as outlined in the previoussection. As the exhaustive analysis, the incremental version uses bit vector implemen-tations.The four analysis algorithms were also implemented as part of the PDGCC compilerproject. For details of the implementation and experimentation context see Section 5.5. Theexperimentation in this chapter uses twelve of the larger programs form the C benchmarksused in Chapters 4 and 5. Table 7.1 lists the twelve benchmarks along with size parametersand the number of bottom-up integration steps for each program.

123y Accumulated Analysis Timesprogram demand-driven analysis exhaustive analysis incremental analysiscache n/cacheTcache Tdd Tex Tincrqueens 0.09 0.06 0.17 0.08cat 0.22 0.20 0.52 0.29calendar 0.21 0.20 0.78 0.32getopt 0.99 0.98 3.80 1.43linpack 0.57 0.49 3.95 1.25di� 15.74 16.26 67.99 8.60patch 5.27 5.76 17.01 3.51gzip 23.88 15.53 96.87 14.85tar 10.34 11.45 37.59 6.91grep 4.69 5.50 57.86 6.44sort 7.58 9.22 193.76 15.00dc 2.17 2.58 66.48 13.38Table 7.2: The accumulated analysis times for the demand-driven analyzer with and withoutcaching (Tcache and Tdd), for the exhaustive analyzer (Tex), and for the incremental analyzer(Tincr).7.4.1 Experiment 1: Demand-Driven versus Exhaustive AnalysisThe �rst set of experiments compares the performance of the demand-driven analyzer withthe performance of the exhaustive analyzer. The analysis times during the integration weremeasured to determine for each test program the accumulated analysis times shown in Table7.2, where:Tex = accumulated analysis time of exhaustive analysis,Tcache = accumulated analysis time of demand-driven analysis with caching,Tdd = accumulated analysis time of demand-driven analysis without caching.Based on the measured analysis times, the accumulated speedup of the demand-drivenanalyzer with caching over the exhaustive analyzer is given by TexTcache . Analogously, theaccumulated speedup of the demand-driven analyzer without caching over the exhaustiveanalyzer is given by TexTdd . These speedups are shown in Table 7.3 and graphically displayedin Figures 7.5 (i) and (ii). The measurements show that the demand-driven analyzer withcaching is signi�cantly faster than the exhaustive analyzer by factors ranging from 2.3 up

124Speedupsprogram Experiment 1 Experiment 2demand-driven vs. exhaustive demand-driven vs. incrementalcache n/cache cache n/cachespeedup TexTcache speedup TexTdd speedup TincrTcache speedup TincrTddqueens 2.42 2.83 1.14 1.33cat 2.36 2.6 1.31 1.45calendar 3.9 3.9 1.52 1.6getopt 3.83 3.87 1.44 1.45linpack 6.92 8.06 2.19 2.55di� 4.31 4.18 4.31 0.52patch 3.22 2.95 0.66 0.61gzip 6.52 4.05 1.04 0.65tar 3.63 3.28 3.63 0.66grep 11.66 10.52 1.37 1.17sort 25.56 21.01 1.97 1.62dc 30.63 25.76 6.16 5.18Table 7.3: The accumulated speedups of the demand-driven analyzer with and withoutcaching over the exhaustive analyzer (TexTcache and TexTdd) and the accumulated speedups of thedemand-driven analyzer with and without caching over the incremental analyzer (TincrTcache andTincrTdd).to 30.0. As shown in Figure 7.5 (ii), disabling caching resulted in similar speedups rangingfrom 2.6 up to 25.7. Compared to the non-caching version, caching increased the speedupsfor the seven larger programs but did not pay o� for the �ve shorter programs. For theshorter programs the number of cache hits was too small to compensate for the overheadof allocating and maintaining the cache. In larger programs that generate a higher numberof queries, the savings from cache hits quickly outweigh the cache overhead. Figures 7.5 (i)and 7.5 (ii) indicate that the speedups of the demand-driven analyzer tend to grow withincreasing program size (in terms of code lines).To illustrate how the speedups evolve throughout the integration, Figure 7.6 shows theindividual speedup curves as a function of the integration degree. The range of integrationsteps is normalized for all programs to the range [0..1]. Figure 7.6 (i) shows the speedupcurves for the demand-driven analyzer with caching and Figure 7.6 (ii) shows the samespeedup curves for the demand-driven analysis without caching. The curves indicate thatthe speedup evolves gradually in most programs. Thus, the accumulated speedup is alreadynoticeable after the �rst integration steps and continuously grows as the integration pro-ceeds. Note, however, that the speedup curves for the �ve larger programs (i.e., tar, gzip,

125
queens 2.42

cat 2.36

calendar 3.9

getopt 3.83

linpack 6.92

diff 4.31

patch 3.22

tar 3.63

gzip 6.52

grep 11.66

sort 25.56

dc 30.63

0.0

5.0

10.0

15.0

20.0

25.0

30.0

(i) Speedup of caching demand-driven over exhaustive: TexTcache
queens 2.83

cat 2.6

calendar 3.9

getopt 3.87

linpack 8.06

diff 4.18

patch 2.95

tar 3.28

gzip 4.05

grep 10.52

sort 21.01

dc 25.76

0.0

5.0

10.0

15.0

20.0

25.0

30.0

(ii) Speedup of non-caching demand-driven over exhaustive: TexTddFigure 7.5: Measured speedups of demand-driven over exhaustive analysis.

126
queens

cat

cal

getopt

linpack

diff

Speedup

Integr.
0.0

10.0

20.0

30.0

40.0

50.0

60.0

0.0 0.5 1.0

patch

tar

gzip

grep

sort

dc

Speedup

Integr.
0.0

10.0

20.0

30.0

40.0

50.0

60.0

0.0 0.5 1.0(i) Speedup curve caching demand-driven analyzer over exhaustive.
queens

cat

cal

getopt

linpack

diff

Speedup

Integr.
0.0

10.0

20.0

30.0

40.0

50.0

0.0 0.5 1.0

patch

tar

gzip

grep

sort

dc

Speedup

Integr.
0.0

10.0

20.0

30.0

40.0

50.0

0.0 0.5 1.0(ii) Speedup curve of non-caching demand-driven analyzer over exhaustive.Figure 7.6: Measured speedup curves of demand-driven over exhaustive analysis.

127grep, sort and dc) reach their peak shortly before the integration is complete. This e�ectis primarily due to the bottom-up integration strategy. Shortly before the integration iscomplete, the top-level calls in the main program are integrated. The top-level integrationsteps are the most expensive ones for both exhaustive and demand-driven analysis. Sincenearly all procedures are a�ected by integration at the top level, the exhaustive analysisis performed over all procedures during the late integration steps. Thus, the exhaustiveanalysis times are almost constantly at their peak during the late integration steps. Theperformance of the demand-driven analyzer evolves di�erently during the late integrationsteps. The integration of top-level calls creates the longest propagation paths of data
owinformation in the program. Moreover, the length of propagation paths is likely to keepgrowing even during the late integration steps. Thus, while the cost of exhaustive analysis isnearly constant during the late integration steps, the cost of demand-driven analysis tendsto still increase. Consequently, the peak of the accumulated speedup is reached just beforethe top-level calls are integrated. This phenomenon does not occur in smaller programssince even after the integration of top-level calls the propagation paths are not su�cientlylong.7.4.2 Experiment 2: Demand-Driven versus Incremental AnalysisThe second set of experiments compares the performance of the demand-driven analyzerwith the performance of the incremental analyzer. The integration system using the incre-mental analyzer was run to measure the accumulated analysis time Tincr, where:Tincr = accumulated analysis time of incremental analysis.The results are shown in Table 7.2. Figure 7.7 (i) displays the accumulated speedup TincrTcache ofthe demand-driven analyzer with caching over the incremental analysis. The correspondingaccumulated speedups TincrTdd for the demand-driven analyzer without caching are shown inFigure 7.7 (ii).As shown in Figure 7.7 (ii), the caching demand-driven analyzer achieves speedupsover the incremental analyzer in all but one program (patch) by factors of up to 7.16.As in the �rst experiment, disabling caching a�ects the speedups only slightly. Exceptfor two programs (patch and gzip) the demand-driven analyzer without caching is fasterthan the incremental analyzer by factors of up to 5.18. Disabling the cache results in aslight slowdown for the �ve larger programs but improves the speedups for the �ve shorterprograms. The demand-driven analyzer without caching has an important advantage overthe incremental analyzer in that no storage of information other than the du-chains isrequired between integration steps. In contrast, the incremental analyzer maintains thecomplete reaching de�nition solution in addition to the du-chains throughout the integrationprocess.An examination of the programs patch and gzip revealed that they have a high percent-

128age of global variables. Queries for global variables may require much longer propagationpaths than queries for locals, which explains why demand-driven analysis does not performas well.Figure 7.8 shows the individual speedup curves for both the demand-driven analyzer withcaching (i) and the demand-driven analyzer without caching (ii). As in the �rst experiment,the curves indicate that the speedup evolves gradually in most programs. Furthermore thespeedup curves for larger programs reach their peak again shortly before the integrationis complete. However, the degradation of the speedup after the peak has been reachedis less severe than in the �rst experiment. A comparison of analysis times during theindividual integration steps of the demand-driven and the incremental analysis reveals thatthe speedups of the demand-driven analyzer over the incremental analyzer are far higherduring the early integration steps. During the late integration steps that are more expensivefor the demand-driven analyzer, the bene�ts of using bit vectors in the incremental analyzershow a higher pay-o�. This e�ect is not noticeable in smaller programs, since the informationpropagation paths are not su�ciently long even in the late stages of the program integration.7.5 SummaryIn summary, demand-driven analysis has been shown to provide an e�cient analysis ap-proach for integration testing in practice. The experiments demonstrate that using demand-driven analysis in integration testing is signi�cantly faster than using exhaustive analysis.Even compared to an incremental analysis approach, demand-driven analysis has shown tobe the more e�cient approach. An important advantage of demand-driven analysis overincremental analysis is that, no storage and maintenance of data
ow solutions in additionto the du-chains themselves is necessary between integration steps.The encouraging results of the experimental comparison of demand-driven analysis withincremental analysis suggest further potential bene�ts of demand-driven analysis in anotherrelated �eld of data
ow testing, namely regression testing. The analysis task in regressiontesting is to determine the test requirements for a modi�ed program to ensure that nonew errors are introduced into previously tested code. Selective regression testing [OW88,TTL89, GHS92, AHKL93, BH93, RM93, RM94] attempts to re-test only those du-chainsthat are a�ected by the modi�cation. To identify the a�ected du-chains that require re-testing, techniques based on incremental data
ow analysis have been used. It may bepossible to avoid the use of incremental analysis technique and instead compute the a�ecteddu-chains from scratch after each program change using a demand-driven analysis approach.Exploring the bene�ts and drawbacks of using demand-driven analysis in regression testingpresents an interesting future extension of the current work on demand-driven analysis indata
ow testing.

129
queens 1.14

cat 1.31

calendar 1.52

getopt 1.44

linpack 2.19

diff 0.54

patch 0.66

tar 0.66

gzip 1.04

grep 1.37

sort 1.97

dc 6.16

0.0

1.0

2.0

3.0

4.0

5.0

6.0

(i) Speedup of caching demand-driven over incremental: TincrTcache
queens 1.33

cat 1.45

calendar 1.6

getopt 1.45

linpack 2.55

diff 0.52

patch 0.61

tar 0.66

gzip 0.65

grep 1.17

sort 1.62

dc 5.18

0.0

1.0

2.0

3.0

4.0

5.0

6.0

(ii) Speedup of non-caching demand-driven over incremental: TincrTddFigure 7.7: Measured speedups of demand-driven over incremental analysis.

