
Uni�cation of Register Allocation and Instruction Schedulingin Compilers for Fine-Grain Parallel ArchitecturesbyDavid A. BersonB.A., Coe College, 1984M.S., University of DePaul, 1988Submitted to the Graduate Faculty ofArts and Sciences in partial ful�llmentof the requirements for the degree ofDoctor of PhilosophyUniversity of Pittsburgh1996

c
 Copyright by David A. Berson1996

ii

UNIVERSITY OF PITTSBURGHFACULTY OF ARTS AND SCIENCESThis dissertation was presentedbyDavid A. BersonIt was defended onNovemember 21 1996and approved byProf. Rajiv GuptaProf. Mary Lou So�aProf. Henry ChuangProf. Thomas CainCommittee Chairperson
iii

UNIFICATION OF REGISTER ALLOCATION AND INSTRUCTIONSCHEDULINGIN COMPILERS FOR FINE-GRAIN PARALLEL ARCHITECTURESDavid A. Berson, Ph.D.University of Pittsburgh, 1996The interaction between instruction scheduling and register allocation has signi�cant impacton the quality of code generated, particularly in compilers targeting �ne grain parallel architectures.The problem results from the fact that instruction scheduling and register allocation have con
ictinggoals. Instruction scheduling tries to maximize parallelism by scheduling as many instructions aspossible in parallel, which requires a large number of values to be held in registers for short periodsof time. On the other hand, register allocation attempts to hold a small number of values in registersfor long periods of time, resulting in limiting the number of instructions that can be scheduled inparallel. This dissertation presents a method for unifying these tasks by allocating all needed registersand functional units to an instruction simultaneously. No previous technique has achieved this degreeof integration between the two tasks. The work in this dissertation is based on a framework consistingof three components: a technique for measuring a program's demand for all resources, a singleintermediate representation of the measured demands, and a set of transformations that performresource allocation.The approach taken in this work is based on a new paradigm of resource allocation, calledMeasure and Reduce in which the resource requirements of the program are measured and excessivedemands are removed by reduction transformations. The information computed during the meas-urement of the demands for each resource is incorporated into a single intermediate representation.The reduction transformations for all resources operate on this intermediate representation, allow-ing transformations for di�erent types of resources to be performed simultaneously. Therefore, aninstruction can be allocated all resources it needs at once, resulting in uni�ed resource allocation.The intermediate representation is based on a hierarchical form of dependence DAGs, enabling thetransformations to naturally handle instruction level parallelism. In particular, the register transform-ations form a framework for live range splitting in the absence of a full ordering of the instructions,as required by previous splitting techniques.Application of the reduction transformations is �rst demonstrated by a heuristic for perform-ing register allocation during local instruction scheduling. Global register allocation is performed byexploiting the hierarchical nature of the intermediate representation. Heuristics are also given for us-ing the transformations during global code motion, resulting in uni�ed allocation and a more
exibleuse of available resources than previous resource constrained techniques.The results of numerous experiments comparing the new techniques to previous attemptsat phase integration are reported. The experiments indicate that the uni�ed allocation of resourcesgenerates higher quality code than methods that partially integrate the allocation phases. In addition,while precise measurement of register requirements is NP-Complete, in practice precise measurementsare obtained easily and e�ciently. Thus, when these measurements are combined with traditionalregister allocation techniques in hybrid algorithms, the quality of code generated is improved.iv

v
In memory of Elizabeth Marie Hartquist, who saw her son start.

vi
For everything there is a season, and a time for every matter under heaven.Ecclesiastes 3:1

AcknowledgementsDuring the phases of this research I have been aided by a number of people. I take thisopportunity to thank them for the various contributions they have made to help me reach my goals.I would like to express my appreciation and thanks to my co{advisors, Drs. Rajiv Guptaand Mary Lou So�a for their guidance, examples as teachers and researchers, and their patience. Iam also grateful to the members of my thesis committee, Drs. Henry Chuang and Thomas Cain, fortheir review and suggestions concerning this research.I acknowledge the Dean of Faculty of Arts and Sciences O�ce and the Mellon Foundationfor providing �nancial support in the form of fellowships. This work was also supported in part bythe NSF1.I would like to give special thanks to my fellow graduate students. Thanks to Claude-Nicholas Fiechter, Russ Bodik, and Phil Kamp for their work on the Program Dependence Graph CCompiler and for listening to all my suggestions and implementing the reasonable ones.I would also like to thank the Intel Corporation for their willingness to hire me before I wasquite �nished and their patience while I completed the writing.I would especially like to thank my wife, Karen, for her constant love, emotional support,and understanding through all the stages of this degree. I give my deepest appreciation to mydaughter, Alannah, for her child's unconditional love and being my motivation to �nish. I would liketo thank my parents for their love and for instilling their value of education in me. Without theirbelief in my abilities and continual encouragement I never would have come so far.Finally, I thank God for this experience. Without His love and gifts none of this would havebeen possible.1National Science Foundation Presidential Young Investigator Award CCR-9157371 and Grant CCR-91090808 tothe University of Pittsburgh vii

Table of ContentsList of Figures : xList of Tables : xii1 Introduction : 11.1 Previous Approaches : 21.2 Uni�cation : 51.3 Organization of the Thesis : 72 Related Work : 82.1 Program Representations : 82.2 Global Code Motion : 92.3 Register Allocation : 102.4 Integrated Register Allocation and Instruction Scheduling : : : : : : : : : : : : : : : 133 Overview : 153.1 Uni�ed Resource Allocation Framework : 153.2 URSA Applications : 174 Resource Requirements : 204.1 Measuring Resource Requirements : 214.1.1 Measurement de�nitions : 214.1.2 Measurement speci�cs for functional units and registers : : : : : : : : : : : : 254.2 Excessive Sets : 274.3 Resource Holes : 285 Global Uni�ed Resource Requirements Representation : 325.1 Integrated Resource Allocation Representation : 325.1.1 Integrated Resource Allocation Properties : 335.1.2 GURRR : 335.2 Computing GURRR : 405.2.1 Construction of GURRR : 405.2.2 Incremental Updating of GURRR : 416 Resource Spackling : 436.1 Filling Spanning Resource Holes : 446.2 Filling Non-spanning Resource holes : 537 Uni�ed Allocation : 557.1 Local Scheduling and Register Allocation : 557.2 Finding Overlapping Holes : 587.3 Selection Heuristics : 598 Global Code Motion : 628.1 Resource Conscious Global Code Motion : 62viii

ix8.2 Selection of Fill Sets : 689 HARE : 699.1 Overview of HARE : 699.2 Allocation and spill code placement : 729.3 Assignment and placement of copy instructions : 7710 Architectural Considerations : 8110.1 Instruction Pipelining : 8110.2 Modeling Architectural Constraints : 8610.2.1 Reserved Resource Copies : 8610.2.2 Generic Instructions : 8811 Implementation : 9111.1 URSA Interfaces : 9111.2 Representation : 9311.3 Reuse DAG Decomposition : 9612 Experimentation : 9912.1 Experimental Design : 9912.2 Overview of the Algorithms : 10112.3 Register Sensitive Schedulers (RSS) : 10212.3.1 Base Techniques : 10312.3.2 Hybrid Register Sensitive Schedulers : 10412.4 Schedule Sensitive Register Allocation (SSRA) : 10612.4.1 Base Techniques : 10612.4.2 Hybrid SSRA techniques : 10712.5 Uni�ed Resource Allocation : 10912.6 Measurement and Compile Time Statistics : 11212.6.1 Measurement Heuristics : 11212.6.2 Compilation Time : 11512.7 Comments : 11513 Concluding Remarks : 11713.1 Summary : 11713.2 Future Work : 119Appendix A NP-Completeness and a Heuristic for Computing Kill() : : : : : : : : : : : : : : 122A.1 NP-Completeness : 122A.2 Computing Kill() : 124Appendix B Speedup Tables : 128Bibliography : 147

List of Figures1.1 Intermediate program representations : 31.2 Resource conscious schedule : 53.1 Comparison of back end organizations : 184.1 Example code and corresponding DAG : 224.2 Function measureRequirements() : 244.3 A bipartite graph matching : 254.4 A complex case for de�ning Kill() : 254.5 Example DAG of a basic block : 305.1 Example of GURRR : 365.2 Sample Code and GURRR Dependence Subgraphs : : : : : : : : : : : : : : : : : : : 385.3 GURRR Resource Usage Information : 396.1 Filling a non-spanning resource hole : 446.2 Procedure spackleSpanning() : 466.3 Procedure reduceSpanning() : 476.4 All unique orderings of two interfering spanning instances : : : : : : : : : : : : : : : 516.5 Filling a non-spanning resource hole : 537.1 Function reduceBlock() : 567.2 Local reductions of resource requirements : 577.3 Function �ndOverlappingHoles() : 588.1 Code motion techniques and architectural supports : : : : : : : : : : : : : : : : : : : 638.2 Function �ll() : 64x

xi8.3 Example of global code motion : 659.1 Top level register allocation algorithm : 709.2 Example of coalescing : 729.3 Region 1 Register usage : 729.4 Example of rematerialization : 739.5 CFGs for the spill options : 749.6 Allocation cost estimation algorithm : 759.7 Assignment algorithm : 789.8 SSA assignment algorithm : 799.9 Final register assignment : 8010.1 Pipeline Example : 8410.2 Relaxation procedures : 8410.3 DAG with reserved copy instructions : 8710.4 DAG with a generic requirement : 8911.1 Chain decomposition steps : 9712.1 Comparison of base RSS techniques : 10312.2 Comparison of hybrid RSS techniques : 10512.3 Comparison of SSRA and RSS techniques : 10712.4 Comparison of hybrid SSRA techniques : 10812.5 Comparison of variant URSA techniques : 11012.6 Comparison of base and best techniques : 11112.7 Comparison of compilation times : 114A.1 A complex case for de�ning Kill() : 123A.2 A special case for partitioning into bipartite subDAGs : : : : : : : : : : : : : : : : : 125A.3 All combinations of Out and In nodes : 125A.4 Function computeKill() : 127

List of Tables4.1 Computation of hole properties : 296.1 Invalid and symmetrical orderings removed from consideration : : : : : : : : : : : : : 506.2 Splittings of interfering spanning instances : 5212.1 Benchmarks used for experimentation : 10012.2 Critical path lengths and number of instructions for 2-4 architecture : : : : : : : : : : 111B.1 Individual speedups for the rss heuristics on architecture 2-4 : : : : : : : : : : : : : : 128B.2 Individual speedups for the rss heuristics on architecture 2-8 : : : : : : : : : : : : : : 129B.3 Individual speedups for the rss heuristics on architecture 2-16 : : : : : : : : : : : : : 129B.4 Individual speedups for the rss heuristics on architecture 2-32 : : : : : : : : : : : : : 130B.5 Individual speedups for the rss heuristics on architecture 4-4 : : : : : : : : : : : : : : 130B.6 Individual speedups for the rss heuristics on architecture 4-8 : : : : : : : : : : : : : : 131B.7 Individual speedups for the rss heuristics on architecture 4-16 : : : : : : : : : : : : : 131B.8 Individual speedups for the rss heuristics on architecture 4-32 : : : : : : : : : : : : : 132B.9 Individual speedups for the rss heuristics on architecture 6-8 : : : : : : : : : : : : : : 132B.10 Individual speedups for the rss heuristics on architecture 6-16 : : : : : : : : : : : : : 133B.11 Individual speedups for the rss heuristics on architecture 6-32 : : : : : : : : : : : : : 133B.12 Individual speedups for the ssra heuristics on architecture 2-4 : : : : : : : : : : : : : 134B.13 Individual speedups for the ssra heuristics on architecture 2-8 : : : : : : : : : : : : : 134B.14 Individual speedups for the ssra heuristics on architecture 2-16 : : : : : : : : : : : : 135B.15 Individual speedups for the ssra heuristics on architecture 2-32 : : : : : : : : : : : : 135B.16 Individual speedups for the ssra heuristics on architecture 4-4 : : : : : : : : : : : : : 136B.17 Individual speedups for the ssra heuristics on architecture 4-8 : : : : : : : : : : : : : 136xii

xiiiB.18 Individual speedups for the ssra heuristics on architecture 4-16 : : : : : : : : : : : : 137B.19 Individual speedups for the ssra heuristics on architecture 4-32 : : : : : : : : : : : : 137B.20 Individual speedups for the ssra heuristics on architecture 6-8 : : : : : : : : : : : : : 138B.21 Individual speedups for the ssra heuristics on architecture 6-16 : : : : : : : : : : : : 138B.22 Individual speedups for the ssra heuristics on architecture 6-32 : : : : : : : : : : : : 139B.23 Individual speedups for the ursa heuristics on architecture 2-4 : : : : : : : : : : : : : 140B.24 Individual speedups for the ursa heuristics on architecture 2-8 : : : : : : : : : : : : : 140B.25 Individual speedups for the ursa heuristics on architecture 2-16 : : : : : : : : : : : : 141B.26 Individual speedups for the ursa heuristics on architecture 2-32 : : : : : : : : : : : : 141B.27 Individual speedups for the ursa heuristics on architecture 4-4 : : : : : : : : : : : : : 142B.28 Individual speedups for the ursa heuristics on architecture 4-8 : : : : : : : : : : : : : 142B.29 Individual speedups for the ursa heuristics on architecture 4-16 : : : : : : : : : : : : 143B.30 Individual speedups for the ursa heuristics on architecture 4-32 : : : : : : : : : : : : 143B.31 Individual speedups for the ursa heuristics on architecture 6-8 : : : : : : : : : : : : : 144B.32 Individual speedups for the ursa heuristics on architecture 6-16 : : : : : : : : : : : : 144B.33 Individual speedups for the ursa heuristics on architecture 6-32 : : : : : : : : : : : : 145

Chapter 1IntroductionThe relentless push for more computing power has brought computer architectures thatexploit instruction level parallelism (ILP) into every day environments in the form of superscalarand VLIW workstations and desktop computers. With each advance in computer architectures, thesynergy between architectures and compilers becomes more apparent, presenting new challenges forcompilers. These challenges introduce new complexities to previously addressed tasks and high-light the drawbacks of the way in which compilers were structured for previous architectures. Thisdissertation presents new methods to generate higher quality code for ILP architectures by creatingadvanced techniques for register allocation and instruction scheduling. These techniques are speci�c-ally designed to address the new complexities caused by ILP while avoiding the drawbacks resultingfrom straightforward extensions of previous register allocation and instruction scheduling techniques.Because of the number and complexity of tasks that must be performed in a compiler,the compilation process has been divided into manageable units called phases. These phases aregrouped together based on the representation of the program that they use. Each phase typicallysolves one particular problem. As a result of addressing each problem separately, e�ective heuristicscan be developed for each problem, allowing a good solution to the individual translation problems.However, the results of one phase can have an impact on the solution of the next phase, and thusthe overall quality of the generated code. This impact can have a negative result on the overall codequality. The separation of the compilationprocess into phases does not consider possible interactionsbetween the tasks performed. For example, consider the interaction between instruction schedulingand register allocation. Both precedence constrained instruction scheduling and register allocationare well known NP-complete problems. Therefore, for purposes of achieving reasonable compiletimes, heuristics are used for both tasks. Instruction scheduling tends to require a large number ofvalues to be live in registers to keep all of the functional units busy. On the other hand, register1

2allocation tends to keep fewer values live at a time in an e�ort to avoid the need for expensive memoryaccesses through register spills.If register allocation is performed �rst, it limits the amount of ILP available by introducingadditional dependences between the instructions based on temporal sharing of registers. If instructionscheduling is performed �rst it can create a schedule demanding more registers than are available,creating more work for the register allocator. In addition, the spill code subsequently generated mustbe placed in the schedule by a post pass cleanup scheduler.In addition to the problem of interactions between the register allocation and instructionscheduling phases, the heuristics themselves must be changed to compensate for the added complex-ities of ILP. To fully exploit ILP the sequential order in which the instructions appear in the sourcecode must be replaced with the partial ordering imposed by the data and control dependencies inher-ent in the program. In this partial ordering there is some freedom for instructions to move around inthe schedule. While some instructions are on a maximum length path through the ordering, othershave slack time in when they can be scheduled. Techniques must be developed to guide the selectionof an instruction order that exploits ILP while maintaining resource requirements at a level supportedby the architecture.The goal of this research is to redesign the compiler back end to unify the phases performingresource allocation and to make the remaining phases, such as global code motion, conscious of theirimpact on resource allocation and thus the resulting execution time of the program being compiled.Performing the allocation of all resources simultaneously achieves a higher degree of integration thanprevious techniques proposed. The bene�t of this degree of integration is that the impact of allallocation decisions can be assessed in terms of the overall resource allocation problem and thus thequality of code generated.1.1 Previous ApproachesApproaches to integrating register allocation and instruction scheduling can be characterized by threeproperties: the degree of exploitation of ILP, the degree of integration, and the representations used.The degree of exploitation of ILP can be viewed as the extent to which the information about inherentparallelism is used during instruction scheduling and register allocation. At one end are heuristicsthat assume a complete ordering, typically the ordering provided by the programmer. At the otherend are techniques that rely solely on the partial ordering determined by the minimal dependencesneeded to preserve semantic correctness. In the middle are techniques that use the partial ordering

3AA1A2A3A4A5A6A7
BB1B2B3B4 B5

CC1 C2C3 DD1 D2 D3D4 D5
(a) Program DAG

AA1A2A3A4A5A6A7
D D1 D2 D3 D4 D5 BB1B2B3B4B5C C1 C2 C3(b) Register Interference GraphFigure 1.1: Intermediate program representationsfor only some tasks, (e.g., instruction scheduling) or use it for parts of a task (e.g., during registerallocation information about parallelismmay be used for computing live ranges but not for selectingspill points). Such techniques exploit parallelism by selecting orderings of instructions to achievebetter resource utilization without unnecessarily reducing available parallelism.The degree of integration achieved between the heuristics can also vary signi�cantly. Atone end are approaches in which the tasks are performed independently in separate phases, resultingin no integration. At the other end is uni�cation, that is, both tasks are performed simultaneouslyin a single phase. A uni�ed phase gives equal consideration to both tasks during each allocationdecision. In the middle of the spectrum are a number of approaches that use separate phases for eachtask but incorporate varying types and amounts of information from one heuristic into the other toadd limited \awareness" of the heuristic's impact on subsequent heuristics. Closely related to theintegration of phases is the types of representations used for each task. The use of vastly di�erentrepresentations used by instruction scheduling and register allocation presents a major obstacle tointegration as incorporation of information in di�erent forms is di�cult.The straightforward approach to generate code for ILP architectures is to �rst schedulethe instructions using list scheduling and then allocate registers using traditional graph coloringalgorithms. List scheduling naturally exploits inherent ILP as it traverses the program's instructions.

4Coloring based register allocation has no concept of ILP and only takes advantage of parallelism ifit happens to generate spill code near idle slots in the schedule. The separation of the tasks o�erslittle opportunity for integration as each task uses a vastly di�erent representation of the program.List scheduling uses a Directed Acyclic Graph (DAG) while coloring base register allocation usesan interference graph. Figure 1.1(a) shows a sample program DAG while Figure 1.1(b) shows thecorresponding interference graph. There is no obvious method to incorporate the information inthese two representations into one common representation. Thus, it is not obvious how to considerregister interferences during instruction scheduling or instruction heights during register allocation.An alternative to considering register interferences during scheduling is to track registerpressure. Goodman and Hsu present such an algorithm [GH88]. In their algorithm the scheduleralternates between two states. In the �rst state register pressure is low and the scheduler selectsinstructions to exploit ILP. When the register pressure crosses a threshold the scheduler switches toa second state that selects instructions to reduce register pressure, possibly sacri�cing opportunitiesto exploit ILP in the process. Additionally, no spilling of values is performed. When register pressurefalls back below the threshold, the �rst state is reentered. In this manner scheduling and allocationare partially integrated using a single representation. A problem arises in that the scheduler cannotalways select instructions to keep register pressure below the maximum allowed by the architecture.Furthermore, some programs have su�ciently complex register interferences such that some valuesmust be spilled. As a result, a cleanup register allocation phase must be run subsequent to theintegrated scheduler. This cleanup phase uses traditional coloring base register allocation, resultingin the degradation of instruction scheduling.A problem with considering register allocation issues during instruction scheduling is thatscheduling for ILP replaces the programmer's complete ordering of instructions with a partial orderrepresenting the parallelism available. As a result, live ranges that did not interfere because theywere temporally ordered will interfere once the temporal ordering is removed. Recent research hasextended register allocation techniques to address this possible overlapping of live ranges [Pin93,NP93]. However, these techniques still do not fully exploit the partial ordering information availableto address the problems of which values to select for spilling and where to place the spill code.A fundamental problem in integrating instruction scheduling and register allocation is thefact that heuristics for each problem use vastly di�erent representations that do not provide uniformlyadequate information for both problems being addressed. Consider the programDAG in Figure 1.1(a)and assume that there are three functional units and �ve registers available to execute the DAG. Toexploit all available parallelism seven functional units and seven registers are needed to execute the

5AA1A2A3A4A5A6A7
BB1B2B3B4B5

CC1C2C3DD1D2 D3D4D5Figure 1.2: Resource conscious scheduleinstructions A1, B1, C1, C2, D1, D2, and D3 in parallel. List scheduling based on critical path lengthswould select A and B for the �rst instruction issue slot and then would have to make a choice betweenC and D. Ideally, the scheduler would be able to \look ahead" and see that scheduling D with Aand B would push register pressure over the limit when attempting to schedule subsequent cycles.As a result C would be scheduled with A and B, while D would be delayed until more registers areavailable. The result of such a scheduling decision is shown in Figure 1.2. By delaying D the lengthof the schedule has increased by only one instruction cycle and no spill code is needed.Previous integration of register pressure into list scheduling is only able to compute registerpressure based on the instructions already scheduled. After selecting A and B for the �rst slot theregister pressure is only two, suggesting that there is no problem. Previous techniques for integratingscheduling information into register allocation guide the selection of which value to spill based onthe relative slack times of the candidates for spilling. Unfortunately, slack time does not providesu�cient information to determine when spilling can be avoided.1.2 Uni�cationThis dissertation develops a new technique to integrate register allocation and instruction scheduling.The technique includes a new representation and algorithms that use the representation to alloca-

6tion registers and functional units simultaneously. The representation, the Global Uni�ed ResourceRequirements Representation (GURRR), combines information about a program's requirements forboth registers and functional units with scheduling information in a single DAG based representation.In this manner GURRR facilitates the determination of the impact of all scheduling and allocationdecisions on the critical path length of the code a�ected.GURRR is based on a key concept of computing resource requirement measurements, re-ferred to as Uni�ed ReSource Allocation (URSA), which computes sets of instructions that can safelyshare a single instance of a resource. From this information URSA computes the minimum numberof instances of the resource needed to exploit all available parallelism. In terms of registers, thiscomputation determines the maximum number of values that can be alive simultaneously. Althoughthe speci�c computations of resource sharing di�er for functional units and registers, the results ofthe computations for both types of resources are easily incorporated onto the program DAG.A byproduct of the computation of how many instances of a particular resource are neededby a program is a set of elements that each represents a group of instructions that can share a singleinstance of the resource. This information is used to precisely identify the areas of the program wherethe resource is either over or under utilized. GURRR also incorporates this utilization informationin its representation.The availability of utilization level information suggests a new approach to resource alloca-tion, the Measure and Reduce paradigm. This paradigm is based on the observation that allocationdecisions are only required when the need for resources exceeds the number actually available. Un-der this paradigm, the resource usage information is used to select instructions to move from overutilized areas to under utilized areas. This process of moving instructions to the under utilized areasis referred to as Resource Spackling. The combination of utilization level information for all resourceswith direct access to scheduling information enables new uni�ed resource allocation techniques. Byallocating all resources needed by an instruction simultaneously, and making allocation decisionsbased on their impact on the critical path length, a uni�ed allocation phase is achieved.Advantageous application of Resource Spackling to individual instructions depends on heur-istics that select instructions and determine the best place to spackle them. Several such heuristics arepresented. The �rst heuristic applies Resource Spackling to local instruction scheduling and registerallocation. This heuristic naturally performs global register allocation when applied to a hierarch-ical intermediate representation in a bottom up manner. Global register allocation and assignmentinclude other issues such as assignment and copy placement. Hierarchical Allocation of REgisters(HARE) was developed as a part of this work to be such a heuristic. A heuristic for incorporating

7Resource Spackling into global code motion is also presented. These heuristics must also considerarchitectural features such as pipeline interlocks and resources with special usage characteristics.Extensions to the heuristics to address these features are discussed.1.3 Organization of the ThesisThe remainder of this dissertation discusses the realization of the techniques highlighted here, andaddresses the practical considerations of target architectures and comparisons to previous techniques.Chapter 2 discusses previous work by other researchers related to the work presented in this dis-sertation. Chapter 3 gives an overview of the components developed in this work and how they �ttogether. Chapter 4 describes the measurement of resource requirements. Chapter 5 shows howthe resource requirements are incorporated into an intermediate representation. Chapter 6 gives thetheoretical basis for performing resource allocation using the information computed and provided inthe intermediate representation. Chapter 7 describes heuristics for performing resource allocation forfunctional units and registers simultaneously in a local scheduler. Chapter 8 describes how uni�edresource allocation is performed during global code motion. Chapter 9 addresses issues related toglobal register allocation and assignment. Chapter 10 incorporates ILP architectural features andconstraints into the resource measurement and allocation model. Chapter 11 describes importantmethods used in the prototype implementation. Chapter 12 presents and analyzes the experimentsperformed in this work. Finally, chapter 13 contains the conclusions of this work and directions forfuture research.

Chapter 2Related WorkRegister allocation and instruction scheduling are well known problems in compiler researchand their interactions have been previously studied. This chapter discusses research in these areasas it relates to the dissertation, as well as the intermediate representations on which the heuristicsfor these problems depend.2.1 Program RepresentationsThe contribution of each in task in the compiler to the quality of code generated is dependent on thepower of transformations enabled by the intermediate representation used. In particular, instructionscheduling and global code motion depend on speci�c properties of the representation to performpowerful transformations.Traditionally, compilers have used the Control Flow Graph (CFG) and basic block depend-ence DAGs as the intermediate representations for instruction scheduling due to their straightforwardcomputation and concise representation of the program. The CFG is also used to collect a varietyof information, including data
ow information and value live ranges, used to construct register in-terference graphs [ASU86]. A number of extensions to the CFG have been created to aid the varioustasks performed in the back end of the compiler.In order to provide a larger scope for global code motion heuristics, basic blocks havebeen grouped together in a variety of ways. Traces [Fis81], Super Blocks [HMC+93], and HyperBlocks [MLC+92] each form collections of basic blocks which satisfy properties required by speci�cscheduling techniques.The Program Dependence Graph (PDG) is another representation which combines controland data dependence information in a way that simpli�es many transformations [FOW87]. Controldependencies are used to identify regions of instructions that execute under the same conditions.8

9Regions support more powerful global code motion techniques than are possible on CFG basedrepresentations [GS90, BR91].Another method for enabling global code motions is to convert the intermediate represent-ation into Static Single Assignment (SSA) form, which uniquely assigns names to each de�nition ofa variable [RWZ88]. The use of unique names simpli�es constant propagation and other analysis[AWZ88]. Furthermore, SSA removes false dependences which would otherwise limit the range ofmotion for instructions, i.e., due to anti and output dependencies. SSA was originally formulated onthe CFG but has been incorporated in PDG based representations [BMO90].The Program Structure Tree (PST) is a hierarchical representation that can be used bydivide-and-conquer algorithms to speedup data
ow analysis and computation of SSA [JPP94]. Anumber of representations allowing direct interpretation have been proposed, including the Depend-ence Flow Graph [PBJ+91, JP93] and Value Dependence Graph [WCES94]. However, these rep-resentations do not directly identify the control dependencies desired by region-based global codemotion algorithms. The Program Dependence Web [BMO90] is an interpretable representation thatplaces a variation of SSA form on the PDG.While many of the representations mentioned support powerful forms of instruction schedul-ing and global code motion, none of them provide resource usage information such as total registerand functional unit demands. As a result, these representations cannot be used as is for uni�edresource allocation.2.2 Global Code MotionThe movement of instructions between basic blocks is limited by both data and control dependences.In some cases architectural features can reduce these limitations. Speculative execution allows in-structions to be moved above conditional branches by placing the results of the moved instructionsin a shadow area [HP87, SHL92]. These results are then committed to the register �le and memoryonly if and when the conditions for the instructions' execution are later met. Guarded execution as-sociates a predicate with each instruction to be executed [DHB89, HD86]. The predicate representsthe conditions under which the instruction should be executed. Instructions can be moved below ajoin in the control
ow graph by using guarded execution to determine if the instruction should beexecuted or not. These techniques allow compilers more options when performing code motion.Several compilation techniques that perform code motion to increase ILP have been de-veloped. These techniques include Trace Scheduling [Fis81], Percolation Scheduling [AN88], and

10Region Scheduling [GS90]. Each of these techniques has a di�erent method of identifying instruc-tions that may be moved and considers di�erent approaches in selecting their potential destinations.Trace Scheduling creates large basic blocks, called traces, consisting of sequences of basicblocks along a program path that has a high probability of being executed. Code reordering withina trace is used to generate a good schedule for the trace at the expense of decreased performance ono�-trace blocks due to the insertion of compensation code in those blocks. Percolation Schedulinguses code motion operations on a control
ow graph. The operations perform less code duplicationthan trace scheduling and place fewer restrictions on the movement of instructions. Region Schedul-ing's code motion operations operate on a Program Dependence Graph (PDG) [FOW87]. RegionScheduling identi�es the largest set of potential destinations for an instruction and produces the leastamount of code duplication.Each of the above techniques uses list scheduling to schedule instructions and considersonly functional units. There are several extensions to Percolation Scheduling to handle resourceconstraints. The �rst presents the idea of using a heuristic to control the application of operationsin the presence of functional unit constraints [EN89]. Register constraints have also been addressedin a limited manner [ME92, Nor95]. However, these extensions do not consider using spilling toimprove usage.Another technique for increasing ILP across basic block boundaries is Shape Matching[MGS92]. This technique handles only functional units and attempts to overlap the ends of adjacentblocks. It is similar to Moon and Ebcio�glu's approach in that available resources in the middle of ablock are not considered.The scheduling techniques discussed so far have concentrated on using all available func-tional units, while mostly ignoring their impact on register allocation. Scheduling which consider theimpact of scheduling on register allocation are discussed in section 2.4.2.3 Register AllocationTraditionally, register allocation is performed by coloring an interference graph, whose nodes repres-ent live ranges and edges the interference between the live ranges [CAC+81, Cha82]. This processassigns colors representing registers to live ranges. When there are insu�cient registers available alive range is spilled to memory. Such a live range must be loaded into a register before each use andwritten back to memory after each de�nition. A priority function is used to select which live rangeto spill. The goal of the priority function is to minimize the number of memory accesses, both as a

11result of the number of live ranges spilled and the number of times each value must be accessed frommemory. The priority function is based on the cost of a spill divided by the number of interferinglive ranges.Several enhancements to the basic coloring process have been proposed to reduce the num-ber of spills generated by the coloring process. Briggs suggests several heuristics for simplifyingthe interference graph to increase the likelihood of coloring the graph without resorting to spilling[BCKT89]. Although the original proposed priority function included an execution estimate factorin the computation of the cost of a spill, most subsequent methods have favored a factor using theloop nesting depth instead. The use of the loop nesting depth is motivated by the observation thatspills inside of nested loops are executed more frequently than those at a shallower nesting depth oroutside loops. Bernstein et al. use a combination of three di�erent priority functions to select valuesfor spilling that will remove the most interferences from the graph [BGM+89].Live range splitting was introduced in an e�ort to reduce the cost of spilling [CH90, KH93].When spilling is required the live range selected for spilling is split into several smaller live ranges.The smaller live ranges are then treated as separate values requiring registers. The essential idea isthat some of the smaller live ranges will not need to be spilled and so will not need to access memory.Memory accesses will only be required for those smaller live ranges that are spilled.Hierarchical register allocation has been introduced as a method for reducing the numberof dynamic memory references [CK91]. This technique creates tiles corresponding to basic blocks inthe control
ow graph. The tiles are colored from the inside out with respect to the nesting of controlstructures. The result is that values in loops have a better chance of remaining in registers. Thisresults in spilling pass-thru values, those values that are alive at entry and exit and are not used ina block, [CAC+81]. More recently, hierarchical allocation has been extended to PDGs [NP94].These hierarchical approaches su�er from two problems. First, they only consider one caseof placing spills in less frequently executed locations, i.e., outside of loops. They do not try toplace more spills in conditionally executed code and fewer spills in unconditionally executed code.Second, once a tile or region has been allocated registers, its values are never candidates for futurespilling. The relative execution frequencies may be such that spilling inside a previously allocatedtile or region results in a lower overall execution time.The RASE technique attempts to balance the use of registers by local and global values bycomputing a cost function for each basic block [BEH91]. The cost function estimates the increasein the block's critical path length for a given number of registers. The cost includes a factor of theexecution frequency of the block. The interference graph represents the number of registers required

12by each basic block and the cost function is used to select basic blocks that should have their numberof allocated registers reduced. Although RASE considers both execution counts and resulting criticalpaths lengths, it has a limited hierarchical view of registers, by viewing them as either global or local.Probabilistic register allocation takes a di�erent approach to register allocation [PF92]. Thistechnique is based on the principle that the probability that a value is still in a register when aninstruction needs to use it is roughly proportional to the inverse of the distance from its de�nitionor last use to the current use. The technique uses the distances between de�nitions and uses of eachvalue to compute initial value probabilities. Probabilities are also assigned to each control branchin the program. These branch probabilities are then multiplied with the initial value probabilities tore
ect the e�ect of di�erent control paths on the �nal value probabilities. The �nal value probabilitiesare then used as priorities for allocating registers to the values. The technique iteratively selects thehighest priority value and allocates a register to it and then recomputes the probabilities and prioritiesof the remaining values.Probabilistic register allocation does address the cost of spills from the point of view ofspilling values that are least frequently executed; it favors spills in shallowly nested loops over deeplynested loops and in conditionally executed code over unconditionally executed code. However, itdoes not consider the scheduling of the generated spill code.All of the allocation techniques discussed so far have been developed for single issue archi-tectures. Two recent techniques have considered the impact of multiple issue architectures on theinterference graph. Pinter has developed the parallel interference graph to represent the additionalinterferences between live ranges that occur when instructions can be reordered and issued in parallel[Pin93]. Norris and Pollock use a similar interference graph and attempt to reduce register pressureby making some scheduling decisions during register allocation [NP93]. Neither of these techniquesaddresses the selection of values for spilling to minimize the spill code's impact on the program'sexecution time.All of these techniques use some form of the register interference graph as their intermediaterepresentation. Although this graph is typically constructed by performing live range analysis onthe CFG, it is quite di�erent from the CFG. As a result, the representations used for instructionscheduling and register allocation do not lend themselves well to incorporating information about theimpact of one task on the other.

