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ABSTRACT OF THE DISSERTATION

Declarative Profiling for Parallel Systems

by

Zachary Mitchell Benavides

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2018

Dr. Rajiv Gupta, Chairperson

The popularity of parallel systems for building high performance software only continues

to rise. Programming these systems has always been a challenging task, and ensuring that

they are performing optimally even more so. To assist programmers in this space, a wealth

of research has been conducted into building profilers for these systems. Unsurprisingly,

balancing the requirements of utility, accuracy, and overhead make this also a challenging

task. While existing profilers do an admirable job of accomplishing their stated goals, they

all suffer from a lack of flexibility. The toolbox of the parallel programmer is filled to the

brim with finely crafted specialized tools, but hardly any general ones. Some require the use

of a specific programming language or threading library. Others are closely coupled with

the underlying hardware and assume the presence of specific monitoring support therein.

Many are restricted to only one type of parallel system, such as shared memory multicore

machines. To make matters worse, since these tools are all independent they have distinct

interfaces, output formats, and requirements for their use. This makes performance analysis

and debugging of parallel programs a needlessly frustrating task.
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In this thesis, we propose and develop a new system for profiling parallel systems

called Context Sensitive Parallel Execution Profiles (CSPs) which is vastly more flexible

than existing options. CSPs adopt a declarative approach in which the developer uses our

annotation language to specify code regions of interest, and our query language to specify

quantities to measure in terms of those regions. CSPs do not require the use of a specific

language or threading library. They use only widely available hardware features, making

them mostly platform agnostic.

We first implement our system for shared memory multicore machines and show

that it has low overhead, high accuracy, and can be used to diagnose and repair perfor-

mance problems in real parallel programs. In a test using the Parsec benchmark suite,

time overheads were typically less than 5%, and peak memory overheads were less than

46%. Measurements made using CSPs allowed us to optimize the execution of two of the

programs by 36% and 17% respectively.

We then adapt our implementation to the distributed space, enabling the profiling

of clusters of multicore machines. A fundamental problem in distributed profiling is that of

timestamp synchronization, which involves the meaningful comparison of timestamps taken

on different machines. We developed a new algorithm for timestamp synchronization which

is up to 53.3% more accurate than existing algorithms. We further exhibit the flexibility of

our system by extending it to compute a variant of causal profiles (a popular type of profile

recently developed for shared memory systems) for distributed systems.
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Chapter 1

Introduction

In the landscape of modern computing, few concepts have achieved the ubiquity

of parallelism. Its influence can be seen in devices as small as smart phones and as large as

supercomputers. It has left its fingerprint on the design of components ranging from general

purpose CPUs to specialized accelerators like GPUs. Its presence can be felt in the simplest

imperative languages and the most complicated declarative languages. Its widespread adop-

tion and time tested prevalence are a testament to its potential for improving performance.

Despite this ubiquity, realizing these performance improvements through parallel

programming remains a frustrating and difficult task. Even after a programmer has gone

through the painstaking process of constructing a parallel version and eliminating any con-

currency bugs which affect correctness, they often find themselves in demoralizing possession

of a parallel program which runs only marginally faster (and occasionally even slower!) than

the sequential version with which they started. The doubt begins to creep slowly inward,

smothering the hope of linear speedup. Is there a bug in the input partitioning scheme,
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causing some threads to be crushed under the weight of an uneven work distribution? Is

there some shared resource for which the contention is high, causing threads to waste their

time bickering like siblings at the dinner table? Or is it simply that the inherently sequen-

tial portion of the program is dominant, and our wrists are bound by the iron shackles of

Amdahl’s law?

What recourse does the beleaguered programmer have in such a dire situation?

They can carefully examine their program line by line, mentally executing the code and

methodically considering the performance implications of each component. But even for the

most impressive intellect, this strategy would be tenable only for the simplest of programs.

They need something more robust, more scalable, and less mentally exhausting than careful

thought. So they reach into their digital toolbox and grab their profiler.

In the dark ages of sequential programming, the profiler of choice was GProf. It

seemed almost a panacea. You presented it with your program and some input, and it

returned to you an ordered list of the routines you should optimize, generated by measuring

the percentage of execution time spent in each routine. Unfortunately, the oracular prowess

of GProf was limited to sequential programs. With the introduction of parallelism, a key

assumption of GProf, namely that the total execution time was the sum of the execution

times of its constituent procedures, was shattered. And thus the search for a parallel profiler

as effective as GProf was for sequential programs began. And thus began the search for a

profiler as effective for parallel programs as GProf was for sequential programs.

That search continues today, for the path to such a profiler is strewn with com-

plication. Many attempts have been made, but all have fallen short of the ideal primarily
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because of their inflexibility. Profilers based on the notion of normalized execution time

generalize the GProf format by weighting regions based on the level of concurrency present

when they are executed. [5, 14, 15, 25] They therefore seek to find regions of the program

which will probably yield overall performance gains when optimized. These profilers suffer

from an a priori decision about the types of code regions that the programmer will find

interesting. If the statically selected type of region is too large (such as a function), then the

profiler may not detect a problem at all, or if it does, that detection may be of little help

because it can leave the programmer with a search space that is still too large to explore

manually. On the other hand, if the statically selected type of region is too small (such

as a basic block), then isolating the root cause of a detected performance problem can be

complicated by the lack of contextual information. For example, a detected basic block may

be a problem only when it is visited from one function but not another.

In contrast, profilers based on critical path analysis seek to find regions which

will certainly yield some speedup when optimized. [10, 20, 22, 31] While these types of

profilers succeed in finding regions which will yield some speedup if optimized, they provide

no indication as to how much speedup can be realized overall. Additionally, they generally

require the use of a specific communication library or programming language, which severely

limits their flexibility.

Yet another class of profilers are based on hardware performance counters. [4, 38]

These profilers diagnose performance problems by looking for their low-level symptoms, such

as cache miss rates and branch predictor failures. Implemented alongside the hardware, these

profilers have excellent overhead characteristics, but can be highly inflexible. Not only are
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the set of counters available different from machine to machine, an optimization performed

for one machine might actually lead to slowdowns when executed on a different machine.

These different forms of inflexibility are a result of the myriad challenges that arise

when designing a profiler for parallel programs. What would an ideal parallel profiler look

like? Below we enumerate a profilers desired features.

First, it should be flexible. There are many ways of introducing parallelism

into a program. One can use multiple threads in one process, multiple processes on one

machine, multiple processes spread across multiple machines, or even a combination of the

above. An ideal profiler should be able to handle all of these situations gracefully. It should

not assume that a specific thread library is used, or be tied to the implementation details

of a particular programming language.

Second, its overhead and intrusion should be minimal. In sequential pro-

grams, the overhead is the extra time spent to handle all of the profiling tasks. In parallel

programs, there is also the intrusion to consider. Since threads interact with each other,

time spent handling profiling tasks by one thread can affect the other threads with which

it interacts. For instance, if profiling code is executed while a lock is held, then contention

for that lock can increase. This type of overhead, which we refer to as intrusion, has the

potential to drastically alter the performance characteristics of the application and should

be minimized as far as possible. Aside from execution time, there is also overhead in terms

of all the other program resources (memory, network requests, file handles, etc).

