
Microarchitecture and Compiler Techniques

for Dual Width ISA processors

by

Arvind Krishnaswamy

A Dissertation Submitted to the Faculty of the

Department of Computer Science

In Partial Fulfillment of the Requirements
For the Degree of

Doctor of Philosophy

In the Graduate College

The University of Arizona

2 0 0 6

2

Get the official approval page

from the Graduate College

before your final defense.

3

Statement by Author

This dissertation has been submitted in partial fulfillment of requirements for an
advanced degree at The University of Arizona and is deposited in the University
Library to be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission,
provided that accurate acknowledgment of source is made. Requests for permission
for extended quotation from or reproduction of this manuscript in whole or in part
may be granted by the head of the major department or the Dean of the Graduate
College when in his or her judgment the proposed use of the material is in the interests
of scholarship. In all other instances, however, permission must be obtained from the
author.

Signed:

4

Table of Contents

List of Figures . 6

List of Tables . 8

Abstract . 9

Chapter 1. Introduction . 10
1.1. Code Size vs Performance Problem 11
1.2. Dual Width ISA ARM Processors . 12
1.3. The Approach . 14
1.4. Organization . 15

Chapter 2. Dynamic Instruction Coalescing 16
2.1. Dynamic Instruction Coalescing With Augmenting eXtensions 16
2.2. DIC Microarchitecture . 18
2.3. Predicated Execution in AXThumb 26
2.4. AX Extensions to Thumb . 28

2.4.1. ALU Instructions . 29
2.4.2. Predication . 32
2.4.3. MOV Instructions . 33
2.4.4. Encoding of AX Instructions 37

2.5. Related Work . 38
2.6. Summary . 40

Chapter 3. Local Optimizations Using DIC 42
3.1. Compiler Algorithms . 42

3.1.1. Phase 1 - Predicated Code . 43
3.1.2. Phase 2 - Peephole Optimizations 46
3.1.3. Phase 3 - Function Prologues and Epilogues 48

3.2. Profile Guided Approach for Mixed Code 51
3.2.1. BX/BLX instructions . 52
3.2.2. Profile Guided Mixed Code Heuristic (PGMC) 53

3.3. Experiments . 54
3.3.1. Performance of AXThumb . 55
3.3.2. Comparison with Profile Guided Mixed Code 62

3.4. Summary . 64

Table of Contents—Continued

5

Chapter 4. Global Optimization Using DIC 65
4.1. Exposing Invisible Registers . 66
4.2. Exploiting Exposed Registers . 68

4.2.1. Initial Placement Points . 70
4.2.2. Placement Ranges . 72
4.2.3. Coalescing and Final Placement 75

4.3. Experiments . 81
4.4. Discussion . 87
4.5. Related Work . 88
4.6. Summary . 90

Chapter 5. Dynamic Eager Execution 91
5.1. Delayed Branching and n-Wide Execution 91

5.1.1. Minimizing Branch Penalty 91
5.1.2. Maximizing Instruction Issue and Execution 94

5.2. Dynamic Eager Execution Microarchitecure 96
5.3. Experiments . 101
5.4. Summary . 104

Chapter 6. Conclusion . 105
6.1. Contributions . 105
6.2. Future Work . 107

References . 109

6

List of Figures

Figure 1.1. ARM vs Thumb Code . 11

Figure 2.1. Thumb Implementation. 19
Figure 2.2. AXThumb Implementation. 20
Figure 2.3. State Transitions of the Instruction Buffer. 24
Figure 2.4. Delivering Instructions to Decode Ahead for Overlapped Execu-

tion. 24
Figure 2.5. Predication in AXThumb. 27

Figure 3.1. Predication . 45
Figure 3.2. Phase 2 . 49
Figure 3.3. SetAllHigh AX transformation 51
Figure 3.4. Replacing Thumb Sequence by ARM Sequence. 53
Figure 3.5. Normalized Instruction Counts 57
Figure 3.6. Normalized Cycle Counts . 58
Figure 3.7. Normalized Code Size . 60
Figure 3.8. Normalized I-Cache Energy . 61

Figure 4.1. Register Operand Access . 67
Figure 4.2. Use of SetMask. 68
Figure 4.3. Normalized Code Size . 69
Figure 4.4. Step 1: Initial Placement Points Determination. 70
Figure 4.5. Initial Placement Points. 71
Figure 4.6. Propagating Initial Placement Points Backwards to Build Place-

ment Ranges. 72
Figure 4.7. Placement Ranges. 73
Figure 4.8. Final Placement Points. 75
Figure 4.9. Splitting Placement Ranges into Placement Paths. 77
Figure 4.10. Overlap Graph. 78
Figure 4.11. Clique Selection and Final Placement. 78
Figure 4.12. Clique Selection. 79
Figure 4.13. Coalescing and Final Placement. 80
Figure 4.14. Normalized Code Size . 83
Figure 4.15. Normalized Instruction Counts. 85
Figure 4.16. Normalized Cycle Counts. 86

Figure 5.1. Delayed Branching Best Case 93
Figure 5.2. Delayed Branching Worst Case 93
Figure 5.3. In-order Superscalars vs VLIW Processors 95
Figure 5.4. Cases for Dynamic Delayed Branching 96

List of Figures—Continued

7

Figure 5.5. Cases for Dynamic 2-Wide Execution 96
Figure 5.6. Dynamic Eager Execution Microarchitecture 98
Figure 5.7. Extending the instruction buffer to 48 bits 100
Figure 5.8. Cycle counts for traditional and DEE Thumb 103

8

List of Tables

Table 2.1. Different Buffer States. 23
Table 2.2. Description of ARM/Thumb Instructions Used 29

Table 3.1. Benchmark Description . 56
Table 3.2. Usage of Different AX Instructions. 63

Table 4.1. Percentage of Executed MOVs Eliminated. 84

9

Abstract

Embedded processors have to execute programs under the constraints of limited re-

sources such as memory and power. As a result, code size becomes as important a

metric as performance when evaluating applications written for the embedded do-

main. Existing techniques improve one program metric at the cost of the other.

Simultaneously achieving good code size and performance is a challenging problem.

This dissertation proposes compiler and microarchitectural techniques that address

this problem.

Dual-Width ISA processors provide a platform with two instruction sets - a 32-

bit instruction set yielding fast programs and a 16-bit instruction set yielding small

programs. The techniques described here exploit properties of dual-width ISA pro-

cessors to bridge the gap between the small programs and the fast programs by

improving the performance of 16-bit programs, yielding small and fast programs. An

integrated microarchitectural/compiler framework (Dynamic Instruction Coalescing)

and a purely microarchitectural framework (Dynamic Eager Execution) are proposed.

Dynamic Instruction Coalescing introduces a new kind of instruction - an Augment-

ing eXtension or AX. AX instructions are dynamically coalesced with the succeeding

instruction at no cost. Efficient compiler techniques are proposed to use AX instruc-

tions to perform local and global optimizations that improve performance without

negatively affecting code size. Dynamic Eager Execution is a microarchitecture that

improves the performance of 16-bit programs by eagerly executing instructions. This

framework comprises two techniques namely Dynamic Delayed Branching and Dy-

namic 2-wide Execution. The first improves branch behavior and the other seeks to

improve program execution by simultaneously issuing multiple instructions.

10

Chapter 1

Introduction

Applications written for the embedded domain have to perform under the constraints

of limited memory and limited energy. While these constraints have always existed,

current trends such as mobile computing and ubiquitous computing bring more and

more complex applications to the embedded domain, making performance or speed

of execution an important factor as well. For instance, we are now able to run

resource intensive gaming and multimedia applications on memory constrained hand-

held devices. This poses the challenging task of simultaneously achieving small code

size and high performance.

Dual-Width ISA processors move one step towards addressing this problem by

providing two instruction sets - one for compact code and the other for high perfor-

mance. 32-bit embedded cores from the ARM and MIPS family for instance support

a 16-bit instruction set in addition to the traditional 32-bit instruction set. This gives

the processor the ability to adapt itself to different constraints for different applica-

tions. While this provides the programmer and/or compiler the flexibility to choose

either small or fast code, it fails to provide the ideal case: small and fast code. To

this end, in this dissertation, microarchitectural and compiler techniques are proposed

to improve the performance of 16-bit code without negatively affecting code size in

dual-width ISA processors.

We begin by looking at the code size and performance characteristics of dual

width ISA processors. Without delving into much detail the next section describes

the key characteristics of dual width ISA processors. In particular, we will look at the

shortcomings and tradeoffs of the the two instruction sets. This section is followed by

a description and rationale of our overall approach to solving the problem of achieving

11

both small code size and good performance. This chapter ends with a description of

the organization of the rest of this dissertation.

1.1 Code Size vs Performance Problem

rtr crc

adpcm.ra
wcaudio

adpcm.ra
wdaudio

pegwit.g
en

pegwit.e
nc

pegwit.d
ec

fra
g

reed.encode

reed.decode drr
0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
R

M
 v

s
T

hu
m

b
C

od
e

(N
or

m
al

iz
ed

)

ARM
Instruction Count
Code Size
I−cache Energy
Cycle Count

Figure 1.1. ARM vs Thumb Code

In this section we look at a quantitative comparison between 16-bit Thumb code

and 32-bit ARM code. This comparison and the techniques described in this dis-

sertation are in the context of the ARM architecture which is representative of dual

width ISA architectures. The problems and techniques apply to other dual width ISA

processors like the MIPS and SuperH family of processors as well.

The data in Figure 1.1 compares the ARM and Thumb codes along four metrics:

instruction count, code size, I-cache energy, and cycle count. The data is normalized

to ARM code, where the gray bars indicate the ARM code which have the value

12

of 1. All other values are the corresponding Thumb values divided by the ARM

values to give the Normalized Thumb values. In addition to measuring code size and

performance we also measure energy spent in the instruction cache since the I-cache

contributes a significant portion of the total processors energy. As we can see, the

number of instructions executed by Thumb code is significantly higher even though

the Thumb code size is significantly smaller. The increase in instruction counts ranges

from 3% to 98% while code size reduction ranges from 29.83% to 32.45% (Segars et

al. [31] also report a 30% code size reduction). The substantial increase in the

number of instructions executed by the Thumb code more than offsets the improved

I-cache behavior of the Thumb code. Executing more instructions results in increased

energy consumption. Moreover, while the cycle counts for Thumb are significantly

higher compared to their ARM counterparts so are the I-cache energy values in some

cases. Hence even from an energy standpoint, it is not only important to keep code

size low, it also important to keep dynamic instruction and cycle count low. Future

experiments will focus mainly on code size and performance. The reader is referred

to [19] for a more in-depth quantitative comparison of ARM and Thumb code.

1.2 Dual Width ISA ARM Processors

More than 98% of all microprocessors are used in embedded products, the most

popular among them being the ARM family of embedded processors [15]. The ARM

processor core is used both as a macrocell in building application specific system chips

and standard processor chips [9] (e.g., ARM810, StrongARM SA-110 [14], XScale

[13]). This section provides a brief overview of the dual width instruction set support

in the ARM architecture.

The ARM architecture is a 32-bit RISC architecture [9] supporting two instruction

sets, a 32-bit ARM instruction set and a 16-bit Thumb instruction set. The processor

has a fixed fetch bandwidth of 32-bits and is an in-order single issue processor. Cor-

13

responding to the two instruction sets there are two execution states. In ARM state

32-bit instructions are executed and in Thumb state 16-bit instructions are executed.

The ARM ISA (instruction set architecture) supports a 3-address format, supports

predicated execution and can access all 16 32-bit registers. In Thumb state however,

instructions are restricted to a 2-address format, can access only eight 32-bit registers

in most cases and do not support predicated execution. The Thumb instruction set

has limited expressive power compared to the ARM instruction set. For example,

in an ARM instruction it is possible to specify a shift operation along with an ALU

operation in the same 32-bit instruction but in Thumb state two instructions are

required.

Since the full expressiveness of the 32-bit ARM ISA is not always necessary, one

can achieve considerable code size reductions using 16-bit Thumb instructions. The

Thumb version of an application is on average 30% smaller than its 32-bit ARM

counterpart [31]. It should be noted that using Thumb code, with every 32 bits

fetched, the processor fetches 2 Thumb instructions. Hence the processor needs to

fetch a word only every other cycle, reducing the amount of energy spent on fetching

instructions from the instruction cache. Considering that a lot of energy is spent in

the instruction cache (the cache is fully associative requiring multiple simultaneous

lookups), this reduction is significant. Thumb code being small also provides a good

locality of reference. Hence there are fewer cache misses in Thumb code compared

to ARM code. While there is a significant reduction in code size and energy when

we use Thumb code, we lose a considerable amount of performance. This is because

for the same task we need many more Thumb instructions compared to the number

of ARM instructions. This loss is incurred in spite of the good locality provided by

Thumb code. By proposing integrated microarchitectural and compiler techniques

we show how one can exploit dual width ISA processors to provide high performance

small code.

14

1.3 The Approach

To achieve our goal of small and fast code, one can think of two approaches. We

can start with fast 32-bit code and try to reduce its code size. Or we can start with

16-bit code and try to improve its performance. Lets see why it is better to choose

the latter option.

Code size reduction can be handled in two ways. First, we could compress the

code using existing or custom compression algorithms and provide architectural sup-

port for dynamic decompression. Several such approaches have been suggested in [37]

[24] [23]. While code size reductions comparable to Thumb have been achieved using

these techniques they have a performance overhead as well as significant additional

hardware. Moreover, such architectures are not backward compatible. Similar com-

pression techniques have been employed by compilers as suggested in [5]. Second,

we could use compiler based code compaction techniques [6] that employ compiler

transformations to reduce code size. While these techniques effectively reduce code

size, they can be applied to both 32-bit and 16-bit code. In other words, they do not

exploit any specific characteristics of the ISA.

Improving the performance of 16-bit code is the right approach for two reasons.

First, the resources already present in dual width ISA processors are not fully utilized

during 16-bit execution. We can exploit artifacts such as the 32-bit fetch bandwidth

and higher order registers more effectively to improve performance. Second, we can

study the tradeoffs between the two instructions sets and discover the shortcomings

of the 16-bit instruction set. We can then address these ISA specific shortcomings

through microarchitectural/ISA/compiler techniques.

In addition to addressing the shortcomings of the Thumb ISA techniques this

dissertation introduces techniques that use existing resources to provide features in

Thumb state not originally available in ARM state. The idea of Augmenting eXten-

sions is introduced. Augmenting eXtensions are instructions that carry some aug-

15

menting information and are fully processed early in the processor pipeline. A mi-

croarchitectural technique, Dynamic Instruction Coalescing, is proposed to effectively

execute these AX instructions. The necessary ISA changes and compiler algorithms to

effectively use AX instructions are also described. Additionally, a purely microarchi-

tectural technique, dynamic eager execution, is proposed. DEE uses existing resources

of dual width ISA processors to improve the performance of 16-bit code by executing

instructions eagerly to provide a form of delayed branching and 2-wide execution.

1.4 Organization

The techniques used to improve the performance of 16-bit code is described in 4

chapters. Chapter 2 introduces the Dynamic Instruction Coalescing Microarchitec-

ture and Augmenting eXtensions. The shortcomings of the Thumb ISA are studied in

detail and the notion of augmenting instructions is introduced. Dynamic Coalescing

enables these instructions to execute at zero cost. Support for Predication is also pro-

vided through this framework. Chapter 3 describes the compiler algorithms needed

to perform local optimizations using the AX instructions introduced in Chapter 3. A

comparison with the Profile Guided Mixed Code Approach is also made. Chapter 4

introduces a new AX instruction that changes the way the register file is accessed.

This enables all registers from the register file to be allocated. The necessary mi-

croarchitecture changes needed to support this new instruction are described. The

compiler algorithms required to perform global optimizations using this new AX in-

struction are also described. Chapter 5 introduces a purely architectural technique

to improve the performance of 16-bit Thumb code. The Dynamic Eager Execution

Framework is introduced here. We finally conclude in Chapter 6.

16

Chapter 2

Dynamic Instruction Coalescing

In this chapter, Dynamic Instruction Coalescing and Augmenting eXtension Frame-

work is described. This framework serves as the platform for the techniques described

in the next two chapters. The 16-bit instruction set, due to limited encoding space,

can encode only a subset of the 32-bit instruction set. As a result in many cases two

16-bit instructions are required to achieve the same effect as one 32-bit instruction.

This is one of the primary causes for the poorer performance of 16-bit code compared

to 32-bit code. To support 32-bit execution dual width ISA processors need a 32-bit

fetch bandwidth. This allows two 16-bit instructions to be fetched every cycle. Thus,

during 16-bit execution the processor has the ability to lookahead one instruction.

This property is exploited to execute two 16-bit instructions for the price of one. The

concept of an Augmenting eXtension is introduced. We study code generated for

ARM and Thumb to uncover shortcomings in the Thumb ISA. By tracing the per-

formance bottlenecks in Thumb code back to the ISA, appropriate AX instructions

are proposed to improve performance when used in the DIC microarchitecture.

2.1 Dynamic Instruction Coalescing With Augmenting eX-
tensions

The DIC and AX framework is the microarchitecture and ISA portion of the inte-

grated compiler and microarchitecture proposal to improve the performance of Thumb

code. A hardware based runtime instruction coalescing mechanism in the decode stage

of the processor pipeline replaces pairs of 16-bit instructions by equivalent single ARM

instructions for execution. The 16-bit pair consists of an Augmenting eXtension and

a regular 16-bit Thumb instructions. Here we describe the coalescing hardware and

17

the Augmenting eXtensions.

To illustrate the key concepts of our approach let us look at a simple example.

The code below shows an ARM instruction which shifts the value in reg2 before

subtracting it from reg1. Since the shift cannot be specified as part of another

Thumb ALU instruction, two Thumb instructions are required to achieve the effect

of one ARM instruction. We would like to coalesce the two 16-bit instructions into

one 32-bit instruction. While coalescing is relatively easy to carry out, detecting a

legal opportunity for coalescing by examining the two Thumb instructions is in general

impossible to carry out at run-time with simple hardware. In our example, the Thumb

code uses a temporary register rtmp. If instruction coalescing is performed, rtmp is

no longer needed; therefore its contents will not be changed. Hence, at the time

of coalescing, the hardware must also determine that the contents of register rtmp

will not be used after the Thumb sequence. Clearly this is in general impossible to

determine since the next read or write reference to register rtmp can be arbitrarily

far away.

