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ABSTRACT OF THE DISSERTATION

Dynamic State Alteration Techniques for Automatically Locating Software Errors

by

Dennis Bernard Jeffrey

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, August 2009

Dr. Rajiv Gupta, Chairperson

Software does not always behave as expected due to errors. These errors can potentially

lead to disastrous consequences. Unfortunately, debugging software errors can be difficult

and time-consuming. Many techniques to automatically locate errors have been developed,

but the results are far from ideal. Unlike other techniques that analyze existing state

information from program executions, dynamic state alteration techniques modify the state

of program executions to gain deeper insight into the potential locations of errors. However,

prior state alteration techniques are generally no more effective than other techniques, and

come at the expense of increased computation time. This dissertation shows that aggressive

and well-targeted state alteration techniques can be both highly effective and reasonably

efficient.

The Value Replacement technique performs aggressive state alterations to locate

software errors by replacing the set of values used in different statement instances in failing

program executions. In a set of benchmarks, Value Replacement precisely identifies a faulty

statement in 39 out of 129 cases, whereas the most effective technique previously known does

so in 5 cases. Value Replacement can be generalized to iteratively locate multiple errors. A

vi



brute-force implementation of Value Replacement can require hours to locate a single error,

but techniques are developed that can reduce this timing requirement to minutes to locate

multiple errors.

The Execution Suppression technique performs targeted state alterations to lo-

cate memory errors by iteratively suppressing (avoiding) the effects of statements involving

known memory corruption during failing executions. The technique is able to precisely

identify the first point of memory corruption in all analyzed benchmark programs; this

point is typically at or close to the location of a memory error. Execution Suppression can

be generalized to locate multithreading errors including data races. While a software-only

implementation of suppression incurs an overhead of 7.2x on average, this overhead can be

reduced to 1.8x using hardware support.

Finally, a machine learning technique called BugFix is developed that provides

automated assistance in modifying a faulty statement to fix an error. A case study illustrates

the potential benefit of the technique.
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Chapter 1

Introduction

1.1 The Problem of Software Errors

According to the New York Times [61], the term “software” was coined by a

statistician named John Wilder Tukey in a 1958 article in American Mathematical Monthly.

This article was published just 51 years ago. Since then, the use of computers and computer

software has steadily become more and more prevalent in society. The last few decades in

particular have seen a dramatic increase in the amount of software in use around the world,

to a level that likely could not have been envisioned in 1958. From education to the economy,

the military to medicine, and the arts to entertainment, software has become a tool upon

which society relies in order to function. The many benefits of software are too numerous to

list. However, with these benefits come important challenges that must be addressed. One

of the most important of these challenges is the fact that software does not always behave

as is intended. In other words, software does not always behave in a reliable manner. Given

the ubiquity of computer software in use in today’s society, the consequences of unreliable

1



software can be disastrous. These consequences can be measured in terms of both the

financial cost as well as the cost in human life.

On June 4, 1996, the first test flight of the European Ariane 5 expendable launch

system was conducted. Less than a minute after launch, the rocket deviated from its

intended flight path and was destroyed, resulting in a loss of more than $370 million [26].

One of the software problems leading to this disaster was an arithmetic overflow during

a data conversion from a 64-bit floating point to a 16-bit signed integer. In September

of 1999, the $125 million Mars Climate Orbiter was lost upon entering the atmosphere of

Mars. The cause was determined to be a navigation error caused by the use of Imperial

units rather than the metric system [54]. On February 25, 1991, a U.S. Patriot missile failed

to intercept an incoming Iraqi Scud missile, which exploded at an Army base in Dhahran,

Saudi Arabia, killing 28 soldiers and wounding about 100 others [154]. The cause was

determined to be a rounding error in software, resulting in a clock skew of 0.34 seconds

that caused a miscalculation of the incoming missile’s location. Between June of 1985 and

January of 1987, the Therac-25 radiation therapy machine administered deadly radiation

overdoses to several cancer patients, estimated to be more than 100 times greater than the

dosage typically used for treatment [154]. The cause of this tragedy was determined to be

a software race condition.

One of the primary causes of software unreliability is the presence of errors in

program source code. Unfortunately, errors occur frequently in software. It is common

practice for businesses to release software that contains known errors, simply because there

is often not enough time or resources to address all errors. In these cases, errors are usually

prioritized so that high-priority errors can be fixed prior to release. Even if all known errors
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can be fixed prior to release, some errors may not reveal themselves until after software has

been deployed and is in use – sometimes to disastrous effect.

The main reason why software errors are commonplace is that programming is

a human-intensive and very complicated activity. It is often very difficult or seemingly

impossible to reason about all possible executions of a program, and to foresee all possible

environmental factors that may influence, or be influenced by, a program. Even when a

program appears to behave properly when executed, there may still exist subtle errors that

may only appear on rare occasions or when a certain set of conditions are met. According to

a June 2002 report by the National Institute of Standards and Technology (NIST), software

errors “are so prevalent and so detrimental that they cost the U.S. economy an estimated

$59.5 billion annually,” with over half of these costs being borne by software users [60].

As the amount of software in use around the world increases, and the degree to which

humanity relies on software rises, the problem of software errors is becoming all the more

important. Thus, the reality of software errors is an urgent problem with far-reaching and

potentially-disastrous consequences.

1.2 Handling Software Errors

1.2.1 Preventing Errors versus Responding to Errors

There are two general approaches that can be used to address the problem of

software errors. The first approach is to develop techniques that can help prevent errors

from happening in the first place. The second approach is to deal with the errors after the

fact: to discover and eliminate the errors, or to otherwise avoid or tolerate their effects.
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Preventing errors involves modifying the software development process to decrease

the chances that errors will be introduced into software. For example, rigorous software

engineering [12] emphasizes the early stages of the software development process, advocating

for an early, precise understanding of the required behavior of the software so as to “get

it right the first time.” Another idea, automated error prevention [57], is a framework

that correlates errors found in the development process with the development procedures

that were responsible for creating them; these development procedures are then modified to

prevent the error from recurring in the future. To borrow an analogy from Adam Kolawa,

co-founder and CEO of Parasoft Corporation, the process of error prevention is beneficial

because it treats the disease (the development process), rather than merely the symptom

(the errors themselves) [57].

Developing techniques to prevent the creation of errors can greatly improve the

reliability of developed software. However, many would agree that this process – at least

in the near future – will never completely eradicate errors introduced during software de-

velopment, simply because software is still developed by humans, and humans are prone

to error. Moreover, preventing errors in the development process does not address the fact

that many errors already exist in developed and deployed software. Thus, in the foreseeable

future, there will always be a need to deal with existing errors. One way to deal with

errors is to tolerate them, or to otherwise avoid the negative effects of the errors during

execution, without actually eliminating the errors themselves. Another option, which is the

best option for promoting program reliability, is to identify and eliminate the errors. To

accomplish this, the approaches of software testing and software debugging often go hand in

hand.
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1.2.2 Overview of Software Testing and Debugging

Software testing refers to the process of analyzing software to obtain information

about its potential correctness. It may be performed statically, through techniques such

as code inspection, code reviews, and code walkthroughs. However, it is more commonly

performed dynamically, by executing software using different input values, and then exam-

ining the behavior of the software to determine if the actual behavior matches the expected

behavior. Typically, this involves checking whether the output of the software matches the

output that is expected. Testing is performed in order to try to expose software errors and

gain confidence in the correctness of a program. The more software behaves as intended

during the testing process, the more confidence one can have in its correctness. Whenever

any unexpected behavior arises, then a developer can determine if the unexpected behavior

is due to an error in the software; if so, then the error can be fixed and testing can re-

sume. In general, extensive testing may provide high confidence that a program is correct.

However, testing cannot guarantee program correctness because it is usually infeasible to

execute a program under all possible input values and under all possible conditions. Never-

theless, testing is an important phase of software development for improving the reliability

of software.

While software testing can be used to expose errors in software, software debugging

is the process of actually removing those errors from the software (i.e., fixing the errors).

Debugging can be a challenging task because it is composed of two general steps, either of

which can be very difficult in certain situations.

Once an error is known to exist in software, then the error must first be located

in the software. In some cases, this step can be very time consuming because the point at
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which an error is revealed during program execution may be far away from the point of the

error itself. For example, an error may be traversed early on during program execution, and

this may eventually result in incorrect output being produced at a point much later during

execution. Once a developer observes the incorrect output, it may take considerable time

to isolate the error in the source code that originally caused the incorrect output.

After an error is located, the nature of the error must be fully understood so that

a developer can modify the source code to eliminate the error. In some cases, the nature of

the error may be obvious and the appropriate fix may be determined quickly. However, in

other cases, the appropriate fix to make may not be so clear. Even if an attempt is made

to fix an error, it might turn out that the attempted fix leads to unintended consequences

that may cause the software to misbehave in other ways. In other words, the process of

debugging can sometimes introduce additional errors. Because of this, debugging can be a

very difficult and time-consuming task.

Software testing and debugging are important and necessary phases of software

development, and they work together to promote robust and reliable software: testing is

used to expose software errors, and debugging is used to eliminate those errors. Because

both of these processes are important, there is significant prior research work in both areas.

However, in one sense, debugging currently poses a more pressing challenge because the

rate at which software errors are eliminated through debugging often cannot keep up with

the rate at which software errors are discovered through testing. Evidence of this can be

seen by companies releasing software with known errors, often with the promise of releasing

patches for the software in the future once the errors can be properly addressed.

The main reason why software debugging is so time-consuming is that it usually
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involves significant manual work. In most cases, developers must manually locate errors,

understand them, and determine how to modify source code to eliminate them. Because

of this, there has been significant work that focuses on automating the debugging process.

Providing automated assistance for debugging can improve the efficiency of the debugging

process, allowing more errors to be fixed in shorter time, thus promoting more robust and

reliable software.

1.2.3 Approaches for Automating Software Debugging

There have been a few techniques developed to automatically assist developers in

fixing software errors. He and Gupta [46, 47] developed an approach that uses the notion

of path-based weakest preconditions to automatically generate program modifications to

correct an erroneous statement in a function. The function must be associated with a

formal precondition and postcondition. Abraham and Erwig developed a debugging tool

that can assist in correcting errors in spreadsheets [1]. In this tool, a user specifies the

expected value for a cell that contains an incorrect value; the tool then identifies change

suggestions that can be used to correct the error.

These techniques provide automated assistance for developers to modify software

to eliminate errors. However, the amount of research in this area is relatively little as

compared to the research on automatically locating software errors. One of the main reasons

why there is little prior work on automatically assisting in fixing errors is because this is a

difficult task to automate. In general, automatically fixing an error would require a tool to

know the intended behavior of software, which would have to be formally specified in some

way; this can place burden on a developer to formally provide this information. Moreover,
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fixing an error also requires knowledge about an appropriate location in the source code at

which a fix can be made. This can be the location of an error itself, or else another location

at which a source code modification can offset the negative effects of an error. In other

words, error location is, in general, a prerequisite to error correction. As a result, most

prior work on automating the debugging process has focused on the task of locating faulty

program statements.

One thread of research involves slicing-based approaches that can be used to narrow

down the search for faulty program statements. Static Slicing [139] identifies a subset

of program statements that may influence the value of a variable at a program location,

obtained by static analysis of a program. Dynamic Slicing [3, 78, 133, 149, 150] identifies a

subset of program statements that actually do influence the value of a variable at a particular

point in a given dynamic program execution. The related concept of Relevant Slicing [4, 40]

has also been studied to incorporate potential dependencies. In general, slices computed

from the point of an incorrect program value can identify the subset of statements that

could have contributed to that incorrect value; this subset of statements is likely to contain

a faulty statement, and may be significantly smaller than the set of all program statements.

Another thread of research on automatically locating program errors involves sta-

tistical analysis. Some of these approaches [74, 75, 87, 88] use dynamic information obtained

from program executions to rank program statements according to likelihood of being faulty.

Jiang and Su [72] proposed a context-aware approach that constructs faulty control flow

paths linking bug predictors together, that can be used to help explain software errors. The

Nearest Neighbor technique [119] searches for a passing execution that is most similar to a

failing execution, compares the spectra for these two executions, and uses this information
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to identify the most suspicious parts of the program.

Yet another thread of research on error location involves the concept of state alter-

ation. These techniques modify the state of an executing program in an attempt to isolate

software errors. In the Delta Debugging framework, failure-inducing input is identified [146]

that allows for the computation of cause-effect chains for failures [145] that can in turn

be linked to faulty code [22]. This is accomplished by swapping program state (the values

of variables) between a successful and failing run. Predicate Switching [148] attempts to

isolate erroneous code by identifying predicates whose outcomes can be altered during a

failing run to cause the run to become passing.

State alteration techniques are particularly promising for effectively locating soft-

ware errors. This is because other techniques (that do not alter state) only consider static

information and/or the dynamic information from a set of program executions that are as-

sociated with available test cases. These techniques are limited because they consider only

existing static and dynamic information that is already available. State alteration tech-

niques, on the other hand, can also consider new dynamic information that can be observed

by modifying the state of existing program executions. Each time the state of an executing

program is altered, this leads to an entirely new execution that can be analyzed. In many

cases, these state alterations can provide important insights about software errors that can

assist in debugging them.

Although there is significant prior work on automated assistance for locating soft-

ware errors, the problem of error location is by no means a solved problem. Ideally, an

automated technique should precisely report the location of any software error. However,

in practice, the ideal situation rarely occurs. Current techniques report a subset of program
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statements (that may be priority-ordered) showing the most suspicious parts of a program,

and a developer must usually examine multiple statements until an error is found. There

is much room for improvement in the results reported by these techniques.

This dissertation supports the notion that there is great potential in dynamic

state alteration techniques for automatically locating software errors. However, current

state alteration techniques have not fully explored the potential of state alteration, and so

the effectiveness of current techniques in locating errors is not nearly as high as what may be

possible with state alteration. For example, both Delta Debugging and Predicate Switching

involve different types of state alteration: Delta Debugging alters data-flow state while

Predicate Switching alters control-flow state. However, Delta Debugging was shown [74] to

be less effective at locating errors than a much simpler statistical technique for a particular

set of benchmark programs. Moreover, Predicate Switching can only identify “critical”

predicates whose outcomes can be altered to correct the output of a failing run; the technique

will likely be ineffective for errors that do not influence control flow. Even if a critical

predicate is found, the actual error may be elsewhere in a non-predicate statement.

The effectiveness of existing state alteration techniques in locating errors may be

limited due to a few reasons. First, the techniques may not be aggressive enough in their

state alterations to gather the most relevant and useful information about the likely locations

of program errors. Second, the state alterations performed by existing techniques may not

be ideally targeted to achieve the desired error location results. This dissertation considers

how more aggressive and better-targeted state alteration can improve the effectiveness of

locating software errors. Figure 1.1 illustrates the focus of this dissertation in the context

of handling software errors.
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Handling Software Errors

Preventing Errors Responding to Errors

Testing Debugging

Locating Errors Fixing Errors

State-Altering Approaches
(FOCUS OF THIS THESIS)

Other Approaches

Tolerating/Avoiding Errors Identifying/Fixing Errors

Figure 1.1: Focus of this dissertation in the context of handling software errors.

1.3 Dissertation Overview

The goal of this dissertation is to show that dynamic state alteration techniques

for locating software errors can be both highly effective and efficient enough for practical

use in a debugging context. To this end, this dissertation develops two new dynamic state

alteration techniques for locating errors.

The first state alteration technique developed in this dissertation is called Value

Replacement. This technique ranks program statements according to how likely they are to

be faulty, thus assisting a developer in quickly locating a software error. Value Replacement

aggressively alters the execution state at different statement instances in a failing program

execution, by replacing the set of values involved in a statement instance with an alternate
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set of values. After each value replacement at a statement instance, the output of the exe-

cution is examined to determine whether it has changed to become correct. If so, then the

statement associated with the value replacement is likely to be associated with an error.

This technique performs aggressive state alteration because it considers multiple statement

instances in multiple failing runs, and performs value replacements with different alternate

value sets at each statement instance. A generalized version of Value Replacement is de-

scribed that can handle the case when multiple errors exist simultaneously in software. Since

a brute-force implementation of Value Replacement can be very time-consuming, techniques

are also developed for significantly improving the efficiency of Value Replacement.

The second state alteration technique developed in this dissertation is called Exe-

cution Suppression. This technique involves two state alteration ideas that work together to

isolate memory errors: suppression and variable re-ordering. Suppression identifies known

memory corruption that is revealed by a program crash, and omits (suppresses) the direct

and indirect effects of the associated statements during execution. This bypasses the initial

crash and gives any remaining memory corruption an opportunity to cause subsequent pro-

gram crashes. This process iterates until the first point of memory corruption is revealed,

which is assumed to be at or near to a memory error. The state alteration performed by sup-

pression is targeted at those statement instances that are directly or indirectly influenced by

known memory corruption during execution. Variable re-ordering is used to expose crashes

due to memory corruption in cases where crashes do not otherwise occur. This is achieved

by altering the relative ordering of particular variables in memory prior to execution. An

extended version of Execution Suppression is developed that can handle memory errors

in multithreaded programs, including data race errors. Finally, implementation issues for
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suppression, including hardware support, are considered.

Since locating a software error is only the first step in fixing the error, this disser-

tation develops a technique called BugFix that can automatically assist developers in fixing

program errors. The technique identifies and reports a prioritized list of suggestions for how

to modify a particular statement to fix an error in that statement. The technique is based

upon a machine-learning algorithm that incorporates information obtained from a history

of prior faulty statements and their associated fixes. This allows the technique to become

more effective over time. BugFix is inspired by the work done on Value Replacement.

The contributions of this dissertation are summarized as follows.

Value Replacement

• A new state alteration technique called Value Replacement is developed that can be

used to locate software errors. The technique replaces the set of values involved at

different statement instances in failing executions with alternate sets of values. Any

such replacements that cause the output of an execution to change to become correct,

are likely to be associated with a software error.

• Three generalized versions of Value Replacement are developed that can be used to

effectively locate multiple errors when they exist simultaneously in software. The

techniques iteratively present a ranked list of program statements to a developer to

find and fix one error at a time.

• The effectiveness of Value Replacement is evaluated in an empirical study. It is shown

that Value Replacement can achieve significantly better error location results on a set

of benchmark programs than a prior statistical technique called Tarantula [75]. Taran-
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tula had previously been shown [74] to be more effective than several other existing

techniques (including a state-altering technique [22]) on the same set of benchmark

programs.

• Several techniques are presented to improve the efficiency of Value Replacement. Some

of these techniques improve efficiency without any loss in effectiveness. Other tech-

niques may result in slightly diminished effectiveness, but can drastically improve the

efficiency of the technique. Experimental results regarding the efficiency of Value

Replacement are presented.

Execution Suppression

• A new state alteration technique called Execution Suppression is developed that can be

used to locate memory errors in software. The technique uses the notion of suppression

to omit (suppress) the effects of a known memory corruption during execution to

iteratively reveal more memory corruption, until the first point of memory corruption

can be identified. Memory corruption is revealed during execution by a program crash.

The technique uses the notion of variable re-ordering to expose program crashes due

to memory corruption, in cases where crashes may not otherwise occur.

• An extended version of Execution Suppression is developed that can be used to effec-

tively locate memory errors – including data race errors – in multithreaded programs.

The technique checks whether a data race is potentially harmful before reporting it

as the likely error that caused a program failure.

• The effectiveness of Execution Suppression is evaluated in an empirical study. It is
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shown that the technique is highly effective at precisely identifying the first point

of memory corruption in executions that fail due to memory errors, and that these

located points are always either at, or close to, the memory errors themselves.

• Implementation issues regarding suppression are described. A software-only imple-

mentation is discussed, and certain kinds of hardware support are also considered.

Experimental results comparing the overheads of these different implementations are

provided.

BugFix

• A machine learning technique called BugFix is developed that can be used to au-

tomatically assist developers in fixing program errors. The technique identifies and

reports a prioritized list of suggestions for how to modify a given suspicious statement

in order to correct a potential error in that statement.

• A detailed case study is described that illustrates the potential benefit of BugFix.

The rest of this dissertation is organized as depicted in Figure 1.2. The Value

Replacement state alteration technique is developed in the next chapter, and an empirical

evaluation of the effectiveness of the technique is presented. In Chapter 3, generalized

versions of Value Replacement for handling multiple simultaneous errors are developed, and

the effectiveness of the different versions are compared. In Chapter 4, efficiency issues related

to Value Replacement are described; techniques for improving efficiency are developed, and

experimental results regarding the efficiency of the technique are presented. The Execution

Suppression state alteration technique is developed in Chapter 5, and an empirical study

15



Chapter 1:
Introduction

Chapter 2:
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Chapter 3:
Value Replacement
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Chapter 9:
Related Work

Chapter 10:
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Figure 1.2: Organization of this dissertation.

that evaluates the technique is presented. In Chapter 6, an extended version of Execution

Suppression is developed that can handle multithreading errors such as data races, and an

empirical evaluation is presented. In Chapter 7, software and hardware implementation

issues for suppression are described, and the overheads associated with several different

implementations are compared. The BugFix technique for providing automated assistance

in fixing faulty program statements is developed in Chapter 8. Related work is presented

in Chapter 9. The conclusions of the dissertation are summarized in Chapter 10.
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Chapter 2

Locating Errors using Value

Replacement

In this chapter, an automated, dynamic state alteration technique called Value

Replacement is developed for locating software errors. This technique analyzes program

executions that fail due to incorrect output being produced. In such a failing execution,

Value Replacement alters the execution state at a single statement instance, one after the

other, by replacing the set of values involved at that statement instance with an alternate

(different) set of values. Execution then proceeds from that point under the altered state. At

the end of execution, the output is examined to determine whether or not it has changed to

become correct. If the output has become correct, then there is a chance that the statement

instance at which the value replacement was performed, is faulty. The Value Replacement

technique performs these value replacements at different statement instances in a failing

execution, one at a time, to rank program statements according to how likely they are to

be faulty. This is the essence of the Value Replacement technique.
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Definition 1 (Value Replacement).

Given a statement instance in the execution of a failing run, a value replacement involves

replacing the set of values involved at that statement instance with an alternate (different)

set of values. Execution then proceeds from that point under the altered state until the

execution terminates. Program state that is altered under a value replacement can consist

of global, local (stack), and heap values. Address values are not considered when performing

value replacements.

2.1 Computing Interesting Value Mapping Pairs

If a value replacement causes the execution of a failing run to become correct, this

fact is represented by an interesting value mapping pair (IVMP). An IVMP is associated

with a statement instance in a failing execution, and is composed of two sets of values:

the original set of values used at that statement instance, and the alternate set of values

that can be substituted in place of the original values in order to cause the execution to

produce correct output. An IVMP is a “value mapping pair” because it is composed of a

pair of value mappings (sets of values). An IVMP is “interesting” because it represents how

the state of a failing execution can be modified in order to cause the execution to become

passing (i.e., produce correct output).

Definition 2 (Interesting Value Mapping Pair).

An interesting value mapping pair (IVMP) is a pair of value mappings (“original”,

“alternate”) associated with a particular statement instance in a failing run, such that: (1)

“original” is the original set of values used by the failing run at that instance; and (2)
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“alternate” is an alternate (different) set of values such that if the values in “original” are

replaced by the values in “alternate” at that instance during execution of the failing run,

then the incorrect output of the failing run becomes correct.

To illustrate, Figure 2.1 shows three possible IVMPs for a given statement instance.

The statement in this case is an if condition in which the < operator is mistakenly used

instead of <=. The effect of this error is that whenever the operand values x and y

are identical, then the condition will erroneously evaluate to false when it should have

evaluated to true. As a result, all original sets of values in the IVMPs have identical

values for x and y, and the condition evaluating to false. However, all alternate sets of

values have different values for x and y that instead cause the condition to evaluate to the

expected outcome of true. These alternate values can cause a failing run to pass (assuming,

for instance, that neither x nor y are subsequently referenced and that there are no other

errors in the program).

The Value Replacement technique involves searching for IVMPs that can be asso-

ciated with a failing run. If a program statement is associated with at least one IVMP, then

this statement can be shown to affect the output of a failing run such that the incorrect

output becomes correct. The intuition is that these statements are more likely to be faulty,

as compared to other statements that are not associated with any IVMPs. As will be dis-

cussed in detail later, this IVMP information is used to rank program statements according

to how likely they are to be faulty.

Given a failing run, the task of searching for IVMPs is straightforward: simply

consider statement instances in the failing run one at a time, replacing the value mapping

used at each one with a different value mapping, then checking to see if the output of the
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// assume that ‘<’ should actually be ‘<=’
if (x < y)

Three Possible IVMPs:

ORIGINAL:  {x=1, y=1, branch=FALSE}
ALTERNATE: {x=3, y=5, branch=TRUE}

ORIGINAL:  {x=8, y=8, branch=FALSE}
ALTERNATE: {x=1, y=2, branch=TRUE}

ORIGINAL:  {x=3, y=3, branch=FALSE}
ALTERNATE: {x=12, y=82, branch=TRUE}

Suspicious Statement:

(1)

(2)

(3)

Figure 2.1: Example IVMPs at a statement.

run becomes corrected. If so, an IVMP has been found. Searching for IVMPs requires only

a failing test case execution with the corresponding incorrect and correct outputs, and some

set of alternate value mappings that can be applied at different statement instances in the

failing execution.

In general, the set of all possible alternate value mappings at a statement instance

can be theoretically infinite. For example, suppose the value 1 is used at a statement

instance. Then the set of all possible alternate values is the set of “all values except 1,”

which is, in theory, an infinite set (in practice, the size of the set would be limited by the

maximum number of values that can be stored in the associated storage location). It is

impractical to perform a value replacement for every possible set of alternate values. A

method is required to select a finite set of alternate mappings that can be applied at each

statement. This is accomplished by extracting the (finite) set of alternate mappings for

each statement from the execution traces of all test cases in an available test suite. This

includes the test case associated with the failing execution being analyzed, since different

instances of the current statement in the same execution, may involve different values. The

20



extracted set of alternate mappings is called the value profile.

Definition 3 (Value Profile).

A value profile for a program with respect to a test suite is a mapping of each program

statement to the set of all unique sets of values occurring at that statement during execution

of test cases in the test suite.

It is reasonable to assume the existence of a test suite for computing the value

profile since a failing test case is usually part of a larger suite of test cases. It has been

observed [67] that rich value profiles can result from only a few test cases, and yet the sizes

of value profiles increase logarithmically in general as the number of test cases in the suites

increase. This is because as information from more test cases is added to a value profile, the

sets of values used by a test case tend to match those already added to the value profile from

previous test cases. In the value profile, the alternate sets of values between passing and

failing executions are not distinguished. This is because alternate sets of values that may

result in IVMPs can potentially come from any test case executions, regardless of whether

the executions pass or fail.

The general algorithm for searching for IVMPs is given in Figure 2.2. Given a

test suite with a failing test case for some program, the first step constructs the value

profile using the traces of the test cases in the test suite. The second step searches for

IVMPs by replacing the value mapping at each statement instance in the failing execution

with every alternate value mapping from that statement as specified in the value profile.

The runtime of this algorithm is therefore bounded by O(t×m), where t is the number of

statement instances in the execution trace of the failing run, and m is the maximum number

of alternate mappings for any statement in the value profile. Although this algorithm shows
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input:
Faulty program P , and failing test case f (with actual and expected output)
from test suite T .

output:
Set of identified IVMPs for f .

algorithm SearchForIVMPs
begin
Step 1: [Compute value profile for P with respect to T ]
1: valProf := {};
2: for each test case t in T do
3: trace := trace of value mappings from execution of t;
4: augment valProf using the data in trace;

end for
Step 2: [Search for IVMPs in f ]
5: tracef := trace of value mappings from execution of f ;
6: for each statement instance i in tracef do
7: origMap := value mapping from tracef at i;
8: s := the statement associated with instance i;
9: for each altMap in valProf at s do
10: execute f while replacing origMap with altMap at i;
11: if output of f becomes correct then
12: output IVMP (origMap, altMap) at i;

end for
end for

end SearchForIVMPs

Figure 2.2: General algorithm for computing IVMPs in a failing run.

how to compute all possible IVMPs for a failing run (with respect to a particular test suite),

a method to more efficiently search for a much smaller subset of IVMPs that are still effective

for locating errors is developed in Chapter 4.

2.2 Examples of IVMPs Linked to Faulty Statements

It has been seen [67] that IVMPs occur precisely at faulty statements in many

cases. In cases where this is not possible, IVMPs can occur at statements that are just one

static dependence edge away from faulty statements. Because of this, IVMPs can be useful
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for locating errors. Several examples are now presented that show different ways in which

IVMPs can be closely linked to faulty statements. These examples are based on situations

that are encountered using the Siemens benchmark programs [64].

2.2.1 IVMPs at a Faulty Statement

IVMPs can be found precisely at a faulty statement when applying an alternate

set of values causes the faulty statement to define the correct value. Figure 2.3 shows a

code fragment and a test suite based on Siemens program schedule, faulty version v9. This

fragment of code involves a check on the number of input arguments (argc), so that the

program terminates with an error message if there are too few input arguments specified.

There is an off-by-1 error in this condition.

The effect of this off-by-1 error is that when argc is equal to 3, the program will

erroneously proceed as normal when it should have terminated early due to too few input

arguments. Thus, executing test case B in Figure 2.3 results in a failure. However, for test

case B, changing the value of argc at line 1 from 3 to 2 (which is the value used by test

case A) causes the output of the failing run to become correct. Therefore, this represents

an IVMP providing an important clue that at line 1 in the code fragment, the value of

variable argc should be decremented by 1 (or equivalently, the value of constant 3 should

be incremented by 1). In this case, the IVMP is located at precisely the faulty statement.

2.2.2 IVMPs Directly Linked to a Faulty Statement

In some cases, IVMPs may not be found precisely at the faulty statements. One

situation where this can happen is when there is an error in a constant assignment statement.
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argc := ...;
1: if (argc < 3) /* 3 should actually be 4 */
2: print (“Too few”);
3: else
4: print (“Okay”);

Test Input Actual Expected Result
Case Values Output Output

A argc = 2 Too few Too few PASS
B argc = 3 Okay Too few FAIL
C argc = 4 Okay Okay PASS

Figure 2.3: Code fragment based on schedule, faulty version v9.

A constant assignment will never be associated with an IVMP because there are no alternate

values at the assignment; every executed instance of a constant assignment will define the

same constant value. Instead, IVMPs can be found at the statements in which the defined

constant values are used. Figure 2.4 shows a code fragment and test suite based on Siemens

program tcas, faulty version v7. The code fragment shows an erroneously-defined constant

value at line 2, which is larger than it should be.

The effect is that when the array index AltLayV al is 1, the condition at line 5 will

erroneously evaluate to false instead of true due to the incorrect constant value defined

at that position. Thus, executing test case B in Figure 2.4 results in a failing run. However,

for test case B, changing the value of AltLayV al at line 5 from 1 to 0 (which is the value

used by test case A) causes the output of the failing run to become correct. Assuming the

value of index variable AltLayV al is correct, this IVMP provides the important clue that

the value stored at array index 1 is incorrect. Further, since accessing array index 0 (with

value 400) corrects the output of the failing run, this provides the hint that the value 550

at array index 1 should be changed to another value that is smaller. In this case, the IVMP
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AltLayV al := ...;
1: Pos RA Alt Thresh[0] = 400;
2: Pos RA Alt Thresh[1] = 550; /* Should be 500 */
3: Pos RA Alt Thresh[2] = 640;
4: Pos RA Alt Thresh[3] = 740;

...
5: if (Pos RA Alt Thresh[AltLayV al] < 525)
6: print (0);
7: else
8: print (1);

Test Input Actual Expected Result
Case Values Output Output

A AltLayV al = 0 0 0 PASS
B AltLayV al = 1 1 0 FAIL
C AltLayV al = 2 1 1 PASS

Figure 2.4: Code fragment based on tcas, faulty version v7.

is located at line 5, which is one data dependence edge away from the faulty statement at

line 2.

2.2.3 IVMPs in the Presence of Erroneously-Omitted Statements

Another situation in which IVMPs cannot be found at an erroneous statement

is when the error involves one or more missing statements. In these cases, IVMPs can

still be found at nearby statements that can compensate for the effects of the missing

code. Figure 2.5 shows an erroneous function and accompanying test suite inspired by

schedule2, faulty version v1. The purpose of this function is to return the inputted value

of x incremented by one, only when the value of y is positive (in bounds). If y is equal to

0, the function returns 0.

The missing code at line 1 is meant to check whether y is negative (out of bounds),

and if so, to return the original value of x without having incremented it. Since test case A
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int foo(int x, int y)
1: /* if (y < 0) return x; */
2: if (y == 0) return 0;
3: return x+ 1;

Test Input Actual Expected Result
Case Values Output Output

A (x,y) = (1,-1) 2 1 FAIL
B (x,y) = (2,2) 3 3 PASS
C (x,y) = (0,1) 1 1 PASS

Figure 2.5: Code fragment inspired by schedule2, faulty version v1.

has y with out-of-bounds value -1, then the function erroneously increments the value of x

in this case when it should not have done so. When the value of x at line 3 is changed from

1 to 0 (which is the value used by test case C), then the output becomes 1 and is correct.

This IVMP at line 3 provides the important clue that for the failing run corresponding to

test case A, the value for x actually should not have been incremented. This suggests that

a statement (the one at line 1) is missing in the above function that will prevent test case

A from incrementing the value of x.

2.2.4 IVMPs in the Presence of Extraneous Statements

Some program errors may involve extraneous statements. It turns out that IVMPs

often occur precisely at extraneous statements where they have the effect of “canceling out”

the effects of the extra code. For instance, an extraneous assignment statement to variable

x can have an IVMP that forces the original value of x to be defined, rather than the new

value for x that resulted from the extra code. An extraneous condition can have an IVMP

that alters the conditional outcome in such a way that the behavior is as if the condition is

not present.
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2.3 The Need to Consider Multiple Failing Runs

Although IVMPs often occur at or near faulty statements, a significant challenge

to using IVMPs for locating errors is that IVMPs can be found at other statements besides

those that are faulty. This is possible because there are often multiple statements exercised

during a failing execution whose values can be changed to cause the output to become

correct. There are two main causes for this, referred to as the dependence cause and the

compensation cause for IVMPs at multiple statements.

Dependence Cause. IVMPs may be found at different statements that are all

part of the same definition-use chain in a program. This is because if a statement S1 defining

a variable x has an IVMP associated with it, there’s a chance that another statement S2

that uses x will also have an IVMP associated with it. In such cases, changing the value

of x at either S1 or S2 can correct the program output, even though only one of the two

statements may contain an error.

Compensation Cause. This occurs when IVMPs are found at two different

statements that do not appear to be related to each other at all, yet they both influence the

output such that applying an alternate set of values at either statement can compensate for

the effects of the error on the program output, thereby making the output correct.

To address the challenge posed by the dependence and compensation causes for

IVMPs at multiple statements, the technique considers IVMPs computed from multiple

failing runs. A dependence chain with IVMPs in one failing run may not exist in another

failing run that may involve different dependence chains. Also, IVMPs that happen to

compensate for an error in one failing run are unlikely to compensate for the error in the

same way in another failing run. Considering multiple failing runs is particularly effective
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when the failing runs exercise very different paths in the program. Since all failing runs

must traverse the error (assuming a single error exists), the statements that are associated

with IVMPs in more failing runs have a greater likelihood of being faulty. Therefore,

IVMP statements are ranked using the intuition that statements associated with IVMPs

in more failing runs are more likely to be faulty, than statements that are associated with

IVMPs in fewer failing runs. Consider the example program with accompanying test suite

in Figure 2.6.

In this example program, there is an error at line 2 in which the addition operator

is mistakenly used instead of the subtraction operator. In cases where inputted value y is

0, the defined value of a at line 2 will be correct regardless of the error. As a result, only

test cases A and B in Figure 2.6 pass, while test cases C and D fail.

Consider failing test case C. An IVMP is identified at line 2 because changing the

values of x and y respectively from 1 and 1, to 0 and 0 (which are used by test case A),

will correct the program output. Also, an IVMP is identified at line 6 because changing the

used value of a from 2 to 0 (which is the value of a used by test case A), will correct the

output as well. Although IVMPs are found at lines 2 and 6, only one of these lines contains

the actual error. The IVMP at the other line is present due to the dependence cause for

IVMPs at multiple statements. To help distinguish between these two statements, another

failing run is considered.

When considering failing test case D, an IVMP is identified at line 2 because

changing x and y from 0 and 1, to -1 and 0 (used by test case B), will correct the output.

