
UNIVERSITY OF CALIFORNIA

RIVERSIDE

Speculative Parallelization on Multicore Processors

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Chen Tian

June 2010

Dissertation Committee:

Dr. Rajiv Gupta, Chairperson
Dr. Laxmi Bhuyan
Dr. Iulian Neamtiu



Copyright by
Chen Tian

2010



The Dissertation of Chen Tian is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

I own my gratitude to all those people who have made this dissertation possible and because

of whom my graduation experience has been one that I will cherish forever.

My deepest gratitude is to Dr. Rajiv Gupta, who leads me to today’s achievements.

I have been amazingly fortunate to have an advisor who gave me the inspiration to solve

different research problems and at the same time the guidance to recover when my steps

faltered. He believed in me and encouraged me during times when I did not believed in

myself. Without him, this dissertation never would have been done.

I would like to thank my other dissertation committee members, Dr. Laxmi

Bhuyan and Dr. Iulian Neamtiu for taking their time to help me improve this disserta-

tion.

I would like to express my gratitude to all the members of my research group

including Min Feng, Dennis Jeffrey, Sriraman Tallam, Vijay Nagarajan, Xiangyu Zhang,

Bengu Li, Changhui Lin for helping me in many ways during these years.

I would also like to thank all my teachers I have had throughout my life. I am

where I am today because of them.

Finally, I would like to thank my family, particularly my father Quanlai Tian, my

mother Qingfang Li and my wife Yejuan Long, for their unconditional support during these

years.

iv



This dissertation is dedicated to my family.

v



ABSTRACT OF THE DISSERTATION

Speculative Parallelization on Multicore Processors

by

Chen Tian

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2010

Dr. Rajiv Gupta, Chairperson

With the advent of multicore processors, extracting thread level parallelism from a sequen-

tial program has become crucial for improving performance. However, many sequential

programs cannot be easily parallelized due to the presence of dependences. To solve this

problem this dissertation presents a thread-based execution model, called Copy-or-Discard

(CorD), that supports speculative parallelization. In CorD, the state of speculative threads

is maintained separately from the non-speculative computation state. If speculation is suc-

cessful, the results of the speculative computation are committed by copying them into the

non-speculative state. If a misspeculation is detected, no costly recovery mechanisms are

needed as the speculative state can be simply discarded.

To illustrate the applicability of CorD, this dissertation first shows how to apply

it to streaming applications. Optimizations are proposed to reduce data copying overhead.

A lightweight scheme based on version comparison is also presented to detect misspecula-

tions. It is observed that when misspeculation rate becomes high, the benefits of paral-

lelism are usually nullified. To address this problem two techniques, Multiple Speculations

and Incremental Recovery, are proposed. The first technique creates multiple versions of

vi



speculatively-executed code using different value predictions. If any one of these versions is

found to be correct, the speculation is successful. The second technique focuses on reduc-

ing misspeculation cost. Instead of discarding all results, it allows saving and reuse of the

results that are not affected by the variables that cause the misspeculation.

Finally, this dissertation shows the applicability of CorD in the presence of dynamic

data structures. Such data structures pose many new challenges. The copying of data

structures from non-speculative to speculative state is expensive due to the large sizes of data

structures. The copying of updated data structures from speculative state to non-speculative

state are complex due to the changes in the shape of dynamic data structures. In addition,

translating pointers internal to dynamic data structures between their non-speculative and

speculative memory addresses has to be addressed. This dissertation proposes an augmented

design for the representation of dynamic data structures such that all of the above operations

are performed efficiently.

vii



Table of Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 Speculative Execution Model and its Software Implementation . . . . . . 3
1.1.2 Profile-Guided Speculative Parallelization . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Multiple Speculations for Handling High Misspeculation Rate . . . . . . 5
1.1.4 Incremental Recovery for Reducing the Cost of Misspeculation . . . . . . 7
1.1.5 Speculative Parallelization in the Presence of Dynamic Data Structures 8

1.2 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Copy Or Discard Execution Model 10

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.1 Thread Execution Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 State Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Implementation Of CorD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Thread Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Implementing State Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Misspeculation Detection And Recovery . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Speculative Parallelization Of Streaming Applications 23

3.1 Speculative Parallelization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Optimizing Copying Operations For CorD . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Transforming Partitioned Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Thread Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Main Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.3 Parallel Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.4 Runtime Memory Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Loop Parallelization Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

viii



3.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5.3 Overhead Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Handling High Misspeculation Rate Via Multiple Speculations 50

4.1 Overview Of Multiple Speculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.2 Adapting CorD For Multiple Speculations . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Basic Scheme Of Multiple Speculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.1 Choosing Parallelization Candidate . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Generating Multiple Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.3 Code Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Adaptive Multiple Speculation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4.3 Overhead Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Reducing Misspeculation Cost Via Incremental Recovery 80

5.1 Overview Of Incremental Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1.2 Adapting CorD For Incremental Recovery . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Realizing Incremental Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.1 Creating Multiple Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.2 Handling Speculative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.3 Overhead Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Applying CorD In The Presence Of Dynamic Data Structures 102

6.1 Challenges For Dynamic Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2 Adapting CorD For Dynamic Data Structures . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.1 Copy-On-Write Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2.2 Heap Prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2.3 Double Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2.4 Techniques And Their Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.3 Other Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3.1 Eliminating Unnecessary Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3.2 Optimizing Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.4.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

ix



6.4.3 Overhead Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.4.4 Effectiveness of Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7 Related Work 136

7.1 Speculative Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.1.1 Software Based TLS Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.1.2 Hardware Based TLS Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.1.3 Software Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.1.4 Other Parallelization Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.2 Related Work Of Multiple Speculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.2.1 Value Prediction Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.2.2 Pre-computation Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.2.3 Multipath Execution Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.3 Transactional Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8 Conclusions 148

8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
8.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Bibliography 153

x



List of Figures

2.1 Sequential Execution And Thread Based Parallel Execution. . . . . . . . . . . . . . 12
2.2 Maintaining Memory State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Separation Of Stack And Global Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Separation Of Heap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Misspeculation Detection - Algorithm 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Pattern of Streaming Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Partitioning A Loop Into Prologue, Speculative Body, And Epilogue. . . . . . . 26
3.3 Thread Execution Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Code Transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Runtime Memory Layout For Sequential Version and Parallel Version. . . . . . 36
3.6 Partitioning A Speculative Body Into Several Parts. . . . . . . . . . . . . . . . . . . . . 40
3.7 Execution Speedups For SPEC and MiBench Programs. . . . . . . . . . . . . . . . . . 44
3.8 The Effectiveness Of Handling Thread Idling. . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.9 Execution Speedups For STAMP Programs. . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.10 Memory Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Speculative Parallelization Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Thread Execution Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Trace Of Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Prediction Code Construction For var. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5 An Example Of Reduced Slice Construction. . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6 Code Transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.7 An Example Of A Possible Race. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.8 Selecting Versions With A Higher VC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.9 Experimental Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.10 Execution Speedups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.11 Speculation Success Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.12 Performance Of Adaptive Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.13 Performance Comparison With Other Techniques. . . . . . . . . . . . . . . . . . . . . . 75
4.14 Time Breakdown: Parallel Threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.15 Time Breakdown: Main Thread. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.16 Space Overhead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xi



5.1 Motivating Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2 Decoupling Space Allocation From Thread Creation. . . . . . . . . . . . . . . . . . . . 84
5.3 Allocating A Subspace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4 Live-in Access Checks And Statement Transformation. . . . . . . . . . . . . . . . . . . 86
5.5 Misspeculation Checks And Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.6 An Example Of Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.7 Execution Speedups – Baseline: Sequential Execution. . . . . . . . . . . . . . . . . . . 93
5.8 Execution Speedups – Baseline: Original Scheme. . . . . . . . . . . . . . . . . . . . . . . 95
5.9 Misspeculation Rate Reductions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.10 Time Breakdown: Speculative Threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.11 Time Breakdown: Main Thread. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.12 Space Overhead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 Least Recent Use Buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Heap Prefix Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3 Access Checks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.4 An Example Of Heap Status Transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.5 Misspeculation Checks For Heap Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.6 A Possible Data Race During Misspeculation Check. . . . . . . . . . . . . . . . . . . . 117
6.7 Internal Pointer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.8 Double Pointer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.9 Changing The Shape Of A Dynamic Data Structure. . . . . . . . . . . . . . . . . . . . 121
6.10 Adding A New Node To A Dynamic Data Structure. . . . . . . . . . . . . . . . . . . . 122
6.11 Deleting A Node From A Dynamic Data Structure. . . . . . . . . . . . . . . . . . . . . 123
6.12 Locally Created Heap Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.13 Finding Read-Only Heap Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.14 Performance On An 8-core Machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.15 Time Breakdown: Speculative Threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.16 Time Breakdown: Main Thread. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.17 Space Overhead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xii



List of Tables

1.1 Frequency Of Cross-iteration Dependences. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Correct-Value Coverage On Different Number Of Paths. . . . . . . . . . . . . . . . . 6
1.3 Fraction Of Correct Results Upon a Misspeculation. . . . . . . . . . . . . . . . . . . . . 7
1.4 Sizes Of Dynamic Data Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Variable Types in Parallel Threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Characteristics of Benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Overhead Breakdown on Each Core. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Size of Binary Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Three Versions For Generating latest config. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Benchmark Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.1 Techniques And Their Benefits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.2 Dynamic Data Structures Benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3 Effectiveness Of Eliminating Access Checks. . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.1 Speedup Comparisons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

xiii



Chapter 1

Introduction

Extracting thread level parallelism from sequential programs is very important

for improving their performance on widely available multicore processors. Unfortunately,

manual code parallelization by programmers is a time-consuming and error-prone process.

Consequently, compiler based automatic parallelization techniques have drawn much atten-

tion of researchers. Many earlier works on DOALL parallelism [35, 42] focus on identifying

loops without cross-iteration dependences. However, the main loop in most sequential pro-

grams cannot be easily parallelized by a compiler due to the presence of cross-iteration

dependences.

To alleviate this problem the speculative parallelization technique has been pro-

posed. The key idea of this technique is to make the assumption that there is no depen-

dence between the two sequential regions of code (e.g., loop iterations) and execute them

in parallel. This is based on the observation that in many programs the dependences that

prevent parallelization may not frequently occur at runtime. Consequently, there are three

steps to speculatively parallelizing a sequential application. The first step is to identify a

1



loop that has infrequent cross-iteration dependences. This process involves static analysis

and dependence profiling. Programmers can also explicitly and optimistically identify loop

level parallelism by annotating the program. The second step is to create multiple parallel

threads or processes to execute the speculatively parallelizable loop. This work is usually

carried out by the compiler. The last step is to develop a thread-level speculation (TLS)

runtime system which can detect misspeculations (i.e., violations of these assumptions by

detecting if dependences that were assumed to be absent manifest at runtime) and handle

the results of speculative computations. Among these three steps, developing an efficient

and reliable TLS system is the most important and complex.

Although considerable research work has been carried out on developing TLS sys-

tems [17, 72, 49, 27, 24, 36, 74, 60], most of the work is hardware based and not ready

for use on the multicore systems available today. This is due to the architectural redesigns

[17, 72, 49] requiring non-trivial hardware changes for detecting misspeculations and han-

dling speculatively computed results (e.g., special buffers [27, 60], versioning cache [24], or

versioning memory [23]), which have not been incorporated in commercial multicore pro-

cessors. Therefore an attractive alternative avenue of optimistically extracting parallelism

from programs is based upon a purely software realization of TLS. This is the approach

that is developed in this dissertation.

While developing an efficient software implementation of TLS is challenging, the

benefits of this approach are clear as it can be applied to existing widely available multicore

systems. Recently, software based TLS techniques have been proposed [15, 34, 38, 40,

41]. While some of them [38, 40, 41] require the programmer to provide recovery code,

others [15, 34] are based upon realization of state separation with no programmer help.

2



Ding et al. [15, 34] achieve state separation by creating separate processes for a non-

speculative and speculative computations – since each process has its own address space,

state separation is achieved. However, the communication among processes is too expansive

due to the involvement of the operation system. Moreover, their approach cannot handle

applications that make intensive use of dynamic data structures because such data structures

are allocated dynamically and communicating a large amount of data between processes at

runtime is expensive.

1.1 Dissertation Overview

This dissertation presents a software realization of TLS which overcomes the draw-

backs of prior techniques and is applicable to a wide range of applications. The key issues

addressed in this work are briefly described next.

1.1.1 Speculative Execution Model and its Software Implementation

To parallelize a sequential program, multiple processes or threads need to be cre-

ated. Processes have their own independent address spaces and communication among them

is expensive due to the involvement of the operating system; this is not desirable for a par-

allelized sequential program. In contrast, all threads that belong to the same process share

same memory space and thus they can communicate with each other efficiently. Therefore,

the model proposed in this dissertation is based upon threads.

To support speculation, an execution model is developed such that the misspec-

ulation can be detected accurately and speculatively computed results can be handled ap-

propriately and efficiently. State separation is achieved by this model by providing each

3



speculative thread with its own space to store speculatively computed results. The results

are either copied back to non-speculative state or discarded depending upon the outcome

of misspeculation detection step. Due to this feature, the model is named Copy or Discard

(CorD). The software implementation of CorD is developed. In particular, thread creation,

task assignment, state separation, misspeculation detection, and recovery mechanisms are

all developed.

1.1.2 Profile-Guided Speculative Parallelization

It has been observed that optimistic parallelism exists in many sequential appli-

cations [6]. Specifically, cross-iteration dependences in sequential loops may not frequently

manifest at runtime if they are caused by code appearing along a cold path. This is particu-

larly true for some streaming applications which usually use a loop to handle the input data

piece by piece. In such applications, updates that result in cross-iteration dependences are

infrequent. Hence, the loop iterations can be executed in parallel as long as such updates

do not manifest themselves. Table 1.1 presents the frequency of cross-iteration dependences

in computations of sequential loops for a subset of SPEC2000 programs [31] during their

execution on training inputs. One can see that the frequency is extremely small. This

reveals that the iterations of the main loop in these programs can be executed in parallel

most of the time.

Program Frequency of cross-iteration dependences

197.parser 0.1%

130.li 0.5%

256.bzip2 0.9%

255.vortex 0.2%

Table 1.1: Frequency Of Cross-iteration Dependences.

4



Unfortunately, such optimistic parallelism cannot be exploited by a compiler that

performs parallelization using static dependence analysis. The conservative nature of static

analysis precludes parallelization. As a result, the opportunity of exploiting parallelism is

missed for such applications.

To address this problem, this dissertation presents a profile-guided speculative

parallelization algorithm. In particular, dynamic dependence profiling is performed when

an application is executed with a small input. The result is provided to the compiler so that

streaming applications can be speculatively parallelized. During the code transformation,

CorD model is employed to enable the presence of ignored dependences to be appropriately

detected and dealt with.

1.1.3 Multiple Speculations for Handling High Misspeculation Rate

A misspeculation occurs if a cross-iteration dependence arises at runtime. Specu-

lative parallelization takes advantage of the fact that such situations rarely occur. However,

on certain types of inputs an application may not exhibit this property. Consequently, high

misspeculation rate wipes out the benefits of speculative parallelization.

To address this problem, the frequent cross-iteration dependences must be re-

solved. A typical solution is to use value prediction. Specifically, the values of live-in

variables (i.e., variables involved in cross-iteration dependences) can be predicted in a later

iteration before they are produced by an earlier iteration. If the prediction is correct, these

two iterations can still be executed in parallel. To increase the accuracy of predictions, the

predictions can be performed in a path sensitive manner, i.e. the values of live-ins can be

predicted in different ways for different paths. In this dissertation, by assigning different

5



prediction methods to different control flow paths, high prediction accuracy is achieved.

Program One Path Two Paths Three Paths

dry 80% 87% 90%

fldry 81% 87% 89%

llu 71% 83% 92%

mechcall 66% 90% 100%

objinst 60% 85% 100%

Table 1.2: Correct-Value Coverage On Different Number Of Paths.

Table 1.2 shows how the overall prediction accuracy increases as increasing number

of paths are considered during value prediction by the path sensitive approach developed in

this dissertation. The data presented is for programs taken from the LLVM benchmark test

suite [30]. From this table, it can be seen that predicting values on three different paths

is very likely to cover the correct values of live-in variables. For mechcall and objinst,

only three paths are taken at runtime and the prediction method on each path is 100%

accurate. Thus, the correct values of the live-in variables can be fully covered. Note that

the live-in variables in these loops cause definite cross-iteration dependences, and hence the

loops cannot be speculatively parallelized.

This dissertation presents a technique called Multiple Speculations that exploits

the above-mentioned observation to deal with the high misspeculation rate caused by fre-

quent cross-iteration dependences. In particular, this technique creates multiple speculative

versions of the same loop iteration by using different predictions along different paths. It

allows the parallelism between consecutive iterations to be exploited even by the presence

of frequent cross-iteration dependences.

6



1.1.4 Incremental Recovery for Reducing the Cost of Misspeculation

If a misspeculation occurs, results produced in the speculative computation are

considered incorrect and have to be recomputed. However, a misspeculation may result by

reading a wrong value of only a single live-in variable. This wrong value may not necessarily

impact the entire computation. In other words, discarding all of the speculatively stored

results is wasteful. Table 1.3 shows the fraction of the speculatively computed results that

are actually correct even though a misspeculation has occurred.

Program Fraction of correct results

197.parser 95%

130.li 55%

256.bzip2 52%

255.vortex 65%

Table 1.3: Fraction Of Correct Results Upon a Misspeculation.

As one can see, more than 50% of store instructions on an average store the cor-

rect values when a misspeculation occurs in these programs, because these values are not

computed by using misspeculated live-in variables. Recomputing them is completely unnec-

essary during the misspeculation recovery. Therefore, this dissertation proposes a technique

called Incremental Recovery that enables the correct speculatively computed results to be

reused when a misspeculation occurs. In particular, it first identifies the live-in variables

that have caused a misspeculation. Then it identifies the results that were computed using

these live-in variables during speculative execution so that only these results are computed

during recovery. This technique greatly reduces the cost of misspeculation recovery and

can yield speedups from speculatively parallelizing a sequential program even when the

misspeculation rate is high.

7



1.1.5 Speculative Parallelization in the Presence of Dynamic Data Struc-

tures

Speculative parallelization technique relies on the runtime bookkeeping of memory

accesses. The bookkeeping process is the main source of the overhead during a parallelized

program’s execution. In most streaming applications, the parallelism benefits outweigh

such overhead. However, for applications that make intensive use of linked dynamic data

structures, this is not the case. The reason is that the sizes of the dynamic data structures

are much larger than the sizes of data structures used in streaming applications. Table 1.4

shows this data for 5 applications from LLVM benchmarks [30] that use dynamic data

structures.

Programs Node Number Memory Consumption

MST 0.1 Million 28MB

Power 18.2 Thousand 6.8MB

Patricia 18.8 Thousand 4.5MB

Treesort 4.9 Million 59 MB

Hash 3.5 Million 45MB

Table 1.4: Sizes Of Dynamic Data Structures.

From this table, one can see that each of the program creates thousands or even

millions of nodes at runtime. The overhead of bookkeeping for accesses to these nodes easily

nullifies the parallelism benefits. To address this problem, this dissertation proposes three

techniques, Copy-on-write Scheme, Heap Prefix, and Double Pointers. They effectively

reduce the overhead and address the challenges posed by the presence of dynamic data

structures. As a result, significant speedups can still be obtained by applying speculative

parallelization.

8



1.2 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 describes the CorD

model and its software implementation. Chapter 3 presents the parallelization algorithm

and code transformation for streaming applications. Chapter 4 describes the multiple spec-

ulations technique. Chapter 5 presents the incremental recovery technique. In chapter 6,

three new techniques are presented to address the challenges of applying CorD in the pres-

ence of dynamic data structures. Related work is given in Chapter 7 and the conclusions

of the dissertation are summarized in Chapter 8.

9



Chapter 2

Copy Or Discard Execution Model

Speculative parallelization allows the parallelism in a sequential program to be

aggressively exploited. The idea of this technique can be explained as follows. Let P denote

a sequential program that performs a computation which can be a process of data processing

or an algorithm implementation. Consider a pair of subcomputations C and C ′ in P such

that the execution of C precedes the execution of C ′ during sequential execution (e.g., C and

C ′ may represent consecutive iterations of a loop). Thus, the results computed during the

execution of C are available during the execution of C ′. The goal of speculative execution is

to relax the strict ordering imposed on the execution of C and C ′ by speculatively executing

C ′ while C is still executing. During the speculative execution of C ′, if a data value is

read prematurely (i.e., it is read before it has been computed by C), then misspeculation

occurs and thus the results computed during speculative execution of C ′ must be discarded

and C ′ must be executed again. On the other hand, if misspeculation does not occur,

the execution time of the program is reduced due to parallel execution of C and C ′. Of

course, speculative execution is only beneficial if the misspeculation occurs infrequently.

10



Opportunities for speculative execution arise because the dependences from C to C ′ may

arise from infrequently executed code or even if they do arise, they may be deemed harmless

(e.g., dependences may arise due to silent stores). The above approach naturally extends to

multiple levels of speculation. Given a series of dependent computations C1 → C2 → . . . Cn,

while C1 executes non-speculatively, C2 through Cn can be speculatively execute in parallel

with C1 on additional cores.

This chapter proposes an execution model, Copy or discard (CorD), that supports

speculative execution as illustrated above. The overview of this model is described in Section

2.1 followed by the implementation details which are presented in Section 2.2.

2.1 Overview

2.1.1 Thread Execution Model

CorD is a thread based model. It has one main thread and multiple speculative

parallel threads. The advantage of using threads is that the entire memory space is accessible

for all threads within the process. Thus, the synchronizations and communications in CorD

are easier and more light-weight than those in process based model.

Given a sequential computation that can be divided into non-parallelizable regions

and parallelizable regions as shown in Figure 2.1(a), the main thread and multiple parallel

threads execute these regions in the following way. The main thread executes all non-

parallelizable regions. When it reaches a parallelizable region, it spawns a number of parallel

threads and assigns a piece of work taken from the parallelizable region to each of them.

After task assignments, it simply waits for the parallel threads to finish their assigned tasks.

11



Figure 2.1: Sequential Execution And Thread Based Parallel Execution.

When a parallel thread finishes a task, it notifies the main thread, so that the

main thread can detect misspeculations and redo the same task or assign a new task to it.

This pattern continues until the entire non-parallelizable region is executed. After that, if

the next region is non-parallelizable, the main thread executes it. Otherwise, all existing

parallel threads are reused to perform the computation in parallel like before. These parallel

threads will exit when the last non-parallelizable region has finished executing. Figure 2.1(b)

illustrates this execution pattern. Control denotes the activity of the main thread during the

speculative execution. The activity includes spawning new speculative threads, assigning

tasks, detecting misspeculations and committing results.

12



2.1.2 State Separation

One of the key characteristics of CorD is state separation according to which the

non-speculative state of the program is maintained separately from the speculative state of

the computation. While the main thread maintains the non-speculative state of the com-

putation, each parallel thread has to have a speculative state to store its own computation

results because the computation is performed using speculatively-read operand values from

non-speculative state. State separation guarantees thread isolation, that is, the execution

of each thread, main or parallel, is isolated from execution of all other threads. Thus, if ex-

ecution of one thread results in misspeculation, it does not necessarily force the reexecution

of other threads.

In CorD, the entire memory space of a speculatively parallel execution is divided

into three disjoint partitions < D, P, C> such that each partition contains a distinct type

of program state (see Figure 2.2).

Figure 2.2: Maintaining Memory State.

13



Non-speculative State. D memory is the part of the address space that reflects the

non-speculative state of the computation. Only the main computation thread Mt performs

updates of D. If the program is executed sequentially, Mt performs the entire computation

using D. If parallel threads are used, then Mt is responsible for updating D according to the

results produced by the parallel threads.

Parallel or Speculative State. P memory is the part of the address space that reflects

the parallel computation state, that is, the state of the parallel threads Ts created by Mt to

boost performance. Since parallel threads perform speculative computations, speculative

state that exists is at all times contained in P memory. The results produced by the parallel

threads are communicated to Mt that then performs updates of D. Note that P memory is

further divided into a number of disjointed spaces. Each parallel thread uses one of these

spaces as its own P Space. To avoid execution interference, a parallel thread is not allowed

to access any other parallel thread’s P Space.

Coordinating State. C memory is the part of the address space that contains the coor-

dinating state of the computation. Since the execution of Mt is isolated from the execution

of parallel threads Ts, mechanisms are needed via which the threads can coordinate their

actions. The coordinating state provides memory where all state needed for coordinating

actions (e.g., actions in control component) is maintained. Similar to P memory, C memory

is further divided into a number of C spaces, each corresponding to one parallel thread.

14



2.2 Implementation Of CorD

There are three key aspects of CorD model, namely Thread Interactions, Memory

State Separation, and Misspeculation Check and Recovery. This section describes their

implementations one by one.

2.2.1 Thread Interactions

Spawning Speculative Threads. The main thread executes non-speculative regions.

When it reaches a parallelizable region for the first time, it needs to spawn the speculative

parallel threads. This can be implemented by calling thread creation functions such as

pthread create(). A task is then assigned and performed speculatively by each parallel

thread. In particular, the computational statements in a task are encapsulated into a

function, whose pointer is passed to the thread creation function as a parameter. The input

data is provided by the main thread. If the main thread reaches another parallel region,

spawning new threads is not necessary because the speculative threads created earlier can

be reused. Only when the entire execution reaches the end, all speculative threads exit.