Original ARM
sub reg1, reg2, lsl #2

Thumb
lsl rtmp, reg2, #2

sub reg1, rtmp

AXThumb
setshift lsl #2

sub reg1, reg2

Since the coalescing opportunity cannot be detected in hardware we rely on the

compiler to recognize such opportunities and communicate them to the hardware

through the use of Augmenting eXtensions (AX). In the AXThumb code shown above,

the first instruction is an augmenting instruction which is not executed; it is always

coalesced in the decode stage with the instruction that immediately follows it, to

generate a single ARM instruction for execution. In the above example, the aug-

menting instruction setshift merely carries the shift type and shift amount, which

18

is incorporated in the subsequent instruction to create the required ARM instruction

for execution.

We make the design choice that each Thumb instruction can be augmented only

by a single AX instruction. As a result we are guaranteed that an AX instruction

is always preceded and followed by a Thumb instruction. While it is possible to

support a more flexible mechanism which allows an instruction to be augmented by

multiple AX instructions, this is not useful as it does not speed up the execution of

the Thumb code. The reason for this claim will become clear when we discuss the

microarchitecture design in greater detail.

It should be noted that the code size of all three instruction sequences is the same

(i.e., 32 bits). However, only the AXThumb sequence satisfies the desired criteria as

it results in the execution of a single equivalent ARM instruction and is made up of

16-bit instructions. Thus, the AXThumb code is 16-bit code that runs like the ARM

code.

We have introduced the basic idea behind our approach. Next, we describe in

detail the realization of this idea. First, we describe the modified microarchitecture

that is capable of executing AXThumb code in a manner such that coalescing does

not introduce additional pipeline delays. Second, we describe the complete set of AX

instructions and the rationale behind the design of these instructions.

2.2 DIC Microarchitecture

Our work is based upon the StrongARM SA-110 pipeline which consists of five stages:

(F) instruction fetch; (D) instruction decode and register read; branch target cal-

culation and execution; (E) Shift and ALU operation, including data transfer and

memory address calculation; (M) data cache access; and (W) result write-back to

register file. It performs in-order execution and does not employ branch prediction.

The Thumb instruction set is easily incorporated into an ARM processor with a few

19

simple changes. The basic instruction execution core of the pipeline remains the same

as it is designed to execute only ARM instructions. A Thumb instruction decompres-

sor, which translates each Thumb instruction to an equivalent ARM instruction, is

added to the instruction decode stage. Since the decoder is simple and does little

work, this addition does not increase the cycle time.

A
R
M

D
e
c
o
d
e
r

F

E

T

C

H

M

U

X

T
H
U
M
B

D
e
c
o
m
p
r
e
s
s
o
rib1

ib2

Select and
Fetch Logic

select

fetch

D E C O D E

Instrn.
buffer

1. Thumb

6. Thumb

4. Thumb

3. Thumb

2. Thumb

5. Thumb

F

W

D

D

D

E

E

E

E

F

F

F

M

M

M

M

M

W

W

W

W

W

F D E

D

F

M

E

D

Figure 2.1. Thumb Implementation.

Before we describe our design of the decode stage, let us first review the original

design of the decode stage, which allows the ARM processor to execute both ARM

and Thumb instructions. As shown in Figure 2.1, the fetch capacity of the processor

is designed to be 32 bits per cycle so that it can execute one ARM instruction per

cycle. In the ARM state, a 32-bit instruction is directly fed to the ARM decoder.

20

However, in the Thumb state, the 32 bits are held in an instruction buffer. The two

Thumb instructions in the buffer are selected in consecutive cycles and fed into the

Thumb decompressor, which converts the Thumb instruction into an equivalent ARM

instruction and feeds it to the ARM decoder. Every time a word is fetched we get two

Thumb instructions. Hence, fetch needs to be carried out only in alternate cycles.

The key idea of our approach is to process an AX instruction simultaneously with

the processing of the immediately preceding Thumb instruction. What makes this

achievable is the extra fetch capacity already present in the processor.

ib1

ib2

ib3

F

E

T

C

H

s
t
a
t
u
s

T
H
U
M
B

16

32

32

Shift and
Fetch Logic

Shift

Fetch
buffer
Instrn.

Processor

A
R
M

D
E
C
O
D
E
R

D
E
C
O

R
O
S
S
E
R
P
M

A

16

16

16

AX

A X D E C O D E

X

1. Thumb

3. Thumb

5. Thumb

6. Thumb

F

F

E M W

F

F

F

F

E

E

E

M

M

M

W

W

W

Thumb−D

Thumb−D

Thumb−D

Thumb−D

2. AX

4. AX

AX−D

AX−D

Figure 2.2. AXThumb Implementation.

The overall operation of the hardware design shown in Figure 2.2 is as follows. The

instruction buffer in the decode stage is modified to exploit the extra fetch bandwidth

and keep at least two instructions in the buffer at all times. Two consecutive instruc-

tions, one Thumb instruction and a following AX instruction, can be simultaneously

21

processed by the decode stage in each cycle. The AXThumb instruction is processed

by the AX processor which updates the status field to hold the information carried by

the AX instruction for augmenting the next instruction in the following cycle. The

Thumb instruction is processed by the AXThumb decompressor and then the ARM

decoder. The decompressor is enhanced to use both the current Thumb instruction

and the status field contents modified by the immediately preceding AX instruction

in the previous cycle, if any, to generate the coalesced ARM instruction. The status

field is read at the beginning of the cycle for use in generation of the coalesced ARM

instruction and overwritten at the end of the cycle if an AX instruction is processed

in the current cycle. The status field can be implemented as a 28-bit register. Hence,

during a context switch it is sufficient to save the state of this status register along

with other state to ensure correct execution when this context resumes. The format

of this status register is described along with the encodings of AX instructions in

Section 2.2.4.

There are three important points to note about the above operation. First, as

shown by the pipeline timing diagram in Figure 2.2, in the above operation no extra

cycles are needed to handle the AX instructions. Each sequence (pair) of AX and

Thumb instructions complete their execution one cycle after the completion of the

preceding Thumb instruction. Second the above design ensures that there is no in-

crease in the processor cycle time. The AX processor’s handling of the AX instruction

is entirely independent of handling of the Thumb instruction by the decode stage. In

the pipeline diagram Thumb-D and AX-D denote handling of Thumb and AX instruc-

tions by the decode stage respectively. In addition, the path taken by the Thumb

instruction is essentially the same as the original design: the Thumb instruction is

first decompressed and then decoded by the ARM decoder. The only difference is the

modification made to the decompressor to make use of the status field information

and carry out instruction coalescing. However, this modification does not significantly

increase the complexity of the decompressor as the generation of an ARM instruction

22

through coalescing of AX and Thumb instructions is straightforward. An AX instruc-

tion essentially predetermines some of the bits of the ARM instruction generated from

the following Thumb instruction. This should be obvious for the setshift example

already shown. The other AX instructions that are described in detail in the next

section are equally simple. Finally it should now be clear why we do not allow two AX

instructions to augment a Thumb instruction. Only a single AX instruction can be

executed for free. If two consecutive AX instructions are allowed, their execution will

add a cycle to the program’s execution. Moreover, one AX instruction is sufficient to

augment one Thumb instruction as it can carry all the required information. Hence,

even in the case where we have more bandwidth (e.g., 64 bits), using more than one

AX instruction to augment a Thumb instruction is not useful.

The instruction buffer and the filling of this buffer by the instruction fetch mech-

anism are designed such that, in the absence of taken branches, the instruction buffer

always contains at least two instructions. The buffer can hold up to three consecutive

instructions. Thus, it is expanded in size from 32 bits (ib1 and ib2) in the original

design to 48 bits (ib1, ib2, and ib3). As shown later, this increase in size is needed

to ensure that at least two instructions are present in the instruction buffer. Of the

three consecutive program instructions held in ib1, ib2 and ib3, the first instruction is

in ib1, second is in ib2 and third one is in ib3. The instruction in ib1 is always a Thumb

instruction which is processed by the Thumb decompressor and the ARM decoder.

The instruction in ib2 can be an AX or a Thumb instruction and it is processed by the

AX processor. If this instruction is an AX instruction then it is completely processed,

and at the end of the cycle, instructions in both ib1 and ib2 are consumed; otherwise

only the instruction in ib1 is consumed. The remaining instructions in the buffer, if

any, are shifted by 1 or 2 entries so that the first unprocessed instruction is now in

ib1. The fetch deposits the next two instructions from the instruction fetch queue

into the buffer at the beginning of the next cycle if at least two entries in the buffer

are empty. Therefore, essentially there are two cases: either the two instructions are

23

deposited in (ib1, ib2) or in (ib2, ib3).

Table 2.1. Different Buffer States.

State ib1 ib2 ib3

S1 - - -
S2 T - -
S3 T T -
S4 T A -
S5 T T T
S6 T A T

We summarize the above operation of the instruction buffer using a state machine.

Table 2.1 describes the various states of the buffer depending upon its contents – a T

indicates a Thumb instruction and an A indicates an AX instruction. The states are

defined such that they distinguish between the number of instructions in the buffer –

S1, S2, S3/S4, and S5/S6 correspond to the presence of 0, 1, 2, and 3 instructions in

the buffer respectively. Pairs of states (S3, S4) and (S5, S6) are needed to distinguish

between the absence and presence of an AX instruction in ib2. This is needed because

the presence of an AX instruction results in coalescing while its absence means that

no coalescing will occur. Given these states, it is easy to see how the changes in the

buffer state occur as instructions are consumed and a new instruction word is fetched

into the buffer whenever there is enough space in it to accommodate a new word.

The state diagram is summarized in Figure 2.3.

Now we illustrate the need to expand the instruction buffer to hold up to three

instructions. In Figure 2.4(a) we show a sequence in which the AX instruction(s)

cannot be processed in parallel with the preceding Thumb instruction(s) as only after

the preceding Thumb instruction(s) are processed can the instruction fetch deposit an

additional pair of instructions into the buffer. Therefore, the advantage of providing

AX instructions is lost. On the other hand, in Figure 2.4(b), when we expand the

buffer to 48 bits, the instructions are deposited by the fetch sooner, thereby causing

24

Figure 2.3. State Transitions of the Instruction Buffer.

the AX instruction(s) and the preceding Thumb instruction(s) to be simultaneously

present in the buffer. Hence, the AX instructions are now handled for free.

ib1

ib2 ib1

ib2

ib3 ib1

ib2

ib3 ib1

ib1

ib2

ib1

ib2

ib1

ib2

(b) 48 bit Instruction Buffer.

1. Thumb

6. Thumb

2. Thumb

4. Thumb

F

F

ARM−D E M W

ARM−D E M W

F

F

F

F

WMEARM−D

WMEARM−D

3. AX

5. AX

AX−D

AX−D

(a) 32 bit Instruction Buffer.

1. Thumb

6. Thumb

2. Thumb

4. Thumb

F

ARM−D E M W

ARM−D E M W

F

F ARM−D E M W

F

F WMEARM−D

F

AX−D

AX−D

3. AX

5. AX

Figure 2.4. Delivering Instructions to Decode Ahead for Overlapped Execution.

Next, we show how it is ensured that whenever an instruction is found in ib1, it

is always a Thumb instruction. If the instruction was shifted from ib2 it must be a

Thumb instruction as the AX processor has concluded that it is not an AX instruction.

If the instruction was shifted from ib3, it must be a Thumb instruction. This is because

25

in the preceding cycle the instruction in ib2 must have been successfully processed,

meaning that it was an AX instruction which implies the next instruction, (i.e., the

one in ib3), must be a Thumb instruction. The final case is when the fetch directly

deposits the next two instructions into (ib1, ib2). Clearly the instruction in ib1 is not

examined by the AX processor in this case. Therefore, it must be guaranteed that

whenever the instruction buffer is empty at the end of the decode cycle, the next

instruction that is fetched is a Thumb instruction.

In the absence of branches the above condition is satisfied. This is because at the

beginning of the decode cycle the buffer definitely contains two instructions. For it

to be empty the two instructions must be simultaneously processed. This can only

happen if the instruction in ib2 was an AX instruction which implies that the next

instruction is a Thumb instruction.

In the presence of branches, following a taken branch, the first fetched instruction

is also directly deposited into ib1. We assume that the instruction at a branch target is

a Thumb instruction; hence, it can be directly deposited into ib1 as examination of the

instruction by the AX processor is of no use. The compiler is responsible for generating

code that always satisfies this condition. The reason for making this assumption is

that there is no advantage of introducing an AX instruction at a branch target. Only

an AX instruction that is preceded by another Thumb instruction can be executed

for free. If the instruction at a branch target is an AX instruction, and control arrives

at the target through a taken branch, then the processing of the AX instruction

by the AX processor can no longer be overlapped with the immediately preceding

instruction that is executed, that is, the branch instruction. This is because the AX

instruction can only be fetched after the outcome of the branch is known.1 Therefore,

the execution of the AX instruction actually adds a cycle to the execution. In other

words, the benefit of introducing the AX instruction is lost. When an AXThumb

1Note that the ARM processor does not support delayed branching and therefore an AX instruc-
tion cannot be moved up and placed in the branch delay slot.

26

pair replaces a Thumb pair, the second Thumb instruction in the AXThumb pair

need not be the same as the second Thumb instruction in the Thumb instruction

pair. Hence, one cannot allow an AX instruction in ib1 by issuing a nop when an AX

instruction is found in ib1. We rely on the compiler to schedule code in a manner

that avoids placement of an AX instruction at a branch target. If this cannot be

achieved through instruction reordering, the compiler uses a sequence of two Thumb

instructions instead of using a sequence of an AX and Thumb instructions at the

branch target.

2.3 Predicated Execution in AXThumb

While the original Thumb instruction set does not support predicated execution, we

have developed a very effective approach to carry out predicated execution using

AXThumb code which requires only a minor modification to the decode stage design

just presented. Like instruction coalescing, this method also takes advantage of the

extra fetch bandwidth already present in the processor. We rely on the compiler

to place the instructions from the true and false branches in an interleaved manner

as shown in Figure 2.5. Since the execution of a pair of instructions is mutually

exclusive, i.e. only one of them will be executed, in the decode stage we select the

appropriate instruction and pass it on to the decompressor while the other instruction

is discarded.

A special AX instruction precedes the sequence of interleaved instructions. This

instruction communicates the predicate in form of a condition flag which is used to

perform instruction selection from an interleaved instruction pair. If the condition

flag is set, the first instruction belonging to each interleaved pair is executed; oth-

erwise the second instruction from the interleaved pair is executed. Therefore, the

compiler must always interleave the instructions from the true path in the first po-

sition and instructions from the false path in the second position. The special AX

27

Predicate
T F

3t

4t

1f

2f

3f

2t

1t

Conditionally
Executed Code

1t

2t

3t

4t

Predicate

1f

2f

3f

nop

Interleaved
Instructions

AX

ib1

ib2

s
t
a
t
u
s

T
H
U
M
B

16
M

X
U

Select

Processor

D
E
C
O

R
O
S
S
E
R
P
M16

16

AX

X
A

Figure 2.5. Predication in AXThumb.

instruction also specifies the count of interleaved instructions pairs that follow it. The

AX processor uses this count to continue to stay in the predication mode as long as

necessary and then switches back to the normal selection mode. The selection of an

instruction from each instruction pair is carried out by using a minor modification to

the original design as shown in Figure 2.5. Instead of directly feeding the instruction

in ib1 to the decompressor, the multiplexer selects either the instruction from ib1 or

ib2 depending upon the predicate as shown in Figure 2.5. The select signal is gener-

ated by the AX processor. For correct operation, when not in predication mode, the

select signal always selects the instruction in ib1.

For this approach to work, each interleaved instruction pair should be completely

present in the instruction buffer so that the appropriate instruction can be selected.

This condition is guaranteed to be always true as the interleaved sequence is preceded

by an AX instruction. Following the execution of the AX instruction there will be at

least two empty positions in the instruction buffer which will be immediately filled by

28

the fetch. It should be noted that the setpred instruction essentially performs the

function of setting bits in a predicate register which is part of the status register. The

setpred instruction is slightly different from other AX instructions in that it does

not enable any sort of instruction coalescing. As a result, it does not require the extra

buffer length. Hence, this style of predication could be implemented independent of

the rest of AX processing, by suitably modifying the fetching of instructions.

The above approach for executing predicated code is more effective than doing

so in the ARM state. In ARM state the 32-bit instructions from the true and false

paths are examined one by one. Depending on the outcome of the predicate test,

instructions from one of the branches are executed while the instructions from the

other branch are essentially converted into nops. Therefore, the number of cycles

needed to execute the instructions is at least equal to the sum of the instructions

on the true and false paths. In contrast the number of cycles taken to execute the

AXThumb code is equal to the number of interleaved instruction pairs. Note that

this advantage is only achievable because in Thumb state instructions arrive in the

decode stage early while the same is not true for ARM.

2.4 AX Extensions to Thumb

The AX extension to Thumb consists of eight new instructions. These instructions

were chosen by studying ARM and Thumb codes of benchmarks and identifying com-

monly occurring sequences of Thumb instructions which were found to correspond

to shorter ARM sequences of instructions. We describe these instructions and illus-

trate their use through examples of typical situations that were encountered. We

categorize the AX instructions according to the types of instructions whose counts

they affect the most. The following discussion will also make clear the differences in

the ARM and Thumb instruction sets that lead to poorer quality Thumb code. We

then show how we use exactly one free instruction in the free opcode space of the

29

Thumb instruction set to implement AX instructions. We also give the format of the

28-bit status register that is used during AX processing. A brief description of the

ARM/Thumb instructions used here is shown in Table 2.2.