130
queens

cat

cal

getopt

linpack

diff

Speedup

Integr.
0.0

2.0

4.0

6.0

8.0

10.0

12.0

0.0 0.5 1.0

patch

tar

gzip

grep

sort

dc

Speedup

Integr.
0.0

2.0

4.0

6.0

8.0

10.0

12.0

0.0 0.5 1.0(i) Speedup curve of caching demand-driven analyzer over incremental.
queens

cat

cal

getopt

linpack

diff

Speedup

Integr.
0.0

2.0

4.0

6.0

8.0

10.0

0.0 0.5 1.0

patch

tar

gzip

grep

sort

dc

Speedup

Integr.
0.0

2.0

4.0

6.0

8.0

10.0

0.0 0.5 1.0(ii) Speedup curve of non-caching demand-driven analyzer over incremental.Figure 7.8: Measured speedup curves of demand-driven over incremental analysis.

Chapter 8Congruence PartitioningThe previous chapters developed a demand-driven analysis approach to reduce the anal-ysis cost by avoiding the computation of information that is not needed in the currentapplication. While experimentation demonstrates that demand-driven analysis is an ef-fective approach to reduce the exhaustive analysis overhead, the analysis may still not becomputationally minimal. Demand-driven analysis may still perform redundant computa-tions that occur on the lower application-independent level of intermediate computations.Application-independent optimization of intermediate data
ow computations is the subjectof forwarding techniques 1. In comparison to demand-driven analysis, forwarding techniquesfollow an orthogonal and complimentary approach to the problem of reducing the analysiscost. The application-dependent improvements of demand-driven analysis are not achiev-able by the application-independent forwarding techniques and vice versa. Thus, in order toachieve maximal cost reductions both approaches, demand-driven analysis and forwardingtechniques should be considered.This chapter presents congruence partitioning as a new forwarding technique that can beused in combination with demand-driven analysis or as a stand-alone optimization techniqueof exhaustive analyses. The organization of this chapter is as follows. Section 8.1 providesan overview of congruence partitioning. The formal framework for modeling congruencepartitioning is presented in Section 8.2. Section 8.3 shows that for a particular class ofdata
ow problems, congruence partitioning is su�ciently powerful to completely replacethe traditional �xed point computation and directly solve the data
ow problem. Section8.4 compares congruence partitioning with sparse evaluation graphs and other related workis discussed in Section 8.5. This chapter concludes in Section 8.6 with a discussion ofcombining congruence partitioning and demand-driven data
ow.1See discussion in Chapter 1, Section 1.2. 131

1328.1 OverviewPrevious forwarding techniques suppress unnecessary data
ow computations by using a spe-cialized graphical representation of the program [WZ85, AWZ88, RWZ88, CLZ86, CCF90,JP93]. The need to construct a specialized graph makes it di�cult to combine these for-warding techniques with the demand-driven analysis concepts that are based on a standardcontrol
ow graph representation of the program. Furthermore, except for the sparse eval-uation graphs [CCF90], previous forwarding techniques are not general and only applicableto certain data
ow problems.Congruence partitioning is a new forwarding technique that avoids the limitations ofprevious approaches. Unlike previous forwarding techniques, congruence partitioning is analgebraic approach that directly manipulates the data
ow equation system. It will beshown that viewing the problem as an algebraic problem of congruence relations, leadsto conceptually simple algorithms that are both more general and powerful than previousgraph-oriented methods. Congruence partitioning applies to all monotone data
ow prob-lems and can be used to optimize both traditional exhaustive analysis or demand-drivenanalysis.Congruence partitioning is applied in order to restructure and optimize data
ow equa-tion systems prior to the actual solution computation. Recall that the solution of a data
ow problem is the greatest �xed point of a system of monotone equations. Each equationexpresses the solution at one program point in terms of the solutions at immediately pre-ceding (or succeeding) points. A closer inspection of these equation systems reveals thattheir sizes are unnecessarily enlarged due to the inherent inclusion of redundant equations.The structure of data
ow equation systems requires the propagation of intermediate resultsthroughout the program, including the propagation to program points where these resultsare of no relevance. As a consequence, multiple equations in the system carry identical in-formation. Equations that duplicate information already expressed by other equations areredundant and their repeated evaluation during the �xed point iteration is clearly undesir-able. If equivalent but smaller equation systems without redundancies were constructed,the �xed point computation would be faster, independently of the evaluation algorithmused.Congruence partitioning presents a systematic approach to minimize the size of data
owequation systems by discovering congruence relationships among equations. Two equationsare congruent if their greatest �xed points are equal. Thus, at least one of two congruentequations is redundant and can therefore be eliminated. By repeatedly applying this elimi-nation process an equivalent but reduced equation system can be constructed that includesonly a single equation from each class of congruent equations.A systematic framework for congruence partitioning is developed to model congruencerelations by exploiting known algebraic properties of the equation system. The framework isused to establish a congruence relation based on the idempotence property of the meet oper-

133ator in the system. A fast partitioning algorithm is presented to compute the idempotencecongruence relation in O(n logn) time and O(n) space, where n is the size of the program.Using the computed congruence relation, a reduced equation system is constructed thatonly contains a single equation from each congruence class. By the de�nition of congru-ence, it is su�cient to compute the �xed point over only the reduced system using any ofthe standard evaluation strategies.The approach of reducing equation systems by computing congruence relations can easilybe extended to include other notions of congruence. The congruence relations discussed in[DST80, NO80] are based on common subexpressions. Alpern et al. [AWZ88] used afast O(n logn) algorithm due to Hopcroft for minimizing �nite automata to compute CSEcongruences for program optimization. Section 6.3.2 shows that Hopcroft's algorithm canequally well be applied to discover common subexpressions in data
ow equation systemsin order to enable further reductions.The asymptotic performance of congruence partitioning depends only on the size ofthe equation system. The complexity of the data
ow problem, i.e., the cost of actuallyevaluating the equations, does not impact the performance of the partitioning algorithm.The complexity of data
ow problems varies dramatically, ranging from simple problems,such as live variable analysis, that can be implemented e�ciently using bit vectors, tosophisticated time- and space-intensive analyses, such as alias analysis. Naturally, thebene�ts of congruence partitioning increase with the complexity of the data
ow problem.8.2 A Framework for Congruence PartitioningA congruence partitioning is de�ned over the equation system of a data
ow problem. Recallthat a data
ow equation X(n) is de�ned at each node n in an ICFG of a program suchthat: X(n) = fn(um2dep(n)X(m));where dep(n) is a set of dependent nodes of n, usually the set of predecessors pred(n) or aset of call sites if n is the entry node of a procedure.An equation system can be viewed as a labeled directed graph G = (V;E). The verticesin V represent equation variables and the operations on the right hand side of the equations.An edge (v; w) in E expresses that the expression represented by vertex v depends on theinput represented by vertex w. A labeling function assigns a label label(v) to each vertexv 2 V . This graph is called an equation graph.The equation graph represents an equation X(n) = fn(um2dep(n)X(m)) by the subgraphshown in Figure 8.1 (i). Corresponding to the function symbol fn is a vertex v(X(n)) withlabel (v(X(n)) = fn that has a single successor vertex with label u. The vertex labeled uhas successors v(X(m)) for each predecessor m of node n. If the function fn is the identity

134
.

(ii)(i)

f n |−−| |−−|
v (X (n))

v (X (m 1))

v (X (mk))

v (X (n))
v (X (m 1))

v (X (mk))Figure 8.1: The translation of equations into graphs.function, the equation reduces to X(n) = um2dep(n)X(m). In this case no vertex for thefunction symbol is created, and the vertex v(X(n)) is the vertex labeled u as shown inFigure 8.1 (ii). The vertex set V is partitioned into a set Vu of vertices labeled u (meetvertices) and a set Vf of vertices with a label denoting any other function symbol (functionvertices).When discussing equation systems it is assumed that their graphs are transformed intographs whose vertices have an indegree and outdegree of at most 2. This transformationis analogous to transforming the textual representation of the equation system into someform of three-address-code. The associativity of the meet operator ensures that a graphcan always be transformed into this form by adding some additional vertices for each vertexwhose indegree or outdegree is greater than 2. At most a constant number of vertices isadded per edge in this process and the number of vertices remains O(n) [DST80], wheren = jN j is the number of nodes in the control
ow graph.8.2.1 ExampleAs a running example, consider alias analysis performed over the procedure Insert shownin Figure 8.2, where the operator � denotes pointer dereferencing. Alias analysis computespairs of aliased variables. To simplify the representation, a simple alias analysis is consideredbased on the assumption that whenever a variable q is aliased to a variable p, any variablethat q points to is aliased to any variable that p points to. The lattice elements are collectionsof alias relations. A collection could simply be a set of alias pairs or, alternatively, a partitionof the variables into sets of aliased variables. The entry and exit points of the nodes atwhich data
ow information is computed are marked by numbers.The equation system that expresses the analysis over procedure Insert is shown in Figure8.3 along with its equation graph. Each equation X(n) refers to the alias information thatholds at the program point n marked in the control
ow graph in Figure 8.2. The meetoperator u represents the union of two collections of alias relations into a single collection.

135/* insert a value val in a binary tree x */procedure Insert(in: x,in: val)beginval:=h(val);repeatp:=x;if (val � (�x.key))then x:= (�x.left);else x:=xright;until (x = NULL);new(x);(�x.key):=val;(�x.left):=NULL;(�x.right):=NULL;if (val � (�p.key))then (�p.left):=xelse (�p.right):=x;end
val:=h(val)

p:=x

x=nil

new(x)

end

1

2

3

4 5

6

7

8

9 10

11

val<(*.x.key)

x:=(*x.left) x:=(*x.right)

(*x.key):=val
(*x.left):=nil

(*x.right):=nil
v<(*p.key)

(*p.left):=x (*p.right):=xFigure 8.2: A sample program and its control
ow graph.

136X(1) = initX(2) = X(1) uX(7)X(3) = kill [p](X(2)) u (p; x)X(4) = X(3)X(5) = X(3)X(6) = X(4) uX(5)X(7) = X(6)X(8) = kill [x](X(7))X(9) = (p; x) uX(8)X(10) = X(8) u (p; x)X(11) = X(9) uX(10)
init

(p ,x)kill [p]

(p ,x)(p ,x)
kill [x]

v 1
v 2

v 3 v 4

|−−|

|−−|

|−−|

|−−|

|−−|

|−−|

|−−| |−−|

|−−|

v (X (1))

v (X (2))

v (X (3))
v (X (4))

v (X (5))

v (X (6))

v (X (7))

v (X (8))

v (X (9)) v (X (10))

v (X (11))Figure 8.3: Data
ow equations and their graphical representation.