Third, it should be easy to use. Profilers can be difficult to use in many

ways. The interface could be too complicated, making it difficult for the programmer to

4



figure out how to use the profiler to measure what they want. The underlying model of

program execution used by the profiler could be too arcane, causing programmers to be

unsure when they can use the profiler, or what results they should expect when they do. A

lack of flexibility, or an excess of overhead could also cause a profiler to be difficult to use if

the profiler only works with one language or with programs that don’t consume too much

memory to begin with.

Finally, it should be extensible. A profiler intended for general purpose use

should not be restricted in the types of quantities it measures. However, it is unrealistic to

expect any single tool to be able to fulfill all conceivable roles. An ideal profiler would be

amenable to extension and modification with low development cost.

In this thesis, we address these design goals with the development of context sen-

sitive parallel execution profiles (CSPs). CSPs exceed the flexibility of existing profilers by

taking a declarative approach: the programmer specifies at a high level what they are trying

to measure, and our profiler does the measuring. Owing to their careful design, the over-

head of CSPs is minimal; it typically falls within the normal variance of program execution

time. Their declarative nature makes them particularly easy to use relative to their high

flexibility. They are also readily extensible, which we demonstrate with an implementation

for distributed systems.

1.1 Dissertation Overview

An overview of our system is given in Figure 1.1. The process begins with annota-

tion, in which the source files comprising the program under test are annotated to indicate
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Figure 1.1: Overview of the declarative profiling architecture.
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the regions of interest to the programmer. These annotated source files are then prepro-

cessed and compiled, at which point they are linked with the CSP instrumentation library.

When the resulting executable is run, it generates one log file for each thread in the pro-

gram that contains timestamped relevant events from the execution. These log files are then

passed to the frame constructor, which generates the primary profile representation. This

sequence of frames is given as input to a query evaluator, along with the queries written by

the user, and each of these is processed to produce a result. For distributed programs, the

procedure on the lower right labelled DProf is taken instead. For these programs, the log

files are processed once again in order to synchronize them before being passed to a higher

level analysis (such as dCSP straggler detection, or dCOZ causal analysis). In the following

sections, we will describe these processes in greater detail.

1.1.1 Context Sensitive Profiles on Shared Memory Machines

Two of the most prevalent forms of parallelism today are shared memory multi-

core machines and distributed systems. Typically, in order to meet the efficiency or ease

of use requirements, profilers will focus on only one type of parallel program. This leads

to a proliferation of specialized profilers that work only with one paradigm, language, or

platform. One of the design goals of CSPs is flexibility; in particular they should work

mostly unchanged with programs written for both shared memory and distributed systems.

The declarative nature of CSPs is key to accomplishing this goal. This is embodied

in the interface to the programmer, which consists of the annotation language for specifying

regions of interest, and the query language for describing quantities to measure in terms of

those regions.
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Our annotation language provides a rich set of simple constructs using which a

programmer can identify regions of interest in their program. With these regions identified,

instrumentation is inserted into the program before compilation in order to mark the entries

and exits to and from these regions by each thread. During execution one log file of such

events is generated locally to each thread, and stored to disk upon program termination.

These log files are collected, and from them the CSP is constructed.

The CSP format consists of a sequence of what we call frames, which are regions

of time during which no thread in the program transitioned between regions of interest as

defined by the programmer through their annotations. This sequence of frames serves as a

complete and exact record of the concurrent activities of the program’s constituent threads.

With this frame sequence in hand, the user can write and evaluate high level queries to

measure quantities of interest.

The user constructs queries using our specialized query language. The essence of

queries is to specify a set of frames in which the user is interested, and something to calculate

given those frames. For instance, a query may specify all frames in which there is a thread

holding a specific lock, and from those frames, determine which thread is in possession.

The combined interface of our annotation and query language, along with the

careful implementation of our instrumentation library means that CSPs have very little

runtime overhead: in most cases less than 5% overall. Additionally, the per thread memory

overhead is modest as well (usually less than 1MB). (Mention something about accuracy

here, or utility? The evaluations we did on the parsec benchmarks?) Thus CSPs are flexible,

easy to use, and efficient.
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1.1.2 Context Sensitive Profiles on Distributed Systems

When the limitations of a single machine stall progress, programmers often turn to

distributed systems for support. Because of their importance and to showcase the flexibility

and extensibility of CSPs, we implemented them in the distributed setting as well. This

presented a unique set of challenges.

When two events occur on different machines, the timestamps with which they

were captured will be generated by different clocks. These clocks were started at different

times, and run at different rates. Therefore, direct comparison of these timestamps is mean-

ingless. The problem of making meaningful comparisons between such timestamps is known

as timestamps synchronization, and it is central to the construction of any profiler which

supports distributed systems.

Though there are pre-existing algorithms for solving this problem [16, 33, 6, 35], all

fall short in terms of efficiency and accuracy when faced with the types of targeted analysis

that CSPs use. We therefore developed a new timestamp synchronization algorithm called

FreeZer, which does not suffer these shortcomings. Previous algorithms work by using

the timestamps to be converted, along with known causal relationships among them, to

estimate a function which will convert from one clock base to another. In contrast, FreeZer

overcomes the limitations of these algorithms by taking careful measurements offline which

are independent of the timestamps that are being converted. By doing so, FreeZer is not only

able to achieve higher overall synchronization accuracy, it is able to do so while maintaining

strict bounds on the errors due to the synchronization process. This is a distinction that only

one previous algorithm can claim, and FreeZer achieves the same thing up to 57× faster.
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As seen in Figure 1.1, we used FreeZer as a critical component in our DProf work.

Acting as a transparent conversion layer, we implemented a distributed version of our CSPs

which required only minor changes to the query language. Using this we implemented a

tool for the detection of straggler threads in distributed programs, a common problem faced

in this domain. Additionally, using FreeZer and our annotation language, we developed

a distributed version of the popular causal profiling [11] technique originally developed for

shared memory systems only. Our experiments showed that not only were these tools able to

correctly diagnose performance problems and accurately predict the results of optimizations,

but they would have been unable to do so if a traditional synchronization algorithm had

been used in lieu of FreeZer (exhibiting excess prediction errors ranging from 9% to 52%).

1.2 Dissertation Organization

The remainder of this dissertation is organized as follows. In chapter 2, we present

the details of our annotation language and the precise description of our profile format.

In chapter 3, we introduce our query language and illustrate how it can be easily used to

diagnose and measure the severity of performance problems. In chapter 4, we dive into

the implementation details of CSPs on shared memory multicore systems, and explore their

accuracy and overhead. In chapter 5, we discuss the details of the timestamp conversion

problem, and present the FreeZer algorithm. In chapter 6, we examine DProf, including

dCSP and dDOZ and how they can be used for performance debugging of distributed parallel

programs. In chapter 7, we conclude by giving a summary of our work and providing some

directions for the future.
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Chapter 2

Code Annotations and Context

Sensitive Profiles

Every profiler must choose what code regions it will support (for instance, functions,

statements, basic blocks, or loops). Existing profilers make this choice at design time. This

inflexibility can cause frustration for the user of that profiler. If the choice of region is too

large, then pinpointing the cause of problems can be challenging. If the choice of region is

too small, then problems may go undetected due to the loss of context. The ideal region size

depends on the specific analysis situation. To overcome this inflexibility, CSPs allow the

programmer to choose the specific code regions relevant to their analysis. In this chapter,

we introduce the mechanism by which this is enabled: our annotation language. We also

show how the choice of code regions made using the annotation language parameterize our

profile format.
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2.1 Code Annotations

Threads Event Traces Frames

Annotations
Queries

Results

Figure 2.1: Overview

The steps of our approach are shown in Figure 2.1. Based upon a hypothesis for the

cause of poor performance, the user introduces annotations into source code identifying code

regions of interest. The annotations lead to instrumentation of the program that when exe-

cuted produces timestamped traces for individual threads – thread local collection of event

traces via lightweight instrumentation leads to minimal perturbation of program behavior

and low overhead. The event traces are analyzed offline to generate a sequence of frames

which describe what activities were performed by threads in parallel. By deferring frame

construction to offline analysis, perturbation of program behavior is minimized. Finally, the

user constructs queries that reveal how often and how long threads run in behavior states

of interest, which reveals the absence or presence of hypothesized performance problem.