Table 2.2. Description of ARM/Thumb Instructions Used

Name Description

str Store to memory
ldr Load from memory
push Push contents onto stack
pop Pop contents from stack
b Unconditional Branch

b[cond] Conditional Branch eg. beq
and Logical AND
neg Negates value and stores in destination
mov Move contents between registers
add Arithmetic Add
sub Arithmetic Subtract
lsl Logical Shift Left

2.4.1 ALU Instructions

There are specific differences in the ARM and Thumb instruction sets that cause

additional ALU instructions to be generated in the Thumb code. There are three

critical differences we have located and to compensate for each of three weaknesses in

the Thumb instruction set we have designed a new AX instruction. ARM instructions

are able to specify negative immediates, shift operations that can be folded into other

ARM instructions, and certain kinds of compares that can be folded with other ARM

instructions. None of these three features are available in the Thumb instruction set.

The new AX instructions are as follows.

30

Negative Immediate
setimm #constant

Folded Shift
setshift shifttype shiftamount

Folded Compare
setsbit

Negative Immediate Offsets. The example shown below, which is taken from

versions of the ARM and Thumb codes of a function in adpcm coder, illustrates this

problem. The constant negative offset specified as part of the str store instruction

in ARM code is placed into register rtmp using the mov and neg instructions in the

Thumb mode. The address computation of rbase + rtmp is also carried out by a

separate instruction in the Thumb state. Therefore, one ARM instruction is replaced

by four Thumb instructions.

Original ARM
str rsrc, [rbase, -#offset]

Corresponding Thumb
mov rtmp, #offset

neg rtmp

add rtmp, rbase

str rsrc, [rtmp, #0]

AXThumb
setimm -#offset

str rsrc, [rbase,]

Coalesced ARM
str rsrc, [rbase, -#offset]

The AX instruction setimm is used to specify the negative operand of the in-

struction that immediately follows it. For our example, the setimm is generated

immediately preceding the str instruction. When an str instruction immediately

follows a setimm instruction, the constant offset is taken from the setimm and what-

ever constant offset that may be directly specified in the str instruction is ignored. In

the decode stage the setimm and str are coalesced to generate the equivalent ARM

instruction as shown above.

Shift Instructions. The setshift instruction has been shown through our exam-

ple at the beginning of section 2. We describe one more use here. A shift operation

folded with a MOV instruction is often used in ARM code to generate large immediate

constants. An immediate operand of a MOV instruction is a 12 bit entity which is

31

divided into an 8-bit immediate constant and a 4-bit rotate constant. The eight bit

entity is expanded to 32 bits with leading zeroes and rotated by the rotate amount to

generate a 32-bit constant. The rotate amount is multiplied by two before rotating

right. In Thumb state the immediate operand is only 8 bits and therefore the rotate

amount cannot be specified. An additional ALU instruction, an lsl is used to generate

the large constant by shifting left using the rotate amount as shown below. In the

AXThumb code setshift is used to eliminate the extra shift instruction through

coalescing.

Original ARM
mov reg1, #imm8.rotate4

Corresponding Thumb
mov reg1, #imm8

lsl reg1, #rotate4’, where
rotate4’ = 32 - 2 * rotate4.

AXThumb
setshift #rotate4

mov reg1, #imm8

Coalesced ARM
mov reg1, #imm8.rotate4

Compare Instructions. In the ARM instruction set, MOV and ALU instruc-

tions contain an s-bit. If the s-bit is set, following the MOV or ALU operation, the

destination register contents are compared with the constant value zero and certain

flags are set which can later be tested. Thus, in ARM certain types of compares can

be folded into other MOV and ALU instructions. As illustrated below, since Thumb

does not support the s-bit, it must perform the comparison in a separate instruction.

To overcome the above drawback we introduce the setsbit instruction which indi-

cates that the s-bit of the instruction that immediately follows should be set when

translation of Thumb into ARM takes place.

Original ARM
movs reg1, reg2

Corresponding Thumb
mov reg1, reg2

cmp reg1, #0

AXThumb
setsbit

mov reg1, reg2

Coalesced ARM
movs reg1, reg2

32

2.4.2 Predication

Lack of predication in Thumb is the reason for more branches in Thumb code com-

pared to ARM code, as illustrated by the example below. The ARM code performs

the compare; if r3 contains zero then the two subne instructions turn into nops while

the other two addeq instructions are executed. The reverse happens if r3 does not

contain zero. In the corresponding Thumb code explicit branches are introduced to

achieve conditional execution of instructions.

Original ARM
cmp r3, #0

addeq r6, r6, r1

addeq r5, r5, r2

subne r6, r6, r1

subne r5, r5, r2

Corresponding Thumb
cmp r3, #0

beq .L13

sub r6, r1

sub r5, r2

b .L14

.L13: add r6, r1

add r5, r2

.L14: ...

AXThumb
cmp r3, #0

setpred eq, #2

add r6, r1

sub r6, r1

add r5, r2

sub r5, r2

Coalesced ARM
cmp r3, #0

subne r6, r6, r1

subne r5, r5, r2

OR
cmp r3, #0

addeq r6, r6, r1

addeq r5, r5, r2

The new setpred instruction we introduce enables conditional execution of Thumb

instructions. This instruction specifies two things. First it specifies the condition in-

volved in predication (e.g., eq, ne etc.). Second it specifies the count of predicated

instruction pairs that follow. Following the setpred instruction are pairs of Thumb

instructions – the number of such pairs is equal to count. If the condition is true, the

first instruction in each pair is executed; otherwise the second instruction each pair

is executed.

setpred condition, #count

33

In our example, when we examine the AXThumb code, we observe that the con-

dition in this case is eq and count is two since there are two pairs of instructions

that are conditionally executed. If eq is true the first instruction in each pair (i.e.,

the add instruction) is executed; otherwise the second instruction in each pair (i.e.,

the sub instruction) is executed. Therefore, after the AXThumb instructions are pro-

cessed by the decode stage the corresponding ARM instruction sequence generated

consists of three instructions. The sequence contains either the add instructions or

the sub instructions depending upon the eq flag. Clearly the sequence of instructions

generated using our method is shorter than the original ARM sequence since it does

generate nops for the two instructions that are not executed. Note that this form of

predication is restricted to small length branch hammocks due to the lack of encoding

space to specify the length of the predicated block in the setpred instruction. Larger

blocks can be predicated by using multiple setpred instructions.

This form of predication could also reduce the number of fetches from the I-cache.

In the case shown below Thumb requires one more fetch than AXThumb code for

every iteration of the outer loop L0. Also note that use of predication reduces the

size by one instruction.

Thumb Code
L0: I0

beq L1

I1

b L2

L1: I2

L2: beq L0

AXThumb
L0: I0

setpred EQ 1

I1

I2

beq L0

2.4.3 MOV Instructions

We have identified three distinct reasons due to which extra move instructions are re-

quired in Thumb code. First most ALU Thumb instructions cannot directly reference

values held in higher order (r8 - r11) registers. Second while ARM supports three

address instruction format, Thumb uses a two address format and therefore requires

34

additional move instructions. Finally in Thumb ADD/MOV instructions the result

register can be a higher order register but in this case an immediate operand is not

allowed. Therefore, the immediate operand must be moved into a register before it

can be used by the high register based Thumb ADD/MOV instruction. The following

AX instructions are used to overcome the above drawbacks.

High Register Operand
setsource Hreg

setdest Hreg

setallhigh

Third Operand
setthird reg

Immediate Operand
setimm #constant

High Register Operands. Consider the example of a load below in which the

base address is in a higher order register. While the ARM load instruction can directly

reference this register, the Thumb code requires the base address to be moved to lower

order register which can be directly referenced by a Thumb load instruction.

Original ARM
ldr reg, [Hreg, #offset]

Corresponding Thumb
mov Lreg, Hreg

ldr reg, [Lreg, #offset]

AXThumb
setsource Hreg

ldr reg, [, #offset]

Coalesced ARM
ldr reg, [Hreg, #offset]

The instruction setsource Hreg is used to handle the above situation. The

Thumb instruction that follows the setsource Hreg instruction makes use of Hreg

as its source operand. After coalescing, the resulting ARM instruction is identical to

the ARM instruction used in the ARM code. The setdest Hreg is used in a similar

way.

The push instruction is used to carry out saving of registers at function boundaries.

The ARM push instruction provides a 16-bit mask which indicates which registers

should be saved and which are not to be saved. The corresponding Thumb push

35

instruction provides a 8-bit mask which corresponds to lower order registers. As a

consequence, saving of higher order registers requires additional move instructions in

Thumb code as illustrated by the example given below. While ARM code can use a

single push instruction to save both lower order registers (r4 - r7) and higher order

registers (r8 - r11), The Thumb code uses one push to save lower order registers,

then moves contents of higher order registers into lower order registers, and then uses

another push to save their contents.

Original ARM
push {r4,.., r11}

Corresponding Thumb
push {r4, r5, r6, r7}
mov r7, r11

mov r6, r10

mov r5, r9

mov r4, r8

push {r4, r5, r6, r7}

AXThumb
push {r4, r5, r6, r7}
setallhigh

push {r0, r1, r2, r3}

Coalesced ARM
push {r4, r5, r6, r7}
push {r8, r9, r10, r11}

To address this problem we provide the setallhigh AX instruction. When this

instruction precedes a Thumb push instruction, the 8-bit mask is interpreted to cor-

respond to higher order registers. In absence of preceding setallhigh instruction the

8 bit mask in the Thumb push instructions corresponds to the lower order registers.

The bit positions of registers r0 through r7 in the mask correspond to that of r8

through r15 respectively. The AXThumb code for the above example contains two

push instructions, the first one saves the contents of lower order registers and the

second one preceded by setallhigh saves the contents of higher order registers. The

move instructions present in the Thumb code have been eliminated. The difference

between original ARM code and coalesced ARM code is that original ARM requires

only a single push instruction while the coalesced ARM code contains two push in-

structions. setallhigh can similarly be used for restoring registers in combination

with pop. Note that the AXThumb code has fewer 16-bit instructions, reducing both

the code size and I-cache fetches compared to Thumb code.

36

Third Operand. Additional move instructions are required to compensate for

the lack of three address instruction format in Thumb. We introduce the setthird

reg AX instruction to avoid the extra move instruction. When a Thumb instruction

is a preceded by a setthird reg instruction, then reg is treated as the third address

for the Thumb instruction as shown below. Following coalescing the impact of extra

move instruction is entirely eliminated.

Original ARM
add reg1, reg2, reg3

Corresponding Thumb
mov reg1, reg2

add reg1, reg3

AXThumb
setthird reg3

add reg1, reg2

Coalesced ARM
add reg1, reg2, reg3

Immediate Operand. The Thumb ADD/MOV instructions can directly ref-

erence higher order registers. However, in these cases if the operand cannot be an

immediate constant, requiring an an extra move as shown below.

Original ARM
add Hreg1, Hreg1, #imm

Corresponding Thumb
mov rtmp, #imm

add Hreg1, rtmp

AXThumb
setimm #imm

add Hreg1,

OR
setdest Hreg1

add , #imm

Coalesced ARM
add Hreg1, Hreg1, #imm

We can use the setimm instruction already introduced earlier to avoid the move

instruction as shown above. The immediate operand is incorporated into the Thumb

instruction that follows the setimm instruction by the coalescing actions of the decode

stage resulting in a single ARM instruction. Alternatively the setdest instruction

can be used as shown above. In either case the coalesced ARM instruction is the

same.

Original ARM
and reg1, reg1, #imm

Corresponding Thumb
mov rtmp, #imm

and reg1, rtmp

AXThumb
setimm #imm

and reg1,

Coalesced ARM
and reg1, reg1, #imm

37

Another situation where extra move instructions are generated due to the presence

of immediate operands is when bitwise boolean operations are used. Instructions for

these operations cannot have immediate operands generating an extra move.

2.4.4 Encoding of AX Instructions

Not surprisingly there are very few unused opcodes available in Thumb. We have

chosen one of these available opcodes to incorporate the AX instructions. Bits 10..15

are taken up by this unused opcode 101110 which now refers to AX. The remaining

bits 0..9 are available for encoding the various AX instructions. Since there are eight

AX instructions, three bits are needed to differentiate between them - we use bits 7..9

for this purpose. The operands are encoded in the remaining bits 0..6.

Unimplemented Thumb Instruction
101110 xxxxxxxxxx
[10..15] [0..9]

AX Instructions
101110 AX opcode AX operands
[10..15] [7..9] [0..6]

The details of how operands are encoded for the various instructions are given

next. Depending upon the number of bits available, the constant fields in various

instructions are limited in size. The immediate constant in setimm is 7 bits, shift

amount in setshift 4 bits, and count in setpred is 3 bits. Finally, registers are

encoded using 4 bits so we can refer to both higher and lower order registers in AX

instructions.

Encodings
101110 setimm #constant
[10..15] [7..9] [0..6]

101110 setshift shifttype shiftamount
[10..15] [7..9] [4..6] [0..3]

38

101110 setsbit -
[10..15] [7..9] [0..6]

101110 setpred condition count
[10..15] [7..9] [3..6] [0..2]

101110 setsource Hreg -
[10..15] [7..9] [3..6] [0..2]

101110 setdest Hreg -
[10..15] [7..9] [3..6] [0..2]

101110 setallhigh -
[10..15] [7..9] [0..6]

101110 setthird reg -
[10..15] [7..9] [3..6] [0..2]

The format of the status register used in AX processing is shown below. The

state set by the various AX instructions is saved in this register in the appropriate

field depending on the AX instruction. During a context switch, the whole register is

saved and upon restoration, AX processing can continue as before.

Status Register Format

enable AX setpred ctr register operand imm shamt shtype S bit setallhigh
[27] [24..26] [20..23] [16..19] [9..15] [5..8] [2..4] [1] [0]

2.5 Related Work

Most closely related work can be classified broadly into two areas: Code compression

and Coalescing techniques. Previous work in the area of code compression consists

of techniques to compact code, keeping performance loss to a minimum. The tech-

nique we describe in this paper, improves the performance of already compact code.

Coalescing techniques have been employed at various stages: compile time, binary

translation time and dynamically using hardware at run-time. All of the techniques

were applied in the context of wide issue superscalar processors, using a considerable

39

amount of hardware resources. Our technique, uses a limited amount of hardware re-

sources, making it viable for an embedded processor. Let us look at specific schemes,

in the above mentioned areas.

Wolfe and Chanin [37] proposed a compressed code RISC processor, where cache

lines are huffman encoded and decompressed on a cache miss. The core processor is

oblivious to the compressed code, executing instructions as usual. Compression ratios

of 70% were reported. Lekatsas and Wolf [24] used the above model and proposed

new schemes for compression by splitting the instruction space into streams to achieve

better compression ratios. A dictionary based compression scheme was proposed by

Lefurgy et al. [23]. The technique assigns shorter encodings for common sequences

of instructions. These encodings and the corresponding sequences are stored in a

dictionary. At runtime, the decoder uses the dictionary to expand instructions and

execute them. Debray and Evans [5] describe a purely software approach to achieving

compact code. Profiles are used to find the frequently executed portions of the pro-

gram. The infrequently executed parts are then compressed, making decompression

overhead low while achieving good compression ratios.

We now turn to previous approaches to Instruction Coalescing. Qasem et al. [27]

describe a compile time technique to coalesce loads and stores. They use a special

swap instruction that swaps the contents of memory and registers. As a result they

execute fewer instructions and also reduce memory accesses. The picojava processor

[25] implements instruction folding to optimize certain operations on the stack. A

stack cache holds the top 64 values of the stack enabling random access to any of

the 64 locations. For instructions that can be folded, like arithmetic operations with

operands in the stack cache, the processor performs instruction folding by generating

a RISC like instruction. This avoids unnecessary stack operations. Hu and Smith [12]

recently proposed instruction fusing for the x86, where they fuse micro-instructions

generated by x86 instructions. The dynamic translator fuses two dependent instruc-

tions if possible, reducing the number of slots occupied in the scheduling window

40

and improving ILP as a result. Instruction Coalescing/Preprocessing has been used

for trace caches where the stored traces are optimized at runtime by the hardware.

Friendly et al. [8] described an optimization that combined dependent shift and add

instructions. Jacobsen and Smith [16] describe instruction collapsing where a small

chain of dependent instructions is collapsed into one compound instruction. Both of

the above techniques optimize the traces stored in the trace cache. Dynamic instruc-

tion stream editing (DISE)[4] is a processor extension for customizing applications to

the contexts in which they run by dynamically transforming the fetched instruction

stream, feeding the execution engine an instruction stream with modified or added

functionality. DISE has been used to provide runtime decompression to support com-

pressed code. While DISE modifies the instruction stream, unlike DIC which coalesces

uncompressed instructions for performance, DISE expands compressed code.

Finally researchers have recognized the advantages of augmenting instruction sets.

Given an instruction set and an application, it is often the case that one can identify

additional instructions that would help improve the performance of the application.

Razdan and Smith [29] proposed an approach for enabling introduction of such in-

structions by providing programmable functional units. In contrast, our approach

to augmenting Thumb instruction set is not application specific or adaptable. It is

rather specifically aimed at reintroducing instructions that had been eliminated from

the ARM instruction set in order to create the Thumb instruction set.

2.6 Summary

In this chapter we have described the microarchitectural component required to per-

form dynamic instruction coalescing of AX eXtensions. With minimal hardware mod-

ifications to the existing pipeline we showed how AX instructions can be coalesced

at runtime with the following Thumb instruction. We studied the Thumb ISA to

uncover various opportunities to replace Thumb pairs with AX-Thumb pairs. We

41

described several AX instructions that enable local optimizations of Thumb code by

exploiting such opportunities. We described how one can encode all of the AX in-

structions using a single free 16-bit opcode. We also showed how one can implement

predication in 16-bit code using the setpred AX instructions. This chapter has laid

out the foundation for the next two chapters which describe compiler techniques to

generate high performance 16-bit code.

