
SOURCE LEVEL DEBUGGING TECHNIQUESAND TOOLS FOR OPTIMIZED CODE
byClara Ines JaramilloB.S., Computer Science, University of New Orleans, 1987M.C.S., Computer Science, Rice University, 1994

Submitted to the Graduate Faculty ofArts and Sciences in partial ful�llmentof the requirements for the degree ofDoctor of Philosophy
University of Pittsburgh2000

UNIVERSITY OF PITTSBURGHFACULTY OF ARTS AND SCIENCES
This dissertation was presentedbyClara Ines Jaramillo

It was defended onAugust 18 2000and approved byDr. Mary Lou So�aDr. Rajiv GuptaDr. Panos ChrysanthisDr. Thomas Gross (CMU)
Committee Chairperson ii

Copyright by Clara Ines Jaramillo2000

iii

SOURCE LEVEL DEBUGGING TECHNIQUESAND TOOLS FOR OPTIMIZED CODEClara Ines Jaramillo, Ph.D.University of Pittsburgh, 2000As compilers increasingly rely on optimizations to achieve high performance, thetechnology to debug optimized code continues to falter. The problem of debugging opti-mized code is twofold because errors in an optimized program can originate in the sourceprogram or be introduced by the optimizer. Therefore, tools must be developed to help ap-plication programmers debug optimized code and optimizer writers debug optimizers fromthe point of view of the source program.This dissertation �rst analyzes the e�ects of optimizations and the complexities inmaintaining correspondences between the source and optimized code statements. A varietyof code transformations are considered, including classical and aggressive statement leveltransformations, loop transformations, and inlining. A mapping technique is developed fordetermining the correspondences between the source and optimized code statements whilecode transformations are performed. The mappings capture the impact that optimizationshave on statements and their instances and thus are useful for a wide range of optimizations.Two complementary debugging techniques for optimized code are then developedand experimentally evaluated. The techniques are based on the mappings, and the e�ec-tiveness of the techniques rely on the use of both dynamic and static information. The�rst technique, called comparison checking, is oriented to help optimizer writers debug andvalidate optimizers. The technique compares values computed in both the unoptimizedand optimized executions of a source program and detects semantic di�erences betweenthe versions. This technique can be modi�ed to check di�erent levels of optimizations ortailored for speci�c optimizations, and in particular global register allocation. The secondtechnique, a full reporting source level debugger for optimized code, helps application pro-grammers �nd errors in source programs even though the optimized code executes. Thistechnique reports more expected values than previously developed source level debuggersfor optimized code. Both techniques are demonstrated using a compiler that performs aiv

set of global statement level optimizations for C source programs. The techniques do notrestrict the set of optimizations applied, and the optimized code is not modi�ed, exceptfor the setting of breakpoints. Experimental results are performed and demonstrate theapproaches are e�ective and practical.

v

AcknowledgementsI am indebted to my co-advisors, Mary Lou So�a and Rajiv Gupta, for their sup-port, encouragement, friendship, and guidance throughout my graduate studies. Withoutthem, this dissertation would not have been possible. I am also grateful to Panos Chrysan-this and Thomas Gross, who took the time to be on my committee and provided suggestionsconcerning this research.I would like to thank my sisters, Bibi and Marisol, and my parents, Angela andIvan, for their overwhelmingly faith in my ability to achieve my goals and for puttingup with me all these years. I thank my husband Ralf, for his love and understandingof the importance of this research to me. Finally, I thank God, for giving me so manyopportunities.

vi

To my parents, Angela and Ivan.

vii

Table of Contents
List of Figures . xiList of Tables . xiv1 Introduction . 11.1 Overview of this research . 51.2 Organization of this dissertation . 62 Background and Related Work . 82.1 Source level debugger . 82.2 Prior work on source level debuggers . 112.2.1 Transparent behavior by limiting optimizations 122.2.2 Transparent behavior by inserting code 122.2.3 Transparent behavior by \undoing" optimizations 122.2.4 Exposing the e�ects of optimizations 132.2.5 Detecting and managing the e�ects of optimizations 142.2.5.1 Using static information . 142.2.5.2 Using dynamic information 172.2.6 Relative debugging . 182.2.7 Bisection debugging . 182.3 Prior work on tools for debugging optimizers 182.4 Prior work and this dissertation . 193 The E�ects of Program Transformations . 223.1 Terminology . 233.2 Statement level optimizations . 233.2.1 The e�ects of modifying statements 233.2.2 The e�ects of deleting statements . 243.2.3 The e�ects of moving statements . 243.2.3.1 Code hoisting transformations 253.2.3.2 Code sinking transformations 273.2.3.3 Summary of moving statements 283.3 Loop transformations . 293.3.1 E�ects of duplicating loop bodies . 293.3.2 E�ects of modifying the iteration space 303.3.3 E�ects of merging and splitting loops 313.3.4 E�ects of altering the index and bounds of a loop 323.3.5 Summary of loop transformations . 333.4 Inlining . 33viii

3.5 Summary . 344 Capturing the E�ects of Program Transformations Through Mappings 364.1 Mappings . 374.2 Generating mappings . 404.2.1 E�ects of statement level optimizations 414.2.2 Example . 454.2.3 E�ects of loop transformations . 464.2.3.1 E�ects of duplicating loop bodies 464.2.3.2 E�ects of modifying the iteration space 484.2.3.3 E�ects of merging and splitting loops 484.2.3.4 E�ects of altering the index and bounds of a loop 484.3 Series of code transformations . 494.3.1 E�ects of inlining . 544.4 Summary . 545 Comparison Checking . 555.1 Comparison checker overview . 585.1.1 Comparison checking scheme example 605.2 Annotations . 615.2.1 Supporting statement level optimizations 615.2.1.1 The Check Suopt annotation 615.2.1.2 The Save Sopt annotation 635.2.1.3 The Delay Suopt and Checkable Suopt annotations 635.2.1.4 The Delete S annotation 645.2.1.5 The Check-self S annotation 645.2.2 Algorithms to place annotations for statement level optimizations . 655.2.2.1 Algorithm to introduce Check, Delay, and Checkable anno-tations . 665.2.2.2 Algorithm to introduce Check-self annotations 675.2.2.3 Algorithm to introduce Save annotations 685.2.2.4 Algorithm to introduce Delete annotations 685.2.3 Supporting loop transformations and inlining 715.3 Implementation and experiments . 725.4 Summary . 746 Register Allocation Checking . 766.1 Register allocation checker overview . 786.2 Annotations . 806.2.1 The Check v; r annotation . 806.2.2 The Register assign [v;] r annotation 816.2.3 The Load [v;] r annotation . 816.2.4 The Store v; r annotation . 826.2.5 The Register move r; r0 annotation 826.2.6 Combining annotations . 826.3 Annotation placement . 836.4 Register allocation checker example . 836.5 Summary . 85ix

7 Source Level Debugger . 867.1 Challenges of reporting expected values . 887.1.1 Overwritten early in the optimized program 897.1.2 Written late in the optimized program 907.1.3 Computed in the unoptimized program but not in the optimized pro-gram . 917.2 FULLDOC's approach . 927.3 Reportability debug information . 957.3.1 Simply reportable . 957.3.2 Overwritten early . 967.3.3 Written late . 977.3.4 Never reportable because deleted along a path 997.3.5 Path sensitive nonreportability/reportability when deleted 1017.3.6 Path sensitive nonreportability/reportability when written late . . . 1027.4 Computing the reportability debug information 1037.4.1 Determining statements that overwrite early or write late. 1037.4.2 Computing SaveDiscardPoints[] and EarlyAtBkpts[]. 1047.4.3 Computing StopPoints[] and LateAtBkpts[]. 1057.4.4 Computing AvailAtBkpts[,]. 1067.4.5 Computing NotRepDelAtBkpts[] and NotRepLateAtBkpts[]. 1077.4.6 Computing MaybeDelAtBkpts[] and MaybeLateAtBkpts[]. 1077.4.7 Computing EndDelPoints[] and EndLatePoints[]. 1087.4.8 Computing PotFutBkptsDel[] and PotFutBkptsLate[]. 1087.5 Supporting loop transformations and inlining 1097.6 Implementation and experiments . 1107.7 Summary . 1148 Conclusion and future work . 1158.1 Summary of contributions . 1158.2 Future work . 118Bibliography . 122

x

List of Figures
2.1 Source program and its unoptimized and optimized program versions example 102.2 Example of prior mappings . 203.1 Constant propagation example . 243.2 Dead code elimination example . 243.3 Code hoisting transformation examples . 253.4 Code hoisting transformation examples cont. 263.5 Code hoisting transformation examples cont. 263.6 Local instruction scheduling example (sinking) 273.7 Code sinking transformation examples . 283.8 Loop unrolling example . 303.9 Loop interchange example . 313.10 Strip mining example . 313.11 Loop distribution example . 323.12 Loop normalization example . 323.13 Inlining example . 334.1 Loop invariant code motion mapping example 394.2 Partial dead code elimination mapping example 394.3 Loop interchange mapping example . 394.4 Partial redundancy elimination mapping example 444.5 Mappings for unoptimized and optimized code example 45xi

4.6 Loop unrolling . 474.7 Loop interchange e�ects on initial �!one!�!one mappings 474.8 Strip mining e�ects on initial �!one!�!one mappings 474.9 Loop normalization e�ects on initial �!one!�!one mappings 495.1 The comparison checking system . 565.2 Program example for comparison checking 575.3 Comparison checker algorithm . 595.4 Comparison checking scheme example . 605.5 Annotated unoptimized and optimized code example 625.6 Types of annotations . 645.7 Types of annotations . 655.8 Algorithm to introduce Check, Delay, Checkable annotations 695.9 Algorithm to introduce Check-self annotations 695.10 Algorithm to introduce Save annotations . 695.11 Algorithm to introduce Delete annotations 705.12 Annotated loop reversal example . 715.13 Annotated loop unrolling example . 726.1 Program example for register allocation checking 786.2 Register allocation checker algorithm . 806.3 Annotations example . 816.4 Register allocation checker example . 847.1 Overwritten early example . 897.2 Written late example . 917.3 Not computed in the optimized program example 927.4 FULLDOC's strategy with respect to user inserting breakpoints 937.5 FULLDOC's strategy with respect to breakpoints hit 94xii

7.6 FULLDOC's strategy with respect to user queries 947.7 Debug information . 957.8 Overwritten early example . 977.9 EarlyAtBkpts and SaveDiscardPoints reportability debug information foroverwritten early example in Figure 7.8 . 977.10 Overwritten late example . 987.11 LateAtBkpts and StopPoints reportability debug information for overwrittenlate example in Figure 7.10 . 997.12 Dead code elimination example . 1007.13 NotRepDelAtBkpts reportability debug information for the example in Fig-ure 7.12 . 1007.14 NotRepLateAtBkpts reportability debug information for the example in Fig-ure 7.10 . 1007.15 MaybeDelAtBkpts, EndDelPoints, and PotFutBkptsDel reportability debuginformation for example in Figure 7.12 . 1017.16 MaybeLateAtBkpts, EndLatePoints, and PotFutBkptsLate reportability de-bug information for example in Figure 7.10 1027.17 Algorithm to compute the reportability debug information 1037.18 Overwritten late example . 1067.19 Loop reversal example . 1107.20 Expected values not reportable . 112

xiii

List of Tables
4.1 Dead code elimination e�ects on mappings of S with one0::n ! one0::n labels 414.2 Statement level optimization e�ects that do not a�ect the mappings of Swith one0::n ! one0::n labels . 414.3 Statement level optimizations which move statements to outer loops anda�ect mappings of S with one0::n ! one0::n labels 424.4 Partial redundancy elimination e�ects on mappings of S with one0::n !one0::n labels . 424.5 Statement level optimizations e�ects on h�i0::m ! h�i0::n mappings 494.6 Loop invariant code motion e�ects on mappings 504.7 Partial dead code elimination e�ects on mappings (when statements aremoved across loop boundaries) . 504.8 Partial redundancy elimination e�ects on mappings 514.9 Loop transformation e�ects on �!h�i!�!h�i mappings 524.10 Loop transformation e�ects on �!h�i!�!h�i mappings cont. 535.1 Execution times (minutes:seconds) . 747.1 Percentage of local variables per breakpoint that are not reportable 1117.2 Static statistics . 1137.3 Runtime statistics . 113

xiv

Chapter 1IntroductionEver since optimizations were introduced into compilers more than 30 years ago,the di�culty of debugging optimized code has been recognized. This di�culty has grownwith the development of increasingly more complex code optimizations, such as path sensi-tive optimizations, code speculation, and aggressive register allocation. The importance ofdebugging optimized code has also increased over the years as almost all production com-pilers apply optimizations to achieve high performance. Today's software applications arecomplex and consist of millions of lines of code. Optimizations are often required becauseof the time and memory constraints imposed on some systems. Also, current trends inprocessor design increasingly rely on compiler optimizations to achieve high performance.Code transformations restructure programs to reduce the number of instructions executed,exploit locality for e�ective use of caches and registers, and uncover parallelism at variouslevels of granularity for overlapping computations. For example, classical optimizationsare applied for all types of architectures to reduce the number of instructions executed.Code reordering, register allocation, and loop transformations are applied for superscalarand VLIW architectures to uncover instruction level parallelism and exploit locality. Looptransformations are applied for parallel architectures to uncover loop level parallelism andexploit data locality.Debugging optimized code is di�cult because of the lack of e�ective debuggingtools that support optimized code. If the output of the execution of the optimized code isincorrect, no tools exist to help the programmer determine the origin of the error. Program-mers typically assume that if the unoptimized version of the program executes correctly butthe optimized version does not, then the optimizer is responsible for the change in seman-tic behavior. Given an input, the semantic behaviors of an unoptimized program and itsoptimized program version are the same if all corresponding statements executed in bothprograms compute the same values. However, di�erences in semantic behaviors between un-optimized and optimized program versions can be caused by either (1) the application of an1

2unsafe optimization, (2) an error in the optimizer, or (3) an error in the source program thatis exposed by the optimization. For instance, reordered operations under certain conditionscan cause over
ow or under
ow or produce di�erent
oating point values. The optimizedprogram may crash because of instruction reordering. For example, a statement may bemoved out of a loop in the optimized code, and at runtime, the program crashes becausethe statement divides by zero. The application of an optimization may assume that thesource code being transformed follows a programming standard (e.g., ANSI standard), andif the code does not, then an error can be introduced by the optimization. The optimizeritself may also contain an error in the implementation of a particular optimization. Andlastly, the execution of the optimized program may uncover an error that was not detectedin the unoptimized program. For example, code transformations change the data layout ofa program. This change may cause an uninitialized variable to be assigned di�erent valuesin the unoptimized and optimized programs causing both program versions to behave dif-ferently. Thus, for a number of reasons, a program may execute correctly when compiledwith the optimizer turned o� but fail when the optimizer is turned on, and if applicationprogrammers intend to ship optimized code, then the fully optimized version should be fullydebugged.If an optimization is incorrectly implemented and thereby caused the error, thenthe optimizer is responsible for the error. In this situation, the programmer is the optimizerwriter and the optimizer must now be debugged. The task of debugging an optimizer isdi�cult and tedious. The optimizer writer must �rst locate the incorrect code in the op-timized program. Because of the lack of source level debugging tools for optimized code,optimizer writers typically resort to examining and debugging the assembly code to locatethe incorrect code in the optimized program. Then the optimizer writer must determinewhat code transformation(s) produced the incorrect code, and subsequently locate the er-ror(s) in the code transformation(s). Unfortunately, little work has been done to help isolateand analyze errors in the optimizer, and isolating errors in the optimizer remains an openproblem. If an error originates in the source program, then the application programmer isresponsible for the error. In this case, the programmer must debug the optimized code todetermine the cause of the error. However, since application programmers typically haveno knowledge of the optimizations that were applied to the source program and do notunderstand how the application of optimizations a�ect a source program, examining anddebugging the assembly code to locate the incorrect code in the optimized program is not

3an option. Instead, application programmers must rely on source level debugging tools todebug optimized code.Unfortunately, conventional source level debuggers cannot be used to help debugand understand the execution behavior of optimized code. A conventional source level de-bugger allows a user to suspend the execution of a program and examine the suspendedprogram state with respect to the source program. If the unoptimized version of the sourceprogram is debugged and executed, a debugger simply reports the actual contents of thelocations of requested variables at breakpoints, as these are the values a user expects toobserve. However, by debugging and executing the optimized version, the actual content ofa variable's location at a breakpoint can di�er from the value the user expects to observe(if instead the unoptimized version were being debugged and executed) because optimiza-tions move, modify, insert, and delete code in the optimized program. Therefore, in suchsituations, the debugger can mislead the user if the actual value is reported at the break-point. Moreover, a conventional source level debugger allows a user to modify the valuesof variables during the execution of a program, but because of the e�ects of optimizations,variable modi�cation is not allowed if the debugger executes the optimized code.The inadequate support of debugging optimized code is the reason that softwarecompanies may not deliver optimized code. If the optimized version is shipped to customers,future bugs arising during customer use are di�cult to correct within a reasonable amountof time. Also, if the program crashes, the resulting core �le is useless since there is no wayto correlate the optimized program to the source program.Several approaches to debugging optimized code have been proposed and are aimedat either (1) avoiding the problems in debugging optimized code or (2) helping program-mers understand the execution behavior of the optimized code. One approach is oriented toapplication programmers and has the programmer turn o� optimizations during the devel-opment of the software application but turn on the optimizations for the production versionto gain the performance bene�ts provided by optimizations. In other words, debug the un-optimized version of the program but ship its optimized version. This approach avoids theproblems associated with debugging optimized code. Unfortunately, when the application,apparently free of errors, is optimized, its behavior may not be the same as the behav-ior of the unoptimized program. As mentioned earlier, in this situation, the applicationprogrammer is likely to assume errors in the optimizer are responsible for the change inbehavior. The optimizer is then turned o�, the unoptimized version is shipped, and all ofthe performance bene�ts of optimizations are lost. In fact, after a programmer experiencesthis situation several times, all con�dence is lost in the optimizer and the programmer will

4typically not use the optimizer in future programs. However, the optimizer may be cor-rect, but the unoptimized version of the program may contain an error that is exposed bythe optimizer. Clearly in this case, instead of shipping the incorrect unoptimized programversion, the application program should be further debugged.Another approach, equally unsatisfactory, is to execute the optimized code andrequire the programmer to be su�ciently knowledgeable about optimizations. The pro-grammer must determine what debugging query can be issued to get an expected responsefrom the source level debugger[14]. While an optimizer writer may be able to utilize thisapproach, an application programmer is seldom familiar enough with optimizations to ac-complish this burdensome task.Instead of debugging optimized code from the point of view of the source code,another approach allows the programmer to debug optimized code from the point of viewof a modi�ed version of the source program, which displays the e�ects of optimizations[45].However, the programmer must become familiar with a di�erent version of a program, whichcan greatly di�er from the source program. This approach bene�ts optimizer writers sincethe information can be used to understand how the source program has been transformed.However, this approach is too burdensome on application programmers.The most researched approach to debugging optimized code is to use a specializedsource level debugger that attempts to report expected values when they can be determinedfrom the optimized code and also report when an expected value cannot be determined.Progress has been made in the development of debuggers that report more and more ex-pected values. The early techniques focused on determining expected values using infor-mation computed statically [27, 21, 19, 49, 10]. Recent techniques have proposed usinginformation collected during execution, along with the static information, to improve thereportability of values [22, 51, 50]. Despite the progress, none of the techniques are ableto report all possible expected values of variables at all breakpoints in the source program,and thus, the optimizer writer and application programmers cannot easily debug optimizedcode from the point of view of the source code. The design of a source level debugger foroptimized code that has the same debugging capabilities as for unoptimized code remainsan open problem.As optimizers continue to perform more sophisticated optimizations to exploitmore demanding architectural features, the demand for tools to help optimizer writersdebug and validate optimizers is ever increasing. The need for tools to help programmersdetermine the origin of an error in the optimized code is also increasing. Moreover, asapplication programmers continue to rely on optimizations to achieve high performance,

5the importance of debugging optimized code from the point of view of the source programincreases. A programmer should be able to debug optimized code from the point of viewof the source program. Also, a programmer should be able to suspend the execution ofan optimized program between any two source statements and query all expected valuesof source variables at the suspended execution points. The optimized program that aprogrammer debugs should be identical to the version that is released. In other words, fordebugging purposes, an optimizer should not be restricted to apply only a certain set of codetransformations nor should the applicability of code transformation be restricted. Since theoptimized program is generally the desired �nal version of a program, the optimized codeshould not be modi�ed, except for the setting of breakpoints during debugging.1.1 Overview of this researchThis dissertation explores the following open problems in the area of debuggingoptimized code:� debugging and validating optimizers,� source level debuggers for optimized code, and� determining the origin of an error in the optimized code.This dissertation develops di�erent source level debugging techniques and tools foroptimized code so that optimizer writers can debug optimizers and application program-mers can debug optimized code from the point of view of the source program. In particular,the use of dynamic information as well static information is explored to develop e�ectivesource level debugging techniques for optimized code. The use of dynamic information hasbene�ted optimizers as dynamic information provides more opportunities to apply optimiza-tions [15, 12]. Similarly, the use of dynamic information should increase the e�ectiveness ofsource level debugging techniques for optimized code. Since the use of dynamic informationis expensive in terms of overhead, static information is used to minimize the amount ofdynamic information utilized.This dissertation considers source programs written in the C programming lan-guage. The techniques presented are demonstrated in a compiler that performs a set ofglobal statement level optimizations for source programs. The techniques do not restrictthe set of optimizations applied and the optimized code is not modi�ed, except for thesetting of breakpoints.

6Before presenting the techniques and tools to debug optimized code, this disser-tation analyzes the e�ects of optimizations and the complexities in maintaining the corre-spondences between the source and optimized code statements. A variety of code transfor-mations are considered, including statement level optimizations, loop transformations, andinlining. Statement level optimizations include speculative code motion and path sensitiveoptimizations. A mapping technique was developed for capturing the correspondences be-tween the source and optimized code statements while code transformations are applied.In particular, the mappings capture the impact that optimizations have on statements andtheir instances and thus are useful for a wide range of optimizations.Two complementary debugging techniques for optimized code were developed, im-plemented, and experimentally evaluated. The �rst technique, called comparison checking,is aimed at helping optimizer writers debug and validate optimizers. The comparison check-ing technique compares values computed in both the unoptimized and optimized executionsof a source program and detects semantic di�erences between the two versions. This tech-nique can be modi�ed to check di�erent levels of optimizations (high, intermediate, or lowlevel) or to check each optimization phase, or tailored for speci�c optimizations, and inparticular global register allocation.Once an optimizer is debugged and validated, errors in the optimized code are theresponsibility of the application programmer. Thus, the second technique, a full reportingsource level debugger for optimized code, is developed to help application programmers �nderrors in source programs that are optimized. The debugger reports more expected valuesthan previously developed source level debuggers for optimized code. To report expectedvalues that would otherwise not be reportable by previously developed debuggers, staticallycomputed information is utilized to guide the debugger in gathering dynamic information.Using this static and dynamic information, the debugger can report expected values atbreakpoints when reportability is a�ected because values have been overwritten early, dueto code hoisting or register reuse, or written late, due to code sinking. The debugger canalso report values that are path sensitive in that a value may be computed only along onepath or the location of the value may be di�erent along di�erent paths. This dissertationdoes not consider the user modi�cation of variables during a debugging session nor does itconsider debugging core �les.1.2 Organization of this dissertationThe remainder of this dissertation is organized as follows. Chapter 2 presentsbackground information on source level debuggers and explains the problems imposed on

7debuggers of optimized code which stem from the application of compiler transformations.This chapter describes the prior work that has been performed in debugging optimized code,including tools for debugging optimizers and source level debuggers of optimized code. Also,the relationship of this dissertation and prior work is discussed. Chapter 3 discusses thee�ects of optimizations and the complexities in maintaining the correspondences betweenthe source and optimized code statements. Chapter 4 presents a technique for generating thecorrespondences between the source and optimized code statements that captures the e�ectsof optimizations. In Chapter 5, the comparison checking technique for debugging optimizersis presented. Chapter 6 discusses how to tailor the comparison checker to debug and validatespeci�c optimizations, in particular global register allocation. Chapter 7 presents a fullreporting source level debugger for optimized code. Conclusions and directions for futureresearch are discussed in Chapter 8.

Chapter 2Background and Related WorkSince most of the previous work on debugging optimized code focused on the devel-opment of source level debuggers for optimized code, this chapter �rst provides backgroundinformation on source level debuggers and then describes the problems inherent in sourcelevel debuggers of optimized code. Next, prior work that has been proposed in debuggingoptimized code, including tools for debugging optimizers and source level debuggers of op-timized code, is described. Also, the relationship of this dissertation and prior work isdiscussed.2.1 Source level debuggerA source level debugger is a tool that helps users understand the execution behaviorof a target program in terms of the source program. The debugger allows the user to controlthe execution of the target program and examine the suspended program state with respectto the source program. Breakpoints are used to suspend the execution of a program. Themost common form of a breakpoint is the control breakpoint, which speci�es the breakpointcondition in terms of the source code, that is, at a speci�ed line, function, or between anytwo source statements. Other types of breakpoints can suspend the execution of a program.A conditional breakpoint is initiated only if some location-dependent predicate evaluates totrue. A conditional breakpoint is useful when the user wants to place a breakpoint in aheavily executed region of code. For example, a conditional breakpoint can be placed ina for loop with index i, and the condition i = n can be used to initiate the breakpointwhen variable i has the same value as variable n. A data breakpoint is initiated when avariable is referenced (i.e., read or written). A data breakpoint is useful when the userwants to suspend execution before every statement that references a particular variablewithout having to insert an explicit control breakpoint at every such statement. Since mostof the previous work on debugging optimized code addressed source level debuggers and8

9considered only control breakpoints, the term debugger refers to a source level debuggerand the term breakpoint refers to a control breakpoint in the remainder of this dissertation.Typically, a user starts a debugging session by inserting breakpoints in the sourceprogram and then instructing the debugger to execute the target program. When executionof the target program reaches a breakpoint, the debugger suspends the execution of theprogram and returns control to the user. At this point, the user can continue the executionof the program or examine the control state and/or the data state of the suspended program.Since all user commands are in terms of the source program, the debugger must convert asource level query to a target level query. Also, all debugger responses to the user are interms of the source program. Therefore, the debugger must be able to(1) insert a breakpoint in the target program in response to a breakpoint in the sourcecode,(2) determine when the current execution point of the target program corresponds to asource location at which the user has requested a breakpoint,(3) display the contents of a storage location in the execution of the target programthat corresponds to source variables at which the user has requested at the currentbreakpoint, and(4) display the current execution point of the target program in terms of the sourceprogram.To achieve these tasks, the debugger utilizes information relating the source program to thetarget program. The compiler provides this debug information, which includes informationabout the variables and statements in the source program and relates them to storagelocations and instructions in the target program.Conventional debuggers are typically designed to execute the unoptimized versionof a source program. Debuggers for unoptimized code are straightforward to implementbecause a source program and its unoptimized version have a direct correspondence. That is,(1) source level statement boundaries are preserved, and (2) variables have unique memorystorage locations. Therefore, when the execution of a program reaches a breakpoint, allstatements prior to a breakpoint will have executed and all statements after the breakpointwill not have executed. When the user queries the values of source variables, the debuggersimply reports the actual contents of the memory locations of requested variables at thebreakpoints, as these are the values the user expects to observe. Consider the sourceprogram fragment and its unoptimized version in Figure 2.1. Suppose the user places a

10
’
’
’
’
’

’
’
’
’
’

’
’
’
’
’

’

5 z = x + y

Source Program

2. y = (b - c) * d

3. z = x + y

 Fragment Fragment
Unoptimized Program

3 x = a + t2
4 t3 = b - c
5 y = t3 * d
6 z = x + y

2 t2 = a * t1

1. x = a + a * (b - c) 1 t1 = b - c

Optimized Program
 Fragment

2 t2 = a * t1
3 y = t1 * d
4 x = a + t2

1 t1 = b - c

Figure 2.1: Source program and its unoptimized and optimized program versions examplebreakpoint between statements 1 and 2 in the source code, and then at the breakpoint,examines the current values of x and y. Notice all of the source level statement boundariesare preserved in the unoptimized program. Statement 1 in the source program maps tostatements 10, 20, and 30 in the unoptimized program, statement 2 maps to statements 40and 50, and statement 3 maps to statement 60. Thus, when the debugger executes theunoptimized program version, the breakpoint is easily placed between statements 30 and40 in the unoptimized program. Upon reaching the breakpoint during the unoptimizedprogram execution, the debugger displays the expected values of both x and y, as theirmemory locations contain the expected and correct values.However, if the optimized program version of the source program is debugged andexecuted, a conventional debugger cannot always simply report the actual content of arequested variable's location at a breakpoint because the expected value may di�er fromthe actual value of the variable. If an unexpected value is reported, the debugger canmislead the user. This di�culty faced by debuggers in reporting the expected values ofvariables is caused by the e�ects of optimizations, which move, modify, insert, and deletestatements in the optimized program. Because of the e�ects of optimizations, two problemssurface when trying to debug optimized code from the viewpoint of the source program. Thecode location problem relates to determining the position of a breakpoint in the optimizedcode that corresponds to the breakpoint in the source code. The data value problem isthe problem of reporting the values of the source variables that a user expects to see at abreakpoint in the source code, even though the optimizer may have reordered or deletedthe statements computing the values, or overwritten the values by register allocation.Consider the same source program fragment and its optimized version in Figure 2.1.The debugger has problems reporting the expected values of x and y, regardless of where thebreakpoint is placed in the optimized code. If the breakpoint is placed between statements200 and 300, then upon reaching the breakpoint during the optimized program execution, x

11contains an unexpected value. The user expects to see the value computed by statement1 in the source program, but since the corresponding assignment (statement 400) in theoptimized program occurs after the breakpoint, the old value of x will be reported tothe user instead. If the breakpoint is placed between statements 400 and 500, then uponreaching the breakpoint, y contains an unexpected value. The user expects to see thevalue of y before the assignment of y in statement 2 of the source program, but since thecorresponding assignment (statement 300) in the optimized program was moved up in thecode and occurs before the breakpoint, the future value of y will be shown to the userinstead. These problems occur because the boundaries of source level statements 1 and 2are not preserved in the optimized program. Statement 1 in the source program maps tostatements 100, 200, and 400 in the optimized program, statement 2 maps to statements 100and 300, and statements 100, 200, and 400 overlap with 100 and 300. These code location anddata value problems exist when one of the aforementioned conditions does not hold in theoptimized program. These problems constrain the debugging capabilities of conventionaldebuggers. Nonetheless, to be e�ective, debuggers should report the expected values of allsource variables accurately.2.2 Prior work on source level debuggersThe problem of debugging optimized code has long been recognized [48, 27, 40].As mentioned earlier, most of the previous work focused on the development of source leveldebuggers for optimized code [27, 24, 52, 53, 39, 21, 26, 28, 14, 38, 9, 8, 10, 7, 20, 18, 19, 49,22, 45, 51, 50]. Some debuggers provide transparent behavior [52, 53]. A debugger providestransparent behavior with respect to an optimization if responses to user queries are thesame as the responses would be if the unoptimized program version is being debuggedinstead. Since transparent behavior is very di�cult to achieve, approaches that providetransparent behavior either constrain optimizations or modify the optimized code. Insteadof providing transparent behavior, other debuggers expose the e�ects of optimizations tothe user either in terms of the source program or a di�erent version of the source program.Finally, in an attempt to provide transparent behavior when possible, some debuggers detectand manage the e�ects of optimizations. Approaches that detect and manage the e�ects ofoptimizations use static information and/or dynamic information.