Also, an IVMP is identified at line 4 because changing the value of a here from 1 to -1 (the

value of a in test case B) will correct the output. Here, IVMPs are found at lines 2 and 4.
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1: /* let (x,y) be input values */
2: a := x+ y; /* should be x− y */
3: if (x < y)
4: write(a);
5: else
6: write(a + 1);

Test Input Actual Expected Result
Case Values Output Output

A (x,y) = (0,0) 1 1 PASS
B (x,y) = (-1,0) -1 -1 PASS
C (x,y) = (1,1) 3 1 FAIL
D (x,y) = (0,1) 1 -1 FAIL

Figure 2.6: Example to motivate the need to consider multiple failing runs.

Consider the statements with IVMPs in both failing runs C and D. Line 2 is

associated with IVMPs in both failing runs, whereas lines 4 and 6 are associated with

IVMPs in only one failing run each. Therefore, line 2 is more likely to be faulty than either

lines 4 or 6.

The example from Figure 2.6 shows the benefit of considering IVMPs from multiple

failing runs when ranking program statements using IVMPs.

2.4 Ranking Statements using IVMPs

Given a faulty program and a test suite containing multiple failing runs, the

statements exercised by the failing runs are ranked in decreasing order of suspiciousness

value (likelihood of being faulty). Let F be the set of all failing runs in an available test

suite, and let STMTIV MP (f) refer to the set of all program statements associated with at

least one IVMP identified from failing run f . Then the suspiciousness of a statement s,

suspiciousness(s), can be defined as the number of failing runs in which at least one IVMP
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was identified for that statement.

Definition 4 (Suspiciousness of a Statement s).

suspiciousness(s) := | {f : f ∈ F ∧ s ∈ STMTIV MP (f)} |

Note that this definition of suspiciousness considers only whether or not each

statement is associated with at least one IVMP. It does not account for the actual number

of IVMPs associated with each statement. This is because the number of IVMPs at any

given statement does not seem to be correlated with the likelihood of that statement being

faulty. Instead, the number of IVMPs at a statement depends upon the structure of the

statement and the number of alternate sets of values that are associated with that statement

in the value profile.

Given this definition of suspiciousness, there can be many ties since suspiciousness

values will always be whole integers in the range [0 · · · | F |], where | F | is the total number

of failing runs. Thus, to break ties, a prior technique for locating errors is used. This

technique, called Tarantula [75], also computes a suspiciousness value for each statement.

Tarantula is a statistical technique that relies on the following intuition: a statement is

more likely to contain an error if it is exercised more often by failing runs than by passing

runs. Specifically, the suspiciousnesstarantula of a statement s is defined [74] as follows.

Definition 5 (Suspiciousnesstarantula of a Statement s).

suspiciousnesstarantula(s) :=
failed(s)
totalFailed

passed(s)
totalPassed+ failed(s)

totalFailed

In this equation, the variables failed(s) and passed(s) respectively refer to the

number of failing and passing runs exercising statement s. The variables totalFailed and

totalPassed respectively refer to the total number of failing and passing runs (test cases).
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Tarantula was selected as the method of breaking ties for several reasons. First,

computing suspiciousness values is very quick because the technique considers only state-

ment coverage information. Second, Tarantula has been shown [74] to be more effective in

locating errors on the Siemens benchmarks [64] than either cause transitions [22] or near-

est neighbor [119]. Finally, Tarantula is complementary to Value Replacement: Tarantula

considers statement coverage information from failing and passing tests, whereas Value Re-

placement looks for statements that can be shown (through IVMPs) to be able to correct

the output of failing runs.

The overall Value Replacement technique for ranking program statements using

IVMPs is composed of two main steps. First, multiple failing runs are searched for IVMPs.

Second, statements are ranked in decreasing order of suspiciousness, with ties broken in

decreasing order of suspiciousnesstarantula.

Figure 2.7 shows the complete Value Replacement technique. First, the value

profile is constructed from the provided test suite (line 1). Next, for each failing test case in

the available test suite (line 2), the set of statement instances in the execution of that failing

run, with respect to the faulty program, is identified (line 3). At each statement instance

(line 4), the technique identifies the set of alternate value sets from the value profile that

are associated with the relevant statement (lines 5–6). Then, for each of these alternate

value sets, the value set is applied to the failing run (using a value replacement) to see

whether the output of the failing run changes to become correct; if so, then an IVMP is

identified and reported (lines 7–9). After identifying the IVMPs for all available failing

test case executions, the statements exercised by the failing runs are ranked and reported

(lines 10–15). Note that only those statements exercised by failing runs need to be ranked,
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input:
Faulty program P , and test suite T containing a set F of
failing runs.

output:
A ranked list of statements exercised by test cases in F .

algorithm ValueReplacementRank
begin
Step 1: [Compute IVMPs for each test case in F ]
1: valProf := construct value profile for P with respect to T ;
2: for each test case f ∈ F do
3: tracef := statement instances executed by f on P ;
4: for each statement instance i in tracef do
5: s := the statement associated with instance i;
6: altV alSet := alternate value sets for s in valProf ;
7: for each alternate value set v ∈ altV alSet do
8: if applying v at i corrects f ’s output then
9: report an IVMP found at statement s in f ;

endfor (each alternate value set)
endfor (each statement instance)

endfor (each failing run)
Step 2: [Use IVMPs to rank program statements]
10: stmts := set of statements exercised by test cases in F ;
11: for each statement s ∈ stmts do
12: compute suspiciousness(s);
13: compute suspiciousnesstarantula(s);

endfor
14: stmtsranked := sort stmts by decreasing suspiciousness,

break ties by decreasing suspiciousnesstarantula;
15: output stmtsranked;
end ValueReplacementRank

Figure 2.7: The Value Replacement technique.
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because only these statements can possibly contain an error that could have caused one or

more of the test cases to fail.

The runtime of this algorithm is bounded by the total number of program exe-

cutions required to perform value replacements to identify IVMPs. This is bounded by

O(f × t × m), where f is the number of failing runs, t is the size of the longest failing

execution trace, and m is the maximum number of alternate value sets to apply at any

given statement. In Chapter 4, a method to reduce this runtime is developed.

2.5 Effectiveness of Value Replacement

2.5.1 Setup for Experiments

Implementation Details

The implementation uses the Valgrind infrastructure for dynamic binary transla-

tion [55, 103]. This system provides a synthetic CPU in software and allows for dynamic bi-

nary instrumentation of an executing program. Valgrind comes with a set of tools to perform

tasks such as debugging and profiling, but new tools were created to record definition/use

tracing information and to perform value replacements. Valgrind allows for instrumenta-

tion at the granularity of machine code instructions, so the implementation records traces

in terms of instruction instances, and performs value replacements at the binary instruction

level. Instructions are then mapped back to their corresponding statements (source code

line numbers) when necessary to compute a ranked list of program statements. Note that

when an alternate set of values is applied at an instruction instance in the implementation,

the original values are actually overwritten in their respective memory or register locations.
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As a result, any subsequent uses of these locations in subsequent instructions will involve

the new values. In other words, the implementation ensures that the state of an executing

program is properly modified at the point of a value replacement during execution. Also,

in the experiments, several techniques are developed (described later in Chapter 4) that

significantly reduce the search space for identifying IVMPs, while still allowing for highly

effective results for locating errors in the benchmark programs. The experiments were run

on a Dell PowerEdge 1900 server with two Intel Xeon quad-core processors at 3.00 GHz,

and 16 GB of RAM.

Subject Programs and Test Suites

The Siemens suite programs [64] listed in Table 2.1 are used for the experiments.

From left to right, the columns in this table show the program name, the number of lines of

code, the number of provided faulty versions (each containing a seeded error), the average

number of test cases in each created test suite (in parentheses, the total number of test

cases available in the provided test case pools), and a brief description of the program

functionality. The Siemens suite programs, along with their corresponding faulty versions

and test case pools, were obtained from the Software-artifact Infrastructure Repository [58],

organized by researchers at the University of Nebraska – Lincoln.

All faulty versions contain seeded errors. These errors are related to computation

of non-address values, including errors such as operator and operand mutations, missing and

extraneous code, and constant value mutations. These types of computation-related errors

are distinct from memory errors, such as those that involve accessing incorrect memory

locations and assigning incorrect pointer values. As a result, the implementation ignores
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Program # Lines # Faulty Avg. Test Suite Program
Name of Code Versions (Pool) Sizes Description

tcas 138 41 17 (1608) altitude separation
totinfo 346 23 15 (1052) statistic computation
sched 299 9 20 (2650) priority scheduler
sched2 297 9 17 (2710) priority scheduler
ptok 402 7 17 (4130) lexical analyzer
ptok2 483 9 23 (4115) lexical analyzer
replace 516 31 29 (5542) pattern substituter

Table 2.1: The Siemens benchmark programs.

address values that are involved in each program execution.

Most faulty versions are seeded with a single error in a single statement, but

some faulty versions involve modifications to several statements. A few faulty versions were

excluded because they did not yield any failing test cases from the provided test case pools.

One of the faulty versions from program ptok2 was also excluded because the error in this

case caused execution to loop for a very long time, causing traces to be very long and the

Valgrind-based implementation to run out of memory.

The tcas program contains no loops and represents one big conditional check

spread across several functions; it takes as input a set of integer parameters and reports

one of three output values (or an error message if too few input arguments are specified).

Program totinfo reads a collection of numeric data tables as input and computes statistics

for each table as well as across all tables. Programs sched and sched2 are priority schedulers

for processes; these programs take as input a number of processes of various priorities as

well as a list of scheduling commands, and outputs the processes as they complete in priority

order. Programs ptok and ptok2 are lexical analyzers; they tokenize an inputted character

stream into a list of corresponding tokens. Program replace performs pattern substitution;

it takes as input a source pattern, destination pattern, and character stream, and replaces
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all instances of the source pattern in the character stream with the destination pattern.

For each faulty version of each program, a branch coverage adequate test suite

was created by selecting test cases from the provided test case pools. To do this, a test

case from the associated test case pool was randomly selected as long as it increased the

cumulative branch coverage of the test cases in the suite selected so far. This process was

repeated until the created test suite achieved the same level of branch coverage as the entire

test case pool. It was ensured that each created test suite contained at least 5 test cases

that failed and at least 5 test cases that passed (if available), to ensure a mix of failing and

successful test cases in each suite.

Techniques and Metric for Comparison

The Tarantula statistical technique for ranking program statements yields the best

results currently known for locating the errors of the Siemens benchmark programs [74, 75].

Thus, the main purpose of the experiments is to compare the error location effectiveness of

both the Value Replacement technique (called the “IVMP” technique in these experiments)

and the Tarantula technique.

1. IVMP technique. This is the Value Replacement technique from Figure 2.7 where

ranking is based upon the suspiciousness formula, and ties are broken using the

suspiciousnesstarantula formula from the Tarantula technique [74]. Here, all available

failing runs in the test suites are used to search for IVMPs (5 failing runs in most

cases).

2. Tarantula technique. This technique ranks statements using only the formula for

suspiciousnesstarantula, which has been shown [74] to be quite effective and provides
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the best overall error location results currently known using the Siemens benchmarks.

Here, the statement coverage information from all passing and failing runs in the test

suites are used to rank program statements.

For comparison with the above two main techniques, statements are also ranked

according to the following variations.

3. Tarantula-Pool technique. This is the same as the Tarantula technique, but here,

each test suite is considered to be the entire test case pool (rather than the much

smaller branch-adequate test suites used in the Tarantula technique). This is to

study whether Tarantula is more effective when larger test suites are used.

4. IVMP-1 technique. This is the same as the IVMP technique, but here, statements

are ranked by considering only one arbitrarily-chosen failing run when searching for

IVMPs in each test suite (rather than by considering all failing runs in the suite as

is done by the regular IVMP technique). This is to study the effectiveness of the

technique when multiple failing runs are not considered.

5. IVMP-2 technique. This is the same as the IVMP technique, but here, statements

are ranked by considering just two arbitrarily-chosen failing runs when searching for

IVMPs in each test suite.

In the experiments, only those program statements that are executed by failing

runs are ranked according to each of the above techniques. To evaluate the ranking results

for each technique, a score is assigned to each ranked list of statements. This score represents

the percentage of program statements executed by failing runs in the test suite that need
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not be examined, if statements are examined in rank order until a faulty statement is found.

Suppose that for a ranked list of statements L, the faulty statement occurs at rank r and

there are a total of totalStmtsEx total statements exercised by failing runs in the test suite.

Then the score of ranked statement list L can be defined as follows.

Definition 6 (Score of a Ranked Statement List L).

score(L) :=
totalStmtsEx−r
totalStmtsEx × 100%

A rank value r of 1 means that the faulty statement is the first statement in

the ranked list and there are no ties (the ideal situation). In the event that multiple

statements are tied for a particular rank, all tied statements are given a rank value equal

to the maximum rank value from among the tied statements. For example, if there are 5

statements tied for highest rank, then all 5 of them are given rank 5. This allows for the

conservative assumption that all tied statements would have to be examined before any

faulty statement within that tied set can be found. Intuitively, a higher score is preferable

because it means that more of the statements executed by failing runs can be ignored before

the faulty statement is found.

There are a few special considerations that are made in the experiments for certain

kinds of errors. First, errors in constant assignment statements (15 out of a total of 129

faulty versions) will not result in any IVMPs at precisely those constant assignments (as

previously explained in Section 2.2.2). However, IVMPs can be found at the statements

using those defined constants. Therefore, a constant assignment error is considered to be

located if one examines either the statement where it is defined (possible in the Tarantula

technique only), or else a statement where that constant value is used (possible in either the

Value Replacement or Tarantula techniques). Also, errors that involve omitted statements
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(16 out of 129 faulty versions) imply that the statements that are missing cannot actually

be located. However, statements can be located that are adjacent to the location where the

code is missing, including those statements that would have influenced or would have been

influenced by the missing code.

2.5.2 Effectiveness Results and Discussion

Experimental results are shown for each of the statement ranking techniques in

Tables 2.2 and 2.3, and Figure 2.8. Table 2.2 shows the number (and percentage) of faulty

versions with associated ranked lists of statements in each specified score range, for both the

basic IVMP and Tarantula ranking techniques. Table 2.3 shows the results for each of the

three techniques that are variations of the basic techniques. Figure 2.8 shows a graphical

view of this data. In the graph, the x-axis represents the lower bound of each score range,

and the y-axis represents the percentage of faulty versions achieving a score greater than

or equal to that lower bound.

In the results, percentages are computed with respect to 129 faulty versions from

among the Siemens programs. This presentation of data follows the convention of Jones et

al. [74]. However, whereas [74] computes scores with respect to the total number of pro-

gram statements, scores are computed here with respect to the total number of statements

exercised by failing test cases in the suite. This is because statements that are not exer-

cised by any failing test cases can be safely ignored when trying to locate the corresponding

errors.
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Score Tarantula Technique IVMP Technique

99-100% 5 (3.88%) 23 (17.83%)
90-99% 31 (24.03%) 66 (51.16%)
80-90% 24 (18.60%) 13 (10.08%)
70-80% 11 (8.53%) 9 (6.98%)
60-70% 14 (10.85%) 2 (1.55%)
50-60% 13 (10.08%) 2 (1.55%)
40-50% 3 (2.33%) 4 (3.10%)
30-40% 5 (3.88%) 4 (3.10%)
20-30% 5 (3.88%) 2 (1.55%)
10-20% 4 (3.10%) 1 (0.78%)
0-10% 14 (10.85%) 3 (2.33%)

Table 2.2: Number/score of ranked statement lists for basic techniques.

Score Tarantula-Pool IVMP-1 Technique IVMP-2 Technique
Technique

99-100% 7 (5.43%) 18 (13.95%) 21 (16.28%)
90-99% 41 (31.78%) 57 (44.19%) 63 (48.84%)
80-90% 22 (17.05%) 21 (16.28%) 15 (11.63%)
70-80% 7 (5.43%) 6 (4.65%) 9 (6.98%)
60-70% 16 (12.40%) 10 (7.75%) 4 (3.10%)
50-60% 11 (8.53%) 2 (1.55%) 2 (1.55%)
40-50% 3 (2.33%) 4 (3.10%) 4 (3.10%)
30-40% 5 (3.88%) 4 (3.10%) 4 (3.10%)
20-30% 3 (2.33%) 2 (1.55%) 2 (1.55%)
10-20% 6 (4.65%) 2 (1.55%) 2 (1.55%)
0-10% 8 (6.20%) 3 (2.33%) 3 (2.33%)

Table 2.3: Number/score of ranked statement lists for variation techniques.

IVMP Technique versus Tarantula Technique

The data shows that the IVMP technique overall performs much better than the

Tarantula technique. Almost 18% of the faulty versions analyzed had a score of 99% or

higher with the IVMP technique, whereas the same was true for only about 4% of the faulty

versions using Tarantula. Similarly, almost 70% of faulty versions had a score of 90% or

higher using the IVMP technique, while the same was true for about 28% of the faulty

versions using Tarantula. Among all 129 faulty versions, the IVMP technique was able to
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Figure 2.8: Comparison of statement ranking techniques.

uniquely identify the faulty statement (assign it rank 1) in 39 cases. Tarantula was able

to do so in only 5 cases. Note that even though the IVMP technique was able to uniquely

identify the faulty statement in 39 cases, only 23 cases yielded scores of 99% or more. This

is because in the tcas program, the number of statements exercised by failing test cases

was small enough that even a rank of 1 would lead to a score less than 99%.

Out of 129 faulty versions in the experiments, there were only 16 cases where

the IVMP technique assigned a lower rank to a faulty statement than Tarantula. These

cases occurred where IVMPs were found at non-faulty statements in more failing runs than

at faulty statements, giving the non-faulty statements higher rank. However, in many

of these cases, the non-faulty statements with higher rank were still near to the faulty

statements via static dependence edges (recall the dependence cause for IVMPs at multiple

statements described previously in Section 2.3). In 18 faulty versions, the IVMP technique
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and Tarantula gave the faulty statement identical ranks. In some of these cases, this was due

to finding no IVMPs in any failing runs, causing suspiciousness values to be identical and

ranking to be done solely by breaking ties using suspiciousnesstarantula. In the remainder

of the cases (95 of them), the IVMP technique gave the faulty statement higher rank than

Tarantula, due to IVMPs being found at the faulty statement.

Comparison with Other Variation Techniques

The results for the Tarantula-Pool technique indicate that fault localization is

indeed more effective for Tarantula when larger test suites are used. However, Tarantula-

Pool is still considerably less effective overall on the Siemens benchmarks than the IVMP

technique. In fact, Tarantula-Pool is also considerably less effective than either the IVMP-

1 or the IVMP-2 technique, which both consider fewer failing test cases when searching

for IVMPs than the regular IVMP technique. However, as might be expected, IVMP-2 is

slightly less effective overall than the IVMP technique, while the IVMP-1 technique is also

slightly less effective than the IVMP-2 technique. Thus, the IVMP technique is generally

more effective as more failing runs are considered, but even when considering just a single

failing run, the IVMP-1 technique is still more effective than the Tarantula-Pool technique

that considers statistical coverage information taken from very large test suites.

Other Observations

Program totinfo is an unusual case among the Siemens programs. For this partic-

ular benchmark program, only 8 faulty versions resulted in the IVMP technique performing

better than Tarantula, while 5 cases had the IVMP technique performing worse, and 10
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cases had both techniques performing equally well. These results were generally not as

good as the results from the other Siemens programs, in which the IVMP technique usually

performed much better as compared to Tarantula. It was discovered that for totinfo,

relatively few IVMPs were found as compared to the other Siemens programs. This is due

to the fact that totinfo performs floating-point computations and outputs floating-point

values. Thus, it is very difficult to cause output in totinfo to change to become precisely

correct when value replacements are performed.

Another observation is that the sizes of the value profiles for each faulty version

seem to increase logarithmically as the number of test cases in the suites increase. To study

this in more detail, value profiles were constructed for five arbitrarily-chosen faulty versions

from each Siemens program using test cases from the available test case pools. The results

for each faulty version in a subject program were then averaged and plotted as shown in

Figure 2.9.

As can be seen in the figure, the curves for most benchmark programs become

nearly horizontal over time as more test cases are considered in the value profile. One

notable exception is for program totinfo, which has a curve that increases much higher

than that of all the other programs. This is because totinfo uses many floating-point

values, which are highly likely to be different from test case to test case.

2.5.3 Experiments with Larger Benchmark Programs

Some additional experiments were conducted to see whether Value Replacement

may still yield effective results on larger subject programs. The analyzed programs are

described in Table 2.4, and were obtained from the Software-artifact Infrastructure Repos-
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Figure 2.9: Increase in value profile size as suite sizes increase.

itory [58]. One error was selected from each program to locate. Program space contains a

known error in which a condition (error ! = 0) should instead be (error == 17). The grep

program contains a known error in which using parameters −i and −o simultaneously may

lead to incorrect output. Programs sed, flex, and gzip contain seeded errors [58] of the

following respective types: a “-1” term is missing from an expression; command-line pa-

rameters are incorrectly processed; and input files with improper file names are incorrectly

processed.

These experiments followed a similar setup as for the Siemens benchmark pro-

Program Name # Lines of Code Error Type Program Description

space 6.2 K real ADL interpreter
grep-2.5 5.8 K real pattern matcher
sed-4.1.5 13.0 K seeded stream editor
flex-2.5.1 10.0 K seeded lexical analyzer generator
gzip-1.3 5.2 K seeded file compressor

Table 2.4: Larger benchmark programs.
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Program Name Faulty Statement Rank
Tarantula technique IVMP technique

space 106 5
grep-2.5 213 3
sed-4.1.5 35 3
flex-2.5.1 45 1
gzip-1.3 96 1

Table 2.5: Experimental results using the larger benchmark programs.

grams, except here, branch-coverage adequate test suites were not created since the pro-

grams are much larger. Instead, each suite consists of a few failing runs and several (5 – 6)

passing runs. The experimental results using these larger programs are shown in Table 2.5.

For each program, the rank of the faulty statement is shown for each of the Tarantula and

IVMP techniques. From these results, it can be seen that the IVMP technique is able to take

advantage of IVMPs to demonstrate significant improvements in error location effectiveness

over Tarantula.

2.6 Summary

In this chapter, the state alteration technique called Value Replacement was de-

veloped for assisting in the task of locating software errors. This technique repeatedly alters

the state of failing executions by performing value replacements to identify IVMPs. These

IVMPs show how values used at particular program statements can be altered so that fail-

ing runs instead produce correct output. Using these IVMPs, executed statements can be

ranked according to their likelihood of being faulty. Experimental results show that for the

benchmark programs studied, Value Replacement can produce ranked lists of statements

that are generally very effective at quickly leading a developer to a faulty statement. More-
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over, the technique was seen to be more effective than a prior error location technique that

had yielded the best results previously known for the benchmark programs in the study.

However, there are several questions that need to be answered regarding Value Replacement.

How to handle multiple simultaneous errors? Some of the Siemens faulty

versions contain multiple errors. In these cases, Value Replacement was still able to find

IVMPs for at least one of the errors and achieve statement ranking results that locate the

error. However, in general the presence of multiple simultaneous errors can cause test cases

to fail due to different errors (or different combinations of errors). Because of the way

suspiciousness values are computed in the Value Replacement technique, this can lead to

decreased relative suspiciousness of the statements that are truly faulty, thereby diminishing

the effectiveness of the technique. In the next chapter, techniques are developed that

generalize Value Replacement to handle the situation of multiple simultaneous errors.

How to improve scalability? Although Value Replacement was shown to be

considerably more effective than Tarantula in locating the errors from the Siemens bench-

mark programs, it is also true that Value Replacement requires considerably more computa-

tion time than Tarantula. One of the major questions about Value Replacement is whether

it can scale to large programs in general. Note that Value Replacement is not limited by

program size, but rather, by execution trace length. Recall that the search for IVMPs oc-

curs at every statement instance in a failing run using different sets of alternate values. For

very long failing runs, Value Replacement cannot scale unless techniques are used to limit

the search space for IVMPs. In Chapter 4, techniques are developed to drastically reduce

the IVMP search space and improve the efficiency of implementation, while retaining the

effectiveness of Value Replacement in locating errors.
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How to handle address values and memory errors? In the basic value re-

placement technique, address values are ignored because the Siemens benchmark programs

do not involve memory-related errors, and so errors can still be effectively located in the

experiments by ignoring address values. It can be observed, however, that handling ad-

dress values would require special consideration in Value Replacement. This is because

address values from different test case executions cannot simply be blindly substituted into

a particular failing run when performing value replacements, because address values are

execution-specific and have no meaning outside of a given execution. As a result, with-

out further enhancements, Value Replacement may have limited effectiveness in locating

memory errors. One approach would be to enhance the Value Replacement algorithm to

properly consider address values. However, memory errors are unique in that they often

involve memory corruption, which can lead to program crashes. Chapter 5 instead develops

a different state alteration technique called Execution Suppression that focuses on isolating

memory corruption to locate memory errors. Execution Suppression is more efficient for

locating memory errors than Value Replacement, because while Value Replacement aggres-

sively performs many blind state alterations to search for IVMPs, Execution Suppression

performs targeted state alteration using information that is uniquely revealed by memory

failures.
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Chapter 3

Value Replacement and Multiple

Simultaneous Errors

In the previous chapter, the Value Replacement state alteration technique for

locating software errors was developed. This technique uses multiple failing runs in order

to rank program statements according to likelihood of being faulty. However, the technique

implicitly assumes that all considered failing runs fail due to the same error. In the event

that multiple simultaneous errors are present in software, different failing runs may fail

due to different errors, or different combinations of errors. This can decrease the perceived

suspiciousness of the faulty statements as compared to the non-faulty statements, thereby

making it more difficult to isolate the faulty statements and decreasing the effectiveness of

the technique for locating errors.

This chapter shows how to generalize the Value Replacement technique into an

iterative technique that can effectively handle the situation when multiple errors are present

in software [69]. The goal is to present a ranked list of program statements to the developer
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to isolate each individual error; each time a located error is fixed, then another ranked list

is presented to the developer as long as at least one test case still fails. Three variations of

this idea are developed that involve different techniques for computing a new ranked list of

statements on each iteration.

• First, a Minimal-Computation technique is developed in which Value Replacement

is applied only once to rank program statements, and the search for all errors is

performed within the single ranked list (i.e., the same ranked list is reported to the

developer on each iteration). This simple technique has relatively low cost as compared

to the other techniques that will be described, because it performs Value Replacement

only once to locate all errors. However, the effectiveness of this technique is relatively

low because only a single ranked list is used to locate all errors; the ranked list is

never updated to account for revised dynamic information that results from fixing an

error.

• Second, a Full-Recomputation technique is developed in which Value Replacement is

iteratively invoked to find and fix one error at a time. This technique is highly effective

as compared to the other techniques, because it computes a new ranked list to locate

each error. Each ranked list is computed using the updated dynamic information that

results from fixing the previously-located error. However, this technique also incurs

relatively high cost, because the full Value Replacement technique must be invoked

on each iteration.

• Finally, a middle-ground, Partial-Recomputation technique is developed in which only

a part of the required computation for Value Replacement is performed on each itera-
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tion to find and fix an error. This technique incurs less cost than Full-Recomputation,

while retaining much of its effectiveness.

3.1 Techniques to Locate Multiple Errors

Figure 3.1 depicts an overview of the core Value Replacement technique (A) that

is used to locate single errors, and three variations of the technique (B–D) that can be

used to iteratively locate multiple errors. In the core technique (Figure 3.1 (A)), a faulty

program and associated test suite are passed as input to the Value Replacement algorithm

(described in Chapter 2), which computes a ranked list of program statements that can be

examined by a developer in order to find and fix the (single) error. To handle multiple errors,

Figure 3.1 (B) illustrates the Minimal-Computation technique in which Value Replacement

is performed only once, and the developer uses the single ranked list of statements to search

for faulty statements as needed. Figure 3.1 (C) shows the opposite extreme: the Full-

Recomputation technique in which Value Replacement is invoked to allow a developer to

find and fix an error, then this process is fully repeated on the new version of the program

as necessary until all errors are fixed. Figure 3.1 (D) illustrates the Partial-Recomputation

technique that performs only partial Value Replacement computation on each iteration.

The three techniques (B–D) for handling multiple simultaneous errors are now described in

detail.

3.1.1 Minimal-Computation Technique

The algorithm for the Minimal-Computation technique is presented in Figure 3.2.

The technique takes as input a faulty program and a corresponding set of test cases contain-
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Single-Fault Approach

Value Replacement

Faulty program
and test suite

Developer
Find/Fix Fault

Ranked list of program
statements

Done!

Multiple-Fault, Minimal-Computation Approach

Value Replacement

Faulty program
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Developer
Find/Fix Fault

Ranked list of program
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Done!Failing Run Remains? NoYes

(A) (B)

Multi-Fault, Full-Recomputation App.
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(Full)
Value Replacement

Faulty program
and test suite

Developer
Find/Fix Fault

Ranked list of program
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Done!Failing Run Remains? NoYes

Partial
Value Replacement

Faulty program
and test suite

Developer
Find/Fix Fault

Ranked list of program
statements

Done!Failing Run Remains? NoYes

Figure 3.1: Single-fault core technique (A) and multi-fault generalized techniques (B-D).

ing at least one failing run. First, the Value Replacement technique is executed to obtain

a ranked list of program statements (line 1). Then, as long as a failing run exists in the

test suite with respect to the current version of the program (line 3), the ranked list is

used to locate an error in the program (line 4), which is then fixed (line 5), resulting in a

new version of the program with the error removed. The actual identification and fixing

of a faulty statement is done manually by a developer. If at least one run still fails on the

new version of the program, then the (same) ranked list is consulted again to find and fix

another error (back to line 3). Under this technique, the computation time is expected to

be comparable to that of the single-fault core Value Replacement technique, since a ranked

list of program statements need be computed only once. However, the drawback is that the
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input:
Faulty program P , and test suite T containing at least one failing run.

output:
Program P ′ such that no tests in T fail.

algorithm MinimalComputationTechnique
begin
1: rankedList := Run Value Replacement(P , T );
2: P ′ := P ;
3: while ∃ a failing run in T with respect to P ′ do
4: E := next error located using rankedList;
5: P ′ := version of P after fixing E;

endwhile
end MinimalComputationTechnique

Figure 3.2: Minimal-Computation technique to locate multiple errors.

average effectiveness to locate each individual error may be reduced, since the ranked list

is never updated as the program is modified and errors are corrected over time.

3.1.2 Full-Recomputation Technique

The algorithm for the Full-Recomputation technique is presented in Figure 3.3.

This technique is identical to the Minimal-Computation technique, except the invocation

of the Value Replacement technique has been moved to inside the main loop (line 1 in

Figure 3.2 is now line 3 in Figure 3.3). The effect is that a revised ranked list is computed

on each iteration when an error is found and fixed. This ensures that the technique has

up-to-date data that can be used to compute a more effective ranking on each iteration.

However, the timing requirements increase significantly because Value Replacement must

be invoked on every iteration to search for new IVMPs.
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input:
Faulty program P , and test suite T containing at least one failing run.

output:
Program P ′ such that no tests in T fail.

algorithm FullRecomputationTechnique
begin
1: P ′ := P ;
2: while ∃ a failing run in T with respect to P ′ do
3: rankedList := Run Value Replacement(P ′, T );
4: E := next error located using rankedList;
5: P ′ := version of P after fixing E;

endwhile
end FullRecomputationTechnique

Figure 3.3: Full-Recomputation Technique to locate multiple errors.

3.1.3 Partial-Recomputation Technique

The algorithm for the Partial-Recomputation technique is presented in Figure 3.4.

This technique consists of two main steps. In the first step, a set of ranked lists is computed,

and these lists are used to find and fix a first error in the program. In the second step,

the technique iteratively performs partial Value Replacement re-computation, updates any

affected ranked lists, and then uses the revised ranked lists to find and fix a next error.

Step 1: Initialize ranked lists and locate the first error (lines 1-10). In this

step, the approach first collects together all statements exercised by failing runs to consider

for ranking purposes (line 2). Next, for each of these statements s, a ranked list of program

statements is computed using Value Replacement by searching for IVMPs in only those

failing runs exercising s (lines 3-6). The intuition for this step is as follows: it is known

that at least one of the statements s is faulty, and maximum suspiciousness is most likely to

be achieved for such a statement if statements are ranked based on the IVMP information

of only those failing runs which exercise s. Since the faulty statements are not known, a
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input:
Faulty program P , and test suite T containing at least one failing run.

output:
Program P ′ such that no tests in T fail.

algorithm PartialRecomputationTechnique
begin
Step 1: [Compute ranked lists and find/fix a first error]
1: RankedLists := {};
2: Stmtfail := statements exercised by failing runs in T ;
3: for each statement s ∈ Stmtfail do
4: F := failing runs in T that do not exercise s;
5: rankList := Run Value Replacement(P , T − F );
6: RankedLists := RankedLists ∪ {rankList};

endfor
7: selectedList := removeFirstList(RankedLists);
8: E := next error located using selectedList;
9: faultyStmt := the statement containing E;
10: P ′ := version of P after fixing E;
Step 2: [Iteratively revise ranked lists and find/fix remaining errors]
11: while ∃ a failing run in T with respect to P ′ do
12: Fail := failing runs in T exercising faultyStmt with respect to P ′;
13: compute IVMPs for each run in Fail with respect to P ′;
14: update any affected lists in RankedLists;
15: selectedList := removeNextList(RankedLists);
16: E := next error located using selectedList;
17: faultyStmt := the statement containing E;
18: P ′ := version of P after fixing E;

endwhile
end PartialRecomputationTechnique

Figure 3.4: Partial-Recomputation technique to locate multiple errors.

ranked list is computed for each considered statement. Note that overall, this step requires

a search for IVMPs in each failing run at most once; the IVMP information of a failing run

can simply be looked up when needed, if a search for IVMPs was previously conducted in

that run.

Next, from among the computed set of ranked lists, the technique selects and

removes one of the lists to be used to locate the first error (line 7). This is determined
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by choosing the list in which the statement at the front of the ranked list has highest

suspiciousness value. In the event of a tie among ranked lists, then subsequent statements

in the tied lists are examined as necessary to break the tie. In this way, the selected list

is most likely to quickly lead a developer to the first error. Thus, the developer uses the

selected ranked list to find the first error (lines 8-9) and fix it (line 10).

Step 2: Iteratively revise ranked lists and locate the remaining errors

(lines 11-18). The second step iterates as long as a failing run still exists (line 11). First, in

the new version of the program, the technique identifies the set of failing runs exercising the

faulty statement that was just fixed (line 12). For only these failing runs (not for all failing

runs), IVMPs are re-computed (line 13). Note that this step only searches for IVMPs in

a subset of failing runs; it does not actually compute suspiciousness values and a ranked

list as is done in the call to Run Value Replacement at line 5. Importantly, note that this

step will not necessarily re-compute IVMPs for all runs that still fail (like what is done in

the Full-Recomputation technique). This is how Partial-Recomputation can incur less total

cost than Full-Recomputation.

Based on the updated IVMP information, any affected ranked lists from the set of

maintained lists are updated so that their rankings may change (line 14). A ranked list is

considered affected if it was computed using one of the failing runs for which new IVMPs

were just identified.

Next, using the revised set of ranked lists, the next one to use to locate the next

error is selected and removed (line 15). Note that the selection criterion here is different

than in line 7. In this case, the technique selects the ranked list for which the statements

near the front of the list are the most different from those statements near the fronts of the
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previously-selected lists. This is computed by setting a difference threshold value D, and

then scanning all ranked lists in order in parallel, selecting the first ranked list that achieves

D different statements as compared to those statements in the previously-selected lists (a

value of D = 10 was used in the experiments since that led to effective error location results

on the benchmark programs). The intuition for this criterion is that a different error is

likely to have a different set of statements with high suspiciousness, than for those errors

already found and fixed. The selected list is finally used to locate (lines 16-17) and fix (line

18) the next error. This process then iterates again if any failing runs still remain (back to

line 12).