42

Chapter 3

Local Optimizations Using DIC

Extensions to the 16-bit ISA called Augmenting eXtensions (AX) were introduced

in the previous chapter. This chapter described compiler algorithms that use AX

instructions for local optimizations. They serve to carry the extra information that

could not be specified in one 16-bit instruction and originally needed another 16-bit

instruction. These instructions use the lookahead capability to coalesce two 16-bit

instructions into one 32-bit equivalent at runtime. AX instructions are processed

entirely in the decode stage by coalescing them with the previous 16-bit instruction.

Hence they serve as a zero cycle 16-bit instruction that speeds up execution. The

compiler is responsible for discovering opportunities for such local optimizations and

inserting the appropriate AX instructions. We will look at the various local optimiza-

tions the compiler performs using AX instructions.

3.1 Compiler Algorithms

AXThumb transformations are performed as a postpass, after the compiler has gen-

erated object code. The transformation which involves detecting and replacing se-

quences of Thumb code with corresponding AXThumb code consists of three phases.

Each of the three phases deals with a particular kind of AXThumb transformation.

The first phase handles predication of Thumb code using the setpred AX instruction.

The second phase handles the generic case for AX transformations like the example

used to describe instruction coalescing. The third phase handles the setallhigh AX

instruction used to eliminate unnecessary moves at function prologues and epilogues.

While we present a postpass approach to generate AXThumb code, it should be noted

43

that AXThumb code generated at compile time could potentially improve the perfor-

mance further. There are 2 primary reasons for performance improvement. One, as

a result of using AX instructions, registers get freed, allowing the register allocator

to take advantage of more free registers. The allocation would occur after instruction

selection. Since AX instructions enable the use of higher order registers (r8-r12),

the register allocator would have to treat AXThumb pairs as a special case (like mov

instructions in existing Thumb code - the Thumb mov instruction can access higher

order registers). Two, the instruction scheduler could schedule instructions so as to

increase the number of AXThumb pairs generated. Thus, our postpass approach pro-

vides a baseline for performance improvement using AX instructions. The algorithms

for each of the three phases in the postpass approach, along with code examples, are

described in detail next.

3.1.1 Phase 1 - Predicated Code

The code segment shown below illustrates how Thumb code can be predicated using

the setpred instruction.

Thumb Code
(1) cmp r3, #0

(2) beq (6)

(3) sub r6, r1

(4) sub r5, r2

(5) b (8)

(6) add r6, r1

(7) add r5, r2

(8) mov r3, r9

AXThumb Code
(1) cmp r3, #0

(2) setpred EQ, #2

(3) add r6, r1

(4) sub r6, r1

(5) add r5, r1

(6) sub r5, r2

(7) mov r3, r9

The original Thumb code has to execute explicit branch instructions to achieve

conditional execution, choosing between the subtract and add operations. Using the

setpred instruction we can avoid this explicit branching. This instruction specifies

two things. First it specifies the condition involved in predication (e.g., eq, ne etc.).

44

input : A CFG for a function

output: A modified CFG with ’set’predicated code

for all siblings (n1, n2) in the BFS Traversal of the CFG do
/* Check for a hammock in the CFG */
PredEQ = SuccEQ = FALSE;
if numPreds (n1) == numPreds (n2) == 1 then

if Pred (n1) == Pred (n2) then
PredEQ = TRUE;

end
end
if numSuccs (n1) == numSuccs (n2) == 1 then

if Succ (n1) == Succ (n2) then
SuccEQ = TRUE;

end
end
/* SetPredicate if hammock found */
if SuccEQ and PredEQ then

DeleteLastIns(Pred(n1));
InsertIns(Pred(n1), setpred, cond);
for each pair of instructions in1, in2 from n1 and n2 do

InsertIns(Pred(n1), in1);
InsertIns(Pred(n1), in2);

end
MergeBB(Pred(n1), Succ(n1));
DeleteBB(n1);
DeleteBB(n2);

end
end

Algorithm 1: SetPredicate

45

���������	
��	�	���
�����������������������
�������
���������������

���������	�������������������
 ���������������
�� ���������
!" #!

�����

Figure 3.1. Predication

Second it specifies the count of predicated instruction pairs that follow. Following the

setpred instruction are pairs of Thumb instructions – the number of such pairs is

equal to count. If the condition is true, the first instruction in each pair is executed;

otherwise the second instruction each pair is executed.

The examples shown above is the same as the one described in Section 2.2.2.

Although each setpred instruction can only predicate upto 8 pairs of instructions,

longer blocks of code can be predicated by multiple setpred instructions with the

same condition for each portion of the large block.

This method of predication is more effective than ARM predication because, in

the case of ARM, nops are issued for predicated instructions whose condition is

not satisfied. Remember, in the case of ARM, every fetch only fetches one 32-bit

instructions. Hence, when the predicate is not satisfied, the instruction fetched is not

46

executed and that cycle is wasted. In the case of Thumb, since two 16-bit instructions

from both paths are available, the one that satisfies the predicate is executed while

the other is discarded. However this form of predication can be applied only to simple

single branch hammocks (or diamond shapes in the CFG) corresponding to a simple

if-then-else construct. Hence, the algorithm described below, first detects such

branch hammocks in the CFG for the function, then interleaves the instructions from

the two branches, merging them with the parent basic block. We consider pairs of

sibling nodes during a Breadth-First Traversal of the CFG for hammock detection. A

hammock is detected when (i) the predecessor of both siblings is the same, (ii) there

is exactly one predecessor (iii) and both siblings have the same successor. Once a

hammock is detected, it is predicated by inserting a setpred instead of the branch

instruction and interleaving the code from the two branches as shown in Algorithm 1.

The CFGs for the code example described above, before and after the transformation

are shown in Figure 3.1.

3.1.2 Phase 2 - Peephole Optimizations

The code segment shown next illustrates the general case for AX Transformations

which captures the majority of AX instructions. This example uses the setshift

and setsource AX instructions. The setshift instruction specifies the type and

amount of the shift needed by the following instruction. The setsource instruction

specifies the high register needed as the source for the following instruction. While

the Thumb code requires the execution of five instructions, the AXThumb code only

executes three instructions.

47

Thumb Code
(1) mov r2, r5

(2) lsl r4, r2, #2

(3) mov r3, r9

(4) sub r1, r4

(5) ldr r5, [r3, #100]

AXThumb Code
(1) mov r2, r5

(2,4) setshift lsl #2

sub r1, r2

(3,5) setsource high r9

ldr r5, [-,#100]

input : Basic Block DAG D with nodes numbered according to the topological
order and register liveness information

output: Basic Block DAG D with Coalesced Nodes to indicate AXThumb in-
struction pairs

for each n ǫ nodes in BFS order of D do
for each p ǫ Pred(n) do

Let dependence between n and p be due to register r.
if r is not live following instructions (n,p) then

/* Check if nodes n and p are coalescable */
if CandidateAXPair(n,p) then

G ← ∅
G ← Coalesce(n,p)
/* Check if coalesced Graph is a DAG */
isDAG = TRUE
for each e ǫ edges in G do

if Source(e) > Destination(e) then
isDAG = FALSE

end
end
if isDAG then

D ← G
end

end
end

end
end

Algorithm 2: DAG Coalescing for generic AX instructions

Since these transformations are local to a basic block, the algorithm shown in

Algorithm 2 uses the Basic Block dependence DAG as its input. Since AXThumb

pairs replace dependent Thumb instructions, it is sufficient to examine adjacent nodes

along a path in the DAG. We traverse the DAG in Breadth-First Order and examine

48

each node with its predecessor. AXThumb pairs have to be instructions adjacent to

each other in the instruction schedule. While replacing Thumb pairs with equivalent

AXThumb pairs, in order to ensure that this property is maintained, we coalesce the

nodes of the candidate Thumb pairs into one node representing the AXThumb pair.

However to maintain the acyclic property of the DAG, we have to ensure that this

coalescing of candidate Thumb instructions does not introduce a cycle. The nodes in

the DAG are numbered according to the topological sorted order of the instruction

schedule. By checking for back edges from higher numbered nodes to lower numbered

nodes during coalescing we make sure that the acyclic property is maintained. The

final instruction schedule is the ordering of nodes according to increasing node id

where for coalesced nodes, the node id is the id of the first instruction in the node.

For our example, instructions 3 and 5 are candidates and instructions 2 and 4

are candidates. The CandidateAXPair function takes in two Thumb instructions

and checks to see if they are candidates for replacement. This involves a liveness

check. Using liveness information, in our example one can say that register r4, in

instruction 2, is a temporary register. Since the two dependent instructions (subtract

and shift) can be replaced using a setshift instruction and register r4 is not live

after instruction 3, the CandidateAXPair function returns the AXThumb pair that

could replace instructions 2 and 4. Since coalescing nodes 2 and 4 does not introduce a

cycle, the replacement is legal. The algorithm for phase 2 is shown in Algorithm 2 and

the DAG for our example, before and after the transformation is shown in Figure 3.2.

3.1.3 Phase 3 - Function Prologues and Epilogues

The third phase handles the specific case of the setallhigh instruction, where a whole

sequence of Thumb instructions is converted to an AXThumb pair. The code segment

shown next illustrates the need for a setallhigh instruction. Since only low registers

can be accessed in Thumb state, the saving and restoring of context at function

49

Figure 3.2. Phase 2

boundaries results in the use of extra move instructions. In the example above,

first the low registers are pushed onto the stack, the high registers are then moved

to the low registers before they are pushed onto the stack. Using the setallhigh

instruction we can avoid the extra moves, indicating that the next instruction accesses

high registers.

Thumb Code
(1) push [r4, r5, r6, r7]

(2) mov r4, r8

(3) mov r5, r9

(4) mov r6, r10

(5) mov r7, r11

(6) push [r4, r5, r6, r7]

AXThumb Code
(1) push [r4, r5, r6, r7]

(2,3) setallhigh
push [r4, r5, r6, r7]

This transformation, like phase 2, is local to a basic block and uses the basic

block DAG as its input. The algorithm detects such sequences during a Breadth-First

traversal of the DAG. The dependence in the DAG is between the push instructions

and the move instructions as shown in Figure 3.3. The move instructions are siblings

50

input : Basic Block DAGs (with nodes in the topological sorted order of the
instruction schedule) for the basic block predecessors of the exit node and
successors of the entry node in the CFG and register liveness information

output: Reduced Basic Blocks with setallhigh AX instructions

for each DAG D ǫ set of basic blocks B do
for each n ǫ BFS order of nodes in D do

if PushOrPopListLo(n) then
/* Check for the replaceable mov instructions */
isReplacable = TRUE
for each m ǫ Succ(n) do

Let r be the destination register in m.
if r is not live following Succ(m) then

if not movLoHi(m) |
not PushOrPopListHi(Succ(m)) | numSuccs(m) 6= 1 then

isReplacable = FALSE
end

end
end
/* Remove MOVs and insert a setallhigh */
if isReplacable then

for each m ǫ Succ(n) do
Save ← Succ(m)

Remove(m)
end
Succ(n) ← Save
SettoLo(Save)
Coalesce(setallhigh, Succ(n))

end
end

end
end

Algorithm 3: DAG Coalescing for setallhigh AX instructions

51

Figure 3.3. SetAllHigh AX transformation

with predecessor and successors as the push instructions in the DAG. This condition is

checked for as shown in Algorithm 3. The PushorPopList functions find instructions

that push/pop a list of registers and performs the liveness check on these registers.

The movLoHi function makes sure the register being used in the mov instruction is

in the list of registers in the push/pop instruction encountered before. Once such a

pattern is detected all the sibling nodes are replaced with one single node containing

the setallhigh instruction. This node is then coalesced with the successor node

which is the push/pop instruction to ensure that two instructions are adjacent to

each other in the instruction schedule.

3.2 Profile Guided Approach for Mixed Code

In this section we provide a description of the Profile Guided Approach for the genera-

tion of mixed code [19]. First we describe the instruction support already available in

the ARM/Thumb instructions set that allows such mixed code generation. We show

why generating mixed code at fine granularity (i.e., for sequences of instructions like

52

those we described in Section 2.2) results in poorer code. We briefly describe the

best heuristic from [19] Heuristic 4 (H4), called PGMC from here on, which generates

mixed code at coarser granularity next. We present experimental results comparing

AX to PGMC approach along with other experimental results in Section 4. There has

been recent work on mixed code generation at compile time, which generates mixed

code at a finer granularity than the approach described in [19]. The reader is pointed

to [22] for details on this approach.

3.2.1 BX/BLX instructions

The ARM/Thumb ISA supports the Branch with eXchange (BX) and Branch and

Link with eXchange instructions. These instructions dictate a change in the state

of the processor from the ARM state of execution to the Thumb state or vice versa.

When the target register in these instructions (Rm) has its 0th bit (Rm[0]) set the

state changes to Thumb otherwise it is in ARM state. These instructions change the

Thumb bit of the CPSR (Current Program Status Register), indicating the state of

the processor.

Using the BX instruction at finer granularity we could generate a mixed binary

that targets the specific sequences that AX targets. However this technique is in-

effective as we show in Figure 3.4. As we can see from the code transformation

shown, when the longer Thumb sequence is replaced by a shorter ARM sequence, we

introduce three additional instructions. Moreover, the alignment of ARM code at

word boundary may cause an additional nop to be introduced preceding the first BX

instruction. Hence, for the small sequences that are targeted by AX, this method

introduces too much overhead due to the extra instructions leading to a net loss in

performance and code size. Therefore, this approach is ineffective when applied at

fine granularity. On the other hand if this transformation were applied at coarser

granularity, the overhead introduced by the extra instructions can be acceptable. In

53

the next section we describe a heuristic that carries out mixed code generation at

coarser granularity.

Thumb
.code 16 ; Thumb instructions follow
...
<pattern>
...

ARM+Thumb
.code 16 ; Thumb instructions follow
...
.align 2 ; making bx word aligned
bx r15 ; switch to ARM as r15[0] not set
nop ; ensure ARM code is word aligned
.code 32 ; ARM code follows
<ARM code> ; pattern
orr r15, r15, #1 ; set r15[0]
bx r15 ; switch to Thumb as r15[0] is set
.code 16 ; Thumb instructions follow
...

Figure 3.4. Replacing Thumb Sequence by ARM Sequence.

3.2.2 Profile Guided Mixed Code Heuristic (PGMC)

A profile guided approach is used to generate a mixed binary, one that has both ARM

and Thumb instructions. This heuristic chooses a coarse granularity where some

functions of the binary are ARM instructions while the rest is Thumb. The compiler

inserts BX instructions at function boundaries to enable the switch from ARM to

Thumb state and vice versa as required. Heuristics based on profiles determine which

functions use ARM instructions allowing the placement of BX instructions at the

appropriate function boundaries. The basic approach that we take for generating

mixed code consists of two steps. First we find the frequently executed functions

once using profiling (e.g., using gprof). These are functions which take up more than

54

5% of total execution time. Second we use heuristics for choosing between ARM and

Thumb codes for these frequently executed functions. For all other functions, we

generate Thumb code. The above approach is based upon the observation that we

should use Thumb state whenever possible. For all functions within a module (file of

code), we choose the same instruction set. This approach works well because when

closely related functions are compiled into mixed code, optimizations across function

boundaries are disabled, resulting in a loss in performance.

PGMC uses a combination of instruction counts and code size collected on a per

function basis. We use the Thumb code if one of the following conditions hold: (a) the

Thumb instruction count is lower than the ARM instruction count; or (b) the Thumb

instruction count is higher by no more than T1% and the Thumb code size is smaller

by at least T2%. We choose T1=3 and T2=40 for our experiments. We determined

these settings through experimentation across a set of benchmark as discussed in [19].

The idea behind this heuristic is that if the Thumb instruction count for a function

is slightly higher than the ARM instruction count, it still may be fine to use Thumb

code if it is sufficiently smaller than the ARM code as the smaller size may lead to

fewer instruction cache accesses and misses for the Thumb code. Therefore, the net

effect may be that the cycle count of Thumb code may not be higher than the cycle

count for the ARM code.

3.3 Experiments

The primary goal of our experiments is to determine how much of the performance

loss experienced by the use of Thumb code, as opposed to ARM code, can be re-

covered by using the AX instruction set and instruction coalescing. To carry out

this experimentation we implemented the described techniques in our simulation and

compilation environment. Then we ran the ARM, Thumb and AXThumb versions of

the programs and compared their performance. We describe the experimental setup

55

followed by a discussion of the results.

Experimental setup A modified version of the Simplescalar-ARM [2] simulator,

was used for experiments. It simulates the five stage Intel’s SA-1 StrongARM pipeline

[14] with an 8-entry instruction fetch queue. The I-Cache configuration for this pro-

cessor are: 16Kb cache size, 32b line size, and 32-way associativity, and miss penalty

of 64 cycles (a miss requires going off-chip). The simulator was extended to sup-

port both 16-bit and 32-bit modes, the Thumb instruction set and the system call

conventions followed in the newlib c library. This is a lightweight C library used

on embedded platforms that does not provide explicit network, I/O and other func-

tionality typically found in libraries such as glibc. CACTI [30] was used to model

I-Cache Energy. The xscale-elf gcc version 2.9 compiler used was built to cre-

ate a version that supports generation of ARM, Thumb as well as mixed ARM and

Thumb code. Code size being a critical constraint, all programs were compiled at

-O2 level of optimization, since at higher levels code size increasing optimizations

such as function inlining and loop unrolling are enabled. The benchmarks used are

taken from the Mediabench [21], Commbench [36] and NetBench [10] suites as they

are representative of a class of applications important for the embedded domain. The

benchmark programs used do not require functionality not present in newlib. A brief

description of the benchmarks is given in Table 3.1. All experiments used a single

workload for each benchmark program.