Copying Operations. When a parallel thread starts a speculative computation, it re-

quires the input data and the values of context variables (i.e., variables that are used before

being defined) to be present in its P space. When a parallel thread finishes a speculative

computation and the results are validated, all produced data need to be move back to D

space. Therefore, a mechanism is needed to transfer data between D space and P space.

This mechanism is implemented through copying operation in CorD. In particular, copy-in

refers to the operation that copies data values from D space to a P space and copy-out refers

15



to the operation that copies data values from a P space to D space.

When copying operations are performed to transfer data, certain information has

to be maintained for consistency. In particular, when the data value is copied-in, both its

source and destination address have to be remembered. Thus, when this value is changed

by a parallel thread, copy-out operation can update the correct memory location in D. To

achieve this, the mapping table is required for copying operation. It is allocated by the main

thread for every parallel thread. As shown below, an entry in the mapping table contains

five fields.

D Addr P Addr Size Version WriteFlag

The D Addr and P Addr fields provide the corresponding addresses of a variable in

the D state and P state memory while Size is the size of the variable. Version is the version

number of the variable when the value is copied from D state to P state memory. It is used

during misspeculation detection which will be described later. The WriteFlag is initialized

to false when the value is initially copied from D state to P state memory. However, if

the parallel thread modifies the value contained in P Addr, the WriteFlag is set to true by

the parallel thread. During the result-committing stage, this flag is examined to determine

which variables need to be copied out.

2.2.2 Implementing State Separation

Since the D and P memories are used by all threads, they must support stack,

global, and heap sections and each of these sections must provide state separation.

16



Figure 2.3: Separation Of Stack And Global Section.

Stack Separation. For a sequential program, all local variables are allocated on the stack

and accessed through a stack pointer. When multiple threads co-exist, each of them has its

own stack and stack pointer as shown in Figure 2.3. If POSIX threads on Linux are used,

this is automatically achieved by the pthread library and OS. The default size of the stack

allocated for each thread is 10M.

To avoid stack overflow, a safety check needs to be performed when a stack grows.

This is also automatically achieved by the OS. In particular, when the size of a stack exceeds

its limit, the OS sends a signal to the running process. In our execution model, this signal is

captured by the process. Within the signal handler, the size of each parallel thread’s stack

can be reset (e.g., by calling the functions pthread attr setstacksize()).

Global Section Separation. Variables stored in the global section can only be used by

the main thread. Parallel threads need to maintain speculative copies of these variables

17



to achieve state separation. However, creating a copy of the entire global section for each

parallel thread is wasteful because parallel threads do not run any more after they complete

the speculative computations. Therefore, only one global section is maintained which is

used by the main thread. For every global variable used by a parallel thread, a local copy is

created in the thread local storage above the parallel thread’s stack as shown in Figure 2.3.

As a result, the overflow check is not needed on the global section because its size is not

increased at runtime.

Heap Separation. The heap is used to support dynamic memory allocation in a se-

quential program. The allocation is performed through a memory allocator such as malloc

library call. In the thread based execution model, however, a separate heap does not have

to be maintained for each thread. This is because it is very hard to predict how much of

heap space a thread will use at runtime. Thus, only one heap is used by the whole process.

Logical separation can be achieved as follows. When a heap chunk is allocated to the main

thread, it is considered as D space heap. If it is allocated to a parallel thread, it is con-

sidered as P space heap. The safety check of heap access is simply done by checking the

return value of the memory allocator. Specifically, if a malloc call fails in a parallel thread’s

execution, the parallel thread will free all the memory resources and are terminated.

Besides the D state and P state that support the execution of different threads, a

buffer is also allocated for each parallel thread to coordinate the execution of the parallel

thread and the main thread. This buffer is essentially the C space for a parallel thread. If

a variable (stack, global or heap) maintained by the main thread in D space is used by a

parallel thread, a local copy of the variable is created in the corresponding P space. The

18



Figure 2.4: Separation Of Heap.

mapping information of this variable (i.e., its D space address and its P space address) needs

to be stored in the buffer. C state is essentially the collection of all such buffers. In the

implementation, the main thread allocates them by calling the malloc function. Thus, they

are also on the heap at runtime. Each of them is deallocated when the corresponding parallel

thread finishes its execution. Note that although message buffers can be implemented

through the pipe function call, and thus allocated by the OS in the kernel space (not

shown in the figure), they still conceptually belong to the C space in the execution model.

Figure 2.4 illustrates how the heap of a process is used in our execution model.

The figure shows that six heap chunks have been allocated. Two are allocated by the main

thread, and thus considered in D state. Two chunks requested by parallel threads P1 and

P2 respectively are considered in P state. Essentially, they are the duplicate copies of some

D state heap chunk in the speculative state. Another two are allocated for coordinating

19



the main thread and parallel threads, so they are logically in C state. The rest of heap is

unused. The location of each memory chunk in the heap is decided by the memory allocator

at runtime.

2.2.3 Misspeculation Detection And Recovery

A misspeculation occurs when a speculative computation reads a data value before

it is produced by an earlier computation. The misspeculation check is performed by the main

thread in sequential order. In particular, the main thread performs the misspeculation check

for a parallel thread performed the earliest task among all tasks being currently performed

by all the parallel threads.

Misspeculations detection algorithm considers each data value speculatively read

by the committing parallel thread. The main thread examines if any such value is updated

during the execution of an earlier committed task to detect misspeculation. Thus, a global

version of each variable in D state memory that is potentially read and written by parallel

threads needs to be maintained. This version is incremented every time the value of the

variable in D state memory is modified during the committing of results produced by parallel

threads. For each variable in D state memory, if it is copied into a parallel thread’s P space,

its global version is also copied into the version field of the corresponding entry in the

mapping table.

When a parallel thread t informs the main thread that it has completed a specu-

lative task, the main thread performs the misspeculation check by consulting the mapping

table and accordingly taking the actions shown in Figure 2.5. The main thread compares

the current version numbers of variables with the version numbers of the variables in the

20



1: foreach variable v that has an entry e in the mapping table {
2: if (e.version != v.global version){
3: discard all results and ask t to reperform the task;
4: return SpeculationFail;
5: }
6: }
7: foreach variable v that has an entry e in the mapping table {
8: if (e.WriteFlag){
9: copy-out v;
10: v.global version++;
11: }
12: }
13: return SpeculationSuccess;

Figure 2.5: Misspeculation Detection - Algorithm 1.

mapping table. If a version number does not match, then the main thread concludes that

misspeculation has occurred (line 1-5). It ⁀discards the results and ask the parallel thread to

reperform the task. If all version numbers match, then speculation is successful. Thus, the

main thread commits the results by copying the values of variables for which the WriteFlag

is true from P state memory to D state memory. The global version of the copied variable

is also incremented by one (line 6-12). Note that if the WriteFlag is not true, then there is

no need to copy back the result as the variable’s value is unchanged.

Note that the results produced by speculative threads are also committed in se-

quential order. If a misspeculation occurs for a thread, the main thread waits for this thread

to finish the non-speculative reexecution before committing the correct results to D space.

Next, the main thread moves to the misspeculation check for the next speculative thread.

This is important for ensuring that the results of the parallelized program are consistent

with the results of the sequential program.

21



2.3 Summary

This chapter presented a runtime execution model, CorD, to support speculative

parallelization. The model requires one main thread that executes non-parallelizable regions

and multiple parallel threads that execute parallelizable regions. The entire memory space is

divided into three disjoint partitions such that the execution of each thread is isolated. The

implementation of the key operations of CorD, namely thread interactions, state separation,

and misspeculation detection were also described in this chapter.

22



Chapter 3

Speculative Parallelization Of

Streaming Applications

A streaming application refers to an application that performs various computa-

tions such as parsing and compression on an input to produce the output. Since the input

is usually very large, such applications employ a loop to process the input piece by piece.

Figure 3.1 shows the typical pattern of streaming applications.

Repeat:

1: Read some input into a buffer;
2: Process the data in the buffer;
3: Generate output;

Figure 3.1: Pattern of Streaming Applications.

Processing of data during different iterations is usually independent and cross-

iteration dependences arise infrequently. Therefore, step 2 forms the body of the loop

during speculative parallelization. This chapter presents parallelization transformations

that enable the above parallelism to be exploited using CorD. This chapter is organized as

23



follows. Section 3.1 presents a profile-guided algorithm for speculative parallelization, which

effectively identifies the speculative body of a streaming application. Section 3.2 proposes a

scheme to optimize the copying operations for CorD. Section 3.3 shows the transformation

that is performed by the compiler. Section 3.4 discusses two variants of loop parallelization

which allows a better performance to be obtained in certain situations. Section 3.5 shows

the experimental results and section 3.6 gives the summary.

3.1 Speculative Parallelization Algorithm

Based upon the analysis of several streaming applications, it was determined that

a loop iteration can be partitioned into the prologue, speculative body, and the epilogue.

The algorithm for performing the partitioning first constructs the prologue, then the epi-

logue, and finally everything that is not included in the prologue or the epilogue is placed in

the speculative body. Profiling is used to distinguish frequently arising cross-iteration de-

pendences from infrequently arising cross-iteration dependences. Below is the construction

of the prologue and the epilogue:

Prologue. The prologue is constructed such that it contains all the input statements that

read from files (e.g., fgets()). This is because such input statements should not be executed

speculatively. In addition, an input statement within a loop is typically dependent only

upon its execution in the previous iteration – this loop carried dependence is needed to

preserve the order in which the inputs are read from a file. Therefore input statements for

multiple consecutive loop iterations can be executed by the main thread before the specu-

lative bodies of these iterations are assigned to parallel threads for execution. Loop index

24



update statements (e.g., i++) are also included into the prologue, as the index variables can

be considered as the input of each iteration and hence should be executed non-speculatively.

Epilogue. The epilogue is made up of two types of statements. First, the output state-

ments are included in the epilogue because output statements cannot be executed specu-

latively. If an output statement is encountered in the middle of the loop iteration or it is

executed multiple times, then the code is transformed so that the results are stored in a

memory buffer and the output statements that write the buffer contents to files are placed

in the epilogue which is later executed non-speculatively by the main thread. Second, a

statement that may frequently depend upon another statement in the preceding iteration

is placed in the epilogue if the probability of this dependence manifesting itself is above a

threshold. This is obtained through the analysis of profiling results. Any statements that

are control or data dependent upon statements already in the epilogue via an intra-iteration

dependence are also placed in the epilogue.

Figure 3.2 illustrates the partitioning of a loop body. In the for loop shown on the

left, the first statement is a typical input statement that reads data from a file and stores

it into a buffer. Hence, it is placed into the prologue. Then the epilogue of this loop is

constructed. First, all output statements (lines 5 and 12) are added in the epilogue. Since

the profiling information can reveal that a cross-iteration dependence at line 10 is exercised

very often, this statement is also added to the epilogue. Thus, the epilogue of this loop has

three statements, as shown by the code segment to the right in Figure 3.2. Note that in

this example, all three statements appear in the middle of the loop. Thus, a buffer is used

to store the information of epilogue statements such as the PC of statements and values of

25



Figure 3.2: Partitioning A Loop Into Prologue, Speculative Body, And Epilogue.

the arguments. When the epilogue is executed by the main thread, the information stored

in this buffer is referenced.

After the prologue and epilogue of a loop are identified, the rest of the code is

considered as the speculative body as shown in Figure 3.2. Note that line 4 may introduce

cross-iteration dependence because of the accesses to variable set which is also referred to

as a live-in variable. However, if the profiling results show that this dependence seldom

manifests itself, a speculation is performed on this variable.

Once a loop is successfully partitioned, optimistic parallelism in the speculative

loop body has been extracted and ready to be exploited. Figure 3.3 shows how threads in

CorD actually exploit this parallelism. The left figure shows the static version of a loop

is divided into three sections: the prologue, the speculative body, and the epilogue. The

26



Figure 3.3: Thread Execution Model.

sequential execution of four iterations of the loop is shown in the middle. The corresponding

speculative parallel execution is shown on the right. The main thread (Mt) non-speculatively

executes the prologues and epilogues, while the parallel threads (T1 and T2 in the example)

are created to speculatively execute the bodies of the iterations on separate cores. Specula-

tive execution entails optimistically reading operand values from non-speculative state and

using them in the execution of speculative bodies. If the speculations are successful, then

the total execution time is reduced as pairs of consecutive iterations are executed in parallel.

If more parallel threads are used, the execution time can possibly be further reduced.

27



3.2 Optimizing Copying Operations For CorD

Since state separation of CorD model presents a clear and simple model for in-

teraction between the non-speculative and speculative computation state, it is amenable

for implementation through compiler and runtime support. However, this simplicity comes

at the cost of copying overhead. The compiler can play an important role in minimizing

copying overhead. Through compile time analysis the subset of non-speculative state that

must be copied to the speculative state is identified. In particular, if the compiler identifies

data items that are not referenced by the speculative computation, then they need not be

copied. Moreover, shared data that is only read by the speculative computation, need not

be copied as it can be directly read from the non-speculative state.

In the above discussion, it is assumed that all data locations that may be accessed

by a parallel thread have been identified and thus code can be generated to copy the

values of these variables from (to) D state to (from) P state at the start (end) of parallel

thread speculative body execution. Let us refer to this set as the Copy Set. This section

discusses how the Copy Set is determined. One approach is to use compile-time analysis

to conservatively overestimate the Copy Set. While this approach guarantees that any

variable ever needed by the parallel thread would have been allocated and appropriately

initialized via copying, this may introduce excessive overhead due to wasteful copying. The

main causes of Copy Set overestimation is that even when the accesses to global and local

variables can be precisely disambiguated at compile-time, it is possible that these variables

may not be accessed as the instructions that access them may not be executed.

28



Reducing Wasteful Copying. To avoid wasteful copying, a profile-guided approach is

used. It identifies data that is highly likely to be accessed by the parallel thread and thus

potentially underestimates the Copy Set. The code for the parallel thread is generated such

that accesses to data items are guarded by access checks that determine whether or not a

data item’s value is available in the P state memory. If the data item’s value is not available

in P state memory, a Communication Exception mechanism is triggered that causes the

parallel thread to interact with the main thread to transfer the desired value from D state

memory to P state memory. Specifically, a one-bit tag is used for each variable to indicate if

the variable has been initialized or not. Note that uninitialized variables, unlike initialized

ones, do not have entries in the mapping table. The accesses (reads and writes) to these

variables must be modified as follows. Upon a read, the variable’s tag is checked and if

the tag is not initialized, then the parallel thread performs actions associated with what is

called a Communication Exception.

A request is sent to the main thread for the variable’s value. Upon receiving

the response, which also includes the version number, the variable in P state memory

is initialized using the received value, and the variable’s entry in the mapping table is

updated. Upon a write, the WriteFlag in the mapping table is set and if there is no entry

for the variable in the mapping table, an entry is first created.

Optimizing Communication Exception Checks. Even for the variables which are

created in P state memory at the start of a parallel thread’s execution, some of the actions

can be optimized. First, not all of these variables require copying in and copying out from D

state memory to P state memory. Second, all the actions associated with loads and stores

29



of these global and local variables during the execution of a parallel thread may not be

required for all of the variables, that is, some of the actions can be optimized away. As

shown in Table 3.1, the variables are classified according to their observed dynamic behavior

which allows the corresponding optimizations.

Type of Variable Copying Needed Actions Needed

Copy In Copy In = YES; Put Actions at
Copy Out = MAYBE Stores

Copy Out Copy In = MAYBE; Put Actions at
Copy Out = YES Loads

Thread Local Copy In = NO; No Actions
Copy Out = NO

Copy In and Out Copy In = YES; No Actions
Copy Out = YES

Unknown Copy In = MAYBE; All Actions
Copy Out = MAYBE

Table 3.1: Variable Types in Parallel Threads.

A Copy In variable is one that is observed to be only read by the parallel thread

during profiling. Therefore its value is definitely copied in and no actions are performed at

loads. However, actions are performed at stores to update the WriteFlag in the mapping

table so that the value can be copied out if a store is executed. A Copy Out variable is one

that is observed to be written during its first access by the parallel thread while profiling,

and thus it is not copied in but requires copying out. However, actions are needed at loads

to cause a communication exception if the value is read by the parallel thread before it has

been written by it. Thread Local variables are ones that definitely do not require either copy

in or copy out, and Copy In and Out are variables that are always copied in and copied

out. Thus, no checks are required for variables of these types. Finally, all other variables

that are observed not to be accessed during profiling are classified as Unknown. If these

30



are accessed at runtime by a parallel thread, the accesses are handled via communication

exceptions and thus no optimizations are possible for these variables.

3.3 Transforming Partitioned Loop

This section shows the detailed form of the main thread and the parallel thread

created by the speculative parallelization transformation. The interactions between the

main thread and the parallel threads are first discussed. Then the details of the work

carried out by each of the threads are presented.

3.3.1 Thread Interactions

The main thread and a parallel thread need to communicate with each other to

appropriately respond to certain events. This communication is achieved via messages. Four

types of messages exist. When the main thread assigns an iteration to a parallel thread,

it sends a Start message to indicate to the parallel thread that it should start execution.

When a parallel thread finishes its assigned work, it sends a Finish message to the main

thread. When a parallel thread tries to use a variable that does not exist in the P space,

a communication exception occurs which causes the parallel thread to send an Exception

message to the main thread. The main thread services this exception by sending a Reply

message.

The main thread allocates a message buffer for each parallel thread it creates. This

message buffer is used to pass messages back and forth between the main thread and the

parallel thread. When a parallel thread is free, it waits for a Start message to be deposited in

its message buffer. After sending an Exception message, a parallel thread waits for the main

31



thread to deposit a Reply message in its message buffer. After sending Start messages to the

parallel threads, the main thread waits for a message to be deposited in any message buffer

by its parallel thread (i.e., for a Finish or Exception message). Whenever the main thread

encounters an Exception message in a buffer, it processes the message and responds to it

with a Reply message. If a message present in the message buffer of some parallel thread

is a Finish message, then the main thread may or may not process this message right away.

This is because the results of the parallel threads must be committed in order. If the Finish

message is from a parallel thread that is next in line to have its results committed, then the

Finish message is processed by the main thread; otherwise the processing of this message

is postponed until a later time. When the main thread processes a Finish message, it first

checks for misspeculation. If misspeculation has not occurred, the results are committed

and new work is assigned to the parallel thread, and a Start message is sent to it. However,

if misspeculation is detected, the main thread prepares the parallel thread for reexecution of

the assigned work and sends a Start message to the parallel thread. The above interactions

continue as long as the parallel threads continue to speculatively execute iterations.

3.3.2 Main Thread

The code corresponding to the main thread is shown in Figure 3.4(a). In addition

to executing the prologue and epilogue code, the main thread performs the following actions.

It calls init version table() (see Figure 3.4(b)) to initialize the version table that it

must maintain. Next it creates parallel threads one at a time and initializes them by

calling init thread (see Figure 3.4(c)). During the first call to the initialization routine

corresponding to a parallel thread, the main thread allocates the C space for the mapping

32



Figure 3.4: Code Transformation.

33



table and initializes the mapping table. In subsequent calls to the initialization routine for

the same thread, the mapping table is only initialized since it has already been allocated.

Copy operations are also performed by the main thread for the variables that are marked

as Copy In and Copy In and Out. Note that the P space into which values are copied

is allocated when a parallel thread is created. For unknown variables, no record in the

mapping table is setup. Instead, these variables’ one-bit tags are initialized to false. The

main thread also gets a new iteration by executing prologue code and then assigns it to the

newly created thread. After the initialization work, the main thread enters a main loop

where it first waits for messages from parallel threads and responds accordingly. It processes

Exception requests from all parallel threads until finally a Finish message is received from

the parallel thread that executed the earliest speculative iteration currently assigned to

the parallel threads (this is thread i in the code). Upon receiving this message, it calls

finish thread routine (see Figure 3.4(d)). This routine first performs checks to detect

misspeculation by examining the version numbers. If speculation is successful, it commits

the results and returns SUCCESS. Otherwise it returns FAIL and as a result the main

thread prepares the parallel thread for reexecuting the assigned iteration. Committing

the result is essentially implemented by performing copy-out operations by consulting the

mapping table. Once the results have been committed, the epilogue code is executed. Next,

the main thread executes the prologue code for the next available iteration and prepares the

idle parallel thread to execute this iteration. Finally, the value of i is updated to identify

the next parallel thread whose results will be committed by the main thread.

34



3.3.3 Parallel Threads

After its creation, each parallel thread executes function thread wrapper shown in

Figure 3.4(e). After entering the while loop, a parallel thread i waits for the start message

from the main thread. Upon receiving this message, it executes the speculative body code

and then sends the Finish message to the main thread. Note that the speculative body

code is also obtained by transforming its corresponding sequential code in couple of ways.

First, code is introduced to perform updates of the WriteFlag in the mapping table. The

above code is put immediately following every store access to variable p var which can be

of any type but thread local. This information is used by the main thread when the

copy-out operations are performed. Second, code for access checks must be introduced.

When a unknown variable is read, its one-bit tag has to be checked. If it is not true, that

means this variable has not been copied into the current thread’s P space, so we copy it

on the fly. Note that the above code is inserted immediately before every read access to

variable p var. Although copying on-the-fly seems to be complex and may potentially slow

down the execution due to the use of message passing, it does not cause much overhead

at runtime because of two reasons. First, these unknown variables are not accessed in the

profiling run and hence, are very unlikely to be accessed in the normal run. Therefore,

the likelihood of executing the corresponding access checks is very small. Second, the copy

operation for each unknown variable only needs to be performed once. For the subsequent

accesses, no request to the main thread has to be sent as the value has been copied into the

P space of the current thread.

35



Figure 3.5: Runtime Memory Layout For Sequential Version and Parallel Version.

36



3.3.4 Runtime Memory Layout

The previous section described how to transform the code from sequential ver-

sion to the parallel version. This section shows the execution difference between these two

versions via the comparison of the virtual memory layout under the 32-bit linux OS. Fig-

ure 3.5(a) shows an example of the sequential code with variables needing different types

of treatment under the copying scheme. In particular, g1 and g2 are global variables. The

main function calls func which has p1 and p2 as its parameters. Before the main loop

while, there are two local variables loc1 and loc2 declared in the func. The while loop

has already been partitioned into three parts. Note that in the body code, loc2 is classified

as a thread local variable as it is always defined before used. An unlikely taken branch

is introduced in which g1 and loc1 carry out a cross-iteration respectively. In other words,

speculations can be made on these two live-in variables since the two increment statements

are unlikely to be executed.

Figure 3.5(b) shows the virtual memory layout when the func is being executed

sequentially. The text segment starts at the bottom (0x8048000). The data and BSS

segments, where g1 and g2 are allocated, are next to it. Above these two segments, heap

starts growing towards higher virtual addresses. On the other side, the address that can be

used as the stack is from 0xc0000000 (3G) to lower addresses. All local variables, parameters

and the return address of the func are stored on the stack. In particular, right after the stack

frame for main, the parameters of func(e.g., p1 and p2) are stored. All local variables of

func (e.g., loc1 and loc2) are stored after the return address location. As the execution

continues, the stack grows and shrinks accordingly.

Figure 3.5(c) shows the virtual memory layout when the func is being executed

37



under the CorD execution model. First, the stack frame for func is split into several frames,

one for each thread. The very top frame is for the main thread which is identical to the

sequential version. The one next to it is the frame of the first parallel thread P1. This frame

contains one parameter (ThreadID), the return address, thread local variables (e.g., loc2),

copied variables (e.g., p g1 which corresponds to g1, p loc1 which correspond to loc1) and

unknown variables. Note that the copied variables have correct values at the start of the

parallel thread’s execution because of the copy-in operations performed by the main thread.

Other threads also have a similar stack frame which essentially is the P space in the CorD.

The C space in the CorD, as described earlier, is implemented through the malloc

function call. In other words, the mapping table for each parallel thread and the version

table for the main thread are allocated in the heap. From the figure, each entry contains

an address and its current version in the version table. For example, the global variable

g1’s current version is 1. The mapping table (P1’s mapping table is shown in the figure)

contains the mapping information of each copied variable. For instance, the address 0xD

(corresponding to g1) is mapped to the address 0xB (corresponding to p g1 in P1’s stack).

3.4 Loop Parallelization Variants

The loop parallelization algorithm developed in this section assigns individual iter-

ations of the loop to separate cores. Once an iteration is completed, its results are committed

to non-speculative state. However, there are situations in which it is more appropriate to

commit results of executing multiple iterations or results of executing a part of a single

iteration to non-speculative state. These variants of speculative loop parallelization are

discussed in this section.

38



Committing Results of Multiple Iterations. The performance of the parallel version

may be hindered by thread idling. If a parallel thread that is assigned work earlier, finishes

its work before some later threads are assigned work by the main thread, it has to wait for

the main thread to check its result. However, it may take a long time for the main thread

to finish assigning the later iterations to other threads. So during this period, this parallel

thread cannot do any other work but simply idle. This causes substantial performance

loss. This situation arises when relative to the number of cores being used, the work being

assigned to a single core in one step is quite small. Thus, to avoid thread idling, the work

assigned to each parallel thread can be increased in a single step, that is, the main thread can

assign two or more iterations of work to a parallel thread in a single step. This ensures that

every parallel thread stays busy while the main thread is still assigning the later iterations

to other parallel threads.

