EFFICIENT HANDLING OF NARROW WIDTH AND

STREAMING DATA IN EMBEDDED APPLICATIONS

Bengu Li

A Dissertation Submitted to the Faculty of the
DEPARTMENT OF COMPUTER SCIENCE

In Partial Fulfillment of the Requirements
For the Degree of

DocCcTOR OF PHILOSOPHY
In the Graduate College
THE UNIVERSITY OF ARIZONA

2006

THE UNIVERSITY OF ARIZONA
GRADUATE COLLEGE

As members of the Dissertation Committee, we certify that we have read the disser-
tation prepared by Bengu Li

entitled Efficient Handling of Narrow Width and Streaming Data in Embedded Ap-
plications

and recommend that it be accepted as fulfilling the dissertation requirement for the
Degree of Doctor of Philosophy.

Date: May 25th, 2006

Rajiv Gupta

Date: May 25th, 2006

Peter Downey

Date: May 25th, 2006

Bongki Moon
Final approval and acceptance of this dissertation is contingent upon the candidate’s
submission of the final copies of the dissertation to the Graduate College.

I hereby certify that I have read this dissertation prepared under my direction and
recommend that it be accepted as fulfilling the dissertation requirement.

Date: May 25th, 2006
Dissertation Director: Rajiv Gupta

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an
advanced degree at The University of Arizona and is deposited in the University
Library to be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission,
provided that accurate acknowledgment of source is made. Requests for permission
for extended quotation from or reproduction of this manuscript in whole or in part
may be granted by the head of the major department or the Dean of the Graduate
College when in his or her judgment the proposed use of the material is in the interests
of scholarship. In all other instances, however, permission must be obtained from the
author.

SIGNED: BENGU L1

ACKNOWLEDGEMENTS

My special thanks go to my adviser, Prof. Rajiv Gupta. His motivating encourage-
ment was important when I started on this work. During the years in pursuing my
degree, his guidance helped me catch the ideas and develop the solutions. He also
taught me how to express an idea, especially in writing. I learnt a lot from him. I
thank him for his continuous support. Without his guidance, this dissertation would
never be completed.

I am also grateful for other committee members, Prof. Peter Downey and Prof.
Bongki Moon, for carefully reading a draft of the dissertation and pointing out many
mistakes and suggesting many improvements.

I also thank many office-mates, with whom I had great discussions on ideas and
technical problems. They are Youtao Zhang, Jun Yang, Wen-Ke Chen, Xiangyu
Zhang, Arvind Krishnaswamy, Sriraman Tallam, Vijayanand Nagarajan and Mohan
Rajagopalan.

Finally I want to especially thank my wife Xialing for her unconditional support

during these years.

TABLE OF CONTENTS

LiST OF FIGURES i it 8
LiST OF TABLES i e e 10
ABSTRACT o i ittt s e e e 11
CHAPTER 1. INTRODUCTION i vttt e et 12
1.1. Narrow Width Data 13
1.2. Streaming Data L Lo 15
1.3. Overview of the Dissertation 18
1.4. Organization L e 19
CHAPTER 2. A STUuDY OF NARROW WIDTH DATA 21
2.1. Narrow Width Data in Embedded Applications 21
2.2. Maximum Observed Bitwidth 22
2.3. Dynamic Variations in Bitwidtho 0. 25
24. Related worko 29
2.5, Summaryo e 30
CHAPTER 3. AN INSTRUCTION SET EXTENSION FOR NARROW WIDTH DATA 32
3.1. Bit Section eXtensions (BSX)o 33
3.1.1. Bit Section Descriptors 33

3.1.2. Bit Section Addressing Modes 34

3.1.3. Bit Section Instructions and their Encoding 36

3.1.4. BSX Implementation 40

3.2. Generating BSX ARM Code 41
3.2.1. Fixed Unpacking 41

3.2.2. Fixed Packing oL 43

3.2.3. Dynamic Unpacking 44

3.2.4. Dynamic Packing 00000 46

3.3. Experimental Evaluation 47
3.3.1. Experimental Setup 47

3.3.2. Results. 48

3.4. Related Work oo 49

3.5, Summary ... Lo 53

TABLE OF CONTENTS— Continued

CHAPTER 4. REGISTER ALLOCATION EXPLOITING NARROW WIDTH DATA 54

4.1. The Challenges of Bitwidth Aware Register Allocation 95
4.2. Register Allocation in the GCC Compiler 59
4.3. Static Subword Register Allocation 61
4.4. Architectural Support for Speculative Subword Register Allocation . 65
4.4.1. Register File Enhancement 65
4.4.2. New Instructions L L. 66
4.4.3. Hardware Implementation 68

4.5. Compiler Algorithm for Speculative Subword Register Allocation. . . 69
4.5.1. The Framework 69
4.5.2. Priority-Based Speculative Allocation 70
45.3. ProfilingPasso o oL 73
4.5.4. Speculative Reload Pass 74

4.6. Experimental Results, 75
4.6.1. Benchmarks, 76
4.6.2. Avoided Spill Cost Lo 76
4.6.3. Performance Lo 79

4.7. Related Worko 81
4.8, Summary e e 82

CHAPTER 5. AN OFFSET ASSIGNMENT METHOD EXPLOITING NARROW

WIDTH DATA o e 83
5.1. SubWord Offset Assignment 85
5.2. Algorithms. 93
5.2.1. Alg. I - Cover First, Coalesce Later 94
5.2.2. Alg. II - Coalesce First, Cover Later 98
5.2.3. Alg. III - Integrated Covering and Coalescing 102
5.2.4. Further Extensions 106

5.3. Experimental Results, 108
5.4. Related Work 113
D.5. Summaryo 114
CHAPTER 6. A STUDY OF STREAMING DATA 115
6.1. Streaming Data vs. Utility Data 115
6.2. Measurement of Streaming Data 117
6.3. Summary 122

CHAPTER 7. ENERGY-EFFICIENT CACHES FOR NETWORK PROCESSORS . 123
7.1. Selective Cache 125
7.2. Computation Reuse Cache 128

TABLE OF CONTENTS— Continued

7.3. Using Fetch Gating L. 130
7.4. Experimental Evaluation 000000 133
7.4.1. Cache Behavior L0000 134
7.4.2. Fetch Gating and Energy Savings 135

7.5. Related Work 137
7.5.1. Locality and Caching in Network Processors 137
7.5.2. Instruction Reuse L oL 138
7.5.3. Clock and Fetch Gating 139

7.6. Summary oo 141
CHAPTER 8. CONCLUSIONS . . . ¢ . v v e vttt e e e e e 143
8.1. Contributions 143
8.2. Future Directions Lo Lo 146

REFERENCES o o o o o i o s i et e et s s s s s, 148

FIGURE 2.1.

Bitwidth in Bits for Benchmark adpcm decode

FIGURE 2.2.

2, 3, and 4 Bytes

FIGURE 2.3.
FIGURE 2.4.

than 16

FIGURE 2.5.

Li1sT OF FIGURES

Cumulative Percentage of Register Operands with Maximum
Percentage of Register Operands with Maximum Bitwidth of 1,
Average Maximum Bitwidth of Register Operands
Percentage of Register Operands with Maximum Bitwidth Less

Cumulative Number of Register Operand Instances with Dy-

namic Bitwidth in Bits for a Selected Register Operand in Benchmark

adpcm decode

FIGURE 2.6. Percentage of Register Operand Instances with Dynamic Bitwidth

within 25%, 50%, 75%, and 100% of Maximum Bitwidth

FIGURE 2.7.

Average Dynamic Bitwidth of Register Operand Instances . . .

FiGURE 2.8. Percentage of Register Operand Instances with Dynamic Bitwidth

Less than 16

FIGURE 2.9.

Dynamic Bitwidth Averaged over Register Operands

F1GURE 2.10. Percentage of Register Operands with Average Dynamic Bitwidth

Less than 16

FIGURE 3.1.
FIGURE 3.2.

a Percentage of Total

FiGURE 3.3.
FIGURE 3.4.
FIGURE 3.5.
FIGURE 3.6.

FIGURE 4.1.
FIGURE 4.2.
FIGURE 4.3.
FIGURE 4.4.
FIGURE 4.5.
FIGURE 4.6.
FIGURE 4.7.
FIGURE 4.8.
FIGURE 4.9.

FIGURE 4.10.
FIGURE 4.11.
FIGURE 4.12.

Register Bit Section Descriptors
Dynamic Instructions Count of Selected Instructions for BSX as
BSX Instruction with Immediate BSD (First Variation)

BSX Instruction with Immediate BSD (Second Variation)

BSX Instruction with Immediate BSD (Third Variation)
BSX Instruction with Register BSD

Bitwidth Aware Register Allocation.
An Example of Static Subword Register Allocation
The Framework for Static Subword Register Allocation.

The Compiler Algorithm of Static Subword Register Allocatlon
Interference Graphs in Static Subword Register Allocation . . .
Accessing Register R as a Source Operand
An Example of Speculative Subword Register Allocation
Hardware Implementation
The Framework of Speculative Subword Register Allocation. . .
Interference Graphs in Speculative Subword Register Allocation
Avoidance of Spill Cost (Cache, Speculative)
Performance Improvement in Cycles (Non-cache)

22

23
24

24

25

26
27

27
28

29
36

37
37
38
38
39

o6
62
62
63
64
65
67
68
69
71
78
80

LisT OF FIGURES— Continued

FIiGURE 5.1.
FIGURE 5.2.
FIGURE 5.3.
FIGURE 5.4.
FIGURE 5.5.
FIGURE 5.6.
FIGURE 5.7.
FIGURE 5.8.
FIGURE 5.9.
Fi1GURrE 5.10.
FiGuRre 5.11.
FIiGURE 5.12.

FIGURE 6.1.
FIGURE 6.2.
FIGURE 6.3.

FIGURE 7.1.
FIiGURE 7.2.
FIiGURE 7.3.
FIGURE 7.4.

Simple Offset Assignment (SOA) 87
SubWord Offset Assignment (SWOA) 88
Positive Coalescence 91

Negative Coalescence 91

An Exampleof Alg. I oo 96
Alg. I - Cover First, Coalesce Later. 97
Motivating Example of Alg. I 99
Local subgraph: Path Cover before and after Coalescing 100
Alg. II - Coalesce First, Cover Later. 101
Right Amount of Coalescing 103
Integrated Coalescing oL L. 105
Alg. IIT - Integrated Covering and Coalescing 107
Streaming Data vs. Utility Data 118
Short Lifetime 118
Frequently Observed Values 121
Selective Cache 126
Timeline of Selective Cache 127
Timeline of Computation Reuse Cache 131
Network Router with Fetch Gating (F-G) logic 132

TABLE 1.1.
TABLE 1.2.

TABLE 3.1.
TABLE 3.2.
TABLE 3.3.

TABLE 4.1.
TABLE 4.2.
TABLE 4.3.

TABLE 5.1.
TABLE 5.2.
TABLE 5.3.

TABLE 6.1.
TABLE 6.2.
TABLE 6.3.

TABLE 7.1.
TABLE 7.2.
TABLE 7.3.
TABLE 7.4.
TABLE 7.5.

Li1sT OF TABLES

Data Decomposition in Embedded Applications.
Streaming Nature vs. Utility Data in Embedded Applications . .

Reduction in Dynamic Instruction Counts
Reduction in Dynamic Cycle Counts
Reduction in Code Size

Benchmark Characteristics.
Avoidance of Spill Cost (Non-cache)
Performance Improvement in Cycles (Speculative, Cache)

Reduction in Static Code Size
Reduction in Stack Frame Size
Reduction in Dynamic Instruction Count

Application Properties
Packet Stream Characteristics
Average Unique Reuse Distance.

Application Properties

Selective Cache Hit Rate
Computation Reuse Cache Hit Rate
Program Behavior with Selective Cache
Program Behavior with Computation Reuse Cache

10

11

ABSTRACT

Embedded environment imposes severe constraints of system resources on embedded
applications. Performance, memory footprint, and power consumption are critical
factors for embedded applications. Meanwhile, the data in embedded applications
demonstrate unique properties. More specifically, narrow width data are data repre-
sentable in considerably fewer bits than in one word, which nevertheless occupy an
entire register or memory word and streaming data are the input data processed by
an application sequentially, which stay in the system for a short duration and thus
exhibit little data locality. Narrow width and streaming data affect the efficiency of
register, cache, and memory and must be taken into account when optimizing for
performance, memory footprint, and power consumption.

This dissertation proposes methods to efficiently handle narrow width and stream-
ing data in embedded applications. Quantitative measurements of narrow width and
streaming data are performed to provide guidance for optimizations. Novel architec-
tural features and associated compiler algorithms are developed. To efficiently handle
narrow width data in registers, two register allocation schemes are proposed for the
ARM processor to allocate two narrow width variables to one register. A static scheme
exploits maximum bitwidth. A speculative scheme further exploits dynamic bitwidth.
Both result in reduced spill cost and performance improvement. To efficiently han-
dle narrow width data in memory, a memory layout method is proposed to coalesce
multiple narrow width data in one memory location in a DSP processor, leading to
fewer explicit address calculations. This method improves performance and shrinks
memory footprint. To efficiently handle streaming data in network processor, two
cache mechanisms are proposed to enable the reuse of data and computation. The
slack created is further transformed into reduction in energy consumption through a

fetch gating mechanism.

12

CHAPTER 1
INTRODUCTION

An embedded system is a special-purpose system in which the computer is completely
encapsulated by the device it controls [1]. Embedded systems have been widely de-
ployed in recent years. They affect many aspects of human life (e.g., from personal
media players and cellphones to mobile computing devices and network routers, etc.).
As essential components of an embedded system, the embedded processor and the
embedded application face severe constraints of system resources imposed by the em-
bedded environment, such as time (e.g., soft /hard real-time requirements), hardware
(e.g., small memory size, precious CPU bandwidth, no external storage), and power
supply (e.g., battery, power dissipation). As a result, performance, memory footprint,
and power consumption become critical factors in designing embedded processors and
embedded applications.

Embedded workloads exhibit behavior significantly different from that of general
purpose workloads. In particular, the properties of the data processed by embedded
applications are significantly different. Typical embedded applications routinely pro-
cess streams of formatted data. Studies of the data reveal the presence of narrow
width data and streaming data in these applications. Narrow width data are data
representable in considerably fewer bits than in one word, which nevertheless occupy
an entire register or memory word. Streaming data are the input data processed
by an application sequentially, which stay in the system for a short duration and
thus exhibit little data locality. These properties affect the efficiency with which the
components of a processor (e.g., register, cache, and memory) function. Therefore
narrow width and streaming data must be taken into account when optimizing for

performance, memory footprint, and power consumption for embedded systems. This

13

dissertation proposes methods to efficiently handle narrow width data and streaming

data in embedded applications.

1.1 Narrow Width Data

Embedded applications often work on narrow width data. Narrow width data are data
representable in considerably fewer bits than in one word, which nevertheless occupy
an entire register or memory word. Narrow width data lead to inefficient utilization
of system resources.

Narrow width data are common in embedded applications. This is primarily
because the input/output data processed by embedded applications contain a large
amount of narrow width data. For example, in network applications there are many
narrow width fields in packet headers and in media applications there are many small
data values in data frames. Narrow width data also come from variables or data
structures used by both embedded applications and general purpose applications,
such as character and boolean variables.

Narrow width data lead to inefficient utilization of system resources. First, they
lead to severe underutilization of registers. When narrow width data are present in
registers, many high bits in the registers are actually not needed in the computation.
However, with current architecture design, a narrow width data item occupies a
whole register word when the instructions are executed. Second, narrow width data
result in bloated memory footprint when they reside in memory. Since memory is a
precious system resource, using an entire memory word to store one narrow width
data item results in an inefficient use of memory. Third, narrow width data also cause
performance degradation when unpacking operations are needed to extract narrow
width data from the input and additional operations are required to pack the narrow
width data into the output.

Table 1.1 shows application behaviors related to narrow width data for selected

14

TABLE 1.1. Data Decomposition in Embedded Applications

Benchmark

Description

adpcm codec

A stream of 16-bit PCM codes is converted to 4-bit ADPCM
codes and vice versa. Inside the algorithm, codes are even
further decomposed into sign bit, magnitude, difference, etc.

| peg codec

A stream of 24-bit RGB format of pixels is decomposed into
three colors of 8-bit each. These colors are used to compute
the 8-bit brightness, two types of 8-bit chrominance
coefficients. Images are divided into 8x8 MCUs. Discrete
Cosine Transform converts the MCUs into a matrix of 12-bit
per element. After quantization and trophy encoding, the data
is output in a format of header with many narrow width fields
and compressed data.

npeg2 codec

A stream of video frame data in a hierarchy organization
consisting of video sequence, GOP, picture, slice, macro-block,
block and pixel. Each level has a header with many narrow bit
fields. The pixels are decomposed into 8-bit magnitude and two
types of 8-bit chrominance coefficients. After inter-frame and
intra-frame compression, the result is generated still in the
format of header with many narrow width fields and
compressed data.

i p | ookup

A stream of IP packets with packet header and payload is
decomposed into many narrow width field. The 32-bit IP
destination field is further decomposed into 4-bit or 8-bit
segments to lookup in the routing table.

nat | ookup

A stream of IP packets with packet header and payload
containing TCP packet is decomposed into many narrow width
field. The destination IP address and TCP port are used to
look up in the port mapping table for incoming traffic. The
source IP address and TCP port are used to look up in the
port mapping table for outgoing traffic. These fields are
further decomposed into 4-bit or 8-bit segments during

lookup.

packet
classification

A stream of IP packets with packet header and payload
containing TCP packet is decomposed into many narrow width
field. The source and destination IP address and TCP ports
and protocol field are used to classify the packets into flows
based on classification table. The address and port fields

are further divided into 4-bit or 8-bit segments during
processing. Protocol field itself is 4-bit.

15

benchmarks taken from embedded benchmark suites of Mediabench [28], Comm-
bench [50] and Intel IXP Workbench [2]. Mediabench benchmark suite consists of a
set of applications which focus on media processing. Commbench benchmark suite
consists of a set of applications which focus on networking and communication pro-
cessing. Intel IXP Workbench is a set of network processing benchmarks on Intel IXP
network processor.

In these applications, the input data units are often decomposed into many smaller
narrow width data items before processing. These narrow width data may exist during
the whole processing cycle. After processing, the results, which are often also narrow
width data, may need to be packed back into the output data units.

In presence of narrow width data, it is a challenge to find solutions that improve
the efficiency of register and memory usage. Performance that is degraded because

of narrow width data is also an important issue.

1.2 Streaming Data

Embedded applications are often streaming applications which contain a main pro-
cessing loop, in which one iteration of the loop processes one unit of data. For exam-
ple, in program adpcm codec from Medi abench, one loop iteration processes one
unit of Pulse Code Modulation (PCM) code. This type of application often works
on streaming data. Streaming data are the input data processed by an application
sequentially, which stay in the system for a short duration and thus exhibit little data
locality.

There are two reasons for this phenomenon. Loops in embedded applications
process consecutive data items in consecutive iterations. The amount of processing
within one loop iteration is limited and hence little locality is observed due to lack of
reuse of data. The locality across loop iterations is also often absent because different

loop iterations process different data items.

16

Streaming data leads to degradation of overall data locality in an application.
In a typical streaming application, the memory accesses to data can be classified
into two categories. One is streaming data which are processed sequentially, such as
network packets, audio and video data frames. The other is utility data which come
from application-specific data structures required for processing streaming data, such
as routing tables, etc. Within one loop iteration, utility data also show little data
locality because of a limited amount of processing and reuse. Across consecutive
loop iterations, utility data may demonstrate high locality since the same part of the
data can be accessed repetitively (e.g., same routing table entries may be referenced
separately in IP Lookup application). When the memory accesses to streaming data
and utility data are mixed, overall data locality is reduced. Although within one loop
iteration the number of accesses to each type of data can be small, nevertheless across
consecutive loop iterations they both occupy a significant percentage of total number
of memory accesses. The same fields in different streaming data units often contain
the same values and thus exhibit value locality. This leads to redundant memory
accesses to utility data and also redundant computation sequences.

Table 1.2 shows in more detail, for selected streaming applications, how streaming
data and utility data are accessed. In these applications, each loop iteration processes
one unit of input data. Within each loop iteration, input data are read before pro-
cessing, and output data are written after processing. Different memory references
to streaming data usually access different portions of the data and thus show little
temporal locality within one loop iteration. At the same time, utility data are also
accessed during processing.

Streaming data pose a big challenge to the efficiency of the data cache. With
degraded data locality, the data cache cannot be used efficiently. Streaming data
pollute the data cache. Intel IXP 1200 network processor does not include a cache in
its microengine core, because with low data locality, cache cannot be efficiently used

to improve the performance or the throughput [9].

17

TABLE 1.2. Streaming Nature vs. Utility Data in Embedded Applications

Benchmark

Description

adpcm codec

One loop iteration processes one unit of PCM code. Within
each loop iteration, there are two memory references to
streaming data, including one read from the input buffer
and one write to the output buffer. Within each loop
iteration, there are two memory references to utility

data, including one read from index table and one read
from step size table.

j peg codec

One loop iteration processes one one full MCU row. Within
each loop iteration, a significant part of memory

references are used to read in the image data within the
MCU row from input buffer and write the compressed data
to output buffer. These reads and writes access different
part within one row. Another significant part of memory
references are used to access utility data used in DCT
transformation, quantization and trophy encoding such as
the DC entropy table.

npeg2 codec

One loop iteration processes one video frame. Within each
loop iteration, a significant part of memory accesses are
used to read in the data in video frame from input buffer
and write compressed data to output buffer. These reads
and writes access different part of within the frame.
Another significant part of memory references are used to
access utility data used in compression such as the DCT
table.

i p | ookup

One loop iteration finds the nexthop information for one

IP packet. Within each loop iteration, there is one SDRAM
read of destination field in packet header. Within each

loop iteration, there may be up to five SRAM reads of
routing table.

nat | ookup

One loop iteration translates the source IP address and
TCP port for one IP packet. Within one loop iteration,
there are two SDRAM reads of address and port fields in
packet header. Within each loop iteration, there may be
up to six SRAM reads of port-mapping table.

packet
classification

One loop iteration identifies the flow ID for one IP
packet. Within each loop iteration, there are three
SDRAM reads of address, port and protocol fields in the
packet header. Within each loop iteration, there may be
up to thirteen SRAM reads of classification table.

18

1.3 Overview of the Dissertation

This dissertation tackles the problems caused by narrow width data and streaming
data in embedded applications. New architectural features are introduced and asso-
ciated compiler algorithms are developed to address the problems. These techniques
lead to optimizations in critical factors in embedded applications such as performance,
memory footprint, and power consumption.

Narrow width data are manipulated efficiently by packing multiple narrow width
data items into one register or memory word. Using register allocation and memory
layout methods, the problems of underutilization of registers and the underutiliza-
tion of memory and performance degradation are addressed. Streaming data are
handled efficiently by providing cache mechanisms which enable reuse of utility data
or computation sequence. This in turn is transformed into the reduction of energy

consumption. This dissertation makes the following contributions:

o Measurement of Narrow Width and Streaming Data in Embedded Applications
Quantitative measurements of the presence and properties of narrow width and
streaming data are performed for typical embedded applications from bench-
mark suites of Mediabench and Commbench. The measurements provide guid-
ance in developing mechanisms to efficiently handle narrow width and streaming

data.

e An Instruction Set Ertension for Narrow Width Data
An instruction set extension for the ARM processor is proposed to manipulate
narrow width data directly. The cost of packing and unpacking operations can

be reduced using this instruction set extension.

o Efficient Handling of Narrow Width Data in Registers
Two register allocation schemes are proposed to efficiently handle narrow width

data in registers in an ARM processor. The algorithms allocate two narrow

19

width variables to one register. A static scheme determines an assignment of
narrow width variables based on maximum bitwidth information. To exploit
more optimization opportunities, a speculative register allocation scheme allo-
cates into one register two narrow width variables that can be packed together
most of the time. Performance improvement is achieved through avoidance of

register spills because of the reduction in register pressure.

e FEfficient Handling of Narrow Width Data in Memory
A memory layout scheme is proposed to coalesce multiple narrow width data in
one memory location in a DSP processor. Memory footprint can therefore be
shrunk. Furthermore, performance is improved. With this coalescing, explicit
address calculation operations are reduced, by using a DSP specific addressing

mode of address register autoincrement/autodecrement.

o Energy-efficient Cache for Network Processor Ezrploiting Streaming Data
Two energy-efficient cache mechanisms are proposed to reduce energy-consumption
on the Intel IXP1200 network processor by exploiting streaming data. The
caches are designed to exploit the value locality of streaming data to reduce the
redundancy in computation or memory accesses to utility data. This amelio-
rates traditional cache problem that is not effective for a network processor due
to a balanced design and low temporal locality in streaming data. The caches
create slack in the processing schedule, which is transformed into reduction in

energy-consumption through a fetch gating mechanism.

1.4 Organization

The rest of the dissertation is organized as follows. In Chapter 2, a study of narrow
width data in embedded applications is performed. In Chapter 3, an instruction

set, extension of the ARM processor, which directly manipulates narrow width data,

20

is introduced. In Chapter 4, register allocation schemes for narrow width data in
ARM processors are proposed. In Chapter 5, a memory layout scheme of narrow
width data for a DSP processor is presented. In Chapter 6, a study of streaming
data in network processing applications is performed. In Chapter 7, energy-efficient
cache mechanisms exploiting streaming data in a network processor are proposed. In
Chapter 8, a summary of the contributions of this work are provided, together with

discussions of future work.

21

CHAPTER 2
A STuDY OF NARROW WIDTH DATA

In this chapter, a study of narrow width data in embedded applications is presented.
Section 2.1 discusses the causes, formats, and consequences of narrow width data
in embedded applications. Statistics are collected to demonstrate the prevalence of
narrow width data in embedded applications and presented in Sections 2.2 and 2.3.
In Section 2.4, related work is discussed. In Section 2.5, observations based upon
this study are made that will guide the development of architectural and compiler

optimizations presented in subsequent chapters.

2.1 Narrow Width Data in Embedded Applications

Narrow width data exist in a wide range of applications. Brooks et al. [10] observe
that even in general purpose applications such as SPEC95, narrow width data widely
exist. This is not surprising since many of these applications have remained the same
while the general purpose systems have evolved from 16-bit to 32-bit to 64-bit. For
example, no matter what the word size is, a boolean variable only needs one bit to
represent. In embedded applications, the above situation is even more commonplace.
As mentioned in the previous chapter, applications like media or network processing
have the feature of working on large amount of narrow width data. The presence of
these narrow width data together with narrow width data found in all applications
comprise the source of narrow width data in embedded applications. Narrow width
data are observed at different points across the memory hierarchy of an embedded
system. It exists in registers which causes the inefficient usage of registers. It exists
in memory which leads to a larger memory footprint than necessary. It exists in the

data cache which results in poor utilization of cache. If the input/output data are in

22

packed form, extra operations are required to unpack/pack them. All these factors
have a negative influence on the critical optimization goals in an embedded system

—high performance, small memory footprint, and low power consumption.