Example

The Partial-Recomputation technique is demonstrated with an example. Fig-

ure 3.5 shows an example control-flow graph of a program containing 5 statements, two

of which happen to be faulty. Suppose a test suite is available that contains 3 failing runs

as depicted in the figure, with associated execution traces and sets of statements containing

IVMPs as shown. In this case, two of the runs fail due to faulty statement 2, and one

of them fails due to faulty statement 4. In the first step, the set of statements exercised

by failing runs is identified (all statements in this case). Next, a ranked list of program

statements is computed and associated with each one of these statements, by ordering state-

ments according to suspiciousness value. Recall that the suspiciousness value is the number

of (considered) failing runs in which the associated statement has an IVMP. The 5 computed

ranked lists for the example are shown in Figure 3.5. Each of these ranked lists is computed

using the IVMP information from only those failing runs exercising the statement that is
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23, 52, 11, 41, 30
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21, 41, 51, 10, 30

23, 52, 11, 41, 30

[based on runs 1, 2, 3]

[based on runs 1, 2, 3]

[based on runs 1, 2]

[based on run 3]

[based on runs 1, 2, 3]

Figure 3.5: Abstract example for the Partial-Recomputation technique, part 1 of 2.

associated with the ranked list. For example, the ranked list associated with statement 4 is

computed using only run 3 (since only run 3 exercises statement 4).

Next, the technique identifies the first ranked list (from among the 5 computed

lists) to remove and report to a developer. This is the one with highest suspiciousness values

at the front of the list. Ranked lists 1, 2, and 5 have the first ranked element with highest

suspiciousness. However, since these lists happen to be identical (no ties can be broken), an

arbitrary choice is made from these lists. Suppose list 1 is selected, removed, and reported

to the developer. Then faulty statement 2 is immediately identified because it occurs at the

front of the selected list. The developer can then fix this faulty statement.

Figure 3.6 shows how the situation might look after faulty statement 2 is fixed.

In this case, statement 4 is the only remaining faulty statement. Assume that run 3 is

the only run that still fails. Further assume that on the new version of the program, run

3 is associated with an IVMP at only statement 4. Next, the second main step of the
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[based on runs 1, 2, 3 (3 was updated)]

[no updates needed here]

[based on run 3 (updated)]

[based on runs 1, 2, 3 (3 was updated)]

Figure 3.6: Abstract example for the Partial-Recomputation technique, part 2 of 2.

Partial-Recomputation technique is executed. First, the approach identifies the subset of

newly-failing runs that need to be re-searched for IVMPs. In the example, failing run 3

exercises statement 2 (the most recently-fixed statement), so run 3 must be re-searched

for IVMPs. In practice, not all failing runs may need to be re-searched for IVMPs in this

step. Next, from among the remaining ranked lists, only lists 2, 4, and 5 are affected by

the new IVMPs and need to be updated (list 3 was not originally computed using run 3).

In the original version of the program, run 3 was associated with IVMPs at statements 2,

4, and 5. However, in the new version of the program (with corrected statement 2), run 3

is associated with IVMPs at only statement 4. Thus, ranked lists 2, 4, and 5 are updated

to reflect a decrease of 1 in the suspiciousness values for statements 2 and 5 (shown in

Figure 3.6). Now, the next ranked list to remove and report to the developer is selected.

In this case, the technique selects the ranked list from among those remaining, that is most

different from the first-selected ranked list, in terms of the elements near the fronts of the

lists. Since the first-selected ranked list had started with statement 2, then from among the

remaining lists, list 4 is the most different because it is the only remaining list that does
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not also start with statement 2. Thus, ranked list 4 is selected. This allows the developer

to immediately fix faulty statement 4 (since it appears at the front of the ranked list). At

this point, no failing runs remain since all errors are fixed, and the technique terminates.

Overall in this example, two ranked lists were selected and reported to the developer, each

list accurately identifying one of the errors with highest suspiciousness.

3.2 Effectiveness Comparison of Techniques

3.2.1 Setup for Experiments

Implementation Details

As described in Section 2.5.1, the implementation of the core Value Replacement

error location technique is based on the Valgrind infrastructure [55, 103] that allows for

dynamic binary translation of an executing program. On top of this, Java was used to im-

plement the three variation techniques that handle multiple simultaneous errors. Also, the

experiments involve several implementation techniques that significantly improve the effi-

ciency of searching for IVMPs, without actually reducing the search space; these efficiency

improvements will be described in detail in Chapter 4. The experiments were conducted

using a Dell PowerEdge 1900 server with two Intel Xeon quad-core processors at 3.00 GHz,

with 16 GB of RAM.

Subject Programs and Test Suites

Like in the previous chapter, the experimental subjects are based on the Siemens

benchmark programs and test cases [64] described previously in Table 2.1. Recall that each
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Siemens benchmark program is associated with a set of faulty versions – each containing a

seeded error – and a pool of test cases.

For the experiments, a set of programs containing multiple errors is required. To

create a set of multiple-error faulty versions for each subject program, errors were randomly

selected from among the available seeded errors to create faulty versions that each contain

5 seeded errors. It was ensured that each error in a multiple-error version is contained in a

different statement. In total, up to 20 unique 5-error faulty versions for each subject program

were created, as permitted by the set of available errors. Only 2 and 11 such versions could

be created for programs ptok and ptok2 respectively, due to a limited number of available

errors, some of which conflicted by being located in the same statement and could not be

incorporated into the same faulty version.

For each multiple-error version of each subject program, a test suite was created

by selecting tests randomly from the associated test case pool until the following criteria

were achieved: (1) the suite is statement-coverage adequate (achieving the same statement

coverage as the test case pool); (2) for each faulty statement present in the multiple-error

version, there exists a failing run in the suite exercising that statement; and (3) there are

at least 5 failing runs and 5 passing runs in the suite (to ensure a good mix of failing and

passing runs). Table 3.1 shows the number of multiple-error faulty versions created for each

subject program, as well as the average test suite size associated with each one.

Techniques and Metric for Comparison

The experiments compare the effectiveness for locating errors using the following

techniques that generalize Value Replacement and handle multiple simultaneous errors.
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Program Name # 5-Error Avg. Test Suite Size
Faulty Versions (# Failing Runs/# Passing Runs)

tcas 20 11 (5 / 6)
totinfo 20 22 (10 / 12)
sched 20 29 (10 / 19)
sched2 20 30 (9 / 21)
ptok 2 32 (8 / 24)
ptok2 11 29 (5 / 24)
replace 20 38 (9 / 29)

Table 3.1: Multiple-error experimental subjects.

1. Minimal-Computation technique (MIN). Under this technique, the core Value

Replacement technique is applied only once to obtain a single ranked list of program

statements, which is then consulted as necessary until all errors are located.

2. Full-Recomputation technique (FULL). Under this technique, the original Value

Replacement technique is iteratively applied to locate and fix each error, one at a time.

3. Partial-Recomputation technique (PARTIAL). Under this technique, multiple

ranked lists of program statements are computed and iteratively revised through par-

tial recomputation of IVMPs (from only a subset of failing runs) to locate and fix

each error.

4. The ideal situation (IDEAL). The “ideal” situation for finding each error is con-

sidered to be the case where that error exists in isolation in a program (with no other

errors present). This situation is most likely to lead to the best location results for

each error, when using Value Replacement. These “ideal” single-error results are used

to compare against the above three techniques that handle multiple errors. Note that

this definition of “ideal” is given with respect to the Value Replacement technique

locating single errors that are present in isolation. This definition is different than the
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more general notion of “ideal” results for error location, in which a faulty statement

is uniquely given highest suspiciousness.

To compare the ranking results of each technique, a score is assigned to each ranked

list of statements as was previously described in Section 2.5.1.

3.2.2 Effectiveness Results and Discussion

Table 3.2 shows the average score values achieved for each located error (from

among all individual errors contained within the multiple-error versions associated with

each benchmark program). As shown in the table, the FULL approach is able to achieve

average score values that are very close to the IDEAL values in most cases (within one or

two percentage points). The exceptions are programs sched2, ptok, and ptok2, in which

the FULL approach achieves average results that are about 5% – 6% less than the IDEAL

results. It was found that for these three programs that contain relatively few distinct

errors (shown as the number of faulty versions in Table 2.1), there were a small number

of particular errors in which IVMPs could not be found at the faulty statements, thus

resulting in poor ranking results. Since these “problem” errors were repeatedly selected

from a relatively small set of total errors, they were present in relatively many of the

multiple-error faulty versions for these programs, negatively affecting the average results.

In all cases, the PARTIAL approach is able to achieve average score values that are

within 5% of the FULL approach. In some cases, the difference is quite small. For example,

in the replace program, the FULL approach has an average score of 86.98%, while the

PARTIAL approach yields almost the same average score: 86.50%. For ptok2, FULL has

an average score of 84.37% while PARTIAL has 84.13%. This suggests that PARTIAL may
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Program Name Average Score (%)
IDEAL FULL PARTIAL MIN

tcas 83.64 82.87 77.98 68.82
totinfo 64.45 63.14 60.29 52.78
sched 88.56 88.28 85.13 84.72
sched2 64.75 58.15 56.81 56.20
ptok 76.28 70.14 65.55 59.00
ptok2 89.62 84.37 84.13 80.69
replace 88.17 86.98 86.50 76.27

Table 3.2: Average score achieved for each located error using each technique.

be effective at approximating the effectiveness of FULL in certain cases.

The MIN approach has the lowest average scores in all cases. When compared

to the PARTIAL approach, the MIN results are still sometimes considerably lower. For

example, in program tcas, the MIN approach yields an average score of 68.82%, which is

about 9% less than PARTIAL, 14% less than FULL, and 15% less than IDEAL. For replace,

MIN yields an average score that is about 10% less than that achieved by PARTIAL.

Table 3.2 suggests that if effectiveness is the primary concern when locating mul-

tiple errors in software, the FULL and PARTIAL approaches may be the best choices.

However, the FULL approach may be prohibitively time-consuming in some cases. In these

situations, the PARTIAL approach may be preferable to achieve better running time. More

details about the runtime of these techniques are described in the next chapter.

3.2.3 Comparison to a Clustering Technique

In the paper “Debugging in Parallel” [73], a framework is described for parallel

debugging in the presence of multiple errors. In this work, failing runs are clustered accord-

ing to one of two proposed clustering techniques, and then used to create specialized test

suites that are each targeted to a single error. Unlike the iterative techniques for Value Re-
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placement developed in this chapter in which errors are located and fixed one-at-a-time, the

clustering techniques allow for parallel workflows in which multiple errors can be debugged

in parallel.

To study the effect of clustering, one of the proposed clustering techniques was

implemented (“Technique 2” in [73], selected based on ease of implementation). In this

clustering technique, each individual failing test case in an available test suite is used to

compute a suspiciousness ranking. These suspiciousness rankings are then checked against

each other for similarity using a metric called Jaccard Set Similarity, which is defined as

the ratio of the sizes of the intersection and the union between two sets. The failing runs

associated with the suspiciousness rankings that are considered “similar” to each other are

then clustered together. Each cluster of failing runs is then used to compute a ranked list of

program statements that targets a particular error. To determine whether two suspicious-

ness rankings are “similar” or not, a threshold value T (between 0 and 1) is set such that

a set-similarity value greater than or equal to T is considered to be “similar”.

The above clustering technique is general and can be used in conjunction with

any error location technique that computes a suspiciousness ranking. An experiment was

conducted to perform the above clustering technique in conjunction with the Value Replace-

ment technique for computing suspiciousness rankings. The computed clusters were then

used to compute ranked lists of program statements that could be used to locate errors.

Table 3.3 shows these results, on average for each subject program. The table shows the

results for different similarity threshold values T , which guide how the clusters are formed

and can therefore have a significant impact on the overall results.

From this table, it can be seen that the average score values are generally signif-
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Program Name Average Score (%)
T=0.1 T=0.3 T=0.5 T=0.7 T=0.9

tcas 69.43 69.97 67.82 67.68 59.59
totinfo 54.23 56.37 56.89 56.84 54.66
sched 91.29 91.97 88.96 88.54 88.45
sched2 55.39 55.32 53.79 47.28 42.30
ptok 57.25 57.25 58.38 60.50 59.50
ptok2 80.78 80.64 80.91 78.94 78.13
replace 77.85 77.62 76.26 66.68 63.26

Table 3.3: Average score for each located error using clustering (experiments were performed
for different threshold values T ).

icantly lower for the clustering technique than for the FULL and PARTIAL techniques as

shown previously in Table 3.2. One exception is for program sched, in which the cluster-

ing technique is able to achieve slightly higher average score values for the lower threshold

values T .

An interesting observation is that in most of the subject programs, the average

score achieved by the clustering technique tends to decrease slightly as the similarity thresh-

old value T increases. Since the effect of increasing the T value means that it is harder for

suspiciousness rankings to be marked as “similar”, then a higher T implies smaller cluster

sizes. Thus, larger clusters (targeted suites containing more failing runs) seem to promote

more effective results overall in this experiment.

Overall, the results in Table 3.2 suggest that the techniques developed in this

chapter, which are aimed specifically at improving the effectiveness of Value Replacement

in the context of multiple errors, may be preferable to the more general clustering technique

when applied in conjunction with Value Replacement. However, the benefit of clustering is

that it allows for debugging of multiple errors in parallel, whereas the techniques proposed

in this chapter are iterative in nature, meant to isolate only one error at a time.
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3.3 Summary

In this chapter, three techniques were developed that generalize the core Value

Replacement technique for locating errors, so that Value Replacement can perform effec-

tively in the presence of multiple simultaneous errors in software. All three of the proposed

techniques iteratively report a ranked list of program statements such that each reported

list can guide a developer to some error in the program as quickly as possible. Each time

an error is located and fixed, a new ranked list is computed and reported. However, the

three techniques differ in they way in which they compute a ranked list of statements on

each iteration. In the Minimal-Computation technique, an initial ranked list is computed,

and then the same ranked list is used over and over to locate each subsequent error. In

the Full-Recomputation technique, a new ranked list is fully computed on each iteration as

errors are located and fixed. In the Partial-Recomputation technique, each iteration only

performs partial re-computation of IVMPs to compute a new ranked list. In the experi-

ments, it was seen that the Partial-Recomputation technique was nearly as effective as Full-

Recomputation in locating errors in the benchmarks, whereas the Minimal-Computation

technique was relatively less effective in general.

In Chapter 2 and in the current chapter, experimental results were presented con-

cerning only the effectiveness of the proposed techniques. In the next chapter, efficiency

issues related to Value Replacement are described, and several techniques for improving the

efficiency are developed. Experimental results illustrating the efficiency of Value Replace-

ment are also presented.
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Chapter 4

Efficiency of Value Replacement

In this chapter, issues related to the efficiency of Value Replacement are considered.

First, some important observations about the cost of Value Replacement are made. Then,

a set of lossy and lossless techniques for improving the efficiency of Value Replacement are

developed. The lossy techniques reduce the search space for identifying IVMPs, meaning

that some IVMPs can potentially be missed. However, effective error location results can

still be achieved under the reduced search space. The lossless techniques do not actually

reduce the search space for IVMPs, but they involve other implementation enhancements

that can significantly reduce the time required to search for IVMPs, as compared to a

brute-force implementation that just performs each complete value replacement one at a

time. Finally, an experimental evaluation of the efficiency of Value Replacement for locating

single and multiple errors is presented, to complement the effectiveness evaluations already

described in Chapters 2 and 3.
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4.1 The Cost of Value Replacement

The Value Replacement technique involves performing multiple value replacements

to try to identify the statements in a program that can be associated with IVMPs. The

technique first considers multiple failing program executions. Within each failing execution,

every statement instance is considered. At each statement instance, mutiple alternate sets

of values are considered. For each alternate set of values, a value replacement is performed

in the program execution in order to determine whether an IVMP results. Under a naive,

brute-force implementation, each value replacement requires a complete program execution,

from the start of execution, until the point of the value replacement, until the point of

execution termination in order to examine the output. Let F be the total number of failing

program executions, I be the maximum number of statement instances across all failing

executions, and V be the maximum number of alternate sets of values to apply at any

given statement instance. Then the total number of program executions required by Value

Replacement (under a naive implementation) is bounded by O(F × I × V ).

In practice, the total number of program executions required to search a set of

failing runs for IVMPs can be very large. Suppose there are only 3 failing runs to consider,

with each run consisting of 1000 statement instances, and suppose there are 5 alternate sets

of values to apply at each statement instance. Then the total number of program executions

required to search for IVMPs is 3 × 1000 × 5 = 15, 000. Even if each value replacement

program execution takes 0.25 seconds to perform, this still requires total runtime of over 1

hour to perform all value replacements. Moreover, in practice, execution traces are likely

to be much longer. A more realistic situation might involve 5 failing executions, each with

around 50,000 statement instances, and an average of 15 alternate value sets to apply at each
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instance. This would require a total of 5 × 50, 000 × 15 = 3, 750, 000 program executions.

Now, even if each execution still requires 0.25 seconds, then it would take over 10 days to

perform all value replacements.

For the single-error Siemens benchmark programs from Chapter 2, full IVMP

searches were actually not conducted in the experiments. Instead, a set of lossy techniques

were implemented (developed in the next section) that significantly reduced the search space

for IVMPs, but that still resulted in good error location results. The reason the full search

was not conducted was because it would have been infeasible (without any other efficiency

improvements) to locate some of the errors. Figure 4.1 shows, for each of the 129 Siemens

faulty versions considered in the experiments in Chapter 2, the total number of program

executions that would have been required to locate the respective error using a full IVMP

search. Note that the y-axis is specified in millions. Along the x-axis, the faulty versions

are specified in decreasing order of the number of required program executions. From this

figure, it can be seen that nearly 20 faulty versions would have required over 5 million

program executions each, with the worst case requiring over 20 million program executions.

The main reason why some of these faulty versions require so many program executions to

search for IVMPs, is because of certain failing execution traces that are very long. Even

though the Siemens programs are relatively small in terms of the number of lines of code,

certain inputs to several of these programs can still cause the execution traces to be very

long.

Under a naive, brute-force implementation, Value Replacement cannot scale to

handle long execution traces. Thus, several techniques have been developed to significantly

improve the efficiency of Value Replacement, making the technique more useful in practice.

69



20

15

10

5

 0  20  40  60  80  100  120

# 
of

 R
e-

ex
ec

ut
io

ns
 (i

n 
m

ill
io

ns
)

Faulty Version

 

Full Search

Figure 4.1: Total number of required program executions to perform value replacements
using a full IVMP search, for the single-error Siemens benchmarks from Chapter 2.

4.2 Lossy Techniques to Improve Efficiency

The first set of techniques are lossy techniques for improving the efficiency of Value

Replacement. These techniques reduce the search space for identifying IVMPs, limiting the

total number of value replacements that need to be performed. It is possible with these

techniques that certain IVMPs may be missed (hence the term lossy), since not all possible

value replacements are performed. However, as the experimental results with the Siemens

benchmarks have shown in Chapter 2, Value Replacement is still able to achieve highly

effective error location results even with these lossy efficiency improvements in place.

The lossy techniques limit the number of statement instances that are searched

for IVMPs, as well as the number of alternate value sets from the value profile that are

considered when performing value replacements. These lossy techniques are now described

in detail.
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4.2.1 Limiting the Number of Statement Instances to Consider

To limit the number of statement instances to consider when searching for IVMPs,

the following observation is made: if a statement is faulty, there is a very high chance that

the statement will be associated with an IVMP (even though IVMPs can occur at other

non-faulty statements too). As a result, assuming that multiple failing runs are caused by

the same error, there is a very high chance that a faulty statement will be associated with

IVMPs in all failing runs. This suggests the following intuition: suppose that in one failing

run, IVMPs are identified in only 5 different statements; then there is a high chance that

one of those 5 statements is faulty. Therefore, when considering any subsequent failing

runs, the technique only needs to search at statement instances associated with those 5

statements (because any other statements are likely to be non-faulty).

Based on this intuition, the algorithm for searching for IVMPs was modified as

follows. The algorithm maintains a working set of statements to consider when searching

for IVMPs. This set is initialized to all statements in the first-considered failing run. After

the first run is searched for IVMPs, if at least one IVMP is found, then all statements in the

working set that are not associated with any found IVMP are removed. If no IVMPs are

found, then the working set remains unchanged because the considered run does not provide

any hints about which statements are likely to be faulty. The process is then repeated on

the next failing run using the new working set. Under this approach, the working set can

only decrease in size over time, thus limiting the number of statement instances to search

in all failing runs except the first-considered run. Since all failing runs must traverse an

error and the failing runs must be considered in some order, the failing runs are analyzed

in increasing order of trace size. This ensures that the first-considered run is as short as
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possible. A drawback of this technique is that the results may vary depending upon the

order in which failing runs are considered. However, in the common case that IVMPs

are indeed found at the faulty statement in all considered runs, this technique will still

ensure that the ideal error location results can be achieved. Moreover, this technique can

significantly reduce the search space for IVMPs in all failing runs except the first run. For

instance, given a program with 500 statements, suppose that the first-considered failing run

leads to IVMPs in only 2 of the statements. Then in all subsequently-considered (longer)

failing runs, the statement instances associated with at most 2 different statements need to

be considered.

Another technique used to limit the number of statement instances to search for

IVMPs is based upon a simple observation: to rank program statements, Value Replacement

only needs to know whether at least one IVMP is associated with a given statement in a

failing run; i.e., any additional IVMPs found at a statement are useless for ranking purposes.

Thus, when searching for IVMPs, the algorithm is modified so that if an IVMP is found at

some statement instance in a failing run, then all other instances of the same statement in

the same failing run are not searched for additional IVMPs.

4.2.2 Limiting the Number of Alternate Value Sets to Consider

When searching for IVMPs at a given statement instance, recall that all of the

alternate value sets to apply when performing value replacements, are obtained from the

value profile. This value profile contains, for each statement, the collection of all different

value sets exercised at that statement by all test cases in an available test suite. In some

cases, certain statements may be associated with many alternate value sets in the value
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profile. Imagine a statement that increments a loop control variable, and suppose some

test case executes the loop 1000 times; then the value profile may be associated with 1000

different value sets at this statement. Moreover, when performing value replacements, each

instance of this statement in the execution would need to be used in conjunction with each

of the other 999 different value sets. Thus, reducing the total number of alternate value

sets to apply in value replacements can significantly speed-up the IVMP search time.

From the IVMPs studied, it was observed that in most cases where an IVMP is

found at a statement, there are actually many other IVMPs that can also be found at the

same statement. The intuition for this is the following. It turns out that for the Siemens

benchmark programs, there are many different execution states that can eventually lead to

the same output values. Often this is because of certain statements in the programs that

allow for many-to-one mappings from used to defined values. One common example is a

predicate statement. The final outcome of a predicate may either be true or false, but

there are usually many different used values that can lead to a true outcome, and many

different used values that can lead to a false outcome. Because of this, it is not surprising

that any statements associated with an IVMP, are usually associated with more than one

IVMP.

From the IVMPs studied, it was further observed that there is a pattern concerning

the kinds of values that are typically associated with IVMPs. In particular, given a set of

IVMPs at a statement instance with the same original value set but different alternate

value sets, there is a strong likelihood that at least one of the alternate value sets in one

of the IVMPs involves an alternate value that is either very close to, or very far from,

the corresponding value in the original value set. For example, suppose some statement
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instance uses original value 11, and assume that the value profile, for the given statement,

contains 10 other alternate values that are candidates for value replacement: 2, 4, 5, 9,

12, 18, 22, 24, 34, 56. Then there is a strong chance that if IVMPs are going to be found

at this statement, there will be at least one IVMP that uses value 2, 9, 12, or 56. As

compared to the original value 11, these 4 particular alternate values are those that are

respectively the minimum less than, the maximum less than, the minimum greater than,

and the maximum greater than, the original value 11. These alternate values are referred

to as the alternate spanning values, because they span the range of alternate values. This

observation allows one to reduce the total number of alternate value sets to consider when

searching for IVMPs. The Value Replacement algorithm is modified so that rather than

performing value replacements using all alternate value sets at a given statement instance,

the technique first identifies only a subset of alternate value sets to apply. These are the

value sets that contain the alternate spanning values corresponding to the original values

used at the given statement instance.

4.2.3 Value Replacement Algorithm with Lossy Efficiency Improvements

The modified Value Replacement algorithm that incorporates the lossy techniques

to reduce the IVMP search space is shown in Figure 4.2. Details of this algorithm are now

described in the context of the lossy techniques for reducing the IVMP search space.

Ordering failing runs. The value profile is first constructed from the provided

test suite (line 1). Then, all failing runs are sorted in increasing order of trace size, where

trace size is the number of statement instances in the trace (line 2). Each failing run is

considered in sorted order (line 4), while maintaining a working set of all statements that
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input:
Faulty program P , and test suite T containing a set F of
failing runs.

output:
A ranked list of statements exercised by tests in F .

algorithm ValueReplacementRankWithLossy
begin
Step 1: [Compute IVMPs for each test in F ]
1: valProf := construct value profile for P with respect to T ;
2: sort the test cases in F in increasing order of trace size;
3: workingList := the set of statements exercised by the first failing

test case in sorted F ;
4: for each test case f in F taken in sorted order do
5: tracef := statement instances executed by f on P ;
6: for each statement instance i in tracef do
7: s := the statement associated with instance i;
8: if s not in workingList then continue;
9: altV alSet := alternate value sets for s in valProf ;
10: altV alSetred := subset of altV alSet with minimum/maximum

values < and > the original values used at i;
11: for each alternate value set v in altV alSetred do
12: if s has an IVMP in f then break;
13: if applying v at i corrects f ’s output then
14: report a found IVMP at s in f ;

endfor (each alternate value set)
endfor (each statement instance)

15: if f has at least one IVMP then
16: remove stmts from workingList that are not associated with

any IVMP in f ;
endfor (each failing run)

Step 2: [Use IVMPs to rank program statements]
17: stmts := set of statements exercised by tests in F ;
18: for each statement s in stmts do
19: compute suspiciousness(s);
20: compute suspiciousnesstarantula(s);

endfor
21: stmtsranked := sort stmts by suspiciousness,

break ties by suspiciousnesstarantula;
22: output stmtsranked;
end ValueReplacementRankWithLossy

Figure 4.2: The Value Replacement technique with lossy efficiency improvements.
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need to be searched for IVMPs in the currently-considered failing run. The working set is

initialized to all statements exercised by the first failing run (line 3). After the search for

IVMPs in the current failing run completes, then if no IVMPs are found, the working set

remains unchanged. If at least one IVMP is found, then any statements in the working set

that are not associated with any IVMPs identified from the current failing run are removed

from the working set (lines 15-16).

Limiting statement instances and alternate value sets to consider. When

searching for IVMPs in a particular failing run, only the statement instances from those

statements that are in the working set are considered (line 8). At each considered statement

instance, the algorithm applies only those alternate value sets for which the original value

of a used or defined variable at that instance would be changed to be one of the following

four alternate values: (1) the minimum alternate value less than the original value; (2)

the maximum alternate value less than the original value; (3) the minimum alternate value

greater than the original value; and (4) the maximum alternate value greater than the

original value (line 10). Additionally, whenever an IVMP is found in a failing run, then all

subsequent instances of that statement in the failing run need not be searched for further

IVMPs (line 12). After identifying IVMPs, the statements exercised by the failing runs are

ranked (lines 17–21).

According to this algorithm, the total number of program executions required to

search for IVMPs is bounded by O(F × I × V ), where F is the number of failing runs, I

is the size of the shortest failing run execution trace, and V is the maximum number of

alternate value sets to apply at any given statement. However, the technique for limiting

the number of alternate value sets to consider reduces V to a small constant. Moreover, the
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work in [67] suggests that relatively effective error location results can be achieved with a

small F , such as only a few failing runs. As a result, the runtime of the algorithm is mostly

influenced by I.

4.3 Lossless Techniques to Improve Efficiency

The second set of techniques are lossless techniques for improving the efficiency

of Value Replacement. Rather than reducing the search space for IVMPs, these lossless

techniques are instead improvements to the underlying implementation for performing value

replacements, rather than modifications to the Value Replacement algorithm itself.

Under a brute-force implementation, value replacements are performed one-after-

the-other, and each individual value replacement requires a complete program execution,

from start to finish. A complete program execution is needed for each value replacement

because only one value replacement is performed on each execution, and the resulting output

of each execution needs to be observed in order to identify potential IVMPs. However, this

can be very time consuming when many value replacements need to be performed.

Two observations can be made about the task of performing value replacements

that allow one to significantly speed-up the computation time. The first observation is

that within a failing run, performing value replacements involves a significant amount of

redundant program execution. The second observation is that each value replacement can

be performed in isolation, and therefore the search for IVMPs is inherently parallelizable.

Based on these two observations, two corresponding implementation improvements are de-

scribed that significantly speed-up the time required to perform value replacements: (1)

removing redundant execution when performing value replacements; and (2) parallelizing
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the task of performing value replacements. These improvements are illustrated in Figure 4.3.

These two improvements are now described in detail.

4.3.1 Removing Redundant Program Execution

There is a significant amount of redundant program execution when performing

value replacements in a failing run. This is because in a value replacement program execu-

tion, the part of the execution before the value replacement is the same as in the original

failing run; execution is affected only from the point of the value replacement onwards.

Many different value replacement executions in the same failing run therefore results in a

significant amount of redundant execution. This is illustrated in Figure 4.3 (A). In the

figure, an original program execution is shown with 3 statement instances; assume 2 value

replacements are performed at each instance, for a total of 6 value replacements. Figure 4.3

(B) shows each of these 6 value replacement executions, along with the duplicated portions

of the original execution.

To remove this redundant execution, a mechanism is needed that allows for the

following: at a statement instance in a failing run at which a value replacement needs

to be performed, the technique needs to be able to perform the value replacement and

then return directly to the same point, without re-executing everything before this point,

so that the technique can continue performing additional value replacements. In this way,

all redundant execution is avoided prior to the point of a value replacement. The fork

function in C provides just this functionality.

The method for removing redundant program execution is as follows. For a given

failing run, the run is executed only once, from beginning to end, to perform all associated
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Original Execution
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perform at each stmt instance)

Regular Value Replacement Executions

1

(A) (B)

(C) (D)

1 2 3 4 5 6

duplicated 5x

duplicated 3x

duplicated 1x

(various portions of the original execution are duplicated multiple 
times when performing value replacements)

1 3 5 6 4 2

With Redundant Execution Removed

(no duplication of any portion of 
original execution)

With Parallelization

1 2 1 2 2 1
(time required to perform all value 

replacements is reduced)

Figure 4.3: Lossless improvements to the efficiency of Value Replacement. The circled
numbers indicate the relative time at which execution terminates.

value replacements. At each statement instance during execution at which one or more value

replacements need to be applied, fork is invoked to create a child process to carry out each

value replacement. When the fork function call occurs, a new child process is created

which is identical to the parent (original) process, except for a new process ID. The parent

process then waits at that statement instance as each child completes its value replacement.

Afterwards, the parent process moves onto the next statement instance, where more children

may be forked to perform more value replacements. This eliminates all redundant portions

of execution, as depicted in Figure 4.3 (C).

In the implementation, the input and output of the parent and child processes

had to be specially handled to ensure they are not affected by the forking, because fork
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duplicates file pointers, which can cause intermixed input and output. This was handled by

initially capturing all the input and output of the original parent process (representing the

original failing execution), during a preliminary “input/output capturing phase.” During

the regular value replacement execution, when a child process is forked, then its set of input

and output is specifically adjusted, such as by setting new file pointers, to match that of the

parent at that point. Reads from stdin are handled by writing these input values to a file

during the input/output capturing phase, then reading from this file as necessary during

the regular value replacement execution.

4.3.2 Parallelizing the Search for IVMPs

Each time a value replacement is performed when searching for IVMPs, it is done

in isolation from all other value replacements. Thus, multiple available cores can carry out

multiple value replacements in parallel. To take advantage of this, the task of performing

value replacements is parallelized in two ways. First, the set of all value replacements to

perform are partitioned into N task sets, where N is the number of available cores. Then

each task set is handed off to an available core for processing. Second, when a parent process

forks C children to perform C value replacements at a statement instance during execution,

then those C children can simply be allowed to execute in parallel. This parallelization is

illustrated in Figure 4.3 (D). In the figure, the 6 value replacements are partitioned into

2 task sets. The figure also assumes that enough idle cores are available to process all

children in parallel at each statement instance. The circled numbers in Figure 4.3 (D) show

multiple value replacement executions terminating at the same relative time unit; this is

due to multiple value replacements being performed in parallel.
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4.4 Efficiency Results

4.4.1 Efficiency of Locating Single Errors

Siemens Benchmark Programs

In Section 2.5, a set of experiments was described in which Value Replacement was

used to locate the single errors contained in the Siemens benchmark programs. These experi-

ments actually used the modified algorithm for Value Replacement from Figure 4.2, in which

the lossy techniques were implemented to improve efficiency by reducing the IVMP search

space. To study the effectiveness of these lossy techniques in reducing the IVMP search

space, a count was taken of the total number of program executions actually performed

for each faulty version in order to carry out the (reduced number of) value replacements,

according to the lossy algorithm in Figure 4.2. This is called the reduced search. These

values were then compared to the total number of program executions that would have

been required if a full search had been performed, without using the lossy techniques. This

is called the full search. The comparison between the reduced search and the full search is

shown in Figure 4.4.

As shown in the figure, the total number of executions actually performed using the

reduced search was significantly lower than what would have been required if the technique

had performed all value replacements and fully searched for all possible IVMPs. For the full

search, 4 faulty versions would have required over 10 million program executions each to fully

search for IVMPs. In fact, one of these faulty versions would have required over 20 million

program executions. On the other hand, the maximum number of executions required for

any faulty version using the reduced search was only about 412,000. A large majority of
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Figure 4.4: Total number of program executions to perform value replacements using the
full and reduced IVMP searches, for the single-error Siemens benchmarks from Chapter 2.

faulty versions (84 out of 129) required fewer than 10,000 program re-executions to search

for IVMPs using the reduced search. The same was true for only a minority of cases (44 of

them) using the full search. On average across all faulty versions, the full search requires

over 2 million program executions per faulty version, while the reduced search requires

just under 30,000 program executions (a reduction by a factor of 67). However, note that

these average values are skewed due to a few faulty versions that require unusually many

program executions. In general, the few cases where the reduced search required relatively

more program executions than other reduced-search cases, was due to faulty versions where

the approach was not able to find any IVMPs. In these cases, all instruction instances of all

failing runs were fully searched since no IVMPs were found to limit the number of statement

instances to search.

There is a drastic reduction in the number of program executions required to

search for IVMPs using the reduced search as compared to a full search. Figure 4.5 shows
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the actual time required to search for IVMPs using the reduced search when running Value

Replacement. The x-axis represents the time in minutes to search for IVMPs from all

failing runs using the reduced search. The y-axis shows the percentage of faulty versions

that were fully searched in less than the specified amount of time. Note that the actual

time to rank statements with the computed IVMP information (and breaking ties with the

Tarantula formula) is negligible compared to the IVMP search time. Computation of the

value profiles for each faulty version was also very small relative to the IVMP search time,

never taking more than a few dozen seconds per faulty version.

From this figure, it can be seen that most faulty versions required relatively little

time to search for IVMPs using the reduced search; 50 faulty versions, many from the tcas

program, require less than 1 minute to search all failing runs for IVMPs. A large majority of

cases, 77 of them, require less than 10 minutes of search time. Almost 90% of cases, 112 of

them, require less than 100 minutes. Only 17 out of the 129 faulty versions actually require

more than 100 minutes of search time. The maximum required time to search was just

over 14 hours (840 minutes) for one particular faulty version, but this was an unusual case

where failing runs were relatively long and no IVMPs could be found to limit the number

of statement instances to consider.

Larger Subject Programs

In Section 2.5.3, an experiment was conducted using a set of 5 benchmark programs

that are significantly larger than the Siemens benchmarks, to show that Value Replacement

can also yield effective error location results on larger programs. Table 4.1 shows the corre-

sponding times required to search for the IVMPs, as well as the total number of executions
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Figure 4.5: Time required to search for IVMPs in each faulty version using the reduced
search, for the single-error Siemens benchmarks from Chapter 2.

performed when carrying out value replacements, as compared to the total number of exe-

cutions that would have been required using a full IVMP search.

For the grep, sed, and flex programs, IVMP search times were quite low due

to the fact that the failing runs had very short execution traces. For the space and gzip

programs, IVMP search times were comparatively longer because of longer execution traces.

In general, the Value Replacement technique may still require computation time on the

order of hours to locate errors, even when using the lossy techniques to improve efficiency

developed in this chapter. This suggests that the lossless techniques are also very important

for improving the scalability of Value Replacement.