Committing Results of a Part of an Iteration. During the partitioning of the loop

body the algorithm constructed the speculative body in such a manner that it did not

contain any statements that are involved in frequently occurring (or definitely occurring)

loop dependencies. This was done because frequent dependences give rise to frequent mis-

speculations; hence making the performance of the parallel execution no better than the

sequential execution. Currently statements involving these dependences must be included

in the prologue of the epilogue. However, it is observed that in some programs the inclu-

sion of statements involved in frequent or definite dependences into the prologue or epilogue

yielded a very small speculative body. In other words most of the statements are part of the

prologue or epilogue and relatively few statements are actually contained in the speculative

39



body. Thus, significant performance enhancement in such situations cannot be expected.

It is observed that to address the above problem, and effectively exploit the par-

allelism available in loops, a loop iteration must be partitioned into multiple distinct spec-

ulative code segments. These speculative code segments are interrupted by statements

involving frequent or definite cross-iteration dependences and thus their execution across

parallel threads must be serialized. This modified approach yields a parallelized loop in

which misspeculations are once again an infrequent occurrence. Another consequence of

allowing multiple speculative code segments is that after one such segment is executed its

result must be committed before the execution of a parallel thread can proceed further.

In other words, misspeculation checks followed by commit or reexecute must be performed

multiple times for different speculative segments of the loop body.

Figure 3.6: Partitioning A Speculative Body Into Several Parts.

Figure 3.6 shows a loop requiring the partitioning of the loop body such that it

contains two distinct speculative code segments. On the left, a while loop contains typical

input and output statements which can be put into the prologue and epilogue respectively.

40



However, the rest of the statements cannot be put into a single speculative body because

of statement 4, which introduces a dependence across all loop iterations. Therefore, state-

ments 2 through 6 are divided into three parts as shown on the right: the first speculative

code segment, the serialized segment, and the second speculative code segment. During ex-

ecution, when each speculative code segment is started, the main thread performs copy-in

operations; and when each speculative code segment is finished, the main thread performs

the misspeculation checks. If speculation succeeds, copy-out operations are performed; oth-

erwise, only the failed part is reexecuted. The execution of statement 4 that intervenes the

execution of two speculative code segments never causes misspeculation as its execution

is serialized. It is further observed that the executions of statement 4 by different loop

iterations being executed in parallel can be carried out in any order, that is, they are com-

mutative [6, 38]. Thus, the updates to variable set can be expressed and implemented as

critical sections. Another thing that needs to be noted is that segment 1 in a later iteration

cannot be dependent on segment 2 in an earlier iteration. Otherwise, committing segment 1

may cause the results to be incorrect. This property can be checked through static analysis.

3.5 Experiments

3.5.1 Experimental Setup

The speculative loop parallelization approach described in this chapter has been

implemented and the experiments for a set of programs have been conducted. To specula-

tively parallelize loops, a profiler implemented using the Pin [48] instrumentation framework

is used to first profile the loop code to gather information such as the dependence graph and

41



dynamic access patterns of variables. Based upon the gathered profile data, the compiler

performs code transformation. The compiler infrastructure LLVM [44] is used as it allows

us to perform static analysis and customized transformation. All the experiments were

conducted under CentOS 4 OS running on a dual quad-core (i.e., total of 8 cores) 3.0 GHz

Xeon machine with 16GB memory.

The benchmarks used in the experiments are divided into two groups. The first

group contains five programs taken from SPEC [31] and MiBench [26] suites in which the

program transformation that creates a single speculative code segment is used, i.e., one loop

iteration or multiple loop iterations are assigned to a single parallel thread and after all of the

assigned work is finished the results are committed to non-speculative state. The programs

in this group include: 197.parser, 130.li, 256.bzip2, 255.vortex, and CRC32. The

second group contains the sequential version of five programs from the STAMP [55] suite of

programs and they include bayes, kmeans, labyrinth, vacation, and yada. The main loops

in all these programs contain definite cross-iteration dependences caused by commutative

statements. Thus, parallelization in these programs requires creation of multiple speculative

code segments from a single loop iteration which are intervened by statements involving

definite cross-iteration dependences.

Table 3.2 describes the characteristics of the programs used in the experiments. In

this table, the first column gives the program name. The profiling input is shown by column

Prof. Input and the column Exp. Input gives the input used in the experimental evaluation.

The next two columns show the contents of the prologue and epilogue of the parallelized

loop. The profiling results are analyzed to identify different communication types of each

variable used in the speculative body. The last four columns show the distribution of

42



Program Prof. Input Exp. Input Prologue Epilogue Vars. in Body
I O L IO

197.parser 1K file 36K file fgets printf 49 6 12 2

130.li 6 scripts 72 scripts i++ printf, var++ 30 0 3 6

256.bzip2 200K file 7.5M file fgetc fputc 12 8 11 1

255.vortex test/input train/input ++i fprintf 76 5 4 6

CRC32 one 4M-file 80 4M-files −−argc printf 1 0 2 1

bayes simulator non-simulator get a task update 4 0 4 1
input input TMLIST

kmeans n2048- n65536- loop++ update new 5 0 3 2
d16-c16 d32-c16 center

labyrinth x32-y32- x512-y512- get a task update 3 0 2 3
z3-n96 z7-n512 PVECTOR

vacation simulator non-simulator i++ None 6 0 5 2
input input

yada 633.2 ttimeu- get a task update region 2 1 2 4
1000000.2 var++

I-Copy In O-Copy Out L-Thread Local IO-Copy In and Out

Table 3.2: Characteristics of Benchmarks.

variables across these categories.

3.5.2 Performance

This section presents the results of execution speedups obtained using the par-

allelization algorithms. In this experiment, the baseline which is the sequential execution

time of the loop that was parallelized is first measured. Then the time of executing this

loop in the model with different numbers of parallel threads is measured. Figure 3.7 shows

the speedup for the the first group of programs (SPEC and MiBench programs). Figure 3.7

shows when the number of parallel threads increases, the speedup for all benchmarks goes

up linearly. The highest speedup achieved ranges from 4.1 to 7.8 across the benchmarks

when 8 parallel threads are used. It is also noticed that the performance of the model with

43



one parallel thread is slightly worse than with the sequential version for some benchmarks.

That is due to the copying, tracking and checking overhead. In fact, if only one core is avail-

able, the main thread is forced to perform all computations rather than spawning parallel

threads.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1  2  3  4  5  6  7  8

E
x
e
c
u
ti
o
n

 S
p

e
e

d
u

p

Number of Parallel Threads

197.parser
130.li

256.bzip2
255.vortex

CRC32

Figure 3.7: Execution Speedups For SPEC and MiBench Programs.

The data shown in Figure 3.7 was obtained by selecting loop parallelization that

reduced the effect of thread idling. In particular, with the exception of CRC32, thread idling

was observed in the four other programs whenever more than five parallel threads were

created. In fact it is observed that when a single iteration of work was assigned to each

parallel thread, thread idling caused performance to remain unchanged for 197.parser,

130.li, 256.bzip2, and 255.vortex when the number of threads was increased beyond

five threads. However, when multiple iterations were assigned to each parallel thread in

a single step, thread idling was eliminated and improvements in speedups was observed.

Figure 3.8(a)-(d) shows the speedups of these benchmarks with and without elimination of

thread idling.

Figure 3.9 shows the speedups for the second group of programs. Most of the

44



 0

 1

 2

 3

 4

 5

 1  2  3  4  5  6  7  8

S
pe

ed
up

(a) 197.parser

w/ Opt.
w/o Opt.

 0
 1
 2
 3
 4
 5
 6
 7
 8

 1  2  3  4  5  6  7  8

S
pe

ed
up

(b) 130.li

w/ Opt.
w/o Opt.

 0

 1

 2

 3

 4

 5

 6

 1  2  3  4  5  6  7  8

S
pe

ed
up

(c) 256.bzip2

w/ Opt.
w/o Opt.

 0

 1

 2

 3

 4

 5

 1  2  3  4  5  6  7  8

S
pe

ed
up

(d) 255.vortex 

w/ Opt.
w/o Opt.

Figure 3.8: The Effectiveness Of Handling Thread Idling.

computations performed in these programs are performed on either the global heap data or

the thread local data. The accesses to the global heap are the ones that give rise to serialized

code segments inside a loop which are commutative and thus as long as these regions are

executed atomically, the correctness will be ensured regardless their execution order. In

the implementation of the parallel versions, software transactional memory system [29] was

used to execute the commutative regions. The rest of the speculative code segments are

executed using the CorD model.

Figure 3.9 shows that for all 5 programs used, some benefit from parallelizing

the execution is obtained. However, the speedups results are smaller than those that

were observed for the first set of programs. This is because of several reasons. First,

in some benchmarks, the non-parallelizable code takes a significant amount of execution

time (bayes, yada). Second, the execution of serialized code limits the speedup that can

be obtained. Third, more interactions between the main thread and parallel threads are

45



 0

 0.5

 1

 1.5

 2

 2.5

 3

 1  2  3  4  5  6  7  8

E
x
e

c
u

ti
o

n
 S

p
e

e
d

u
p

Number of Parallel Threads

bayes
kmeans
labyrinth
vacation

yada

Figure 3.9: Execution Speedups For STAMP Programs.

required due to the partition of the body code which increases the overhead of using the

parallelization strategy.

3.5.3 Overhead Analysis

Time Overhead. Software speculative parallelization involves overhead due to instruc-

tions introduced during parallelization. This execution time overhead is measured in terms

of the fraction of total instructions executed on each core. The results are based upon an

experiment in which 8 parallel threads are used, and the overhead is broken down into five

categories as shown in Table 3.3. The second column Static Copy is the fraction of the

total number of instructions used for performing copy-in and copy-out operations by the

main thread. This overhead ranges from 0.02% to 5.28% depending on how many variables

need to be copied. The third column Dynamic Copy gives the fraction of instructions for

on-the-fly copying. The Exception Check column shows the fraction of instructions used by

parallel threads to check if a variable has been copied into the local space. According to

the results, these two numbers are very low for the benchmarks used. Another category

46



of overhead comes from the Misspeculation Checking. This uses 1%-2% instructions for

all SPEC benchmarks and less than 1% instructions for CRC32 and STAMP benchmarks

which do not have many variables to copy. Besides the above four categories, there are

other instructions executed for Setup operations (e.g., thread initialization, mapping table

allocation and deallocation etc.). The last column shows the setup overhead. In total, no

more than 7% of total instructions executed due to the execution model on each core.

Space Overhead. Since the memory is partitioned into three states during the execution,

and each parallel thread has its own C and P space, extra space certainly needs to be used

in the execution model. So the space overhead of the executions of parallelized loops is

measured. The space overhead is shown in Figure 3.10. The space used by the sequential

version serves as the baseline.

 0

 1

 2

 3

 4

 5

 6

 1  2  3  4  5  6  7  8

SpaceOverhead
ofLoopExecutio
n

NumberofParallelThreads
197.parser

130.li
256.bzip2

255.vortex
crc32bayeskmeanslabyrinthvacationvacation

Figure 3.10: Memory Overhead

The overhead for most benchmarks is between 1.3x-3.2x when 8 threads are used.

Given the speedup achieved for these benchmarks, the memory overhead is acceptable.

For 256.bzip2, a large chunk of heap memory allocated in D space is used during the

compression. In the execution model, each parallel thread makes a copy of this memory

47



Program Static Dynamic Exception Misspec. Setup
Copy Copy Check Check

197.parser 3.51% 0.33% 0.02% 1.76% 0.62%

130.li 0.08% 0 0 1.08% 0.07%

256.bzip2 1.32% 0.25% 0.06% 1.03% 0.48%

255.vortex 5.28% 0.04% 0.01% 1.25% 0.39%

CRC32 0.02% 0 0 0.01% 0.32%

bayes 0.43% 0 0 0.15% 0.11%

kmeans 0.57% 0 0 0.02% 0.38%

labyrinth 0.13% 0 0 0.01% 0.09%

vacation 0.89% 0 0 0.66% 0.30%

yada 0.87% 0 0 0.53% 0.26%

Table 3.3: Overhead Breakdown on Each Core.

space to execute the speculative body. Therefore, as more parallel threads are used, more

memory is consumed.

Program Sequential Version Parallel Version

197.parser 234K 239K

130.li 179K 183K

256.bzip2 53K 57K

255.vortex 1336K 1370K

CRC32 8K 10K

bayes 165K 170K

kmeans 47K 48K

labyrinth 106K 111K

vacation 170K 173 K

yada 182 186K

Table 3.4: Size of Binary Code.

Besides the dynamic space consumption, the increase in the static size of the

binary is also examined. As shown in Table 3.4, the increase varied from 1K to 5K for most

programs, a very small fraction of the binary size.

48



3.6 Summary

This chapter presented a profile-guided parallelization algorithm to speculatively

parallelize streaming applications. Optimizations were proposed to reduce the communica-

tion overhead between parallel threads and the main thread. The experiments performed

show that the presented approach achieves significant speedups on a server with two Intel

Xeon quad-core processors.

49



Chapter 4

Handling High Misspeculation

Rate Via Multiple Speculations

The presence of cross-iteration dependences in a sequential loop causes misspec-

ulations when loop iterations are speculatively executed in parallel. If such dependences

frequently take place at runtime, the speculative parallelization technique cannot improve

the program performance. The reason is that these frequent dependences cause the spec-

ulation to fail very often and thus wipe out the benefits of parallelism. Although the idea

of dividing one loop iteration into different segments proposed in the previous section can

alleviate this problem to some extent, it is not a general solution because it requires absence

of cross-segment dependences and commutative property of statements involved in frequent

cross-iteration dependences. Another solution is to explicitly pass the value of live-in vari-

ables [88] between threads. Synchronization and send/receive instructions are inserted by

the compiler to enforce cross-iteration dependences. However, a receive call blocks the re-

cipient till the needed value becomes available. This blocking results in a significant degree

50



of serialization. In addition, significant amount of time is spent on communication between

different threads when considerable number of variables’ values are communicated.

This chapter proposes a general technique, called multiple speculations, which com-

bines a realization of CorD model and multiple value prediction to speculatively parallelize

loops in a sequential program that have frequently arising cross-iteration dependences. The

organization of this chapter is as follows. Section 4.1 motivates the work and describes how

multiple speculations are incorporated in CorD. Section 4.2 describes how multiple value

predictions are generated and how the code is transformed. A runtime adaptive scheme

for exploiting more parallelism is proposed in section 4.3. Section 4.4 gives the evaluation

results followed by the summary.

4.1 Overview Of Multiple Speculations

4.1.1 Motivation

Figure 4.1 shows a speculative parallelization example where the loop iterations

can be speculatively executed in parallel. Specifically, there is a cross-iteration dependence

on variable latest config between statements at lines 1 and 9. If the condition cond1 is always

or frequently true at runtime, using speculative parallelization technique cannot speed up

the execution as misspeculations occur frequently. The dependence carried by variable

latest config causes the loop iterations to be executed sequentially. Moreover, the overhead

of the technique such as isolating speculative states and dealing with misspeculation could

make the performance even worse.

To address this problem, this section presents a technique multiple speculations,

51



var1=... ;
var2=... ;
...

while (...){
1 compute(..., latest config);
2 if (cond1){
3 if (cond2){
4 x = var1;
5 }
6 else {
7 x = var2;
8 }
9 latest config = config[x];
10 }

...
}

...

Figure 4.1: Speculative Parallelization Example.

that allows the parallelism to be exploited when such frequent dependences exist. The

key idea is that for every two consecutive iterations that have data dependences on some

variables (a.k.a live-ins), the value of such variables for the second one is predicted. If

the prediction is correct, then executing these two iterations in parallel using the predicted

values for the later iteration yields a speedup. For example, in Figure 4.1, if both cond1 and

cond2 are always true, then predicting latest config to be config[var1] enables speculative

parallelization to succeed and lead to a better performance.

However, a single predicted value may not be very accurate. For instance, consider

the scenario for Figure 4.1 in which cond1 and cond2 keep evaluating alternately to true

and false. Thus, a single prediction for the value of latest config is not effective as it is not

frequently successful. To solve this problem, multiple predictions are employed, each giving

rise to a distinct version of the second iteration. The idea is that among all predictions

that are chosen, it is highly likely that one prediction will turn out to be correct and the

52



corresponding version will generate the correct result. More importantly, the correct result

is computed in parallel with the execution of the first iteration. In other words, parallelism

is exploited by executing two consecutive iterations in parallel.

In the example shown in Figure 4.1, for the second iteration of every pair of

consecutive iterations, three versions that are capable of generating the variable latest config

based on different path selections can be created. Table 4.1 shows these versions. In the

first version, it is assumed that both cond1 and cond2 are true in the first iteration and thus

latest config is set to config[var1] when the computation starts in the second iteration. In

the second version only cond2 is assumed to be false, and latest config is set to config[var2]

at the beginning of the second iteration. Finally, in the third version cond1 is assumed false

in the first iteration. Thus, the computation of the second iteration can be directly started.

For these three versions, one of them must be correct and thus lead to an execution speedup.

This prediction method is essentially based upon collecting data slices of latest config along

different paths and creating a version of the loop iteration for each distinct data slice. Next

section describes further details of the prediction method.

4.1.2 Adapting CorD For Multiple Speculations

To support the Multiple Speculations scheme, the CorD model presented in chapter

2 needs to be adapted. A program is still compiled to contain one main thread and multiple

parallel threads. However, for any two consecutive iterations, the first iteration is executed

by the main thread and each version of the next iteration is executed by a parallel thread.

Figure 4.2 shows the thread execution model. The original sequential execution,

which consists of 4 iterations, is shown on the left. The corresponding parallel execution

53



Version Path In An Earlier Prediction In A Later
Number Iteration Iteration

1 cond1=true, x=var1;
cond2=true latest config= config[x];

2 cond1=true, x=var2;
cond2=false latest config= config[x];

3 cond1=false No Prediction Code

Table 4.1: Three Versions For Generating latest config.

is shown on the right. There is one main thread and multiple parallel threads. The main

thread executes iteration 1 and 3 while parallel threads execute different versions of the

iterations 2 and 4. A parallel thread does not begin execution until it receives the start

signal from the main thread.

The dark region at the start of each parallel thread represents execution of code

that predicts the values of the shared data (live-in variables) that are to be computed by

the previous iteration. Following this code, the computation of the current iteration is

performed. The dark region at the end of the main thread’s execution represents execution

of code that validates the results. After finishing its own computation, the main thread

needs to identify the parallel thread executing the correct version of the next iteration, and

uses its result to continue the execution. The parallel thread that generates the correct

result is also called the winner. Figure 4.2 shows that parallel threads P2 and P3 are the

winners for iterations 2 and 4 respectively. In this execution model, every two dependent

iterations can be executed in parallel and hence the theoretical speedup for the parallel

execution is 2.

54



Figure 4.2: Thread Execution Model.

4.2 Basic Scheme Of Multiple Speculations

4.2.1 Choosing Parallelization Candidate

The multiple speculations technique is based on value predictions, and therefore

resolves the situation where tasks of a program cannot be done in parallel due to depen-

dences. A loop is a good candidate for multiple speculations if the following two conditions

are satisfied:

• The loop has frequent cross-iteration dependences; and

• The values carried by cross-iteration dependences are predictable.

The first condition requires the examination of cross-iteration dependences. If

the ratio of the number of iterations involving such dependences to the total number of

55



iterations is above a threshold, the dependence is considered as being frequent.

The second condition emphasizes that values of live-in variables are predictable.

A variable is considered to be predictable if its value can be computed through a small

backward data slice [2]. This can be checked by analyzing the trace of each iteration in

the profiling run and computing dynamic slices from the traces. If a variable’s slice is very

large, the slice can be further shrunk by applying some value prediction methods. More

details are described in section 3.2.

The dependence frequency and predictability conditions must both be satisfied

for the application of the technique. They both can be checked based on the information

collected from the profiling run. Note that if the first condition is not satisfied, then the

program is a good candidate for application of the approach described in the previous

chapter or other speculative parallelization approaches [15, 34, 38, 40, 41].

4.2.2 Generating Multiple Versions

Using Data Slices and Control Flow Paths. To construct a speculative version of the

second iteration, the value prediction code of live-in variables needs to be inserted before

the original loop iteration code. The most accurate value prediction for a variable is to

compute the value by executing its full slice extracted from the first iteration. However,

the size of the full slice can be as large as the computation of the whole iteration. Using

such a slice to obtain the value is the same as executing the two iterations sequentially.

To construct small prediction code and take advantage of the multiple value pre-

diction model, following steps are used to generate multiple versions of the second iteration.

First, only the backwards data slices of a live-in variable needs to be computed. All the

56



Figure 4.3: Trace Of Figure 4.1.

control dependences and the dependence chains of predicates are removed. Since different

control flow paths may be taken in the first iteration, the data slice is computed on each

different path. Consequently, multiple data slices are obtained for a live-in variable. At this

point, multiple versions can be created for the second iteration based on different control

flow paths taken by the first iteration. Specifically, each path corresponds to one version

and the data slice on that path is used to predict the live-in variable. The data slice and

path information are computed based on the profiling trace. Figure 4.3 shows an example

profiling trace of the while loop in Figure 4.1.

In the example, three things are observed. First, there exists a frequent loop

dependence on variable latest config because two thirds of the iterations are involved in a

dependence on variable latest config. Second, there exist three different ways or data slices

for computing this variable as shown in iterations i, j and k. All three are very small in

comparison to the computation of the whole iteration. Therefore, three versions are created

for the second iteration. Last but not the least, the path execution frequency, which equals

57



to the frequency of the occurrence of each kind of slice, can be easily computed. This

number is used to compute the version confidence (VC) which reflects the probability of a

version being correct.

VC = path frequency × prediction confidence

The prediction confidence for each live-in is always 1 if a data slice is used as the

prediction code. If there are multiple live-ins, their data slices are merged for the same

control flow path. In other words, one big data slice is created, that is a union of all live-in

variables’ slices for each path and use it as the prediction code. The overall prediction

confidence is the product of individual live-in’s confidence, which is still 1 in this case.

Reducing Data Slice on Each Path. Although by using data slices and path fre-

quencies in generating multiple speculative versions, the likelihood of covering the correct

prediction of live-in variables is greatly increased, the performance can still be limited due

to large sizes of the data slices. For example, if variables var1 and var2 in Figure 4.1 are

computed within the loop, then the data slices of latest config may be very large. Besides,

merging the slices of multiple live-in variables can also lead to a large slice. Executing a

large slice in each parallel thread can nullify the benefits of parallelism.

To tackle this problem, the data slice on each path can be reduced by computing a

partial slice, where the value of a live-in variable can be computed based on the predictions

of other variables in the original slice. Given the data slice on each control flow path, the

algorithm shown in Figure 4.4 is used to traverse the slice backwards and construct the

prediction code of a live-in variable.

58



function compute partial slice(){
input = a data slice of var;
output = {}; //prediction code
partial slice = {};//partial slice of var
size = predefined maximum size of output;
i = 0;
OCBQ = 0;
boundary = a FIFO queue;

1. boundary.enqueue(var);
2. while(i < size) {
3. c = get predictability(boundary)
4. if (c > OCBQ) {
5. ouput = prediction stmt(boundary) +
6. partial slice;
7. OCBQ = c;
8. }
9. v = boundary.dequeue(var);
10. stmt = the definition of v in input;
11. partial slice += {stmt};
12. boundary.enqueue(source variables in stmt};
13. i++;
14. }
15. return output;
}

function get predictability(){
input = a set of variables;
overall confidence = 1;

16. for each var in input{
17. c1 = valuePredictor1 confidence(var, trace);
18. c2 = valuePredictor2 confidence(var, trace);

...
19. cN = valuePredictorN confidence(var, trace);
20. var.pred flag = method i whose confidence is the highest;
21. overall confidence *= max(c1,c2,...,cN );
22. }
23. return overall confidence ;
}

Figure 4.4: Prediction Code Construction For var.

59



The idea behind this construction is that a point in a data slice is searched, where

all variables in the slice can be either computed or predicted with high confidence using

some simple value predictor. The search range is limited by a predefined value size (line 2

and 13), which can be set to a fraction of total number instructions in the iteration.

In the algorithm, the boundary, implemented as a FIFO queue, stores those vari-

ables that need to be predicted to execute the statements stored in partial slice, which com-

pute the remaining variables appearing in the slice. This boundary queue initially contains

the live-in variable var (line 1), and is used to traverse the slice backwards in a breadth-first

fashion. Specifically, in each search iteration, the first variable in the boundary is popped

out (line 9), and its definition in the slice is identified and stored in the partial slice (line

10-11). After that, all source variables in the definition are pushed into the boundary (line

12).

A function is called every time the boundary queue changes (see line 3 which calls

get predictability()). It looks up the trace of the profiling run to find the values of every

variable stored in the queue (also called boundary variables). Since each variable may have

a different value in a different loop iteration, a value sequence is made for each variable

by considering its value at the beginning of each iteration. Then different value predictors

are applied on this sequence to compute a confidence number of the prediction (line 17-

19). For every variable, its prediction method is chosen by identifying the one with the

highest confidence number. This prediction method is stored in the global flag pred flag

maintained for the variable (line 20). These highest numbers are multiplied and store the

result into overall confidence (line 21). This product is used as the overall confidence of the

boundary queue (OCBQ) as it indicates how good the combined prediction of all variables

60



in the current boundary queue is. A boundary queue that has the highest OCBQ is used to

construct the prediction code, which basically contains the predictions of variables in the

boundary and the statements in the partial slice (line 3-6). The function prediction stmt

is called every time a higher OCBQ is found (line 4-8). When generating the prediction

statements for each variable, it uses the best prediction method determined in function

get predictability.