3.3.1 Performance of AXThumb

Instruction Counts The use of AX instructions reduces the dynamic instruction

count of 16-bit code by 0.4% to 32%. Figure 3.5 shows this reduction normalized

with the counts for 32-bit ARM code. The difference in instruction count between

ARM and Thumb code is between 3% and 98%. Using AX instructions we reduce

the performance gap between 32-bit and 16-bit code. For cases such as crc and

56

Table 3.1. Benchmark Description

Name Description

rtr Routing Lookup Algorithm
crc Cyclic Redundancy Check Algorithm
adpcm Adaptive Differential pulse code modulation (encode/decode)
pegwit Elliptical Curve Public key Encryption Algorithm
frag IP packet header fragmentation
reed Reed Solomon Forward Error Correction Algorithm
drr Deficit Round Robin Scheduling

adpcm where there is substantial difference between ARM and Thumb code, we see

improvements between 25% and 30% bridging the performance gap between ARM

and Thumb by one third in the case of crc and more than one half in the case of

adpcm. For cases such as drr where Thumb code is not much worse than ARM code

(3%), we see little improvement using AX instructions. In the other cases we see an

improvement over Thumb code of about 10% on an average. The difference in the

instruction counts between ARM and Thumb code indicates the room for possible

improvement of 16-bit code due to constraints present in 16-bit code. Using AX

instructions we are able to considerably bridge this gap between 32-bit and 16-bit

code.

Cycle Counts Figure 3.6 shows the cycle count data for Thumb and AXThumb

code relative to the ARM code. The use of AX instructions gives varying cycle count

changes between -0.2% and 20% compared to Thumb code. We see reduction of

15% to 20% in cycle counts for crc and adpcm compared to the Thumb making the

reducing the difference between ARM and Thumb by half in the case of crc and

about 66% with the adpcm programs. In the other 3 cases where Thumb cycle counts

are higher than ARM, viz. frag reed.encode, reed.decode, and rtr, we see that

there is a moderate reduction in cycle counts compared to Thumb. However the

57

rtr crc

adpcm.ra
wcaudio

adpcm.ra
wdaudio

pegwit.g
en

pegwit.e
nc

pegwit.d
ec

fra
g

reed.encode

reed.decode drr
0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
or

m
al

iz
ed

 In
st

ru
ct

io
n

C
ou

nt

ARM
Thumb
AX

Figure 3.5. Normalized Instruction Counts

58

difference between the ARM and Thumb codes itself being moderate, in the cases

of rtr and reed.encode, AXThumb code gives a lower cycle count compared to

even ARM code. The improved I-cache behavior of the Thumb and AXThumb codes

compared to ARM code makes this possible. In the other cases, where Thumb code

already outperforms ARM code we see little improvement as there is little scope for

the use of AX instructions.

rtr crc

adpcm.ra
wcaudio

adpcm.ra
wdaudio

pegwit.g
en

pegwit.e
nc

pegwit.d
ec

fra
g

reed.encode

reed.decode drr

Average values
0.6

0.8

1

1.2

1.4

1.6

N
or

m
al

iz
ed

 C
yc

le
 C

ou
nt

ARM
Thumb
AX
PGMC

Figure 3.6. Normalized Cycle Counts

Code Size and I-Cache Energy The code sizes of Thumb and AXThumb are

almost identical. This is because in all cases where AXThumb instruction replace

Thumb instructions, the size is only decreased if at all changed. The decrease occurs

due to the introduction of setallhigh or setpred instructions as mentioned before.

In all other cases the size does not change. The code sizes relative to ARM are shown

in Figure 3.7. Figure 3.8 shows the I-cache energy for Thumb and AXThumb codes

59

relative to ARM code. In the three cases where Thumb has higher I-cache energy viz.

crc and the two adpcm programs, we see that AXThumb reduces the I-cache energy

making them almost as small as ARM. In the other cases we see AX always has lower

I-cache energy compared to Thumb, making it even better compared to ARM. Lower

I-cache energy results from fewer fetches from the I-cache. Fewer fetches could result

from code size reducing AX transformations such as, setpred, setallhigh and negative

immediate offset examples shown in section 2.2. Additionally, the number fetches into

the instruction queue depends on the utilization of the queue. AXThumb consumes

instructions at a faster rate from the instruction queue compared to Thumb, filling

up the queue slower compared to Thumb. Hence, on taken branches when the queue

is flushed, there are fewer instructions that are flushed, which account for the extra

fetches performed by Thumb. Since the instruction count is reduced, energy spent

during instruction execution, in other parts of the processor is also reduced. The

addition of the AX processor in the decode stage is a very small increase in energy

spent since the operations of the AX processor are very simple involving detection of

the AX opcode and setting the status if the instruction is an AX instruction. However,

this small amount of energy is spent every cycle. The I-cache consumes a significant

portion the total energy (upto 25% in some implementations [32]) while the decode

stages consume little energy. Hence, savings in I-cache energy translate significant

overall energy savings. Thus, while more energy is spent in the decode stage, there is

a significant savings from the I-cache. An accurate estimation of energy would require

an energy model for all parts of the processor during our simulation. Currently, our

infrastructure only models I-cache energy behavior.

Usage of AX instructions In Table 3.2 we show a weighted distribution of the

AX instructions executed by each benchmark. Each benchmark uses a different set of

AX instructions and all AX instructions have been used by at least two benchmarks.

Instructions that made an impact in almost all benchmarks were setsbit, setshift,

60

rtr crc

adpcm.ra
wcaudio

adpcm.ra
wdaudio

pegwit.g
en

pegwit.e
nc

pegwit.d
ec

fra
g

reed.encode

reed.decode drr

Average Values
0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 C
od

e
S

iz
e

ARM
Thumb
AX
PGMC

Figure 3.7. Normalized Code Size

61

rtr crc

adpcm.ra
wcaudio

adpcm.ra
wdaudio

pegwit.g
en

pegwit.e
nc

pegwit.d
ec

fra
g

reed.encode

reed.decode drr

Average Values
0.6

0.8

1

1.2

1.4

1.6

N
or

m
al

iz
ed

 I−
C

ac
he

 E
ne

rg
y

D
at

a

ARM
Thumb
AX
PGMC

Figure 3.8. Normalized I-Cache Energy

62

setsource and setthird. Predication was found to be useful only in adpcm as

in other benchmarks small branch hammocks capable of being predicated were not

found. In crc, a small set of setsbit instructions in the hotspots of the code gave

very good performance improvement. drr had little opportunity for insertion of AX

instructions resulting in the use of a few setsbit instructions which did not give

much of an improvement. The use of setallhigh in rtr resulted in smaller code

as a result of removing unnecessary moves, which was also the reason for reduced

instruction count.

3.3.2 Comparison with Profile Guided Mixed Code

Cycle Counts Figure 3.6 also shows the cycle counts for PGMC normalized with

ARM cycle counts. crc is the only benchmark where AX cycle counts are considerably

more than PGMC. For most of the other benchmark the AX and PGMC counts are

very close. In some cases like adpcm, frag and reed.decode PGMC has lower cycle

counts; while in other cases like rtr, pegwit and reed.encode AX has lower cycle

counts. In some cases for PGMC like rtr, crc and adpcm the heuristic chooses all

modules to be compiled into ARM code. In the case of drr PGMC chooses to compile

all modules into Thumb code. The cycle counts for these benchmarks reflect these

decisions.

Code Size Figure 3.7 also shows the code size for PGMC normalized with respect to

the ARM code sizes. We see that for quite a few benchmarks, PGMC is significantly

worse than AX. Also notice how AX always has smaller code size compared to PGMC.

As indicated above the reason for larger code size in PGMC is due to the choice of

using only ARM code. The amount of memory required for AX is in general lesser

than PGMC.

63

Table 3.2. Usage of Different AX Instructions.

Benchmark setallhigh setpred setsbit setshift setsource setdest setthird setimm

rtr 11.77% 0.00% 82.34% 5.88% 0.00% 0.00% 0.00% 0.00%

crc 0.00% 0.00% 0.27% 99.72% 0.00% 0.00% 0.00% 0.00%

adpcm.rawcaudio 0.00% 36.30% 36.30% 14.52% 0.00% 7.26% 0.00% 5.59%
adpcm.rawdaudio 0.00% 34.47% 34.47% 13.79% 3.44% 10.34% 3.44% 0.00%

pegwit.gen 0.17% 0.00% 74.47% 8.48% 5.47% 0.00% 11.39% 0.00%
pegwit.encrypt 0.19% 0.00% 80.22% 5.01% 6.23% 0.00% 8.32% 0.00%
pegwit.decrypt 0.17% 0.00% 74.47% 8.48% 5.47% 0.00% 11.39% 0.00%

frag 4.44% 0.00% 0.00% 6.66% 13.33% 4.44% 66.66% 4.44%

reed.encode 0.01% 0.00% 3.81% 0.00% 68.45% 0.00% 27.71% 0.00%
reed.decode 0.01% 0.00% 1.09% 0.63% 88.29% 0.00% 9.95% 0.00%

drr 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%

64

I-Cache Energy Figure 3.8 also shows the I-Cache energy for PGMC normalized

with I-cache energy for ARM code. PGMC has higher I-cache energy for all but 3

benchmarks. This is significant in benchmarks like pegwit.gen and rtr, and less sig-

nificant in other benchmarks like reed and frag. In the other 3 programs we notice

AX is slightly worse than PGMC.

From the above results we see that AX and PGMC, each have some advantages

over the other. PGMC has better performance in general while AX has smaller code

size. With the support of more AX type of instructions, one could possibly further

improve performance. From an energy perspective, with our current infrastructure,

it is hard to estimate accurately which is superior. Instruction coalescing, if carried

out with more AX style of instructions, could possibly remove the need to support

the 32-bit ISA and still achieve performance of 32-bit code.

3.4 Summary

In this chapter we have seen how the compiler can use the AX instructions described in

the previous chapter to effectively improve the performance of Thumb code. The local

optimizations were carried out in three phases. The first phase predicates Thumb code

using the predication support exposed via the setpred instruction. The second phase

exploits peephole opportunities which replaces pairs of Thumb instructions with an

AX-Thumb pair. The third phase minimizes the call overhead in Thumb programs.

Experiments showed improvements in Thumb code were achieved with insignificant

increase in code size. A comparison with our prior work on Profile Guided mixed

code generation showed that DIC is superior.

65

Chapter 4

Global Optimization Using DIC

This chapter introduces techniques that exploit Dynamic Instruction Coalescing for

more efficient use of the register file. Half the register file is invisible to the compiler

while generating 16-bit code. This is the result of register specifiers being 3-bits wide

in the 16-bit ISA compared to 4-bits wide in the 32-bit ISA. So the compiler can only

allocate half the register file which results in many more memory operations. Our

technique exploits these extra registers by sharing encoding between registers and

using microarchitectural and compiler support to expose and efficiently exploit these

invisible registers.

An AX instruction, setmask, introduces the notion of an active subset of registers.

The register file is partitioned into two halves of 8 registers; each register in the

low half shares an encoding with a corresponding register in the high half. The

setmask instruction is used to activate different subsets of 8 registers from the available

16 registers. The compiler is exposed to all registers as a result and can allocate

all of them. After allocation, the compiler inserts setmask instructions to ensure

correct switching between register subsets. Like the previous AX instructions we

seen, the setmask AX instruction is a zero cycle instruction that does not contribute

to the execution time of the program. However, unlike previous AX instructions,

setmask AX instructions do not replace existing 16-bit instructions; the setmask AX

instruction is an additional instruction. Hence, apart from ensuring correct insertion

of AX instructions the compiler also ensures minimal insertion of setmask instructions

to avoid code bloat. First we will see how invisible registers are exposed and then we

will look at effective ways to exploit them.

66

4.1 Exposing Invisible Registers

In Thumb instructions the register specifier field is typically 3 bits while it is 4 bits in

all ARM instructions. Thus, in Thumb mode the lower half of the register file (i.e.,

R0 · · ·R7) can be freely accessed while the upper half (i.e., R8 · · ·R15) of the register

file is accessible only by very few instructions (e.g., MOVs).

The dynamic coalescing framework can be used to enable the higher order registers

visible to all Thumb instructions. To achieve this goal we take the following approach.

We view the register file containing 16 registers as consisting of 8 register pairs –

(r0, r8), (r1, r9), · · · (r7, r15). Only 8 registers are visible at a time such that exactly

one register is visible from each pair at any point in time. For each register pair, the

register from the pair that is visible at any point in time needs to be set. For this

purpose we provide the SetMask instruction. This instruction has an 8 bit operand

where each bit in the operand specifies the leading bit of the register specifier. If the

leading bit for a pair is 0 then the lower order register is visible while if the leading bit

is 1 then the higher order register from the pair is visible. Each time in the program

when the set of visible registers needs to be changed, a single SetMask instruction is

executed to achieve this goal.

The execution of the SetMask instruction is achieved without adding additional

execution cycles using the dynamic coalescing framework. A SetMask instruction is

processed in the decode stage in parallel with the preceding Thumb instruction in

the same manner as other AX instructions are accessed as described in the preceding

section. The decode stage saves the bits specified in the SetMask and uses these bits to

interpret the register specifier bits in future Thumb instructions till the next SetMask

instruction is encountered. While the above approach greatly reduces the constraints

on use of registers by Thumb instructions, one minor constraint still remains – a

Thumb instruction cannot simultaneously reference both registers from a register

pair. The register allocator must take this constraint into account during register

67

assignment.

Figure 4.1. Register Operand Access

Figure 4.1 shows how register operands use the bitmask set by the SetMask in-

struction. The register file needs to be modified to accommodate register operand

access without delays. The register file is organized such that each row contains the

high and low registers. The lower 3 bits of the register specifier are used to index the

register file as well as the bitmask. In 16-bit state the bit selected from the bitmask

is used to select the low or high register contents of the selected row. In 32-bit ARM

state the MSB of the register specifier selects the low or high register. Both the

bitmask and register file are indexed in parallel to avoid introducing delays during

register file access.

Let us consider a simple example of Figure 4.2 that illustrates the advantage of

using SetMask instruction. In this example, we assume that registers r0 and r5 are

available to hold the values of variables a and c respectively immediately preceding

and following the code fragment. The variable t is a temporary which is computed

and consumed within the code fragment. Let us assume that other than r0 and r5

the only register available is r10 while all other lower and higher order registers are

already occupied by other variables. Under these assumptions we show the generated

68

code sequences for ARM, Thumb, and AXThumb. As we can see, in case of ARM only

two instructions are generated where r10 is used for the temporary t. When SetMask

instruction is used, AXThumb code generated is similar to the ARM code except

that the SetMask is used so that make r10 visible. The number of cycles it takes to

execute the ARM and AXThumb codes is the same as the SetMask instruction does

not cost extra cycles. Now we finally look at Thumb code in which case r10 is used

to spill the value in r0 since r10 cannot be directly accessed by the ADD. As we can

see, spill code must be generated that causes extra load and store instructions to be

generated – we have observed these effects in the Thumb code generated by the gcc

compiler.

[a in r0; c in r5;] [t - temporary]

mov r10, r0

add r0, r5, #5

t = c + 5 st r5, < addr > add r10, r5, #5 setmask 0x04

a = a + t mov r5, r10 add r0, r0, r10 add r2, r5, #5

add r0, r0, r5 add r0, r0, r2

ld r5, < addr >
(a) IR (b) Thumb (c) ARM (d) AX Thumb

Figure 4.2. Use of SetMask.

4.2 Exploiting Exposed Registers

It is clear that by using SetMask instructions, the execution time of code can be im-

proved in comparison to Thumb code. However, there is another important issue that

we must deal with. We would like to ensure that the code size of AXThumb code is

also small. While extra SetMask instructions are needed, by using higher order reg-

isters some of the spill code is eliminated. A naive approach for introducing SetMask

instructions may be to add a SetMask instruction before and after each reference to

a higher order register. However, this approach adds too many instructions causing a

significant increase in the code size as shown in Figure 4.3. Therefore in this section

we develop compiler algorithms for carefully introducing SetMask instructions.

69

rtr

adpcm.ra
wcaudio

adpcm.ra
wdaudio

pegwit.g
en

pegwit.e
nc

pegwit.d
ec

fra
g

reed.encode

reed.decode
0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 C
od

e
S

iz
e

ARM
Thumb
Naive SetMask

Figure 4.3. Normalized Code Size

In the rest of this chapter we will use the following notation. (R, R̄) refers to

a register pair. While a SetMask instruction selects a register to make visible from

each pair, when we use the notation SetMask R we will be referring to a SetMask

instruction which makes R visible while keeping the visible registers from remaining

pairs the same.

We assume that the Thumb register allocation is performed so that it uses all reg-

isters. After register allocation has been performed, the resulting code is examined

and SetMask instructions are appropriately introduced. The algorithm for SetMask

placement consists of three main steps. The first step separately determines initial

placement points for SetMask R and SetMask R̄ instructions corresponding to each

register pair (R, R̄). The second step finds the placement ranges for each SetMask

R and SetMask R̄ instruction which represent all points where an instruction can be

placed. The third and final step coalesces multiple SetMask instructions referring to

different register pairs into a single SetMask instruction that simultaneously changes

70

the visibility of multiple registers and determines the final placement of SetMask

instructions. The placement ranges identified in the second step are used to iden-

tify final placement points which enable maximal coalescing so that fewer SetMask

instructions are introduced. Next we discuss these steps in detail.

Forward Availability

Initialize:

(R, R̄)Availn(s) := (R, R̄)Availx(s) := φ

Solve:

(R, R̄)Availn(s) :=
⋂

p∈Pred(s)

(R, R̄)Availx(p)

(R, R̄)Availx(s) :=







(R, R̄)Availn(s) R 6∈ Ref(s) ∧ R̄ 6∈ Ref(s)
{R} R ∈ Ref(s)
{R̄} R̄ ∈ Ref(s)

Initial Placement Points

(R, R̄)Initialn(s) :=







{SetMask R} R ∈ Ref(s) ∧ R 6∈ (R, R̄)Availn(s)
{SetMask R̄} R̄ ∈ Ref(s) ∧ R̄ 6∈ (R, R̄)Availn(s)
φ otherwise

(R, R̄)Initialx(s) := φ

Figure 4.4. Step 1: Initial Placement Points Determination.

4.2.1 Initial Placement Points

Given a register pair (R, R̄), a simple way of introducing a SetMask instructions for

this register pair is as follows. Immediately preceding an instruction that refers to R

we can introduce a SetMask R instruction which makes R visible while immediately

preceding an instruction that refers to R̄ we introduce a SetMask R̄ instruction which

makes R̄ visible. Clearly this approach will introduce a lot a SetMask instructions

– preceding each instruction as many SetMask instructions will be introduced as the

71

number of registers referenced by the instruction. The goal of our algorithm (all three

steps) is to reduce this number.