122.2.1 Transparent behavior by limiting optimizationsFritzson's [24] debugging system provides transparent behavior at the expense oflimiting optimizations to within a source statement. Code location and data value problemsdo not exist since breakpoints are placed at source statement boundaries. Therefore, fulldebugging capabilities are provided, but optimizations are limited.2.2.2 Transparent behavior by inserting codeGupta [26] considers debugging code reorganized by a trace scheduling compiler.His approach compromises debugging features for optimizations. A user must �rst specifymonitor commands to view variables or conditions at speci�ed points in the program. Next,any a�ected traces are recompiled, and monitor and renaming code is inserted into theoptimized program. Then the program is executed. Code location and data value problemsdo not exist because monitor and renaming code are inserted into the optimized program.Pineo and So�a [36, 37, 38] consider debugging parallelized FORTRAN programsfrom a sequential source level program point of view. The parallel transformations consid-ered are renaming, scalar expansion, loop interchange, source level spreading, global forwardsubstitution, loop �ssion, loop fusion, and strip mining. These optimizations are applied onsource level code. A program is converted into single assignment form to allow the trackingof values during program execution. All values can be reported except values whose com-putations are delayed past the breakpoint or deleted values. Thus, data value problems arepartially handled. Code location problems are handled by using syntactic breakpoints. Asyntactic breakpoint at statement S in the source program is placed at the original locationof statement S in the optimized program.2.2.3 Transparent behavior by \undoing" optimizationsPollock and So�a's [39] debugger inhibits compiler optimizations that a�ect de-bugging requests. They consider programs optimized with constant folding, redundant storeelimination, global common subexpression elimination, copy propagation, and loop invariantcode motion. Annotated DAGS represent both the unoptimized and optimized programs.They allow users to insert control and conditional breakpoints, examine and modify valuesof variables, single step, and edit code. Also, full debugging features are possible from spec-i�ed point to point. Debugging features must �rst be speci�ed before program execution.Next, the program is incrementally compiled to inhibit necessary compiler optimizations.Then the resulting program is re-executed. In some cases, the debugger can instead perform

13on-the-
y recovery of variables. Code location and data value problems do not exist, butthe fully optimized program is not always debugged.H�olzle, Chambers, and Ungar's [28] approach involves debugging and executingthe optimized code but dynamically deoptimizing the code to provide full debugging ca-pabilities. When full debugging features are not needed, the optimized code is executed.This switching between both program codes can occur only at interrupt points (methodprologues and end of loop bodies) such that the source level state can be reconstructed.Their method applies to programs written in an object oriented language, SELF, optimizedwith global constant propagation, constant folding, global register allocation, inlining, cus-tomization and splitting, dead code elimination, strength reduction, global common subex-pression, elimination of arithmetic expressions, loads, and stores, redundant computationsthat cannot cause observable side e�ects as arithmetic over
ow, loop unrolling, and delayslot �lling. This list is extensive, but the applicability of optimizations is restricted becausethe source level state must be reconstructed at interrupt points. Code location and datavalue problems do not exist, but the fully optimized program is not always debugged.2.2.4 Exposing the e�ects of optimizationsBrooks, Hansen, and Simmons [14] take a di�erent approach to debugging. Theyconsider programs compiled with CONVEX FORTRAN and C compilers (with all levelsof optimizations). The source program and the assembly level program are highlightedand animated, visually conveying the e�ects of optimizations on program behavior. Someoptimization e�ects are hidden and others are not. Program stepping is provided at severallevels: expression, statement, block, loop, and routine. Code location problems are partiallyhandled. Data value problems are partially handled by using compiler generated tables oflive ranges to determine if values of variables are available. Also, they can recover variablesdeleted due to strength reduction and induction variable elimination.Optview [46] generates an optimized source program version for C programs, whichconveys to the user the e�ects of copy propagation, constant folding, common subexpressionelimination, partial redundancy elimination, dead code elimination, code hoisting and sink-ing, and instruction scheduling. Another related research e�ort is the Optdbx debugger [45],which displays the optimized version of the source program that is generated by Optview.All user commands and debugger responses to the user are with respect to the optimizedsource program version. Also, Optdbx uses invisible breakpoints to recover variables thatare evicted from registers and determine the correct location of a variable whose location

14depends on the execution path1. Since the user debugs from the point of view of the opti-mized source program, data value and code location problems do not exist. However, theuser must be aware of the optimizations.2.2.5 Detecting and managing the e�ects of optimizationsMost debugging techniques focus on detecting the e�ects of optimizations and pro-viding expected behavior when possible. Some debugging techniques focus on determiningexpected values using information computed statically [27, 21, 20, 18, 19, 49, 9, 8, 10, 7].Other techniques have proposed using information collected during execution, along withthe static information, to improve the reportability of values [22, 51, 50] or to handle codelocation problems [52, 53].2.2.5.1 Using static informationHennessy [27] considers debugging programs, written in a subset of PASCAL,whose optimizations are applied at the intermediate code level. Annotated DAGS repre-sent both the unoptimized and optimized programs. By statically analyzing the annotatedDAGS, Hennessy classi�es variables at breakpoints as current or noncurrent by determin-ing if variables are endangered. A variable is endangered at a breakpoint b if there is apath to b such that the variable may not have the correct value at b, due to a programtransformation. A variable is current at b if it is not endangered on any path to b. Avariable is noncurrent at b if it is endangered on all paths to b. Variables that are classi-�ed as current at breakpoints are reportable by the debugger, as these variables containexpected values at the breakpoints. Setting breakpoints and examining values of sourcevariables are the debugging features considered. Data value problems are partially handledby conservatively detecting and recovering noncurrent variables. Algorithms are developedto detect and recover noncurrent variables in programs with local optimizations: commonsubexpression elimination, redundant store elimination, and code reordering. However, re-covering values of noncurrent variables is not always possible. Techniques are described todetect and recover noncurrent and endangered variables in programs with global optimiza-tions: code motion from loops to preheader, induction variable elimination, and global deadstore elimination. These techniques use data
ow analysis to detect endangered variables.Hennessy's technique for local optimizations does not modify the optimized code, unlikehis technique for global optimizations, which inserts
ag instructions to determine dynamic1A variable v is evicted from a register if v is assigned to the register and then a value that is not froman assignment to v is stored in the register.

15program
ow. Code location problems are handled by restricting placements of breakpointsand code generation.The work of Coutant, Melloy, and Ruscetta [21] develops a symbolic debugger for Cprograms optimized with global register allocation, induction variable elimination, constantand copy propagation, and instruction scheduling. Debugging features include insertingbreakpoints and examining values of variables. Code location problems are handled byusing syntactic breakpoints. Data value problems are partially handled by using compilergenerated tables and recovering eliminated variables due to strength reduction and inductionvariable elimination. A live range table is used to determine if a variable's value is available.When values are not available, partial information is provided so that the user can tryrecomputing the data. Also, another table is used to determine if a variable was modi�edearly or late.Adl-Tabatabai and Gross [9] consider the e�ects of global register allocation andassignment on the residency problem, which determines if a variable will be in its assignedregister at a breakpoint. Data
ow analysis is used to determine whether a variable is evictedfrom a register or uninitialized. They [8] also detect and recover endangered variables causedby local instruction scheduling. Endangered variables are classi�ed as noncurrent or suspect.A variable is suspect at a breakpoint b if the debugger is not able to determine whether thevariable's actual value is the expected value at b. To determine if a variable is endangeredat a breakpoint, the intermediate representation is annotated with the e�ects caused bylocal instruction scheduling. Their solutions [9, 8] are implemented using the iWarp Ccompiler with global optimizations, including register allocation and assignment, branchoptimizations, constant folding, and unreachable code elimination, and local optimizations,including common subexpression elimination, value propagation, and instruction scheduling.Code location problems do not exist, and data value problems are partially handled. Theyare able to detect endangered variables and recover values by interpreting instructions.However, full recovery of values is not achieved because they do not attempt recovery ofrolled back variables, as rolled back variables are di�cult to recover [27]. They do notinterpret function calls since they transfer control out of the current basic block and suchinterpretation would be di�cult. They do not interpret loads since the values in memorymay be endangered.Copperman [20, 18, 19] takes an approach more general than the previous work indealing with the data value problem. He uses data
ow analysis on a single graph, which rep-resents both the unoptimized and optimized programs, to determine whether variables arecurrent, noncurrent, or endangered at breakpoints. Thus, data value problems are partially

16handled. Source programs can be optimized with local and global common subexpressionelimination, constant and copy propagation, constant folding, dead code elimination, deadstore elimination, cross-jumping, local and global instruction scheduling, strength reduc-tion, code hoisting, partial redundancy elimination, induction variable elimination, loopunrolling, inlining, and other optimizations that do not change the order in which basicblocks are entered. For example, loop interchange is not handled. This list is extensiveand applicable only at the intermediate code level. Code location problems are handled byusing syntactic breakpoints.Wismueller's [49] approach is similar to Copperman's approach but more generaland gives the correct answer in the few circumstances where Copperman does not. For thestatic analysis, loops are unrolled in the unoptimized and optimized control
ow graphs todistinguish among di�erent instances of de�nitions. Then data
ow analysis is performed onthe unrolled unoptimized and optimized program control
ow graphs to determine whethervariables are current or noncurrent at breakpoints. Thus, data value problems are partiallyhandled. His algorithms are implemented on a C compiler, which applies global commonsubexpression, global copy and constant propagation, global dead store elimination, loopinvariant code motion, composite breaking, and register allocation. The optimized programis not modi�ed. The modi�ed control
ow graphs are only used during static analysis. Codelocation problems are not considered, but his work is applicable with syntactic or semanticbreakpoints. A semantic breakpoint at statement S in the source program is placed at thepoint at which the action speci�ed by statement S occurs in the optimized program.Another approach similar to Copperman's approach is that of Adl-Tabatabai andGross [10]. Variables are classi�ed as current, noncurrent, or suspect at breakpoints byusing data
ow analysis on the intermediate representation, which is annotated with thee�ects caused by optimizations. Nonresident and uninitialized variables are not considered.They assume code is not moved arbitrarily in the program. That is, they assume a compu-tation cannot be introduced into a path where it did not exist before. Their approach wasimplemented using the cmcc compiler, which applied loop unrolling and peeling, inductionvariable expansion, constant propagation and folding, assignment propagation, dead assign-ment elimination, strength reduction, global register allocation, local instruction scheduling,linear function test replacement, induction variable simpli�cation, induction variable elim-ination, partial dead code elimination, partial redundancy elimination, branch optimiza-tions, and register coalescing. Software pipelining and loop transformations, such as loopinterchange, are not considered. Code location problems are not considered. Data valueproblems are partially handled. Some recovery techniques are described. Adl-Tabatabai [7]

17extends his previous techniques by handling code location problems and recovery of val-ues. He also describes how to handle speculative code motion with respect to data valueproblems.2.2.5.2 Using dynamic informationZellweger's [52, 53] debugging system Navigator handles Cedar (an Algol-like lan-guage) programs optimized with inline procedure expansion and cross-jumping. The de-bugging features she considers are inserting breakpoints, viewing procedure tracebacks, andexamining values of variables. Data value problems do not exist because variables are al-ways current. Code location problems are partially handled. In reference to breakpoints,transparent behavior is partially provided by using compiler generated tables and invisiblebreakpoints to collect an execution-history. In some cases, Zellweger's system does modifythe optimized program to collect information about the execution path.Recent work has focused on utilizing dynamic information along with static infor-mation to improve the reportability of values. Wu et al. [51, 50] selectively take controlof the optimized program execution and emulate instructions in the optimized code in theorder that mimics the execution of the unoptimized program. This execution reorderingenables the reporting of some of the expected values of variables that are otherwise notreportable by other debuggers. Code location problems are avoided by altering the execu-tion of the optimized program. However, altering the execution of the optimized programmasks certain user and optimizer errors [51]. Data value problems are partially handled.The emulation technique does not track paths and cannot report values whose reportabilityis path sensitive. Their approach was implemented using the IMPACT compiler [17], whichapplied instruction scheduling, register allocation, and classical local and global optimiza-tions such as induction variable optimizations, strength reduction, common subexpressionelimination, constant folding, copy propagation, loop invariant code motion, and store/copyoptimizations.Dhamdhere et al. [22] developed a dynamic currency determination technique thatcan also report some values of variables that are not reportable by other debuggers. Theycreate a minimal unrolled graph of a program and timestamp basic blocks to obtain apartial history of the execution path, which is used to precisely determine what variablesare reportable at breakpoints. However, values that are overwritten early by either codehoisting or register reuses are not always reportable. Thus, data value problems are partiallyhandled. Code location problems are not considered.

182.2.6 Relative debuggingGuard, a relative debugger, is similar to one of the debugging approaches ad-vocated in this research in that two programs are executed and the values generated arecompared [44, 5, 2, 4, 3]. Using Guard, users can compare the execution of one program,the reference program, with the execution of another program, the development version.Guard requires the user to formulate assertions about the key data structures in bothversions and specify the locations at which the data structures should be identical. Therelative debugger is then responsible for managing the execution of the two programs andreporting any di�erences in values. Guard is implemented using a debugging platform,Dynascope [41, 42, 43], which provides an interface for process control, state access, andbreakpoint handling. Guard is not designed to debug optimized programs and could notbe easily extended. Some optimizations are low level and the user would have to formulateassertions on assembly level statements. Guard has been extended to implement a parallelrelative debugger [6], but the user must still formulate assertions. The primary di�erencebetween Guard and this research is that the latter scheme, which compares the executionsof the unoptimized and optimized programs, is transparent to the user.2.2.7 Bisection debuggingThe concept of a bisection debugging model also has as its goal the identi�cationof semantic di�erences between two versions of the same program, one of which is assumedto be correct [25]. The bisection debugger attempts to identify the earliest point where thetwo versions diverge. However, to handle the debugging of optimized code, all data valuesproblems must be solved at all breakpoints.2.3 Prior work on tools for debugging optimizersNot much work has focused on developing tools to help debug optimizers. Bug�nd[16] was developed to help debug optimizers by pinpointing which functions produce incor-rect code. This tool also helps application writers by compiling each function to its highestlevel of correct optimization. To achieve these tasks, functions must be placed in separate�les. Boyd and Whalley[13] developed two tools to help debug optimizers. The �rsttool, vpoiso, identi�es the �rst transformation during optimization that causes the outputof the execution to be incorrect. In addition, the tool can identify the location and instancethe o�ending transformation is applied. To aid in identifying the error in the implementa-

19tion of an optimization, a graphical optimization viewer, xvpodb, was developed and allowsusers to view the state of the generated instructions before and after each application oftransformations. However, if the optimizer writer cannot conclude which speci�c instruc-tions in the optimized code produce incorrect results, using xvpodb will be tedious since theuser has to potentially view the states of all instructions that are a�ected by the o�endingtransformation.More recent work [34] statically compares the intermediate form of a programbefore and after a compilation pass and veri�es the preservation of the semantics. Thiswork symbolically evaluates the intermediate forms of the program and checks that thesymbolic evaluations are equivalent. This translation validation system was demonstratedin the context of the GNU C gcc compiler performed between each optimization phase.Optimizations include branch optimization, local and global common subexpression elim-ination, loop unrolling, loop inversion, induction variable optimizations, local and globalregister allocation, instruction scheduling, procedure integration, and tail-recursion elimi-nation. The work used the gcc version 2.7.2.2, which is known to exhibit bugs in the registerallocator and loop unrolling. In both cases, this translation validation system was able todetect these bugs. However, the system also detects false alarms that are not necessarilyerrors. This system does not obviate the need for extensive compiler testing suites. Also,this system is not careful about instructions that might raise exceptions. Thus a statementthat is moved out of a loop and divides by zero at runtime remains undetected.2.4 Prior work and this dissertationNone of the previous work successfully handles the code location and data valueproblems faced by source level debuggers for optimized code. Prior work does not ensurethat the execution behaviors of the unoptimized and optimized programs are the same withrespect to the behavior of the source level program and the given input. Also, prior workcannot help automatically pinpoint errors in the optimized code.Another di�erence between the proposed work and previous work is the trackingof the unoptimized program with the optimized program version. Mappings are used totrack information between the source or unoptimized program and its optimized programversion. The mappings developed in this dissertation are extensions of mapping techniquespreviously developed for source level debuggers of optimized code, which capture only thecorrespondences between statements in the unoptimized and optimized programs and notstatement instances. Most prior work statically analyzes the mappings to determine ifvariables are resident, nonresident, current, noncurrent, or endangered. The results are

20
j = 1

i = 1

L2:
k = 1

L2:

i = 1

 S’ :a(i,j) = b(i,k) * c(k,j) + a(i,j)1
2 S’ :a(i+1,j) = b(i+1,k) * c(k,j) + a(i+1,j)

o S :a(i,j) = b(i,k) * c(k,j) + a(i,j)
loop

k = 1
L1:

if (k < 101) goto L3

Optimized Code Unoptimized Code

if (i < 101) goto L1

if (j < 101) goto L2

j = j + 1

k = k + 1

 i = i + 1

if (i < 101) goto L1

 a(i,j) = 0

a(i+1,j) = 0

k = k + 1

 i = i + 2

if (j < 101) goto L2
 j = j + 1

L3:

j = 1
L1:

a(i,j) = 0

L3:

if (k < 101) goto L3

loop

loop

loop

loop

loop

Figure 2.2: Example of prior mappingsconservative because dynamic information is not utilized and the correspondences betweenstatement instances in both programs are not captured. More recent work utilizes somedynamic information to report more expected values [51, 50, 22].Consider the example in Figure 2.2, in which the loops are interchanged, unrolled,and jammed in the optimized code, and as a result, some instances of statements arereordered and deleted. If only mappings of statements are used by a source level debuggerthat executes optimized code, the debugger is ine�ectual. For any breakpoint placed withina loop, all variables (except k) inside the loop are considered noncurrent and their valuescannot be reported. The debugger does not have knowledge of what values can be reportedbecause it does not have information about loop iterations and statement instances. Forexample, if the user places a breakpoint after statement So in the innermost loop of theunoptimized program and requests the value of a(i; j), the debugger cannot report theexpected value of a(i; j) regardless of where the breakpoint is placed in the optimized code.The debugger does not know if the value has been computed because the instances of Sohave been reordered and split amongst statements S01 and S02 and it has no information ofhow the instances of So correspond with instances of S01 and S02. Also, with these mappings,it is di�cult to understand the optimized program, even with the original unoptimizedprogram.

21This dissertation develops a mapping technique that captures the e�ects of codetransformations by capturing the correspondences between statement instances. Since themappings track the instances of statements, the mappings are able to capture the e�ectsof transformations, including loop transformations. This extra information is needed todevelop more powerful source level debugging tools for optimized code that utilize bothstatic and dynamic information.

Chapter 3The E�ects of Program TransformationsSource level debugging tools for optimized code allow a user to debug optimizedcode from the point of view of the source program. To develop such tools, a correspondencebetween the source and optimized code must be established. Establishing a correspondencebetween a source program and the optimized code requires determining the e�ects of theapplied program transformations. The class of program transformations considered in thiswork include statement level optimizations, loop transformations, and inlining. Statementlevel optimizations include speculative code motion and path sensitive optimizations. Thesetransformations move, modify, insert, and delete statements in the program code and a�ectprogram statements in a number of ways. A transformation can a�ect the position of astatement. A statement can be moved to an earlier/later position in the optimized program.In this case, the statement would execute in the optimized code before/after it does in theunoptimized version of the source code. A transformation can a�ect the number of timesa statement executes in the optimized code. A statement moved in the optimized codemay execute more or less times than it does in the unoptimized code. In fact, a statementmay execute in the unoptimized program but not in the optimized program, and vice versa.Finally, a transformation can a�ect the order in which multiple instances of a statementare executed.Since a source program has a direct correspondence with the unoptimized versionof the program, the remainder of this chapter determines the e�ects of transformationsthat must be captured so that a correspondence between the unoptimized and optimizedcode can be established. The e�ects of transformations are determined by analyzing howthe position, number, and order of instances of a statement can change, given a particularcontext, for statement level optimizations, loop transformations, and inlining.
22

233.1 TerminologyThe correspondence between the unoptimized and optimized versions of a sourceprogram is actually the correspondences between statements and their instances in boththe unoptimized and optimized programs.De�nition 3.1 An execution of a statement S is called an instance of S.De�nition 3.2 Let S be a statement in the unoptimized version of a source programand S0 be a statement in the optimized version, which was derived from S by programtransformations. If there exists some instance i of S and some instance j of S0, denoted bySi and S0j, such that they should compute the same value, then there is a correspondencebetween S and S0 and Si corresponds with S0j.If a statement is moved across a branch or loop boundary, the correspondencebetween instances of the statement in the unoptimized and optimized programs depends onthe execution path taken.De�nition 3.3 Let S be a statement in the unoptimized version of a source program andS0 be a statement in the optimized version such S and S0 correspond. If S and S0 havedi�erent control dependences, then corresponding instances of S and S0 are path sensitive.3.2 Statement level optimizationsStatement level optimizations (e.g., constant propagation, loop invariant code mo-tion, dead code elimination, and partial redundancy elimination) operate on individualstatements. These optimizations modify, delete, and move statements in the program code,and may a�ect the position and the number of instances of a statement in the program code.Therefore, they may a�ect the correspondences between statements in the unoptimized andoptimized code.3.2.1 The e�ects of modifying statementsSome optimizations simply modify statements for e�ciency purposes and do nota�ect the correspondences between statements in the unoptimized and optimized programs.For example, the constant propagation optimization propagates a constant that is assignedto a variable by replacing the uses of the variable with the constant. In the unoptimized

24code in Figure 3.1, the variable a is assigned the constant 5, which can be propagated tostatement S. After constant propagation is applied, the corresponding statement S0 in theoptimized code uses the constant 5 as one of its operands instead of the variable a, but thecorrespondence between S and S0 is not a�ected.
 Optimized Code

 S’ :x = 5 + b

 a = 5

 S :x = a + b

Unoptimized Code

 a = 5Figure 3.1: Constant propagation example3.2.2 The e�ects of deleting statementsIf an optimization removes a statement from the program code, the deleted state-ment would not execute in the optimized code and the deleted statement has no corre-spondence in the optimized code. For example, the application of dead code eliminationremoves statements that are never used in a program. As illustrated in Figure 3.2, theapplication of dead code elimination removes statement S. Thus, S has no correspondencein the optimized code and would not execute in the optimized code.
 Optimized Code

 S :x = a + b

Unoptimized Code

Figure 3.2: Dead code elimination example3.2.3 The e�ects of moving statementsTransformations that move statements to di�erent positions in the program codeare code motion transformations, which include simple reordering of statements in a straight-line code segment, moving statements across branch boundaries, and moving statementsacross loop boundaries. The change in the position of a statement causes the statementto execute earlier/later in the optimized code as compared to the unoptimized program.

25The change in the position of a statement can also cause its number of instances to in-crease or decrease and therefore, the correspondence between statement instances can bea�ected. Furthermore, the correspondence between statement instances may be path sen-sitive. Lastly, a statement in the unoptimized code can correspond to several statements inthe optimized code (and vice versa).3.2.3.1 Code hoisting transformationsCode motion transformations that move statements to earlier positions in theprogram are code hoisting transformations. Statements that are moved to earlier positionsin the program will execute earlier than in the unoptimized program. For example, inFigure 3.3(a), local instruction scheduling has moved statement S up in the optimizedcode. As a result, the instance of S corresponds with the instance of S0, and S0 will executeearlier than S.
 S :x = a + b

Unoptimized Code

 = x

 Optimized Code

 S’ :x = a + b

(b) speculative code motion example

 S’ :x = a + b

 Optimized Code

(a) local instruction scheduling example
(hoisting)

Unoptimized Code

 S :x = a + b
 = x

Figure 3.3: Code hoisting transformation examplesCode hoisting transformations can also move statements across branch boundaries.The e�ects of hoisting code across branch boundaries depend upon the nature of the trans-formations. For example, speculative code motion moves statements across branches (aswell as loop boundaries). In Figure 3.3(b), statement S is moved across the conditionalin the optimized code. Although S and S0 correspond with each other, the number oftimes statement S0 executes may be more than the number of times S executes. The cor-respondence between instances of S and S0 is path sensitive due to the di�erence in controldependencies of S and S0 and therefore depends on the path taken during execution. Ifboth S and S0 execute during corresponding loop iterations, then the statement instancescorrespond to each other. On the other hand, if S0 is executed and S is not executedduring corresponding loop iterations, then the instance of S0 has no correspondence in the

26unoptimized code. The examples in Figure 3.4 illustrate more e�ects of code hoisting trans-formations. In Figure 3.4(a), S is hoisted into both conditionals. As a result, S correspondswith two statements in the optimized code and the correspondences between instances of Sand the instances of S0 and S00 are path sensitive due to the di�erence in control dependen-cies. Similarly, in Figure 3.4(b), S and T are hoisted above the conditional. Both S and Tcorrespond to the same statement in the optimized code, and the correspondences betweenthe instances of S and T and the instances of S0 are path sensitive.
 S :x = a + b

 Optimized Code

 S’ :x = a + b S’’ :x = a + b

(a) code hoisting into conditionals example (b) code hoisting out of conditionals example

Unoptimized Code

 = x

 = x
 T :x = a + b

 = x

 = x

 Optimized Code

 S’ :x = a + b

Unoptimized Code

 S :x = a + b

Figure 3.4: Code hoisting transformation examples cont.Code hoisting transformations can also move statements across loop boundaries.Consider the loop invariant code motion optimization (LICM), which moves loop invariantstatements out and above loops. In Figure 3.5(a), statement S is moved out and above loopL2 by LICM. The number of times statement S executes in the unoptimized code is greaterthan the number of times the corresponding statement S0 executes in the optimized code,and in each iteration of L1, all instances of statement S correspond to an instance of S0 inthe optimized code.
 T’: x = t

L1:

 = x
 S :x = a + b

Unoptimized Code

L2:

 = x

 Optimized Code

L1:

L2:

 S’ :x = a + b

Unoptimized Code Optimized Code

 S :y = a + b S’ :y = t

 R’ :t = a + b R’’ :t = a + b

(a) Loop invariant code motion example (a) Partial redundancy elimination example

 T: x = a + b

Figure 3.5: Code hoisting transformation examples cont.Partial redundancy elimination (PRE) is also a code hoisting transformation. PREmoves and modi�es computations in such a way that after the application of the transfor-

27mation, the occurrences of such computations are minimized along paths. The statementsthat are inserted in the optimized code correspond with existing statements in the unop-timized code, and the correspondences between instances of such statements depend onthe positions of the statements and therefore may be path sensitive. For example, in Fig-ure 3.5(b), the computation a+ b in statement S is partially redundant with statement Tin the unoptimized code. The application of PRE creates a new statement R0 that assignsthe partial redundant expression a + b to a temporary t and uses the temporary t insteadof recomputing the partial redundant expression in statements S0 and T 0. After PRE isapplied, the correspondence between S and S0 and the correspondence between T and T 0are not a�ected. However, S corresponds with R0 and R00, and the correspondences betweenthe instances of S and R0 and the instances of S and R00 are path sensitive. Similarly, Tcorresponds with R0.3.2.3.2 Code sinking transformationsCode motion transformations that move statements to later positions in the pro-gram are code sinking transformations. Statements moved to later positions execute laterduring execution and the correspondences between statements may be a�ected. For exam-ple, in Figure 3.6, local instruction scheduling has moved statement S down in the code. Asa result, the instance of S corresponds with the instance of S0, and S0 executes later thanS.
 S’ :x = a + b

 S :x = a + b

 Optimized CodeUnoptimized Code

Figure 3.6: Local instruction scheduling example (sinking)Partial dead code elimination (PDE) sinks a statement that is dead on one path butmay not be dead on other paths. When statements are moved across branch boundaries,a statement in the unoptimized program corresponds to one or more statements in theoptimized program. In Figure 3.7(a) the application of PDE moves statement S inside theconditional. As a result, the number of times statement S0 executes may be less than thenumber of times S executes. The correspondence between instances of S and S0 is pathsensitive. If both S and S0 execute, then the statement instances correspond to each other.