2.2 Maximum Observed Bitwidth

To quantify the prevalence of narrow width data in embedded systems, an experi-
mental study of typical media processing and network processing applications was
performed. In the previous chapter, the existence of narrow width data has been
analyzed. Here a profile-based study shows in more detail the maximum effective
bitwidth of register operands in embedded applications. Maximum effective bitwidth
of a register operand refers to the maximum value of effective bitwidth of any instance
of the register operand at runtime. For convenience, maximum bitwidth is used to
refer to the above. Maximum bitwidth is an approximation of static bitwidth. Typi-
cal media and networking applications are taken from Mediabench or Commbench in

this study.

Figure 2.1 Cumulative Percentage of Register Operands with Maximum Bitwidth
in Bits for Benchmark adpcm decode

/
/_J

0]
o

N
o

Operands with

Maximum Bitwidth (%)
)}
o

N
o

o

0O 4 8 12 16 20 24 28 32
Bitwidth

The cumulative percentage of register operands with maximum bitwidth measured

in bits for benchmark adpcm decode is shown in Figure 2.1. This benchmark has

23

nearly 20% of the register operands as one bit. This is because during processing
many sign bits are generated and many boolean variables are used. As the bitwidth
grows to 16 bits, the percentage increases to about 50%. In other words, more than
half of bits in the registers are never used for almost half of the register operands.
This fact tells us that the degree of narrow width data is significant. The percentage
grows slightly when the bitwidth is in the range of 16 bits to 24 bits. It is followed by
a big jump of about 20% at 26 bits. This is due to heap and stack references. Finally
there are more than 20% of register operands using the whole register. The following
figures further show that for all the benchmarks studied, the degree of narrow width
data is significant.

Figure 2.2 shows the percentage of register operands with maximum bitwidth of
1, 2, 3, and 4 bytes for a set of benchmarks. All benchmarks have 30% to 40% of
the register operands with maximum bitwidth of less than one byte and about 50%
with maximum bitwidth of less than two bytes. It is interesting to note that for all
benchmarks the percentage grows very little for maximum bitwidth of less than three

bytes, but there is a big increase for maximum bitwidth of less than four bytes.

Figure 2.2 Percentage of Register Operands with Maximum Bitwidth of 1, 2, 3, and
4 Bytes

100%
g sovoH H H H H H H H F
££
§,§ 60% H — H H—H ——+— — —H -
= & =
55 40% -
SE
x
£ 20%
0% -

S * * * 3 S]
@Qo" engp Qooo &oo K \)QQ,Q & b\Q
Qé(\l Qé« g
& & © ®

Benchmarks

W1 Byte B2 Bytes O3 Bytes 04 Bytes

24

Figure 2.3 shows the average maximum bitwidth of all register operands for a set
of benchmarks. For all benchmarks, the average maximum bitwidth falls in the range
of 16 bits to 18 bits. Figure 2.4 emphasizes the percentage of register operands whose
maximum bitwidth is less than 16 bits. For all benchmarks, this percentage is about
50%. This significant fact implies that there exists a great opportunity to pack two

data with maximum bitwidth of less than 16 bits into one 32-bit register.

Figure 2.3 Average Maximum Bitwidth of Register Operands
32

28

24

20

wHHHHHTHH -

of Operands

2H MR

S — 4 H H—H +—

Average Maximum Bitwidth

4-—H 4= ——H ——H M M H - —

4 (2 < (2 R RY
S S ¥ g & & &P
¥ &

Benchmarks

Figure 2.4 Percentage of Register Operands with Maximum Bitwidth Less than 16

100
eS80
s
% S
c
S8 60
c - S —
E=N"} M
=
9 40 H H
2 s
g3
g2
Om 20 —
0 -
PP S
Q{\o 6Q}(Jo 000 zoo X é‘zQ &S 6\Q
Q{(\ 0(&\ /\q/'\/ ,\‘1,'\'
N N S

Benchmarks

25

2.3 Dynamic Variations in Bitwidth

Even if the required maximum bitwidth is allocated to the variables, there still exists
a significant amount of underutilization of the bits at runtime. It is possible that
the following case arises. The maximum bitwidth is used only once. During most of
the runtime only a portion of the bitwidth is used. There are several reasons leading
to this underutilization. The actual operand bitwidth may be very dependent on
the input data which is unknown at compile time. Even with fixed input data, the
bitwidth may vary across different loop iterations of the program execution. This
dynamic information cannot be revealed by a static bitwidth study. To show what
really happened to the operand bitwidth during runtime, a study of the dynamic
bitwidth of register operands is performed. Dynamic bitwidth refers to the value of

the bitwidth of one instance of the register operand at runtime.

Figure 2.5 Cumulative Number of Register Operand Instances with Dynamic
Bitwidth in Bits for a Selected Register Operand in Benchmark adpcm decode

20
e
gg 16
2%
=5 12
g o /
[T
5S¢ g
S
5= /
£3 4
2
0 T T T T T T T T T T T T T T

Bitwidth

To appreciate the difference of dynamic bitwidth and maximum bitwidth, first
a register operand is randomly selected in the benchmark adpcm decode and the
cumulative number of register operand instances with dynamic bitwidth measured
in bits for this register operand is shown in Figure 2.5. In this figure, the register

operand has a maximum bitwidth of 15 bits. There are 20 instances of this register

26

operand in total. Among the 20 instances, there is only one instance using 15 bits
but 15 instances using less than 9 bits. This implies there may exist a significant
difference between the values of maximum and dynamic bitwidth.

This phenomenon exists in all the benchmarks studied. Figure 2.6 shows the
percentage of register operand instances whose dynamic bitwidth is less than 25%,
50%, 75%, and 100% of the maximum bitwidth of the corresponding register operand.
Take cj peg for example. More than 20% of the dynamic register operand instances
use less than 25% of the maximum bitwidth, 30% use less than 50% of the maximum

bitwidth and almost 50% use less than 75% of the maximum bitwidth.

Figure 2.6 Percentage of Register Operand Instances with Dynamic Bitwidth within
25%, 50%, 75%, and 100% of Maximum Bitwidth

100%

E=Re

=S 80% A

n c

O =

o T

£ 60%-

ik

So 40% A

= 04

§5 20%
0% -

N R N S CRESCRERN
g K K R

Benchmarks

W 0%-25% W 25%-50% 050%-75% 075%-100%

Figure 2.7 shows the average dynamic bitwidth over all register operand instances
for a set of benchmarks. The average dynamic bitwidth varies from 10 bits to 14 bits.
Compared to the average maximum bitwidth, which varies from 16 bits to 18 bits in
Figure 2.3, the average dynamic bitwidth is significantly smaller.

Figure 2.8 shows the percentage of register operand instances whose dynamic
bitwidth is less than 16 bits. Observe that from 65% to more than 80% of the register
references have dynamic bitwidth of less than 16 bits. This is significantly higher than

the corresponding number for maximum bitwidth (around 50% shown in Figure 2.4).

27

Figure 2.7 Average Dynamic Bitwidth of Register Operand Instances
32

28
24
20
16
12

Average Dynamic Bitwidth
of Operand Instances

< @ e 4 Y Y S S
& > & S & &Q\ é\Qe L

Benchmarks

Figure 2.8 Percentage of Register Operand Instances with Dynamic Bitwidth Less
than 16

100

80

60

40

Bitwidth Less than 16 (%)

20

Operand Instances with Dynamic

0
F ¥ ¥ OoF ¥ H D
0000 e)Q’(Jo & &oo NN
& &y Y
g8

Benchmarks

28

The above observations show that there is a big gap between maximum bitwidth and
average dynamic bitwidth. Optimization techniques that are based upon maximum
bitwidth do not take advantage of this phenomenon.

Another observation is that the streaming data processed by these applications
show a higher narrow width property than utility data. Figure 2.9 shows the maxi-
mum, average, and minimum dynamic bitwidth of a register operand averaged over
all register operands. Figure 2.10 shows the percentage of register operands whose
average dynamic bitwidth is less than 16. The difference between these two figures
and Figures 2.7 and 2.8 is that the data in the latter figures are not weighted by the
number of register operand instances. Observe that Figure 2.7 and Figure 2.8 show
much higher narrow width property than these two figures. This means that those
register operands within the processing loops that have a large number of instances,

demonstrate a higher narrow width property.

Figure 2.9 Dynamic Bitwidth Averaged over Register Operands

32
28
0
o 24
w— C
°cs 20
E %]
SE 16 A
£
a8 127
2 gl
(e}
4 -
0
& 2 & & O & D O
,0(\00 &,100 QS‘(’O 6Q‘00 R (\Q'Q O N
& & iy
& & ® ®
Benchmarks
B Maximum W Average OMinimum

The data in this section show an opportunity for a compiler and/or an architec-
ture optimization to exploit narrow width data by using register allocation based on

dynamic bitwidth.

29

Figure 2.10 Percentage of Register Operands with Average Dynamic Bitwidth Less
than 16

100

80

60 =

OHHHHHHHH F

20HHHHHHH H F

Operand Instances with Average
Dynamic Bitwidth Less than 16 (%)

Benchmarks

2.4 Related work

Several researchers have studied the presence of narrow width data in different kinds
of applications. Brooks et al. [10] study the availability of narrow width instruction
operands in SPEC95 in a 64-bit Alpha-like processor. Their study shows that roughly
50% of the dynamic instructions have both operands of less than or equal to 16 bits
and that the percentage of instructions that have both operands of less than or equal
to 32 bits is slightly higher. This demonstrates that narrow width data exist in general
purpose applications. While their study focuses on general purpose applications, the
study in the present chapter measures narrow width data in embedded applications.
The latter shows that about 60% to 80% of register operand instances are less than
or equal to 16 bits in a 32-bit processor. The comparison between the above obser-
vations concludes that there are significantly more narrow width data in embedded
applications than in general purpose applications. A more recent study is provided
by Pokam et al. [40]. They study narrow width data in Powerstone benchmark in a
32-bit, RISC-like processor. They show that narrow width data exhibit a property of

bitwidth convergence at the granularity of basic blocks. This means that many basic

30

blocks do not encounter operands with bitwidth more than certain value. The study
in the present chapter show that narrow width data are commonplace in embedded
applications and more importantly the difference between the maximum and dynamic
narrow width data is significant.

Some other researchers have studied the prevalence of narrow width data through
static bitwidth analysis. Budiu et al. [11] provide such an algorithm called BitValue.
It uses forward and backward data flow analysis similar to a generalization of con-
stant folding and dead-code detection at the bit-level. They applied this algorithm
on benchmarks such as SPECINT95 and Mediabench. They found that about 31% of
bytes are never used regardless of what the input data are. An even earlier bitwidth
analysis algorithm is provided by Stephenson et al. [45]. They treat the bitwidth anal-
ysis problem as a value-range propagation problem and also use a bi-directional data
flow analysis. They study media processing related benchmarks for silicon compila-
tion. Their results show many of the bits are not needed. Gupta et al. [23] provide a
representation of programs that makes it easy to reason about subword data entities.
Tallam et al. [47] provide an algorithm which can analyze the bitwidth information
for live ranges of variables at any program point by eliminating leading and trail-
ing zero and dead bits. All these papers use compile-time analysis techniques. The
study in the present chapter does not provide another static analysis technique. In-
stead, profiling is used to determine the maximum and dynamic bitwidth of register
operand. This study demonstrates that there are significantly more dynamic narrow

width data than static narrow width data.

2.5 Summary

In this section, the prevalence of narrow width data in embedded applications is
quantitatively measured. This study reveals that there exists a significant amount

of static and dynamic narrow width data. This study shows great promise for both

31

compiler and architectural techniques to optimize registers and memory utilization by
exploiting narrow width data. The study yields the following important observation.
It is not enough to exploit only static narrow width data. A technique that exploits

dynamic narrow width data is expected to bring more benefits.

32

CHAPTER 3

AN INSTRUCTION SET EXTENSION FOR
NARROW WIDTH DATA

In previous chapters, it was shown that narrow width data are commonplace in em-
bedded applications. However, existing architectures have weak ability to expose
bitwidth information to a compiler. Thus a compiler is not able to provide optimiza-
tion techniques that efficiently handle narrow width data. The first step towards
efficient exploiting narrow width data is to extend an existing architecture with the
ability to manipulate narrow width data directly so that multiple narrow width data
are allowed to stay in one register or memory location.

In this chapter, an extension to the ARM processor’s instruction set, called Bit
Section eXtension (BSX), is proposed. BSX allows multiple narrow width data to stay
in packed form and manipulates the data directly. The cost of operations for pack-
ing/unpacking of narrow width data can be reduced. In addition, such an instruction
set, extension gives the compiler an opportunity to come up with an intelligent allo-
cation of narrow width data to a register or memory location. In doing so, register
pressure and memory footprint can be reduced. The ARM processor is selected for
the base architecture because it is one of the most popular embedded processors and
is being used by many commercial network processing architectures being built today.

As analyzed in Chapter 1 of this dissertation, in most cases the input or the output
of an embedded application consist of packed data. If the input consists of packed
data, the application typically unpacks it for further processing. If the output is
required to be in packed form, the application explicitly packs the processing results
before generating the output. The following examples are taken from benchmarks

adpcm(audio) and gsm(speech). The first example is an illustration of an unpacking

33

operation that extracts a 4-bit entity from i nput buffer. The second example
illustrates the packing operation of a 5-bit entity in LARC[2] with a 3-bit entity in
LARc[3] into the output buffer.

Example of Unpacking Operation:

delta = (i nputbuffer>>4) &0xf ;

Example of Packing Operation:

*c++ = ((LARc[2] &0x1f) <<3)| ((LARc[3] >>2) &0x7) ;

With existing architectural support, packing/unpacking of narrow width data are
implemented with additional instructions that carry out shift and logical bitwise
operations. These instructions cost CPU cycles and increase the application code
size. BSX can manipulate narrow width data directly in packed form and reduce the
packing /unpacking cost.

The rest of this chapter is organized as follows. In Section 3.1, the design of BSX
is presented. Section 3.2 describes an approach to generating code that makes use
of BSX instructions. Section 3.4 describes the experimental results. Related work is

discussed in Section 3.5. Concluding remarks are given in Section 3.6.

3.1 Bit Section eXtensions (BSX)
3.1.1 Bit Section Descriptors

Narrow width data entity is also called bit section. A bit section is a sequence of
consecutive bits within a word. The length of a bit section can vary from 1 bit to 32
bits. Bit sections are specified through the use of bit section descriptors (BSDs).
There are two options for specifying a bit section within a word. One way is to
specify the starting bit position and the ending bit position within the word. Another
way is to specify the starting bit position and bit section length. Either way it takes
10 bits to specify a single bit section: 5 bits for the starting position and 5 bits

34

for the length or ending position. The latter option is used in BSX. By analyzing
the MediaBench and CommBench programs it is found that many instructions have
multiple bit section operands of the same size. Therefore when one instruction has
multiple bit section operands, they can share the same bit section length specification.
The lengths of multiple bit sections used by an instruction are often the same and
can be specified just once. The starting bit positions of these bit sections are often

different and thus they cannot be shared.

3.1.2 Bit Section Addressing Modes

There are two different addressing modes through which bit section descriptors can be
specified. While the position of many bit sections within the word boundary can be
determined at compile time, the position of some bit sections can only be determined
at runtime. Therefore two addressing modes are needed for specifying bit sections:
a bit section operand can be specified as an immediate value encoded within the
instruction; or a bit section can be specified in a register if it cannot be expressed as
an immediate constant. The number of bit section operands that are used by various

BSX instructions can vary from one to three.

Immediate Bit Section Descriptors. An immediate bit section descriptor is encoded as
part of the instruction. Let us assume that Ris a register operand of an instruction.
It can be specified using 4 bits (ARM contains 16 general purpose registers). If
the operand is a bit section within R whose position is known to be fixed, then an

immediate bit section descriptor is associated with the register as follows:

R[#st art, #l en] refers to:
bits [#start .. #start +#l en-1] of R

The constant #st art is 5 bits long since the starting position of the bit section may

vary from bit 0 to bit 31. The constant #| en is also 5 bits long since the number of

35

bits in the bit section may include all the bits (0..31) of the register. Note that for a
valid bit section descriptor #st ar t +#| en- 1 is never greater than 31.

Immediate bit section descriptors are used if either the instruction has only one
such bit section operand or two such bit section operands. When two bit section de-
scriptors need to be specified, the #| en specification is the same for both descriptors

and hence it can be shared by the two descriptors as follows:

Rl[#start 1], R2[#start 2], #l en refers to:
bits [#start 1. . #start 1+#|l en- 1] of R1; and
bits [#st art 2. . #st art 2+#| en- 1] of R2.

Register Bit Section Descriptors. When both the source operands of an instruction as
well as its destination operand are bit sections, three bit section descriptors need to be
specified. Even though all three bit sections share the same length, it is impossible
to specify all three bit sections as immediate values because not enough bits are
available in an instruction. Therefore in such cases the specification of the bit section
descriptors is stored in a register rather than as an immediate value in the instruction
itself.

There is another reason for specifying bit section descriptors in registers. In
some situations the positions and lengths of the bit sections within a register are not
fixed but rather determined at runtime by the program. In this case the bit section
descriptor is not an immediate value specified as part of the instruction but rather
the descriptor is computed into the register which is then specified as part of the
instruction. The register which specifies the bit section descriptor may specify one,
two, or three bit sections in one, two, and three (possibly different) registers. Register

BSDs are shown as follows:

36

RL[R]
RL, R2[R]
R1, R2, R3[R]

where register R contains the bit section descriptors for the appropriate operand

registers R1, R2, and R3. The contents of R are organized as shown in Figures 3.1.

Figure 3.1 Register Bit Section Descriptors

31 0 9 5 4 0
XXXXXXXXXXXXXXXXXXXXXX start len
31 15 14 0 9 5 4 0
XXXXXXXXXXXXXXXXX startl start2 len
31 20 19 15 14 0 9 5 4 0
XXXXXXXXXXXX startl start2 start3 len

3.1.3 Bit Section Instructions and their Encoding

Next ARM instructions are described that use bit section operands. While one might
think it is possible to allow any existing ARM instruction with register operands to
access bit sections as operands, this cannot be allowed for all instructions as there
would be too many new variations of instructions and there is not enough space in
the 32-bit encoding of ARM instructions to accommodate these new instructions.
Therefore a subset of instructions are selected which are most likely to be involved in
bit section operations. Eight data processing instructions are selected from version
5T of the ARM instruction set which include six ALU instructions (add, sub, and,
eor, orr, and rsb), compare (cnp), and move (NMOV) instructions. The selection
of these instructions was based on a study of a number of multimedia benchmarks
which determined that these instructions are the most commonly used.

Figure 3.2 shows dynamic instruction count of selected instructions for BSX as a
percentage of total dynamic instruction count. The selected instructions account for

a significant percentage of total dynamic instruction count.

37

Figure 3.2 Dynamic Instructions Count of Selected Instructions for BSX as a Per-
centage of Total

100
90
80
70
60 = =
50 HHHHHHHH - - =
40 HHHHHHHHE =1
0 HHHAHHAHE —
20 HHHHAHHAHF —
WHHHHHHHHH =1
0 S

Selected Instruction Counts
As a Percentage of Total (%)

%%
%%
%%
OO%
OO%
o%/
%.
%
()

%,

% A
O/[/@

° 5

% A

Benchmarks

Instructions with Immediate BSDs. For each of the above instructions three variations
are provided when immediate bit section operands are used. In version 5T of the ARM
instruction set, the encoding space with prefix 11110 is undefined. The remaining
unused 27 bits of space is used to deploy the new instructions. Three bits are used

to specify the operation.

Figure 3.3 BSX Instruction with Immediate BSD (First Variation)

31 30 29 28 27 26 24 23 22 19 18 14 13 10 9 5 4 0

1(1{1|21|0|opcode (O Rd Rds Rm Rms len

In the first variation (FV) of the above ALU instructions, the corresponding in-
structions have two bit section operands. Therefore one operand acts both as a
source operand and a destination operand. The variants of cnp and novV instructions
are slightly different as they require only two operands, unlike the ALU instructions
which require three operands. For cnp the two bit section operands are both source

operands and for MOV one operand is the source and the other is the destination. We

38

do not allow all three operands to be bit section operands at the same time because
three bit section operands will need at least 32 bits to specify. The encoding of these
instructions is shown in Figure 3.1.3. The prefix 11110 in bits 31 to 27 indicates
the presence of BSX instruction. Three bits that encode the eight operations are
bits 24 to 26. Bit 23 is 0, which indicates this is the first variation of the instruc-
tion. The remaining bits encode the two bit section descriptors: Rd[Rds, | en] and
Rl Rns, | en] .

Figure 3.4 BSX Instruction with Immediate BSD (Second Variation)

31 30 29 28 27 26 24 23 22 19 18 15 14 13 10 9 5 4 0

1|1(1|1|0 |opcode |1 Rd Rn 0 Rm Rms len

(a) ALU Instructions

31 30 29 28 27 26 24 23 22 15 14 13 10 9 5 4 0

1(1{1|1|0|opcode |1 imm8 1 Rm Rms len

(b) cnp and nov Instructions

The second variation (SV) of instructions has three operands. One is a destination
register (not a bit section), one is a source register (not a bit section), and the third
operand is a bit section operand. In this variation the operation is done as if the
bit section is zero-extended. To specify this variation bit 23 must be 1 and bit 14
must be 0. The instruction format and encoding is shown in Figure 3.4. cnp and
MoV instructions are again slightly different as they need only two operands. Bit 15
is a flag to indicate whether the bit section is to be treated as an unsigned or signed
entity. If it is 0, then it is unsigned and then zero-extended before the operation. If it
is 1, the bit section is signed, and therefore the first bit in the bit section is extended

before the operation.

Figure 3.5 BSX Instruction with Immediate BSD (Third Variation)

31 30 29 28 27 26 24 23 22 19 18 16 15 14 13 10 9 5 4 0

1|1(1|1|0 |opcode |1 Rd X X X|S|0 Rm Rms len

The third variation (TV) has one 8 bit immediate value which is one of the

39

operands and one bit section descriptor which represents the second operand. The
latter bit section also serves as the destination operand. To specify this variation, bit
23 must be 1 and bit 14 must be 1. The instruction format and encoding is shown in

Figure 3.5.

Instructions with Register BSDs. For each of the above instructions three variations
are available when register bit section operands are used. These variations differ in
the number of bit section operands. Another undefined instruction space with prefix
11111111 is used to encode these instructions into version 5T of the ARM instruction

set. The encoding of the instructions is shown in Figure 3.6.

Figure 3.6 BSX Instruction with Register BSD

31 24 23 22 21 19 18 17 16 15 12 1 8 7 43 0

1111|111 |1|1|X X|opcode [num |S Rd Rn Rm Rb

(a) ALU Instructions

31 24 23 22 21 19 18 17 16 15 12 11 8 7 43 0

1(1{1|21{1|21|1|1|X X|opcode [num |S Rd X X X X Rm Rb

(b) cnp and nov Instructions

31 25 24 23 22 18 17 121 6 5 0

1{1|1|1{1{0|0|X X Rd Rns Rms len

(c) Setup BSD Instruction
5 4 0

1 imm5

5 4 3 0

0|0 R

5 4 3 0
1| X X X X

0
(d) Setup Specifier

Bits 19 to 21 contain the opcode while bits 17 and 18 stand for the number of bit
section operands in the instruction. Therefore 01, 10, and 11 correspond to presence
of 1, 2, and 3 bit section operands. The S bit specifies whether the bit section contains

unsigned or signed integer. The format and encoding of the instructions is given in

40

Figure 3.6 (a). Instructions cnp and nov are a little bit different, they can have at
most two bit section operands. Therefore bits 17 and 18 can only be 01 or 10 and
bits 8 to 11 are not used. The encoding is given in Figure 3.6 (b). The bit section
descriptor in itself contains several bit sections. Therefore setup costs of a bit section
descriptor in a register can be high. Therefore a new instruction with opcode set up
is introduced to set up the bit section descriptors efficiently. This instruction can set
multiple values in bit section descriptor simultaneously. The format and encoding
of this instruction is given in Figures 3.6 (c) and (d). The instruction set up Rd,
Rns, Rns, |en can set up the value of Rns, Rms and | en fields in bit section
descriptor held inRd simultaneously. A 6-bit setup specifier describes how a field is
set up. In each setup specifier, if bit 5 is 1, then bits 0 to 4 represent an immediate
value. The field is setup by copying this immediate value. If bit 5 is 0, and bit 4 is
0, then bits 0 to 3 are used to specify a register. The field is setup by copying the
last five digits in the register. For Rns specifier, if bit 5 is 0 and bit 4 is 1, then Rns
is not a valid bit section specifier and must be ignored. In general, since all three
values (Rns, Rrs, and | en) can be in registers, it needs to read these registers to
implement the instruction in one cycle. However, in practice situations where there

was a need to read three registers are never encountered.

3.1.4 BSX Implementation

To implement the BSX instructions two approaches are possible. One approach in-
volves redesign of the register file. The bit section can be directly supplied to the
register file during a read or write operation and logic inside the register file ensures
that only the appropriate bits of a register are read or written.

An alternative approach which does not require any modification to the register
file reads or writes an entire register. During a read, the entire register is read, and

then logic is provided so that the relevant bit section can be selected to generate the

41

bit section operand for an instruction. Similarly during a write, update only some of
the bits in a register. In the cycle immediately before the write back operation occurs,
the contents of the register to be partially overwritten are read. The value read is
made available to the instruction during the write back stage where the relevant bit
section is first updated and then written to the register file. An extra dedicated
read port should be provided to perform the extra read associated with each write
operation.

The advantage of the first approach is that it is more energy efficient. Even though
it requires the redesign of the register file, it is also quite simple. The second approach
is not as energy efficient, it requires greater number of register reads, and is also more

complex to implement.

3.2 Generating BSX ARM Code

The approach to generating code with the BSX instructions is to replace a set of
ARM instruction sequence patterns with BSX instructions in a compiler post pass.
The optimization is aimed at packing and unpacking operations of bit sections with

compile time fized and dynamically varying positions.

3.2.1 Fixed Unpacking

An unpacking operation involves merely extracting a bit section from a register that
contains packed data and placing the bit section by itself in the lower order bits
of another register. The following example illustrates unpacking which extracts bit
section 4..7 from i nput buf f er and places it in lower order bits of del t a (the
higher order bits of del ta are 0). The ARM code requires two instructions, a
shi ft and an and instruction. However, a single BSX instruction is sufficient to
perform unpacking. The noV instruction takes bits 4 to 7, zero-extends them, and

places them in a register.

42

C code

delta = (i nputbuffer>>4) &0xf ;
ARM code

nmov r3, r8, asr #4

and r12, r3, #15 ; Oxf

BSX ARM code

nmov r12, r8[#4, #4]

The general transformation that optimizes the unpacking operation takes the fol-
lowing form. In the ARM code an and instruction extracts bits from register ri and
places them in register rj . Then the extracted bit section placed in rj is used pos-
sibly multiple times. In the transformed code, the and instruction is eliminated and
each use of rj is replaced by a direct use of bit section in ri . This transformation
also eliminates the temporary use of register rj . Therefore, for this transformation
to be legal, the compiler must ensure that register rj is indeed temporarily used,

that is, the value in register rj is not referenced following the code fragment.