Program Name IVMP Search Time # IVMP Executions Done/Possible

space 79.5 min 35841/1061154 (3.4%)
grep-2.5 0.8 min 241/588 (41.0%)
sed-4.1.5 1.8 min 881/5816 (15.1%)
flex-2.5.1 0.5 min 87/228 (38.2%)
gzip-1.3 215.6 min 126845/6918816 (1.8%)

Table 4.1: Efficiency results using the reduced search for the larger benchmarks from Chap-
ter 2.
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4.4.2 Efficiency of Locating Multiple Errors

As shown in the previous section, the lossy techniques for reducing the IVMP

search time can significantly reduce the total number of program executions required to

search for IVMPs. However, in cases where failing execution traces are relatively long,

the experiments showed that certain errors may still require time on the order of hours to

locate. In order to generalize Value Replacement into an iterative technique for locating

multiple simultaneous errors, it was necessary to implement and use the lossless efficiency

improvements described in Section 4.3. These improvements drastically improved the ef-

ficiency of Value Replacement and enabled the practical use of Value Replacement in an

iterative manner to locate multiple errors.

The experimental results describing the effectiveness of Value Replacement on the

multiple-error Siemens benchmark programs (shown in Section 3.2) were obtained by im-

plementing the lossless techniques to perform value replacements more efficiently. Here, the

corresponding experimental results illustrating the efficiency of the technique are described.

Note that the lossy techniques were not used in these experiments since the experiments

completed in reasonable time without them. Moreover, one of the lossy techniques (the one

that limits the number of statement instances to consider based on where IVMPs are found

in previously-considered runs) implicitly assumes that all considered runs fail due to the

same error; in the multiple-error Siemens programs, this assumption does not hold.

Figure 4.6 shows the total time in seconds required to search for all IVMPs when

running each of the four techniques described in Section 3.2. For each benchmark program,

the displayed timing data is the average from among all faulty versions associated with the

program. Each bar is stacked to show the average time required for each iteration of the
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Figure 4.6: Average total time to search for IVMPs, for the multiple-error Siemens bench-
marks from Chapter 3

technique (except MIN, where IVMPs are computed in only one iteration).

It can be seen in the figure that the FULL technique requires more time overall

than PARTIAL, which requires more time than MIN. In general, the time required by

PARTIAL is slightly closer to the time for FULL as opposed to the time for MIN. This is not

surprising, considering that only FULL and PARTIAL iteratively compute IVMPs (though

PARTIAL may search fewer total failing runs than FULL). However, in some cases the

overall time required by PARTIAL is noticeably less than FULL. In ptok, FULL requires

about 600 seconds (10 minutes) on average to search for IVMPs in each faulty version,

whereas PARTIAL requires only about 470 seconds (under 8 minutes), a 20% reduction

in running time. For replace, FULL requires about 5.5 minutes while PARTIAL requires

about 3.8 minutes, a 30% reduction in running time. Since the effectiveness of PARTIAL

is similar to that of FULL (especially for ptok2 and replace), then PARTIAL may be

useful in situations where running time is an issue. Note also that the timing results for

86



IDEAL are generally less than for FULL and PARTIAL; this is due to the programs being

single-error versions in IDEAL, with relatively fewer failing runs exposing these errors that

need to be searched for IVMPs.

Another observation to make about the data in Figure 4.6 is that all three multiple-

error techniques (i.e., FULL, PARTIAL, and MIN) require about the same amount of time

to search for IVMPs for the very first iteration. This is because all three techniques compute

IVMPs for all failing runs in the suite on the first iteration. The PARTIAL technique may

then possibly refrain from searching some failing runs in subsequent iterations. The MIN

technique will never re-compute IVMPs after the first iteration.

Table 4.2 shows the actual number of failing runs that are searched for IVMPs in

each iteration, on average for each faulty version in a benchmark program. For example, for

the FULL technique in program replace, the first iteration required a search for IVMPs in

an average of 9 failing runs, the second iteration required a search in an average of 7 failing

runs, and so forth, such that an average of 26 runs needed to be searched in total.

The results in this table mirror the timing results from Figure 4.6; PARTIAL

requires IVMP searches in fewer total runs than FULL. MIN requires IVMP searches in the

fewest number of runs. An interesting observation to make from this table is that as the

iteration number increases for both the FULL and PARTIAL techniques, the total number

of failing runs that must be searched for IVMPs tends to decrease. This is because as errors

are iteratively found and fixed over time, fewer failing runs will tend to remain.
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Program Average Number of Runs to Search for IVMPs
Name IDEAL FULL PARTIAL MIN

tcas 1+1+2+2+2=8 5+4+3+2+1=15 5+4+3+2+1=15 5
totinfo 3+4+4+3+3=17 10+5+4+3+2=24 10+3+3+2+1=19 10
sched 2+3+3+2+2=12 10+4+3+2+1=20 10+3+2+1+1=17 10
sched2 5+5+3+4+6=23 9+4+3+2+1=19 9+3+2+2+1=17 9
ptok 4+1+1+1+1=8 8+7+6+5+4=30 8+2+3+5+4=22 8
ptok2 1+1+2+1+1=6 5+4+3+1+1=14 5+2+2+1+1=11 5
replace 2+2+3+2+2=11 9+7+5+4+1=26 9+3+3+2+1=18 9

Table 4.2: Average number of runs searched for IVMPs (separated by iteration number).

4.5 Summary

In this chapter, efficiency issues related to Value Replacement were discussed. A

set of lossy and lossless techniques were developed that can significantly improve the ef-

ficiency of Value Replacement. The lossy techniques improve efficiency by significantly

reducing the search space for IVMPs. This is accomplished by limiting the number of

statement instances and alternate value sets to consider when searching for IVMPs. On

average, this reduces the total number of value replacements that need to be performed in

our benchmarks from Chapter 2 by a factor of 67. These efficiency improvements come at

the expense of a possible loss in precision, since some IVMPs may be missed. However, the

experimental results from Chapter 2 indicate that highly effective error location results can

still be achieved when the lossy efficiency improvements are used. The lossless implemen-

tation improvements drastically improve the efficiency of performing value replacements,

without actually reducing the IVMP search space. This is accomplished by eliminating

redundant execution when searching for IVMPs, and by parallelizing the IVMP search. On

average, these implementation improvements allow multiple simultaneous errors from our

benchmark programs in Chapter 3 to be located in minutes in the worst case.
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The Value Replacement technique, as implemented, does not handle address values

and therefore may have limited effectiveness for locating memory errors. Although Value

Replacement can be extended to consider address values, there is a much more efficient

state alteration technique that can take advantage of the unique traits of memory errors

to provide more targeted state alteration, to locate memory errors more quickly. This

technique, called Execution Suppression, is developed in the next chapter.
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Chapter 5

Locating Memory Errors using

Execution Suppression

In this chapter, an automated, dynamic state alteration technique called Execution

Suppression is developed, which iteratively isolates memory corruption during program

execution to locate memory errors. Isolating memory corruption is important because

significant propagation of corrupt memory values can occur during execution as a result

of a memory error [68, 71]; this memory corruption propagation can separate the program

failure from the actual error that is the root cause of the failure, concealing these errors

and making the task of locating them challenging.

Suppression is used to identify the first point of memory corruption in an execution

that fails due to a crash caused by a memory error. It is assumed that the first point of

memory corruption is either at, or very close to, the memory error; as will be shown in a

study of memory errors and memory corruption described in Section 5.1, this assumption

is reasonable. Suppression is the idea of omitting one or more instructions during program
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execution. The concept of suppression is iteratively used to gradually isolate the first point

of memory corruption. When a crash occurs, this reveals that the memory location(s) ac-

cessed at the point of the crash is corrupt. In essence, each crash reveals a subset of the

memory corruption present in an execution. This subset of known memory corruption, and

everything else in the execution directly or indirectly dependent upon it, is then suppressed

during re-execution of the program by simply omitting the effect of the associated instruc-

tions during execution. This effectively causes only the subset of the original execution to

be re-executed, that does not involve or depend upon the identified memory corruption.

Note that this guarantees that the original crash, and any crashes that might have occurred

due to the suppressed instructions, will be avoided in the re-execution. This is because the

effect of all instructions directly or indirectly dependent upon any suppressed instruction

will be omitted as well during re-execution. At the end of the re-execution, if no other

crashes occur, then the last suppressed point of memory corruption is likely to be the first

point of memory corruption in the execution. On the other hand, if another crash does

occur, then this reveals that additional memory corruption remains in the execution, and

so the process should be repeated to isolate the first point of memory corruption.

Definition 7 (Suppression).

Given a program execution, suppression of one or more statement instances involves omit-

ting the effects of these statement instances during the execution. To ensure that the execu-

tion does not become unstable due to the omitted statement instances, then any statement

instances directly or indirectly dependent upon a suppressed statement instance must also

be suppressed during execution.

The idea of suppression fundamentally relies on the assumption that if memory
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corruption exists in an execution, then a program crash will occur. However, this assumption

does not always hold in practice because memory corruption will not always lead to a

crash. Therefore, this chapter develops variable re-ordering, a technique that can sometimes

expose crashes due to memory corruption in an execution that does not otherwise result

in a crash. The intuition is as follows: even though the relative ordering of variables in

memory should not affect the correctness of a program, in the presence of memory errors,

the relative ordering can in fact affect where and when crashes might occur. Variable re-

ordering systematically tries different variable orderings in memory to attempt to expose

crashes due to memory corruption. By combining the ideas of suppression and variable

re-ordering, the effectiveness and applicability of the Execution Suppression technique is

greatly improved.

Definition 8 (Variable Re-ordering).

Given a program execution, variable re-ordering is the process of altering the layout

of global, local (stack), or heap variables in memory during that execution, such that the

relative ordering of variables is different. This is performed such that program correctness

is not affected, but different crashes may be exposed in the presence of a memory error.

Execution Suppression is designed to be iterative so that the first point of mem-

ory corruption can be identified even in executions with significant propagation of memory

corruption. The technique is also fully automated, which makes it useful for quickly deter-

mining whether different inputs exhibiting different program failures are due to the same

error. Moreover, the technique is general and can be applied to any memory errors that

involve corrupted memory and can result in a program crash.
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In the next section, a study of memory errors and memory corruption is described

that was conducted to motivate the development of the Execution Suppression technique.

5.1 A Study of Memory Errors and Memory Corruption

5.1.1 Memory Errors

Memory errors represent an important class of software errors that cause mishan-

dling of memory during program execution. One example of mishandling of memory occurs

when a program attempts to read from or write to an incorrect memory location. Such

memory errors often manifest themselves in the form of a program crash. Examples of

memory errors include the following.

• Buffer overflows occur when memory locations are accessed that are outside of

proper buffer boundaries. Such overflows can cause unexpected corruption of program

data that can eventually cause a crash. Stack smashing is one type of problem that

can arise due to a buffer overflow, which corrupts the return address of a function on

the call stack.

• Uninitialized reads occur when the value contained in a memory location is loaded

before any proper value has been stored into that location. This can lead to unex-

pected program behavior due to an arbitrary value being loaded. NULL dereferences

are a common type of uninitialized read in which the pointer used to access a memory

location is unexpectedly NULL.

• Dangling pointers point to invalid objects in memory. One cause for this is when

a memory object is explicitly deallocated, while a pointer to that object retains its
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original address value. Subsequent uses of this dangling pointer can lead to unexpected

program behavior.

• Double frees occur when a call to function free is performed using a deallocated

address that has already been previously freed. Such an error will lead to a program

abort.

In general, a memory error manifests itself by undergoing three specific events at

one or more execution points during program execution.

1. Traversal of the error. This is when the portion of code ultimately responsible for

a program failure is executed.

2. First point of memory corruption. Once a memory error is traversed, a first

point of memory corruption may then occur, at which point memory is mishandled in

some way. This can in turn cause memory to be mishandled at subsequent execution

points as well, i.e., memory corruption may propagate during execution.

3. Failure. This is the point at which a developer can actually observe that a problem

has occurred during execution, and realize that an error exists in the program. One

type of failure that often results from memory corruption is a program crash, though

not all memory corruption may lead to a crash, and there are other types of failures

such as incorrect output.

Once a failure occurs during execution, a developer must find the location of the

error so that the error can be eliminated. However, in general the error may not be at the

same point at which the failure occurs. The portion of execution separating the traversal of
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the error from the actual failure may be very long, and may involve significant propagation

of memory corruption.

5.1.2 Results of the Study

A study was conducted involving 11 real programs containing known memory

errors, to study how memory corruption can propagate during execution. The programs

used in the study were obtained from the work of previous researchers on BugBench, BugNet,

and AccMon [90, 100, 155], and are described in Table 5.1. The first column in the table

shows the program name and version number. The second column shows the number of

lines of code in thousands, measured using the SLOCCount tool [59]. In the third column, the

following abbreviations are used to indicate the memory error type: global buffer overflow

(GO); heap buffer overflow (HO); stack buffer overflow (SO); NULL dereference (ND); and

double free (DF). The fourth column shows the file name and line number of the location of

the memory error. The right-most column gives a brief description of the program. These

subject programs were selected because they have been used as benchmarks in prior research

and they contain many different types of memory errors.

The goal of the study was to understand the nature of memory errors to motivate

the development of an effective technique for automatically locating them. For each memory

error, the following were identified: the location of the error, which was known beforehand;

the first point of memory corruption; and the failure point, which was always the point

of execution termination, being either a crash or an observed wrong output. To specify

the first point of memory corruption in an execution, the following definition for memory

corruption was used.
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Program # Lines Error Error Location Program Description
Name of Code Type

gzip-1.2.4 6.3 K GO gzip.c: 828 file compression
man-1.5h1 10.8 K GO man.c: 979 display manual pages
bc-1.06 10.7 K HO storage.c: 176 arbitrary precision calculator
pine-4.44 211.9 K HO bldaddr.c: 7270 Internet news and e-mail
mutt-1.4.2.1 65.9 K HO utf7.c: 152 e-mail client
ncompress-4.2.4 1.4 K SO compress42.c: 886 file compression
polymorph-0.4.0 1.1 K SO polymorph.c: 191 filename converter
xv-3.10a 69.2 K SO xvbmp.c: 165 image manipulation
tar-1.13.25 28.4 K ND incremen.c: 180 archiving utility
tidy-34132 35.9 K ND parser.c: 854 HTML quality enhancer
cvs-1.11.4 104.1 K DF near server.c: 992 versioning system

Table 5.1: Memory error programs analyzed in the memory corruption study.

Definition 9 (Memory Corruption).

During the execution of a program, memory corruption occurs when either an incorrect

memory location is accessed (read or written when it should not have been), or an incorrect

memory address value is assigned to a (pointer) variable.

This definition for memory corruption captures the act of mishandling memory

addresses as well as the propagation of corrupt memory address values. Note that memory

corruption can propagate through other non-address values that may become infected due

to memory corruption in an execution (an infected value is one that differs from the expected

value). However, infected non-address values are not considered to be “memory corruption”

according to the definition, since they cannot directly cause a crash unless they are later

used to compute an incorrect memory address. Essentially, “memory corruption” is defined

to be a mishandling of memory that can directly cause a program crash.

The data collected for each subject program in the study is reported in Table 5.2.

For each program, a variety of different inputs were created that traversed the error and
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Program Input Type Distance: [ERR→CORR] + [CORR→END]
Name # Static Dep. Edges # Executed Instr. Inst.

gzip-1.2.4
No Crash 0 + 1 0 + 41,168
Crash Point 1 0 + 1 0 + 36,902

man-1.5h1 Crash Point 1 1 + 8 296 + 14,239,521

bc-1.06
No Crash 1 + 0 8 + 33,567
Crash Point 1 1 + 1 8 + 5,004

pine-4.44
No Crash 5 + 20 1,103 + 1,390,483
Crash Point 1 5 + 14 1,103 + 10,165

mutt-1.4.2.1
No Crash 0 + 9 0 + 140,750
Crash Point 1 0 + 8 0 + 5,697

ncompress-4.2.4
No Crash 0 + 1 0 + 7,318
Crash Point 1 0 + 2 0 + 11,616
Crash Point 2 0 + 1 0 + 19,637

polymorph-0.4.0
No Crash 1 + 2 4,294 + 99,723
Crash Point 1 1 + 2 4,321 + 99,762
Crash Point 2 1 + 1 4,354 + 113,083

xv-3.10a
No Crash 1 + 2 122 + 185,818
Crash Point 1 1 + 1 124 + 158,640

tar-1.13.25 Crash Point 1 0 + 1 0 + 210,505

tidy-34132 Crash Point 1 0 + 2 0 + 57

cvs-1.11.4 Crash Point 1 1 + 0 5,164 + 0

Table 5.2: Study results for each analyzed input for each memory error subject program. In
the “Distance” header, the following abbreviations are used: point of error traversal (ERR),
first point of memory corruption (CORR), and point of execution termination (END).

triggered memory corruption. It was then observed whether or not a crash occurred and at

which program statement. For each distinct execution outcome (either no crash, or a crash

at a particular statement), one representative input associated with that outcome (listed in

column 2) was selected and studied in detail. From the execution of each input, the distance

from the traversal of the error until the first point of memory corruption was measured,

as was the distance from the first point of memory corruption until execution termination.

This distance was measured first in terms of the maximum number of static dependence

edges (column 3), showing the extent to which memory corruption can propagate during

execution. The static dependence edges were identified by manually looking at the program
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code, following the chain of data and control dependencies observed in the source code. The

distance was also measured in terms of the dynamic instruction instances in the execution

(column 4), indicating the length of program execution between these execution points.

For example, for program gzip that has a global buffer overflow in a call to strcpy,

one memory-corruption-inducing input was created that did not crash, and another input

was created that caused a crash at one program point. For both inputs, the static depen-

dence and dynamic instruction instance distances from the error traversal to the first point

of memory corruption is 0. This indicates that in this program, the traversal of the error

occurs precisely at the first point of memory corruption. On the other hand, both inputs

have a static dependence distance of 1 from the first point of memory corruption until the

point of execution termination, and a corresponding dynamic instruction instance distance

of 41,168 instructions (the non-crashing input) and 36,902 instructions (the crashing input).

5.1.3 Key Observations

From the results presented in Table 5.2, it can be seen that static dependence

distances from the point of error traversal until the point of execution termination are

usually more than 1, and sometimes considerably more than 1 (e.g., programs man, pine,

and mutt). Even when static dependence distances are relatively small, the instruction

instance distances can be quite large (e.g., programs polymorph and xv). Thus, the first

observation that can be made from the study concerns these total distances.

Observation 1: (Total distances). The total distance, both in terms of static

dependence edges as well as dynamically-executed instruction instances, between the point

of error traversal and the point of execution termination, can be large.
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This observation suggests that in crashing executions, the memory error may be

difficult to manually locate from the point of the crash. Traversal of the error may have

occurred much earlier in time than the point of the crash. There may also be significant

memory corruption propagation during execution. Thus, an automated technique to isolate

the first point of memory corruption can greatly help in locating memory errors.

An interesting result pertaining to static dependence distance occurs for the non-

crashing input of program bc. In this case, the dependence distance from the first point

of memory corruption until execution termination is 0, but this is because there happens

to be no memory corruption propagation during this execution. In the execution, a buffer

overflow causes an unexpected write to another memory location, but this defined memory

location is associated with a variable that is never accessed during the rest of the execution.

The second important observation that can be made from the results of the study

deals with the types of inputs that were analyzed. All analyzed inputs triggered memory

corruption, but they often had different execution outcomes.

Observation 2: (Inputs triggering memory corruption). Different inputs

triggering memory corruption may lead to crashes at different program locations, or they

may result in no crash at all.

If different inputs lead to crashes at different program locations, this can be mis-

leading and may cause a developer to suspect that the inputs reveal multiple distinct errors

when in fact all crashes may be due to the same error. An automated technique to help

locate memory errors can help a developer to quickly group crashing inputs according to

their associated errors. One useful application of this capability would be to allow devel-

opers to prioritize the fixing of errors by determining which errors are associated with the
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most undesirable crashing inputs.

Inputs that trigger memory corruption but do not result in any crash may conceal

the fact that a memory error exists. Even if wrong output is produced, a developer may

not be able to easily tell whether the wrong output is due to a memory error or to a non-

memory error. In order to improve software reliability, it would be desirable for an input

that triggers memory corruption to result in a crash. This guarantees that the memory

error will be revealed and encourages the developer to address the problem.

The inputs created for program man represent an interesting case from among the

programs with buffer overflows. This is the only program with a buffer overflow in which

inputs could only be created that trigger memory corruption and then subsequently crash.

For this program, it turns out that the error is such that if at least one memory location

gets corrupted, then a crash will happen. Thus, no inputs could be created for this program

that triggered corruption but did not crash.

A third observation that can be made concerns the relative distance from the point

of error traversal to the first point of memory corruption, compared to the distance from

the first point of memory corruption to the point of execution termination.

Observation 3: (Relative distances). Across all programs in the study, the

relative distance from the point of error traversal to the first point of memory corruption,

is generally considerably less than the distance from the first point of memory corruption

to the point of execution termination.

In all programs except pine, the maximum static dependence distance from the

point of error traversal to the first point of memory corruption is always 0 or 1. As a result,

an automated technique to isolate memory errors can still be very effective if it seeks to only
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isolate the first point of memory corruption. From the first point of memory corruption, a

developer should only need to exert minimal effort to find the actual error.

Together, the three observations resulting from the study of memory errors and

memory corruption motivate the Execution Suppression technique that is based on the ideas

of suppression and variable re-ordering. The next section describes in detail this technique

for isolating the first point of memory corruption in an execution that fails due to a memory

error.

5.2 Isolating the First Point of Memory Corruption using

Suppression

Suppression involves omitting the effect of one or more statements during program

execution. This idea can be used iteratively to reveal the first point of memory corruption in

an execution. In general, when there are multiple instances of memory corruption that exist

in an execution, then eventually one of these instances may cause a crash. If one suppresses

(i.e., omits execution of) the associated statements directly causing this crash, as well as any

other statements directly or indirectly dependent upon these suppressed statements, this

would avoid the crash and allow execution to proceed further. This provides opportunity

for the remaining memory corruption to cause other crashes in the execution. This, in turn,

reveals more of the memory corruption, until finally the first point of memory corruption is

revealed. The first point of corruption is assumed to be identified when no further crashes

occur, because suppressing the first point of memory corruption will ensure that the program

will not produce any further crashes. This is the essence of suppression.
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5.2.1 Motivational Example

To illustrate the functionality and usefulness of suppression, consider the sample

code presented in Figure 5.1. In this snippet of code, there exists a copy-paste error at

line 4; the programmer copies lines 1 and 2, pastes into lines 3 and 4, and then forgets

to change variable x into variable y at line 4. The effect of this error is that pointers

p2 and q2 mistakenly refer to the same memory location. As a result, when a value is

stored into location ∗q2 at line 8, then this clobbers the value originally stored there at

line 6. Any subsequent uses of the value at location ∗p2/∗q2 then make use of an infected

memory location, which can lead to further infection at other memory locations (e.g., at

lines 9, 10, and 11). Essentially, the error at line 4 immediately causes memory corruption

that propagates through multiple locations until eventually a program crash may occur

(potentially at lines 12, 13, and 15).

Suppose the code in Figure 5.1 is exercised on some input. This is represented

pictorially in Figure 5.2 (A). Initially, pointer q2 is corrupted at line 4 since it points to

an incorrect memory location. That memory location is then infected at line 8, where the

value previously stored at that location is mistakenly overwritten. Then, the definition at

location a (line 9) is infected since it uses the infected value from location ∗p2/∗q2. The

definition for location b (line 10) is similarly infected. This further results in infection of

location c (line 11). Now, suppose that the program crashes at line 12 due to infected array

index c accessing an illegal address outside the boundary of array intArray. This is a buffer

overflow failure. When the failure is observed at line 12, identifying the root cause at line

4 is not obvious since in practice one does not know the first point of memory corruption

and how the corruption might propagate during execution.
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Let x and y be pointers to two malloc’ed memory regions, each able to hold
two integers.

Let intArray be a heap array of integers.
Let structArray be a heap array of pointers to structs with a field f .

1: int * p1 = &x[1];
2: int * p2 = &x[0];
3: int * q1 = &y[1];
4: int * q2 = &x[0]; // copy-paste error: should be &y[0]
5: *p1 = readInt();
6: *p2 = readInt(); // gets clobbered at line 8
7: *q1 = readInt();
8: *q2 = readInt(); // clobbers line 6 definition
9: int a = *p1 + *p2; // uses infected *p2/*q2
10: int b = *q1 + *q2; // uses infected *p2/*q2
11: int c = a + b + 1; // uses infected a and b
12: intArray[c] = 0; // potential buffer overflow
13: structArray[*p2]−>f = 0; // potential NULL dereference
14: free(p2);
15: free(q2); // potential double free

Figure 5.1: Example to illustrate the functionality and usefulness of suppression.

As a first step to begin searching for the root cause of the program crash at line 12,

the program can be re-executed while suppressing the memory corruption currently known

that directly causes the crash. This is depicted in Figure 5.2 (B). To do this, notice at line

12 that the value at location c is used, along with the base address for variable intArray, to

compute the effective memory address to access. Since either of these used locations could

be infected, one should identify the last definitions of both (for intArray, this is not shown

in the figure). Location c is last defined at line 11. The program is the re-executed on the

same input, but during execution, suppression is performed on the definition of the base

address for intArray (not shown in the figure) as well as the definition of c at line 11 (by not

performing the store to location c). Accordingly, execution of any subsequent statements

103



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

3rd suppression run

(D)

p1: 

p2: 

q1: 

1

2

3

5

6

7

8

9

10

11

12

13

14

2nd suppression run

(C)

p1:  

CRASH!

q1:  

4q2:  

p1:  

p2:  

q1:  

p1: 

p2: 

q1: 

15

p2:  

1

2

3

5

6

7

11

12

1st suppression run

(B)

p1:  

CRASH!

q1:  

4q2:  

p1: 

p2: 

q1: 

13

p2:  

8

9

10

p2,    q2: 

a:  

b:  

1

2

3

5

6

7

Original run

(A)

p1:  

CRASH!

q1:  

4q2:  

p1: 

p2: 

q1: 

12

p2:  

8

9

10

p2,    q2: 

a:  

b:  

11c:  

(D)(C)(B)(A)

Action: 

suppress def of 

“c” at stmt 11 

and its effects in 

the next run

Action: 

suppress def of 

“ p2” / “ q2” at 

stmt 8 and its 

effects in the 

next run

Action: 

suppress def of 

“q2” at stmt 4 

and its effects in 

the next run

Action:

none – root 

cause has been 

found

Figure 5.2: Suppression executions for the example code in Figure 5.1. Solid circles are
executed statements, and dotted circles are suppressed statements. Statements defining a
memory location are annotated with information showing whether the location is infected
(x) or not infected (check).

104



directly or indirectly influenced by these definitions are also suppressed. In the example,

only lines 11 and 12 are suppressed when the program is re-executed. However, suppose

that now the execution reaches line 13 and another crash occurs. This is possible since

infected location ∗p2 is used as an index into an array of struct pointers. In the example,

suppose that structArray[*p2] is actually NULL. Then line 13 will result in a segmentation

fault since NULL is dereferenced. The root cause of this failure is still at line 4, but its

location is not obvious at this point.

The program is re-executed again to suppress the newly-revealed memory corrup-

tion directly involved in the crash at line 13. This is depicted in Figure 5.2 (C). This time,

suppression is performed on the last definition of location ∗p2, which occurs at line 8, plus

the other statements that are directly or indirectly influenced by the definition at line 8

(similarly for the last definition of the base address for structArray, not shown in the fig-

ure). Note that line 8 is the appropriate last definition of ∗p2, since pointer q2 actually

refers to the same location as p2. In the example, during execution, suppression is per-

formed on lines 8, 9, 10, 11, 12, and 13. Note that lines 14 and 15 are not suppressed since

the infected location defined at line 8 (which happens to be pointed to by both p2 and q2)

does not actually influence the locations of the pointers p2 and q2 themselves used at lines

14 and 15. With these new suppressions, however, the program crashes yet again. At line

15, the program aborts due to a double free of the same memory location (last defined at

line 4).

Finally, the program is re-executed a third time as shown in Figure 5.2 (D). Here,

suppression is performed on the definition of pointer q2 at line 4, plus its subsequent use at

line 15. In total, only lines 1, 2, 3, 5, 6, 7, and 14, are executed. In this case, the program
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proceeds normally (without any crash) since all memory corruption has been suppressed

during execution. In other words, only the statements involving un-infected memory lo-

cations are exercised. As a result, it can be concluded that the most-recently identified

statement for suppression – line 4 – is directly associated with the memory error, because

it is the root cause of all the memory corruption that led to the program crashes. Overall,

this example shows how suppression gradually isolates the first point of memory corruption

by suppressing program crashes to iteratively reveal more memory corruption. This con-

tinues until the first point of memory corruption is revealed and suppressed, resulting in no

additional program crashes.

5.2.2 The Suppression Algorithm

The algorithm to carry out suppression is shown in Figure 5.3. The technique

requires as input a program and an associated test case for which a program crash occurs due

to memory corruption. The technique iteratively searches for points of memory corruption

in the execution and suppresses the effects of these points until the first point of memory

corruption is found (which is assumed to be at or near to the memory error). The technique

iterates as long as a program crash occurs. It is assumed that if memory corruption exists

in an execution, then a crash will occur. Thus, when no further crashes occur, the most

recent point(s) of suppression is assumed to be the first point of memory corruption in the

execution.

The main loop comprising the technique is shown in lines 3 – 10 in Figure 5.3. This

loop iterates as long as a crash occurs. On each iteration, the corrupted/infected memory

location and the associated statement instance causing the crash are identified (lines 4 and
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input:
Program P and test case t causing a crash due to a memory bug.

output:
Stmt(s) identified as the first point of memory corruption in execution of t on P .

algorithm SuppressionTechnique
begin
1: Sdef := “undefined”;
2: Initial Suppression Points := {};
3: while a program crash C occurs during execution of t on P do
4: Scrash := the statement instance directly causing crash C;
5: Loc := accessed memory location(s) causing crash C at stmt instance Scrash;
6: Sdef := the statement instance(s) originally defining the value(s) in Loc

prior to its use at Scrash;
7: if Sdef does not exist then
8 Sdef := the statement instance(s) originally defining the address(es) of Loc

prior to its use at Scrash;
endif

9: Initial Suppression Points := Initial Suppression Points ∪ {Sdef};
10: re-execute t on P while suppressing (nullifying) the effects of

(1) all statement instances in Initial Suppression Points;
(2) all statement instances directly/indirectly influenced by some statement

instance in Initial Suppression Points
endwhile

11: report the program statement(s) associated with the latest Sdef ;
end SuppressionTechnique

Figure 5.3: The suppression algorithm to identify the first point of memory corruption in
an execution that crashes due to a memory error.

5). In some cases, such as crashing array accesses that involve both a base address as

well as an index value, there may be more than one location that could be infected; all

such locations are considered. The statement instance that defined this corrupted memory

location is identified (line 6). However, an accessed memory location may have no prior

definition in cases where the address of the accessed location itself is incorrect. In this case,

the statement instance that defined the incorrect address is identified instead (lines 7 and

8). In the case where more than one location is identified at line 5, the same number of

associated statement instances will be identified in line 6 or 8. Lines 6 through 8 essentially
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give preference to the possibility of an incorrect value in a memory location as opposed

to the possibility of the memory location itself being incorrect. However, this approach is

effective and worked well in the experiments. This is because if the memory location itself

is incorrect, then it is unlikely for there to be a prior definition to that location, and so line

8 is highly likely to be executed in this case.

When identifying the last definition of an infected value, the original definition of

the infected value is identified (bypassing any copies that may occur, for instance, by passing

values through function calls). This is because the original definition of an infected value is

the one that is ultimately responsible for the crash caused by that infected value. Once the

definition statement(s) is identified, it is then added to the set of “initial suppression points,”

the execution points at which suppression should be initiated upon program re-execution

(line 9). The key step of the technique is then performed (line 10), in which the program

is re-executed using the same input. During execution, the direct and indirect effects of all

statement instances in the set of initial suppression points are suppressed. The effect of

this suppression is that the previously-occurring crash will be avoided, since the memory

corruption directly causing it will have been suppressed. Thus, either a new crash will occur

in the execution – in which case the loop iterates again – or else no crash will occur and the

last-identified suppression point is identified as the likely first point of memory corruption

in the execution (line 11). On rare occasions, more than one likely first point of memory

corruption may be outputted by the technique at line 11, since lines 6 and 8 may identify

more than one statement instance. In these situations, a developer may have to manually

analyze a few statements in order to identify the true first point of corruption. However,

this situation did not arise in the experimental study described later in this chapter.
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5.2.3 Real-world Example using the Suppression Algorithm

The use of suppression on the real-world example depicted in Figure 5.4 is now

illustrated. This figure shows a crashing execution associated with a memory error in

the pine program, which is a program for Internet news and e-mail. In the figure, the

root cause (error), the first point of memory corruption, and the point of the crash, are

highlighted. Solid arrows between statements represent propagation of incorrect values

during the crashing execution: thin arrows from the point of the root cause until the

first point of memory corruption represent propagation of non-address incorrect values;

thick arrows from the first point of memory corruption until the crash show propagation

of memory corruption. Arrows with dotted lines represent control flow. To follow the path

leading up to the failure, start at the point of the root cause and follow the arrows until

the point of the crash is reached.

In this example execution, the memory error that is root cause of the failure occurs

in file bldaddr.c, line 7270. At this statement, a size value is estimated to be too small

because it does not account for the possibility of special characters in an input string. This

infected size value propagates through several statements until it is used at line 7126 to

allocate a heap buffer. This pointer variable assignment is considered to be the first point

of memory corruption, because the buffer is allocated based on an incorrect size. A pointer

to this buffer is then passed through several function calls until function rfc822 cat in file

rfc822.c is executed. Within this function, data is written into the buffer and the buffer is

overflowed. Control then eventually reaches file bldaddr.c, line 7134, where the pointer to

the infected buffer is returned to file mailindx.c, line 4502. The pointer is finally passed to

file fs unix.c, line 60, where a call to free occurs that finally results in a program crash.
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mailindx.c
int set_index_addr (…) {
4502: a_string = addr_list_string(…);
4508: fs_give((void **)&a_string);
}

fs_unix.c
void fs_give (void **block) {
60: free (*block);
}

bldaddr.c
int est_size (ADDRESS *a) {
7270: cnt += (a->mailbox ? strlen(a->mailbox) : 0);
7271: cnt += (a->adl ? strlen(a->adl) : 0);
7272: cnt += (a->host ? strlen(a->host) : 0);
7284: cnt += 10;
7287: return (max(cnt, 50));
}

char * addr_list_string (ADDRESS *adrlist, …) {
7126: list = (char *)fs_get((size_t)est_size(adrlist));
7128: rfc822_write_address_decode(list, …);
7134: return (list);
}

addrbook.c
void rfc822_write_address_decode (char *dest, …) {
7153: rfc822_address (dest, …);
}

rfc822.c
void rfc822_address (char *dest, …) {
234: rfc822_cat (dest, …);
}

void rfc822_cat (char *dest, …) {
253: dest += strlen (dest);
254: *dest++ = '"';
258: strncpy (dest,src,i = s-src);
259: dest += i;
260: *dest++ = '\\';
261: *dest++ = *s;
265: *dest++ = '"';
266: *dest = '\0';
}

ROOT CAUSE

CRASH

1st MEM CORRUPT

Figure 5.4: A failing execution in the pine program illustrating how traversal of a memory
error can lead to memory corruption and ultimately trigger a crash. Thin solid arrows
between statements represent propagation of incorrect non-address values. Thick solid
arrows represent memory corruption propagation. Dotted arrows represent flow of control.
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The crash occurs because of the earlier buffer overflow corrupting an important value that

is needed by the free function.

It turns out that for this execution, there are 5 static dependence edges (1,103 dy-

namic instruction instances) from the point of error traversal until the first point of memory

corruption, and an additional 14 static dependence edges (10,165 dynamic instruction in-

stances) from the first point of memory corruption until the point of the crash. Further, 19

static dependence edges and over 11,000 dynamic instruction instances separate the root

cause from the crash. Thus, there is considerable propagation of incorrect values and cor-

rupt memory locations in this crashing execution. This illustrates the potential for memory

errors to have complicated effects on program execution, and demonstrates why memory

errors can be difficult to locate.