In this section we present the annotation framework available to the user. A set

of easy to use annotations are supported that allow the user to mark code regions. The

annotations provide the user with a great deal of flexibility via two features: alternate ways
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Purpose Annotation
ENTRY #Region [ NAME ] [ CONDITION ]

EXIT #∼Region [ NAME ] [ CONDITION ]

NAME ( RID CNST : [ CVAR ] )

CONDITION if ( EXP )

RELATED #SubRegion [NAME] [CONDITION] · · ·
NESTED · · · #∼SubRegion [NAME] [CONDITION]

CONTEXT #Context STMT ;

Figure 2.2: Summary of supported annotations.

of naming the region; and allowing conditional collection of region information.

Table 2.2 provides a list of supported annotations which consist of the following

components:

– Marking region entry and exit. The annotations #Region and #∼Region mark

the entry and exit of the region respectively. The corresponding SubRegion annotations

are used to express related nested regions as will be described later.

– Naming regions. As the user may mark multiple regions of interest, names are

assigned to them to distinguish their executions. The user provides a static name in form

a constant (CNST). In addition, the user may also provide a dynamic name component in

form an expression (EXP). This dynamic name is useful when the user wishes to distinguish

executions of a given region into a finite number of categories according to their execution

context (e.g., functions called, locks held, paths followed etc.). The context itself is captured

in a variable by the #Context annotation (for instance, with STMT being CVAR = EXP;).

– Conditional regions. A user may be interested in only some of the executions

of a marked region which can be selected at runtime based upon an associated condition

(see CONDITION) defined in terms of the program’s runtime state. The #SubRegion

13



and #∼SubRegion annotations can be used to couple nested conditional regions, such

that instances of the inner region are not captured unless instances of the outer region are

captured as well.

Next we illustrate the use of above features through examples. A region can be a

single-entry-single-exit or a single-entry-multiple-exit code region.

Static-name-only regions.

Let us consider the use of static names. It is often useful to analyze the relative

execution times of a pair of regions. For example, Figure 2.3 shows two code fragments

where region 1 has been introduced to capture the waiting time for a signal at a conditional

wait (left) and time spent in acquiring a lock before entering the critical section (right). In

Figure 2.4, the time spent waiting on a lock (region 1) is captured relative to the the time

spent in the surrounding function (region 0). By introducing the surrounding region 0 in

both cases, we can determine the time spent on waiting at the conditional relative to the

execution time of the loop and time spent on acquiring the lock relative to the function’s

execution time.

Consider another example of barrier synchronization where it is useful to identify

the presence of a straggler thread causing excessive waiting. Let us see how via appropriate

region selection we can detect and find the cause of this behavior. By using the annotations

shown on in Figure 2.5, we can determine the wait time for each thread at the barrier

(region 1) as well as the total time spent in the loop (region 0). If it is found that all threads

14



1 void f ( ) {

2 //#Region (RID 0 : )

3 whi l e ( . . . ) {

4 . . .

5 //#Region (RID 1 : )

6 cond . wait ( ) ;

7 //#~Region

8 . . .

9 }

10 //#~Region

11 }

Figure 2.3: Annotations for measuring wait time relative to time spent in surrounding loop.
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1 void f ( ) {

2 //#Region (RID 0 : )

3 . . .

4 //#Region (RID 1 : )

5 mutex . l o ck ( ) ;

6 //#~Region

7 . . .

8 shared++;

9 . . .

10 mutex . unlock ( ) ;

11 . . .

12 //#~Region

13 }

Figure 2.4: Annotations for measuring the time spent waiting on a lock relative to the time
spent in the entire closing function.
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1 #Region (RID 0 : )

2 f o r ( . . . ) {

3 //Loop body

4 . . .

5 #Region (RID 1 : )

6 barr i e r_wai t ( ) ;

7 #~Region

8 }

9 #~Region

Figure 2.5: Annotations for identifying
the time spent straggling relative to an
entire loop execution.

1 f o r ( . . . ) {

2 #Region (RID 0 : )

3 //Loop body

4 . . .

5 #~Region

6 #Region (RID 1 : )

7 barr i e r_wai t ( ) ;

8 #~Region

9 }

Figure 2.6: Annotations for identify-
ing the time spent straggling on a per-
iteration basis.

except one thread wait for a significant duration at the barrier, then that one thread is the

straggler. By comparing the execution time of the loop (region 0) with the time spent at the

barrier (region 1) we can see if barrier causes significant performance degradation. Having

detected the presence of a straggler, we can see if the same thread acts as a straggler or

whether the straggler’s identity varies. In the latter case, this behavior may be the result of

variability in the amount of work performed by the loop body. This can be verified by using

the modified annotation shown in Figure 2.6 where region 0 captures the time spent on the

work performed during each loop iteration. If during an iteration, the thread identified as

the straggler is also the one that spends the most time in region 0, then we know the cause

is the code in region 0.

In the above examples because we only considered single-entry single-exit regions,
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we were able to assign static names upon entry. However, for single-entry multiple-exit

code regions where we want to treat each exit as forming a different region, we must name

the region on exit since the region id is known at the exit point. For example, consider

a function with multiple return points. We can use region ids 0, 1, 2 etc. to distinguish

different return points.

Context-sensitive dynamic-name regions.

The above examples illustrate regions with only static names. The user may want

to collect additional execution context information to better understand the causes of

observed timing behavior. In such situations, in addition to using a static name, a dynamic

name is also assigned. Next we illustrate use of dynamic names in two scenarios. Let us

consider the example of some code that acquires of a lock. The user may be interested

in capturing the time spent in acquire() of various locks by each thread. As shown in

Figure 2.7, this can be achieved by assigning a static name 0 to mark the code region and

assigning a dynamic name using the lock address as the execution context. Thus, the time

spent by a thread in acquiring locks can be divided among the different locks it acquires.

Here the context (i.e., &thislock) was already available at the start of region 0 and thus

it was directly referenced while creating the dynamic name. In general to ensure that the

execution context is available at region entry or exit point, it may be necessary to first

collect it explicitly at an appropriate execution point. In such a case we use #Context

annotations for collection.

Consider the loop shown in Figure 2.8 which is an expanded version of the loop
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1 c l a s s Lock {

2 void acqu i r e ( ) {

3 #Region (RID 0 : t h i s )

4 . . .

5 #~Region

6 }

7 }

Figure 2.7: Annotations for measuring lock acquisition times, distinguished by the object
which is performing the acquisition.

in Figures 2.5 and 2.6. Further assume that we want to capture the function called (f() or

g()) during the execution of each loop iteration because the user suspects that one of these

functions is responsible for creating the straggler effect. As shown in the Figure 2.8, this

can be achieved by specifying a static name in the annotation that marks the entry of the

region as before and, in addition, using the context variable fname as the dynamic name

in the annotation that marks the exit of the region.