Before Transformation
and rj, ri, #mask(#s, #l)
instl use rj

i nstn use rj

Precondition

the bit section in ri remains unchanged
until i Nst n and rj is dead after i nstn.

After Transformation
instl use ri[#s,#l]

i nstn use ri[#s, #l]

43

3.2.2 Fixed Packing

C code
*c++ = ((LARc[2] &0x1F) <<3)| ((LARc[3] >>2) &0x7) ;
ARM code

7 10 < LARc[3]

; (LARc[3] >> 2)&0z7

mov r0, r0, |Isr #2

and r0, r0, #7

; 'l <« LARc[2]

; (LARc[2] & Ox1F) << 3
and r2, rl1, #31

orr rO, r0, r2, asl #3
BSX ARM code

7 r0 < LARc| 3]

; 'l <« LARc[2]

nmov r0, rO[#2, #3]

nmov rO[#3, #5], r1[#0, #5]

When a bit section is extracted from a data word in ARM code, shift, and
and operations must be performed. Such operations can be eliminated as a BSX
instruction can be used to directly reference the bit section. This situation is illus-
trated by the example given above. The C code takes bits 0..4 of LARc[2] and
concatenates them with bits 2..4 of LARc[3] . The first two instructions of the ARM
code extract the relevant bits from LARc[3], the third instruction extracts relevant
bits from LARC[2] , and the last instructions concatenates the bits from LARC[2]
and LARc[3] . The BSX ARM code only has two instructions. The first instruction
extracts bits from LARc[3] , zero-extends them, and stores them in register r0. The
second instruction moves the relevant bits of LARC[2] from register r1 and places
them in proper position in register r0.

In general the transformation for eliminating packing operations can be charac-
terized as follows. An instruction defines a bit section and places it into a temporary
register ri . The need to place the bit section by itself into a temporary register

ri arises because the bit section is possibly used multiple times. Eventually the bit

44

section is packed into another register rj using an or r instruction. In the optimized
code, when the bit section is defined, it can be directly computed into the position
it is placed by the packing operation, that is, into r j . All uses of the bit section can
directly reference the bit section from rj . Therefore the need for temporary register
ri is eliminated and the packing or r instruction is eliminated. For this transforma-
tion to be legal, the compiler must ensure that register ri is indeed temporarily used,
that is, the value in ri is not referenced after the code fragment. The transformation

is shown below.

Before Transformation
instO def ri ;bit section definition in a whole register

instl use ri ;use register
instn use ri ;use register

orr rj, rj, ri ;pack bit section
Precondition

the bit sections in ri and rj remain unchanged
until orr and ri is dead after orr.

After Transformation

inst0 def rj ;define and pack

instl use rj ;use bit section

instn use rj ; use bit section

3.2.3 Dynamic Unpacking

There are situations in which, while extraction of bit sections is to be carried out,
the position of the bit section is determined at runtime. In the following example,
a number of lower order bits, where the number equals the value of variable si ze,
are extracted from put _buf f er , zero-extended, and placed back into put _buf f er.
Since the value of Si ze is not known at compile time, an immediate value cannot be

used to specify the bit section descriptor. Instead the first three ARM instructions

45

shown below are used to dynamically construct the mask which is then used by the
and instruction to extract the required value from put _buf f er. In the optimized
code the bit section descriptor is setup in register r 3 and then used by the nov

instruction to extract the require bits and place them by themselves in r 7.

C code

mask = (1l<<size)-1;
put _buf fer = put _buff er &mask;
ARM code

;. r5 « size

;7 « put _buffer
nmov r3, #1

mov r3, r3, Isl r5
sub r3, r3, #1

and r7, r7, r3

BSX ARM code

; start =0

. len =715

setup r3, _, #0, r5
mov r7, r7[r3]

The general form of this transformation is shown below. The ARM instructions
that construct the mask are replaced by a single set up instruction. The and in-
struction can be replaced by a nov of a bit section whose descriptor can be found in

the register set up by the set up instruction.

Before Transformation
mov ri, #1

mov ri, ri, Isl rj
sub ri, ri, #1

and rd, rn, ri
Precondition

value in ri should be dead
after and instruction.

After Transformation
setup ri, rj, rj
mov rd, rnf[ri]

46

3.2.4 Dynamic Packing

C code

0 = (mM&((1<<p)-1)| (n&(((1<<(16-p))-1)<<p))
ARM code

; r3 <~ p

mov rl2, #1

rsb r2, r3, #16 ; 16-p

mov r2, rl2, Isl r2 ; 1<<(16-p)

sub r2, r2, #1 ; (1<<(16-p))-1

;7 rl < n

and rl, rl, r2, Isl r3 ; n&((1<<(16-p))-1)
mov r12, rl12, Isl r3 ; 1<<p

sub r12, r12, #1 ; (1<<p) - 1

; r0 <~ m

and r0, r0, r12 ; mé& ((1<<p)-1)

orr rO, r0O, r1; o+« r0

BSX ARM code

; r3 <~ p

setup rl12, _, #0, r3 ; descriptor for ms bit section
rsb r2, r3, #16

setup r2, ., r3, r2 ; descriptor for n's bit section
;7 r0 <~ m

mov r0O, rO[rl12] ; put mis relevant bits in r0
mov r0O, rl[r2] ; put ns relevant bits in r0

Packing of bit sections together, whose sizes are not known till runtime, can cost
several instructions. The C code given above extracts lower order p bits from mand
higher order 16- p bits from n and packs them together into 0. The ARM code for
this operation involves many instructions because first the required masks for mand
n are generated. Next the relevant bits are extracted using the masks and finally they
are packed together using the or r instruction. In contrast the BSX ARM code uses
far fewer instructions. Since the value of p is not known at compile time, register bit
section descriptors for mand n must be used.

In general the transformation for optimizing dynamic packing operations can be
described as follows. Two or more bit sections, whose positions and lengths are

unknown at compile time, are extracted from registers where they currently reside

47

and put into separate registers respectively. A mask is constructed and an and
instruction is used to perform the extraction. Finally they are packed together into
one register using Or r instruction. In the optimized code, for each bit section, a
register bit section descriptor is set up first, and then move the bit section into the
final register with the bit section descriptor directly. As a result, orr instruction
is removed. By using the set up instruction to simultaneously setup several fields
in the bit section descriptor, the number of instructions is reduced in comparison
to the instruction sequence used to create the masks in the original code. Different
types of instruction sequences can be used to create a mask and thus it is not always
possible to identify such sequences. The current implementation can only handle

some commonly encountered sequences. The transformation is shown below.

Before Transformation

instruction sequence to create naskl
and ra, rb, naskl

i nstruction sequence to create nask2
and rc, rd, nask2

orr rm ra, rc

After Transformation

setup register bit section descriptor 1

nove bit section 1 to rmusing bit section descriptor 1
setup register bit section descriptor 2

nove bit section 2 to rmusing bit section descriptor 2

3.3 Experimental Evaluation
3.3.1 Experimental Setup

Before the results of the experiments are presented, the experimental setup is de-
scribed. The setup includes a simulator for ARM, an optimizing compiler, and a set

of relevant benchmarks.

Processor Simulator. The experiment starts with a port of the cycle level simulator

Simplescalar [12] to ARM available from the University of Michigan. This version

48

simulates the five stage pipeline described in the preceding section which is the In-
tel’s SA-1 StrongARM pipeline [18] found, for example, in the SA-110. The I-Cache
configuration for this processor are: 16Kb cache size, 32b line size, and 32-way asso-
ciativity, and miss penalty of 64 cycles (a miss requires going off-chip). The timing of
the model has been validated against a Rebel NetWinder Developer workstation [42]
by the developers of the system at the University of Michigan.

Optimizing Compiler. The compiler used in this work is the gcc compiler which
was built to create a version that supports generation of ARM code. Specifically
the xscal e-el f-gcc compiler version 2. 9- xscal e is used. All programs are
compiled at -O2 level of optimization. -O3 level is not used because at that level
of optimization function inlining and loop unrolling is enabled. Clearly since the
code size is an important concern for embedded systems, function inlining and loop
unrolling should not be used.

The translation of ARM code into optimized BSX ARM code was carried out by
an optimization post-pass. Only the frequently executed functions in each program
that involve packing, unpacking and use of bit section data were translated into BSX

ARM code. The remainder of the program was not modified.

Representative Benchmarks. The benchmarks used are taken from the Mediabench [28],
Commbench [50], Netbench [5], and Bitwise [45] suites as they are representative of
a class of applications important for the embedded domain. An image processing

application t hr es is also added.

3.3.2 Results

Experimental results are presented to measure the improvements in performance and
code size due to the use of BSX instructions. The reductions in both the instruction

counts and cycle counts are measured for BSX ARM code in comparison to pure ARM

49

code. The results are provided for each of the functions that were modified as well
as for the entire program. Table 3.1 shows the reduction in the dynamic instruction
counts. The reductions in instruction counts for the modified functions vary between
4.26% and 27.27%. The net instruction count reductions for the entire programs
are lower and range from 0.45% to 8.79%. This is to be expected because only a
subset of functions in the programs can make significant use of the BSX instruction.
Table 3.2 shows the reduction in the cycle counts. The reductions in cycle counts
for the modified functions vary between 0.66% and 27.27%. The net cycle count
reductions for the entire programs range from 0.39% to 8.67%. Table 3.3 shows the
reductions in code size for the functions that were transformed to make use of BSX
instructions. The code size reductions for modified functions range from 1.27% to

21.05%. However the reudctions in code size for the entire programs are small.

3.4 Related Work

A wide variety of instruction set support has been developed to support multimedia
and network processing applications. Most of these extensions have to do with ex-
ploiting subword [21] and superword [27] parallelism. The instruction set extensions
proposed by Yang and Lee [52] focus on permuting subword data that are packed
together in registers. These techniques support manipulating narrow width data of
bitwidth in bytes on a high-end processor. In contrast, BSX can address narrow width
data of flexible width on a 32-bit embedded processor.

In [39], a notion of bit section referencing in a network processor is presented.
Two fields, including the register number and the bit offset, are used to specify nar-
row width operands. However the design details are not presented. In contrast, BSX
addresses more narrow width operands with immediate and register bit section de-
scriptors. Furthermore, a detailed design of BSX on ARM processor and a method

to use BSX for code optimization are presented in this chapter.

TABLE 3.1. Reduction in Dynamic Instruction Counts

Benchmarks Functions & Instruction Count Savings
Total ARM BSX ARM %]
adpcm decode adpcmdecoder 6124744 5755944 6.02%
Tot al 6156561 5787760 5.99%
adpcm encode adpcmencoder 7097316 6654756 6.24%
Tot al 7129778 6687534 6.20%
j peg. cj peg emt_bits 634233 586291 7.56%
Tot al 15765616 | 15694887 | 0.45%
g721. decode frul t 47162982 | 43282495 | 8.23%
predictor zero 9293760 8408640 9.52%
step.si ze 1468377 1320857 10.05%
reconstruct 2628342 2480822 5.61%
Tot al 258536428 | 253180667 | 2.07%
g721. encode ful t 48750464 | 44367638 8.99%
predi ctor _zero 9293760 8408640 9.52%
step_si ze 2372877 2225357 6.22%
reconstruct 2645593 2498073 5.58%
Tot al 264021499 | 258163419 | 2.22%
cast . decoder CAST_encr ypt 41942016 | 37850112 9.76%
CAST _of b64 _encr ypt 26980992 | 25190784 | 6.64%
Tot al 109091228 | 103209100 | 5.40%
cast . encoder CAST_encr ypt 41942016 | 37850112 9.76%
CAST _of b64 _encr ypt 26980992 | 25190784 | 6.64%
Tot al 105378485 | 99496358 | 5.58%
frag i n.cksum 26991150 | 25494952 | 5.54%
Tot al 37506531 | 36010318 | 3.99%
t hreshol d coal esce 3012608 2602208 13.62%
meno 3223563 2814963 12.68%
bl ocked_nmeno 2941542 2531826 13.93%
Tot al 20959630 | 19730898 | 5.86%
bi lint mai n 87 79 9.20%
Tot al 496 488 1.61%
hi st ogram mai n 317466 301082 5.16%
Tot al 327311 310857 5.03%
convol ve mai n 30496 30240 0.84%
Tot al 30799 30542 0.83%
softfl oat fl oat 32_si gnal s_nan 132 96 27.27%
addFl oat 32Si gs 29 23 20.70%
subFl oat 32Si gs 29 23 20.70%
fl oat 32_add 8 7 12.50%
fl oat 32_sub 8 7 12.50%
f1 oat 32_nul 30 23 23.33%
float32div 30 24 20.00%
float32rem 28 23 17.86%
fl oat 32sqrt 23 20 13.04%
fl oat 32_eq 23 17 26.09%
float32]t 17 11 35.29%
Tot al 898 819 8.79%
dh NN.Di gi t Mul t 153713163 | 141768387 | 7.77%
NN.Di gitDi v 19319249 | 18495393 | 4.26%
Tot al 432372762 | 419604191 | 2.95%

20

TABLE 3.2. Reduction in Dynamic Cycle Counts

Benchmark Functions & Cycle Count Savings
Total ARM BSX ARM %]

adpcm decode adpcmdecoder 6424241 6202961 3.44%
Tot al 6499880 6278786 3.40%

adpcm encode adpcmencoder 7958088 7515456 5.56%
Tot al 8035001 7592761 5.50%

j peg. cj peg emt bits 1047235 999163 4.59%
Tot al 19611965 | 19535002 0.39%

g721. decode frul t 63914793 | 60034237 | 6.07%
predi ctor zero 12834446 | 11949382 | 6.90%

step.si ze 1564728 1269752 18.85%

reconstruct 2601534 2454014 5.67%

Tot al 347037906 | 341531879 | 1.59%

g721. encode ful t 65798336 | 61415518 6.66%
predi ctor _zero 12834447 11949327 6.90%

step.si ze 2630082 2335106 11.22%

reconstruct 2636030 2488439 5.60%

Tot al 353610636 | 347605462 | 1.70%

cast . decoder CAST_encr ypt 46557053 | 40674664 | 12.63%
CAST_of b64_encr ypt 32224708 | 30434422 5.56%

Tot al 141113081 | 133440304 | 5.44%

cast . encoder CAST_encr ypt 46557174 | 40674817 | 12.63%
CAST_of b64_encr ypt 32224703 | 30434428 5.56%

Tot al 135572465 | 127900147 | 5.66%

frag i n.cksum 32698919 | 31205099 | 4.57%

Tot al 57745393 | 56207197 | 2.66%

t hreshol d coal esce 4355796 3937458 9.60%
meno 4725060 4307735 8.83%

bl ocked_nmeno 22092904 | 21683166 1.85%

Tot al 181425566 | 180186381 | 0.68%

bi lint mai n 887 808 8.91%
Tot al 5957 5878 1.32%

hi st ogr am mai n 481531 462532 3.95%
Tot al 496650 477807 3.79%

convol ve mai n 40215 39949 0.66%
Tot al 44945 44803 0.32%
softfl oat fl oat 32_si gnal s_nan 132 96 27.27%
addFl oat 32Si gs 324 247 23.77%
subFl oat 32Si gs 675 595 11.85%

fl oat 32_add 81 80 1.23%
f1 oat 32_sub 217 153 29.49%
f1 oat 32_mul 577 513 11.09%

float32div 397 380 4.28%
float32rem 453 314 30.68%
fl oat 32sqrt 383 295 22.98%

fl oat 32_eq 242 227 6.20%
float321t 305 229 24.92%

Tot al 10255 9366 8.67%

dh NNLDi gi t Mul t 236874768 | 224929644 | 5.04%

NN.Di gitDi v 26223468 | 25400239 | 3.14%

Tot al 578187905 | 565434086 | 2.21%

o1

TABLE 3.3. Reduction in Code Size

Benchmark Code Size Reduction
Function ARM | BSX ARM (%]
adpcm decoder
adpcmdecoder | 260 | 248 | 4.62%
adpcm encoder
adpcmencoder [300 | 284 | 5.33%
j peg. cj peg
emtbits [228 | 216 | 5.26%
g721. decode and g721. encode
frul t 196 176 10.2%
predictor_zero 92 84 8.7%
st ep_si ze 76 72 5.26%
reconstruct 96 92 4.17%

cast . decoder and cast. encode

CAST_encr ypt 1328 1200 9.64%
CAST_of b64_encr ypt 428 400 6.54%
frag

i n.cksum [108 | 88 | 18.52%

t hreshol d
coal esce 148 136 8.11%
nmeno 296 284 4.05%
bl ocked_meno 212 200 5.66%

bilint

mai n [352] 320 | 9.09%

hi st ogram
mai n [316 [312 [127T%

convol ve
mai n [652 | 648 | 0.61%

sof t f | oat
fl oat 32_si gnal s_nan 52 40 20.0%
addFl oat 32Si gs 348 324 6.90%
subFl oat 32Si gs 396 372 6.06%
fl oat 32_add 40 36 10.0%
fl oat 32_sub 40 36 10.0%
f1 oat 32_mul 428 400 6.54%
float32div 544 520 4.41%
fl oat 32rem 648 628 3.09%
float32.sqrt 484 464 4.13%
fl oat 32_eq 152 120 21.05%
float32.t 176 144 18.18%

dh

NNLDi gi t Mul t 112 104 7.14%
NNLDi gi t Di v 420 404 3.81%

52

93

3.5 Summary

This chapter presents BSX instruction set extension of ARM processor that can ma-
nipulate narrow width data directly in packed form. BSX can be easily encoded
into the free encoding space of the ARM instruction set. A compiler optimization
post-pass can generate efficient BSX ARM by replacing a set of instruction sequence
patterns. The cost of packing/unpacking operations of narrow width data is reduced.
BSX achieves performance improvement and code size reduction. Furthermore, BSX
exposes narrow width data to a compiler. Thus a compiler has opportunities to

perform an intelligent allocation of narrow width data in registers or memory.

o4

CHAPTER 4

REGISTER ALLOCATION EXPLOITING
NARROW WIDTH DATA

The study in Chapter 2 has shown that embedded applications, including network
and media processing applications, contain significant levels of narrow width data.
In this chapter it is shown how narrow width data can be exploited to make effective
use of the small number of registers provided by embedded processors. This problem
is addressed in context of the ARM processor [22] which supports 16 registers.

The main objective of this chapter is to develop the architectural and compiler
support through which the registers can be used more effectively in presence of narrow
width data. Generally the observed narrow width data can be divided into two
categories: (static) a variable is declared as a word but in reality the values assigned
to the variable can never exceed 16 bits; and (dynamic) a variable is declared as a
word but in practice the values assigned to it do not exceed 16 bits most of the time
during a program run. As shown in the study in Chapter 2, embedded applications
contain a significant amount of static narrow width data and even more dynamic
narrow width data.

To exploit dynamic narrow width data in registers using a global bitwidth aware
register allocation method, we need architectural supports other than ARM BSX.
Although the previous chapter has shown that ARM BSX is effective in achieving
performance improvement with a local peephole optimization, ARM BSX is not a
suitable architectural support for a global bitwidth aware register allocation method
to exploit dynamic narrow width data in registers. First, ARM BSX only contains
a limited set of most frequently used instructions because not enough instruction

encoding space is available. A global bitwidth aware register allocation method may

95

require that arbitrary instruction has the ability to address narrow with data. Second,
it is difficult for ARM BSX to capture the dynamic bitwidth because ARM BSX can
not automatically check the bitwidth at runtime.

Instead, we are seeking to develop a scheme with a simplified architectural support
such that a compiler register allocation algorithm can effectively take the advantage of
the architectural support. In particular, we allow two variables to be simultaneously
assigned to the same register such that if their values can be represented using 16
bits most of the time, they can be simultaneously held in a register most of the time.

In this chapter, a speculative scheme is designed to exploit narrow width data
in registers. As a comparison, a static scheme is also developed to show that the
speculative scheme is efficient in handling dynamic narrow width data in registers.
The proposed schemes are based on the register allocation in gcc.

In the rest of the chapter, first the compiler and architectural challenges of develop-
ing such a register allocation scheme are described in Section 4.1. A brief introduction
to the register allocation scheme in gcc is given in Section 4.2. In Section 4.3 a static
subword register allocation scheme is proposed. In Section 4.4 and 4.5 a speculative
subword register allocation scheme is presented to exploit dynamic narrow width data.
In Section 4.4 the architectural supports are described and Section 4.5 the register
allocation algorithm is presented. The implementation and experimental results are
provided in Section 4.6. Related work and conclusions are given in Sections 4.7 and

4.8 respectively.

4.1 The Challenges of Bitwidth Aware Register Allocation

The discussion of register allocation in this chapter targets embedded processors where
small modifications can be made to effectively manipulate narrow width data. Each
register R can contain up to two entities that are of same size, i.e., it can hold a whole

word R; 35 or two half-words R; 16 and Ry7_39.

o6

Let us consider the existing approach to bitwidth aware register allocation [48].
Figure 4.1(a) contains a code fragment in which variables b and c are assigned to
registers RL and R2 respectively. Moreover there is no free register for variable a.
Thus, spill code is generated to store new value of a to memory after computation and
a load is introduced to bring the value from memory before a is used (Figure 4.1(b)).
The approach in [48] determines the bitwidths of the variables using data flow analysis.
Lets assume that the resulting bitwidths indicate that all three variables can be stored
in 16 bits. Thus, the variables can each be assigned to use half of a register as shown
in Figure 4.1(c). In the transformed code, instead of being spilled to memory, variable
a is assigned to use half of a register R17 3, while the other half of the same register

is used to hold the value of variable b.

Figure 4.1 Bitwidth Aware Register Allocation.

/* b can always be b5 R1 b - Rlis
represented using iCc - R2 ;€ - R21.16
16 bits*/ ;A > R217.3

add R3, Rl, 1 add R217__32, R11.16, 1
a=b+1; sw R3, addr_a

|W R4, addr_a
c=a-— 10, sub RZ, R4, 10 sub R21__16, R217__32, 10

(a) Original Code (b) with Spill Code (c) after Bitwidth Aware RA

For the above approach to be effective, it requires that any arbitrary instruction,
which takes the packed narrow width variables as its source operands, is able to
address these variables. This requires at least an extra bit associated with each reg-
ister name even in the best case that only two variables are packed into one register.
However, in ARM processor this would require 3 extra bits in the encoding space of
any arbitrary instruction which is unrealistic to implement. To solve this problem,
a static register allocation scheme, called Static Subword Register Allocation, is pro-

posed. This scheme is based on a simplified and implementable architectural support

o7

and a compiler register allocation algorithm which can effectively take advantage of

the support.

e Architectural Support in Static Scheme. The key challenge for the architecture
is to provide a way to access the packed narrow width data without extra bits
in the instruction format. This means that at most one narrow width data can
be accessed at a time. To access the other one, special instructions should be
designed to pack and unpack the other one so that it can be used. Furthermore,
the architecture should indicate whether there are one or two variables in one

register.

o Compiler Support in Static Scheme. The compiler algorithm should efficiently
use the architectural support to achieve performance improvement. Obviously
it is not efficient if for every reference to the other variable an extra operation is
needed to extract it. However it is a good practice that packing and unpacking
operations are used to replace the store and load instruction for an originally
spilled variable. The cost is reduced since the result of an unpacking operation
can be reused by many references. So for the compiler the challenges are picking
the pair of variables to be packed and transforming the spill code with special
packing and unpacking instructions. At the same time, it should achieve best

performance improvement.

While the above approach looks effective, there are situations under which the
static register allocation is not effective. It is possible that the compiler is unable to
establish that variables a, b, and ¢ occupy only half a word. In particular, there are

the following three situations under which the above approach fails.

e Program does not contain relevant information. The static approach relies on
the compiler to uncover true bitwidths of variables. However, it is possible

that the program does not contain enough information to determine the true

o8

bitwidths. For example, an input variable may be declared as a full word
variable although the valid inputs do not exceed 16 bits. The compiler fails to
detect that the input variable contains subword data; in addition, the bitwidths

of variables that depend upon this input will also be likely overestimated.

Imprecision in static analysis leads to a failure in uncovering bitwidth informa-
tion. Even if the program contains information to infer the true bitwidths of
variables, the imprecision in static analysis may lead us to conclude that the
bitwidths exceed 16 bits. Presence of calls to libraries, complex bit operations

etc. can lead static analysis to provide imprecise information.

Bitwidth of variables exceeds 16 bits sometimes. The static approach misses the
opportunity that some variables represent narrow width data most of the time
but exceed 16 bits only in a rare case. The static approach still introduces spill

code.

In summary, while the static approach can take advantage of statically known nar-

row width data, it cannot take advantage of dynamically observed narrow width data.

A speculative approach, called Speculative Subword Register Allocation, is proposed

to address this issue. The speculative approach speculatively packs two variables into

a single register. Profiling information is used to identify pairs of variables that are

highly likely to have their packed values fit into a single register together. If the

values do fit into a single register at certain point at runtime, the reloading of the

variables from memory at that point can be avoided; otherwise if there is a collision at

certain point at runtime that the values do not fit into a single register, the reloading

of the variables from memory at that point is performed. While the basic idea of the

approach is clear, there are architectural and compiler challenges.

o Architectural Support in Speculative Scheme. The key challenge for the ar-

chitecture is to design instruction set extensions so that the speculative pack-

99

ing/unpacking operations of two narrow width variables are exposed to the
compiler. The compiler should be able to control which variable is guaranteed
to be found in a register and which variable is expected to be present. If two
narrow width variables are allocated to one register, the architecture should
check the status of the packed variables and avoid the possible reload opera-
tions. Finally once two values are present in a register, there is a method to
address them. This method should consider the limited instruction encoding

space.

o Compiler Support in Speculative Scheme. An algorithm needs to be developed
for global register allocation such that it leads to performance improvements
when speculative register assignment is made. This requires that the pair of
variables that are assigned to the same register are carefully chosen. The com-
piler must choose the variable whose value is guaranteed to be found in the
register and the one whose value is expected to be found in the register. Since
there is extra cost due to checking whether or not a speculatively stored value
is present in a register, the compiler must use profiling information to pick the
pair of variables such that it is highly likely that the values of both variables can
reside simultaneously in the same register. Finally speculative register assign-
ment should be carefully integrated into conventional global register allocation

algorithm.

4.2 Register Allocation in the GCC Compiler

In this section, a brief instruction to the register allocation in gcc compiler [24] is
given. The proposed register allocation schemes are based on the register allocation
method in gcc compiler.

The gcc compiler performs register allocation in three passes: local register al-

location pass, global register allocation pass, and reload pass. These passes operate

60

on the intermediate representation — register transfer language (RTL). Operands are
mapped to virtual registers before register allocation. The local and global register
allocation passes do not actually modify the RTL representation. Instead, the re-
sult of these passes is an assignment of physical registers to virtual registers. It is
the responsibility of the reload pass to modify the RTL and to insert spill code if
necessary.