132.4 Integrated Register Allocation and Instruction SchedulingDue to the known interaction between register allocation and instruction scheduling and its impacton resulting quality of generated code, previous research has investigated methods for integrating thetwo tasks. These techniques can be characterized as making one of the two tasks partially aware ofits impact on the other. Two such approaches are possible based on the order in which the tasks areperformed: register sensitive scheduling and schedule sensitive register allocation.The register sensitive scheduling approach performs scheduling prior to register allocationso that the scheduler can make scheduling decisions that keep the demand for registers at or belowthe number available. Goodman and Hsu use a list scheduling approach that monitors the registerpressure of the instructions scheduled in the form of the number of values live at each point in theschedule [GH88]. As each instruction is scheduled the register pressure value is updated by thenumber of live values de�ned and killed by the instruction. In its normal mode, the list schedulerselects instructions to schedule which are on the critical path of the block. However, when the registerpressure rises above a preset threshold an alternate selection criteria is used. In this situation thescheduler selects instructions which reduce the register pressure by killing more values than it de�nes.Coloring based register allocation is subsequently performed to insert spills where scheduling wasunable to restrict the number of registers needed to the number available. Extensions to this approachhaven been made by Bradlee et al.[BEH91].The schedule sensitive register allocator approach performs register allocation prior to in-struction scheduling. One such approach is proposed by Bradlee et al.[BEH91]. A prepass schedulingphase is performed to construct a cost function for each basic block. These cost functions estimatethe minimum number of registers that can be allocated to the block without signi�cantly impactingits critical path length. Register allocation is then performed using register limits computed by thecost functions. A �nal instruction scheduling phase is then performed.Another schedule sensitive register allocation approach is described by Norris and Pollock[NP93]. In their approach, the register allocator considers the impact of register allocations on thesubsequent phase instruction scheduling. Since register allocation is performed �rst the instructionsare not yet fully ordered. Thus the parallel form of the register inference graph must be used torepresent live range interferences. The advantage of using only a partial ordering of the instructionsis that register interferences can sometimes be removed by imposing temporal dependences on theinstructions so that live ranges do not overlap. The disadvantage is that prior to this dissertation,no methods were known for performing live range splitting on a partial ordering of the instructions.Thus spilling was performed instead.

14The integration techniques described were created to address the parallelism available inpipelined architectures. While they can be extended to target multiple issue architectures, they werenot designed with the added complexities of these architectures in mind.An integrated register allocation and scheduling method has also been introduced for soft-ware pipelining [NG93]. The goal of the technique is to minimize register requirements for a timeoptimal pipelined loop. It does not consider actual resource constraints and does not incorporateregister spilling. In addition, the formulation of the problem as a linear programming problem limitsits application to software pipelining of loops.

Chapter 3OverviewThe research presented in this dissertation consists of a number of components designedto incorporate uni�ed resource allocation into a compiler. As a result, there are many dependenciesand interactions among these components. This chapter gives an overview of the concepts andcomponents developed.First, a framework is presented to support uni�ed resource allocation. Second, compilerback end phases are either replaced with phases that perform uni�ed resource allocation or aremodi�ed to take resource allocation into account when making decisions. These new or modi�edphases achieve uni�ed resource allocation or resource allocation awareness by using the presentedframework.3.1 Uni�ed Resource Allocation FrameworkThe objective of Uni�ed Resource Allocation is to support both the Measure and Reduce paradigm,and the ability to make back end phases aware of their impact on resource allocation. The Measureand Reduce paradigm is based on the observation that resource allocation decisions are only requiredwhen there is a demand for more resources than are available. When there are su�cient resourcesto meet the demand, only resource assignment must be performed, which must also consider itsimpact on the program's resulting execution time. In this paradigm, the task of resource allocationis viewed as reducing resource usage in the areas with excessive resource demands. These excessiveareas must be located by measuring the resource demands of the program. The reductions areaccomplished by performing transformations on the intermediate representation of a program. TheURSA framework consists of three components: techniques for measuring the program's demandsfor resources, an intermediate representation of a program that indicates resource demands, andtechniques to implement reductions in resource requirements.15

16The �rst component of the URSA framework is a set of techniques to compute resourcerequirements. When compiling a program to exploit ILP, the dependencies in an acyclic segment ofthe program are used to represent the set of all semantically correct ways of scheduling the segment.Di�erent schedules may result in di�erent resource requirements. The approach taken in the Measureand Reduce paradigm is to remove all schedules that result in excessive resource demands using thereduction techniques. The remaining set of schedules can safely be assigned the available resources.Thus, the measurement technique must consider the worst case schedule in terms of the number ofresources required. Each type of resource may have one or more schedules that produces its worstcase requirements.In addition to computing the maximum number of resources required, the measurementtechniques must identify the locations in a program where there are excessive resource demands andthe locations where a resource is under utilized and available for additional allocations. These threetypes of resource measures are the result of the analysis techniques developed in this research.Although resources like functional units and registers have di�erent usage properties, theirrequirements are measured using a common technique. The technique uses a special relation thatmodels the various usage properties to hide the details from the measurement technique. Issues ofthe precision of the measurements are addressed when dealing with register types of resources.By operating on acyclic segments of a program, the measurement techniques can be usedby a wide variety of compilers using di�erent intermediate representations. This work concentrateson one particular intermediate representation which supports several advanced phases of interest forintegration.The intermediate representation used in URSA is called the Global Uni�ed Resource Re-quirements Representation (GURRR). GURRR is based on an instruction level Program DependenceGraph (PDG). The PDG representation was chosen for several reasons. First, the dependencies rep-resented in the PDG indicate which instructions in the program can be executed in parallel and whichmust be executed sequentially. Second, the PDG provides valuable control dependence informationused by powerful global code motion techniques, which are important in exploiting ILP. Finally,the PDG is usable by many common optimization phases; therefore the phases do not have to berewritten or designed for a new intermediate representation. A GURRR of a program is obtainedfrom its PDG by adding the three types of resource requirements information computed by the �rstcomponent of URSA.The third component of the URSA framework is a set of techniques to perform the allocationof resources to instructions. The techniques refer to special nodes in GURRR that indicate resources

17available for allocation as Resource Holes. The techniques are called Resource Spackling because theyperform allocations by trying to �ll the resource holes with instructions. The spackling techniquescompute properties of the resource holes that a�ect how instructions can be placed in them. Casesare then identi�ed as to whether or not the placement of instructions in a hole will increase theexecution time of the program.3.2 URSA ApplicationsThe URSA framework is used as the basis for the new and modi�ed compiler back end phases.GURRR provides the resource requirements measurements in an intermediate representation usableby the phases. The spackling techniques are used in any phase that wishes to allocate resources.This research examines three areas of optimization in the compiler back end: resource allocation,application of transformations such as global code motion, and exploitation of architectural featuresand constraints.URSA's spackling techniques are general enough to be used in several allocation schemes.This research develops a reduction phase which replaces the phases for local scheduling and globalregister allocation. It also presents a global scheduling phase modi�ed to perform uni�ed allocation.The reduction phase implements the Measure and Reduce paradigm to produce an interme-diate representation of a program that can be feasibly scheduled. Conceptually, the reduction phaseremoves excessive parallelism, either in the form of too many instructions that can be executed inparallel or too many values simultaneously alive in registers, by introducing additional sequentiallybetween the o�ending instructions. The introduction of sequential dependencies is performed by thereduction transformations. The reduction transformations result in moving instructions from thelocations with excessive requirements and placing them in resource holes. Simultaneous allocation isachievable by �nding overlapping resource holes for all resources that an instruction demands.Global scheduling consists of moving instructions between control dependence regions inGURRR to evenly distribute ILP on a larger scale than simply within individual regions. URSAtechniques are used to ensure that such global code motions are only performed when there areavailable resources and would result in a reduction in a program's execution time. The availabilityof resources is ensured by spackling the moved instructions into resource holes in the destinationregion. The application of code transformations serves several purposes. They can be used tointroduce more ILP, ideally reducing the execution time of a program. They can also be used to

18SourceOptimizationsGenerateIntermediateCodeOptimizationsTransformationsPreliminaryInstructionSchedulingRegisterAllocationInstructionSchedulingGlobalCode Motion(GCM)GenerateObjectCode(a) Traditional Phases

SourceOptimizationsGenerateGURRROptimizationsResourceAllocationAllocationSafeTransformationsGenerateObjectCode
AllocationAssistingOptimizationsAllocationSafeGCM

(b) URSA PhasesFigure 3.1: Comparison of back end organizations

19enable additional transformations, such as ILP exposing transformations, global code motions, andpartial dead code elimination. Transformations interact with resource allocation in two ways. First,the resource requirement measurements can be used to drive the application of transformations. Themeasurements indicate pairs of areas where resource demands are unbalanced; one area demandstoo many resources while the other under utilizes them. In such situations either ILP exposingtransformations or global code motion should be performed to redistribute the parallelism. Whenareas are not imbalanced neither redistributing or enabling transformations need to be considered.The second interaction between transformations and resource allocation is predicting thee�ect of a transformation. For example, assume at a particular point in a program, resourcesmaybe under utilized and several ILP exposing transformations maybe applicable. The di�erenttransformations may each expose a di�erent amount of parallelism. The transformation selectedshould be the one that exposes an amount of parallelism that most closely matches the unusedresources. If too much parallelism is exposed, then the resulting excessive resource requirements thatmust be reduced after the transformation. The incremental nature of the computation of the resourcerequirements information enables the e�ects of each candidate transformation to be estimated andthe best one to be chosen.A comparison of phases between a typical traditional compiler back end and a URSA basedcompiler is shown in Figure 3.1. In both cases source level optimizations are performed before thegeneration of their respective intermediate representations. Figure 3.1(a) shows the phases in atraditional compiler back end. Following the application of optimizations and transformations, localand global instruction scheduling is performed and then register allocation is carried out. A secondlocal instruction scheduling phase is performed to schedule any inserted spill code. Finally objectcode is generated. Figure 3.1(b) shows the phases in an URSA based back end. Most optimizationsare performed immediately after the GURRR intermediate form is generated. These optimizationsare ones that will always reduce execution time (e.g., strength reduction) or register demands (e.g.,copy propagation). Resource allocation is performed next using the spackling techniques of URSA toperform requirements reductions. The allocation phase may elect to perform optional optimizationsand transformations that aid the reductions (e.g., reordering commutative operations). Once allresources have been allocated, additional code improvements are performed. These improvementsinclude transformations to uncover appropriate amounts of additional parallelism and global codemotions to evenly distribute parallelism and reduce critical path lengths. Such improvements areonly performed if there are su�cient resources available for the instructions either locally or in areasreachable through global code motions.

Chapter 4Resource RequirementsThe �rst step in developing techniques for the measure and reduce paradigm is performingthe analysis of a program's resource needs. This chapter discusses the problems to produce such ananalysis, including handling of resources with di�erent usage characteristics, operating on segmentsof a program, and computing the di�erent types of usage information needed.A number of di�erent intermediate representations are used by the back ends of compilers.All of these representations break up a program into small segments to simplify the tasks performedin the back end. Although di�erent techniques are used to partition the segments and result indi�erent sets of information available about the segments, all representations use a segment thatis acyclic. Examples of acyclic segments include basic blocks in a Control Flow Graph [ASU86],superblocks [HMC+93], traces from Trace Scheduling [Fis81], and control dependence regions froma Program Dependence Graph [FOW87]. These di�erent types of acyclic segments are genericallyreferred to as blocks.Acyclic blocks provide convenient pieces of a program to analyze for resource requirements,as instruction level parallelism is easily expressed and control
ow can be considered as needed.Blocks are typically represented using the Directed Acyclic Graph (DAG)1. The nodes of the DAGrepresent the instructions or operations being scheduled. The edges in a DAG represent several typesof dependencies, including data dependencies, preservation of semantic correctness, and scheduler im-posed temporal dependencies. The temporal dependence edges are added to introduce sequentiality,that is, reduce parallelism where needed to reduce resource requirements. Thus, the DAG repres-entation of dependence information represents a partial ordering of the instructions, i.e., the DAGrepresents all schedules which honor the required dependencies.To support the reduction of excess resource requirements, the measurement algorithmmust1This work uses the following conventions when representing and discussing DAGs: if node b is dependent on nodea then the edge is drawn from a to b, and if a node is not dependent on any other node, it is called a root and isplaced at the top of the DAG. 20

21provide several types of information about resource usage in each block. In particular, three typesof information must be determined:1. Total number of resources required;2. Locations where requirements exceed available resources; and3. Locations where requirements are less than available resources.The �rst item is compared to the number of resources available in the architecture to determine ifthere are areas with allocation problems. The second item identi�es exactly what set(s) of instructionscause allocation problems. The third item indicates where there are additional resources availablefor allocation.4.1 Measuring Resource RequirementsThis section de�nes the resource measurements and presents techniques for computing them. Thegeneral framework for measuring the various types of resources in the work is described �rst. Thedetails for the two primary categories of resources are then discussed.4.1.1 Measurement de�nitionsThe measurements of requirements for the various types of resources in a block are obtained using asingle algorithm which operates on a data structure, called a Reuse DAG. A Reuse DAG indicateswhich instructions can reuse a resource used by an earlier instruction. The di�erence in the usagecharacteristics of the various types of resources is handled during the construction of the ReuseDAG for each resource. Resources are placed in one of two categories based upon their usagecharacteristics.Definition 1 A resource R is a non-spanning resource if it is in use only during the executionof a single instruction.Definition 2 A resource R is a spanning resource if a use can start during the execution of oneinstruction and the use continues until the execution of a subsequent instruction. The beginning andending instructions are called the de�ning and killing instructions, respectively.Since a functional unit is in use only while an instruction is being executed, it is a non-spanning resource. A register is in use from the time that one instruction, the de�ning instruction,

22A: load vB: w = v * 2C: x = v * 3D: y = v + 5E: t1 = w + xF: t2 = w * xG: t3 = y * 2H: t4 = y / 3I: t5 = t1 / t2J: t6 = t3 + t4K: z = t5 + t6(a) 3 address code
AB C DE F G HI JK(b) DAGFigure 4.1: Example code and corresponding DAGplaces a value in the register until all instructions that need the value have used it from the register.The last instruction to read the value is the killing instruction.Several di�erent types of resources may belong to the same resource class. For example,an architecture may have both integer and
oating point functional units. In this case there are twofunctional unit resource types, integer and
oating point. Each register bank in an architecture isalso a separate resource type.The �rst kind of resource requirements information that is computed is the maximum re-source requirements for each block. The maximum requirements for a resource, in a given block of aprogram, is the maximum amount of that resource required under any feasible schedule. It should benoted that a single schedule may not realize the maximum requirements for all resources, but insteaddi�erent schedules may achieve maximum resource requirements for di�erent resources. Thus themaximum resource requirements represent a worst case scenario.The algorithm for obtaining the measurements of resource requirements operates on a DAGrepresenting a partial order describing the dependencies. A chain in a partial order is a subsetof elements such that every pair of elements in the subset are related. Every path in a DAG isa chain in the corresponding partial order, but a chain is not necessarily a path since it may benoncontiguous. Figure 4.1(a) shows a basic block of code and Figure 4.1(b) shows the correspondingDAG. In Figure 4.1(b), the sets of nodes fA, B, F, Kg, fC, E, Ig, fD, G, Jg, and fHg are all chains.Definition 3 Let relation Q be a partial order on set S2. A chain is a set S0 � S such that ifa; b 2 S0 then either (a; b) 2 Q or (b; a) 2 Q.2A relation Q on a set S is a partial ordering if and only if Q is re
exive, transitive, and anti-symmetric.

23Definition 4 A decomposition of a partial order P is a partition of P into chains. A decompos-ition is minimal if there is no other decomposition with fewer chains.If two nodes are independent, then they may be executed in parallel. The following theoremrelates the maximum amount of parallelism to a minimal chain decomposition.Theorem 1 The maximum number of independent elements in a partial order is equal to the numberof chains in a minimal decomposition[Dil50].The DAG in Figure 4.1(b) can be minimally decomposed into a set of four chains, such asfA, B, E, I, Kg, fC, Fg, fD, G, Jg, and fHg. Thus, at most four nodes at a time can execute in parallel.If the resources needed can be represented as a partial ordering on the instructions, thetask of computing maximum resource requirements can be performed using Theorem 1. The partialordering on the nodes of a DAG, with respect to resource R, is de�ned as follows:Definition 5 Let CanReuseR be a relation on nodes of the DAG for resource type R indicatingif a resource instance r of type R used by a node can be reused by one of its descendants, i.e.,(a; b) 2 CanReuseR if and only if there is a node c that ends a's use of r and c 2 Ancestors(b)[fbg.In other words, given that (a; b) belongs to the relation CanReuseR, there is no schedulesuch that node b can execute while resource instance r is still in use as a result of executing a. Thecomputation of the CanReuseR relation is di�erent for spanning and non-spanning resources.Definition 6 ReuseR DAG (N; �E) for resource type R is constructed from a program DAG (N;E).All edges (a; b) 2 �E must meet the following two conditions:1. (a; b) 2 CanReuseR, and2. 6 9c 3 (a; c) 2 CanReuseR and (c; b) 2 CanReuseR.The second condition simply eliminates transitive edges from the ReuseR DAG. Althoughthis condition is not necessary, it simpli�es later discussions and techniques. ReuseR DAGs forfunctional units and registers are denoted as ReuseFU DAG and ReuseReg DAG, respectively. Thenotation ReuseR DAG is used when a reference is not restricted to a particular resource. The DAGin Figure 4.1(b) is both a program DAG and a ReuseFU DAG.Definition 7 An allocation chain for resource R is a chain n1; n2; :::nl such that (ni; ni+1) 2ReuseRDAG for any consecutive members ni; ni+1 in the chain.

24function MeasureRequirements(ReuseR DAG (N, E))returns set of allocation chainsf /* build the bipartite graph */foreach n 2 Nadd nodes sn and tn to N̂;foreach pair of nodes n,m 2 N � Nif (m 2 Ancestors(n))add the edge (sm, tn) to Ê;/* �nd the maximum matching */M = BipartiteMatch(N̂, Ê)/* record the allocation chains in AC */numChains = 0;foreach n 2 N such that tn is not matchedf numChains = numChains + 1;i = n;add i to AC[numChains];while (si is matched)f i = j, where si is matched to tj;add i to AC[numChains];ggreturn ACg Figure 4.2: Function measureRequirements()After a ReuseR DAG has been decomposed into allocation chains each allocation chain canbe assigned a di�erent copy of the resource. However, if there are insu�cient resources, these chainsprovide a measure of the resource requirements. Clearly, all chains in a ReuseR DAG are allocationchains. Therefore, by Theorem 1, a minimumdecomposition of a ReuseR DAG into allocation chainsgives the maximum resource requirements of R for the original DAG.Ford and Fulkerson [FF65] have shown that the problem of �nding a minimumchain decom-position can be solved by transforming it into a maximum bipartite graph matching problem. Thebipartite graph represents all possible pairs of nodes (a; b) 2 CanReuseR. Since each node in theReuseR DAG must participate in exactly one chain, a maximum matching �nds a minimum numberof allocation chains.Figure 4.2 gives the Function measureRequirements(), which computes and returns the setof allocation chains. The algorithm �rst builds the bipartite graph from the ReuseR DAG by addinga node to each partition corresponding to each node in the DAG and then by adding an edge betweeneach pair of nodes if the sink node can reuse the source node's resource. Next, the bipartite matchingalgorithm is applied. Finally, the allocation chains are constructed by traversing the matching edges.

25sD sG sH sJtD tG tH tJFigure 4.3: A bipartite graph matchingA B C DE F G HFigure 4.4: A complex case for de�ning Kill()As an example, consider the subDAG fD, G, H, Jg from the DAG in Figure 4.1(b). Thecorresponding bipartite graph is shown in Figure 4.3, with the bold arrows indicating a maximalmatching. Since tD is not matched, D is the head of a chain. The edge (sD ; tG) indicates that thenext node in the chain is G. Likewise, G is followed by J, which is the tail of the chain since sJ is notmatched. Since neither tH or sH is matched, node H is the only node in a second chain. Thus, thetwo allocation chains are fD, G, Jg and fHg.4.1.2 Measurement speci�cs for functional units and registersThe de�nition of CanReuseR di�ers for spanning and non-spanning resources to re
ect the di�erentusage characteristics. Consider the non-spanning usage of a functional unit. A functional unit is onlyin use while an instruction is being executed; once the instruction has been executed the functionalunit is available for reuse. In non-pipelined architectures if instruction b is dependent on instructiona, then b cannot begin execution until a's execution has been completed. Therefore, CanReuseFU isthe partial order represented by the program dependence DAG, and the computation of the functionalunit requirements and excess sets can be performed in polynomial time.On the other hand, consider a spanning resource such as a register. A register is used tohold a value from the time that the de�ning instruction executes until the value is killed by the lastinstruction that uses it. Therefore, the de�nition of CanReuseReg requires that the killing instructionbe identi�ed for each value de�ned, i.e., the last use instruction to execute. However, URSA does notassume a speci�c schedule. Since the purpose of the resource requirements computations is to �ndthe worst case scenario, the use instruction that would maximize the number of registers required isselected to be the killing instruction. Let Kill(a) be the function that returns the node selected tokill node a's value. ThenCanReuseReg = f(a; b)jb = Kill(a) or b 2 descendents(Kill(a))g (4.1)

26In many cases the de�nition of Kill() is straightforward. However Figure 4.4 shows a casewhere de�ning Kill() is NP-complete. In this case all combinations of the nodes in the lower partitionmust be examined to �nd the smallest set that kills all of the nodes in the upper partition. In thesecases the values of a set of nodes can be alive at the same time as a number of their dependents.Kill() must be de�ned to maximize the number of dependents that can be alive at the same time astheir ancestors. This is accomplished by �nding the minimum sized set of descendants that kills allof their ancestors.Theorem 2 De�ning Kill() for all nodes in the DAG is NP-Complete.Proof: By reduction to the Minimum Cover problem, given in Appendix A. �Thus, a precise solution cannot always be expected when scheduling for parallel architectures orwhen code reordering is considered. However, it is useful to note that polynomial time algorithmsexist when the maximum number of inputs is limited to two [Kar72]. Thus, for architectures whoseinstruction sets have no more than two physical inputs, precise maximum register requirements canalways be computed.The de�nition of Kill() can be broken into cases based on subDAGs. In several cases Kill()can be de�ned in linear time. In the remaining cases the problem of de�ning Kill() for the sub-DAGis equivalent to a minimum cover problem. A heuristic for the minimum cover problem, based onthe greedy algorithm, can then be applied to each identi�ed sub-DAG.The sub-DAG fB, C, E, Fg of the DAG in Figure 4.1(b) is an example of the di�cult case.An optimal solution to the minimum cover problem for this sub-DAG will choose the same node tokill both B and C. Let the solution be F. Then, Kill(B) = Kill(C) = F, so (B; F) 2 CanReuseReg,(C; F) 2 CanReuseReg, (B; E) 62 CanReuseReg, and (C; E) 62 CanReuseReg. Thus, three allocationchains are required to decompose this sub-DAG.The impact of imprecise solutions to the minimum cover problems must be considered. Ifthe cover found is not minimum, then fewer allocation chains are found than should be. Thus, theregister requirements may be underestimated. An upper bound on the imprecision can be computedby �nding the minimum number of nodes in T whose sum of edges from nodes in S is equal to orgreater than the number of nodes in N . Since the requirements can be underestimated, the reductionof requirements may not produce a DAG whose requirements can be met by the target machine.Any remaining excess register requirements will be identi�ed during the assignment phase. Theassignment phase can use simple on-the-
y heuristics to resolve the con
icts. Due to the nature ofthe problem, the sub-DAG, and the minimumcover heuristic it is not expected that many con
icts will

27be left unresolved for the assignment phase. Results in chapter 12 show that only simple heuristicswere needed to compute precise measurements in all cases encountered in the benchmark programs.4.2 Excessive SetsThe second step in measuring resource requirements is to identify all locations where a program needsmore copies of a resource than are available. The blocks with excessive resource requirements containsets of instructions that if executed concurrently would require more resources than are available.Each such set of instructions is called an excessive set. The excessive set information is used todetermine which blocks must have their resource requirements reduced. URSA's transformationsdo not require enumeration of all excessive sets, but only the sets of allocation subchains that areindependent of each other and whose size exceeds the number of resources available.Definition 8 An excessive set ESR for resource type R is a set of instructions fn1; n2; : : : ; nmgwhich has the following properties.1. 8ni; nj 2 ESR, ni and nj are independent,2. m � jRj, where jRj is the number of copies of resource R available.The enumeration of all excessive sets of instructions that occur in a block is a NP-Completeproblem by virtue of the fact that there can be an exponential number of such sets. In practice, allthat is needed is the set of all instructions that belong to at least one excessive set.Definition 9 A summary excessive set SESR for resource R is the union of all excessive setsESR in a given block.In practice, summary excessive sets are computed using a working list technique. Eachinstruction in the working list is added to the summary excessive set if it is independent of at leastjRj instructions on separate allocation chains forR. All unexamined instructions that are independentof the excessive instruction are then added to the working list. The initial instruction of the list islocated by scanning all instructions until one that meets the excessive test is found. This growingprocess is graph linear in time.Consider the minimal decomposition ffA, B, E, I, Kg, fC, Fg, fD, G, Jg, fHgg, and assumethat there are three functional units available. The instruction B is the �rst instruction that isindependent of at least three other instructions, C, G, and H. Thus, B is added to the working list andthe summary excessive set. The instructions C, D, G, H, and J are then added to the working list. Of

28these instructions C, G, and H will be added to the summary excessive set while D and J will not. The�nal summary excessive set is fB, C, E, F, G, Hg.4.3 Resource HolesThe �nal piece of resource usage information that is computed are resource holes. These are locationsin the program where a copy of a resource is under utilized and available for allocation to additionalinstructions. This section discusses how resource holes are found and identi�es properties indicatinghow they can be allocated to additional instructions.Definition 10 A resource hole is a location on an allocation chain where that resource is availablefor additional allocations. A resource hole, h, has the following properties:1. The type of the hole indicates how the hole must be used.2. The size of the hole, sizeh , is the number of cycles that the hole is available for additionallocations.3. The earliest available time, EATh, is the earliest time that the resource can be allocated toanother instruction.4. The latest available time, LATh is the latest time that the resource can be allocated to anotherinstruction.Resource holes and their properties are located by analyzing the allocation chains for theresource of interest. The properties of a hole are determined by the time of execution of the in-structions surrounding it. The scheduling of instruction i in the program DAG is limited by theprecedence constraints to a time frame in which it can execute. The time frame is delimited by theinstruction's earliest start time, ESTi, and latest �nish time, LFTi. Let �i denote the execution timefor instruction i. Then i's latest start time, LSTi, is given by LSTi = LFTi � �i. The slack timefor scheduling instruction i is given by slacki = LSTi �ESTi. The identi�cation of resource holes isperformed by examining the instructions' EST s and LFT s on each allocation chain and recordingthe information for each hole.Resource holes can occur in two di�erent situations. The �rst, a free hole, occurs whenan instance of a resource is unused in a section of a basic block. Free holes can occur because noinstructions from an allocation chain can execute in this section of code. They can also occur at thebeginning or end of a block before maximum demands are encountered.

29type size EAT LATFree LSTn2 � EFTn1 EFTn1 LSTn2Slack slack ESTsn1 LFTsnlTable 4.1: Computation of hole propertiesThe second type of hole, a slack hole, occurs when resources that are already allocated maybe temporally shared. If slacki = 0 then i is on a critical path and has no
exibility for scheduling.If i is not on a critical path then there is some
exibility on when it can be scheduled. Thus, itsresources may be available for allocation to another instruction.Definition 11 If two consecutive instructions, ij and ij+1, on an allocation chain cannot be ex-ecuted consecutively, i.e., LFTij < ESTij+1 , then there is a free hole, h, such that EATh = LFTij ,LATh = ESTij+1 , and sizeh = LATh � EATh.As an example, consider the basic block of code in Figure 4.5(a) and the correspondingDAG in Figure 4.5(b). Assume that the functional unit allocation chains are fBg, fA, C, E, G, H,I, K, Lg, and fD, F, Jg, and that the register allocation chains are fA, Bg, fC, F, G, H, I, K,Lg, fDg, and fE, Jg, then Figures 4.5(c) and 4.5(d) show partial schedules for the resources, whereeach column represents one allocation chain. Thus the DAG requires three functional units and fourregisters to exploit all available parallelism. Assuming that all instructions require unit time, theDAG requires eight time units to execute. A free functional unit hole exists between instructions Fand J, with size 2 and range (3, 4). Thus, two instructions could be allocated to that allocation chainbetween F and J. Another free functional unit hole exists between J and the end of the block.Definition 12 If there is a set of consecutive instructions I = fi1; i2; :::; ing and a constant s suchthat 8ij2I slackij = s, then there is a slack hole h, such that EATh = ESTi1 , LATh = LFTin , andsizeh = s.In Figure 4.5(d) there is a slack functional unit hole involving instructions A, B, and the endof the block. B has a slack time of 5, and a range of (1, 7). Thus, �ve instructions could be allocatedto B's allocation chain. Any number of these �ve instructions can be allocated between A and B, withthe remainder after B.The computation of both the size and the availability of a hole is summarized in Table 4.1.Nodes n1 and n2 surround a free hole, and nodes sn1 and snl are the �rst and last nodes in a slackhole. LST and EFT are the latest start time and earliest �nish time of a node, respectively. Slack is

30
A: load aB: b = 2 * aC: c = a + 1D: d = a - 3E: e = c * dF: f = c - dG: g = e / fH: h = g + 5I: i = h * 2J: j = h + 4K: k = i / jL: l = b + k(a) Basic block of code

AB C DE FGHI JKL(b) Corresponding DAGB ACEGHIKL
DFJ(c) Partial schedule of functional units

AB CFGHIKL
D EJ(d) Partial schedule of registersFigure 4.5: Example DAG of a basic block

31the slack time of each node in the hole. The hole nodes are annotated with these characteristics. Thecomputation of the LST and EFT for the instruction and region nodes is graph linear in time. Thelocation of the holes requires O(N) time, and the worst case number of holes found is 2N , where Nis the number of instruction and region nodes in the region.When Resource Spackling is performed it is preferable to �nd a resource hole large enoughto hold the instruction or instructions being placed in it. However, it is possible that no such holesexist. In such cases the instructions are inserted in the most desirable hole despite its size, with theresult that the length of the critical path through the DAG is increased. This technique is referredto as wedged insertion. In practice it is convent to place zero sized holes between all instructionswhere there would otherwise be no hole due to the instructions being on a critical path to facilitatewedged insertion.

Chapter 5Global Uni�ed Resource RequirementsRepresentationIn this chapter an intermediate representation that incorporates the resource requirementsinformation described in Chapter 4 is presented. The incorporation of the resource requirementsenables the compiler back end to fully integrate phases that allocate and schedule di�erent types ofresources, such as registers and functional units. A single representation simpli�es such integrationby presenting all information in a consistent manner, including where and how all resources of interestare used and available, as well as factors that a�ect the execution time of the program, such as criticalpath lengths and execution counts of regions.5.1 Integrated Resource Allocation RepresentationAlgorithms that integrate resource allocation need resource usage information to make e�ective alloc-ation decisions that have a minimal impact on the execution time of the program. Resource allocationdecisions only need to be made when there are locations in a program segment that require moreinstances of a resource than are available. Advanced resource allocation algorithms, such as thosebased on the Measure and Reduce paradigm and to some extent global schedulers, move instruc-tions from locations where there are insu�cient instances of a resource to locations where extraresource instances are available. Thus, the resource usage information must indicate all locationswhere resources are either over utilized or under utilized. Since the architectures targeted in thiswork exploit ILP, the representation used must take into account the ability to schedule instructionsin parallel. This chapter identi�es a set of properties for intermediate representations and shows howthe work discussed in the previous chapter can be used in an intermediate representation to satisfythese properties. 32

335.1.1 Integrated Resource Allocation PropertiesAn intermediate representation should satisfy the following properties to support uni�ed resourceallocation. These properties are called the Uni�ed Representation Properties.Property 1 [Integrated Representation] The representation can be used to determine the impact ofa resource allocation or set of resource allocations on all resource demands in all segments and theexecution time of the program.Property 2 [Measurability] The representation enables measurement of all segments' demands forall resources. A resource measurement is precise if it indicates the minimum number of copies ofthe resource needed to exploit all parallelism uncovered in each program segment.Property 3 [Resource Usage] The representation identi�es all locations in each segment whereresources are either over utilized or under utilized.Property 4 [Executability] The representation indicates if each program segment in its currentstate can be executed using the available resources. A program segment is executable if and only iffor each resource the number of copies required is less than or equal to the number of copies available.A program is executable if and only if all its segments are executable.Ideally, the representation should supply precise resource measurements. However, as dis-cussed in Chapter 4 and Appendix A, the problem is NP-Complete for spanning resources. Thus,there is a trade-o� between the precision of the measurements and the time taken to compute them.Appendix A also discusses fast heuristics developed for measuring spanning resource requirementsthat are demonstrably precise.The measurability of the representation allows resource usage information for all resourcesto be computed. An intermediate representation that provides resource usage information for allresources enables uni�ed resource allocation.5.1.2 GURRRGURRR is an intermediate representation that meets the uni�ed representation properties and isused to investigate uni�ed resource allocation algorithms. To support a variety of parallelizationtechniques, including powerful code motions, GURRR is based on a modi�ed form of the ProgramDependence Graph (PDG).