When running the suppression technique on this program execution to isolate the

first point of memory corruption, it is determined that the program crash in function free

is caused by an unexpected software abort, due to accessing a single particular memory

location. The original definition of this location happens to be the definition of variable

list at line 7126 of file bldaddr.c. This is actually the first point of memory corruption,

since the buffer allocated at this point is too small. As a result, the suppression technique

re-executes the program while suppressing this definition and all of its effects. In this case,

all memory corruption is avoided (since all statements influenced by the too-small buffer are

suppressed) and therefore no program crash occurs. The technique then reports the correct

first point of memory corruption in the execution. Thus, even though pine has a large

degree of memory corruption propagation in this case, the technique is able to bypass many

memory corruption dependence edges when isolating the first point of memory corruption.
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Whether or not this can happen in other situations depends upon which infected memory

locations directly cause a crash in an execution. In the case of pine, it happened that the

first corrupted memory location directly led to the first crash, so the technique identified

the ideal result very quickly. However, in general the suppression technique may sometimes

require several iterations to identify the first point of memory corruption.

5.3 Exposing Program Crashes using Variable Re-ordering

The suppression technique relies on the fundamental assumption that memory

corruption in an execution will cause a program crash. This assumption may not hold in

cases where corrupted memory is never accessed, or in cases where it may be accessed in

such a way that no crash happens to occur. Evidence that this can happen was seen in

the memory corruption study (Section 5.1), in which inputs could be created in certain

cases that trigger memory corruption but do not result in a crash. As a result, this exposes

two limitations of suppression. First, the technique is not applicable to executions that do

not originally crash, even though the executions may traverse an error and cause memory

corruption. Second, the technique may terminate prematurely in cases where no crash

occurs during a suppression execution even though memory corruption still exists in the

execution. Premature termination would mean that the technique would identify some

point of memory corruption along the path from the error to the point of the failure, but it

would not be the first point of memory corruption.

112



5.3.1 The Variable Re-ordering Algorithm

To address these limitations, the idea of variable re-ordering is developed to expose

crashes due to memory corruption where crashes may not otherwise occur. Variable re-

ordering involves altering the relative ordering of variable locations in memory, prior to using

them during execution. The idea is based on the observation that memory errors often lead

to unexpected reading or writing of memory locations (other variables) at execution points

when those variables should not have been accessed. Depending upon which variables are

unexpectedly accessed, a crash may or may not occur. For instance, overflowing a buffer

may cause other program variables to be unexpectedly overwritten. As another example,

writing to the location pointed to by an infected pointer variable may cause some other

variable to be unexpectedly overwritten.

The general algorithm for variable re-ordering to expose crashes is presented in

Figure 5.5. The approach is essentially a search algorithm that tries different variable

orderings to try to find one that leads to a crash. The input to the algorithm is a non-

crashing execution. A second, optional input is a set of memory locations previously known

to be corrupt; this information may be available if Execution Suppression was previously

run to identify a subset of the corrupted memory, prior to invoking the variable re-ordering

algorithm. This optional information can be useful for prioritizing the variables to re-order,

to try to expose crashes more quickly. The first step of the algorithm is to identify the

set of all variables accessed at some point during the execution (line 1). These variables

may be in global space, on the stack, or in the heap. Only the accessed variables need to

be considered as candidates for re-ordering, since non-accessed variables in the execution

cannot lead to any crashes. Next, the global, stack, and heap memory spaces to consider are
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input:
Program execution E that does not result in any crash.
(Optional): set of known corrupt memory locations Corrupt.

output:
A variable ordering O that causes execution E to result in a crash, or else NULL

if no such O can be found.
algorithm VariableReordering
begin
1: Vaccessed := set of global, stack, and heap variables accessed during execution E;
2: Spaces := {global, stack, heap};
3: Spaces := sort Spaces so those associated with at least one address in

Corrupt (if specified) are ordered first; break ties in increasing order of
# of associated variables in Vaccessed;

4: for each type of memory space space ∈ Spaces taken in sorted order do
5: V ar Orderings := set of distinct variable orderings involving variables in

Vaccessed that are associated with memory space space;
6: for each variable ordering O ∈ V ar Orderings do
7: if variable ordering O applied to execution E causes E to crash

then report O;
endfor

endfor
8: report NULL;
end VariableReordering

Figure 5.5: General variable re-ordering algorithm to expose crashes in an execution that
triggers memory corruption.

ordered so that if any of these spaces involve known corrupted memory, they are ordered

first; ties are broken by ordering the spaces in increasing order of the number of accessed

variables associated with each space (lines 2–3). Considering the memory spaces in this

order (loop in lines 4–7) increases the chances that a crash will be exposed quickly. This is

because memory spaces already known to involve memory corruption might be more likely

to cause crashes if the variables within these spaces are re-ordered. For the variables in each

memory space, the set of distinct variable orderings to try are found (line 5). Heuristics may

need to be used here to limit the number of orderings in cases where there may be a large

number of potential orderings to try (these heuristics are discussed later in this section).

114



Next, for each variable ordering, that ordering is applied to the given execution to see if a

crash occurs; if so, then the particular ordering causing the crash is reported (lines 6–7). If

no crashes occur after trying all variable orderings, then the value NULL is returned (line

8) to indicate that no ordering was found.

Practical Considerations

In practice, there are likely to be many possible variable orderings for a particular

execution. For example, for program xv used as one of the experimental benchmarks, it

turns out that one of the analyzed executions involved accessing over 400 distinct global

variables. To blindly try all possible permutations of these global variables in memory would

take a very long time. Instead, a heuristic can be used that significantly limits the number

of variable orderings to try, while still likely exposing crashes through variable re-ordering

when it is possible to do so. This heuristic is based on the observation that crashes are

usually caused by infection of address-related variables (either pointer variables, or variables

that are used to compute addresses, such as array index variables). Moreover, these variables

are most likely to become infected when they are placed immediately after buffers, because

potential buffer overflows may unexpectedly overwrite these variables. Thus, the heuristic

considers only those accessed variables that are either associated with buffers, or else are

used to compute addresses. Further, these variables are re-ordered only to ensure that

different address-related variables are placed immediately after different buffers (no need to

try all possible permutations of the variables). Thus, variables are re-ordered by laying out

different (buffer, address-variable) pairs in memory. This significantly reduces the number

of accessed variables to consider for re-ordering, and drastically reduces the total number
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of variable re-orderings that need to be performed. Moreover, each program execution

that performs variable re-ordering can account for multiple (buffer, address-variable)

pairs. For example, if there are 5 distinct buffers and 5 distinct address-related variables

under consideration, then in total there are 25 (buffer, address-variable) pairs of interest;

however, only 5 executions are needed to account for all of these, since 5 different pairs can

be simultaneously handled during each execution.

For each of the global, stack, and heap spaces, different techniques are used to re-

order the associated variables. In global space, considered variables are simply rearranged

in global memory prior to program execution. One way to implement this would be to

modify a compiler to alter the layout of globals in memory. However, the experiments

instead used the Valgrind dynamic binary translation framework [55, 103] to simulate this.

The implementation allocates custom memory space for global variables and then maps

each global variable to a corresponding (specially-ordered) location in the custom memory

space. It is ensured that any subsequent accesses to global variables operate on the custom

memory space. In stack space, considered local variables at the start of each function call

are rearranged on the call stack by instrumenting within Valgrind to modify the order

in which they are pushed onto the call stack; references to the local variables within the

function call are then adjusted accordingly. For function calls that involve at least one

accessed stack buffer, it is ensured that one of the attempted variable orderings involves

placing the function call return address immediately after a stack buffer (to expose stack

smashing when it is possible). Also, re-ordering of local variables may involve moving them

to global space, which is semantically correct as long as a particular function is known

to have at most one activation record on the call stack at any given time. Finally, the
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problem of variable re-ordering in heap space is more challenging because these variables

are dynamically allocated and deallocated during execution. For simplicity, heap variables

are specially handled and are not re-ordered in memory. Instead, a special “magic value”

is used and positioned adjacent to each heap variable. At the time of variable deallocation

or execution termination, the magic value is checked to see if it has been overwritten; if so,

a program abort (crash) is produced indicating which program instruction overwrote the

magic value.

5.3.2 Example using the Variable Re-ordering Algorithm

Figure 5.6 shows a selection of statements from the ncompress program analyzed in

the study of memory corruption in Section 5.1. In this program, the stack buffer tempname

in function comprexx is allocated with a fixed size at line 884. Thus, the strcpy call at line

886 can overflow this buffer if fileptr, which points to an input string of arbitrary length,

is too long. For this program, one of the inputs analyzed in the memory corruption study

caused the buffer to be overflowed, but resulted in no crash. This is because, on the call

stack, the local integer variables fdin and fdout were positioned in memory directly after

the buffer tempname, but before the function call return address. In the non-crashing

input, it turned out that the overflow was relatively small and only infected the values of

the two local integer variables, whose infected values were not subsequently used in a way

that could result in a program crash. However, through variable re-ordering, one of the

considered alternative orderings is one in which the function call return address is placed

immediately after the overflowed buffer on the call stack. Under this variable ordering, the

same buffer overflow now corrupts the function call return address, leading to a crash.
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compress42.c
void comprexx (char **fileptr) {
882: int fdin;
883: int fdout;
884: char tempname[MAXPATHLEN];
886: strcpy (tempname,*fileptr);
}

STACK OVERFLOW

Figure 5.6: Selection of statements from the ncompress program to illustrate variable re-
ordering.

5.4 The Complete Execution Suppression Technique

Figure 5.7 shows the complete Execution Suppression algorithm incorporating both

the suppression technique and the variable re-ordering technique. Note that the required

input to this algorithm is simply a program and corresponding input that causes memory

corruption. Because of variable re-ordering, it is not necessary for the program input to

initially result in a crash. Given a program execution involving memory corruption (line 1),

the suppression technique is executed (line 3). Suppression might terminate immediately if

the initial execution does not result in a crash. Otherwise, the suppression technique will

proceed until an execution results in no crash. In the case that the identified statement is

not the true first point of memory corruption, there is a chance that variable re-ordering

will expose a new crash. Thus, the variable re-ordering technique is initiated to see whether

any further crashes can be found to expose more memory corruption (line 4). If a variable

ordering causing a crash is found, then the modified execution with appropriate variable

ordering to cause the crash is identified (lines 5–6). This crashing execution is then passed

once again to the suppression technique to resume isolating the first point of memory

corruption (back at line 3). The algorithm iterates until finally there are no crashes in
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input:
Program P and test case t causing memory corruption due to a memory error.

output:
Stmt(s) identified as the first point of memory corruption in execution of t on P .

algorithm CompleteExecutionSuppressionTechnique
begin
1: E := the execution of test case t on program P ;
2: do
3: Identified Statement := run suppression technique using E;
4: V ariable Ordering := run variable re-ordering technique using the most

recent suppression execution performed in line 3 above;
5: if (V ariable Ordering != NULL) then
6: E := the new crashing execution using V ariable Ordering computed in

line 4 above;
7: while (V ariable Ordering != NULL);
8: report Identified Statement;
end CompleteExecutionSuppressionTechnique

Figure 5.7: The complete Execution Suppression algorithm to isolate the first point of
memory corruption in an execution.

the suppression technique and the variable re-ordering technique cannot find any further

crashes. At this point, the most recent statement identified by the suppression technique

is reported as the likely first point of memory corruption (line 8). As mentioned earlier,

the output of Execution Suppression may include more than one statement in certain cases.

However, this situation did not arise in the experiments.

5.5 Evaluation of Execution Suppression

To evaluate the effectiveness and efficiency of Execution Suppression in locating

memory errors, experiments were conducted using the same set of benchmark programs

and inputs described previously in Tables 5.1 and 5.2 in the memory corruption study in

Section 5.1. Implementation details for suppression are described later in Chapter 7.
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5.5.1 Experiments with Suppression Only

First, every crashing input was considered and executed using the basic suppression

technique without variable re-ordering. The results are shown in Table 5.3. For each crashing

input, the table shows the total number of program executions required by the suppression

technique to isolate the first point of memory corruption (“# Exec. Req.”). Also, the

statement identified by the technique is reported (“Identified Statement”), along with the

maximum static dependence distances from the identified statement to the first point of

memory corruption (“1st Corr.”), and from the identified statement to the actual memory

error (“Error”). For example, in the crashing execution for program man, a total of 2

program executions are required by the suppression technique: the first is the original

crashing execution, and the second is a suppression re-execution that resulted in no further

crashes. A statement was identified that happened to be 1 dependence edge away from the

first point of memory corruption, and 2 dependence edges away from the error. Although

the first point of memory corruption was missed in this case, the suppression technique

was able to precisely identify the first point of memory corruption in the executions for all

other inputs (even for programs ncompress and polymorph where crashes occurred at two

different program points). As was observed previously in the memory corruption study and

as is shown in Table 5.3, these identified statements were either at, or relatively close to,

the memory errors.

Program man was the only case in which the suppression technique was not able

to precisely identify the first point of memory corruption. In this case, the technique

terminated prematurely because no crash occurred even though memory corruption was still

present in the execution. Thus, the complete Execution Suppression technique that includes
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Program Input Type # Exec. Identified Dep. Distance To...
Name Req. Statement 1st Corr. Error

gzip-1.2.4 Crash Point 1 2 gzip.c: 828 0 0

man-1.5h1 Crash Point 1 2 manfile.c: 243 1 2

bc-1.06 Crash Point 1 2 storage.c: 177 0 1

pine-4.44 Crash Point 1 2 bldaddr.c: 7126 0 5

mutt-1.4.2.1 Crash Point 1 3 utf7.c: 192 0 1

ncompress-4.2.4
Crash Point 1 2 compress42.c:886 0 0
Crash Point 2 4 compress42.c:886 0 0

polymorph-0.4.0
Crash Point 1 2 polymorph.c:198 0 1
Crash Point 2 3 polymorph.c:193 0 1

xv-3.10a Crash Point 1 4 xvbmp.c: 167 0 2

tar-1.13.25 Crash Point 1 2 incremen.c: 180 0 0

tidy-34132 Crash Point 1 2 parser.c: 854 0 0

cvs-1.11.4 Crash Point 1 2 server.c: 992 0 0

Table 5.3: Experimental results using only suppression (no variable re-ordering), with re-
spect to different crashing inputs on the benchmark programs.

variable re-ordering was used to see if the results for man could be improved. Indeed, as is

shown in Table 5.4, variable re-ordering allows the first point of memory corruption to be

precisely identified in the execution for man. This is because variable re-ordering exposes

one additional crash in the execution that was not originally observed when running the

suppression-only technique. In this case, forcing an array index variable to be located in

memory directly after an overflowed buffer causes a new crash to occur, revealing some

additional corrupted memory that allows the technique to precisely find the first point of

memory corruption.

5.5.2 Experiments with Suppression and Variable Re-ordering

An important feature of variable re-ordering is that it enables Execution Suppres-

sion to be applicable to other inputs that trigger memory corruption but do not initially

result in a program crash. Thus, besides showing the revised results for program man, Ta-
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Program Input # Crash # V.O. Identified Dep. Dist. To...
Name Type Exposed Exec. Statement 1st Corr. Error

gzip-1.2.4 No Crash 0 15 — — —

man-1.5h1 Crash 1 1 18 man.c: 977 0 1

bc-1.06 No Crash 1 — storage.c: 177 0 1

pine-4.44 No Crash 1 — bldaddr.c: 7126 0 5

mutt-1.4.2.1 No Crash 1 — utf7.c: 192 0 1

ncompress No Crash 1 5 compress42.c:886 0 0
-4.2.4

polymorph No Crash 1 6 polymorph.c:198 0 1
-0.4.0

xv-3.10a No Crash 1 135 xvbmp.c: 167 0 2

Table 5.4: Experimental results using suppression and variable re-ordering (the complete
Execution Suppression technique), using different inputs on the benchmark programs.

ble 5.4 shows the results of running the complete Execution Suppression technique using the

seven non-crashing inputs analyzed earlier in the memory corruption study in Section 5.1.

Without variable re-ordering, it would not have been possible to have applied Execution

Suppression to these non-crashing inputs.

The format of Table 5.4 is the same as Table 5.3, except the column “# Exec.

Req.” has been replaced by two columns: “# Crash Exposed”, indicating how many

additional crashes were found through the use of variable re-ordering before the technique

terminated (1 in all cases except for gzip); and “# V.O. Exec.”, indicating the maximum

number of variable re-ordering executions required in order to find the exposed crash (in

the case of gzip, the number of re-ordering executions in order to discover that no crash

could be exposed). In the table, the number of required variable re-ordering executions is

not listed for programs bc, pine, and mutt. This is because these three benchmarks involve

heap-buffer overflows, and as was described previously, heap buffers are handled differently

and variable re-ordering is not performed with heap variables.

It turns out that for all of the non-crashing inputs except gzip, it was possible to
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find a particular variable re-ordering that exposed a crash in the execution. In all of these

cases, this made suppression applicable, which in turn resulted in the first point of memory

corruption being precisely identified without the need to expose any more crashes through

variable re-ordering. For gzip, the initial input did not crash because a global buffer was

overflowed by 1 position, erroneously writing the value NULL into another global variable

that happened to already have value NULL. In this case, no memory corruption actually

occurred during execution because a memory location was overwritten with the same value.

For this execution, none of the other global variables were accessed in the rest of the

execution in such a way that they could have resulted in a crash if they had been infected.

As a result, the variable re-ordering technique could not force a crash to happen for this

particular case.

In order to expose a crash through variable re-ordering, the maximum number of

program executions required to achieve this for each benchmark ranged from 5 executions

for program ncompress, to 135 executions for program xv. The reason xv requires so

many distinct program executions in this case, is because the particular execution under

consideration happens to access 202 different global buffers and 67 different address-related

variables (much higher than in all the other benchmarks). It therefore takes quite a few

executions in this case to group these variables in different ways to try to expose crashes.

Across all of the benchmark programs, the actual time required to execute each

program given the suppression and variable re-ordering implementations never took more

than a few seconds per execution. When performing only suppression, the experiments

required between 2 and 4 executions per benchmark, so the total time required to run the

technique was only a matter of seconds for each program. However, when using variable re-
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ordering, many more program executions may be performed when trying different variable

orderings to expose crashes. In the experiments, this translated to total runtime ranging

from several seconds (for ncompress and polymorph), to several minutes (xv was the worst

case that required about 5 minutes to run). This timing may be reasonable in a debugging

context.

5.6 Summary

In this chapter, the state alteration technique called Execution Suppression was

developed for assisting in the task of locating memory errors in software. The technique uses

the notion of suppression to iteratively identify and avoid the effects of known corrupted

memory locations in a crashing execution, until the first point of memory corruption in the

execution can be identified. This point is likely to be at, or near to, the error. It was shown

how the idea of variable re-ordering can be used to expose crashes due to memory corruption

in cases where crashes may not otherwise occur. By combining the ideas of suppression and

variable re-ordering, Execution Suppression can become highly effective at assisting in the

location of memory errors.

To motivate the development of Execution Suppression, a detailed study was pre-

sented of 11 real-world benchmark programs containing known memory errors that involve

varying degrees of memory corruption propagation. An experimental analysis of Execution

Suppression was conducted using the 11 benchmark programs. In all cases, the technique

was able to precisely identify the first point of memory corruption in an execution, and this

point was always either at, or very close to, the memory error.

Several observations can be made about Execution Suppression. First, the idea
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of suppression is effective because it works in the general case when memory corruption

propagation occurs in a distributed fashion – with each infected memory location potentially

influencing multiple other memory locations – rather than in a straight-line fashion. Even

though suppressing some corruption may avoid one failure, there is a chance that any

remaining corruption would still lead to subsequent failures. The technique can also be

effective when multiple independent memory errors exist in a program simultaneously. On

each iteration of the technique, the algorithm gets closer to identifying the first point of

memory corruption for some memory error (the technique is not sensitive to which memory

error). Once a first point of memory corruption is found, the associated error can be fixed

and then the technique can be run again on the modified program to identify any remaining

memory errors.

Execution Suppression can also be used to locate a variety of memory errors. This

is because the technique views memory errors in terms of accesses to corrupted memory

locations during program execution, and this trait is shared by most memory errors. For ex-

ample, consider a dangling pointer to a deallocated memory location. Suppose this memory

location is later re-allocated and used, but in the meantime (due to the dangling pointer),

an unexpected write occurs to this memory location, causing a crash once the infected value

at that location is accessed. In general, this type of error can be particularly tricky to find,

especially since the offending write can be associated with a completely different type than

the type associated with the access that causes the crash. However, in this situation the

technique can immediately identify the last instruction performing the offending write due

to the dangling pointer.

One limitation of Execution Suppression is that it assumes program crashes are
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caused by memory corruption. However, this is not always the case, and the technique is

not designed to handle memory errors and crashes that do not involve memory corruption.

An important class of such memory errors is the memory leak, in which allocated memory

is not deallocated when it is no longer needed. This can eventually cause a crash when

the program runs out of available memory. However, memory leak errors do not involve

memory corruption, according to the definition. Thus, Execution Suppression is expected

to be ineffective for locating the root causes of memory leaks.

A lingering question about Execution Suppression is how it will work for mul-

tithreaded programs. This is an important question because memory errors can exist in

both single-threaded and multithreaded programs. It turns out that the basic Execution

Suppression technique does not address the unique traits of a very important type of mul-

tithreading error that can involve memory corruption: the data race error. In the next

chapter, it is shown how the notion of suppression can be extended to handle multithread-

ing errors including data races.
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Chapter 6

Execution Suppression and

Multithreading Errors

In the previous chapter, the Execution Suppression technique was presented that

can be used to isolate memory corruption to locate memory errors. The technique iteratively

examines program crashes due to memory corruption to identify subsets of memory corrup-

tion involved in a program execution, until the first point of memory corruption can be iden-

tified. However, the technique implicitly assumes that the faulty program being analyzed

is single-threaded and deterministic, i.e., the same failure will occur on multiple program

executions using the same input values. The effectiveness of the technique on multithreaded

programs is limited for two important reasons. First, the technique does not include a mech-

anism to ensure that a failure due to a multithreading error can be repeated on subsequent

executions. In general, multithreaded programs can execute non-deterministically because

different thread interleavings can occur on different program executions, even though the

executions may involve the same set of input values. In the presence of multithreading
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errors, such non-determinism may cause a failure to manifest on only some executions but

not others. Since Execution Suppression is an iterative technique that performs multiple

program executions using the same set of input values, a mechanism is required to ensure

that the same thread interleaving occurs on multiple program re-executions. The second

reason why the effectiveness of the technique is limited for multithreaded programs is be-

cause the technique does not account for the unique traits of data races, an important class

of multithreading errors that is caused by an unexpected interleaving of parallel threads and

can result in memory corruption. In this chapter, it is shown how Execution Suppression

can be extended [70] to locate multithreading errors that involve memory corruption.

Execution Suppression considers read-after-write (RAW) dependencies when de-

termining which statements are affected by memory corruption during execution and should

be suppressed. As was observed by Tallam et. al. [130], two additional kinds of dependen-

cies should also be considered when detecting data races: write-after-read (WAR) and

write-after-write (WAW) dependencies. The extended technique accounts for these other

dependencies in order to be able to identify data race errors on-the-fly. Prior work on classi-

fying benign and harmful data races [101] has also shown that not all data races are harmful,

i.e., they may not always affect the correctness of a program execution. For instance, some-

times data races are involved when synchronizing threads in multithreaded executions, but

these data races do not negatively affect the correctness of a program. These kinds of data

races should not be identified as the likely root cause of a failure. Thus, this has inspired

the development of a new component in Execution Suppression that checks whether a data

race is potentially harmful before reporting it to a developer as the likely root cause of a

failure.
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6.1 Locating Multithreading Errors using Suppression

The revised technique for locating multithreading errors can work for data race

errors, in addition to the other memory errors involving memory corruption that can be

handled by the basic technique presented in Chapter 5. This includes errors such as buffer

overflows (including corruption of function call return addresses), uninitialized reads, dan-

gling pointers, and double frees. The same definition of memory corruption is used as was

presented in Section 5.1.2.

A data race in an executing program occurs when multiple parallel threads perform

unsynchronized accesses to shared data. These data races can potentially be harmful, i.e.,

force the execution into an unexpected state, when at least one of those accesses is a write

to a shared memory location. Intuitively, a data race can lead to such problems as a value

being unexpectedly overwritten or a stale value being read. The technique is designed

to dynamically check for potentially-harmful data races that may cause a failure during

execution.

Definition 10 (Data Race).

Given a multithreaded program execution, a data race can be defined as the concurrent

access of a shared memory location by two or more different threads, such that the following

two conditions hold: (1) at least one of those accesses involves a write to that memory

location; and (2) there is no synchronization specified between those memory accesses.

As discussed in Chapter 5, memory corruption resulting from an error can propa-

gate (spread) to other memory locations until finally a subset of the corruption may directly

cause a program failure. In a multithreaded program, the error that is the root cause of
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such a memory-related failure can either be a data race, or else some other kind of memory

error. The extended version of Execution Suppression iteratively isolates the error through

multiple program executions. The technique is designed to specially alter the state of each

execution through suppression to reveal more of the memory corruption, until finally the

root cause is revealed. If any execution results in no failure, then the technique termi-

nates and assumes that the root cause has been found. The technique also terminates if

a potentially-harmful data race is found to be directly involved in the failure, as the data

race is assumed to be the root cause. Note that a program failure can occur in the form

of a program crash, or else any other observable memory-related failure such as incorrect

output that could indicate memory corruption.

Each iteration of the technique analyzes a program failure as follows. First, the

technique determines whether a potentially-harmful data race is directly involved in the fail-

ure. If so, the data race is reported and the technique terminates. If not, then the memory

corruption that directly caused the failure is suppressed during the execution, following the

same semantics as was previously described for the basic Execution Suppression technique

in Chapter 5.

The overall technique is composed of three main tasks: (1) ensuring that a mul-

tithreaded error can be faithfully traversed on multiple program executions; (2) determin-

ing on-the-fly whether a particular statement instance during execution is involved in a

potentially-harmful data race; and (3) performing suppression in order to account for prop-

agation of memory corruption during execution. The technique is presented in Figure 6.1.

The approach takes as input a single-threaded or multithreaded program and an associated

test case that causes a memory-related failure in the program. The output of the approach
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input:
Single-threaded or multithreaded program P and test case t causing a

program failure.
output:

Data race or statement(s) identified as the root cause of the failure.
algorithm MultithreadedExecutionSuppressionTechnique
begin

// Task 1: Ensure effect of error can be reproduced on multiple executions.
1: execute P using t and analyze the execution to ensure that the failure can be

faithfully reproduced;
2: Sdef := “undefined”;
3: Ssupp := {};
4: while an observable memory failure f occurs during execution of P using t do
5: Suse := the statement instance at which f occurs;
6: L := the used memory location(s) causing f at Suse;
7: Sdef := the statement instance(s) defining the value(s) in L prior to its use

at Suse;
8: if Sdef does not exist then
9 Sdef := the statement instance(s) defining the address(es) of L prior to its use

at Suse;
endif
// Task 2: On-the-fly check for WAR and WAW potentially-harmful data race.

10: re-execute P using t until Sdef is reached, while monitoring accesses to L
(for WAR and WAW data race checking);

11: if ∃ WAR or WAW data race D at Sdef then
12: if D is potentially harmful then output D and return;

endif
// Tasks 2 and 3: Perform execution suppression while also checking on-the-fly
// for RAW potentially-harmful data race.

13: resume execution from Sdef while (1) suppressing:
(a) the definition of L at Sdef ;
(b) statement instances in Ssupp; and
(c) any subsequent statement instances directly or indirectly influenced by the

definition of L at Sdef ;
and (2) monitoring accesses to L (for RAW data race checking):

if ∃ potentially-harmful RAW data race D then output D and return;
14: augment set Ssupp with the additional statements suppressed at line 13 above;

endwhile
15: report the statement(s) associated with the latest Sdef ;
end MultithreadedExecutionSuppressionTechnique

Figure 6.1: The extended Execution Suppression algorithm for locating multithreading
errors.
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is either a potentially-harmful data race, or else a program statement that is identified as

the likely root cause of the failure. As was the case for the basic Execution Suppression

technique, more than one program statement may be identified by the technique on some

occasions. Each of the three main tasks of the technique are now described, with respect

to how they appear in Figure 6.1.

6.1.1 Reproducing the Effects of Multithreading Errors

When debugging any program, it is necessary to be able to reproduce a program

failure so that a failing execution can be analyzed to deduce what is going wrong and

to figure out how to fix the problem. For single-threaded, deterministic programs, it is

enough to simply re-execute the program using the same set of input values. However, for

multithreaded programs, being able to repeat a failure is generally not a trivial task. This

is because certain multithreading errors may only manifest themselves under particular

thread interleavings, and these interleavings may change between executions even when

those executions are based on the same input values. Since the technique involves multiple

program executions, it is required that each execution be a faithful reproduction of the

original failing execution (not counting the alterations to the execution state performed

by the technique). The technique must address this issue in order to be applicable to

multithreaded programs.

One way to accomplish this repeatability would be to use a logging/checkpointing

system. This can be used to effectively record an execution so that it can be faithfully

replayed. One such system is jockey [123], a user-level library for performing checkpointing

and logging for the purpose of replaying a program execution. Another approach to ensure
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repeatability would be to control the scheduling of threads during execution, to ensure that

the same sequence of thread interleavings is executed each time the program is run on the

same input [98]. Valgrind [55, 103] is a user-space dynamic binary translation infrastructure

that can be used to perform this task. Valgrind provides a synthetic CPU in software for

program execution, and includes its own thread scheduling mechanism. This scheduler can

be modified to force a particular thread interleaving during execution. The experiments used

this Valgrind-based implementation. In general, the implementation would need to account

for other non-deterministic factors that may be involved in the execution besides thread

interleaving (such as reading input values from the execution environment). However, this

was not required for the experimental benchmarks.

In the algorithm in Figure 6.1, the task of ensuring faithful reproduction of the

effects of multithreading errors is performed at line 1, before the main iterative loop be-

gins. The subject program is executed to produce the failure, and during execution, the

information necessary to ensure faithful reproduction of the execution is recorded. This

information is then used on each iteration of the technique to ensure that the effect of any

multithreading errors is faithfully repeated.

The main loop of the technique is shown in lines 4 – 14 in Figure 6.1. As long as

the program execution ends in a failure (loop condition at line 4), the technique analyzes

the executed statement instance that is directly involved in the failure. Identifying this

statement instance is straightforward because the point of the failure is known, and therefore

the accessed memory location(s) causing the failure can also be easily found (lines 5–7). As

shown in lines 7–9, the technique targets the last definition (write) that directly led to the

failure. This statement instance may or may not be actual root cause of the failure. One
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way the statement instance is likely to be the root cause, is if the instance is associated

with a potentially-harmful data race occurring in the execution.

6.1.2 On-the-fly Checking for Data Races

The approach for on-the-fly checking for data races is composed of two main steps.

First, the technique checks for the existence of a data race. Second, the technique determines

whether the identified data race is potentially harmful. Only identified data races that are

potentially harmful are reported by the technique.

Identifying a Data Race

Given a target statement instance to analyze such that it performs a write, the

technique first determines whether a data race exists at this statement instance as follows.

At this statement instance, it is known which thread executed the write. Thus, when re-

executing the program, the technique monitors on-the-fly any access to this memory location

that comes from a different thread. In particular, the technique finds the last access (read

or write) to this memory location that comes from a different thread, and checks for any

synchronization that may exist between these two accesses. If no synchronization exists,

then this implies that there is either a write-after-read (WAR) or a write-after-write (WAW)

dependence between these two memory accesses that represents a data race. This step is

performed in line 10 in Figure 6.1. If there is no WAR or WAW data race here, then the

execution continues from this point while the technique monitors for any read access to the

same location coming from a different thread. Again, if there is no synchronization between

two such accesses, this indicates a read-after-write (RAW) data race. This step is performed
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along with suppression at line 13 in Figure 6.1.

Figure 6.2 shows the pseudocode for this on-the-fly method of detecting data races.

This accounts for the observation by Tallam et. al. [132] that data races can be represented

by either RAW, WAR, or WAW dependencies. Note that in Figure 6.1, the checking for

RAW data races is done on-the-fly while also performing the suppression. At any time

during the rest of the execution, if a RAW data race is found and then determined to be

potentially harmful, the technique immediately reports it and then terminates.

The technique for detecting a data race guarantees that the data race exists,

because it is detected as having actually occurred during a program execution. However, a

data race may or may not be potentially harmful [101]. For example, data races that do not

affect the state of the executing program are not harmful. The technique reports a data

race only if it is determined to be potentially harmful, because only then can it possibly be

the root cause for a failure.

Determining Whether a Data Race is Potentially Harmful

The technique determines whether a data race is potentially harmful by altering

the sequence of executing threads. Suppose that the two memory accesses involved in a data

race are at points access1 and access2 during execution, and these accesses are performed

by threads t1 and t2, respectively. Suppose further that at point access1, the set T includes

all threads that are ready to execute except t1. Also assume that at point access2, the value

stored in the associated memory location is v. Then the technique executes the program

up to |T | times; on each execution, a different thread from T is allowed to execute at point

access1 in place of thread t1. Then at the point during execution when the second memory
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input:
Execution E with target write instruction instance w, writing to location l and

executed by thread t.
output:

An identified data race, or NULL if no data race is found.
algorithm SearchForDataRace
begin
1: foundSync := false;
2: lastAccess := “undefined”;

// Monitor for WAR and WAW data races.
3: for each statement instance i in execution E do
4: if i == w then
5: if lastAccess != “undefined” && foundSync == false then
6: output data race between lastAccess and w and return;

else
7: break;

endif
8: else if i accesses location l using thread other than t then
9: lastAccess := i;
10: foundSync := false;
11: else if i performs thread synchronization related to accessing location l then
12: foundSync := true;

endif
endfor
// Monitor for RAW data races (if no other races found above).

13: for each remaining statement instance i in execution E do
14: if i reads from location l using thread other than t then

// If we reach here, there is no synchronization, otherwise the program
// would have returned below at line 17.

15: output data race between i and w and return;
16: else if i performs thread synchronization related to accessing location l then

// There cannot be a RAW data race.
17: report NULL and return;

endif
endfor

18: report NULL;
end SearchForDataRace

Figure 6.2: On-the-fly checking for data races.
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access occurs, the technique simply checks whether the value contained in the associated

memory location is different than v (has been changed). If so, the data race is determined

to be potentially harmful. If the value is not changed in any of the |T | executions, then

the data race is determined to not be potentially harmful. As shown in lines 12 and 13 in

Figure 6.1, a data race is reported only if it is determined to be potentially harmful.

6.1.3 Performing Suppression

The final task performed by the technique is to carry out suppression, which fol-

lows the same semantics as was described for the basic Execution Suppression technique

in Chapter 5. Suppression occurs in the event that the store statement instance directly

causing a failure is not found to be associated with any WAR or WAW potentially-harmful

data race. It is performed simultaneously with monitoring for a RAW data race during

execution (line 13 in Figure 6.1). If no potentially-harmful RAW data race is found during

suppression, and no additional failures occur during the execution as a result of the sup-

pression, then the most recently-suppressed statement instance is likely to be associated

with the error. It is therefore reported at line 15 in Figure 6.1.

6.2 Illustrative Examples

6.2.1 Example with Harmful Data Race Error

Consider the example multithreaded code snippet shown in Figure 6.3. In this

piece of code, assume that x and y are pointers to shared memory locations, each containing

an integer. Further assume lines 1 – 2 are erroneously not protected in a critical section,

despite the fact that they involve a read and subsequent write to shared location x. A
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Let x and y be pointers to shared memory locations.
Let foo, foo2 be functions that take an integer input and return an integer.
Let structArray, structArray2 be heap arrays of pointers to structs with a

field named data.

// Assume *x has been initialized to some value.
// x not protected by critical section in lines 1–2.
1: int a = foo(*x);
2: *x = *x + a;

start critical section();
// Defined value of y may be incorrect.

3: *y = foo2(*x);
4: int b = structArray[*y]−>data;

end critical section();
5: int c = structArray2[*x]−>data;

Figure 6.3: Example multithreaded code snippet, part 1.

potentially-harmful data race exists at this point, and this is the error that needs to be

located by the technique. Lines 3 – 4, which involve a write and subsequent read to shared

location y, are protected by a critical section. However, the write into location y at line 3

may write the wrong value, due to the data race in lines 1 and 2 involving location x. Since

*y is then used as an index into an array in line 4, there is potential for a crash at this

point. Similarly, there is potential for a crash at line 5, which uses *x as an array index.