To construct function get predictability, three different value predictors are used,

last value predictor [47], stride predictor [68] and context predictor [86]. In the last value

predictor, the same value is assumed as being used again. Therefore, the last used value

needs to be saved. The stride predictor assumes that two consecutive values of a variable

have a constant difference (stride). Therefore, the most recent stride and values are used

to predict the next value. The context predictor assumes that the most recent values are

most likely to be used. Thus, it maintains a history of most recent values (normally 4) in

a buffer. The prediction is made by referring to the buffer. The confidence of a method is

defined as the percentage of the correct prediction.

If a version is constructed through a partial slice instead of a complete data slice,

its VC is computed using OCBQ instead of 1.

VC = path frequency × OCBQ

When more than one live-in variable is considered, this algorithm needs to be

applied to all their data slices. The generated prediction code is merged if the data slices

are on the same path. As a result, the VC is computed using the overall OCBQ of each

61



path, which is the product of individual live-in’s OCBQ.

Figure 4.5: An Example Of Reduced Slice Construction.

Consider the example in Figure 4.5. Suppose A is a live-in variable. On the left,

the backward data slice of A on one control flow path is shown. If the slice is very large,

the algorithm can be used to compute the prediction code for A. At the beginning, A is

the only variable in the boundary queue. Since it can be predicted by one method with

0.2 confidence, A can be directly predicted and the prediction is put into the output (as

shown in the bottom right). Then this process continues to build better prediction code

by examining the data slice backwards. According to the algorithm, the first statement

A = B + 1 is added into the partial slice set and recompute the boundary queue, which

now contains B. Since the confidence of predicting B is 0.6 which is higher than 0.2, the

prediction code for A becomes the prediction of B and first statement. By continuing

backwards traversal of the data slice the highest confidence is found when predicting both

D and E. Therefore, the best prediction code for A can be obtained as shown on the top

right, and the corresponding OCBQ is 0.8.

62



Figure 4.6: Code Transformation.

63



4.2.3 Code Transformation

This section describes the code transformation performed by the compiler – Fig-

ure 4.6 shows the transformation. Given a loop as shown in Figure 4.6(a), trace-analysis

tools are first used to analyze the execution trace of the profiling run and generate the

prediction code for live-in variables for different paths. The prediction code is generated by

the algorithm in Figure 4.4. It is associated with a path represented by the branch history.

The transformed parallel version contains the code for the non-speculative thread shown in

Figure 4.6(b) and for the speculative parallel threads shown in Figure 4.6(c).

In Figure 4.6(b) one can see that the main thread creates parallel threads before

entering the loop. Each created thread executes the function func which contains a while

loop waiting for the “start” signal so as to execute the loop body shown in Figure 4.6(c).

After threads are created, the main thread enters the loop. It first creates multiple

versions of the next iteration by executing next spec. Then it executes the current iteration.

Finally, it checks the speculation of each thread by executing result validation.

Copying in the main thread. In function next spec, the non-speculative thread needs

to perform copying operations. In particular, the variables in the boundary set and the

variables that are modified in the loop body are copied to parallel threads’ space. This is

important to avoid data races. Figure 4.7 illustrates this with an example.

Assume B is a live-in variable and its backwards slice can be traced back to the

statement A = x; (Figure 4.7(a)). In other words, A is a boundary variable. To predict

B, a parallel thread needs to read A and execute the slice of B as shown in Figure 4.7(b).

However, the main thread modifies A after A is used for computing B. Hence, it is possible

64



Figure 4.7: An Example Of A Possible Race.

that the parallel thread reads the wrong value of A (y in the example) because of the race

condition, and leads to a misprediction of B. To overcome this situation, the main thread

should copy A for the parallel thread instead of allowing it to read A. After the copying

operation, the main thread sends the “start” signal to parallel threads.

Copying in parallel threads. Parallel threads also need copying operations to ensure

state separation. In particular, when a variable is about to be modified during the execution,

it is copied from D space to P space. This is well known as the copy-on-write scheme.

A mapping table is also needed for each parallel thread to store the variables’ mapping

information. This is used when the results are merged.

Result validation. The result validation work is performed by the main thread. It needs

to identify the correct version of the next iteration among all versions. To do that, the main

thread needs to track the branch history of the current iteration and record the values of the

boundary variables. When validating the result, the main thread simply needs to examine

this information of the prediction code in each parallel thread. If a match is found, the

corresponding parallel thread is the winner and its results are merged into non-speculative

65



state. Otherwise, the main thread has to reexecute the next iteration.

Committing results. The winner’s results are committed by the main thread. Since the

mapping table stored in C space contains the D space addresses of the modified variables,

the main thread simply walks through the table and performs memory copying operations.

4.3 Adaptive Multiple Speculation Scheme

Although in the basic scheme the parallelism between every two consecutive it-

erations is exploited if one of the versions of the second iteration is correct, there are two

problems with the basic scheme. First, it is possible that a small number of versions cover

all popular execution paths, and thus the VCs of these versions are very high. Therefore,

executing other versions, whose VCs are small, from the same iteration on additional cores

would be a waste of resources. Second, the computation of each version’s VC relies on the

path frequency information of the profiling run. In a real run, different inputs may exhibit

different path frequencies and thus change the VC. As a result, some versions may be less

likely to be correct than expected causing cores to be wasted. Wasting cores can dramat-

ically decrease the system throughput, when multiple applications co-exist on the system.

If the parallelized application runs alone, use of extra cores leads to waste of power.

To tackle this problem an adaptive technique is proposed for better use of available

cores. The key idea is to consider the versions with a higher VC as candidates for executing

additional iterations beyond the second iteration. Figure 4.8 illustrates the idea.

Suppose there are n different paths in a loop iteration. From the figure one can

see that iteration i+1 has n versions as denoted by v1, v2, ..., vn, each of which corresponds

66



Figure 4.8: Selecting Versions With A Higher VC.

to a certain path that might be taken in iteration i. The probability of each path being

taken is marked on the edge. The VC of each version is shown in the node. When the first

version of iteration i+1 is executed, it still takes one of n paths in its own computation. As

a result, the prediction code of iteration i+2 has n2 different cases leading to n2 different

versions. To calculate the VC of a version in iteration i+2, all the probabilities along the

path back to the root (iteration i in the example) need to be multiplied. For example, the

VC of the second version of iteration i+2 is the product of 0.3 (the probability of iteration

i+1 taking path 2) and 0.5 (the probability of iteration i taking path 1).

Suppose P is the number of available cores for parallel threads. To assign the

work to each parallel thread at runtime, the main thread identifies P versions that have the

highest VCs as follows. It first calculates the VCs of all versions of iteration i+1. A version

with the highest VC is then selected. Next, it computes the VCs of this version’s children

in iteration i+2. Assuming each iteration has n versions, it now has the VCs of n-1 versions

in iteration i+1 and the VCs of n versions in the iteration i+2. It continues to select a

67



version with the highest VC among these unselected versions and explores the children of

the selected version. If two versions have the same VC, their parents’ VCs are used to break

the tie. Once the number of selected versions reaches P , the exploration terminates and

the P versions are assigned to the parallel threads. In the example shown in Figure 4.8,

the versions represented by the shaded node are selected if P is 3. This version-selection

process in efficiently implemented using the maximum-heap data structure.

While the technique uses extra cores to improve performance, it is important to

avoid using cores to execute the versions that are unlikely to be a winner. This is important

for achieving fairness among multiple applications being executed. Therefore, a threshold

number is used to prevent a version with small VC from being executed. If the main thread

cannot find P versions with VCs larger than the threshold, then the extra parallel threads

are set to be inactive so that OS can schedule other applications on the remaining cores.

4.4 Experiments

4.4.1 Experimental Setup

Implementation. The multiple speculations technique was implemented using the Pin [48]

instrumentation framework and the LLVM compiler infrastructure [44]. Figure 4.9 shows

the procedure for parallelizing a sequential program. A sequential program is first compiled

into its executable with debugging information. Then a profiler is used to collect runtime

information for outermost loops under a small input – the profiler is implemented by instru-

menting the executable using Pin. The information collected includes dependences, values

of variables at start of each iteration, and control flow paths taken with their execution

68



Figure 4.9: Experimental Framework.

frequencies. The dependences are classified into intra-iteration and cross-iteration depen-

dences. The live-in variables are identified by looking at the cross-iteration dependences.

The prediction code of these variables on each path is identified using intra-iteration depen-

dences, value sequences, and control flow paths based on the algorithm shown in Figure 4.4.

Then, LLVM uses these predictions and a transformation template to recompile the sequen-

tial program into the parallelized version. Finally, the parallelized program is executed with

a larger input and collect the data under CentOS 4 OS running on a dual quad-core Xeon

machine with 16 GB memory. Each core runs at 3.0 GHz.

Benchmarks. In the experiments, ten programs are used. Five of them, namely dry,

fldry, llu, mechcall and objinst, are from the benchmark suite distributed with LLVM.

Another five programs are from the SPEC2000 suite: 164.gzip, 175.VCR, 255.vortex,

253.perlbmk and 300.twolf.

69



4.4.2 Performance

Performance of the Basic Scheme. Figure 4.10 shows the performance of each pro-

gram when the basic scheme is applied where for every two consecutive iterations, different

number of versions are created for the second one. It should be noted that throughout the

experiments, the maximum number of speculative versions (threads) allowed is 7 since the

machine has 8 cores and one core is reserved for the main thread. To avoid thread idling,

10-20 iterations for the programs from LLVM are unrolled. For the SPEC programs, no

unrolling is needed because the loop body is large enough.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1  2  3  4  5  6  7

P
ro

gr
am

 S
pe

ed
up

Number of Versions/Parallel Threads

gzip
vpr

perlbmk
vortex

twolf
dry

fldry
llu

mechcall
objinst

Figure 4.10: Execution Speedups.

As one can see, the speedup for all benchmarks increases faster at the beginning

and slower as more versions are used. The highest speedups ranging from 1.12x to 1.51x are

achieved when three or four versions are used. This can be explained by Figure 4.11 which

shows the cumulative speculation success rate of each benchmark when increasing number

of versions are executed in parallel. Figure 4.11 shows that using the first 3 to 4 versions

70



significantly increases the success rate and thus leads to a big increment in the speedup

for every program. When more versions are used, the total speculation success rate does

not significantly increase any more, so these later versions provide little contribution to the

performance. This is primarily because the paths corresponding to the later versions have

low execution frequencies. In these programs, three or four hot paths are taken with over

95% probability. Consequently, the versions corresponding to the infrequently taken paths

are not likely to be winners. In the case of mechcall and objinst, the control flow graphs are

very simple and there are only three ways of computing live-in variables. Therefore, using

three versions (threads) is enough to execute two consecutive iterations in parallel and the

other threads remain idle.

From Figure 4.11, one can also observe that all SPEC benchmarks except for gzip

have lower speculation success rates (less than 60%) than the other five LLVM benchmarks

even when 7 versions are executed. This is because the data slices of live-in variables in the

LLVM programs are small and hence the speculation success rates are only determined by

the path coverage of the speculative versions. For most SPEC benchmarks, however, the

value mispredictions on hot paths also cause the speculation to fail, and thus the success

rate is reduced. In the case of gzip, the value predictions of the live-in variables are very

accurate and hence a very high speculation success rate is observed.

Performance of the adaptive scheme. A set of experiments were also conducted for

each benchmark using the adaptive scheme. Figure 4.12 shows the results. For each pro-

gram, two numbers when different number of parallel threads are allowed are measured.

The first number is the speedup demonstrated by the line with markers. The left y-axis

71



7 versions
6 versions
5 versions
4 versions
3 versions
2 versions
1 version

  0%

  20%

  40%

  60%

  80%

  100%

objinstmech.llufldrydrytwolfvortexperl.vprgzip

 R
at

e 
of

 S
uc

ce
ss

fu
l S

pe
cu

lti
on

 

Figure 4.11: Speculation Success Rate.

shows the speedup values and the x-axis shows the maximum numbers of parallel threads

that are allowed. Compared to the basic scheme, additional speedups are achieved when

more threads are used. The highest speedups range from 1.18x (perlbmk) to 2.33x (gzip) for

all benchmarks. These numbers are achieved when 7 versions (parallel threads) are allowed

to be used. This is because the adaptive scheme executes a few versions of the third or even

fourth iteration at runtime. Since these versions are more likely to be correct than some

versions in the second iteration, executing them allows us to exploit more parallelism and

achieve higher speedups.

The second number measured is the average utilization of cores. Figure 4.12 shows

the results. As described in section 4, to avoid wasting CPU resources, versions with very

small VCs (less than 0.05 in the experiments) are not executed and the remaining threads

are set to inactive. To measure the actual CPU utilization of each parallelized program,

the number of versions that are selected every time by the main thread is recorded. The

selected versions are the ones whose VCs are not only above a threshold number, but also

among the P highest ones, where P is the maximum number of parallel threads allowed

72



(a) gzip (b) vpr

(c) perlbmk (d) vortex

(e)twolf (f) dry

(g) fldry (h) llu

(i)mechcall (j) objinst

Figure 4.12: Performance Of Adaptive Scheme.

73



(shown on the x-axis). Then the average of all these numbers obtained throughout the

whole execution is computed. The data are represented by the bars in each figure and

the y-axis on the right shows the values. For all benchmarks, the utilization is very high

when the maximum number of parallel threads allowed is less than 4. After that, some

programs may not always use all cores to execute the speculative versions. In particular,

when 7 threads are allowed, for vortex and perlbmk, the best speedup is achieved by only

using around 4 cores on an average. In other words, the main thread normally cannot find

more than 4 versions with VCs above the threshold at runtime and hence saves the extra 3

cores without sacrificing performance. This saving for llu and twolf, is about 2 cores, and

for vpr, dry, and fldry is one core on an average. In the case of gzip, objinst, and mechcall,

the parallelized program often uses all cores to exploit the parallelism.

Performance Comparison with Other Techniques. The effectiveness of the tech-

nique is compared with three other techniques. The first is DOACROSS [8, 45] where the

values of all live-in variables are passed through explicit messages. In the experiments, the

message-passing scheme is implemented through a POSIX pipe which supports send/receive

calls. The second technique is TLS, which optimistically assumes no cross-iteration depen-

dences exist. Since the technique is implemented purely in software, the CorD implemen-

tation described in the previous chapter is used for comparison. The last technique in the

comparison is Mitosis [61] where all live-in variables are pre-computed through full slices.

As mentioned earlier, the slice size is normally large. Therefore, an optimization has been

proposed in [61] where the data slice on the path that is most frequently taken is kept. Note

that Mitosis requires architectural support for speculative execution. For a fair comparison,

74



Mitosis is evaluated using the software speculation approach. Specifically, Mitosis is sim-

ulated by generating one version for each iteration and constructing the pre-computation

code by using the complete data slice on a path with the highest frequency.

DOACROSS
TLS
Mitosis
Ours

  0.00

  0.50

  1.00

  1.50

  2.00

  2.50

objinstmech.llufldrydrytwolfvortexperl.vprgzip

 S
pe

ed
up

 

Figure 4.13: Performance Comparison With Other Techniques.

Figure 4.13 shows the results of the comparison where 7 parallel threads are allowed

for all techniques. From the figure, one can see that the multiple-speculations technique

outperforms the other three techniques for all benchmarks. In most cases, DOACROSS and

TLS slow down instead of speeding up sequential executions. The reason for DOACROSS

is that it spends significant time on waiting for the values of live-ins, especially when such

variables are used very early by a speculative thread. In the case of TLS, being too optimistic

leads to excessive misspeculations.

Mitosis performs much better than DOACROSS and TLS for most programs.

Compared to TLS, Mitosis has lower misspeculation rate because it uses full data slice to

calculate live-ins. The reason for Mitosis not being as good as multiple-speculations tech-

nique is that it only uses one version of each iteration. Therefore, if more than one hot

75



path exists, which is true for most benchmarks as indicated in Figure 4.11, the misspecu-

lation rate is high because the speculation on later iterations is prone to be wrong. As a

result, the parallelization benefit is diminished. For gzip and perlbmk, Mitosis slows down

the execution because in these two programs, the size of live-in variables’ slices on the most

frequent paths is very large. Without value predictions, Mitosis executes the loop almost

sequentially and the overhead of the runtime system further degrades the performance.

4.4.3 Overhead Analysis

Time Overhead. The execution model imposes the overhead on the execution of the

parallelized program. This overhead is measured by breaking down the execution time into

different categories for the parallel threads and the main thread respectively.

Communication
Prediction Code
Computation

  0%

  20%

  40%

  60%

  80%

  100%

742742742742742742742742742742

 P
ar

al
le

l T
hr

ea
d 

E
xe

cu
tio

n 
T

im
e 

B
re

ak
do

w
n

 gzip  vpr  perl.  vortex  twolf  dry  fldry  llu  mech. objinst 

Figure 4.14: Time Breakdown: Parallel Threads.

Figure 4.14 shows the average time breakdown of one parallel thread in case of

using a total of 2, 4, and 7 parallel threads. Each parallel thread spent most time on the

76



computation and less than 1% time on executing the prediction code. The rest of the time is

spent on communication with the main thread. According to the results, the communication

overhead rises as the number of threads increases. This is because the main thread controls

the parallel threads by sending the start signal and examining the results sequentially and

thus using more parallel threads leads to a longer waiting time for each.

Communication
Misspec. Check & Copy
Computation

  0%

  20%

  40%

  60%

  80%

  100%

742742742742742742742742742742

 M
ai

n 
T

hr
ea

d 
E

xe
cu

tio
n 

T
im

e 
B

re
ak

do
w

n

 gzip  vpr  perl.  vortex  twolf  dry  fldry  llu  mech. objinst 

Figure 4.15: Time Breakdown: Main Thread.

Figure 4.15 shows the breakdown of time for the main thread that is responsible for

executing the sequential part and some iterations of the parallelizable loops, communicating

with the parallel threads, and performing misspeculation checks and copying operations.

From the figure, one can see that the computation category dominates the execution time

for all programs. The fraction of time spent on communication, misspeculation check, and

copying operations increases when more parallel threads are used. The sum of these two

fractions, which reflects the overhead imposed by the execution model, is less than 25%.

77



Considering the speedups obtained, the benefit of exploiting parallelism outweighs the cost

of implementation overhead.

2 parallel threads
4 parallel threads
7 parallel threads

  0%

  10%

  20%

  30%

  40%

  50%

  60%

  70%

  80%

objinstmech.llufldrydrytwolfvortexperl.vprgzip

 P
er

ce
nt

ag
e 

of
 E

xt
ra

 S
pa

ce
 C

on
su

m
ed

 

Figure 4.16: Space Overhead.

Space Overhead. The space overhead incurred to obtain speedups is also measured by

monitoring the peak value of memory consumption while the parallelized program is run

with varying number of threads. As one can see from Figure 4.16, when more threads are

used, more space is used for all benchmarks. The parallelized SPEC benchmarks consume

more memory especially when 7 threads are used (20%-80%). On the other hand, the

parallel versions of the other 5 programs consume less than 7% extra memory regardless of

the number of parallel threads. This is because SPEC programs are much larger and have

more variables being used in each loop iteration. Consequently, each parallel thread has to

maintain a copy of these variables which requires more memory.

78



4.4.4 Summary

This chapter presented a speculative parallelization technique multiple specula-

tions that is implemented based on the CorD model. By using multiple value predictions,

this technique resolved frequent cross-iteration dependences and exploited the parallelism

between consecutive loop iterations. The experimental results show that, on an average,

the technique achieves 1.7x speedup across ten benchmarks.

79



Chapter 5

Reducing Misspeculation Cost Via

Incremental Recovery

For streaming applications, the frequency of cross-iteration dependences is often

input dependent. If the misspeculation rate is very low, applying CorD model leads to good

speedups. Otherwise, the performance cannot be improved by speculative parallelization.

Although the previous chapter proposes a value-prediction based approach to deal with

high misspeculation rate, its effectiveness is determined by the accuracy of value prediction.

The fundamental reason for the performance loss upon a misspeculation is that all results

generated are assumed to be incorrect and hence discarded. However, it is observed that

a misspeculation on a live-in variable may not necessarily cause all speculatively computed

results to be incorrect. Based on this observation, this chapter describes an approach for

Incremental Recovery that mitigates the performance loss caused by high misspeculation

rate.

The organization of the chapter is as follows. Section 5.1 presents a motivating

80



example and shows how the incremental recovery technique can be incorporated into CorD.

Section 5.2 describes the details of this technique. The experimental results are presented

in section 5.3. Section 5.4 summarizes the work.

5.1 Overview Of Incremental Recovery

5.1.1 Motivation

In the techniques presented in the earlier chapters, recovery from misspeculations

is achieved by discarding all speculatively computed results. This can be attributed to

the CorD model, where each thread has its own space to store all temporal results when

performing a computation. The space is automatically created along the parallel thread

creation, and after the creation, all writes are performed on this space. If misspeculation

occurs on any live-in variable, all results in the space are discarded. While this recovery

scheme is generally better than expensive roll-back schemes, invalidating all speculatively

computed results is not an optimized solution. It is observed that during speculative execu-

tion, not all speculatively computed results are necessarily incorrect if only the speculation

of one variable is wrong. Figure 5.1 shows a simple example.

From Figure 5.1, one can see that each loop iteration has N live-in variables var1,

var2, ..., varN. Each of them is updated if the corresponding condition is true. The values of

these live-ins are used in the computation functions and the computation results are stored

in r1, r2, ..., rN. Suppose all conditions are not true most of time. As a result, this loop is

a good candidate for speculative parallelization technique described in chapter 3. During

runtime speculative execution, if condition i becomes true, all following iterations that are

81



1: while (...) {
2: ...
2: if (condition1) {
3: var1++;
5: }
4: r1 = comp1(var1);
2: if (condition2) {
3: var2++;
5: }
4: r2 = comp2(var1, var2, ...);
2: ...
2: if (conditionN) {
3: varN++;
5: }
4: rN = compN(var1,var2, ..., varN);
2: ...
2: print(rN);
5: }

Figure 5.1: Motivating Example.

being executed in parallel are considered failed because they use the stale value of var i.

In the original scheme, all speculatively computed results r1, ..., rN computed by parallel

threads are discarded. However, it is obvious that only the values of ri, ..., rN need to

be recomputed, because the wrong value is not used in the remainder of the computation.

Discarding all results and reexecuting the entire iteration may lead to a significant waste.

5.1.2 Adapting CorD For Incremental Recovery

To reduce the repeated executions caused by high misspeculation rate, the spec-

ulatively computed results generated by a thread have to be separated from each other.

This chapter proposes a new adaptation of CorD – decoupling the speculative thread from

speculative space – to support the incremental recovery during speculative execution. The

key idea is to create multiple write buffers for each thread so that only incorrect results

are discarded when misspeculation occurs. Specifically, a new space is created when a

82



speculatively-used variable is first read, and other variables that are modified use the spec-

ulative value are copied into the new child space. Figure 5.2 illustrates the idea.

As shown in Figure 5.2, a parallel thread has three spaces S1, S2 and S3 instead

of just one space during the speculative execution. Space S2 is created when the first

access of live-in variable a is encountered, and S3 is created when the first access of live-in

variable b is encountered. With this memory scheme, the recovery can be performed more

efficiently. Specifically, if the misspeculation occurs due to a, the results stored in S2 and S3

are discarded and recomputed using the correct value of a. However, if the misspeculation

is caused by b, only the results in S3 are recomputed. The results in S1 are only computed

once and are never be discarded during recovery because the computation does not use any

speculative variable.

With this scheme, recovery cost can be reduced effectively. Now let us consider the

example in Figure 5.1 again. Since the first access to each live-in var i creates a new space,

the results using var i are separated from those not using it. As a result, a misspeculation

on var i does not invalidate the results not using this variable. Instead, only the results

stored in the space corresponding to this live-in and the later created space are recomputed.

Hence, this scheme reduces the cost of recovery.

5.2 Realizing Incremental Recovery

5.2.1 Creating Multiple Subspaces

To allow each thread to have multiple subspaces when performing a speculative

task, a unique space identifier (SID) is assigned to each subspace. Each thread also main-

83



Figure 5.2: Decoupling Space Allocation From Thread Creation.

tains the current SID (CSID) as a thread local variable. The SIDs and CSID are useful for

copying variables between different subspaces to ensure the separation of multiple subspaces.

While SIDs allow logical separation of different subspaces, the creation of each

subspace at virtual memory level can be performed using different schemes. One simple

scheme is to create a subspace by allocating a contiguous memory region as shown in

Figure 5.3(a). However, the allocation may fail when the size of subspace is very large,

because the memory allocator may not always find a free memory chunk of the requested

size. The situation becomes even worse when more threads are used. To solve this problem,

subspaces are maintained by using the state history for each variable. In particular, the

state of an individual variable in a particular subspace is represented as a pair of the value

and SID, and these states are linked together in ascending order of space creation time

as shown in Figure 5.3(b). With this scheme, updating a variable in a different subspace

can be simply implemented by adding a (value, SID) pair into this variable’s state history.

84



Figure 5.3: Allocating A Subspace.

Moreover, the memory allocation requests are now at the granularity of variable’s size and

hence more variables can be handled.

In the scheme, a subspace is created when a live-in variable is first read in a

speculative task. All variables that are defined directly or indirectly using the value of the

live-in variable are copied to the new subspace. These operations are implemented through

live-in access checks and statement transformations as shown in Figure 5.4.