The context is captured at the call sites of the functions via the two #Context

annotations. As a result each execution of the loop body is assigned the name 0:1 or 0:2

depending upon where function f() or g() are called. Let us assume that we observe that a

given thread acts as straggler when it calls f() but not g(), then we would know that we must

optimize the code in f() to eliminate the straggler effect. Thus, dynamic names help the

user to narrow and relate the cause of observed behavior to smaller code segments within

marked regions.
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1 f o r ( . . . ) {

2 #Region (RID 0 : )

3 // Loop body

4 . . .

5 i f ( ) {

6 #Context fname = 1

7 f ( ) } e l s e {

8 #Context fname = 2

9 g ( ) }

10 #~Region (RID : fname )

11 #Region (RID 1 : )

12 barr i e r_wai t ( ) ;

13 #~Region

14 }

15 }

Figure 2.8: Dynamic names as execution context.
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Conditional regions.

So far we have considered situations where all executions of an annotated region

are captured and possibly categorized according to different contexts via different static

names and/or via associated dynamic names. To handle situations in which we may not be

interested in capturing all executions of an annotated region we support conditional regions.

By specifying a condition as part of the annotation we can selectively capture executions of

a region. This is yet another way of capturing context sensitive information. However, it

is different from capturing context using names. This is because, conditional regions collect

only relevant information corresponding to interesting contexts. Figure 2.9 illustrates the

use of annotations for specifying conditional regions. The region corresponding to the outer

loop indicates that the execution of this region is only captured if the region is being executed

by the thread with id 1. The second region in the inner loop uses the condition to sample

the execution of its loop iterations – every fifth loop iteration is sampled. Further note that

the inner region uses the SubRegion annotation. This couples its sampling to the outer

region, i.e. it is only sampled when the outer region is being captured. Also note that here

the context annotations are being used to create the variable sample needed to implement

sampling.

Other Issues.

Dealing with unannotated exits. Note that in the examples so far, all exits

from regions were marked by the user. This ensures the integrity of event traces generated,
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1 whi le ( . . . ) {

2 #Region (RID 0 : ) f o r Thread (TID = 1)

3 . . .

4 #Context sample = 0

5 whi le ( . . . ) {

6 #Context sample++

7 #SubRegion (RID 1 : ) i f ( sample % 5 == 0)

8 i f ( ) {

9 #Context fname = 1

10 f ( )

11 }

12 e l s e {

13 #Context fname = 2

14 g ( )

15 }

16 #~SubRegion (RID : fname )

17 }

18 #~Region

19 }

Figure 2.9: Conditional profiling of regions.
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1 whi le ( . . . ) {

2 #Region (RID 0 : )

3 . . .

4 i f ( . . . ) break ;

5 . . .

6 #~Region

7 }

Figure 2.10: Exiting via unannotated break.

i.e. if a region entry event is captured, so is the corresponding region exit event. However, it

is possible that the user may forget to mark an exit in which case the event trace would be

incomplete. For example, Figure 2.10 shows a loop whose entire loop body is contained in

region 0; however, during execution the region may be exited via the break statement that

is not annotated. We deal with this problem by checking the integrity of generated traces.

Automating Instrumentation. For many types of analyses, automating the

instrumentation phase is feasible using a tool like Clang to get access to the AST of the

program. For instance, calls to barriers could be found automatically, and the barrier

waits along with their associated loop bodies could have calls to the instrumentation library

inserted directly around them.
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2.2 Context Sensitive Profiles (CSP)

First we describe the thread local event trace that is generated when an annotated

program is executed. Since event traces are thread local, they do not introduce any form

of inter-thread synchronization, and thus minimally perturb program behavior. Moreover,

the overhead of trace collection is low because it uses lightweight instrumentation. Second

we present a novel CSP representation consisting of a series of frames that is derived offline.

The local event trace of a thread tells us when the thread is executing a region of interest

and when it is not. The frame sequence divides the application execution time into intervals

where each frame captures the parallel behavior in terms of regions being executed by the

threads in the interval.

The Thread Local Event Trace represents the execution history of a single

thread as a series of events and the times at which they took place. The event trace of

thread t that begins execution at time st, ends execution at time et, and along the way

encounters region entry and exit events e1 · · · en at times x1 · · ·xn is denoted as follows:

[t@st � e1@x1 � e2@x2 � e3@x3 � · · · � en@xn � ]@et

The types of events captured by the event trace are:

• Thread creation and termination. A thread trace begins and ends with the events [tid

and ]marking the creation of thread identified by tid and its termination respectively.

• Region entry and exit. Intervening events are either region entry or region exit that are

of the form:
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∅ R1 R2 ∅T1 ∅ R3

∅ R1T2 ∅ R3

Time

x1 x2 x3 x4 x5 x6 x7 x8 x9

[t1@x1 � (r1@x2 � (@x4 � r2)@x5 � )@x6 � (r3@x7 � )@x8 � ]@x9

[t2@x1 � (r1@x3 � )@x5 � (r3@x8 � )@x9 � ]@x9

Figure 2.11: Per Thread Event Traces.

– Named only on entry → (rid .... );

– Named only on exit → ( .... rid); or

– Named on entry and exit → (rid .... rid).

As an example, consider the event traces of threads T1 and T2 in Figure 2.11 where,

during the execution shown, T2 executes nested regions R1 and R2 and later R3 while thread

T2 executes regions R1 and R3. The execution of a thread that does not execute a region of

interest is named φ.

Since regions executed are either nested or disjoint, the integrity of the trace can

be captured using the following grammar where ThTRACE and ReTRACE are the thread
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ThTRACE → [tid � ReTRACE � ]

| [tid � ]

ReTRACE → (rid � ReTRACE � ) [ � ReTRACE ]

| ( � ReTRACE � rid) [ � ReTRACE ]

| (rid � ) | ( � rid) | (rid � rid)

Figure 2.12: Trace integrity grammar.

Annotation → Instrumentation
#Region(RID x:y) → begin_code_region(x,y);
#~Region(RID x:y) → end_code_region(x,y);
#Region(RID x:y)if p → if p begin_code_region(x,y);
#~Region(RID x:y)if p → if p end_code_region(x,y);
#Region(RID x:y) if p ... #SubRegion(RID u:v) if q

→
if p begin_code_region(x,y); ...

... if p && q begin_code_region(u,v);
#Context stmt; → stmt;

Table 2.1: Transforming annotations to instrumentation via calls to the profiling library.

and region trace respectively. For clarity we have omitted the timestamps from the trace.

The grammar is used to test the integrity of the generated event trace and ensure that the

user has not overlooked annotating any region exits.

Table 2.1 describes in detail how the annotations are transformed into library

function calls. Notice that for sub-regions, the given condition (if any) is combined with

that of its enclosing region. In the case where the predicate associated with the enclosing
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region may change before the sub-region is entered, the programmer can capture the initial

value in a new variable using a context annotation, and use this new variable instead.

This will guarantee that the predicate has the same value when the sub-region is entered.

These transformations are implemented as a textual replacement phase in a stand-alone tool.

Generated events are stored in a thread local std::vector initialized with enough space for one

million events. The vector is written to disk upon thread termination. Following program

execution the traces are analyzed offline to construct the CSP representation described next.