28On the other hand if S is executed and S0 is not executed, then the transformation hasresulted in the deletion of the instance of S in the execution.
Unoptimized Code

x = x =

 S’ :x = a + b
 = x = x

 Optimized Code

 S :x = a + b

L2:

 = x

 S :x = a + b

L1:

(b) partial dead code elimination example
(across loop)

(a) partial dead code elimination example
(across branches)

Unoptimized Code

L1:

 = x

L2:

 S’ :x = a + b

 Optimized Code

Figure 3.7: Code sinking transformation examplesIn Figure 3.7(b) statement S is moved out and below loop L2 by PDE. As a result,statement S0 executes a fewer number of times than the corresponding statement S. Duringeach iteration of loop L1, only the last instance of statement S has a corresponding instancein the optimized program, which is the instance of S0. All earlier instances of statement Shave been deleted by PDE.3.2.3.3 Summary of moving statementsIn summary, the application of code motion transformations a�ects the correspon-dence between the unoptimized and optimized versions of a program in the following ways:� Since statements can be reordered, a statement in the unoptimized code can executebefore/after its corresponding statement executes in the optimized code.� New correspondences can be established to the statements in the unoptimized code.Thus, a statement in the unoptimized code can correspond to one or more statementsin the optimized code.� New correspondences can be established to the statements in the optimized code.Thus, a statement in the optimized code can correspond to one or more statementsin the unoptimized code.� The number of instances of a statement in the unoptimized code can increase ordecrease in the optimized program. Thus, the correspondence between statementinstances can change. One or more instances of a statement in the unoptimized code

29can correspond to one instance in the optimized code. Instances of a statement in theunoptimized code can have no correspondence in the optimized code.� Two corresponding statements can have di�erent control dependences. Thus, thecorrespondence between instances of a statement in the unoptimized and optimizedprograms can be path sensitive. Instances of a statement in the unoptimized codemay or may not have a correspondence in the optimized code, and vice versa. Theestablishment of corresponding instances of statements may only be established atruntime.3.3 Loop transformationsLoop transformations operate on loops as a unit and have the same e�ects as state-ment level optimizations as well as other e�ects. The application of loop transformationscan duplicate loop bodies, modify the iteration space, merge and split loops, and alter theindex and bounds of a loop As a result, the correspondences between statements in theunoptimized and optimized programs are a�ected because the instances of a statement inthe unoptimized program can be reordered and distributed among several statements in theoptimized program. Also, during execution of the unoptimized and optimized programs,corresponding statements may execute earlier/later and in a di�erent order, and the numberof their instances may di�er.3.3.1 E�ects of duplicating loop bodiesLoop transformations that duplicate bodies of loops a�ect the correspondencesbetween statements in the unoptimized and optimized programs (e.g., loop peeling, loopunrolling, and software pipelining). Since statements in the loop body in the unoptimizedprogram are replicated in the optimized code, the instances of each such statement inthe loop body in the unoptimized program are divided among several statements in theoptimized program. Also, the loop in the unoptimized program executes more iterationsthan the corresponding loop in the optimized program. For example, loop unrolling replacesa loop body by several copies of the loop body. The number of copies is called the unrollingfactor, and the loop increment is adjusted to increment by the unrolling factor. Consider theexample in Figure 3.8 where the loop is unrolled two times and the loop header is modi�edto iterate half the time. Notice the statement in the loop body in the unoptimized codecorresponds to two statements in the optimized code: the odd instances of the statementin the loop body in the unoptimized code correspond to the instances of one statement

30in the optimized code, and the even instances of the statement in the loop body in theunoptimized code correspond to the instances of the other statement in the optimized code.Notice both loop initializations correspond. The loop tests correspond in that the oddinstances of the loop test in the unoptimized code correspond to the instances of the looptest in the optimized code, and the last instances of both loop tests correspond. The loopincrements correspond in that the even instances of the loop increment in the unoptimizedcode correspond to the instances in the optimized code.
for (j=1;j<=n;j=j+1) { for (j=1;j<=n;j=j+2) {

S’ : statement

S’’ : statement

Unoptimized Code Optimized Code

S : statement

}

}Figure 3.8: Loop unrolling example3.3.2 E�ects of modifying the iteration spaceLoop transformations can reorder the instances of statements within loops (e.g.,loop reversal, loop interchange, strip mining). As a result, the iteration space of statementsin the unoptimized program can di�er from that of the optimized program. For example,loop interchange exchanges the positions of two loops in a loop nest, which changes theorder of loop iterations in the optimized code. In Figure 3.9, the two loops in the unopti-mized program are interchanged in the optimized program. Although the statements withinthe loop bodies remain within the same loops in both programs and therefore execute thesame number of times, the execution order of their instances di�er in both programs. Also,the loop headers of both loops are a�ected. The corresponding loop headers of the inter-changed loops appear in di�erent loop nest levels and thus, the number of instances of thecorresponding loop headers di�er in both programs. The statement instances of the headerof the outer loop in the unoptimized code will execute more often in the optimized codebecause they are now in an inner loop in the optimized code. The statement instances ofthe loop header of the inner loop in the unoptimized code will execute less often in theoptimized code because they are now in an outer loop in the optimized code.Another loop transformation that a�ects the iteration space is strip mining, whichconverts a serial loop into several loops (strips). The strips are essentially a series of

31
for (k=1;k<=n;k=k+1) {

for (j=1;j<=n;j=j+1) {

S’ : statement
}

}

for (k=1;k<=n;k=k+1) {

for (j=1;j<=n;j=j+1) {

S : statement
}

}

Unoptimized Code Optimized Code

Figure 3.9: Loop interchange examplevector operations. The application of strip mining a�ects the correspondences betweenstatements in the unoptimized and optimized programs in that instances of statementsin the unoptimized code are grouped together into one instance in the optimized code.For example, in Figure 3.10, the loop has been strip mined with a strip size of 10. Theloop initializations in both programs correspond. Every tenth instance of the loop testand increment in the unoptimized code correspond with each instance of the loop test andincrement in the optimized code. Also, the last instances of the loop tests in both programscorrespond. Finally, every 10 instances of the assignment to c in the unoptimized codecorrespond with one instance of the vector assignment to c in the optimized code.
}

 S : c[j] = a[j] + b[j]
}

for (j=1;j<=n;j=j+1) {

 Unoptimized Code Optimized Code

for (j=1;j<=n;j=j+10) {

 S’ : c[j:j+9] = a[j:j+9]
 + b[j:j+9]Figure 3.10: Strip mining example3.3.3 E�ects of merging and splitting loopsLoop transformations can split loops and merge loops together. Although thecontrol
ow changes, the number and order of the instances of the statements in the loopbodies are not a�ected. Loop distribution divides a loop into two or more loops with thesame loop headers. The statements in each loop in the optimized code enclose a subset ofthe statements in the loop in the unoptimized code. Also the loop header in the unoptimized

32code corresponds with both loop headers in the optimized code. For example, in Figure 3.11,the loop in the unoptimized code has been distributed in the optimized code. Notice eachinstance of the loop headers in the unoptimized code corresponds to two instances in theoptimized code.
}

a[j] = x * j

b[j] = y * j

 c[j] = a[j] + b[j]

 c[j] = a[j] + b[j]

}

for (j=1;j<=n;j++)

a[j] = x * j

b[j] = y * j
}

for (j=1;j<=n;j++)for (j=1;j<=n;j++)

Unoptimized Code Optimized Code

Figure 3.11: Loop distribution example3.3.4 E�ects of altering the index and bounds of a loopLoop transformations can alter the loop headers of a loop and yet the number andorder of the instances of the statements in the loop bodies remain the same. For example,loop normalization changes the loop header of a loop so that the loop's index is initially1 and is incremented by 1 on each iteration. In Figure 3.12, the loop in the unoptimizedcode has been normalized in the optimized code. The statements within the loop bodiesexecute the same number of times and in the same order. The loop initializations and theloop increments have no correspondences, and although the loop test has changed in theoptimized code, there is a correspondence between the instances of the loop tests in bothprograms.
}

S : statement

for (j=init;j<=limit;j=j+step) { for (j=1;j<= (limit - init + step)/step ; j=j+1) {

}

S’ : statement

Unoptimized Code Optimized Code

Figure 3.12: Loop normalization example

333.3.5 Summary of loop transformationsThe e�ects of loop transformations a�ect the correspondence between the unopti-mized and optimized versions of a program the same way as that of statement level trans-formations. Moreover, the correspondences between statement instances can change as aresult of reordering the instances of a statement and dividing the instances of a statementin the unoptimized code among several statements in the optimized code.3.4 InliningFunction inlining replaces calls to a function in the unoptimized code by the bodiesof the function in the optimized code. The instances of the statements in the function inthe unoptimized code correspond with the instances of the statements that were inlined inthe optimized code, and the instances of the call sites in the unoptimized code that wereinlined in the optimized code have no correspondences in the optimized code. For example,in Figure 3.13, function f has been inlined two times. Each statement in the functionin the unoptimized code corresponds with two statements in the optimized code, and thestatements in the function in the unoptimized code execute the same number of times asthe corresponding statements in the optimized code.
.
.

procedure f(a,b,c)
t1 = a + b
t2 = b * c
c = t1 + t2

.

.

.

call f(a,b,c)

procedure main(a,b,c)

.

Unoptimized Code

t1 = a + 2

Optimized Code

procedure main(a,b,c)

s = s + c

i = 1

s = s + c
c = t1 + t2
t2 = b * c
t1 = a + b
i = 1

call f(a,2,b)

procedure f(a,b,c)
t1 = a + b
t2 = b * c
c = t1 + t2

c = t1 + t2
t2 = 2 * b

Figure 3.13: Inlining example

343.5 SummaryThis chapter described the e�ects of transformations that impact the correspon-dences between statements in the unoptimized and optimized programs. The e�ects oftransformations were established by analyzing how the position, number, and order of in-stances of a statement can change, given a particular context, for statement level optimiza-tions, loop transformations, and inlining. The application of these transformations a�ectsthe correspondence between the unoptimized and optimized versions of a program in thefollowing ways.� Statements and statement instances may have no correspondences.� A statement in the unoptimized code can be relatively positioned before/after itscorresponding statement in the optimized code. Therefore, a statement in the un-optimized code can execute before/after its corresponding statement executes in theoptimized code.� New correspondences can be established. Thus, a statement in the unoptimized codecan correspond to one or more statements in the optimized code, and a statementin the optimized code can correspond to one or more statements in the unoptimizedcode.� Since the number of instances of a statement in the unoptimized code can increaseor decrease in the optimized program, the correspondences between statement in-stances in the unoptimized and optimized programs are not necessarily a one-to-onecorrespondence.� The instances of a statement in the unoptimized code can be reordered in the opti-mized code.� The instances of a statement in the unoptimized code can be divided among severalstatements in the optimized code.� The correspondence between instances of a statement in the unoptimized and opti-mized programs can be path sensitive. Therefore, the instances of a statement in theunoptimized code may or may not have a correspondence in the optimized code, andvice versa, and the establishment of corresponding instances of statements may onlybe established at runtime.

35To establish a correspondence between the unoptimized and optimized versions ofa program, these e�ects are captured through mappings, which are discussed in the nextchapter.

Chapter 4Capturing the E�ects of ProgramTransformations Through MappingsThe previous chapter described the e�ects of program transformations that af-fect the correspondence between the unoptimized and optimized versions of a program. Inthis chapter, these e�ects are captured through mappings to establish the correspondencesbetween the statements in the unoptimized and optimized versions of a program. Map-pings are established as transformations are applied. Since a number of transformationsmay be applied and in any order, the mappings re
ect the combined e�ects of transforma-tions. The mappings do not record the individual transformations applied nor the order inwhich they were applied. Instead, the mappings between the unoptimized and optimizedprograms at any time during optimization summarize the e�ects of all previously appliedtransformations.Since program transformations can change the correspondences between state-ments and instances of statements in the unoptimized and optimized programs, the map-pings associate corresponding statements and corresponding instances of statements in theunoptimized and optimized programs. The mappings can associate a statement in one pro-gram with zero, one, or more statements in the other program. Similarly, the mappingscan associate an instance of a statement in one program with zero, one, or more instancesof a statement in the other program. Since program transformations can divide the in-stances of a statement in the unoptimized code among several statements in the optimizedcode, the mappings can identify sequences of instances of a statement. Also, since programtransformations can reorder the instances of a statement, the mappings can identify orderedsequences of instances of a statement. Although program transformations can change therelative position of a statement, the mappings do not explicitly capture this change of posi-tion. Instead, the mappings and the control
ow graphs of the unoptimized and optimizedprograms can be analyzed to determine the relative positions of corresponding statements.36

37Similarly, the mappings and the control
ow graphs can be analyzed to determine thecorrespondences between instances of statements that are path sensitive.4.1 MappingsMappings are represented by labeled edges between corresponding statements inthe unoptimized and optimized programs. Labels identify the instances in the unoptimizedprogram and the corresponding instances in the optimized program. Thus, a mapping hastwo components: an association of a statement in the unoptimized code with a correspond-ing statement in the optimized code and an association of instances of the statements. Amapping of a statement S in the unoptimized program and S0 in the optimized program isof the form:ordered sequence of instances of S ! ordered sequence of instances of S0.The ordered sequences in the mappings express the correspondences between in-stances of two statements. The number of elements in the two sequences may be the sameor may di�er. For example, if there is an one-to-one correspondence between the instances,then the number would be the same. Corresponding instances may appear in the sameorder or di�erent order (e.g., reverse order). If the number of instances is not the same, aconsecutive subsequence of instances in one sequence corresponds to a single instance in theother. It should be noted that corresponding statement instances are computed staticallybut the mappings are between all potential dynamic instances. All of the instances in bothsequences may not execute, but for the instances that do execute, the mappings capturethe dynamic correspondences.To refer to one or more instances of a statement, the loop iterations in whichthe instances execute are speci�ed, as the number of instances of a statement executedis governed by the loops enclosing the statement and these instances are ordered by theorder of the iterations of the loops. Therefore, each statement in the program is viewedwith respect to the looping structure in which it is enclosed. Without loss of generality,a program is assumed to be enclosed within a loop of one iteration, denoted by L0. Astatement S is identi�ed as being nested within a loop nest L = L0; L1; : : : ; Ln where L is acollection of loops enclosing S, numbered successively from the outermost to the innermostloop, and n + 1 is the number of loop nest levels. Each iteration of loop nest L uniquelyidenti�es instances of statement S, and instances of statement S are ordered by the orderof iterations of loop nest L. An ordered sequence of instances of a statement within loopnest L = L0; L1; : : : ; Ln is speci�ed by an (n+ 1)-dimensional vector. Each element in thevector is subscripted such that an element with subscript i represents an ordered sequence

38of iterations of loop Li. The order in which vector elements are speci�ed determines theorder of instances in the sequence.An element i (0 � i � n) in a vector is of the following form:\one" denotes an instance of S that executes in each iteration of loop Li.\all" denotes all instances of S that execute in all of the iterations of loop Li.\last" denotes the instance of S that executes in the last iteration of loop Li.\c" denotes the instance of S that executes in the cth iteration of loop Li, where c is aconstant.\flower; upper; stepg" and step � 0 denotes the instances of S that execute in the in-creasing sequence of iterations (lower; lower + step; lower + 2 � step; : : : ; end) where((end � upper and (end+ step) > upper)) of loop Li.1Let S represent a statement in the unoptimized program, S0 a statement in theoptimized program, and S(i) and S0(i) denote instance i of statement S and S0 respectively.Examples of mapping labels generated from transformations are:� Code reordering: (one0; one1)! (one0; one1) indicates that for each iteration (i; j) ofa loop nest, S(i;j) corresponds with S0(i;j).� Loop reversal: one0; f10; 1;�1g1 ! one0; one1 indicates that for each iteration i; j ofa loop nest, Si;(11�j) corresponds with S0i;j.� Loop invariant code motion: (one0; one1; all2) ! (one0; one1) indicates that for eachiteration (i; j; k) of a loop nest of L0, L1, and L2, S(i;j;k) corresponds with S0(i;j).In Figure 4.1, (one0; one1;all2) instances of S map to (one0; one1) instances of S0,indicating that in each iteration of L0 and L1, all instances of S correspond to theone instance of S0. The vector describing the instances of S has three dimensionsbecause programs are assumed to be implicitly enclosed within a loop of one iteration,L0.� Partial dead code elimination: (one0; one1; last2) ! (one0; one1) indicates S(i;j;last)corresponds with S0(i;j). In Figure 4.2, (one0; one1; last2) instances of S map to(one0; one1) instances of S0, indicating that in each iteration of L0 and L1, the lastinstance of S corresponds to the one instance of S0.1A decreasing sequence can also be denoted similarly.

39
L1:

0

 = x

Unoptimized Code

L2:
 S :x = a + b

 S’ :x = a + b

 Optimized Code

L1:

L2:

 = x

21
all 0

1

one ,one ,
 one ,one

Figure 4.1: Loop invariant code motion mapping example

L1:

 = x

L2:

 S’ :x = a + b

 Optimized Code

0

L2:

 = x

 S :x = a + b

L1:

Unoptimized Code

1

1

0 last
2

one ,one , one ,one

Figure 4.2: Partial dead code elimination mapping example

0 one2 one1one , , one ,one ,one0 1 2

0 1
0

1

2
one ,

,one o
ne ,one

all

 T’: j < m;

 i = i + 1) {

 i < n;

}
}

 j = j + 1) {

 for (j=1;

for (i=1;

}
}

for (j=1;

 for (i=1;

 i < n;

Unoptimized Code Optimized Code

 S: c[i,j] = x S’ : c[i,j] = x

 i = i + 1) {

 T:j < m;

 j = j + 1) {

Figure 4.3: Loop interchange mapping example

40� Loop interchange (on the loop body):(one0; one2; one1) ! (one0; one1; one2) indicates S(i;k;j) corresponds to S0(i;j;k). InFigure 4.3, (one0;one2;one1) instances of S map to (one0;one1;one2) instances ofS0, indicating that in each iteration of L0, L1, and L2, Si;k;j corresponds to instanceS0i;j;k.� Loop interchange (on the loop header):(one0; all1; one2)! (one0; one1) indicates S(i;j;k) corresponds with S0(i;k), as illustratedin Figure 4.3.For readability and ease of explanation, the following notations are used to referto vectors in the rest of this chapter. When all of the elements of an n + 1-dimensionalvector are of the same form, the shorthand vector notation ! can be used. For example,(one0; one1; : : : ; onen) can be denoted by �!one. This notation is used when the loop nestinglevel of a vector is not important for the explanation of how mappings are generated.In some cases, a consecutive sequence of elements of a vector are of the same form. Inthis case, a subscript range m::n can be used to refer to these elements. For example,(one0; one1; : : : ; onen) can be denoted by one0::n. Finally, in some cases, when the sequenceof instances that an element i of a vector refers to is not important for the explanation ofhow mappings are generated, h�ii is used to refer to the sequence of instances of element i.The optimized program initially starts as an identical copy of the unoptimizedprogram with initial mappings between corresponding statements in the two programs.Initially, all of the mappings have �!one!�!one labels because corresponding statements areenclosed by the same loops. These mappings change as code transformations are applied.The mappings for individual transformations are determined by using the semantics ofthose transformations with respect to the unoptimized program. From the mappings ofindividual transformations, the mappings for any series of transformations are determined.As a subsequent code transformation is applied, the mappings are changed to re
ect thecomposition of the previous mappings (the e�ects of all previously applied transformations)by the e�ects of the current transformation.4.2 Generating mappingsCode transformations can be applied in any order and as many times as desiredand applicable. After a code transformation is applied, the label of a mapping may changeand/or a new mapping may be established. The label of a mapping depends on the ap-plied code transformation, positions of corresponding statements, and the mapping of the

41a�ected statement. This section describes the e�ects on mappings after a single (initial)transformation is applied. The subsequent section describes the e�ects on mappings aftera series of transformations are applied.4.2.1 E�ects of statement level optimizationsThe next several tables show the e�ects on mappings as a result of applying aninitial statement level optimization to a statement S in the unoptimized program. Theinitial mapping of S to a corresponding statement S0 in the optimized program is of theform one0::n ! one0::n.Table 4.1: Dead code elimination e�ects on mappings of S with one0::n ! one0::n labelsTransformation Resulting mapping of Sdead code elimination deleteTable 4.2: Statement level optimization e�ects that do not a�ect the mappings of S withone0::n ! one0::n labelsTransformation Resulting mapping label of Scode reordering within basic block one0::n �! one0::nspeculative hoisting in an acyclic one0::n �! one0::nschedulerconstant propagation and folding one0::n �! one0::ncopy propagation one0::n �! one0::npartial dead code elimination(S within same loop) one0::n �! one0::npartial redundancy elimination(S within same loop) one0::n �! one0::nTable 4.1 displays the e�ects on mappings as a result of applying dead code elimina-tion. This transformation causes the removal of mappings because corresponding statementsin the optimized program are deleted.The application of the statement level optimizations displayed in Table 4.2 donot a�ect the mappings. The e�ects of the applications of code reordering within a basicblock, speculative hoisting in an acyclic scheduler, constant propagation and folding, copypropagation, partial dead code elimination (where corresponding statements are withinthe same loops), and partial redundancy elimination (where corresponding statements arewithin the same loops) do not change the mappings nor the labels because statements are

42Table 4.3: Statement level optimizations which move statements to outer loops and a�ectmappings of S with one0::n ! one0::n labelsTransformation Resulting mapping label of Sloop invariant code motion(S is in an inner loop) one0::n�1;alln �! one0::n�1partial dead code elimination(S is in an inner loop) one0::i; lasti+1::n �! one0::ipartial redundancy elimination(S is in an inner loop) one0::i;alli+1::n �! one0::inot moved across loop boundaries and new mappings that are established do not havecorresponding statements positioned across loop boundaries.Table 4.4: Partial redundancy elimination e�ects on mappings of S with one0::n ! one0::nlabelsPartial redundancy elimination Resulting mapping label of S(S is in an outer loop) one0::n �! one0::n; lastn+1::m, where m > n(S is in a di�erent loop nest) one0::i;alli+1::n �! one0::i; lasti+1::mTable 4.3 displays the labels of mappings generated as a result of applying state-ment level optimizations that can move statements to outer loops or create correspondenceswith statements in outer loops. The application of loop invariant code motion moves a state-ment from a loop at loop nest level n to an outer loop at nesting level n � 1. After loopinvariant code motion is applied to statement S, in each iteration of this outer loop, allinstances of S correspond to one instance of S0. Thus, the label of the mapping betweenS and S0 is changed to one0::n�1;alln ! one0::n�1. The application of partial dead codeelimination moves statements across branch boundaries or to an outer loop at nesting leveli. When partial dead code elimination moves a statement S to an outer loop at nest-ing level i, in each iteration of this outer loop, the last instance of S corresponds to oneinstance of S0. In this case, the label of the mapping between S and S0 is changed toone0::i; lasti+1::n ! one0::i. The application of partial redundancy elimination modi�es astatement S to use a temporary instead of recomputing an expression. Afterwards, state-ment S has a correspondence with statement R0 (R0 assigns the redundant expression toa temporary). When R0 is in an outer loop with loop nest level i with respect to S, asillustrated in Figure 4.4(a), then in each iteration of this loop, all instances of S correspondwith one instance of R0. Thus, the label of the mapping between S and R0 is changed toone0::i;alli+1::n ! one0::i.

43Table 4.4 displays the remaining possible labels of mappings generated as a resultof applying partial redundancy elimination. If R0 is in an inner loop with loop nest levelm with respect to S, as illustrated in Figure 4.4(b), then in each iteration of the innermostloop enclosing S, one instance of S corresponds with the last instance of R0. In this case,the label of the mapping between S and R0 is changed to one0::n ! one0::n; lastn+1::m.Finally, if S and R0 are in di�erent loop nests, as illustrated in Figure 4.4(c), then in eachiteration of the innermost loop enclosing both S and R0, all instances of S correspond tothe last instance of R0. Thus, the label of the mapping between S and R0 is changed toone0::i;alli+1::n ! one0::i; lasti+1::m where i is the loop nest level of the innermost loopenclosing both S and R0, n is the loop nest level of the innermost loop enclosing S, and mis the loop nest level of the innermost loop enclosing R0.

44

0..n 0..none one , last n+1..m

Loop nest level n-1:

Loop nest level n:

...

Loop nest level m:
...

 Optimized CodeUnoptimized Code

 Optimized Code

Loop nest level i-1:

Loop nest level i:

... Loop nest level i-1:

Loop nest level i:

...

 S

 S

Loop nest level n: Loop nest level n:
... ...

Unoptimized Code Optimized Code

0..i
all i+1..none ,

 one
0..i

...

...

...
Loop nest level m:

Loop nest level m-1:

Loop nest level i:

Unoptimized Code

...

...

Loop nest level n:

Loop nest level n-1:

 S

all
0..i

i+1..n
0..i

last i+1..m

one ,

 one ,

Loop nest level n:

Loop nest level n-1:

...

...

...
Loop nest level m:

Loop nest level m-1:

Loop nest level i:...

 R’

a) S is inner loop w.r.t R’

 R’

 R’

c) S and R’ are in different loops

b) S is outer loop w.r.t R’

Loop nest level n-1:

Loop nest level n:

...

Loop nest level m:
...

Figure 4.4: Partial redundancy elimination mapping example

454.2.2 ExampleIn Figure 4.5, the mappings of an unoptimized program and its optimized versionare shown. This example will be used as a running example in subsequent chapters. Themappings are illustrated by labeled dotted edges between corresponding statements in bothprograms.

0..2one one
0..2

0..1
one one

0..1

0
one one

0

0..1
one one

0..1

0..2
one one

0..2

0..2
one one

0..2

0..1
one one

0..1

0
one one

0

0..2
one one

0..2

0..2

Unoptimized Code

S2 T1 = A

S14 E = D * 2

F
T

T

S3 T1=T1+A

S5 M = X * X
S6 B = M

S7 IF (B > T2)

S8 C = T2 + X

S9 C = T2 + X

S11 T2 = T2 + A

S12 IF (T2 < 100)

S7’ IF (M > T1)

F

T

S2’ T1 = 1
S5’ M = X * X

F

F

T

T

S1 A = 1

S12’ IF (T2 < 100)

S8’ C = T2 + X

S13’ IF (T1 < 100)

Optimized Code

S11’ T2 = T2 + 1

S4 T2 = 1

F

S4’ T2 = 1

S10’ D = M + T1

T

S13 IF (T1 < 100)

S9’ C = T2 + X

S10 D = B + T1

S3’ T1=T1+1

S14’ E = D * 2

F

0
1..2

one ,a
ll

one 0

0
one ,last one

0
1..2

0..2one
 one

0..2

0..2one one

Figure 4.5: Mappings for unoptimized and optimized code exampleThe following optimizations were applied to the code in Figure 4.5.� constant propagation - the constant 1 in S1 is propagated, as shown in S20, S30, andS110.� copy propagation - the copy M in S6 is propagated, as shown by S70 and S100.� dead code elimination - S1 and S6 are dead after constant and copy propagation andthus the mappings of S1 and S6 are removed.