Suppose that this example code is executed using two parallel threads, and that

this execution ends in a failure (crash), as depicted in Figure 6.4 (A). In this execution,

suppose thread 1 executes line 1 first, then this is immediately followed by thread 2 executing

line 1 (this is possible since lines 1 – 2 are not protected by synchronization). In this case,

thread 2 reads a stale (incorrect) value from location x, since it was expected that this read

would not occur until after thread 1 updates x in line 2. Next, suppose thread 2 writes

to x in line 2; this writes an unexpected value to x since this value is computed using the
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Figure 6.4: Example executions for running technique with a harmful data race error, to
accompany Figure 6.3.

stale value for x read from the same thread in line 1. Now, suppose thread 1 resumes and

writes to x in line 2; again, this writes an incorrect value to x since it is computed using an

unexpected value for x obtained from the write in thread 2. If thread 1 continues executing,

line 3 reads the wrong value for x and then defines an incorrect value for y, which is then

used in line 4. Assume that at line 4, execution crashes due to a buffer overflow.

Since the array index *y is directly related to the crash at line 4, the technique

determines that the last definition of this location occurred at line 3. The next execution of
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the code is shown in Figure 6.4 (B). During this execution, it turns out that there is no data

race involved at line 3. This is because there are no prior accesses to location y before line 3

(so it is not involved in any WAR or WAW dependence), and there is no subsequent read to

location y after line 3 from another thread that is not protected by synchronization. Thus,

the definition of y at line 3 is suppressed, and the definition of b at line 4 is also suppressed

since it uses the suppressed definition at line 3. Thus, the original crash is avoided. Now,

suppose execution continues as thread 2 resumes and executes lines 3 and 4 (these lines

are not suppressed in this execution since they do not depend on the previously-suppressed

instances of lines 3 and 4 from the other thread). Suppose again that there is a crash at this

new instance of line 4 in thread 2. Again, the last definition of y is at line 3. During the

next execution, shown in Figure 6.4 (C), there is again no data race detected at this point.

Lines 3 and 4 are then suppressed in the execution of thread 2. Now, execution is able to

reach line 5 in thread 2. Suppose that a crash occurs here due to the use of incorrect *x as

an array index.

The technique determines that the last definition to location x occurred at line

2 of thread 1. The next execution is shown in Figure 6.4 (D). When control reaches line

2 of thread 1, a data race check is performed. In this case, it is discovered that the last

access to location x by another thread is the write in line 2 of thread 2. Since there is no

synchronization specified between these two memory accesses, the technique identifies a data

race at this point (WAW dependence). Next, the technique checks whether this data race is

potentially-harmful. In the original execution, thread 2, line 2 is executed before thread 1,

line 2. However, during the interval when thread 2 is first executed, thread 1 is also ready

to resume execution. Thus, the technique re-executes the program and forces thread 1 to
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resume execution at the point in which thread 2 originally would have been scheduled. This

effectively alters the interleaving of these two threads so that the program behavior matches

what is expected. As a result, the value written into location x at the second access is now

changed, and the data race is determined to be potentially harmful. Intuitively, because

this execution can produce different values under different thread interleavings, this is likely

to be unexpected behavior and is considered to be potentially harmful. The data race error

is therefore reported to the user.

6.2.2 Example with Non-Data-Race Error

Suppose the example code from Figure 6.3 is slightly modified to obtain the ex-

ample code in Figure 6.5. This example is identical to the previous example, except that

in this case, lines -1 and 0 have been added to the beginning of the code snippet, and line

6 has been added to the end of the code snippet. Line -1 initializes a variable z to an

incorrect constant value (this is the error), which in turn is used in line 0 to initialize x to

an incorrect (also constant) value. Line 6 involves an assertion that ensures z contains the

correct value; if not, then the program terminates with a failure at this point. Although

the error in line -1 is not a memory error, it can lead to an observable failure at line 6, and

so can possibly be located by the technique.

Note that the same data race exists here as in the previous example. However,

assume in this case that for the constant value used to define location x in line 0, the value

returned by the call to foo in line 1 is actually 0. Then in this situation, the data race

left over from the previous example is not potentially harmful. This is because the value

written into location x at line 2 does not change the constant value *x, and this is true for
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Let x and y be pointers to shared memory locations.
Let foo, foo2 be functions that take an integer input and return an integer.
Let structArray, structArray2 be heap arrays of pointers to structs with a

field named data.

// Assume z is initialized to an incorrect constant.
-1: int z = some incorrect constant value;
0: *x = 2 * z;
// x not protected by critical section in lines 1–2.
// Assume a is defined to be 0 given constant *x.
1: int a = foo(*x);
2: *x = *x + a;

start critical section();
// Defined value of y may be incorrect.

3: *y = foo2(*x);
4: int b = structArray[*y]−>data;

end critical section();
5: int c = structArray2[*x]−>data;
6: assert correct value(z);

Figure 6.5: Example multithreaded code snippet, part 2.

all threads, regardless of the thread interleaving. Thus, in this case, the data race cannot

affect the correctness of the program.

Now consider running the technique on this modified example. Suppose that the

original execution and the first two re-executions are the same as how they appear in

Figure 6.4 (A–C) (with the only minor difference being that lines -1 and 0 now precede

execution of line 1 in each of the two threads). The crashes at lines 4 and 5 from the

previous example can still occur in the current example because location x still contains an

incorrect value in the current example.

Suppose the technique arrives at the end of the second re-execution as shown in

Figure 6.4 (C). Then the crash at thread 2, line 5 directly depends upon the store to location

x in thread 1, line 2. The next execution, shown in Figure 6.6 (A), is where the behavior
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Figure 6.6: Example executions for running technique with a non-data-race error, to ac-
company Figure 6.5. Assume that the original execution and the first 2 re-executions are
similar to those in Figure 6.4 (A–C).

of the technique begins to differ from the previous example. In this execution, control

reaches thread 1, line 2. The same data race as was found in the previous example is also

found here. However, in this case the data race is found to not be potentially harmful, as

was explained earlier. Similarly, another data race is found here, which is a RAW data race

involving the write in thread 1, line 2, and the subsequent read in thread 2, line 3. However,

again this data race is found to not be potentially harmful, since the write to location x

in line 2 does not actually change its value. Thus, no potentially-harmful data races are

identified here, so the technique continues by suppressing the definition of x at thread 1,

line 2, and anything dependent upon it. This allows execution of thread 2 to arrive at line

6, which crashes because the sanity check for the value of variable z fails (since z contains
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an incorrect value). The last definition of variable z occurs at thread 2, line -1.

In the next execution, shown in Figure 6.6 (B), control arrives at thread 2, line -1.

In this case, there exists a previous access to location z from the other thread (thread 1,

line -1), so there is a data race involved here represented by a WAW dependence. However,

since z is initialized to a constant value, again this data race is not potentially harmful.

There are no additional subsequent reads of z prior to the point of the crash, so there are no

RAW data races at this point. Thus, the technique continues by suppressing the definition

of z in thread 2, line -1, and all of the subsequent statements that are dependent upon

it (including all of the statements suppressed in previous iterations). In this example, all

remaining executed statements in both threads are suppressed, resulting in no additional

program failures. The technique then terminates and identifies statement -1, the statement

associated with the most recent point of suppression, as the root cause of the failure.

6.3 Evaluation using Multithreading Errors

6.3.1 Setup for Experiments

To study the effectiveness of the technique for locating errors in multithreaded pro-

grams, a set of multithreaded benchmark programs and their associated errors were selected

as shown in Table 6.1. This set of programs involves three different data race errors (one

in apache and two in mysqld), as well as four other memory errors (one uninitialized read

in mysqld, as well as three stack buffer overflows in programs prozilla and axel). These

benchmark programs were selected because they are multithreaded, real-world programs

that are generally well-known and widely-used, and they contain real errors. For each of
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Program # Lines Program Description Root Cause of Failure
Name of Code

apache 191 K HTTP server (ver. 2.0.48) data race [90]

mysqld-1 508 K database server (ver. 3.23.56) data race [52]
mysqld-2 508 K database server (ver. 3.23.56) data race [53]
mysqld-3 508 K database server (ver. 3.23.56) uninitialized read [51]

prozilla-1 16 K download accelerator (ver. 1.3.5.1) stack buffer overflow [62]
prozilla-2 16 K download accelerator (ver. 1.3.5.1) stack buffer overflow [50]

axel 3 K download accelerator (ver. 1.0a) stack buffer overflow [63]

Table 6.1: Benchmark programs used in the experiments and their associated errors.

the 7 errors listed in the table, an execution was identified that would traverse the error

and trigger an execution failure. This execution was provided as input to the multithreaded

Execution Suppression technique to try to isolate the error.

The implementation is primarily written in C within the Valgrind infrastruc-

ture [55, 103], which allows a program to be dynamically instrumented and modified at

runtime. It is assumed that the multithreaded programs under consideration are run on

a single-processor system, so that only one thread is running at any given time. Also, it

is assumed that the failures triggered in the benchmark programs occur as either program

crashes or assertion violations, because this allows the technique to easily and automatically

determine whether or not an observable failure occurs on each program execution. Finally,

it is assumed that synchronization points are clearly marked in the program so that they

can be easily identified. Further implementation details are described in the next chapter

(Chapter 7).
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6.3.2 Results and Discussion

The results for each of the 7 analyzed errors are shown in Table 6.2. In this table,

the middle column shows the total number of executions required by the technique to isolate

the error. This number is broken down into three components: the original execution to

trigger the failure (“orig,” which is always 1); the number of suppression executions required

to detect data races and/or carry out suppression (“supp”); and the number of re-executions

required to force a different thread interleaving to check whether a detected data race is

potentially harmful (“race check”). The right-most column mentions whether the error

is identified by the technique. The results for each of the benchmark programs are now

described in detail.

Apache. In this benchmark program, there is a data race error in which there is

a write to a buffer, followed by an update to a buffer count variable. These two memory

accesses involve a shared variable that is not protected in a critical section. Further, this

piece of code is related to writing information to a server log. In the event that multiple

requests are writing to the server log simultaneously, it is possible that the data in the

server log will get corrupted due to the data race. In this case, the error can be represented

Program Name Total # Executions Required Identified error?
(orig + supp + race check)

apache 3 (1 + 1 + 1) yes

mysqld-1 3 (1 + 1 + 1) yes
mysqld-2 3 (1 + 1 + 1) yes
mysqld-3 2 (1 + 1 + 0) yes

prozilla-1 2 (1 + 1 + 0) yes
prozilla-2 4 (1 + 3 + 0) yes

axel 3 (1 + 2 + 0) yes

Table 6.2: Experimental results of running the technique to locate multithreading errors.
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by either a WAR or a WAW data race associated with the unprotected instructions.

When the technique is run on this program using two conflicting requests that

trigger the bug, an assertion failure occurs when the server log is found to be corrupted.

The associated instruction instance of the corrupting write to the log is identified. This

instruction instance uses two variables, a pointer to the buffer itself, as well as a count

variable. Since either of these can be corrupted, the technique identifies the last instruction

instances in the execution in which these two variables were defined. It turns out the count

variable was last defined in the update instruction mentioned above that is associated

with a data race. The technique then performs the first re-execution in which data race

detection and/or suppression will be carried out. During this execution, memory accesses

are monitored for possible data race detection, and the first target instruction reached

during the execution is the update to the buffer count variable. At this point, the approach

determines that the last access to this shared variable by a different thread occurs at the

same instruction (but an earlier instance), representing a WAW dependence. Further, there

is no synchronization between the executions of these two accesses, so a data race occurs

here. The technique then determines that at the point of the first memory access, there is

one other thread that is ready to be executed (besides the thread that actually did execute).

Thus, the technique performs one more execution and forces the different thread interleaving

to occur, and determines that the final value of the shared variable in question, has changed

at the point of the second memory access. As a result, the technique determines that the

identified data race is potentially harmful, and reports it to the user. This data race is

in fact directly associated with the expected root cause of the failure. In total for this

benchmark program, there were 3 required program executions: the original execution to
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repeat the failure, the first suppression execution in which a data race was detected, and a

final execution to determine that the data race was in fact potentially harmful.

Mysql-1. In this program, there is an error in which an update to the database

state and the associated update to the log file are not protected in a critical section. A race

condition may therefore occur when two requests are being handled simultaneously, which

can have the effect that the order of entries in the log file may not match the actual order

in which updates occurred to the database.

When the technique is run on this program using two simultaneous requests that

trigger the bug, an assertion failure occurs when it is determined that the log entries have

become out of order. For this benchmark program, the log itself is treated as shared memory,

so the technique identifies the last write to the log that caused the out-of-order entry. It is

assumed that this write has been corrupted in some way. On the next execution, execution

proceeds while monitoring accesses to the log for possible data race detection. Once the

target instruction instance is reached at which the log is written, the technique determines

that the last access to the log from a different thread occurs when reading from the log’s

base address, performed by the conflicting thread which is also accessing the log. Further,

there is no synchronization specified between these two log accesses, so a WAR data race

is detected. It is then determined that at the point of the first memory access, there is

one other thread that could have been scheduled instead. As a result, the program is re-

executed while forcing the other thread interleaving to occur, and the log is determined to

have changed as a consequence. Thus, the associated potentially-harmful data race, which

is the root cause of the failure, is reported to the user. As was the case for program apache,

this subject program requires 3 executions in total.
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Mysql-2. In this program, there is an error in which a close and subsequent open

of a log file is not protected in a critical section. Elsewhere in the code, there is a check on

the log file to verify that it is open, before writing to it; if the log is not open, no writing to

the log is performed. It is possible with two conflicting threads that one thread closes the

log file, then another thread performs updates and does not write to the log file (because

the log is closed), and finally the original thread re-opens the log file. The effect is that

some database updates may be silent and will not be recorded in the log.

When executing the technique on this program, an assertion failure occurs when it

is determined that the log file is closed when it was expected to be open. This is represented

by a read from the log (which we treat the same as shared memory). The technique

determines that the last write to the log in the execution occurred when the log file was

closed. On the next execution of the technique, execution proceeds until it reaches the point

at which the log file is closed. At this point, it turns out that there are no prior accesses to

the log from a different thread (only from the same thread), so there are no WAR or WAW

dependencies here. Thus, execution continues from this point while performing suppression

and also monitoring accesses to the log for possible RAW data races. Once execution

reaches the point at which the log file is accessed (read) and determined to be closed, then

the technique discovers that no synchronization was specified between the current point

and the last point at which the log was actually closed (by a different thread). Thus, a

RAW data race is detected at this point. Finally, it is determined that at the point at

which the log is closed, another thread (the one needing to perform the update to the log)

is also ready. Thus, the technique executes the program again and forces the update to

the log to occur before the log is closed by the other thread. It turns out that this new
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interleaving changes what is contained in the log, so it is determined that the RAW data

race is potentially harmful, and it is reported as the root cause of the failure.

Mysql-3. In this program, there is a memory error in which the act of loading

data from an input file into a database table can cause a segmentation fault, if no database

has been first selected. The error in this case is an uninitialized read of a variable that

should be associated with an open database, but instead unexpectedly contains the value

NULL.

When the technique is run on this program, it is determined that a segmentation

fault occurs at a call to strlen when the pointer passed to it is NULL. The technique

determines that the last definition of this NULL pointer occurs at an earlier instruction

instance in the execution. When the technique re-executes the program, control reaches

the initial definition of the NULL variable. At this point, the technique determines that

there are no prior accesses to this variable from other threads, so there are no WAR or

WAW data races at this point. Thus, execution continues until it reaches the point of

the second memory access (the read of the value NULL). It is determined that the write

and subsequent read are from two different threads, but in this case, there exists specified

synchronization between the two memory accesses, so no RAW data race occurs here. Thus,

execution continues by suppressing all instruction instances directly or indirectly affected

by this NULL value. It turns out that at the end of this execution, no additional failures

occur. Thus, the definition of the NULL value is reported as the root cause of the failure.

This can help developers to understand that the execution unexpectedly tried to dereference

the value NULL that was defined at this point.

Prozilla-1. In this program, there is potential for a stack buffer overflow at an
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unchecked call to strncpy; in this case, no check is made to ensure that the source string

will actually fit into the allocated destination buffer.

When the technique is run on an input that triggers the stack overflow, a crash

occurs at the return of a function called parse html mirror list, due to corruption of the

return address of the function call on the stack. The technique determines that the last

definition of the memory location associated with this corrupted return address, is in fact

from the unchecked call to strncpy. Upon re-execution, there are no data races identified

since all instructions associated with the failure are from the same thread. However, as a

result of the suppression conducted on this execution, it turns out that no additional failures

occur during execution. The technique then reports the faulty call to strncpy as the root

cause of the failure.

Prozilla-2. In this program, there is potential for a stack buffer overflow of a

variable called buffer, which is declared to be of fixed maximum size on the stack. A call

to sprintf using this buffer can potentially write more data into the buffer than what will

fit into the allocated size.

When the technique is run on this program using an input that triggers the over-

flow, a segmentation fault first occurs when dereferencing a pointer that is declared on the

stack. This is due to the pointer variable on the stack being corrupted by the stack overflow.

It is determined that the last definition of this corrupted memory location occurred in the

unchecked sprintf. When the technique re-executes the program and performs suppres-

sion, another crash occurs at the return from a function named http fetch headers (due

to the function call return address being corrupted by the stack overflow). It is determined

that the corrupted return address was also last defined in the unchecked sprintf. The
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program is then executed again to conduct further suppression, but a third failure occurs

at the return of a function called get http info. The corrupted return address in this case

is again last defined at the unchecked sprintf. Finally, when the program is executed once

more to conduct suppression, no additional failures occur. Thus, the error is identified to

be the unchecked call to sprintf. In all of these suppression executions, no data races were

found.

Axel. In this program, there is potential for a stack buffer overflow in an unchecked

call to sscanf. In this case, the destination stack buffer is declared to be of fixed size: 256

bytes. Since the source string can be of arbitrary size in this case, the stack buffer may

overflow.

When the technique is run on this program, a first segmentation fault occurs when

dereferencing a pointer that is declared on the stack. The last definition of the corrupted

memory location was in the unchecked call to sscanf. Upon the next suppression execution,

a new crash occurs at the return of a function called conn info, due to a corrupted function

call return address. Again, the last definition of the corrupted location was in the unchecked

call to sscanf. Upon the next suppression execution, no additional failures occur, and the

unchecked call to sscanf is identified as the error. No data races are detected in these

suppression executions.

Overview of results. Overall in the experiments, it was found that Execution

Suppression could accurately identify the root cause of the failures in all of the benchmark

programs. On the other hand, these programs happened to involve little propagation of cor-

rupted memory. In general, some multithreading errors may involve significant propagation

of corrupted memory, and in these cases, it is expected that the technique may continue to
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be effective due to the iterative nature of the execution suppression technique. Also in the

experiments, only 2 – 4 program executions were required by the technique to identify the

error in each benchmark program. Thus, the total time required to run the technique is

quite small in a debugging context. Each execution may perform tracing and monitoring in

addition to execution suppression, but in the experiments, no single execution took more

than a few seconds to complete.

6.4 Summary

In this chapter, a generalized version of the Execution Suppression state alter-

ation technique was developed that can be effective at locating memory-related errors and

potentially-harmful data race errors in multithreaded programs. The technique can be fully

automated, and requires as input only a faulty program and an input causing an execution

failure. The technique ensures that the effects of a multithreading error can be reproduced

on multiple program re-executions. The technique accounts for data races involving RAW,

WAR, and WAW dependencies. The technique also includes a method for dynamically al-

tering the order of scheduled threads to check whether an identified data race is potentially

harmful. An experimental evaluation using a set of 7 real bugs in large-scale multithreaded

programs has shown that the technique can be very effective at precisely identifying the

root causes of failures caused by multithreading and other memory-related errors. Further,

relatively few state-altering program executions were required to locate the error in each

benchmark, making the approach relatively efficient in a debugging context.

In the next chapter, issues regarding the implementation of suppression are de-

scribed, for the basic technique and the generalized version for multithreaded programs.
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Chapter 7

Suppression Implementation Issues

In the previous two chapters (Chapters 5 and 6), the Execution Suppression tech-

nique for locating memory errors in both single-threaded and multithreaded programs was

developed. In this chapter, details and issues related to the implementation of suppression

are discussed.

First, a general implementation for suppression is described at a conceptual level.

Next, a software-only implementation is discussed that makes use of the Valgrind dynamic

binary translation framework [55, 103]. Then, two types of hardware support are consid-

ered. The first approach takes advantage of hardware support already available in Itanium

processors that was designed for deferred exception handling. The second, more hardware-

intensive approach uses additional memory augmentation, similar to the hardware used in

dynamic information flow tracking (DIFT) techniques [24, 134]. Finally, the overheads of

the different software and hardware-based implementations are compared. All implementa-

tions analyze program executions at the binary instruction level.
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7.1 General Implementation

Figure 7.1 shows the conceptual steps involved in any implementation of suppres-

sion. The first main step is to identify the instruction instance that is responsible for defining

a memory location that directly causes a crash. To enable this, a global counter is main-

tained that represents a dynamic instruction count (variable global cnt). Every register and

memory word is associated with a count value, which represents the instruction that last

defined it. Thus, for every instruction that defines a memory word or a register, global cnt

is incremented and stored in the counter associated with the defined location (line 1). To

allow for identifying the instruction instance responsible for a crash, the instruction counts

associated with the two sources are stored (lines 2 – 3). Thus, if a crash occurs at the

current instruction, the technique can easily identify the instruction instance responsible

for defining the memory location causing the crash.

Once the instruction instance directly causing the crash is identified, the technique

re-executes the program and begins suppression starting at the appropriate instruction

instance (determined by the condition at line 4). The fact that execution is in suppression

mode is represented by a global suppress flag (the flag is set in line 5). In addition to setting

this flag, the target of the current instruction is marked as corrupt to indicate that it is

corrupt/infected (line 6). Once the suppress flag is set, each executed instruction from this

point follows the suppression semantics if either source location is marked as corrupt (line

9), otherwise it follows the regular semantics (lines 11 – 12). If the suppression semantics

are followed due to at least one of the sources being marked corrupt, the corruption bit

is propagated by setting the target (defined memory location) of the instruction to be

corrupt. If the regular semantics are followed, the instruction executes normally, and the
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Global variables:
- global_cnt: the current dynamic instruction count
- suppress_cnt1, suppress_cnt2: potential suppression points in the event of a crash
- suppress: flag that indicates if in suppression mode, initially false

Variables associated with every register and memory word:
- cnt: global count value associated with the instruction last defining this 

register/memory word
- corrupt: a boolean that is true if register/memory word is corrupt, false otherwise

Case: target = src1 op src2          // target, src1, src2 can be register or memory word

1.  target.cnt = ++global_cnt // update target to current instruction count value

2.  suppress_cnt1 = src1.cnt // note suppression points in case program crashes here
3.  suppress_cnt2 = src2.cnt

4.  if (global_cnt == suppress_cnt1 or global_cnt == suppression_cnt2)    
5. suppress = true // initiate suppression mode

6.    target.corrupt = true       // mark this first corrupted location
7. if (suppress) 
8.     if (src1.corrupt or src2.corrupt) 
9.        target.corrupt = true // suppression semantics
10.    else  
11.       target = src1 op src2      // regular semantics

12.       target.corrupt = false

Figure 7.1: General implementation of suppression.

target (defined memory location) of the instruction is marked as not corrupt since it was

computed using only non-corrupt values (this step is necessary in case the target location

was previously marked as corrupt in the execution). Note that the description in Figure 7.1

shows the steps for all data transfer and arithmetic instructions. In a control transfer

function, both branches are skipped if the predicate is marked corrupt; static analysis of

the program is used to identify the next instruction to execute.

7.2 Software-Only Implementation

7.2.1 Basic Technique for Single-Threaded Programs

The basic technique is implemented fully in software based on the high-level system

design shown in Figure 7.2. The design consists of three main components: the Valgrind
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Figure 7.2: High-level system design for the software implementation of the basic technique.
The bi-directional arrows represent interactions between the system components.

Core, the Suppression Execution Tool, and the Memory Error Locator.

Valgrind Core. The Valgrind infrastructure [55, 103] provides a synthetic CPU in

software and allows for dynamic binary instrumentation of an executing program. Valgrind

includes a set of tools that perform certain profiling and debugging tasks, but new tools

can be added to the infrastructure to perform customized instrumentation tasks.

Suppression Execution Tool. The Suppression Execution Tool was created as

a new tool for Valgrind. The tool takes as input an executable program with an associated

input, and a set of (possibly empty) instruction instances whose effects should be suppressed

during execution (called “suppression points”). The tool then performs the execution while

simultaneously carrying out two tasks required by the technique: tracing and suppression.

The tracing is required to see which memory locations are accessed and when. The suppres-

sion is required to nullify the effects of certain instructions during execution, when searching

for the first point of memory corruption.

For tracing during a given execution, the tool records a trace of the memory

locations accessed (loaded from and stored to) during the execution. To do this, the tool

instruments each non-suppressed load and store instruction to record the current program

counter, its associated instance number, the type of instruction (i.e., load or store), and the

address of the accessed memory location. This information makes it possible to identify

which accessed memory location directly caused a memory failure, and which instruction
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instance last defined that memory location. The identified instruction instance can then be

specified as one of the suppression points for the next execution, i.e., for the next invocation

of the Suppression Execution Tool.

For suppression during a given execution, the Suppression Execution Tool performs

“suppression information flow tracking” at all instructions, as well as “actual suppression”

at the appropriate load and store instructions. To do the suppression information flow

tracking, the implementation associates every memory location and register with a shadow

location that contains information about whether or not the associated location needs to

have its effects suppressed. Initially, all shadow locations are marked as “not suppressed.”

At an instruction, if at least one of the used memory locations or registers is marked as

“suppressed,” then any defined memory locations or registers are also marked as “sup-

pressed.” On the other hand, if none of the used locations are marked as suppressed, then

any defined locations are marked as “not suppressed.” Tracking this information during

execution ensures that any instructions directly or indirectly influenced by a suppressed

location can have their effects suppressed as well. Memory locations are initially marked as

suppressed when they are used in an instruction instance that is specified as a suppression

point.

Besides tracking suppression information, “actual suppression” is performed at

memory load and store instructions. At a store instruction instance that uses a suppressed

location, the effect of the store is suppressed by not writing to the destination location.

The effect is as if the store never occurred and the destination location retains whatever

value was originally contained there. Similarly, for a load instruction instance that uses a

suppressed location, the load is suppressed by not reading from the source location. The
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effect is as if the load never occurred and the destination register being loaded into retains

whatever arbitrary data was originally contained there. This arbitrary data will never be

used since anything dependent upon it will be suppressed as well.

There are a few special considerations to make when suppressing. If an infected

location is used in a conditional check, then the entire conditional structure involving the

infected location is suppressed, since it depends upon the infected value. For example,

suppression would be performed for an entire “if/else” structure or an entire loop if the

associated condition uses an infected location at some point during execution. Although

this solution is not general, it is simple and worked well in the conducted experiments. In

order to determine where a conditional structure ends, the implementation relies on static

analysis of the program structure at the source code level; this information is mapped back

to binary level as needed.

Special consideration must also be made for infection of the return address of a

function call. This must be specially handled because one cannot avoid a function return or

simply jump to an arbitrary address upon function return. Instead, profiling data is used

from the current and other test case executions to cause the function to return to a known,

valid address (particularly, the target return address used most frequently).

Finally, infected input to system calls must also be handled. To do this, the

technique simply refrains from making system calls when they involve at least one infected

input value. The same approach can be used to handle library calls if desired, although

this is not currently implemented. It is observed that suppressing system and/or library

calls when they involve at least one infected input value, is an approximation. A more

precise approach would be to only suppress those instructions within the function calls that
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actually depend upon the infected inputs. However, for system calls in particular, Valgrind

cannot be used to instrument instructions within a system call itself, since Valgrind actually

executes system calls on the real CPU. Thus, the approximation of omitting system calls

entirely when they involve at least one infected input, was done because of implementation

restrictions. However, this approximation was still able to lead to good results in the

experiments.

Memory Error Locator. This is the main driver module for the technique that

manages the suppression re-executions and identifies the suppression points. Given a faulty

program and its associated input, this module first invokes the Suppression Execution Tool

using an empty set of suppression points to record memory access tracing information from

the test case execution. From this, a first suppression point(s) is identified and passed

as input to a second invocation of the Suppression Execution Tool. If another program

failure occurs, then another suppression point(s) is identified and another re-execution is

performed. Eventually, no failure will occur and the latest identified suppression point(s)

is reported.

7.2.2 Generalized Technique for Multithreaded Programs

The generalized technique for multithreaded programs is implemented fully in soft-

ware based on the high-level system design shown in Figure 7.3. The Valgrind infrastructure

is composed of three components: (1) the Valgrind Core, which is the core functionality al-

ready provided by Valgrind; (2) the Failure Repeatability Component, which is a component

implemented within Valgrind that ensures a failure in a multithreaded execution can be

repeated on subsequent executions; and (3) the Suppression and Data Race Detection Tool,
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Figure 7.3: High-level system design for the software implementation of the generalized
technique. Arrows represent interactions between the system components.

a tool implemented to carry out a program execution while performing the tasks necessary

to conduct execution suppression as well as dynamic data race detection. Finally, a fourth

component implemented outside of Valgrind called the Technique Driver Program works in

conjunction with Valgrind to actually run the technique. Each of these components are now

described in detail.

Valgrind Core. This is similar to what is described in Section 7.2.1, but here, the

thread scheduler in the Valgrind core was customized to work in conjunction with the Failure

Repeatability Component to ensure that the order in which threads are scheduled in a failing

execution is repeated on subsequent executions. This ensures that the effects of an error

can be repeated on multiple program executions, since the sequence of scheduled threads

is preserved (for the experiments, it was not required to preserve other factors that could

contribute to non-determinism, such as reading inputs from the execution environment).

Failure Repeatability Component. This component works in conjunction with

the Suppression and Data Race Detection Tool and the Valgrind Core to ensure that the

effects of an error can be repeated on multiple program executions. This component works as
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follows. When the Suppression and Data Race Detection Tool carries out a failing execution

for the first time, the Failure Repeatability Component records the order in which threads

are scheduled during the execution. Then, for all subsequent executions conducted by the

technique to isolate the same error, this component communicates with the Valgrind Core to

guarantee that the threads are scheduled in the same order as in the original execution. This

is accomplished by forcing the thread scheduler in Valgrind to schedule threads according

to a specified schedule.

Suppression and Data Race Detection Tool. This tool was implemented

within the Valgrind infrastructure to handle the two main tasks required for each program

execution in the technique: (1) tracing and suppression; and (2) on-the-fly data race de-

tection. The tool takes as input an executable program with associated input values for an

execution, a set of instruction instances whose effects should be suppressed during execu-

tion (called “suppression points”), and a target write instruction instance (with associated

memory location and value, and the ID of the thread performing the write) that must be

checked to determine if it involves a potentially-harmful data race.

The tracing and suppression is performed in the same way as described in Sec-

tion 7.2.1. For on-the-fly data race detection, the algorithm was previously shown in Sec-

tion 6.1.2, Figure 6.2. To implement this, the technique requires as input a target write

instruction instance i, with information about the thread t that performs the write, which

memory location l is written, and the value v contained in the memory location after the

write. During execution, all load and store (i.e., read and write) instruction instances ex-

ecuted prior to the target write instruction instance, are instrumented as follows: if the

accessed location is l and the thread performing the access is different than t, then the
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current instance is recorded as the most recent access to l from a thread other than t, and a

global flag sync is set to false, indicating that no synchronization on accesses to l has yet

been found. Later, if another instruction instance is executed that accesses l by a thread

other than t, then all prior access information will be discarded and only information about

this most recent access will be recorded. If any synchronization point related to l is encoun-

tered during execution, then the flag sync is set to true. When execution eventually reaches

the target instruction instance i, then the technique knows which instruction instance last

accessed the associated memory location from another thread, and whether any relevant

synchronization was encountered between the two memory accesses. As a result, the tech-

nique can easily determine at this point whether a WAR or WAW data race is involved.

Next, the technique sets the sync flag to false, and resumes execution at the instruction

instance immediately following i. Again, if any synchronization related to l is encountered

during execution, then sync is set to true. In the event that a load (read) occurs from

location l by a thread other than t, and the sync flag is false, then a RAW data race

has been found. When instrumenting the executing program in the implementation, it is

assumed that synchronization points are clearly marked in the program so that they can be

easily identified.

If any data race is identified in the implementation, then that race is checked to

determine if it is potentially harmful. To accomplish this, the technique identifies the set

of threads T that are ready, but are different than the thread originally involved, at the

point of the first memory access in the data race. The set T can be identified on-the-

fly when the first memory access occurs during execution. For each thread x ∈ T , the

implementation re-executes the program and forces thread x to be scheduled in place of the
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originally-executing thread at the point of the first memory access. The thread scheduler

in Valgrind was customized to allow for control of the scheduler in this way. Then, after

the instruction instance associated with the point of the second memory access is executed,

the technique checks whether the value contained in the associated memory location has

changed under this new thread interleaving. If so, then the data race is determined to

be potentially harmful. In practice in the experiments, there were only a small number

of threads available in each execution, so there were relatively few program re-executions

required to identify the potentially-harmful data races.

Technique Driver Program. This is the main driver program for carrying out

the generalized technique. Given a faulty program and an associated set of inputs that

cause a failure, this program invokes the Suppression and Data Race Detection Tool using

an empty set of suppression points and no specified target instruction instance at which

to search for a data race. The Suppression and Data Race Detection Tool then records

memory access tracing information from the execution, and simultaneously invokes the

Failure Repeatability Component to record the order in which threads are scheduled during

execution. Based on this information, an initial suppression point (and a target write

instruction instance at which to search for a data race) is identified. This information is

then passed to another invocation of the Suppression and Data Race Detection Tool. If no

data race is reported but another failure occurs, then the process iterates again. Eventually,

either a data race will be reported as the likely root cause, or else the execution will terminate

without any failure, in which case the most recent suppression point is reported as the likely

root cause.
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7.3 Hardware Support

In this section, possible hardware support is described for reducing the overhead of

suppression that would normally be required by a purely software implementation. First, it

is shown how existing hardware support in Itanium processors (originally meant for deferred

exception handling) can be leveraged to reduce the overhead of suppression. Then, it is

shown how additional memory augmentation in the Itanium processor can further reduce

the overhead of suppression.

7.3.1 Using Existing Support for Deferred Exception Handling

This implementation is motivated by the similarity of suppression to deferred ex-

ception handling that is performed in Itanium processors. Itanium processors allow instruc-

tions to be executed speculatively. However, speculative instructions can cause exceptions,

and these exceptions should only be reported when any non-speculative instruction uses any

speculatively-produced values. In other words, exceptions caused by speculative instruc-

tions are deferred and handled later. To implement this in the Itanium processor, whenever

a speculative instruction causes an exception, the target (defined register) of the instruc-

tion is tagged with a special value, known as NaT (which stands for “not a thing”). These

NaTs are propagated as the program executes, and when a non-speculative instruction uses

any value tagged as NaT, an exception is finally reported. Itanium processors associate

a NaT bit with every register, and the hardware automatically propagates NaT bits for

register-based instructions.

It is observed that the NaT bit is analogous to the corrupt bit in the general

implementation of suppression, and the propagation semantics of the NaT bit are identical
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to the propagation semantics of the corrupt bit. Thus, one can take advantage of the NaT

bits and the propagation hardware in Itanium processors when implementing execution

suppression. The result is that lines 7 – 12 in the general implementation (Figure 7.1)

are now automatically taken care of by the hardware, for register values. This results in

significantly reduced overhead for the suppression technique. However, since there are no

NaT bits associated with memory words in the Itanium processor, it is still required that

the software handle the propagation of corrupt bits for memory instructions.

7.3.2 Additional Hardware Support through Memory Augmentation

In this technique, the Itanium processor is augmented with additional hardware

support so that propagation of NaT bits is handled for memory instructions as well. To

enable this, NaT bits are associated with every memory word. This results in the addition

of a NaT bit for every memory word in main memory, as well as for every word in caches

and in the external data bus. This further reduces the execution overhead. Figure 7.4 shows

the architecture for the Itanium processor both with and without this additional memory

augmentation.