34The Instruction Program Dependence Graph is used to represent instruction level parallel-ism not explicitly expressed in the traditional statement level PDG. Since a single program statementmay result in several intermediate code statements, representing the program at the intermediate codelevel permits access to more ILP. To support a wider range of code motions the representation isconverted to Static Single Assignment form (SSA) [RWZ88, AWZ88]. Special instruction nodes canbe added to carry loop and array access information to enable the exploitation of medium grainparallelism as well. Compilers using PDG based representations perform resource allocations on aregion by region basis. Thus, regions correspond to the program segments mentioned in the uni�edrepresentation properties.The Instruction PDG (IPDG) is a graph G = (N;E), in which the set of nodes, N , is aunion of the following node types.1. Instruction nodes, I, are similar to statement nodes found in traditional PDGs, but representintermediate opcodes.2. Region nodes, R, in the PDG identify a unique set of execution conditions or control depend-encies.The set of edges, E, is a union of the following edges types.1. Control dependence edges, C � fI �Rg[fR�Ig, connect the region node to the instructionand subregion nodes that execute under the conditions that it identi�es. Control edges are alsoadded from the instruction nodes specifying those conditions to the region node.2. Data dependence edges, D � fI [Rg� fI [Rg, connect the instruction nodes and representthe dependence of the instruction nodes on data values computed by earlier instruction nodes.In addition, data dependence edges are added from the instruction nodes de�ning values tothe region nodes containing uses of the values to summarize the dependence of the region as awhole on data values computed by earlier instructions.3. Transitive data dependence edges, DT � fI [Rg � fI [Rg, indicate indirect dependenciesbetween nodes due to a sequence of data dependencies. The addition of these edges simpli�esthe computation of the ordering of nodes within a region.GURRR extends the IPDG to include the resource usage information required to meetthe uni�ed representation properties. In addition to summarizing control dependence information,region nodes in GURRR are used to summarize resource usage information. Since the regions areorganized in a hierarchical manner, the summary for a region must include resource usage information

35for both the instructions and subregions that it contains. Regions in GURRR also store executioncounts, indicating how many times the region is expected execute during a run of the program. Thisinformation enables the allocation algorithms to make better decisions on how many resources toallocate in each region.The Measure and Reduce allocation scheme presented in this dissertation explicitly decideswhich instructions should be delayed until all resources that it requires are available. To supportthese scheduling decisions GURRR must represent additional constraints placed on the ordering ofnodes. GURRR must also contain information used to measure the resource requirements. A part ofthis information is identifying which instructions can share an instance of a resource. The followingadditions are made to the IPDG's nodes and edges to meet these requirements and obtain GURRR.1. Resource hole nodes, H, represent the resource holes found on the allocation chains. Each holenode is annotated with the resource availability characteristics.2. Temporal dependence edges, T � N�N , are used to represent sequential dependencies. Theseedges are used to supply additional ordering constraints on the nodes, such as placement ofhole nodes, and instruction and region node scheduling.3. Reuse edges, U � fI [Rg � fI [Rg, connect nodes that can temporally share an instance ofa resource under any schedule allowed by all of the dependencies in a region. A separate set ofreuse edges is used for each resource type.The stipulation that Reuse edges are added only when a resource can be shared underall semantically correct schedules allows for parallel execution and code reordering. An allocationalgorithm, such as Measure and Reduce, can select any allowable schedule and determine the worstcase resource requirements. When only a single schedule, such as the original order of the sequentialsource code, is used, the resource requirements measurements are less precise, since the scheduledoes not account for as many overlaps of uses of resources.Figures 5.1(a) and 5.1(b) show a simple program and the corresponding GURRR. The targetarchitecture has three functional units and three registers. Control, data, and temporal dependencies,and reuse edges are indicated by bold, normal, dashed, and dotted lines, respectively. To improvereadability only the reuse edges for registers are displayed.To be useful for uni�ed resource allocation, GURRR must satisfy the uni�ed representationproperties. GURRR satis�es the Measurability property by using the reuse edges and allocationchains to compute each region's requirements for all resources. As discussed in section 5.2.1, theresource measurements are precise for functional units and usually precise for registers. GURRR

361: load A2: load B3: C = A - 104: D = A * B5: E = B + 126: F = D / C(a) Code segment A BC D EF HFUHFU HFU HRegHReg Region1T (b) GURRRT Control DependenceData DependenceTransative Data DependenceTemporal DependenceReuseFigure 5.1: Example of GURRRprovides resource usage information for all resources on the IPDG. All types of dependencies arerepresented by the various types of edges in GURRR, allowing the execution time of a region to becomputed. The combination of all of this information on a region by region basis and in hierarch-ical summaries satis�es the Uni�ed Representation property. In each region the excessive sets andresource hole nodes identify all locations that over utilize and under utilize resources, respectively,satisfying the Resource Usage property. Finally, the number of instances of a resource required bya region is stored in the region node. This number can be compared to the number of instances ofthe resource available for allocation to the region to determine if the region is executable. Due to thehierarchical nature of GURRR, the program is executable if the root region is executable, satisfyingthe Executability property.At times during the measurement of resource requirements and use of GURRR by thecompiler back end, it is convenient to consider only subsets of the information provided by GURRR.Four combinations of subsets of nodes and edges commonly used are identi�ed. Each combinationis a subgraph composed of selected subsets of nodes and edges.Definition 13 Given a graph G = (N;E), the subgraph of G induced by N 0 � N with respectto Ê � E is the graph G0 = (N 0; E0), where E0 = f(u; v) 2 Ê : u; v 2 N 0g1. The Control Dependence Graph, CDG, is the graph induced by I [R with respect to C.2. The Data Dependence Graph, DDG, is the graph induced by I [R with respect to D.3. The Region DAG for a region R, RegionR DAG, is the graph induced by fnjn 2 I [R [

37H and (R; n) 2 Cg with respect to D [DT [T . This graph provides all of the informationneeded to allocate all resources in the region.4. The Reuse DAG for a region R and resource R, ReuseR DAG, is the graph induced byfnjn 2 I [R and (R; n) 2 Cg with respect to U .The CDG and DDG are the same as those found in the IPDG. The Region DAG containsall dependence and resource usage information required for performing local uni�ed resource alloc-ation. The CDG and Region DAGs for other regions may be used when performing various typesof integrated global resource allocations. The Reuse DAG is typically used only by the resourceusage computation algorithms. These algorithms measure the resource requirements, compute theexcessive sets, and add the resource hole nodes.As an example of the various subgraphs, consider the code segment of an if-then statementin Figure 5.2(a) and assume that the target architecture has a single type of functional unit resourceand a single type of register resource. In the subsequent �gures, edges representing redundantordering information are removed to aid readability. The control and data dependence subgraphsare shown in Figures 5.2(b) and 5.2(c) respectively. The functional unit and register Reuse DAGsare shown in Figures 5.3(a) and 5.3(b) respectively. The region 2 node, R2, does not occur inthe functional unit Reuse DAG since its instructions are not executed in parallel with region 1'sinstructions. The R2 node occurs in the register Reuse DAG since the values it computes can bealive simultaneously with some of the values computed in region 1. Since the two values D1 and D2share a register, the R2 node represents the register demand of instruction t. The brlt predicatenode does not occur in the register Reuse DAG since it does not write to a register. The functionalunit Reuse DAG for region 1 can be covered by the four allocation chains fC, brltg, fA, D1,F, Hg, fB, Eg, and fGg, indicating a maximum requirement of four functional units to exploit allparallelism in the region. The register Reuse DAG can be covered by the six allocation chainsfC, Fg, fA, D1, Hg, fBg, fEg, fR2g, and fGg, indicating that it is possible for six values to besimultaneously alive.Figure 5.3(c) shows the partial schedule for functional units in region 1 imposed by the dataand temporal dependencies. Each column represents an allocation chain. There are free resourceholes before C, after both brlt and E, and before and after G. Instructions D1, E, and G have slack timein when they can be scheduled. Since the functional units are not needed for the entire time, thesenodes exist in slack holes. Figure 5.3(d) shows the region DAG for region 1 with only the functionalunit hole nodes. Free and slack hole nodes are marked with FH and SH respectively. A transitive datadependence edge has been added from node C to node F to indicate the transitive dependence caused

38
1: load A2: load B3: C = A * 44: D1 = A * B5: E = B + 36: brlt C, 97: t = D1 + C8: D2 = t * 59: F = D / E10: G = B + 1011: H = F + G(a) Code segmentR1A B C brlt MR2 R3D E F L1 G H I J K L2TrueFalse

(b) Control Dependence Subgraph
AB CbrltDE FL1 GH I JK L2�M(c) Data Dependence SubgraphFigure 5.2: Sample Code and GURRR Dependence Subgraphs

39
A BC D1 Ebrlt F GH(a) Region 1 Functional Unit Reuse DAG C A B E R2 GD1F H(b) Region 1 Register Reuse DAGCbrlt AD1FH BE G(c) Region 1 FU Schedule

FHFUCbrltFHFU AD1SHFU FHR2 BESHFU FHFU FHFUG SHFUFHFUT(d) Region 1 DAG with FU HolesCF AD1H B E R2 G(e) Region 1 Register Schedule FHRegCbrlt FFHReg FHRegR2FHReg AD1FHRegH BFHReg FHRegEFHReg FHRegGFHRegSHReg(f) Region 1 DAG with Register HolesFigure 5.3: GURRR Resource Usage Information

40by nodes t and D2, which are not in region 1. The largest set of instructions that can be executed inparallel is fC, D1, E, Gg, which would be excessive if the target architecture provided fewer thanfour functional units.The partial schedule for registers is shown in Figure 5.3(e). The allocation chain containingR2 does not have any instructions from region 1 and consists of two free holes separated by the nodeR2. Figure 5.3(f) shows the region 1 DAG without the functional unit holes.5.2 Computing GURRRGURRR is initially constructed and used as the input form for the integrated phases in the back endof the compiler. However, as the phases operate they transform the program. These transformationsmust be made in GURRR. Furthermore, The resource usage information must be updated to re
ectthe impact of the transformations. This section discusses both the initial construction and incrementalupdating of GURRR.5.2.1 Construction of GURRRThe construction of GURRR begins with an IPDG and is performed in a hierarchical manner on theDAG of region nodes resulting from the forward control dependencies. The regions are visited one ata time in a bottom up order and the local components are constructed. A summary of the resourcerequirements of subregions is used during the construction in the parent region. The resulting globalresource requirements are contained in the root region.Special processing occurs when there are mutually exclusive subregions, such as the thenand else subregions of an if statement. In this case, the region containing the if statement isonly concerned with the maximum requirements of the set of mutually exclusive subregions. Thesubregions nodes are marked as mutually exclusive and the construction takes the maximum of therequirements for each resource.The steps in the construction of GURRR for each region are performed as follows.Add transitive data dependence edges: Transitive data dependence edges are addedbetween all instruction and region nodes. The computation of the transitive data dependence edgescan be done in graph linear time. In the worst case O(N2) edges are added. These edges are requiredfor the proper computation of the Reuse DAGs.Build Reuse DAGs: The ReuseR DAG is the instantiation of the relation CanReuseRfor resource R. The ReuseR DAG is constructed by adding an edge from node a to node b for each

41(a; b) 2 CanReuseR, where both a and b use resource R.The sets of nodes whose resource can be reused by node n are computed in a forwardtopological traversal of the DAG using the equationCanReuseR[n] = avail[n] [P2predecessors(n)CanReuseR[P]:Avail[n] is at most all of n's immediate predecessors whose instances of R can be safely reused byn. The computation of avail[n] is dependent on whether the resource is classi�ed as spanning ornon-spanning. For non-spanning resources, avail[n] is the set of n's closest ancestors that use R.Computing avail[n] for spanning resources requires a special component analysis. The identi�cationand analysis of most components can be performed in graph linear time. However, for a few com-ponents the analysis is NP-Complete. The computations of avail[n] and CanReuse are graph linearand the resulting Reuse DAGs contain O(N2) reuse edges.Find allocation chains: The number of allocation chains for each resource is recorded inthe parent region's node. Once the requirements have been measured, the allocation chains are usedto compute excessive sets and resource holes.Find excessive sets: The summary excessive sets are stored in the region node for useby the allocation phase. The process of growing excessive sets is graph linear in time.Find resource holes and add hole nodes: Free hole nodes are added between theconsecutive nodes surrounding the hole. Slack hole nodes are added between the predecessor of the�rst instruction or region node in the hole and the successor of the last node in the hole.5.2.2 Incremental Updating of GURRRGURRR is able to re
ect changes in resource requirements resulting from the transformations appliedto the program. The brute force approach is to recompute all information from scratch after eachtransformation is applied. This can be a costly approach, and it does not provide any support forpredicting the impact of a transformation. It would be useful to be able to estimate the impactof a possible transformation on the resource requirements. This section discusses techniques forincrementally updating GURRR.In previous work on specifying transformations a basic set of program edits to describe thetransformations has been used [WS91, Dow94]. The following set of Standard Edit Functions (SEFs)is de�ned, which apply a transformation to the elements of a PDG.Addelement Create a new elementDeleteelement Delete an element

42Copyelement Create a new element and copy label information of an existing elementMoveelement Delete and recreate an element, preserving label informationModifyelement Change the label informationThere are two sets of the above operations, one for nodes and one for edges, giving a total of tenSEFs. Since nodes will never be added without corresponding edges, and the edge SEFs can beviewed as combinations of adding and deleting edges, only the AddEdge and DeleteEdge SEFs areconsidered.The computation of the CanReuse relation is graph linear. The updating of avail[n] in-formation is limited to the nodes a�ected by the AddEdge and DeleteEdge SEFs. The updatedinformation is then propagated through the region DAG. The Reuse DAG is updated by adding anddeleting edges corresponding to the nodes inserted and removed in the CanReuse relation.The matching algorithm used to compute allocation chains is incremental in nature; eachmatching is a partial solution and new matchings are added by �nding augmenting paths. Thus,the modi�ed Reuse DAG with edges deleted and added can be used as a partial solution. Thecomplexity for this solution is O(pmE), where m is the number of chains in the initial partialsolution. An alternative approach can �nd only unit length augmenting paths in graph linear time,possibly introducing some imprecision.Updating of the excessive sets is performed in two steps. First, the nodes in the existingexcessive sets are tested to see if they are still in parallel with an excessive number of other nodes.This step can be limited to the nodes that have had edges added to them. Second, nodes not in theexcessive sets are tested to see if they now should be added to the working set. The initial set ofnodes considered in this step can be limited to those that have had edges removed.Transformations can a�ect holes by creating new ones, removing existing ones, and bychanging their characteristics. All of these changes can be found by examining each node whose ESTand/or LFT has changed. However, the nature of the matching algorithm used to �nd the allocationchains can cause unchanged holes to migrate between allocation chains. The sequential edges usedto place the hole nodes in the region DAGs can be updated to re
ect the migrations in linear timein the number of hole nodes.

Chapter 6Resource SpacklingIn URSA's approach to the Measure and Reduce paradigm, instructions in excessive setsare allocated resources by placing them in resource holes. The placement is achieved by introducingadditional temporal dependences between instructions. This process is called Resource Spackling.Spanning resources are more complex than non-spanning resources due the fact that spanning usesmay have to be split, requiring insertion of store and load instructions. Since the mechanics ofresource spackling di�er for spanning and non-spanning resources, two di�erent transformationsare needed, spanning resource spackling and non-spanning resource spackling. When the type oftransformation is clear from the context, the transformation is generically referred to as the spacklingtransformation in this dissertation.Preconditions must be placed on the instruction and hole selected for the transformationto ensure that the program's semantics are preserved and that a reduction in resource requirementsis achieved. In some situations the preconditions do not limit instructions to a single location. Inthese cases heuristics are used to select a speci�c location based on relative costs. Such heuristicsare described in subsequent chapters.This chapter presents the two spackling transformations as applied to GURRR, as wellas the conditions required of the instruction and hole pair selected for transformation. It is shownthat as long as there are excessive sets it is possible to �nd a hole into which an instruction from anexcessive set can be spackled. Thus, all excessive resource requirements can always be removed. Thespanning resource spackling transformation is presented �rst. The non-spanning resource spacklingtransformation is then shown to be a simpli�ed form of the spanning transformation.
43

44defHuseH1 � � � useHndefIuseI1 � � � useIm(a) Before
defHpre usesH store dHdefIhole usesH hole usesI store dIload dHpost usesH load dIpost usesI(b) AfterFigure 6.1: Filling a non-spanning resource hole6.1 Filling Spanning Resource HolesThe spanning resource spackling transformation arranges for two spanning uses of a resource totemporally share a single instance of the resource in an interleaved manner. The transformationdeals with two groups of nodes. The �rst group consists of the node at which the hole starts andall nodes that use its value. Together these nodes represent the spanning use de�ning the hole. Thesecond group consists of the node selected for insertion into the hole and all nodes that use its value.Together these nodes represent the spanning use to be inserted. These nodes are combined intoseveral useful subsets.Definition 14 Let H be a spanning resource hole and I be the use to be inserted into H. Thefollowing sets of nodes are used during spackling spanning resource uses.1. The hole H is delimited by the nodes where the spanning value is de�ned by the instructiondefH , and the end of the hole, node Hend.2. The instruction defI de�nes the value I to be spackled into H.3. The set useH , consisting of nodes useH1 : : :useHn , is the set of all uses of defH . In caseswhere defH 's live range must be split, these nodes are partitioned into three sets, preUsesH,holeUsesH, and postUsesH.4. The set useI, consisting of nodes useI1 : : :useIm, is the set of all uses of defI. In cases wheredefI's live range must be split, these nodes are also partitioned into two sets, holeUsesI andpostUsesI.5. The 7-tuple T = (defI, holeUsesI, postUsesI, defH , preUsesH, holeUsesH, postUsesH)is referred to as a S-spackling tuple.To achieve a reduction in resource requirements the spackling transformation places thenode I into the hole H. Circumstances may require either or both of the live ranges to be split. When

45defH 's live range must be split its uses are partitioned into the sets preUsesH, holeUsesH, andpostUsesH, which are placed prior to, in, and after the hole, respectively. When defI 's live rangemust be split its uses are partitioned into the sets holeUsesI and postUsesI, which are placed inand after the hole, respectively. Figure 6.1 shows the a�ected portion of the program graph beforeand after the transformation. The dashed box in Figure 6.1(b) represents the resource hole intowhich I is spackled.Figure 6.1 depicts the various sets of nodes as being disjoint. However, the S-spacklingtransformation must handle cases when nodes exist in more than one set. These cases arise wheneither a node belongs to both live ranges, or defI uses the value de�ned by defH .Condition 1 [Overlapping Sets] The following cases describe when two sets in a S-spackling tuplemay overlap.1. defI 2 preUsesH2. postUsesI \ postUsesH 6= ;3. holeUsesH \ holeUsesI 6= ;All other pairs of sets in the S-spackling tuple must be disjoint.The procedure spackleSpanning(), shown in Figure 6.2, performs the actual modi�cationsof GURRR depicted in Figure 6.1. For clarity, the code to handle the special cases mentioned in theOverlapping Sets Condition is omitted. The procedure spackleSpanning() performs a single span-ning resource spackling transformation and is called from the driver procedure reduceSpanning(),shown in Figure 6.3. For each call to spackleSpanning() the driver �rst �nds a pair of de�nitionsfor the transformation and creates the S-spackling tuple by splitting their uses. After calling thespackling transformation the driver updates the resource requirements information. This process isrepeated as long as there is an excessive set for the spanning resource under consideration.The remainder of this section is dedicated to proving two important properties of the al-gorithms given. The �rst property is that spackleSpanning() is a safe transformation, that is, it doesnot produce a representation of the program that violates the properties of GURRR and it preservessemantic correctness. The second important property of the algorithms is that reduceSpanning()will terminate.Since GURRR is a graph based representation of dependences, several standard graphfunctions are useful in this discussion.

46procedure spackleSpanning(defI, holeUsesI, postUsesI,defH, preUsesH, holeUsesH, postUsesH)f /* spill the inserted value if needed */if (postUsesI != ;)f storeI = newStore();loadI = newLoad();foreach n 2 postUsesIf delEdge(defI, n, Data);1: addEdge(loadI, n, Data);g2: addEdge(defI, storeI, Data);gelseloadI = NULL;/* spill the spanning value if needed */if (postUsesH != ;)f storeH = newStore();loadH = newLoad();foreach n 2 postUsesHf delEdge(defH, n, Data);3: addEdge(loadH, n, Data);gif (storeI)4: addEdge(storeI, loadH, Temporal);5: addEdge(defH, storeH, Data);6: addEdge(storeH, defI, Temporal);gelseloadH = NULL;/* constrain hole uses into hole */foreach n 2 holeUsesI [holeUsesHf if (loadI)7: addEdge(n, loadI, Temporal);if (loadH)8: addEdge(n, loadH, Temporal);g /* constrain pre uses to before hole */foreach n 2 preUsesH9: addEdge(n, defI, Temporal);g Figure 6.2: Procedure spackleSpanning()

47procedure reduceSpanning(block, resource)f computeRequirments(block, resource);while (block has excessive sets)f (defH, defI) = selectSpackle(block, resource);(holeUsesI, postUsesI, preUsesH, postUsesH) = splitUses(defH, defI);spackleSpanning(defI, holeUsesI, postUsesI, defH, preUsesH, holeUsesH postUsesH);updateRequirements(block, resource);gg Figure 6.3: Procedure reduceSpanning()Definition 15 The following functions take two sets as parameters and return the status of de-pendences between them.1. depends(A, B) returns true if and only if there is a direct or indirect dependence of any typefrom any node in the set A to any node in the set B.2. noDeps(A, B) returns the negation of depends(A, B).After all spackling transformations have been performed the resulting GURRR of the pro-gram is used to determine the order of the instructions during code emission. Thus, the GURRR fora region must be acyclic and spackleSpanning() must not introduce cycles. Existing dependencesbetween the nodes of interest are used in the selection of defH as well as in the splitting of the usesof defH into their respective sets. Based on the temporal dependences added by the transformationpreconditions are placed on the sets in the S-spackling tuple to ensure that no dependence cycles areintroduced.Condition 2 [Acyclic] An S-spackling tuple T is acyclic if the following conditions hold:1. noDeps(postUsesI, holeUsesI)2. noDeps(postUsesH, defI [holeUsesI)3. noDeps(defI, defH [preUsesH)4. noDeps(holeUsesH, preUsesH [defI)5. noDeps(postUsesI [postUsesH, holeUsesH)The above preconditions on the splitting of the uses are necessary and su�cient for theroutine spackleSpanning() to avoid introducing cycles. Furthermore, it is easily seen that thealgorithm preserves semantic correctness. The transformation spackleSpanning() performs twosets of graph manipulations. The �rst set generates spill code, which consists of adding store and

48load instructions and moving the post subsets of uses from the original de�ning instruction to anew load. When the S-spackling tuple satis�es the Acyclic Condition all newly added direct andindirect dependences between pairs of existing nodes will not introduce dependence cycles. Thesequentializations introduced by spill code are lines 1 through 6 in Figure 6.2. Examination of thealgorithm shows that all values are properly spilled. That is, uses of values which are delayed byspilling still access the same values after they are reloaded.Thus, the transformation spackleSpanning() satis�es the property that semantic correct-ness is preserved. The second required property is that reduceSpanning() terminates. Since theprocedure loops until there are no more excessive sets, termination is guaranteed if two requirementsare meet:1. each application of spackleSpanning() reduces the number of interfering spanning instances.2. while an excessive set can be found, an application of spackleSpanning() can also be found,andRequirement 1 implies that progress is made during each iteration of reduceSpanning(). Require-ment 2 is a perquisite to applying spackleSpanning(). The satis�ability of each requirement isproved in turn.Further examination of the procedure spackleSpanning() is required to demonstrate thetermination property. To this end it is convenient to introduce the notion of spanning instances,which are analogous to register live ranges in that they both describe a spanning use of a resource.A live range is described as extending from the de�nition of that value to the last instruction to usethat value. On the other hand, a spanning instance is described as extending from a use of a valueback to the de�nition of a value. Thus, each use of a given value forms a separate spanning instance.This viewpoint is useful because di�erent uses of a single value may be handled di�erently by thespackling transformation. A more formal de�nition is given as follows.Definition 16 A spanning instance is a pair of instructions (def; use), where def is a de�nitionnode which de�nes a value, and use is a use node which uses that value. A single de�nition maybe a member of multiple spanning instances. Let (def1; use1i) and (def2; use2j) be two spanninginstances, then they are said to be unique if and only if def1 and def2 are not the same node. Apair of unique spanning instances are said to be fully ordered if and only ifdepends(use1i, def2) _ depends(use2j, def1) (6.1)A pair of unique spanning instances that are not fully ordered are said to be interfering.Traditional coloring based register allocation two live ranges are said to overlap one anotherif the later value is de�ned before the earlier value is killed. This condition can be restated in terms

49of spanning instances. Let def1 and def2 be two di�erent instructions de�ning values. Then theirde�nitions interfere if and only if there exists spanning instances (def1; use1i) and (def2; use2j)which interfere. This de�nition of interference naturally extends live range analysis to DAG basedrepresentations of a program and is therefore useful in describing spanning resource spackling.In addition to partitioning the uses in such a way that the transformation does not introducecycles, the splitting routine must also ensure that the partitioning will achieve a reduction in resourcedemands. A reduction occurs when the interfering spanning instances are placed in sets of theirrespective partitions such that they become fully ordered. The cases where the interfering spanninginstances become fully ordered after the spackling transformation are given below.Condition 3 [Reducing] Let T be a S-spackling tuple. T is reducing if and only if there existsa pair of interfering spanning instances (defH ; useHi) and (defI ; useIj), and at least one of thefollowing statements is trueuseHi 2 preUsesH ^ useIj 2 holeUsesI [postUsesI (6.2)useIj 2 holeUsesI ^ useHi 2 postUsesH (6.3)useHi 2 holeUsesH ^ useIj 2 postUsesI (6.4)It is straightforward to show when the spackling transformation is given a S-spackling tuplewhich satis�es the Reducing Condition the interfering spanning instance is removed.Lemma 1 Let T be a S-spackling tuple that satis�es the Reducing Condition. Then the spanningresource spackling transformation will a�ect a reduction in the number of interfering spanning in-stances.Proof: If the defI spanning instance is placed in useholeI then the defH spanning instance isordered either before or after it by the transformation. If the defH spanning instance is placedin usepreH then the defI spanning instance is ordered after it by the transformation. If the defHspanning instance is placed in useholeH then the defI spanning instance must be placed in usepostI ,which is always ordered after all nodes in holeUsesH. In all cases the interference is removed,resulting in fewer interfering spanning instances. �To show that a satisfactory S-spackling tuple always exists it is necessary to consider allpossible partial orderings between the four nodes of a interfering spanning instance. Let the inter-fering spanning instance be composed of the pairs (D1; U1) and (D2; U2). A partial ordering can beidenti�ed by a unique string of the formwxyz, where each variable represents a particular componentof a partial ordering:

50pattern cases reasonA*** 27 symmetry between D1 and D2*A** 18 (27) no interference**B* 12 (27) no interference**NA 4 (9) U1 A U2 implies U1 A D2BN** 5 (9) D1 B D2 implies D1 B U2*N*B 4 (9) U1 B U2 implies D1 A U2NBNN 1 symmetrical to NNANNNAA 1 symmetrical to NBNBNBAA 1 symmetrical to NNABTable 6.1: Invalid and symmetrical orderings removed from considerationw - the relation between D1 and D2x - the relation between D1 and U2y - the relation between U1 and D2z - the relation between U1 and U2Each component of the identi�er can take one of three values:B: node n is ordered before node mA: node n is ordered after node mN: there is no order between node n and node mThere are a total of 81 combinations of the ordering values for the components of the orderingdescriptors. After removing the illegal and symmetrical combinations, there are only 10 cases left,which are shown in Figure 6.4. The sets of partial orders removed are given in Table 6.1, where thecharacter * indicate any of the values A, B, or N. The �rst column gives the pattern of cases removed.The second column gives the number of unique cases covered by the pattern and the total number ofcases in parentheses. The �nal column explains the reason for removal.The ground work has now been laid to show that a S-spackling tuple can always be foundwhich satis�es the Overlapping Sets, Acyclic, and Reducing Conditions. An algorithm exists whichcan �nd such a partition in two passes over the use nodes. In the �rst pass, all use nodes that mustcome before the hole are placed there and remaining use nodes are placed after the hole. The secondpass then moves use nodes that follow the hole into the hole to ensure a reduction will occur. Thismovement is performed using a topological traversal. Thus the algorithm operates in graph lineartime. Feasible placements of the uses for each unique case are given in Table 6.2.

51D1 D2U1 U2(a) Case nnnn D1 D2U1 U2(b) Case nnanD1 D2U1 U2(c) Case nbnb D1 D2U1 U2(d) Case nbabD1 D2U1 U2(e) Case bbnn D1 D2U1 U2(f) Case bbnbD1 D2U1 U2(g) Case bban D1 D2U1 U2(h) Case bbabD1 D2U1 U2(i) Case bbaa D1 D2U1 U2(j) Case nbanFigure 6.4: All unique orderings of two interfering spanning instances

52case U1 U2NNNN preUsesH holeUsesINNAN postUsesH holeUsesINBNB preUsesH holeUsesINBAB holeUsesH postUsesIBBNN preUsesH holeUsesIBBNB preUsesH holeUsesIBBAN holeUsesH postUsesIBBAB holeUsesH postUsesIBBAA postUsesH holeUsesINBAB postUsesH holeUsesITable 6.2: Splittings of interfering spanning instancesTheorem 3 If there is a spanning excessive set then a S-spackling tuple T exists that satis�es theOverlapping Sets, Acyclic, and Reducing Conditions.Proof: by construction.Given that there is an excessive set, there must exist at least two interfering live ranges. Ifthere is a dependence between them then let defH be the de�nition on the source of this dependenceand defI be the other de�nition. Otherwise arbitrarily choose defH and defI from the two de�nitions.Let H be the hole following defH.The simplest partitioning of the uses of the two live ranges to satisfy the Acyclic Conditionis the following. If defI is dependent on any uses from the set useH , place those uses in preUsesH.Place all remaining uses of defH and all uses of defI in the sets postUsesH and postUsesI,respectively. This partitioning ensures all nodes on which defI is dependent on are ordered beforeit. All remaining nodes are either dependent on defI or independent of it, and so can be safelyordered after it.The partitioning must now be adjusted to satisfy the Reducing Condition. Let the setpost be the union of the sets postUsesH and postUsesI from the step above. Since there are nocyclic dependencies between the nodes, at least one of the uses in post must have no ancestors inpost and can be moved into its respective holeUsesH or holeUsesI set without violating the AcyclicCondition. Let usemove be this use and let usestay be the other use of the pair of interfering spanninginstances. Then allowing for the situations where a either or both of usemove and usestay may bein both postUsesH and postUsesI as identi�ed by the Overlapping Sets Condition, there are threecases.1. There is a useHi in preUsesH as a result of the �rst partitioning step. Then equation 6.2 ofthe Reducing Condition is already satis�ed.2. usemove 2 useI and usestay 2 useH . Then placing usemove in holeUsesI satis�es equation 6.3.3. usemove 2 useH and usestay 2 useI . Then placing usemove in holeUsesH satis�es equation 6.4.Thus, after moving at most one use into the hole, all conditions are satis�ed as required. �The above theorem shows that if there is an excessive for a spanning resource, then a redu-cing transformation can always be performed. Since every program contains a �nite number of span-ning instances, only a �nite number of interfering spanning instances in excessive sets can exist. ByTheorem 3 if there is an excessive set then an application of the transformation spackleSpanning()can be applied, which will reduce the number of interfering spanning instances. Therefore routinereduceSpanning() must eventually terminate and it satis�es the termination property.

53hole starthole end I(a) Before hole startIhole end(b) AfterFigure 6.5: Filling a non-spanning resource hole6.2 Filling Non-spanning Resource holesThe non-spanning spackling transformation arranges for two instructions to temporally share a singleinstance of a non-spanning resource. The transformation simply introduces a temporal dependencebetween the two instructions. For the sake of completeness this section outlines the transformationand the necessary conditions required of the instructions.Definition 17 Let H be a non-spanning resource hole delimited by the nodes Hstartand Hend. LetI be the instruction to be inserted in this hole. The 3-tuple (Hstart, Hend, I) is referred to as aNS-spackling tuple.To achieve a reduction in resource requirements the instruction I must be independent ofat least one of Hstart and Hend. With out loss of generality, Hstart is chosen to be the node.Condition 4 [Independence] Let T be a NS-spackling tuple. T is independent if and only ifnodep(I, Hstart) ^ nodep(Hstart, I) (6.5)The portion of the program graph a�ected by the non-spanning spackling transformationis shown in Figure 6.5. The non-spanning spackling transformation, spackleNS() simply consistsof two calls to addEdge() to add a temporal edges from Hstart to I and from I to Hend. A driverprocedure similar to reduceNS() is used to select NS-tuples, perform the transformation, and updatethe resource requirements information.Instead of interfering spanning instances, non-spanning spackling deals with the number ofother instructions in the excessive set which are independent of I.Definition 18 Let E be a non-spanning excessive set and let I 2 E. Then the set excessiveI =fnjnodep(I; n) ^ nodep(n; I)g is I's excessive set, and numExI = jexessiveI j.

54Lemma 2 Let T be a NS-spackling tuple that satis�es the independence condition. Then the followingstatements are true:1. if there is a non-spanning excessive set then a NS-spackling tuple T which satis�es Condition 4can be found,2. spackleNS() reduces numExI , and3. spackleNS() does not introduce any dependence cyclesProof: All statements follow immediately from the combination of the independence condition andthe de�nition of non-spanning excessive sets. �Using the concept of an instruction's excessive set it can be seen that reduceNS() termin-ates. Since every program contains a �nite number of instructions, there must be a �nite numberof instructions in non-spanning excessive sets and thus each excessiveI is also �nite. By Lemma 2if there is an excessive set then an application of the transformation spackleNS() can be applied,which will reduce the number of non-spanning interferences. Therefore routine reduceNS() musteventually terminate.