46� loop invariant code motion - S5 is moved out of the doubly nested loop and thus allthe instances of statement S5 in the loops in the unoptimized code must map to oneinstance of statement S50 in the optimized code.� partial redundancy elimination - S9 is partially redundant with S8, and thus, a map-ping is created between S9 and S80. Notice S9 now has two mappings.� partial dead code elimination - S10 is moved below the outer loop and thus only thelast instance of statement S10 in the loops in the unoptimized code is mapped to oneinstance of statement S100 in the optimized code.4.2.3 E�ects of loop transformationsLoop transformations operate on loops as a unit, and therefore, their applicationa�ects the mappings of statements within the loops, including statements in the loop headersas well as the loop bodies. This section describes the kinds of mapping generated as aresult of applying an initial loop transformation where the initial mappings are of the form�!one!�!one.4.2.3.1 E�ects of duplicating loop bodiesWhen a body of a loop is duplicated, the number of instances of a statement in theloop body in the unoptimized code is divided among several statements in the optimizedcode. Thus, a statement in the unoptimized code corresponds to several statements inthe optimized code, and the mappings are updated to re
ect the new correspondencesbetween the instances of these statements. For example, the application of loop unrollingin Figure 4.6 has unrolled the loop at nesting level i two times in the optimized code. Theinstances of statement S within the loop body at nesting level i in the unoptimized codeare divided as follows. The odd instances of S, denoted by f1;n;2g, correspond to theinstances of S0 in the optimized code, and therefore, the label of the mapping of S andS0 are changed from �!one!�!one to one0::i�1; f1;n;2gi; �!one!�!one. The even instances of S,denoted by f2;n;2g, correspond to the instances of S00, and therefore, a mapping is createdbetween S and S00 with label one0::i�1; f2;n;2gi; �!one!�!one.

47
one , ,one one0..i-1 i

{2,n,2}

0..i-1 i
{1,n,2} one , ,one one

L
oo

p
ne

st
 le

ve
l i

...

L
oo

p
ne

st
 le

ve
l i

...

for (j=1;j<=n;j=j+1) { for (j=1;j<=n;j=j+2) {

S’ : statement

S’’ : statement

Unoptimized Code Optimized Code

S : statement

}

}Figure 4.6: Loop unrolling

0..i-1 onei+1 onei i+2one , , ,one , one one

for (k=1;k<=n;k=k+1) {

L
oo

p
ne

st
 le

ve
l i

+1

for (j=1;j<=n;j=j+1) {

S : statement
}

}

...

Unoptimized Code

L
oo

p
ne

st
 le

ve
l i

...

for (k=1;k<=n;k=k+1) {

for (j=1;j<=n;j=j+1) {

S’ : statement
}

} L
oo

p
ne

st
 le

ve
l i

+1

 Optimized Code

L
oo

p
ne

st
 le

ve
l i

Figure 4.7: Loop interchange e�ects on initial �!one!�!one mappings
0

({j=1,n,strip}

1 i 0..i {tj=j,min(n,j+strip-1),1})
 S’ : c[j:j+strip] = a[j:j+strip]

 + b[j:j+strip]

0..i-1

 S : c[j] = a[j] + b[j]
 one

}

for (j=1;j<=n;j=j+1) {

}

for (j=1;j<=n;j=j+strip) {

L
oo

p
ne

st
 le

ve
l i

...

 Unoptimized Code Optimized Code
L

oo
p

ne
st

 le
ve

l i

...
one , Figure 4.8: Strip mining e�ects on initial �!one!�!one mappings

484.2.3.2 E�ects of modifying the iteration spaceWhen the iteration space of a loop is reordered, the instances of a statement in theloop body in the unoptimized code are reordered in the optimized code, and the mappingsare updated to re
ect the new correspondences between the instances of these statements.For example, the application of loop interchange in Figure 4.7 has interchanged the loop atnesting level i with the loop at nesting level i+1, and thus, the instances of S are reorderedin the optimized code. This reordering e�ect is captured by permuting the elements of thevector speci�ed in the label of the mapping between S and S0 to re
ect the ordering in theoptimized code. Therefore, the label of the mapping between S and S0 is changed from�!one!�!one to one0::i�1;onei+1;onei; onei+2; �!one!�!one.In Figure 4.8, the loop at nesting level i has been stripped from the applicationof strip mining. The instances of statement S within the loop body at nesting level i inthe unoptimized code are divided as follows. Instances 1 through n are divided into stripsof size strip, and each strip of instances of S corresponds to one instance of S0. Therefore,the label of the mapping of S is changed from �!one!�!one to one0::i�1; (fj = 1;n; stripg0ftj = j;min(n; j+ strip� 1);1g1)i ! one0::i. The indices in the sequences re
ect thedependence of the inner loop limits on the outer loop index.4.2.3.3 E�ects of merging and splitting loopsMerging or splitting loops does not reorder and split the instances of statementswithin the loops. Subsequently, the mappings of the statements are not a�ected. However,the instances of statements of the loops are reordered with respect to other instances ofstatements in the loops.4.2.3.4 E�ects of altering the index and bounds of a loopAltering the index and bounds of a loop does not reorder and split the instancesof statements within a loop body. Subsequently, the mappings of the statements are nota�ected. For example, the application of loop normalization, as illustrated in Figure 4.9,does not a�ect the mappings of the statements of the loop bodies and thus, the label of themapping between S and S0 remains �!one!�!one.

49
one one

}

S : statement

for (j=1;j<= (limit - init + step)/step ; j=j+1) {

Unoptimized Code

for (j=init;j<=limit;j=j+step) {

L
oo

p
ne

st
 le

ve
l i

L
oo

p
ne

st
 le

ve
l i

... ...

}

S’ : statement

 Optimized Code

Figure 4.9: Loop normalization e�ects on initial �!one!�!one mappings4.3 Series of code transformationsCode transformations can be applied in any order and as many times as desiredand applicable. As transformations are applied on statements, a mapping's label is changedto re
ect the composition of the previous mapping (the e�ects of all previously appliedtransformations) by the e�ects of the current transformation. Table 4.5 shows the e�ectsof statement level optimizations on mappings of statements with label h�i0::m ! h�i0::n.The application of dead code elimination eliminates mappings while the application ofcode reordering within a basic block, speculative hoisting in an acyclic scheduler, constantpropagation and folding, and copy propagation does not a�ect the label of the mappings,and thus the label remains h�i0::m ! h�i0::n.Table 4.5: Statement level optimizations e�ects on h�i0::m ! h�i0::n mappingsTransformation Resulting mapping labeldead code elimination mapping deletecode reordering within a basic block h�i0::m ! h�i0::nspeculative hoisting in an acyclic scheduler h�i0::m ! h�i0::nconstant propagation and folding h�i0::m ! h�i0::ncopy propagation h�i0::m ! h�i0::nTables 4.6 and 4.7 show the e�ects of loop invariant code motion and partialdead code elimination (when statements are moved across loop boundaries) on the map-ping labels. When a statement S0 is moved in the optimized program, the mapping ofS0 and corresponding statement S (in the unoptimized program) is updated to re
ect thecomposition of the previous mapping by the e�ects of the current transformation. Rowtwo assumes statements S and S0 are within the same loop before the transformation isapplied. Row three assumes statement S is in an inner loop with respect to S0, and rowfour assumes either statement S is in an outer loop with respect to S0 or both are in dif-ferent loop nests. When statements are moved out of loops after an application of loop

50invariant code motion, the last element h�im in the vector for S0 is removed. If the loop ofthis element also encloses S, then all is applied to the current element h�im in the vector ofS. Similarly, when statements are moved across loop boundaries to a loop at nesting levelj after the application of partial dead code elimination, elements h�ij+1::m in the vector forS0 are removed. If the loop enclosing element j+1 of S0 also encloses S, then last is appliedto the current elements h�ij+1::n in the vector of S. When statements are moved within thesame loop for partial dead code elimination, the labels of the mappings are not a�ected.Table 4.6: Loop invariant code motion e�ects on mappingsInitial mapping label Resulting mapping labelS is in same loop as S0:h�i0::m ! h�i0::m h�i0::m�1; all(h�im)m ! h�i0::m�1S is in an inner loop:h�i0::n ! h�i0::m h�i0::m�1; all(h�im)m; h�im+1::n ! h�i0::m�1S is in an outer or di�erent loop nest:h�i0::n ! h�i0::m h�i0::n ! h�i0::m�1Table 4.7: Partial dead code elimination e�ects on mappings (when statements are movedacross loop boundaries)Initial mapping label Resulting mapping labelS is in same loop as S0:h�i0::m ! h�i0::m h�i0::j ; last(h�ij+1)j+1::last(h�im)m ! h�i0::jS is in an inner loop:h�i0::n ! h�i0::m h�i0::j ; last(h�ij+1)j+1::last(h�in)n ! h�i0::jS is in an outer or di�erent loop nest:h�i0::n ! h�i0::m h�i0::n ! h�i0::j(if S is still in outer or di�erent loop nest)h�i0::j ; last(h�ij+1)j+1::last(h�in)n ! h�i0::j(if S is now in an inner loop)Similarly, for partial redundancy elimination, after statement S is modi�ed to usea temporary instead of recomputing an expression, statement S corresponds with S0 andR0 (R0 assigns the redundant expression to a temporary). Therefore, a mapping is createdbetween S and R0, and the mapping of S and S0 is utilized to create the mapping between Sand R0. Table 4.8 displays the labels of the mapping between S and R0, given the previoush�i0::m ! h�i0::n mapping of S and S0.Finally, the tables shown in Figures 4.9 and 4.10 display the labels of mappingsgenerated as a result of applying a loop transformation where the mapping labels are of

51Table 4.8: Partial redundancy elimination e�ects on mappingsResulting mapping label of S and R00S is in same loop h�i0::n �! h�i0::mS is in an inner loop h�i0::i;all(h�ii+1)i+1::all(h�in)n �! one0::iS is in an outer loop h�i0::n �! one0::n; lastn+1::m, where m > nS is in a di�erent loop nest one0::i;all(h�ii+1)i+1::all(h�in)n �! one0::i; lasti+1::mthe form �!h�i!�!h�i. The mappings of statements within the loop bodies as well as the loopheaders may be a�ected.

52
Table 4.9: Loop transformation e�ects on �!h�i!�!h�i mappingsLoop peeling (one time before loop)loop body h�i0::i�1;1(h�ii)i; �!h�i!�!h�ih�i0::i�1; f2;n;1g(h�ii)i;�!h�i!�!h�iloop initialization deleteloop test h�i0::i�1; f2;n;1g(h�ii)i ! h�i0::ih�i0::i�1; last(h�ii)i ! h�i0::i�1; last(h�ii)iloop increment h�i0::i�1; f2;n;1g(h�ii)i ! h�i0::iLoop unrolling (unroll factor = 2)loop body h�i0::i�1; f1;n;2g(h�ii)i; �!h�i!�!h�ih�i0::i�1; f2;n;2g(h�ii)i; �!h�i!�!h�iloop initialization h�i0::i�1 ! h�i0::i�1loop test h�i0::i�1; f1;n;2g(h�ii)i ! h�i0::ih�i0::i�1; last(h�ii)i ! h�i0::i�1; last(h�ii)iloop increment h�i0::i�1; f2;n;2g(h�ii)i ! h�i0::iSoftware pipelining (number of stages = 2)loop body:stage 1 h�i0::i�1;1(h�ii)i; �!h�i!�!h�ih�i0::i�1; f2;n;1g(h�ii)i; �!h�i!�!h�istage 2 h�i0::i�1; f1;n � 1;1g(h�ii)i;�!h�i!�!h�ih�i0::i�1;n(h�ii)i; �!h�i!�!h�iloop initialization deleteloop test h�i0::i�1; f2;n;1g(h�ii)i ! h�i0::ih�i0::i�1; last(h�ii)i ! h�i0::i�1; last(h�ii)iloop increment h�i0::i�1; f2;n;1g(h�ii)i ! h�i0::iLoop unswitching at nesting level iloop body:conditional h�i0::i�1;all(h�ii)i ! h�i0::i�1other statements �!h�i!�!h�iloop initialization h�i0::i�1 ! h�i0::i�1loop increment h�i0::i ! h�i0::iloop test h�i0::i ! h�i0::i

53
Table 4.10: Loop transformation e�ects on �!h�i!�!h�i mappings cont.Loop reversal at nesting level iloop body h�i0::i�1; fn;1;�1g(h�ii)i;�!h�i!�!h�iloop initialization deleteloop test h�i0::i�1; fn;1;�1g(h�ii)i ! h�i0::ih�i0::i�1; last(h�ii)i ! h�i0::i�1; last(h�ii)iloop increment h�i0::i�1; fn� 2;1;�1g(h�ii)i ! h�i0::iLoop interchange at nesting levels i and i+ 1loop body h�i0::i�1; h�ii+1; h�ii; h�ii+2; �!h�i!�!h�iloop initialization h�i0::i�1 ! h�i0::i�1;all(h�ii)ih�i0::i�1;all(h�ii)i ! h�i0::i�1loop test h�i0::i ! h�i0::i�1;all(h�ii)i; h�ii+1h�i0::i�1;all(h�ii)i; h�ii+1 ! h�i0::iloop increment h�i0::i ! h�i0::i�1;all(h�ii)i; h�ii+1h�i0::i�1;all(h�ii)i; h�ii+1 ! h�i0::iLoop distribution and loop jammingloop body �!h�i!�!h�iloop initialization �!h�i!�!h�iloop increment �!h�i!�!h�iloop test �!h�i!�!h�iStrip mining loop at nesting level iloop body h�i0::i�1; (fj = 1;n; stripg0ftj = j;min(n; j+ strip� 1);1g1)(h�ii)i ! h�i0::iloop initialization h�i0::i�1 ! h�i0::i�1loop increment h�i0::i�1; fstrip;n; stripg(h�ii)i ! h�i0::iloop test h�i0::i�1; f1;n; stripg(h�ii)i ! h�i0::ih�i0::i�1; last(h�ii)i ! h�i0::i; last(h�ii)iLoop normalizationloop body �!h�i!�!h�iloop initialization deleteloop increment deleteloop test �!h�i!�!h�i

544.3.1 E�ects of inliningThe mappings can be extended to support function inlining, which replaces callsto a function in the unoptimized code by bodies of the function in the optimized code.Since each inlined body may be optimized di�erently, each inlined call site has its ownset of mappings. That is, for each inlined call site, separate mappings are maintainedbetween the statements in the function in the unoptimized code and the inlined copy in theoptimized code. When the function is examined or executed at runtime, the appropriate setof mappings are selected and utilized by using the knowledge of the call site encounteredduring program execution.4.4 SummaryThis chapter described a technique to automatically identify statement instancecorrespondences between unoptimized and optimized code and generate mappings re
ectingthese correspondences as code improving transformations are applied. The mappings re
ectthe e�ects of transformations and are established by analyzing how the position, number,and order of instances of a statement can change in a particular context when transforma-tions are applied. No restrictions are placed on the order or number of transformations. Themappings support statement level optimizations, inlining, as well as loop transformations.Now that the correspondence between the unoptimized and optimized versionsof a program can be established through mappings, source level debugging techniques foroptimized code can be developed. The remainder of this dissertation focuses on developingsuch techniques to help optimizer writers debug optimizers and application programmersto debug optimized code from the point of view of the source program. The mappingsare utilized at compile time as well as runtime. Statically, the mappings along with thecontrol
ow graphs of the unoptimized and optimized programs are analyzed to determinehow corresponding statements are relatively positioned with respect to each other anddetermine the corresponding statements that are path sensitive. Also, the mappings areused to generate annotations for the unoptimized and optimized programs, which can guidethe actions of source level debugging tools for optimized code. At runtime, the mappingsare utilized to determine how statements that execute in the optimized program relate tothe unoptimized program version.

Chapter 5Comparison CheckingA novel technique called comparison checking is presented in this chapter thatutilizes the mappings presented in the previous chapter. This technique helps users validateand debug optimizers by verifying, for given inputs, that the semantics of a program arenot changed by the application of optimizations. The comparison checking technique deter-mines if the semantics of the optimized version di�er from that of the unoptimized programby comparing the internal execution behavior using values that are computed by the un-optimized program with the corresponding values computed by the optimized program forgiven inputs.The comparison checking scheme, as illustrated in Figure 5.1, automatically orches-trates the executions of both the unoptimized and optimized versions of a source program,for given inputs, and compares values computed by corresponding executed statements fromboth program versions. The mappings described in Chapter 4 specify the statements cor-responding in the unoptimized and optimized programs. If the semantic behaviors are thesame and correct with respect to the source program, the optimized program can be runwith high con�dence. On the other hand, if the semantic behaviors di�er, the compari-son checker displays the statements responsible for the di�erences and the optimizationsapplied to these statements. The optimizer writer can use this information to locate theincorrect code in the optimized program and determine what transformation(s) producedthe incorrect code.1The semantic behavior of an unoptimized or optimized program with respect tothe source program is characterized by the outputs and values computed by source levelstatements in the unoptimized or optimized program for all possible inputs. Therefore, thesemantic behaviors of the unoptimized and optimized programs with respect to the sourceprogram are compared by checking that (1) the same paths are executed in both programs,(2) corresponding source level assignments compute the same values and reference (i.e.,1The checker can also be used to detect certain errors in a source program.55

56
unsuccessful

Generate unoptimized
 program.

and optimized programs
executes the unoptimized
Comparison checker

and performs comparisons
on given inputs.

comparisons error in optimizer.

comparisons successful

Generate optimized
 program.

Use info about statements
and optimizations related
to failed checks to locate

Figure 5.1: The comparison checking systemread, write) the corresponding locations, and (3) the outputs are the same. The outputsand the values computed by source level assignment statements and branch predicatesfor given inputs are compared. In addition, for assignments through arrays and pointers,checking is done to ensure the addresses to which the values are assigned correspond to eachother. All assignments to source level variables are compared with the exception of thosedead values that are not computed in the optimized code. This level of checking allowsthe comparison checking system to locate the earliest point where the unoptimized andoptimized programs di�er in their semantic behavior with respect to the source program.That is, the checker detects the earliest point during execution when corresponding sourcelevel statement instances should but do not compute the same values. Therefore, the checkercan detect statements that are incorrectly optimized and subsequently compute incorrectvalues. Consider the unoptimized C program fragment and its optimized version in Fig-ure 5.2. Assume the unoptimized program is correct and the optimizer is turned on. Theoptimizer moves the assignment of x to the outside of the loop as a result of applying loopinvariant code motion. When the optimized program executes, it returns incorrect output.The optimizer writer must debug the optimizer by �rst determining the cause of the errorin the optimized code. Using the checker, a di�erence is detected in the internal behavior ofthe unoptimized and optimized programs at line 5 in the unoptimized program during thesecond iteration of the loop and at line 4 in the optimized program. The checker indicatesthat the value 4 is assigned in the unoptimized program and the value 3 is assigned in theoptimized program. The checker also indicates that loop invariant code motion was ap-plied to statement 5. The optimizer writer can examine the unoptimized and/or optimizedversions of the program and then determine that loop invariant code motion was appliedincorrectly. The optimizer writer can �x the error in the implementation of the loop in-variant code motion optimization and rerun the checker on the unoptimized and optimizedversions of the program.

57
 Fragment

Optimized Program
 Fragment

for (i=1; i<=n; i=i+1){

...
1) int i, n, x, y, z;

y = 1;
z = 2;

y = y + 1;

2)

6)
5)
4)
3)

7)

Unoptimized Program

}
8) print x,y,z 8) print x,y,z

x = y + z;

for (i=1; i<=n; i=i+1){

...
1) int i, n, x, y, z;

y = 1;
z = 2;

x = y + z;
y = y + 1;

2)

6)
5)
4)
3)

7) }Figure 5.2: Program example for comparison checkingThe merits of a comparison checking system are as follows.� When a comparison fails, the earliest place where the failure occurred and the op-timizations that are involved are reported. Information about where an optimizedprogram di�ers from the unoptimized version bene�ts the optimizer writer in debug-ging the optimizer.� Since the internal values computed in the optimized code are compared to that ofthe unoptimized program, a �ner level of testing is provided than just comparing theoutputs. This level of checking can �nd errors in the optimized code that do not causethe output of the program to be incorrect.� The optimizer writer has greater con�dence in the correctness of the optimizer.� A wide range of optimizations including classical optimizations, register allocation,loop transformations, and inlining can be handled by the technique.� Optimizations can be performed at the source, intermediate, or target code level.� The comparison checker is language independent. The technique is applicable to avariety of programming languages.� The optimized code is not modi�ed except for breakpoints, and thus no recompilationis required.

58The comparison checking scheme is generally applicable to a wide range of op-timizations from simple code reordering transformations to loop transformations. Thischapter focuses mainly on statement level optimizations. The end of the chapter describeshow to extend the comparison checking scheme to handle loop transformations and inlining.The rest of this chapter is organized by presenting an overview of the comparisonchecker in Section 5.1. Section 5.2 describes the annotations used by the comparison checkerto guide the checking of values and describes the algorithms to place the annotations.Section 5.3 presents experimental results.5.1 Comparison checker overviewThe comparison checker scheme compares values computed by both the unopti-mized and optimized program executions to ensure the semantic behaviors of both pro-grams are the same. To automate this scheme, the comparison checker must (1) determinewhich values computed by both programs need to be compared with each other, (2) de-termine where the comparisons are to be performed in the program executions, and (3)perform the comparisons. To achieve these tasks, three sources of information are uti-lized. First, mappings between corresponding instances of statements in the unoptimizedand optimized programs, which are described in Chapter 4, are utilized to determine whichvalues computed by both programs should be compared. These mappings are generatedas optimizations are applied. Also, the statements that are a�ected by optimizations aremarked with the optimization applied so that the checker can report the optimizations thatare applied to statements. Second, after code is optimized and generated by the compiler,the mappings are used to automatically generate annotations for the unoptimized and op-timized programs, which guide the comparison checker in comparing corresponding valuesand addresses. When a program point in either program version that has annotations isreached, the actions associated with the annotations at that point are executed by the com-parison checker. Annotations identify program points where comparison checks should beperformed. Third, since values to be compared are not always computed in the same orderin the unoptimized and optimized code, a mechanism saves values that are computed early.These values are saved in a value pool and removed when no longer needed. Annotationsare used to indicate if values should be saved in the value pool or discarded from the valuepool. A high level conceptual overview of the comparison checker algorithm is given inFigure 5.3. To avoid modifying the unoptimized and optimized programs, breakpoints areused to extract values from the unoptimized and optimized programs as well as activate

59
process annotations at breakpoints process annotations at breakpoints

Execute the optimized program and

If delay comparison check annotation then If save annotation then

If no delay annotation then

If delete value annotation then

If comparison check annotation on a delayed

Execute the unoptimized program and

 switch execution to the optimized program

 if error then report error, and

 to perform the check on the value.

 discard saved value.

 check then
 perform the comparison check
 and if error then report error.

 discard saved value.
If delete annotation then
 save value computed.

If comparison check annotation then
 perform the comparison check,

 switch execution to the unoptimized program.

 save value computed.

Figure 5.3: Comparison checker algorithmannotations that are associated with program points in the unoptimized and optimizedprograms. The execution of the unoptimized program drives the checking and the execu-tion of the optimized program. Therefore, execution begins in the unoptimized code andproceeds until a breakpoint is reached. Using the annotations in the unoptimized code, thechecker can determine if the value computed can be checked at this point. A breakpoint ata program point in the unoptimized code that has a comparison check annotation indicatesthat a value computed by a statement should be checked. Also, by default, a breakpointat a program point in the unoptimized code that has no associated annotation indicatesthat the value computed by the most recently executed statement should be checked. Ifa value should be checked, the optimized program executes until the corresponding valueis computed (as indicated by a comparison check annotation), at which time the check isperformed on the two values. During the execution of the optimized program, any valuesthat are computed \early" (i.e., the corresponding value in the unoptimized code has notbeen computed yet) are saved in the value pool, as directed by the save annotations. Ifa delay comparison check annotation is encountered, indicating the checking of the valuecomputed by the unoptimized program cannot be performed at the current point, the valueis saved for future checking. The checker continues to alternate between executions of theunoptimized and optimized programs. Annotations also indicate when values that weresaved for future checking can �nally be checked and when the values can be removed fromthe value pool. Values computed by statement instances that are deleted by an optimizationare not checked.

60

(b) Check traces

S2 T1 = A

F

S5 M = X * X
S6 B = M
S7 IF (B > T2)

S9 C = T2 + X
S10 D = B + T1
S11 T2 = T2 + A

F

F

T

T

S8 C = T2 + X

S3 T1=T1+A
S4 T2 = 1

S14 E = D * 2 Delete S10
Checkable S10

S13 IF (T1 < 100)

TF

F

F

Check S5 with S5’

Save S5’

T

T

Check S2
S5’ M = X * X

S11’ T2 = T2 + 1

S13’ IF (T1 < 100)

28

S9’ C = T2 + X S8’ C = T2 + X

S12’ IF (T2 < 100)

Check S10S10’ D = M + T1

Delay S10

Check S3

Check S9 with S8’ , S9’
Delete S8’,S9’

S1 A = 1

S12 IF (T2 < 100)

26
23

21

19

17
16

10

8

3

6

27

T

14

12

5

11

15

18

20

24

25

22

13

9

7

S3’ T1=T1+1

S2’ T1 = 1

S4’ T2 = 1

S7’ IF (M > T1)

S14’ E = D * 2

Delete S5’

Check S13

Check S11

Save S8’
Check S8

Check S7

2

1

Optimized CodeUnoptimized Code
Optimized

S3

S2
S1

S4

S5

S6
S7

S8

S9

S10

S11

S12

1

3

6

8

10

12

17

16

14

19

23

27

S8’

S7’

9

S4’

S2’

S5’

S3’

7

5

4

2

11

13

S12’

S13’

S10’

S14’

S11’

15

18

28

25

24

22

20

S14

Code Trace Code Trace
Unoptimized

4

S13

26

21

Check S4

Save S9’

Delete S10

Delete S10

Check S12

Check S14

(a) Annotated unoptimized and optimized codeFigure 5.4: Comparison checking scheme example5.1.1 Comparison checking scheme exampleConsider the annotated unoptimized and optimized code segments in Figure 5.4(a),which illustrates the same unoptimized and optimized code example given in Figure 4.5 inChapter 4. Assume all the statements shown are source level statements and loops executefor a single iteration. Breakpoints are indicated by circles. Breakpoints have been placed atprogram points in the unoptimized and optimized code that are associated with annotationsas well as program points in the unoptimized code where comparison checks should beperformed. The switching between the unoptimized and optimized program executions bythe checker is illustrated by the traces in Figure 5.4(b). The traces include the statementsexecuted as well as the breakpoints (circled) where annotations are processed. The arrowsindicate the switching between programs.The unoptimized program starts to execute with S1 and continues executing with-out checking, as S1 was deleted from the optimized program. After S2 executes, breakpoint1 is reached and the checker determines from the annotation that the value computed canbe checked at this point and so the optimized program executes until Check S2 is processed,

61which occurs at breakpoint 2. The values computed by S2 and S20 are compared. The unop-timized program resumes execution and the loop iteration at S3 begins. After S3 executes,breakpoint 3 is reached and the optimized program executes until Check S3 is processed.Since a number of comparisons have to be performed using the value computed by S50, whenbreakpoint 4 is reached, the annotation Save S50 is processed and consequently, the valuecomputed by S50 is stored in the value pool. The optimized code continues executing untilbreakpoint 5, at which time the annotation Check S3 is processed. The values computed byS3 and S30 are compared. S4 then executes and its value is checked. S5 then executes andbreakpoint 8 is encountered. The optimized program executes until the value computed byS5 can be compared, indicated by the annotation Check S5 with S50 at breakpoint 9. Thevalue of S5 saved in the value pool is used for the check. The programs continue executingin a similar manner.5.2 AnnotationsCode annotations guide the comparison checking of values computed by corre-sponding statement instances from the unoptimized and optimized code. Annotations (1)identify program points where comparison checks should be performed, (2) indicate if valuesshould be saved in a value pool so that they will be available when checks are performed,and (3) indicate when a value currently residing in the value pool can be discarded since allchecks involving the value have been performed. The set of annotations is complete, andthe placement of the annotations go hand in hand with the comparison checking algorithm.5.2.1 Supporting statement level optimizationsFive di�erent types of annotations are needed to implement the comparison check-ing strategy. In the example in Figure 5.5, which is the same example as in Figure 5.4,annotations are shown in dotted boxes. The annotations used by the checker and theiractions follow. In the description, Suopt indicates a statement in the unoptimized code andSopt a statement in the optimized code.5.2.1.1 The Check Suopt annotationThe Check annotation is associated with a program point in the optimized codeto indicate a check of a value computed by statement Suopt is to be performed. The cor-responding value to be compared is the result of the most recently executed statement inthe optimized code. For example, in Figure 5.5, the annotation Check S2 is associated with

62S20. The Check annotation is used to indicate a check should be performed on values of astatement in the unoptimized code whose corresponding statement in the optimized coderemains in its original positions.A variation of this annotation is the Check Suopt with Si; Sj ; : : : annotation,which is associated with a program point in the optimized code to indicate a check of avalue computed by statement Suopt is to be performed with a value computed by one ofSuopt's corresponding statements Si; Sj; : : : in the optimized program. The correspondingvalue to be compared is either the result of the most recently executed statement in theoptimized code or is in the value pool. For example, in Figure 5.5, the annotation CheckS5 with S50 is associated with the original position of statement S5 in the optimized code.The Check with annotation is used to check statements in the unoptimized code whosecorresponding statements in the optimized code have been moved.