137The data
ow equations refer to a function kill[y] that takes as an argument a collection ofalias relations C and eliminates all alias relations for variable y from C. For more detailsof the analysis, the reader is referred to [CC77b]. With respect to congruence partitioning,the meet u and other functions like kill[y] are merely uninterpreted symbols.8.2.2 Congruence RelationsGiven an equation system, the goal is to minimize the size of the system without actu-ally evaluating the equation. Unfortunately, even the following restricted version of thisminimization problem is NP-complete [GJ79]:Given a set of expressions constructed from uninterpreted constants and a single commutativeand associative operator, determine the minimal number of operations needed to evaluate allexpressions.Thus, one cannot expect to �nd an e�cient algorithm for eliminating all redundancies.However, as will be shown, it is possible to minimize an equation system with respect tocertain well-de�ned classes of redundancies using fast algorithms.Redundancies are eliminated by discovering congruence relationships among equations.Congruence relationships are established among the �nal �xed point values of equations asde�ned below.De�nition 8.1 (Congruence) Let gfp(n) denote the greatest �xed point value of equationX(n). Two equations X(n) and X(m) in a system X are called congruent only ifgfp (n) = gfp (m)Note that no assumptions are made on the sequence of intermediate values an equation maytake during the �xed point iteration. These sequences of values are highly dependent onthe particular iteration strategy that is used to compute the �xed point, but the notion ofcongruence is a valid relation for any such strategy.Congruence is an equivalence relation, that is, a symmetric, re
exive and transitiverelation. Hence, a congruence relation induces a partition � of the equations into congruenceclasses. All equations that are contained in the same congruence class in � have an identical�xed point. Given � we can reduce the original equation system by eliminating all butone equation from each congruence class. By the de�nition of congruence, the resultingreduced system is guaranteed to provide the same �xed point solution as the original system,independent of the particular evaluation strategy used. If needed, the solution of the reducedsystem can be later expanded to the solution of all original equations using the computedpartition �.By de�nition 8.1 there is no unique congruence relation. The most aggressive reductionsof an equation system are achieved by a congruence relation that induces a minimal number

138X(1) = f(X(0)) X(1) = f(X(0)) X(1) = f(X(0))X(2) = X(1) uX(3) X(2) = X(1) uX(2)X(3) = X(2)(i) (ii) (iii)Figure 8.4: Idempotence congruences in equation systemsof congruence classes. Such an ideal congruence relation is called a coarsest congruencerelation.De�nition 8.2 (Coarsest Congruence Relation) Let C be a congruence relation on avertex set V and let � be partition of V into congruence classes according to C. C is acoarsest congruence relation on V if any other congruence relation C 0 on V induces apartition with at least as many congruence classes as �.If C is a coarsest congruence relation then the induced congruence class partition �is called a coarsest partition. Note that the �nest congruence partition results if everycongruence class contains only a single vertex.8.2.3 Congruence by IdempotenceThis section describes the detection of congruences among data
ow equations that resultfrom the idempotence of the meet operator u. Consider a data
ow equation of the form:X(n) = fn(um2pred(n)X(m)):Trivial congruences result from a special case, where the function fn is the identity functionand node n has only a single predecessor m. In this case the equation reduces to a simplecopy equation X(n) = X(m). Clearly, the �xed points of X(n) and X(m) are identical andX(n) and X(m) are congruent.The congruence relation based on copies can be easily computed in a single pass over theequation system. Initially, each equation X(n) is in a separate congruence class. For eachcopy equation X(n) = X(m) that is encountered, the congruence class of X(m) is mergedwith the class of X(n) creating a single class. A reduced equation system without copies isconstructed by including from each congruence class only a single representative equation.Each operand that occurs in an included equation is replaced by the representative of itscongruence class.

139Idempotence congruence extends this trivial notion of copy congruences by also coveringhidden copies. A hidden copy is an equation of the form x = y u z with y and z beingcongruent. By the idempotence of the meet operator, the congruence of y and z impliesthat gfp (y)u gfp (z) reduces to gfp (y) and equation x is essentially a copy. Thus, it can bedetermined that all three variables x, y, and z are congruent.De�nition 8.3 (Congruence by idempotence (IP)) Let G = (V;E) be an equationgraph. A relation C on V is called an idempotence congruence (IP) relation, if(v; w) 2 C implies one of the following conditions:(1) v = w (the vertices v and w are identical); or(2) one of the vertices, say v, is labeled u and (v; u) 2 E implies (u; w) 2 C:To verify that C is indeed a congruence relation we have to ensure that the base case ofthe recursive rule (2), as well as the application of rule (2), can only yield congruent pairsof vertices. The base case of rule (2) declares (v; w) 2 C if w is the sole destination ofedges leaving v. In this case v represents a copy equation and thus v and w are congruent.If all destinations of edges leaving v are congruent to a vertex w then v reduces to w byidempotence and v and w are congruent (application of rule 2).By its recursive de�nition, the IP relation is not unique if G contains cycles. Considerthe equations in Figure 8.4 (i). The partition �1 = fc1 = fX(1)g; c2 = fX(2); X(3)gg withthe corresponding system shown in Figure 8.4 (ii) describes an IP relation. However, thepartition �2 = fc1 = fX(1); X(2);X(3)gg also describes an IP relation that provides thereduced system shown in Figure 8.4 (iii). Note that the congruence between X(1) and X(2)only holds with respect to the greatest �xed point de�ned with the initial value > at eachequation.The goal is to �nd the maximal IP relation (fewest number of congruence classes) foran equation graph. The symbol C? is used to refer to the maximal IP relation accordingto De�nition 8.3. The relation C? provides the coarsest partition �? of the vertices in anequation graph such that two vertices are in the same partition only if they are congruentaccording to De�nition 8.3.Figure 8.5 illustrates equation system reductions that can be achieved through congru-ence partitioning. Figure 8.5 (i) restates the original equation system from the exampleof Figure 8.3. The reduced equation system that results from IP partitioning is shown inFigure 8.5 (ii).The next section presents a fast partitioning algorithm to compute �? from an initialpartition � that places all possibly congruent pairs of equations in the same class. Thepartition � is iteratively re�ned until a stable partition �? is reached that is consistentwith the de�nition of C?. Given partition �?, the equation system that is minimized withrespect to IP is constructed in the same way as previously described. That is, from each

140X(1) = init X(1) = init X(1) = initX(2) = X(1) uX(7) X(2) = X(1) uX(3) X(2) = X(1) uX(3)X(3) = kill [p](X(2) u (p; x) X(3) = kill [p](X(2)) u (p; x) X(3) = kill [p](X(2)) u (p; x)X(4) = X(3) X(8) = kill [x](X(3)) X(8) = kill [x](X(3))X(5) = X(3) X(9) = X(8) u (p; x) X(9) = X(8) u (p; x)X(6) = X(4) uX(5) X(10) = X(8) u (p; x)X(7) = X(6) X(11) = X(9) uX(10)X(8) = kill [x](X(7))X(9) = X(8) u (p; x)X(10) = X(8) u (p; x)X(11) = X(9) uX(10)(i) (ii) (iii)Figure 8.5: Original equation system (i), reduced system by IP (ii), and the reduced systemafter combined partitioning by CSE and IP (iii).congruence class in �? only one representative equation is included. The resulting equationsystem contains no copy equations and no hidden copies due to idempotence.8.2.4 Partitioning AlgorithmComputing the partition �? by iterative re�nement requires �rst determining an appropriateinitial partition. If two vertices are initially placed in di�erent congruence classes they cannever be discovered to be congruent. Thus, the initial partition must overestimate thecongruence relation C?. A partition � overestimates C? if (v; w) 2 C? implies that thevertices v and w are in the same congruence class in �. In order to enable the partitioningalgorithm to converge quickly to �?, the initial partition should be the �nest partition thatoverestimates C?.Standard graph partitioning algorithms [AHU74] are based on an initial partition of thevertices by their label. Unfortunately, the same approach cannot be pursued for computingC?. Although function vertices with a di�erent label cannot be IP congruent, meet verticesmay be congruent to any function vertex. Therefore, a new partitioning algorithm is pre-sented that is based on an overestimate of the initial partition of the vertices that can beconstructed in a canonical way.Congruence classes in a partition are represented as reverse trees of vertices in an equa-tion graph G. A reverse tree is a tree in which edges are directed from children to parent

141
v 1

v 4

v 3

v 2
kill [x]kill [p]init

T 6

T 5

T 4T 3T 2T 1

|−−| |−−|

|−−|

|−−|

|−−|

|−−|

|−−|

|−−|

|−−|
(p , x)

(p , x)

(p , x)

v (X (2))

v (X (1))

v (X (3))

v (X (4))
v (X (5))

v (X (6))

v (X (7))

v (X (9))

v (X (8))

v (X (10))

v (X (11))

Figure 8.6: Reverse DFST partition of the equation graph from Figure 8.3.vertices. Thus, � = T1; :::; Tk is a collection of disjoint reverse trees and each tree Ti is asubgraph of the equation graph G. The trees in a partition will be simply referred to astrees and the following notation is used for a given partition forest �. The root vertex ofa tree T in � is denoted root(T). For a given vertex v in a tree T , parent (v) is the uniquepredecessor of v in G that is contained in T .An initial partition of the vertices in an equation graph G is constructed during a singlereverse depth-�rst traversal of G, i.e., a depth-�rst traversal of the transposed graph ofG. The resulting partition contains one tree (congruence class) for each function vertex inG. The tree Tv for a function vertex v is constructed by traversing each reachable edge inreverse direction, such that Tv is a reverse depth-�rst spanning tree (DFST) that is rootedat v and that does not include any other function vertex. The resulting forest of reverseDFSTs is called a reverse DFST partition. A reverse DFST partition for the equationgraph from Figure 8.3 is shown in Figure 8.6. Figure 8.7 shows the procedure to constructan initial reverse DFST partition.A reverse DFST partition for an equation graph is not unique since selections amongmultiple candidates to visit next are made arbitrarily. The following lemma shows that anyreverse DFST partition � safely overestimates C?.Lemma 8.1 Let � be a reverse DFST partition for a graph G and let v and w be verticesin G. If (v; w) 2 C? then v and w are in the same tree in �.Proof: For a vertex v in a tree T in � the notation level (v) is used to denote the lengthof the path from v to root (T). Given two distinct trees T1 and T2 in �, it is �rst shown

142Procedure Reverse DFST Partitioninginput: equation graph G = (Vf [Vu; E)output: partition � = T1; : : : ; Tk, where k = jVf j and each Ti is a reverse tree contained in Gbegin1. for each vi 2 Vf do2. create a new tree Ti in �;3. dfst(Ti; vi);4. endforendProcedure dfst(t,v) /* construct a depth-�rst spanning tree */input: a tree t and a vertex vbeginfor each unvisited meet predecessor w of v doadd the edge (w; v) to t;dfst(t,w);endfor;end; Figure 8.7: Algorithm to construct a reverse DFST partition.that if v is a vertex in T1 then (v; root (T2)) 62 C? by induction on l = level (v). (Basisl = 0) Clearly, (root (T1); root (T2)) 62 C? since two distinct function vertices cannot becongruent by idempotence. (Ind. l > 0) By hypothesis (w; root (T2)) 62 C? if level (w) <l. Assume (v; root (T2)) 2 C? and level (v) = l. Then by rule (2) of De�nition 8.3 also(parent (v); root (T1)) 2 C? which contradicts the hypothesis since level (parent (v)) < l.Consider now two vertices v and w that are in distinct trees T1 and T2 and neither v norw are the root vertex in their tree. If (v; w) 2 C? then it follows by rule (2) of De�nition 8.3that for the parent of at least one of the vertices, say v, (parent (v); w) 2 C?. Repeatedlyapplying this argument will eventually show that the root vertex of one of the trees mustbe congruent under C? to a vertex in the other tree, which was however shown not to bepossible. Hence, (v; w) 62 C?. 2Figure 8.8 displays procedure Partition that operates on an initial reverse DFST partition� by subsequently re�ning � until the current partition is consistent with the de�nitionof C?. In the resulting partition �? two vertices v and w are left in the same tree only if(v; w) 2 C?.