Chapter 7Uni�ed AllocationThe previous chapter described the mechanics of performing Resource Spackling. However,the application of these techniques in a uni�ed resource allocation scheme must address several addi-tional issues. Allocation of functional units has only a local impact on the program, while allocationof registers has both local and non{local e�ects due to the nature of spanning uses. Uni�ed resourceallocation is achieved by the simultaneous allocation of multiple resources. This simultaneous alloc-ation performs resource spackling using a set of resource holes. To preserve semantic correctnessadditional constraints must be placed on the holes as a set. Finally, a method is needed to comparethe cost of several allocation alternatives to prioritize them in terms of cost. This chapter describesheuristics to handle all of these issues.7.1 Local Scheduling and Register AllocationIn the Measure and Reduce paradigm, local resource allocation is performed by introducing sequen-tiality between instructions whose resource demands exceed available resources. The sequencingplaces two instructions, which are on separate allocation chains, onto a single allocation chain. Theresult is that the two instructions are allocated a single instance of the resource and they share ittemporally. Sequencing must be performed when there are excessive sets in a block.Sequentialization is performed by selecting an instruction, i, in the excessive set that hasthe greatest slack time to be moved into holes. The slack time is used to prioritize the instructionssince it indicates
exibility in �nding a place to move the instruction. If there is a set of overlappingholes for all resources that i excessively uses within i's execution range, then i can be inserted inthose holes without increasing the critical path length of the block.If there is no set of holes within i's execution range, then an increase in the critical pathlength is unavoidable. There are two options. First, there may be a set of holes close to i's execution55

56Procedure reduceBlock(block)f While block has excessive sets dof I = all instructions in all excessive sets for all resources;select i 2 I with maximum slacki;R = the set of resources that i excessively uses;if (9 8r2R hole hr whose ranges overlap with each other and i's execution range)holes = this set of holes;elsef close = the set of holes hr s.t. r 2 R whose ranges overlap and are closestto i's execution range;wedge = the set of holes created by wedged insertion for R;holes = the set, either close or wedge that minimally increases the critical pathlength of block;g 8hr2holes place i in hr by adding sequentialation edges;if (excessive spanning uses remain)spill uses between the excessive set and the hole containing i;remove i from excessive set information;gg Figure 7.1: Function reduceBlock()range to which i can be moved. Second, wedged insertion (section 4.3) can be performed to createa set of holes for i's excessive uses. Both options can be considered and the one that minimizes theincrease to the critical path length can be selected. A function based on this approach is given inFigure 7.1. Pseudo code for the algorithm for �nding overlapping resource holes is presented in thenext section.As an example, consider the DAG in Figure 4.1(b). First assume that the target architecturehas at least �ve registers and three functional units. Then the nodes B, C, E, F, G, and H are all membersof at least one functional unit excessive set. Nodes G and H each have a slack time of one. There isa functional unit slack hole around each of G and H, so G's hole overlaps with H's execution range.Figure 7.2(a) shows the result of inserting H in G's hole. Dashed arrows indicate sequentializingdependencies, i.e., dependencies due to reuse of resources rather than data values.Now assume that only four registers are available and F is selected to kill both B's and C'svalues and H is selected to kill D's value. Then nodes B, C, E, G, and H are in both functional unit andregister excessive sets. Node G has slack time but there are no holes in its execution range. Thereforethe algorithm must increase the critical path length. There are a functional unit and a register holeavailable after F executes since it kills two values and only needs one register for itself. Inserting Gin the hole following F would increase the critical path by one instruction. Wedged insertion would

57AB C DE F G HI JK(a) Functional unit sequencing
AB C DE F G HI JK(b) Register sequencing

AB CDSpill DE FLoad DG HI JK(c) Register spillingFigure 7.2: Local reductions of resource requirementsincrease the critical path length more because the pseudo-hole must be large enough to spill andreload a value. Therefore the algorithm chooses the hole close to G instead of performing wedgedinsertion. The resulting DAG is shown in Figure 7.2(b).Although the creation of some live values may be delayed by sequencing, the instructionsthat compute the live values may need input values. These input values remain alive from where theyare computed to where the excessive instructions are moved. In Figure 7.2(b) the value computedby G was delayed until there was a register available for it. However, D's value remains alive untilafter both G and H execute. In this example it is impossible to reduce the register requirementsbelow four using sequentialization alone. When such a situation occurs sequentialization must becombined with register spilling. There are two options for selecting what values to spill. Either thevalues in the excessive set may be computed and spilled, or the input values may be spilled. Theoption selected depends on what holes are available. Computing and spilling the excess values priorto the excessive set requires �nding additional functional unit and register holes, while spilling theinput values requires additional functional unit holes to where the values are moved. An additionalcriterion to consider is the number of values that must be spilled in each case.Continuing with the above example, assume the same killing instructions and that the targetarchitecture has three registers and two functional units. As before, the nodes B, C, E, G, and H are in aregister excessive set and only instructions G and H have slack time. Free functional unit and registerholes become available after F executes, and another set of free functional unit and register holes

58Function �ndOverlappingHoles(DAG, i, resourcesNeeded) returns holeSetf /* �nd all usable holes */foreach resource r 2 resourcesNeededf viable[r] = ;;foreach hole h of type rif (r is spanning)f if (canSplitUses(h, i))viable[r] [= h;gelsef if (canInsert(h, i))viable[r] [= h;gg /* �nd best set of holes */bestCost = MAXINT;bestSet = ;;foreach holeSet hs 2 fh1 : : : hjresourcesNeededjgf if (noCycles(hs))f cost = insertCost(i, hs);if (cost < bestCost)f bestCost = cost;bestSet = hs;gggreturn bestSet;g Figure 7.3: Function �ndOverlappingHoles()become available after I executes. G and H are placed in the free holes. However, the sequentializationwould still leave the excessive set fB, C, D, Eg. Thus a spill must be performed. To minimize thenumber of spills, the algorithm spills the input value, D. The resulting DAG is shown in Figure 7.2(c).The algorithm presented in Figure 7.1 uses the framework to simultaneously allocate re-gisters and functional units. More advanced algorithms, such as one based on �rst sequencinginstructions in order of number of excessively used resources can also be developed using the frame-work.7.2 Finding Overlapping HolesUni�cation of resource allocation is achieved by performing resource spackling for all re-sources needed by an instruction simultaneously. This process requires that a set of resource holesbe found that are independent of each other, i.e., no cycles will be introduced if the instruction is

59inserted into all of them. A straightforward approach is to consider all combinations of holes forall needed resources. This approach �rst examines all holes of each needed resource type and re-cords those which are viable. All combinations of these viable holes are then generated. For eachcombination the algorithm �rst checks that the holes are mutually independent and if so, computesthe cost of using them. The combination with the least cost is then selected for uni�ed allocationof resources needed by the instruction. A sketch of such an algorithm is given in Figure 7.3. Thefunction canSplitUses() checks the dependences and splits the uses of the hole and inserted instruc-tion live ranges as described in Chapter 6 for spanning resources. The function canInsert() checksthe dependences for inserting instructions in non{spanning holes as also described in Chapter 6.Function noCycles() checks if the holes are mutually independent. More elaborate heuristics canbe constructed which prioritize the search for holes and use more intelligence in determining whichholes are independent of each other.7.3 Selection HeuristicsThe spackleSpanning() transformation depends on heuristics to select a particular instructionand hole pair and a partitioning of their uses into the required sets. The requirements placed onthe partitioning of uses of spanning resources for the transformation leave some latitude to thepartitioning heuristics. The design of these heuristics needs to weigh the impact of potential 6-tupleson the resulting quality of code generated. Several criteria for consideration are suggested in thissection. Since the application of the spackleSpanning() transformation sequentializes independentnodes, the length of the critical path of the scheduling unit may increase. Using the followingde�nitions the impact on the critical path length can be accurately predicted.Definition 19 Assume the 7-tuple given to spackleSpanning().1. The defH store time, �storeH , is the execution time of a store instruction if postUsesH isnonempty and zero otherwise.2. The defH load time, �loadH , is the execution time of a load instruction if postUsesH isnonempty and zero otherwise.3. The defI store time, �storeI , is the execution time of a store instruction if postUsesI isnonempty and zero otherwise.4. The defI load time, �loadI , is the execution time of a load instruction if postUsesI isnonempty and zero otherwise.5. The function height(subtree) return the height of the tree subtree, which is de�ned to bethe length of the critical path of the tree.

60There are �ve subtrees of interest:1. before = fdefH [useH [defI [useIg2. preH = fdefH [storeH [preUsesHg3. postH = floadH [postUsesHg4. holeI = fdefI [storeI [holeUsesI [holeUsesHg5. postI = floadI [postUsesIgThe length of the critical path of the local tree before the potential transformation is given bycplbefore = height(before) (7.1)The length of the critical path of the local tree after the potential transformation is given bycplafter = height(preH) + height(holeI) +max(height(postH); height(postI)) (7.2)If the height, Iest, and depth, Ilft, of each node I is precomputed, then the values ofheight(before), height(preH), and height(preI) can be computed in a single pass of the respectivesubtrees. Furthermore, if the topological ordering of the nodes in the scheduling region is saved, thevalues height(postH) and height(postI) can also be computed in linear time. These values are thenused to compute the di�erence in local critical path lengths.cpl� = cplafter � cplbefore (7.3)To determine if the potential transformation has any impact on the overall critical pathlength of the scheduling region, Equation 7.3 can be compared to the slack time of the subtreebefore. The impact of two candidate (defH , defI) pairs can be compared using Equation 7.3.However for any given (defH , defI) pair more than one partitioning may exist. Simple heuristicscan be designed to partition the uses in an attempt to minimize the resulting cpl�, given whetherzero, one or two values are spilled.Orthogonally, when given appropriate latitude, the heuristics can select which values shouldbe spilled. If the partitioning restrictions allow, either or both of postUsesH or postUsesI to beempty, the need for spilling the respective value is removed. The size of the resulting preH or holeItree must be compared to the cost of spill code to determine if such a case is bene�cial.

61Two special cases exist when defH is a load instruction. Such a case may occur as a resultof an earlier application of spackleSpanning(). Minimally, the storeH instruction is not neededas the value is already available in memory. In addition, the defH instruction itself can be removedif the set preUsesH is empty. Such a case can occur if a previous spackleSpanning() transform-ation does not delay postUsesH until there are su�cient resources. The subsequent application ofspackleSpanning() then increases the delay time.

Chapter 8Global Code MotionGlobal code motion is a technique used to redistribute ILP among di�erent basic blocksand regions of a program. The goal of this redistribution is to reduce the program's execution timethrough more e�cient use of resources. Reduction of a program's execution time depends on anaccurate assessment of the usage of all resources. This chapter presents heuristics to use resourcespackling to handle the particular problems encountered when performing resource allocation duringglobal code motion.8.1 Resource Conscious Global Code MotionThe goal of global scheduling is to move instructions from a source block to a destination block todecrease the execution time of the source block. A decrease in execution time is achieved when thecritical path length is reduced in the source block while the critical path length of the destinationblock is not increased. The instructions moved are called �ll instructions since they are inserted inholes in the destination block.Fill instructions may be found in several source blocks, some of which depend on the typesof execution supported by the target architecture, e.g., speculative or guarded execution. Considerthe control
ow graph of an if statement in Figure 8.1. Instructions can be moved between blocksthat share the same set of control dependencies, such as blocks B1 and B2. Instructions can be movedabove conditional branches, from Bthen and/or Belse to B1 if either the moved instructions donot violate data dependencies or if the architecture supports speculative execution [HP87, SHL92].Instructions can be moved below join points or above split points, from Bthen and/or Belse to B1 orB2, if the architecture supports guarded execution [DHB89, HD86]. Lastly, instructions can be movedeither below conditional branches or above join points by duplicating the moved instructions on eachbranch, e.g., from B1 or B2 to both Bif and Belse. The individual cases are not considered while62

63B1Bthen BelseB2speculative/predicatedexecution speculative/predicatedexecutionguardedexecution guardedexecutionduplicationFigure 8.1: Code motion techniques and architectural supportsdescribing the mechanics of �lling holes. It is assumed that the features of the target architecture areknown to the algorithm and only instruction moves supported by the architecture are considered.Without loss of generality only the upward movement of �ll instructions is discussed.If the direction of code motion is upward, the instructions are taken from the beginningof the source block. If the direction of code motion is down, the instructions are taken from theend of the source block. There are, as discussed later, special situations where it is desirable tomove instructions that are not on a critical path, even though these will not have a direct impacton reducing the overall execution time. In these situations the moved instructions make additionalresources available which can be used by subsequent moves, resulting in a reduction in executiontime. Existing global code motion techniques [Fis81, AN88, GS90] can be adapted to use ResourceSpackling based heuristics to unify functional unit and register allocation, and determine which codemotions are bene�cial. Two properties of code motion must be satis�ed to realize a bene�t.1. The critical path length of the destination block must not be increased.2. The critical path length of the source block must be reduced.To satisfy the �rst property, it must be ensured that there are su�cient resources availablefor all instructions being moved. If this is not the case wedged insertion would have to be performed,negating the reduction in the critical path length in the source block.To satisfy the second property, all instructions which are at one end of a block and are ona critical path must be moved together; otherwise the critical path length will not be reduced.Definition 20 A critical set of instructions with length L is the smallest set of instructions thatmust be removed from the end of a block to reduce the block's critical path length by L cycles.Consider removing nodes from the top of the DAG in Figure 4.1(b). The �rst critical set isfAg. When A is moved the length of the DAG is reduced by the execution time of A. Then the next

64Function �ll(dest, source)f reduce = 0;While dest has holes dof cs = next set of critical instructions from source;foreach instruction i in the critical setf compute ESTi based on its dependencies in the destination blockLFTi = LFT of the last instruction in the destination blockg /* �nd overlapping resource holes */foreach instruction i in the critical set, in decreasingorder of ESTif forall resources r required by if select holes hr such that they overlap with the other holesselected and with iif no such holes existf undo all moves from the current critical set;return reduce;gInsert i into h's allocation chain;gUpdate the hole description information;greduce = reduce + mini 2 cs (�i);greturn reduce;g Figure 8.2: Function �ll()critical set is fC, Dg. Although B can now be moved, it is not in the critical set since moving it wouldnot a�ect the length of the critical path.Three methods for performing resource conscious global code motion are suggested:1. Move individual instructions from minimal critical sets;2. Apply reduction techniques to minimal critical sets; and3. Apply reduction techniques to an estimated maximal critical set.In the �rst approach one instruction at a time from the critical set is moved to the destinationblock. Thus, one instruction at time from a critical set is allocated its resources. If all instructionscannot be allocated their resources, none of the instructions in the critical set are moved. Theallocation of resources is similar to that in local schedulers. Overlapping resource holes are foundfor all resources required by each instruction. However, the holes must be within the instruction'sexecution range, and wedged insertion is not performed, since the goal is to avoid increases to thecritical path length of the destination block.

65AB C DE FGHI JKLM1 M2M3 M4M5 M6Block 1Block 2(a) DAG of source instructions

AB C DE FM1 G M2H Store M2I JKLLoad M2M3 M4M5 M6Block 1Block 2(b) After moving two instruc-tions

AB C DStore B E FM1 G M2M3 H M4Store M3 I JLoad B K Store M4LLoad M3Load M4M5 M6Block 1Block 2(c) After moving four instruc-tionsFigure 8.3: Example of global code motionThe set of �ll instructions must be inserted into the identi�ed holes. Insertion requireseach instruction to be placed in the proper allocation chains. This modi�cation to the allocationchains will change the size and shape of the holes in which the �ll instructions are inserted. For non-spanning resources, �ll instructions may be interleaved with instructions already in the destinationblock. Spanning resources should ideally have all �ll instructions inserted consecutively, since anygaps between inserted instructions can only be used if there is enough room to accommodate aninstruction to spill the use. Slack holes that have instructions inserted will have their size reduced,and may have their range reduced due to dependencies of the �ll instructions.Consider moving instructions from block 2 to block 1 in Figure 8.3(a) using method 1.Assume that there are three functional units and four registers available. The �rst critical set consistsof instructions M1 and M2. Instruction M2 can be inserted in the functional unit hole following F andthe register hole following D since the holes overlap. M2's value must be spilled since the register holeis not available to the end of the DAG. M1 can be inserted in the functional unit hole following B andthe register hole following G, which results from killing F. The value computed by M1 need not be

66spilled. The resulting DAGs are shown in Figure 8.3(b). Next M3 and M4 are moved up. Since M4is selected to kill both M1 and M2 it can use the same functional unit and register as M2. InstructionM3 can use M1's functional unit, and it will also take M1's register, forcing M1 to use B's register. B'svalue must now be spilled around the inserted instructions and M3's value is spilled before B's valueis reloaded. The resulting DAGs are shown in Figure 8.3(c).The second and third methods remove critical sets from the source block and place them inthe destination block. The reduction techniques discussed in chapters 6 and 7 are used to remove anyresulting excessive sets. The transformation is made permanent if there is no increase in executiontime of the destination block. The di�erence between methods 2 and 3 is in the size of the critical setmoved. Method 2 uses the same minimal length critical set as method 1. Method 3 uses heuristics tocompare the resources available in the destination block and requirements of candidate critical setsto estimate the largest critical set that can be moved and supported by the destination block.The methods use available spanning resources in the destination block to di�erent degreesof e�ciency. The methods are listed in increasing order of e�ciency. There are two ways in whichspanning resources may be ine�ciently used. In the �rst case, consider moving two instructions, aand b that use the same value, v, already computed in the destination block. Method 1 may moveinstruction a, allow it to reuse v's register, spilling v in the process. When instruction b is moved,it must be placed after v is reloaded, possibly causing the movement of the critical set to fail dueto an increase in the schedule. Methods 2 and 3 would attempt to schedule both a and b before thespill, leaving more room to move subsequent instructions that are dependent on either a or b.In the second case, consider moving instructions c and d, where d uses the value computedby c. If the register used to hold c's value is not available from the execution of c to the endof the block it must be spilled. In methods 1 or 2 when the subsequent critical set containinginstruction d is moved, it may fail because c's value must be reloaded before it can be used. Method3 would determine ahead of time if both instructions c and d can be moved. If so, the reductiontransformations will avoid spilling c's value before it can be used by d. As can be seen, the overheadfor more e�cient use of spanning resources is increased bookkeeping and complexity of determiningthe appropriate length of critical set to be moved.Traditional global schedulers, based on list scheduling, are able to identify available func-tional units, i.e., functional unit holes. However, since the scheduler is separate from the registerallocator, it does not know if there are registers available for the instructions that are moved up.Similarly, these schedulers cannot recognize when instructions from other blocks should be movedup above instructions in the block with slack time, since these schedulers usually schedule all instruc-

67tions in the current block �rst. Resource Spackling can move instructions from other blocks aboveinstructions with slack time in the current block when overlapping resource holes are available.The methods for identifying holes and performing code motion allow Resource Spacklingto�ll holes that occur in the middle of a block, even if registers are not available from the hole to theorigin of the �ll instructions. Such capability is an improvement over techniques that do attempt toconsider resource demands [ME92]. When holes occur only at the beginning or end of basic blocks,the problem degenerates to Shape Matching [MGS92]. However, Shape Matching considers onlyfunctional units, while in this case Resource Spackling performs the equivalent of shape matchingacross all resources at once.When �ll instructions have live uses of spanning resources at the end of the hole, the usesmust be spilled to free the resource for uses that follow the hole. Thus, a spill instruction is insertedas the last instruction in the hole and a corresponding load instruction must be inserted in thesource block. The insertion of store and load instructions may increase the critical path lengthif the load instruction takes longer to execute than the instructions removed from the block. Thisscenario suggests that instructions should not be moved if load instructions must be inserted inthe source block, but this limits the reductions that can be made. A better approach is to allowtemporary increases in the source block's critical path. The movement of the �rst set of criticalinstructions allows subsequent critical sets to be moved. If several sets of instructions are movedtheir total reduction may o�set the cost of inserting load instructions for the last (live) spanninguses of the moved instructions. In this case there is a net reduction in the source block's criticalpath, as desired.If instructions are moved below a conditional branch or above a join point, the instructionsmust be duplicated on each branch. In this situation the execution time along the selected path ofexecution is reduced. In the best case the duplicated code can be placed in holes on the duplicationbranches. In the worst case, the execution time along the duplicated path(s) will not change. Theworst case occurs when there are not enough holes in the duplication branches to absorb the duplicatedinstructions. In this case they are simply added to the end of the block. The duplicated instructionsmust be executed anyway and they were already on a critical path created by concatenating the twoblocks. Thus, moving them from one block to another cannot increase the execution time.

688.2 Selection of Fill SetsWhen several di�erent sources of �ll instructions are available for consideration, a decision must bemade as to which set is most bene�cial. Only sets for which the destination block has room areconsidered, although the techniques mentioned in the previous section can be used to try to sets thatapparently exceed the currently available resources. In practice, the code motion must be performedtentatively in case the whole critical set cannot be moved without increasing the critical path.A technique commonly used for selecting instructions to move in other code motion schemesis to choose instructions from the source block with the highest branch probability. This ResourceSpackling based heuristic generalizes the approach by using execution counts of the basic blocks. Thisapproach allows more direct handling of moving instructions across several conditional branches orjoin points. There are several other possible factors that can be considered, such as the amount ofwasted hole space, the number of store instructions inserted, the amount of duplicated code, andhow far the instructions can be moved.The techniques presented here permit �ll instructions from several di�erent source blocks tobe moved to the same destination block. However, due to the nature of spanning resources, once �llinstructions from one source have been selected it is more likely that the next set of �ll instructionswill be selected from the same source block than from a di�erent source block. The reason is that �llinstructions from the same source block may be able to reuse some of the spanning resources usedby the �rst set of �ll instructions, while �ll instructions from a di�erent source block will requireadditional resource instances. Thus, choosing the �rst �ll instruction set for a set of holes may be amore critical decision than subsequent �ll instruction sets.The above observation, along with the problem of inserting load instructions in the sourceblock suggests an alternative approach to selecting �ll instructions. In this approach each sourceblock is considered independently and as many critical sets as possible are tentatively moved. Thenthe overall impact can be assessed in terms of the criteria of wasted space and number of storeinstructions inserted. An additional bene�t of such an approach is that it allows a better criterionthan selecting the block with the highest branch probability. Instead, the execution count can bemultiplied by the reduction in the critical path. As an example, consider two branches, A and B,with execution counts equivalent to branch probabilities of :7 and :3 respectively. Assume that thecritical path length of A can be reduced by 2 while the critical path length of B can be reduced by 5.Then the overall reduction in execution time if A is reduced is 2� :7 = 1:4 while the overall reductionin execution time if B is reduced is 5 � :3 = 1:5. Thus, block B should be the source block, eventhough block A has a higher branch probability.

Chapter 9HAREThe previous chapters have described how the resource requirements of a program can bemeasured and incorporated into an intermediate representation, as well as the mechanics of per-forming resource allocation by placing instructions in resource holes. This chapter presents anapplication of the URSA framework that integrates instruction scheduling with global register alloc-ation and assignment, called Hierarchical Allocation of REgisters (HARE). HARE addresses severalregister allocation issues, such as coalescing, spill code placement, SSA copy placement, and registerassignment, by enhancing the previously known algorithms by making them resource conscious.9.1 Overview of HAREHARE consists of a phase for the allocation and a phase for assignment of registers. The allocationphase is a hierarchical application of the Measure and Reduce paradigm to GURRR that uni�esinstruction scheduling and global register allocation. The primary task of the allocation phase isthe selection of values to spill and the placement of spill code to minimize the execution time of theprogram. The assignment phase hierarchically assigns registers to the values computed. In addition,the assignment phase inserts register copy instructions.The goal of HARE is to improve the quality of code generated by the allocation and as-signment of registers. To accomplish this, each phase considers both the availability of registersand functional units and the overall cost of a register allocation decision using the region executioncounts. The major steps of the algorithm are shown in Figure 9.1.Register coalescing is performed on the GURRR of a program prior to allocation. Tradi-tionally, coalescing is performed in instances where the source and destination live ranges of a copyinstruction do not interfere. The two live ranges interfere when there are other uses of the sourcevalue that can execute in parallel with the copy instruction. However, by using GURRR, HARE ex-69

70
Procedure allocateAndAssign(PDG)f /* compute GURRR */buildPDG();convertToSSA();coalesceValues();addReuseDags();/* do hierarchical register allocation */foreach region reg in bottom-up orderf while (reg has excessive sets)f find all resource holes in reg;call estimateRegion(reg) which selects nodes from theexcessive sets and places spill code in FU holes;consider the cost of reduction transformations that1) use holes in reg2) place spill code in a dependent if region3) reduce register demands of a dependent regioncall allocateRegion(reg) to perform allocations selected byestimateRegion();gg /* do register assignmentin each step the number of registers assigned in aregion is minimized */foreach region reg in bottom-up orderforeach value def in reg reaching other regionsassignDef(def);foreach region reg in bottom-up orderforeach � node phi in regassignSsaDef(phi);foreach region reg in bottom-up orderforeach unassigned value def in regassignDef(def);g Figure 9.1: Top level register allocation algorithm

71tends coalescing by identifying cases when the live ranges can be ordered to remove the interferencewithout increasing the execution time. Temporal dependencies can be added from the other uses tothe uses of the copy instruction if the length of the critical path is not increased as a result. Thetwo live ranges are then combined and the copy instruction is removed. After coalescing, the initialregister reuse information is computed.Consider the program DAG of a region in Figure 9.2(a) and assume that instruction J isa copy instruction of the value computed by instruction G. Instructions H and I are the other usesof G. The only use of J is instruction L2, which is already dependent on instructions H and I. SinceL2 can be executed after both H and I without increasing the execution time of the region, J canbe coalesced with G. Instruction J is removed and a data dependence is added from G to L2. Theresulting program DAG is shown in Figure 9.2(b).Register allocation is performed in a bottom-up traversal of the regions. In each regionthe allocation is performed by measuring and reducing excessive register requirements. When anexcessive register use is encountered, several options for its reduction are considered, includingdelaying the de�ning instruction, di�erent resource holes for spill code, rematerialization of thevalues, and additional register reductions in subregions. For each option any increase in the criticalpath of the region or subregion is multiplied by the execution count of the region or subregion togive a total cost in terms of execution time. The minimum cost option is then selected. The resultof the allocation phase is that each region is transformed by the reductions and allocated a su�cientnumber of registers for all values computed by the dependent instructions and child regions.The assignment of registers must also be performed hierarchically to ensure that no morethan the allocated number of registers are assigned in each region. The assignment phase consistsof three bottom-up traversals of the regions where each pass assigns all values of a particular type.The types are: 1) global variables, 2) values used or de�ned by SSA � nodes, and 3) values localto a single region. The second traversal determines when register copy instructions are required anduses the functional unit resource hole and execution count information to place the copy instructionsto minimize any increase in the program's execution time.The hierarchical nature of the GURRR supports the summary of the resource requirementsof the instructions in a region in the region node. These requirement summaries are then usedin computing the resource requirements for the parent region(s). Figure 9.3(a) shows the registerReuse DAG for region 1. Summary nodes for regions 2 and 3 are included in region 1's ReuseRegDAG. These nodes represent the register requirements of the child regions, which are indicated bythe numbers in parenthesis. Since regions 2 and 3 are the branches of an if-then-else statement,

72GH I JK L2(a) Region ReuseFU DAG GH IK L2(b) After coalescingFigure 9.2: Example of coalescingAB CR2(2) R3(3) M(a) Region 1 ReuseReg DAG ACM BR2 R3R2 R3 R3(b) Region 1 Register scheduleFigure 9.3: Region 1 Register usagethe maximum of their requirements is used to compute the register requirements of region 1. Thus,region 1 requires a total of four registers. One of these registers is used only for values computedin region 1, two registers are used only for values computed in the child regions, and one register isused in both region 1 and region 3. The schedule for registers in region 1 is shown in Figure 9.3(b).Regions 2 and 3 are shown on two and three register allocation chains, respectively. Regions 2 and 3are drawn on the lines to indicate that they identify boundaries for the register holes, i.e., the last tworegisters are available for use in region 1 both before and after the branches of the if-then-else,but are used in the branches.9.2 Allocation and spill code placementA goal of HARE during allocation is to minimize the cost of spill code introduced. Three factors a�ectthe cost and thus the selection of a reduction transformation: 1) placement of spills in less frequentlyexecuted regions, 2) selection of values that permit spill code to use under utilized resources, and3) less costly alternatives to memory accesses, such as rematerialization. When several reductiontransformations are possible, HARE estimates the cost of each transformation and selects the onethat will cause the least increase in the overall execution time of the program.

73A B CD E FG H IJ KL M N(a) Program DAG
A B CD E FG H IJ KL F�M N(b) Program DAG after rematerializationFigure 9.4: Example of rematerializationBesides spilling values to reduce register demands, HARE also considers rematerializationof values. In addition to the traditional candidates for rematerialization, such as loading constantvalues and computations using system registers and constants [BCT92], HARE examines the selectedinstructions and the data dependence graph to identify values that can be recomputed from othervalues already in registers. As an example, consider the program DAG in Figure 9.4(a) and assumethat the architecture has three functional units and �ve registers. The set of the six instructions fB,C, F, G, H, Ig is an excessive set. The instruction F is selected for reduction since there is distancebetween its �rst and second uses. While functional units are available to execute the load, they arenot available to execute the store before instructions G, H, and I, and thus the execution time wouldbe increased if F were spilled. However, HARE can determine that since the values computed byB and C are still in registers after the execution of G, H, and I, the value computed by F can berematerialized. The resulting program DAG is shown in Figure 9.4(b). Since HARE considers theavailability of functional units to perform the rematerialization, arbitrarily large computations canbe candidates for rematerialization.The di�erent types of reduction transformations considered are listed in the algorithm inFigure 9.1. Assume that HARE is being applied to region 1's ReuseReg DAG in Figure 9.3(a) andthat the architecture provides three registers. The value C is selected for spilling since value B is usedin both region 1 and region 2. Option 1 considers placing the spill code in region 1, with the storebeing executed currently with the branch instruction and the load being executed after the branchesreturn and before M. Option 2 considers placing the spill code in region 3. Spill code is not requiredfor region 2 in this case since the total register requirements of regions 1 and 2 do not exceed the

74load AB = A + 3; C = A * 4brlt B, 10D = C + 2E = D / 4; F = D * 6L1 = E + F G = B /10H = G + 7; I = G - 2K = H * IL2 = K + GM = L + C(a) Original CFG
load AB = A + 3; C = A * 4brlt B, 10; store CD = C + 2E = D / 4; F = D * 6L1 = E + F G = B /10H = G + 7; I = G - 2K = H * IL2 = K + Gload CM = L + C(b) Spill option 1load AB = A + 3; C = A * 4brlt B, 10D = C + 2E = D / 4; F = D * 6L1 = E + F G = B /10; store CH = G + 7; I = G - 2K = H * IL2 = K + G; load CM = L + C(c) Spill option 2
load AB = A + 3; C = A * 4brlt B, 10D = C + 2E = D / 4; F = D * 6L1 = E + F G = B /10store GH = G + 7; I = G - 2K = H * I; load GL2 = K + GM = L + C(d) Spill option 3Figure 9.5: CFGs for the spill optionsarchitecture's resources. Option 3 considers reducing region 3's register requirements from three totwo. Again, region 2 does not need to be reduced in this example since it does not appear in anexcessive set. The control
ow graphs resulting from each option are shown in Figure 9.5.The cost of a potential reduction transformation is determined by multiplying the estimatedincrease in the length of region's critical path by the region's execution count. There are severalpossible methods for estimating the impact of a reduction transformation on the length of the criticalpath. A simple estimation technique is presented.The estimation technique determines the execution time of all spill code introduced andcompares it to the total time of the availability of the functional units used to perform the spilling orrematerialization. Pseudo code for the estimation algorithm is given in Figure 9.6. The availability ofthe functional units is found by summing the size of all of the functional unit holes in the region. Theinstructions that compute values that are in the register excessive set are grouped by their distancefrom the beginning of the excessive set. In each group enough values are selected so that the groupwill no longer have an excessive number of values. To provide the most
exibility in using availablefunctional units, the instructions with the most slack time are selected.Each instruction selected is checked to see if its value can be rematerialized instead of

75Function estimateRegion(region, goal)returns estimated cost of reducing region to use only goal registersf /* compute availability of holes in region */holeTime = 0;foreach functional unit hole h in regionholeTime = holeTime + h.size;/* determine requirements for holes*/reduce = ;;group the nodes in the excessive set for region;foreach group grpif (jgrpj > goal)reduce = reduce [jgrpj - goal instructions with most slack time;/* use hole time for instructions spilled in region */foreach node n 2 reduce that must execute in regionif (canRematerialize(n) andrematerializeTime(n) < spillTime(n))holeTime = holeTime - rematerializeTime(n);elseholeTime = holeTime - spillTime(n);/* determine where to spill other nodes */foreach node n 2 reduce that may be spilled in a dependent region childf if (canRematerialize(n) andrematerializeTime(n) < spillTime(n))need = rematerializeTime(n);elseneed = spillTime(n);if (child.holeTime > 0 || holeTime <= 0)child.holeTime = child.holeTime - need;elseholeTime = holeTime - need;g /* total costs */if (holeTime < 0)cost = -holeTime * region.execCount;elsecost = 0;foreach child region child where spill code was addedif (child.holeTime < 0)cost = cost + (-child.holeTime * child.execCount);/* compare against reducing a dependent region */if (there is a child region child in region.excessiveSet)f subGoal = child.requirements - (region.requirements - goal);childCost = estimateRegion(child, childGoal);if (cost < childCost)return cost;elsereturn childCost;gg Figure 9.6: Allocation cost estimation algorithm

76spilled. The function canRematerialize(n) determines if and how the value computed by n canbe rematerialized. The time to rematerialize n is then compared to the time to spill n and thetransformation for the smaller of the two is used.The placement of spill code is performed in two steps. In the �rst step only values whosespill code is constrained by dependencies to the current region are examined. The cost of the spillcode for these values is subtracted from the available time of the functional units. In the second stepthe remaining values, which can have their spill code placed in either the current region or a childregion, are examined. The spill code is placed in the child region if there are su�cient functionalunits available in it, or if there are insu�cient functional units available in the current region.The cost of inserting spill code is determined by multiplying each region's increase in criticalpath length by its execution count. Finally, if the excessive set contains child regions, a reduction ofthese regions is estimated. The cost of these recursive reductions is compared to reducing the currentregion and the least expensive one is selected. The values and places for spill or rematerialization codeselected by estimateRegion() are recorded and used to perform the actual reduction transformations.A balance between applying local and recursive reductions is achieved by reducing the sizeof the excessive set in increments of 1. In this way the spill code may be distributed in all regionsthat have available functional units. More advanced estimation techniques consider the functionalunit holes usable by each instruction, instead of assuming all holes in the region can be used by anyinstruction. These estimations consider only resource holes that have su�cient available time withinthe execution range of the instructions being moved.Consider region 1 in Figure 9.3(a) and the corresponding code in Figure 9.5(a). Assumethat regions 1, 2, and 3 have execution counts of 10, 3, and 7, respectively and that the architectureprovides two functional units and three registers. Option 1 selects C for spilling and places the spillcode in region 1. The store can be placed in the functional unit hole containing C. However, there isno hole to hold the load, since it must be executed after the brlt and before M. Thus the executiontime of region 1 is increased by 1, giving option 1 a cost of 10. Option 2 places the spill code for Cin region 3. There are su�cient functional unit holes in region 3 for both the store and load. Thusthere is no increase in the length of region 3's critical path and option 2 has a cost of 0. Option 3reduces region 3's requirements from three to two by spilling G. Since there is a hole available forthe load but not for the store or load, the length of region 3's critical path increases by 1, givingoption 3 a cost of 7. Option 2 has the lowest cost and is thus selected in this example.Special handling must be given to the then and else regions of an if-then-else statementwhen placing spill code in them or considering recursive reduction transformations. Spill code must

77be duplicated in both regions. When recursive reductions are considered the amount that eachregion must be reduced is di�erent if they have di�erent total requirements. Assume that the regioncontaining the if-then-else statement has requirements of R, and that the then and else regionsare in the excessive set and have requirements of Rthen and Relse, respectively. The requirements ofthe region are given by the equation R = P + max(Rthen; Relse), where P is the number of valuesin R that are alive in parallel with the child regions. The child regions must reduced by the amountsubgoali = goal � (P + Ri).9.3 Assignment and placement of copy instructionsThe allocation phase allocates a su�cient number of registers for each region for all values thatit and its subregions compute, but does not indicate which particular registers should be used byeach region. The assignment phase must assign the registers so that the total number of registersassigned to all subregions does not exceed the number of registers allocated to the parent region.The values are divided into three types, based on their e�ect on the overall assignment. The threetypes are: 1) non-SSA global values, 2) SSA global values, and 3) values local to a single region.Global values are assigned registers �rst since their assignment a�ects multiple regions. The SSAglobal values are assigned after the other global values due to the nature of the � nodes. The �nodes may require more registers than are allocated to the region containing the defs and uses of the� nodes. When this situation occurs, register copy instructions must be inserted. The insertion ofthese copies is performed after the other global values are assigned registers so that the instanceswhere copy instructions are required are properly identi�ed. Finally, the values local to each regioncan be assigned the registers not used by global values.The assignment phase operates in a bottom-up manner to maximize the sharing of registerswhenever allowed. Each region node records several pieces of information about the registers beingassigned. Assigned is the set of registers that have been assigned to an instruction in the regionor in one of its subregions. Interfere is the set of registers in ancestor regions that interfere withinstructions in the current region.A previously unassigned register is assigned to a value in a region only when there areno other previously assigned registers that can be used. This approach minimizes the number ofregisters used by each region and its child regions.Pseudo code for selecting a register is given in Figure 9.7. The value being assigned aregister is identi�ed by the instruction that computes it, say n. Any register in use by an instruction

78Procedure assignDef(n)f /* �nd all registers that n's value interferes with */used = ;;foreach i 2 fng [all uses of nused = used [i!region.interfere Sj is independent of n j.defAssign [j.useAssign;/* look for previously registers */wRegion = region;avail = wRegion.assigned - used;while (avail == ; && wRegion != NULL)f wRegion = wRegion.dependsOn;avail = wRegion.assigned - used;g /* select a register */if (avail == ;)f register = any register not in used;add register to region.assigned for all ancestor regions;gelseregister = any register in avail;/* assign the register to the value */n.def = n.def [register;foreach use u of nu.use = u.use [register;update region.interfere for all affected regions;g Figure 9.7: Assignment algorithmthat interferes with n is determined. Values that interfere with n may either be independent of n orbe alive in an ancestor region at the time that n's region is executed. The set of registers alreadyassigned in the region is checked to see if it contains any registers that would not interfere with n.If not, the ancestor regions are each checked in turn. If such a register is available it is selectedfor the assignment. If no such register is available a previously unassigned register is selected. Theselected register is assigned to the instruction and recorded in all of the instruction's uses, as well asthe a�ected regions.The procedure assignDef() can be used as given for non-SSA global values and local values.For SSA values the assignment algorithm must determine if register copies are needed and if so,place them to minimize the increase in the overall execution time. This algorithm is summarized inFigure 9.8. The algorithm �rst determines which registers are available for each def reaching the �node and use reached by the � node. The function �ndAvail() is similar to the availability calculationin assignDef(). If all of the defs and uses have a common register available, that register is selectedand used for the assignment.