7.4 Overhead Comparison

The overheads of suppression for each of the different implementations are now

compared. Although the actual software implementation using the Valgrind infrastructure

is targeted toward x86 machines, the hardware-based implementations needed to be im-

plemented in a simulator. The SESC simulator targeting the MIPS instruction set was

used. The simulations targeted an in-order processor with a 16-KB 4-way L1 cache and
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(NaT bit propagation for registers + memory)
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1.  Maintaining cnts for all instructions
2.  Propagation for memory instructions

Figure 7.4: Itanium processor with and without memory augmentation.

a 512-KB 2-way L2 cache, with a memory latency of 250 cycles. Support for handling

deferred exceptions was implemented in the simulator, in addition to implementing NaT

bits for both register and memory locations. To obtain a fair overhead comparison between

all implementations, the software implementation was run in the simulator as well, and

the overhead was measured for only suppression (not including variable re-ordering or data

race detection). The regular Valgrind-based software implementation incurs an overhead

of around 50x – 100x, but this is because Valgrind is designed for ease of writing complex

instrumentation tools, and not for optimizing performance. The software-based overhead is

much lower when run in the simulator.

Figure 7.5 shows the overhead for all three implementations normalized to original

execution time, for one run of each of the programs analyzed in the memory corruption
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Figure 7.5: Execution time overheads for different suppression implementations.

study from Section 5.1. The right-most entry in the graph shows the average results. As

shown in the figure, the software-only overhead is highest, with 7.2x overhead on average.

Using the deferred exception hardware support available in the Itanium processor, this

overhead can be significantly reduced to 2.7x on average. Finally, using additional memory

augmentation support, this overhead can be further reduced to an average of 1.8x.

7.5 Summary

In this chapter, details regarding the implementation of suppression were discussed.

Several different types of implementations were explored. First, a general implementation

was presented at a conceptual level. Next, a software-only based implementation was de-

scribed in detail. Then, an implementation was presented that takes advantage of hardware

support for deferred exception handling that is available in Itanium processors. Finally,
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a hardware-intensive scheme involving additional memory augmentation in the Itanium

processor was considered. An experiment was conducted to compare the overheads of the

various implementations for suppression. While the baseline software implementation in-

curred an average overhead of 7.2x, this overhead was reduced to 1.8x by using hardware

support.

So far in this dissertation, two main dynamic state alteration techniques have been

developed for automatically locating errors in software: Value Replacement and Execution

Suppression. These techniques can be used to assist developers in more efficiently debugging

faulty programs, because the techniques can help guide a developer to a faulty statement

more quickly. However, in debugging, merely locating a faulty statement is only half the

battle. The faulty statement must then be analyzed in the context of the program to

determine an appropriate fix, so that the software can be modified to eliminate the error.

Currently, there is relatively little research in the Software Engineering community that

focuses on automated techniques to assist developers in fixing program errors, despite the

fact that advances in this area can also significantly improve the efficiency of the debugging

process. In the next chapter, a technique is developed to automatically assist developers in

modifying suspicious statements to fix program errors.
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Chapter 8

Towards Correction of Program

Errors

In the previous chapters, techniques were developed that focus on locating faulty

program statements. However, debugging a faulty program is not over once a faulty state-

ment is found. The error in the statement must be eliminated by appropriately modifying

the source code of the program. In some cases, the appropriate fix to make at a statement

may not be obvious. It may require considerable time for a developer to manually analyze

the debugging situation to understand why a statement is faulty, and then to figure out a

way to modify the code to fix the error without introducing any new errors. Techniques

to automatically assist developers in fixing program errors have potential to significantly

improve the efficiency of the debugging process.

In this chapter, a technique is developed for automated assistance in fixing an

error at a faulty program statement [66]. This technique is called BugFix. The goal of

the technique is to automatically identify a set of relevant suggestions for modifying a
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statement that is suspected of being faulty. A developer can consider these suggestions

when determining an appropriate fix. To accomplish this, BugFix incorporates a machine

learning-based algorithm that makes use of knowledge obtained from a history of previous

faulty statements that were fixed, along with their corresponding bug-fix descriptions.

Definition 11 (Bug-Fix Description).

A bug-fix description is a brief textual description of how to modify a particular faulty

statement such that an error in the statement is fixed (e.g., “change the < operator into the

<= operator”).

Thus, the suggestions that are reported by the technique for fixing a new error, are

a subset of the bug-fix descriptions currently known from the history of prior bug fixes. As

a result, in order to be useful, the technique first requires an initial training phase in which

a history of debugging situations and their corresponding bug-fix descriptions are learned.

BugFix requires as input a faulty program and a corresponding test suite contain-

ing at least one failing test case. The goal of BugFix is to compute and report a prioritized

list of bug-fix suggestions for a given debugging situation at a program statement that is

suspected of being faulty. A debugging situation, described in detail in Section 8.2.1, can be

thought of as a characterization of the particular static and dynamic details of a suspicious

statement being debugged. A bug-fix suggestion is simply a bug-fix description relevant to

a current debugging situation, which is reported to a developer and can assist in fixing a

faulty statement.

The technique is built upon concepts from the machine learning community, which

allow the technique to learn about new debugging situations and their corresponding bug

fixes that are encountered over time. Through continued use, the ability of the technique
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to report highly relevant bug-fix suggestions for new debugging situations is expected to

improve. This is accomplished by maintaining a database of bug-fix scenarios describing the

different debugging situations and corresponding bug-fix descriptions previously encoun-

tered. From this database, a machine learning algorithm for learning association rules can

be applied to automatically generate a knowledgebase of rules, mapping different (general

and specific) debugging situations to corresponding bug-fix descriptions. Each rule is also

associated with a confidence value indicating how likely the rule is to be correct (i.e., how

likely a particular debugging situation should indeed map to the given bug-fix description).

Given a new debugging situation, BugFix automatically analyzes it in conjunction

with the knowledgebase of rules to compute and report a prioritized list of relevant bug-fix

suggestions. Once the appropriate fix is made by the developer, then the new information

about the current debugging situation and corresponding bug fix is added to the database of

bug-fix scenarios. This enables a revised set of rules to be computed that can lead to more

effective results when the technique is used again in the future. BugFix has the potential to

help a developer more quickly discover, apply, and verify the appropriate fix for an error.

8.1 Association Rule Learning

An important component of BugFix is the ability to analyze a history of debug-

ging situations and their corresponding bug fixes, to identify a set of rules mapping different

combinations of these debugging situations to their likely bug fixes. This is important be-

cause when a new debugging situation is encountered, it is unlikely to precisely match any

debugging situation previously seen in the history. Nevertheless, BugFix must be able to

analyze the history to figure out which bug-fix descriptions are most relevant to the current
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debugging situation. Thus, a set of rules mapping different combinations of debugging situ-

ations to bug-fix descriptions can help. In this section, background information is provided

on association rule learning to describe how BugFix accomplishes this.

In the machine learning community, association rule learning [6] is a popular

method for discovering the relationship between variables in databases. It has been widely

used in many diverse application areas, such as marketing, intrusion detection, genetic

engineering, and (in the current work) software debugging.

Let I = {i1, i2, . . . , in} be a set of n attributes called items, and T = {t1, t2, . . . , tm}

be a set of m transactions comprising the database. Each transaction in T is a subset of

the items in I (a set of items is commonly referred to as an itemset). Association rules

are derived from these transactions in the database. An association rule is defined in the

form X → Y where X,Y ⊆ I and X ∩ Y = ∅. X and Y are called the antecedent and the

consequent, respectively. A rule intuitively means that if the items in set X are present/true,

then it is probable that the items in set Y are also present/true. For example, an association

rule in the supermarket domain could be {eggs, bread} → {milk}, which implies that if a

customer buys eggs and bread, then the customer probably buys milk as well.

The notion of confidence has been introduced to measure the significance of a

rule. The confidence of a rule X → Y is defined as supp(X ∪ Y )/supp(X), where supp(X)

is the support of itemset X, which is equal to the fraction of transactions in the database

containing X. This confidence can be interpreted as an estimate of the probability P (Y |X).

It allows one to select a subset of the most interesting rules from a set of all possible rules.

A variety of techniques have been developed for learning association rules. One

of the most popular algorithms is apriori [7]. Given a database of transactions, apriori
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identifies association rules through two key steps.

1. Find the frequent itemsets. These are sets of items for which the associated

support values are at least a specified minimum value. The algorithm iteratively

generates candidate itemsets and prunes out those containing subsets of items that

are known to be infrequent.

2. Generate association rules from the frequent itemsets. For each frequent

itemset X, apriori enumerates all non-empty subsets of X. For each such subset

Y ⊆ X, the algorithm calculates the confidence of rule Y → (X −Y ) and outputs the

rule if the associated confidence value is larger than a specified minimum confidence.

BugFix uses the apriori algorithm to identify rules mapping debugging situa-

tions to bug-fix descriptions. These rules are then analyzed in conjunction with a newly-

encountered debugging situation to identify the most relevant bug-fix suggestions from

among the bug-fix descriptions currently known.

8.2 BugFix: Automated Assistance for Fixing Errors

BugFix assumes that an existing error location technique, for example, Value

Replacement or Execution Suppression, is first used to locate a suspicious statement that

is likely to be faulty. Once such a statement is found, then BugFix can be used to assist

a developer in fixing an error at that statement. This is accomplished by performing the

three main steps shown in Figure 8.1.

In the first step of the technique, the current debugging situation is analyzed and

characterized in terms of both static (structure of the statement) and dynamic (patterns in
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STEP 1: CHARACTERIZE THE DEBUGGING SITUATION

Determine the static and dynamic debugging situation for the 
statement currently being debugged

STEP 2: PRIORITIZE/REPORT BUG-FIX SUGGESTIONS

Compute and report a prioritized list of bug-fix suggestions for the 
current debugging situation

STEP 3: LEARN FROM THE DEBUGGING SCENARIO

After the error is fixed, update the knowledgebase with new 
information from this debugging scenario

Figure 8.1: The three main steps of BugFix.

the values associated with the statement) information. In the second step, a knowledgebase

of rules mapping various debugging situations to relevant bug-fix descriptions is queried.

Based on the current analyzed debugging situation and the confidence values associated

with each rule in the knowledgebase, a prioritized list of bug-fix suggestions relevant to the

current debugging situation is computed and reported to the developer. In the third step,

once the developer fixes the error in the statement, the knowledgebase of rules is updated

with new information concerning the most recently-encountered debugging situation and

the corresponding bug fix. Each of these three main steps are now described in detail.

8.2.1 Analyzing the Debugging Situation

Intuitively, a debugging situation is a characterization of a particular suspicious

statement that is being examined during debugging. It can involve static details of the

statement, such as the structure and context within the program. It can also involve

dynamic details about the values used at the statement when exercised by test cases. BugFix
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requires that a debugging situation be formally described so that algorithms can be used

to analyze it. To do this, the notion of a situation descriptor is defined.

Definition 12 (Situation Descriptor).

A situation descriptor is an atomic entity that describes a particular static or dynamic

detail of a suspicious statement being debugged.

Situation descriptors can be any atomic entities that describe what is going on at

a considered suspicious statement. Given this definition, the notion of a debugging situation

can be formally defined.

Definition 13 (Debugging Situation).

A debugging situation is a set of situation descriptors associated with a suspicious state-

ment that is being debugged.

Intuitively, when two debugging situations are similar to each other, then they will

have similar sets of situation descriptors. These situation descriptors represent a way to

automatically characterize and compare different debugging situations to see how similar

they are. Since situation descriptors can be either static or dynamic, three different types

of situation descriptors are considered in the current work: (1) those associated with the

static structure of the given statement; (2) those associated with patterns in the IVMPs

associated with the statement (recall the definition of an IVMP from Section 2.1); and (3)

those associated with patterns in the values used at the statement by failing and passing

runs. Each of these types of situation descriptors are now described.
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Statement Structure Situation Descriptors

The situation descriptors pertaining to statement structure are derived from the

(unordered) tokens comprising the statement, as obtained by tokenizing the statement ac-

cording to the programming language. To limit the total number of possible descriptors,

some tokens are represented abstractly as general situation descriptors. For example, there

are a theoretically-infinite number of different variable names and constant values, so these

are represented by general descriptors such as “int-VAR” or “char-CONST”. Other tokens

such as keywords and operators come from a limited set of possibilities for the given lan-

guage, so these are represented by situation descriptors named after the keywords/operators

themselves. Finally, comments and formatting tokens such as semicolons, parentheses, and

curly braces are ignored.

Figure 8.2 describes different C program structure entities and how they are treated

as situation descriptors by the technique. From this figure, notice that for variable names

and constant values, the technique actually associates two general situation descriptors for

each: one without a type specifier, and one with a type specifier. This is because, for ex-

ample, even if two different situations use constants of different type, then they should still

be regarded as “slightly similar” because they both involve constant values. On the other

hand, if both situations use constants of the same type, then they should be regarded as

“very similar.” The reference and dereference operators “&” and “*” need to be renamed

as situation descriptors to avoid conflicts with the bitwise-and and multiplication opera-

tors, respectively. There are also general descriptors for assignment statements, conditional

statements, and declaration statements. Since C allows for user-defined types, such types

are specified as “user-defined” in situation descriptors that require a type to be specified.
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REF   DEREFrename&   *ref / deref

CASTgeneralize(int)a (char)(2+c)cast

(none)ignore,   {   (   ;   ]   :   )   [format 
tokens

x[10]   foo[a+7]   a[3]

foo()   bar(x, 53)   
fprintf(“res: %d”, a)

17   “rabbit” ‘y’ 4 
3.21   0   ‘z’ -3

foo bar   i   j   sum   
total   average   max

+   - *   /   &&   ||   &  
~  <=   !   ->   . 

if   switch   for   case   
while   default   return

Examples

CONST   x-CONST (x is 
the constant type)

generalizeconstant 
value

FUNC_CALLgeneralizefunction call

ARRAY_ACCESSgeneralizearray access

VAR   x-VAR (x is the 
variable type)

generalizevariable 
name

(the operator itself)use as isoperator

(the keyword itself)use as iskeyword

Situation Descriptor
How to Treat 
as Situation 
Descriptor

C 
Structure 

Entity

Other general situation descriptors:
ASSIGN_STMT  (for assignment statements)
COND_STMT     (for conditional statements)
DECL_STMT      (for declaration statements)

Figure 8.2: Deriving situation descriptors from various C program structure entities.

Figure 8.3 shows an example of some C statements and how they are represented

by situation descriptors. The middle column shows how the C statement is tokenized into

descriptors from left-to-right. The right-most column shows the final, unordered set of

descriptors obtained by removing duplicate descriptors. In structures such as casts, function

calls, and array references, the tokens contained within these structures are tokenized into

descriptors as well.

IVMP Pattern Situation Descriptors

Whereas statement structure situation descriptors refer to static details about a

suspicious statement, IVMP pattern situation descriptors refer to dynamic details about
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ASSIGN_STMT, VAR,
char-VAR, =, CAST, 
char, CONST,
int-CONST, +, DEREF,
int*-VAR

ASSIGN_STMT, VAR,
char-VAR, =, CAST, char, 
CONST, int-CONST, +, 
DEREF, VAR, int*-VAR

c = (char)(2 + *y);

COND_STMT, if, 
FUNC_CALL, VAR,
int-VAR, +, 
ARRAY_ACCESS, VAR,
int*-VAR, CONST,
int-CONST, <, CONST,
int-CONST

ASSIGN_STMT, int, VAR,
int-VAR, =, VAR, int-VAR, 
+, VAR, int-VAR

Tokenized/Converted into 
Situation Descriptors

COND_STMT, if, 
FUNC_CALL, VAR, 
int-VAR, +, 
ARRAY_ACCESS,
int*-VAR, CONST,
int-CONST, <

if (foo(x) + a[3] < 0)

ASSIGN_STMT, int, 
VAR, int-VAR, =, +

int x = a + b;

Final Set of 
Descriptors

C Statement

Figure 8.3: Example of C structure situation descriptors (assume type “int” when
unspecified).

the statement when executed by test cases. IVMP pattern descriptors are derived from

patterns that are observed in the IVMPs associated with the given statement. Recall that

an IVMP, previously defined in Section 2.1, shows the original set of values used at an

executed instance of this statement, and the corresponding set of alternate values that can

be substituted at that point to cause a failing run to pass. Patterns that are observed in the

values of these IVMPs can provide important clues about how a statement can be modified

to fix an error. For example, if the error in a predicate statement is that the predicate is

erroneously negated, then IVMPs at the statement are likely to indicate that the predicate

outcome should be reversed, i.e., IVMPs will show a pattern in which all original values

related to the predicate outcome will be negated in the alternate value sets. Since BugFix

is a technique that provides suggestions for fixing errors, and IVMPs provide hints about

how dynamic values at a statement should be changed to correct the output of failing runs,
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then IVMP patterns can be very useful as situation descriptors.

BugFix uses available test cases to search for IVMPs at the given suspicious state-

ment. Then, the IVMPs are analyzed for patterns that can be represented by situation

descriptors. A pattern is considered to occur when corresponding values in the IVMPs com-

pare to each other in the same way across all IVMPs at a statement. The IVMP example

from Figure 2.1 in Chapter 2 involved a pattern in which the two used values are always

the same in the original sets of values in the IVMPs. Another pattern could be when a

particular original value always corresponds to a larger alternate value in the IVMPs.

To identify patterns in the IVMP values, consideration is made for how pairs of

values compare to each other in terms of whether they are less than, greater than, or equal

to each other. This is done by looking at pairs of values in three different ways: (1) within

just the original sets of values in the IVMPs; (2) within just the alternate sets of values;

and (3) between corresponding values in the original and alternate sets of values. For ex-

ample, consider a statement with one defined value and two used values, so that in an

IVMP the original set of values is {origDef , origUse1, origUse2}, and the alternate set

of values is {altDef , altUse1, altUse2}. Then the original values are first compared to

each other: origDef/origUse1, origDef/origUse2, origUse1/origUse2. Next, the same

is done for the alternate values: altDef/altUse1, altDef/altUse2, altUse1/altUse2. Fi-

nally, the corresponding values between the original and alternate value sets are compared:

origDef/altDef , origUse1/altUse1, origUse2/altUse2.

Figure 8.4 shows a more detailed example of how these pairs of values are com-

pared, in the three columns labeled “Value Comparisons.” These comparisons are computed

for each IVMP associated with a statement (three IVMPs are shown in Figure 8.4). If cor-
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Def Use1 Use2

5   4    1
8   5    3

10  3    7
11  10   1

1   0    1
3   0    3

orig:
alt:

orig:
alt:

orig:
alt:

Original Alternate Corresponding

origDef > origUse1
origDef > origUse2
origUse1 > origUse2

origDef > origUse1
origDef > origUse2
origUse1 < origUse2

origDef > origUse1
origDef = origUse2
origUse1 < origUse2

altDef > altUse1
altDef > altUse2
altUse1 > altUse2

altDef > altUse1
altDef > altUse2
altUse1 > altUse2

altDef > altUse1
altDef = altUse2
altUse1 < altUse2

origDef < altDef
origUse1 < altUse1
origUse2 < altUse2

origDef < altDef
origUse1 < altUse1
origUse2 > altUse2

origDef < altDef
origUse1 = altUse1
origUse2 < altUse2

IVMPs Value Comparisons

origDef > origUse1
Patterns (situation descriptors) found:       altDef > altUse1

origDef < altDef

Figure 8.4: Example of identifying patterns (situation descriptors) in IVMPs.

responding comparisons match across all IVMPs at the statement, then it is considered to

be a pattern and is therefore designated as a situation descriptor (these are highlighted

in Figure 8.4). General names are used to represent the IVMP values, such as origDef

or altUse2, so that the names in the descriptors do not vary among different statements

or programs. Three additional patterns may also appear in IVMPs that are represented

with “special” descriptors: descriptor OTHER-BRANCH, when a branch outcome always

changes to the alternate outcome in the IVMPs; descriptor ONE-TO-ANY, when a single

unique value in the original value sets always changes to some other value in the alternate

value sets; and descriptor ANY-TO-ONE, when some original value always changes to a

single unique alternate value. In the example in Figure 8.4, none of the “special” situation

descriptors apply.
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Value Pattern Situation Descriptors

These situation descriptors represent patterns in the values involved at a suspicious

statement when exercised by both passing and failing runs. BugFix uses executions of the

available test cases to identify the various sets of values used at the given statement, and

these value sets are classified into two groups: those coming from failing runs, and those

coming from passing runs. The technique searches for patterns among these values in a

similar way as was done for the IVMP pattern situation descriptors. First, for each set

of values exercised by failing runs, the technique sees how pairs of values compare to each

other and then determines which comparisons are consistent across all failing-run value sets;

the consistent relationships are designated as situation descriptors. Next, the same is done

for the passing run value sets. Finally, a check is made for four additional patterns that

are represented using the following “special” situation descriptors: descriptors ALL-FAIL-

SMALLER and ALL-FAIL-LARGER, if a particular value from the failing run value sets is

respectively always smaller or always larger than the corresponding value from the passing

run value sets; and descriptors ONE-FAIL-VALUE and ONE-PASS-VALUE, if a particular

value is the same in all failing run value sets or in all passing run value sets, respectively.

Figure 8.5 shows an example with three exercised value sets from failing runs, and

four exercised value sets from passing runs. The comparisons between all pairs of values in

the failing and passing value sets are shown. In this case, one value comparison pattern is

consistent across all failing runs and is represented by a situation descriptor, and the special

ONE-FAIL-VALUE situation descriptor applies as well because value Use2 in all the failing

runs is 2.
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Def Use1 Use2

0   0    2

1   8    2

1   7    2

Failing Runs Passing Runs

failDef = failUse1
failDef < failUse2
failUse1 < failUse2

Exercised Value Sets Value Comparisons

Patterns (situation descriptors) found: failDef < failUse2

Failing Runs Passing Runs
Def Use1 Use2

1   4    4

1   13   2

0   0    0

0   7    5

failDef < failUse1
failDef < failUse2
failUse1 > failUse2
failDef < failUse1
failDef < failUse2
failUse1 > failUse2

passDef < passUse1
passDef < passUse2
passUse1 = passUse2

passDef < passUse1
passDef < passUse2
passUse1 > passUse2
passDef = passUse1
passDef = passUse2
passUse1 = passUse2
passDef < passUse1
passDef < passUse2
passUse1 > passUse2

Special patterns (situation descriptors) found: ONE-FAIL-VALUE

Figure 8.5: Example of identifying patterns (situation descriptors) in exercised value sets.

8.2.2 Prioritizing Bug-Fix Suggestions

Once the set of situation descriptors to characterize the current debugging situation

has been determined, BugFix uses it to query a knowledgebase of rules that map various

debugging situations to bug-fix descriptions. The result of this query is a prioritized list of

bug-fix suggestions that is relevant to the current debugging situation. The knowledgebase

of rules is first described, and then it is shown how the knowledgebase of rules can be used to

compute a prioritized list of bug-fix suggestions relevant to the current debugging situation.

The Knowledgebase of Rules

The knowledgebase of rules is derived from a database of bug-fix scenarios that is

maintained by the technique.
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Definition 14 (Database of Bug-Fix Scenarios).

The database of bug-fix scenarios is the history of previous debugging scenarios en-

countered in which a faulty statement was fixed. Each bug-fix scenario in the database is

represented by a debugging situation and its associated set of bug-fix descriptions.

This database is initially created through training data composed of some set of

known debugging situations and their corresponding bug-fix descriptions. Each time BugFix

encounters a new debugging situation and its corresponding set of bug-fix descriptions, this

new scenario is added to the database. The knowledgebase of rules is then just the result

of running the apriori association rule learning algorithm [7] on the database of bug-fix

scenarios.

Definition 15 (knowledgebase of Rules).

The knowledgebase of rules is a collection of rules, each with an associated confidence

value, mapping various subsets of debugging situations to corresponding bug-fix descriptions.

It is computed using the apriori association rule learning algorithm on the database of bug-

fix scenarios.

Whenever new information is added to the database of bug-fix scenarios, the

database is passed as input to the apriori association rule learning algorithm to com-

pute a revised knowledgebase of rules.

It is observed that a particular bug fix can be described in more general or more

specific terms. For example, changing an operator from < into <= can be described gener-

ally as an “operator mutation”, and more specifically as “change < into <=”. To account

for this, the technique allows a developer to describe a bug fix using multiple bug-fix de-
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scriptions. This allows the technique to be more versatile in reporting the most relevant

bug-fix suggestions for a debugging situation: sometimes, a more general bug-fix suggestion

may be appropriate, while a more specific suggestion may be misleading.

The knowledgebase of rules is such that if a rule R exists that has a particular

debugging situation S and bug-fix description F , then other rules will exist in which various

subsets of S map to the same F . However, the confidence values associated with these other

rules must be less than or equal to the confidence of rule R. For example, assume that a

person who buys eggs and bread almost certainly also buys milk. Then if a person does

indeed buy eggs and bread, one would have high confidence that the person will also buy

milk. However, if another person buys only eggs, then that person may also buy milk, but

one would have less confidence that this will be the case.

Figure 8.6 shows an example of what three rules might look like in the knowledge-

base of rules for a conditional statement. In the figure, there is a single debugging situation

composed of 9 situation descriptors that is mapped to three different bug-fix descriptions

(from more general to more specific), each with a different confidence value.

Prioritizing the Bug-Fix Suggestions

Given a current debugging situation and a knowledgebase of rules, BugFix pri-

oritizes the bug-fix descriptions in the knowledgebase of rules by performing four steps:

(1) identifying rules to consider; (2) sorting rules by confidence value; (3) breaking ties by

number of situation descriptors; and (4) reporting the prioritized bug-fix descriptions as

suggestions.
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Statement: if (a < b)  // assume “<” should be “<=”

Statement structure descriptors: IVMP pattern descriptors:

Value pattern descriptors:

COND_STMT

if

VAR

int-VAR<

origUse1 = origUse2

altDef < altUse1altDef < altUse2

failUse1 = failUse2

operator mutation

comparison operator mutation

change “<” into “<=”

(Bug-Fix Descriptions with Rule Confidence Values)

(Debugging Situation)

90%

70%

55%

RULE 1

RULE 2

RULE 3

Figure 8.6: Example of three rules from a knowledgebase of rules (one debugging situation
mapped to three bug-fix descriptions).

Identifying rules to consider. First, the subset of rules to be considered for

prioritization is identified. These rules are those in which the debugging situation associated

with the rule is a subset of the current debugging situation. Only these rules are considered

because any rule that is not a subset will involve at least one situation descriptor that does

not apply to the current debugging situation.

Figure 8.7 shows an abstract example in which there are 35 rules in the knowledge-

base, and the bug-fix descriptions are ranked with respect to a current debugging situation.

In the figure, each rule is shown with capital letters to represent situation descriptors, and

lower-case letters to represent bug-fix descriptions. Confidence values are in parentheses

after each rule. An asterisk (*) before a rule indicates that the rule is considered for priori-

tization since its set of situation descriptors is a subset of the current debugging situation.

Sort rules by confidence value. The rules being considered are ranked in
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Current debugging situation: A B D F

* A -> a (33%)
* A -> c (33%)
* A -> e (34%)
* B -> a (14%)
* B -> b (12%)
* B -> c (33%)
* B -> d (7%)
* B -> e (34%)

C -> a (100%)
* D -> a (71%)
* D -> b (29%)

E -> b (12%)
E -> d (55%)
E -> c (33%)

* A B -> a (33%)
* A B -> c (33%)
* A B -> e (34%)

A C -> a (100%)

* A D -> a (100%)
A E -> c (100%)
B C -> a (100%)

* B D -> a (71%)
* B D -> b (29%)

B E -> b (12%)
B E -> c (33%)
B E -> d (55%)
C D -> a (100%)
D E -> b (100%)
A B C -> a (100%)

* A B D -> a (100%)
A B E -> c (100%)
A C D -> a (100%)
B C D -> a (100%)
B D E -> b (100%)
A B C D -> a (100%)

4
4
3
6
7
4
8
3

2
5

4
4
3

1

2
5

1

8
8
6
11
12
8
13
6

4
10

7
7
5

2

3
9

1

Prioritized list of bug-fix suggestions (w/o duplicates): a e c b d

RULE PRIO-1 PRIO-2 RULE PRIO-1PRIO-2

Figure 8.7: Example of prioritizing bug-fix suggestions for a debugging situation.

decreasing order of confidence value. In Figure 8.7, the computed ranking is shown in the

columns labeled “PRIO-1” (rank value 1 is the highest rank).

Break ties by number of situation descriptors. Any ties are broken by

ordering rules in decreasing order of situation descriptor set size. The rationale for breaking

ties in this way is the following: if two rules have the same confidence value, then the rule

that has more situation descriptors in common with the specified debugging situation is

likely to be associated with a more-relevant bug-fix description. In Figure 8.7, the ranking

computed in this step is shown in the columns labeled “PRIO-2.”

Report prioritized bug-fix descriptions as suggestions. Finally, the bug-fix
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descriptions are reported as suggestions in order of their associated prioritized rules. If

there are duplicate bug-fix descriptions, then only the first occurrence of each one in the

sorted list is reported. In Figure 8.7, the final result consists of prioritized suggestions a, e,

c, b, and d.

8.2.3 Learning from the Debugging Scenario

Once a developer fixes an error in the considered statement, the final step of the

technique is to learn from this newly-encountered debugging situation and the corresponding

bug fix. This is done by allowing the developer to describe the bug fix in terms of one or

more bug-fix descriptions, and then adding a new entry representing the current debugging

scenario to the database of bug-fix scenarios. The database is then passed as input to the

apriori algorithm, which computes a revised knowledgebase of rules.

BugFix is designed so that it can become more effective over time at accurately

predicting the most relevant bug fixes for debugging situations. It is fully automated except

for the step of actually fixing an error at a faulty statement and specifying the bug fix in

terms of bug-fix descriptions. The technique currently assumes that an error can be fixed

by modifying a single source code statement.

8.3 Case Study

A case study is now presented that is designed to illustrate the use and potential

benefit of BugFix. This study shows how the technique can be used to derive helpful

bug-fix suggestions for several debugging situations (assuming that the faulty statement

has first been located). The study uses an implementation of the apriori association
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Program Name # Lines Program Description Faulty Versions Used
of Code

tcas 138 altitude separation v6, v9, v20
totinfo 346 statistic computation v16
sched 299 priority scheduler v3
sched2 297 priority scheduler v7
replace 516 pattern substituter v1, v23

Table 8.1: Siemens benchmark programs used in the case study.

rule learning algorithm obtained from [56]. For the faulty programs to be debugged, a

subset of the Siemens benchmark programs are used [64], described in Table 8.1. These

faulty versions were selected because they can be easily and clearly described in detail, and

because they highlight interesting aspects of the technique that show the potential benefit

of BugFix. To enable identification of IVMP and value pattern situation descriptors for

the debugging situations, a branch-coverage adequate test suite was associated with each

faulty program consisting of at least 5 failing runs and 5 passing runs, selected from test

case pools associated with each Siemens program.

8.3.1 Training Phase

BugFix is designed to become more effective over time at reporting the most

relevant bug-fix suggestions for a given debugging situation. However, initially the technique

must be trained using a set of known debugging situations and their corresponding bug

fixes. This ensures that an initial knowledgebase of rules will exist. With more training,

the technique is expected to perform more effectively on new debugging situations. To

illustrate training in the case study, the following faulty programs and their known bug

fixes were used: tcas v6, replace v1, schedule v3, and totinfo v16. For tcas v6,

the full information (faulty statement, debugging situation, and bug-fix descriptions) is
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shown in Figure 8.8. For the remaining training programs, only the faulty statements and

corresponding bug-fix descriptions are shown in the figure. Notice in the figure that for tcas

v6, the IVMP pattern situation descriptors “origDef < altDef” and “origDef > altDef”

seem contradictory. This is because IVMPs are computed with respect to binary instructions

in the implementation, and IVMP patterns are included from different binary instructions

if they are associated with the same program statement.

To learn from the four debugging scenarios in Figure 8.8, four different itemsets are

created – one for each of the four debugging scenarios – by taking the union of the debugging

situation descriptors and the bug-fix descriptions. Then these four itemsets (that comprise

the current database of bug-fix scenarios) are passed to the apriori algorithm [7] so that

the knowledgebase of rules can be automatically derived. When invoking apriori, the

algorithm is instructed to only report rules in which antecedents are comprised of only

situation descriptors, and consequents are each comprised of a single bug-fix description.

This ensures that all rules map debugging situations to bug-fix descriptions. The considered

rules are not limited based on support value, but the considered rules are limited to those

with confidence value at least 80%; this value was found to yield good results in the case

study, based on the training data.

Table 8.2 shows the bug-fix descriptions involved in this case study. Each de-

scription has an abbreviation as specified in the middle column. The right-most column

describes when the corresponding description is learned by the technique, either during ini-

tial training, or else through the remainder of this case study as new debugging situations

are encountered.
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tcas v6:

Debugging Situation
Statement Structure Descriptors:

ASSIGN_STMT return VAR int-VAR <=

IVMP Pattern Descriptors:
origDef = origUse1 origDef < origUse1 origDef < altDef

origDef > altDef

origUse1 = origUse2 origUse1 < altUse1 origUse1 > altUse1

altDef < altUse1 altDef = altUse1

ONE-TO-ANY

ANY-TO-ONE

Value Pattern Descriptors:
passDef < passUse2 passDef < passUse1 ONE-FAIL-VALUE

failUse1 = failUse2

Bug-Fix Descriptions
operator mutation comparison operator mutation change <= into <

Faulty line 104:
return (Own_Tracked_Alt <= Other_Tracked_Alt);

(operator <= should actually be <)

replace v1:

Bug-Fix Descriptions
add term to expression decrease variable value

add -1 term to expression

Faulty line 107: if (src[*i] == ESCAPE)
(index *i should actually be *i-1)

schedule v3:

Bug-Fix Descriptions
constant mutation decrease constant value

Faulty line 209: n = (int)(count * ratio + 1.1);
(constant 1.1 should actually be 1.0)

totinfo v16:

Bug-Fix Descriptions
constant mutation decrease constant value

Faulty line 99: if (info >= 0.1)
(constant 0.1 should actually be 0.0)

Figure 8.8: Four faulty program debugging scenarios used to train BugFix.
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Bug-Fix Description Abbreviation When Learned

operator mutation opm training
comparison operator mutation copm training
change <= into < <=|< training
change >= into > >=|> new situation
add term to expression e+t training
decrease variable value v- training
increase variable value v+ new situation
add -1 term to expression e-1 training
add +1 term to expression e+1 new situation
constant mutation c+- training
decrease constant value c- training

Table 8.2: Bug-fix descriptions involved in this case study.

8.3.2 Encountering New Debugging Situations

Based on the knowledgebase of rules obtained from the initial training, it can now

be seen how the technique performs when encountering a new debugging situation. For

this, four new debugging scenarios are considered, described in Figure 8.9 (the associated

situations descriptors in the figure are omitted). Notice that tcas v9 and tcas v20 have

faulty statements that look identical, but they are actually distinct statements occurring at

two different source code lines in the program, so they are associated with distinct errors.

Tcas v9. This faulty program involves an error in which a comparison operator

>= at line 90 should actually be >. For this debugging situation, the technique identifies

the situation descriptors and then queries the (trained) knowledgebase of rules to obtain

a prioritized list of relevant bug-fix suggestions. BugFix reports the prioritized list [<=|<,

copm, opm, e-1, v-, e+t, c-, c+-], with associated rank values [1, 1, 1, 2, 2, 2, 3, 3]. In other

words, the first three suggestions are tied for rank 1, the next three suggestions are tied for

rank 2, and the last two suggestions are tied for rank 3. These results imply that potential

bug fixes <=|<, copm, and opm should be considered first by a developer. Suggestions copm
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tcas v9:
Faulty line 90:

upward_preferred = Inhibit_Biased_Climb() >= Down_Separation;
(operator >= should actually be >)

tcas v20:
Faulty line 72:

upward_preferred = Inhibit_Biased_Climb() >= Down_Separation;
(operator >= should actually be >)

replace v23:
Faulty line 74: if (s[*i] == ENDSTR)
(index *i should actually be *i+1)

schedule2 v7:
Faulty line 292:

if (ratio < 0.0 || ratio >= 1.0) return (BADRATIO);
(operator >= should actually be >)

Figure 8.9: Four new debugging scenarios (post-training) for the case study.

and opm are indeed effective, since the current situation does require a comparison operator

mutation. Suggestion <=|< is less effective, but it is similar to the expected fix (the fix in

this case, changing >= into >, is not yet known to the technique). It is possible that these

results can quickly guide a developer to an appropriate fix in this faulty statement. After

the fix is made, suppose the developer describes the bug fix with three descriptors: operator

mutation, comparison operator mutation, and change >= into >. BugFix then learns from

this current debugging scenario.