A CSP is represented in the form of a sequence of frames where each frame cor-

responds to the longest time interval over which the region being executed by each thread

remains constant. Note that the region could be a region of interest or φ. A frame is repre-

sented as follows where the time interval that it represents begins at s (inclusive) and ends

at e (exclusive) and each S(tidi) represents the state of thread tidi in terms of the region(s)

that it is executing.

[s, e) → {S(tid1), S(tid2), . . . S(tidn)}

If thread tid is in an unnested region, then S(tid) is given by:

S(tid) =


φ if thread tid is in an unmarked region

rid if thread tid is in a marked region rid

On the other hand if tid is nested in n regions, then S(tid) has following form:

S(tid) = rid1 � rid2 · · · � ridn

where rid1 is outermost region and ridn is the innermost.
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[x1, x2) → {S(T1) = φ, S(T2) = φ}

[x2, x3) → {S(T1) = R1, S(T2) = φ}

[x3, x4) → {S(T1) = R1, S(T2) = R1}

[x4, x5) → {S(T1) = R1 �R2, S(T2) = R1}

[x5, x6) → {S(T1) = R1, S(T2) = φ}

[x6, x7) → {S(T1) = φ, S(T2) = φ}

[x7, x8) → {S(T1) = R3, S(T2) = φ}

[x8, x9) → {S(T1) = φ, S(T2) = R3}

Figure 2.13: CSP - Frame Sequence.

Figure 2.13 shows the sequence of frames corresponding the event traces of Fig-

ure 2.11. As we can see, each frame indicates the regions being executed by the two threads.

When an event causes the region of some thread to change, a new frame begins. We have

crossed out two frames as in these frames none of the threads is executing an annotated

region. Moreover, these frames can be inferred from other frames.

To construct the frame sequence, events are processed in the order of their occur-

rence one at a time – the ordering of events is made possible by the timestamps. With

each event the current frame is updated to reflect the effect it has on the state of the rele-

vant thread, producing the next frame in the sequence. By streaming events from log files

and constructing frames one at a time, we construct and iterate over the frame sequence

in constant space, enabling efficient trace analysis, even when traces are too large to fit in

memory.

Behavior States. Since CSPs give the global picture of the execution, it is easy

to characterize interesting behavior states in terms of the frames. For example, given the
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annotations in Figure 2.6, we would detect a straggler thread by searching for frames of the

following form where region R1 (RID 0) represents the loop body preceding the barrier

and region R2 (RID 1) represents the barrier itself:

[x1, x2) → {S(T1) = · · · = S(Tn−1) = R2, S(Tn) = R1}

Note that threads T1 · · ·Tn−1 are waiting at the barrier while thread Tn is executing the

code preceding the barrier. The duration for which threads T1 · · ·Tn−1 wait at the barrier

for thread Tn is simply given by x2 − x1.

2.3 Data Centric Profiles

Many modern applications, such as iterative graph analytics and other forms of

Big Data processing, are highly data-intensive in nature. In such applications, the nature of

the input data can greatly impact performance. Therefore, it can be useful to correlate the

execution time spent in code regions with the characteristics of data that are processed by

them. To facilitate such analysis we support additional annotations shown in Figure 2.14.

Collectively, these annotations allow a user to identify object properties, classify objects

according to property values, and associate region executions with property values and

Purpose Annotation
OBJECT DESCRIPTION #ObjectProperty ID [PROPERTY] TYPE

OBJECT CLASSIFICATION #ObjectClass ID TYPE ( CONSTRAINT )

ASSOCIATE CURRENT REGION #Associate TYPE OBJECT-INSTANCE

Figure 2.14: Annotations for data centric profiling.
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classes of objects they process. The three kinds of annotations are as follows:

– ObjectProperty Annotation. Given an object type TYPE, this annotation defines

an object property named ID along with an object method that returns the corresponding

property value. Since an object type may posses multiple properties that may be of interest

in different situations, multiple properties with different names can be identified by providing

multiple annotations of this kind.

– ObjectClass Annotation. This annotation defines a class of objects named ID of

the type TYPE that satisfy a constraint CONSTRAINT on its property value. If objects need

to be classified into multiple classes, the programmer can provide multiple annotations.

– Associate Annotation. When a region is executed, we would like to associate its

execution with a specific object class defined by the ObjectClass annotations. This associa-

tion is achieved by introducing an Associate annotation in the region that specifies the object

type TYPE and an object instance OBJECT-INSTANCE. The properties and classes of the

specified object are captured at the point of association, and attached to the surrounding

code region.

The use of the above annotations is illustrated in the context of the single source

shortest path (SSSP) algorithm shown in Figure 2.15. For simplicity we have omitted the

details of the convergence logic for this iterative algorithm. The vertices are divided into

multiple batches and assigned to different threads for processing. The region with static

id 0 captures the execution time of each thread. The region with static id 1 captures the

execution time spent on processing a given vertex, and the region’s dynamic id captures

the vertex id (vid). Using the new annotations we identify interest in the vertex property
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1 i n t batch = k/n

2 i n t begin = batch ∗ t i d

3 i n t end = t i d == n −1 ? batch ∗ ( t i d + 1) : k

4

5 #ObjectProperty DEGREE [ in_degree ( ) ] ve r tex

6 #ObjectClass HIGHDEGREE vertex (DEGREE >= 100)

7 #ObjectClass LOWDEGREE vertex (DEGREE < 100)

8 whi l e ( not converged ) {

9 f o r ( i n t j=begin ; j<end ; ++j ) {

10 #Region (RID 1 : )

11 #Assoc ia t e ver tex V[ j ]

12 update_path (V[ j ] )

13 #Context vid = V[ j ]

14 #~Region (RID 1 : vid )

15 }

16 b a r r i e r ( ) ;

17 }

18

19 void update_path (v : ver tex ) {

20 path_value = v . va lue

21 f o r ( edge_i te ra to r i t = v . in_edges ( ) . begin ( ) ;

22 i t != v . in_edges ( ) . end ( ) ;

23 ++i t ) {

24 path_value = min ( path_value , i t−>source ( ) . va lue + i t−>weight ) ;

25 }

26 v . va lue = path_value

27 }

Figure 2.15: Example of data-centric profiling of SSSP algorithm.
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DEGREE, which is the in-degree of vertex object. We further separate vertices into two

classes, HIGHDEGREE and LOWDEGREE, according to the value of DEGREE property.

The CSP profile generated will not only have information about execution of these

regions, but also details of object characteristics provided by data centric annotations. In

particular, the profile of a region execution will include DEGREE information (i.e., value

of V[j].in_degree()) and classification information (i.e., HIGHDEGREE or LOWDE-

GREE). Thus, we will be able to construct queries that will allow us to divide the total time

spent on executing the specified region into two parts – time spent on high degree vertices

and time spent on low degree vertices.

2.4 Related Work

Critical Path Analyses. Another technique for analyzing parallel programs is based on

critical path, the longest path in the program dependence graph [42, 29, 23, 10, 21, 5, 20, 31].