The local register allocation pass allocates physical registers to virtual registers
that are both generated and killed within one basic block, i.e., live ranges that are
completely local to a basic block are handled in this pass. The allocation is driven
by live range priorities. Register coalescing is also performed in this pass. Since local
register allocation works on linear code, it is inexpensive. Local allocation reduces
the amount of work that must be performed by the more expensive global allocation
pass.

The global register allocation pass allocates physical registers to the remaining
virtual registers. This pass may change some of the allocation decisions made during
the local register allocation pass. This pass performs allocation by coloring the global
interference graph. Virtual registers are considered for coloring in an order determined
by weighted counts. If a physical register cannot be found for a virtual register, none
is assigned and the virtual register is handled by generation of spill code in the reload
pass.

The reload pass replaces the virtual register references by physical register names
in the RTL according to the allocations determined by the previous two passes. Stack
slots are assigned to those virtual registers that were not allocated a physical register
in the preceding passes. Reload pass also generates spill code for them. Unlike
Chaitin-style [14] graph-coloring allocation, which spills a symbolic register, a physical
register is spilled. For each point where a virtual register must be in a physical register,
it is temporarily copied into a "reload register” which is a temporarily freed physical

register. Reload registers are allocated locally for every instruction that needs reloads.

61

4.3 Static Subword Register Allocation

In this section, first the necessary architectural support to enable static subword
register allocation is discussed and the the static subword register allocation algorithm
is described.

The following enhancements are made in the architecture. To indicate whether
there are two 16-bit values or one 32-bit value in the register, one status bit is attached
with each register. The values in the register are addressed as follows. When the bit
is clear, the references to the register act like normal register. When the bit is set,
normal instruction can only access the lower half of the register. In case of a register
read, the lower half is sign-extended. In case of a register write, only the lower 16 bits
of the data are written into the lower half of the register. The semantics of the program
is guaranteed to be correct by the compiler which only allocates variables whose static
bitwidth is less than 16. When the bit is set, the upper half can only be accessed by
new instructions. Two new instructions are used to pack and unpack the upper half
of a register and set the status bit accordingly. For packing, the instruction moves
the lower upper of the source register to the upper half of the destination register. At
the same time, it sets the status bit of the destination register. For unpacking, the
instruction moves the upper half of the source register, sign-extends it, puts it into
the destination register and sets the status bit of the destination register to 0. The
mnemonic names of the instructions are novl h and novhl .

Let us consider the example in Figure 4.2(a) where variable a, b, and ¢ are narrow
width. The code in Figure 4.2(b) shows the code generated by a traditional register
allocation. Spill code is generated for node a. Figure 4.2(c) shows the code if ais
allocated to the upper half of R2 and new instructions are used to replace the load and
store instructions in the spill code. In this way, it is obvious that the expensive cost
of the spill code can be significantly reduced by packing two narrow width variables

into one register.

62

Figure 4.2 An Example of Static Subword Register Allocation

/* b can always be b - R1 vb - Rli6
represented using ¢ > R2 ;€ - R21.16
16 bits*/ ;a - R217.3
add R3,R1,1 add R3,R1, 1
a=b+1, sw R3, addr_a movih R2, R3
w R4, addr_a movhl R4, R2
c=a-10; sub R2, R4, 10 sub R2, R4, 10

(a) Original Code (b) with Spill Code (c) after Transformation

With the above architectural support, a static subword register allocation algo-
rithm is designed to allocate two narrow width variables to the two halves of one
register. This is achieved by allocating those narrow width variables, which should
have been spilled in traditional register allocation, to the upper halves of those reg-

isters that contain values no more than 16 bits.

Figure 4.3 The Framework for Static Subword Register Allocation.

| }

Local Register Local Register
Allocation Pass Allocation Pass
\ 4 A
Global Register Global Register
Allocation Pass Allocation Pass
v A

Static Register

Reload Pass Allocation Pass (New)
! v
Reload Pass (Enhanced)

The static subword register allocation algorithm is integrated into the gcc com-
piler as shown in Figure 4.3. The algorithm is implemented as a separate pass after
the local and global register allocation passes. At this point, the following informa-
tion is available, including whether each variable is narrow width, the assignment of

variables to the physical registers and which nodes are spilled. Based on these infor-

63

Figure 4.4: The Compiler Algorithm of Static Subword Register Allocation
input : AIG
RIG
output: Colored RIG
compute the priority of each node in RIG using the priority function;
put these nodes in an ordered list in descending order;
while the list is not empty do
remove the head node n from the list;
if n s narrow width variable then
let AIGColor contain all available colors;
for each node m of node n’s AIG neighbor do
if node m is not narrow width then
remove the color of m from AIGColor;

end
end

let RIGColor contain all available colors;
for each node m of node n’s RIG neighbor do
remove the color of m from AIGColor;
end
let C'olor be the intersection of AIGColor and RIGColor;
if Color is not empty then
randomly choose one color from Color;

update RIG with node n colored;

end
end
end

return RIG;

mation, the static subword register allocation works as a secondary pass of the global
register allocation targeting at allocating narrow width variables. The result of this
pass together with the results from local and global passes are used by an enhanced
reload pass which generates code with part of the spill stores and load instructions
replaced by the new instructions.

The static subword register allocation uses a priority-based graph coloring algo-
rithm which is described in Figure 4.4. The algorithm is based on two interference
graphs. One is Annotated Interference Graph (AIG) which is the original interference

graph used by gcc annotated with the coloring decisions from the local and global

64

Figure 4.5 Interference Graphs in Static Subword Register Allocation

0 0

(a) Annotated Interference Graph (b) Residual Interference Graph

passes and the tags which indicate whether each variable is a narrow width variable.
An example of AIG is illustrated in Figure 4.5 (a). Another is Residual Interference
Graph (RIG). It is a subgraph of the AIG which contains only those nodes which do
not get their physical register and the interference relationship between them. An
example of RIG is illustrated in Figure 4.5 (b). The algorithm colors RIG based on
the information from AIG. First, all nodes in RIG are sorted based on the priority
information which indicates the spill cost saved by allocating one variable to the reg-
ister. Next, we examine these nodes in descending order of priority and assign color
to each node if it is narrow width. The color selected does not cause any interference
in RIG. It also does not lead to any interference between this node and those neigh-
boring nodes in AIG which are not narrow width. Note that if a neighboring node
in AIG is narrow width, this node can choose the same color because the two nodes
are allocated to different halves of the same register. The priority function is shown
as follows.

Priority(n) = REF(n) x (COST — 1)

REF (n) is the number of references (stores and loads) of this variable n. COST is the
cost in CPU cycles of a spill load or store instruction. Since an extra new instruction

is used for each reference, the saving for each reference should be COST — 1. Thus

65

this function approximates the amount of saving achieved by allocating one variable
to a register instead of memory. The priority function works as a heuristic to achieve

best performance improvement.

4.4 Architectural Support for Speculative Subword Register
Allocation

In this section, the architectural support to enable speculative subword register allo-
cation is discussed. To support accessing the packed narrow width data, one bit is
attached to each register, a global bit is added to the CPU status register and four new
instructions are introduced. Two new instructions, SSw and Snv, are always used
one after another to fulfill a speculative packing operation. Two new instructions,
Enmv and Sl d, are always used one after another to fulfill a speculative unpacking

operation.

4.4.1 Register File Enhancement

Figure 4.6 Accessing Register R as a Source Operand

R in normal R in NEW

B
instructions instructions

NI §H B

One extra bit B is attached to each register. It is used to indicate whether the
register currently holds packed narrow width data. As shown in Figure 4.6, if B is
cleared, the register holds one 32-bit value. If the bit B is set, the two halves of the
register store two 16-bit values. The upper half of the register is used to store the
speculatively saved value. If a register RS is a source operand of a normal instruction

or a speculative packing instruction, RS is always interpreted as follows. If Bis cleared,

66

the whole register is used. If B is set, the lower half is used and sign-extended. If
a register RS is a source operand of a speculative unpacking instruction Emv, it is
interpreted as follows. If B is set, the upper half is used and sign-extended. If B is

cleared, RS is not used since the speculative unpacking is not successful.

4.4.2 New Instructions

To speculatively store a value in the upper half of the register and to access it later on,
four new instructions are introduced. An additional bit Gis added to the CPU status
register which is set and examined by these new instructions. These instructions are
described in detail below. The first two instruction are used one after another to
speculatively pack a value to the upper half of a register when a spill store happens.
The next two instructions are used one after another to unpack a value that was saved

by a previous speculative packing operation when a spill reload happens.

1. Speculative store: Ssw Rs, addr
This instruction stores the value of RS into the memory address addr. In
addition, it checks the value in RS to see whether it can be packed. In particular,
it sets the G bit in the status register if the upper 16 bits are the same as its

16th bit, i.e., they are sign extensions.

2. Store move: Smv Rd, Rs
This instruction checks the global condition bit G and examine whether the
upper half of Rd is available to store a packed value. If Gis set, and the upper
half of Rd is available, the half of RS is moved into the upper half of Rd. The

bit B of Rd is set to indicate that it contains two values.

3. Ezxtract move: Emv Rd, Rs
This instruction checks the B bit of Rs. If the bit is set, the upper half of Rs is
sign-extended and moved to Rd. In addition, the global bit Gis set to indicate

67

that the instruction successfully unpacked a speculatively stored value in Rs. If

bit B of RS is not set, bit Gis cleared to indicate that the value was not found.

4. Speculative load: SI d Rd, addr
This instruction checks bit G If it is clear, the value in memory at address addr
is loaded into Rd; otherwise, the instruction acts as a hOp instruction. In the
latter case, the load does not happen because the preceding Emv instruction

must have successfully unpacked a speculatively stored value into Rd.

Figure 4.7 An Example of Speculative Subword Register Allocation

/* most of the time ;b - R1 ;b - R1y30r R1y 16
b can be represented 'c - R2 ;C > R21.3,0r R1; 156
using 16 bits*/ ;@ - in memory or R217 3
add R3,R1, 1
add R3,R1,1 Ssw R3, addr_a
a=b+1; sw R3, addr_a Smv R2, R3
Ilw R4, addr_a Emv R4, R2
c=a-10; sub R2, R4, 10 Sld R4, addr_a
sub R2, R4, 10

(a) Original Code (b) with Spill Code (c) after Transformation

Let us consider the example in Figure 4.7(a) and (b) where the value of a in
register R3 is being spilled. Assume that it is preferred to speculatively pack the
value of a into the register which now holds the value of ¢ (say register R2). The code
in Figure 4.7(c) shows how instructions Sswand Snv are used to speculatively pack
the value into R2 and then later instructions Emv and Sl d are used to speculatively
reload the value of a from R2 into R4. If the speculative reload of a is successful,
the Sl d instruction turns into a NOpP instruction; otherwise the value of a is reloaded
from memory.

From the above description it is clear that there are cost and benefit in this
approach. The cost is the two extra move instructions (Smv and Env) that are

introduced. The benefit of the technique is that it is possible to avoid a reload from

68

memory. Ifit is highly likely that the reload will be avoided, the approach brings more
benefit than the cost paid for the extra move instructions. For obtaining benefits, the

compiler must make good decisions on using the instructions.

4.4.3 Hardware Implementation

Modifications must be made to the processor pipeline when the above mentioned
instructions are introduced. Normal instructions must always check bit B of a register
that it reads from or writes to. This is required so that it can interpret and update
the contents of the register. For modern embedded processors such as ARM SA-110
(see Figure 4.8(a)) changes affect the second and fourth stage of the pipeline.

Figure 4.8 Hardware Implementation

Fetch N Decode Execute Buffer WriteBack

Stage Stage e Stage Stage Stage
Checking
Register

Result

(a) ARM processor pipeline

\sm&\\ \\\\\\\\
(a) Accessing a register in (b) Accessing a register
new processor with arbitrary bit sections

(b) Accessing registers with subword support

ALU instructions compute the result in Execut e stage while the register is up-
dated at Wi t eBack stage. A small component can thus be added in the intervening
Buf f er stage to ensure that the upper half is sign-extended. If not, the entire reg-

ister is used to hold the result and the corresponding bit B of the register is cleared.

69

For memory access instructions that use a register as the destination, i.e., load in-
structions, register is ready at the end of Buf f er stage and thus there is no time to
perform validation. Simply clear its bit B and use all the bits in this case.

Since bit B of a register determines whether a 16-bit or a 32-bit value is involved in
a computation, a multiplexer is needed for the upper 16 bits. Therefore in comparison
to a machine without subword support, extra delay is introduced due to the multi-
plexer (Figure 4.8(b)). However, this delay is smaller than the delays in processors

that support accesses to arbitrary bit sections such as the Infineon processor [39].

4.5 Compiler Algorithm for Speculative Subword Register
Allocation

Given the hardware support designed in the preceding section, compiler support is

needed to carry out speculative subword register allocation.

4.5.1 The Framework

Figure 4.9 The Framework of Speculative Subword Register Allocation.

| |

Local Register Local Register

Allocation Pass Allocation Pass

Global Register Global Register .

Allocation Pass Allocation Pass g TR (NEW)

! ! |

Speculative Register
Allocation Pass (NEW)

! !

Speculative Reload (Enhanced)
Pass

Reload Pass

The compiler algorithm is implemented by three passes that are integrated into

gcc compiler. The framework of the speculative subword register allocation is shown

70

in Figure 4.9. The profiling pass collects information about how likely two variables
can fit into one register and how long is the lifetime during which they coexist. Based
on the above information, the new speculative allocation pass allocates those narrow
width variables, which originally should have been spilled, to the possible upper
halves of the registers. The decision is made to maximize the avoidance of spill cost
for achieving high performance improvement. This pass works as a secondary global
register allocation pass following the original global register allocation pass in gcc.
In the enhanced reload pass, the compiler generates transformed code with the new

instructions based on the decision made in the previous register allocation passes.

4.5.2 Priority-Based Speculative Allocation

The speculative allocation pass makes decision to allocate an originally spilled narrow
width variable to the possible upper halves of the registers. This pass uses priority-
based graph coloring approach to make the decision. The decision is made based
upon the following profiling information: coezisting lifetime of variables v1 and v2
refers to the period of time during which v1 and v2 are both alive during program
execution; and coalescing probability of variables v1 and v2 refers to the percentage
of the coexisting lifetime during which v1 and v2 can be coalesced. Note that during
program execution one variable may be coalesced with different variables at different
program points.

The speculative allocation pass makes use of two interference graphs. One is
called the Annotated Interference Graph (AIG) and the other is called the Residual
Interference Graph (RIG).

Annotated Interference Graph (AIG). This graph is built from the interference graph
after global allocation pass. At this point, some nodes are not colored since they
are spilled. For each spilled node, the edges between this node and its colored

neighbors are annotated with a 2-tuple (coalescing probability, coexisting life-

71

Figure 4.10 Interference Graphs in Speculative Subword Register Allocation

(a) Annotated Interference Graph (b) Residual Interference Graph

time). Figure 4.10(a) shows a simple example with nine variables (nodes) and
two physical registers (colors). After global register allocation pass, nodes 1-6
are colored with two colors and nodes 7-9 are not colored. The edge labels are
interpreted as follows. Label (0.9, 800) on edge (7,1) indicates that during 90%
of 800 units of the time that variables 1 and 7 coexist, both of them are expected
to require no more than 16 bits to represent and thus they can simultaneously

reside in one register.

Residual Interference Graph (RIG). The RIG is a subgraph of AIG that consists of
those originally spilled nodes and edges between them. RIG is not annotated.
The RIG for the above example is shown in Figure 4.10(b). Note that two
variables in RIG may be speculatively allocated to the same register if they do

not interfere with each other.

The speculative allocation pass colors the nodes in RIG using the annotation
information in AIG. After coloring a node in RIG, the colored node shares the same
color as at least one of its colored neighbors in the AIG. While all colored nodes in
AIG are colored in the local or global allocation passes, the colored nodes in RIG are
colored in the speculative pass.

Next let us discuss in greater detail how nodes are chosen for coloring from RIG

72

and how colors are selected for them. This process uses priority based graph coloring
algorithm. Our priority function is based on the expected net saving by speculatively
assigning an originally spilled narrow width variable. The saving comes from the
avoidance of reloads from memory; however, a cost of one cycle is incurred for each
speculative spill load or store because there is an extra instruction in speculative load
or store compared with traditional load or store. The saving is also a function of
coalescing probabilities. The priority of node n, which is the estimated net savings

by speculatively assigning node n to a register, is given by:
Priority(n) = READ(n) x READCOST x MCP(n) — REF(n)

where READ(n) is the total number of reads of node n, REF(n) is the total number
of references (reads and writes) to node n, READCOST is the number of cycles
needed to finish a normal read from memory (i.e., it is the memory latency), and
MCP(n) is the maximum coalescing probability of n. Note that the above Priority
value can be negative for some nodes in which case they are not considered for spec-
ulative register assignment. Nodes with higher priority are considered before those
with lower priority.

The maximum coalescing probability of n, i.e., MCP(n), is determined by con-
sidering all available colors for n and finding which color is expected to result in most
savings. The best choice for a color depends upon the following factors. The higher
the coalescing probability of a pair of variables, the more beneficial it is to allocate
them to the same register. The longer two variables co-exist, the more beneficial it
is to allocate them to the same register. Based upon these two factors the maximum
coalescing probability is computed. Moreover it should be noted that the physical
register being speculatively assigned to a node n in RIG may have been allocated to
several non-interfering virtual registers in earlier passes. The coalescing probabilities
and lengths of coexistence of each of these virtual registers with n must be considered

as long as a virtual register interferes with n. The following formula computes the

73

current maximum coalescing probability M CP(n) for a node n in RIG:

Z CLt(n,n') x CPb(n,n')
MCP(n) = max n €Nb(n,AIG)ACI(n')=c
c€C(n,RIG) Z L)

n’€Nb(n,AIG)ACl(n')=c

Where C(n, RIG) is the set of currently available colors for node n in RIG (i.e., these

colors have not been assigned to neighbors of n in RIG), Nb(n, AIG) is the set of
neighboring nodes of n in AIG (i.e., these nodes were colored during local or global
allocation passes), CLt(n,n') is the length of coexisting lifetime of nodes n and n’,
CPb(n,n') is coalescing probability of nodes n and n' and Cl(n’) is the color assigned
to node n'. The max function finds the maximum coalescing probability across all

potential colors in C(n, RIG).

4.5.3 Profiling Pass

The profiling pass is used to collect the above method coalescing probability and
coexisting lifetime information.

The profiling pass is implemented by instrumenting the intermediate representa-
tion of the code. Profiling is performed after the global allocation pass when the
objects of the optimization, those variables which do not get a register, have been
identified. At this point the liveness information of the variables at each program
points is available since data flow analysis is done before register allocation. The
intermediate representation still contains virtual registers instead of physical register
since register reloading pass has not been performed.

The relation between colored and non-colored nodes is considered. Whether two
variables can be coalesced or not depends on the status of the variables (i.e., whether
they fit in 16 bits or not). A variable read will not change the status of the vari-
ables and thus consecutive variable reads will share the same coalescing probability.

Variable definitions can change the status of variables and thus change the coalescing

74

probability between two variables. Therefore variable definitions play an important
role in the coexisting lifetime of two variables. In the priority function described
earlier, the number of references has already been considered. Here, the length of the
status history of two variables is used to approximate the coexisting lifetime.

During profiling, two 3-dimensional arrays [ifetimel[i|[j][k] and count[i][j][k] are
used. Here index 7 identifies the function, index j identifies the colored variable, and
index k identifies the non-colored variable. The lifetime array records the length of
overlap of live ranges of two variables while the count array records the duration over
which the two variables are likely coalescable. The coalescing probability is computed
by dividing latter by the former.

The instrumentation process is as follows. Assume that variable a is colored,
variable b is non-colored, and their live ranges overlap. The instrumentation code is
only inserted in the overlapping regions. For each definition of either a or b, coexisting
lifetime is absolutely increased by one while coalesce count is conditionally increased
by one. In practical benchmarks, every definition point is followed by instrumentation
code for multiple variables. The instrumentation algorithm is quite straight forward.
Counter initialization code is inserted in the entry point of main function and profiling

information reporting code at the exit point of the main function.

4.5.4 Speculative Reload Pass

Our speculative reload pass is an enhanced version of the gcc reload pass. According
to the decisions made in the previous passes, code is generated to access physical
registers, access upper halves of physical registers and access memory. In summary,

three categories of variables have to be handled in this pass.

1. For variables that are assigned to physical registers in local and global register
allocation, the compiler replaces the virtual register names with physical register

names in the intermediate representation.

75

2. For variables that remain in virtual registers after speculative allocation pass,
the compiler allocates slots on the stack and generates spill code. For each
definition or use point, a reload register is identified and spill code is generated

by placing the store after the definition and load before the use.

3. For variables that are assigned in the speculative pass, the compiler needs to
allocate slots on the stack and generate spill code for them. Instead of using
ordinary load and store instructions, speculative load and store instructions are
generated. At a definition point, the compiler identifies a reload register and
temporarily stores the computed value into this register. A speculative store
instruction SSwis generated to speculative store the value back to the stack slot.
It is followed by a speculative Smv instruction which speculatively moves the

value from the temporary register into the upper half of the assigned register.

At each use point, a reload register is identified and the value from the assigned
upper half of the register is speculatively extracted using a speculative Enmv
instructions. It is followed by a speculative load instruction Sl d which actually
loads the value from the stack slot if at runtime the required value is not in the

register.

4.6 Experimental Results

The static and speculative subword register allocation techniques have been imple-
mented and evaluated. The proposed algorithms have been incorporated in the gcc
compiler (version 2.95.02) for the ARM processor. The suggested architectural en-
hancement has been included in the Simplescalar simulator for ARM.

The experiments use selected benchmarks from embedded benchmark suites of
Mediabench and Commbench. Two categories of configurations are used. One cate-
gory is configured to have an L1 data cache with cache hit latency from 2 to 5 cycles

and memory access latency of 64 cycles which means that in case of a successful

76

avoidance of spill reload the saving is at least 1 to 4 cycles. The other category is
configured with no L1 data cache and 64-cycle memory access latency.

To measure the effectiveness of the proposed schemes the overall reduction of exe-
cution time of the program is evaluated. To reveal how the schemes lead to this perfor-
mance improvement, statistics of algorithm-internal behaviors are also presented. For
both static and speculative version, a measurement of the percentage of dynamic spill
cost, which is really avoided at runtime, is provided. It is called Avoidance Rate. For
static subword register allocation, this rate is calculated based on the total amount
of dynamic stores and reloads in spill code. For speculative version, this rate is based
on reloads only. The percentage of dynamic spill reloads, which are transformed into
speculative reloads at run time, is measured. It is called Speculation Rate. Avoidance
Rate is different from Speculation Rate in that the latter is the effort to eliminate
the spill cost while the former is the actual success in doing so. In contrast, the spill

cost is always avoided at runtime once it is avoided statically.

4.6.1 Benchmarks

Table 4.1 describes the benchmarks selected from the suites of Mediabench and
Commbench. The second column is the number of residual virtual registers present in
the intermediate code generated by the gcc compiler at the end of the global register
allocation pass. Column 3 is the number of static reloads generated by the original
gcc reload pass. Column 4 is the number of dynamic reloads that can be attributed

to these static reloads at runtime.

4.6.2 Avoided Spill Cost

The effectiveness of the techniques is brought by the avoidance of the spill cost. Ta-
ble 4.2 shows the avoidance of the spill cost in a configuration of non-cache, 64-cycle

memory access latency. Column 2 shows the avoidance rate by static subword register

7

allocation. The result shows that a moderate amount, from about 3% to 10%, of spill
cost is avoided by static register allocation. Column 3 and 4 respectively show the
speculation rate and avoidance rate by speculative subword register allocation. The
technique transforms most of the dynamic reloads into speculative reloads (from 86%
to 99%). As a result, 33% to 95% of dynamic reloads are avoided. The comparison
of the avoidance rate shows that speculative version has much higher avoidance rate
than static subword register allocation. Although static version avoids both loads and
stores while speculative version only avoids loads, we conclude that speculative sub-
word register allocation is much more effective than static subword register allocation

in avoiding spill cost.

TABLE 4.1. Benchmark Characteristics.

Benchmarks Res. Vir. | Static | Dynamic
Regs Reloads | Reloads
mpeg2.decode 114 483 952060
mpeg2.encode 278 1234 | 29738119
epic 109 527 6307287
unepic 48 225 107759
g721.encode 9 33 3543596
g721.decode 9 33 4046653
rtr 12 28 3855503

TABLE 4.2. Avoidance of Spill Cost (Non-cache)

Benchmarks Static Speculative
Avoidance Rate | Speculation Rate ‘ Avoidance Rate

mpeg2.decode 6.27% 99.17% 58.06%
mpeg?2.encode 6.45% 93.51% 61.12%
epic 3.65% 97.80% 33.56%
unepic 4.22% 86.63% 35.21%
g721.encode 7.10% 89.52% 61.07%
g721.decode 6.71% 90.33% 61.92%
rtr 10.53% 99.58% 95.26%

78

Figure 4.11 Avoidance of Spill Cost (Cache, Speculative)

100
S TSpeculated
< 80 H FAVoided
n o
T o
8T
- 9
> 1
=z 60
o
a2
o B
0 40 H
§¢
c s
N
2 20 17
0
0 4+
< (2 RY R < < Y
<)oz’ <)ob & & 006 & <&
& N N
A 2 &
e EX /\""\’ 4'1}
K K S S
<& <&
Benchmarks
Saving = 1 Cycle
100 O Speculated
B Avoided
S
S 80+
0 o —
T o
8T
9
> 1
=z 60
o
a2
o ©
=i 40
§¢
c ©
>
| J:[E
0
0 4
< < Y < (4 (4 \Y
S oob Q,Q\ N oob oob <&
¥ & 2 &
z& é{’l’ «q} ﬂq/»
L N))
N N
Benchmarks

Saving = 3 Cycle

Dynamic Spill Loads
Speculated and Avoided (%)

Dynamic Spill Loads
Speculated and Avoided (%)

100
—I O Speculated
80 1 ILERRET
60 1
40 1
20 1
O 4+
<)ob.z’ <Joz’q' 8\0 @§\° Qobe 0082‘ ¢
NS S &
& & &
&K &K S S
Benchmarks
Saving = 2 Cycles
100 1| 8 Speculated
B Avoided
80
60 1
40 1+
20
O 4+
< < Y R (4 < &
gob (lob & & Qob cJoe’ ¢
& & N o &
9 Q " "
& & Y AV
@Q @Q S S
Benchmarks

Saving = 4 Cycles

The spill cost saved per operation differs for the two techniques. This can actually

be inferred from the priority function used by them. For static technique, a change

in cost may change priority value but it would not change the priority order and

the range of variables which are allocated. In contrast, for a speculative technique,

a change in cost does change the range of variables which are allocated. As the

cost saved per operation increases, more variables have positive priority value given

the same coalescing probability and thus become candidates of allocation. This is

also shown by the experimental results. Figure 4.11 shows the speculation rate and

79

avoidance rate in a configuration with cache. The cache hit latency is from 2 to 5
cycles. This corresponds to a saving of 1 to 4 cycles. Although the saving could be
more if a cache-missed reload is avoided, a conservative estimation in the cost saved by
using the lower bound is used. The results show that on average, the speculation rate
is 57% when the saving is one cycle and 82% when saving is four cycles. Furthermore,
when the saving is one cycle, the speculative technique achieves an average avoidance
rate of 41% (with upper bound of 91% and lower bound of 5%). When the saving
is four cycles, avoidance rate increases to 47% (with upper bound of 93% and lower
bound of 16%). Compared with the configuration without cache, a configuration
with cache has lower speculation rate and avoidance rate. But the difference is not

significant.