R

R

R R R

R

R

R

R

R R R

R

R R R

R

Setmask Register

Register Reference

Figure 4.5. Initial Placement Points.

In this first step we separately consider each register pair (R, R̄) and simply try to

eliminate unnecessary SetMask R and SetMask R̄ instructions that are introduced by

the above simple strategy. The basic idea of this step is illustrated in Figure 4.5. The

first figure shows all references to R and R̄ which are marked by ovals. The second

figure shows the initial placement points of SetMask R and SetMask R̄ instructions

which are marked by squares. As we can see, there is no SetMask R̄ introduced

preceding the second R̄ reference. This is because once we introduce SetMask R̄

before the first R̄ reference, the one before the second R̄ becomes redundant.

The determination of initial placement points for a given (R, R̄) pair is made

using the analysis shown in Figure 4.4. Forward must availability analysis is used to

determine whether or not there is a need to introduce a SetMask R/R̄ instruction

preceding a R/R̄ reference. If SetMask R/R̄ instruction has been executed along all

paths prior to reach a reference R/R̄ such that R/R̄ is already visible, there is no

need the introduce a SetMask R/R̄ instruction before this reference. The (R, R̄)Avail

sets are computed for all program points as shown in Figure 4.4 and then using this

information the initial placement points are determined in form of (R, R̄)Initial sets.

72

Placement Ranges

Initialize:

(R, R̄)Rangen/x(s) := (R, R̄)Initialn/x(s)

Solve:

(R, R̄)Rangex(s) :=
⋂

q∈Succ(s)

(R, R̄)Rangen(q)

(R, R̄)Rangen(s) := (R, R̄)Rangex(s)− (R, R̄)Kill(s)
where,
(R, R̄)Kill(s) := Kill(s,R) ∪ (Kill(s, R̄)

Kill(s,R) :=

{

{SetMask R} R̄ ∈ Ref(s) ∨ R ∈ (R, R̄)Availn(s)
φ otherwise

Kill(s, R̄) :=

{

{SetMask R̄} R ∈ Ref(s) ∨ R̄ ∈ (R, R̄)Availn(s)
φ otherwise

Figure 4.6. Propagating Initial Placement Points Backwards to Build Placement
Ranges.

4.2.2 Placement Ranges

The previous step determined the latest points at which SetMask R/R̄ instructions

can be placed as they are placed just immediately before R/R̄ references. However,

we do not simply place them at the initial placement points. This is because we would

like to combine instructions corresponding to different register pairs and place them

as part of a single SetMask instruction – after all, the SetMask instruction being sup-

ported allows us to simultaneously affect the visibility of registers within each register

pair. We would like to identify program points where multiple initial instructions can

be coalesced and placed. Thus, starting from the initial point placements, we perform

analysis that determines all the places where the instructions can be placed, i.e. we

expand initial placement points into placement ranges.

The placement range corresponding to a SetMask R/R̄ instruction is a contiguous

portion of the control flow graph such that the instruction can be placed at any point

in the range. Each range has distinguishing earliest points and latest points. An

73

earliest (latest) point belonging to a placement range is a point such that none of its

predecessor (successor) points belong to the placement range.

R

R

R

R

R R R

R

R R R

3

R

R

R

R R R

R

R R R

R

1

2

Figure 4.7. Placement Ranges.

Before we present the detailed analysis for identifying placement ranges, we il-

lustrate this process by continuing with the example we used to illustrate initial

placement point identification. In Figure 4.7, placement ranges corresponding to the

initial placement points are shown. Lets look at the three ranges marked 1, 2, and

3 in detail as they demonstrate the various cases that we must take into account in

designing the analysis:

• The range marked 1 indicates that while the latest point for placement of

SetMask R instruction was immediately prior to the reference to R, its ear-

liest placement point is the point that immediately follows the reference to R̄.

In fact, this instruction can be safely placed at any point along the range that

extends from the earliest point to the latest point. There is no need to place

this instruction along the paths that merge into this range because SetMask R

is already available along those paths.

74

• The range marked 2 extends to the point just before the split point. The earliest

point cannot extend above the split point because if SetMask R is placed above

the split point, the availability of SetMask R̄ preceding the first R̄ at the second

R̄ will be disrupted.

• The range marked 3 is interesting in that it includes two distinct initial (latest)

placement points of SetMask R. However, it results in a single earliest point.

In other words, if we place the instruction at the earliest point we need one

instruction but if we place it at the latest points we need two instructions. Note

that in ranges marked 1 and 2 there was a single latest point and single earliest

point.

Based upon the illustration above, we are now ready to state the conditions under

which a placement point of SetMask R can continue to expand into a live range

through backward propagation. We can continue to extend the range of SetMask

R backwards along program points as long as a reference to R̄ is not encountered

and a point is not reached where SetMask R is already available according to the

analysis carried out in Step 1 of our algorithm. Based upon these conditions we

define the Kill sets used to stop propagation. When a split point is reached, we use

the intersection operator to decide whether to continue propagation. As we can see,

the intersection operation will correctly prevent and allow propagation above split

points for formations of ranges 2 and 3 respectively in our example. The detailed

analysis equations are given in Figure 4.6. The results of this analysis are interpreted

as follows – for each program point that belongs to a range for SetMask R/R̄, the

set (R, R̄)Range is set to {SetMask R/R̄}; otherwise it is set to empty. As we

can see, the results of analysis of Step 1 play a crucial role in Step 2. First, the

initialization of (R, R̄)Range values at program points is based upon the initial points

identified in Step 1. Second, the Kill sets needed during propagation require the use

of (R, R̄)Avail information also computed during Step 1. The backward propagation

75

conditions identified above are used by the Kill sets and intersection operator is used

at split points.

4.2.3 Coalescing and Final Placement

Now we know the placement ranges of all SetMask instructions for each register pair.

The goal of this step is to choose final placement points of SetMask instructions in

a way that enables coalescing of SetMask instructions belonging to different regis-

ter pairs. Such coalescing will reduce the number of instructions introduced. The

continuation of our example illustrates the choices. In Figure 4.8, the figure on the

left considers the situation in which SetMask instructions are only needed for (R, R̄).

Therefore no coalescing opportunities exist and the choice as shown is made. Now

let us assume that there are points at which SetMask instructions for R1, R2 and R3

are definitely needed at the points shown in the figure on the right. The SetMask

instructions for R can be coalesced with them resulting in the placement shown.

R

R

R

R R R

R

R

R

R

R

R

R

R R R

R

RR,R1 R,R2

R,R3

Figure 4.8. Final Placement Points.

In order to develop an algorithm for this final step we make the following observa-

tion. Given a placement range for say R, depending upon the selection of placements

76

points the number of SetMask R instructions needed to handle this range can vary

(e.g., for range marked 3 of Figure 4.7, we may need one or two instructions depending

upon the placement points). Moreover, when all register pairs are considered the best

overall choice for R need not be the one which requires minimum number of SetMask

R instructions. This is because the additional cost of placing SetMask R instructions

depends upon whether or not they can be coalesced with similar instructions for other

register pairs.

To explore coalescing opportunities, we develop a formulation of placement point

selection where the placement point decisions for all register pairs can be made simul-

taneously. The key first step in this formulation is the decomposition of placement

ranges into placement paths.

We define a placement path as a contiguous section of the placement range extend-

ing from a single earliest point to a single latest point.

Following the decomposition we construct an overlap graph which captures all

the overlapping relationships amongst the placement paths of all register pairs – the

nodes in the graph represent individual placement paths and edges connect pairs of

nodes that overlap with each other. This graph is then used to guide the placement

decisions. A clique in the graph represents a group of placement paths then can

be all covered by a single SetMask instruction. We iteratively select cliques from the

graph and introduce SetMask instructions till all placement paths have been covered.

The number of instructions introduced equals the number of cliques selected to cover

the entire graph.

Next we illustrate the above steps of the algorithm using an example. In Fig-

ure 4.9, a placement range for SetMask R is shown. This placement range has three

earliest points and one latest point. Upon decomposition, this placement range gives

rise to three placement paths (P0, P1 and P2). Now let us see how the overlap graph

is constructed. Three nodes corresponding to the three paths are created and con-

nected to each other as the three paths overlap. Let us consider presence of additional

77

P0
P1 P2

R

R R
R
R

R R

R

R

Figure 4.9. Splitting Placement Ranges into Placement Paths.

placement paths corresponding to registers R1, R2, and R3 giving rise to the overlap

graphs shown in Figure 4.10. Now let see how the SetMask instructions are intro-

duced. Cliques are used to cover the overlap graph and each clique corresponds to

a SetMask instruction whose form is determined by the placement paths contained

in the clique. This step is illustrated in Figure 4.11. The cliques chosen and the

corresponding instructions introduced are shown. Note that in each case we have

chosen the minimum number of cliques needed to cover the overlap graph. Minimum

number of cliques correspond to minimum number of SetMask instructions.

Next we discuss how the cliques are selected. A greedy algorithm may be used

that selects the maximal clique at each step. However, if there are multiple cliques

of the same size that share nodes, then we need to decide which clique to pick as the

choice will effect the total number of instructions introduced. For example, in the

first overlap graph of Figure 4.12, there are two maximal cliques with three nodes

– (P1, P2, R2) and (P0, P1, P2). If we select the first clique the graph is covered by

two cliques while if we choose the second clique we need three cliques to cover the

graph. We can further refine the greedy heuristic to choose between multiple maximal

cliques. We can determine the minimum degree across nodes neighboring a maximal

78

P0
P1 P2

R1

R1

P0

P1 P2

R1

P1 P2

R2

P0
P0

P1 P2

R1

R2

P1 P2
P1 P2

P0

R1 R3R2
P0

R1

R2 R3

Figure 4.10. Overlap Graph.

P0

P1 P2

R1

R1

P1 P2

R2

P0
P0

P1 P2

R1

R2 R3

R
R,R1

R

R,R1

R,R2

R

R,R1

R,R2 R,R3

Figure 4.11. Clique Selection and Final Placement.

79

OR

R1

P1 P2

R2

P0

P0

P1 P2

R1

R2 R3

R1

P1 P2

R2

P0

P0

P1 P2

R1

R2 R3

OR

Figure 4.12. Clique Selection.

80

clique after the clique has been removed. The higher the degree the better it is

because higher degree is likely to translate into larger future cliques being available.

This approach will have the desired result of selecting (P1, P2, R2) in the first example

shown below. While we use the above approach, it is important to point out that

this is a heuristic and thus it will not guarantee optimal results. Even if there is a

unique maximal clique, always picking maximal clique does not necessarily result in

fewest instructions. In the second example shown in Figure 4.12, if the do not choose

the maximal clique (P0, P1, P2) we can cover the graph using three cliques while if we

choose the maximal clique (P0, P1, P2) we need four cliques to cover the graph.

We would also like to mention that finding the maximal cliques is quite straight-

forward. We can examine each program point and count the number of placement

paths to which that point belongs. This approach will identify all cliques and thus we

can identify all maximal sized cliques. The cliques can then be prioritized by going

back to the overlap graph and accessing the impact of selecting each of these cliques

on degrees of neighboring nodes.

Final Placement Points

Decompose all Placement Ranges into Placement Paths.
Construct Overlap Graph:

Nodes correspond to placement paths; and an Edge between a
pair of nodes indicates that the corresponding paths overlap.

While Overlap Graph is not empty do

Find Maximal Cliques.
Select highest priority Maximal Clique.
Remove selected clique from the Overlap Graph

and insert coalesced SetMask instruction.
endwhile

Figure 4.13. Coalescing and Final Placement.

Finally we summarize the details of Step 3 in Figure 4.13. As we can see, first

placement ranges are decomposed into placement paths. Next the overlap graph is

constructed and then one by one cliques and selected and removed from the overlap

81

graph and corresponding SetMask instructions are inserted in the program.

4.3 Experiments

The goal of our experiments is two fold. First we would like to determine the ben-

efit in performance that results from making use of SetMask instructions. Second

we would like to determine the effectiveness of our presented algorithms in limiting

the increase in code size. To carry out this experimentation we implemented the

described techniques in our simulation and compilation environment. Then we ran

the ARM, Thumb, and SetMask (Thumb code with SetMask instructions) versions

of the programs and compared their performance and code size. We describe our

implementation, experimental setup, followed by a discussion of the results.

Implementation The xscale-elf gcc version 3.04 compiler used was built to

create a version that supports generation of ARM and Thumb code. The above com-

piler already makes use of higher order registers as spill locations. In other words

when no lower order registers are available, one is freed by spilling its contents into a

higher order register that is free. Only if no registers are available values are spilled

to memory. Therefore the consequence of limited access to higher order registers is

generation of MOV instructions. We identify the points at which values are spilled

into higher order registers and modify the code generated at these points so that the

MOV instructions are eliminated. SetMask instructions are introduced instead. Then

we apply the techniques described in this paper to minimize the SetMask instruc-

tions introduced. By making the register allocator aware of the extra registers made

available, it is likely that spill code generated will be reduced. We are currently in-

vestigating this, the results shown here provide a lower bound on the performance

improvement one can get using our approach. We evaluate the impact on performance

by studying the effectiveness of our algorithms in eliminating MOV instructions as well

82

as total instruction and cycle counts.

Simulation Environment and Benchmarks A modified version of the Simplescalar-

ARM [2] simulator, was used for experiments. It simulates the five stage Intel’s SA-1

StrongARM pipeline [14]. The I-Cache configuration for this processor are: 16Kb

cache size, 32b line size, and 32-way associativity, and miss penalty of 64 cycles (a

miss requires going off-chip). The simulator was extended to support both 16-bit and

32-bit modes, the Thumb instruction set and the system call conventions followed in

the newlib c library. This is a lightweight C library used on embedded platforms

that does not provide explicit network, I/O and other functionality typically found

in libraries such as glibc.

The benchmarks used are taken from the Mediabench [21] and Commbench [36]

suites as they are representative of a class of applications important for the embedded

domain. The benchmark programs used do not require functionality not present in

newlib. A brief description of the benchmarks is given in Table 3.1. Code size being

a critical constraint, all programs were compiled at -O2 level of optimization, since

at higher levels code size increasing optimizations such as function inlining and loop

unrolling are enabled.

Increase in Code Size Code is a critical constraint and we show here how our

algorithms result in extremely small increases, if at all any, in code size. Figure 4.14

shows the code size for ARM, Thumb along with the code size by using SetMask

instructions in the naive way described earlier (Naive SetMask) and after applying

our optimization algorithms (SetMask). The increase in code size seen in the naive

case has been cut back to levels almost equal to that of Thumb code. Thus, the

SetMask instructions have a negligible cost in terms of code size increase.

83

rtr

adpcm.ra
wcaudio

adpcm.ra
wdaudio

pegwit.g
en

pegwit.e
nc

pegwit.d
ec

fra
g

reed.encode

reed.decode
0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 C
od

e
S

iz
e

ARM
Thumb
Naive SetMask
SetMask

Figure 4.14. Normalized Code Size

84

Elimination of MOV Instructions By using the SetMask instruction we effectively

cut down the number of MOV instructions executed at runtime. Recall that while MOV

instructions have a single cycle execution cost, the SetMask instruction is coalesced

with the preceding Thumb instruction using the Dynamic Coalescing Framework,

hence having an execution cost of zero cycles. We measured the percentage of executed

MOV instructions eliminated by making use of our techniques. The results are given

in Table 4.1. As we can see, a significant percentage of MOV’s (11.7%) introduced

by the gcc compiler are eliminated by using SetMask instructions.

Table 4.1. Percentage of Executed MOVs Eliminated.

Program MOVs Eliminated

rtr 21.1%
adpcm.rawcaudio 26.8%
adpcm.rawdaudio 0%

pegwit.gen 6.5%
pegwit.enc 27.6%
pegwit.dec 4.9%

frag 2.2%

reed.encode 10.1%
reed.decode 6.2%

Average 11.7%

We also measured the impact of eliminating MOVs on total instruction and cycle

counts for the programs. Figure 4.15 shows the dynamic instruction count for ARM,

Thumb and SetMask code. We achieve reduction of 0-19% in dynamic instruction

count compared to Thumb code. rtr gives the the best result of improvement of 19%

with other benchmarks giving moderate improvements and adpcm.rawdaudio giving

no improvement over Thumb code. Figure 4.16 gives the cycle counts for ARM,

Thumb and SetMask code. We achieve between 0-20% speedup in execution time

in comparison to Thumb code. In some cases Thumb code is very close, sometimes

faster, than the ARM code. This is due to the good cache behavior of Thumb code.

85

rtr

adpcm.ra
wcaudio

adpcm.ra
wdaudio

pegwit.g
en

pegwit.e
nc

pegwit.d
ec

fra
g

reed.encode

reed.decode
0.6

0.8

1

1.2

1.4

1.6

N
or

m
al

iz
ed

 In
st

ru
ct

io
n

C
ou

nt

ARM
Thumb
SetMask

Figure 4.15. Normalized Instruction Counts.

86

rtr

adpcm.ra
wcaudio

adpcm.ra
wdaudio

pegwit.g
en

pegwit.e
nc

pegwit.d
ec

fra
g

reed.encode

reed.decode
0.6

0.8

1

1.2

1.4

1.6

N
or

m
al

iz
ed

 C
yc

le
 C

ou
nt

ARM
Thumb
SetMask

Figure 4.16. Normalized Cycle Counts.

87

rtr is a case where although the Thumb code is not faster than the ARM code, the

SetMask code is much faster. Overall, the execution characteristics of SetMask are

better than Thumb and comparable to ARM.

In summary, we have shown how with the effective use of SetMask instructions

one can maintain the code size offered by Thumb code and achieve performance

improvements at the same time.

4.4 Discussion

We have shown our approach on the ARM/Thumb platform with 16/8 registers re-

spectively. Does this approach work for a larger register file? Our algorithms are

applied post register allocation and register assignment. How does register assign-

ment affect the SetMask instruction insertion? We address these questions here.