S11 T2 = T2 + A

S2 T1 = A

F

S5 M = X * X
S6 B = M
S7 IF (B > T2)

S9 C = T2 + X
S10 D = B + T1

F

T

T

S8 C = T2 + X

S3 T1=T1+A
S4 T2 = 1

S14 E = D * 2 Delete S10
Checkable S10

S13 IF (T1 < 100)

TF

F

F

Check S5 with S5’

Save S5’

T

T

Check S2
S5’ M = X * X

S11’ T2 = T2 + 1

S13’ IF (T1 < 100)

S9’ C = T2 + X S8’ C = T2 + X

S12’ IF (T2 < 100)

Check S10S10’ D = M + T1

Delay S10

Check S3

Check S9 with S8’ , S9’
Delete S8’,S9’

S12 IF (T2 < 100)

T

S3’ T1=T1+1

S4’ T2 = 1

S7’ IF (M > T1)

S14’ E = D * 2

Delete S5’

Check S13

Check S11

Save S8’
Check S8

Check S7

Optimized CodeUnoptimized Code

Check S4

Save S9’

Delete S10

Delete S10

Check S12

Check S14

S1 A = 1 S2’ T1 = 1

Figure 5.5: Annotated unoptimized and optimized code example

635.2.1.2 The Save Sopt annotationIf a value computed by a statement Sopt cannot be immediately compared withthe corresponding value computed by the unoptimized code, then the value computed bySopt must be saved in the value pool. In some situations, a value computed by Sopt mustbe compared with multiple values computed by the unoptimized code. Therefore, it mustbe saved until all those values have been computed and compared. The annotation SaveSopt is associated with Sopt and indicates that the value computed by Sopt is to be saved.In Figure 5.5, the statement S5 in the unoptimized code, which is moved out of the loopsby invariant code motion, corresponds to statement S50 in the optimized code. The valuecomputed by S50 cannot be immediately compared with the corresponding values computedby S5 in the unoptimized code because S50 is executed prior to the execution of S5. Thus,the annotation Save S50 is associated with S50.5.2.1.3 The Delay Suopt and Checkable Suopt annotationsIf the value computed by the execution of a statement in the unoptimized code,Suopt, cannot be immediately compared with the corresponding value computed by theoptimized code because the correspondence between the values cannot be immediately es-tablished, then the value of Suopt must be saved in the value pool. The annotation DelaySuopt is associated with Suopt to indicate the checking of the value computed by Suopt shouldbe delayed, saving the value in the value pool. The point in the unoptimized code at whichchecking can �nally be performed is marked using the annotation Checkable Suopt.In some situations, a delay check is needed because the correspondence betweenstatement instances cannot be established unless the execution of the unoptimized code isfurther advanced. In Figure 5.5, statement S10 inside the nested loop in the unoptimizedcode is moved after the loops in the optimized code by partial dead code elimination. Inthis situation, only the value computed by statement S10 during the last iteration of thenested loops is to be compared with the value computed by S100. However, an execution ofS10 corresponding to the last iteration of the nested loops can only be determined when theexecution of the unoptimized code exits the loops. Therefore, the checking of S10's valueis delayed.There is another situation in which a check is delayed for e�ciency reasons. Con-sider the example in Figure 5.6(a) in which the computation of x's value is moved frombefore the loop to after the loop. In this case, after x has been computed by the unop-timized code, the execution of the optimized code is advanced to the point after the loopand the value of x is checked. However, all values of y that are computed inside the loop

64would have to be saved, resulting in potentially a large value pool. To avoid the creationof a large pool, the checking of the value of x can be delayed until after the loop, as shownin Figure 5.6(b).

0

0

one one

S: x = ...

y = ... y = ...

S’: x = ...

0

0

one one

(a) Using save annotation.

S: x = ...

y = ... y = ...

S’: x = ...Delete S
Checkable S

Delay S

Unoptimized Code Optimized Code

Check S

(b) Using delay annotation for efficiency.

Unoptimized Code Optimized Code

Check SFigure 5.6: Types of annotations5.2.1.4 The Delete S annotationThe Delete annotation is associated with a program point in the unoptimized/opt-imized code to indicate a value computed previously by S and stored in the value pool canbe discarded. Since a value may be involved in multiple checks, a delete annotation must beintroduced at a point where all relevant checks would have been performed. In Figure 5.5,the annotation Delete S50 appears after the loops in the optimized code because at thatpoint, all values computed by statement S5 in the unoptimized code would have beencompared with the corresponding value computed by S50 in the optimized code.5.2.1.5 The Check-self S annotationThe Check-self annotation is associated with a program point in the unopti-mized/optimized code and indicates that values computed by S must be compared againsteach other to ensure the values are the same. The annotation is used when a mappingrefers to all instances of statement S in the optimized/unoptimized program. As the loopenclosing S begins to execute, the �rst value computed by S is saved in the value pool.Subsequent values computed by S are compared with the saved value. Since this annota-tion causes a value of S to be saved in the value pool, a Delete S annotation is used to laterdiscard the value from the value pool.In Figure 5.7, the mapping of statement S0 refers to all instances of S0. Theannotation Check-self S0 is associated with S0 and the annotation Delete S0 is introducedafter the enclosed loop. The checking of S and S0 is as follows. After S executes, thechecking of S is delayed and its computed value is saved in the value pool. The �rst time

65S0 executes, its computed value is saved in the value pool. Subsequent values computed byS0 are compared with the saved value. Once the unoptimized program execution reachesthe program point at Checkable S, the value computed by S can now be compared and theoptimized program executes until Check S with S0 is encountered. The values computed byS and S0 are compared at this point, and then the values of S and S0 are discarded fromthe value pool.
one one , all

0

0
1

Unoptimized Code Optimized Code

S: x = ...Delay S

Checkable S
Delete S

S’: x = ... Check-self S’

Delete S’
Check S with S’Figure 5.7: Types of annotationsDepending on the position of a statement in the unoptimized code that has amapping referring to all instances, a Check-self annotation is not necessary, as illustrated inFigure 5.5. Although the mapping of statement S5 refers to all instances of S5, as illustratedin Figure 4.5 in Chapter 4, a Check S5 with S50 annotation can be used to perform all ofthe comparison checks on S5.5.2.2 Algorithms to place annotations for statement level optimizationsThe selection and placement of annotations are independent of particular optimiza-tions and depend only on which and how statement instances correspond and the relativepositions of corresponding statements in both the unoptimized and optimized programs.The mappings and data
ow analysis, including reachability and postdominance, are usedto determine where and what annotations to use. Annotations are placed after all optimiza-tions are performed and target code has been generated, and therefore, the code to emitthe annotations can be integrated as a separate phase within a compiler.Four algorithms annotate the unoptimized and optimized programs. Three algo-rithms, which introduce Check, Delay, Checkable, Check-self, and Save annotations, can beconsolidated and applied at the same time. The fourth algorithm, which introduces Deleteannotations, is applied after the other three algorithms are applied. For ease of explana-tion, the algorithms use separate control
ow graphs, Gunopt and Gopt for the unoptimizedand optimized programs, respectively. However, these algorithms can easily be modi�ed to

66handle the representation of both programs within a single control
ow graph. Also, someof the algorithms use the following terminology.Suppose a mapping exists between statement S in the unoptimized program andstatement S0 in the optimized program, which is denoted by S � S0. Statement S0 is eitherrolled forward, rolled back, or neither rolled forward nor rolled back with respect to S. Todetermine if S0 is rolled backward with respect to S (i.e., S0 is relatively positioned beforeS), the original position of S and the actual position of S0 are compared in Gopt. LetORHead(S) denote the corresponding original position of S in Gopt. S0 is rolled backwardwith respect to S if a path P in Gopt exists from S0 to ORHead(S) such that P does notinclude backedges of loops enclosing both S0 and ORHead(S). The backedge restriction onP ensures that only the positions of the same instance of S0 before and after optimizationare considered. An enclosing loop would cause the incorrect examination of instances of S0from two successive iterations of the loop. This restricted notion of a path is captured bythe SimplePath predicate.De�nition 5.1 The predicate SimplePath(x; y) is true if 9 path P from program point xto program point y in Gopt and P does not include backedges of loops enclosing both x andy. Using the SimplePath predicate, statement S0 with respect to S is rolled backif SimplePath(S0; ORHead(S)) is true. Statement S0 with respect to S is rolled forwardif SimplePath(ORHead(S); S0) is true. In Figure 5.5, statement S50 is rolled back withrespect to S5, statement S100 is rolled forward with respect to S10, and statement S20 isneither rolled forward nor rolled back with respect to S2.5.2.2.1 Algorithm to introduce Check, Delay, and Checkable annotationsThe Check, Delay, and Checkable annotations direct the comparison checker asto when comparisons between values computed in both the unoptimized and optimizedprograms are to be performed. Since the execution of the unoptimized program drives thechecking and the execution of the optimized program, these annotations are introduced forstatements in the unoptimized program. The algorithm, shown in Figure 5.8, takes as inputa statement S from the unoptimized program, the mappings of S, and the unoptimized andoptimized control
ow graphs Gunopt and Gopt. The algorithm is applied to every statementin the unoptimized program that has a mapping.All of the mappings of statement S are examined because the types of annota-tions introduced depend on the relative positions of the corresponding statements of S as

67well as the instances of S to be checked. When the corresponding statement S0 in theoptimized code is rolled forward, its check is delayed for e�ciency reasons. Also, when amapping of S � S0 refers to a last instance for either S or S0, its check is delayed. In thiscase, the delay is necessary because a last loop iteration can only be determined after theunoptimized/optimized code further executes and exits the appropriate loop. If a check isdelayed, then a Delay annotation is introduced for S. Check and Checkable annotationsare also introduced so that comparisons will be later performed on S. Otherwise, if thechecking of S is not delayed, then only Check annotations are introduced for S.Check annotations are carefully placed to ensure that the number of Check anno-tations encountered during runtime execution equals the number of comparisons that needto be performed. For each mapping of S such that the corresponding statement in theoptimized program is rolled forward or a last instance is referred to in the mapping, the�rst two conditions in the algorithm must be satis�ed. This ensures that instances of Sto be checked will not have extraneous nor too little Check annotations processed on itsbehalf during the optimized program execution. For the remaining mappings of statementS, a Check annotation is associated with the program point in the optimized code thatrepresents the original position of statement S.5.2.2.2 Algorithm to introduce Check-self annotationsThe Check-self annotation directs the comparison checker to check instances ofa statement computed in a loop against each other. The algorithm to introduce Check-self annotations is shown in Figure 5.9. It is applied to all statements in the unoptimizedand optimized programs that have mappings and takes as input a statement S from theunoptimized or optimized program, the mappings of S, and the unoptimized and optimizedcontrol
ow graphs, Gunopt and Gopt.Statements in the optimized programs whose instances are referred to as all inone or more mappings have Check-self annotations associated with them. Statements inthe unoptimized code whose instances are referred to as all in one or more mappings andhave at least one of the corresponding statements rolled forward in the optimized code haveCheck-self annotations associated with them. Also, statements in the unoptimized codewhose instances are referred to as all and last in one or more mappings have Check-selfannotations associated with them.

685.2.2.3 Algorithm to introduce Save annotationsSave annotations direct the comparison checker to save values that will be usedin future comparison checks. Statements in the optimized program whose instances arereferred to as last in one or more mappings or are rolled back with respect to correspondingstatements in the unoptimized program have Save annotations associated with them. Thealgorithm to introduce these annotations is shown in Figure 5.10. It takes as input a state-ment S0 from the optimized program, S0's mappings, and the unoptimized and optimizedcontrol
ow graphs.5.2.2.4 Algorithm to introduce Delete annotationsDelete annotations direct the comparison checker to discard values from the valuepool. Any statements in the unoptimized and optimized programs whose computed valuesare saved in the value pool as a result of Delay, Save, and Check-self annotations use Deleteannotations. The algorithm, shown in Figure 5.11, is applied after all of the previousalgorithms are applied and takes as input the mappings and the annotated unoptimizedand optimized control
ow graphs.For statements in the unoptimized program, Delete annotations are introduced inthe unoptimized program, and similarly, for statements in the optimized program, Deleteannotations are introduced in the optimized program.Delete annotations are carefully placed to ensure that appropriate values are safelydiscarded. Delete annotations are introduced where no more comparisons involving the value(to be deleted) will be performed.

69For each mapping S � S0 such that S0 is rolled forward with respect to S orthe mapping S � S0 refers to a last instanceAssociate Delay S annotation on S (if not already delayed)Associate Check S with S0 annotations on points P in Gopt such that(i) points P postdominate S0 and the original position of S(ii) points P are in the innermost loop Li enclosing S0 such thatthe element representing Li in the vector of S0 is oneAssociate Checkable S on the same points P in GunoptEnd ForWith the remaining mappings S � S01; S � S02; : : : ; S � S0nAssociate Check S with S01; S02; : : : ; S0n annotation at the original position of S in GoptIf S has a Delay annotation thenAssociate Checkable S at the position of S in GunoptEnd ifFigure 5.8: Algorithm to introduce Check, Delay, Checkable annotationsIf 9 mapping that refers to all instances of S thenIf S is a statement in Gopt thenAssociate Check-self S annotation with statement SElse /* S is in the unoptimized program */If the corresponding statement of S is rolled forwardAssociate Check-self S annotation with statement SElse if 9 mapping that refers to last instances of S thenAssociate Check-self S annotation with statement SEnd ifEnd ifFigure 5.9: Algorithm to introduce Check-self annotationsIf 9 mapping that refers to a last instance of S0 or(9 mapping S � S0 and S0 is rolled back with respect to S) thenAssociate Save S0 annotation with statement S0End ifFigure 5.10: Algorithm to introduce Save annotations

70For each statement S in the unoptimized programFor each mapping that refers to a last instance of SAssociate Delete S on the back edges of each loop Li in Gunopt enclosing Ssuch that the element representing Li in the vector of S is lastEnd forIf a Delay S was introduced for S thenAssociate Delete S on points P in Gunopt such that P postdominatesall Checkable S annotationsEnd ifEnd ForFor each statement S0 in the optimized programIf a Save S0 annotation was introduced for S0 thenFor each mapping that refers to a last instance of S0Associate Delete S0 on the back edges of each loop Li in Gopt enclosing S0such that the element representing Li in the vector of S0 is lastEnd forEnd ifFor each Save S0 or Check-self S0 introduced for S0Associate Delete S0 on points P in Gopt such that(i) P postdominates S0(ii) 8 mappings S � S0,P postdominates all Check S annotations introduced for mapping S � S0(iii)If 9 mapping that refers to last or all instances of S0 thenThe Delete S0 annotation is in the innermost loop Li enclosing S0such that 8 the mappings of S0, the elements representing Li in thevectors of S0 are oneOtherwise the Delete S0 annotation is in the same loop nest as theoriginal position of statement SEnd ifEnd forEnd for Figure 5.11: Algorithm to introduce Delete annotations

715.2.3 Supporting loop transformations and inliningThe previous sections support statement level optimizations. To support looptransformations, the annotations are extended with su�xes to handle the instances of astatement in the unoptimized code that are (1) reordered in the optimized code and (2)divided among several statements in the optimized code. The su�xes describe speci�cinstances and sequences of instances as described by the mappings of such statements. Theplacement of annotations is extended as follows. If the instances of a statement S in theunoptimized code are reordered in the optimized code, the checking of such instances aredelayed. A mapping su�x is added to the Delay annotation to indicate the instances whosechecks are to be delayed and the order in which the values computed by these instances ofS are saved in the value pool by the comparison checker. This ordering re
ects the orderingof the corresponding instances of S in the optimized code, which is the order in whichthe comparison checks are performed. For each Checkable annotation, a su�x indicatesthe instances of a statement referred by the annotations. For example, in Figure 5.12, theloop in the optimized code has been reversed and thus, the instances of statements in theunoptimized code are reordered in the optimized code. Delay annotations are placed for theinstances of statements S2; S3, and S4. Checkable annotations are placed after the loop toindicate all of the instances of statements S2; S3, and S4 (whose checks were delayed) arenow ready to be checked.
 a[j] = j S4’ a[j] = j

 Optimized Code

}

S3’ j = j - 1) {

S2’ j > 0;

S1’ for(j=10;

S4

 Unoptimized Code

0

S1 for(j=1;

S2 j < 11;

S3 j = j + 1) {

Delay S4

Delay S2

Check S3

Check S4

Check S2

}

Checkable S2 [all]
Checkable S3 [all]
Checkable S4 [all]

last last

Delay S3

one ,{10,1,-1} one ,one0 1 1

one ,{8,1,-1} one ,one0 1 1

one ,{10,1,-1} one ,one0 1 10

0

Figure 5.12: Annotated loop reversal exampleIf the instances of a statement S in the unoptimized code are divided among severalstatements in the optimized code, a separate check or delayed check is utilized for each setof divided instances of S. A mapping su�x is added to the check annotation to indicatethe instances of the statement in the unoptimized code that will be checked. For example,

72in Figure 5.13, the loop in the optimized code has been unrolled, and thus the instances ofstatements in the loop in the unoptimized code are divided among two statements in theoptimized code. For statement S4, two check annotations are placed in the optimized code.The �rst annotation refers to the odd instances of S4 and the second annotation refers tothe even instances of S4. For statement S2 (the loop test), the check annotation indicatesthe checking of the odd instances and the last instance of S2. For statement S3 (the loopincrement), the check annotation indicates the checking of the even instances of S3.
 a[j] = j S4’ a[j] = j

Check S1

 Unoptimized Code

S1 for(j=1;

S3 j = j + 1) {

}

S2 j < 11;

 Optimized Code

S3’ j = j + 2) {

S4

S2’ j < 11;

1
}

S1’ for(j=1;

S5’ a[j+1] = j + 1

last last
one ,{1,11,2} one ,one

0

Check S2
1 0 1

Check S3
one ,{2,11,2} one ,one0 1 0 1

one ,{1,11,2} one ,one
Check S4

0 1 0 1

one ,{2,11,2} one ,one
Check S4

0 1 0Figure 5.13: Annotated loop unrolling exampleFunction inlining, which replaces calls to a function in the unoptimized code bybodies of the function in the optimized code, can also be supported. For each call site, aseparate mapping is maintained between the statements in the function in the unoptimizedcode and the inlined copy in the optimized code. By analyzing the mappings correspondingto each call site, a set of annotations is computed. At runtime, when the function isexecuted, the comparison checker selects and follows the appropriate set of annotations byusing the knowledge of the call site encountered during program execution.5.3 Implementation and experimentsThe Comparison checker for OPtimized code, COP, was implemented, includingthe instruction mapping, annotation placement, and checking. Lcc [23] was used as thecompiler for an application program and was extended to include a set of optimizations,namely loop invariant code motion, dead code elimination, partial redundancy elimination,register allocation, copy propagation, and constant propagation and folding. On average,the optimized code generated by the optimized lcc executes 16% faster in execution timethan the unoptimized code.

73As a program is optimized, mappings are generated. Besides generating targetcode, lcc was extended to determine the mappings between the unoptimized and opti-mized code, breakpoint information, and annotations that are derived from the mappings.The code to emit breakpoint information and annotations is integrated within lcc throughlibrary routines. Thus, compilation and optimization of the application program producethe target code for both the unoptimized program and optimized program as well as aux-iliary �les containing breakpoint information and annotations for both the unoptimizedand optimized programs. These auxiliary �les are used by the checker. Breakpoints aregenerated whenever the value of a source level assignment or a predicate is computed andwhenever array and pointer addresses are computed. Breakpoints are also generated tosave base addresses for dynamically allocated storage of structures (e.g., malloc(), free(),etc.). Array addresses and pointer addresses are compared by actually comparing theiro�sets from the closest base addresses collected by the checker. Floating point numbersare compared by allowing for inexact equality. That is, two
oating point numbers areallowed to di�er by a certain small delta [44]. Breakpointing is implemented using fastbreakpoints [32].Experiments were performed to assess the practicality of COP. The main concernswere usefulness as well as cost of the comparison checking scheme. COP was found to be veryuseful in actually debugging the optimizer implemented for this work. Errors were easilydetected and located in the implementation of the optimizations as well as in the mappingsand annotations. When an unsuccessful comparison between two values was detected, COPindicated which source level statement computed the value, the optimizations applied tothe statement, and which statements in the unoptimized and optimized assembly codecomputed the values.In terms of cost, the slow downs of the unoptimized and optimized programs andthe speed of the comparison checker are of interest. COP performs on-the-
y checking dur-ing the execution of both programs. Both value and address comparisons are performed. Inthe experiments, COP ran on an HP 712/100 and the unoptimized and optimized programson separate SPARC 5 workstations instead of running all three on the same processor asdescribed in Section 3. Messages are passed through sockets on a 10 Mb network. A bu�eris used to reduce the number of messages sent between the executing programs and thechecker. Some of the integer Spec95 benchmarks as well as some smaller test programswere used as test cases.Table 5.1 shows the CPU execution times of the unoptimized and optimizedprograms with and without annotations. On average, the annotations slowed down the

74Table 5.1: Execution times (minutes:seconds)Source Unoptimized Code Optimized Code COPlength annotated annotated (responseProgram (lines) (CPU) (CPU) (CPU) (CPU) (CPU) time)wc 338 00:00.26 00:02.16 00:00.18 00:01.86 00:30.29 00:53.33yacc 59 00:01.10 00:06.38 00:00.98 00:05.84 01:06.95 01:34.33go 28547 00:01.43 00:08.36 00:01.38 00:08.53 01:41.34 02:18.82m88ksim1 17939 00:29.62 03:08.15 00:24.92 03:07.39 41:15.92 48:59.29compress1 1438 00:00.20 00:02.91 00:00.17 00:02.89 00:52.09 01:22.82li1 6916 01:00.25 05:42.39 00:55.15 05:32.32 99:51.17 123:37.67ijpeg1 27848 00:22.53 02:35.22 00:20.72 02:33.98 38:32.45 57:30.741 Spec95 benchmark test input set was used.execution of the unoptimized programs by a factor of 8 and that of the optimized programsby a factor of 9. The optimized program experiences greater overhead than the unoptimizedprogram because more annotations are added to the optimized program.Table 5.1 also shows the CPU and response times of COP. The performance ofCOP depends greatly upon the lengths of the execution runs of the programs. Comparisonchecking took from a few minutes to a few hours in terms of CPU and response times.These times are clearly acceptable if comparison checking is performed o�-line (i.e., non-interactively). The performance of the checker was found to be bounded by the processingplatform and speed of the network. A faster processor and 100 Mb network would consider-ably lower these times. In fact, when COP executes on a 333 MHz Pentium Pro processor,the performance is on average 6 times faster in terms of CPU time. Access to a fasternetwork was not possible. The pool size was measured during experiments and was fairlysmall. If addresses are not compared, the pool size contains less than 40 values for each ofthe programs. If addresses are compared, then the pool size contains less than 1900 values.5.4 SummaryA novel approach to debug optimizers is presented. In the technique presented,both the unoptimized and optimized versions of an application program are executed, andcomputed values are compared to ensure the behaviors of the two versions are the sameunder the given input. If the values are di�erent, the comparison checker displays where inthe application program the di�erences occurred and what optimizations were involved. Theoptimizer writer can utilize this information to debug the optimizer. The automation of thecomparison checking scheme relies on the mappings described in chapter 4 and annotationsdescribed in this chapter. The comparison checking scheme was implemented and executes

75the unoptimized and optimized versions of C programs. Experimental results demonstratethe approach is e�ective and practical.In this chapter, the comparison checking technique compared the execution be-havior of an unoptimized version of a program with the optimized version of the program.However, the comparison checking technique can also be utilized to check di�erent levels ofoptimizations. That is, the checking can be performed in phases just as optimizations areoften phased. For example, checking can be performed after loop optimizations are applied,after statement level optimizations are applied, and after low level optimizations are ap-plied. This phase checking can reduce the cost of checking as well as help optimizer writersdebug the optimizations that were applied in the phase that is to be checked. Furthermore,the comparison checking technique can be tailored to help optimizers writers debug andvalidate speci�c optimizations. In the next chapter, the comparison checking technique istailored to global register allocation.

Chapter 6Register Allocation CheckingThe comparison checking technique described in the previous chapter comparedthe execution behaviors of an unoptimized version of a program with the optimized versionof the program. When the semantic behaviors di�er, the comparison checker displays thestatements responsible for the di�erences and the optimizations applied to these statements.This technique can locate the earliest point during execution when corresponding sourcelevel statement instances should but do not compute the same values and can indicate theoptimizations that were applied to the statement. However, this information is not alwayshelpful in that many optimizations may have been applied to the statement and detailedinformation about the optimizations may not be available. To provide more e�ective infor-mation, the comparison checking technique can be tailored to help optimizer writers debugand validate speci�c optimizations. In particular, the comparison checking technique canbe tailored to help debug and validate an implementation of register allocation, which is acode transformation that can be very tedious and di�cult to debug, especially when errorsare intermittent. In this chapter, a register allocation checker is developed that extends thecomparison checking technique in that the checker can detect errors in a register allocatorimplementation and determine the possible cause(s) of the errors. This register allocationchecker can be incorporated into the comparison checker or can be used as a standalonetool. The register allocation checker is similar to the comparison checker in that thesemantic behaviors of the unoptimized and optimized programs are compared. However,the register allocation checker saves di�erent kinds of information and utilizes a di�erentset of annotations to track information about the variables that are assigned to registersand verify that the expected values of these variables are used throughout the optimizedprogram execution. This level of checking and tracking allows the register allocation checkerto locate the earliest execution point where the unoptimized and optimized programs di�erin their semantic behaviors and display to the user the actual cause(s) of the di�erences.76

77When a register allocation technique is implemented incorrectly, the incorrectbehavior can include� using a wrong register,� evicting a value from a register but not saving it for future uses,� failing to load a value from memory, and� using a stale value. A stale value of a variable is used in the optimized program whena value of a variable is computed in a register, but instead of using the value of thevariable in the register, the optimized program uses the old value in memory.The register allocation checker can determine when a register allocator exhibitsthese types of behavior. Consider the unoptimized C program fragment and its optimizedversion in Figure 6.1. Assume the unoptimized program is correct and the register allocationis turned on. The register allocator assigns variables x, y, z, and a to registers r3, r1, r4,and r5, respectively, in the optimized program, and copies the value of y in register r1 toregister r2. Assume the optimized program returns incorrect output. Using the checker, adi�erence is detected in the internal behavior of the unoptimized and optimized programsat line 3 in the unoptimized code and line 7 in the optimized code. The checker indicatesthat the values used by y in the unoptimized and optimized programs di�er and indicatesthat r1 is used inconsistently as y was evicted from r1 earlier during the execution of theoptimized program. The checker also indicates that the expected value of y is in register r2and thus, r2 should have been used instead of r1. The optimizer writer can then use thisinformation to debug the implementation of register allocation.

78
3) a = y + y

2) z = x + 5

...

...

Unoptimized Code Optimized Code

2) load r2,2

1) x = 2 * y 1) load r1,y

6) add r4,r3,r1

7) add r5,r1,r1

8) store r5,a

3) mul r3,r1,r2
...

4) move r1,r2

5) load r1,5

...

Figure 6.1: Program example for register allocation checking6.1 Register allocation checker overviewThe register allocation checking scheme is similar to the comparison checkingscheme in that values computed in both the unoptimized and optimized programs arechecked, but the register allocation checking scheme also compares values of variables thatare used in both programs and tracks and veri�es information about the variables thatare assigned to registers throughout the optimized program execution. To automate thisscheme, the register allocation checker must(1) determine which values are computed by both programs and need to be comparedwith each other,(2) determine where the comparisons are to be performed in the program executions,(3) perform the comparisons,(4) track information about variables assigned to registers in the optimized programexecution, and(5) verify that the expected values of these variables are used throughout the optimizedprogram execution.