4.6.3 Performance

The final performance improvement brought by the spill cost avoided is measured.
Figure 4.12 shows the percentage of reduction of execution time in cycles of the two
techniques on a non-cache configuration. The results show that the static subword
register allocation achieves a moderate percentage of execution time reduction from
1.51% to 3.06%. In contrast, the speculative subword register allocation achieves sig-
nificant performance improvement. The speculative technique reduces the execution
time by 6.35% to 14.34%. The conclusion can be reached that speculative subword
register allocation is more effective to improve performance than static subword reg-
ister allocation.

Again the performance improvement on a configuration with cache is measured.
Table 4.3 shows the performance improvement in cycles of the speculative technique.
On average, it achieves a moderate performance improvement of 4.76% when the
saving is four cycles and 1.38% when the saving is one cycle. Comparing this with

the results from non-cache configuration, it is found that the speculative technique

80

is more effective in the latter. This is due to the fact that the total spill cost of a
program is much less with cache than without cache. The performance improvement
of the static register allocation is measured. However, the results show negligible
improvement. Thus the static technique is not as effective as speculative technique

in performance improvement.

Figure 4.12 Performance Improvement in Cycles (Non-cache)

14 O Static
B Speculative

Cycle Count Reduction (%)

Benchmarks

TABLE 4.3. Performance Improvement in Cycles (Speculative, Cache)

Benchmarks | Saving = | Saving = | Saving = | Saving =

1 Cycle | 2 Cycles | 3 Cycles | 4 Cycles
mpeg2.decode | 0.38% 0.65% 0.97% 1.27%
mpeg2.encode | 2.53% 4.09% 5.70% 7.33%
epic 0.38% 1.31% 3.06% 5.17%
unepic 0.10% 0.21% 0.32% 0.45%
g721.encode 0.95% 1.53% 2.11% 2.711%
g721.decode 1.13% 1.82% 2.53% 3.26%
rtr 0.79% 1.20% 1.61% 2.02%

81

4.7 Related Work

It is well known that often applications contain significant amounts of narrow width
data. The presence of narrow width data has been exploited to optimize power con-
sumption, memory needs, and program performance. There are two types of tech-
niques: static techniques rely on the compiler to identify variables that are guaranteed
to be narrow width; and dynamic techniques are able to exploit narrow width data
that is observed during program execution but cannot be necessarily identified at
compile time.

Static techniques for identifying narrow width data include a number of Bitwidth
analysis. Stephenson et al. [45] developed bitwidth analysis based upon analyzing
value ranges of interesting variables. Additional bitwidth analysis include the bit
section analysis proposed by Tallam and Gupta [48] and Gupta et al. [23]. A more
expensive bitwise analysis was proposed by Budiu et al. [11]. The results of these
analysis have been used to carry out memory coalescing for load elimination [19],
storage offset assignment to reduce code size [32], silicon compilation [45], and register
allocation [48].

Dynamic techniques have been developed to handle situations in which the width
of the data cannot be determined to be narrow at compile time but during execution
it is observed that the data values are likely to fit in half words. The presence
of dynamically observed narrow width data has been exploited to develop profile
guided algorithm for reducing heap allocated memory [53] and to improve data cache
performance and power in [54, 51]. In contrast, in this chapter it has been shown how
narrow width data can be exploited to make efficient use of registers.

Coloring-based register allocation has been studied extensively in [16, 14]. A
recent work on bitwidth aware global register allocation [48] exploited statically known
narrow width data by packing multiple narrow width variables into a single register.

It relied upon hardware support in form of instructions that allow subsections within

82

registers to be addressed [31]. In contrast, this chapter presents a technique in which
two variables are able to be packed in one register even if it cannot be determined
at compile time that they can be stored in a single register. As a result the solution
needs to be speculative in nature, i.e., while two values are expected to fit in a single
register according to profile data, it is not guaranteed that they will always fit in
a single register. Finally it should be pointed out that this work is orthogonal to
speculative register promotion technique of [4]. While speculative register promotion
allows allocation of registers to variables in presence of aliasing, this work assigns

already allocated registers to additional variables when no free registers are available.

4.8 Summary

In this chapter two techniques are presented to exploit presence of narrow width data
in programs to more efficiently make use of limited register resources in embedded
processors. Narrow width variables otherwise spilled by a coloring allocator are stat-
ically or speculatively saved in the upper halves of the registers occupied by other
narrow width variables. Register assignment is made such that two narrow width
variables will reside in the same register simultaneously or expectedly simultaneously
most of the time. For both techniques, a small set of new instructions are designed
through which the feature of subword register assignment can be implemented with-
out requiring significant amounts of instruction encoding space. Priority-based graph
coloring register allocation algorithms are proposed to achieve maximum performance
improvement. The experimental results show that the static technique avoids up to
10.53% of the spill cost (store and load) and the specultaive technique avoids from
33% to 95% of the spill cost (load). This leads to a performance improvement of
up to 3.06% for static technique and 14.34% for speculative technique. The specu-
lative technique is more effective to avoid spill cost than the static technique. Both

techniques are more effective in absence of cache than in presence of cache.

83

CHAPTER 5

AN OFFSET ASSIGNMENT METHOD
EXPLOITING NARROW WIDTH DATA

Chapter 2 has shown that narrow width data is common in embedded applications.
An instruction set extension to ARM architecture was proposed in Chapter 3 to
manipulate narrow width data directly. With such an extension, multiple distinct
narrow width data can be packed into a single memory location or a register. This
architectural support brings us further opportunities for developing new solutions to
the memory layout problem.

The main benefit brought by the exploitation of narrow width data in memory
layout problem is the shrinking of memory footprint. Memory footprint is a key
factor in embedded systems. For example, in the system-on-chip design of embedded
microprocessors, memory footprint is directly translated into silicon area and cost.
Memory footprint can be divided into two parts. One is the data memory footprint
which is occupied by the local, global, and heap data. The other is instruction memory
footprint which is occupied by the instructions of the program code.

In this chapter we show that the exploitation of narrow width data can contribute
to the reduction of both data and instruction memory footprint by solving the mem-
ory layout problem in a new way. First, it is obvious that packing multiple data items
into a single memory location can shrink the data memory footprint. Second, a packed
memory layout can help reduce the program code size in the context of solving the off-
set assignment problem for architectures that support autoincrement/autodecrement
features associated with the indirect addressing modes. While not in the context of
memory layout, the program size can be reduced by replacing packing and unpacking

operations with BSX ARM instructions as shown in Chapter 3.

84

The autoincrement/autodecrement feature is associated with the indirect ad-
dressing modes in many embedded processors and digital signal processors (e.g.,
TI TMS320C25, Motorola DSP56K). This instruction set feature has received con-
siderable attention for achieving code size reduction. Variables that are frequently
accessed in sequence are placed into neighboring storage locations during storage
assignment so that the autoincrement/autodecrement feature can be used and ex-
plicit address arithmetic instructions to set up the contents of the address register
are avoided. The problem of finding a storage layout which maximizes the use of
autoincrement /autodecrement to reduce code size using a single address register is
called the Simple Offset Assignment (SOA) problem [8, 34].

In this chapter it is shown that the presence of subword data, as well as the sup-
port of instructions for direct manipulation of subword data, presents an opportunity
for achieving effective storage offset assignment that can reduce the need for explicit
address arithmetic instructions. By packing multiple subword variables into a single
word, memory layout can be generated to further reduce the cost of address arith-
metic in two ways. First, the need for address arithmetic instructions is reduced as
variables that are packed together share the same address. Second, there are more
opportunities for using autoincrement/autodecrement instructions as a variable can
be adjacent to more than two variables. The SubWord Offset Assignment (SWOA)
problem is introduced and solved using a Path Cover with Node Coalescing (PCwNCQC)
formulation. Node coalescing corresponds to the packing of multiple subword vari-
ables into a single word while a path cover corresponds to the traditional placement
of variables in adjacent locations. Three heuristics are presented to solve the PCwNC
problem. Experimental results show that the developed techniques are effective.

The remainder of the chapter is organized as follows. Section 5.2 introduces the
processor model that supports the features described above and illustrates how they
can be used to reduce code size. It also formalizes the layout problem. In Section

5.3, three algorithms are developed to solve this problem. In Section 5.4 experimental

85

results are given to demonstrate the benefits of the approach. In Section 5.5, related

work is discussed. Conclusions are given in Section 5.6.

5.1 SubWord Offset Assignment

Processor Model and Illustration. The processor model is defined and the advantages
of SWOA over SOA are illustrated. Noticing that there is an opportunity to improve
the storage assignment if multiple subword data can be put into a single memory
location, a new processor model is proposed which integrates the autoincrement/
autodecrement feature and the ability to directly manipulate subword data.

The processor model considered is an accumulator-based machine where, for each
instruction, one operand resides in the accumulator and the other operand resides in
the memory. A specialized hardware unit, called Address Generation Unit (AGU),
is used to handle memory addressing. AGU contains a set of address registers. The
operand in the memory is referenced through one of the address registers (ARO
ARL. ..). Address register can be set up explicitly using any instruction that can
write to it. Address register can also be automatically incremented or decremented by
one in parallel with the memory access operation in any instruction. Explicitly setting
up address register consumes processor cycles while autoincrement/autodecrement
operation does not cost any extra cycles. In assembly, autoincrement of the address
register AR is indicated by * (AR) + and autodecrement is indicated as * (AR) - .
In SWOA problem, only one address register will be considered. In a more general
version of SWOA problem, multiple address registers can be exploited. As an example

of autoincrement/autodecrement feature, consider the following instruction:
ADD *(ARO) +

This instruction adds the operand in memory pointed to by ARO to the accumulator
and at the same time automatically increases the value in ARO by the size of one

memory unit.

86

For both the accumulator and the memory operand, bit section addressing mode
is available, i.e., the operands can be subword entities within the accumulator or the
referenced memory location. A bit section descriptor of the form [|, s] is used to
specify the subword entity such that | is the starting bit position of the subword
operand and S is the number of bits in the subword operand. This addressing mode
is quite similar to the immediate static descriptor proposed as part of a Bit Section
Extension for ARM architecture in Chapter 3. The main difference is that the sub-
word operand being read resides in the accumulator or memory while in the ARM
Bit Section Extension the subword operand can come from any general purpose reg-
ister. To reference subword data in memory, special logic which can read and write
subword in a single memory location is added. In an instruction, either one or both
of the operands can represent subword data. If only one operand is subword data,
it must appropriately be extended (zero or sign) before the operation is performed.
The autoincrement/autodecrement feature and subword accessing mode can be used

simultaneously in an instruction. As an example, consider the instruction below:
ADD [16, 8], *(ARO)[24, 8]+

The above instruction performs an ADD over the subword operand in the memory
address pointed by ARO starting at bit position 24 and 8 bits long and the subword
operand in the accumulator starting at bit position 16 and 8 bits long. The result is
stored in the accumulator and the value of ARO is increased to address the next word
by the autoincrement operation.

To illustrate the benefits of above instructions an example is presented next. Con-
sider the code fragment in Figure 5.1(a). Further assume that variables a and d are
subword variables of length 16 bits and all other variables are 32 bits. Figure 5.1(b)
shows the access sequence of the variables. Using the algorithm for solving the SOA
problem proposed by Liao et al. [34], the layout shown in Figure 5.1(c) is obtained.

Notice that this algorithm assigns variables a and d to separate locations. The as-

87

Figure 5.1 Simple Offset Assignment (SOA)

8?;3:2: LDAR ARO, &a;a
@ 2z avd LOAD *(ARO)
(B o dra, ADAR ARO0, 3 :b 2
: ADD *(ARO)- ;c
(5) b =d+f+a; STOR *(ARO)- : d
@ LOAD *(ARO)
SBAR ARO,3 ;e
abcdefadadacdfab g‘ll?gR *EQES;:;
LOAD *ARO)+;d 1L 1
(®) ADD *(ARQ)- :a
STOR *(ARO)+ ; d
b LOAD *ARO)- :a
ADD *(ARO)
A ADAR AR0,2 :c
STOR *ARO)- ;d >
P LOAD *(ARO)
SBAR ARO, 2 ;f
. ADD *(ARO)+; a
ADD *(ARO) ©
; ADAR ARO,3 ;b
STOR *(ARO)
e

(c) (d)

sembly code corresponding to this offset assignment is shown in Figure 5.1(d), where
the instructions shown in bold type are explicit address arithmetic instructions.
Assume that the knowledge that a and d are subword variables is exploited. By
packing the two variables together into a single location, the storage offset assignment
will be changed as shown in Figure 5.2(a). The corresponding assembly code is shown
in Figure 5.2(b) which contains fewer explicit address arithmetic instructions. The
number of explicit address arithmetic instructions is reduced from 5 to 3. The packing
of variables helps in two ways. First a and d can be accessed in sequence without
modifying the contents of the address register as they belong to the same storage
location. Second since a and d are both simultaneously made adjacent to variables ¢
and f, it is possible to handle access sequences af and df using autoincrement and

access sequences ac and dc using autodecrement.

Problem Formulation. Now let us further discuss the formulation of the layout de-

termination problem based upon which the above layouts are derived. First let us

88

Figure 5.2 SubWord Offset Assignment (SWOA)

LDAR ARO, &ad ya
b LOAD *(ARO)
ADAR ARO, 2 ‘b
¢ ADD [32,16],*(ARO)-
STOR *(ARO)-
a|d| LoaD *AR0)
SBAR ARO, 3
f ADD [16,16],*(ARO)+
STOR *(ARO)+
€ LOAD *(ARO)

ADD [32,16],*(AR0)[16,16]
@ STOR *(AR0)[32,16]

LOAD *(ARO)
ADD [16,16],(ARO0)[32,16]+
STOR *(ARO)-
LOAD *ARO)-
ADD [16,16],(ARO)+
ADD *(ARO[32,16])
ADAR ARO, 2
STOR *(ARO)

o

o

O roo0ovaovow +~0

o

©

(b)

consider the formulation of SOA proposed by Liao et al. [34]. An undirected edge-
weighted access graph is constructed from the access sequence where the vertices of
the graph are the variables and the weights of the edges are the number of times in the
static code that two variables are accessed in sequence. Figure 5.1(e) shows the access
graph of this example. 16-bit variables are shown as shaded nodes while unshaded
nodes represent 32 bit variables. A layout corresponds to path cover of the graph.
The edges included in the path cover can be handled using autoincrement and au-
todecrement while the edges that are not covered lead to insertion of explicit address
arithmetic instructions. To minimize the insertion of additional instructions, a maz-
imum weight path cover should be selected. However, this problem is NP-complete
and therefore a greedy heuristic was proposed by Liao et al. [34] to find the path
cover. The thick edges shown in Figure 5.1(e) represent the path cover generated by
the greedy algorithm. Since the sum of the weights of edges that are not covered is
5, five explicit arithmetic instructions are inserted in the generated code. The sum of
the weights of edges that are not covered is also called the cost of the storage layout.

In order to address the SWOA problem, the above formulation is enhanced as

89

follows. It is allowed to apply node coalescing — two nodes can be coalesced into one
if they together can fit into a single word. For example, the graph shown in Fig-
ure 5.2(c) is obtained by coalescing nodes for variables a and d, creating the node ad.
Following coalescing, if the greedy heuristic proposed by Liao et al. [34] is applied,
the path cover obtained is shown by the thick edges in Figure 5.2(c). By coalescing
the edge a — d is covered and the path cover further exploits the benefits of this coa-
lescing leaving two edges uncovered with collective weight of 3. Since the cost of the
layout following path covering with coalescing is 3, three explicit address arithmetic

instructions are generated following SWOA.

Definition 1. (Node Coalescing) Given an access graph G(V, E), nodes u,v € V
can be coalesced into uv if the following condition holds:

Bitwidth(u) + Bitwidth(v) < 32 bits.

The transformed graph G'(V', E') obtained after coalescing of u and v is obtained
as follows:

%
V' =V —{u,v} U {uv}
Bitwidth(u,v) = Bitwidth(u) + Bitwidth(v)
E'
for each node z € V — {u,v} do
ifu—z,v—x € F then uv —z € E' and
weight(uv — z) = weight(u —) + weight(v — x)
elseif u —x € F and v — x ¢ E then uv — z € E’ and
weight(uv — z) = weight(u — x)
elseif v —x € E and u — x ¢ E then uwv — x € E’ and
weight(uv — x) = weight(v — x)
elseif t —y € F and {z,y} N {u,v} = ¢ then
x—y€FE
endif
endfor

From the above discussion it is clear that it needs to solve the Path Cover with

Node Coalescing (PCwNC) problem where coalescing operations can be applied to the

90

graph and a path cover needs to be found for the transformed graph such that the cost
of the resulting storage layout is the minimum. While, in the example shown, only
two variables could be coalesced together as each was 16 bits, in general more than
two variables may be coalesced into a single location assuming that their combined
bitwidths do not exceed 32 bits. While a single coalescing operation involves exactly
two nodes, by iteratively performing coalescing, more than two variables can be made
to share the same location.

The node coalescing operation is formally defined in Definition 1. The definition
specifies the precondition under which nodes v and v can be coalesced and replaced
by node uv. Furthermore, edge weight weight(z — y) is the number of times variables
x and y are accessed one after another. To facilitate the checking of the precondition,
with each node n, its bitwidth Bitwidth(n) is associated. The graph update following
a coalescing operation is also specified.

While the problem of finding the maximum weight path cover is already known
to be NP-complete, providing the flexibility to perform node coalescing further com-
plicates the design of a heuristic algorithm. The obvious approach that comes to
mind is to develop a greedy prepass for performing node coalescing. The transformed
graph can then be passed on to the greedy path covering heuristic proposed by Liao et
al. [34]. However, there are intricate interactions between coalescing and path cover-
ing that make this approach not so attractive. In particular, coalescing is not always
good. Since coalescing can result in nodes with higher degrees, it can adversely effect
the ability to find a good path cover. In the remainder of this section the situations
in which coalescing is beneficial and situations in which it is harmful are character-
ized. This analysis will guide the design of algorithms which will be presented in the

subsequent section.

Positive and Negative Coalescence. Consider the example in Figure 5.3(a). By apply-
ing the SOA algorithm proposed by Liao et al. [34], the path cover obtained includes

91

edges b — d, a — d, and a — ¢ shown as thick edges in the graph. Edges a — b and
b — c with a collective cost of 7 are not covered. If a and b are coalesced which are
both 16 bit variables shown as shaded nodes in the graph, all edges are covered in the
resulting graph. Thus the impact of coalescing is positive. On the other hand if the
example in Figure 5.4 is considered something completely different happens. Before
coalescing, edges b — f, a —d, a — ¢, and b — e are covered by the path cover and as a
result only one edge, a — b with cost of 3, is not covered. However, after shaded nodes
of 16 bit variables a and b are coalesced, two edges, ¢ — ab and e — ab with collective
cost of 9, are not be covered. Thus, node coalescing has a negative impact. A quick
look at these examples reveals the key difference between them. In Figure 5.3 the
nodes a and b both have degree of 3 while the degree of resulting node ab is 2 which
is lower. On the other hand, in Figure 5.4, the nodes a and b both have a degree of
3 while the degree of ab is 4 which is higher.

Figure 5.3 Positive Coalescence

(a) Before Coalescing (b) After Coalescing

Figure 5.4 Negative Coalescence

(a) Before Coalescing (b) After Coalescing

92

In order to characterize the possible positive or negative impact of node coalescing,
it is useful to consider the impact of coalescing two nodes on the edges connected to

these nodes by dividing them into the following three categories.

1. Edge between coalesced nodes. This edge will be removed by node coalescing
and thus this is a positive effect of node coalescing. The bigger the weight of the
edge between a pair of coalesced nodes, the greater is the benefit of eliminating
the edge through coalescing. However, this is not the only effect of coalescing.

Other effects of coalescing are described next.

- W

2. Edges between coalesced nodes and their common neighbors. By node coalescing,
the two edges between nodes being coalesced and their common neighbor will
become merged into one edge. The weight of the new edge is the sum of the
two original edges. Since one edge each connected to the original nodes is
replaced by exactly one edge connected to the coalesced node, such edges are
not a contributing factor to the formation of a coalesced node with a higher
degree than the degrees of the nodes before coalescing. Thus, these edges are

not, considered harmful.

3. Edges between coalesced nodes and their non-common neighbors. It is the pres-
ence of these edges that results in the creation of a coalesced node which has
a degree higher than the degrees of the original nodes. Since only two of the

neighbors of a node can ever be in the path cover, the amount by which the

degree of a coalesced node exceeds two is the number of edges connected to the

93

coalesced node that will not be covered. However, if the degree of the coalesced

node is not greater than two, then these edges are not harmful.

P e

The above qualitative analysis sheds light on the factors which should influence

coalescing decisions. The positive factors should be maximized and the negative

factors should be avoided while doing node coalescing. In the next section, algorithms

are developed to incorporate coalescing into path covering.

5.2

Algorithms

Three algorithms have been developed to solve the PCwNC problem. The discussion

below outlines the motivation and differences in the three algorithms.

Alg.

Alg.

I - Cover First, Coalesce Later. This algorithm first uses the greedy algorithm
proposed by Liao et al. [34] to find a path cover and then performs coalescing
to handle as many of the uncovered edges as possible. The advantage of this
approach is that coalescing will only improve the solution produced by the al-
gorithm proposed by Liao et al. [34]. Each coalescing operation will eliminate
at least one uncovered edge. The drawback of this approach is that it is con-
servative in that, while it completely avoids the negative impact of coalescing,

it does not fully exploit the positive potential of coalescing.

II - Coalesce First, Cover Later. This algorithm first carries out all the coa-
lescing operations, and then applies the algorithm proposed by Liao et al. [34]
for finding the path cover for the transformed graph. The advantage of this

approach is that when the path cover is selected, it can take advantage of the

94

coalescing decisions made earlier. In contrast to the first algorithm, this algo-
rithm is more aggressive in carrying out coalescing and thus it can potentially

lead to coverage of more edges.

Alg. III - Integrated Covering and Coalescing. There is an inherent interaction
between coalescing decisions and path covering decisions. If path cover is com-
puted first, as is the case in Alg. I, then the knowledge of this cover is exploited
in carrying out node coalescing decisions. If coalescing is performed first, as is
the case in Alg. II, then the knowledge of these decisions is exploited during
path covering decisions. This algorithm interleaves covering and coalescing de-
cisions so that both types of decisions have an opportunity to influence each
other. This integrated algorithm strikes a balance between the two algorithms.
It is observed that Alg. I suffers when it performs too little coalescing and Alg.
IT suffers when it performs too much coalescing. Alg. IIT attempts to perform

just the right amount of coalescing.

5.2.1 Alg. I - Cover First, Coalesce Later

As the name implies, this algorithm first finds a path cover using the algorithm
proposed by Liao et al. [34] and then it carries out node coalescing to merge as many
of the uncovered edges as possible into the path cover. This approach guarantees
that coalescing only improves upon the solution provided by the initial path cover.
However, in this approach, the path cover cannot be arbitrarily altered and thus
coalescing decisions cannot be used to select a different and perhaps superior path
cover. The key issue to address is the identification of coalescing opportunities that
eliminate an uncovered edge. Four distinct situations have been identified in which
coalescing is possible assuming that the nodes being coalesced satisfy the bitwidth

precondition. These four cases are as follows:

95

Case 1: In this case both of the nodes that are connected by an uncovered edge lie in
the same covered path and there is only one node in between them. If any one
of the nodes’ from the uncovered edge can be coalesced with the intervening
node, the uncovered edge will merge into the path cover and thus would be
effectively covered. This situation is illustrated in the figure below. The shaded

nodes in the figure represent nodes that can be coalesced.

8

O

Case 2: In this case also both of the nodes that are connected by an uncovered edge
belong to the same covered path and there is only one node in between them.
However, in addition one of the endpoints of the uncovered edge is at the end
of a path cover. In this case the two nodes connecting the uncovered edge may

be coalesced together as shown in the figure below.
8
Qllgu — 1119

Case 3: In this case, for an uncovered edge, if one node is left by itself and the other

node is part of a path cover, then the two nodes can be coalesced as shown

8
O=O=0—0 — OFa=~0)
—

Case 4: In the fourth case, for an uncovered edge, if both of the nodes are the

below.

endpoints of a covered path, then the nodes can be coalesced. Actually this will

connect the two covered subpaths. This situation is illustrated below.

96

However, it should be noted that the above situation cannot occur when the
initial path cover is examined. This is because the algorithm proposed by
Liao et al. [34] would have simply included this uncovered edge into the path
cover. But this situation can be created after application of other coalescing
transformations. In the figure below, after coalescing of nodes ¢ and d according

to case 2, an opportunity for coalescing nodes a and b according to case 4 arises.

(a) Original graph and its cover.

12 19
@S S oy

(b) Coalesced graph and its cover.

An example of the application of a sequence of above coalescing transformations is
shown in Figure 5.5. Figure 5.5(a) gives the original access graph and the thick edges
form the path cover identified using the heuristic proposed by Liao et al. [34]. The cost
of this cover is 28. In this graph the shaded nodes correspond to 16 bit variables and
unshaded nodes are assumed to correspond to 32 bit variables. Using case 1, nodes

a and b are coalesced. By applying case 2, nodes ¢ and d are coalesced. By applying

97

Figure 5.6: Alg. I - Cover First, Coalesce Later.

input : A set N of nodes with bitwidth information.
An access sequence L for these nodes.
output: A subword offset assignment A.
G(V,E) < AccessG aph(L,N) ;
NC + 0 ;
PC(V',E") < Sol veSOA(G) ;
F «+ list of edges in E' — E' in descending order of weight;
while F # () do
e(nq,ng) « first edge in F;
F «+— F —{e};
s < Det ect Case(e, G);
switch s do
case I
ns < the node between n, and no;
if Bi twi dt h(n;) +Bi twi dt h(n3) < 32 bits then
G «+ Coal esce((n1,n3),G) ;
else
G + Coal esce((ng,n3),q) ;
end
update PC;
update F;
record this coalescing in log NC;
break;

case 2,3 or 4
G «+ Coal esce((n1,ns),G) ;
update PC;
update F;
record this coalescing in log NC;
break;

otherwise
break;

end
end

A « build SWOA from PC and NC
return A;

98

case 4, nodes e and f are coalesced. The resulting graph is shown in Figure 5.5(b).
The cost of this cover is reduced to 0 as all edges have either disappeared due to
coalescing or covered by the path cover.