143Procedure Partition /* Partitioning by idempotence */input: Equation graph G = (V = Vf [Vu; E)output: Partition �? = T1; : : : ; Tk of V according to C?begin1. create an initial reverse DFST partition � = T1; : : : ; Tl of the vertices in V ;2. worklist fT1; : : : ; Tlg;3. while worklist 6= ; do4. select and remove a tree T from worklist;5. splitlist fv 2 Vu j v has one successor in T and one successor not in Tg ;6. for each u 2 splitlist such that u is not a root vertex in � do7. let T1 be the tree containing vertex u;8. add T2 split (u) as a new tree to �;9. if T1 2 worklist then add T2 to worklist10. else add the smaller of T1 and T2 to worklist;11. endfor;12. endwhile;end Figure 8.8: Idempotence partitioning algorithm.The operation split (v) disconnects and returns the subtree rooted at v. ProcedurePartition maintains two lists of vertices, worklist and splitlist. Worklist is a list of currentpartition trees to be examined. Each tree T in worklist is examined in line (5) to determinewhether it contains an interior vertex v that has a successor not in T . In this case, thevertices v and parent(v) in T cannot be IP congruent. To ensure that the two vertices donot remain in the same tree, vertex v is placed in splitlist. During the inner loop the tree ofeach vertex u in splitlist is split by disconnecting the subtree rooted at u. After the split oneof the two resulting subtrees is placed in worklist to ensure that vertices that may triggera subsequent split will be examined. Partition terminates when worklist is exhausted withthe �nal partition �?.Example: Consider the application of procedure Partition to the initial reverse DFSTpartition from Figure 8.6. The initial reverse DFST partition � and the �nal partition �?,after procedure Partition terminates, are shown in Figure 8.9. In Figure 8.9 the congruenceclasses of each partition are displayed in columns. The �nal partition �? describes thecongruences in that system that result from the copy equations X(4); X(5);X(7) and fromthe hidden copy equation X(6). Speci�cally, all equations in the column for X(3) in �?are found to have the same �xed point as equation X(3). The reduced equation systems inwhich the four redundant (hidden) copy equations are eliminated was shown in Figure 8.5

144� �?X(1) X(3) X(8) X(1) X(2) X(3) X(8) X(9) X(10)X(11)X(2) X(4) X(9) X(4)X(5) X(10) X(5)X(6) X(11) X(6)X(7) X(7)(i) (ii)Figure 8.9: Initial (i) and �nal (ii) partition of the equation system from Figure 8.3.(ii) next to original equation system in (i).AnalysisIt will be shown that procedure Partition computes the congruence relation C?, that is, theoutput partition �? is the coarsest partition, such two vertices v and w are contained inthe same tree in �? only if (v; w) 2 C?. The proof proceeds by �rst showing in Lemma 2that �? is consistent with the de�nition of C?, that is, �? is not too coarse. Then Lemma3 shows that procedure Partition is optimal in that �? is the coarsest consistent partition.Lemma 8.2 (Consistency) Partition �? is consistent with the de�nition of C?, for if vis a vertex in a tree T in �? and v is not the root vertex of T then all successors of v arealso in T .Proof: Assume v is a vertex in a tree T in �? that is not the root vertex of T . Then v hasone successor parent (v) in T . Assume that contrary to the claim v has another successorw not in T . In the initial partition �, vertex v is in some tree T1 � T and all trees areinitially placed in worklist. The construction of splitlist in line (5) implies that w must alsobe in T1 since otherwise a split during the �rst iteration would have separated vertex v fromparent (v) contradicting the assumption. Now, consider the point during the algorithm atwhich vertex w is separated from the vertices v and parent(v) and the vertices are placedin two di�erent trees T2 � T1 containing w and T 02 � T1 containing v and parent (v). Afterthis separation at least one of T2 and T 02 will be in worklist, which implies that vertex v willbe separated from parent (v) after the new contents of worklist are exhausted, which againcontradicts the assumptions. Hence, all successors of v must be in T . 2Lemma 8.3 (Optimality) Partition �? is as coarse as possible; that is, if (v; w) 2 C?then v and w are in the same tree in partition �?.

145Proof: It will be shown by induction on the number i of split operations performed inprocedure Partition that two vertices v and w are in two distinct trees only if (v; w) 62 C?.(Basis i = 0) The claims holds for the initial partition by Lemma 1. (Ind. i > 0) Let �be the partition resulting after i � 1 split operations. The i-th split operation splits anedge (v; w) in some tree T only if v has another successor u in a di�erent tree and byinduction hypothesis: (u; w) 62 C? and (u; root (T)) 62 C?. Hence, by rule (2) of De�nition8.3: (v; w) 62 C? and also (v; root (T)) 62 C?. Let T1 be the subtree of T rooted at v and letT2 be the remaining portion of T after disconnecting T1. Since the root vertices of the twotrees, v and root (T), are not congruent under C?, an analogous induction argument to theone in the proof of Lemma 1 shows that no vertex in T1 can be congruent to a vertex in T2under C?. Thus, two vertices are in di�erent trees in the new partition only if they are notcongruent under C?. 2Corollary 8.1 Procedure Partition correctly computes the IP relation C? (by Lemma 7.2and Lemma 7.3). 2Consider the complexity of procedure Partition and show that procedure Partition can beimplemented in O(n logn) time and O(n) space, where n is the number of vertices in theequation graph G. Constructing the initial partition takes O(n) time. To calculate thetotal time spent in the while loop, consider the number of times the tree of each vertexcan be placed in worklist. Each time the current tree of a vertex w is added to worklistthe tree's size is at most half the size of the previous tree containing w. Hence, a vertex'tree can be added at most logn + 1 times to worklist. Splitlist is constructed by a scan ofthe vertices whose tree was removed from worklist and the total number of vertices scannedis O(n logn). Operation split is executed at most n times, since there can be at most npartitions. Each call to split is implemented in O(1) time by maintaining for each vertex apointer to its position in the partition forest. To �nd the smaller of the two subtrees after asplit in time proportional to the smaller tree (i.e., in total time O(n logn)), the vertices inthe two trees are counted by alternating between the trees after each vertex. The algorithmalso requires a pointer for each vertex to its current partition tree, which is updated aftereach split only for the vertices of the smaller resulting tree. In summary, the total timespent in executing procedure Partition is O(n logn). The size of no auxiliary data structureis more than O(n) and O(n) space is used to store the partition.If the equation graph is constructed as described in Section 8.2, the size n of the graphis linear in the size of the program. In data
ow problems that are based on a productlattice LV , such as constant propagation, the equation at each program point is a vectorx = (x1; : : : ; xV). In constant propagation there is a component xi for each of the Vprogram variables. In general, it will be bene�cial to break the vector equation x into a setof V components equations x1; : : : ; xV in order to expose additional congruences. In this

146granularity, the size of the equation graph increases to V � n.8.2.5 Congruence by Common SubexpressionAdditional reductions in an equation system can be achieved by extending the de�nitionof congruence to capture redundancies that result from sources other than idempotence.In [DST80, NO80] congruence relations are de�ned based on common subexpressions. Forexample, consider the equation system after IP partitioning in Figure 8.5 (ii). The termX(8) u (p; x) is a common subexpression in equations X(9) and X(10). The congruencerelation by common subexpressions is de�ned below by observing the commutativity of themeet operator.De�nition 8.4 (Congruence by common subexpression (CSE)) Let G = (V;E) bean equation graph. A relation S on V is called common subexpression congruence(CSE) relation if for vertices v and w with successors v1; : : : ; vk and w1; : : : ; wk, (v; w) 2 Simplies label(v)= label(w) and 8 1 � i � k:8><>: (vi; wp(i)) 2 S for some permutation p on f1; : : :kg if label (v) = u(vi; wi) 2 S otherwisePartitioning a graph by CSE is a well known problem and a fast O(n logn) algorithmfollows from Hopcroft's algorithm for minimizing �nite automata [Hop71]. Among otherapplications, Hopcroft's algorithm was used to eliminate common subexpression in programoptimization [AWZ88]. This chapter presents a di�erent application by employing thealgorithm to reduce data
ow equation systems.Hopcroft's algorithm starts with an initial partition � in which all vertices with anidentical label are placed in the same congruence class in �. The algorithm iterates overthe congruence classes to subsequently re�ne the current partition until it is consistentwith De�nition 8.4. The algorithm terminates with the coarsest partition in which twoequations are in the same class only if they are congruent under S. An adaptation ofHopcroft's partitioning algorithm to partition equation graphs is shown in Figure 8.10.Consider the application of Hopcroft's algorithm over the equation graph for the aliasanalysis of procedure Insert shown in Figure 8.3. The two equations X(9) = (p; x) uX(8) and X(10) = X(8) u (p; x) are discovered to be CSE congruent. The discovery ofCSE congruences may enable the detection of additional congruences by idempotence. Forexample, once it is known that the two equations X(9) and X(10) are congruent, it canin turn be determined that equation X(11) = X(9)uX(10) is actually a hidden copy andin fact all three equations X(9), X(10) and X(11) are congruent. To enable these secondorder e�ects, the results of CSE partitioning can be incorporated into the initial partitionfor IP partitioning. This is achieved by applying procedure Partition to the equation graphthat results if all vertices that were already found to be congruent are merged into a single

147Procedure An adaptation of Hopcroft's partitioning algorithminput: Equation graph G = (V = Vf [Vu; E)output: Partition �? = C1; : : : ; Ck, where Ci is a collection of vertices in Gbegin1. create an initial partition � = C1; : : : ; Cl of the vertices in V by their label;2. worklist fC1; : : : ; Clg;3. while worklist 6= ; do4. select and remove Ci from worklist;5. for n 1 to 2 do6. splitlist fv 2 Vf j the n-th succ. of v is in Cig7. [fv 2 Vu j v has exactly n succ. in Cig; /* commut. of u */8. for each Cj such that (splitlist\ Cj) 6= ; and (Cj 6� splitlist) do9. create a new tree collection C in �;10. move each u 2 (splitlist\Cj) to C;12. if Cj 2 worklist then add C to worklist13. else add the smaller of Cj and C to worklist;14. endfor; endfor;15. endwhileend Figure 8.10: An adaption of Hopcroft's algorithm for minimizing �nite automata.vertex.Example: Consider again the equation system in Figure 8.5 (i). The reduced equationsystem that results if CSE partitioning is applied prior to IP partitioning is shown inFigure 8.5 (iii). The additional improvements over the equation system that result from IPpartitioning (Figure 8.5 (ii)) are due to the discovery of the congruence among equationsX(9); X(10) and X(11).Unfortunately, applying each partitioning algorithm once may not provide optimal results.In general, congruences that are found based on IP may enable the discovery of additionalcommon subexpressions and vice versa. Thus, to �nd the maximal number of congruencesrequires computing the transitive closure of the union of the two congruence relations. Thisclosure can be computed by iterating over the two partitioning algorithms until no morecongruence can be discovered. Each time a new iteration is started the size of the equationgraph is reduced resulting in a worst case bound of O(n2 log n).