In [23], the authors use hierarchical critical path analysis to build a tool for estimating the

parallel speedup of each region in the program. [10] defines several new performance met-

rics based on critical path analysis with the intention of identifying performance problems,

particularly load imbalance, in highly parallel systems. In [21] authors develop true zeroing

which is a method for comparing performance metrics. By comparing the critical path met-

ric with performance metrics obtained via Gprof and Quartz [5], the authors conclude that

the critical path analysis is often the best guide for finding program bottlenecks. In [20, 31]

algorithms for computing critical paths online, including the ability to report partial results,

are presented. Critical path analysis identifies activities along the critical path where tuning
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efforts can be focused to improve performance. However, its drawback is that it provides

an upper bound on the performance improvement, but gives no insight into how much ac-

tual improvement can be expected because optimizing code can switch the critical path.

Thus, in [22], the authors use the slack metric to capture how much of an improvement

can be expected. In [17], authors compare the notions of hierarchical critical path analysis

and self-parallelism. They present a tool for measuring these quantities, and argue that

self-parallelism is a good indicator of potential for real parallel speedup. Finally, Coz [11]

provides virtual speedups which allows measurement of the benefit of optimizing a code

region in terms of overall speedup. Thus the benefits can be estimated before effort into

optimizing the code is expended. From the above discussion it is clear that even for critical

path analysis many variations exist and hence our approach of providing a single versatile

tool in which different metrics can be evaluated is beneficial to the end user. By viewing

the program as a series of regions, we can also perform critical path analysis.

2.5 Summary

In this chapter, we presented our annotation language. We showed the different

ways annotations can be used to declare arbitrary code regions, which define the possible

locations of threads in the profile. We also introduced our data-centric annotations, which

allow an even richer set of code regions which are dependent on the characteristics of the

data being processed. Additionally, we presented our profile format, which is parameterized

by the user defined code regions, and which allows the capture of context rich information

that can be analyzed offline.
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Chapter 3

Querying Context Sensitive Profiles

Many existing profilers are built to calculate only a single metric. In contrast,

CSPs allow the programmer to perform many different analyses using the same profile. This

flexibility is enabled via the CSP query language that we have developed, which we describe

in this chapter. First we will describe the structure of the query language, and then we will

show how queries can be used to diagnose and fix performance problems in different types

of parallel programs.

3.1 Query Language

Once the CSP consisting of a sequence of frames has been generated, the user can

construct a query to extract the subset of pruned frames representing interesting program

behaviors. Each pruned frame contains the maximal part of the frame, called the sub-frame,

that satisfies the query. Our query language is presented in Figure 3.1.

A FrQuery is constructed to express the forms of frames that satisfy properties
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[ Measures | Attributes ] FrQuery [ Interval ]

Measures→ Duration |MaxPar | Area

Attributes→WhichThreads |WhatRegions

FrQuery → [̄ ¬ ] Quantifier ID Constraints : Predicate

Quantifier → ∀ | ∃ | ∃Nat

V ar → ID | Nat Nat→ 0|1|2|...

Constraints→ ( = | 6= ) V ar [ (∧ | ∨) ID Constraints ]

Predicates→ [̄ ¬ ] (Thread,Region) [ (∧ | ∨) Predicates ]

Thread→ V ar Region→ V ar

Figure 3.1: Query Language.

of interest in a time interval that may be specified. When no interval is specified, the entire

execution is analyzed. A FrQuery, when evaluated, returns a subset of pruned frames from

the profile that satisfy the query. The returned frames are pruned so that they contain the

maximal sub-frame that makes the query true. For instance, consider a query that returns

the set of frames in which there is at least one thread inside region 0. Each of those frames

is pruned to contain only those threads which are actually in region 0.

Measures are a means of computing summary information for a set of frames.

We support three forms of measures. The first measure, Duration, returns the sum of the

durations of the subset of frames, i.e. it corresponds to the total elapsed time. The second

measure, MaxPar, returns the maximum number of threads that were active among the

given subset of frames. A thread is considered active if it is in some region of interest, i.e.

it is not in the φ state. Therefore this measure corresponds to the degree of parallelism.
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Query Returns frames such that –
(0, 0) – thread 0 is in region 0
(0, 0) ∧ (1, 1) – thread 0 & 1 are in region 0 & 1
∀t : (t, 0) – all threads are in region 0
∃t : (t, 0) – some thread is in region 0
∃1t : (t, 0) – there is exactly one thread in region 0
∀r : ∃t : (t, r) – there is some thread in every region
∀t : ∃1r : (t, r) – each thread is in outermost region

Figure 3.2: Example queries and their meaning.

The last measure is Area, which represents the total work done by a subset of frames. Area

is computed by summing the areas of each of the individual frames, where the area of an

individual frame is its Duration times its MaxPar.

Attributes either return the set of threads (WhichThreads) or the regions in-

volved (WhatRegions) in a subset of frames.

The basic construct in a query is aPredicate that asserts that some thread is inside

some region. Using logical operators (∧ | ∨) we can construct arbitrarily large predicates

over multiple threads and regions. Examples of such queries are shown in Figure 3.2 – see

the first two queries.

We permit quantification over both Threads and Regions. We provide three quan-

tifiers: ∀, ∃, and ∃Nat, which we use as an exact existential quantifier. The quantifier ∃k

states that there exist exactly k of some object (either Threads or Regions) satisfying some

property. The names bound by quantifiers can have equality constraints imposed upon them.

The quantifiers range over the active threads and regions of each frame. The third

through fifth queries in Figure 3.2 are examples of using the three quantifiers. Finally, the

last two complex queries in the figure employ two quantifiers, one over the threads and
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the other over the regions. Note that constraints on quantified variables must involve the

variable captured by the quantifier. In the remainder of this chapter all the discussion

assumes is based on static region names. However, in general, dynamic names can be used

to further subdivide multiple executions of a static region into distinct groups corresponding

to their dynamic names.

3.2 Using Queries for Iterative Debugging

Next we illustrate the usage of queries to identify opportunities for program re-

structuring to improve performance. We improve performance of two Parsec suite programs

blackscholes and cannel by 36% and 17% respectively. In these case studies we use

the largest available native inputs.

blackscholes assigns prices to each of a set of input options. The pricing of

individual options is independent, so the benchmark is parallelized by dividing the set of

options evenly among the available threads, and simply having each of those threads price

its own subset of options. There is no synchronization among the threads that calculate the

prices.

We begin our analysis by determining the total execution time of each thread

in the program. To do this, we mark as a code region the body of every thread func-

tion. There are two such functions in blackscholes, main and bs_thread. To deter-

mine the time that each thread spends, we evaluate following query for each thread t:

Duration((t,main) || (t,bs_thread)). We know that this will not over count, since the

main thread does not itself execute the bs_thread function.
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When we examine the results, we see that one thread has a run time nearly twice

as long as the rest of the threads in the program. We can check which thread this is (main

thread or one of the workers) by evaluating the following query.

WhatRegions((t,main) || (t,bs_thread))

The result of this is main, and so we examine the main thread further and observe

that it performs three tasks: (1) Reading the options to be priced from an input file into

an array; (2) Launching the threads to compute prices, and wait for them to finish; and (3)

Writing the computed prices to a file. During tasks 1 and 3, only one thread is doing work,

and that work consists primarily of disk accesses. We conclude that the program should

be restructured to hide this latency. Before restructuring we would like to know by how

much will the execution time be reduced. So we re-annotate the program, marking regions

in which tasks 1 and 3 occur, and recompute the CSP. We estimate the upper bound on

execution time reduction as:

Duration((t, main))−{Duration((t, 1))+Duration((t, 2))}
Duration((t, main))

The result of this query is 48%, which tells us that hiding the latency is a profitable op-

timization. We modified the program by adding two more threads: one which produces

values by reading them from disk, and one which consumes values by writing them to disk.