Scalability The SetMask mechanism relies on a bitmask which is indexed during the

register file access and a mechanism to set this bitmask. When there is a notion of

pairs of registers, like in our case, we can use a bitmask to activate different subsets

of registers by toggling one bit for each pair. We had 8 addressable registers and 8

corresponding high registers and 8 bits of state corresponding to the 8 pairs. When

we scale to a larger register file, we end up with many more non-addressable registers.

In this case, we can no longer use one bit of state. We employ multiple bits of state.

For instance, if we scaled to 32 registers with 8 addressable registers, we now have

sets of 4 registers rather than pairs. Hence we use 2 bits of state rather than 1. We

would need 2 SetMask instructions to set the 2 bitmasks. Hence the approach scales

as long as we have 16-bit instruction encodings for the SetMask instructions.

Register Assignment The need for SetMask instructions arises when a register

which is not in the current active subset is used. A different register assignment clearly

changes the placement points for SetMask instructions. Hence one could decrease the

88

number of SetMask instructions introduced by changing the register assignment to

minimize the number of switches between pairs of registers. This could precede our

algorithms to minimize the number of SetMask instructions. However, as we have

seen from our experiments, even without this preceding phase, our algorithms are

able to keep the increased code size to a negligible amount. Hence while a different

register assignment could precede our algorithms, we didn’t find the need for it in our

experiments.

4.5 Related Work

Prior work has studied the use of extra registers for high performance processors in

various contexts. A 2-level hierarchical register file has been proposed in [38]. where

they provide a small first level register file and larger second level register file enabling

a larger register file with a larger number of ports. The first level register file has lower

access latency compared to the second level register file allowing software pipelined

loops to be executed more efficiently. Register Connection [18] has been proposed for

superscalars to make more registers accessible to the compiler. A level of indirection

is used to connect logical registers to the physical registers. Special register connect

instructions are provided that can make changes to this mapping. The ILP available

on superscalars allows the performance cost of the register connect instructions to be

small. The additional code size introduced by these instructions is significant. While

this it not much of a constraint on high performance machines, it is an important

concern for embedded processors. Compiler Controlled Memory (CCM) [3] is another

technique which tries to reduce the register pressure on the register file. It does so by

incorporating a small memory close to the register file. The contents of this memory

are managed by the compiler and used to handle spill code. Register windows have

been used in the Tensilica Xtensa [35] and SPARC [34] architectures to avoid the

saving and restoring of context during procedure calls. In all of the above techniques,

89

the size of the extended register file prohibits their use in embedded processors where

power and cost are one of the main constraints.

Recently there have been proposals for the use of extra registers in embedded

processors WIMS[28] proposes having several register windows and provides window

management instructions which the compiler can use to swap register windows. Dur-

ing register allocation the virtual registers are partitioned into windows using a graph

based partitioning algorithm. Code size increase due to window management instruc-

tions has not been considered in [28]. Our approach is also more flexible than register

windows because it allows various subsets of 8 registers to be active. Differential

Register Allocation[39] proposes encoding the register specifier using the difference

between consecutive register accesses, allowing the compiler to allocate more regis-

ters than can be specified using a regular encoding. While this scheme has the same

goals as our mechanism, it has the drawback of not being backward compatible with

existing binaries because register specifiers cannot be correctly decoded without in-

troducing delays. In [40] a small extended register file is used which is allocated at

runtime. The aim is to reduce spill cost by dynamically choosing the extended reg-

ister file over memory using compiler generated priorities. Offset fields in memory

instructions are used to communicate these priorities to the hardware. This approach

cannot be used to access existing high registers in Thumb state like our approach.

Prior work has also studied ISA design to allow access to higher registers. [20]

proposes shrinking the destination register field of certain instructions and using this

extra encoding space for other fields, partitioning the register file based on instruction

type. They also describe a register allocation scheme for such an ISA. Mixed width

ISAs can be exploited to allow access to both high and low registers by generating

binaries with instructions from both the 32-bit and 16-bit instruction sets[19][11].

There have been several extensions to the ARM architecture[26][1] that seek to im-

prove performance by allowing access the higher registers. Thumb-2[26] provides new

16-bit and 32-bit instructions in Thumb state. NEON[1] is a SIMD extension to

90

the ARM architecture that allows access to a special registers file for SIMD instruc-

tions. While our goal in this paper was to attack the global inefficiency of Thumb

code, the SetMask mechanism can be implemented along with these proposals as it

is orthogonal to these techniques.

4.6 Summary

In this chapter we attacked the problem of exposing the entire register file to the com-

piler and presented techniques to efficiently use it. We used the DIC framework to

introduce an new AX instruction, setmask, that exposes the entire register file to the

compiler. The supporting backward compatible register file design was also described.

We then described the compiler algorithms that inserted setmask instructions to ef-

fectively use extra registers with insignificant increase in code size. Our experiments

used the existing register allocator and showed how one can remove excessive mov

instructions effectively. While the previous chapter used the DIC and AX framework

to overcome shortcoming of a local nature, in this chapter we have used it to address

a shortcoming that affects Thumb code globally.

91

Chapter 5

Dynamic Eager Execution

The techniques described in this chapter are different from the previous techniques

in that they do not overcome inefficiencies of 16-bit code but rather exploit charac-

teristics of dual width ISA architectures to provide features in 16-bit execution that

are not possible in 32-bit execution. The extra fetch bandwidth is exploited to pro-

vide Dynamic Eager Execution. Dynamic Eager Execution consists of i) Dynamic

Delayed Branching which improves the branch execution by dynamically creating a

branch delay slot and scheduling an instruction in that slot and ii) Dynamic 2-Wide

Execution which dynamically changes the issue width of the processor to issue upto

2 instructions simultaneously.

5.1 Delayed Branching and n-Wide Execution

In this section we will look at two techniques that have been used to speed up pro-

gram execution, namely, delayed branching and n-wide execution. The first improves

program performance by reducing the branch penalty while the second improves per-

formance by maximizing the number of simultaneous instructions issued for execution

thereby achieving superscalar execution. We will see what effects these two techniques

have on performance and code size.

5.1.1 Minimizing Branch Penalty

Branch penalty is the penalty incurred by programs when the instructions fetched

after the branch turn out to be from the wrong execution path. This penalty of

having to flush all these instructions from the pipeline and and continue program

92

execution at the correct program address affects program execution negatively in

two ways. Firstly, flushing the pipeline introduces pipeline bubbles into the program

essentially stalling execution for those cycles. Secondly, the instructions fetched from

the wrong path have unnecessarily used resources wasting energy.

Minimizing branch penalty is a well studied problem and has resulted in many

solutions in many different contexts. Branch prediction is a commonly used tech-

nique, variants of which are implemented in most high performance processors. The

idea is to predict the target of a branch and use the prediction to fetch instructions

following the branch. An early study of branch prediction strategies was done in [33]

followed by several recent studies including hybrid branch predictor designs [7] and

branch predictor designs for recent high performance architectures [17]. While such

complicated prediction schemes are not required for scalar pipelined architectures

such as the ARM, the cost, space and energy budget of embedded processors usually

precludes the use predictors.

An early solution to minimizing branch penalty was the idea of delayed branch-

ing. The architecture that supports delayed branching associates a fixed number of

instruction slots after the branch instruction, usually one slot, to hold instructions

from the program path preceding the branch. In other words the compiler is respon-

sible for scheduling instructions that typically precede the branch into these slots. To

ensure correct program execution the branch cannot have a dependence, whether it is

a true or false data dependence or a control dependence, with instructions scheduled

in the branch delay slots. The compilers inability to find such instructions will force

it to schedule nops in the branch delay slots. We will examine this approach in detail

since it does not have the limitations of branch prediction and can be implemented

in embedded processors.

Figure 5.1 shows how delayed branching can improve program performance. Part

(a) shows the timing diagram for a conventional pipelined architecture that does not

support delayed branching and has a branch penalty of one cycle. Part (b) shows

93

F D E M W

F D E M W

F D E M W

F D E M W

mov r2, r5

cmp r0, #0

bne r3

add r4, #1

8 cycles

4 instructions
F D E M W

F D E M W

cmp r0, #0

bne r3

F D E M Wmov r2, r5

add r4, #1

4 instructions

7 cycles

not fetched

(a) Conventional Pipeline (b) Delayed Branching Pipeline

Figure 5.1. Delayed Branching Best Case

F D E M W

F D E M W

F D E M W

F D E M W

cmp r0, #0

bne r3

add r4, #1

8 cycles

4 instructions

(a) Conventional Pipeline (b) Delayed Branching Pipeline

mov r0, #0 F D E M W

F D E M W

F D E M W

cmp r0, #0

bne r3

mov r0, #0

F D E M Wnop

add r4, #1

5 instructions

F D E M W

9 cycles

Figure 5.2. Delayed Branching Worst Case

the timing diagram for a delayed branching architecture with one branch delay slot.

In addition to the number of execution cycles required for both architectures, the

number of instructions generated by the compiler in both scenarios is shown.

In this case, lets assume the branch is taken. Hence the add instruction following

the branch is fetched in the conventional pipeline and is flushed when the branch out-

come is known. In the case of the delayed branching architecture, the independent

mov instruction before the branch is scheduled in the branch delay slot and the add

instruction is never fetched. The code generated for both cases is 4 instructions long

not giving either architecture an advantage in terms of code size. When comparing

performance however, we see that the delayed branching architecture executes one cy-

cle earlier. In addition, from an energy standpoint, the delayed branching architecture

does not wastefully execute any instructions.

Figure 5.2 shows how delayed branching can degenerate program behavior. Again,

part(a) corresponds to the conventional architecture and part(b) corresponds to the

94

delayed branching architecture.

In this case, lets assume that the branch is not taken. Hence the add instruction

is not wastefully fetched in the conventional architecture. In the case of the delayed

branching architecture, the compiler cannot schedule any instruction in the delay slot

(the branch now depends on the move instruction). So compiler will generate a nop

which now takes up an extra cycle hurting performance and energy. In addition, the

fact that the compiler has to generate the nop increases the number of instructions

generated by 1. Hence the conventional architecture has the advantage over delayed

branching for all three metrics in this case.

We have seen how delayed branching does not effectively address the branch

penalty problem. At the same time techniques such as branch prediction are not

applicable to embedded processors. Dynamic Delayed Branching overcomes these

limitations as will be shown later.

5.1.2 Maximizing Instruction Issue and Execution

The performance of scalar pipelined machines can be improved by issuing and execut-

ing multiple instructions in parallel. Multiple issue processors can be classified into

two categories: VLIW and Superscalar. The fundamental difference between the two

is whether instructions for simultaneous issue are determined by the compiler stati-

cally or the hardware dynamically. VLIW processors are statically scheduled while

superscalars schedule instructions dynamically.

VLIW processors rely on the compilers ability to exploit dependence information

to statically schedule instructions such that multiple independent instructions can

be scheduled in parallel. Such architectures have wide instruction words which can

pack multiple instructions. The width determines the number of instructions that

can be issued in parallel. These wide word formats also impose constraints on the

types of instructions that can be issued in parallel to take resource contention into

95

F D E M W

F D E M W

F D E M W

F D E M W

cmp r0, #0

bne r3

add r4, #1

8 cycles

4 instructions

(a) Conventional Pipeline (b) Delayed Branching Pipeline

mov r0, #0 F D E M W

F D E M W

F D E M W

cmp r0, #0

bne r3

mov r0, #0

F D E M Wnop

add r4, #1

5 instructions

F D E M W

9 cycles

Figure 5.3. In-order Superscalars vs VLIW Processors

account. Since the burden of finding independent instructions falls on the compiler,

the resulting architectures are not complex and make them suitable for embedded

architectures.

Superscalar processors can be further classified into two kinds: in-order issue and

out-of-order issue. In order issue processors issue instructions in the same order in

which they arrive at the decode stage. In other words an instruction i that is statically

scheduled by the compiler to execute later than an instruction j will never execute

before j. The hardware merely tries to issue multiple consecutive independent in-

structions in parallel. Out-of-order issue processors on the other hand dynamically

schedule instructions at runtime. Hence an instruction i that occurs later statically

with reference to instruction j can be issued before j as long as there is not depen-

dence. By eliminating false dependencies at runtime and being able to issue statically

later instructions earlier, out-of-order issue processors can exploit significantly more

ILP and hence improve performance significantly. However, this comes at the price of

added complexity in hardware. Instruction Issue Windows have to be large enough to

find independent instructions; the dependency checking logic in the issue stage is very

complex; and to maintaining in-order commit to precise exceptions adds more hard-

ware and complexity. This additional hardware cannot be justified in the embedded

context and hence this avenue of exploiting ILP is not available.

We will now compare in-order superscalars with VLIW through the example shown

in Figure 5.3. Both processors can issue upto 2 instructions each cycle. The sequence

96

Figure 5.4. Cases for Dynamic Delayed Branching

Figure 5.5. Cases for Dynamic 2-Wide Execution

of code is a chain of 4 dependent instructions. Hence they cannot be executed in

parallel. The compiler for the VLIW processor has to schedule nops in each of the

4 wide words. While both processors take the same number of cycles, the VLIW

schedule is twice as long as the superscalar schedule. Moreover, extra energy is spent

fetching and executing nops. So with a little added hardware complexity in-order

superscalars can exploit ILP without affecting code size.

Given that we have the extra fetch bandwidth and hence an instruction window

of 2 instructions, we can perform in-order superscalar execution in Thumb. We will

see in the next section how delayed branching and 2-wide execution can be performed

in our dynamic eager execution microarchitecture.

5.2 Dynamic Eager Execution Microarchitecure

The Dynamic Eager Execution microarchitecture (DEE) eagerly executes branches

early through dynamic delayed branching and eagerly executes 2 instructions in par-

allel when possible through dynamic 2-wide execution. In this section we we look at

each of the components of DEE and how they perform eager execution.

First lets look at what functions need to be performed for dynamic eager execu-

tion. We will look at dynamic delayed branching and 2-wide execution separately.

97

Figure 5.4 illustrates the three cases that one has to deal with for dynamic delayed

branching. All three code samples show 2 instructions which may be in the instruc-

tion buffer that need to be examined for delayed branching. The first example shows

two branch instructions. Since only one is taken this sequence cannot use delayed

branching. In the second case, the cmp instructions sets the zero flag which is used

by the subsequent branch instruction. We cannot issue the branch early because of

this dependence. The third case is the case when we can issue the branch early. This

is because the there is no dependence with the previous instruction. Now consider

Figure 5.5. This is an illustration of the cases when dynamic 2-wide execution can be

performed. In the first case there is a dependence between the two instructions, hence

they cannot be executed in parallel. The second case can be issued and executed in

parallel since there is no dependence. The third case is interesting because even

though there is no dependence between the two instructions they cannot be issued

in parallel. This is because the memory bandwidth is fixed at 32-bits and only one

memory operation can be serviced at a time. Notice that only 2 statically adjacent

instructions can be executed eagerly. In other words, for instructions which may have

more than one dynamic predecessor, it is sufficient to maintaining information only

along the follow through path or the statically adjacent instructions.

We can now look, in detail, at the functions that need to be performed to carry

dynamic eager execution. First we need to check if one of the instructions is a branch

instruction. This determines whether we can perform dynamic 2-wide or dynamic

delayed branching. Next we need to make sure the two instructions are independent.

Additionally, in the case of delayed branching we need to ensure that only one of

the instructions is a branch. In the case of 2-wide execution we need to ensure

that atmost one instruction is a memory operation. Now we describe the Dynamic

Eager Execution Microarchitecture in detail describing each part and the functions

it accomplishes.

The independence table stores the independence information for instructions. In-

98

Figure 5.6. Dynamic Eager Execution Microarchitecture

99

dependence information consists of dependence information between the instruction

with the statically previous instruction and whether the instruction is a branch or

not. DEE requires that independence information be known early enough so inde-

pendent instructions can be decoded and issued eagerly. Performing a dependence

check during decode would fall in the critical path of the processor which would in-

crease cycle time. We avoid this by checking for independence before the instruction

is decoded and while it is sitting in the instruction buffer. We do this by using the

independence information gathered from a previous instance of this instruction which

is stored in the independence table. The independence table is indexed by PC. Each

instruction has two bits associated with it in the independence table. The BR bit

indicates whether or not the instruction is a branch. The D bit indicates if there is

a dependence between this instruction and it static predecessor. The independence

table is managed like a direct mapped cache.

The control logic controls a) the movement of instructions in the instruction buffer,

b) enabling/disabling the secondary thumb and arm decoders and c) the fetch logic.

The instructions in the instruction buffer can shift by two, shift by one or be skipped

to place the instruction from ib3 in ib1. A shift by two occurs when two independent

instructions are issued, and the instruction in ib3 moves to ib1. A skip occurs when

a branch is scheduled early hence placing the branch from ib3 in ib1 making ib2 the

branch delay slot. A shift by one occurs in the normal case, when neither dynamic

delayed branching nor dynamic 2-wide execution takes place. Fetch is appropriately

triggered to make sure the instruction buffer has 2 instructions at all times. In

addition, once the 2-wide execution is detected the secondary thumb and arm decoders

are enabled.

The instruction buffer is made 3 instructions wide. The reasons for doing this are

similar to those for the DIC microarchitecture introduced in chapter 2. We need to

ensure that two instructions are always available in the decode stage while another is

being decoded. This is so the independence check can be performed a cycle early mak-

100

ib1

ib2

ib2

ib3

mov ro, r1

add r0, #5

mov r3, r5

add ro, r3

mov ro, r1

add r0, #5

mov r3, r5

add ro, r3

(b) 48 bit Instruction Buffer.

F

F

E M W

E M W

F

F WME

(a) 32 bit Instruction Buffer.