1488.2.6 MinimalityThe previous sections presented algorithms to discover congruences by exploiting the idem-potence property of the meet operator and commutativity of the meet in common subex-pressions. By computing the transitive closure of congruence partitionings based on idem-potence and based on common subexpressions, reduced equation systems are constructedthat contain no redundancies by idempotence and no common subexpressions. A still unre-solved question concerns the optimality of the approach, that is, the question as to whetherthe resulting equation systems are minimized in terms of the number of equations. Un-fortunately, the problem of minimizing data
ow equation systems, without evaluating anyequations in the system, is NP-complete [GJ79]. The NP-completeness of this minimizationproblem is due to the existence of associative operations in the systems, such as the meetoperation. The di�culty of discovering congruences by associativity results from the factthat an exponential number of di�erent sequences of meet operations can yield congruentvalues by associativity. By associativity of the meet two equations may be congruent even ifthey are based on di�erent sequences of operations. For example, two equations x = x1ux2and y = y1 u y2 are congruent by associativity of the meet if x1 is congruent to y1 u z andy2 is congruent to x2 u z. That is, by substitution it follows that: x � (y1 u z) u x2) andy � y1 u (x2 u z).The problem with associative operators also arises in program optimizations that arebased on discovering common subexpressions. Program optimizations distinguish equiva-lence among expressions that are based on identical sequences of operations up to commu-tativity. The equivalences are termed transparent equivalences [RWZ88]. Non-transparentequivalences include, in addition, equivalences that result from associativity. Program opti-mization techniques are usually limited to the discovery of transparent equivalence. Heuris-tics have been used to discover some of the equivalences that result from associativity byusing reassociation techniques [CM80].8.3 Data Flow Solutions by Congruence PartitioningThis section returns to a closer inspection of the properties of reverse DFST partitionsas constructed by the algorithm from Figure 8.7. It was shown in Lemma 8.1 that everyreverse DFST partition is a safe overestimate of the IP partition of an equation system.This result is obtained without interpreting any function symbol in the equation systemother than the meet operator. This section shows that stronger properties of reverse DFSTpartitions can be proven if the partial order v among lattice elements is taken into accountwhen partitioning the equations. If the data
ow equation system meets certain conditions,the reverse DFST partition is su�ciently powerful to completely replace the �xed pointiteration and directly solve the data
ow problem.Consider the data
ow problem of live variables (LIVE). With respect to a single variable

149the lattice L for LIVE consists of two values:L = f? = live;> = deadg:Thus, the
ow functions f for the analysis of a single variable are of the form:f(x) = x or f(x) = c; where c 2 L,and the set of labels in any equation graph G is limited to:Label (G) � f?;>;ug:Consider now a reverse DFST partition � constructed for an equation graph with such alimited label set and assume that the partition trees are constructed in increasing orderof their labels. Thus, �rst the set of function vertices is ordered in increasing order of thefunction label according to the partial lattice orderv. During each step, a tree is constructedfor the currently lowest function vertex that was not already previously included in a tree.For the above example, where function vertices are either labeled ? or >, �rst the partitiontrees with label ? are constructed and then the remaining trees with label > are constructed.The modi�ed algorithm to construct such an ordered reverse DFST partition is shown inFigure 8.11.By constructing partition trees in increasing order of their root vertex label it is guaran-teed that whenever a meet vertex v is included in a tree with a root label l, then l must bethe lowest lattice value that reaches the meet at v. Otherwise, v would have been includedin a previous tree. Thus, the value of the equation represented by v can be at most l since lcontributes to the meet represented by v and the value cannot be lower than l since no lowerlattice reaches the meet at v. It follows that the �xed point of the equation represented byvertex v can be already determined during the partition construction, since it must be thatgfp (v) = l. Thus, the following property of a reverse DFST partition results:8 T 2 � : v 2 T =) (gfp (v) = label (root (T))):The following theorem generalizes this property for a certain class of data
ow problems.Theorem 8.1 Let G = (V;E) be an equation graph over a chain lattice L such thatLabel (G) � L [fug and let � be an ordered reverse DFST partition of V :(8 T 2 �) : v 2 T =) gfp (v) = label (root (T)):Proof: The proof proceeds by induction on the number k of vertex inclusions during theconstruction of �. (k = 1) Let l be the root vertex label of the tree T that includes the �rstvertex v1. Then v1 is an immediate predecessor of the root of T and therefore gfp (v1) � l.Moreover, l must be the lowest element that enters the meet at vertex v1. If there would bea vertex w with a label lower than l and w would be reachable from v1 then v1 would have

150Procedure Ordered Reverse DFST Partitioninginput: equation graph G = (Vf [Vu; E)output: partition � = T1; : : : ; Tk, where k = jVf j such that if v 2 Ti then gfp (v) = label (root (Ti))begin1. let S be the sorted sequence of vertices in Vf in increasing order of their labels in L;2. for each v 2 S in increasing order do2. create a new tree T in �;3. dfst(T; v);4. endforend Figure 8.11: Algorithm to construct an ordered reverse DFST partition.been included in the tree rooted at w, contradicting the assumption. Hence, gfp (v1) � l.(k > 1) Let vk be the kth-vertex included and let l be the label of the root vertex of thetree T that includes vk. Let w be the predecessor of vk in T . By induction hypothesisgfp (w) = l and therefore gfp (vk) � l. As in the case for k = 1, l must be the lowest valueentering the meet at vertex vk since otherwise vertex vk would have been included earlierin a tree whose root label is lower than l. Hence also gfp (vk) � l. 2A data
ow problem with a chain lattice satis�es the label set requirement Label (G) �L [fug if all
ow functions f are meet linear functions [Zad84], that is:f(x) = c or f(x) = x u c , where c is a constant in L:For example, the class of partitionable problems can be decomposed (i.e, partitioned) intok disjoint problems, one for each variable or program expression, respectively, such thateach disjoint problem has only meet linear functions. Examples of partitionable problemsare the four classical bit vectors problems REACH, LIVE, AVAIL and BUSY.Constructing ordered reverse DFST partitions provides an e�cient way of solving simpledata
ow problems, namely the partitionable problems. The classical bit vectors problemshave a lattice of height two. Thus, the worst case partitioning time per variable is lin-ear, resulting in O(k � n) total time to solve the problem for all k variables (or programexpressions, respectively). The solution is computed simply by a series of reverse DFSTpartitions, requiring no bit vector operations or equation evaluations at any point.

1518.4 Comparison with Sparse Evaluation GraphsThis section compares congruence partitioning with the related approach of sparse evalua-tion graphs (SEG) [CCF90]. Instead of directly reducing a data
ow equation system, theSEG approach specializes a program's control
ow graph G with respect to each analysisproblem such that an equation system will be generated that is smaller than it would beusing G. A SEG is obtained from a control
ow graph G by eliminating some of the nodesin G that have an identity
ow function. The equation system that results from a SEGconsists of (1) the equations that are based on non-identity functions and (2) meet equationsthat are needed to combine new information. The construction of a SEG requires O(e+n2)time using dominance frontiers [CCF90] and O(e��(e)) time using a more recent algorithm[CF93], where e is the number of edges in a program's control
ow graph G and n is thenumber of nodes in G. If possible, a data
ow problem that is based on a product latticeLV is broken into V separate problems in order to increase the likehood of nodes with anidentity
ow functions. In this case, a series of V separate SEGs are constructed requiringO(e� V + n2) time or O(V � e � �(e)) time using the fast algorithm.SEGs target the elimination of the same kind of redundancies as IP congruence parti-tioning, namely (1) identity
ow functions that result in copy equations and (2) redundantmeet equations that combine identical information. However, there are important data
owproblems for which IP congruence partitioning results in strictly smaller equation systemsthan the SEG approach. The SEG approach is not capable of eliminating congruent copyoperations if the congruence is not a result of an identity
ow function at the respectivenode. Consider a data
ow problem with a product lattice LV that cannot be divided intoV disjoint problems. Constant propagation is an example of such a problem. Figure 8.12shows the constant propagation equation system for a control
ow graph fragment. Theequation system in Figure 8.12 (ii) shows each solution vector expanded into a set of equa-tions X(n)v for each variable v. Thus, each equation Xv(n) expresses whether variable vhas constant value on exit of
ow graph node n. Since each node in the graph modi�es thevalue of at least one variable, there are no nodes with a complete identity
ow function inthis example. It follows that the equation system cannot be improved by the SEG approachsince no node can be eliminated. Thus, the SEG for this example would be identical to theoriginal graph. However, the equation system can be reduced using congruence partition-ing. After applying the IP partitioning algorithm from Figure 8.8, the partition �? of theequation system shown in Figure 8.13 (i) is obtained. The corresponding reduced equationsystem based on partition �? is shown in Figure 8.13 (ii).Furthermore, congruence partitioning is extensible to additional types of congruencerelations, such as congruence by common subexpressions. In contrast, redundancies thatresult from common subexpressions cannot be eliminated using SEGs.

152
a:=1

b:=a

c:=b+2 c:=a+1

a:=b

1

2

3 4

5

0

(i)Xa(1) = f1gXb(1) = initXc(1) = initXa(2) = Xa(1) ^Xa(5)Xb(2) = Xa(1) ^Xa(5)Xc(2) = Xc(1) ^Xc(5)Xa(3) = Xa(2)Xb(3) = Xb(2)Xc(3) = Xb(2) � f2gXa(4) = Xa(2)Xb(4) = Xb(2)Xc(4) = Xa(2)� f1gXa(5) = Xb(3) ^Xb(4)Xb(5) = Xb(3) ^Xb(4)Xc(5) = Xc(3) ^Xc(4)(ii)Figure 8.12: A
ow graph fragment (i) and the induced equation system for constantpropagation (ii).

153�? = f T1 = fXb(1)g; T2 = fXc(1)g; T3 = fXc(2)g; T4 = fXc(3)g , T5 = fXc(4)g ,T6 = fXc(5)g; T7 = fXa(1); Xa(2); Xb(2); Xa(3); Xb(3); Xa(4); Xb(4); Xa(5); Xb(5)gg(i)Xa(1) = f1gXb(1) = initXc(1) = initXc(2) = Xc(1) ^Xc(5)Xc(3) = Xa(1)� f2gXc(4) = Xa(1)� f1gXc(5) = Xc(3) ^Xc(4)(ii)Figure 8.13: Idempotence congruence partiton �? (i) and the reduced equation system (ii).8.5 Related WorkSeveral forwarding techniques use a derived graph representation that embodies some formof du-chain information. The global value graph [RT82, RL77], the program dependencegraph (PDG) [FOW87] and static single assignment form (SSA) [CFR+91] are examplesof these derived graphs. The primary aim of the PDG is to facilitate the application ofoptimizing and parallelizing code transformations. In data
ow analysis, the PDG hasbeen used for program slicing [OO84]. Using SSA form, e�cient data
ow algorithms havebeen developed for constant propagation [WZ85], redundancy detection [RWZ88], globalvalue numbering [AWZ88], code motion [CLZ86] and induction variable detection [Wol92].However, these approaches are not general in that the derived graphs can only facilitatethe analysis of problems that take advantage of de�nitions-use connections. A commonproblem that does not bene�t from de�nition-use connections is the computation of availableexpressions.Another approach to exploit direct forwarding opportunities is based on constructing aspecialized graph for each data
ow problem to be solved. The partitioned variable technique(PVT) [Zad84] is an approach, applicable to only partitionable problems, that allows thepartitioning of the original problem into a series of independent and simpler problems, onefor each variable (see also discussion in Section 2.2). PVT requires the construction of

154a derived graph for each program variable. Once the graph is available, the �xed pointsolution is found during a topological graph traversal. An approach, similar to PVT, thatis also limited to partitionable problems is the slotwise analysis described in [DRZ92]. LikePVT, slotwise analysis breaks a data
ow problem into a series of single-bit problems.However, slotwise analysis does not require the explicit construction of a derived graph anduses a worklist algorithm to enable the information forwarding on the control
ow graph.The most general of the previous approaches to forwarding are the sparse evaluationgraphs (SEG) [CCF90]. The previous section provided a detailed comparison of the SEGapproach with congruence partitioning.Computing congruence relations based on common subexpressions is a well known prob-lem and e�cient algorithms have been developed [NO80, DST80, Hop71]. Hopcroft's par-titioning algorithm for minimizing �nite automata was used in program optimization todetect equalities among variables based on common subexpressions over an extended SSAform of the program [AWZ88]. The authors describe a strategy to manipulate the SSArepresentation in order to combine congruent (i.e., equal) variable values from di�erentbranches of a structured if-statement. This treatment can be viewed as handling a specialcase of detecting IP congruences. Other methods to eliminate redundant program computa-tions include value numbering [CS70], global value numbering based on SSA form [RWZ88]and methods based on the global value graph [RT82].8.6 SummaryThis chapter presented a new and e�cient approach to improve the performance of data
ow analysis by reducing the size of data
ow equation systems through congruence par-titioning. The partitioning algorithms discover congruences among data
ow equations byexploiting the algebraic properties of idempotence and commutativity of the meet operator.Congruence partitioning is a general approach that is applicable to any monotone data
owproblem. Moreover, congruence partitioning can be applied to optimize the performance ofeither standard exhaustive analysis or of the demand-driven analysis as it is developed inthis thesis. The combination of congruence partitioning with exhaustive or demand-drivenanalysis is discussed further in the following two sections.8.6.1 Congruence Partitioning and Exhaustive AnalysisWhen combining congruence partitioning with an exhaustive analysis approach, congruencepartitioning serves as a preparatory phase to the actual exhaustive analysis. Prior to startingthe exhaustive �xed point computation, the congruence partitioning algorithm is applied tothe exhaustive data
ow equation system in order to construct a new and reduced system.The optimized data
ow equation system is then passed to the exhaustive �xed pointcomputation routine. To compute the �xed point over the reduced equation system does