From the figure, one can see that the live-in access check code is inserted in front

of each statement. For each source operand that is a live-in variable and first read by a

speculative thread T (line 1), a new subspace is created by incrementing CSID by 1 (line

3). As a result, each subspace corresponds to a speculative use of one live-in variable, and

later created space has a larger space ID. The old CSID and the PC of current statement

are stored and are used if the recovery is needed at this point (line 2). The live-in variable

is also copied into this new subspace by appending the pair of CSID and variable’s value

85



CSID: the current space ID, initialized to 0;
stmt: a statement dst = src1 op src2 executed by thread T

Insert the following live-in access check code before the stmt :
For every source operand s in stmt:
1: if (s is a live-in variable and is first read by T) {
2: saving CSID and the PC of the statement for recovery;
3: CSID++;
4: sid = CSID;
5: val = the value of s in D space;
6: append (sid, val) into the state history of s;
7: }

To ensure dst is updated in the current subspace, stmt is transformed
into the following:
8: sid = GetLastSpaceID(dst);
9: val = GetLastValue(src1) op GetLastValue(src2);
10: if (sid != CSID){ // copy is required
11: sid = CSID;
13: append (sid, val) into the state history of dst;
14: }
15: else {
16: update the last state history record of dst to (sid, val);
17: }

Figure 5.4: Live-in Access Checks And Statement Transformation.

in the non-speculative state into its state history (lines 4-6). In other words, the ID of the

subspace created for a live-in and the speculatively-read value of the live-in is always stored

in the first record of this live-in’s state history.

To update the destination operand dst, its subspace ID is first computed (line 8)

and the updated value is computed using the latest values of its sources operands (line

9). Since the update has to be performed on the current subspace, the space ID of dst is

compared with CSID (line 10). If they are different, the (sid, val) pair is appended into

dst’s state history. Otherwise, the last record in the state history is updated with the new

pair (sid, val).

Function GetLastSpaceID() and GetLastSpaceValue() are auxiliary functions which

retrieve the space ID and value respectively from the last record in a variable’s state history.

86



Besides the live-in access checks and statement transformation performed dur-

ing speculative execution, a mechanism also needs to be developed to identify the live-in

variables that were accessed during speculative execution. As stated in chapter 2, this is

important because the values of live-in variables are the ones that require validation and

copy-out operations after speculative threads finish their executions. Therefore, a live-in

table is maintained for each speculative thread to track the live-ins accessed by the thread.

The table has the 3 fields as shown below.

NonSpecAddr SpecAddr WriteFlag

When a live-in variable is first accessed by a speculative thread T, an entry for this

variable is created in the table. The NonSpecAddr field and SpecAddr field contain the live-

in variable’s non-speculative address and speculative address respectively. The WriteFlag

field shows whether the live-in has been updated ever during speculative execution. Once

a write access to this variable is encountered, this field is set to true.

Subspaces and the live-in table are maintained during the speculative execution;

they are crucial for the misspeculation detection and copy-out operations which will be

described in the next two subsections.

5.2.2 Handling Speculative Results

After a speculative thread finishes its task, the main thread needs to perform

misspeculation check to validate the speculatively computed results. If the speculation

succeeds, the results should be copied back to the non-speculative state. Otherwise, recovery

execution should be invoked so that the correct values can be recomputed. In our approach,

the results computed by speculative threads are handled in the same order as the tasks are

87



created. The in-order result-handling ensures the updates to non-speculative state memory

is consistent with the sequential semantics.

A misspeculation occurs if a speculatively-read live-in variable has been updated

during an earlier speculative task. On the other hand, if a speculative thread updates a

live-in variable, then all other speculative threads that are using this variable to perform

later tasks should be considered failed because they are using the incorrect value. Based

on this idea, a scheme is developed for the main thread to perform the copy-out operations

and misspeculation checks. This scheme is presented in Figure 5.5.

Copy-out. Each parallel thread has a flag Speculation indicating if its speculation has

failed. When a parallel thread finishes its speculative task and the main thread determines

that it is the turn of this thread to committing its result, this flag is examined. If the flag

indicates that no misspeculation occurred (line 1), the main thread starts to copy back the

results. Specifically, the main thread goes through this parallel thread’s live-in table (line

2) and identifies the modified live-in variable (line 3). The WriteFlag of a live-in variable

is set when an access to this variable is a write. For each modified live-in, the main thread

finds its latest value (line 4) and copy the value to the non-speculative state (line 4). The

non-speculative address of a live-in is available because it is stored in the live-in table when

the live-in is first accessed.

Misspeculation Check. The misspeculation check is performed by executing lines 6 to

11. In particular, when a live-in variable is committed, the main thread searches the live-in

table of all other threads that are executing later speculative tasks. If this variable is found

in another thread t’s live-in table (line 7), then thread t is using a stale value because the

88



T.LTable: live-in table of a speculative thread T;
T.SepcFail: the flag indicating a failed speculation of T;
T.FailedAt[]: the live-in variables which cause the
speculation of thread T to fail;

1: if (T.SpecFail != True) {
2: foreach entry e in T.Ltable {
3: if (e.WriteFlag == True) {
4: val = GetLatestValue(e.SpecAddr);
5: CopyBack(e.NonSpecAddr, val);
6: foreach thread t executing a later speculative task {
7: if (e.NonSpecAddr is in the t.LTable ){
8: t.SpecFail = True;
9: add e.NonSpecAddr into t.FailedAt[] ;
10: } //endif
11: } //end foreach
12: }//end if
13: }//end for each
14 }
15: else { //recovery
16: pc = GetRecoveryPC(T.FailedAt[]);
17: sid = GetRecoverySpaceID(T.FailedAt[]);
18: ask thread T to reexecute from instruction pc using

the latest values of live-in variables, and
the values stored in the latest subspace whose SID
is no more than sid for none-live-in variables ;

}

Figure 5.5: Misspeculation Checks And Recovery.

value of this variable has just been updated. As a result, the SpecFail flag of t is set to true

(line 8). This variable identified by its none-speculative address is also added into another

thread attribute FailedAt (line 9). The variables stored in FailedAt will be used to identify

the starting point of the reexecution during the misspeculation recovery.

Recovery. If the SpecFail flag of a thread t is set to True, then reexecution is required

for the recovery. The FailedAt attribute of t indicates which live-in variables caused the

speculation to fail. Since, when each live-in variable is first read, the instruction address

of the read and the space ID before the read are recorded (Figure 5.4, line 2), the main

thread can retrieve these two values of the first accessed live-in variable by calling another

two auxiliary functions GetRecoveryPC and getRecoverySpaceID (lines 16-17). These two

89



values determine the staring point of the reexecution. The main thread now asks thread t

to reexecute from instruction pc. During the reexecution, the latest value of every live-in

variable is used. For other variables, their values stored in the latest subspace whose SID

is no more than sid are used. This can be done by searching for the state history of each

variable. In this way, the reexecution is consistent with the sequential semantics and all

incorrect speculatively computed results are simply discarded. More importantly, all correct

speculatively computed results are exploited because they are stored in different subspaces.

Figure 5.6: An Example Of Recovery.

Figure 5.6 shows an example. Figure 5.6(a) shows the sequential code where two

live-in variables var1 and var2 can be observed. Consider iteration i and i+1, which are

speculatively executed by thread T1 and T2 in parallel. The executed code and memory

operations for these two threads are shown in figure (b) and (c) separately. During T1’s

90



execution, it updated var2, and hence, the WriteFlag of this variable is set to true. When

the main thread performs the misspeculation check, it searches for all other threads that

are currently using var2 and sets the corresponding flag SpecFail to true (Figure 5.5). In

this example, T2.SpecFail is set to true and var2 is added to T2.FailedAt. When the main

thread starts to examines T2’s results, it can realize T2’s speculation fails because of var2.

Hence, it retrieves the CSID and PC of the recovery point that corresponds to var2 (CSID=1

and PC=7 in this case), and sends the latest value of var2 to T2. With such information,

T2 now can start the incremental recovery. In particular, it reexecuted the code from the

instruction whose PC is 7, and uses the latest value of var2 and the value stored in space

1 for all other variables.

5.3 Experiments

5.3.1 Experimental Setup

To verify the effectiveness of our techniques, 5 benchmarks are used as shown in

Table 5.1. The first three columns of the table give the name, lines of source code, number of

live-ins for these programs. For each benchmark, 3 different inputs are created which create

cross-iteration dependences at low, medium, and high frequency respectively as shown by

the last three columns. In particular, when a sequential version of these program is executed

with these inputs, input-low generates less than 1% dependences, input-medium generates

around 40% dependences, and input-high generates about 80% dependences. Experiments

are conducted using these different inputs to evaluate the effectiveness of the approach.

In the experiments, the parallel version of every benchmark program is generated

91



Name LOC Number of Cross-iteration Dep. Frequency
Live-ins input-low input-medium input-high

197.parser 9.7K 8 1% 49.3% 88.4%

130.li 7.8K 6 2% 40% 80%

256.bzip2 2.9K 9 0.5% 38.2% 79.2%

255.vortex 49.3K 11 0.5% 43.2% 81.3%

CRC32 0.2K 1 1.0% 40% 80%

Table 5.1: Benchmark Description.

through a source-to-source transformation. Specifically, to support the space and thread

decoupling scheme, every basic type in C (e.g., int, char etc.) is redefined as a new class

in C++. The class contains not only the original type, but also the type of state history

in parallel spaces. When a variable is declared of a class based type, its non-speculative

storage is allocated during the compilation and its state history for each thread is created

and dynamically maintained as shown in Figure 5.4. The speculative threads are created

and controlled using the same template described in chapter 2, but rewritten in C++. The

runtime system that detects the misspeculation and handles the speculatively computed

result described in Section 3 are also implemented in C++.

All the experiments were conducted under CentOS 4 OS running on a dual quad-

core Xeon machine with 16GB memory. Each core runs at 3.0 GHz.

5.3.2 Performance

Comparison With Sequential Execution. The first experiment conducted measured

the performance and misspeculation rate when different inputs and different number of

parallel threads were used. Figure 5.7(a)-(e) shows the result of each benchmark program.

In these figures, the performances when using 2, 4 and 7 threads on different inputs are

92



shown on the left and the corresponding misspeculation rates on the right.

2 threads
4 threads
7 threads

  0

  1

  2

  3

  4

  5

input−low(<1%) input−medium(~40%) input−high(~80%)

S
pe

ed
up

Frequency of Cross−iteration Dependences in Sequential Execution

2 threads
4 threads
7 threads

  0

  1

  2

  3

  4

  5

input−low(<1%) input−medium(~40%) input−high(~80%)

S
pe

ed
up

Frequency of Cross−iteration Dependences in Sequential Execution

(a) 197.parser (b) 130.li

2 threads
4 threads
7 threads

  0

  0.5

  1

  1.5

  2

  2.5

  3

  3.5

  4

input−low(<1%) input−medium(~50%) input−high(~90%)

S
pe

ed
up

Frequency of Cross−iteration Dependences in Sequential Execution

2 threads
4 threads
7 threads

  0

  0.5

  1

  1.5

  2

  2.5

  3

  3.5

  4

input−low(<1%) input−medium(~40%) input−high(~80%)

S
pe

ed
up

Frequency of Cross−iteration Dependences in Sequential Execution

(c) 256.bzip2 (d) 255.vortex

2 threads
4 threads
7 threads

  0

  1

  2

  3

  4

  5

  6

  7

  8

input−low(<1%) input−medium(~40%) input−high(~80%)

S
pe

ed
up

Frequency of Cross−iteration Dependences in Sequential Execution

(e) CRC32

Figure 5.7: Execution Speedups – Baseline: Sequential Execution.

From these figures, one can see that for each benchmark running with the same

input, spawning more threads always yields a better performance. When 7 threads are

executed on input-low, all benchmarks obtained the best speedups which range from 3.7 to

7.8. When input-medium and input-high are used, performance gains can still be observed

in most cases, but these gains drop dramatically for 130.li, 255.vortex, and 256.bzip.

Especially when running on input-high, the first two benchmarks experience slowdowns.

93



This is primarily due to the misspeculation recovery overhead. When a misspeculation

occurs in these programs, a significant portion of the speculative results still have to be

recomputed. In the case of input-high, such overhead outweighs the parallelism benefits.

However, for 197.parser CRC32, speedups can be observed even when input-high

is used. In these two programs, only one statement needs to be recomputed upon a misspec-

ulation, and hence the performance is not limited by the misspeculation rate. The highest

speedups achieve on input-medium and input-high are 2.9 and 2.0 for 197.parser, 6.9

and 6.1 for CRC32 respectively.

Comparison With Original Scheme. To show the advantage of this technique, exper-

iments are conducted to compare incremental recovery technique with the original scheme

where all speculatively computed results are simply discarded upon a misspeculation. The

performance difference are shown in Figure 5.8. In particular, the execution time of the

original parallelized version is used as the baseline in this experiment.

From the figure, one can observe that for all benchmarks running with input-medium

and input-high, incremental recovery technique has much better performance than the

original parallelized execution. It brings more benefit when more threads are used, be-

cause using more threads makes the misspeculation rate higher, which significantly slows

down the original parallelized version. When incremental recovery is applied, only partial

speculatively computed results need to be recomputed and the overhead of recovery can

be largely reduced. As a result, it still can speed up the sequential program in most cases

as shown in Figure 5.7. It should be noted that for 255.vortex and 130.li running on

input-high, Figure 5.7 indicates that recovery technique cannot speed up the sequential

94



2 threads
4 threads
7 threads

  0

  0.5

  1

  1.5

  2

  2.5

  3

  3.5

  4

input−low(<1%) input−medium(~40%) input−high(~80%)

S
pe

ed
up

Frequency of Cross−iteration Dependences in Sequential Execution

2 threads
4 threads
7 threads

  0

  0.5

  1

  1.5

  2

  2.5

  3

  3.5

  4

input−low(<1%) input−medium(~40%) input−high(~80%)

S
pe

ed
up

Frequency of Cross−iteration Dependences in Sequential Execution

(a) 197.parser (b) 130.li

2 threads
4 threads
7 threads

  0

  0.5

  1

  1.5

  2

  2.5

  3

  3.5

  4

input−low(<1%) input−medium(~50%) input−high(~90%)

S
pe

ed
up

Frequency of Cross−iteration Dependences in Sequential Execution

2 threads
4 threads
7 threads

  0

  0.5

  1

  1.5

  2

  2.5

  3

input−low(<1%) input−medium(~40%) input−high(~80%)

S
pe

ed
up

Frequency of Cross−iteration Dependences in Sequential Execution

(c) 256.bzip2 (d) 255.vortex

2 threads
4 threads
7 threads

  0

  1

  2

  3

  4

  5

  6

  7

input−low(<1%) input−medium(~40%) input−high(~80%)

S
pe

ed
up

Frequency of Cross−iteration Dependences in Sequential Execution

(e) CRC32

Figure 5.8: Execution Speedups – Baseline: Original Scheme.

95



executions. However, the performance of the original parallelized version is even worse.

That explains why the speedups are still obtained in this experiment.

In the case of input-low, the performance of using incremental recovery is worse

than the original scheme. The performance loss is about 15% on an average. This is because

of the overhead of the recovery system. In particular, every load or store has to be performed

on a state history – a list of the pairs of space ID and value. This is more expansive than

operating on a single value. The results of the experiment shows that incremental recovery

is much more effective if the misspeculation rate is very high and the original scheme is

better otherwise.

Another reason for incremental recovery technique performing better on input-medium

and input-high is that it reduces the number of misspeculations. If a variable is copied-in

immediately before its first access instead of copied-in at the beginning, the chance of ob-

taining the correct value of this variable is increased as some earlier thread may just commit

their latest values. Incremental recovery technique significantly increases this chance be-

cause it allows the recovery to be performed on a part of the entire computation. This speeds

up the result-committing stage of every thread. Experiments are conducted to measure this

effect. In particular, the misspeculation rate is collected for both incremental recovery tech-

nique and the original parallelization technique. The misspeculation rate reduction is then

computed based on these two numbers and the results are shown in Figure 5.9. Note that

the comparisons are made on input-medium and input-large.

From the figure, one can see that for 197.parser and CRC32, up to 50% and 85%

misspeculations are reduced respectively. As mentioned earlier, in these two programs,

only one statement needs to be recomputed during the recovery and the statement defines

96



2 threads
4 threads
7 threads

  0%

  20%

  40%

  60%

  80%

  100%

input−medium(~40%) input−high(~80%)

D
yn

am
ic

 M
is

sp
ec

ul
at

io
n 

R
at

e 
R

ed
uc

tio
n

Frequency of Cross−iteration Dependences in Sequential Execution

2 threads
4 threads
7 threads

  0%

  20%

  40%

  60%

  80%

  100%

input−medium(~40%) input−high(~80%)

D
yn

am
ic

 M
is

sp
ec

ul
at

io
n 

R
at

e 
R

ed
uc

tio
n

Frequency of Cross−iteration Dependences in Sequential Execution

(a) 197.parser (b) 130.li

2 threads
4 threads
7 threads

  0%

  20%

  40%

  60%

  80%

  100%

input−medium(~40%) input−high(~80%)

D
yn

am
ic

 M
is

sp
ec

ul
at

io
n 

R
at

e 
R

ed
uc

tio
n

Frequency of Cross−iteration Dependences in Sequential Execution

2 threads
4 threads
7 threads

  0%

  20%

  40%

  60%

  80%

  100%

input−medium(~50%) input−high(~90%)

D
yn

am
ic

 M
is

sp
ec

ul
at

io
n 

R
at

e 
R

ed
uc

tio
n

Frequency of Cross−iteration Dependences in Sequential Execution

(c) 256.bzip2 (d) 255.vortex

2 threads
4 threads
7 threads

  0%

  20%

  40%

  60%

  80%

  100%

input2−medium(~40%) input3−high(~80%)

D
yn

am
ic

 M
is

sp
ec

ul
at

io
n 

R
at

e 
R

ed
uc

tio
n

Frequency of Cross−iteration Dependences in Sequential Execution

(e) CRC32

Figure 5.9: Misspeculation Rate Reductions.

97



the live-in variable. With incremental technique, the live-in variable can be committed

faster, which increases the chance of later threads getting the correct version. As a result,

performances of these two benchmarks are improved by the technique very well. For other

programs, the number of reexecuted statements during the recovery far greater, and hence

the observed misspeculation reduction is around 20% for 256.bzip, 10% for 130.li, and

10% 255.vortex on an average.

5.3.3 Overhead Analysis

Execution Time Breakdown. The execution time spent by each parallel thread has

been broken down into three different categories: communication, recovery and speculative

computation. Figure 5.10 shows the results. They are measured and averaged across all 7

threads.

According to the figure, the time spent on the communication is only a small

portion for all programs regardless of the input. This means all parallel threads are busy in

performing computations. For all parallelized programs running on input-low, each thread

spends most of the time on speculative parallelization. When the input changes, the more

misspeculations take place, more time is spent on the recovery. In the case of 256.bzip2,

130.li and 255.vortex running on input-high, half of the time is spent on reexecuting the

speculative computation.

Figure 5.11 shows the time breakdown for the main thread. Three categories are

considered: communication, Misspeculation Checks and copy-out and computation. Different

from parallel threads, the main thread spent a large portion of the execution time on

communication. Another significant portion is spent on misspeculation checks and result-

98



Communication
Recovery
Speculative Computation

  0%

  20%

  40%

  60%

  80%

  100%

  120%

l m h l m h l m h l m h l m h

 P
ar

al
le

l T
hr

ea
d 

E
xe

cu
tio

n 
T

im
e 

B
re

ak
do

w
n

 197.parser  130.li  256.bzip2  255.vortex  CRC32 

Figure 5.10: Time Breakdown: Speculative Threads.

Communication
Misspec. Check & Copy−out
Computation

  0%

  20%

  40%

  60%

  80%

  100%

  120%

l m h l m h l m h l m h l m h

 P
ar

al
le

l T
hr

ea
d 

E
xe

cu
tio

n 
T

im
e 

B
re

ak
do

w
n

 197.parser  130.li  256.bzip2  255.vortex  CRC32 

Figure 5.11: Time Breakdown: Main Thread.

99



committing. When different input is used to create more misspeculations, one can observe

that communication time increases, because parallel threads fail more frequently and have

to reexecute unsuccessful tasks. As a result, the main thread has to spend more time on

waiting for the correct results to be produced.

Space Overhead. Maintaining multiple P spaces for one thread consumes more space.

An experiment is conducted to monitor the peak value of memory consumption when dif-

ferent number of parallel threads are used during the execution. The memory used by the

corresponding sequential program is considered as the baseline. Figure 5.12 shows the space

overhead. As expected, using more threads consumes more space because each variable ac-

cessed by a parallel thread takes more memory space in this technique. When 7 parallel

threads are used, the largest overhead is observed which ranges from 3.2 to 5.1 across all

benchmarks. Note that the data in this figure is collected when input-high is used. It

is observed that space overhead is not sensitive to the misspeculation rate. The results of

using the other two different inputs are similar.

 1

 2

 3

 4

 5

 6

 1  2  3  4  5  6  7

S
pa

ce
 O

ve
rh

ea
d

Number of Parallel Threads

197.parser
130.li

256.bzip
255.vortex

CRC32

Figure 5.12: Space Overhead.

100



5.4 Summary

This chapter presented an adaptation of CorD to enable incremental recovery for

dealing with high misspeculation rate. The idea is to decouple the creation of each parallel

thread from the creation of its P spaces. Using multiple spaces during a speculative execu-

tion allows the speculative computational results to be stored and reused when a misspec-

ulation occurs. Experiments show that this technique not only improves the performance

but it also reduces misspeculation rate compared to original scheme.

101



Chapter 6

Applying CorD In The Presence

Of Dynamic Data Structures

A dynamic data structure consists of large number of nodes such that each node

contains some data fields and pointer fields. The pointer fields are used to link together the

nodes in the data structure (e.g., link lists, trees, queues etc.). Such data structures are also

called dynamic data structures because the shape and size of the data structure can change

as the program executes. Size of the data structure changes as nodes are added or removed

and changes in link pointers can further change the shape of the data structure. The

memory for each node is dynamically allocated from the heap when the node is created and

freed by returning it to the heap when the node is eliminated. Dynamic data structures are

extensively used in wide range of applications. The applications considered in this chapter

are C programs with following characteristics:

• each node is allocated and deallocated through explicit calls to library functions malloc

and free; and

102



• nodes are accessed through pointers variables that point to the nodes such as pointer

fields that link the nodes in the data structure.

Applying CorD speculative parallelization technique in applications that inten-

sively use dynamic data structures is much more challenging than in those using scalar

variables or static data structures such as arrays. In particular, the following challenges

need to addressed in the presence of dynamic data structures:

• What to Copy-In ? Complexities of pointer analysis makes it difficult to identify the

portion of the dynamic data structure that is referenced by the speculative computa-

tion. Conservatively copying the entire data structure may not be practical when the

size of the data structure is very large.

• How to Copy-Out ? The copying of updated data structure from speculative state to

non-speculative state is made complex due to the changes in the shape and size of the

dynamic data structure that may be made by the speculative computation.

• How to handle internal pointers ? In addition, both copy-in and copy-out operations

must contend with the need to translate pointers internal to dynamic data structures

between their non-speculative and corresponding speculative memory addresses.

This chapter addresses all of the challenges outlined above. The organization

of this chapter is as follows. Section 6.1 describe the challenges in detail by using an

illustrative example. Section 6.2 proposes three techniques copy-on-write, heap prefix and

double pointers to address them. Several optimizations are proposed to further improve

the performance in section 6.3. The experimental results are presented in section 6.4 and

followed by the summary in section 6.5.

103



6.1 Challenges For Dynamic Data Structures

Given a parallelized computation which consists of a non-speculative main thread

that spawns multiple speculative threads, in CorD model state separation is achieved by

performing speculative computations in separate memory space. While for array or scalar

variables the separation can be simply achieved by creating a copy of such variables in the

speculative thread, achieving state separation for programs using dynamic data structures

poses many challenges. A dynamic data structure may contain millions of nodes (e.g., the

program Hash in the experiments creates 3 million nodes at runtime). This leads to a large

overhead due to copying operations, mapping table accesses, and misspeculation checks.

Moreover, need for address translation arises because a node may have many pointers

pointing to it and after the node has been copied, accesses via these pointers must be

handled correctly.

For a program using dynamic data structure, four types of changes to the dynamic

data structure can be encountered:

• pointer fields in some nodes are modified causing the shape of the data structure to

change;

• a new node is created and linked to the dynamic data structure;

• an existing node is deleted from the dynamic data structure causing the size of the

data structure to change; and

• values of data fields in some nodes are modified.

Figure 6.1 shows an example where all the above changes are encountered. In this

104



typedef struct node{
int key;
int val;
struct node *next;

}
NODE *head;

while (...) {
...