Figure 5.6 summarizes this algorithm. First, a path cover PC' is computed as a
normal SOA solution of the access graph. The uncovered edges are sorted in decreas-
ing order of their weights and then processed one by one. In each step an attempt is
made to handle the uncovered edge using coalescing operations defined by the four
cases discussed. If coalescing is successful at any step, bookkeeping actions are per-
formed to update the path cover and the access graph. The path cover PC' and the
log of coalescing actions NC' together define the SWOA solution A.

5.2.2 Alg. IT - Coalesce First, Cover Later

The drawback of Alg. I is that it sometimes does too little coalescing, i.e., it fails to
carry out coalescing that can reduce the cost of SWOA further. Consider the access
graph shown in Figure 5.7(a). As before, the shaded nodes can be coalesced together.
If we consider the four cases under which Alg. I performs coalescing, none of the four
cases are applicable to nodes a and b in the Figure 5.7(a). Thus, Alg. I terminates
with the path cover shown by thick edges in Figure 5.7(a). On the other hand assume
that the two nodes given the access graph shown in Figure 5.7(b) are coalesced. The
path cover for this transformed graph is shown by the thick edges. The cost of SWOA
is reduced from 50 without coalescing to 45 with coalescing.

The example in Figure 5.7 shows the limitations of the Alg. I. The path cover is
found first and only node coalescings that preserve the path cover are applied. In the
example shown above the node coalescing performed does not preserve the path cover
of Figure 5.7(a) and thus after coalescing a fresh path cover was computed. This path
cover had a lower cost. This observation suggests another approach which forms the

basis of the second algorithm. Aggressive node coalescing is carried out first, and

99

Figure 5.7 Motivating Example of Alg. 1I

(a) Original Path Cover (b) Path Cover on Coalesced Graph
(Cost = 50) (Cost = 45)

after all coalescings have been performed, the path cover is computed. Thus, during
coalescing, there is no path cover implied restrictions on coalescing.

While it is clear that we should use the coalesce first and cover later policy, a
method must be devised for deciding when two nodes should be coalesced. It is
impossible to simply exploit all opportunities for coalescing because as discussed in
Section 5.1, coalescing can sometimes be harmful as it may create high degree nodes.
To evaluate a particular opportunity for coalescing, a notion of locally beneficial co-
alescing is formulated as follows. Given nodes u and v which are candidates for
coalescing, consider the local subgraph of the access sequence graph such that nodes
in this subgraph are u, v, and all nodes connected by an edge to u and/or v while
the edges in the subgraph are all edges emanating from nodes v and v. A cover is
found for the local subgraph and then nodes u and v in the local subgraph are co-
alesced and a cover for this transformed subgraph is found. If the cost of the cover
of the transformed local subgraph is lower than the cost of the untransformed local
subgraph, then the coalescing is considered to be locally beneficial. If a coalescing
opportunity is found to be locally beneficial, the two nodes involved are coalesced;
otherwise the algorithm does not take advantage of the coalescing opportunity.

It should be noted that the covers of the transformed and untransformed local
subgraph that are found above are merely used to make the coalescing decision. No

covering decision is made. The above process is applied repeatedly to carry out

100

as much coalescing as possible. Once no more opportunities of locally beneficial
coalescing exist, the path cover for the transformed graph is computed using the

algorithm proposed by Liao et al. [34].

Figure 5.8 Local subgraph: Path Cover before and after Coalescing

(a) Local Subgraph (b) Coalesced Local Subgraph

(Cost = 50) (Cost = 45)

Figure 5.8(a) shows the local subgraph corresponding to nodes a and b of Fig-
ure 5.7(a). The cost of the cover for this local subgraph is 50. Figure 5.8(b) shows
the resulted subgraph after coalescing nodes a and b. The cost of the cover for this
subgraph is 45. Therefore, this coalescing opportunity is locally beneficial. Following
coalescing, the access graph obtained is shown in Figure 5.7(b). By applying the
algorithm proposed by Liao et al. [34], its cover shown in Figure 5.7(b) is computed.
In the remainder of this section, the notion of locally beneficial coalescing is formally

defined. The pseudo code for this algorithm is presented.

Definition 2. (Local Subgraph) Given coalescing candidate nodes u and v in
access sequence graph G(V, E). The local subgraph for u and v, denoted as
LG(u,v) = (V', E"), is defined as:

Vi={u,v}U{n: neVandn—-uvorn—v € E}
and ' ={a—0b: a—b€ FEand {a,b} N {u,v} # ¢}.

Definition 3. (Locally Beneficial Coalescing) Given the local subgraph LG (u, v),
if the cost of path cover for LG(u,v) (also referred to as the precost),
is higher than the cost of path cover for local subgraph obtained after
coalescing u and v (also referred to as the postcost), then coalescing of u
and v is said to be locally beneficial.

101

In Figure 5.9 the pseudo-code of this algorithm is given. First, all those edges that
connect nodes that can be coalesced are identified. Then we go through these edges
one by one and apply the locally beneficial test to them. In this process some edges
may be collapsed through coalescing while other may be left as is. Once coalescing is
over, the algorithm proposed by Liao et al. [34] is applied to find the path cover for
the resulting graph giving us the SWOA solution.

Figure 5.9: Alg. II - Coalesce First, Cover Later.

input : A set NV of nodes with bitwidth information.

An access sequence L for these nodes.

output: A subword offset assignment A.

G(V,E) « AccessG aph(L,N) ;

F+0;

NC « 0 ;

for all edges e(n1,n2) € V do

if Bitw dth(n;) +Bi twi dt h(ny) < 32 bits then
F + FU/{e};

end
end

sort the edges in F' in descending order of weight;
while F # () do
e(nq,ng) < first edge from F ;
G'(V',E") «+ Local Subgr aph(e,G) ;
precost < Conput ePr eCost (¢e,G') ;
G"(V" E") «+ Coal esce (¢,G") ;
postcost < Conput ePost Cost (G") ;
if precost — postcost > 0 then
G < Coal esce(e, G);
record the coalescing information in the log NC;

update F';
else

F+ F—{e};

end
end

PC + Sol veSOA(G) ;

A « build SWOA from PC and NC
return A;

102

5.2.3 Alg. III - Integrated Covering and Coalescing

In the preceding sections it has been shown that while conservative coalescing per-
formed by Alg. I can sometimes lead to inferior solutions, Alg. II performs coalescing
more aggressively to achieve better performance. Next it is shown that in some situ-
ations Alg. II may perform too much coalescing leading to a worse solution than Alg.
I. Consider the example shown in Figure 5.10. Solution generated by the algorithm
proposed by Liao et al. [34], which does not coalesce at all, leads to the path cover
with a cost of 68 as shown in Figure 5.10(a). There are four coalescing opportunities
in this graph. Alg. I exploits one of these opportunities leading to the solution in
Figure 5.10(b) which has a cost of 48. Alg. II exploits all four coalescing opportuni-
ties leading to the solution in Figure 5.10(c) which has a cost of 51. In other words,
Alg. II performs too much coalescing in this case.

In some situations Alg. I performs better than Alg. IT while in other situations
Alg. II performs better than Alg. I. In fact, looking further into the above example,
there is another solution that is better than the solutions produced by Alg. I and
Alg. II. This solution takes advantage of two of the four coalescing opportunities
as shown in Figure 5.10(d) leading to a solution with a cost of only 40. In other
words, sometimes Alg. I performs too little coalescing while Alg. II performs too
much coalescing. To get the best result it needs to strike a balance between the
two algorithms. The real reason for the observed behaviors of Alg. I and Alg. II
is as follows. There is an inherent interaction between coalescing decisions and path
covering decisions. If node coalescing is performed after the path cover has been
computed, as is the case in Alg. I, then the knowledge of coalescing decisions cannot
influence the path covering decisions. If path covering is carried out after coalescing
has been performed, as is the case in Alg. II, then the knowledge of the path covering
decisions cannot influence coalescing decisions. If node coalescing and path covering

decisions influence each other, an integrated algorithm is needed that interleaves

103

covering and coalescing decisions. Our Alg. III is one such algorithm which produces

the result of Figure 5.10(d).

Figure 5.10 Right Amount of Coalescing

(a) Original (b) Alg |
(cost=68) (cost=48)

(c) Alg Il (d) Alg 11l
(cost=51) (cost=40)

The integrated algorithm prepares a sorted list of edges in the decreasing order
of the edge weights. Then it examines the edges one by one, where in each step,
the algorithm determines whether coalescing is possible and desirable. Coalescing
is possible if the combined bitwidth condition is met and coalescing will maintain
the integrity of the partial cover. When coalescing is possible, it is also desirable if

it satisfies the globally beneficial criteria described later. If the edge is not handled

104

through coalescing, then an attempt is made to include it into the path cover. Note
that when an attempt is made to include the current edge into the partial cover,
success is not guaranteed. This is essentially due to the same reason that sometimes
the greedy algorithm proposed by Liao et al. [34] is not able to include an edge in the
partial cover.

From the above discussion it is clear that at any point in time a partial cover
exists. A coalescing decision is made based upon prior path covering decisions and
a path covering decision exploits the knowledge of prior coalescing decisions. In this

way it is able to tightly integrate coalescing and covering.

Definition 4. (Global Subgraph) Given a pair of coalescing candidate nodes u
and v in access sequence graph G(V, E). The global subgraph for u and v,

denoted as GG (u,v) = (V', E'), is the union of the local subgraph LG (u,v)
and the current partial cover.

Definition 5. (Globally Beneficial Coalescing) Given the global subgraph
GG(u,v), if the cost of path cover for GG(u,v) (also referred to as the
precost), is higher than the cost of path cover for the global subgraph
obtained after coalescing v and v (also referred to as the postcost), then
coalescing of u and v is said to be globally beneficial. The path covers
considered in above analysis must be consistent with the current partial
cover.

The notion of globally beneficial coalescing is an extension of locally beneficial.
Given a pair of nodes coalesceable with the current partial cover, we identify the
global subgraph as the union of the local subgraph and the partial cover which is the
cover that has already been built. The complete path cover of this subgraph is found
by extending the current partial cover that is a part of it and then determining the
cost of the cover and referring to the cost as the precost. Next the nodes are coalesced
and a complete cover is found for the transformed global subgraph by extending the

current partial cover that is a part of it. The cost of this cover is determined and

105

called the postcost. If the postcost is less than the precost, coalescing is performed.
Let us revisit the example of Figure 5.10. Alg. III does produce the result shown
in Figure 5.10(d). There are four places in the graph where coalescing could be per-
formed. Figure 5.11 shows the four cases. In Figure 5.11 only the relevant parts of the
global subgraphs are shown both before and after coalescing and their corresponding
cover costs are given. The graphs contain three types of edges: thick dark edges that
are part of the current partial cover; thick dashed edges which were included to form
the complete cover for the global subgraph; and thin edges that are not part of the
complete cover of the global subgraph. The thin edges contribute to the precost and
postcost corresponding to the two covers. In the first two cases, coalescing is found
to be globally beneficial. In the third case coalescing cannot be carried out because it
would require a change in the current partial cover. In the final case coalescing does
not yield any benefit. Therefore the first two coalescing opportunities are exploited
while the other two opportunities are ignored. The results of the Alg. IIT correspond

to the solution shown earlier in Figure 5.10(d).

Figure 5.11 Integrated Coalescing

; e 25 25 . --1 45
O ®
(cost=20) (cost=0) (cost=21) (cost=13)
(a) Right-Bottom (b) Left-Bottom

Unable to Coalesce

(cost=8) (cost=19) (cost=19)

(c) Left-Top (d) Right-Top

106

Figure 5.12 is the pseudo-code of this algorithm. First, the partial cover is set
to be empty. Then run through the edges in the access graph in weight-descending
order. First coalescing is attempted to handle the edge. In order for coalescing to
occur, three conditions must be true: the bitwidths must not exceed 32 bits; the
current partial cover should be maintained; and finally coalescing should be globally
beneficial. If any one of these conditions is not satisfied, the edge cannot be coalesced.
Thus, an attempt is made to incorporate it into the partial cover by checking the
same conditions that were formulated by Liao et al. [34], i.e., no loop is formed in the
partial cover after including the edge and degree of no node exceeds 2 after the edge
is included in the partial cover. If neither coalescing nor covering succeeds, the edge

is left uncovered.

5.2.4 Further Extensions

While the focus of the work in this chapter is on the simple offset assignment prob-
lem, the approach can be extended to consider the global offset assignment (GOA)
problem. The SWOA can be easily used in conjunction with the variable partitioning
strategy described in [34] where two variables with largest cost are selected and placed
in separate partitions. However, it is observed that given the bitwidth information
of each variable, a better variable partitioning strategy can be devised by taking the
bitwidth information into consideration. For example, if there is a pair of nodes in
the access graph that can possibly be coalesced, one should avoid placing them into
separate partitions. This is because only by placing them in the same partition the
possibility of coalescing is left open. In other words a partitioning strategy should
also consider interactions with coalescing and covering.

Access sequence reordering optimization, either by code scheduling or algebraic
transformation on expression trees, can also be combined with subword offset assign-

ment. One must consider that different access sequences may lead to different access

107

Figure 5.12: Alg. III - Integrated Covering and Coalescing
input : A set N of nodes with bitwidth information.
An access sequence L for these nodes.

output: A subword offset assignment A.
G(V,E) + AccessG aph(L,N);
NC < 0 ;
PC(V',E") : V' < V,E' < 0;
F < list of edges in E in descending order of weight;
while F # () do
e(n1,ng) « first edge in F;
F + F —{e};
if Bi twi dt h(n;) +Bi twi dt h(ny) < 32 bits then
if ny and ne can be coalesced then
G1(V1, E1) < Local Subgr aph(e,G) ;
GZ(‘/Z,EZ) Vo VI,EQ +— E'U El;
precost < Conput ePr eCost (e,G3) ;
G5(V3, E3) < Coal esce (e,Gs) ;
postcost < Conput ePost Cost (Gj) ;
if precost — postcost > 0 then
G + Coal esce(e, G);
update PC; update F;
Record this coalescing information in log NC;

else
if e can be covered then
E' + E'U{e};
end
end
end
else
if e can be covered then
E' +— E'U{e};
end
end
end

A <« build SWOA from PC and NC
return A;

108

graphs with different number of node coalescings. Intuitively, reordering should ar-
range variables that can be coalesced such that they are accessed in sequence so that

the cost of edges corresponding to them can be removed by coalescing.

5.3 Experimental Results

The tool used for experimentation is the Motorola’s gce-based DSP56000 C compiler
with source code available in the public domain. The three algorithms and the greedy
algorithm proposed by Liao et al. [34] have been implemented in order to evaluate
this work. The latter algorithm is used as the baseline algorithm to measure the
effectiveness of the newly proposed algorithms. Our implementations focus on local
variables and optimize stack frame memory accesses. To implement the algorithms
the bitwidth of each variable is obtained by the bitwidth analysis techniques developed
in the prior work [47]. The applications considered were taken from the Mediabench
[28] (adpcm g721, and npeg?2) and Bitwise Project at MIT (sof t f | oat) [45].
In general, a good storage layout has two positive effects: it reduces code size and it
also improves performance. Two experiments are carried out. In the first experiment
higher priority is given to reducing code size and lower priority is given to improving
performance while in the second experiment the priorities are reversed. In the first
experiment access graphs as described in the discussion were used, i.e., the weight of
an edge between two variables was the number of times two variables were observed
as being accessed in sequence in the static code. This approach gives priority to
reducing the static number of explicit address arithmetic instructions. In the second
experiment profile information is used to determine weights as being the dynamic
number of times two variables are accessed in sequence. Clearly this approach gives
greater priority to reducing dynamic count of explicit address arithmetic instructions.
The reduction of the stack frame size due to variable packing is reported in the

experiments. Node coalescing causes multiple subword variables to be packed into

TABLE 5.1. Reduction in Static Code Size

Benchmark Priority — Code Size
Priority — Dynamic Instruction Count
SOA Alg1 Alg 11 Alg T11

Function || #cost | #cost | [%] | #cost | [%] | #cost | [%]

adpcm
coder 27 27 0.0 23 14.8 21 22.2
28 24 14.3 24 14.3 22 214
decoder 21 16 23.8 14 33.3 14 33.3
23 16 30.4 14 40.9 14 40.9

gr21

encoder 7 5 28.6 5 28.6 5 28.6
7 5 28.6 5 28.6 5 28.6
decoder 8 3 62.5 5 37.5 3 62.5
9 5 55.6 6 33.3 5 55.6
fmult 3 1 66.7 1 66.7 1 66.7
5 2 66.7 1 66.7 1 66.7
quantize 0 0 0.0 0 0.0 0 0.0
0 0 0.0 0 0.0 0 0.0
update 15 8 46.7 5 66.7 5 66.7
15 6 60.0 6 60.0 6 60.0

mpeg?2
frametotc 1 1 0.0 1 0.0 1 0.0
1 1 0.0 1 0.0 1 0.0
formpred 10 9 10.0 9 10.0 9 10.0
10 9 10.0 9 10.0 9 10.0

softfloat
m32i_64 12 8 33.3 10 16.7 8 33.3
12 8 33.3 10 16.7 8 33.3
£32.i32 14 12 14.3 11 21.4 10 28.6
14 12 14.3 11 214 10 28.6
Average 26.0 26.9 32.0
28.5 26.5 314

109

110

one storage location. Since the candidates for the optimization are the local variables
and temporaries located in stack frame, stack frame size can be reduced. Smaller stack
frame size directly leads to smaller memory footprint at runtime. This, together with

static code size reduction, further reduces the memory needs of an application.

Static Code Size. Table 5.1 reports the percentage reduction in the number of the ex-
plicit address arithmetic instructions that the algorithms achieve over the algorithm
proposed by Liao et al. [34]. When code size reduction is given higher priority, the
algorithms achieve on average 26%, 26.9% and 32% reduction in the number of ex-
plicit address arithmetic instructions. As the results show the first two algorithms
can outperform each other in different situations. However, the third algorithm sig-
nificantly outperforms the other two algorithms in many cases and does at least as
good as the best of the other two algorithms in other cases. Thus, we conclude that
interleaving covering and coalescing decisions is the best approach. When the reduc-
tion in dynamic instruction count of explicit address arithmetic instructions is given
a higher priority, it observes an average reduction of 28.5%, 26.5%, and 31.4% in the

explicit address arithmetic instructions.

Stack Frame Size. Table 5.2 reports the reduction of the size of stack frame. In the
experiments when code size reduction has higher priority, the algorithms achieve on
average 14.5%, 22.1% and 22.7% reduction in stack frame size. In the experiments
when higher priority is given to dynamic instruction count reduction, the algorithms
achieve on average 16.4%, 19.5% and 21.7% reduction. The effects of this reduction
can be combined with the reduction of static code size as to the memory requirement
of an application. From the results, the second and third algorithms achieve more
reduction in the stack frame size. This is because of the first algorithm takes a path

cover first policy and reduces the number of possible node coalescing.

TABLE 5.2. Reduction in Stack Frame Size

Benchmark Priority — Code Size
Priority — Dynamic Instruction Count
SOA Alg1 Alg IT Alg 111

Function || f#size | #size | (%] | #size | (%] | #size | (%]

adpcm
coder 12 12 0.0 10 16.7 10 16.7
12 11 8.3 11 8.3 10 16.7
decoder 10 8 20.0 7 30.0 7 30.0
10 8 20.0 7 30.0 7 30.0

gr21

encoder 9 7 22.2 6 33.3 5 44 .4
9 7 22.2 6 33.3 6 33.3
decoder 8 7 12.5 6 25.0 6 25.0
8 6 25.0 7 12.5 6 25.0
fmult 6 4 33.3 3 50.0 4 33.3
6 4 33.3 3 50.0 4 33.3
quantize 6 6 0.0 6 0.0 6 0.0
6 6 0.0 6 0.0 6 0.0
update 14 11 21.4 9 35.7 9 35.7
14 11 21.4 10 28.6 9 35.7

mpeg?2
frametotc 6 6 0.0 6 0.0 6 0.0
6 6 0.0 6 0.0 6 0.0
formpred 9 8 11.1 8 11.1 8 11.1
9 8 11.1 8 11.1 8 11.1

softfloat
m32_64 8 6 25.0 7 12.5 6 25.0
8 6 25.0 7 12.5 6 25.0
132_i32 7 6 14.3 5 28.6 5 28.6
7 6 14.3 5 28.6 5 28.6
Average 14.5 22.1 22.7
16.4 19.5 21.7

111

TABLE 5.3. Reduction in Dynamic Instruction Count

Benchmark Priority — Dynamic Instruction Count
Priority — Code Size
SOA AlgI Alg IT Alg IT1

Function #cost #cost | [%] | #cost | [%] | #cost | [%]

adpcm
coder 1677709 | 1489644 | 11.2 | 1489644 | 11.2 | 1363256 | 18.7
2169286 | 2169286 | 0.0 | 1874394 | 13.6 | 1710628 | 21.1
decoder 1702288 | 1702288 | 0.0 | 1185524 | 30.4 | 1185524 | 30.4
1719386 | 1497810 | 12.9 | 1185524 | 31.0 | 1185524 | 31.0

gr21

encoder 1610 1150 | 28.6 1150 | 28.6 1150 | 28.6
1610 1150 | 28.6 1150 | 28.6 1150 | 28.6
decoder 885120 | 442560 | 50.0 | 590080 | 33.3 | 442560 | 50.0
885120 | 442560 | 50.0 | 442560 | 50.0 | 442560 | 50.0
fimult 5528 1840 | 66.7 1840 | 66.7 1840 | 66.7
3688 1840 | 50.1 1840 | 50.1 1840 | 50.1
quantize 0 0 0.0 0 0.0 0 0.0
0 0 0.0 0 0.0 0 0.0
update 1770 920 48.0 920 48.0 690 61.0
2760 1840 | 33.3 920 66.7 920 66.7

mpeg2
frametotc 1 1 0.0 1 0.0 1 0.0
1 1 0.0 1 0.0 1 0.0
formpred 54534 46296 15.1 | 46296 15.1 | 46296 15.1
54534 46296 | 15.1 | 46296 | 15.1 | 46296 | 15.1

softfloat
m32_64 12 8 33.3 10 16.7 8 33.3
12 8 33.3 10 16.7 8 33.3
£32_132 14 12 14.3 11 214 10 28.6
14 12 14.3 11 21.4 10 28.6
Average 24.3 24.7 30.2
21.6 26.6 29.5

112

113

Dynamic Instruction Count. Table 5.3 reports the percentage reduction in the num-
ber of dynamically executed explicit address arithmetic instructions. When reducing
dynamic instruction count is given a higher priority, The algorithms achieve on av-
erage 24.3%, 24.7%, and 30.2% reduction in executed explicit address arithmetic
instructions over the algorithm proposed by Liao et al. [34]. As expected, the third
algorithm performs the best overall. When the reduction in static code size of ex-
plicit address arithmetic instructions is given a higher priority, it observes an average
reduction of 21.6%, 26.6%, and 29.5% in the dynamic instruction count of explicit
address arithmetic instructions executed by the three algorithms.

The result shows that all three algorithms achieve significant reductions in static
and dynamic instruction counts over the algorithm proposed by Liao et al. [34]. The
three algorithms also achieve significant reductions in stack frame size. The integrated

algorithm, Alg. III, gives the best performance.

5.4 Related Work

The problem of finding a storage layout which maximizes the use of autoincre-
ment /autodecrement to reduce code size using a single address register is called the
Simple Offset Assignment (SOA) problem. When multiple address registers are ex-
ploited, this problem is called General Offset Assignment (GOA) problem. This
problem was first formulated as a Path Cover (PC) problem by Bartley [8] and Liao
et al. [34, 33]. Further extensions have since been developed by many researchers.
In [30], Leupers and Marwedel improved the work by Liao et al. [34] by propos-
ing a tie-breaking heuristic for SOA and a variable partitioning strategy for GOA
to further reduce storage assignment cost. Offset assignment with varying number
of address registers and autoincrement by a range of values have also been studied
by Sudarsanam et al. in [46] and Leupers and David in [29]. Rao and Pande [41]

proposed a method to achieve better access sequence to reduce the code size by per-

114

forming algebraic transformations on expression trees. Similar problem is studied
by Choi and Kim using an offset assignment algorithm tightly coupling with code
scheduling [15]. Kandemir et al. use both access pattern modification and memory
storage reordering in [25]. Modify registers are also considered together with offset
assignment in [29, 49]. Zhuang et al. also consider coalescing non-interfering variables

into the same memory location to reduce code and data size [55].

5.5 Summary

In this chapter it was demonstrated that the combination of subword referencing and
indirect addressing with autoincrement and autodecrement is effective in reducing
code size and stack frame size. By allowing packing of multiple subword variables
into a single memory location, storage layouts are obtained which both reduce the
need for address arithmetic and increase the use of autoincrement and autodecrement
when address arithmetic is needed. It has been shown how variable packing can be
expressed in terms of node coalescing operations on access graph. The interactions
between node coalescing and path cover selection were studied and three algorithms
were developed to solve these problems together. The experimental results show that
these three algorithms provide significant reductions in code size over the algorithm
in Liao et al. [34]. The integrated algorithm that interleaves coalescing and covering

decisions performs the best.

115

CHAPTER 6
A STUDY OF STREAMING DATA

In this chapter, a study of streaming data in networking applications is performed.
Section 6.1 provides a classification of memory accesses into streaming data and utility
data and analyzes their differing behaviors with respect to temporal reference locality.
Section 6.2 shows the presence of streaming data. Section 6.3 measures the value
locality in streaming data. Section 6.4 summarizes the opportunities exposed by this

study.

6.1 Streaming Data vs. Utility Data

An embedded application typically consists of a processing loop such that during each
iteration of a loop a new set of input data is processed. In such an application, the
memory accesses to data can be mainly classified into two categories. One category
is composed of memory accesses to the object data being processed, such as network
packets, audio, and video data frames. We call it streaming data since these data
come and go and exhibit streaming nature. Because of this nature, streaming data
will never be reused across loop iterations. The other category is composed of memory
accesses to those application-specific data structures which the application relies on
to process the streaming data, such as routing table etc. We name this kind of data
utility data. Utility data can be reused across loop iterations because the same data
structures can be used to process different streaming data units. One important
observation of the relationship between streaming data and utility data is that the
value of streaming data often determines which part of the utility data is accessed.

Table 6.1 illustrates this relationship in selected networking benchmarks for the Intel

116

TABLE 6.1. Application Properties

| Application | Utility Data | Streaming Data | Description
| P Lookup Routing IP Dest. Addr. | Dest. address field is used
Table to lookup next hop
information in the routing
table.
NAT Port IP Src. Addr. The fields of IP address
Pr ot ocol Mapping TCP Src Port and TCP port are used to
Table IP Dest. Addr. | lookup translated source
TCP Dest. Port | port for outgoing traffic
in NAT- Qut and lookup
original destination and
port for incoming traffic
in NAT- | n.
Packet Classification | IP Src. Addr. The 5-tuple is used to lookup
Cl assification | Table TCP Src. Port | ilookup the classification
IP Dest. Addr. | table and identify the flow
TCP Dest. Port | that the packet belongs to.
Protocol

IXP1200 network processor.