155not require any modi�cations in the �xed point �nding strategy. Algorithms for computingthe �xed point of an exhaustive equation system can equally well be applied to a reducedequation system by simple traversing the new forwarding edges in the reduced systeminstead of the regular control
ow edges that connect equations in the original exhaustivesystem.8.6.2 Congruence Partitioning and Demand-Driven AnalysisAs in the combination with exhaustive analysis, congruence partitioning serves as a prepara-tory phase to demand-driven analysis. Note that congruence partitioning only has to becomputed once for each analysis problem. The resulting reduced system is then used fora faster query propagation for all queries that are issued for the respective analysis prob-lem. Thus, the bene�ts of computing a congruence partitioning increase with the numberof queries that are generated for the problem. The query propagation rules are appliedafter congruence partitioning by simply traversing the new forwarding edges instead of theregular control
ow edges.Note that congruence partitioning represents an additional phase in the analysis process.Although reductions in the equation system are expected, they cannot be guaranteed ingeneral. The actual reductions that can be achieved depend highly on the program textand the speci�c data
ow problem under consideration. Thus, as with any forwardingtechnique, a determination of the e�ective bene�ts of congruence partitioning requires anexperimental evaluation.

Chapter 9Concluding Remarks9.1 SummaryThis dissertation has explored new approaches for improving the e�ciency of interproceduraldata
ow analysis with respect to both the space and time requirements of the traditionalexhaustive approach. The major contribution of this work is the development of a newdemand-driven approach to interprocedural data
ow analysis whose practical bene�ts havebeen demonstrated through experimentation.The demand-driven approach has been developed through a general framework. Theframework is used to derive demand-driven interprocedural analysis algorithms from stan-dard algebraic descriptions of the data
ow problems. Conceptually, demand-driven algo-rithms result through the functional reversal of a standard exhaustive analysis. The frame-work is applicable to the class of distributive and �nite interprocedural data
ow problems.In the case of intraprocedural analysis, the framework also applies to distributive problemswith in�nite lattices. To handle the non-distributive case, this work also includes a two-phase framework variation. As a two-phase approach, the framework variation is generallyless e�cient than the single-phase analysis reversal. However, the framework extension ismore general in that it is applicable to any monotone data
ow problem.Numerous experiments were carried out to evaluate the performance of demand-drivenanalysis in practice. Demand-driven analyzers have been implemented for two data
owproblems: reaching de�nitions and copy constant propagation. Experiments were con-ducted to compare the performance of computing reaching de�nitions and copy constantpropagation information at each use/reference of a variable using either the demand-drivenanalyzers or using their exhaustive counterparts. The experimental results show that thedemand-driven reaching de�nition analyzer is faster and uses less space than exhaustivereaching de�nition analysis in 11 out of 17 programs. In copy constant propagation, thedemand-driven analyzer outperforms the exhaustive analyzer in all 17 programs. Additionalexperimentation was conducted to evaluate the performance of demand-driven analysis ina speci�c software engineering application. The example chosen was data
ow integration156

157testing. An experimental study was performed to compare the performance of the demand-driven analyzer if used during procedure integration with that of (i) an exhaustive analyzerand (ii) an improved analyzer that is based on incremental updates. The experimentalresults show that demand-driven analysis is signi�cantly faster than exhaustive analysis forall programs and even outperforms the incremental analyzer in 11 out of 12 programs. Asan additional result, the experimental study has shown that the demand-driven algorithmscan be easily integrated into data
ow applications.The analysis improvements achievable by a demand-driven approach are orthogonal andcomplimentary to the improvements of previous preparatory techniques that optimize data
ow analysis performance by direct information forwarding. As an additional contributionand to further improve the analyzer's performance, this dissertation also developed a newforwarding technique, congruence partitioning, that is more general and more powerfulthan previous techniques for forwarding. Congruence partitioning provides a preparatoryoptimization technique that may be used to improve the performance of either the demand-driven algorithms developed in this work or of conventional exhaustive analysis algorithms.9.2 Merit of the WorkA demand-driven approach has important advantages over other techniques to improve thee�ciency of data
ow analysis. Previous approaches to improve data
ow analysis typi-cally act as an additional preparatory phase that is performed prior to the actual data
owanalysis. For example, forwarding techniques are preparatory approaches that are appliedbefore the analysis in order to shorten the information propagation paths in the control
owgraph. In contrast, the demand-driven approach developed in this thesis constitutes the ac-tual analysis phase itself. As a consequence, using a demand-driven approach to data
owanalysis in compilers and software tools signi�cantly changes their overall design. Unlikepreparatory techniques, demand-driven analysis does not obey the classical strict phaseddesign of a compiler. In this phased design, data
ow analysis is performed in isolation andindependent of its context; and in particular, independent of the application phase thatfollows the analysis. While such a strict separation into phases may simplify the overalldesign and implementation of a compiler, it also limits the information available to eachindividual phase and may thereby render the phases unnecessarily ine�cient. For example,performing data
ow analysis in a separate phase from the actual analysis application (e.g.,optimization) is likely to result in an over-analysis of the program. Since nothing is knownabout the actual information demands of the application, the analysis must consider allpossibly relevant data
ow facts and is therefore necessarily exhaustive. In contrast, if ademand-driven analysis is used, the actual information needs can be taken into account andthe over-analysis of a program can be avoided. Demand-driven analysis is directly inter-leaved with the application such that analysis is performed only if triggered by a demand

158for information from the application. Ideally, repeated invocations of the demand-drivenanalyzer result in the subsequent accumulation of the data
ow solution. Thus, if exhaus-tively many demands are issued by the application, the demand-driven analyzer eventuallyaccumulates the complete exhaustive solution.The major contributions of the developed demand-driven approach to interproceduraldata
ow analysis are summarized as follows.� Integration of analysis with applications that require data
ow information.As discussed above, using a demand-driven analysis approach leads to a new designof compilers and data
ow based software engineering tools that interleaves analysisand application.� General approaches for distributive and non-distributive data
ow problems.The demand-driven approach is developed as a framework and as such avoids the needfor redeveloping demand-driven algorithms for each analysis problems that must besolved.� Time and space e�cient demand-driven analysis algorithms.Analytical analysis of the asymptotic worst case cost of the developed demand-drivenalgorithms shows that demand-driven analysis is never more costly than standardexhaustive analysis.� Practical bene�ts experimentally demonstrated.The practical performance bene�ts of demand-driven analysis has been demonstratedthrough numerous experiments.� Simple and easy to implement design of the demand-driven analysis algorithms.The developed demand-driven analyzers have a simple design and are easy to imple-ment, thus providing the compiler writer with an attractive alternative to standardexhaustive algorithms,9.3 Future DirectionsThe theoretical and practical results presented in this thesis encourage continuing researchwith respect to both the conceptual and the experimental aspects of this work.� Additional Experimental EvaluationTo provide further insights into the performance bene�ts of the demand-driven approach,the experimental evaluation of demand-driven analysis can be continued. One direction offuture experimental work would include the consideration of additional cost measures. Theexperimental results presented in this thesis are based on execution timings. Alternatively,

159performance can be measured through operation counts. Unlike execution timings, countingthe number operations provides a performance measure that is implementation independentand une�ected by implementation related optimizations (e.g., bit vector operations).Future experimentation will also consider additional data
ow problems. The experi-mental results in Chapters 5 and 6 show that the bene�ts of demand-driven analysis arehigher in copy constant propagation, which is a more complex problem than the problemof computing reaching de�nitions. This result suggests that the bene�ts of demand-drivenanalysis grow, not only with certain program characteristics such as program size, but alsobased on characteristics of the data
ow problem such as its complexity. Future researchcould investigate how characteristics of the data
ow problem, such as the complexity ofthe lattice and meet operator implementations, a�ect the performance of demand-drivenanalysis.Another important extension of the experimental work would be to evaluate the per-formance of complete compiler optimizations based on demand-driven analysis. The ex-perimental evaluation of demand-driven analysis in integration testing provided the �rstencouraging results for using demand-driven analysis in a software engineering application.Evaluating the performance of an optimizer that is based on demand-driven analysis wouldcomplement the work on integration testing and establish further insights into the usabil-ity of demand-driven analysis in an optimizing compiler. Such an experimental evaluationwould serve two purposes. First, it would provide a comparison of the optimizer's perfor-mance if based on demand-driven analysis with that of a standard implementation of theoptimizer. In addition, the experimental study would also reveal the ease or di�culty ofdesigning and implementing an optimizer using a demand-driven analysis approach.� Experimental Evaluation of Congruence PartitioningOther future experimental work would include the practical evaluation of congruence par-titioning. In particular, an evaluation of the bene�ts of combining congruence partitioningwith demand-driven analysis would be interesting. The existing demand-driven analyzer im-plementations could be extended to include an additional preparatory phase for congruencepartitioning. The results of this preparatory phase would provide forwarding informationof the reduced equation system that can be used during the demand-driven query analysisto shorten the query propagation paths. Congruence partitioning may also be applied priorto standard exhaustive analysis. Thus, additional experimental evaluation would cover thebene�ts of congruence partitioning in a standard exhaustive compiler or software tool.� Parallelizing Demand-Driven AnalysisThere are a number of potential bene�ts of demand-driven analysis that deserve furtherinvestigation. One domain in which the demand-driven algorithms appear to be a promis-ing approach is the parallelization of the data
ow analysis. The discussion in Chapter

1604 pointed out that the demand-driven algorithms are parallelizable in a straight-forwardway and several modes of parallel execution of the analysis were outlined. A future exper-imental evaluation would determine the practical bene�ts of the parallel implementationsof the demand-driven analysis, in particular, in comparison with other data
ow analysisparallelization strategies.� Analysis of Non-Distributive ProblemsOther future directions target the theoretical aspects of this research. In particular, fur-ther investigations of the handling of non-distributive problems would be of interest. Theconcepts of precise analysis reversal that enabled the development of the demand-drivenframework are not applicable to non-distributive problems. Applying analysis reversal toa non-distributive problem results in loss of precision. To precisely handle non-distributiveproblems, this work includes a two-phase framework extension that, although less e�cient,is applicable to any monotone data
ow problem. An interesting problem is the question asto whether it is possible to improve the e�ciency of the two-phase framework variation bydeveloping a hybrid approach for handling non-distributivity. A hybrid approach could bebased on the observation that it is always possible to detect the �rst time a loss of precisionoccurs when analysis reversal is applied to a non-distributive problem. Thus, is may bepossible to start the demand-driven analysis for a non-distributive problem optimisticallyusing the more e�cient analysis reversal approach. Only if information loss actually occurswould the analysis switch to the two-phase algorithm. Moreover, it may be possible toisolate the portions of the program that result in information loss during the query propa-gation. In this case, a hybrid approach would attempt to apply analysis reversal wheneverpossible and only switch to the less e�cient two-phase approach to cover the portions ofthe program than cannot be analyzed precisely using the reversal based query propagationrules.� Combining Demand-Driven Analysis with Incremental AnalysisFinally, the utility of using demand-driven analysis for bypassing the incremental updateproblem should be investigated in the future. The experimental comparison of demand-driven algorithms with incremental algorithms in integration testing has provided somepromising results showing that demand-driven analysis can outperform incremental analysis.Another context where the demand-driven approach may be useful to eliminate the needfor incremental analysis are optimizing compilers that perform aggressive code re-ordering.The incremental update problem of keeping the data
ow solution consistent while the codeis being transformed can become considerably complex if the transformations involve morethan simple local code changes. If demand-driven analysis performs su�ciently well to allowits use throughout the optimization phase, such an incremental update problem would noteven arise. Each time data
ow information is requested, it is computed based on the latest

161valid version of the program.A hybrid approach that combines the advantages of both demand-driven and incrementalanalysis results if the demand-driven analysis uses a cache. If the program changes whilethe cache is in use, the cache can be updated using the same incremental techniques that areused to update the exhaustive solution. Thus, for transformations that require only smallchanges, incremental techniques could be used to update the cache. After the applicationof more aggressive transformations that require complex updates, the cache can simply be
ushed. Unlike an exhaustive approach that completely re-computes the exhaustive solutionafter a previous solution has been
ushed, using demand-driven analysis guarantees thatafter
ushing, only the information actually needed will be re-computed. Experimentalevaluation will be necessary to determine the actual bene�ts of using demand-driven analysisin combination with an incremental approach.