Tcas v20. This faulty statement looks identical to the one just seen in tcas v9, but

since it is a distinct statement at a different source code line, it turns out that the debugging

situation is slightly different due to some differences in the IVMP patterns. However, it

is expected that the knowledge just learned from scenario tcas v9 should be beneficial in

helping BugFix to report highly relevant bug-fix suggestions for this new situation. Indeed,
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the prioritized bug-fix suggestions reported by the technique for this new situation are [>=|>,

copm, opm, <=|<], with associated rank values [1, 1, 1, 2]. In this case, the other bug-fix

descriptions contained in the knowledgebase of rules are not reported in the prioritized list

because their associated rules all have confidence values less than the specified minimum

threshold. All three suggestions with highest rank in the prioritized list precisely match

the expected fix to make at this faulty statement. Thus, this demonstrates how the results

reported by BugFix can improve over time as more knowledge is automatically learned

through continued use of the technique.

Replace v23. In the faulty statement associated with this program, an array

index ∗i should actually be ∗i+ 1. This error has some similarities to replace v1 that was

involved during the training phase. The prioritized list of bug-fix suggestions in this case

turns out to be [e-1, v-, e+t, >=|>, copm, opm, c-, c+-], with associated ranks [1, 1, 1, 2, 2,

2, 3, 3]. The highest-ranked suggestions (e-1, v-, and e+t) are, as might be expected, the

same three bug-fix descriptions associated with the similar scenario replace v1 encountered

during training. In this case, suggestion e+t is appropriate because a term should indeed

be added to the array index expression. However, suggestions e-1 and v- are not quite

consistent with the expected fix, since here, the value of a variable should actually be

increased by adding a +1 term to the index expression. On the other hand, these expected

bug-fix suggestions (v+ and e+1) are not yet known to the technique, and therefore could

not have been reported. However, after the error is fixed, bug-fix suggestions v+ and e+1

are henceforth known to the technique, so more effective suggestions can be reported in a

similar situation in the future.
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Schedule2 v7. Here, a debugging situation is encountered in a completely new

subject program that has not yet been encountered in the study. Although the error in this

case (comparison operator >= erroneously used instead of >) is familiar, the statement

itself is rather unique as compared to what has been previously encountered. Based upon

all knowledge learned from the previously-encountered debugging scenarios, the technique

reports for the current scenario the following prioritized list of bug-fix suggestions: [c-, c+-,

>=|>, copm, opm, <=|<, e-1, v-, e+t, e+1, v+], with associated ranks [1, 1, 2, 2, 2, 3, 3, 3, 3,

4, 4]. In this case, the expected fix is represented by suggestions >=|>, copm, and opm, which

are all given rank 2. However, note that rank-1 suggestion c+- also implies another possible

fix: mutating the constant value 1.0. Indeed, instead of changing the predicate ratio >= 1.0

into ratio > 1.0 (the expected change), it may also be appropriate to instead mutate the

constant so the predicate becomes ratio >= 1.001 (an unexpected change). It turns out

that with the latter change, all available test cases pass. However, the latter change is

not semantically equivalent to the former expected change. A developer must determine

whether such a change is indeed appropriate, given the specification of the program.

Conclusions of case study. The case study illustrates that BugFix has potential

to be effective at reporting relevant bug-fix suggestions for new debugging situations (given

some amount of initial training), and that this effectiveness may improve over time due to

the machine learning component that provides the foundation for BugFix.

8.4 Summary

In this chapter, a learning technique called BugFix is developed that can automat-

ically assist developers in fixing program errors. The technique identifies a prioritized list
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of bug-fix suggestions that are relevant to a given debugging situation. Through a machine

learning algorithm, BugFix learns about new debugging situations and their corresponding

bug fixes as they are encountered, thus increasing the effectiveness of the technique over

time. A case study was also presented in this chapter, illustrating the use and potential

benefit of BugFix.

The work on BugFix was originally motivated by the concept of IVMPs, previously

described in Chapter 2. Since IVMPs show how values can be changed in an executed

statement instance to cause the output of a failing run to become correct, IVMPs can provide

important insights about how to correct program errors. However, in working on BugFix, it

became apparent that considering IVMPs alone may not be sufficient; it is also important

to consider other available information, such as the structure of a suspicious statement and

the values exercised at the statement by passing and failing runs. By taking all of this

information into account in a machine learning framework, the potential effectiveness of

BugFix in reporting useful debugging suggestions is improved.
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Chapter 9

Related Work

In this chapter, an overview of prior work is presented that is related to the work

discussed in this dissertation. The focus of this dissertation is on automatically locating

software errors using dynamic state alteration techniques. Prior work is first presented

that focuses on locating software errors, starting with dynamic state alteration techniques.

Then, prior work is discussed that focuses on fixing errors. Finally, prior work that focuses

on tolerating errors is summarized.

9.1 Locating Errors

9.1.1 Techniques for Locating Errors in General

State Alteration Techniques

State alteration techniques for locating software errors, like the Value Replacement

and Execution Suppression techniques presented in this dissertation, involve modifying the

state of an executing program in order to isolate faulty statements. In the Delta Debugging
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framework, a technique is described for isolating the differences between a passing and

failing test case to simplify a failing test case into a minimal test case that still produces

the failure [146]. This technique can then be applied to passing and failing executions to

systematically narrow down the variables and values relevant to the failure, by modifying

execution state and observing if there is any difference in the test outcome [145]. This

can be used to identify the cause-effect chains relevant to a failure. Finally, focusing on

cause transitions – moments in time when new variables relevant to a failure begin being

failure causes – can help to isolate a faulty statement [22]. More recent work [95] has

been proposed to significantly speed up Delta Debugging while increasing the quality of the

results on tree-structured inputs. Delta Debugging is similar to Value Replacement because

both techniques involve modifying execution states by swapping the values of variables in

order to cause differences in test case outcomes. However, Value Replacement performs

much more aggressive state alteration, potentially modifying the associated values at every

executed statement instance in a failing run. Value Replacement also does not make use

of passing runs except to gather profiling information about the values involved at each

executed statement instance.

The idea of Predicate Switching [138, 148] involves altering the outcomes of partic-

ular predicates during execution of a failing run, to try to cause the run to become passing.

This technique performs a subset of the state alterations that are performed in Value Re-

placement, because Value Replacement alters the outcome of predicates in addition to the

values involved in any statement instance. Moreover, predicate switching may sometimes

cause execution to enter inconsistent states, due to blindly altering only the control flow.

Value Replacement, on the other hand, involves changing data flow, and a single value re-
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placement can lead to multiple predicate switches in an execution that occur in a manner

consistent with the revised values.

In general, state alteration techniques can potentially require significant time if

many state alterations need to be performed in order to obtain useful information. Value

Replacement was forced to deal with this issue, and so techniques were proposed in this

dissertation to improve the efficiency of Value Replacement. Execution Suppression, on

the other hand, performs more targeted state alterations, so time complexity of Execution

Suppression is not as much of a concern as it is for Value Replacement.

Slicing Techniques

Slicing-based techniques identify subsets of program statements that can or do

influence the value of a variable at some point in a program/execution. These techniques

can be used to narrow down the set of statements that may be responsible for a failure,

allowing a developer to locate an error more quickly. Static slicing [133, 139] identifies the

subset of program statements that may affect the value of a variable at a particular program

point, without making any assumptions about program input values.

Dynamic slicing [3, 4, 76, 78, 80, 107, 133] identifies the subset of program state-

ments that do affect the value of a variable at a particular program point during a given

execution. Dynamic slices are a subset of static slices. More recent work on dynamic slic-

ing [147] has improved its effectiveness and efficiency for debugging. A series of precise

dynamic slicing algorithms have been proposed [151], and a cost-effective dynamic slicing

algorithm has been developed [150]. Work on compactly representing bytecode traces for

slicing Java programs has also been conducted [137]. To help narrow down likely faulty
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statements in dynamic slices, techniques have been proposed [82, 149, 152] to rank state-

ments in the computed slices. Work has also been done on computing dices [5, 20] and

chops [39, 41] to reduce the number of statements present in dynamic slices. Dices are com-

puted by taking the set difference between slices, usually between the slices for correct and

faulty variable values. Chops are computed by taking the set intersection between slices,

usually between forward and backward slices. A recent survey of program slicing [142] in-

cludes discussion of some techniques for slicing multithreaded programs. A technique that

was published after the survey discusses how slicing can be extended to capture data races

in multithreaded programs [130].

To take potential dependencies into account, the notion of relevant slicing has been

proposed [4, 79], and an algorithm has been developed for efficiently computing them [40].

Relevant slices are a subset of static slices but a superset of dynamic slices. In addition to

those statements that actually influenced the value of a variable at a particular point during

execution, relevant slices also contain statements that did not affect the variable value, but

could have affected the value if a conditional statement had evaluated to a different outcome.

Considering these additional statements can be useful in a debugging context.

Overall, slicing techniques consider static or dynamic control and data dependence

information to identify subsets of program statements that may contain an error. This in-

cludes only existing state information; slicing does not consider altering dynamic state like

what is discussed in this dissertation. Moreover, slicing reports a subset of program state-

ments that can potentially be large. Unless techniques are used to rank statements in the

computed slices, a developer may have to look through possibly many statements before

an error can be found. In contrast to this, Value Replacement computes a ranked list of

200



program statements in which a faulty statement is very likely to be given high rank, and Ex-

ecution Suppression reports only a single statement (or a few statements on rare occasions)

that is very likely to be at or near to the location of an error. Execution Suppression also

considers data dependence information when determining suppression points, but the tech-

nique may bypass possibly many links in the dependence chain between the error and the

(original) failure, depending upon where crashes occur on each iteration of the technique.

Slicing techniques, in general, would consider all links in all dependence chains influencing

the value of a variable at a particular program point.

Statistical Techniques

Statistical techniques use dynamic information taken from some number of pro-

gram executions in order to isolate program errors. In many cases, these techniques can

be used to compute suspiciousness values for each program statement in order to rank the

statements according to their likelihood of being faulty. These rankings can help guide a

developer to an error more quickly than by blindly searching through all program state-

ments.

Work has been done on analyzing and evaluating program spectra for the purpose

of locating software errors [44]. It was discovered [43] that failing executions tend to have

unusual coverage spectra as compared to passing executions. Inspired by this discovery,

Jones et. al. developed a technique called Tarantula [74, 75] that ranks program statements

according to likelihood of being faulty. The key idea of their technique is that statements

exercised more often by failing runs than by passing runs, are more likely to be faulty. The

Nearest Neighbor technique [119] takes a failing run along with a larger number of passing
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runs, identifies the passing run that is the most similar to the failing run, and compares the

spectra between these two runs to identify the most suspicious parts of a program.

Liblit et. al. have conducted work on Cooperative Bug Isolation [85, 86, 87],

a series of techniques for locating software errors based on statistical analysis of sparse

feedback data. This data is taken from program executions experienced by large numbers

of software end users. Xie and Engler noticed [141] that redundant operations in programs

are strongly correlated with the presence of errors such as null pointer dereferences. The

SOBER technique [88] models the evaluation patterns of predicates in passing and failing

executions, and considers a predicate to be relevant to an error if its evaluation pattern

in failing executions differs significantly from that in passing executions. The Artemis

technique [30] provides practical runtime monitoring of executions for error detection; the

key idea is to only monitor those statement instances that are likely to be erroneous. To

determine the likely erroneous statements, the technique builds a model of correct behavior

through training from a set of passing runs, and identifies execution contexts that differ

significantly from the model. Jiang and Su realized [72] that prior statistical techniques that

identify error-predicting predicates may be ineffective for locating errors that are not directly

associated with these predicates. They propose a technique to automatically generate faulty

control-flow paths that link many error-predicting predicates together, which can be more

effective at locating errors.

Unlike the state alteration techniques proposed in this dissertation, statistical tech-

niques only consider existing state information about program executions. Value Replace-

ment is similar to statistical techniques in that statements are ranked according to sus-

piciousness values. Both Value Replacement and other statistical techniques can lead to
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false positives, statements with high suspiciousness that are actually not faulty and may

be unrelated to an error. However, Execution Suppression will not lead to false positives

in this sense, because any statement reported by Execution Suppression will be contained

in the dependence chain between the error and the point of a resulting failure, though the

reported statement is hopefully at or very close to the faulty statement.

Static Techniques

While all of the techniques discussed in this dissertation are dynamic techniques

that involve analyzing actual program executions, there has also been significant work on

static techniques for locating errors.

The LCLint checking tool [29] assumes annotations are written in a program to

explicitly describe the results of functions and the values of parameters and global vari-

ables; these annotations can then be exploited by the tool to detect errors at compile time.

The PREfix tool [17] performs compile-time analysis of a program to symbolically execute

functions while modeling memory and identifying any observed inconsistencies that may be

related to an error. Jackson and Vaziri [65] developed a technique in which a procedure is

translated into a relational formula, which is then joined with the negation of the proce-

dure’s specification. A constraint solver is then used to search for potential executions of

the code that can violate the procedure specification; these are likely to be associated with

errors. The SLAM toolkit [11] creates abstractions of C code using iterative refinement,

based on a specified temporal safety property of interest; the property is then automati-

cally validated using the tool. BLAST [48] also verifies safety properties of C programs.

CQual [34, 35] assumes that programs written in languages with static type systems are
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annotated with a few type qualifiers; automatic type qualifier inference can be used to

determine the remaining qualifiers, and then the system can check the annotations for con-

sistency. The PSE technique [93] takes as input the type and source code location of an

execution failure, and tracks the relevant value of interest back from the point of the failure

through the points in the program where that value may have originated. Xie and Aiken

present an error-detection tool [140] that exploits advances in boolean satisfiability solvers

to translate programs into boolean formulas that can be solved to check for violations that

can be correlated with errors. The Extended Static Checker for Java [33] looks for common

programming errors at compile-time by way of an annotation language in which a developer

formally expresses design decisions.

It has been observed that static techniques for locating errors often require pro-

grammers to modify software with annotations or specifications, and this can potentially

place significant burden on developers. To address this issue, a body of research has been

conducted [10, 27, 84, 89] on using data mining techniques to automatically infer specifica-

tions from software.

Other Techniques for Locating General Errors

Invariant-based techniques formulate invariants regarding the proper behavior of

software; any violations to these invariants can then be examined as possible errors. The

Daikon tool [28] can be used to automatically infer likely program invariants by dynamically

analyzing program executions; these invariants can then be applied to debugging to discover

potential errors when these invariants are violated at runtime. DIDUCE [42] can similarly

be used to hypothesize likely invariants; the strictest invariants are hypothesized at first,
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but as violations are detected and examined for possible errors, the hypothesis is relaxed

over time to allow for newly-encountered program behavior. In AccMon [155], invariants are

identified regarding the set of program instructions that typically access particular memory

locations; when outlier instructions access these memory locations, there is a chance these

instructions are associated with an error, perhaps an error that causes memory corruption

such as a buffer overflow.

Check ’n’ Crash [23] derives error conditions in a program statically and then

generates concrete test cases to dynamically verify whether an error truly exists. Eclat [106]

infers an operational model of the correct behavior of a program and identifies inputs whose

operational execution patterns differ from the model in particular ways; these inputs are

likely to be error-revealing. The FindBugs tool [49] automatically detects error patterns

in Java programs. PathExpander [91] provides support to increase the path coverage of

dynamic error-detection tools by executing non-taken paths in a sandbox environment.

This allows for error detection in paths that would have otherwise not been analyzed.

A few techniques have been developed that focus on locating multiple simultaneous

errors in software. Abreu et. al. [2] describe a dynamic model-based approach that can

derive explanations for multiple potential errors in software. Jones et. al. [73] describe a

framework for parallel debugging, in which failing runs are clustered according to a clustering

technique, and then used to create specialized test suites that are each targeted to a single

error. This enables the use of parallel work flows to debug different errors simultaneously,

thereby reducing the time-to-release of a program. This dissertation has shown how Value

Replacement can be generalized to also be effective in the presence of multiple simultaneous

faults. However, whereas the work in [73] allows for parallel debugging, Value Replacement
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is iterative in nature, focusing on effectively locating and fixing each error, one at a time.

To some degree, many techniques for locating general errors can also help to explain

how those errors are revealed during execution. For example, in slicing techniques, the

dependence chains traversed during computation of slices essentially express the cause-

effect relations between an error and the resulting failure. Also, with the Value Replacement

technique proposed in this dissertation, the computed IVMPs give hints about why values

may have been wrong during a failing execution. In cases such as this, the error explanations

obtained are products of the approach taken in order to compute the desired results; the

explanations are a useful consequence of the technique, but do not represent the end goal

of the technique (the end goal in these cases is to locate an error). There are a few existing

techniques, however, that focus explicitly on trying to explain why a failure occurs due to an

error. The work of Groce et. al. [37, 38], similar to the Nearest Neighbor technique [119],

uses distance metrics to compare passing and failing program executions to isolate the

differences, and then uses these differences to shed light on why an error is causing a failure.

Ko and Myers [77] developed a debugging tool called The Whyline to help developers better

understand program behavior. This tool allows developers to select a question concerning

the output of a program, and the tool then uses a combination of static and dynamic

analysis techniques to search for possible explanations.

9.1.2 Techniques for Locating Multithreading Errors

Detecting Data Races

Data races represent an important class of errors that is unique to multithreaded

programs. As a result, there are a variety of existing techniques for identifying data races.
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These techniques can be classified into those that use the happens-before algorithm [21,

94, 121], the lockset algorithm [31, 81, 124, 156], or a hybrid algorithm that combines both

approaches [25, 105, 144]. The key idea behind lockset-based algorithms is to check whether

shared variables are protected by at least one lock. The algorithms employ heuristics that

can cause false positives to be reported. On the other hand, the key idea behind happens-

before algorithms is to check whether accesses to shared variables in a program are explicitly

ordered through synchronization operations. These approaches may miss some data races,

but all identified data races will be true data races (though some of them may be benign).

Hybrid algorithms generally attempt to achieve coverage close to that of lockset-based

algorithms, while reducing false positives.

The ReEnact technique [112] dynamically detects data races in multithreaded pro-

grams by reusing architectural support for thread-level speculation. Work by Tallam et.

al. [130] has shown how to extend dynamic slicing to consider additional types of depen-

dencies for effective capturing of data races. This dissertation has shown how Execution

Suppression can be extended to work for multithreaded programs and to handle data race

errors. The proposed technique is based on happens-before relationships because it iden-

tifies conflicting memory accesses for which there is no explicit synchronization between

them. Thus, all identified data races in the technique are true data races. Moreover, the

technique further checks to see if a data race is potentially harmful [101] before reporting

it as a likely root cause of a failure.
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Static Techniques for Multithreaded Programs

Several techniques have been developed that focus on static checking of multi-

threaded programs, to address the unique challenges in locating errors posed by multi-

threaded code. Qadeer and Rehof observed [113] that although the problem of verifying a

concurrent boolean program is undecidable, the problem can be made decidable if analysis

is restricted to executions in which the number of context switches is bounded by a con-

stant; such analyses can still discover intricate errors in software. The work was later refined

by Musuvathi and Qadeer [97] in a technique for iterative context-bounding, in which the

possible executions of a multithreaded program are systematically explored in an order that

gives priority to executions with fewer context switches. Calvin [32] uses automatic theorem

proving to statically check multithreaded programs in a scalable manner, requiring only a

moderate amount of annotation overhead.

9.1.3 Techniques for Locating Specific Kinds of Errors

There have been a variety of techniques developed that focus on locating only

specific types of errors.

Valgrind [103] and Purify [45] can be used to detect memory errors, but are re-

strictive in that they look for particular kinds of memory errors, such as buffer overflows

and memory leaks. In one sense, the Execution Suppression technique proposed in this

dissertation is more general because it can be used to locate any errors involving corrupted

memory. On the other hand, Valgrind and Purify can detect some errors that may not

involve memory corruption, such as memory leaks. CCured [102] is a technique for verifying

type-safety of pointers both statically and during runtime, which can be used to find poten-
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tial memory errors. However, the technique requires modifications to program source code.

HeapMon [125] takes advantage of extra cores in hardware to improve the efficiency of error

monitoring for heap memory errors. SafeMem [114] exploits ECC memory technology to

detect memory leaks and memory corruption. Execution Suppression, on the other hand,

identifies memory corruption through memory-related program failures.

There has been a variety of work on techniques for detecting buffer overflows,

a particular type of memory error. For example, Write Integrity Testing (WIT) [8] uses

a combination of static analysis and runtime instrumentation to ensure that instructions

do not write to unintended storage locations, and control does not transfer to unintended

targets; the average space and runtime overhead of their approach is around 10%. Ruwase

and Lam’s CRED tool [122] performs bounds-checking in order to detect buffer overflow

attacks, incurring an overhead of 1% to 130%. While these techniques incur relatively

low overhead, the main difference compared to Execution Suppression is that the bounds-

checking approaches are designed specifically to capture out-of-bounds memory accesses.

On the other hand, buffer overflows are only one type of memory error that can be located

using Execution Suppression. Other errors that may not involve out-of-bounds memory

accesses, such as double frees, uninitialized reads, and dangling pointers, can also be located

by Execution Suppression.

The notion of pointer taintedness [19] can be used to detect security attacks that

can be associated with a security error. The idea is to treat pointers as tainted if user input

can be used to compute the pointer value; whenever a tainted value is dereferenced during

execution, a security attack is detected.

CP-Miner [83] is a technique that searches for copy-paste errors in large-scale
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software systems. EXPLODE [143] focuses on identifying data integrity errors in storage

systems.

9.2 Fixing Errors

The techniques described in the previous section for locating errors sometimes pro-

duce accompanying information that can help developers to understand why the errors are

causing failures. For instance, Delta Debugging can be used to identify cause transitions

during execution when particular variables stop and start becoming causes for a failure.

These cause transitions can help to explain what is going on between the point of error

traversal and the point of a failure. In general, the information that can help in under-

standing program failures can also be used to assist in fixing those errors. However, the

techniques described in the previous section have the primary goal of locating errors, not

on modifying program code to eliminate errors. Compared to the amount of prior work on

automated error location, there is relatively little prior work that focuses explicitly on au-

tomating the process of assisting developers in modifying program code to eliminate errors.

Advances in both directions can help to improve the efficiency of the debugging process.

He and Gupta [46, 47] developed a technique to automatically generate program

modifications to correct an erroneous statement in a function. In order to locate a likely

erroneous statement, their technique combines ideas from software testing and path-based

weakest preconditions, which are used in correctness proof methods. Their approach re-

quires that a (correct) formal precondition and postcondition be specified for a function

in terms of first-order theory formulas. Similar to this work, the BugFix technique de-

scribed in this dissertation can automatically assist developers in modifying a likely erro-
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neous statement to fix an error. However, unlike the technique of He and Gupta, BugFix

does not require any formal preconditions or postconditions. The technique of He and

Gupta automatically locates a likely erroneous statement, whereas BugFix assumes that

such a statement has already been located using an existing error location technique. Also,

the technique of He and Gupta can directly generate program modifications, whereas the

BugFix technique can only report suggestions for how to modify program code taken from

a prior, finite list of known suggestions.

Abraham and Erwig [1] developed a debugging tool for spreadsheets in which a

user can specify the expected value for a cell that contains an incorrect value; the tool

then identifies change suggestions that can be used to correct the error. In contrast to this,

BugFix is not designed to work on spreadsheets, but on general program source code.

9.3 Tolerating Errors

If a program error is not being located and fixed, then other techniques must be

used to deal with the negative effects of the error. This can be accomplished either by

taking preventive measures to avoid the negative effects of the error in the first place, or

else to deal with the negative effects of the error after they occur during execution (i.e., to

recover from the effects of the error). Unlike the techniques described in this section for

tolerating errors, the techniques proposed in this dissertation focus on locating errors so

that they can be eliminated.
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9.3.1 Avoiding the Negative Effects of Errors

The Ph.D. dissertation of Michael Bond [14] describes two techniques for avoiding

memory leak errors. The first technique, Melt [15], identifies stale objects that a program

is not accessing, stores these stale objects to disk, and activates these objects only if a

program subsequently accesses them. The second technique, leak pruning [16], predicts

leaked objects based on data structure usage patterns, and then reclaims these objects at

runtime; an error is thrown if any reclaimed object is later accessed.

There has been recent work on protecting against heap-based memory errors to

improve program reliability. DieHard [13] provides memory safety with high probabil-

ity by randomizing the location of objects in a large heap and by replicating execution.

Archipelago [92] allocates heap objects far apart in virtual address space to combat buffer

overflows, and protects against dangling pointer errors by preserving freed objects after

they are freed. Exterminator [104] pinpoints heap-based memory errors and derives run-

time patches to avoid them in the current and subsequent executions.

Work on Failure-Oblivious Computing [120] allows servers to execute through mem-

ory errors without memory corruption. This is accomplished by using a safe compiler to

insert checks into C programs that dynamically detect invalid memory accesses. When an

invalid access occurs, invalid writes are simply discarded and values are manufactured to

be returned for invalid reads. This allows a server to continue on its normal execution path

without failing.

The Samurai system [108] provides safeguards against corruption of critical data

through a memory model called critical memory. Their system uses replication and forward

error correction to ensure that non-critical updates do not corrupt critical data. However,
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the system requires that critical memory be explicitly identified by a programmer.

The idea of data diversity has been proposed [9] to avoid certain failures. Data

diversity observes that when a program fails due to particular input, in some cases the

program failure can be avoided if the input is changed in some minor way (according to

the program specification). Further, if multiple copies of the same program are executed in

parallel on slightly-different input sets, then a voting scheme can be applied to select the

program output that is most likely to be correct.

9.3.2 Recovering from the Negative Effects of Errors

Once a failure occurs, the simplest way to recover from a program failure is to

restart the whole program [36]. However, a more recent work [18] proposes selective restart-

ing of a small set of partial software components, in order to reduce the cost of recovery.

Both techniques, however, cause a program to be temporarily unavailable while all or part

of the program is being restarted.

To further reduce the cost of recovery and avoid restarting a program, a variety of

techniques incorporating the notion of checkpointing and logging have been proposed [36,

111, 115, 116, 127, 132, 153]. These techniques involve periodically checkpointing the state

of an executing program. Once a failure occurs, the system can rollback to the most recent

safe checkpoint and then resume execution from that point. Steps can be taken to avoid

the failure the second time, such as by dropping a faulty user request in a server program.

Sidiroglou et. al. describe a framework for reacting to a wide variety of software

failures [126]. Their system monitors the execution of a program for observed failures. In

future executions of the program, the faulty regions of code are executed in an instruction-
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level emulator; this emulator checks for recurrences of the conditions for previously-seen

failures prior to the execution of each instruction. If such a recurrence is detected, then the

program execution is recovered to a safe control flow.

Recovery-Oriented Computing [109, 110] is a framework that assumes that com-

puter errors are inevitable, and therefore techniques to recover from those errors are impor-

tant. The framework advocates for isolation and redundancy in system design, system-wide

support for undo operations, integrated diagnostic support for efficient recovery from fail-

ures, and online verification of recovery schemes.

Work has also been done on recovering from failing device drivers [128, 129] and re-

covering from transient soft errors [96, 117, 118, 135, 136]; transient soft errors are radiation-

induced errors that cause random bit-flips in hardware.
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Chapter 10

Conclusions

10.1 Contributions of this Dissertation

The main contributions of this dissertation are in the area of dynamic state alter-

ation techniques for locating software errors. Two major dynamic state alteration techniques

were developed: Value Replacement and Execution Suppression.

Value Replacement performs aggressive state alteration by replacing the set of

values involved in each statement instance in a failing execution with alternate sets of

values. If any value replacement causes the output of the execution to change and become

correct, then the statement associated with the value replacement is likely to be associated

with an error. It was shown how Value Replacement can be generalized into an iterative

technique for locating multiple simultaneous errors in software. Also, several techniques to

improve the efficiency of Value Replacement were presented.

Execution Suppression performs targeted state alteration by iteratively identifying

and avoiding the effects of statements in a failing execution that are known to involve
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memory corruption. This process iterates until the first point of memory corruption in

the execution is identified; this point is likely to be at or near to a memory error. It was

shown how Execution Suppression can be extended to work effectively in the context of

multithreaded programs and data race errors. Implementation issues of suppression were

also considered, including some forms of hardware support.

A technique called BugFix was presented that makes use of the interesting value

mapping pairs (IVMPs) computed by Value Replacement. BugFix is an automated, learning-

based technique that provides relevant suggestions for how to modify a given suspicious

statement to correct an error in that statement. It is one of only a handful of known tech-

niques for providing automated assistance in modifying program code to eliminate errors.

The following research questions are addressed in this dissertation.

(Effectiveness) Can dynamic state alteration techniques effectively locate soft-

ware errors?

Prior to the work conducted in this dissertation, the potential effectiveness of dy-

namic state alteration techniques in locating software errors was questionable. For example,

when the work on cause transitions in the state-altering Delta Debugging framework was

published [22], it was shown that cause transitions could achieve more effective error loca-

tion results on the Siemens benchmark programs [64] than Nearest Neighbor [119], the most

successful technique known up until that point. However, it was later shown [74] that the

much simpler Tarantula statistical (non-state altering) technique could produce superior

error location results on the same benchmark programs.

In this dissertation, it was shown that Value Replacement, which performs much
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more aggressive state alteration than Delta Debugging, can achieve error location results

that are significantly more effective than the results that can be achieved by Tarantula on the

Siemens benchmark programs [64]. Although the basic Value Replacement technique can

have reduced effectiveness in the presence of multiple simultaneous errors, this dissertation

has also shown how to generalize Value Replacement into an iterative technique that can

effectively locate each of the multiple errors.

The Execution Suppression technique described in this dissertation can accurately

pinpoint the first point of memory corruption in an execution that fails due to a memory

error; the first point of memory corruption is typically at or very close to the point of the

error itself. Thus, Execution Suppression can be highly effective at locating memory errors.

This dissertation has also shown how to extend Execution Suppression to effectively locate

memory errors such as data races in multithreaded programs.

(Efficiency) Can dynamic state alteration techniques efficiently locate software

errors?

Previously, it was not clear whether dynamic state alteration techniques could

produce error location results that were effective enough to justify the time required to

perform the techniques. For instance, cause transitions were shown [22] to require time

ranging from several minutes to a few hours for each analyzed benchmark program. As

another example, a full, brute-force implementation of Value Replacement can potentially

require dozens of hours of computation time for each benchmark program considered in the

experiments.

This dissertation described several ideas that can be used to drastically improve the
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efficiency of Value Replacement, while still allowing the technique to yield highly effective

error location results. With these improvements, it was seen that a large majority of

cases required only a matter of minutes to locate each error. In a debugging context in

which automated assistance can be very valuable to a developer, this timing requirement is

reasonable.

The Execution Suppression technique described in this dissertation performs tar-

geted state alteration and therefore requires significantly less computation time than Value

Replacement. In most cases, just several program executions are required to isolate the first

point of memory corruption in an execution that fails due to a memory error. The part of

Execution Suppression that can potentially require the most computation time is the vari-

able re-ordering step. However, the implementation heuristics described in this dissertation

for significantly limiting the number of program executions required for variable re-ordering

can help in improving efficiency while retaining effectiveness of the technique.

(Application to Fixing) Can dynamic state alteration techniques be applied to

the problem of fixing errors?

Chapter 8 described a technique called BugFix that was inspired by the interest-

ing value mapping pairs (IVMPs) computed when performing the Value Replacement state

alteration technique. These IVMPs show how the values involved at particular statement

instances in failing executions should be changed in order to correct the outputs of these

executions. Thus, IVMPs provide important insights about what might be going wrong

at a statement. However, Value Replacement by itself does not make use of this valuable

information; the error location technique merely checks to see which statements are asso-
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ciated with at least one IVMP. As a result, the work on BugFix is designed to make use

of the insight provided by IVMPs, in order to automatically provide suggestions for how

to modify a suspicious statement to fix an error. BugFix, however, takes much more in-

formation into account than just IVMPs. The technique also considers the static structure

of a given statement, as well as the dynamic values used at that statement in passing and

failing runs. The technique is based upon a machine-learning algorithm that can reason

about prior debugging situations to provide the most relevant bug-fixing suggestions for

a current debugging situation. A case study was presented that illustrates the use and

potential benefit of BugFix.

10.2 Future Directions

Future directions for the work described in this dissertation involve enhancements

to the presented techniques for error location, as well as applications to other areas related

to handling software errors, such as fixing errors and tolerating the effects of errors.

Enhancements to Value Replacement

Although this dissertation proposed several techniques for significantly improving

the efficiency of Value Replacement, there are still situations in which the technique may

not scale well, such as when debugging long-running server programs that may involve

very long execution traces. In cases such as this, other techniques can be used to first

isolate parts of the execution that are likely to be associated with an error, and then Value

Replacement can be subsequently used to rank those statements to better isolate the ones

that are truly faulty. For instance, dynamic slicing techniques can first be used to identify
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a subset of statement instances to later consider for value replacements. The technique

of Execution Reduction [131] can also be used to isolate the portions of execution in long-

running programs that are relevant to an error; value replacements can then be performed

in only the identified portions of an execution that are relevant to the error.

Value Replacement may also have limited effectiveness in cases where it is difficult

to cause the output of a failing execution to become correct, such as executions that output

decimal values to fine precision. In cases such as this, it may be worthwhile to try relaxing

the definition of an IVMP such that IVMPs are found not only when output changes to

become fully correct, but also if only a subset of the output values change to become correct.

Future work should consider this issue.

Finally, Value Replacement assumes that each error can be located in a single

source code statement. Although this is true for many errors, in general, a software error

may span multiple statements. Future work should consider multi-statement errors and

how they influence the behavior of Value Replacement. Perhaps the generalized version of

Value Replacement that is designed to handle multiple simultaneous errors can help in this

regard.

Enhancements to Execution Suppression

The fundamental assumption made by the Execution Suppression technique is

that whenever an execution involves memory corruption, that execution will produce some

kind of failure (such as a crash) that will reveal a subset of this memory corruption. In

general, this assumption does not always hold, and this can cause the technique to terminate

prematurely and not identify the first point of memory corruption in an execution. The
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technique of variable re-ordering was proposed to help address this issue, because in some

cases, variable re-ordering can expose a crash due to memory corruption in cases where

a crash may not otherwise occur. However, variable re-ordering can potentially be time-

consuming, even with the heuristics for improving efficiency proposed in this dissertation.

Future work should consider other ways of improving the efficiency of variable re-ordering,

and to evaluate the resulting effectiveness of the re-ordering technique. Moreover, other

techniques besides variable re-ordering should be explored in conjunction with Execution

Suppression for revealing subsets of memory corruption. For instance, AccMon [155] could

be used to identify memory corruption in cases where an outlier instruction accesses a

particular memory location.

Future work on Execution Suppression should also enhance the technique to work

effectively on other kinds of memory errors that may not involve memory corruption, such as

memory leaks. By combining these enhancements with the proposed technique for handling

multithreading memory errors including data races, the Execution Suppression technique

can become very general and powerful, working effectively for all major types of memory

errors.

Applications to Fixing Errors

The work on BugFix discussed in this dissertation is an application of using dy-

namic state alteration techniques to provide automated assistance for modifying software

to fix errors. Future work should include a detailed empirical evaluation of BugFix, includ-

ing an evaluation of the relative effectiveness of considering each of the different types of

situation descriptors. Additional types of situation descriptors should also be considered,
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including descriptors associated with the failure manifested by the program, as well as de-

scriptors associated with the context of the suspicious statement being considered, e.g., the

block of code containing the suspicious statement.

Since there is so little prior work that directly focuses on fixing software errors,

there is great potential for further research in this area that can have significant impact on

improving the efficiency of the debugging process. Moreover, using dynamic state alteration

techniques can benefit the task of fixing errors, because state alterations of failing executions

can provide valuable insights into how those executions should be changed in order to make

them passing. While BugFix provides automated assistance by providing suggestions for

how to modify suspicious program statements, future work should consider more aggressive

techniqes that automatically attempt different program modifications and then execute all

available test cases to see if any modification makes all test cases pass. Such techniques can

provide more direct assistance for developers by only reporting those program modifications

that are guaranteed to allow all available test cases to pass.

Applications to Tolerating the Effects of Errors

Execution Suppression can be directly applied to the problem of avoiding and re-

covering from the effects of errors, because the basic nature of suppression involves avoiding

the effects of those statement instances during execution that are directly involved in a

program failure. Recent work [99] shows how suppression can be used to recover from fail-

ures in server programs. Future work should consider other ways in which suppression and

other dynamic state alteration techniques can be used to avoid or recover from the negative

effects of software errors.
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