Streaming data references generally do not demonstrate temporal locality. First, it

is often the case that there is little temporal locality within one iteration of processing.

The data-plane processing in networking applications usually does not involve very

complex computation. The code is often written in a way to avoid loading the same

part of streaming data unit more than once during processing. Second, streaming

data cannot be reused across different loop iterations of processing. This is because

different loop iterations work on different streaming data units. Even in the case that

the streaming data buffer is used in a modular style and the same memory addresses

are used to load streaming data repetitively, different data unit is loaded each time.

All together, streaming data references do not show temporal locality.

In contrast, utility data shows high temporal locality. The same part of utility

117

data may be accessed across different loop iterations. This is because the value in
streaming data often determines which part of utility data is used. It is often the case
that the same value repetitively occurs in different streaming data units as shown by
the measurements performed in next section. For example, in a flow of IP traffic, many
packets headers contain the same destination fields. When IP lookup is performed,
the same part of the routing table is thus accessed repeatedly. This leads to temporal
locality in utility data accesses. Although within one loop iteration of processing
utility data references have little locality, locality occurs across loop iterations.

The low temporal locality of streaming data leads to the degradation of overall
performance for memory accesses. As shown in the next section, the percentage of
memory accesses to streaming data is significant in these applications. This leads to
the fact that Intel IXP1200 network processor is designed with no memory cache.

Nevertheless, the repetitive values in network packet header fields, called value
locality, results in significant redundant memory loads. More importantly the en-
tire computation within a loop iteration of processing may become redundant. In
a network processor design without cache, these opportunities obviously cannot be

exploited.

6.2 Measurement of Streaming Data

In this section, a quantitative measurement of the prevalence of streaming data in
in selected networking application benchmarks on Intel IXP1200 network processor
platform is provided.

First, Figure 6.1 shows the percentage of static and dynamic memory accesses
to streaming data versus utility data. The percentage of static memory accesses to
streaming data ranges from 28% to 40%. The percentage of static memory accesses
to utility data ranges from 60% to 72%. The percentage of dynamic memory accesses

to streaming data ranges from 42% to 57%. The percentage of dynamic memory

118

Figure 6.1 Streaming Data vs. Utility Data

100

80

60

40 -

Memory Accesses of
Streaming vs. Utility Data (%)

0 - T T T

IP-Lookup NAT (in) NAT (out) Classification
Benchmarks
O Static Streaming W Static Utility
ODynamic Streaming ODynamic Utility

accesses to utility data ranges from 43% to 58% .

It is observed that both types of memory accesses are significant. None of them is
negligible. We also notice that the dynamic percentage for streaming data is higher
than static one. This is probably because at runtime, the memory accesses to stream-
ing data have to be performed to input and output object data while some of the
memory accesses to utility data may or may not be performed based on the value of

streaming data.

Figure 6.2 Short Lifetime

1200

1000

800

600

400

Satic Instruction Count
vs. Dynamic Cycle Count

200 4

0 T T T
IP-Lookup NAT (in) NAT (out) Classification
Benchmarks

@ Static Instruction Count B Dynamic Cycle Count

119

Second, it is shown that streaming data has very short lifetime. This directly
leads to low temporal locality. Figure 6.2 shows the static instruction counts and the
dynamic cycle counts required to process one network packet in these benchmarks.
The static instruction counts range from 205 to 291. Obviously not very complex
computation is required to process one unit of streaming data. The dynamic cycle
counts range from 646 to 1160 cycles . Although the code contains expensive memory
accesses to streaming and utility data whose latencies may be 150 cycles in Intel
IXP1200 network processor, a significant part of these latencies can be hidden by the
multi-core multi-thread design. The value of dynamic cycle count reveals the fact
that streaming data stays in the system for a short duration.

Third, it is shown that the packet headers in network traffic show very high value
locality. This gives an indication of the extent to which the network processing

application perform redundant memory loads and redundant computation.

Packet Source Num. of | Num. of Distinct
Stream Packets Destinations

1 19991129-134258-0 | 17045569 8920

2 20000112-111915-0 | 17934563 14033

3 20000117-095016-0 | 18433128 11746

4 20000126-205741-0 | 18823943 9012

TABLE 6.2. Packet Streamm Characteristics

To study the value locality, traces of IP packets taken from Auckland-II Trace
Archive [6] are used. Characteristics of these traces, including the total number of
packets and distinct destination addresses, are given in Table 6.2. Packet traces are
selected from the trace archive that had a large number of distinct destinations with
respect to the number of packets in the trace.

The value locality is measured in terms of the percentage of the packets which
have most frequently occurring values in the relevant n-tuple of header fields for a

given application, where n is the number of relevant header fields. According to

120

Table 6.1, | P Lookup examines one field, Packet Cl assifi cati on examines
five fields, and NAT Pr ot ocol examines four fields with two for NAT- I n and two
for NAT- Qut respectively. To measure the value locality, the packet stream is divided
into intervals of 16K consecutive packets. The top 16, 32, 64, and 128 frequent values
for the above n-tuples are determined within each interval. Figure 6.3 plots the
percentage of packets that have the top 16, 32, 64, and 128 frequent values for n-
tuples as a function of time (in intervals) for the packet stream trace 4 in Table 6.2.
Even though there are 9012 unique destination addresses, about 60% to 100% of the
packets in most of the intervals have the top 128 frequent values for n-tuples This
means that a significant amount of values repeatedly occur. The same experiments
are performed with interval size from 1K to 1024K packets. The results are roughly
the same. Experiments on other traces also show similar results. Therefore, the
degree of value locality in these packet streams is quite significant.

The unique reuse distance between a pair of packets PI and P2 with the same
n-tuple value is considered next. Unique reuse distance between P1 and P2 is defined
as the number of unique values of the n-tuple in the packets between PI and P2
in the packet stream. This notion is similar to the working set size of a cache and
more accurately reflects the value locality. Table 6.3 shows the average unique reuse
distance for pair of packets with top 16, 32, 64 and 128 most frequently occurring
n-tuple values over intervals of 16K packets for each of the packet streams. Consider
the top 16 most frequent values in | P Lookup within packet stream 1 for example.
On average these values appear repeatedly every 6.65 unique values. The statistics
of unique reuse distances and frequently observed values show that a cache of a small

size is enough to catch a reasonable amount of value locality.

121

Figure 6.3 Frequently Observed Values

100

[0
o
!

[e2]
o
p——

N
o

Packets with Top Frequent Values
in Fields Used in IP Lookup (%)

N
o

0

——Top16 ——Top 32
Top 64 Top 128

0

60 120 180 240 300

Time (in 16K-Packet Intervals)

(a) IP Lookup: Destination Field

100

o]
o
|

[e2]
o
!

N
o
|

Packets with Top Frequent Values
in Fields Used in NAT-In (%)

N
o

o

Top 16
Top 64

Top 32
Top 128

0

60 120 180 240 300

Time (in 16K-Packets Intervals)

(c) NAT-In : 2-Tuple

=
o] (o] o
o o o

N
o

Packets with Top Frequent Values
in Fields Used by Packet Classification (%)

N
o

o

Top 16
Top 64

Top 32
Top 128

0 60 120 180 240

Time (in 16K-Packet Intervals)

(b) Packet Classification: 5-Tuple

100

o] [oe]
o o

N
o

Packets with Top Frequent Values
in Fields Used by NAT-Out (%)

N
o

o

Top 16
Top 64

Top 32
Top 128

0 60 120 180 240

Time (in 16K-Packet Intevals)

(d) NAT-Out : 2-Tuple

300

300

TABLE 6.3. Average Unique Reuse Distance.

| Stream | Top 16 | Top 32 | Top 64 | Top 128 | | Stream | Top 16 | Top 32 | Top 64 | Top 128 |

1 6.65 8.23 9.49 10.03 1 9.12 11.69 14.56 17.02
2 12.43 14.57 17.08 19.97 2 16.39 20.72 26.92 31.43
3 5.14 6.09 7.01 7.56 3 8.41 10.36 12.53 14.71
4 6.34 7.28 8.11 8.49 4 9.31 11.07 12.88 14.70

(a) IP Lookup: 1-tuple

(b) NAT-Out : 2-Tuple

| Stream | Top 16 | Top 32 | Top 64 | Top 128 | [Stream | Top 16 | Top 32 | Top 64 | Top 128 |

1 17.68 21.11 24.41 27.29 1 20.19 24.02 28.09 31.90
2 10.22 12.71 15.70 18.39 2 20.35 25.88 32.32 36.70
3 12.80 15.64 18.37 20.90 3 15.24 | 18. 50 | 21.84 24.69
4 10.08 12.03 13.91 15.82 4 12.57 14.78 16.84 19.20

(b) NAT-In : 2-Tuple

(c) Packet Classification: 5-Tuple

122

6.3 Summary

In this chapter, the memory accesses of networking applications are classified into
streaming data and utility data. It is observed that these two types of data have
extremely different behavior in temporal locality. Streaming data demonstrates very
low locality while utility data shows very high locality. The study shows that the
percentage memory accesses to streaming data is significant. Thus, the overall locality
is severely degraded which is one reason for the non-cache design of Intel IXP1200
network processor. Furthermore the study shows that because of the high value
locality in the packet headers in network packets the memory accesses to utility
data shows high temporal locality. The value locality leads to significant amount of
redundant memory loads and even an entire iteration of processing computation can
be redundant. These opportunities cannot be exploited by a network processor that
is designed without cache. This study poses the challenge whether an efficient cache

design can be used to exploit the redundant memory accesses and computations.

123

CHAPTER 7

ENERGY-EFFICIENT CACHES FOR NETWORK
PROCESSORS

The study of streaming data in the previous chapter has shown that there is a sig-
nificant redundancy in memory accesses and computations. This chapter presents
methods for exploiting streaming data on a network processor through different de-
signs of cache for the purpose of saving energy.

Network processors are designed to achieve high throughput. With the tremen-
dous increase in line-speed, the amount of throughput required by network processors
is increasing significantly. For example, OC-192 (10 Gig/Sec) requires a packet to be
processed every 52 nanoseconds and OC-768 (40 Gig/Sec) requires a packet to be
processed every 13 nanoseconds.

However, not just any cache design can be used to increase the throughput of
routers. High end routers are designed to provide worst-case throughput guarantees.
The line-speed is determined with respect to the maximum packet arrival rate (worst
case), for which the network processor can guarantee the service of every packet with
respect to its longest execution path (worst case) within the loop body. A cache
design cannot change the worst case processing time. However, it may shorten the
processing time for one packet. As a result, slack can be created in the processing
schedule.

The proposed method in this chapter exploits this slack through fetch-gating for
the data-plane algorithm while still matching the worst case throughput guarantees
of the rest of the network processor. The fetch-gating brings the benefit of energy
savings.

Commercial network processors (e.g., Intel IXP1200 network processor) do not

124

include traditional memory cache in their data-plane processor. There are two reasons
behind this. First, as shown in the study in the previous chapter, the level of streaming
data is significant in networking applications and the overall locality is degraded. As
a result, a traditional memory cache does not bring benefits for network processor.
Second, a network processor is usually targeted to have a balanced design. A balanced
design of a network processor is one where the memory latency is already completely
hidden for the desired worst case throughput [43] and each of the components of
the network processor are designed for the same worst case throughput guarantees.
Balanced network processors are designed with enough overlapped execution (i.e.,
multiple threads) that the latency to perform each memory lookup in the data-plane
algorithm is completely hidden. In real world, a perfect balanced design is rare. Intel
IXP1200 network processor uses four threads in each of its microengines which can
can hide much of the memory latency but not all of it.

Two energy-efficient cache designs are proposed which are able to effectively create
slack. One is called selective cache which is an improvement of traditional memory
cache. In this scheme, the streaming data are not cached and only memory references
to utility data are cached. This caching ameliorates the situation caused by the first
reason mentioned above. However, the effectiveness of this scheme really depends
on the extent to which the network processor is balanced. In a completely balanced
network processor, there is no room for the selective cache to bring benefits. The
second scheme proposed is called computation reuse cache. In this scheme, the tags
are the input to the data plane algorithm query, and the data stored is the end result
of the query. If there is a cache hit, one can bypass all of the computations required
by the data plane algorithm query, including computation instructions and memory
accesses. This scheme is effective in creating slack even in a completely balanced
design.

In Section 7.1 the design and use of the selective cache is described. Section 7.2

describes the design and use of the computation reuse cache, and Section 7.3 describes

125

how to use it in combination with fetch gating to save energy. Section 7.4 provides
performance results for the proposed approach. Section 7.5 discusses related work.

Summary is given in Section 7.6.
7.1 Selective Cache

Selective cache is an improvement of traditional memory cache. In this scheme,
streaming data are not cached and only memory references to utility data are cached.
Previous study has shown that streaming data has little temporal locality while utility
data has high temporal locality. This design is aimed at improve the locality by
filtering out memory accesses to streaming data.

Figures 7.1 shows the hardware block-diagram of microengine after a cache is
included. The memory reference is processed in parallel with the cache access. Once
a reference is issued, it is checked whether it is a marked memory reference. If it is,
the cache is accessed. If cache hit occurs, a signal is sent to the microengine controller
immediately and at the same time a command is sent to memory controller to cancel
the memory reference request. The data is read from the cache. If cache miss occurs,
the memory access proceeds normally. Even if cache hit occurs, the context switch is
not eliminated. The benefit comes from the immediate signal from cache compared
with the long latency of signals from memory.

Figure 7.2 shows the execution timeline for an example on a microengine with
only two active threads. In the original timeline, part of long memory access latency
are hidden by context switch. There is also a part of the memory access latency that
cannot be hidden by the context switch, indicated by the line segments with arrows
at both ends marked as idle time in the figure. The cache is able to eliminate the idle
times in case of cache hit. The lower half of the figure shows the new timeline of the
marked code under the assumption that the first 7 marked memory accesses hit in the
cache and the last marked memory access does not hit in the cache. In the timeline

of this example, the idle time is successfully eliminated and thus improvement in the

126

Figure 7.1 Selective Cache

Control

Store

GPRs/

Transfer Registers

S
Command FIFO
Cache
Microengine
Controller
Local CSR
Singnal . Context Event
Events Arbiter
(Per Context)
Program {
Counters [
(Per Context)

ALU

Microengine

]

127

Figure 7.2 Timeline of Selective Cache

Original Timeline

Pre-Processing Processing Post-Processing Pre-Processing
Thread 0 e : : : —
2 be 2 b 2 b b be 2 be > be
R M R M R M R M R M w M R M
Idle Time <> <> <«
Pre-Processing Processing Post-Processing Pre-i
Thread 1 e : : :
be » b b b be 2 b 2
R M R M R M R M R M w M R
New Timeline
Pre-Processing Processing Post-Processing Pre-Processing

Y Y

(e}
(¢}
o
o

Thread 0 e

R M

P

Pre-Processing Processing

[Y

Post-Processing Pre-Processing

Thread 1 - E r f f E E
’ T A T I
Legends

’

+ Memory Read W}Memory Write M’Signal from Memory

C
1 Signal from Cache

128

average execution time of the code is observed.
7.2 Computation Reuse Cache

In this section the computation reuse cache design is presented for network processors.
The proposed cache design has two distinct features. First, the cache can be used
across several applications. This goal is achieved by making the cache programmable
(i.e., the composition of the tag and data parts can be changed from one application
to next). Second, this cache is designed to eliminate redundant computation asso-
ciated with the network processing data-plane algorithm. Because of the repeated
occurrence of the same packet header fields, the data-plane algorithm often performs
redundant computation. The computation reuse cache remembers previously per-
formed computations so that later redundant data-plane algorithm queries can be
avoided.

It is important to note that the caching performed corresponds to a coarse-grained
computation made up of many instructions. The approach is similar in idea to the dy-
namic instruction reuse techniques by Sodani and Sohi [44]. Sodani and Sohi focused
on identifying arbitrary dependency chains of instructions in high performance pro-
cessors that perform redundant calculations. If these are discovered, then the entire
computation is avoided. The above concept is used to design a programmable com-
putation reuse cache. The level of reuse focuses on reusing complete set of function
calls (i.e., the data-plane algorithm query), instead of arbitrary dependency chains as
examined by Sodani and Sohi. The computation reuse cache is set up specifically for
each data-plane algorithm to exploit reuse in its computations. We focus on using
this approach to streamline the processing of packets in order to save energy.

For redundancy elimination, a cache line is designed to contain the input (tag) and
output (data) of the computation. The inputs are the relevant fields (n-tuple) in the
packet headers, working as the tags of the cache line, and the cache line data is the

computation result. The cache is configurable by the application. Each data-plane

129

algorithm is broken into three stages — pre-processing, data-plane processing, and
post-processing. A packet goes through these three stages when being processed by
the data-plane algorithm. In the pre-processing stage of a packet, when portions of the
packet are read in, a tag is formed from the relevant fields. Before the pre-processing
stage ends, a lookup in the cache with the n-tuple for the packet is triggered. If a
cache hit occurs, the hardware automatically changes the control flow to the post-
processing stage for that packet’s processing thread and avoids the entire execution
of data-plane processing phase. During this post-processing, the computation result
is copied from the cache block to registers. In case of a cache miss, the processing
continues normally and when the starting point of post-processing phase is reached,
the hardware updates the cache with the computation result. The cache is designed in
such a way that the worst case throughput of the processing phase is not increased.
This goal is achieved through a combination of software assistance and dedicated
hardware.

A special register called the jump target register (JTR) is added in the microengine
controller for each thread (hardware context). JTR remembers the starting point of
the post-processing phase of the algorithm so that in case of a cache hit, the control
can be directly transferred to this point. In case of cache miss, at this instruction
address the computation and its result are sent to the cache for updating the cache
line. This register is set during the initialization part of the data-plane algorithm.

The cache is configurable in both the input and output of the processing phase.
When initializing the data-plane algorithm at boot time, the configuration of the
cache is specified. Masks in the cache are set up so that appropriate header fields can
be extracted from the packet for use as the index into the cache. The starting point
of post-processing stage is put into JTR.

When a packet is preprocessed, the data to perform data-plane algorithm comes
from the packet header. This same data is used to form the cache index and the tag.

Therefore, the memory read instructions in the pre-processing phase are marked so

130

that as they read the relevant packet header fields, relevant values are also sent to the
computation reuse cache. Multiple memory read instructions may need to be marked
depending upon the number of fields in the n-tuple which act as the inputs to the
data-plane algorithm. The cache is setup to receive for each thread the input n-tuple,
and the arrival of the last value triggers the computation reuse cache lookup.

When performing the computation reuse cache lookup, the n-tuple is hashed into
a cache set index, and then the n-tuple is compared to all of the tags in the set. Note,
the tag is itself a n-tuple. If there is a hit for the n-tuple, the result data is copied into
registers for the post-processing phase and control is transferred to the instruction in
the JTR register. In case of a cache miss, the cache tag is updated with the n-tuple,
and the cache block is updated with the result data that becomes available after the
processing phase of the data-plane algorithm.

Figure 7.3 shows the timeline of the execution of an example in a microengine
with only two threads active assuming computation reuse cache is hit. The processing
phase of the two threads are totally avoided. The avoided code includes not only
memory references but also computation instructions. This cache is effective even if
the memory access latencies are hidden by thread context switch.

It is assumed that there is a separate computation reuse cache for each data-plane

algorithm examined.

7.3 Using Fetch Gating

In this section, the approach for performing fetch gating while using the computation
reuse cache is described. Fetch gating is a form of pipeline gating proposed by Manne
et. al. [37]. Pipeline gating was proposed to stop fetching and executing instructions
down wrong (branch mispredicted) paths of execution in order to save energy. The
same concept is used here to stall the fetch for the data-plane algorithm when the
calculations can be reused due to the computation reuse cache hits. This is possi-

ble since the overall network processor is balanced, and if the data-plane algorithm

131

Figure 7.3 Timeline of Computation Reuse Cache
Original Timeline

Pre-Processing Processing Post-Processing Pre-Processing
Thread 0 e : i i —
be 2 b4 2 b b be > be > be
R M R M R M R M R M w M R M
Pre-Processing Processing Post-Processing Pre-f

/ Y YTy

Thread 1 -

b » 1A b b b b bg b
R M R M R M R M R M W M R
New Timeline
Pre-Processing Post-Processing Pre-Processing
| o | |
; if | g Legends
Thread 0 ' . .
) 2 b > b s 5
R MooLoow M R M . Memory Read 7 Memory Write
¢ .
Pre-Processing Post-Processing Pre-Processing LJ Cache Lookup f Signal from Cache

M’Signal from Memory

Thread 1

132

Figure 7.4 Network Router with Fetch Gating (F-G) logic

Network Router

Input Queue Output Queue

~—in_max—= <=—— out_max—=

throughput = one packet

per t cycles

— T — Packet Processing —_— +—

-~ nli— ~no—

F-G Logic

can reuse and jump ahead in its computations this creates slack in the data-plane
algorithm’s schedule. It can therefore gate execution while the rest of the network
processor continues to process the packets for the overall designed throughput.

Figure 7.4 gives a simplified high level view of a network processor using the
computation reuse cache for a data-plane algorithm. In this design it is assumed
that the data-plane algorithm has two queues connecting it to the other parts of the
processor so that it can be scaled independently of other stages. The input queue to
the data plane algorithm initiates the fetch gating logic. Each time there is a change
in the queue length, the hardware decides whether to perform fetch gating or keep
the processor in normal state. The fetch gating algorithm currently uses two levels.
One corresponds to the standard operation when no fetch gating is performed, and
the other corresponds to the fetch gated power saving mode. During the latter mode,
no fetching or execution will be performed by the fetch gated data-plane algorithm
microengine.

The underlying principle of the approach is to perform fetch gating based upon the
occupancy of the input queue shown in Figure 7.4. In a balanced network processor
design, the occupancy of the input queue should be low. If this is the case and

a reasonable number of computation reuse cache hits is available, energy can be

133

saved by applying fetch gating to the microengine. This can continue up to a point.
Once the input queue becomes occupied enough, fetch gating is turned off in order to
provide worst-case throughput guarantees and to prevent packets from being dropped.

In Figure 7.4, it is assumed that the number of packets in the input queue is n;.
The fetch gating algorithm checks whether the input queue size, n;, is smaller than an
worst case throughput input queue size threshold. If the input queue to the data-plane
algorithm microengine has enough empty slots to guarantee worst case throughput
for its implementation, then the microengine is allowed to be in fetch-gated state,

else the algorithm performs a normal fetch.

7.4 Experimental Evaluation

The Nepsim [35] simulator is used in the experiments. Nepsim is a cycle-accurate
simulator of the Intel IXP1200 network processor. Nepsim is modified to represent a
balanced network processor with higher throughput and extended it with the cache
designs and the fetch gating algorithm. For the results a 30 cycle on-chip SRAM
latency is modeled to store the data structure for the data-plane algorithm being
examined.

In the evaluation, four benchmarks are used which are modified from Intel’s Work-
bench suite or self-developed and migrated to run on the Nepsim simulator. They are
IP-Lookup, Packet Classification, and NAT Protocol (in and out). The properties
of the application are summarized in Table 7.1. These applications have the code
size of 200 to 300 instructions, shown in the first column. It also shows the worst-
case packet processing time (latency) that was observed across the four traces in the
second column. For IP-Lookup this is 646 cycles and for packet classification it is
1160 cycles. This processing time is considered as the time period between when a
packet enters into the processing stage and when it leaves the processing stage (i.e.,
not counting the time that the data-plane algorithm is spinning and waiting for the

packet to arrive). It also does not include the cycles spent on receiving and transmit-

134

TABLE 7.1. Application Properties

| Applications | Code Size | Proc. Time (Worst) | Proc. Time (Average) | #SRAM Refs |

ip-lookup 291 646 435 5
classification 254 1160 1010 13
nat-in 205 754 603 6
nat-out 205 757 597 6

ting the packet. It also shows the average-case packet processing time in the third
column — the average is computed over the four traces. The last column shows the

number of SRAM references needed in the worst case for the algorithm.

7.4.1 Cache Behavior

Table 7.2 and Table 7.3 show the hit rate of selective cache and computation reuse
cache. In both schemes, a 64 entry direct mapped configuration is used. The four
packet streams used in the study in previous chapter are used as input. For selective
cache, the hit rate varies between 81% and 97%. For computation reuse cache, the
hit rate varies between 52% and 88%. The reasonably high hit rate shows in both
schemes that locality is being effectively exploited. Selective cache shows an even
higher hit rate than computation reuse cache. This is because selective cache works
at a finer granularity and therefore affects higher locality. The following example
reveals the reason behind this behavior. Suppose there are two different values in the
same field in two different packet headers and the two values share certain length of
same prefix. In computation reuse cache, they are considered as two totally different
tags. Thus nothing can be used between them. However in selective cache, they may

cause repetitive memory references because they share the prefix.

135

TABLE 7.2. Selective Cache Hit Rate

Applications Packet Stream Trace

1 [2 | 3 [4
ip-lookup | 95.77% | 92.22% | 96.53% | 97.10%

classification | 82.12% | 81.85% | 85.06% | 86.42%
nat-in 90.04% | 89.74% | 92.89% | 93.50%
nat-out 91.28% | 90.24% | 94.01% | 94.24%

TABLE 7.3. Computation Reuse Cache Hit Rate

Applications Packet Stream Trace
1 [2 | 3 [4
ip-lookup | 68.43% | 70.18% | 88.89% | 85.79%
classification | 60.03% | 84.97% | 77.42% | 77.42%
nat-in 74.70% | 67.87% | 84.45% | 82.57T%
nat-out 52.52% | 82.78% | 71.68% | 71.68%

7.4.2 Fetch Gating and Energy Savings

Table 7.4 and Table 7.5 show the effect of cache hits on the data-plane algorithm for
the selective cache and the computation reuse cache respectively. These results were
obtained by running trace 1 from Table 6.2 through each of the algorithms. In both
tables, the first column, ME Energy, gives the energy used by the microengine on
which the data-plane algorithm is being run as a percentage of total energy of the
network processor without cache. The second and third columns show the average
packet processing latency (cycles) in the absence of cache and the percentage reduc-
tion in the time when the cache is used. For the selective cache, the reduction varies
from 3.62% for IP-Lookup to 8.23% for classification. For the computation reuse
cache, the reduction varies from 19% for IP-Lookup and 47% for classification. From
the results we conclude that the computation reuse cache successfully creates more

slack than the selective cache despite that the selective cache has higher cache hit

136

rate than the computation reuse cache. This is in accordance with previous analysis.
The effect of the selective cache depends on the degree of the balance of the network
processor. Since much of the memory latency has been hidden by overlapping the ex-
ecution of threads, there is less room for the selective cache to produce improvement.
In contrast, in the computation reuse cache, not only memory latency can be hidden
but also the computation instruction sequence which has much coarser granularity
can be hidden. This means that once there is a hit, the computation reuse cache can
save much more time than a hit in selective cache. This is why computation reuse

cache achieves better time reduction even with lower cache hit rate.