1: NODE *tmp = find key(head, key);
2: if (tmp!=NULL and tmp!=head) {
3: NODE *prev = get prev node(head, tmp);
4: prev → next = tmp → next;
5: tmp → next = head;
6: head = tmp;
7: }
8: else {
9: if (!tmp) { //update the lru queue
10: //insert the new node
11: NODE *n = (NODE *)malloc(sizeof(NODE));
12: n→ key = ...;
13: n→ val = ...;
14: n→ next = head;
15: head = n;

//delete the least-recent used node
16: NODE *m = get second last node(head);
17: free(m→ next);
18: m→ next = NULL;
19: }
20: }
21: if (writeflag)
22: {
23: head→val = ...;//modify data
24: }
25: ... = head→val;
26: ...
}

Figure 6.1: Least Recent Use Buffer.

example, a link list is used to implement a least-recent-use (LRU) buffer. A LRU buffer

has a fixed length and it buffers most recently used data. When data is requested, any

matching elements in LRU is first searched (line 1). If a match is found and the element is

not in the front of LRU buffer, this element is moved to the front by adjusting the pointers

(lines 2-7). If no match is found, a new node is created, insert it in the front and delete the

last node (lines 8-20). After the requested data is put at the front, a flag is checked to see

105



if the data needs to be modified (lines 21-24). Finally the data in this buffer is read (line

25). Assume that the requested data is frequently at the front of LRU buffer and branches

at lines 2, 8 and 21 are rarely taken. Thus, iterations in the while loop (lines 1-25) can be

speculatively executed in parallel.

When a parallel thread is created, all pointers (head, tmp, prev, m and n) have their

own local storage in the corresponding speculative space. Note that head’s local storage

(denoted by head’) contains the content of head, as it is defined outside the parallelizable

region. *P is used to denote a node pointed to by pointer P. Next we describe the challenges

via this example.

Overhead Challenge. As one can see the function call find key at line 1 traverses all

nodes in the LRU buffer. If the original CorD model is used, and the LRU buffer contains

a million nodes at runtime, then the overhead of this traversal is prohibitively high. First,

the copying overhead is large as all these nodes can be potentially modified by speculative

thread and hence are copied into speculative state. Second, the mapping table that main-

tains correspondence between addresses in non-speculative and speculative memory is large,

because for every copied node, a mapping entry has to be maintained. A large mapping

table leads to an expensive lookup and update. Last but not least, the version table is large.

In the original CorD model, a global version number of each node is stored in the version

table and used in performing misspeculation checks. In particular, if a node is modified,

its global version is compared with its local version stored in the mapping entry. Searching

for the global version number of a node in a large version table requires time. Besides, the

search has to be done for all modified nodes. Finally, finding modified nodes from a large

106



mapping table is very time-consuming. Consequently, the misspeculation check is very time

consuming.

Address Translation Challenge. A node in a dynamic data structure is allocated on

the heap at runtime. Its address is stored in one or several pointer variables and its access

is performed through such pointers. This creates the address translation problem. In

particular, when a node is copied into speculative state by a copy-in operation, all pointers

in speculative thread holding its address and being used in the computation must change

their content to the address of the copied node accordingly. For example, in Figure 6.1 line

5, a parallel thread uses head’ which is holding a non-speculative state address as it is a copy

of head. If the node *head has been copied during the execution of function find key, the

value of pointer head’ has to be changed to the address of the head node’s local copy, and

then assign this new value to tmp → next. This requires comparison of each pointer being

accessed (in this example head’) with the addresses stored in the mapping table. Similarly,

when a node is copied back to non-speculative state by a copy-out operation, all pointers

containing its current local copy address need to hold its non-speculative state address now.

In Figure 6.1, when line 6 is executed, head’ points to the node *tmp, a local copy of some

node in the non-speculative state. Therefore, when the value of head’ is copied back to

head, the address needs to be changed to the address of that node. This can be done by

consulting the mapping table with the address stored in head’.

If the branch at line 8 is taken, copying out node *n is a challenge. At line 14,

the next field of node *n is assigned with the address of head node’s local copy. However,

when committing the result, the node *n is represented as the starting address and length.

107



Therefore, it is impossible to find which part of *n is the starting address of the next pointer

field, and thus, cannot translate the address. One solution might be to store the address of

next pointer in the mapping table, but again, this may lead to an even larger mapping table

as one node may contain multiple pointer fields that are modified. Similarly, when line 17 is

executed, we also need the address translation so that the correct node in non-speculative

state is deallocated. In the case of data field modification (line 23), however, there is no

need for address translation.

6.2 Adapting CorD For Dynamic Data Structures

6.2.1 Copy-On-Write Scheme

To address the overhead challenge, primarily one must find a way to reduce the

number of nodes that are copied to speculative state. Therefore, the use of copy-on-write

scheme is proposed to limit the copying to only those that are modified by the speculative

thread. A node in non-speculative state is allowed to be read by speculative threads. It is

copied into a thread’s speculative state only when it is about to be modified. The copying

is implemented through an access check – a block of code inserted by compiler to guard

every node reference via a pointer. Based on the type of reference, read or write, access

check code differs.

Write Access. Upon a write to a node, the access check determines if the node is already

in the speculative state. If this is the case, the execution can proceed. Otherwise, the access

check concludes that the address belongs to a node in non-speculative state. In this case

the speculative thread must determine if this is the first write to the node and thus the

108



node must be copied into the speculative space. However, if this is not the first write to the

node, then the node has already been copied into speculative state. Thus, the address being

referenced in the non-speculative state has to be translated into the corresponding address

in the speculative state. This translation is enabled by ensuring that the mapping table is

updated by creating entries for copied nodes. In other words, the access checks consult the

mapping table to determine if the current pointer refers to a node in speculative state or

non-speculative state.

Read Access. Upon a read to a node, the access check allows the execution to continue if

the node is in speculative state. However, if the node is in non-speculative state, the access

check stores the thread task ID for this node indicating when the node has been read. After

this step, the execution can proceed. The thread task ID is an integer maintained by each

thread. It is initially zero and incremented by one every time the thread is assigned a task

to perform by the main thread. As one will see shortly, this information is used during

misspeculation checks. It is worth noting that in this copy-on-write scheme, if a node is

only read by a speculative thread, it never has an entry in the mapping table. In other

words, all mapping entries contain nodes that have been modified by the speculative thread.

An Example. Applying this scheme to the example in Figure 6.1, one can observe the

following two advantages. First, there is no need to copy every node in a dynamic data

structure into speculative state when function find key is executed. Therefore, the size of

the mapping table is reduced. Second, the need for address translation is greatly reduced.

In particular, if node *head is never updated during execution, then no copy of this node is

made. Consequently, the pointer tmp→next at line 5 and n→next at line 14 get the correct

109



non-speculative address of this node without address translation. For line 17, the address

stored in m→next can also be simply marked as deallocated, instead of making a copy of a

node *(m→next) and then translating the address.

6.2.2 Heap Prefix

Although the copy-on-write scheme can reduce the size of mapping table, the

access and update of this table may still impose large overhead on the parallel execution.

In particular, for each heap access, the access check needs to consult the mapping table to

see if a node has been copied or not. This requires a walk through the entire table. Similarly,

the misspeculation check needs to search the version number of each modified node in the

version table. This requires traversing the table multiple times. To efficiently perform the

access checks and misspeculation checks meta-data is associated with each node that tracks

certain information related to accesses of the node. This meta-data is called heap prefix.

Next sections describe the details of heap-prefix and show how it is effective in reducing the

overhead of using mapping table and version table.

For each memory chunk allocated on the heap, 2 ∗ n additional bytes is allocated

in front of it where n is the total number of speculative threads. These bytes represent the

Figure 6.2: Heap Prefix Format.

110



heap prefix which is used to store important information to assist in access checks. The

format of the heap prefix is shown in Figure 6.2. The first n bytes immediately before the

program’s original heap data are the status bytes. The additional n bytes are meta-data

bytes. In the status byte, byte i represents the status for speculative thread i and it can

represent four different possible status values. Status NOT COPIED means the heap data

has not been copied into thread i’s speculative state. Status ALREADY COPIED means

the heap data has been copied into thread i’s speculative space, and the index of this

entry in thread i’s mapping table is stored in the corresponding meta-data byte. Status

ALREADY READ means the heap data has been read by thread i, and the corresponding

meta-data bytes stores the task ID of thread i. Status INTERNAL indicates that the node

is already in the speculative state. Therefore, status NOT COPIED, ALREADY COPIED

and ALREADY READ only appear in heap elements of non-speculative state and status

INTERNAL only appears in heap elements in speculative state. In the meta-data bytes,

meta-data byte i stores either a index number of the mapping table of thread i, or the task

ID of thread i.

Note that one can put the meta-data associated with each node in a different place

and use hash function to locate it [73]. However, after the hash-based solution is applied, it

is observed that it caused over 6x slowdowns for the benchmarks used. The reason is that

a hash based lookup requires the execution of a hash function, which takes more time than

performing a simple offset calculation. Thus, large number of lookups make the hash based

solution yield visible slowdowns.

111



1: type = access type, READ or WRITE;
2: p = the pointer holding the starting address

of the node being accessed;
3: len = the size of the node being accessed;
4: s = thread i’s status at *p;
5: m = thread i’s meta-data byte at *p;

6: if (s == NOT COPIED)
7: if (type == READ) {
8: s = ALREAD READ;
9: m = task ID;
10: }
11: else { // type == WRITE
12: s = ALREADY COPIED;
13: pointer q = make copy(*p);
14: set thread i’s status at *q to INTERNAL;
15: index = update mapping table(p, q, len);
16: set thread i’s meta-data byte at node to index;
17: p = q;
18: }
19: }
20: else if (s == ALREADY COPIED) {
21: index = thread i’s meta-data byte at node;
22: p = get P address from mapping table entry index;
23: }
24: else if (s == ALREADY READ) {
25: if (type == WRITE) {
26: s = ALREADY COPIED;
27: pointer q = make copy(*p);
28: set thread i’s status at *q to INTERNAL;
29: index = update mapping table(p, q, len);
30: set thread i’s meta-data byte at node to index;
31: p = q;
32: }
33: }
34: else { //s == INTERNAL
35: ; //do nothing
36: }

Figure 6.3: Access Checks.

Implementing Access Checks. With the status bytes and meta-data bytes in the heap

prefix, the access check for a heap node access in thread i can be implemented as shown in

Figure 6.3. Thread i’s status s in the node’s prefix is examined and following actions are

taken.

If s is NOT COPIED and the access is a read, s is updated to ALREADY READ

and the task ID of thread i is stored in the meta-data byte i (lines 7-10). If the access is

112



a write, s is updated to ALREADY COPIED. A new local copy of the node is then created

with the corresponding status byte to be set to INTERNAL. Next, a mapping entry is added

into the mapping table to reflect this copy operation and the index of the entry is stored in

the meta-data byte i. Finally, the pointer points to the newly created node (lines 11-18).

If s is ALREADY COPIED, then that means the node has been copied; thus, address

translation is needed. Fortunately, the mapping entry can be quickly located through meta-

data byte i and the pointer only needs to be adjust to point to the address of the local copy

(lines 20-23). Finally, if s is ALREADY COPIED and the access is a write, then we perform

the copy-in operation as when s is NOT COPIED (lines 25-32). Otherwise, the access is a

read or s is INTERNAL. In both cases, no further actions are required.

Figure 6.4 shows an example of using heap prefix to perform access checks. First,

assuming the node is allocated at 0xA in non-speculative state (D space), consider the

execution of speculative thread T3. Before any reference to this node in T3, the status byte

for T3 shows that the node has not been copied into its speculative state (P space) yet (as

shown on the left).

Suppose there is a write to this node during the execution, the access check makes

a copy of this node as it sees the status is NOT COPIED. Therefore, the following actions

are taken. A new node is allocated at 0xB in P space and initialized with the original node

value; a mapping entry is created in the mapping table (its index is x); T3’s status of the

original node is changed to ALREADY COPIED indicating that this node has been copied

into speculative memory, and the corresponding meta-data byte of T3 stores the index of

mapping entry (x); T3’s status of the copied node is set to ALREADY COPIED which means

this node is already in speculative state. In the later execution of T3, if the original node is

113



accessed through some other pointers, the access checks can easily translate those pointers

to point to 0xB by looking at the heap prefix and the x-th mapping entry. Similarly, if the

node starting at 0xB is about to be accessed by a pointer, the access check code confirms

the access to be valid by simply looking at the prefix of this node. After committing T3’s

result, the local copy of the node is deallocated and T3’s status byte and meta byte in the

prefix of the original node is reinitialized to zero (shown on the right).

Figure 6.4: An Example Of Heap Status Transition.

In summary, there are two main advantages of using heap-prefix to implement

access checks. First, the status byte can tell the access checks whether or not a node has

been copied. Second, the meta-data bytes allow the speculative thread to find the mapping

entry in O(1) time, which speeds up the process of address translation for copy-in operations.

Implementing Misspeculation Checks. To determine if speculation is successful, mis-

speculation checks have to be performed. The main thread maintains a version number for

each variable in a version table. When a speculative thread uses a variable, it makes note

114



of the variable’s current version number. When the results of a speculative thread are to be

committed to non-speculative state, misspeculation check is performed by the main thread.

The main thread ensures that the current version number of a variable is the same as it was

when the variable was first used by the speculative thread. If no mismatch is found, the

speculation is considered as successful. Otherwise, misspeculation occurs and the results

are discarded. This is because speculative thread must have prematurely read the variable.

This method worked effectively for array variables and scalar variables.

In a program using dynamic data structures, however, the number of nodes in the

structure can be very large, and hence the version table can become very large. Conse-

quently, searching a node in the version table can impose large runtime overhead. Now

that the heap prefix can tell how the node is being used by other threads at any time, this

information can be exploited to perform the misspeculation check for the dynamic data

structure without using a version table.

The key idea of the approach is that when the main thread checks the result

of thread i, it also checks if any other thread is using a node modified by thread i. If

so, that thread’s execution fails as it is working on an incorrect speculatively read value.

This method works because the main thread commits results of speculative threads’ in a

sequential order.

Figure 6.5 shows the algorithm. For each node mapping entry e in the mapping

table of thread i, the main thread examines other thread’s status byte of the node starting

at e.addr non-spec. If another thread’s status byte is ALREADY COPIED, then speculation

of that thread fails (line 5-6). Note that status ALREADY COPIED means the node has

been modified and hence has an entry in the mapping table. When the node is copied back,

115



1: if (spec[i] == FAIL)
2: return FAIL;
3: for each node mapping entry e in mapping[i] {
4: for each thread j’s status on e.addr non-spec s[j] {
5: if (s[j] == ALREADY COPIED)
6: spec[j] = FAIL;
7: if (s[j] == ALREADY READ

and meta-data[j] == taskID[j])
8: spec[j] = FAIL;
9: }
10: }
11: return SUCCESS;

Figure 6.5: Misspeculation Checks For Heap Objects.

the status byte and meta-data byte for thread i is reset to zero.

If the main thread finds that another thread j’s status byte is ALREADY READ,

then situation may be more complex because the status ALREADY READ can be set during

the current work assigned to thread j or during a previously assigned work to thread j.

The latter case happens if in an earlier iteration, thread j only read this node. Therefore,

there was no entry in the mapping table and hence the status byte and meta-data byte

were not cleared. However, these two cases can be distinguished using the task ID stored

in the meta-data byte j. The main thread only needs to check if the meta-data byte j’s

value is equal to thread j’s current task ID. If they are the same, then thread j’s execution

is marked as failed.

Note that there exists a data race between checking thread j’s status byte and

setting the byte. However, this data race is harmless as it does not affect correctness. This

is because we require the main thread to commit the result before checking other threads’

status bytes and the speculative thread to update the status byte before accessing the node.

Figure 6.6 shows an example where step 2 and 3 are clearly racing against each other. If

step 2 reads the value after step 3, then thread j’s execution is marked as failed which is

116



Figure 6.6: A Possible Data Race During Misspeculation Check.

correct, because thread j may read the old value of x (step 4 happens before step 1). If

step 2 reads the value before step 3, thread j’s execution is not be marked as failed. This

is also correct because thread j is using the latest value of x.

In summary, the advantage of using heap-prefix in implementing misspeculation

checks is that status bytes is used to identify any two threads that are accessing the same

node. This eliminates the requirement of maintaining a version number of each node.

Discussion On Meta-data Bytes. For each thread, one byte is used to store the meta-

data, i.e., the index of the mapping entry or the task ID. Since one byte can at most hold

256 numbers, using one byte may impose some limitations in certain situations and hence

needs to be discussed.

First, if the meta-data byte of a thread is used to store mapping entry indexes,

the mapping table size must have less than 256 entries to avoid overflow. This means

for each task, the number of modified node should be less than 256. In some cases, this

assumption may not be true. If a mapping table overflow occurs, the corresponding task

should be considered as failed to ensure the correctness. However, having too many overflow

events means that using one byte is not enough and performance loss results. To solve this

problem, profiling can be used to find out how many nodes are modified in each task on an

117



average and choose multiple bytes to store the indexes for each thread if necessary.

Second, if the task ID is stored in one byte, the number may also wrap around

and cause a problem in a very extreme case. Specifically, when thread i writes a node at

iteration a and thread j reads the same node at iteration b where b ≡ a (mod 256) and it

never uses the node after that, thread j may be incorrectly marked as failed. However, even

if this extreme case arises, the correctness is not affected at all – a false misspeculation is

reported and the computation is unnecessarily repeated.

6.2.3 Double Pointers

As described earlier, the need for address translation can be reduced by using

copy-on-write scheme. The address translation is needed only for a copied node. It can be

done by using the status byte and meta byte during the copy-in operation. However, the

address has to be efficiently performed translation for a pointer during a copy-out operation.

This is because nodes being copied-out may have many pointer fields.

Figure 6.7: Internal Pointer.

Figure 6.7 shows a simple example involving two nodes pointed to by pointers p

and p→child1. The node *p has already been copied in from non-speculative address 0xA to

speculative address 0xB as shown in the mapping table. Now when the assignment is about

to execute, the node *(p→child1) is copied from 0xC into 0xD. The value of (p→child1)

118



also changes to 0xD so that the assignment takes effect on the local copy starting at 0xD.

At the time of committing results to non-speculative state, the main thread must scan

the mapping table to copy these two nodes back to the non-speculative state. However,

the value in (p→child1) is still 0xD and of course it needs to be translated to 0xC. To do

this, one way would be to locate the field by adding it to the mapping table, and then

comparing the value in this pointer with all P addr in the mapping table. This process

entails significant overhead in programs using dynamic data structures as all nodes are

linked into the structure through pointers.

To tackle the above problem, an augmented pointer representation – double point-

ers is presented. For each pointer variable p, the compiler allocates 8 bytes. 4 bytes for

the non-speculative state address (denoted by p.D addr) and 4 bytes for speculative state

address (denoted by p.P addr). When a node is allocated by the main thread and pointed

to by p, its starting address is stored in p.D addr. When a node is created by a speculative

thread and pointed by a pointer p’, the starting address of this node is stored in p’.P addr.

If the node is created as a part of the copy-in operation, p’.D addr is set to be p.D addr

(assuming p’ is the local copy of p). Otherwise, p’.D addr is set to be p’.P addr. For any

reference of a pointer p, if it is in the main thread, then p.D addr is used; otherwise p.P addr

is used. For a pointer assignment p = q, all 8 bytes are copied.

With this scheme, the problem can be easily resolved as shown in Figure 6.7.

Consider now the illustration in Figure 6.8 where A denotes *p and B denotes *(p→child1).

As one can see in Figure 6.7(a), before the assignment, A’s local copy keeps B’s non-

speculative address in the D addr field. Its P addr field has been set to NULL. After the

assignment, a local copy of B has been created and pointed by the P addr field of pointer

119



Figure 6.8: Double Pointer.

p→child1. When these two nodes are copied back, there is no need to go to the mapping

table for address translation. Instead, they can be directly copied back, as A still holds B’s

address in the non-speculative state.

The double pointers scheme also ensures the correctness when the shape of a

dynamic data structure changes due to the update of some pointer fields in the computation.

Let us consider the example in Figure 6.1 again where three possible pointer related changes

are encountered.

Changing the Shape. If the branch at line 2 is taken, the node pointed to by tmp is

moved into the front of the buffer and pointed by head. Figure 6.9 shows the process of this

shape transformation under the scheme. As shown in Figure 6.9(a) Before executing line

4, the parallel thread has two local pointers prev’ and tmp’, which are the copies of pointers

prev and tmp respectively. Since the statement at line 4 updates the node pointed to by

prev’ (node B), a local copy of node B is created through the access check, and the P addr

field of prev’ points to this copy. After line 4, the next pointer field of node B’ contains the

address of node D.

When executing line 5 as shown in Figure 6.9(b), a local copy of node C is created

120



Figure 6.9: Changing The Shape Of A Dynamic Data Structure.

121



and pointed by the P addr field of pointer tmp’. After this statement, all 8 bytes of the

original pointer head are copied into the next pointer field in node C’. Thus, the D addr

field in next contains the address of node A. The statement at line 6 creates a local copy

of pointer head. As shown in Figure 6.9(c), after copying the contents of pointer tmp’, its

D addr field has the address of node C and P addr has the address of node C’. Finally,

copy-out operations in the result-committing stage change the content of pointer head and

the next pointer field of node B and C. The updated pointer is represented by the dash line

in Figure 11(d), which reflects the update to the LRU buffer.

Figure 6.10: Adding A New Node To A Dynamic Data Structure.

Adding A New Node. If the branch at line 9 is taken, a new node is allocated and

the least recent used node is deallocated. Figure 6.10 shows the process of adding a new

node. In Figure 6.10(a), a new node N is created by a parallel thread and pointed by a local

122



pointer n’. After line 14, the next field of this new node is the same as the head pointer

whose D addr bytes are storing the address of node A. After line 15, the parallel thread

changes the content of head pointer by creating head’ and making its both D addr and

P addr fields store the address of node N (see Figure 6.10(b)). When copy-out operation,

the main thread can recognize the new node by checking if the two fields of head’ are the

same. After the copying operation, pointer head is pointing the new node N which is now

in the front of the LRU buffer (see Figure 6.10(c)).

Figure 6.11: Deleting A Node From A Dynamic Data Structure.

Deleting A Node. Figure 6.11 shows the process of executing lines 16-18, which deal-

locates the last node in the LRU buffer. As shown in Figure 6.11 (a), after executing line

16, a local pointer m’ is created by a parallel thread and pointing to the second last node

B. When free is called on node C at line 17, the parallel thread simply marks the node

as deallocated in the mapping table instead of actually call the function. This is because

node C is in the non-speculative state and it cannot be deallocated until the speculative

123



computation performed by this parallel thread is decided to be correct. After line 18, a

local copy of node B is created because its pointer fields is speculatively set to NULL. In

the result-committing stage, the main thread actually deallocates the node C based on the

mark in the mapping table and the next pointer field (8 bytes) of node B is also set to NULL

due to the copy-out operation.

6.2.4 Techniques And Their Benefits

Challenges Copy-on-write Heap Double
Scheme Prefix Pointers

Copying Operation Reduced - -
Overhead

Mapping Table Reduced Reduced -
Access Overhead

Misspeculation - Reduced -
Check Overhead

Address Translation Reduced Reduced -
Overhead (Copy-in)

Address Translation - - Reduced
Overhead (Copy-out)

Table 6.1: Techniques And Their Benefits.

In this section, three techniques are introduced to address the overhead and ad-

dress translation problems when speculatively parallelizing a program using dynamic data

structures. The three techniques were: copy-on-write, heap prefix, and double pointers.

Table 6.1 summarizes the benefits of these techniques.

124



6.3 Other Optimizations

6.3.1 Eliminating Unnecessary Checks

An access check precedes each write access that is performed to the heap in spec-

ulative state. Although implementing access checks via heap prefix can greatly reduce their

overhead, the overhead of access checks can be still significant due to the frequency with

which they are performed. Therefore, in this section, additional compile-time optimizations

are developed for eliminating access checks.

Locally-created Heap Objects. When a node is created by a speculative thread, it has

a valid speculative state address. Therefore, accesses performed to a locally created node do

not require access checks. The algorithm shown in Figure 6.12 provides simple compile-time

analysis to identify accesses that are guaranteed to always access locally created nodes. For

each basic block, pointers that hold an address returned from a malloc function call is first

identified. Then the propagation of these pointers to other pointer variables are tracked

and thus additional accesses that do not require an access check can be identified. In the

analysis, each pointer assigned by malloc is placed into the GEN set. If a pointer is assigned

with a pointer that is not holding a local heap address, it is placed in the KILL set. Then

the IN set is computed for every basic block in a control flow graph based on the equations

shown in this figure. Given the IN set of a basic block, it is easy to determine whether or

not to introduce an access check before a pointer dereference.

Already-copied Heap Objects. Given a reference to a node, if it is certain that there is

an earlier write which caused the node to be copied, then no access check for the reference is

125



Initialize IN (B0) = ∅;

OUT(B) ={IN(B) - KILL(B)} ∪ GEN(B);
IN(B) =

T

P∈pred(B) OUT(P );

where
GEN(B) = {p : ∃ p = malloc(...) in B }

∪ {p : p = q where q ∈IN(B) or GEN(B) };
KILL(B) = {p : p = r where r /∈

IN(B) and GEN(B) };

Figure 6.12: Locally Created Heap Objects.

needed. The analysis required for this optimization is quite similar to the analysis described

in the preceding optimization. The difference is that the GEN set contains pointers through

which a write is performed to a node instead of pointers assigned by malloc.

Read-Only Heap Access. If, following initialization, a node is only read throughout

the execution, then it is impossible for such a node to cause a misspeculation. Therefore,

access checks are not required for such nodes at all. However, it is challenging to identify

such nodes at compile time due to pointer aliasing. Specifically, the same memory address

may be pointed to by two or more pointers at runtime. During compile time, even if it is

identified that the access to a node through one pointer is always a read, the node may still

be modified through another pointer at runtime.