79This tracking information includes maintaining at each program point of the execution ofthe optimized program the(1) current locations of values of variables,(2) variables whose memory locations hold stale values,(3) variables whose values in registers have been evicted, and(4) variables that are currently assigned to registers.To achieve these tasks, mappings and annotations are utilized. The mappings ofthe comparison checker are extended to include the correspondences between the uses ofvariables in the unoptimized and optimized intermediate programs. These mappings aregenerated before register allocation is applied because the correspondence between the twoprogram versions is not changed by the application of register allocation. The mappingscapture only the e�ects of register allocation and not other optimizations because the check-ing is performed on a program before registers are allocated and on a program after registersare allocated. However, the unoptimized program can include the application of other op-timizations, which are assumed to be correct. After register allocation is applied and codeis generated by the compiler, the mappings are used to automatically generate annotationsfor the optimized program, which guide the register allocation checker in comparing corre-sponding values and addresses and tracking and verifying information about the variablesthat are assigned to registers throughout the program execution. When a targeted programpoint in the optimized code is reached, the actions associated with the annotations at thatpoint are executed by the register allocation checker.A high level conceptual overview of the register allocation checker algorithm isgiven in Figure 6.2. This algorithm is similar to that of the comparison checker. Breakpointsare used to extract values from the unoptimized and optimized programs as well as activateannotations. Annotations guide the actions of the register allocation checker. However,since values that are assigned to variables in the optimized code are the values that aretracked and veri�ed, the execution of the optimized program drives the checking and theexecution of the unoptimized program. Therefore, execution begins in the optimized codeand proceeds until a breakpoint is reached. Depending on the annotation, the checker maytrack variables assigned to registers, evicted variables, and stale variables, and/or determineif a value computed or used should be checked at the current point of execution of theoptimized code. When a value should be checked at the current point, the unoptimizedprogram executes until the corresponding point of execution is reached, at which time the

80check is performed on the two values. The checker continues to alternate between executionsof the unoptimized and optimized programs. If the values that are compared di�er, thenthe checker informs the user of the possible causes of the di�erence. Also, as values aretracked, the checker informs the user of any inconsistencies (e.g., a stale value is loaded,unexpected value is stored to a memory location, etc.). Once an inconsistency of a value ofa variable is detected, the inconsistency is propagated through the uses of the value.DoExecute the optimized program and process annotations at breakpointIf Check annotation thenExecute the unoptimized program until the equivalent executionpoint (of the optimized program) is reachedPerform the comparison checkIf error then report the error and the cause of the errorIf Register Assign annotation or Load annotation or Store annotationor Register Move annotation thenUpdate register/variable informationVerify the loaded or stored value is the expected valueInform user of any inconsistenciesEnd ifWhile the optimized program has not �nished executingFigure 6.2: Register allocation checker algorithm6.2 AnnotationsSimilar to the comparison checking technique, code annotations guide the check-ing of values in the unoptimized and optimized code. Code annotations are also used toverify and track values of variables. Annotations (1) identify program points where compar-ison checks should be performed and (2) indicate what values of variables/registers shouldbe tracked and veri�ed in the optimized code. Five types of annotations are needed toimplement the register allocation checking strategy. In the example in Figure 6.3, whichillustrates the same unoptimized and optimized code example given in Figure 6.1, annota-tions are shown in dotted boxes.6.2.1 The Check v; r annotationThe check v; r annotation is associated with a program point p in the optimizedcode to indicate a check of a value of variable v in register r is to be performed. The registerallocation checker will execute the unoptimized program until the equivalent program pointp is reached. The corresponding value to be compared is the current value of v in the

81
S2) z = x + 5

...

...

S1) x = 2 * y

Load r2

Register move r1,r2
S3) a = y + y

Load r1

S8’) store r5,a Check/Store a,r5

Check/Load y,r1

Check y,r1
Check /Register assign x,r3

Check x,r1
Check/Register assign z,r4

Check y,r1
Check/Register assign a,r5

Unoptimized Code Optimized Code Annotations

...

...

S1’) load r1,y

S2’) load r2,2

S3’) mul r3,r1,r2

S4’) move r1,r2

S5’) load r1,5

S6’) add r4,r3,r1

S7’) add r5,r1,r1

Figure 6.3: Annotations exampleoptimized code. For example, in Figure 6.3, a check annotation is associated with statementS10 in the optimized code so that the contents of r1 in the optimized code is compared withthe value of y in the unoptimized code. Check annotations are used to check register loads,stores, uses, and assignments.6.2.2 The Register assign [v;] r annotationThe register assign annotation is associated with a program point in the opti-mized code to indicate the tracking information for register r should be updated. Theregister allocation checker records that the previous variable assigned to r is evicted. Ifv is speci�ed, the register allocation checker updates its information to indicate that rholds variable v, v is currently stored in r, the memory location of v holds a stale value,and any other values of v currently in registers are evicted. For example, in Figure 6.3, aregister assign annotation is associated with statement S30 in the optimized code so thatthe variable x is tracked with register r3 in the optimized code.6.2.3 The Load [v;] r annotationThe load annotation is associated with a load instruction in the optimized codeand is used to track and verify the load information for register r. The register allocation

82checker records that the previous variable assigned to r is evicted. If v is speci�ed, theregister allocation checker records that r holds variable v, v is currently stored in r, andany other values of v currently in registers are evicted. Using the tracking information, thechecker veri�es if the loaded value is stale, and if so, records this information, informs theuser of the stale value of v, and informs the user of the current location of the expectedvalue of v, if it exists. For example, in Figure 6.3, a load annotation is associated withstatement S10 in the optimized code to track and verify the information in register r1.6.2.4 The Store v; r annotationThe store annotation is associated with a store instruction in the optimized codeto track and verify the store information for register r. Using the tracking information, thechecker veri�es if r does not hold the expected value of v, and if so, informs the user that rdoes not hold the expected value of v and informs the user of the current location of v, if itexists. Also, the register allocation checker records that the memory location of v holds thecurrent value. For example, in Figure 6.3, a store annotation is associated with statementS80.6.2.5 The Register move r; r0 annotationThe register move annotation is associated with a move instruction in the opti-mized code to track the information in register r0. The register allocation checker duplicatesthe information pertaining to register r for that of register r0. For example, in Figure 6.3, aregister move annotation is associated with statement S40 in the optimized code to trackthe information in register r2.6.2.6 Combining annotationsWhen a Check annotation is associated with a Store annotation, the checkerveri�es that the value in the register stored in the memory location of the variable at aprogram point in the optimized program matches the value of the variable at the equivalentprogram point in the unoptimized program. If the values do not match, then if the registercurrently holds the variable, then the checker informs the user why the value in the optimizedcode is incorrect. Either the value is stale, uninitialized, or wrong (possibly because thecorrect value was evicted and now the register contains the wrong value that will be stored).If the register does not currently hold the variable, the checker informs the user (1) ifthe expected value of the variable resides in another register, (2) the last location of thevariable, and (3) that either the wrong register or address was supplied in the instruction,

83the expected value was evicted earlier and not saved, or the memory value already has theexpected value (because of an earlier store). A Check annotation associated with a Loadannotation is treated in a similar manner.When a Check annotation is associated with a Register assign annotation, thechecker veri�es that the value assigned to the register at a program point in the optimizedcode matches the value of the variable at the equivalent program point in the unoptimizedcode. If the operands were incorrect, the checker will have already noti�ed the user of theuses that have unexpected values. Otherwise, incorrect code was generated.6.3 Annotation placementAnnotations are placed in the optimized program as follows. Using the mappings,Check=Register assign annotations are placed on every variable assignment in the opti-mized code and Check annotations are placed on every variable use in the optimized code.Next, at every instruction in the optimized code that stores to a register, Register assignannotations are placed, except at the program points where Check=Register assign anno-tations have been placed. At every instruction in the optimized code that loads a variableinto a register, Check=Load annotations are placed. At all other load instructions in theoptimized code, Load annotations are placed. Similarly, at every instruction in the opti-mized code that stores to a memory location of a variable, Check=Store annotations areplaced. At all other store instructions in the optimized code, Store annotations are placed.Finally, at every move instruction in the optimized code, Register move annotations areplaced.6.4 Register allocation checker exampleConsider the annotated unoptimized and optimized program segments in Fig-ure 6.4, which illustrate the same unoptimized and optimized code example given in Fig-ure 6.1. Breakpoints are indicated by circles. Annotations are shown in dotted boxes. Theoptimized program starts to execute with S10, and breakpoint 1 is reached. The checkerdetermines from the annotation that the value loaded into register r1 should be comparedwith the value of y in the unoptimized code at the equivalent program point in the un-optimized code. Thus, the unoptimized program executes until breakpoint 2 is reached,at which time the checker compares the value of y in the unoptimized program with thevalue of r1 in the optimized code. If the values are the same, the checker determines fromthe Load annotation that information regarding y and r1 should be tracked. The checker

84records that r1 now holds the value of y and that y is currently stored in r1. If y is storedin any other register, the checker records that y is evicted from these other registers. Also,if the loaded value is stale, the checker informs the user of the stale value and the locationof the expected value of the variable (if it exists).The optimized program continues execution and breakpoint 3 is reached. Thechecker processes the Load annotation by recording that the latest variable in r2 is nowevicted. The optimized and unoptimized programs continue executing in a similar manner.
4

10

12

1

3

6

7

8

5

9

11

13

2

2) z = x + 5

Load r2

Register move r1,r2

Load r1

Check/Store a,r5

Check/Load y,r1

Check y,r1
Check /Register assign x,r3

Check x,r1
Check/Register assign z,r4

Check y,r1
Check/Register assign a,r5

Unoptimized Code Optimized Code Annotations

...

...

S1’) load r1,y

S2’) load r2,2

S3’) mul r3,r1,r2

S4’) move r1,r2

S5’) load r1,5

S6’) add r4,r3,r1

S7’) add r5,r1,r1

S8’) store r5,a

1) x = 2 * y

3) a = y + y

Figure 6.4: Register allocation checker exampleNotice that when breakpoint 6 is reached, the checker processes the Register moveannotation and records that r2 holds the value of y and y is stored in r2. At breakpoint7, the checker processes the Load annotation and records that y is evicted from r1. Atbreakpoint 10, the checker processes the Check annotation by executing the unoptimizedprogram until breakpoint 11 is reached, at which time the value of y in the unoptimizedcode is compared with r1. The values di�er and the checker informs the user that y wasevicted from r1 and the expected value of y in the optimized code is in r2.

856.5 SummaryThe register allocation checker provides a �ner level of checking, which helps anoptimizer writer debug and validate an implementation of register allocation. This level ofchecking and tracking enables the checker to locate the earliest execution point where theunoptimized and optimized programs di�er in their semantic behavior and display to theuser the actual cause(s) of the di�erences. For example, the register allocation checker caninform the user when a stale value is used, a wrong register is used, and when a value isevicted from a register but not saved for future uses. The register allocation checker can beincorporated into the comparison checker or can be used as a standalone tool that is usedafter optimizations are applied.

Chapter 7Source Level DebuggerIn this chapter, the mappings described in Chapter 4 are utilized to develop asource level debugger of optimized code that extends the class of reportable expected valuesof previous work by reporting all expected values that are computed in the optimizedprogram. That is, every value of a source variable that is computed in the optimizedprogram execution is reportable at all breakpoints in the source code where the value ofthe variable should be reportable. Expected values at breakpoints are reportable eventhough reportability is a�ected because values have been overwritten early or written late.Expected values at breakpoints are also reportable even though values are path sensitivein that a value may be computed only along one path or the location of the value may bedi�erent along di�erent paths. The only values that are not reportable are those that aredeleted on a path by an optimization. However in these cases, the debugger reports thevalue has been deleted. This level of reporting is considered \full reporting" and thus thedebugger developed in this dissertation is called FULLDOC, a FULL reporting Debuggerof Optimized Code.The design of the source level debugger is more complex than that of the compar-ison checker for a number of reasons. The comparison checker uses expected values thatare computed in the unoptimized and optimized programs only at certain program pointsin order to perform comparison checks, but the debugger needs to be able to report ex-pected values that are computed at all breakpoints within their reportable ranges. Next,the comparison checker delays the comparison checking of those values computed in the un-optimized program whose corresponding values are computed later in the optimized code.For the case of the debugger, if a user queries a variable at a breakpoint whose expectedvalue is computed later in the optimized code, the debugger should not delay reporting theexpected value. Finally, the comparison checker utilizes all of the annotations to automatethe checking since all values computed in both programs are compared, but to minimize86

87the runtime overhead of the debugger, the debugger should only deal with reportability ofexpected values that are a�ected at current user breakpoints.FULLDOC extends the class of reportable expected values by judiciously usingboth static and dynamic information. The overall strategy is to determine, by static pro-gram analysis, those values that the optimizer has placed in a precarious position in thattheir values may not be reportable. The reportability of these values may depend on run-time and debugging information, including the placement of the breakpoints and the pathstaken in a program's execution. Thus, during execution, invisible breakpoints are employedto gather dynamic information that aids in the reporting of precariously placed values.Three schemes, all transparent to the user during a debugging session, are employed toenable full reporting. To report values that are overwritten early with respect to a break-point either because of code motion or register reuse, FULLDOC saves the values beforethey are overwritten and deletes them as soon as they are no longer needed for reporting.FULLDOC only saves the values if they are, indeed, the expected values at the breakpoint.To report values that are written late with respect to a breakpoint because of code sink-ing, FULLDOC prematurely executes the optimized program until it can report the value,saving the values overwritten by the roll ahead execution so that they can be reported atsubsequent breakpoints. When reportability of a variable at a breakpoint is dependent onthe execution path of the optimized code, FULLDOC dynamically records information toindicate the impact of the path on the reportability of a value, and thus is able to reportvalues that are path sensitive either because the computation of the value or the locationis dependent on the path.FULLDOC's technique is non-invasive in that the code that executes is the codethat the optimizer generated. Also, unlike the emulation technique [51], instructions arenot executed in a di�erent order and thus the problem of masking user and optimizer errorsis avoided.The capabilities of FULLDOC are as follows.� Every value of a source variable that is computed in the optimized program executionis reportable at all breakpoints in the source code where the value of the variableshould be reportable. Therefore, FULLDOC can report more expected values thatare computed in the optimized program execution than any existing technique [27, 21,14, 37, 19, 49, 9, 8, 10, 7, 22, 51, 45]. Values that are not computed in the optimizedprogram execution are the only values that are not reported. However, FULLDOCcan incorporate existing techniques that recover some of these values.

88� Runtime overhead is minimized by performing all analysis during compilation. FULL-DOC utilizes debugging information generated during compilation to determine theimpact of reportability of values at user breakpoints and to determine the invisiblebreakpoints that must be inserted to report a�ected values.� The techniques are transparent to the user. If a user inserts a breakpoint wherethe reportability of values is a�ected at the breakpoint or a potential breakpoint,FULLDOC automatically inserts invisible breakpoints to gather dynamic informationto report the expected values.� User breakpoints can be placed between any two source level statements, regardlessof the optimizations applied.� The optimized program is not modi�ed except for setting breakpoints.� Breakpoints in the source code are syntactically mapped in the optimized code.While a wide range of optimizations from simple code reordering transformationsto loop transformations are supported, this chapter focuses mainly on statement level op-timizations that hoist and sink code, including speculative code motion, path sensitiveoptimizations (e.g., partial redundancy elimination), and register allocation.The rest of this chapter is organized by Section 7.1 describing the challenges ofreporting expected values using examples. Section 7.2 describes FULLDOC's approach.Sections 7.3 and 7.4 describe the debug information as well as how the debug informationis computed and used. Section 7.5 describes how to extend FULLDOC to support looptransformations and inlining. Section 7.6 presents experimental results.7.1 Challenges of reporting expected valuesThe reportability of a variable's value involved in an optimization is a�ected by1. register reuse, code reordering, and code deletion,2. the execution path, including loop iterations, and3. the placement of breakpoints.This section considers the e�ect of optimizations that can cause a value of a variableto be overwritten early, written late, or deleted. Within each of these cases, the impact ofthe path and the placement of breakpoints is considered. This section also demonstrateshow FULLDOC handles these cases. In the �gures, the paths highlighted are the regionsin which reportability is a�ected. Reportability is not a�ected in the other regions.

897.1.1 Overwritten early in the optimized programA value val of a variable v is overwritten early in the optimized program if anothervalue val0 prematurely overwrites v's value. The application of a code hoisting optimizationand register reuse can cause values to be overwritten early. For example, consider theunoptimized program and its optimized version in Figure 7.1(a), where Xn refers to the nthde�nition of X. X2 has been speculatively hoisted, and as a result, the reportability of X isa�ected. Regardless of the execution path of the optimized code, a debugger cannot reportthe expected value of X at a breakpoint b along region 1jby simply displaying the actualcontents of X. The expected value of X at b is the value of X1, but since X2 is computedearly, causing the previous value (i.e., X1) to be overwritten early, the actual value of X atb is X2.
1

X =
3

2

1

3

X =
2

X =
2

X =
1

X =
3

1

3

2

X =
2

X =
1

X =
3

1

2

3
T F

X =

Program

(a) is speculatively hoisted

Unoptimized

T

 execution

FULLDOC’s debugging
 strategy

Report saved

Save previous
value of X

Discard saved

Report current

value of X

value of X

value of X

Optimized program

b) true path taken during execution

T F

Program
Optimized

X
2 Figure 7.1: Overwritten early exampleThe path can also a�ect reportability. Assume now that a breakpoint b is placedin region 2j. The expected value of X at b is either X2 , if the true path is taken, or X1 ,if only the false path is taken within each loop iteration. However, since X2 is computedbefore the branch, the actual value of X at b in the optimized code is X2. Thus, whenexecution follows the true path, the expected value of X at b can be reported, but whenonly the false path is taken, its value cannot be reported.The number of loop iterations can also a�ect reportability. The expected value ofX at a breakpoint b along region 3jdepends not only on whether the true path was takenbut also on the current loop iteration. During the �rst loop iteration, the expected valueis X1 . On subsequent loop iterations, the expected value is either X2 (if the true path istaken) or X1 (if only the false path is taken on prior loop iterations). However, since X2is computed before the loop, the actual value of X at b in the optimized code is X2. Whenexecution follows the true path, the debugger can report the expected value of X at b on

90subsequent loop iterations. Otherwise, the debugger cannot report the expected value ofX. Using only dynamic currency determination [22], the expected value of X at break-points along region 1j cannot be reported because the value has been overwritten. Theemulation technique [51] can report the expected value of X along region 1jand along thetrue path of region 3j, but since the technique is not path sensitive, the expected valuecannot be reported along region 2jand along the false path of region 3jdue to iterations.FULLDOC can report all of these expected values. During the execution of theoptimized code, if a value is overwritten early with respect to a breakpoint, FULLDOCsaves the value in a value pool. FULLDOC only saves what is necessary and discards valueswhen they are no longer needed for reporting. Figure 7.1(b) illustrates FULLDOC's strategywhen the optimized program in Figure 7.1(a) executes along the true path, assuming theloop executes one time. FULLDOC saves X1 before the assignment to X2 and reportsthe saved value X1 at breakpoints along regions 1j and 3j. FULLDOC discards thesaved value when execution reaches the original position of X2 . At breakpoints along thenon-highlighted path and region 2j, FULLDOC reports the current value of X. Noticethat values are saved only as long as they could have been observable at a breakpoint in thesource program, and thus, the save/discard mechanism automatically disambiguates whichvalue to report at breakpoints along region 2j. If X1 is currently saved at the breakpoint,then only the false path was executed and the saved value is reported. Otherwise if X1 isnot currently saved, then the true path was executed and the current value of X is reported.Notice that this saving strategy, as well as the other strategies, is performed with respectto user breakpoints. In other words, if a user does not insert breakpoints along the regionswhere the reportability of X is a�ected, then FULLDOC does not save the value of X.7.1.2 Written late in the optimized programA value val of a variable v is written late in the optimized program if the compu-tation of val is delayed due to, for example, code sinking and partial dead code elimination.In Figure 7.2(a), suppose X2 is partially dead along the false path and moved to the truebranch. As a result, the expected value of X at a breakpoint b along regions 1jand 2jisnot reportable in the optimized code.Consider a breakpoint b placed in region 3j. The expected value of X at b is X2 .However, the actual value of X at b in the optimized code is either X2 (if the true path istaken) or X1 (if the false path is taken). Thus, only when execution follows the true path,

91
2

X =

X =
1

1

X executes

executing the
Save values while

2
program until

Program
Unoptimized

X =
1

X =
1

X =
2

1 1

2 2

along path
is computed

Remember X

3

Report X

Report current
value of X

2

value of X
Report current

 strategy
FULLDOC’s debugging

3
X =
3

X =
3

X =
3

3 3

b) true path taken during execution(a) is partially deadX
2

T

execution
Optimized program

X =
2

T

= X

Program
Optimized

T

= X

FF

= X

Figure 7.2: Written late examplecan the expected value of X at b be reported. Reportability can also be a�ected by loopiterations, which has the same e�ect as for the overwritten early case.Using only dynamic currency determination [22], the expected value of X at break-points along region 3jcan be reported provided the true path is taken but not along regions1j and 2j. Since the emulation technique [51] is not path sensitive, the expected valueof X along region 3j cannot be reported. FULLDOC can report values in 1j and 3jprovided the true path is taken. Note that values in regions 1j, 2j, and 3jcould possiblybe reported by all schemes if recovery techniques are employed.If a requested value is written late with respect to a breakpoint, FULLDOCprematurely executes the optimized code, saving previously computed values before theyare overwritten (so that they can be reported at subsequent breakpoints). Figure 7.2(b)illustrates FULLDOC's strategy when the optimized program in Figure 7.2(a) executesalong the true path. At breakpoints along region 1k, FULLDOC reports the expected valueof X by further executing the optimized code, saving previously computed values beforethey are overwritten. The roll ahead execution stops once X2 executes. At breakpointsalong the non-highlighted path and region 3j, FULLDOC reports X2 .7.1.3 Computed in the unoptimized program but not in the optimizedprogramFinally, consider the case where a statement is deleted and thus its value is notcomputed in the optimized code. For example, in Figure 7.3(a), suppose Y 2 is dead in theunoptimized program and deleted. The expected value of Y at a breakpoint b along region1j is Y 2 , which cannot be reported in the optimized code.

92
3

Y =
2

Y =
3

Y =1 Y =1

Program
Unoptimized

Program
Optimized

Y =3

2
2

2

1

Y =
1

Optimized program
execution

FULLDOC’s debugging
 strategy

Y =

2
is not computed

Report current
value of Y

Report value of Y

Disregard Y’s

Remember Y

along path
is not computed

nonreportability
along path

F
value of Y
Report current

Y (a) is dead
2

b) false path taken during execution

FT FT

2
1 1

Figure 7.3: Not computed in the optimized program exampleNow consider placing a breakpoint at region 2j. The expected value of Y at balong region 2j is either Y 1 (if the true path is taken) or Y 2 (if the false path is taken).However, since Y 2 was deleted, the actual value of Y at b in the optimized code is Y 1 .Thus, along the true path, the actual value is the expected value and can be reported, butalong the false path, the expected value cannot be reported.The emulation technique [51] cannot report the expected value of Y along region 2jbecause it is not path sensitive. Dynamic currency determination [22] as well as FULLDOCcan report the expected value of Y at breakpoints along region 2jif the true path is taken.Figure 7.3(b) illustrates FULLDOC's strategy when the optimized program inFigure 7.3(a) executes along the false path. At a breakpoint along the non-highlightedpaths, FULLDOC reports the current value of Y . When execution reaches the originalposition of Y 2 , FULLDOC knows Y is not reportable along regions 1j and 2j, andreports the expected value of Y is not computed. When execution reaches Y 3 , FULLDOCdisregards the non-reportability information of Y .7.2 FULLDOC's approachFULLDOC uses three sources of debug information for its debugging capabilities.First, mappings between corresponding instances of statements in the unoptimized andoptimized programs, which are described in Chapter 4, are generated as optimizations areapplied. Second, after code is optimized and generated by the compiler, static analysis isapplied to gather information about the reportability of expected values. This reportabilitydebug information is used when user breakpoints are inserted, special program points arereached in the program execution, or when a user breakpoint is reached. Third, during

93
source
program

if reportability affected

Static information
mappings

reportability
debug info

FULLDOC

breakpoints
set corresponding

user inserts
breakpoints

optimized

execution
code

set invisible breakpoints

Figure 7.4: FULLDOC's strategy with respect to user inserting breakpointsexecution, dynamic debug information indicating that these special points have been reachedis used as well as the position of the user breakpoints to enable full reporting.Figure 7.4 illustrates FULLDOC's strategy with respect to a user inserting break-points. When the user inserts breakpoints either before the program executes or during pro-gram execution, FULLDOC uses the mappings to determine the corresponding breakpointsin the optimized code. FULLDOC uses the reportability debug information to determinethe impact on reportability at the breakpoints and potential breakpoints:� If a value is overwritten early with respect to a breakpoint, FULLDOC insertsinvisible breakpoints [52] to save the value during execution as long as the value should bereportable and discard the value when it is no longer needed.� If the reportability of a variable with respect to a breakpoint is path sensitive,FULLDOC inserts invisible breakpoints to update the dynamic debug information regardingthe reportability of the value.Figure 7.5 illustrates FULLDOC's strategy when either a user or invisible break-point is reached. If a user breakpoint is reached, FULLDOC informs the user. Wheninvisible breakpoints are reached, FULLDOC performs the following actions. For a valuethat is overwritten early, FULLDOC saves the value in a value pool and later discards thevalue when it is no longer needed for reporting. For a value that is path sensitive, FULL-DOC updates the path sensitive info regarding the reportability of the value depending onthe execution path taken.Figure 7.6 illustrates FULLDOC's strategy with respect to user queries at a userbreakpoint. FULLDOC responds to user queries by using both static and dynamic infor-mation. When the user requests the value of a variable, FULLDOC uses the reportabilitydebug information and dynamic debug information to determine the reportability of thevalue. If the value is available at the location (in memory or register) of the variable or

94in the value pool, FULLDOC reports the value. If the reportability of the value is pathsensitive at the breakpoint, FULLDOC uses the path sensitive information to determinewhether the value is reportable at the breakpoint. If the requested value is written latewith respect to the breakpoint, FULLDOC uses the reportability debug information to rollahead the execution of the optimized code, saving previously computed values before theyare overwritten. It stops execution once the value is computed and reports the value to theuser if it is computed. If the value is not computed in the execution, FULLDOC informsthe user that the value is not reportable.
optimized

execution
code

source
program

invisible breakpoint

FULLDOC
when

breakpoint hit

value pool
Dynamic information

rollahead info
path sensitive info

mappings
reportability
debug info

Static information

user breakpoint

Figure 7.5: FULLDOC's strategy with respect to breakpoints hit
optimized

execution
codeinvisible breakpoint

FULLDOC

value pool
Dynamic information

rollahead info
path sensitive info

mappings
reportability
debug info

Static information

memory

when user
queries

program
source

Figure 7.6: FULLDOC's strategy with respect to user queries

957.3 Reportability debug informationThis section describes the reportability debug information computed through staticanalysis of the optimized code that is provided to FULLDOC as well as how FULLDOCemploys this information at runtime and how it collects dynamic debug information inresponse to the user setting breakpoints and requesting values of variables at these break-points. The debug information is organized by tables, which are shown in Figure 7.7. Table1 contains the debug information for the expected values of variables that are always re-portable. Tables 2-3 contain the debug information for reporting the values of variables thatare overwritten or may have been overwritten early. Tables 4-9 contain the debug informa-tion for reporting the values of variables that are written or may have been overwritten late.Tables 10-13 contain the debug information for determining the values of variables that arenot computed in the execution of the optimized code. The rest of this section describes thetables in detail.
3 SaveDiscardPoints[]

Table Information

1 AvailAtBkpts[]

Table Information

Overwritten Early in the
optimized code Variable always reportable

Computed in the unoptimized code
 but not in the optimized code optimized code

Written Late in the

Table Information Table Information

11 MaybeDelAtBkpts[]
12 EndDelPoints[]

13 PotFutBkptsDel[]

10 NotRepDelAtBkpts[]4 LateAtBkpts[]
5 StopPoints[]
6 NotRepLateAtBkpts[]
7 MaybeLateAtBkpts[]
8 EndLatePoints[]
9 PotFutBkptsLate[]

2 EarlyAtBkpts[]

Figure 7.7: Debug information7.3.1 Simply reportableThe AvailAtBkpts table indicates the program ranges in the optimized code wherethe expected values of source variables are always available for reporting.AvailAtBkpts[b,v] = flocg or f(def1,loc1), (def2,loc2), ...gIf the value of variable v is always reportable at breakpoint b, then AvailAt-Bkpts[b,v] provides the location (memory location or register name) where the value of v