TABLE 7.4. Program Behavior with Selective Cache

Applications || ME % Total Time Time || Cycles | ME Energy

Energy || No Cache | Reduction | Gated | Reduction
ip-lookup 33.47% 435 3.62% | 2.18% 1.15%
classification 29.66% 1010 8.23% | 5.84% 3.94%
nat-in 27.711% 603 6.02% || 4.75% 2.45%
nat-out 29.38% 597 6.31% || 4.96% 2.54%

TABLE 7.5. Program Behavior with Computation Reuse Cache

Applications || ME % Total Time Time | Cycles | ME Energy

Energy | No Cache | Reduction | Gated | Reduction
ip-lookup 33.47% 435 18.62% || 22.45% 16.61%
classification 29.66% 1010 47.23% || 30.78% 18.89%
nat-in 27.711% 603 51.58% || 45.82% 37.69%
nat-out 29.38% 597 41.37% | 42.64% 28.43%

The last two columns in Table 7.4 and Table 7.5 show the results of applying the
fetch gating algorithm in the prior section. The energy is recorded using the models
provided in the Nepsim [35] simulator augmented to take into consideration the cache
and the network processor changes. The fourth column shows the percentage of cycles

the algorithm was fetch gated. The last column shows the percentage of energy

137

savings when using the fetch gating when compared to the energy used for just that
microengine shown in column one. For these results, only one data-plane algorithm
is examined at a time, and the computation reuse cache is 64-entry and directed
mapped. For the selective cache, the results show that for IP-Lookup 2.18% of the
cycles is fetch gated for the data-plane algorithm microengine and an energy savings
of nearly 1.15% is achieved. This results in an overall network processor energy
savings of 0.4%. Across all applications, the computation reuse cache allows 2.18%
to 5.84% of packet processing to be performed in fetch gated mode which produces
1.15% to 3.94% in energy savings for the microengines. For the computation reuse
cache, the results show that for IP-Lookup 22% of the cycles are fetch gated for the
data-plane algorithm microengine and achieve an energy savings of nearly 17%. This
results in an overall network processor energy savings of 6%. Across all applications,
the computation reuse cache allows from 22% to 46% of packet processing to be
performed in fetch gated mode which produces 17% to 38% in energy savings for the
microengines. Note that slack is generated by reducing the amount of computation
needed for a packet when there is a hit in the computation reuse cache, and then
energy savings comes from using fetch gating to exploit this slack. To summarize the
experimental results, it can be concluded that computation reuse cache is much more

effective than selective cache in saving energy.

7.5 Related Work

A summary of related work is given on temporal locality and caching in network

processors, reuse caching, and fetch gating.

7.5.1 Locality and Caching in Network Processors

Memik et al. [38] examine the use of a traditional cache for a set of networking

applications on a StrongARM 110 processor. They found that most of the cache

138

misses came from a small number of instructions. To exploit this observation, they
use a filter for the data cache to remove the memory accesses with low locality. Li
et al. [3] investigate a range of memory architectures that can be used for a wide
range of packet classification caches. They study the impact of factors like cache
associativity, cache size, replacement policy and the complexity of hash functions on
the overall system performance. Both of these studies use a traditional cache, which
cannot be used to increase the throughput of data plane algorithms for a balanced
network processor. This is why the focus is on saving energy by using a computation
reuse cache to create slack in the data-plane algorithm’s schedule.

Chiueh et al. [17] use a combined hardware/software approach to construct a
cache for high performance IP routing in general-purpose CPU based routers. The
destination host address is mapped to a virtual address space and used to lookup a
destination route in the Host Address Cache (HAC). A part of the normal L1 data
cache is reserved for use as the HAC. This approach can be classified as being similar
to the computation reuse cache in that a hit in the cache skips the full IP lookup.
In case of a lookup miss, a 3-level routing table lookup algorithm is consulted for
the final routing decision. The focus of the above work is on using the HAC to
provide throughput for their network processor design, and not for energy savings.
The contribution of the work in this chapter is to define the general notion of using a
programmable computation reuse cache for data plane algorithms and to use it to save
energy in a balanced network processor while still providing worst-case throughput

guarantees.

7.5.2 Instruction Reuse

Sodini and Sohi [44] observe that many instructions or groups of instructions have the
same input and generate the same output when dynamically executed. They exploit

this phenomenon by buffering the computation result of the previous execution of

139

instruction dependency chains. They use the same result for future dynamic instances
of the same dependency chains if the input to these chains are the same. In this way,
the execution of many groups of instructions can be avoided and the early outcome
can allow dependent instructions to proceed sooner. They use a hardware mechanism
called the Reuse Buffer (RB) to store the previous computation results. The program
counter is used as an index to search the RB for cached chains. Our computation
reuse cache is motivated by the reuse buffer, but it differs in that it is programmable
and used to cache computations at much larger levels (methods) than just dependency
chains.

Ding and Li [20] present a pure compiler memoization technique to exploit value
locality. They detect code segments that are executed repeatedly, which generate a
small number of different values. The code segment is replaced by a table recording the
previous computation results for later lookup if the same values are seen. Performance
improvement and energy consumption reduction are achieved. Their work is related
to the work in this chapter because a computation reuse mechanism is also used
to reduce energy consumption. Their approach is a purely software technique. In
contrast, a programmable hardware technique specific for data-plane algorithms is

provided in order to save energy while providing worst-case throughput guarantees.

7.5.3 Clock and Fetch Gating

Luo et al. [36] use a clock gating technique to reduce power consumption in multi-core
network processors. They observe that when the incoming traffic rate is low, most
processing elements on the network processor are nearly idle and yet still consume
dynamic power. When the number of idle threads increase, they start to gate off
the clock network of a processing unit. When the pressure from the incoming buffer
rises, they stop clock gating. Since the activation takes time, they need extra buffer

space to avoid packet loss. They also developed strategies to terminate and reschedule

140

threads during activation and deactivation. This work is related to the techniques
in this chapter because both aim at gating some part of the network processor to
reduce energy. Both use the queue occupancy information in gating decisions. Their
approach is complementary to the technique in this chapter. Their focus is on applying
fetch gating when the traffic rate is low, whereas the work in this chapter focus on
applying fetch gating when value locality can be found and exploited, and this includes
when the traffic rate is high.

Manne et al. [37] observe that due to branch mispredictions wrong path instruc-
tions cause a large amount of unnecessary work in wide-issue super-scalar processors.
They develop a hardware mechanism called pipeline gating to control rampant spec-
ulation in the pipeline. They use a confidence estimator to assess the quality of
each branch prediction. In case of low confidence, they gate the pipeline by stalling
instruction fetch. Baniasadi and Moshovos [7] extend this approach to throttle the
execution of instruction flow in wide-issue super-scalar processors to achieve energy
reduction. They use instruction flow information such as rate of instructions passing
through stages to determine whether to stall stages. When the rate is sufficiently
high and there is enough instruction level parallelism, they may stall fetch because
introducing extra instructions would not significantly improve performance.

Karkhanis et al. [26] also propose a mechanism called Just-In-Time instruction
delivery to save energy. They observe that performance-driven design philosophy
causes useful instructions to be fetched earlier than needed and stall in the pipeline
for many cycles or they wait in the issue queue. Also when a branch misprediction
occurs, all those early-issued instruction along mispredicted branch are flushed. This
wastes energy. Their suggested mechanism monitors and dynamically adjusts the
maximum number of in-flight instructions in the processor according to processor
performance. When a maximum number is reached, the instruction fetching is gated.

Buyuktosunoglu et al. [13] collect issue queue statistics to resize the issue queue

dynamically to improve issue queue energy and performance on a super-scalar pro-

141

cessor. The statistics are derived from counters that keep track of the active state of
each queue entry on a cycle-by-cycle basis. They divide the issue queue into separate
chunks and may turn off/on certain block based on statistics.

The above prior works are related to the work in this chapter since they all
gate/throttle the execution of instruction flow to achieve the goal of energy reduc-
tion. The approach in the chapter is built upon these techniques to gate fetch for the

data-plane microengines.

7.6 Summary

High end network processors are built with a balanced processor design, where using
a traditional cache for the data-plane algorithm will not increase throughput. These
processors are built such that there is sufficient threading (packet parallelism) to
hide each data-plane algorithm SRAM lookup latency, so a traditional cache cannot
increase throughput.

In this chapter two schemes are presented for the sake of energy. One scheme is
selective cache which is an improvement of traditional cache by filtering out memory
accesses to streaming data and thus improve locality and hit rate. Selective cache is
effective in hiding those memory latencies which are not totally hidden on an incom-
pletely balanced network processor. Selective cache achieves small energy savings.
Another scheme is based upon the computation reuse cache, where a hit hides the
full data-plane algorithm processing of the packet, not just one SRAM lookup as in a
traditional cache. This is accomplished by having a cache block contain the input as
the tag and output as the data of the data-plane algorithm computation. Therefore a
complete query performed by the data-plane algorithm takes one cache access if there
is a hit. Slack is therefore generated by reducing the number of instructions executed
when there is a hit. This reduction in number of instructions allows us to exploit the
slack to save energy through fetch gating for the data-plane algorithm microengine

while still matching the worst case throughput guarantees of the rest of the processor.

142

Overall, the computation reuse cache allowed 22% to 46% of the execution time to be
performed in fetch gated mode with 17% to 38% reduction in data-plane algorithm
energy across the different algorithms examined. Computation reuse cache is much

more effective than selective cache in saving energy.

143

CHAPTER 8
CONCLUSIONS

This dissertation makes contributions in efficient handling of narrow width and stream-
ing data in embedded applications. Typical embedded applications process streams
of formatted data units and demonstrates unique data characteristics. Narrow width
data and streaming data are the two important data characteristics observed in em-
bedded applications. Originating from fields within the formatted data units, nar-
row width data are data representable in considerably fewer bits than in one word.
They nevertheless occupy an entire register or memory word. Processing of narrow
width data is often preceded/followed by unpacking/packing operations. The com-
mon presence of narrow width data in embedded applications poses challenges such as
low register utilization, wasted data memory, and performance degradation. Coming
from the streams of data units, streaming data often are not reusable and show short
lifetime and lack temporal locality. This leads to low cache efficiency. My dissertation
tackles these problems to achieve optimizations in critical factors in embedded appli-
cations, including memory footprint, power consumption, and performance. Section
8.1 summarizes the contributions made in this dissertation. Section 8.2 discusses

future directions.

8.1 Contributions

To efficiently handle narrow width and streaming data, new architectural features are
introduced and associated compiler algorithms are developed. Narrow width data are
manipulated efficiently by packing multiple narrow width data items into one register
or memory word. Using register allocation or memory layout methods, the problem

of underutilization of registers, the underutilization of memory, and performance

144

degradation are addressed. Streaming data are handled efficiently by providing cache
mechanisms which enable reuse of utility data or computation sequence across the
processing iterations. This creates slack in the processing schedule, which in turn are
transformed into the reduction of energy consumption. Specifically, this dissertation
makes the following contributions.

Measurement of Narrow Width and Streaming Data in Embedded Applications.
Quantitative measurement of the presence and properties of narrow width and stream-
ing data are performed respectively in typical embedded applications from Media-
bench and Commbench. The result shows that there is significant amount of narrow
width data in embedded applications. More than half of the bits in the register
file are not used. Nearly 80% of the register operand instances have less than 16
valid bits. The study reveals that there exists significantly more dynamic narrow
width data than static narrow width data. The study of streaming data shows that
streaming data have very short lifetime and the memory accesses to them occupies
a significant percentage. Contrary to utility data, streaming data have low temporal
locality. The result also shows there is a great amount of value locality in streaming
data which might cause redundant computation and memory accesses to utility data.
Both studies provide hints on how to efficiently handle them.

An Instruction Set Extension for Narrow Width Data. An instruction set exten-
sion for ARM processor is proposed to manipulate narrow width data directly with
bit section addressing mode. With this extension multiple narrow width data can
reside in one register. The cost of packing and unpacking operations can be reduced
via a peephole style optimization using this instruction set extension.

Efficient Handling of Narrow Width Data in Register. Two register allocation
schemes are proposed to handle narrow width data in register efficiently. The al-
gorithms allocate two variables, whose bitwidth is less than 16-bit, to one 32-bit
register. Register pressure and spill cost are reduced. The static register allocation

scheme determines an assignment of such variables based on the maximum bitwidth

145

information. In a further step, a speculative register allocation scheme is proposed to
exploit the fact that there are more narrow width data dynamically than statically.
Two variables, whose bitwidths at runtime are most probably less than 16-bit, are
allocated to one 32-register. In case of conflicts, architectural enhancement is able to
guarantee the correct execution semantics. The results show up to 10% of the spill
cost can be avoided by static scheme and up to 95% by the speculative scheme. This
leads to a performance improvement of up to 3% for static scheme and up to 14% for
the speculative scheme.

Efficient Handling of Narrow Width Data in Memory. A scheme is proposed to
coalesce multiple narrow width data in one memory location in DSP processor. As a
result, memory footprint can be shrunk. More importantly, this scheme brings signif-
icant benefit in performance. With coalescing, explicit address calculation operations
can be reduced by even more extensively using DSP specific addressing mode of ad-
dress register autoincrement/autodecrement. Three algorithms are proposed to solve
the offset assignment problem in presence of narrow width data. The first algorithm
takes cover-first coalesce-later policy. The second one uses coalesce-first cover-later
policy. The third one interleaves the covering and coalescing operations at a finer
grain and is able to maximize the benefits.

Energy-efficient Cache for Network Processor Fxploiting Streaming Data. Two
energy-efficient cache mechanisms are proposed to reduce energy-consumption on
Intel IXP1200 network processor by exploiting streaming data. Cache is designed to
exploit the value locality of streaming data to reduce the redundancy in computation
or memory accesses to utility data to ameliorate the situation that traditional cache
is not effective for network processor due to a balanced design and low temporal
locality in streaming data. The slack created by such a scheme is transformed into
reduction in energy-consumption through a fetch-gating mechanism. A selective cache
is proposed to only cache memory accesses to utility data by filtering out streaming

data. By doing so, cache hit rate can be maintained at a high level and memory access

146

redundancy is reduced. However, the effectiveness of this scheme is still limited due
to a balanced design. A computation reuse cache is designed to store the computation
result together with relevant packet header fields. Redundant computation sequence
can be avoided. The computation reuse is effective even in a balanced design of a

network processor.

8.2 Future Directions

The research in this dissertation can be expanded in two directions. First, the idea
and methodology used in this dissertation can be applied in other problems. Specifi-
cally, it is possible to exploit narrow width data in high-end systems. Second, more
techniques can be developed to exploit narrow width and streaming data in embedded
applications. For example, it is possible to exploit narrow width data through register
rematerialization and to develop a good compiler algorithm to utilize selective cache
in presence of streaming data. This section describes these ideas.

Exploiting Narrow Width Data in High-End Systems. As high-end systems evolve
into even wider word width such as Itanium processors with 64-bit width, there are
new opportunities to exploit narrow width data. For example, no matter what word
width is used, only one bit is actually needed to represent a boolean variable. As word
width becomes wider, it is possible that data which is originally not narrow width
becomes narrow width. A quantitative measurement is required to reveal the presence
of narrow width data in high-end systems. Furthermore, wider word width means
more instruction encoding space. This allows even more thorough implementation
of Bit Section eXtension. With stronger architectural support, register allocation
algorithm can be developed to achieve better improvement.

Ezxploiting Narrow Width Data by Register Rematerialization. Narrow width data
can be exploited by register rematerialization. Register rematerialization recomputes

the value of a variable instead of spilling it to memory if the reconstruction of the

147

value is possible and cheaper. If multiple narrow width data are in a packed form and
reside in a register, multiple values can be rematerialized with low cost. The data
processed by embedded applications naturally contains packed form of narrow width
data. It is a good opportunity to apply register rematerialization. A good compiler
algorithm can be developed to decide the portion of the register file to hold packed
narrow width data based on the estimation of cost and savings.

Compiler Algorithm for Selective Cache. In this research selective cache is not as
effective as computation reuse cache. It could be very effective on a processor which
is not hardware multi-threaded. If this is true, a good compiler algorithm can be
developed to decide whether a specific instance of memory access should be cached
or not. In this way, cache efficiency can be greatly improved. Decisions can be made

either based on static analysis or profiling information.

1]

2]

3]

[4]

[5]

[6]

7]

8]

[9]

[10]

148

REFERENCES

Embedded system. In Wikipedia, hitp://en.wikipedia.orgi/wiki/Embedded sys-
tem.

Mathew Adiletta, Mark Rosenbluth, Debrea Bernstein, Gilber Wolrich, and
Hugh Wilkinson. The next generation of intel ixp network processors. In Intel
Technology Journal, volume 6, pages 6-18, 2002.

Kang Li adn Francis Chang, Damein Berger, and Wu chang Feng. Architectures
for packet classification caching. In IEEFE International Conference on Networks,
Sydney, Australia, 2003.

Jin Lin adn Tong Chen adn Wei-Chung Hsu and Pen-Cheung Yew. Speculative
register promotion using advanced load address table (alat). In International
Symposium on Code Generation and Optimization, San Francisco, CA, 2003.

Gokhan Memik andi William H. Mangione-Smith and Wendong Hu. Netbench:
A benchmarking suite for network processors. In IEEE International Conference
on Computer-Aided Design, San Jose, CA, 2001.

Wand Research Group at University of Auckland. Auckland-ii trace archive. In
NLANR, http://pma.nlanr.net/Traces/long/auck2.html.

Amirali Baniasadi and Andreas Moshovos. Instruction flow-based front-end
throttling for power-aware high-performance processors. In International Sym-

posium on Low Power Electronics and Design, pages 16-21, Huntington Beach,
CA, 2001.

David H. Bartley. Optimizing stack frame accesses for processors with restricted
addressing modes. In Software Practice and Ezxperience, volume 22, pages 101-
110, 1992.

Peter Brink, Manohar Casterlino, David Meng, Chetan Rawal, and Hari Tade-
palli. Network processing performance metrics for ia- and ixp-based systems. In
Intel Technology Journal, volume 7, 2003.

David Brooks and Margaret Martonosi. Value-based clock gating and operation
packing: Dynamic strategies for improving processor power and performance. In
ACM Transactions on Computer Systems, volume 18, pages 89-126, New York,
NY, USA, 2000. ACM Press.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

149

Mihai Budiu, Majd Sakr, Kip Walker, and Seth C. Goldstein. Bitvalue infer-
ence: Detecting and exploiting narrow width computations. In The 6th European
Conference on Parallel Computing, 2000.

Doug Burger and Todd M. Austin. The simplescalar tool set, version 2.0. In
ACM SIGARCH Computer Architecture News, volume 25, pages 13-25, 1997.

Alper Buyuktosunoglu, Stanley Schuster, David Brooks, Pradip Bose, Peter
Cook, and David Albonesi. An adaptive issue queue for reduced power at high
performance. In International Workshop on Power-Aware Computer Systems,
Cambridge, MA.

Gregory J. Chaitin, Mark A. Auslander, Ashok K. Chandra, John Cocke, Mar-
tin E. Hopkins, and Peter W. Markstein. Register allocation via coloring. In
Computer Languages, volume 6, pages 47-57, 1981.

Yoonseo Choi and Taewhan Kim. Address assignment combined with scheduling
in dsp code generation. In ACM/IEEE Design Automation Conference, pages
225-330, New Orleans, LA, 2002.

Fred C. Chow and John L. Hennessy. The priority-based coloring approach
to register allocation. In ACM Transactions of Programming Languages and
Systems, volume 12, pages 501-536, 1990.

Tzi cker Chiueh and Prashant Pradhan. High performance ip routing table
lookup using cpu caching. In IEEE INFOCOM, pages 1421-1428, New York,
NY, 1999.

Intel Corporation. Sa-110 microprocessor technical reference manual. In Intel,
ftp://download.intel.com/design/strong/applnots/ 27819401 .pdf.

Jack Davidson and Sanjay Jinturkar. Memory access coalescing : A technique
for eliminating redundant memory accesses. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 186-195, Olando, FL,
1994.

Yonghua Ding and Zhiyuan Li. A compiler scheme for reusing intermediate
computation results. In International Symposium on Code Generation and Op-
timziation, Palo Alto, CA, 2004.

Jose Fridman. Data alignment for sub-word parallelism in dsp. In IEEE Work-
shop on Signal Processing Systems, pages 251-260, 1999.

Steve Furber. Arm system architecture. Addison Wesley Longman, 1996.

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

150

Rajiv Gupta, Eduard Mehofer, and Youtao Zhang. A representation for bit sec-
tion based analysis and optimization. In International Conference on Compiler
Construction, pages 62-77, Grenoble, France, 2002. Springer Verlag.

C.Evan Foster IIT and Harold C. Grossman. An empirical investigation of the
haifa register allocation in the gnu ¢ compiler. In IEEE Southeast Conference,
pages 776779, 1992.

Mahmut Kandemir, Mary J. Irwin, Guilin Chen, and J. Ramanujam. Address
register assignment for reducing code size. In International Conference on Com-
piler Construction, pages 273—-289, Warsaw , Poland, 2003. LNCS 2622, Springer
Verlag.

Tejas Karkhanis, James E. Smith, and Pradip Bose. Saving energy with just in
time instruction delivery. In International Symposium on Low Power Electronics
and Design, Montery, CA, 2002.

Samuel Larsen and Saman Amarasinghe. Exploiting superword level parallelism
with multimedia instruction sets. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 145-156, Vancouver B.C.,
Canada, 2000.

Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. Mediabench:
A tool for evaluating and synthesizing multimedia and communications systems.

In IEEE/ACM International Symposium on Microarchitecture, Research Trian-
gle Park, NC, 1997.

Rainer Leupers and Fabian David. A uniform optimization technique for offset
assignment problems. In International Symposium on Systems Synthesis, pages
3-8, Hsinchu, Taiwan, China, 1998.

Rainer Leupers and Peter Marwedel. Algorithms for address assignment in dsp
code generation. In International Conference on Computer-Aided Design, pages
109-112, San Jose, CA, 1996.

Bengu Li and Rajiv Gupta. Bit section instruction set extension of arm for
embedded applications. In International Conference on Compilers, Architecture,
and Synthesis of Embedded Systems, Grenoble, France, 2002.

Bengu Li and Rajiv Gupta. Simple offset assignment in presence of subword
data. In International Conference on Compilers, Architecture, and Synthesis of

Embedded Systems, San Jose, CA, 2003.

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

151

Stan Liao, Srinivas Devadas, Kurt Keutzer, Steven Tijiang, and Albert Wang.
Storage assignment to decrease code size. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 186-195, La Jolla,
CA, 1995.

Stan Liao, Srinivas Devadas, Kurt Keutzer, Steven Tijiang, and Albert Wang.
Storage assignment to decrease code size. In ACM Transactions on Programming
Languages and Systems, volume 18, pages 235253, 1996.

Yan Luo, Jun Yang, Laxmi Bhuya, and Li Zhao. Nepsim: A network processor
simulator with power evaluation framework. In IEEE Micro, Special Issue on
Network Processors for Future High-End Systems and Applications, 2004.

Yan Luo, Jia Yu, Jun Yang, and Laxmi Bhuyan. Low power network processor
design using clock gating. In ACM/IEEE Design Automation Conference, pages
712-715, Anaheim, CA, 2005.

Srilatha Manne, Artur Klauser, and Dirk Grunwald. Pipeline gating: Specula-
tion control for energy reduction. In 25th Annual International Symposium on
Computer Architecture, pages 132-141, 1998.

Gokhan Memik and William H. Mangione-Smith. Improving power efficiency of
multi-core network processors through data filtering. In International Confer-
ence on Compilers, Architecture and Synthesis for Embedded Systems, Grenoble,
France, 2002.

Xiaoning Nie, Lajos Gazsi, and Frank Engeland Gerhad Fettweis. A new network
processor architecture for high speed communications. In IEEE Workshop on
Signal Processing Systems, pages 548-557, 1999.

Giles Pokam, Olivier Rochecouste, Andre Seznec, and Francois Bodin. Specula-
tive software management of datapath-width for energy optimization. In ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Em-
bedded Systems, pages 7887, New York, NY, USA, 2004. ACM Press.

Amit Rao and Santosh Pande. Storage assignment optimizations to generate
compact and efficient code on embedded dsps. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 128-138, Atlanta,
GA, 1999.

rebel.com. Netwinder family. In Rebel, hitp://www.rebel.com/netwinder.

Timothy Sherwood, George Varghese, and Brad Calder. A pipelined memory
architecture for high throughput network processors. In International Symposium
on Computer Architecture, pages 299-299, San Diego, CA, 2003.

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

152

Avinash Sodani and Gurindar S. Sohi. Dynamic instruction reuse. In IEEE/ACM
ISCA, pages 194-205, Denver, CO, 1997.

Mark Stephenson, Jonathan Babb, and Saman Amarasinghe. Bitwidth analy-
sis with application to silicon compilation. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 108-120, Vancouver
B.C., Canada, 2000.

Ashok Sudarsanam, Stan Liao, and Srinivas Devadas. Analysis and evaluation
of address arithmetic capabilities in custom dsp architectures. In ACM/IEEE
Design Automation Conference, pages 287-292, Anaheim, CA, 1997.

Sriraman Tallam and Rajiv Gupta. Bitwidth aware global register allocation.
pages 108-120. Dept. of Computer Science, University of Arizona, 2002. Techni-
cal Report.

Sriraman Tallam and Rajiv Gupta. Bitwidth aware global register allocation. In
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 85-96, New Orleans, LA, 2003.

Sathishukumar Udayanarayanan and Chaitali Chakrabarti. Address code genera-
tion for digital signal processors. In ACM/IEEE Design Automation Conference,
pages 353-358, Las Vegas, NV, 2001.

Tilman Wolf and Mark Franklin. Commbench - a telecommunications bench-
mark for network processors. In IEEFE International Symposium on Performance
Analysis of Systems and Software, pages 154-162, Austin, TX, 2000.

Jun Yang and Rajiv Gupta. Energy efficient frequent value data cache design.
In IEEE/ACM International Symposium on Microarchitecture, pages 197-207,
Istanbul, Turkey, 2002.

Xiao Yang and Ruby B. Lee. Fast subword permutation instructions using omega
and flip network stages,. In International Conference on Computer Design, pages
1522, Austin, Texas, 2000.

Youtao Zhang and Rajiv Gupta. Data compression transformations for dynam-
ically allocated data structures. In International Conference on Compiler Con-
struction, pages 14-28, Grenoble, France, 2002.

Youtao Zhang and Rajiv Gupta. Enabling partial cache line prefetching through
data compression. In International Conference on Parallel Processing, Kaohsi-
ung, Taiwan, China, 2003.

153

[55] Xiaotong Zhuang, Choksheak Lau, and Santosh Pande. Storage assignment op-
timizations through variable coalescence for embedded processors. In ACM SIG-
PLAN Conference on Languages, Compiler, and Tools for Embedded Systems,
pages 220-231, San Diego, CA, 2003.