Initialize ReadOnlySet(S) = {all pointer variables};

for each pointer p {
if there is a write access to the address held in p {

ReadOnlySet(S) = ReadOnlySet(S) - {p};
}

}

Figure 6.13: Finding Read-Only Heap Objects.

Fortunately, there has been much research work on alias analysis. For any two

pointers, the alias analysis responds with three possible answers, “yes”, “maybe” and “no”,

126



indicating they do or maybe or do not point to the same location. Such analysis can be

exploited to conservatively identify read-only nodes. In particular, any two pointers with

answer “yes” or “maybe” from alias analysis, are considered as aliases. Next, the analysis

shown in Fig, 6.13 can be performed. For any access to a node through a pointer in

ReadOnlySet, no access check is inserted, because these accesses must involve read-only

nodes.

6.3.2 Optimizing Communication

In the implementation of CorD model described in earlier chapters, the communi-

cation between the main thread and speculative threads was implemented through expen-

sive system calls such as read and write to pipes. Use of pipes strictly prevents speculative

threads from accessing the non-speculative state memory, as values required by parallel

threads are passed through pipes. This mechanism works fine in the streaming applica-

tions because few values need to be communicated at runtime. However, the same is not

true in this work – many more values are communicated to speculative threads even when

copy-on-write is used. Thus, overhead of using pipes to pass values is high.

In this work, the restriction of the state separation is relaxed by allowing a spec-

ulative thread to directly read the non-speculative state memory. This results in highly

efficient communication. Busy-waiting algorithms are also used to synchronize threads be-

cause they achieve low wake-up latency and hence yield good performance on a shared

memory machine [53].

127



6.4 Experiments

6.4.1 Experimental Setup

To show the effectiveness of the techniques, 7 benchmarks are used, which are from

the LLVM test suite and SPEC2000 that make intensive use of heap based dynamic data

structures. In Table 6.2 the first two columns give the name and the description of each

program. The next column shows the type of dynamic data structure used and the last

column shows the original source of the program.

Name Description Dynamic Data Original
Structure Source

BH Barns-Hut Alg. Tree Olden

MST Mininum Spanning Tree Tree, hash Olden

Power Power pricing Graph, hash Olden

Patricia Patricia trie Tree, hash Mibench

Treesort Tree sorting Tree Stanford

Hash Hash table List, hash Shootout

Mcf Vehicle scheduling List, graph Spec2000

Table 6.2: Dynamic Data Structures Benchmarks.

In the experiments, Pin [48] instrumentation framework is used to profile loops

in these programs with a smaller input. Then the runtime dependences are analyzed and

regions that are good candidates for speculative parallelization are identified. Next the

LLVM [44] compiler infrastructure is used to compile these programs together with the

analysis result and the parallelization template, so that the sequential version can be trans-

formed into the parallel version. The parallelization template contains the implementation

of the runtime system including thread creation, interaction, mapping table, misspecula-

tion check etc. During the transformation of the code, access checks are inserted preceding

128



each heap access. The profiling is performed for a small input and the experimental data

is collected by executing parallelized programs on a large input. All the experiments were

conducted under CentOS 4 OS running on a dual quad-core (i.e., 8 cores) Xeon machine

with 16 GB memory. Each core runs at 3.0 GHz.

6.4.2 Performance

The execution time of a program between its sequential version and parallel version

are first compared. In this experiment, all the techniques and optimizations are used. It

is observed that running these programs under the implementation of CorD described in

earlier chapter led to at least 2x slowdown of parallel versions over sequential versions

regardless of the number of speculative threads. However, with the proposed techniques,

significant speedup is obtained. Figure 6.14 shows the execution speedup of these programs

for varying number of speculative threads created by the main thread.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1  2  3  4  5  6  7  8

E
xe

cu
tio

n 
S

pe
ed

up

Number of Parallel Threads

BH
MST

Power
Patricia

Treesort
Hash
MCF

Figure 6.14: Performance On An 8-core Machine.

129



Our results show that for all programs except Patricia, the speedup continues to

increase as the number of speculative threads is increased from 1 to 7. In particular, the

highest speedup of Power is 3.2, and that of other programs is between 1.56 and 2.5 when

7 speculative threads are used. In the case of Patricia, significant amount work has to be

done sequentially by the main thread. Also, every speculative thread needs to copy up to 1

MB memory during execution. When more threads are used, more memory is copied. This

can cause L2 cache pollution and hence dramatically affect the performance. For Patricia

best speedup of 1.74 is achieved when three speculative threads are used.

Since a total of 8 cores are available, when 8 speculative threads are used in

addition to the main thread, the speedup decreases. Except for MST and BH, all programs

actually have a slowdown. The reason is due to the use of busy-wait synchronization. When

8 speculative threads and one main thread are run on an 8 core machine, context switch is

required. However, using busy-wait constructs makes each thread to aggressively occupy a

core. This leads to even worse performance. It is worth noting that using pipe does not have

this problem as the main thread will be descheduled by OS. According to the experiments,

however, the use of pipe causes the parallel execution to be much slower than the sequential

one regardless of the number of parallel threads.

One can also observe that using one speculative thread is slower than the sequential

version. In the case of Treesort, even using two threads cannot obtain any speedup. This

behavior can be attributed to the overhead introduced by the model that more than nullifies

the limited parallelism benefits.

The misspeculation rate of each execution is also measured. The highest rate

observed is 10.2% for mcf when using 7 parallel threads. This benchmark also has a large

130



sequential portion. These two factors make the highest speedup of this program only 1.56.

For other programs, the misspeculation rate is less than 1%. Thus, misspeculations have

little impact on the performance.

6.4.3 Overhead Analysis

Time Overhead. The execution time is classified into 4 categories: communication (time

spent on busy-waiting constructs), access checks, misspeculation check followed by copy-out

operations, and computation. For speculative threads, these times and averaged them across

the threads are measured. The experiment was conducted for 2, 4, and 7 threads. The

results are shown in Figure 6.15.

Communication
Access Check
Computation

  0%

  20%

  40%

  60%

  80%

  100%

  120%

742742742742742742742

 P
ar

al
le

l T
hr

ea
d 

E
xe

cu
tio

n 
T

im
e 

B
re

ak
do

w
n

 Treesort  BH  MST  Patricia  Hash  Power  Mcf 

Figure 6.15: Time Breakdown: Speculative Threads.

From the figure, one can clearly see that regardless of the total number of specula-

tive threads, each thread, on an average, spent from at least 50% (Treesort) to nearly 100%

(MST) of the time on the computation. For some benchmarks like Treesort and Patricia,

131



a significant amount of time is spent on access checks. The communication time is very low

for all benchmarks, i.e., these threads do not spend much time on waiting for their work.

Communication
Misspec. Check & Copy−out
Computation

  0%

  20%

  40%

  60%

  80%

  100%

  120%

742742742742742742742

 M
ai

n 
T

hr
ea

d 
E

xe
cu

tio
n 

T
im

e 
B

re
ak

do
w

n

 Treesort  BH  MST  Patricia  Hash  Power  Mcf 

Figure 6.16: Time Breakdown: Main Thread.

Figure 6.16 shows the execution time breakdown for the main thread, which is

responsible for assigning work to speculative threads, performing misspeculation checks

followed by copy-out operations, and executing the sequential part of the program. As

one can see, for all programs except for Patricia and Mcf, the communication dominates

the main thread’s execution, which means the main thread is waiting for the results of

speculative threads most of the time. During the rest of the time, the main thread does

more work on misspeculation checks and copy-out operations for Treesort and Power, and

more work on sequential computation for Patricia, Mcf, BH, MST and Hash. For the last

3 programs, the sequential computation portion becomes larger as the number of parallel

threads increases from 2 to 7. This is because the total execution time is reduced due to

132



greater parallelism and hence the sequential part becomes a greater fraction of the total

execution time.

Space overhead. While the parallel execution is faster, it requires more memory space

as each node has extra bytes for heap prefix and double pointers and each thread needs its

own space. Therefore, an experiment was conducted to measure the peak value of memory

consumption of the parallelized program for varying number of threads. Figure 6.17 shows

the results.

 1

 1.5

 2

 2.5

 3

 3.5

 1  2  3  4  5  6  7

S
pa

ce
 O

ve
rh

ea
d

Number of Parallel Threads

BH
MST

Power
Patricia

Treesort
Hash

Mcf

Figure 6.17: Space Overhead.

As one can see, the memory consumed by the parallel version of all programs is

between 1.1x and 3.2x compared to the sequential version. Note that for most benchmarks

except for Treesort and Hash, the space overhead caused by heap prefix and double pointers

is at most 50% (when 7 threads are used) and often less than 20%. This is because each node

in these programs takes over 60 bytes with about 2 to 6 pointers. Other space overhead

133



mostly comes from the coping operations. Thanks to the copy-on-write scheme, only a

small number of nodes need to be copied and hence the total overhead is not very large.

For Treesort and Hash, however, the node size is only 12 bytes. Therefore, the double

pointer scheme and heap prefix cause significant space overhead, especially when more

threads are used as shown in the figure.

6.4.4 Effectiveness of Optimizations

As unnecessary access checks can be eliminated by the proposed analysis, the

number of static and dynamic access checks with and without optimizations are compared.

Table 6.3 shows the number of eliminated checks and the total number of checks without

any elimination. From this table, one can observe that a small number of static access

checks lead to millions of dynamic checks. This is because access checks are inserted inside

loops that have millions of iterations. One can also see that, on an average, the optimization

eliminates 69.5% of static access checks which correspond to 71.5% of dynamic access checks.

So without the optimization, each thread may waste significant number instructions at

runtime on performing unnecessary checks.

Program Checks Eliminated
Name Static Dynamic (Million)

BH 5/7 (71.4%) 0.55/0.67 (82.1%)

MST 7/11 (63.6%) 8.9/13.5 (65.9%)

Power 55/60 (91.6%) 9.5/10.8 (88.0%)

Patricia 53/66 (80.3%) 62.4/79.7 (78.3%)

Treesort 3/6 (50%) 72.7/143.2 (50.7%)

Hash 7/12 (58.3%) 312.8/463.3 (67.5%)

Mcf 20/28 (71.4%) 968.2/1418.9(68.2%)

Average 69.5% 71.5%

Table 6.3: Effectiveness Of Eliminating Access Checks.

134



6.5 Summary

For programs using heap based dynamic data structures, speculative paralleliza-

tion is challenging. This is because the size of the dynamic data structure can be very large

and thus moving heap data between non-speculative state and speculative state can be ex-

pensive. In addition, address translation of accesses to data structure fields is needed. This

chapter proposed techniques and optimizations that effectively address these challenges.

The experiments show maximum speedups from 1.56 to 3.2 for a set of programs that make

extensive use of heap based dynamic data structures.

135



Chapter 7

Related Work

7.1 Speculative Parallelization

7.1.1 Software Based TLS Techniques

Several works have proposed a software technique for speculative execution [25].

Some of them focus on the array based applications [25] [63]. In these works, each array is

associated with several shadow arrays that keep track when (in terms of iteration numbers)

each array element is read or write. The values in shadow arrays are used to test if a

speculation succeeds. If not, then the loop is determined to be a sequential one and it

needs to be reexecuted from the beginning or the latest checkpoint. In these works, state

separation is achieved through copying operation, which is performed when an element is

accessed.

Rundberg et al. [64, 65] presented another software technique for array based

programs. The key idea is to associate a support data structure for each shared location and

augment each speculative load and store with checking code. However, significant amount

136



of synchronizations have to be used between parallel threads, since no central control exists

in their work. Cintra et al. [11, 12] proposed similar schemes. In their work, the memory

fence is used to synchronize the parallel threads. The copying operation in both work is

performed on speculative stores.

Note that all the above works except for Rundberg et al.’s work [64, 65] only rely

on analyzing static information such as control flow graph and data dependence graph.

Therefore, they can not parallelize a program that has heap accesses through pointers in

the speculative region. Rundberg et al.’s work [64, 65], on the other hand, requires the

complete trace of a program to perform the parallelization.

Ding et al. [15] proposed a process based runtime model that enables speculative

parallel execution of Potentially Parallel Regions (PPRs) on multiple cores. However, there

are several drawbacks of this approach. First, the speculative region is executed by a

process instead of a thread in this approach. Each process can only communicate with its

child process, and the last process cannot know the termination of the first process if more

than two processes are created. Therefore, the work has to be assigned to the processes

running on different cores in rounds. Thus, parallelism cannot be fully exploited.

Second, copying overhead for this approach is large. As already mentioned, the

speculative region is executed by a process instead of a thread. The advantage of using a

process is that all data required by a speculative process is supplied by the OS through

copy-on-write scheme. While this makes implementation of the runtime system easy, the

copying overhead is higher as copying at OS level is carried out at the granularity of a page.

In particular, once a memory cell is written in a speculative process, OS makes a copy of

the entire page containing that cell. It is worth noting that more pages need to be allocated

137



so as to solve the false sharing problem caused by tracking the dependence at page level.

According to the description of this approach [15], each global variable needs to be allocated

on a distinct page. This worsens the overhead of the copying operation.

Lastly, the overhead of process creation is high. In Ding et al’s approach [15],

new processes are continuously created when old processes finish their execution. In the

case a loop has large number of iterations, frequently creating processes negatively impacts

performance. Compared to this approach, none of the above drawbacks are present in CorD.

Kulkarni et al. [38, 40, 41, 54, 39] also proposed a runtime system to exploit the

data parallelism in applications with irregular parallelism. Parallelization requires specu-

lation with respect to data dependences. The programmer uses two special constructs to

identify the data parallelism opportunities. When speculation fails, user supplied code is

executed to perform rollback. Besides, users need to use special constructors, mark all com-

mute functions, which can be executed in any order, and define the reverse computation

of each commute function in their programs. This places much burden on the users. In

contrast, this work does not require help from the user, nor does it require any rollbacks.

7.1.2 Hardware Based TLS Techniques

There have been considerable research work carried out in developing hardware

TLS system [13, 82, 74, 4, 91, 75, 76, 78, 17, 72, 49, 27, 24, 89, 36, 60]. In these techniques,

speculative threads are spawned to venture into unsafe program sections. The memory

state of the speculative thread is buffered in the cache, to help create thread isolation.

Hardware support is required to check for cross thread dependence violations; upon de-

tection of these violations, the speculative thread is squashed and restarted on the fly.

138



Unfortunately, most of the work is hardware based and not ready for use. This is due to

the architectural redesigns requiring non-trivial hardware changes such as special buffers

[27, 60], versioning cache [24], or versioning memory [23] for detecting misspeculations and

handling speculatively computed results, which have not been incorporated in commercial

multicore processors. Compared to these hardware based techniques, CorD does not require

any hardware support and is implemented purely in software.

7.1.3 Software Pipelining

One commonly used approach for parallelization of loops is software pipelining.

This technique partitions a loop into multiple pipeline stages where each stage is executed

on a different processor. Decoupled software pipelining (DSWP) [59, 62, 81] is a technique

that targets multicores. The proposed DSWP techniques require two kinds of hardware

support that is not commonly supported by current processors. First, hardware support

is used to achieve efficient message passing between different cores. Second, hardware

support is versioned memory which is used to support speculative DSWP parallelization.

Since DSWP requires the flow of data among the cores to be acyclic, in general, it is

difficult to balance the workloads across the cores. Raman et al. [62] address this issue by

parallelizing the workload of overloaded stages using DO-ALL techniques. This technique

achieves better scalability than DSWP but it does not support speculative parallelization

which limits its applicability. Other recent works on software pipelining target stream and

graphic processors [7, 16, 32, 37, 77].

139



7.1.4 Other Parallelization Techniques.

To improve performance through loop parallelization, DOALL techniques were

proposed decades ago [35, 42]. Due to the cross-iteration dependences, many programs

cannot be simply parallelized. To solve this problem, DOACROSS technique was proposed

[8, 45] which uses explicit send/receive calls or instructions to synchronize and exchange

values between threads. However, the blocking at receives serializes the execution. As a

result, DOACROSS techniques cannot greatly improve the performance, especially when

the value of a live-in variable is used at the beginning of a thread’s execution.

Vijaykumar et al. [83] presented some compiler techniques to exploit parallelism

of sequential programs. A set of heuristics operate on the control flow graph and the data

dependence graph so that the code can be divided into tasks. These tasks are specula-

tively executed in parallel and the hardware is responsible for detecting misspeculation and

performing recovery. However, this work focuses specifically on Multiscalar processors. Ke-

jariwal et al. and Praun et al. [33, 84], also presented different compiler techniques to

quantify the amount of optimistic parallelism in sequential programs respectively.

Instead of concentrating on extracting coarse-grained parallelism, Chu et al. [10]

recently proposed exploiting fine-grained parallelism on multicores. Memory operations

are profiled to collect memory access information and this information is used to partition

memory operations to minimize cache misses.

140



7.2 Related Work Of Multiple Speculations

7.2.1 Value Prediction Techniques

Value prediction techniques are very effective in breaking data dependences. They

have been widely used in both instruction-level parallelism and thread-level parallelism.

In 1996, Lipasti et al. [47] first proposed to predict the value of load instructions. The

motivation is to use value prediction to hide the memory access latency, so that other

instructions do not have to wait the value to be fetched from the memory hierarchy. They

designed a load value predictor which can predict a load value based on the value history of

the same load instruction. In their technique, each load instruction falls into one of three

groups, unpredictable, predictable and constant, based on whether or not its most recent

predictions are correct. Later, they extended their technique to other instructions aiming

at hiding both memory access and computation latency[46]. In both work, the value is

predicted as the same as the previous one for the same instruction. This prediction method

is also called last value prediction.

Sazeides and Simith [68] extended the value prediction work by considering differ-

ent prediction methods. They first examined the patterns of the different but commonly

seen value sequences. Then they formalized two different types of predictors, computational

predictor and context predictor. For the first type, they mainly discussed the stride pre-

dictors, which predict the next value of an instruction by adding the latest value and the

difference between two most recent values produced by the same instruction. The difference

is also called stride. In fact, last value prediction is a special case of the stride prediction in

that the stride is always zero. Gabbay et al. [22, 21] also presented stride predictors, but

141



their scheme is based on profiling data.

For the context predictor, Sazeides and Simith [68] described a finite context

method, which can be broken down to two phases, learning phase and prediction phase.

In the learning phase, the value and the corresponding context presented by a finite ordered

sequence of previous values are stored. In the prediction phase, the value appeared in the

same context before is used as the predicted value. In their work, they argue that simply

using last value prediction for instructions is not good enough. Instead, a hybrid method

which contains both stride prediction and context prediction can achieve better perfor-

mance. According to their experiments, 20 percent predictions using context predictor and

the remaining using stride predictor yield the high prediction accuracies at lower cost.

Wang and Franklin [86] also presented their work on an improved version of stride

predictor and a different version of context predictor. In their stride predictor, the value

of an instruction is not predicted until the same stride is observed in the two consecutive

instances. The condition is considered as a steady state for the stride predictor in their work,

and can effectively reduce the mispredictions. They also developed a context predictor.

Different from the finite context method, the predictor simply maintains 4 most recent

used values produced by an instruction and a counter associated with each value indicating

how often the value has repeated. If a new unique value is encountered, the least recent

used value is replaced. When predicting a value, the predictor simply picks the value with

the maximum counter value. They also combined these two predictors and gave a hybrid

solution.

Since the hybrid predictors produce the best result, many research works have also

been focusing on combining the last value prediction, stride prediction and context predic-

142



tion in different ways [5, 66, 9]. Besides these three common prediction methods, there also

exist some other prediction methods. Tullsen et al. [79] proposed to use register values to

predict values. Nakra et al. [57] presented a global context based value prediction. In all

previous work, predictions are made based on the history of the same instruction. In Nakra

et al’s scheme, however, two types of global information are considered, path information

and recently completed instructions. The key idea is to use the correlation between in-

struction values and branch histories, and the correlation between values produced by close

instructions. Zilles and Sohi [90] presented to use speculative slices to predict the value. A

speculative slice is a small code fragment which can be executed earlier than the instruction

that actually produces the value. Therefore, the latency of long-executed instructions can

be tolerated by executing such small slices.

Value prediction techniques have also been applied to different architectures. Nakra

et al. [58] describes how to predict values for VLIW machines. Fu et al. [18] presented

a scheme to use value predictions for EPIC architecture. Marcuello et al. [50, 51] dis-

cussed the applicability of value prediction on multithreaded architectures. Yuan et al. [87]

detailed the implementation of predictors on wide-issue superscalar processors.

While plenty of value prediction techniques have been implemented in hardware,

some research also considered compiler solutions. Fu et al. [19] first proposed to use compiler

to control the value prediction. However, the software overhead is too large to get good

performance. As a result, a minimal hardware support is introduced to speed up their

compiler based solution [20]. Larson and Austin [43] also proposed the use of the compiler

to insert the prediction code and missprediction handler. In their technique, they use the

confidence number to decide if a value should be predicted. Different from the hardware-

143



based predictor using a simple counter as the confidence [86, 9], the technique employed

a branch instruction in the prediction code. Therefore, the confidence can be obtained by

only using the confidence of branch predictors.

7.2.2 Pre-computation Technique

Quinones et al. [61] proposed the Mitosis compiler where the values of live-in

variables are pre-computed through data slice on the most frequently taken path. Although

this approach is effective in dealing with frequent cross-iteration dependences, it has two

drawbacks. First, the data slice of one or more live-in variables on one particular path can

be very large (e.g., gzip). Without value predictions, the pre-computation takes almost the

same amount of time as executing one iteration in such cases. Second, the most frequently

taken path is decided by the compiler using profiling results. However, there may exist

more than one hot path in a loop execution at runtime. Moreover, the inputs used in the

real runs are different from those used in the profiling runs. Therefore, the hot paths in

the profiling runs may not be frequently taken in the real runs. Thus, picking one hot

path at compile time may cause many misspeculations at runtime. Apart from these two

drawbacks, Mitosis compiler does not fully support speculation. It relies on the hardware

to detect misspeculations and handle speculatively computed results, and hence is not a

purely software speculation technique, but rather a hybrid one.

7.2.3 Multipath Execution Techniques

Using control flow paths to create multiple executions has also been used in ar-

chitectural designs [85, 80, 3]. In these works, spare hardware contexts are used to exe-

144



cute instructions along the paths corresponding to different predictions of hard-to-predict

branches. If one of these redundant executions is correct, then the penalty of the branch

misprediction is greatly reduced. Since these techniques focus on improving performance

through hardware changes, they are different from the software based compiler technique.

7.3 Transactional Memory

Transactional memory (TM) [1, 14, 29, 56, 28, 67, 70] has been an active area

of research. It is designed to enforce the atomicity of shared memory accesses in parallel

programs and cannot be directly used to parallelize sequential programs [52]. However,

since it has the capability of tracking dependences and detecting dependence violations

between two transactions, an experiment was conducted to see the performance of using

software based TM (STM) in the speculative parallelization work.

In this experiment, the program is manually transformed such that each task is put

into a transaction and every access to the potentially shared memory in a task is monitored

by the TM system. Similar to Mehrara et al’s work [52], the explicit synchronizations

are added into transaction functions to enforce the in-order commit, This is important for

maintaining the sequential program semantics. The TM implementation is based on a state-

of-art algorithm - Sun’s Transactional Locking 2 (TL2) [74]. Table 7.1 shows the speedup

comparisons between CorD and STM-based solution when 2, 4 and 7 parallel threads are

used respectively.

From the table, one can see that using STM in speculative execution has slowdowns

in most cases. Only for CRC, speedups are achieved because only 4 variables in this program

need to be tracked. However, STM yields much less speedups than CorD. For Power and

145



Programs 2 threads 4 threads 7 threads
CorD STM CorD STM CorD STM

BH 1.33 0.59 2.06 0.68 2.25 0.73

MST 1.63 0.84 2.34 0.94 2.61 1.02

Power 1.27 0.93 2.47 0.97 3.20 1.08

Patricia 1.50 0.43 1.63 0.52 1.40 0.47

Treesort 0.97 0.34 1.62 0.41 1.78 0.40

Hash 1.12 0.64 1.41 0.73 1.92 0.87

Mcf 1.15 0.54 1.30 0.58 1.56 0.61

197.parser 1.73 0.31 2.62 0.55 3.72 0.71

130.li 1.57 0.64 3.19 0.78 5.05 0.87

256.bzip 1.82 0.59 2.85 0.75 3.98 0.83

255.vortex 1.68 0.48 3.01 0.57 4.23 0.62

CRC 1.98 1.18 3.92 1.56 7.82 1.88

Table 7.1: Speedup Comparisons.

MST, a slight speedup can be achieved when 7 parallel threads are used. The results are

consistent with [52] which also shows that STM typically nullifies the performance gains in

compiler parallelized sequential applications. There are several reasons for the performance

loss. First, STM needs special mechanisms to avoid or resolve dead-lock and live-lock

situations. Second, STM aims to achieve good throughput and fairness. This requires STM

to consider the priorities of transactions [73]. Besides, STM internally uses locks to prevent

data races [74] and barriers to ensure strong atomicity [69, 71] and in-order commit [52].

These special considerations are not necessary for speculative parallelization. Instead, they

result in high runtime overhead for STM while providing a convenience for programmers

writing parallel applications.

Note that Mehrara et al. [52] propose customized STM for speculative paralleliza-

tion. Their work assumes dependent variables can be identified at compile time and thus

they use a set of special registers to track such variables. However, for the programs us-

ing dynamic data structures, cross-iteration dependences cannot be recognized statically.