79
Procedure assignSsaDef(n)f /* �nd all registers that interfere the � node n */used = ;;foreach i 2 fng [all uses of nused = used [i!region.interfere Sj is independent of n j.defAssign [j.useAssign;/* look for a previously used register */wRegion = region;avail = wRegion.assigned - used;while (avail == ; && wRegion != NULL)f wRegion = wRegion.depends on;avail = wRegion.assigned - used;gforeach i in all defs reaching navaili = findAvail(i);/* select a register */ok = Ti availi;if (ok != ;)f register = any register in ok;add register to region.assigned for all ancestor regions;gelsef foreach i in all defs reaching ncosti = copy cost(di, n);possible = Si availi;register = register in possible that minimizes the sum ofcosti for availi not containing it;g /* assign the register to the value */n.def = n.def [register;foreach use u of nu.use = u.use [register;update region.interfere for all affected regions;g Figure 9.8: SSA assignment algorithm

80load A, R1R1 = R1 + 3; R2 = R1 * 4brlt R1, 10R1 = R2 + 2R1 = R1 / 4; R3 = R1 * 6R1 = R1 + R3 R1 = R1 /10; store R2, CR2 = R1+ 7; R3 = R1- 2R3 = R2 * R3R1 = R3 + R1; load C, R2R1 = R1 + R2Figure 9.9: Final register assignmentIf no such register is available, register copy instructions must be inserted. The cost ofinserting a register copy for each def reaching the � node is computed. A register that minimizes thecopy costs for those defs that cannot use it is selected and used for the assignment. The defs thatcannot use the selected register are assigned alternate registers from their available register sets andcopy instructions are inserted at the appropriate locations.The cost of inserting a copy instruction is computed by the function copyCost(), whichchecks for available functional units in each region between the def and the � node. If an availablefunctional unit is found, the location is recorded, and there is no cost. If no functional unit isavailable the copy instruction is inserted in a region where both the source and destination registersare available, and the cost is the execution time of the copy instruction times the execution count ofthe region containing the copy instruction.Consider assigning the three registers R1, R2, and R3 to the example program in Fig-ure 9.5(c). The �rst phase assigns registers to the non-SSA global values B and C. There are nopreviously used registers available, so R1 is assigned to B and R2 is assigned to C. The second phaseassigns registers to the SSA global values L1 and L2. Both L1 and L2 interfere with C but can use R1or R3. Since R1 has been previously assigned, it is assigned to L1 and L2. Since the same registeris assigned to both values, no copy instructions are needed. The third phase assigns all remainingvalues to registers. In region 2, D, E, and F must be assigned registers and interfere with C. D andE are assigned R1 since it was previously assigned in the region, and F is assigned R3. In region3 the values G, H, I, and K must still be assigned registers. They are assigned R1, R2, R3, and R3respectively. Finally the values A and M in region 1 must be assigned values. Since neither interfereswith any other value they can both be assigned R1. The result is that region 2 uses the two registersR1 and R3, and both regions 1 and 3 use all three registers. The resulting code is shown in Figure 9.9.

Chapter 10Architectural ConsiderationsIn addition to exploiting ILP, compilers for �ne grain parallel architectures must considerother architectural characteristics as well. These characteristics include pipelined functional units,implicit uses of speci�c registers by some instructions, and instructions and values that may useany of several types of resources. When methods to handle such characteristics are incorporatedinto a compiler better quality code can be generated through more aggressive resource allocationand assignment. This chapter describes a set of extensions to URSA to exploit these architecturalfeatures.10.1 Instruction PipeliningThe two primary factors that limit the e�ectiveness of an instruction pipeline are data dependencyhazards and collisions, which occur when two instructions attempt to use a pipeline stage at the sametime. Data dependence hazards are best addressed during the allocation of registers to data values.Collisions must be considered when assigning instructions to a particular functional unit's pipeline.The problem posed by pipelined multiple issue architectures is that given a set of instructions cur-rently assigned to functional units, is the best assignment of the next set of instructions to functionalunits must be determined. The algorithm presented in this section �rst minimizes any increase inthe length of the critical path through the DAG, and then minimizes idle time due to waiting for asafe time to issue each instruction. The values computed in this algorithm are also used by URSA'sallocation phase when decisions are made on how to reduce an excessive requirements set.The limitations placed on issuing instructions to the pipeline to preserve the program'ssemantics are represented as interlocks between instructions in this dissertation. These interlocksdelay instructions until they can be executed without altering the semantics of the program. Interlocksare required to prevent improper access to data values, such as trying to read a register before its81

82value is available, or writing a new value to a register before a previous instruction has had timeto read the old value. In addition, an interlock occurs between instructions A and B if B cannot beissued on the �rst cycle after issuing A due to A still using a portion of the pipeline when instructionB would need it. This permits architectures supporting instructions of di�erent execution times tobe considered. The interlock problem requires more analysis in multiple issue architectures, since aready instruction may experience data related interlocks with several currently executing instructions.In such a situation the instruction must wait for all of the interlocks to be resolved.Definition 21 The function InterlockD(A;B) returns the number of cycles after issuing instruc-tion A that instruction B must wait before it can be issued, to prevent register inconsistencies forregisters shared with A. The minimum value returned is 0, indicating that no data dependenciesexist between A and B.Definition 22 The function InterlockF (A;B) returns the number of cycles after issuing instruc-tion A that instruction B must wait before it can be issued on the same functional unit as A toguarantee that all pipeline stages will be available to B when needed. The minimum value returnedis 1, indicating that B can be issued on the next cycle after issuing A.The problem of assigning of functional units to a set of instructions can be modeled as aweighted bipartite matching problem [FF65]. The source partition of nodes represents the availablefunctional units, while the destination partition of nodes represents the instructions to be assigned.Edges are added between all pairs of functional unit and instruction nodes. Each edge is weightedwith the cost of assigning the instruction to the functional unit. The cost represents the increase inthe critical path length if the corresponding assignment is made. Let S be the last set of instructionsassigned to functional units and T be the next set of instructions to be assigned. Let length(s; t) bethe length of the longest path from the beginning of the DAG to the end that executes s followed byt. The function length(s; t) is de�ned as followslength(s; t) = max(s:start time + InterlockF (s; t); data delay(t)) + t:longest remaining path(10.1)where s:start time is the time that s was issued, t:longest remaining path is the length of themaximum path from t to the end of the DAG, and data delay(t) is the earliest time that t can beexecuted and still honor all data dependencies with other executing instructions. The �rst parameterof the maximum function computes the earliest time that t can be issued after s on s's functional

83unit. The second parameter, data delay(t), computes the earliest time that t can be issued afterwaiting for all of its data dependencies, including any from s, and is given bydata delay(t) = maxp2Parents(t)(p:start time + InterlockD(p; t)) (10.2)As an example, consider the path A, B, E, H in Figure 10.1(a). Notice that s:start time = 4,t:longest remaining path = 6. Assuming that InterlockD(B, E) = 1, and all other interlocks forE are less than or equal to 1, then length(B; E) = 4 + 1 + 6 = 11. The function data delay() caneasily be extended to include data dependence interlocks from earlier instructions that may reach farenough to a�ect the instructions currently being assigned.It should be noted that the length computed by length(s; t) cannot be precise, as all of theinstructions both before s and after t would have to be assigned to functional units �rst to determinethe e�ects of interlocks on the lengths of the paths. Thus, the assignment must proceed from one endof the DAG to the other. The approach taken in this work is to perform assignments from the top tothe bottom of the DAG as this aids URSA's handling of value live ranges. Each subsequent matchingattempts to balance the lengths of the paths through the DAG; therefore, the impact on the lengthof the critical path from having to compute assignments in a successive manner is not expected tobe signi�cant.A weighted bipartite graph is created by adding an edge from each node in S to each nodein T and weighting each edge (s; t) by length(s; t). A matching of a node si to a node tj representsan assignment of si and tj to the same functional unit. The goal of a minimized weight matchingalgorithm is to �nd a maximummatching that has a minimum sum of weights on the matching edges.However, the goal of this work is to �nd a maximum matching that also minimizes any increase inthe length of the critical path through the DAG. Since the weights in this work represent the lengthof the path resulting from the matching, this problem is referred to as the minimum path increasemaximum matching problem. Well known algorithms exist for �nding a minimum weight maximummatching. However, these algorithms do not necessarily �nd a matching that has a minimum largestweight; it is possible that the minimum weighted matching includes the largest weighted edge.A new algorithm that solves the minimum path increase maximum matching problem hasbeen developed as a part of this work. The solution has the same form as the minimum weightedmatching solution; only a supporting procedure and cost function need to be modi�ed. In thesealgorithms, the matching problem is represented as a network
ow problem with each edge in thebipartite graph having unit
ow [Tar83]. The function length() as de�ned above is used as the basisfor the cost function for the edges.

84AB C DE F GH4 2 26 6 5(a) Portion of a DAG B C DE5 1, 1, 11 1, 0, 11 0, 2, 11F5 1, 2, 12 0, 0, 11 1, 2, 11G3 0, 4, 13 1, 6, 13 1, 5, 12(b) Table of interlocks and lengthsFigure 10.1: Pipeline Exampleprocedure RelaxShortest(u)f foreach v 3 (u, v) 2 Ef newLen = u.shortest + cost(u, v);if (v.shortest > newLen)f v.shortest = newLen;v.shortestPredecessor = u;ggg (a) shortest paths
procedure RelaxMinimumIncrease(u)f foreach v 3 (u, v) 2 Ef newMax = max(u.max, mcost(u,v));if (v.max > newMax)f v.max = newMax;v.maxPredecessor = u;ggg (b) minimum increase pathsFigure 10.2: Relaxation proceduresThe minimum weighted matching algorithm operates by �nding a shortest path to anyunmatched node t 2 T for each node s 2 S. The shortest path algorithm computes the shortestpath from s to all other nodes in the graph. The algorithm maintains estimates of the shortest pathto each node. These estimates are updated when shorter paths are found. Once the shortest pathfrom s to u has been determined, the algorithm checks each v that is adjacent to u, to determineif the path through u to v is shorter than the previous shortest path to v. The procedure thatchecks this condition and updates the path information as needed is shown in Figure 10.2(a), wherecost(u; v) = legnth(u; v). This process is referred to as relaxing. The shortest path length estimateto v is recorded in v.shortest.The minimum path increase matching problem requires the maximum weight of an edge inthe path to be found, as opposed to the sum of all edges in the path used for the minimum weight

85matching problem. The cost function used for the minimum path increase algorithm is de�ned asmcost(u; v) = 8><>: length(u; v) � cp if length(u; v) > cp0 otherwise (10.3)where cp is the length of the current critical path through the DAG. The corresponding relaxationprocedure for the minimum path increase algorithm is shown in Figure 10.2(b). The maximum in-crease estimate is recorded in v.max. With these modi�cations to the cost function and relaxationprocedure, the minimum weight maximum matching algorithm can be used to solve the minimumincreased path maximum matching problem. The minimum increased path algorithm operates sim-ilarly to the shortest path algorithm, requiring a priority queue for selecting the next minimal nodeto relax and updating the priority of each v. If Fibonnaci heaps are used, the minimum increasepath matching algorithm requires O(nlogn +m) time per source node s. This gives an overall timeof O(n2logn + nm) since a minimum path must be found for each s 2 S.As an example, consider the portion of a DAG in Figure 10.1(a). The dashed lines representarbitrary paths. The labels on the edges from A represent the earliest start times of the respectivenodes, while the labels on the edges to H represent the longest paths to H for the respective nodes. Thesolid lines represent data dependencies between the two sets of nodes. The table in Figure 10.1(b)shows 3-tuples for each possible edge in the bipartite graph constructed from the nodes currentlybeing considered. The subscripts on E, F, and G indicate the earliest start times of the instructionsas computed by data delay() from the data dependence interlocks. The �rst number of each tuple isthe InterlockD() for the possible matching. The second number of each tuple is the InterlockF () valuefor the edge, and the third number is the resulting length if the matching is used. Thus, G should bematched with D to minimize the longest path. Both nodes E and F can be matched to either of nodesB and C since they cannot a�ect the critical path length. However, the matchings E-B and F-C resultin a lower total weight, which is advantageous to other phases that may interact with URSA.It should be noted that it is still advantageous to minimize the sum of lengths in the match-ing for edges that do not increase the critical path, as this represents less time that the functionalunits are idle due to interlocks. The increased useful idle time may be used by URSA's reductiontransformations or migration of parallel instructions across DAG boundaries as performed by per-colation scheduling [AN88], region scheduling [GS90], Global Resource Spackling, or other globalscheduling methods [BR91, SHL92]. The minimum increase path algorithm can be augmented tominimize the weights of non-increasing edges by using length(u; v) as secondary key in the priorityqueue and adding the shortest path relaxation logic to Relax Minimum Increase() when v.max =new max.

86In the description of URSA the allocation and assignment of resources are treated as sep-arate phases. However, the assignment of resources may impact allocation decisions. In practiceavailable assignment information is used during allocation to determine the best spackling trans-formation to apply. As an example, consider three equal instructions, A, B, and C, to be allocatedto two functional units. If C has a larger interlock times for both functional units, then C should bethe instruction that is sequenced after the others, allowing useful instructions to be scheduled duringC's interlock time. Therefore, when considering spackling transformations the interlock informationis used to select instructions for non{spanning resources and to decide how to split the sets of usesfor spanning resources. Interlock delays are factored into the path lengths under consideration.10.2 Modeling Architectural ConstraintsWhile the integration of pipelining into URSA requires the computation of additional path lengthinformation, the integration of implicit uses and generic requirements requires additional resources.In this section two methods for representing restrictions on instruction scheduling as additionalresource types are discussed. The methods handle requirements for two cases: speci�c copies of aresource required by an instruction, and selection from several types of resources for generic resourcerequirements. Both methods use additional classi�cations of resources to represent the restrictionsas resource requirements, and thus allow URSA to allocate them as required. The �rst methoduses a special subclass resource for architectural components, such as registers, which are sometimesimplicitly required for some instructions, but may be used as general purposes registers when suchinstructions are not being executed. The second method uses a generic resource that includes allresource types that may be used to meet a requirement.10.2.1 Reserved Resource CopiesIn some architectures, particular instances of a resource are always used by some instructions andcan also be used for general purposes. For example, the VAX instruction set includes the instructionMOVC3, which copies a string from one location to another. The MOVC3 instruction uses registersR0-R5 during its operation, overwriting any previous values held in them. The particular instancesof a resource required by such an instruction are referred to as reserved copies and the instructionsas reserved copy instructions. The values in R0-R5 are results that may be used by subsequentinstructions. These uses of the results are marked as reserved copy instructions as well. In theabsence of instructions such as MOVC3, registers R0-R5 can be used as a general purpose registers.

87AB CD R1 R2 EF G HI J(a) before reductions
AB CD R1 R2 EF G HI J(b) after reserved reduction

AB CD R1 R2 EF G HI J(c) after register reductionFigure 10.3: DAG with reserved copy instructionsTo address the problem of reserved copy uses, an instruction scheduler must guaranteethat the scheduled code has two properties: 1) there are never con
icting reserved copy instructionsscheduled concurrently, and 2) no live values are destroyed by reserved copy instructions. The �rstproperty can be satis�ed by adding a new resource to URSA that represents the reserved copy andindicating which reserved copy instructions require the resource. This technique can be generalizedto multiple sets of reserved copies. The second property can be handled simplistically by neverallocating general purpose uses to the reserved copies. However, this approach makes ine�cient useof the resource.To e�ciently use resources that contain reserved copies, the technique presented treats thereserved copy as a subclass of the general purpose resource class. URSA �rst performs allocationsfor just the reserved copy subclass. URSA then performs allocations for the general resource class,which includes the reserved copies. In addition to their normal requirements, the reserved copyinstructions are considered to require one copy of the general resource for each reserved copy. Theassignment phase then considers the reserved copy to be available for assignment to all instructionsexcept those that will execute in parallel with a reserved copy instruction, i.e., if an instruction, I,can be executed concurrently with a reserved resource instruction, I is assigned any copy from theset of available non-reserved copies of the resource; otherwise I is assigned any copy from the set ofall available copies of the resource.As an example, consider the DAG in Figure 10.3(a) and a target architecture with fourregisters, one of which is a reserved copy register. The DAG has two reserved copy instructions, R1and R2, which can be executed concurrently according to the data dependencies. Since no increase in

88critical path length occurs, the reserved copy register resource reduction transformation sequences R2after R1, as shown in Figure 10.3(b). After this reduction, the set fD, R1, F, C, Eg is an excessiveregister set of size �ve. Thus, a general register resource reduction transformation is applied, withthe result shown in Figure 10.3(c).10.2.2 Generic InstructionsIn architectures with multiple types of a resource, such as integer and
oating point functional units,some resource requirements can be ful�lled by any one of several types of a resource. For example,some architectures allow moves to be performed by either integer or
oating point functional units.Instructions that can be executed by one of several types of functional units are called genericinstructions [ATGLR93]. The technique presented generalizes this concept to generic requirementsfor resources; an instruction may have speci�c register type requirements but generic functional unittype requirements, or vise versa.Generic requirements should be scheduled on whatever compatible resource is available.When there are no compatible resources available, the generic requirement is a member of an excessiveset. In this case, the reduction transformations select the resource type that the generic requirementwill use. The reduction transformation should select the resource type that, when its uses aresequentialized, results in the least increase to the length of the critical path through the DAG.The approach taken to extend URSA is to create a new resource type for each type ofgeneric requirement. A requirement's generic resource type is the union of all of the resources thatcan ful�ll the requirement. Instructions that require a number of a speci�c member resource areconsidered to also require the same number of the generic resource. The generic requirements of aninstruction are represented in the generic Reuse DAG and not in any of the member Reuse DAGs.The assignment of an instruction with generic requirements to resources usually occurs inthe assignment phase. However, if the instruction is in an excessive set, URSA's reduction transform-ations e�ectively make the assignment decision. The reduction transformation selects the memberresource that results in the least increase in path lengths when introducing sequentiality.As an example, consider the DAG in Figure 10.4(a) and a target architecture with twointeger and two
oating point functional units, and four integer registers. Nodes labeled In requirean integer functional unit, nodes labeled Fn require a
oating point functional unit, and the node G isa generic instruction that may use either type of functional unit and generates an integer value. Theset fI1, I4, I5, I6g requires four integer registers concurrently, so the values in the subDAGrooted at G cannot straddle this set without causing excessive integer register requirements. The

89I1 I2I3I4 I5I6 I7I8 I9I10
GI11 I12I13 F1 F2 F3F4 F5F6F7F8F9(a) before reductions

I1 I2I3I4 I5I6 I7I8 I9
F1 F2F4 F3F5F6F7F8F9GI11 I12I13I10(b) after reductionsFigure 10.4: DAG with a generic requirementinstruction F3 must be delayed until either F1 or F2 has been issued, so that both
oating pointfunctional units are in use for the �rst two issuing cycles. A list based scheduling method may try toschedule G on an integer functional unit in parallel with I3; however, as noted, this would create aninteger register excessive set that would require spills to resolve it. URSA's reduction transformationis able to determine that delaying G until after the register requirements of fI1, I4, I5, I6g andassigning G to a
oating point functional unit avoids the need for spills. This reduction does notincrease the length of the schedule. The result of the
oating point reduction followed by the genericreduction is shown in Figure 10.4(b).It is possible that the di�erent resources that can ful�ll a generic requirement will havedi�erent costs in terms of execution time. If there are several available resources, the assignmentphase can select the resource with the minimum cost. If the generic requirement is in an excessiveset, then the reduction transformation selects a member resource and uses the cost of the selectedresource when determining the impact on path lengths. If the reduction transformation considersseveral possible resources for the generic requirement, it can use the respective costs when comparingresulting path lengths to make a �nal assignment determination.There are two possible approaches to applying reduction transformations. The �rst isto reduce only one resource per transformation. The second is to reduce multiple resources in asingle transformation. The �rst approach may result in less e�cient schedules since the separatetransformations may impact each other. The �rst transformation may sequentialize one instruction

90that a second instruction in the second excessive set is dependent on, resulting in a larger thannecessary increase in path length after the second transformation.In the second approach a single reduction transformation reduces several resources at once.The selection of the subsets used for sequentialization considers each instruction's impact on allof the resources being considered. The selection process can then look for instructions that whensequentialized, would free up any of the resources that can ful�ll the generic requirements.

Chapter 11ImplementationAs a part of this research a prototype implementation was performed. This chapter dis-cusses the design and implementation of the measurement and spackling algorithms and intermediaterepresentations used in URSA and Resource Spackling.URSA and Resource Spackling require several new data structures to represent the addi-tional information they compute and use. These data structures have a symbiotic relationship withthe host compiler's intermediate representation. To adequately maintain this relationship properinterfaces between the compiler and URSA are required. Since the implementation is a research pro-totype, data structures and algorithms were designed to ease the task of porting the implementation.One of the goals of the implementation was to identify the algorithms and structures that arecritical to creating a useful and practical system. As a result, specialized graph data structures werecreated to support e�cient traversals and compute and store GURRR's information in a hierarchicalmanner. One of the algorithms most critical to URSA's performance is the bipartite matchingalgorithm used to compute allocation chains. Extensions to the intermediate graph representationwere created to support a specialized implementation of this algorithm.11.1 URSA InterfacesThe allocation and assignment phases addressed by URSA interface and interact with a number ofother components in a compiler. The GURRR computed and used by URSA must be constructedfrom the preliminary intermediate representation generated by the front end. The result of URSAmust be passed on to the code emission phase. URSA must also interface with other portions of thecompiler, such as the symbol table and the application of transformations not written to use GURRR.Finally, it is intended that URSA should target a variety of architectures with di�erent features andcharacteristics. 91

92The implementation of URSA was designed to be modular with respect to the rest of thecompiler in two di�erent respects. First, URSA is designed to be a module within the compiler,i.e., URSA can be inserted in a host compiler to provide the allocation and assignment of resources.The host compiler used for the prototype implementation is pdgcc, the University of Pittsburgh'sresearch compiler which generates a PDG based intermediate representation from C source code[Fie92]. Second, URSA is not dependent on a particular host compiler. A formal interface is usedbetween the host compiler's and URSA's structures and algorithms. Thus URSA is not directlydependent on the host compiler's structures, and in fact, large portions of the implementation canbe used on alternatives to a PDG based GURRR. There are several advantages to this approach.First, the implementation is more portable; only a small piece of interface code must be written torehost URSA to a di�erent compiler. Second, the implementation of the algorithms can exploit a setof structures designed for the e�ciency of URSA.URSA requires detailed information about the target architecture to determine the cost ofpotential allocations and assignments, as well as what types of global code motion can be performed.To support
exible targeting of URSA, con�guration �les are used to describe the architecture. Thecon�guration �le contains the following types of information1. Resource types, e.g., functional units and register banks2. Generic resource classes3. Number of each type of resource4. Architectural features, such as support for predicated and/or speculative execution5. Description of the instruction setThe description of each instruction includes the resource types used, including implicit uses, andthe number of cycles required to execute it. The grammar used for the con�guration �le is easilyextensible to allow for additional characteristics in the future.The implementation was designed to load the con�guration information at run time. Whilethis approach implies slight execution ine�ciency due to some extra levels of dereferencing and moredynamic memory allocation, it is expected that the bene�ts outweigh the cost. This approach allowstesting and experiments to be run on a variety of of target architectures without having to rebuildthe compiler each time. In addition, compile time con�guration mechanisms are more complex toimplement, as well as cumbersome to maintain and extend.

9311.2 RepresentationThis section describes the implementation of the Global Uni�ed Resource Requirements Represent-ation (GURRR). Fundamentally, GURRR is a hierarchical graph consisting of nodes and edges,each labeled with information. Several types of nodes and edges exist to represent the instructions,regions, and special summary information. In addition, the representation contains structures forresource holes and allocation chains. Each structure and design decision is described in turn.The implementation of GURRR is designed to provide e�cient support for the major oper-ations performed on it. The �rst operation performed by URSA is the computation of the resourcerequirements information, and accounts for the majority of execution time. The second operationperformed by URSA is the set of graph transformations to re
ect the allocations made. Many ofURSA's algorithms involve graph traversals and computing information using bit vector operations.In addition, information about the program represented is placed in conveniently accessed locations.In GURRR, as in the PDG, groups of instruction nodes that have common control depend-encies are identi�ed by region nodes that summarize the control conditions. However, in GURRR,region nodes are also incident on summary data and temporal dependencies. With respect to thevarious types of edges present in the graph, region nodes are no di�erent than instruction nodes.While region nodes must carry label information describing the region it represents, they must alsocarry nearly all of the label information on instruction nodes. Thus, in the implementation there isa single node structure used for both instruction and region nodes. The node structure contains alllabel information needed for instruction nodes. Two additional �elds are added: a type tag and ageneric data pointer. The tag �eld indicates whether the node is a region or summary node. Thedata pointer points to the additional label information required when the node is a region node.The algorithms as described and implemented assume that each node in the graph beginsthe use of at most one spanning resource. This assumption is critical to the proper computationof excessive sets as the live ranges for multiple spanning uses begun by a single node may havedi�erent live ranges. Such de�ning nodes occur in two situations: 1) instructions de�ned by thetarget architecture, and 2) region summary nodes representing regions that need multiple instancesof the spanning resource. To enable the algorithms to handle these situations special nodes, calledsingle de�nitions(SDEFs), are inserted in the representation. An SDEF node, SIj , is inserted inthe graph for each spanning use started by an instruction I. All dependence edges sinking on I arecopied to SIj . All temporal dependences sourcing from I are also copied to SIj . However, only thedata dependences for the jth unique spanning use began by I are copied to SIj . The result is that thelive ranges are properly captured by the SIj nodes. The measurement algorithms ignore instructions

94I that begin multiple spanning uses while the Resource Spackling algorithms ignore the SDEF nodes.Instructions that use multiple instances of a resource must also be addressed in the ReuseDAG approach to decomposition. In a bipartite representation an additional pair of nodes can beadded for the instruction for each additional instance of the resource needed. The Reuse DAGapproach keeps track of the maximum number of matching edges that can be incident on a node. Forexample, if an instruction uses three registers, that instruction's node can have up to three incomingand three outgoing matching edges. This technique trades o� the cost of node creation during thedecomposition for the cost of some extra bookkeeping.Because many computations on GURRR can be done e�ciently as bit vector operations,each node is assigned a unique integer id. A global indexing array of pointers to nodes is usedto convert an integer identi�er to a pointer to a node. Region nodes have two integer ids: 1) anidenti�er assigned to the representing node, 2) an identi�er is is assigned for the region. Each type ofidenti�er has a separate index array of pointers to type speci�c label information. Although not reallynecessary, a separate region id simpli�es handling region information, tracking of regions throughtransformations, and reduces memory demands.This approach gives great
exibility to the representation of edges. There are a number oftypes of edges used in GURRR, including, data, control, and temporal dependencies. In addition,there is a unique reuse edge type for each resource being measured, producing multiple reuse sub-graphs. For discussion purposes these edges are commonly grouped in several types of subgraphs.However, in the implementation of the representation, all edges are treated in a similar manner, al-lowing a single set of edge manipulation routines to be used. Each type of edge is assigned a uniquenumber, called an edge set. Each node has an array of edge set information. The edge routinesare informed of which edge set to operate on by passing the appropriate array index. An alternateapproach would be to declare a separate object in the node structure for each edge type. Using anobject oriented language, such as C++, stronger type checking could be enforced. Such an approachhas two drawbacks. First, some loss of generality is incurred. There are several situations wheretraversals of multiple types of edges must be performed, e.g., a topological traversal of data andtemporal dependencies to compute the full partial ordering of instructions in a region. The repres-entation implemented easily supports this requirement by iterating over a bit vector set of the desiredindices. Second, an array for reuse edge sets must still be used to support run time con�guration ofthe number of types of resources.In the implementation there are two ways in which an edge can be represented, dependingon whether or not labels are present. The �rst edge representation, is a bit vector, and is used

95when there are no labels on the edges. Each node has a pair of vectors for each edge set; one forvector for incoming edges and one for outgoing edges. A bit vector edge is added by insertingthe corresponding node's identi�er in the respective bit vectors for both the from and to nodes.Since several computations used in constructing GURRR required node ancestor and descendantinformation, the bit vectors in the appropriate edge sets double as data �elds for these computations.This representation incurs less overhead by avoiding unnecessary memory management for storingedge characteristics.The second edge representation is for labeled edges. For all edges incident on the samepair of nodes a linked list of label information is created. Each entry in the list is a data structurecontaining the label information. Both nodes incident on the edge contain a pointer to the shareddata in their linked lists, allowing consistent access of the label data from either node. To supportthe node relative computations, labeled edges are also recorded in the edge set bit vectors.In practice, all edges of a particular edge set type will either be labeled or not. Thus,one set of edge manipulation routines is used for both labeled and unlabeled edges. The routinesautomatically determine the type of representation to use based on the edge type. Optional additionalparameters to the routines allow overriding of the label type.In addition to using edge sets to represent dependence information, edge sets are also usedto represent Reuse DAGs. However, additional information is needed for each resource used bythe node. This information includes which immediate ancestors of the node are reusable, and whichvalues the node kills for spanning resources. An array of resource usage information is allocated foreach node and indexed by the same edge set index used for the edge set array.Allocation chains also use a dual representation to facilitate several di�erent access methods.Bit vector sets representing the nodes on each allocation chain are used for computing excessive setsand determining the number of allocation chains covering interesting collections of nodes. Linkedlists of nodes on each chain are used by algorithms that need to traverse all nodes in particular chainin the order dictated by their dependences. Such algorithms include the identi�cation of resourceholes. In the description of GURRR in Chapter 5 resource holes are as a normal graph nodes,which are incident on edges. Conceptually holes are a separate type of node from instruction/regionnodes; holes have di�erent label information and are incident only on temporal edges. Thus, in theimplementation, hole nodes are not inserted in the graph. Instead, each allocation chain contains twolinked lists, a list for instruction nodes and a list for hole nodes. The nodes in each list are stored inorder from the beginning to the end of the region's DAG. Each hole records which instruction nodes

96it occurs between. Instruction nodes contain ancestor and descendant resource hole bit vectors toaid the computation of holes available for a �ll instruction.11.3 Reuse DAG DecompositionThe computation of allocation chains depends on the decomposition of the partial ordering of a ReuseDAG, which is performed using a bipartite matching algorithm. The construction of a separate bi-partite graph each time allocation chains must be computed is too time consuming to provide apractical bene�t. Therefore, the matching algorithm is adopted to the existing graph based repres-entation of dependences.In the original description of using bipartite graphs to compute chain decompositions a pairof nodes i; i0 is created for each instruction i in the Reuse DAG. Let P and P 0 be the two partitions,then i is placed in P and i0 is placed in P 0 [FF65]. For each pair of related instructions (i; j) inthe Reuse DAG an edge is added from i to j0 in the bipartite graph. Edges sourcing in P andsinking in P 0 represent nonmatchings. Edges in the other direction, sourcing in P 0 and sinking inP , indicate matchings between the nodes. The matching algorithm then adds matchings by �ndingaugmenting paths using these edges, i.e., a path is found that starts in the �rst partition, ends in P 0,and alternates between the partitions. The direction of the edges used in the path are then reversed,changing the unmatched edges to matching ones and the matched edges to nonmatching ones. As aresult of the properties of the path, the number of matching edges increases by exactly one when thedirections are reversed. An example is shown in Figure 11.1. The original Reuse DAG is shown inFigure 11.1(a) and the corresponding bipartite graph is shown in Figure 11.1(b). Two unit lengthaugmenting paths are found from A to B0 and from B to F 0. The bipartite graph resulting fromthe reversal of the edge is shown in Figure 11.1(d). Now the alternating path C;F 0; B is found. Theresult after reversing these edges is shown in Figure 11.1(f).After the Reuse DAG is constructed the transitive closure of the edges is computed in theresource's edge bit vectors to obtain the full partial order, i.e., all transitive edges are added tothe Reuse DAG. The resulting DAG has the same set of edges as the bipartite graph. The pairs ofnodes in the bipartite graph are represented using the single node in the Reuse DAG. The matchingalgorithm as implemented �nds augmenting paths on the Reuse DAG and records the matchinginformation in the resource information structure instead of constructing a separate bipartite graph.Instead of physically reversing edges indicating matches, the matches are recorded in a separate�eld in each edge set structure. Augmenting paths are found using a special bidirectional traversal

97
AB C DE FG H(a) Reuse DAG AA0 BB0 CC0 DD0 EE0 FF0 GG0 HH0(b) Corresponding bipartite graphAB C DE FG H(c) Path B to F AA0 BB0 CC0 DD0 EE0 FF0 GG0 HH0(d) Path B to FAB C DE FG H(e) Path C to F to B AA0 BB0 CC0 DD0 EE0 FF0 GG0 HH0(f) Path C to F to BFigure 11.1: Chain decomposition steps

98algorithm that consults both the reuse edges and the match �elds. Alternating paths on the ReuseDAG can start at any node, must start and end with nonmatching edges, and alternate betweennonmatching and matching edges. Figure 11.1 contains both the Reuse DAGs and bipartite graphsfor each step of the example discussed above. The stipulation that valid augmenting paths mustalternate between nonmatching and matching edges preserves the bipartite nature of the problem. InFigure 11.1(c) the path from C to A, C;F;B;A. However, the path traverses two edges of the sametype in a row and thus is not an alternating path.