In the middle sit the application threads, which transform options into prices. Application

threads receive options from the producer, and give prices to the consumer. Lock-free queues

are used as buffers between each of these stages. Implementing this change led to a 36%

reduction in total execution time.
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canneal attempts to find a minimal routing cost for a chip using multithreaded

simulated annealing. As in the previous case study, we begin our analysis by marking

each thread function as a code region to find the total time spent executing each thread.

In addition, since this program has a call to pthread_barrier_ wait, we mark code

region to determine how much time each thread spends waiting. Using the same queries as

in previous case study, we find that the main thread again executes nearly twice as long

as the other threads in the application. Furthermore, the initial time spent is again due

to reading an input file and constructing the shared data structure for application threads.

This time however, we cannot apply the same optimization that we did for blackscholes,

because the data structure is being shared in its entirety by each of the other threads. Thus,

we turn our attention to the remaining threads. We observe that these threads execute the

same function, and the main thread simply waits for them while they do so. Thus, we can

speed up the application by speeding up the function they run.

We examined the function named annealer_thread::Run. In this function,

each thread repeatedly selects a pair of elements from the shared data structure and decides

whether to swap them. If swapping those elements reduces the overall cost, then the swap

is accepted, and if it increases the cost, then it is rejected with increasing probability as the

computation proceeds. This probability is determined by the so-called “annealing tempera-

ture". The application threads periodically synchronize at a barrier before they change their

temperature, so that the threads are always working with the same temperature. Removal

of this barrier would have two effects. First, since the individual threads can have different

temperatures, the final routing cost may be affected. Second, the total time taken by the
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program will likely be smaller, since waiting will be eliminated.

To judge whether eliminating this barrier would be beneficial, we need a rough

estimate of the amount of time that we might save by applying the optimization. If the

amount of time spent waiting is too small, then removing this barrier is unlikely to make

a difference in the overall run time. We measure the total waiting time by evaluating the

query: Duration(∃t : (t, Barrier)) and we measure the waiting time of each thread with

this query, but with t specialized to each thread ID. The total waiting time amounts to

26% of the overall execution time, and the waiting time per thread ranges from 11% to

15%. Thus, we surmise that removing this barrier might have a noticeable effect on the run

time of the program. When we removed the barrier, the average runtime of the program

was reduced by 17%, and the average routing cost computed changed by .003% which is a

negligible change for a randomized algorithm.

3.3 Data-centric Queries

3.3.1 Analyzing via #ObjectProperty

Let us see how the DEGREE property in Figure 2.15 may be analyzed to facilitate

performance debugging. Note that static partitioning assigns to each thread roughly equal

number of vertices for processing. A region 1 execution captures the work done to process

a single vertex assigned to the thread.

The first question we would like to answer is whether or not there is an imbalance

among the individual thread execution times. For any thread t, the total time spent exe-

cuting is given by the query Duration(t, 0). On the other hand, the total amount of work
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done by all threads is given by the query ∃t : Area(t, 0). If the total amount of work is

well balanced among all threads, then we would expect the relative difference of these two

queries to be small.

Duration(t, 0)− ∃t:Area(t,0)
n

∃t:Area(t,0)
n

≈ 0

If these differences are small then we conclude that workload distribution is balanced. When

workload imbalance is observed, our goal is to reduce the deviation between Duration(t, 0)

and Area(0)
n for all threads. Since each thread is assigned an equal number of vertices, a plau-

sible explanation for high deviation is that each vertex represents different amount of work

that is proportional to the number of its incoming edges when executing the update_path()

function. Therefore we capture these times via region annotation with static id 1 along with

the id of the processed vertex and its in-degree property value via the use of our object

annotations.

To determine the extent to which high degree vertices contribute to the imbalanced

execution time, we measure the amount of time that each thread spent processing vertices

whose in-degrees lie within various ranges.

aggregate_time(t, x, y] = Duration(t, 1, F ilter(DEGREE ∈ (x, y]))

Here (x, y] represents a degree range. In the above equation Duration() takes an additional

third parameter Filter which selects frames where degree object property lies between x and

y. By normalizing this with respect to the total thread execution time for t as calculated
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above, we can see the effect of the high degree vertices on the execution time of each thread

as follows.

aggregate_time(t, x, y]

Duration(t, 0)

Additionally, we would like to determine if the time spent executing high degree vertices

is balanced among the threads. In the balanced case, we expect each thread to spend ap-

proximately avg(x, y] = Area(∃t : t, 1, F ilter(DEGREE, (x, y]))/n time processing vertices

whose degree is in the target range. The actual time spent by thread t is given by the query

Duration(t, 1, F ilter(DEGREE, (x, y])). As above, we can examine the relative difference

to see the balance:

Duration(t, 1, F ilter(DEGREE, (x, y]))− avg(x, y]

avg(x, y]

If this deviation is high, then we must aim to reduce it by evenly distributing the high degree

vertices among the threads. Effectively, we should partition the workload based on the total

in-degrees of the partitions. This can be done by maintaining a prefix sum over the degrees

of vertices in a partition. So then the solution would be to pick a batch of vertices based

upon a constant total for the in-degrees of that batch. Note that we may not necessarily

minimize the differences in the number of high degree vertices processed by threads since

load can be balanced by having one thread process only a few high degree vertices while

another thread processes many low degree vertices.

Figure 3.3 shows measurements of the above queries on a collection of input graphs

and algorithms. We used four popular graph algorithms taken from [39, 30]: PageRank (PR),
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Figure 3.3: The effects of different partitioning strategies on the application work distribu-
tion: Blue bars represent the amount of work done by a thread (normalized to the average
work). Yellow bars represent the amount of work done on high degree vertices (normal-
ized to the average work on high degree vertices. Each row represents one algorithm, and
each major column represents one graph. The minor columns correspond to the partition-
ing strategies (vertex partitioning on the left, edge partitioning on the right). The edge
partitioning figures are annotated with the speedup relative to using vertex partitioning.

43



Single Source Shortest Path (SSSP), Single Source Widest Path (SSWP), and Breadth

First Search (BFS); and two input graphs from SNAP repository [26]: soc-Livejournal1

(LJ) containing 68.9M edges and roadNet-CA (RCA) containing 2.7M edges. As shown in

[40], LJ has a skewed degree distribution while RCA has a regular and sparse distribution.

Experiments were run on a 2 socket, 8 core Intel Xeon E5607 (2.3GHz) and we used 100 as

our threshold for high-degree vertices.

In Figure 3.3, bars that are in the positive range correspond to threads which spent

more time executing than the average, while bars in the lower range correspond to threads

which spent less than the average time executing. The blue bars show the normalized

deviation from the average work; this is computed based on our first query and is expected

to be close to 0 if work is well balanced. As we can see, for LJ the deviations are large for

all graph algorithms (left most column of figure). This means, there is workload imbalance

when we statically assign equal number of vertices among threads and hence, we further

debug by analyzing the deviation for high degree vertices alone (using the second query).

As shown by the yellow bars, the deviations are large which suggests that imbalance in high-

degree vertices is high and is in-turn causing an imbalance across overall thread executions.