Bibliography[AC77] F.E. Allen and J. Cocke. A program data
ow analysis procedure. Communi-cations of the ACM, 19(3):137{147, March 1977.[AHKL93] H. Agrawal, J. Horgan, E. Krauser, and S. London. Incremental regressiontesting. In Conf. on Software Maintenance, pages 348{357, Sept. `93.[AHU74] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Com-puter Algorithms. Addison-Wesley, `74.[AK87] F.E. Allen and K. Kennedy. Automatic translation of fortran programs to vectorform. ACM Transactions on Programming Languages and Systems, 9(4):491{542, October 1987.[ASU86] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers, principles, techniques, andtools. Addison-Wesley Publishing Company, Massachusetts, `86.[AWZ88] B. Alpern, M. Wegman, and F.K. Zadeck. Detecting equality of values in pro-grams. In 15th ACM Symp. on Principles of Programming Languages, pages1{11, San Diego, CA, Jan. `88.[BE95] W. Blume and R. Eigenmann. Demand-driven symbolic range propagation. InWorkshop on Languages and Compilers for Parallelism, Columbus, OH, Aug.`95.[BH93] S. Bates and S. Horwitz. Incremental program testing. In 20th Annual ACMSymp. on Principles on Programming Languages, Jan. 1993.[Bir84] G. Birkho�. Lattice theory, volume 25. American Mathematical Society, Collo-quium Publication, Washington, DC, 3rd edition, `84.[BJ78] W.A. Babich and M. Jazayeri. The method of attributes for data
ow analysis:Part II . Demand analysis. Acta Informatica, 10(3), Oct. `78.[BMO90] R. Ballance, A.B. Maccabe, and K.J. Ottenstein. The program dependence web:a representation supporting control-,data-, and demand-driven interpretation ofimperative languages. In SIGPLAN `90 Conf. on Programming Language Designand Implementation, pages 257{271, Jun. `90.[Bou93] F. Bourdoncle. Abstract debugging of high-order imperative languages. InSIGPLAN '93 Conf. on Programming Language Design and Implementation,pages 36{45, Albuquerque, NM, Jun. '93.162

163[Bur87] M. Burke. An interval analysis approach toward exhaustive and incremental data
ow analysis. Technical Report RC 12702, IBM Thomas J. Watson ResearchCenter, Yorktown Heights, NY, `87.[CBC93] J.-D. Choi, M. Burke, and P. Carini. E�cient
ow-sensitive interprocedu-ral computation of pointer-induced aliases and side e�ects. In Proc. of the20th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Lan-guages, pages 232{245, Jan. `93.[CC77a] P. Cousot and R. Cousot. Abstract interpretation: a uni�ed lattice model forstatic analysis of programs by construction or approximation of �xpoints. In6th ACM Symp. on Principles of Programming Languages, pages 238{252, LosAngeles, CA, Jan. `77.[CC77b] P. Cousot and R. Cousot. Static determination of dynamic properties of gener-alized type unions. In ACM Conf. on Language Design for Reliable Software,pages 77{93, Raleigh, NC, Mar. `77.[CC77c] P. Cousot and R. Cousot. Static determination of dynamic properties of recur-sive procedures. In E.J. Neuhold, editor, IFIP Conf. on Formal Description ofProgramming Concepts, pages 237{277. North-Hollan Pub. Co., `77.[CC79] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.In 6th ACM Symp. on Principles of Programming Languages, pages 269{282,San Antonio, TX, Jan. `79.[CCF90] J.D. Choi, R.K. Cytron, and J. Ferrante. Automatic construction of sparsedata
ow evaluation graphs. In 18th ACM Symp. on Principles of ProgrammingLanguages, pages 55{66, Orlando, FL, Jan. `90.[CCF92] J.D. Choi, R. Cytron, and J. Ferrante. On the e�cient engineering of ambitiousprogram analysis. IEEE Trans. on Software Engineering, 20(2):105{114, Feb.'92.[CF93] R.K. Cytron and J. Ferrante. E�ciently computing �-nodes on-the-
y. `93Workshop on Languages and Compilers for Parallelism, 1993.[CFR+91] R.K. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F.K. Zadeck. E�cientlycomputing static single assignment form and the control dependence graph.ACM Trans. on Programming Languages and Systems, 13(4):451{490, Oct. `91.[CG93] R. Cytron and R. Gershbein. E�cient accommodation of may-alias informationin SSA form. In SIGPLAN '93 Conf. on Programming Language Design andImplementation, pages 36{45, Albuquerque, NM, Jun. '93.[CHK92] K. Cooper, M. Hall, and K. Kennedy. Procedure cloning. In IEEE 1992 Int.Conf. on Computer Languages, pages 96{105, San Francisco, CA, April 1992.[CK88] K. Cooper and K. Kennedy. Interprocedural side-e�ect analysis in linear time.SIGPLAN '88 Symp. on Compiler Construction, published in SIGPLAN No-tices, 23(7):57{66, Jun. `88.

164[CLZ86] R.K. Cytron, A. Lowry, and F.K. Zadeck. Code motion of control structuresin high-level languages. In 13th ACM Symp. on Principles of ProgrammingLanguages, pages 70{85, St. Petersburg Beach, FL, Jan. `86.[CM80] J. Cocke and P.W. Markstein. Measurement of program improvement algo-rithms. In Information Processing 80. North Holland Publishing Company, `80.[Coc70] J. Cocke. Global common subexpression elimination. SIGPLAN Notices,5(7):20{24, July 1970.[Coo85] K. Cooper. Analyzing aliases of reference formal parameters. In 12th ACMSymp. on Principles of Programming Languages, pages 281{290, `85.[Cou81] P. Cousot. Semantic foundations of program analysis. In S. Muchnick andN.D. Jones, editors, Program Flow Analysis: Theory and Applications, pages303{342. Prentice-Hall, `81.[CPRS85] L.A. Clarke, A. Podgurski, D. Richardson, and S.Zeil. A comparison of data
ow path selection criteria. In 8th Int. Conf. on Software Engineering, pages244{251, Aug. `85.[CS70] J. Cocke and J.T. Schwartz. Programming languages and their compilers; pre-liminary notes. Courant Institute of Mathematical Sciences, New York Univer-sity, Apr. `70.[CS89] D. Callahan and J. Subhlok. Static analysis of low-level synchronization. SIG-PLAN/SIGOPS Workshop on Parallel and Distributed Debugging, published inACM SIGPLAN Notices, 24(1):100{111, Jan. `89.[CWZ90] D.R. Chase, M. Wegman, and F.K. Zadeck. Analysis of pointers and structures.In Proc. of the SIGPLAN '90 Conf. on Programming Language Design andImplementation, pages 296{310, White Plains, NY, Jun. `90.[Deu94] A. Deutsch. Interprocedural may-alias analysis for pointers: beyond k-limiting.In Proc. of the SIGPLAN `94 Conference on Programming Language Design andImplementation, pages 230{241, Orlando, FL, Jun. `94.[DGS92a] E. Duesterwald, R. Gupta, and M.L. So�a. Distributed slicing and partialre-execution of distributed programs. In Fifth Workshop on Languages andCompilers for Parallelism, pages 497{511, New Haven, Connecticut, Aug. `92.Springer Verlag, LNCS 757.[DGS92b] E. Duesterwald, R. Gupta, and M.L. So�a. Rigorous data
ow testing throughoutput in
uences. In 2nd Irvine Software Symposium, pages 131{145, Irvine,CA, Mar. `92.[DRZ92] D.M. Dhamdhere, B.K. Rosen, and F.K. Zadeck. How to analyze large programse�ciently and informatively. In SIGPLAN '92 Conf. on Programming LanguageDesign and Implementation, pages 212{223, San Francisco, CA, Jun. `92.[DS91] E. Duesterwald and M.L. So�a. Static concurrency analysis in the presence ofprocedures using a data-
ow framework. In ACM Symp. on Testing, Analysis,and Veri�cation, pages 36{48, Victoria, B.C., Oct. `91.

165[DST80] P.J. Downey, R. Sethi, and R.E. Tarjan. Variations on the common subexpres-sion problem. Journal of the ACM, 27(4):758{771, Oct. `80.[EGH94] M. Emami, R. Ghiya, and L.J. Hendren. Context-sensitive interproceduralpoints-to analysis on the presence of function pointers. In Proc. of the SIG-PLAN `94 Conference on Programming Language Design and Implementation,pages 242{256, Orlando, FL, Jun. `94.[EP89] P. Emrath and D. Padua. Automatic detection of nondeterminancy in parallelprograms. SIGPLAN/SIGOPS Workshop on Parallel and Distributed Debug-ging, published in ACM SIGPLAN Notices, 24(1):89{99, Jan. `89.[FOW87] J. Ferrante, K.J. Ottenstein, and J.D. Warren. The program dependence graphand its use in optimization. ACM Trans. on Programming Languages, 9(3):319{349, July `87.[FW88] P.G. Frankl and E.J. Weyuker. An applicable family of data
ow testing criteria.IEEE Transactions on Software Engineering, SE-14(10):1483{1498, Oct. `88.[GHS92] R. Gupta, M.J. Harrold, and M.L. So�a. An approach to regression testingusing slicing. In Conf. on Software Maintenance, pages 299{308, Nov. `92.[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability. Freeman andCompany, New York, `79.[GN93] W.G. Griswold and D. Notkin. Automated assistance for program restructur-ing. ACM Transactions on Software Engineering and Methodology, 2(3):228{269, July `93.[GPS90] R. Gupta, L.L. Pollock, and M.L. So�a. Parallelizing data
ow analysis. InWorkshop on Parallel Compilation, Kingston, ON, Canada, `90.[GS92] R. Gupta and M.L. So�a. Automatic generation of compact test suites. In 12thIFIP World Computer Congress, Madrid, Spain, Sept. `92.[GW76] S. Graham and M. Wegman. A fast and usually linear algorithm for global
owanalysis. Journal of the ACM, 23(1):172{202, Jan. `76.[GZZ89] T. Gross, A. Zobel, and M. Zolg. Parallel compilation for a parallel machine.In SIGPLAN `89 Conf. on Programming Language Design and Implementation,pages 91{100, Jun. `89.[HDT87] S. Horwitz, A. Demers, and T. Teitelbaum. An e�cient general iterative algo-rithm for data-
ow analysis. Acta Informatica, 24(6):679{694, Nov. `87.[HL92] J. Hughes and J. Launchbury. Reversing abstract interpretations. In 4th Euro-pean Symp. on Programming, pages 269{286, Rennes, France, Feb. `92. SpringerVerlag, LNCS 582.[Hop71] J.E. Hopcroft. An n log n algorithm for minimizing states in �nite automata.In Theory of Machines and Computations. Academic Press, New York, `71.