Chapter 12ExperimentationTo assess the practical application of resource requirements measurements and spacklingconcepts in the allocation of resources, several sets of experiments were performed as a part of thiswork. The experiments compared the performance of a variety of base and hybrid resource allocationtechniques. The techniques di�er in the type of integration used, as well as in the methods usedto measure requirements and perform reductions. The base techniques consist of register sensitivescheduling, scheduling sensitive register allocation, and the uni�ed resource allocation method de-scribed in the previous chapters. The hybrid techniques incorporated URSA's resource requirementsinformation into the register sensitive scheduling and scheduling sensitive register allocation tech-niques. In addition to comparing the quality of code generated by the various techniques, statisticswere collected to assess the practicality and bene�t of computing register requirements information.This chapter describes and discussed the various experiments performed. First the designof the experiments performed are described. Descriptions of the base techniques are given next. Thepresentation of each set of experiments, including variations and hybrids of the base techniques, aregiven next. Finally, conclusions are drawn from the data collected.12.1 Experimental DesignA total of 22 benchmark programs were used in the experiments performed. The programs andsome statistics concerning their resource requirements are listed in Table 12.1. The loops listed arethirteen of the �rst fourteen loops from the Livermore Loops benchmark suite.Pro�le information was collected for each benchmark by instrumenting each region with aunique counter and compiling the benchmark using the gcc compiler. The resulting execution countswere recorded to a �le and used in the performance analysis of the techniques implemented. Inaddition, the execution counts were used as annotations in the source code compiled by the prototype99

100functional units registersbenchmark maximum average maximum averagebubble 5 2.12 6 2.73hanoi 9 4.12 7 3.50heapsort 13 3.67 26 5.88intmm 5 2.38 7 2.86nsieve 27 4.29 24 5.35perm 6 2.23 6 2.17puzzle 25 2.68 10 3.32queens 5 1.96 5 2.19quick 6 2.13 7 2.85loop1 5 3.00 7 2.86loop2 11 3.71 12 3.57loop3 4 2.57 4 2.43loop4 6 2.78 6 3.12loop5 13 3.71 14 4.00loop6 13 3.11 14 3.38loop7 11 3.33 13 3.75loop9 12 3.78 31 6.50loop10 21 4.00 32 5.75loop11 4 2.71 5 2.83loop12 4 2.29 4 2.17loop13 16 2.88 27 4.00loop14 11 3.09 16 3.80Table 12.1: Benchmarks used for experimentationcompiler. Thus, these annotations were made available to the techniques during compilation in theGURRR data structures.To gauge the performance of the various allocation heuristics under varying levels of resourcepressure, eleven di�erent architecture con�gurations were targeted. The architectures consisted ofeleven of the twelve combinations of 2, 4, and 6 functional units and 4, 8, 16, and 32 registers.Since each operation performed requires at least one operand, and most typically use two operands,the architecture with 6 functional units and only 4 registers is considered impractical. In addition,architectures with a single functional unit and the four sizes of the register �le were used as a base forcomparisons. For all architecture con�gurations memory access instructions are assumed to executein 2 cycles, while all other instructions are assumed to execute in one cycle.Estimated execution times for a given compilationmethod were computed using the formulatotalCycles = Xr2RegionsofB r:cpl� r:executionCount (12.1)where B is the benchmark program, r:cpl is the length of the region's critical path, and r:execCnt isthe region's execution count. The speedup for a heuristic is computed by dividing the base estimatedexecution time by the heuristic's estimated execution time. In most cases the base execution timeis the execution of the benchmark program on a single issue architecture compiled using the base

101P-RIG technique. When comparing variations of a particular technique, all variations are compiledfor the same architecture and one is selected as the base for the speedup calculations. The graphsplot the unweighted average speedup for all benchmarks in the test suite. The individual speedupsfor each combination of benchmark, heuristic, and architecure are listed in appendix B.12.2 Overview of the AlgorithmsThe experiments performed in this work considered three approaches to integrated resource allocationand instruction scheduling. The �rst approach is register sensitive instruction scheduling, based onGoodman and Hsu's integrated prepass scheduler [GH88]. The second approach is schedule sensitiveregister allocation, based on Norris and Pollock's parallel register interference graph [NP93]. The�nal approach is the uni�ed resource allocation technique developed in this work. All of thesetechniques were implemented using GURRR as the intermediate representation and explicitly exploitits hierarchical properties. This section highlights the features of each major technique in terms ofthe Measure and Reduce paradigm. Implementation details of these base and hybrid techniquesconsidered are discussed in the subsequent sections.Integrated Prepass Scheduler (IPS): This algorithm performs on-the-
y detection and reduction ofexcessive resource demands. Instruction allocation is handled by list scheduling. Excessivefunctional unit demands are detected when the size of the ready list exceeds the number offunctional units available. Excessive functional unit demands are reduced by delaying instruc-tions not selected for execution in the current cycle by the priority function. The detectionof register excessive demands is performed by tracking register pressure during scheduling.When excessive register demands are detected, the priority function favors instructions whichreduce the register pressure. The e�ect is that new live values are sequentialized after previ-ous values have been killed. However, sequentialization alone cannot always prevent registerpressure from exceeding the maximum number of registers available. Therefore, a subsequentregister allocation pass is used to perform spilling to further reduce register demands.Uni�ed List Scheduler (ULS): This algorithm was developed in this work and is a modi�cation ofIPS to eliminate the need for a separate spilling postpass. ULS uses an on-the-
y live rangesplitting reduction technique. This technique is invoked when IPS would otherwise schedule aninstruction that would cause the register pressure to exceed the number of available registers.This approach requires a hierarchical representation of the program and performs resourceallocation in a bottom up manner. In this way, the register requirements of lower levels

102are accounted for in summary nodes and global register allocation is achieved. Because thistechnique operates hierarchically, global allocation is achieved and the need for a postpassregister spilling phase is eliminated.Parallel Register Interference Graph (P-RIG): When register allocation is performed prior to in-struction scheduling for ILP architectures the instructions are only partially ordered. If thereare no dependence between instructions incident on separate live ranges, it can not be determ-ined if the live ranges will overlap in the �nal schedule. This problem does not occur whenthe instructions are fully ordered. Therefore, an alternate version of the register interferencegraph, the parallel interference graph (P-RIG) is computed to capture the additional poten-tial live range con
icts. The P-RIG is then used to detect excessive demands for registers.The simpli�ed P-RIG is used to detect excessive register demands. The reduction of thesedemands is achieved through sequentialization of instructions and spilling of live ranges.Separate cost computations are used in the priority function for the respective reduction meth-ods. As a result of the sequentializations introduced by both register reduction methods someof the functional unit excessive demands also may have been reduced. Any remaining excessivefunctional unit demands are identi�ed and reduced by a postpass instruction scheduler.Uni�ed Resource Allocation (URSA): This approach uses the techniques developed in this disserta-tion to detect and reduce excessive resource requirements. Excessive resource requirementsare identi�ed by computing excessive sets for both registers and functional units. Reductionsin resource demands are performed using the resource spackling transformations. Like ULS,resource allocation is uni�ed in that all resources are allocated simultaneously. Resourcespackling reductions for registers perform both sequentialization and live range splitting, de-pending on how the uses of the interfering de�nitions are partitioned into the sets used by thetransformation.12.3 Register Sensitive Schedulers (RSS)The �rst set of experiments performed investigated the performance of the register sensitive instruc-tion scheduling (RSS) techniques of IPS and ULS. This section describes implementation details andexperimental results of both the base and hybrid algorithms.

103
0.5

1

1.5

2

2.5

3

3.5

4

4 8 16 32

S
pe

ed
up

Registers

Testsuite Speedup

uls
ips

(a) 2 issue architecture 0.5

1

1.5

2

2.5

3

3.5

4

4 8 16 32

S
pe

ed
up

Registers

Testsuite Speedup

uls
ips

(b) 4 issue architecture 0.5

1

1.5

2

2.5

3

3.5

4

8 16 32

S
pe

ed
up

Registers

Testsuite Speedup

uls
ips

(c) 6 issue architectureFigure 12.1: Comparison of base RSS techniques12.3.1 Base TechniquesAs described above, IPS and ULS are based on a list scheduling algorithm. As in typical listscheduling algorithms, the height of ready instructions are used in the priority function that selectsthe next instruction to schedule. However, in IPS and ULS register pressure is also used. The registerpressure is measured by computing the number of values alive as each instruction is scheduled. Thechange in register pressure, P�, for a candidate instruction, I, is given byP� = I:defs � I:kills (12.2)where I:defs is the number of new values de�ned by I and I:kills is the number of live values killedby I. A live value is killed by I if I is the last use of the value to be scheduled. By adding P� forthe instruction selected to the current register pressure the algorithms have a precise measure of thenumber of registers required at each point in the committed schedule.In both IPS and ULS the register pressure value is compared to threshold values to de-termine which of several priority functions are used to select the next instruction to schedule. InIPS a single threshold, 80% of the number of available registers, is used. When register pressure isbelow this threshold the priority function selects the instruction with maximum height. If severalinstructions have the same height, the priority function selects the instruction with the minimum P�value. When register pressure is at or above the threshold the priority function reverses the orderingof the two values. That is, the function selects the instruction with the minimum P� value. In theevent of a tie the instruction with maximum height is selected.ULS di�ers from IPS in that it adds a second threshold for register pressure and splits a

104live value when this threshold is reached. The splitting threshold is set at the number of availableregisters, since exceeding this value results in generated code that cannot be executed. When theregister pressure reaches this threshold an alternate reduction technique is used. The priority functioninvoked in this case selects a value to split rather than an instruction to schedule. The value selectedis the one whose earliest remaining use has a minimum height. Thus, this priority function selectsthe value that can be delayed for the longest time. A store instruction for the value being split isinjected into the ready list. A corresponding load instruction is injected into the not ready list, witha temporal dependence on the store instruction. All unscheduled instructions which require the splitvalue are delayed to use the load's de�nition of the value instead. Since the injected store instructionreduces register pressure, it is guaranteed to be the next instruction selected by the pressure reducingpriority function on the next iteration of the list scheduler.The results of using the two algorithms are shown in Figure 12.1. As can be seen, theULS algorithm performs much better than the IPS algorithm when register pressure exceeds registeravailability. When su�cient registers are available the two algorithms perform similarly. Analysis ofthe code generated by the two algorithms showed that the di�erence in performance was attributableto greater amounts of spill code introduced by IPS. Thus, it is concluded that the fewer loads of avalue performed by live range splitting is of signi�cant bene�t.12.3.2 Hybrid Register Sensitive SchedulersAlthough ULS performs better than IPS, it is still limited by its lack of ability to lookahead andconsider the impact of its scheduling decisions on resource demands later in the schedule. In anattempt to circumvent this limitation a set of hybrid ULS algorithms were implemented. All of thesealgorithms incorporate the resource requirements information computed by URSA into their priorityfunctions.As in the original implementation of ULS, the register pressure value determines whichpriority function is used. The instruction priority function considers the values in the followingorder: future pressure estimate, instruction height, P�. The register sequentializing priority functionconsiders the values in the following order: P�, future pressure estimate, instruction height. Lowervalues for the future pressure estimate have higher priority. The functions are describe below.� ULS - is the original priority function described in the previous subsection.� La1ULS - computes the number of allocation chains covered by the descendants of all scheduledinstructions and the instruction under consideration.

105
0.8

0.85

0.9

0.95

1

1.05

1.1

4 8 16 32

S
pe

ed
up

Registers

Testsuite Speedup

La2uls
uls

La3uls
La1uls
La5uls
La4uls

(a) 2 issue architecture 0.8

0.85

0.9

0.95

1

1.05

1.1

4 8 16 32

S
pe

ed
up

Registers

Testsuite Speedup

La2uls
uls

La3uls
La1uls
La5uls
La4uls

(b) 4 issue architecture 0.8

0.85

0.9

0.95

1

1.05

1.1

8 16 32

S
pe

ed
up

Registers

Testsuite Speedup

La2uls
uls

La3uls
La1uls
La5uls
La4uls

(c) 6 issue architectureFigure 12.2: Comparison of hybrid RSS techniques� La2ULS - is similar to La1ULS, except that other instructions in the cycle currently beingscheduled are not considered.� La3ULS - computes only the number of new allocation chains that would be added by schedulingthe instruction under consideration.� La4ULS - computes the same priority as in La3ULS, but does not schedule the instruction if ithas slack time and there is at least one other instruction already scheduled in the current cycleif the register pressure would cross a threshold.� La5ULS - computes only the number of new allocation chains that would be added by schedulingthe direct descendants of the instruction under consideration.The results of these experiments, using the ULS as the base technique in the speedup cal-culation, are shown in Figure 12.2,. It was remarkable that there was little variation in performancebetween the priority functions. Examination of the code generated showed that while di�erent in-structions were selected for scheduling, the di�erences were inconsequential. In many cases most ofthe ready instructions had enough common descendants that their look ahead values were the same.In the cases where there was a di�erence there was little impact on the amount of splitting required.The strong similarity of the quality of code generated is the result of the inherently limitedability of list scheduling to look ahead. The groups of instructions within a region tend to be toointerrelated for any priority function based on the number of chains or future excessive demands todi�erentiate between di�erent ready instructions. Priority function La4ULS was speci�cally designedto negate the over aggressiveness of list scheduling to trying keep all functional units busy in each

106cycle. Examination of the heuristic's logs shows that few occasions arose to delay instructions thatmight increase register pressure and that any such bene�ts realized were typically o�set by delayingsome other instructions that shouldn't have been delayed. It is believed that this result is due atleast in part to the di�erence between the rescheduled height of the instructions and the locationof the instruction in the �nal schedule. The di�erence between these two locations is related to thedilation of the critical path length that occurs during resource allocation.12.4 Schedule Sensitive Register Allocation (SSRA)Then next set of experiments performed investigated the performance of scheduler sensitive registerallocation (SSRA) techniques. This section describes implementation details and experimental resultsof both the base and hybrid algorithms.12.4.1 Base TechniquesThis work implemented parallel register interference graph (P-RIG), based on the work of Pinter[Pin93] and Norris and Pollock [NP93]. The P-RIG is constructed in manner similar to the standardregister interference graph. Because it contains all interference edges between nodes repressing liveranges that may overlap in the dependence DAG for the region, it is a superset of the RIG computedfor a fully sequential program. After the graph has been constructed, it is simpli�ed by removingall nodes that are incident on less than K edges, where K is the number of registers available, sincethese nodes can always be assigned registers. The remaining nodes represent the excessive demandsas computed by this method.The reduction of the excessive demands is achieved through sequentialization of instructionsand spilling of live ranges. Live range spilling rather than live range splitting was implemented inthis work since splitting is more complex when instructions are only partially ordered rather thanfully ordered, due to the uncertainty of whether two live ranges will overlap in the �nal schedule.Spilling is performed by storing the value after it is computed and loading the value prior to eachuse. Sequentialization of a live value D1 is performed by �nding a second live value, D2, whichinterferes with D1 and introducing temporal dependences from all uses of D2 to D1. Only suchsequentializations that do not introduce dependence cycles are considered.The priority function used to select a value for spilling or sequentializing compares the costsfor the respective reduction methods for each excessive live range. The cost for spilling a value is

107
0.5

1

1.5

2

2.5

3

3.5

4

4 8 16 32

S
pe

ed
up

Registers

Testsuite Speedup

uls
p-rig

ips

(a) 2 issue architecture 0.5

1

1.5

2

2.5

3

3.5

4

4 8 16 32

S
pe

ed
up

Registers

Testsuite Speedup

uls
p-rig

ips

(b) 4 issue architecture 0.5

1

1.5

2

2.5

3

3.5

4

8 16 32

S
pe

ed
up

Registers

Testsuite Speedup

uls
p-rig

ips

(c) 6 issue architectureFigure 12.3: Comparison of SSRA and RSS techniquesgiven by costspill = storeCost � def:execCnt+ Pu2uses loadCost � u:execCntnumInterferences (12.3)where def:execCnt is the execution count of the region containing the de�nition of the value andu:execCnt is the execution count of the region containing a use u of the value. The cost for sequen-tialization is given by costseq = maxu2D2uses(u:EST +D1:LST) 	 cplnumInterferences (12.4)where cpl is the length of the critical path of the region containing D1, and the symbol 	 representsthe
oored subtraction function, de�ned asa	 b =8><>: a� b a > b0 otherwise (12.5)A comparison of schedule sensitive register allocation using the P-RIG to IPS and ULS isshown in Figure 12.3. In most cases P-RIG performed worse than IPS. As mentioned earlier, theP-RIG contains more interferences than the typical RIG computed. These interferences representa worst case scheduling of the dependence DAG. On the other hand, the RSS algorithms know theprecise register pressure at any point in the schedule and only perform a locally minimum numberof reductions. The result is better performance.12.4.2 Hybrid SSRA techniquesThe SSRA technique can be modi�ed in a number of ways. The computation of the cost of spilling avalue as computed in Equation 12.3 does not consider the fact that de�nition and uses of the values

108
0.8

1

1.2

1.4

1.6

1.8

2

4 8 16 32

S
pe

ed
up

Registers

Testsuite Speedup

es-ssra
Ses-ssra

Sp-rig
p-rig

(a) 2 issue architecture 0.8

1

1.2

1.4

1.6

1.8

2

4 8 16 32

S
pe

ed
up

Registers

Testsuite Speedup

es-ssra
Ses-ssra

Sp-rig
p-rig

(b) 4 issue architecture 0.8

1

1.2

1.4

1.6

1.8

2

8 16 32

S
pe

ed
up

Registers

Testsuite Speedup

es-ssra
Ses-ssra

Sp-rig
p-rig

(c) 6 issue architectureFigure 12.4: Comparison of hybrid SSRA techniquesmay have slack time. If one of these instructions has some slack time then there is a hole into whichthe corresponding memory access can be inserted, reducing its cost. This observation suggests thefollowing modi�ed formulation of the spill cost, referred to as the slack spill cost:Scostspill = (storeCost 	 def:slack)� def:execCnt+ Pu2uses loadCost� (u:execCnt	 u:slack)numInterferences (12.6)The second observation is that the simpli�ed P-RIG and register excessive sets computethe same type of information using di�erent methods. The P-RIG approach computes excessivedemands by identifying interferences directly from the program's dependences, while URSA �rstcomputes CanReusereg from the dependences and then computes excessive demands from the res-ulting allocation chains. The relative precision of the two computation methods can be compared bysubstituting the register excessive set for the simpli�ed P-RIG set in the SSRA algorithm.In all, four SSRA techniques, resulting from all combinations of spill cost functions andexcessive demands computations, were implemented and compared.� p-rig - uses the P-RIG and the spill cost function in Equation 12.3.� Sp-rig - uses the P-RIG and slack spill cost function in Equation 12.6.� es-ssra - uses Ursa's excessive sets and the spill cost function in Equation 12.3.� Ses-ssra - uses Ursa's excessive sets and the slack spill cost function in Equation 12.6.The results of these compilations are shown in Figure 12.4. There are two remarkable resultsfrom these compilations. The �rst is that the modi�ed priority function degraded performance rather

109than improving it. Examination of several cases revealed that more spill code was generated becauseeither some values where spilled prior to attempts to sequentialize live ranges, or values that hadless of an impact on reducing the size of the excessive requirements sets were spilled �rst. Theconsideration of slack time tended to negate the e�ects of the priority function's divisor to accountfor the number of other live values interfered with.The second result was that the use of URSA's excessive sets signi�cantly reduce the amountof spill code generated. Examination of the generated code revealed a common occurrence mentionedin Brigg's dissertation [Bri92]. Although all nodes in the reduced interference graph interfere withat least K other values, those K other values may not need all K colors. The simplest exampleis an interference graph of four nodes connected in the shape of a diamond, with K = 2. URSA'schain computations naturally realize when such a situation occurs and count fewer interferences.The result of fewer interferences is either a smaller excessive interference set is generated than byinterference graph reduction, or no excessive interference set at all is generated while interferencegraph reduction does generate one. The better performance of the URSA based coloring hybrids isdirectly due to this e�ect.Examination of cases where the interference graph reduction reported an excessive set whileURSA's chain computation revealed a common situation. There was typically a group of instructionswhich legitimately required K � 1, registers and they interfered with a chain of several instructionswhich could all share a single register. Figure 1.1(a) in chapter 1 is an abstract example of suchsituation. The D subgraph contains six instructions which require three registers while the A subgraphcontains eight instructions which only require one register. In practice, the A subgraph may be aseries of calculations involving constants and indirect array indexing.12.5 Uni�ed Resource AllocationA prototype of URSA was implemented using the resource spackling transformations described inChapter 6 and cost functions based on the techniques discussed in Chapter 7. The inter-regionmotions suggested in Chapter 9 were not implemented.In addition to comparing URSA to the other techniques mentioned above, experimentationwas performed to tune the priority function used. Di�erent weights and orders for calculating thecomponent priorities were considered in order to identify key properties of a good heuristic. Thepriority functions considered are list below.� Eursa - favor instructions that interfere with larger numbers of excessive instructions.

110
0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

4 8 16 32

S
pe

ed
up

Registers

Testsuite Speedup

Gursa
GDursa

Eursa
Nursa
Dursa

ursa

(a) 2 issue architecture 0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

4 8 16 32

S
pe

ed
up

Registers

Testsuite Speedup

Gursa
GDursa

Eursa
Nursa
Dursa

ursa

(b) 4 issue architecture 0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

8 16 32

S
pe

ed
up

Registers

Testsuite Speedup

Gursa
GDursa

Eursa
Nursa
Dursa

ursa

(c) 6 issue architectureFigure 12.5: Comparison of variant URSA techniques� Cursa - ignore all priority components except the cost of delaying instructions or spill code.� Gursa - be greedy instead of conservative in the order of spackling the instructions selected.� Dursa - favor reductions that sequentialize more instructions with excessive demands. Thisfunction was inspired by Norris and Pollock's sequentialization reductions.� GDursa - combine the Gursa and Dursa heuristics.� Nursa - reverse the order the lexigraphic comparison of the priority components. This heuristicwas inspired by the success of the Gursa heuristic.The results of these experiments are shown in Figure 12.5. The most signi�cant improve-ment resulted from the use of the greedy heuristic GUrsa. This result was unexpected due to thefact that Hsu recommends scheduling instructions with the least amount of slack �rst [Hsu87]. Thisexperiment suggests that scheduling the instructions with the most slack �rst achieves better per-formance because these instructions are the ones most likely to be moved beyond the range of theexcessive set. Thus fewer reduction transformations are typically required. Most other variationshad little e�ect on the performance of Ursa. However, the reversed ordering of the priority com-ponents consistently did slightly worse. This result indicates that the base ordering of the prioritycomponents is correct.The best heuristics from the each set of experiments are compared against the base heuristicsin Figure 12.6. As seen from the graph both URSA and ULS outperformed all prior techniques for allarchitectures. Between URSA and ULS there was no clear winner. ULS performed better on the twoissue architectures while URSA performed better on all of the wider architectures. Examination of the

111
0.5

1

1.5

2

2.5

3

3.5

4

4.5

4 8 16 32

S
pe

ed
up

Registers

Testsuite Speedup

Gursa
ursa

uls
es-ssra

p-rig
ips

(a) 2 issue architecture 0.5

1

1.5

2

2.5

3

3.5

4

4.5

4 8 16 32

S
pe

ed
up

Registers

Testsuite Speedup

Gursa
ursa

uls
es-ssra

p-rig
ips

(b) 4 issue architecture 0.5

1

1.5

2

2.5

3

3.5

4

4.5

8 16 32

S
pe

ed
up

Registers

Testsuite Speedup

Gursa
ursa

uls
es-ssra

p-rig
ips

(c) 6 issue architectureFigure 12.6: Comparison of base and best techniquesULS URSA handBenchmark CPL Insts. CPL Insts. CPL Insts.loop2 63 70 95 79 22 40loop10 117 131 181 150 42 71Table 12.2: Critical path lengths and number of instructions for 2-4 architectureindividual benchmarks revealed that no single heuristic consistently generated the best or worse code.Two cases where URSA performed worst than ULS were selected for an in{depth examination. Thesecases were the single region loop bodies of loop2 and loop10. These regions were scheduled andallocated by hand to compare the heuristics to the optimal and identify weaknesses in the heuristics.The results are shown in Table 12.2.In both cases, the number of available registers was su�cient and no extra memory accesseswere required. Thus, the di�erence between the number of instructions in the hand coded cases andthe heuristics indicates the total number of load and store instructions inserted by the heuristics.Examination of the allocation decisions made by ULS showed that it has very limited know-ledge of the unscheduled instructions. List scheduling in general has no knowledge of the width of theresource requirements of the unscheduled instructions. Thus heuristics based on list scheduling typ-ically use only an instruction's height in the dependence DAG to decide how long it can be delayed.This limitation is evidenced in both cases by the register thrashing resulting from scheduling liveranges based only on the height of the de�ning instruction.A similar situation occurs for URSA in loop2. Examination of the region showed thatthere was insu�cient slack time in the DAG to insert spill code, let alone attempt to delay liveranges. As a result URSA attempted to schedule all instructions as close as possible to their heights

112in the DAG. The results obtained by hand coding were achieved by observing that some groups ofinstructions would have to be delayed. Thus groups of instructions that were closely related weredelayed enmasse. In this manner values were not computed until they were needed in the �nalschedule and generation of spill code was avoided. A similar situation occurred in URSA's allocationof loop10. However, the problem was compounded by the existence of a number of store instructionsat the end of small groups of instructions. Although most of the instructions in the small groups havelittle or no slack time, the stores have relatively large amounts of slack time. URSA preferred todelay these stores to near the end of the region due to the increased availability of functional units toexecute them. Delaying the stores caused the lifetimes of the values they spilled to be lengthened andthus cause interference with a large number of live ranges on critical paths. Once again, thrashingof registers occurred. Hand coding again exploited the relations of instructions by delaying andscheduling instructions in small groups.12.6 Measurement and Compile Time StatisticsBesides quality of code generated, there are two issues concerning the practical use of the URSAtechnique developed in this work:1. How accurate are the measurement heuristics for spanning resources in practice?2. What is the compilation time of URSA based techniques compared to existing techniques?The appropriate sections of the prototype compiler were instrumented to collect data to answer thesetwo questions.12.6.1 Measurement HeuristicsThe architecture targeted by the host compiler did not contain any instructions that used more thantwo input values. Thus, any NP-complete components that were encountered could be solved usingthe specialized matching algorithm referenced in Appendix A. However, this matching algorithmwas not implemented in the prototype due to the extra data structures needed. Instead a greedyalgorithm was used to compute the minimum cover sets. As a result, the measurement algorithmscould still produce imprecise measurements. To determine how often such imprecisions occurred themeasurement algorithmwas instrumented with code to record all NP-complete candidate componentsthat were given to the greedy heuristic for analysis. Both the components and the solutions found bythe greedy heuristic were recorded in a log �le. These log �les were then analyzed o�ine.

113Initially, the o�ine analysis consisted of performing an exhaustive search for the minimalcovering set and comparing its size to the size of the covering set found by the greedy heuristic duringcompilation. While the exhaustive search was too costly to implement in the compiler, most of thecomponents were small enough that o�ine analysis was not unreasonable. However one componentwas found which was intractable for performing an exhaustive search. Upon examination of thiscomponent it was noticed that a large number of the parent instructions had single children usingthem. Such children must be in the covering set as they are the only ones that can kill these singleuse parents. In the particular component being examined, the minimum covering set consisted of allof the children with single use parents.As a result, the o�ine analysis algorithm was redesigned to perform a prepass that addedall children of single use parents to the cover set and then to perform an exhaustive search on theremaining children. As demonstrated in the component examined, the prepass may �nd a minimalcovering set, avoiding the need to run the exhaustive search at all. Such cases are called trivial andwere specially noted by the o�ine analysis program.In an e�ort to gauge the number of di�erent components encountered in benchmark pro-grams the o�ine analysis program performed a partial isomorphism of the components. This iso-morphism consisted of normalizing the node numbers in the range 1 to N, where N is the number ofnodes in the component. The partiality of the isomorphism is a result of the fact that the relativeordering of the nodes was still preserved.From all of the measurements performed during the more than 4,000 compilations performed,a total of 44,432 NP-Complete component candidates were recorded. In all 44,432 cases the greedyheuristic implemented in the compiler found the minimal solution, resulting in perfect precision forthe calculation of all resource requirements in the benchmark programs considered. The 44,432problems reduced to only 69 unique components with respect to the partial isomorphism. Of these69 components, 67 were trivial in that the prepass algorithm found the minimal covering set. The 2nontrivial components only occurred a total of 8 times out of the 44,432 components encountered.Performing a complete isomorphism by hand on the 69 semi-unique components reduced them to 42completely unique components. There was only one completely unique nontrivial component whichcontained a total of �ve instructions.Examination of the two nontrivial components showed that any algorithm that selects chil-dren for the minimal cover set if and only if they kill at least one of the remaining live parents will�nd a minimal cover. This result is due to the symmetrical nature of the nontrivial componentsencountered.

114
0

1000

2000

3000

4000

5000

6000

7000

8000

4 8 16 32

C
om

pi
la

tio
n

T
im

e
(s

ec
)

Architectures

Testsuite Compilation Time

Gursa
ursa

uls
es-ssra

p-rig
ips

(a) 2 issue architecture 0

1000

2000

3000

4000

5000

6000

7000

8000

4 8 16 32

C
om

pi
la

tio
n

T
im

e
(s

ec
)

Architectures

Testsuite Compilation Time

Gursa
ursa

uls
es-ssra

p-rig
ips

(b) 4 issue architecture 0

1000

2000

3000

4000

5000

6000

7000

8000

8 16 32

C
om

pi
la

tio
n

T
im

e
(s

ec
)

Architectures

Testsuite Compilation Time

Gursa
ursa

uls
es-ssra

p-rig
ips

(c) 6 issue architectureFigure 12.7: Comparison of compilation timesThis experiment suggests a better method for implementing spanning resource Reuse DAGcomputation than was done in the prototype compiler. All NP-Complete candidate componentsshould be analyzed by the prepass algorithmmentioned above. Only if a true NP-complete componentremains after this analysis should a more expensive analysis algorithm be invoked. Three possiblealgorithms are suggested for consideration, based on the desired trade o� between analysis time andprecision of the requirements. This experiment suggests that an exhaustive search is probably notunreasonable if complete precision is desired; the exponential computation time is most likely easilyamortized over the total compilation time. As a middle ground, either a matching based algorithmor the greedy heuristic implemented in the prototype compiler can be used. This heuristic can alsobe used if a threshold for the size of components handed to an exhaustive search is implemented.For pure speed a random ordering of the children nodes for searching for those that kill at least oneparent can be used. The algorithmic complexities of these algorithms are
(2C), O(C2=5), O(C2),and O(C) set operations respectively, where C is the number of child nodes in the component.The component identi�cation algorithm has a time complexity of O(N2) set operations,where N is the total number of nodes in the program DAG. Thus, asymptotically, the di�erencebetween the random and greedy heuristics is inconsequential in the overall computation. The com-bination of the rarity of encountering a true NP-Complete problem and its likely size after reductionby the prepass makes the selection of an algorithm mostly a theoretical issue.

11512.6.2 Compilation TimeThe second issue concerning practical use is the compile times of the respective algorithms. Thetimes for the base and best hybrid techniques are shown in Figure 12.7. The times shown are onlyfor the resource allocation phase of the compiler. There are several interesting items to note aboutthe relative times.Despite the fact that the resource requirements are recomputed from scratch each time, theURSA based algorithms had the lowest compilation times. Since only the priority function di�eredbetween the two URSA techniques, it is not surprising that they had very similar times.The ULS algorithmwas the next best performer and was quite close to the URSA algorithmsexpect when few registers were available. The reason for ULS performing worse than URSA is unclear.One possible explanation is that ULS operates on a DAG and introduces temporal dependences aseach cycle is scheduled, requiring an update of transitive dependence information. The number ofsuch updates is greater than the number times that the resource demands are computed in the URSAalgorithms.The IPS algorithm is slower than the ULS algorithm by nearly a constant factor. This extratime is due to the invocation of the register coloring algorithm after the scheduling phase.The poorest performing algorithms are the coloring based algorithms. The primary reasonfor this fact is that the sequentialization reduction is not optimized. As mentioned earlier, thisimplementation of the technique attempts to make a minimal sequentialization as possible to avoidover-sequentialization. As a result, several sequentialization steps may be taken to achieve the desirede�ect. Norris and Pollock have developed heuristics to reduce the number of sequentialization stepsneeded, but have not given the details of their techniques [NP93].The di�erence in time between the base P-RIG algorithm and the hybrid ES-SSRA al-gorithm is the time required to compute URSA's resource demands information. This di�erence isless when more registers are available as fewer reduction steps are performed by the algorithms.Finally, it should be noted that although URSA's resource requirements computations areprime candidates for incremental updating, such techniques were not implemented in the prototype.Instead, full recomputation is performed.12.7 CommentsSeveral observerations can be made from the results of the various sets of experiments performed inthis work. First, the most signi�cant impact on the quality of code generated is due to live range

116splitting. The two new algorithms developed in this work, ULS and URSA, both naturally performlive range splitting as a part of their reduction techniques. Currently, the only apparent method ofincorporating live range splitting into techniques based on register coloring is to use the spacklingtransformations. However, after replacing the excessive demands detection and reduction methodsof SSRA techniques, the only di�erence between them and URSA is the priority function used forselecting which value to split.The second observation is that while the two new algorithms presented in this work makesigni�cant improvements over prior techniques, there is still a large amount of room for furtherimprovement. The results of the hand coded examples suggest that further improvements in heuristicsmust come from considering reductions in a larger scope.A third observation made is that list scheduling remains constrained by its limited scopeof knowledge of the code being allocated, as evidenced by the di�culty in a�ecting the quality ofcode generated by varying the priority schemes. On the other hand, while the improvements wherenot signi�cant in the �nal comparison, a�ecting the quality of code generated by URSA is easilyaccomplished.The combination of the second and third observations with the uni�ed representation usedby URSA is encouraging. There appears to be much potential for improvement by future algorithmsbased on GURRR and/or URSA.Finally, the precision of computing register excessive sets, with respect to both the NP-Completeness of the problem and to the current performance of interference graph based techniquesis practical. These experiments show that computation of register excessive sets are quite bene�cial.As a result, other needs for estimates of register pressure, such as parallelizing transformations andsoftware pipelining, should consider using register excessive sets as a part of their analysis.

Chapter 13Concluding Remarks13.1 SummaryArchitectures for Instruction Level Parallelism(ILP) present several new challenges to traditionalcompiler implementations. The goal of this work was to address important code generation problemsfor ILP involving register allocation and instruction scheduling. In particular, there are two signi-�cant problems: 1) ILP highlights negative interactions between register allocation and instructionscheduling, 2) existing techniques for register allocation either are not designed to handle ILP or donot fully exploit ILP when performing spilling.This work addresses both problems simultaneously by designing new techniques for bothregister allocation and instruction scheduling. The design of the techniques is motivated by twoobservations. First, register allocation and instruction scheduling both carry out the allocation ofnecessary resources and then assign speci�c instances of the resources to the instructions that needthem. A part of the allocation process is determining when to allocate a resource to an instruction.Second, allocation is only a problem in sections of the program where the demand for resource exceedsthe number of resources available. The introduction of temporal dependences by a compiler a�ectsallocation by imposing constraints on scheduling decisions. These observations form the basis forproposing the Measure and Reduce paradigm.The enabling technology developed in this work is the measurement of worst case resourcedemands for both types of resource and their incorporation into a single representation usable byall allocation and assignment tasks. URSA's measurement information was designed to be easilyincorporated into existing intermediate representation. The measurement information is of use to awide variety of compiler tasks concerned with architectural features including register allocation, in-struction scheduler, resource constrained global code motion, and transformations and optimizations.The result is a framework
exible enough to address most of the recent features of ILP architectures.117

118The main contributions of this work are as follows:� Development of techniques for measuring the maximum number of resources needed to exploitall inherent ILP in a segment of a program. The techniques are general enough to incorporateboth functional unit and register types of resources. The availability of such information enablesthe resource allocation phases to concentrate precisely on the problem areas.� Development of a DAG based intermediate representation which incorporates resource require-ments information. Basing the representation of the requirements information on a structure as
exible as a DAG demonstrates that it can be used by commonly used intermediate represent-ations. Using existing representations as a base provides a convenient medium to communicatethe needed information to the resource allocation phases.� Development of a resource allocation framework that speci�es how allocation of resources toinstructions can be performed using the resource requirements information computed. Theframework provides a method to directly assess and compare the impact of all allocation optionsunder consideration.� The development of a powerful framework for describing and comparing approaches to resourceallocation, whether they are integrated or not. This framework consists of the Measure andReduce Paradigm and the theory of resource spackling, which identi�es the necessary conditionsfor achieving reductions in resource requirements.� Development of high level heuristics that drive a uni�ed allocation of all resources. Theseheuristics demonstrate how the allocation framework can be applied to resource allocationand assignment for several common tasks, including global register allocation, local schedulingand resource constrained global code motion designed for multiple issue architectures. Theseheuristics incorporate live range splitting in an ILP environment, an improvement over previoustechniques that perform either no or limited live range splitting.� Experimental results that demonstrate the bene�ts of the techniques developed. Importantresults from the experiments conclude the following. Live range splitting is critical to achievinggood performance. Even when compared to other fully capable live range splitting techniques,the resource allocation based techniques generally perform better due to the uni�cation ofresource allocation. Although in theory maximum register requirements is an NP-completeproblem, in practice they can be computed e�ciently with a high degree of precise (completely

119precise in the experiments). Finally, the experiments show that the resource requirementsinformation improves traditional coloring based approaches to register allocation.13.2 Future WorkThere are a number of problems open for future research.� The heuristics for selecting both instructions and reduction transformations in the URSA ex-periments were simple in concept and served their purpose as a proof of concept. There areno doubt better, although possibly more complex, heuristics for these problems.� The uni�cation of register allocation and instruction scheduling is only a �rst step in reorgan-izing the back end of the compiler. Higher degrees of integration are possible by combiningtransformations and optimizations with resource management. A central concept of this work isto perform transformations on demand, that is, to expose additional instruction level parallel-ism only in places where the level of inherent ILP is insu�cient. Furthermore when additionalILP is desired, only as much as is needed to �ll the idle resources should be exposed. In thismanner extra work is not generated for register allocation and instruction scheduling.Several areas must be addressed to support this integration, including prediction of the changesthat would be a�ected by the transformations, and methods to use URSA's information to\throttle" the transformations. In addition, the use of URSA to guide optimizations performedearly in the back end, such as loop unrolling, will require URSA to operate on a high levelintermediate representation. URSA as a framework is su�ciently
exible to accommodate suchuses. However, for the measurements to be bene�cial, the approximations must reasonablyaccount for the eventual results of lowering the representation.� Fast accurate estimations of resource requirements may have other uses, such as guiding globalcode motion (GCM) and heuristic selection. Resource pro�les may be used to determine whichblocks should be used as targets for GCM and which ones should be evaporated to eliminatebranches. It has been observed before that particular transformations and resource heuristicsperform better on some programs than others [Whi91]. Indeed, their e�ectiveness may vary within a single program. The availability of resource requirements pro�les provides new informationthat may be guide the selection of which heuristic that is most likely to obtain the best resultfor the section of the program in question.