96can be found. In case the value can always be found at the same location, no matter whatexecution path is taken, loc provides the location.However, it is possible that the location of v depends on the path taken duringexecution because b is reachable by multiple de�nitions of v, each of which stores the valueof v in a di�erent location (e.g., a di�erent register). In this case, the execution path takendetermines the latest de�nition of v that is encountered and hence the location where thevalue of v can be found. Each of the potential de�nition-location pairs, (defi,loci), areprovided by AvailAtBkpts[b,v] in this case. When a breakpoint is set at b, the debuggeractivates the recording of the de�nition of v that is encountered from among (def1, def2,...) by inserting invisible breakpoints at each of these points. When an invisible breakpointis hit during execution, the debugger records the latest de�nition encountered by overwritingthe previously recorded de�nition.7.3.2 Overwritten earlyThe EarlyAtBkpts table indicates the program ranges in the optimized code whereexpected values of source variables are not available because such values may have beenoverwritten early.EarlyAtBkpts[b] = fes: es overwrites early w.r.t. breakpoint bgSaveDiscardPoints[es] = (save, fdiscard1, discard2, ...g)For FULLDOC to report such values at the e�ected program ranges, the EarlyAt-Bkpts and SaveDiscardPoints tables are used as follows. If the user sets a breakpoint at b,then for each statement es that overwrites early in EarlyAtBkpts[b], the save and discardpoints in SaveDiscardPoints[es] are activated by inserting invisible breakpoints. Thisensures that the values of variables overwritten early with respect to breakpoint b will besaved and available for reporting at b from the value pool in case they are requested bythe user. Note that the save and discard points must be activated immediately when abreakpoint is set by the user so that all values that may be requested by the user, whenthe breakpoint is hit, are saved. If a discard point is reached along a path and nothing iscurrently saved because a save point was not reached along the same path, the debuggersimply ignores the discard point.The example in Figure 7.8 (also illustrated in Figure 7.1 of Section 7.1) where Xis overwritten early is handled by this case. The highlighted regions are the regions wherereportability of X is a�ected. At breakpoints along region 1j, the reportability of Xis a�ected, regardless of the execution path taken. At breakpoints along region 2j, the

97
1

X =
3

1

3

2

X =
2

X =
1

1

2

3
X =
2

X =

point

T F

Program
Unoptimized

3
X =

T F

Program
Optimized

save
point

discard
point

discard

Figure 7.8: Overwritten early example
2 31 X =

2

3
X =

X =
2

X =
2

EarlyAtBkpts[]

X =
2

id of

...B
re

ak
po

in
ts

SaveDiscardPoints[]

Save:
current position of
Discard:

original position of
original position of

id of

St
at

em
en

t i
ds

Figure 7.9: EarlyAtBkpts and SaveDiscardPoints reportability debug information for over-written early example in Figure 7.8reportability of X is path sensitive. At breakpoints along region 3j, the reportability ofX is path sensitive and depends on the current loop iteration. These three cases where thereportability of X is a�ected are handled by the EarlyAtBkpts and SaveDiscardPointstables. The save and discard points are illustrated in Figure 7.8 and the EarlyAtBkpts andSaveDiscardPoints tables are displayed in Figure 7.9.7.3.3 Written lateThe LateAtBkpts table indicates the program ranges in the optimized code whereexpected values of source variables are not available because such values may be overwrittenlate and may still execute.LateAtBkpts[b] = fls: ls writes late w.r.t. breakpoint bgStopPoints[ls] = fstop1, stop2, ...gFor FULLDOC to report such values at the e�ected program ranges, the LateAt-Bkpts and StopPoints tables are used as follows. Assume the user sets a breakpoint at b.Then for each statement ls 2 LateAtBkpts[b], FULLDOC must �rst determine if ls iswritten late with respect to the next instance of the breakpoint b. If the original positionof ls is reached during execution but the current position of ls is not reached (before the

98breakpoint b is hit), then ls is written late. This information is determined as follows.For each statement ls that is written late, FULLDOC inserts invisible breakpoints at theoriginal and current positions of ls and records if the original position of ls is encounteredduring execution. When the current position of ls is reached during execution, the recordedinformation is discarded. Now, suppose execution reaches b, and the user requests the valueof a variable v such that v is written late by a statement ls in LateAtBkpts[b]. If theoriginal position of ls is currently recorded, then v is late at the current instance of thebreakpoint b and the execution of the program rolls ahead until one of the stop pointsin StopPoints[ls] is encountered. At a stop point, either the value of v has just beencomputed or it is known that it will de�nitely not be computed (recall that sinking ofpartially dead code can cause such situations to arise). Unlike the overwritten early casewhere the save and discard points were activated when a breakpoint was set, here the stoppoints are activated when the breakpoint is hit and a request for a value that is written lateis made. The example in Figure 7.10 (also illustrated in Figure 7.2 of Section 7.1), wherethe reportability of X along region 1j is a�ected is handled by this case. The stop pointsare illustrated in Figure 7.10 and the LateAtBkpts and StopPoints tables are displayed inFigure 7.11.
X =
1

X =
2

1

X =
3

3

2

Program
Unoptimized

X =
1

1

2

3
X =
3

4 4

Program
Optimized

T F

stop
point

X =
2

T F

point
stop

= X= XFigure 7.10: Overwritten late example

99
X =
2

X =
2

B
re

ak
po

in
ts

1

X =
2

id of

...

StopPoints[]

St
at

em
en

t i
ds

LateAtBkpts[]

current position of
beginning of false path

id of

Figure 7.11: LateAtBkpts and StopPoints reportability debug information for overwrittenlate example in Figure 7.107.3.4 Never reportable because deleted along a pathWhen (partial) dead code removal is performed, the value of a variable de�ned bythe deleted statement becomes unreportable. For each breakpoint b, the variables whosevalues are never reportable at b, no matter what execution path is taken, are recorded inNotRepDelAtBkpts[b] and NotRepLateAtBkpts[b], for statements removed from paths bydead code elimination and partial dead code elimination, respectively.NotRepDelAtBkpts[b] = fv: v is never reportable at b (deleted)gNotRepLateAtBkpts[b] = fv: v is never reportable at b (late)gWhen the user requests the value of a variable v at breakpoint b, if v is inNotRepDelAtBkpts[b] or NotRepLateAtBkpts[b], FULLDOC reports to the user that thevalue is not reportable because the statement that computes it has been deleted along theexecution path.The example in Figure 7.12 (also illustrated in Figure 7.3 of Section 7.1), where thereportability of Y is a�ected along region 1j, is handled by this case. The NotRepDelAt-Bkpts table is displayed in Figure 7.13. Also, the example in Figure 7.10, where the reporta-bility of X is a�ected along region 2j is handled by this case. The NotRepLateAtBkptstable is displayed in Figure 7.14.

100

Y =
3

Y =
2

Y =
3

Y =1 Y =1

Program
Unoptimized

Program
Optimized

FT FT

2
1 1

2Figure 7.12: Dead code elimination example
Yid of

...

NotRepDelAtBkpts[]

B
re

ak
po

in
ts

1

Figure 7.13: NotRepDelAtBkpts reportability debug information for the example in Figure7.12
Xid of

...

NotRepLateAtBkpts[]

B
re

ak
po

in
ts

2

Figure 7.14: NotRepLateAtBkpts reportability debug information for the example in Figure7.10

1017.3.5 Path sensitive nonreportability/reportability when deletedA value may be deleted on one path, in which case it is not reportable, and notdeleted on another path, in which case it is reportable. In this path sensitive case, thereportability information must be updated during execution, based on the paths that areactually executed (i.e., program points reached).MaybeDelAtBkpts[b] = fds: ds may be deleted w.r.t. breakpoint bgEndDelPoints[ds] = fEndDel1, EndDel2, ...gPotFutBkptsDel[b] = fds: ds may be deleted at later breakpointsgIf a user sets a breakpoint at b, invisible breakpoints are set at each of the originalpositions of any deleted statement ds in MaybeDelAtBkpts[b] to record if one of thesepositions is encountered during execution. Invisible breakpoints are also set at the end of thede�nition range of ds, stored in EndDelPoints[ds]. When EndDeli in EndDelPoints[ds]is reached during execution, the recorded information is discarded. Now consider the casewhen breakpoint b is reached, and the user requests the value of variable v de�ned by somestatement ds in MaybeDelAtBkpts[b]. If the dynamically recorded information shows thatthe original position of ds was encountered, the debugger reports that the value of v wasnot computed as ds was deleted. Otherwise the debugger reports the current value of v.The example in Figure 7.12, where the reportability of Y along region 2jis path sensitive,is handled by this case. The MaybeDelAtBkpts and EndDelPoints tables are displayed inFigure 7.15.
original position of

3
Y =2

Y =2

Y =
2

id of

...B
re

ak
po

in
ts

2

EndDelPoints[]

St
at

em
en

t i
ds

id of
MaybeDelAtBkpts[]

Y =
2

id of

...

1

B
re

ak
po

in
ts

PotFutBkptsDel[]

Figure 7.15: MaybeDelAtBkpts, EndDelPoints, and PotFutBkptsDel reportability debuginformation for example in Figure 7.12The same strategy is used for each deleted statement in PotFutBkptsDel[b],which prevents FULLDOC from setting invisible breakpoints too late. PotFutBkptsDel[b]holds the deleted statements where reportability could be a�ected at potential breakpointseven though reportability is not necessarily a�ected at b. Invisible breakpoints must nowbe set so that during the execution to breakpoint b, FULLDOC gathers the appropriate

102dynamic information for the potential breakpoints. The PotFutBkptsDel table for theexample in Figure 7.12 is displayed in Figure 7.15.7.3.6 Path sensitive nonreportability/reportability when written lateSinking code can also involve path sensitive reporting, because a statement maybe sunk on one path and not another. This case is the opposite to the previous one in thatif a late statement is encountered, it is reportable.MaybeLateAtBkpts[b] = fls: ls may be late w.r.t. breakpoint bgEndLatePoints[ls] = fEndLate1, EndLate2, ...gPotFutBkptsLate[b] = fls: ls may be late at later breakpointsgIf the user sets a breakpoint at b, the debugger initiates the recording of the latestatements in MaybeLateAtBkpts[b] by setting invisible breakpoints at the original and newpositions of the late statements. The debugger will discard the recorded information of a latestatement ls when a EndLatei in EndLatePoints[ls] is encountered (EndLatePoints[ls]holds the end of the de�nition range of ls). Now consider the case when breakpoint bis reached, and the user requests the value of variable v de�ned by some statement lsin MaybeLateAtBkpts[b]. If the dynamically recorded information shows that the latestatement ls was encountered, the debugger reports the current value of v. Otherwise ifonly the original position of the late statement was encountered, the debugger reports thatthe value of v is not reportable. The example in Figure 7.10, where the reportability ofX along region 3j is path sensitive, is handled by this case. The MaybeLateAtBkpts andEndLatePoints tables are displayed in Figure 7.16.The same strategy applies for each late statement ds in PotFutBkptsLate[b],which prevents FULLDOC from setting invisible breakpoints too late. The PotFutBkpts-Late table for the example in Figure 7.10 is displayed in Figure 7.16.
2

X =
2

id of

...

EndLatePoints[]

St
at

em
en

t i
ds

id of
MaybeLateAtBkpts[]

B
re

ak
po

in
ts

X =
2

id of

...B
re

ak
po

in
ts

3 original position of
3

X =2
X = 1 43

PotFutBkptsLate[]

Figure 7.16: MaybeLateAtBkpts, EndLatePoints, and PotFutBkptsLate reportability debuginformation for example in Figure 7.10

1037.4 Computing the reportability debug informationMappings are used to compute the reportability debug information. The algorithmin Figure 7.17 gives an overview of how this debug information is computed. Lines 2 � 6determine what values are overwritten early and compute the SaveDiscardPoints[] andEarlyAtBkpts[] information. Lines 7 � 10 determine what values are written late andcompute the StopPoints[] and LateAtBkpts[]. Lines 11-13 determine the rest of thedebug information by using data
ow analysis. More details about the particular stepsfollow. 1 For each source de�nition Dv2 If Dv overwrites x early then3 Let discard1, discard2, ... = the corresponding positions of originalde�nitions of x that are reachable from ARHead(Dv) in the optimized code4 SaveDiscardPoints [Dv] = (ARHead(Dv); fdiscard1, discard2,...g)5 For each breakpoint B along a path from Dv to discard1, discard2,...,6 EarlyAtBkpts[B] = EarlyAtBkpts[B] [f Dv g7 Else If Dv writes late in the optimized code then8 StopPoints [Dv] = fARHead(Dv)g [fp : p is an earliest possible programpoint along paths from ORHead(Dv) where Dv will not executeg9 For each breakpoint B along paths ORHead(Dv) to p 2 StopPoints [Dv] and/orthe corresponding positions of original de�nitions of x that are reachablefrom ORHead(Dv) in the optimized code,10 LateAtBkpts[B] = LateAtBkpts[B] [f Dv g11 Compute AvailAtBkpts[,], NotRepDelAtBkpts[], and NotRepLateAtBkpts[]by comparing ranges using ORHead(Dv) and ARHead(Dv)12 Compute MaybeDelAtBkpts[] and MaybeLateAtBkpts[] by determining whendeleted and late statements occur on one path and not another13 Compute EndDelPoints[], EndLatePoints[], PotFutBkptsDel[], andPotFutBkptsLate[] by using reachabilityFigure 7.17: Algorithm to compute the reportability debug information7.4.1 Determining statements that overwrite early or write late.To determine where values are overwritten early due to register reuse, suppose Dxis a de�nition of a variable x and the location of x is in register r in the optimized code. IfDx reaches an assignment to r in which r is reassigned to another variable or temporary,then x is overwritten early at the reassignment.To determine where values of variables are overwritten early due to code hoist-ing optimizations, the original positions of the de�nitions and their actual positions inthe optimized program are compared in Gopt. Let ARHead(Dv) denote the actual po-sition of a de�nition Dv and let ORHead(Dv) denote the corresponding original posi-tion of Dv . The existence of a path P from ARHead(Dv) to ORHead(Dv) such that

104P does not include backedges of loops enclosing both ARHead(Dv) and ORHead(Dv)is determined. The backedge restriction on P ensures that only the positions of thesame instance of Dv before and after optimization are considered. This restricted no-tion of a path is captured by the SimplePath predicate as given by De�nition 5.1. IfSimplePath(ARHead(Dv); ORHead(Dv)) is true and the location of v at the programpoint before ARHead(Dv) is the same location that is used to hold the value of Dv,then v is overwritten early at Dv in the optimized code. For example, in Figure 7.8,SimplePath(ARHead(X2); ORHead(X2)) is true, and thus, X is overwritten early atX2 . To determine where values of variables are written late in the optimized program,the original positions of the de�nitions and their actual positions in the optimized programare similarly compared using Gopt. That is, for a de�nition Dv, the existence of a pathP from ORHead(Dv) to ARHead(Dv) such that P does not include backedges enclosingboth points is determined. Thus, if SimplePath(ORHead(Dv); ARHead(Dv)) is true, thende�nitionDv is written late in the optimized code. For example, in Figure 7.10, X is writtenlate at X2 because SimplePath(ORHead(X2); ARHead(X2)) is true.7.4.2 Computing SaveDiscardPoints[] and EarlyAtBkpts[].If a value of x is overwritten early at Dv in the optimized code, then a save pointis associated at the position of Dv in the optimized code, and discard points are associatedat the corresponding positions of original de�nitions of x that are reachable from Dv in theoptimized code. Reachable original de�nitions, which is similar to the reachable de�nitionsproblem, is determined by solving the following data
ow equation:ReachableOrigDefs(B) = [N2succ(B) Genrod(N) [(ReachableOrigDefs(N)�Killrod(N))where Genrod(B) = fDv : ORHead(DV) = Bg andKillrod(B) = fDv : ORHead(D0v) = B ^D0v is a de�nition of vg.For example, in Figure 7.8, the original de�nitions reachable from X2 in the optimizedcode are X2 and X3 because ReachableOrigDefs(ARHead(X2)) = fX2 ;X3 g. There-fore, for X2 , a save point is associated at ARHead(X2), discard points are associated atORHead(X2) and ORHead(X3), and SaveDiscardPoints[X2] = (ARHead(X2); fOR-Head(X2); ORHead(X3)g).After the save and discard points of Dv are computed, the breakpoints wherereportability is a�ected by Dv are determined. Dv 2 EarlyAtBkpts[b] if b lies along paths

105from save to corresponding discard points of Dv. EarlyAtBkpts[] is easily computed bysolving the following data
ow equation on Gopt:EarlyAt(B) = [N2pred(B) Genea(N) [(EarlyAt(N)�Killea(N))where Genea(B) = fDv : Dv overwrites early and a save point of Dv is at Bg andKillea(B) = fDv : Dv overwrites early and a discard point of Dv is at Bg.Then Dv 2 EarlyAtBkpts[B] if Dv 2 EarlyAt(B). For example, in Figure 7.8, for abreakpoint b along regions 1j, 2j, and 3j, EarlyAtBkpts[b] = fX2 g.7.4.3 Computing StopPoints[] and LateAtBkpts[].For a de�nition Dv of a variable x that is written late, StopPoints [Dv] are theearliest points at which execution can stop because either (1) the late value is computed or(2) a point is reached such that it is known the value will not be computed in the execution.A stop point of Dv is associated at the ARHead(Dv). Stop points are also associated withthe earliest points along paths from ORHead(Dv) where the appropriate instance of Dvdoes not execute. That is, p 2 StopPoint(Dv) ifp = ARHead(Dv) _ (7.1)(Dv 62 ReachableLate(p) ^ (7.2)6 9 p0(SimplePath(p0; p) ^ p0 2 StopPoint(Dv))): (7.3)Condition 1 ensures a stop point is placed at Dv. Condition 2 ensures the rest of thestop points are not placed at program points where the appropriate instance of the latestatement would execute. Condition 3 ensures stop points are placed at the earliest points.ReachableLate(p) is the set of statements written late that are reachable at p. Reachable-Late() is easily computed by solving the following data
ow equation on Gopt:ReachableLate(B) = [N2succ(B) Genrl(N) [(ReachableLate(N) �Killrl(N))where Genrl(B) = fDv : ARHead(Dv) = Bg andKillrl(B) = fDv : ORHead(Dv) = Bg.Consider the example in Figure 7.10. StopPoints [X2] = fARHead(X2); program pointat the beginning of the false pathg. Notice that condition 2 ensures that a stop point is notplaced along region 1j.

106
Unoptimized

X =
1

X =
2

Program
Optimized

1

2

X =

Program

1

Stop point for

2
X =

X =
2

X =
1

Stop point for Figure 7.18: Overwritten late exampleAfter the stop points of Dv are computed, the breakpoints where reportability isa�ected by Dv (because Dv may be overwritten late and may still execute) are determined.Dv 2 LateAtBkpts[b] if b lies along paths from ORHead(Dv) to the stop points of Dv andthe corresponding positions of original de�nitions of x that are reachable from Dv in theoptimized code, except for the paths between the stop points and the positions of originalde�nitions of x. The paths between the stop points and the positions of original de�nitions ofx are excluded because it is possible that de�nitionDv is sunk past the position of an originalde�nition of x and thus Dv should not be considered late with respect to breakpoints alongsuch paths. For example, in Figure 7.18, although the stop point of X1 is at ARHead(X1),LateAtBkpts[b] = fX1 g for a breakpoint b along region 1jand LateAtBkpts[b] = fX2 gfor a breakpoint b along region 2j.LateAtBkpts[b] is easily computed by solving the following data
ow equationon Gopt: LateAt(B) = [N2pred(B) Genla(N) [(LateAt(N)�Killla(N))where Genla(B) = fDv : ORHead(DV) = Bg andKillla(B) = fDv : B 2 StopPoints(Dv) _(ORHead(D0v) = B ^ D0v is a de�nition of v)g.Then Dv 2 LateAtBkpts[B] if Dv 2 LateAt(B). For example, in Figure 7.10, for a break-point b along region 1j, LateAtBkpts[b] = fX2 g.7.4.4 Computing AvailAtBkpts[,].The mappings are used to construct program ranges of a variable's value whichcorrespond to the unoptimized code (real range) and the optimized code (actual range).By comparing the two ranges, the program ranges in the optimized code corresponding to

107regions where the value of the variable is always available for reporting are identi�ed. Ifbreakpoint B is in this program range for a variable v then AvailAtBkpts[B,v] is com-puted by performing data
ow analysis to propagate the locations (memory and registers)of variables within these program ranges.7.4.5 Computing NotRepDelAtBkpts[] and NotRepLateAtBkpts[].To determine the values of variables that are not reportable along a breakpointbecause of the application of dead code elimination, the deleted statements are propagatedwhere reportability is a�ected (regardless of the execution path taken) through the opti-mized control
ow graph Gopt by solving the data
ow equation:NonRepDel(B) = \N2pred(B) Gennrd(N) [(NonRepDel(N)�Killnrd(N))where Gennrd(B) = fDv : ORHead(Dv) = B ^Dv is deletedg andKillnrd(B) = fDv : ORHead(D0v) = B ^D0v is a de�nition of vg.Then for each breakpoint B, v 2 NotRepDelAtBkpts[B] if 9 Dv such that Dv 2 NonRep-Del(B). For example, in Figure 7.12, for a breakpoint B along region 1j, Y 2 NotRepDelAt-Bkpts[B].NotRepLateAtBkpts[] is similarly computed by solving the following data
owequation on Gopt:NonRepLate(B) = \N2pred(B) Gennrl(N) [(NonRepLate(N)�Killnrl(N))where Gennrl(B) = fDv : ORHead(Dv) = B ^Dv is overwritten lateg andKillnrl(B) = fDv : ORHead(D0v) = B ^D0v is a de�nition of vg.Then for each breakpoint B, v 2 NotRepLateAtBkpts[B] if 9 Dv such that Dv 2 NonRep-Late(B) and Dv 62 LateAtBkpts(B). For example, in Figure 7.10, for a breakpoint Balong region 2j, X 2 NotRepLateAtBkpts[B] because X2 2 NonRepLate(B) and X2 62LateAtBkpts(B).7.4.6 Computing MaybeDelAtBkpts[] and MaybeLateAtBkpts[].To determine the values of variables that may not be reportable along a path whendeleted, the data
ow equation on Gopt is �rst computed:

108
MaybeDel(B) = [N2pred(B) Genmd(N) [(MaybeDel(N)�Killmd(N))where Genmd(B) = fDv : ORHead(Dv) = B ^Dv is deletedg andKillmd(B) = fDv : ORHead(D0v) = B ^D0v is a de�nition of vg.Then Dv 2 MaybeDelAtBkpts[B] if 9 Dv such that Dv 2 MaybeDel(B) ^Dv 62 NonRep-Del(B). For example, in Figure 7.12, for a breakpoint B along region 2j, Y 2 2 MaybeDel-AtBkpts[B] because Y 2 2MaybeDel(B) ^ Y 2 62 NonRepDel(B).MaybeLateAtBkpts[] is similarly computed by solving the following data
owequation on Gopt:MaybeLate(B) = [N2pred(B) Genml(N) [(MaybeLate(N)�Killml(N))where Genml(B) = fDv : ORHead(Dv) = B ^Dv is overwritten lateg andKillml(B) = fDv : ORHead(D0v) = B ^D0v is a de�nition of vg.Then Dv 2 MaybeLateAtBkpts[B] if 9 Dv such that Dv 2MaybeLate(B)^Dv 62 NonRep-Late(B) ^Dv 62 LateAtBkpts(B). For example, in Figure 7.10, for a breakpoint B alongregion 3j, X 2 MaybeLateAtBkpts[B].7.4.7 Computing EndDelPoints[] and EndLatePoints[].For each variable v of a deleted statement ds 2 MaybeDelAtBkpts[], EndDel-Points[ds] are the corresponding positions of original de�nitions of v that are reachablefrom ORHead(ds) in Gopt. For example, in Figure 7.12, EndDelPoints[Y] = the originalposition of Y 3 , which is ORHead(Y 3). Similarly, for a variable v of a late statement ls2 MaybeLateAtBkpts[], EndLatePoints[ls] are the corresponding positions of originalde�nitions of v that are reachable from ORHead(ls).7.4.8 Computing PotFutBkptsDel[] and PotFutBkptsLate[].For each deleted statement Dv in MaybeDelAtBkpts[], Dv 2 PotFutBkptsDel[b]if b lies along paths from the ORHead(Dv) to the corresponding positions of original de�ni-tions of v that are reachable from ORHead(Dv) in the optimized code. PotFutBkptsDel[]is easily computed by solving the following data
ow equation on Gopt:

109
PotBkptsDel(B) = [N2pred(B) Genpbd(N) [(PotBkptsDel(N)�Killpbd(N))where Genpbd(B) = fDv : ORHead(Dv) = B ^Dv is deletedg andKillpbd(B) = fDv : ORHead(D0v) = B ^D0v is a de�nition of vg.Then Dv 2 PotFutBkptsDel[B] if Dv 2 PotBkptsDel(N). For example, in Figure 7.12,for a breakpoint B along regions 1jand 2j, Y 2 2 PotFutBkptsDel(B).PotFutBkptsLate[] is similarly computed. For each statement Dv that is over-written late in MaybeLateAtBkpts[], Dv 2 PotFutBkptsLate[b] if b lies along paths fromthe ORHead(Dv) to the corresponding positions of original de�nitions of v that are reach-able from ORHead(Dv) in the optimized code. PotFutBkptsLate[] is easily computed bysolving the following data
ow equation on Gopt:PotBkptsLate(B) = [N2pred(B) Genpbl(N) [(PotBkptsLate(N)�Killpbl(N))where Genpbl(B) = fDv : ORHead(Dv) = B ^Dv is overwritten lateg andKillpbl(B) = fDv : ORHead(D0v) = B ^D0v is a de�nition of vg.Then Dv 2 PotFutBkptsLate[B] if Dv 2 PotBkptsLate(N). For example, in Figure 7.10,for a breakpoint B along regions 1j, 2j, 3j, and 4j, X2 ;2 PotFutBkptsLate(B).7.5 Supporting loop transformations and inliningWith loop transformations and inlining, loops that are transformed and functionsthat are inlined are prematurely executed. That is, the debugger rolls ahead the executionof the optimized program. The statement instances that are prematurely executed aresaved in the order of their corresponding instances in the unoptimized program. The valuesoverwritten by the roll ahead execution are also saved so that they can be reported atsubsequent breakpoints. The reportability debug information is extended to indicate the(1) program ranges in the optimized code where loops have been transformed or functionshave been inlined, (2) start and stop points of execution for the roll forwarding, and (3)program ranges of expected values of variables that are not reportable because they are notcomputed in the transformed loop or the inlined code (but should be with respect to theunoptimized program). For example, in Figure 7.19, the loop in the optimized code hasbeen reversed. Suppose a breakpoint is placed by a user at the beginning of the loop in

110the unoptimized code and at each instance of the breakpoint, the user requests the value ofj. The debugger will roll forward the execution of the optimized program until the entireloop executes. As values of source variables are computed, the debugger saves the valuesin the order they would be computed in the unoptimized code. Then the debugger returnscontrol to the user. At each instance of breakpoint 1, the debugger reports to the user theexpected value of j. At breakpoint 2, the debugger reports that the expected of value of j(i.e., 11) is not computed in the optimized program execution.
 a[j] = jS4 a[j] = j

}

S2’ j > 0;

S1’ for(j=10;

 Optimized Code
FULLDOC’s debugging

S4’

strategy

breakpoints, display expected

Save and reorder values
of source variables while
executing the program
until the loop executes.

values if they are computed

S3’ j = j - 1) {

S1 for(j=1;

S2 j < 11;

S3 j = j + 1) {

}

 Unoptimized Code

Breakpoint 1

Breakpoint 2 For each instance of the Figure 7.19: Loop reversal example7.6 Implementation and experimentsFULLDOC was implemented by �rst extending lcc [23], a compiler for C pro-grams, with a set of optimizations, including (coloring) register allocation, loop invariantcode motion, dead code elimination, partial dead code elimination, partial redundancy elim-ination, copy propagation, and constant propagation and folding. Lcc was also extended toperform the analyses needed to provide the debug information to FULLDOC, given in theprevious section. FULLDOC was then implemented, using the debug information generatedby lcc, and fast breakpoints [32] for the implementation of invisible breakpoints.Experiments were performed to measure the improvement in the reportability ofexpected values for a suite of programs, namely YACC and some SPEC95 benchmarks.For the purpose of evaluation, a user breakpoint was placed at every source statement,and the improvement in reportability of FULLDOC over a technique that uses only staticinformation was determined. Also, for each breakpoint, the reasons why reportability isa�ected is reported, and thus the improvement of FULLDOC's technique over techniquesthat cannot report overwritten values or path sensitive values can be compared.