166[HPR89] S. Horwitz, J. Prins, and T. Reps. Integrating non-interfering versions of pro-grams. ACM Transactions on Programming Languages and Systems, 11(3):345{387, July `89.[HS89a] M.J. Harrold and M.L. So�a. Interprocedural data
ow testing. In ACM Symp.on Software Testing, Analysis, and Veri�cation, pages 158{167, Key West, FL,Dec. `89.[HS89b] M.J. Harrold and M.L. So�a. Interprocedural data
ow testing. In 3rd Testing,Analysis and Veri�cation Symp., pages 158{167, Dec. `89.[HS90] M.J. Harrold and M.L. So�a. Computation of interprocedural de�nition anduses dependencies. In Int. Conf. on Computer Languages, pages 297{306, LosAlamitos, CA, `90. CS Press.[HU73] M.S. Hecht and J.D. Ulman. Analysis of a simple algorithm for global
owproblems. In First ACM Symposium on Principles of Programming Languages,pages 207{217, Boston, MA, Oct. `73.[JM73] N.D. Jones and A. Mycroft. Data
ow analysis of applicative programs usingminimal function graphs. In 13th Symp. on Principles of Programming Lan-guages, pages 194{206, Florida, 1973.[JP93] R. Johnson and K. Pingali. Dependence-based program analysis. In SIGPLAN'93 Conf. on Programming Language Design and Implementation, pages 78{89,Albuquerque, NM, Jun. `93.[Ken75] K. Kennedy. Node listing applied to data
ow analysis. In 2nd ACM Symp. onPrinciples of Programming Languages, pages 10{21, Jan. `75.[KGS94] R. Kramer, R. Gupta, and M.L. So�a. The combining dag: a technique for par-allel data
ow analysis. IEEE Transactions on Parallel and Distributed Systems,5(8), Aug. `94.[Kil73] G. Kildall. A uni�ed approach to global program optimization. In 1st ACMSymp. on Principles of Programming Languages, pages 194{206, Boston, Mas-sachusetts, Jan. `73.[Knu71] D.E. Knuth. An empirical study of fortran programs. Software Practice andExperience, 1(2):105{13, Apr. `71.[KRS92] J. Knoop, O. Ruething, and B. Ste�en. Lazy code motion. In SIGPLAN '92Conf. on Programming Language Design and Implementation, pages 224{234,Jun. '92.[KS92] J. Knoop and B. Ste�en. The interprocedural coincidence theorem. In 4th Int.Conf. on Compiler Construction, pages 125{140, Paderborn, Germany, Oct. '92.Springer Verlag, LNCS 641.[KU76] J.B. Kam and J.D. Ullman. Global data
ow analysis and iterative algorithms.Journal of the ACM, 23(1):158{171, Jan. `76.

167[KU77] J.B. Kam and J.D. Ullman. Monotone data
ow analysis frameworks. ActaInformatica, 7(3):305{317, Jul. `77.[Lan92] W.A. Landi. Interprocedural aliasing in the presence of pointers. PhD thesis,Rutgers University, New Brunswick, NJ, `92.[LH88] J.R. Larus and P.N. Hil�nger. Detecting con
icts between structure accesses.In Proc. of the SIGPLAN`88 Conference on Programming Language Design andImplementation, pages 21{34, `88.[LMR91] Y.F. Lee, T.J. Marlowe, and B.G. Ryder. Experiences with a parallel algorithmfor data
ow analysis. Journal Supercomputing, 5:163{188, Oct. `91.[LR92] W. Landi and B. Ryder. A safe approximate algorithm for interproceduralpointer aliasing. In Proc. of the SIGPLAN '92 Conf. on Programming LanguageDesign and Implementation, pages 56{67, San Francisco, CA, Jun. `92.[MR79] E. Morel and C. Renvoise. Global optimization by suppression of partial redun-dancies. Communications of the ACM, 22(2):97{103, Feb. `79.[MR90] T.J. Marlowe and B.G. Ryder. Properties of data
ow frameworks, a uni�edmodel. Acta Informatica, 28(2):121{163, Dec. `90.[Mye76] G.J. Myers. Software reliability: principles and practices. Wiley-Interscience,New York, `76.[Mye81] E.W. Myers. A precise inter-procedural data
ow algorithm. In 8th ACMSymp. on Principles of Programming Languages, pages 219{230, Williamsburg,Virginia, Jan. `81.[NO80] G. Nelson and D.C. Oppen. Fast decision procedures based on congruenceclosures. Journal of the ACM, 27(2), Apr. `80.[Nta84] S.C. Ntafos. An evaluation of required element testing strategies. In 7th Int.Conf. on Software Engineering, pages 250{256, Mar. `84.[OO84] K Ottenstein and L Ottenstein. The program dependence graph in a software de-velopment environment. ACM SIGSOFT/SIGPLAN Symp. on practical SDEs,SIGPLAN Notices, 19(5):177{184, May `84.[OW88] T.J. Ostrand and E.J. Weyuker. Using data
ow analysis for regression testing.In 6th Annual Paci�c Northwest Software Quality Conf., pages 233{247, Sept.`88.[PS89] L. Pollock and M.L. So�a. An incremental version of iterative data
ow analysis.IEEE Trans. on Software Engineering, 15(12):1537{1549, Dec. `89.[PW86] D. Padua and M.J. Wolfe. Advanced compiler optimizations for supercomputers.Communications of the ACM, 22(12):1184{1201, Dec. `86.[RC87] B.G. Ryder and M. Carroll. An incremental algorithm for software. ACMSIGSOFT/SIGPLAN Software Engineering Symposium on Practical SoftwareDevelopment Environments, SIGPLAN Notices, 21(1):171{179, Jan. '87.

168[Rep94] T. Reps. Solving demand versions of interprocedural analysis problems. In 5thInt. Conf. on Compiler Construction, pages 389{403. Springer Verlag, LNCS786, Apr. `94.[RHS95] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural data
ow analysisvia graph reachability. In 22nd ACM Symp. on Principles on ProgrammingLanguages, pages 49{61, San Francisco, CA, Jan. `95.[RL77] J. Reif and J. Lewis. Symbolic evaluation and the global value graph. In 4thACM Symp. on Principles of Programming Languages, pages 104{118, Jan. `77.[RM93] G. Rothermel and M.J.Harrold. A safe, e�cient algorithm for regression testselection. In Conf. on Software Maintenance, pages 358{367, Sept, `93.[RM94] G. Rothermel and M.J.Harrold. Selecting tests and identifying test coveragerequirements for modi�ed software. In 1994 Int. Symp. on Software Testing andAnalysis, pages 169{184, Aug. `94.[Ros81] B. Rosen. Linear cost is sometimes quadratic. In 8th ACM Symp. on Principlesof Programming Languages, pages 117{124, Jun. `81.[RP86] B.G. Ryder and M.C. Paull. Elimination algorithms for data
ow analysis. ACMComputing Surveys, 18(3):277{316, `86.[RP88] B.G. Ryder and M.C. Paull. Incremental data
ow analysis algorithms. ACMTrans. Programming Languages and Systems, 10(1):1{50, `88.[RR91] G. Ramalingam and T. Reps. On the computational complexity of incrementalalgorithms. Technical Report TR-1033, Computer Science Department, Univer-sity of Wisconsin, Madison, WI, Aug. `91.[RSH94] T. Reps, M. Sagiv, and S. Horwitz. Interprocedural data
ow analysis via graphreachability. Technical Report 94-14, Datalogisk Institut, University of Copen-hagen, Copenhagen, Denmark, `94.[RT82] J. Reif and R.E. Tarjan. Symbolic program analysis in almost linear time. SIAMJournal of Computing, 11(1):81{93, Feb. `82.[RTD83] T. Reps, T. Teitelbaum, and A. Demers. Incremental context-dependent anal-ysis for language-based editors. ACM Trans. on Programming Language andSystems, 5(3):449{477, Jul. `83.[RW85] S. Rapps and E. Weyuker. Selecting software test data using data
ow informa-tion. IEEE Trans. on Software Engineering, 11(4):367{375, Apr. `85.[RWZ88] B. Rosen, M. Wegman, and F.K. Zadeck. Global value numbers and redundantcomputations. In 15th ACM Symp. on Principles of Programming Languages,pages 12{27, San Diego, CA, Jan. `88.[Ryd83] B.G. Ryder. Incremental data
ow analysis. In 9th ACM Symp. on Principlesof Programming Languages, pages 167{176, Jan. `83.[Set76] R. Sethi. Algorithms for minimal-length schedules. Wiley Publishing Company,New York, NY, `76.

169[SH86] V. Sarkar and J. Hennessy. Compile-time partitioning and scheduling of parallelprograms. In Symp. on Compiler Construction, pages 17{26, `86.[SMHY93] A.D. Stoyenko, T.J. Marlowe, W.A. Halang, and M. Younis. Enabling e�-cient schedulability analysis through conditional linking and program transfor-mations. Control Engineering Practice, 1(1):85{105, `93.[SP81] M. Sharir and A. Pnueli. Two approaches to interprocedural data
ow analysis.In S. Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory andApplications, pages 189{234. Prentice-Hall, `81.[SRH95a] M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural data
ow analysiswith applications to constant propagation. In FASE 95: Colloquim on FormalApproaches in Software Engineering, pages 651{665. Springer Verlag, LNCS 915,May `95.[SRH95b] M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural data
ow analysiswith applications to constant propagation. Technical Report TR-1284, Com-puter Science Department, University of Wisconsin, Madison, WI, Aug. `95.[SS88] D. Shasah and M. Snir. E�cient and correct execution of parallel programs thatshare memory. ACM Transactions on Programming Languages and Systems,10(2):282{312, Apr. `88.[SY93] R.E. Strom and D.M. Yellin. Extending typestate checking using conditionalliveness analysis. IEEE Trans. on Software Engineering, 19(5):478{485, May'93.[Tar81a] R.E. Tarjan. Fast algorithms for solving path problems. Journal of the ACM,28(3):594{614, Jul. `81.[Tar81b] R.E. Tarjan. A uni�ed approach to path problems. Journal of the ACM,28(3):576{593, Jul. `81.[TTL89] A.M. Taha, S.M. Thebut, and S.S. Liu. An approach to software fault localiza-tion and revalidation based on incremental data
ow analysis. In COMPSAC`89,pages 527{534, Sept. `89.[Wei84] M. Weiser. Program slicing. IEEE Trans. on Software Engineering, SE-10(4):352{357, Jul. `84.[WL95] R.P. Wilson and M.S. Lam. E�cient context-sensitive pointer analysis for cprograms. In Proc. of the SIGPLAN `95 Conference on Programming LanguageDesign and Implementation, pages 1{12, Jun. `95.[Wol92] M. Wolfe. Beyond induction variables. In SIGPLAN `92 Conf. on ProgrammingDesign and Implementation, pages 162{174, San Francisco, CA, June `92.[WZ85] M. Wegman and F.K. Zadeck. Constant propagation with conditional branches.In 12th ACM Symp. on Principles of Programming Languages, pages 291{299,New Orleans, Jan. `85.[Zad84] F.K. Zadeck. Incremental data
ow analysis in a structured program editor. InSIGPLAN Symp. on Compiler Construction, pages 132{143, Jun. `84.