120� The simple use of excessive sets as clique candidates in interference graphs in register allocationshows the bene�t of incorporating URSA's information in traditional coloring based registerallocation techniques. Further work needs to be done in communicating the allocation chaininformation to the register assignment phase. Further, there may be ways to use URSA'sinformation in the selection of a live value for spilling and the placement of spill code. Inaddition to sequentializing or spilling the selected value, the information in GURRR may beable to be used to �nd ways to split the live range even though the instructions have not beenfully ordered yet.Despite the lack of bene�t in the register sensitive scheduler experiments, there may still be waysto incorporate resource requirements information into instruction scheduling as well. Furtherexamination of sample cases may suggest other methods for both determining the proper lookahead scope and how to incorporate the information into the selection priority function. Analternative approach to the look ahead problem would be to preprocess the DAG. That is, tocompute the resource requirements information for the DAG and annotate the instructions withscheduling hints prior to actual scheduling. These hints could then be incorporated into thepriority function.

Appendices

Appendix ANP-Completeness and a Heuristic forComputing Kill()This appendix addresses the problem of computing the functionKill(). Kill(a) is a functionthat returns the node that kills the value computed by node a, and is used to build the ReuseRegDAG. Section A.1 shows that computingKill() to maximize register requirements is an NP-Completeproblem. Section A.2 presents a practical heuristic for computing Kill().A.1 NP-CompletenessThe ReuseReg DAG is used to determine the maximumnumber of registers that the program can useunder any schedule. Therefore, for a node a, Kill(a) should be computed so that a is alive with asmany other values at the same time as possible. Given a collection of nodes, the maximum numberof instructions requiring registers is the maximum number of independent values plus the maximumnumber of their children that can be executed without killing any of them. Thus, Kill(a) must be ina minimum set of children that kills all of the of values from the maximum live set containing a. Asan example, consider the DAG in Figure A.1. If node E is the last to execute then the values from allother nodes are alive at once, requiring six registers. If node E is the �rst child to execute then eachother child kills a parent and can reuse its register. In this case only four registers are required.Formally, the problem of computing Kill() is treated as a decision problem of �nding K orfewer children that kill a set of parents' values:Minimum Killing SetInstance: A DAG (N , E), positive K <= jN j.Question: Does there exist a minimum killing set, i.e., N 0 � N such that jN 0j <= K,and 8n2N 9c 3 (n; c) 2 E and c 2 N 0? 122

123A B CD E F GFigure A.1: A complex case for de�ning Kill()The complex subcase of computing Kill() can be described as a subDAG that is bipartiteand has at least one parent node with an out-degree of at least two and at least one child nodewith an in-degree of at least two. Such cases can be shown to be NP-Complete by reduction to theMinimum Cover problem. The statement of the Minimum Cover problem, taken from Garey andJohnson [GJ79], is as follows:Minimum CoverInstance: Collection C of subsets of a �nite set S, positive J <= jCj.Question: Does C contain a cover for S of size J or less, i.e., a subset C 0 � C withjC 0j <= J such that every element of S belongs to at least one member of C 0?Reference: [Kar72] Transformation from Exact Cover by 3-Sets.Theorem A.1 Computing Kill() for all nodes in the DAG to maximize the register requirements,i.e., Minimum Killing Set, is NP-Complete.Proof: by reduction to the Minimum Cover problem.Minimum Killing Set is in NP since a nondeterministic algorithm can guess a solution andcheck in polynomial time that there are K or less nodes in N 0 and that all parent nodes are killed.Let (N, E) be a DAG with N = S [C and E = f(s; c)js 2 S; c 2 C, and s 2 cg. Then(N, E) is a bipartite graph, constructed in O(jSj + jCj + Qc2C jcj) time. Let K = J . If there is asolution to the Minimum Cover problem, then N 0 = C 0 is a solution for the Minimum Killing Setproblem. Conversely, if there is a solution to the Minimum Killing Set problem, then C 0 = N 0 isa solution to the Minimum Cover problem. Thus, Minimum Killing Set is NP-Complete since itis in NP, Minimum Cover can be transformed to it in polynomial time, and there is a solution toMinimum Killing Set if and only if there is a solution to Minimum Cover. �In practice, a simple greedy method based on selecting the child that kills the most parentscan be used and is quite e�ective [CLR90, pp. 974{978]. Furthermore, if no child has in-degree ofgreater than 2, a specialized matching algorithm can be used []. In this matching algorithm theparents and the child form the two partitions of the bipartite graph. Any child node incident on amatching edge is in the minimum cover set. It can be shown that if there a parent node that is not

124incident on a matching edge, it still will be covered by a child that is incident on a matching edge.If this were not the case, then the matching would not be maximum because the edge connecting theparent to the child could be added to the set of matching edges. Thus, all parents will be covered.A.2 Computing Kill()For many NP-Complete problems only certain cases or portions of the problem cause the NP-Completeness. This section identi�es the characteristics of the portions of a programwhere computingKill() is NP-Complete. An algorithm is presented that both identi�es the portions of the programwhere computing Kill() is NP-Complete, and computes Kill() precisely for all of the portions of aprogram that are not NP-Complete problems.Partitioning of the portions of the program into NP-Complete and polynomial parts forcomputing Kill() is based on the out-degree of the nodes to be killed and the in-degree of thepotential killing nodes. A Multiple Out (MO) node is a node with an out-degree greater than one.A Single Out (SO) node is a node with an out-degree of one. Multiple In (MI) and Single In (SI)nodes are similarly de�ned based on the in-degree of a node. A set of nodes is called Multiple Outif all nodes in the set are Multiple Out. A set of nodes is called Single Out if all nodes in the setare Single Out. A set of nodes is called Both Out if it contains both Multiple Out and Single Outnodes. Multiple In, Single In, and Both In are similarly de�ned based on the in-degree of the nodesin the set.The heuristic �rst partitions the DAG into bipartite subDAGs. The killing nodes are thenfound for each bipartite subDAG. The covering is found by performing a variation of the algorithm for�nding connected components. In this variation a node is connected to other nodes in the componenteither by only its incoming edges or only its outgoing edges. Thus all nodes except the root and leafof the DAG will exist in two components, one where the node is a parent and one where the node isa child. Certain edges in the DAG must be ignored for the bipartite components algorithm to work.Consider the example in Figure A.2. Node B is a parent to C, which is one of B's parent's otherchildren. The edge (A, B) must be removed so that B does not appear as a child in more than onebipartite subDAG. This is allowable since B can never kill A's value.Computing Kill() can be broken into cases, based on the combinations of the types ofthe parent and child sets. Figure A.3 shows all nine combinations of types of the parent and childsets. The �rst letter of the combination name indicates the type of the parent set, the second letter

125AB CFigure A.2: A special case for partitioning into bipartite subDAGsAB(a) SS - Single Out, Single In A BC(b) SM - Single Out, Multiple InAB C(c) MS - Multiple Out, Single In A B C DE F G H(d) MM - Multiple Out, Multiple InA BC D E(e) MB - Multiple Out, Both In A B CD E(f) BM - Both Out, Multiple InA BC D(g) BB - Both Out, Both In A B CD E(h) SB - Single Out, Both InA BC D E(i) BS - Both Out, Single InFigure A.3: All combinations of Out and In nodes

126indicates the type of the child set. Note that cases SB (Figure A.3(h)) and BS (Figure A.3(i)) areeach actually two disjoint subDAGS, represented by previous cases.There are three rules used to compute Kill(), depending on the combination of node typesin the bipartite subDAG.1. SS, SMIf all parents are Single Out, they each have only one child that can kill them. This child isde�ned as the Kill(p) for each parent p.2. MSIn this case there can only be one parent. The parent's value will be alive with all but one ofits children. The child that kills the parent p, Kill(p), can be randomly selected.3. MM, MB, BM, BBThese are the complex cases that may be NP-Complete. The order of execution of the childrene�ects the number of registers required. The greedy heuristic mentioned in Section A.1 is usedto compute the minimum killing set. For each parent p, de�ning Kill(p) by select any child ofp from the killing set.The computation of Kill() is summarized in Figure A.4.

127
function computeKill(DAG (N, E)) returns function Kill()f /* mark edges to ignore during bipartite coverage */foreach n 2 Nforeach p 2 Parents(n)if (Children(n) T Children(p) <> �)mark edge (p,n) as ignore;/* �nd the bipartite components */components = �ndBipartiteConnectedComponents((N, E));/* compute Kill() */foreach component B 2 components/* rule 1 */if (8parents p inset c p.outDegree = 1)foreach parent p 2 Bdefine Kill(p) = Child(p);else/* rule 2 */if (8children c inset B c.inDegree = 1)foreach parent p 2 Bf select c from Children(p);define Kill(p) = c;gelse/* rule 3 */while (9 p 2 B 3 p.alive = True)f select c from the children that kill the most parents;foreach p 2 Parents(c)if (p.alive)f p.alive = False;define Kill(p) = c;ggg Figure A.4: Function computeKill()

Appendix BSpeedup Tablesbenchmark ips uls La1uls La2uls La4uls La3uls La5ulsbubble 1.28 3.92 3.92 3.92 3.10 3.10 3.10hanoi 0.00 2.70 2.70 2.70 2.45 2.70 2.70heapsort 1.01 1.71 1.95 1.95 0.00 1.94 1.94intmm 1.20 3.53 3.51 3.53 3.07 3.53 3.53nsieve 0.91 2.62 2.62 2.62 2.62 2.62 2.62perm 1.17 4.38 4.38 4.38 3.91 4.38 4.38puzzle 0.00 0.98 0.97 0.98 0.98 0.98 0.98queens 0.62 1.37 1.18 1.47 1.33 1.37 1.29quick 1.02 2.35 2.17 2.35 2.37 2.35 2.35loop1 0.78 2.74 2.74 2.74 3.63 2.74 2.74loop2 0.86 2.95 2.95 2.95 2.72 2.92 2.99loop3 0.76 4.11 4.11 4.11 3.36 4.11 4.11loop4 0.85 3.30 3.29 3.30 2.41 3.43 3.43loop5 0.95 3.34 3.34 3.34 2.60 3.34 0.00loop6 0.98 2.47 2.47 2.47 2.33 2.47 0.00loop7 0.79 2.70 2.70 2.70 2.22 2.77 2.28loop9 0.95 3.15 3.15 3.15 0.00 0.00 2.77loop10 1.33 4.79 4.79 4.79 4.72 4.72 4.38loop11 0.83 3.06 3.06 3.06 3.50 3.06 3.06loop12 0.85 4.70 4.70 4.70 3.91 4.70 4.70loop13 1.10 3.32 3.22 3.22 0.00 0.00 3.02loop14 1.14 3.16 3.16 3.16 3.66 3.66 0.00Table B.1: Individual speedups for the rss heuristics on architecture 2-4
128

129benchmark ips uls La1uls La2uls La4uls La3uls La5ulsbubble 1.45 1.79 1.79 1.79 1.79 1.79 1.79hanoi 0.00 1.40 1.40 1.40 1.27 1.40 1.40heapsort 1.16 1.92 2.04 2.04 2.13 2.06 2.06intmm 1.41 8.54 8.54 8.54 8.54 8.54 8.54nsieve 1.20 1.60 1.60 1.60 1.60 1.60 1.60perm 1.92 3.00 3.00 3.00 2.77 3.00 3.00puzzle 0.98 1.53 1.53 1.53 1.53 1.53 1.53queens 1.50 2.71 2.12 2.91 1.81 2.12 2.01quick 1.97 5.08 5.08 5.08 5.08 5.08 5.08loop1 1.19 3.73 3.73 3.73 3.05 3.73 3.73loop2 1.17 5.87 5.87 5.87 4.08 5.87 5.87loop3 1.40 1.56 1.56 1.56 1.27 1.56 1.56loop4 1.17 5.42 5.42 5.42 4.06 5.42 5.42loop5 6.45 6.45 6.45 6.45 4.27 6.45 3.62loop6 1.22 6.34 6.34 6.34 4.23 6.34 3.10loop7 1.16 4.28 4.28 4.28 3.43 4.28 4.28loop9 1.06 2.55 2.56 2.56 2.78 2.78 2.15loop10 1.21 3.71 3.71 3.71 3.71 3.71 2.48loop11 1.55 1.55 1.55 1.55 1.21 1.55 1.55loop12 1.60 1.60 1.60 1.60 1.33 1.60 1.60loop13 1.06 2.75 2.75 2.75 2.75 2.75 2.68loop14 1.24 7.88 7.88 7.88 7.88 7.88 7.88Table B.2: Individual speedups for the rss heuristics on architecture 2-8benchmark ips uls La1uls La2uls La4uls La3uls La5ulsbubble 1.78 1.78 1.78 1.78 1.78 1.78 1.78hanoi 1.40 1.40 1.40 1.40 1.27 1.40 1.40heapsort 1.38 2.20 2.19 2.19 2.45 2.19 2.19intmm 1.69 1.69 1.69 1.69 1.69 1.69 1.69nsieve 1.58 3.12 3.12 3.12 3.12 3.12 3.12perm 1.78 1.78 1.78 1.78 1.65 1.78 1.78puzzle 0.00 1.14 1.14 1.14 1.14 1.14 1.14queens 1.70 1.70 1.33 1.82 1.14 1.33 1.26quick 1.30 1.68 1.68 1.68 1.68 1.68 1.68loop1 1.64 1.64 1.64 1.64 1.35 1.64 1.64loop2 0.85 4.14 4.14 4.14 2.88 4.14 4.14loop3 1.56 1.56 1.56 1.56 1.27 1.56 1.56loop4 1.67 1.67 1.67 1.67 1.25 1.67 1.67loop5 1.78 1.78 1.78 1.78 1.18 1.78 1.61loop6 5.99 5.99 5.99 5.99 4.00 5.99 5.58loop7 1.65 1.65 1.65 1.65 1.32 1.65 1.65loop9 1.31 4.25 4.25 4.25 4.25 4.25 3.00loop10 1.46 4.54 4.54 4.54 4.54 4.54 4.54loop11 1.55 1.55 1.55 1.55 1.21 1.55 1.55loop12 1.60 1.60 1.60 1.60 1.33 1.60 1.60loop13 1.33 3.70 3.70 3.70 3.70 3.70 3.70loop14 5.50 5.50 5.50 5.50 5.50 5.50 5.19Table B.3: Individual speedups for the rss heuristics on architecture 2-16

130benchmark ips uls La1uls La2uls La4uls La3uls La5ulsbubble 1.56 1.56 1.56 1.56 1.56 1.56 1.56hanoi 1.40 1.40 1.40 1.40 1.27 1.40 1.40heapsort 1.11 1.93 1.93 1.93 1.92 1.93 1.93intmm 1.69 1.69 1.69 1.69 1.69 1.69 1.69nsieve 1.39 1.65 1.65 1.65 1.65 1.65 1.65perm 1.78 1.78 1.78 1.78 1.65 1.78 1.78puzzle 0.00 1.13 1.13 1.13 1.13 1.13 1.13queens 1.39 1.39 1.09 1.49 0.93 1.09 1.03quick 1.33 1.46 1.46 1.46 1.46 1.46 1.46loop1 1.64 1.64 1.64 1.64 1.35 1.64 1.64loop2 1.71 1.71 1.71 1.71 1.19 1.71 1.71loop3 1.56 1.56 1.56 1.56 1.27 1.56 1.56loop4 1.67 1.67 1.67 1.67 1.25 1.67 1.67loop5 1.78 1.78 1.78 1.78 1.18 1.78 1.61loop6 1.67 1.67 1.67 1.67 1.12 1.67 1.56loop7 1.65 1.65 1.65 1.65 1.32 1.65 1.65loop9 1.46 1.46 1.46 1.46 1.46 1.46 1.46loop10 1.72 1.72 1.72 1.72 1.72 1.72 1.72loop11 1.55 1.55 1.55 1.55 1.21 1.55 1.55loop12 1.60 1.60 1.60 1.60 1.33 1.60 1.60loop13 3.28 3.78 3.78 3.78 3.78 3.78 3.78loop14 1.80 1.80 1.80 1.80 1.80 1.80 1.70Table B.4: Individual speedups for the rss heuristics on architecture 2-32benchmark ips uls La1uls La2uls La4uls La3uls La5ulsbubble 1.21 2.75 2.75 2.75 2.66 2.65 2.65hanoi 0.00 3.18 3.18 3.18 2.84 3.18 3.18heapsort 0.99 1.94 2.08 2.08 0.00 1.88 1.88intmm 1.18 3.36 3.35 3.36 3.73 3.07 3.07nsieve 1.98 2.62 2.62 2.62 2.62 2.62 2.62perm 1.22 4.57 4.57 4.57 3.91 4.57 4.57puzzle 1.11 0.98 0.98 0.98 0.98 0.98 0.98queens 0.65 1.44 1.11 1.44 1.18 1.24 1.08quick 1.12 1.76 1.76 1.76 1.57 1.56 1.56loop1 0.80 2.41 2.41 2.41 4.44 2.60 2.82loop2 0.90 2.72 2.72 2.72 2.95 3.14 2.85loop3 0.97 4.62 4.62 4.62 3.70 4.62 4.62loop4 0.83 3.71 3.70 3.71 2.54 3.71 3.71loop5 1.01 2.29 2.29 2.29 2.91 3.05 0.00loop6 0.98 2.49 2.49 2.49 2.27 2.49 0.00loop7 0.66 2.57 2.57 2.57 2.59 2.19 0.00loop9 0.95 2.66 2.88 2.88 3.37 3.37 2.86loop10 1.35 4.20 0.00 0.00 0.00 4.24 4.60loop11 0.94 2.23 2.23 2.23 3.77 2.04 2.23loop12 1.24 5.22 5.22 5.22 4.27 5.22 5.22loop13 1.06 3.07 0.00 0.00 0.00 0.00 3.10loop14 1.09 2.27 2.11 2.11 0.00 0.00 0.00Table B.5: Individual speedups for the rss heuristics on architecture 4-4

131benchmark ips uls La1uls La2uls La4uls La3uls La5ulsbubble 0.43 2.02 2.02 2.02 2.02 2.02 2.02hanoi 0.00 1.65 1.65 1.65 1.47 1.65 1.65heapsort 1.36 2.16 2.38 2.38 2.30 2.38 2.38intmm 1.75 8.57 8.57 8.57 8.57 8.57 8.57nsieve 1.66 1.60 1.60 1.60 1.60 1.60 1.60perm 1.97 3.12 3.12 3.12 2.67 3.12 3.12puzzle 1.08 1.54 1.54 1.54 1.54 1.54 1.54queens 1.66 2.78 2.17 2.99 1.85 2.43 2.29quick 1.31 5.87 5.87 5.87 5.87 5.87 5.87loop1 1.41 5.09 5.09 5.09 3.73 5.09 5.09loop2 1.17 8.30 8.30 8.30 4.46 8.30 8.30loop3 0.70 1.75 1.75 1.75 1.40 1.75 1.75loop4 1.33 5.79 5.79 5.79 4.50 5.79 5.79loop5 1.33 4.19 4.19 4.19 4.78 4.19 4.12loop6 1.22 6.86 6.86 6.86 4.45 6.86 3.21loop7 1.28 6.41 6.41 6.41 4.15 6.41 6.41loop9 1.02 2.19 2.15 2.15 2.49 2.49 2.74loop10 1.22 4.25 4.25 4.25 4.02 4.02 3.79loop11 0.74 1.70 1.70 1.70 1.31 1.70 1.70loop12 1.78 1.78 1.78 1.78 1.45 1.78 1.78loop13 1.04 3.15 3.03 3.03 3.32 3.32 3.01loop14 1.29 4.07 4.07 4.07 3.90 3.90 4.01Table B.6: Individual speedups for the rss heuristics on architecture 4-8benchmark ips uls La1uls La2uls La4uls La3uls La5ulsbubble 2.01 2.01 2.01 2.01 2.01 2.01 2.01hanoi 1.65 1.65 1.65 1.65 1.47 1.65 1.65heapsort 1.50 2.30 2.29 2.29 2.57 2.29 2.29intmm 1.69 1.69 1.69 1.69 1.69 1.69 1.69nsieve 1.91 3.12 3.12 3.12 3.12 3.12 3.12perm 1.85 1.85 1.85 1.85 1.59 1.85 1.85puzzle 0.00 1.14 1.14 1.14 1.14 1.14 1.14queens 1.74 1.74 1.36 1.88 1.16 1.53 1.44quick 1.31 2.02 2.02 2.02 2.02 2.02 2.02loop1 2.24 2.24 2.24 2.24 1.64 2.24 2.24loop2 0.92 6.06 6.06 6.06 3.15 6.06 6.06loop3 1.75 1.75 1.75 1.75 1.40 1.75 1.75loop4 1.78 1.78 1.78 1.78 1.39 1.78 1.78loop5 2.54 2.54 2.54 2.54 1.32 2.54 2.36loop6 6.48 6.48 6.48 6.48 4.21 6.48 6.00loop7 2.47 2.47 2.47 2.47 1.60 2.47 2.47loop9 1.31 4.26 4.26 4.26 4.26 4.26 3.08loop10 1.49 6.40 6.40 6.40 6.40 6.40 6.40loop11 1.70 1.70 1.70 1.70 1.31 1.70 1.70loop12 1.78 1.78 1.78 1.78 1.45 1.78 1.78loop13 1.44 4.39 4.39 4.39 4.42 4.42 4.55loop14 1.42 6.20 6.20 6.20 6.20 6.20 6.20Table B.7: Individual speedups for the rss heuristics on architecture 4-16

132benchmark ips uls La1uls La2uls La4uls La3uls La5ulsbubble 1.76 1.76 1.76 1.76 1.76 1.76 1.76hanoi 1.65 1.65 1.65 1.65 1.47 1.65 1.65heapsort 1.25 2.04 2.04 2.04 2.02 2.04 2.04intmm 1.69 1.69 1.69 1.69 1.69 1.69 1.69nsieve 1.39 1.65 1.65 1.65 1.65 1.65 1.65perm 1.85 1.85 1.85 1.85 1.59 1.85 1.85puzzle 0.00 1.13 1.13 1.13 1.13 1.13 1.13queens 1.43 1.43 1.11 1.54 0.95 1.25 1.18quick 1.56 1.75 1.75 1.75 1.75 1.75 1.75loop1 2.24 2.24 2.24 2.24 1.64 2.24 2.24loop2 2.50 2.50 2.50 2.50 1.30 2.50 2.50loop3 1.75 1.75 1.75 1.75 1.40 1.75 1.75loop4 1.78 1.78 1.78 1.78 1.39 1.78 1.78loop5 2.54 2.54 2.54 2.54 1.32 2.54 2.36loop6 1.81 1.81 1.81 1.81 1.18 1.81 1.67loop7 2.47 2.47 2.47 2.47 1.60 2.47 2.47loop9 1.68 1.68 1.68 1.68 1.68 1.68 1.68loop10 2.43 2.43 2.43 2.43 2.43 2.43 2.43loop11 1.70 1.70 1.70 1.70 1.31 1.70 1.70loop12 1.78 1.78 1.78 1.78 1.45 1.78 1.78loop13 3.87 3.87 3.87 3.87 3.87 3.87 3.87loop14 2.03 2.03 2.03 2.03 2.03 2.03 2.03Table B.8: Individual speedups for the rss heuristics on architecture 4-32benchmark ips uls La1uls La2uls La4uls La3uls La5ulsbubble 0.43 2.02 2.02 2.02 2.02 2.02 2.02hanoi 0.00 1.65 1.65 1.65 1.47 1.65 1.65heapsort 1.32 2.16 2.38 2.38 2.29 2.38 2.38intmm 1.80 8.57 8.57 8.57 8.57 8.57 8.57nsieve 1.66 1.60 1.60 1.60 1.60 1.60 1.60perm 1.97 3.12 3.12 3.12 2.67 3.12 3.12puzzle 1.04 1.54 1.54 1.54 1.54 1.54 1.54queens 1.67 2.78 2.17 2.99 1.85 2.43 2.29quick 1.31 5.87 5.87 5.87 5.87 5.87 5.87loop1 1.39 5.09 5.09 5.09 3.73 5.09 5.09loop2 1.26 6.69 6.69 6.69 4.46 6.69 6.69loop3 0.70 1.75 1.75 1.75 1.40 1.75 1.75loop4 1.33 5.79 5.79 5.79 4.50 5.79 5.79loop5 1.23 4.27 4.27 4.27 4.78 4.42 3.73loop6 1.22 6.86 6.86 6.86 4.45 6.86 3.34loop7 1.19 4.00 4.00 4.00 4.15 3.95 4.05loop9 1.24 2.16 2.14 2.14 2.46 2.46 2.94loop10 1.24 4.02 4.19 4.19 4.55 4.55 4.25loop11 0.74 1.70 1.70 1.70 1.31 1.70 1.70loop12 1.78 1.78 1.78 1.78 1.45 1.78 1.78loop13 0.88 2.87 2.73 2.73 2.96 2.96 3.07loop14 1.29 4.14 4.14 4.14 4.01 4.01 3.95Table B.9: Individual speedups for the rss heuristics on architecture 6-8

133benchmark ips uls La1uls La2uls La4uls La3uls La5ulsbubble 2.01 2.01 2.01 2.01 2.01 2.01 2.01hanoi 1.65 1.65 1.65 1.65 1.47 1.65 1.65heapsort 1.64 2.27 2.25 2.25 2.57 2.25 2.25intmm 1.69 1.69 1.69 1.69 1.69 1.69 1.69nsieve 1.91 3.12 3.12 3.12 3.12 3.12 3.12perm 1.85 1.85 1.85 1.85 1.59 1.85 1.85puzzle 0.00 1.14 1.14 1.14 1.14 1.14 1.14queens 1.74 1.74 1.36 1.88 1.16 1.53 1.44quick 1.36 2.02 2.02 2.02 2.02 2.02 2.02loop1 2.24 2.24 2.24 2.24 1.64 2.24 2.24loop2 0.94 6.79 6.79 6.79 3.15 6.79 6.79loop3 1.75 1.75 1.75 1.75 1.40 1.75 1.75loop4 1.78 1.78 1.78 1.78 1.39 1.78 1.78loop5 0.36 2.54 2.54 2.54 1.32 2.54 2.54loop6 6.48 6.48 6.48 6.48 4.21 6.48 6.00loop7 0.51 2.52 2.52 2.52 1.60 2.52 2.52loop9 1.43 3.08 3.16 3.16 3.08 3.08 2.91loop10 1.55 6.83 6.83 6.83 6.83 6.83 6.83loop11 1.70 1.70 1.70 1.70 1.31 1.70 1.70loop12 1.78 1.78 1.78 1.78 1.45 1.78 1.78loop13 1.42 4.66 4.66 4.66 4.66 4.66 4.69loop14 1.31 6.20 6.20 6.20 6.20 6.20 6.20Table B.10: Individual speedups for the rss heuristics on architecture 6-16benchmark ips uls La1uls La2uls La4uls La3uls La5ulsbubble 1.76 1.76 1.76 1.76 1.76 1.76 1.76hanoi 1.65 1.65 1.65 1.65 1.47 1.65 1.65heapsort 1.31 2.05 2.03 2.03 2.02 2.03 2.03intmm 1.69 1.69 1.69 1.69 1.69 1.69 1.69nsieve 1.39 1.65 1.65 1.65 1.65 1.65 1.65perm 1.85 1.85 1.85 1.85 1.59 1.85 1.85puzzle 0.00 1.13 1.13 1.13 1.13 1.13 1.13queens 1.43 1.43 1.11 1.54 0.95 1.25 1.18quick 1.56 1.75 1.75 1.75 1.75 1.75 1.75loop1 2.24 2.24 2.24 2.24 1.64 2.24 2.24loop2 2.80 2.80 2.80 2.80 1.30 2.80 2.80loop3 1.75 1.75 1.75 1.75 1.40 1.75 1.75loop4 1.78 1.78 1.78 1.78 1.39 1.78 1.78loop5 2.54 2.54 2.54 2.54 1.32 2.54 2.54loop6 1.81 1.81 1.81 1.81 1.18 1.81 1.67loop7 2.52 2.52 2.52 2.52 1.60 2.52 2.52loop9 1.72 1.72 1.72 1.72 1.72 1.72 1.72loop10 2.59 2.59 2.59 2.59 2.59 2.59 2.59loop11 1.70 1.70 1.70 1.70 1.31 1.70 1.70loop12 1.78 1.78 1.78 1.78 1.45 1.78 1.78loop13 4.05 5.15 5.15 5.15 5.15 5.15 4.03loop14 2.03 2.03 2.03 2.03 2.03 2.03 2.03Table B.11: Individual speedups for the rss heuristics on architecture 6-32

134benchmark es-ssra Ses-ssra p-rig Sp-rigbubble 1.16 1.26 1.16 1.27hanoi 1.50 1.50 1.50 1.50heapsort 1.21 1.09 1.14 1.06intmm 1.30 1.29 1.26 1.17nsieve 1.42 1.00 1.42 1.01perm 1.77 1.56 1.20 1.18puzzle 1.26 1.36 1.17 1.20queens 1.29 0.81 1.17 0.66quick 1.16 1.07 1.16 1.06loop1 1.21 1.21 1.11 0.99loop2 1.06 1.08 1.03 1.02loop3 4.11 4.11 1.09 0.95loop4 1.07 1.14 1.10 1.04loop5 1.06 1.06 1.11 1.01loop6 1.03 1.00 0.99 0.98loop7 1.15 1.15 1.04 1.02loop9 1.94 1.95 1.06 1.09loop10 1.98 2.30 1.16 1.29loop11 3.50 1.20 1.09 1.09loop12 4.70 4.70 1.04 1.02loop13 1.89 1.84 1.12 1.25loop14 1.29 1.24 1.16 1.20Table B.12: Individual speedups for the ssra heuristics on architecture 2-4benchmark es-ssra Ses-ssra p-rig Sp-rigbubble 1.79 1.79 1.15 0.35hanoi 1.40 1.40 1.40 1.40heapsort 1.30 0.99 1.63 1.07intmm 2.38 5.59 1.47 1.90nsieve 1.34 0.81 1.44 0.89perm 3.00 3.00 1.41 2.60puzzle 1.53 1.54 1.01 0.95queens 1.63 1.80 1.24 0.78quick 1.75 1.53 1.26 1.20loop1 3.73 3.73 1.21 1.16loop2 1.90 1.13 1.08 1.13loop3 1.56 1.56 1.27 1.27loop4 3.86 1.80 1.19 1.29loop5 1.23 1.13 1.07 1.09loop6 1.22 1.05 1.10 1.05loop7 2.24 1.21 1.25 1.27loop9 1.36 1.36 1.12 1.32loop10 1.44 1.47 1.28 1.29loop11 1.55 1.55 1.21 0.46loop12 1.60 1.60 1.60 1.60loop13 1.30 1.36 1.22 1.23loop14 1.47 1.62 1.26 1.40Table B.13: Individual speedups for the ssra heuristics on architecture 2-8

135benchmark es-ssra Ses-ssra p-rig Sp-rigbubble 1.78 1.78 1.46 1.07hanoi 1.40 1.40 1.40 1.40heapsort 1.76 1.92 1.26 0.80intmm 1.69 1.69 1.69 1.69nsieve 1.80 1.00 1.34 0.83perm 1.78 1.78 1.78 1.78puzzle 1.14 1.14 1.12 1.13queens 1.70 1.70 1.20 1.29quick 1.57 1.57 1.29 1.03loop1 1.64 1.64 1.64 1.64loop2 4.14 4.14 1.09 0.85loop3 1.56 1.56 1.56 1.56loop4 1.67 1.67 1.25 1.25loop5 1.78 1.78 1.27 0.33loop6 5.85 5.85 1.16 1.02loop7 1.65 1.65 1.41 0.59loop9 3.52 3.42 1.21 1.34loop10 1.42 1.47 1.42 1.43loop11 1.55 1.55 1.55 1.55loop12 1.60 1.60 1.60 1.60loop13 1.48 1.44 1.34 1.31loop14 5.50 5.50 1.38 1.20Table B.14: Individual speedups for the ssra heuristics on architecture 2-16benchmark es-ssra Ses-ssra p-rig Sp-rigbubble 1.56 1.56 1.56 1.56hanoi 1.40 1.40 1.40 1.40heapsort 1.91 1.91 1.30 0.81intmm 1.69 1.69 1.69 1.69nsieve 1.65 1.65 1.37 1.62perm 1.78 1.78 1.78 1.78puzzle 1.13 1.13 1.13 1.13queens 1.39 1.39 1.39 1.39quick 1.36 1.36 1.33 1.33loop1 1.64 1.64 1.64 1.64loop2 1.71 1.71 1.67 1.67loop3 1.56 1.56 1.56 1.56loop4 1.67 1.67 1.67 1.67loop5 1.78 1.78 1.78 1.78loop6 1.63 1.63 1.63 1.63loop7 1.65 1.65 1.59 1.59loop9 1.46 1.46 1.25 1.21loop10 1.72 1.72 1.66 0.58loop11 1.55 1.55 1.55 1.55loop12 1.60 1.60 1.60 1.60loop13 3.28 3.28 1.45 1.47loop14 1.80 1.80 1.80 1.80Table B.15: Individual speedups for the ssra heuristics on architecture 2-32