111Table 7.1 shows for each benchmark, the percentage of values that could not bereported by (1) using only statically computed information and (2) FULLDOC. The �rstrow gives the percentages of values that were deleted along all paths, and are thus notreportable in FULLDOC (as noted, FULLDOC could recover some of these values, as otherdebuggers can [27]). The next two rows give the percentages of values whose reportabilityis a�ected because they are overwritten early, either because of code hoisting (row 2) or aregister being overwritten early (row 3). If a debugger does not include some mechanismfor "saving" values overwritten early, it would not be able to report these values. Thenext three rows give the percentages of values whose reportability is a�ected because thestatements that computed the values were a�ected by partial dead code elimination. Row4 indicates the percentages of values that are not reportable along paths before the sunkvalues. Row 5 indicates the percentages of values that are not reportable along paths wherethe sunk values are never computed. Row 6 indicates the percentages of values that are notreportable along paths because the reportability of the values sunk is path sensitive. If adebugger does not include some mechanism to \roll ahead" the execution of the optimizedprogram, it would not be able to report these values. The next two rows give the resultswhen reportability is a�ected by path sensitive information. The seventh row gives thepercentages that were not reportable for path sensitive deletes. In this case, the valuesmay have been deleted on paths that were executed. The eighth row gives the results whenthe location of a value is path sensitive. A technique that does not include path sensitiveinformation would fail to report these values. The last row gives the total percentages thatcould not be reported. On average, FULLDOC cannot report 8% of the local variables ata source breakpoint while a debugger using only static information cannot report 30%.Table 7.1: Percentage of local variables per breakpoint that are not reportableProblems yacc compress go m88ksim ijpegstatic FULL static FULL static FULL static FULL static FULLinfo DOC info DOC info DOC info DOC info DOCdeleted-all paths 0.96 0.96 15.03 15.03 0.75 0.75 1.87 1.87 10.42 10.42code hoisting 0.19 0.00 0.34 0.00 0.30 0.00 0.14 0.00 4.15 0.00reg overwrite 42.65 0.00 17.24 0.00 9.44 0.00 1.83 0.00 15.87 0.00code sinking (rf) 0.19 0.00 0.64 0.09 1.40 0.39 0.57 0.07 1.79 0.09del on path 0.00 0.00 0.02 0.02 0.10 0.10 0.06 0.06 0.28 0.28path sens late 0.00 0.00 0.18 0.09 0.51 0.18 0.41 0.37 0.58 0.39path sens delete 8.27 6.07 0.18 0.00 2.25 0.74 0.00 0.00 2.36 1.20path sens location 3.95 0.00 0.07 0.00 1.14 0.00 0.32 0.00 1.43 0.00total 56.21 7.03 33.70 15.23 15.89 2.16 5.20 2.37 36.88 12.38

112Figure 7.20 shows for each benchmark, the percentage of values that could not bereported by (1) using only statically computed information, (2) the timestamping technique,(3) the emulation technique, and (4) FULLDOC. FULLDOC can report 31% more valuesthan techniques using only statically computed information. FULLDOC can report at least28% more values than the emulation technique [51] since neither path sensitivity nor registeroverwrites were handled. Finally, FULLDOC can report at least 26% more values than thedynamic currency determination technique [22] since early overwrites were not preservedand no roll ahead mechanism is employed.

0

10

20

30

40

50

60

yacc compress go m88ksim ijpeg

VWDWLF�LQIR
WLPH�VWDPS
HPXODWLRQ
)8//'2&

Pe
rc

e n
ta

ge
 o

f
l o

ca
l v

ar
ia

bl
es

 p
er

br
ea

kp
oi

nt
 th

at
 a

re
 n

ot
 r

ep
or

ta
bl

e

Figure 7.20: Expected values not reportableTable 7.2 presents statistics from the static analysis for FULLDOC. The �rst tworows show the number of source statements and the percentage of source statements whosereportability is a�ected by optimizations. The next 6 rows give the number of entries ineach of the tables generated for use at runtime. It should be noted that the largest table isfor register overwrites. The last row shows that the increase in compilation for computingall the debug information averaged only 10:9%.Table 7.3 shows the average number of invisible breakpoints per source codestatement that was encountered during execution. These numbers are shown for each ofthe various types of invisible breakpoints. These numbers indicate that not much overheadis incurred at runtime for invisible breakpoints. The last three rows display the overheadimposed by the roll ahead execution of the optimized program. On average, 9:7% of thesource assignment statements were executed during the roll aheads. The maximum numberof statements executed during a roll forward ranges from 5 to 4102 values, which means atmost 5 to 4102 number of values are saved from the roll ahead at any given moment. Theaverage roll ahead of source assignment statements ranges from 2 to 7 statements. The size

113Table 7.2: Static statisticsyacc compress go m88ksim ijpegno. source statements 168 354 10876 5778 8214% statements a�ected 85 57 59 52 56number code hoisting 10 77 1502 987 2374of table reg overwrite 517 234 11819 3961 9655entries code sinking (rf) 13 177 5355 1839 3745path sens late 0 117 2912 1203 1833path sens delete 66 37 1785 397 1452path sens location 48 59 1937 301 1447% increase compile time 12.1 8.8 11.0 9.6 13.1of the value pool holding values that are overwritten early was small with the maximumsize ranging from 8 entries to 77 entries, indicating that optimizations are not moving codevery far. Table 7.3: Runtime statisticsyacc compress go m88ksim ijpeg% breakpoints wherereportability a�ected 94 95 67 21 92avg. no. code hoisting 0.12 0.03 0.04 0.05 0.35invisible reg overwrite 1.03 0.13 0.26 0.02 0.35breakpoints code sinking (rf) 0.03 0.03 0.07 0.03 0.12per source path sens late 0.10 0.05 0.13 0.04 0.23statement path sens delete 0.09 0.00 0.03 0.01 0.23path sens location 0.07 0.02 0.02 0.00 0.05overall 1.44 0.26 0.56 0.18 1.37(duplicates removed) overall 0.56 0.14 0.37 0.17 0.43% source assignments executed for roll forwards 1.33 4.11 17.39 6.01 19.8maximum roll forward length 5 60 314 4102 1482average roll forward length 2 4 7 5 4Thus, the experiments show that the table sizes required to hold the debug in-formation and the increase in compile time to compute debug information are both quitemodest. The runtime cost of FULLDOC's technique, which is a maximum of less thanone fast breakpoint per source level statement if all possible values are requested by theuser at all possible breakpoints, is also reasonable. The payo� of FULLDOC's techniqueis substantial since it reports at least 26% more values than the best previously knowntechniques.The presence of pointer assignments in a source program can increase FULLDOC'soverheads because the strategies rely on determining the ranges in which the reportability of

114variables are a�ected. For control equivalent code motion (assignments are not introducedinto new paths nor removed from paths), the ranges in which reportability of values area�ected even in the presence of pointer assignments can be statically determined. For thecase when the reportability of a value of a variable is a�ected and the end of its reportablerange is possibly at a pointer assignment (because of code deletion and non-control equiv-alent code motion), FULLDOC's strategy has to dynamically track the range in which thereportability of the value of the variable is a�ected.7.7 SummaryThis chapter presents FULLDOC, a FULL reporting Debugger of OptimizedCode that reports all expected values that are computed in the optimized program. Thatis, every value of a source variable that is computed in the optimized program execution isreportable at all breakpoints in the source code where the value of the variable should bereportable. Experimental results show that FULLDOC can report 31% more values thantechniques relying on static information and at least 26% more over existing techniques thatlimit the dynamic information used. FULLDOC's improvement over existing techniques isachieved by statically computing information to guide the gathering of dynamic informationthat enables full reporting. The only values that FULLDOC cannot reported are those thatare not computed in the optimized program execution, either because they are deleted alongall paths or a path that is executed.

Chapter 8Conclusion and future workCompilers apply optimizations to improve the performance of programs, but theirapplication creates challenges in debugging the optimized code. Debugging optimized codeis necessary because almost all production compilers apply optimizations to achieve highperformance, and current trends in processor design increasingly rely on compiler optimiza-tions to achieve high performance. In many cases, only the optimized version of a programcan execute or execute within a reasonable amount of time. Finally, if application program-mers intend to ship optimized code, then the optimized code must be debugged. Otherwise,errors may be masked in the version of the program that is instead debugged.Most prior work on debugging optimized code focused on the development of sourcelevel debuggers for optimized code. However, the problem of debugging optimized code istwofold because errors in an optimized program can be caused by errors in the original sourceprogram or introduced by the optimizer. The optimizer may apply an unsafe transformationor an error may exist in the implementation of an optimization. Therefore, source leveldebugging techniques must be developed to help application programmers debug optimizedcode from the point of view of the source program and to help optimizer writers debugoptimizers, which are becoming more complex pieces of software and tedious to debug.Moreover, source level debugging techniques that are developed should (1) not modify theoptimized code, except for setting breakpoints, (2) be transparent to the user, and (3)support more aggressive optimizations.8.1 Summary of contributionsDeveloping source level tools to debug optimized code is hampered by the di�-culties in establishing the correspondence between the source and optimized code. Thisdissertation has analyzed the e�ects of optimizations and the complexities in maintaininga correspondence between the unoptimized and optimized code. The scope of this research115

116covers a variety of code transformations, including statement level optimizations, loop trans-formations, and inlining. Statement level optimizations include speculative code motion andpath sensitive optimizations. Optimizations such as dynamic memory management opti-mizations are not considered. A mapping technique [29] was developed for tracking thecorrespondences between the unoptimized and optimized code statements while code trans-formations are performed. The mappings capture the impact that optimizations have onstatements and their instances and thus are useful for a wide range of optimizations.This dissertation has explored the use of dynamic information to develop sourcelevel debugging techniques that help optimizer writers and application programmers debugoptimized code. The mappings developed in this dissertation have been used to developtwo complementary source level debugging tools for optimized code, which have been im-plemented and experimentally evaluated. These techniques can support more aggressiveoptimizations, including speculative code motion, path sensitive optimizations, and looptransformations, than previously developed techniques.The �rst technique developed to help debug optimizers, called comparison check-ing [30], is an approach that compares values computed in both the unoptimized and op-timized executions of a source program and detects semantic di�erences between the twoversions. When a comparison fails, the earliest place where the failure occurred and theoptimizations that are involved are reported. Thus, the optimizer writer can utilize thisinformation to debug the optimizer, and the optimizer writer can have greater con�dencein the correctness of the optimizer. Moreover, since the internal values computed in theoptimized code are compared to that of the unoptimized program, a �ner level of testingis provided which can �nd errors in the optimized code that do not cause the output ofthe program to be incorrect. The automation of the comparison checking scheme relies onthe mappings developed in this dissertation and annotations to guide the actions of thecomparison checker. This technique does not restrict the set of optimizations applied andthe optimized code is not modi�ed, except for the setting of breakpoints. The comparisonchecking scheme was implemented and executes the unoptimized and optimized versions ofC programs. Experimental results demonstrate the approach is e�ective and practical. Infact, this scheme proved very useful in debugging the optimizer that was implemented forthis work.The comparison checking technique can be modi�ed to check di�erent levels ofoptimizations. Just as optimizations are often phased, the checking can be performed inphases. For example, checking can be performed after loop optimizations are applied, afterstatement level optimizations are applied, and after low level optimizations are applied.

117This phase checking can reduce the cost of checking as well as help optimizer writers debugthe optimizations that were applied in the phase that is to be checked.Furthermore, the comparison checking technique can be tailored to help optimizerswriters debug and validate speci�c optimizations. This dissertation described how to tailorthe comparison checker to global register allocation. The register allocation checker candetect errors in a register allocator implementation and determine the possible cause(s)of the errors. For example, the register allocation checker can inform the user when astale value is used, a wrong register is used, and when a value is evicted from a registerbut not saved for future uses. The register allocation checker scheme compares valuescomputed and used by both the unoptimized and optimized program executions and tracksand veri�es information about the variables that are assigned to registers throughout theprogram execution. The register allocation checker can be incorporated into the comparisonchecker or can be used as a standalone tool.The second technique, a full reporting source level debugger for optimized codecalled FULLDOC, is used by application programmers to �nd errors in source programs [31].This debugger can provide more of the expected program state than previously developedsource level debuggers for optimized code. That is, every value of a source variable that iscomputed in the optimized program execution is reportable at all breakpoints in the sourcecode where the value of the variable should be reportable. FULLDOC's improvement overexisting techniques is achieved by statically computing information to guide the gatheringof dynamic information that enables full reporting. This technique is demonstrated in acompiler that performs a set of global statement level optimizations for C source programs.The technique does not restrict the set of optimizations applied and the optimized code is notmodi�ed, except for the setting of breakpoints. The techniques are transparent to the user.If a user inserts a breakpoint where the reportability of values is a�ected at the breakpointor a potential future breakpoint, FULLDOC automatically inserts invisible breakpointsto gather dynamic information to report the expected values. Experimental results showthat FULLDOC can report 31% more values than techniques relying on static informationand at least 26% more over existing techniques that limit the dynamic information used.The only values that FULLDOC cannot reported are those that are not computed in theoptimized program execution, either because they are deleted along all paths or a path thatis executed.

1188.2 Future workThere are a number of open interesting research problems. Although the mappingswere used in this dissertation to develop a comparison checker and source level debugger foroptimized code, the mappings can also bene�t a number of applications. Other problemsfor future research include extending the debugging techniques to provide more debuggingfeatures and to support more aggressive optimizations and other programming languages.1. The mappings developed in this dissertation can be used to develop tools that bene�ta number of other applications.It is very di�cult to understand or inspect optimized code in isolation of the unop-timized code. Even if the unoptimized code is available, it is still di�cult, especiallywhen there is no knowledge of what transformations were applied and/or someoneelse wrote the program. The mappings can be used to develop a tool that enablesthe understanding and inspection of optimized code by indicating which statementinstances in the unoptimized code correspond to statement instances in the optimizedcode.The mappings can enhance programming environment tools. For example, interactiveprogramming environment tools have been developed to assist users in parallelizingprograms. These tools help users decide how to restructure programs by analyzing andperforming transformations to detect and exploit parallelism. Integrating the map-pings gives users a better understanding of the e�ects of the applied transformationsby visually seeing the di�erences between both the new version and the original pro-gram version. This extra information can help users make better informed decisionsand verify that their decisions are indeed correct.The mappings can be used to design other program development tools. For example,pro�le-based performance analysis tools can identify performance bottlenecks. How-ever, the results should be conveyed to users in terms of the unoptimized program.Therefore, for the case of pro�ling optimized code, the mappings can be used to conveythe results of pro�led optimized code in terms of the unoptimized program.2. Although this dissertation covers more aggressive optimizations than previously de-veloped source level debugging techniques for optimized code, there is still the issue ofoptimization coverage. For example, as more production compilers produce predicatedcode [47, 11, 35] and/or code is dynamically optimized [15, 12], the need to developsource level debugging tools to support such optimizations has to be addressed. The

119support of dynamic optimizations would require the dynamic updating of the map-pings between the unoptimized and optimized code and the dynamic analysis of themappings, unoptimized code, and optimized code. In terms of a source level debug-ger, the predicated code would require invisible breakpoints to capture the executioncontrol
ow of the optimized code.3. The source level debugger developed in this dissertation does not support the modi�-cation of variables, nor does it e�ectively support asynchronous breakpoints and core�les. Moreover, the debugger cannot report expected values that have been deletedfrom the optimized code. Future research would extend the source level debuggertechniques to include such debugging features. The design of a source level debuggerfor optimized code that has the same debugging capabilities as for unoptimized coderemains an open problem.4. This dissertation focused on C source programs. It would be interesting to consider theimpact of features of other programming languages such as Java in developing sourcelevel debugging tools for optimized code. Perhaps some of the problems encounteredin the C language can be avoided in Java. For example, memory can be uninitializedin C but not in Java, and optimizations can reorder
oating point operations in C butnot in Java.5. The comparison checker was tailored to help users �nd errors in the implementation ofglobal register allocation. It would be interesting to see how to tailor the comparisonchecker to help users �nd errors in other optimizations.6. The comparison checker could be embedded in a debugger. In this case, the responsetime of the checker must be appropriate for use in a debugger. Therefore, the numberof comparisons would have to be reduced. The amount of checking can be limitedby checking certain regions of the source level code, as speci�ed by the user. Thisstrategy is useful when it is unnecessary to check an entire program. For example,during testing, programs are typically executed under di�erent inputs and checkingthe entire program under every input may be redundant and thus unnecessary. Al-ternatively, a region can be de�ned by the statements a�ected by the application ofcode transformations. This approach is optimization dependent. Analysis techniqueswould need to be designed to determine what values may be a�ected by the programchanges.Another approach, which is optimization independent, is to check only those valuesthat cannot be guaranteed to always be the same in both the unoptimized and op-

120timized program executions. Static analysis techniques would need to be developedto analyze both versions of the program and determine what values are always thesame under any execution and thus do not need to be checked. The values that can-not be guaranteed would be checked. Of course, a conservative approach would betaken. Only those checks where the analysis can guarantee the same value could beeliminated.7. Techniques can be explored to e�ectively develop a comparison checking technique forparallelized code. This is a much harder problem than that of optimized code becausethe execution behavior of sequential code is now compared with that of parallelizedcode. The program executions cannot be easily orchestrated because the parallelversion would be required to perform a serial execution. Extracting values from sharedmemory is another problem as values from memory must be extracted before thevalues are overwritten by any one of the processes. With distributed memory, thecommunication of values to the comparison checker may have to be optimized forpracticality purposes.8. With the need to gather dynamic information for both the source level debuggerand comparison checker, more support from hardware should be provided to accessthe program state and to control the execution of the program. For example, morehardware assisted breakpoints should be provided. Also, perhaps a new mechanismshould be developed to allow a debugger that does not execute within the same contextas the debugged program to set breakpoints and extract the program state withoutgoing through the operating system.9. Currently the debug information supplied by the optimizing compiler to the debug-ger has not been incorporated into existing debug formats such as stabs [33] andDWARF [1] debug formats. These debug formats would have to be extended.10. Although the comparison checking technique developed in this dissertation is designedonly for unoptimized and optimized versions of a program, the comparison checkingtechnique can possibly be extended to handle di�erent program versions. That isone version is derived form the other version either by programming edits or otherprogramming tools such as source to source translators. Mappings would have to bedeveloped to establish the relationship between both program versions.

Bibliography

Bibliography[1] DWARF Debugging Information Format. Industry Review Draft, Unix InternationalProgramming Language Special Interest Group (SIG), 1993.[2] Abramson, D. A., Foster, I., Michalakes, J., and Sosic, R. Relative Debugging and itsApplication to the Development of Large Numerical Models. In Proceedings of IEEESupercomputing 1995, December 1995.[3] Abramson, D. and Sosic, R. A Debugging Tool for Software Evolution. CASE-95,7th International Workshop on Computer-Aided Software Engineering, pages 206{214,July 1995.[4] Abramson, D. and Sosic, R. A Debugging and Testing Tool for Supporting SoftwareEvolution. Journal of Automated Software Engineering, 3:369{390, 1996.[5] Abramson, D., Foster, I, Michalakes, J., and Sosic, R. A New Methodology for Debug-ging Scienti�c Applications. Communications of the ACM, 39(11):69{77, November1996.[6] Abramson, D., Sosic. R., and Watson, R. Implementation Techniques for a Parallel Rel-ative Debugger. In Proceedings of International Conference on Parallel Architecturesand Compilation Techniques, October 1996.[7] Adl-Tabatabai, A. Source-Level Debugging of Globally Optimized Code. PhD disserta-tion, Carnegie Mellon University, 1996. Technical Report CMU-CS-96-133.[8] Adl-Tabatabai, A. and Gross, T. Detection and Recovery of Endangered VariablesCaused by Instruction Scheduling. In Proceedings ACM SIGPLAN'93 Conf. on Pro-gramming Languages Design and Implementation, pages 13{25, June 1993.[9] Adl-Tabatabai, A. and Gross, T. Evicted Variables and the Interaction of GlobalRegister Allocation and Symbolic Debugging. In Proceedings 20th POPL Conference,pages 371{383, January 1993.[10] Adl-Tabatabai, A. and Gross, T. Source-Level Debugging of Scalar Optimized Code.In Proceedings ACM SIGPLAN'96 Conf. on Programming Languages Design and Im-plementation, pages 33{43, May 1996.[11] Allen, J.R., Kennedy, K., Porter�eld, C., and Warren, J. Conversion of Control De-pendence to Data Dependence. In Proceedings 10th POPL Conference, pages 177{189,January 1983.[12] Bala, V., Duesterwald, E., and Banerjia, S. Dynamo: A Transparent Dynamic Opti-mization System. In Proceedings ACM SIGPLAN'2000 Conf. on Programming Lan-guages Design and Implementation, pages 1{12, June 2000.122

123[13] Boyd, M.R. and Whalley, D.B. Isolation and Analysis of Optimization Errors. InProceedings ACM SIGPLAN'93 Conf. on Programming Languages Design and Imple-mentation, pages 26{35, June 1993.[14] Brooks, G., Hansen, G.J., and Simmons, S. A New Approach to Debugging OptimizedCode. In Proceedings ACM SIGPLAN'92 Conf. on Programming Languages Designand Implementation, pages 1{11, June 1992.[15] Burke, M.G., Choi, J., Fink, S., Grove, D., Hind, M., Sarkar, V., Serrano, M.J.,Sreedhar, V.C., Srinivasan, H., and Whaley, J. The Jalape~no Dynamic OptimizingCompiler for Java. In Proceedings Java'99, pages 129{141, June 1999.[16] Caron, J.M. and Darnell, P.A. Bug�nd: A Tool for Debugging Optimizing Compilers.Sigplan Notices, 25(1):17{22, January 1990.[17] Chang, P.P., Mahlke, S.A., Chen, W.Y., Warter, N.J., Hwu, W.W. IMPACT: Anarchitectural framework for multiple-instruction-issue processor. In Proceedings of the18th International Symposium on Computer Architecture, pages 266{275, May 1991.[18] Copperman, M. Debugging Optimized Code Without Being Misled. PhD dissertation,University of California, Santa Cruz, 1993. Technical Report UCSC-CRL-93-21.[19] Copperman, M. Debugging Optimized Code Without Being Misled. ACM Transactionson Programming Languages and Systems, 16(3):387{427, 1994.[20] Copperman, M. and McDowell, C.E. Detecting Unexpected Data Values in OptimizedCode. Technical Report 90-56, Board of Studies in Computer and Information Sciences,University of California at Santa Cruz, October 1990.[21] Coutant, D.S., Meloy, S., and Ruscetta, M. DOC: A Practical Approach to Source-Level Debugging of Globally Optimized Code. In Proceedings ACM SIGPLAN'88 Conf.on Programming Languages Design and Implementation, pages 125{134, June 1988.[22] Dhamdhere, D.M. and Sankaranarayanan, K.V. Dynamic Currency Determination inOptimized Programs. ACM Transactions on Programming Languages and Systems,20(6):1111{1130, November 1998.[23] Fraser, C. and Hanson, D. A Retargetable C Compiler: Design and Implementation.Benjamin/Cummings, 1995.[24] Fritzson, P. A Systematic Approach to Advanced Debugging through IncrementalCompilation. In Proceedings ACM SIGSOFT/SIGPLAN Software Engineering Sym-posium on High-Level Debugging, pages 130{139, 1983.[25] Gross, T. Bisection Debugging. In Proceedings of the AADEBUG'97 Workshop, pages185{191, May, 1997.[26] Gupta, R. Debugging Code Reorganized by a Trace Scheduling Compiler. StructuredProgramming, 11(3):141{150, 1990.[27] Hennessy, J. Symbolic Debugging of Optimized Code. ACM Transactions on Program-ming Languages and Systems, 4(3):323{344, July 1982.

124[28] Holzle, U., Chambers, C., and Ungar, D. Debugging Optimized Code with DynamicDeoptimization. In Proceedings ACM SIGPLAN'92 Conf. on Programming LanguagesDesign and Implementation, pages 32{43, June 1992.[29] Jaramillo, C., Gupta, R., and So�a, M.L. Capturing the E�ects of Code ImprovingTransformations. In Proceedings of International Conference on Parallel Architecturesand Compilation Techniques, pages 118{123. Springer Verlag, October 1998.[30] Jaramillo, C., Gupta, R., and So�a, M.L. Comparison Checking: An Approach toAvoid Debugging of Optimized Code. In ACM SIGSOFT Symposium on Foundationsof Software Engineering and European Software Engineering Conference, pages 268{284. Springer Verlag, September 1999.[31] Jaramillo, C., Gupta, R., and So�a, M.L. FULLDOC: A Full Reporting Debuggerfor Optimized Code. In 7th International Static Analysis Symposium, pages 240{259.Springer Verlag, June/July 2000.[32] Kessler, P. Fast Breakpoints: Design and Implementation. In Proceedings ACM SIG-PLAN'90 Conf. on Programming Languages Design and Implementation, pages 78{84,June 1990.[33] Menapace, J., Kingdon, J., and MacKenzie, D. The "stabs" Debug Format. FreeSoftware Foundation, Inc., Contributed by Cygnus Support, 1993.[34] Necula, G. Translation Validation for an Optimizing Compiler. In Proceedings ACMSIGPLAN'99 Conf. on Programming Languages Design and Implementation, pages83{94, June 2000.[35] Park, J.C.H., Schlansker, M.S. On Predicated Execution. Technical Report HPL-91-58,HP Laboratories, Palo Alto, CA, May 1991.[36] Pineo, P.P. The High-Level Debugging of Parallelized Code Using Code Liberation.PhD dissertation, University of Pittsburgh, April 1993. Technical Report 93-07.[37] Pineo, P.P. and So�a, M.L. Debugging Parallelized Code using Code Liberation Tech-niques. Proceedings of ACM/ONR SIGPLAN Workshop on Parallel and DistributedDebugging, 26(4):103{114, May 1991.[38] Pineo, P.P. and So�a, M.L. A Practical Approach to the Symbolic Debugging ofParallelized Code. Proceedings of International Conference on Compiler Construction,26(12):357{373, April 1994.[39] Pollock, L.L. and So�a, M.L. High-Level Debugging with the Aid of an Incremen-tal Optimizer. In 21st Annual Hawaii International Conference on System Sciences,volume 2, pages 524{531, January 1988.[40] Seidner, R. and Tindall, N. Interactive Debug Requirements. In Proceedings ACM SIG-SOFT/SIGPLAN Software Engineering Symposium on High-Level Debugging, pages9{22, 1983.[41] Sosic, R. Dynascope: A Tool for Program Directing. In Proceedings ACM SIGPLAN'92Conf. on Programming Languages Design and Implementation, pages 12{21, June 1992.

125[42] Sosic, R. A Procedural Interface for Program Directing. Software Practice and Expe-rience, 25(7):767{787, July 1995.[43] Sosic, R. Design and Implementation of Dynascope, a Directing Platform for CompiledPrograms. Computing Systems, 8(2):107{134, Spring 1995.[44] Sosic, R. and Abramson, D. A. Guard: A Relative Debugger. Software Practice andExperience, 27(2):185{206, February 1997.[45] Tice, C. Non-Transparent Debugging of Optimized Code. PhD dissertation, Universityof California, Berkeley, 1999. Technical Report UCB-CSD-99-1077.[46] Tice, C. and Graham, S.L. OPTVIEW: A New Approach for Examining OptimizedCode. Proceedings of ACM SIGPLAN Workshop on Program Analysis for SoftwareTools and Engineering, June 1998.[47] Towle, R.A. Control and Data Dependence for Program Transformations. PhD disser-tation, University of Illinois, Urbana, IL, 1976.[48] Warren, H.S. and Schlaeppi, H.P. Design of the FDS Interactive Debugging System.Technical Report RC7214, IBM Yorktown Heights, Yorktown Heights, N. Y., July1978.[49] Wismueller, R. Debugging of Globally Optimized Programs Using Data Flow Analy-sis. In Proceedings ACM SIGPLAN'94 Conf. on Programming Languages Design andImplementation, pages 278{289, June 1994.[50] Wu, L. Interactive Source-Level Debugging of Optimized Code. PhD dissertation,University of Illinois, Urbana-Champaign, 2000.[51] Wu, L., Mirani, R., Patil H., Olsen, B., and Hwu, W.W. A New Framework forDebugging Globally Optimized Code. In Proceedings ACM SIGPLAN'99 Conf. onProgramming Languages Design and Implementation, pages 181{191, May 1999.[52] Zellweger, P.T. An Interactive High-Level Debugger for Control-Flow Optimized Pro-grams. In Proceedings ACM SIGSOFT/SIGPLAN Software Engineering Symposiumon High-Level Debugging, pages 159{171, 1983.[53] Zellweger, P.T. Interactive Source-Level Debugging of Optimized Programs. PhD dis-sertation, University of California, Berkeley, May 1984. Published as XEROX PARCTechnical Report CSL-84-5.