146



Therefore, their work is not applicable for the class of programs that are considered.

147



Chapter 8

Conclusions

8.1 Contributions

This dissertation makes contributions in the area of software-based thread-level

speculative parallelization. A thread-based speculative execution model called CorD is pro-

posed. It contains one main thread and several parallel threads and the main thread controls

the entire execution. The memory state is divided into three disjoint partitions such that

the execution of each thread is isolated. In particular, the main thread maintains the non-

speculative state and parallel threads perform speculative computations on the speculative

state. Coordinating state provides memory for bookkeeping important information needed

to support speculation. In CorD the data communications between the main thread and

parallel threads are performed through copying operations. The misspeculation is checked

by the main thread, which also commits the speculatively computed results if the spec-

ulation is successful. If a misspeculation is detected, the speculative results are simply

discarded and the failed task is performed again.

148



This dissertation also presents different realizations of CorD which adapt to differ-

ent situations. For streaming applications, copying optimizations can be highly optimized

based on the profiling results. A version based misspeculation detection scheme is also

proposed. To deal with high misspeculation rate, two different approaches, Multiple Specu-

lations and Incremental Recovery are proposed. In the first approach, the values of live-in

variables are predicted and multiple speculative version of the same task are created and

executed with a non-speculative task in parallel. If one of these versions is correct, par-

allelism between these two tasks is achieved. The second approach decouples the creation

of each parallel thread from the creation of its speculative state. It allows speculatively

computed results to be reused as long as they are not using the live-in variables that are the

cause of misspeculations. Finally, challenges of applying CorD in the presence of dynamic

data structures are studied and addressed.

The following research questions are addressed in this dissertation.

Can software-based TLS be applied to complex applications?

While hardware based TLS techniques have not been incorporated in any commercial pro-

cessors due to non-trivial architectural changes, people wonder if software-based TLS can

be general enough to parallels complex applications. Previous software techniques usually

have limited applicability. Most of them only focused on array-based or scalar variable

based applications [25, 63, 15]. Although the techniques proposed by Kulkarni et al. fo-

cused on heap-based irregular applications [38, 40, 41, 54], they require the application to

use work-list type data structures and commutative statements.

The CorD model described in this dissertation does not have any specific require-

ment of the applications. As shown in earlier chapters, it can be adapted to both array

149



or scalar variable based applications and heap based applications. This dissertation shows

that software-based TLS is able to be applied to different kinds of complex applications.

How well can software-based TLS work?

Previously, it was unclear how well a software-based technique can work. While parallelism

benefit is obtained, prior techniques have drawn a lot of concern about overhead. Process

based solution proposed by Ding et al. [15] incurs too much copying overhead. Thread

based solution proposed by Kulkarni et al. [38, 40, 41, 54] suffers from recovery overhead

because of the lack of state separation. The work presented in [64] and [11] have significant

synchronization overhead since no central control exists.

The CorD model proposed in this dissertation overcomes all these shortcomings

of software based TLS. It uses threads instead of processes, which significantly reduces the

copying overhead. Moreover, copying optimizations and copy-on-write scheme are proposed

to further reduce this overhead. It maintains separate states, which eliminates the need of

rollback because the speculatively computed results can be simply discarded. The main

thread controls the entire speculative parallelization, which largely reduce the synchroniza-

tion overhead.

Besides these advantages, this dissertation also proposed other optimizations for

CorD such as heap prefix, access check optimizations etc. to further reduced the over-

head. All of them make the software-based solution practical and promising for speeding

up sequential programs.

Can software-based TLS be applied when misspeculations frequently occur?

The most fundamental characteristic of all TLS technique is to assume dependences that pre-

150



vent parallelism do not manifest themselves frequently at runtime. Thus, such assumption

being false is a disaster for all software-based TLS, since continuously dealing with misspec-

ulations slows down the program execution dramatically. As a result, most software-based

TLS research focus on the applications that have low misspeculation rates.

In this dissertation, two approaches are presented to specifically tackle high mis-

speculation rate problem. By appropriately adapting CorD model, parallelism in the se-

quential loop that has frequent cross-iteration dependences can still be achieved. These

approaches make software-based TLS more powerful in exploiting coarse-grain parallelism.

8.2 Future Directions

Performance and power consumption tradeoff. This dissertation mainly focuses on

improving performance of sequential program by exploiting multiple cores. In scientific

domains, performance is the most important issue. However, in other domains, power

consumption may become a big concern. In the future work, speculative parallelization

technique should be adapted to meet different needs. In particular, misspeculation rate

should be collected online so that the number of parallel thread can be controlled based on

the amount of potential performance gain.

Online profiling and re-compilation. The parallelization algorithm and many opti-

mizations proposed in this dissertation are based on the profiling results. In other words,

the accuracy of profiling largely affects the performance of CorD. Since the input of the

profiling run and the input of the real run are different, the information gathered in the

profiling run may not lead to efficient parallelization. To address this problem, future work

151



should consider online profiling. Based on the results, the code should be re-transformed

to better exploit frequently observed parallelism.

Architectural factors. While CorD can be purely realized in software as described in this

dissertation, it does not reject architectural support. To further improve the performance

of CorD based speculations, future work should consider offloading some functions to the

hardware. Cache performance should also be taken into account because cache pollution

exists when memory footprint of the parallelized application or other co-existing application

is very large. Scheduling techniques should be merged into CorD to address this problem

and thus better exploit the architectural features.

This dissertation currently considers the multicore processors as the target archi-

tecture. In the future, many-core processors and heterogeneous processors may become

prevalent. Future work could consider adapting CorD to such new architectures.

152



Bibliography

[1] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy, B. Saha, and T. Sh-
peisman. Compiler and runtime support for efficient software transactional memory.
In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN conference on Programming
language design and implementation, pages 26–37, 2006.

[2] H. Agrawal and J. R. Horgan. Dynamic program slicing. In PLDI ’90: Proceedings of
the 1990 ACM SIGPLAN conference on Programming language design and implemen-
tation.

[3] P. S. Ahuja, K. Skadron, M. Martonosi, and D. W. Clark. Multipath execution: Op-
portunities and limits. In International Conference on Supercomputing, pages 101–108,
1998.

[4] A. Bhowmik and M. Franklin. A general compiler framework for speculative multi-
threading. In PAA ’02: Proceedings of the fourteenth annual ACM symposium on
Parallel algorithms and architectures, pages 99–108, 2002.

[5] B. Black, B. Mueller, S. Postal, R. Rakvic, N. Utamaphethai, and J. P. Shen. Load ex-
ecution latency reduction. In ICS ’98: Proceedings of the 12th international conference
on Supercomputing, pages 29–36, New York, NY, USA, 1998. ACM.

[6] M. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. August. Revisiting the
sequential programming model for multi-core. In MICRO 40: Proceedings of the 40th
Annual IEEE/ACM International Symposium on Microarchitecture, pages 69–84, 2007.

[7] I. Buck. Stream computing on graphics hardware. PhD thesis, Stanford, CA, USA,
2005.

[8] M. G. Burke and R. K. Cytron. Interprocedural dependence analysis and paralleliza-
tion. SIGPLAN Not., 39(4):139–154, 2004.

[9] B. Calder, G. Reinman, and D. M. Tullsen. Selective value prediction. In ISCA ’99:
Proceedings of the 26th annual international symposium on Computer architecture,
pages 64–74, Washington, DC, USA, 1999. IEEE Computer Society.

[10] M. Chu, R. Ravindran, and S. Mahlke. Data access partitioning for fine-grain par-
allelism on multicore architectures. In MICRO 40: Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 369–380, 2007.

153



[11] M. Cintra and D. R. Llanos. Toward efficient and robust software speculative paral-
lelization on multiprocessors. In PPoPP ’03: Proceedings of the ninth ACM SIGPLAN
symposium on Principles and practice of parallel programming, pages 13–24, 2003.

[12] M. H. Cintra and D. R. L. Ferraris. Design space exploration of a software speculative
parallelization scheme. IEEE Trans. Parallel Distrib. Syst., 16(6):562–576, 2005.

[13] M. H. Cintra, J. F. Mart́ınez, and J. Torrellas. Architectural support for scalable
speculative parallelization in shared-memory multiprocessors. In ISCA, pages 13–24,
2000.

[14] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nussbaum. Hybrid
transactional memory. In ASPLOS-XII: Proceedings of the 12th international confer-
ence on Architectural support for programming languages and operating systems, pages
336–346, 2006.

[15] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang. Software behavior ori-
ented parallelization. In PLDI ’07: Proceedings of the 2007 ACM SIGPLAN conference
on Programming language design and implementation, pages 223–234, 2007.

[16] K. Fan, H. Park, M. Kudlur, and S. A. Mahlke. Modulo scheduling for highly cus-
tomized datapaths to increase hardware reusability. In CGO ’03: Proceedings of the
2003 International Symposium on Code Generation and Optimization, pages 124–133,
2008.

[17] M. Franklin and G. S. Sohi. Arb: A hardware mechanism for dynamic reordering of
memory references. IEEE Transactions on Computers, 45(5):552–571, 1996.

[18] C.-Y. Fu and T. M. Conte. Value speculation mechanisms for epic architectures. Tech-
nical report, 1998.

[19] C.-Y. Fu, M. D. Jennings, S. Y. Larin, and T. M. Conte. Software-only value specula-
tion scheduling. Technical report, 1998.

[20] C.-Y. Fu, M. D. Jennings, S. Y. Larin, and T. M. Conte. Value speculation scheduling
for high performance processors. In ASPLOS’98: Eighth International Conference
on Architectural Support for Programming Languages and Operating Systems, pages
262–271, 1998.

[21] F. Gabbay and A. Mendelson. Speculative execution based on value prediction. Tech-
nical report, EE Department TR 1080, Technion - Israel Institue of Technology, 1996.

[22] F. Gabbay and A. Mendelson. Can program profiling support value prediction? In
MICRO 30: Proceedings of the 30th annual ACM/IEEE international symposium on
Microarchitecture, pages 270–280, Washington, DC, USA, 1997. IEEE Computer Soci-
ety.

[23] M. J. Garzarán, M. Prvulovic, J. M. Llabeŕıa, V. Viñals, L. Rauchwerger, and J. Tor-
rellas. Tradeoffs in buffering speculative memory state for thread-level speculation in
multiprocessors. Transactions on Architecture and Code Optimization, 2(3):247–279,
2005.

154



[24] S. Gopal, T. N. Vijaykumar, J. E. Smith, and G. S. Sohi. Speculative versioning cache.
In HPCA ’98: Proceedings of the 4th International Symposium on High-Performance
Computer Architecture, pages 195–205, 1998.

[25] M. Gupta and R. Nim. Techniques for speculative run-time parallelization of loops. In
Supercomputing ’98: Proceedings of the 1998 ACM/IEEE conference on Supercomput-
ing (CDROM), pages 1–12, Washington, DC, USA, 1998. IEEE Computer Society.

[26] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown.
Mibench: A free, commercially representative embedded benchmark suite. In IEEE
4th Annual Workshop on Workload Characterization, 2001.

[27] L. Hammond, M. Willey, and K. Olukotun. Data speculation support for a chip mul-
tiprocessor. In ASPLOS-VIII: Proceedings of the eighth international conference on
Architectural support for programming languages and operating systems, pages 58–69,
1998.

[28] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III. Software transactional
memory for dynamic-sized data structures. In PODC ’03: Proceedings of the twenty-
second annual symposium on Principles of distributed computing, pages 92–101, 2003.

[29] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for lock-
free data structures. In ISCA’93: Proceedings of the 20th Annual International Sym-
posium on Computer Architecture, pages 289–300, 1993.

[30] http://llvm.org/docs/TestingGuide.html.

[31] http://www.spec.org.

[32] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn, P. Mattson, and J. D.
Owens. Programmable stream processors. Computer, 36(8):54–62, 2003.

[33] A. Kejariwal, X. Tian, M. Girkar, W. Li, S. Kozhukhov, U. Banerjee, A. Nicolau, A. V.
Veidenbaum, and C. D. Polychronopoulos. Tight analysis of the performance potential
of thread speculation using spec cpu 2006. In PPoPP ’07: Proceedings of the 12th
ACM SIGPLAN symposium on Principles and practice of parallel programming, pages
215–225, 2007.

[34] K. Kelsey, T. Bai, C. Ding, and C. Zhang. Fast track: A software system for speculative
program optimization. In CGO ’09: Proceedings of the 2009 International Symposium
on Code Generation and Optimization, pages 157–168, 2009.

[35] K. Kennedy and J. R. Allen. Optimizing compilers for modern architectures: a
dependence-based approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2002.

[36] V. Krishnan and J. Torrellas. The need for fast communication in hardware-based
speculative chip multiprocessors. In PACT ’99: Proceedings of the 1999 International
Conference on Parallel Architectures and Compilation Techniques, pages 24–33, 1999.

155



[37] M. Kudlur and S. Mahlke. Orchestrating the execution of stream programs on multi-
core platforms. In PLDI ’08: Proceedings of the 2008 ACM SIGPLAN conference on
Programming language design and implementation, 2008.

[38] M. Kulkarni, M. Burtscher, R. Inkulu, K. Pingali, and C. Casçaval. How much paral-
lelism is there in irregular applications? In PPoPP ’09: Proceedings of the 14th ACM
SIGPLAN symposium on Principles and practice of parallel programming, pages 3–14,
2009.

[39] M. Kulkarni, P. Carribault, K. Pingali, G. Ramanarayanan, B. Walter, K. Bala, and
L. P. Chew. Scheduling strategies for optimistic parallel execution of irregular pro-
grams. In SPAA ’08: Proceedings of the twentieth annual symposium on Parallelism
in algorithms and architectures, pages 217–228, 2008.

[40] M. Kulkarni, K. Pingali, G. Ramanarayanan, B. Walter, K. Bala, and L. P. Chew.
Optimistic parallelism benefits from data partitioning. In ASPLOS XIII: Proceedings of
the 13th international conference on Architectural support for programming languages
and operating systems, pages 233–243, 2008.

[41] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L. P. Chew.
Optimistic parallelism requires abstractions. In PLDI ’07: Proceedings of the 2007
ACM SIGPLAN conference on Programming language design and implementation,
pages 211–222, 2007.

[42] L. Lamport. The parallel execution of do loops. Commun. ACM, 17(2):83–93, 1974.

[43] E. Larson and T. Austin. Compiler controlled value prediction using branch predictor
based confidence. In MICRO 33: Proceedings of the 33rd annual ACM/IEEE inter-
national symposium on Microarchitecture, pages 327–336, New York, NY, USA, 2000.
ACM.

[44] C. Lattner and V. Adve. Llvm: A compilation framework for lifelong program analysis
& transformation. In CGO ’04: Proceedings of the 2004 International Symposium on
Code Generation and Optimization, page 75, 2004.

[45] A. W. Lim and M. S. Lam. Maximizing parallelism and minimizing synchronization
with affine partitions. Parallel Comput., 24(3-4):445–475, 1998.

[46] M. H. Lipasti and J. P. Shen. Exceeding the dataflow limit via value prediction.
In MICRO 29: Proceedings of the 29th annual ACM/IEEE international symposium
on Microarchitecture, pages 226–237, Washington, DC, USA, 1996. IEEE Computer
Society.

[47] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. Value locality and load value prediction.
In ASPLOS-VII: Proceedings of the seventh international conference on Architectural
support for programming languages and operating systems, pages 138–147, New York,
NY, USA, 1996. ACM.

156



[48] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi,
and K. Hazelwood. Pin: building customized program analysis tools with dynamic
instrumentation. In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementation, pages 190–200, 2005.

[49] P. Marcuello and A. González. Clustered speculative multithreaded processors. In
ICS ’99: Proceedings of the 13th international conference on Supercomputing, pages
365–372, 1999.

[50] P. Marcuello, A. González, and D. D. D. Computadors. A quantitative assessment
of thread-level speculation techniques. In In Proceedings of the 14th International
Conference on Parallel and Distributed Processing Symposium (IPDPS ’00), pages
595–604, 1999.

[51] P. Marcuello, J. Tubella, and A. González. Value prediction for speculative multi-
threaded architectures. In MICRO 32: Proceedings of the 32nd annual ACM/IEEE
international symposium on Microarchitecture, pages 230–236, Washington, DC, USA,
1999. IEEE Computer Society.

[52] M. Mehrara, J. Hao, P.-C. Hsu, and S. Mahlke. Parallelizing sequential applications
on commodity hardware using a low-cost software transactional memory. In PLDI ’09:
Proceedings of the 2009 ACM SIGPLAN conference on Programming language design
and implementation, pages 166–176, 2009.

[53] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst., 9(1):21–65, 1991.

[54] M. Méndez-Lojo, D. Nguyen, D. Prountzos, X. Sui, M. A. Hassaan, M. Kulkarni,
M. Burtscher, and K. Pingali. Structure-driven optimizations for amorphous data-
parallel programs. In PPoPP ’10: Proceedings of the 14th ACM SIGPLAN symposium
on Principles and practice of parallel programming, pages 3–14, 2010.

[55] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. Stamp: Stanford transactional
applications for multi-processing. In Proceedings of The IEEE Intl. Symposium on
Workload Characterization, 2008.

[56] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D. Hill, B. Liblit, M. M. Swift, and
D. A. Wood. Supporting nested transactional memory in logtm. In ASPLOS-XII: Pro-
ceedings of the 12th international conference on Architectural support for programming
languages and operating systems, pages 359–370, New York, NY, USA, 2006. ACM.

[57] T. Nakra, R. Gupta, and M. L. Soffa. Global context-based value prediction. In HPCA
’99: Proceedings of the 5th International Symposium on High Performance Computer
Architecture, page 4, Washington, DC, USA, 1999. IEEE Computer Society.

[58] T. Nakra, R. Gupta, and M. L. Soffa. Value prediction in vliw machines. In ISCA
’99: Proceedings of the 26th annual international symposium on Computer architecture,
pages 258–269, Washington, DC, USA, 1999. IEEE Computer Society.

157



[59] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic thread extraction
with decoupled software pipelining. In MICRO 38: Proceedings of the 38th annual
IEEE/ACM International Symposium on Microarchitecture, pages 105–118, 2005.

[60] M. Prvulovic, M. J. Garzarán, L. Rauchwerger, and J. Torrellas. Removing architec-
tural bottlenecks to the scalability of speculative parallelization. In ISCA ’01: Pro-
ceedings of the 28th annual international symposium on Computer architecture, pages
204–215, 2001.

[61] C. G. Quiñones, C. Madriles, F. J. Sánchez, P. Marcuello, A. González, and D. M.
Tullsen. Mitosis compiler: an infrastructure for speculative threading based on pre-
computation slices. In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation, pages 269–279, 2005.

[62] E. Raman, G. Ottoni, A. Raman, M. J. Bridges, and D. I. August. Parallel-stage
decoupled software pipelining. In CGO ’08: Proceedings of the 2008 International
Symposium on Code Generation and Optimization, pages 114–123, 2008.

[63] L. Rauchwerger and D. A. Padua. The lrpd test: Speculative run-time parallelization
of loops with privatization and reduction parallelization. IEEE Trans. Parallel Distrib.
Syst., 10(2):160–180, 1999.

[64] P. Rundberg and P. Stenstrom. Low-cost thread-level data dependence speculation on
multiprocessors. In In Fourth Workshop on Multithreaded Execution,Architecture and
Compilation, 2000.

[65] P. Rundberg and P. Stenström. An all-software thread-level data dependence specula-
tion system for multiprocessors. J. Instruction-Level Parallelism, 3, 2001.

[66] B. Rychlik, J. Faistl, B. Krug, and J. P. Shen. Efficacy and performance impact of
value prediction. In PACT ’98: Proceedings of the 1998 International Conference on
Parallel Architectures and Compilation Techniques, pages 148–, 1998.

[67] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and B. Hertzberg. Mcrt-stm:
a high performance software transactional memory system for a multi-core runtime.
In PPoPP’06: In Proceedings of the 11th ACM Symp. on Principles and Practice of
Parallel Programming, pages 187–197, 2006.

[68] Y. Sazeides, Y. Sazeides, J. E. Smith, and J. E. Smith. The predictability of data values.
In MICRO 30: Proceedings of the 30th annual ACM/IEEE international symposium
on Microarchitecture, pages 248–258, 1997.

[69] F. T. Schneider, V. Menon, T. Shpeisman, and A.-R. Adl-Tabatabai. Dynamic op-
timization for efficient strong atomicity. In OOPSLA ’08: Proceedings of the 23rd
ACM SIGPLAN conference on Object-oriented programming systems languages and
applications, pages 181–194, 2008.

[70] N. Shavit and D. Touitou. Software transactional memory. Distributed Computing,
10(2):99–116, 1997.

158



[71] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer, D. Grossman, R. L.
Hudson, K. F. Moore, and B. Saha. Enforcing isolation and ordering in stm. In PLDI
’07: Proceedings of the 2007 ACM SIGPLAN conference on Programming language
design and implementation, pages 78–88, 2007.

[72] G. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar processors. In ISCA ’95:
Proceedings of the 22nd annual international symposium on Computer architecture,
pages 414–425, 1995.

[73] M. F. Spear, L. Dalessandro, V. J. Marathe, and M. L. Scott. A comprehensive
strategy for contention management in software transactional memory. In PPoPP
’09: Proceedings of the 14th ACM SIGPLAN symposium on Principles and practice of
parallel programming, 2009.

[74] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A scalable approach to
thread-level speculation. In ISCA ’00: In Proceedings of the 27th Annual International
Symposium on Computer Architecture, pages 1–12, 2000.

[75] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. Improving value communi-
cation for thread-level speculation. In HPCA ’02: Proceedings of the 8th International
Symposium on High Performance Computer Architecture, pages 65–75, 2002.

[76] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. The stampede approach to
thread-level speculation. ACM Trans. Comput. Syst., 23(3):253–300, 2005.

[77] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A practical approach to exploiting
coarse-grained pipeline parallelism in c programs. In MICRO 40: Proceedings of the
40th Annual IEEE/ACM International Symposium on Microarchitecture, pages 356–
369, 2007.

[78] J.-Y. Tsai, J. Huang, C. Amlo, D. J. Lilja, and P.-C. Yew. The superthreaded processor
architecture. IEEE Transactions on Computers, 48(9):881–902, 1999.

[79] D. M. Tullsen and J. S. Seng. Storageless value prediction using prior register values.
In ISCA ’99: Proceedings of the 26th annual international symposium on Computer
architecture, pages 270–279, Washington, DC, USA, 1999. IEEE Computer Society.

[80] A. K. Uht, V. Sindagi, and K. Hall. Disjoint eager execution: an optimal form of
speculative execution. In MICRO ’95: Proceedings of the 28th annual international
symposium on Microarchitecture, pages 313–325, 1995.

[81] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and D. I. August.
Speculative decoupled software pipelining. In PACT ’07: Proceedings of the 2007
International Conference on Parallel Architectures and Compilation Techniques, pages
49–59, 2007.

[82] T. N. Vijaykumar, S. Gopal, J. E. Smith, and G. S. Sohi. Speculative versioning cache.
IEEE Trans. Parallel Distrib. Syst., 12(12):1305–1317, 2001.

159



[83] T. N. Vijaykumar and G. S. Sohi. Task selection for a multiscalar processor. In
MICRO 31: Proceedings of the 31st annual ACM/IEEE international symposium on
Microarchitecture, pages 81–92, 1998.

[84] C. von Praun, R. Bordawekar, and C. Cascaval. Modeling optimistic concurrency
using quantitative dependence analysis. In PPoPP ’08: Proceedings of the 13th ACM
SIGPLAN symposium on Principles and practice of parallel programming, pages 185–
196, 2008.

[85] S. Wallace, B. Calder, and D. M. Tullsen. Threaded multiple path execution. In ISCA
’98: Proceedings of the 25nd annual international symposium on Computer architec-
ture, pages 238–249, 1998.

[86] K. Wang and M. Franklin. Highly accurate data value prediction using hybrid predic-
tors. In MICRO 30: Proceedings of the 30th annual ACM/IEEE international sympo-
sium on Microarchitecture, pages 281–290, Washington, DC, USA, 1997. IEEE Com-
puter Society.

[87] S.-J. L. Yuan, Y. Wang, and P. chung Yew. Decoupled value prediction on trace proces-
sors. In In 6th International Symposium on High Performance Computer Architecture,
pages 231–240, 2000.

[88] A. Zhai, C. B. Colohan, J. G. Steffan, and T. C. Mowry. Compiler optimization of
scalar value communication between speculative threads. SIGARCH Comput. Archit.
News, 30(5):171–183, 2002.

[89] Y. Zhang, L. Rauchwerger, and J. Torrellas. Hardware for speculative run-time paral-
lelization in distributed shared-memory multiprocessors. In HPCA ’98: Proceedings of
the 4th International Symposium on High-Performance Computer Architecture, pages
162–173, 1998.

[90] C. Zilles and G. Sohi. Execution-based prediction using speculative slices. In ISCA
’01: Proceedings of the 28th annual international symposium on Computer architecture,
pages 2–13, New York, NY, USA, 2001. ACM.

[91] C. Zilles and G. Sohi. Master/slave speculative parallelization. In MICRO 35: Pro-
ceedings of the 35th annual ACM/IEEE international symposium on Microarchitecture,
pages 85–96, 2002.

160