136benchmark es-ssra Ses-ssra p-rig Sp-rigbubble 1.16 1.26 1.16 1.64hanoi 2.00 2.00 2.00 2.00heapsort 1.22 1.10 1.15 1.08intmm 1.30 1.29 1.26 1.18nsieve 1.49 1.00 1.49 1.08perm 1.83 1.60 1.23 1.22puzzle 1.29 1.34 1.16 1.21queens 1.30 0.83 1.17 0.67quick 1.16 1.08 1.17 1.07loop1 1.29 1.29 1.11 0.99loop2 1.08 1.10 1.03 1.02loop3 4.62 4.62 1.09 0.97loop4 1.10 1.17 1.10 1.04loop5 1.09 1.09 1.11 1.01loop6 1.05 1.01 0.99 0.98loop7 1.15 1.22 1.04 1.02loop9 1.94 1.96 1.06 1.09loop10 1.99 2.31 1.16 1.29loop11 3.77 1.23 1.09 1.09loop12 5.22 5.22 1.04 1.04loop13 1.89 1.84 1.12 1.25loop14 1.29 1.24 1.16 1.20Table B.16: Individual speedups for the ssra heuristics on architecture 4-4benchmark es-ssra Ses-ssra p-rig Sp-rigbubble 2.02 2.02 1.15 0.35hanoi 1.65 1.65 1.65 1.65heapsort 1.49 1.02 1.72 1.11intmm 2.79 6.74 1.70 1.54nsieve 2.10 0.89 1.88 1.11perm 3.12 3.12 1.65 2.79puzzle 1.54 1.54 1.02 0.96queens 1.74 1.80 1.43 0.87quick 1.77 1.55 1.28 1.20loop1 5.09 5.09 1.30 1.26loop2 1.85 1.16 1.11 1.16loop3 1.75 1.75 1.40 1.40loop4 4.26 1.88 1.23 1.33loop5 1.27 1.16 1.10 1.12loop6 1.23 1.07 1.12 1.08loop7 2.59 1.29 1.34 1.36loop9 1.36 1.36 1.12 1.32loop10 1.45 1.48 1.29 1.30loop11 1.70 1.70 1.42 0.47loop12 1.78 1.78 1.78 1.78loop13 1.34 1.39 1.25 1.26loop14 1.49 1.65 1.29 1.44Table B.17: Individual speedups for the ssra heuristics on architecture 4-8

137benchmark es-ssra Ses-ssra p-rig Sp-rigbubble 2.01 2.01 1.78 1.07hanoi 1.65 1.65 1.65 1.65heapsort 1.92 1.98 1.41 0.82intmm 1.69 1.69 1.69 1.69nsieve 2.24 1.00 2.10 0.91perm 1.85 1.85 1.85 1.85puzzle 1.14 1.14 1.13 1.14queens 1.74 1.74 1.20 1.30quick 1.86 1.86 1.07 1.15loop1 2.24 2.24 2.24 2.24loop2 6.06 6.06 1.13 0.89loop3 1.75 1.75 1.75 1.75loop4 1.78 1.78 1.39 1.39loop5 2.54 2.54 1.50 0.35loop6 7.27 7.27 1.17 1.04loop7 2.47 2.47 1.73 0.64loop9 3.52 3.42 1.22 1.41loop10 1.45 1.52 1.44 1.44loop11 1.70 1.70 1.70 1.70loop12 1.78 1.78 1.78 1.78loop13 1.60 1.66 1.42 1.38loop14 6.20 6.20 1.50 1.31Table B.18: Individual speedups for the ssra heuristics on architecture 4-16benchmark es-ssra Ses-ssra p-rig Sp-rigbubble 1.76 1.76 1.76 1.76hanoi 1.65 1.65 1.65 1.65heapsort 2.01 2.01 1.38 0.84intmm 1.69 1.69 1.69 1.69nsieve 1.65 1.65 1.37 1.62perm 1.85 1.85 1.85 1.85puzzle 1.13 1.13 1.13 1.13queens 1.43 1.43 1.43 1.43quick 1.61 1.61 1.61 1.61loop1 2.24 2.24 2.24 2.24loop2 2.50 2.50 2.41 2.41loop3 1.75 1.75 1.75 1.75loop4 1.78 1.78 1.78 1.78loop5 2.54 2.54 2.54 2.54loop6 2.03 2.03 2.03 2.03loop7 2.47 2.47 2.00 2.00loop9 1.68 1.68 1.25 1.21loop10 2.43 2.43 1.92 0.62loop11 1.70 1.70 1.70 1.70loop12 1.78 1.78 1.78 1.78loop13 3.88 3.88 1.62 1.71loop14 2.03 2.03 2.03 2.03Table B.19: Individual speedups for the ssra heuristics on architecture 4-32

138benchmark es-ssra Ses-ssra p-rig Sp-rigbubble 2.02 2.02 1.15 0.35hanoi 1.65 1.65 1.65 1.65heapsort 1.49 1.02 1.72 1.11intmm 2.79 6.74 1.70 1.54nsieve 2.10 0.89 1.88 1.11perm 3.12 3.12 1.65 2.79puzzle 1.54 1.54 1.02 0.96queens 1.74 1.80 1.43 0.87quick 1.77 1.55 1.28 1.25loop1 5.09 5.09 1.30 1.26loop2 1.85 1.16 1.11 1.16loop3 1.75 1.75 1.40 1.40loop4 4.26 1.88 1.23 1.33loop5 1.27 1.16 1.10 1.12loop6 1.23 1.07 1.12 1.08loop7 2.59 1.29 1.34 1.36loop9 1.36 1.36 1.12 1.32loop10 1.45 1.48 1.29 1.30loop11 1.70 1.70 1.42 0.47loop12 1.78 1.78 1.78 1.78loop13 1.34 1.39 1.25 1.26loop14 1.49 1.65 1.29 1.44Table B.20: Individual speedups for the ssra heuristics on architecture 6-8benchmark es-ssra Ses-ssra p-rig Sp-rigbubble 2.01 2.01 1.78 1.07hanoi 1.65 1.65 1.65 1.65heapsort 1.93 1.98 1.46 0.83intmm 1.69 1.69 1.69 1.69nsieve 2.24 1.00 2.10 0.91perm 1.85 1.85 1.85 1.85puzzle 1.14 1.14 1.13 1.14queens 1.74 1.74 1.20 1.30quick 2.02 1.86 1.07 1.15loop1 2.24 2.24 2.24 2.24loop2 6.79 6.79 1.13 0.89loop3 1.75 1.75 1.75 1.75loop4 1.78 1.78 1.39 1.39loop5 2.54 2.54 1.53 0.36loop6 7.27 7.27 1.18 1.05loop7 2.52 2.52 1.73 0.64loop9 3.52 3.42 1.22 1.41loop10 1.45 1.53 1.44 1.44loop11 1.70 1.70 1.70 1.70loop12 1.78 1.78 1.78 1.78loop13 1.61 1.68 1.42 1.39loop14 6.20 6.20 1.53 1.32Table B.21: Individual speedups for the ssra heuristics on architecture 6-16

139
benchmark es-ssra Ses-ssra p-rig Sp-rigbubble 1.76 1.76 1.76 1.76hanoi 1.65 1.65 1.65 1.65heapsort 2.02 2.02 1.38 0.84intmm 1.69 1.69 1.69 1.69nsieve 1.65 1.65 1.37 1.62perm 1.85 1.85 1.85 1.85puzzle 1.13 1.13 1.13 1.13queens 1.43 1.43 1.43 1.43quick 1.75 1.61 1.61 1.61loop1 2.24 2.24 2.24 2.24loop2 2.80 2.80 2.41 2.41loop3 1.75 1.75 1.75 1.75loop4 1.78 1.78 1.78 1.78loop5 2.54 2.54 2.54 2.54loop6 2.03 2.03 2.03 2.03loop7 2.52 2.52 2.00 2.00loop9 1.72 1.72 1.25 1.21loop10 2.59 2.59 1.92 0.62loop11 1.70 1.70 1.70 1.70loop12 1.78 1.78 1.78 1.78loop13 4.05 4.05 1.62 1.74loop14 2.03 2.03 2.03 2.03Table B.22: Individual speedups for the ssra heuristics on architecture 6-32

140benchmark Gursa GDursa Eursa Nursa Dursa ursabubble 3.52 3.52 3.53 3.53 3.53 3.53hanoi 2.35 2.35 2.35 2.35 2.35 2.35heapsort 2.01 2.01 1.90 1.90 1.90 1.90intmm 3.19 3.19 3.91 3.91 3.91 3.91nsieve 4.56 4.56 4.56 4.56 4.56 4.56perm 3.82 3.82 3.69 3.69 3.69 3.69puzzle 1.90 1.90 1.89 1.90 1.89 1.89queens 1.70 1.70 1.08 1.08 1.08 1.08quick 2.39 2.39 2.12 2.11 2.12 2.12loop1 3.08 3.08 2.82 2.82 2.82 2.82loop2 3.50 3.50 1.86 1.96 2.11 2.23loop3 5.28 5.28 5.28 5.28 5.28 5.28loop4 2.69 2.69 2.28 2.28 2.28 2.28loop5 2.81 2.91 2.66 2.66 2.66 2.55loop6 3.02 3.02 2.42 2.49 2.42 2.42loop7 2.54 2.38 2.22 2.24 2.32 2.45loop9 3.33 3.15 2.85 2.85 2.85 2.93loop10 3.56 3.34 3.36 3.41 3.36 3.81loop11 2.72 2.72 2.72 2.72 2.72 2.72loop12 5.87 5.87 5.22 5.22 5.22 5.22loop13 3.65 3.57 3.68 3.76 3.61 3.30loop14 2.90 2.82 2.74 2.74 2.74 2.74Table B.23: Individual speedups for the ursa heuristics on architecture 2-4benchmark Gursa GDursa Eursa Nursa Dursa ursabubble 2.00 2.00 2.00 2.00 2.00 2.00hanoi 1.22 1.22 1.22 1.22 1.22 1.22heapsort 2.42 2.42 2.52 2.52 2.52 2.52intmm 9.73 9.73 8.49 8.49 8.49 8.49nsieve 3.10 3.10 3.10 3.10 3.10 3.10perm 2.81 2.81 2.81 2.81 2.81 2.81puzzle 1.81 1.81 1.81 1.81 1.81 1.81queens 1.77 1.77 1.76 1.76 1.76 1.76quick 4.18 4.18 4.18 4.18 4.18 4.18loop1 3.90 3.90 3.57 3.57 3.57 3.57loop2 4.23 4.63 3.44 3.44 3.44 3.44loop3 2.00 2.00 2.00 2.00 2.00 2.00loop4 5.05 5.05 5.06 5.06 5.06 5.06loop5 3.51 3.51 4.05 4.05 3.41 3.41loop6 4.62 4.62 3.58 3.58 3.79 3.79loop7 3.17 3.17 3.33 3.33 3.33 3.33loop9 3.21 2.74 2.41 2.41 2.26 2.48loop10 3.02 3.02 2.54 2.65 2.54 2.49loop11 1.89 1.89 1.70 1.70 1.70 1.70loop12 2.00 2.00 1.78 1.78 1.78 1.78loop13 2.78 2.73 2.75 2.48 2.76 2.73loop14 5.32 5.32 4.68 4.68 4.60 4.60Table B.24: Individual speedups for the ursa heuristics on architecture 2-8

141benchmark Gursa GDursa Eursa Nursa Dursa ursabubble 1.99 1.99 1.99 1.99 1.99 1.99hanoi 1.22 1.22 1.22 1.22 1.22 1.22heapsort 2.26 2.26 2.34 2.34 2.34 2.34intmm 1.93 1.93 1.68 1.68 1.68 1.68nsieve 4.75 4.75 4.76 4.76 4.76 4.76perm 1.67 1.67 1.67 1.67 1.67 1.67puzzle 1.33 1.33 1.33 1.33 1.33 1.33queens 1.35 1.35 1.22 1.22 1.22 1.22quick 1.18 1.18 1.18 1.18 1.18 1.18loop1 1.72 1.72 1.57 1.57 1.57 1.57loop2 3.33 3.33 3.54 3.54 3.54 3.54loop3 2.00 2.00 2.00 2.00 2.00 2.00loop4 1.56 1.56 1.56 1.56 1.56 1.56loop5 1.27 1.27 1.32 1.32 1.32 1.32loop6 4.80 4.80 4.80 4.80 4.80 4.80loop7 1.50 1.50 1.45 1.45 1.45 1.45loop9 3.52 3.59 3.39 3.39 3.39 3.39loop10 3.17 3.17 3.55 3.55 3.55 3.55loop11 1.89 1.89 1.70 1.70 1.70 1.70loop12 2.00 2.00 1.78 1.78 1.78 1.78loop13 3.18 2.99 2.71 2.71 2.71 3.03loop14 4.30 4.30 3.71 3.71 3.71 3.71Table B.25: Individual speedups for the ursa heuristics on architecture 2-16benchmark Gursa GDursa Eursa Nursa Dursa ursabubble 1.74 1.74 1.74 1.74 1.74 1.74hanoi 1.22 1.22 1.22 1.22 1.22 1.22heapsort 1.67 1.67 1.73 1.73 1.73 1.73intmm 1.93 1.93 1.68 1.68 1.68 1.68nsieve 2.52 2.52 2.52 2.52 2.52 2.52perm 1.67 1.67 1.67 1.67 1.67 1.67puzzle 1.32 1.32 1.32 1.32 1.32 1.32queens 1.10 1.10 1.00 1.00 1.00 1.00quick 1.02 1.02 1.02 1.02 1.02 1.02loop1 1.72 1.72 1.57 1.57 1.57 1.57loop2 1.37 1.37 1.46 1.46 1.46 1.46loop3 2.00 2.00 2.00 2.00 2.00 2.00loop4 1.56 1.56 1.56 1.56 1.56 1.56loop5 1.27 1.27 1.32 1.32 1.32 1.32loop6 1.34 1.34 1.34 1.34 1.34 1.34loop7 1.50 1.50 1.45 1.45 1.45 1.45loop9 1.39 1.39 1.47 1.47 1.47 1.47loop10 1.67 1.67 1.68 1.68 1.68 1.68loop11 1.89 1.89 1.70 1.70 1.70 1.70loop12 2.00 2.00 1.78 1.78 1.78 1.78loop13 3.71 3.71 3.51 3.51 3.51 3.51loop14 1.40 1.40 1.21 1.21 1.21 1.21Table B.26: Individual speedups for the ursa heuristics on architecture 2-32

142benchmark Gursa GDursa Eursa Nursa Dursa ursabubble 3.90 3.90 3.90 3.90 3.90 3.90hanoi 3.18 3.18 3.18 3.18 3.18 3.18heapsort 2.06 2.06 2.35 2.35 2.35 2.35intmm 3.36 3.36 3.53 3.53 3.53 3.53nsieve 4.56 4.56 4.56 4.56 4.56 4.56perm 4.64 4.64 4.45 4.45 4.45 4.45puzzle 0.00 0.00 1.93 1.93 1.93 1.93queens 1.92 1.92 1.53 1.53 1.53 1.53quick 2.41 2.41 2.01 2.01 2.01 2.01loop1 3.57 3.57 3.03 3.03 3.03 3.03loop2 4.30 4.30 2.13 2.13 2.29 2.50loop3 6.16 6.16 6.16 6.16 6.16 6.16loop4 2.87 2.87 2.96 2.96 2.96 2.96loop5 2.84 3.29 2.66 2.66 3.09 2.91loop6 3.10 3.10 2.54 2.89 2.54 2.54loop7 3.05 3.32 3.02 2.94 3.28 3.02loop9 3.29 3.29 3.16 3.16 3.08 3.16loop10 4.37 3.81 4.08 3.43 3.48 4.41loop11 4.08 4.08 4.08 4.08 4.08 4.08loop12 6.71 6.71 6.71 6.71 6.71 6.71loop13 4.18 3.82 4.18 4.25 3.90 3.63loop14 3.37 3.49 2.91 2.97 2.73 2.91Table B.27: Individual speedups for the ursa heuristics on architecture 4-4benchmark Gursa GDursa Eursa Nursa Dursa ursabubble 2.67 2.67 2.67 2.67 2.67 2.67hanoi 1.65 1.65 1.65 1.65 1.65 1.65heapsort 3.27 3.27 3.60 3.60 3.60 3.60intmm 9.73 9.73 9.73 9.73 9.73 9.73nsieve 3.10 3.10 3.10 3.10 3.10 3.10perm 3.65 3.65 3.65 3.65 3.65 3.65puzzle 1.81 1.81 1.81 1.81 1.81 1.81queens 1.78 1.78 1.63 1.63 1.63 1.63quick 5.79 5.79 4.97 4.97 4.97 4.97loop1 6.45 6.45 6.45 6.45 6.45 6.45loop2 5.35 6.34 4.30 4.30 4.30 4.30loop3 2.33 2.33 2.33 2.33 2.33 2.33loop4 8.08 8.08 8.08 8.08 8.08 8.08loop5 4.59 4.59 4.78 4.78 4.78 4.78loop6 5.18 5.18 4.62 4.70 4.62 4.62loop7 4.78 4.78 4.85 4.85 4.85 4.85loop9 3.05 3.33 2.41 2.41 2.79 2.46loop10 3.85 3.85 3.20 3.13 3.20 3.13loop11 2.12 2.12 2.12 2.12 2.12 2.12loop12 2.28 2.28 2.28 2.28 2.28 2.28loop13 3.15 3.30 3.23 3.30 3.34 3.23loop14 7.13 7.13 6.60 6.60 6.02 6.02Table B.28: Individual speedups for the ursa heuristics on architecture 4-8

143benchmark Gursa GDursa Eursa Nursa Dursa ursabubble 2.66 2.66 2.66 2.66 2.66 2.66hanoi 1.65 1.65 1.65 1.65 1.65 1.65heapsort 2.70 2.70 2.81 2.81 2.81 2.81intmm 1.94 1.94 1.94 1.94 1.94 1.94nsieve 4.76 4.76 4.76 4.76 4.76 4.76perm 2.17 2.17 2.17 2.17 2.17 2.17puzzle 1.35 1.35 1.35 1.35 1.35 1.35queens 1.86 1.86 1.86 1.86 1.86 1.86quick 1.98 1.98 1.98 1.98 1.98 1.98loop1 2.84 2.84 2.84 2.84 2.84 2.84loop2 4.47 4.47 5.15 5.15 5.15 5.15loop3 2.33 2.33 2.33 2.33 2.33 2.33loop4 2.49 2.49 2.49 2.49 2.49 2.49loop5 2.06 2.06 1.74 1.74 1.74 1.74loop6 6.31 6.31 5.85 5.85 5.85 5.85loop7 2.54 2.54 2.19 2.19 2.19 2.19loop9 3.74 3.98 3.63 3.63 3.63 3.63loop10 4.14 4.14 4.14 4.14 4.14 4.14loop11 2.12 2.12 2.12 2.12 2.12 2.12loop12 2.28 2.28 2.28 2.28 2.28 2.28loop13 4.17 3.89 3.75 3.75 3.75 4.20loop14 6.29 6.29 6.29 6.29 6.29 6.29Table B.29: Individual speedups for the ursa heuristics on architecture 4-16benchmark Gursa GDursa Eursa Nursa Dursa ursabubble 2.32 2.32 2.32 2.32 2.32 2.32hanoi 1.65 1.65 1.65 1.65 1.65 1.65heapsort 2.22 2.22 2.21 2.21 2.21 2.21intmm 1.94 1.94 1.94 1.94 1.94 1.94nsieve 2.52 2.52 2.52 2.52 2.52 2.52perm 2.17 2.17 2.17 2.17 2.17 2.17puzzle 1.33 1.33 1.33 1.33 1.33 1.33queens 1.53 1.53 1.53 1.53 1.53 1.53quick 1.71 1.71 1.71 1.71 1.71 1.71loop1 2.84 2.84 2.84 2.84 2.84 2.84loop2 1.84 1.84 2.12 2.12 2.12 2.12loop3 2.33 2.33 2.33 2.33 2.33 2.33loop4 2.49 2.49 2.49 2.49 2.49 2.49loop5 2.06 2.06 1.74 1.74 1.74 1.74loop6 1.76 1.76 1.63 1.63 1.63 1.63loop7 2.54 2.54 2.19 2.19 2.19 2.19loop9 1.56 1.56 1.56 1.56 1.56 1.56loop10 2.09 2.09 2.13 2.13 2.13 2.13loop11 2.12 2.12 2.12 2.12 2.12 2.12loop12 2.28 2.28 2.28 2.28 2.28 2.28loop13 4.94 4.94 4.94 4.94 4.94 4.94loop14 2.06 2.06 2.06 2.06 2.06 2.06Table B.30: Individual speedups for the ursa heuristics on architecture 4-32

144benchmark Gursa GDursa Eursa Nursa Dursa ursabubble 2.67 2.67 2.67 2.67 2.67 2.67hanoi 1.65 1.65 1.65 1.65 1.65 1.65heapsort 3.29 3.29 3.61 3.61 3.61 3.61intmm 9.73 9.73 9.73 9.73 9.73 9.73nsieve 3.10 3.10 3.10 3.10 3.10 3.10perm 4.05 4.05 4.05 4.05 4.05 4.05puzzle 1.82 1.82 1.82 1.82 1.82 1.82queens 1.78 1.78 1.63 1.63 1.63 1.63quick 6.05 6.05 5.36 5.36 5.36 5.36loop1 6.45 6.45 6.45 6.45 6.45 6.45loop2 6.17 6.34 5.60 5.60 5.60 5.60loop3 2.33 2.33 2.33 2.33 2.33 2.33loop4 8.09 8.09 8.10 8.10 8.10 8.10loop5 4.59 4.59 4.68 4.68 4.68 4.68loop6 5.40 5.40 6.34 6.34 6.34 6.34loop7 5.24 5.24 5.69 5.69 5.69 5.69loop9 3.19 3.16 2.43 2.53 2.29 2.61loop10 3.63 3.35 3.44 4.06 3.44 3.35loop11 2.12 2.12 2.12 2.12 2.12 2.12loop12 2.28 2.28 2.28 2.28 2.28 2.28loop13 3.07 3.12 3.45 3.49 3.02 3.37loop14 7.74 7.74 6.77 6.77 6.15 6.15Table B.31: Individual speedups for the ursa heuristics on architecture 6-8benchmark Gursa GDursa Eursa Nursa Dursa ursabubble 2.66 2.66 2.66 2.66 2.66 2.66hanoi 1.65 1.65 1.65 1.65 1.65 1.65heapsort 2.91 2.91 2.91 2.91 2.91 2.91intmm 1.94 1.94 1.94 1.94 1.94 1.94nsieve 4.76 4.76 4.76 4.76 4.76 4.76perm 2.40 2.40 2.40 2.40 2.40 2.40puzzle 1.35 1.35 1.35 1.35 1.35 1.35queens 1.88 1.88 1.88 1.88 1.88 1.88quick 2.02 2.02 2.02 2.02 2.02 2.02loop1 2.84 2.84 2.84 2.84 2.84 2.84loop2 5.66 5.66 6.29 6.29 6.29 6.29loop3 2.33 2.33 2.33 2.33 2.33 2.33loop4 2.49 2.49 2.49 2.49 2.49 2.49loop5 2.13 2.13 2.06 2.06 2.06 2.06loop6 7.05 7.05 7.05 7.05 7.05 7.05loop7 2.77 2.77 2.89 2.89 2.89 2.89loop9 3.94 4.52 3.70 3.70 3.70 3.70loop10 4.55 4.55 4.47 4.47 4.47 4.47loop11 2.12 2.12 2.12 2.12 2.12 2.12loop12 2.28 2.28 2.28 2.28 2.28 2.28loop13 4.32 4.42 4.05 3.82 3.87 3.72loop14 6.29 6.29 6.09 6.09 6.09 6.09Table B.32: Individual speedups for the ursa heuristics on architecture 6-16

145
benchmark Gursa GDursa Eursa Nursa Dursa ursabubble 2.32 2.32 2.32 2.32 2.32 2.32hanoi 1.65 1.65 1.65 1.65 1.65 1.65heapsort 2.29 2.29 2.29 2.29 2.29 2.29intmm 1.94 1.94 1.94 1.94 1.94 1.94nsieve 2.52 2.52 2.52 2.52 2.52 2.52perm 2.40 2.40 2.40 2.40 2.40 2.40puzzle 1.33 1.33 1.33 1.33 1.33 1.33queens 1.54 1.54 1.54 1.54 1.54 1.54quick 1.75 1.75 1.75 1.75 1.75 1.75loop1 2.84 2.84 2.84 2.84 2.84 2.84loop2 2.33 2.33 2.59 2.59 2.59 2.59loop3 2.33 2.33 2.33 2.33 2.33 2.33loop4 2.49 2.49 2.49 2.49 2.49 2.49loop5 2.13 2.13 2.06 2.06 2.06 2.06loop6 1.97 1.97 1.97 1.97 1.97 1.97loop7 2.77 2.77 2.89 2.89 2.89 2.89loop9 1.77 1.77 1.77 1.77 1.77 1.77loop10 2.46 2.46 2.40 2.40 2.40 2.40loop11 2.12 2.12 2.12 2.12 2.12 2.12loop12 2.28 2.28 2.28 2.28 2.28 2.28loop13 5.29 5.29 4.86 4.86 4.86 4.86loop14 2.06 2.06 1.99 1.99 1.99 1.99Table B.33: Individual speedups for the ursa heuristics on architecture 6-32

Bibliography

[AN88] Alexander Aiken and Alexandru Nicolau. A development environment for horizontalmicrocode. IEEE Trans. on Software Engineering, 14(5):584{594, 1988.[ASU86] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers, Principles, Techniques,and Tools. Addison Wesley, Reading, Massachusetts, 1986.[ATGLR93] Ali-Reza Adl-Tabatabai, Thomas Gross, Guei-Yuan Lueh, and James Reinders. Mod-elling instruction-level parallelism for software pipelining. In Proc. of IFIP WG 10.3Working Conference on Architectures and Compliation Techniques for Fine and Me-dium Grain Parallelism, pages 321{330, 1993.[AWZ88] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of values in programs.In Conf. Rec. 15th ACM Symp. on Prin. of Programming Languages, pages 1{11, 1988.[BCKT89] Preston Briggs, Keith D. Cooper, Ken Kennedy, and Linda Torczon. Coloring heuristicsfor register allocation. In Proc. of Sigplan '89 Conf. on Programming Language Designand Implementation, pages 275{284, 1989.[BCT92] Preston Briggs, Keith D. Cooper, and Linda Torczon. Rematerialization. In Proc. ofSigplan '92 Conf. on Programming Language Design and Implementation, pages 311{321, 1992.[BEH91] David G. Bradlee, Susan J. Eggers, and Robert R. Henry. Integrating register allocationand instruction scheduling for RISCs. In Proc. of 4th International Conf. on ASPLOS,pages 122{131, 1991.[BGM+89] David Bernstein, Martin C. Golumbic, Yashay Mansour, Ron Y. Pinter, Dina Q. Goldin,Hugo Krawczyk, and Itai Nahshon. Spill code minimization techniques for optimizingcompilers. In Proc. of Sigplan '89 Conf. on Programming Language Design and Imple-mentation, pages 258{263, 1989.[BMO90] Robert A. Ballance, Arthur B. Maccabe, and Karl J. Ottenstein. The program depend-ence web: A representation supporting control-, data-, and demand-driven interpreta-tion of imperative languages. In Proc. of Sigplan '90 Conf. on Programming LanguageDesign and Implementation, pages 257{271, 1990.[BR91] David Bernstein and Michael Rodeh. Global instruction scheduling for superscalarmachines. In Proc. of Sigplan '91 Conf. on Programming Language Design and Imple-mentation, pages 241{255, 1991.[Bri92] Preston Briggs. Register allocation via graph coloring. Technical Report Ph.D. Disser-tation, Department of Computer Science, Rice University, April 1992.[CAC+81] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and P. W.Markstein. Register allocation via coloring. Computer Languages, 6(1):47{58, 1981.[CH90] F. Chow and J. Hennessy. Register allocation by priority-based coloring. ACM Trans.Prog. Lang. and Systems, 12(4):501{536, 1990.[Cha82] G.J. Chaitin. Register allocation & spilling via graph coloring. In Proc. of ACM Sigplan'82 Symp. on Compiler Construction, pages 201{207, 1982.147

148[CK91] David Callahan and Brain Koblenz. Register allocation via heirachical graph coloring.In Proc. of Sigplan '91 Conf. on Programming Language Design and Implementation,pages 192{203, 1991.[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Al-gorithms. MIT Press, Cambridge, Mass., 1990.[DHB89] James C. Dehnert, Peter Y.-T. Hsu, and Joseph P. Bratt. Overlapped loop support inthe cydra 5. In Proc. of 3rd International Conf. on ASPLOS, pages 26{39, 1989.[Dil50] R. P. Dilworth. A decomposition theorem for partially ordered sets. Annuals of Math-ematics, 51:161{166, 1950.[Dow94] Chyi-Ren Dow. Pivot: A program parallelization and visualization environment. Tech-nical Report Technical Report 94-22, Ph.D. Dissertation, University of Pittsburgh,Computer Science Department, 1994.[EN89] Kemal Ebcio�glu and Alexandru Nicolau. A global resource-constrained parallelizationtechnique. In Proc. of ACM SIGARCH ICS-89: International Conf. on Supercomputing,1989.[FF65] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press,Princeton, N.J., 1965.[Fie92] Claude-Nicolas Fiechter. PDG C Compiler. University of Pittsburgh, 1992.[Fis81] Joseph A. Fisher. Trace scheduling: A technique for global microcode compaction.IEEE Trans. on Computers, C-30(7):478{490, 1981.[FOW87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependencegraph and its use in optimization. ACM Trans. Prog. Lang. and Systems, 9(3):319{349,1987.[GH88] James R. Goodman and Wie-Chung Hsu. Code scheduling and register allocation inlarge basic blocks. In Proc. of ACM Supercomputing Conf., pages 442{452, 1988.[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to theTheory of NP-Completenesss. W. H. Freeman and Co., New York, New York, 1979.[GS90] Rajiv Gupta and Mary Lou So�a. Region scheduling: An approach for detecting andredistributing parallelism. IEEE Trans. on Software Engineering, 16(4):421{431, 1990.[HD86] Peter Y.T. Hsu and Edward S. Davidson. Highly concurrent scalar processing. In Proc.of 13th Annual International Symp. on Computer Architecture, pages 386{395, 1986.[HMC+93] Wen-Mei W. Hwu, Scott A. Mahlke, William Y. Chen, Pohua P. Chang, Nancy J.Warter, Roger A. Bringmann, Roland G. Ouellette, Richard E. Hank, Tokuzo Kiyohara,Grant E. Haab, John G. Holm, and Daniel M. Lavery. The Superblock: An e�ectivetechnique for VLIW and superscalar compliation. In The Journal of Supercomputing,volume A, pages 229{248, 1993.[HP87] Wen-mei W. Hwu and Yale N. Patt. Checkpoint repair for out-of-order execution ma-chines. In Proc. of 14th Annual International Symp. on Computer Architecture, pages18{26, 1987.[Hsu87] Wei-Chung Hsu. Register allocation and code scheduling for load/store architectures.Technical Report Computer Sciences TR #722, Ph.D. Dissertation, University ofWisconsin-Madison, 1987.[JP93] Richard Johnson and Keshav Pingali. Dependence-based program analysis. In Proc. ofSigplan '93 Conf. on Programming Language Design and Implementation, pages 78{89,1993.

149[JPP94] Richard Johnson, David Pearson, and Keshav Pingali. The program structure tree:Computing control regions in linear time. In Proc. of Sigplan '94 Conf. on ProgrammingLanguage Design and Implementation, pages 171{185, 1994.[Kar72] R. J. Karp. Reducibility Among Combinatorial Problems, pages 85{103. Plenum Press,New York, 1972.[KH93] Priyadarshan Kolte and Mary Jean Harrold. Load/store range analysis for global re-gister allocation. In Proc. of Sigplan '93 Conf. on Programming Language Design andImplementation, pages 268{277, June 1993.[ME92] Soo-Mook Moon and Kemal Ebcio�glu. An e�cient resource-constrained global schedul-ing technique for superscalar and vliw processors. Technical Report Computer ScienceResearch Report RC 17962 (#78691), IBM Thomas J. Watson Research Center, York-town Heights, NY, 1992.[MGS92] Brian Malloy, Rajiv Gupta, and Mary Lou So�a. A shape matching approach forscheduling �ne-grained parallelism. In Proc. of 25th Annual International Symp. onMicroarchitecture, pages 264{267, 1992.[MLC+92] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann. E�ectivecompiler support for predicated execution using the hyperblock. In Proc. of 25th AnnualInternational Symp. on Microarchitecture, pages 45{54, 1992.[NG93] Qi Ning and Guang R. Gao. A novel framework of register allocation for softwarepipelining. In Conf. Rec. 20th ACM Symp. on Prin. of Programming Languages, pages29{42, 1993.[Nor95] Cindy Norris. Cooperative Register Allocation and Instruction Scheduling. PhD thesis,University of Delaware, May 1995.[NP93] Cindy Norris and Lori Pollock. A scheduler-sensitive global register allocator. In Proc.of Supercomputing '93, pages 804{813, 1993.[NP94] Cindy Norris and Lori L. Pollock. Register allocation over the program dependencegraph. In Proc. of Sigplan '94 Conf. on Programming Language Design and Imple-mentation, pages 266{277, 1994.[PBJ+91] K. Pingali, M. Beck, R. Johnson, M. Moudgill, and P. Stodghill. Dependence
owgraphs: An algebraic approach to program dependencies. In Conf. Rec. 18th ACMSymp. on Prin. of Programming Languages, pages 67{78, 1991.[PF92] Todd A. Proebsting and Charles N. Fischer. Probablistic register allocation. In Proc. ofSigplan '92 Conf. on Programming Language Design and Implementation, pages 300{310, 1992.[Pin93] Shlomit S. Pinter. Register allocation with instruction scheduling: A new approach.In Proc. of Sigplan '93 Conf. on Programming Language Design and Implementation,pages 248{257, 1993.[RWZ88] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and redundantcomputations. In Conf. Rec. 15th ACM Symp. on Prin. of Programming Languages,pages 12{27, 1988.[SHL92] Michael D. Smith, Mark Horowitz, and Monica Lam. E�cient superscalar performancethrough boosting. In Proc. of 5th International Conf. on ASPLOS, pages 248{259,1992.[Tar83] Robert E. Tarjan. Data Structures and Network Algorithms. Society for Industrial andApplied Mathematics, 1983.

150[WCES94] Daniel Weise, Roger F. Crew, Michael Ernst, and Bjarne Steensgaard. Value dependencegraphs: Representation without taxation. In Conf. Rec. 21st ACM Symp. on Prin. ofProgramming Languages, pages 297{310, 1994.[Whi91] Deborah Lynn Whit�eld. A unifying framework for optimizing transformations. Tech-nical Report TR 91-24, Ph.D. Dissertation, University of Pittsburgh, 1991.[WS91] Deborah Whit�eld and Mary Lou So�a. Automatic generation of global optimizers.In Proc. of Sigplan '91 Conf. on Programming Language Design and Implementation,pages 120{129, 1991.