F

E M W

E M W

F

F E M W

F

ib2

ib1

ib1

ib2

D

D

D

D

D

D

D

D

Figure 5.7. Extending the instruction buffer to 48 bits

ing full use of the lookahead capability. A 2-long buffer will not allow this. Moreover,

a 3-long buffer ensures that we do not miss opportunities for eager execution due to

alignment of instructions. This is shown in Figure 5.7. Instructions 2 and 3 can issue

simultaneously, however a 2-long buffer constrains the lookahead to instruction that

are word aligned while the 3-long buffer can lookahead beyond such boundaries. The

same argument applies for dynamic delayed branching. In addition the instruction

buffer is now augmented with PC information for each instruction in the buffer. This

is to allow the constraint logic to correctly update the independence information for

instructions in the independence table.

The constraint checking logic is responsible for updating the independence table.

The two most recent instructions that have executed are checked. First, the PC of

both instructions is checked to see if they are statically adjacent. Next the instructions

are checked to see more than one of them is a branch. The check for atmost one

load instruction is also performed. The dependency check is also performed here.

All of these checks are aided by information available from the decoders. Once the

101

constraints have been checked the independence table is accessed using the PC of the

curr instruction and updated accordingly. Constraint checking needs to be done only

for those instructions that did not get eagerly executed.

In addition to the structures shown in Figure 5.6, the architecture has additional

ALU units to enable parallel 2-wide execution. The register file supports 2 more read

ports and 1 more write port to enable reading and writing of operands/results for

two instructions at a time. Given that we are executing instructions eagerly, we need

to ensure that we maintain precise exceptions. For example in the case of Dynamic

Delayed branching, it is possible that the instruction scheduled in the branch delay

slot can cause an exception. In the case of 2-Wide execution it is possible that one

instruction is a memory op that misses in the cache and hence takes longer to finish

while the other instruction causes an exception earlier. In both cases we commit

results in order and report exceptions in order to maintain precise exceptions.

5.3 Experiments

The goal of our experiments is evaluate the performance improvement achievable

using Dynamic Delayed Branching and Dynamic Eager Execution. Being a purely

architectural technique, code size is not affected. Hence our focus will be on measuring

improvements in dynamic instruction count and cycle count. Our comparisons will

be with ARM and Thumb equivalents as we have done in previous chapters.

Experimental setup As in previous chapters, a modified version of the Simplescalar-

ARM [2] simulator, was used for experiments. It simulates the five stage Intel’s SA-1

StrongARM pipeline [14] with an 8-entry instruction fetch queue. The I-Cache config-

uration for this processor are: 16Kb cache size, 32b line size, and 32-way associativity,

and miss penalty of 64 cycles (a miss requires going off-chip). Both Dynamic Delayed

Branching and Dynamic 2-Wide execution were implemented as described in the pre-

102

vious section. As before all benchmarks were compiled at -O2 to keep code size

small. The benchmarks used are taken from the Mediabench [21], Commbench [36] and

NetBench [10] suites as they are representative of a class of applications important

for the embedded domain.

Results Figure 5.8 shows the cycle counts for traditional Thumb execution and

in using the DEE Microaarchitecture both normalized against the cycle counts for

traditional ARM execution. We can ignore both code size and instruction counts

as they remain the same. We present the improvements to cycle counts due the

Dynamic Delayed Branching (DDB), Dynamic 2-Wide Execution (2W) and both

together (DDB+2W).

Performance improvements for DDB range from 0.8% in the case of frag to 9.1% in

the case of pegwit.gen. DDB has little performance improvement (around 1%) in the

case of adpcm and frag. In the case of adpcm, due to tight loops, the number of fall

through branches is low, providing little opportunity to exploit delayed branching. In

the case of frag, branches are preceded by dependent cmp instructions, not allowing

them to be scheduled in the branch delay slot.

Performance improvements for 2W range from 0.7% in the case of reed.decode to

13.7% in the case of adpcm.rawc. Very small performance improvements (around 1%)

were seen in the case of reed.encode, reed.decode, frag and rtr. The small improvements

are due to reasons - the presence of statically consecutive memory operations and

small basic blocks. Consecutive memory operations cannot be executed in parallel

in the dynamic 2-wide execution framework. Small basic blocks translate to more

branches being seen ne fewer instructions that can be scheduled in parallel.

Performance improvement for DDB+2W range from 1.6% in the case of frag to

14.7% in the case of adpcm.rawc. The performance improvement is not strictly ad-

ditive because there are cases when we have to choose between one or the other.

For example, for a 3 instruction sequence of independent instructions that end with

103

ARM
Thumb
Thumb+DDB
Thumb+2W
Thumb+DDB+2W

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

reed.decodereed.encodefragpegwit.decpegwit.encpegwit.genadpcm.rawdadpcm.rawcrtr

N
or

m
al

iz
ed

 C
yc

le
 C

ou
nt

s

Figure 5.8. Cycle counts for traditional and DEE Thumb

104

a branch, we can perform 2W or DDB not both. pegwit.gen which gave individual

performance improvements of 9.1% and 7.8% for DDB and 2W respectively gives a

combined performance improvement of 13.1%.

5.4 Summary

In this chapter we explored a purely microarchitectural technique that exploits the

extra fetch bandwidth of dual width ISA ARM processors to speed up execution.

Dynamic Eager Execution - a framework that performs dynamic delayed branching

and dynamic 2-wide execution was proposed. Dynamic Delayed Branching improves

branch behavior, but does without the disadvantages of regular delayed branching.

Dynamic 2-Wide Execution allows the processor to change the issue width dynam-

ically allowing upto 2 instructions to be issued in parallel. The DEE framework is

different from the DIC/AX framework in two ways. First, it is a purely architec-

tural technique and does not require compiler support. Second, rather than trying

to overcome the shortcomings of Thumb code, DEE seeks to provide performance

improvement via techniques not viable for ARM code.

105

Chapter 6

Conclusion

In conclusion, let us revisit the main contributions of this dissertation and take a look

at some future work.

6.1 Contributions

Dual Width ISA processors are a popular choice for the high performance embedded

domain as they provide a choice between slow but small 16-bit code that can fit in

small memories and fast 32-bit code that requires more memory. While this provides

the programmer or compiler the flexibility to choose either small or fast code, it fails

to provide the ideal case: small and fast code. To achieve this end, techniques were

proposed to significantly improve the speed or performance of the small but slow

16-bit code without negatively affecting its small code size.

The underlying aspect of the techniques described in this dissertation is the more

efficient utilization of existing resources in dual width ISA architectures for better ex-

ecution of 16-bit code. In particular, two artifacts of dual width ISA designs, namely,

extra fetch bandwidth and invisible registers, are exploited. The proposed Dynamic

Instruction Coalescing Framework is an integrated compiler/microarchitecture plat-

form aimed at improving the performance of Thumb code by overcoming the ineffi-

ciencies of the Thumb ISA. In addition, a purely microarchitectural technique, Dy-

namic Eager Execution, was proposed. DEE relies on the existing fetch bandwidth

to provide eager execution not possible in 32-bit ARM state.

Dynamic Instruction Coalescing Framework The DIC/AX framework which

provides the microarchitectural and ISA foundation to carry out the compiler opti-

106

mizations aimed at addressing the inefficiencies of Thumb code. The ISA was ex-

tended to accommodate Augmenting eXtensions or AX instructions. AX instructions

allow the compiler to provide some augmenting information that is used to better

execute the following instructions in the program. These instructions are executed by

the Dynamic Coalescing architecture at zero cost by coalescing their execution with

the following Thumb instruction. The AX instructions described were encoded using

just one free opcode from the 16-bit instruction space. Several local optimizations and

a form of predication that can be effected using appropriate use of AX instructions

were described.

Local Optimizations with AX Various local optimizations served as the motiva-

tion for the design of the Dynamic Instruction Coalescing Framework. The compiler

algorithms associated with these optimizations were described. The compiler algo-

rithms were implemented in 3 phases after code generation. The first phase used

AX to predicate branch hammocks effectively. The second phase sought out oppor-

tunities to replace pairs of thumb instructions with pairs of AX-Thumb instructions.

These form the bulk of the AX instructions described and handle several specific

peephole opportunities. The final phase replaced sequences of Thumb instructions in

the function prologues and epilogues with a pair of AX-Thumb instructions improving

performance by reducing the call overhead in Thumb programs. A comparison of the

results with an approach proposed earlier, Profile Guided Mixed Code[19], showed

that DIC/AX was more effective.

Global Optimization with AX A global optimization approach that made bet-

ter use of the existing register file in dual width ISA processors was proposed. Using

the DIC/AX framework, a new AX instruction setmask that exposes the entire reg-

ister file to the compiler was introduced. setmask allows for more efficient use of

registers. setmask introduces the notion of an active subset of registers. The cor-

107

responding changes to the register file design that implement the semantics of the

setmask instruction were described. Efficient compiler algorithms to insert these set-

mask instructions to effectively use the newly exposed registers without increasing

code size were also proposed.

Dynamic Eager Execution The DEE Microarchitecture described, goes beyond

trying to address the shortcomings of the thumb ISA and try to improve execution by

exploiting the extra fetch bandwidth available. By providing some microarchitectural

enhancements and using the lookahead capability in Thumb state, a form of delayed

branching and 2-wide execution was implemented. These techniques are more efficient

than their traditional forms.

In summary, using the compiler and architectural techniques described here we

can efficiently generate and execute 16-bit code, meeting the criteria of both code size

and performance.

6.2 Future Work

This dissertation has focused on two primary metrics used to measure program exe-

cution: performance and code size. While these metrics will continue to be first class

design constraints along with power and area, with shrinking feature sizes and new

application domains, new metrics such as fault tolerance and security will become

equally important for architectures and compilers.

New metrics result from changing demands of new application domains and/or

changing physical properties of processors due to advances in semiconductor process-

ing. The concept of an Augmenting eXtension serves as a platform to meet some

of these demands. Dual-Width architectures are popular in the embedded domain

making the techniques described in this dissertation more attractive when considering

using AX to solve future problems. Specific program information such as encryption

108

keys for security or region of redundancy for fault tolerance can be specified using

AX instructions. New microarchitectures/compiler methods can then use these AX

instructions to implement faster encryption or better fault tolerance. While the AX

instructions described in this dissertation have been done to fit into the the exist-

ing 16-bit ISA, designing a 16-bit instruction set with the AX in mind might yield

considerably better instructions sets. Several AX instructions could share encodings

if a hierarchy were built into the instructions. This would borrow from the setmask

notion of having several active subsets to the instruction space where different subsets

of AX instructions provide different functionality in a compiler determined fashion

allowing fine-grain reconfigurability.

This dissertation introduces several new techniques that form a firm foundation

for future work.

109

References

[1] ARM Inc. ARM NEON Technical Data Sheet, March 2004.

[2] D. Burger and T.M. Austin. The simplescalar toolset version 2.0. Computer
Architecture News, pages 13–25, June 1997.

[3] Keith D. Cooper and Timothy J. Harvey. Compiler-controlled memory. In Pro-
ceedings of the eighth international conference on Architectural support for pro-
gramming languages and operating systems, pages 2–11. ACM Press, 1998.

[4] Marc L. Corliss, E. Christopher Lewis, and Amir Roth. The implementation
and evaluation of dynamic code decompression using dise. Trans. on Embedded
Computing Sys., 4(1):38–72, 2005.

[5] Saumya Debray and William Evans. Profile-guided code compression. In ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), June 2002.

[6] Saumya K. Debray, William Evans, Robert Muth, and Bjorn De Sutter. Compiler
techniques for code compaction. ACM Transactions on Programming Languages
and Systems, 22(2):378–415, 2000.

[7] Marius Evers, Po-Yung Chang, and Yale N. Patt. Using hybrid branch predictors
to improve branch prediction accuracy in the presence of context switches. In
ISCA, pages 3–11, 1996.

[8] Daniel H. Friendly, Sanjay J. Patel, and Yale N. Patt. Putting the fill unit to
work: Dynamic optimizations for trace cache microprocessors. In MICRO31,
Dec. 1998.

[9] S. Furber. ARM System Architecture. Addison-Wesley, 1996.

[10] W.H. Mangione-Smith G. Memik and Hu. Netbench: A benchmarking suite
for network processors. In IEEE International Conference on Computer-Aided
Design, pages 39–42. IEEE, November 2001.

[11] A. Halambi, A. Shrivastava, P. Biswas, N. Dutt, and A. Nicolau. An efficient
compiler technique for code size reduction using reduced bit-width isas. In DATE
’02: Proceedings of the conference on Design, automation and test in Europe,
page 402, Washington, DC, USA, 2002. IEEE Computer Society.

110

[12] Shiliang Hu and James E. Smith. Using dynamic binary translation to fuse
dependent instructions. In CGO ’04: Proceedings of the international symposium
on Code generation and optimization, page 213, Washington, DC, USA, 2004.
IEEE Computer Society.

[13] Intel Corporation. The Intel XScale Microarchitecture Technical Summary, 2000.
ftp://download.intel.com/design/intelxscale/XScaleDatasheet4.pdf.

[14] Intel Corporation. SA-110 Microprocessor Technical Reference Manual, 2000.
ftp://download.intel.com/design/strong/applnots/27819401.pdf.

[15] Intel Corporation. The Intel PXA250 Applications Processor - A White Paper,
February 2002.

[16] Quinn Jacobson and James E. Smith. Instruction pre-processing in trace pro-
cessors. In HPCA, pages 125–129, 1999.

[17] Daniel A. Jimenez. Piecewise linear branch prediction. In ISCA ’05: Proceedings
of the 32nd Annual International Symposium on Computer Architecture, pages
382–393, Washington, DC, USA, 2005. IEEE Computer Society.

[18] Tokuzo Kiyohara, Scott Mahlke, William Chen, Roger Bringmann, Richard
Hank, Sadun Anik, and Wen-Mei Hwu. Register connection: a new approach
to adding registers into instruction set architectures. In Proceedings of the 20th
annual international symposium on Computer architecture, pages 247–256. ACM
Press, 1993.

[19] A. Krishnaswamy and R. Gupta. Profile guided selection of arm and thumb
instructions. In Proceedings of the ACM SIGPLAN Joint Conference on Lan-
guages Compilers and Tools for Embedded Systems & Software and Compilers
for Embedded Systems (LCTES/SCOPES), pages 55–64, Berlin, Germany, June
2002. ACM.

[20] Y-J. Kwon, X. Ma, and H.J. Lee. Pare:instructions set architecture for efficient
code size reduction. In Electronics Letters, pages 2098–2099, 1999.

[21] C. Lee, M. Potkonjak, and W.H. Mangione-Smith. Mediabench: A tool for evalu-
ating and synthesizing multimedia and communicatons systems. In IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 330–335, Re-
search Triangle Park, North Carolina, December 1997.

[22] Sheayun Lee, Jaejin Lee, Sang Lyul Min, Jason Hiser, and Jack W. Davidson.
Code generation for a dual instruction set processor based on selective code
transformation. In SCOPES, pages 33–48, 2003.

111

[23] Charles Lefurgy, Peter Bird, I-Cheng Chen, and Trevor Mudge. Improving code
density using compression techniques. In IEEE/ACM Symposium on Microar-
chitecture (MICRO), December 1997.

[24] Haris Lekatsas and Wayne Wolf. Code compression for embedded systems. In
Design Automation Conference, pages 516–521, 1998.

[25] H. McGhan and M. O’Connor. Picojava: A direct execution engine for java
bytecode. IEEE Computer, pages 22–30, October 1998.

[26] R. Phelan. Improving arm code density and performance. June 2003.

[27] A. Qasem, D. Whalley, X. Yuan, and R. van Engelen. Using a swap instruction to
coalesce loads and stores. In Proceedings of the European Conference on Parallel
Computing, pages 235–240, August 2001.

[28] Rajiv A. Ravindran, Robert M. Senger, Eric D. Marsman, Ganesh S. Dasika,
Matthew R. Guthaus, Scott A. Mahlke, and Richard B. Brown. Increasing the
number of effective registers in a low-power processor using a windowed register
file. In Proceedings of the International Conference on Compilers, Architectures
and Synthesis for Embedded Systems (CASES-03), pages 125–136, 2003.

[29] R. Razdan and M. D. Smith. A high-performance microarchitecture with
hardware-programmable functional units. In Proceedings of the 27th Annual
International Symposium on Microarchitecture, pages 172–80, 1994.

[30] G. Reinman and N. Jouppi. An integrated cache timing and power model. Tech-
nical Report, Western Research Lab, 1999.

[31] K. Clarke S. Segars and L. Goudge. Embedded control problems, thumb and the
arm7tdmi. IEEE Micro, pages 22–30, October 1995.

[32] S. Segars. Low power design techniques for microprocessors. February 2001.

[33] James E. Smith. A study of branch prediction strategies. In ISCA ’81: Proceed-
ings of the 8th annual symposium on Computer Architecture, pages 135–148, Los
Alamitos, CA, USA, 1981. IEEE Computer Society Press.

[34] SPARC International. The SPARC architecture manual: Version 8. Prentice-
Hall, Upper Saddle River, NJ 07458, USA, 1992.

[35] Tensilica Inc. Xtensa Architecture and Performance, September 2002.

[36] T. Wolf and M. Franklin. Commbench - a telecommunications benchmark for
network processors. In IEEE International Symposium on Performance Analysis
of Systems and Software, pages 154–162, April 2000.

112

[37] Andrew Wolfe and Alex Chanin. Executing compressed programs on an embed-
ded risc architecture. In Proceedings of the 25th annual international symposium
on Microarchitecture, pages 81–91, Portland, Oregon, United States, 1992.

[38] Javier Zalamea, Josep Llosa, Eduard Ayguad, and Mateo Valero. Two-level
hierarchical register file organization for vliw processors. In Proceedings of the
33rd annual ACM/IEEE international symposium on Microarchitecture, pages
137–146. ACM Press, 2000.

[39] Xiaotong Zhuang and Santosh Pande. Differential register allocation. In PLDI
’05: Proceedings of the 2005 ACM SIGPLAN conference on Programming lan-
guage design and implementation, pages 168–179, New York, NY, USA, 2005.
ACM Press.

[40] Xiaotong Zhuang, Tao Zhang, and Santosh Pande. Hardware-managed regis-
ter allocation for embedded processors. In Proceedings of the 2004 ACM SIG-
PLAN/SIGBED conference on Languages, compilers, and tools, pages 192–201.
ACM Press, 2004.