We fix this issue by partitioning workload based on total in-degrees of vertices, as described

earlier. As shown in Figure 3.3 (2nd column), the deviation gets substantially reduced which

accelerates our overall processing by factors ranging from 1.54× to 1.92×. For RCA, we do

not see much deviations with basic partitioning (values are close to 0); this is because RCA

is regular and sparse with average degree between 3 to 6, and hence, the traditional vertex

partitioning performs well.
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1 udpate_path (v : ve r tex ) {

2 path_value = v . va lue

3 f o r ( edge_i te ra to r i t = v . in_edges ( ) . begin ( ) ;

4 i t != v . in_edges ( ) . end ( ) ;

5 ++i t ) {

6 i f CHANGE[ i t−>source ( ) ] {

7 #Region (RID 2 : )

8 #Assoc i a t e ver tex V[ j ]

9 path_value = min ( path_value , i t−>source ( ) . va lue + i t−>weight ) ;

10 #~Region (RID 2 : )

11 }

12 }

13 i f path_value != v . va lue {

14 CHANGE[ v . id ] = true ;

15 v . va lue = path_value

16 } e l s e CHANGE[ v . id ] = f a l s e ;

17 }

Figure 3.4: Data-centric profiling of SSSP algorithm for measuring redundancy.

3.3.2 Analyzing via #ObjectClass.

Next we illustrate how the object classes created in Figure 2.15, HIGHDEGREE

and LOWDEGREE, can be helpful for debugging performance. If the collected information

indicates that a significant fraction of time is spent on executing region 1 for high degree

vertices we can proceed as follows to improve performance.

A developer may look for the presence of redundant operations in executions to

identify opportunities for optimizing the code. The udpate_path() function uses a min
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1 udpate_path (v : ve r tex ) {

2 f o r ( edge_i te ra to r i t = v . out_edges ( ) . begin ( ) ;

3 i t != v . out_edges ( ) . end ( ) ;

4 ++i t )

5 id = id−>ta rg e t ( ) . id ;

6 mutex [ id ] . l o ck ( ) ;

7 i t−>ta rg e t ( ) . va lue = min ( i t−>ta rg e t ( ) . value , v . va lue + i t−>weight ) ;

8 mutex [ id ] . unlock ( ) ;

9 }

Figure 3.5: Modifying SSSP algorithm to eliminate redundancy.

aggregation over incoming values of the vertex. For high degree vertices, this aggrega-

tion can be time consuming. Furthermore, dynamic values of vertices often change infre-

quently, and hence fetching and using those values (using it->source().value) often

becomes a redundant operation. To verify this hypothesis, developers can further annotate

udpate_path() as described in Figure 3.4. Effectively, the annotations capture region 2 only

when the source vertex’s value is changed. If the time spent in this region is small, this would

indicate that a lot of redundant (i.e., wasteful) work is being done. In addition, #Associate

qualifies the profiles with HIGHDEGREE and LOWDEGREE information. This enables

the correlation of the redundancy information with the class of the vertices as follows.

Duration(t, 2, F ilterClass(HIGHDEGREE))

Duration(t, 2, F ilterClass(LOWDEGREE))

The FilterClass function selects frames whose associated objects belong to HIGH-

DEGREE or LOWDEGREE classes. As we can see, high in-degree vertices perform more
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redundant work, and eliminating it would lead to potential speedups. If this indicates that a

significant fraction of time is spent on executing the region for high degree vertices, then we

can be confident that the development effort of changing the algorithm will be worthwhile.

We can modify update_path() as shown in Figure 3.5 to optimize the cost of processing

high degree vertices. Effectively, vertices propagate values forward only when values change

which completely eliminates redundant operations.

Figure 3.6 shows our results of debugging for redundant computations using the

LJ input graph. Since SSSP, SSWP and BFS rely on selection functions like min() and

max() which typically choose one of the values, eliminating redundancy that comes from

reading all values (instead of just some of the values) can improve their performance. The

first row of plots show the relative time spent on redundant computations based on the first

Duration query in this sub-section. As we can see, all three algorithms spend time in

performing redundant computation by reading all unchanged values for min() and max()

operation. Redundancy is higher for SSSP and SSWP and lower for BFS; this is because

BFS performs fewer computations compared to SSSP and SSWP such that the entire graph

is visited only once, and hence, most of the traversal is necessary. To eliminate redundant

computations, we incorporated the optimization based on Figure 3.5 which improved the

overall performance by 1.36× to 1.9×.

Note that the above redundancy removal optimization comes at a cost of using

mutex locks to perform updates and hence, the next step is to understand the overheads

induced by mutex locks to weigh the potential benefits that can be achieved by replacing

them with lower-level atomic min()/max() operations. For this, we performed similar
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Figure 3.6: Redundancy measures and lock overhead times for the LiveJournal graph using
push/pull based updates. In the first row: box heights show the amount of time spent
performing redundant updates per thread, normalized to the thread execution time using
the pull method. In the second row: box heights show the amount of time spent acquiring
locks per thread, normalized to the thread execution time using the push method.

analysis using ObjectClass to capture the relative duration spent on lock acquisitions. The

bottom row in Figure 3.6 shows the relative duration spent on lock acquisition. As we

can see, the lock overheads for BFS are higher; this means, replacing locks with atomic

operations (based on compare-and-swap instruction) can further accelerate BFS.

The trade off in using ObjectClass is that the correct threshold for high degree

must be known before hand. If it is not known, directly annotating the degree information

will help since during query analysis the user can try different ranges without rerunning the

profiling. On the other hand, debugging is an iterative process. As in other case studies

we analyze the program with a series of queries of decreasing granularity. The first queries

determine whether a possible problem exists, and further refined queries provide details

about possible causes and solutions.
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3.4 Related Work

Our work is not the first to recognize the role that data plays in the diagnosis of

performance problems.

In [12, 38] the authors present a Java based profiler for detecting lock contention

based upon the free lunch metric for critical section pressure. It is defined as the ratio of the

total time spent waiting for a lock, divided by the total time spent executing in the critical

section associated with that lock. The data-centric techniques outlined in this section could

be used to measure similar properties.

In [43], Yu et al. present a system for identifying performance problems in multi-

threaded programs using execution traces. It examines complications caused by propagation

of cost via functions calls and lock contention. One of their primary concerns is locating

the causes of problems which may be located at any number of layers in a complex system.

Our queries are well suited to handling this type of complexity since they make no decisions

about the regions of interest ahead of time.

3.5 Summary

In this chapter, we presented our query language, which allows programmers to

calculate a variety of interesting metrics over CSPs. We showed how our query language

could be used to diagnose and fix performance problems in the Parsec benchmark suite,

achieving 36% and 17% speedups on two of the benchmarks. We also showed how our data-

centric queries could be used to accurately measure and optimize the load balancing in a

parallel graph processing system. In the next chapter, we will examine the performance
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characteristics and accuracy of CSPs.
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Chapter 4

Shared-Memory Platform:

Implementation and Evaluation

In the previous chapters, we presented our annotation language, profile format, and

query language, and showed how they can be used in concert to analyze the performance of

parallel programs. In this chapter, we dive into the details of the implementation of CSPs

on shared-memory platforms which make those analyses possible. We begin by discussing

how to capture timestamps while meeting our goals of low overhead and intrusion. We then

present experiments on real-world programs which assess the overhead of CSPs. Finally, we

present experiments which test the accuracy of CSPs.

4.1 Capturing Timestamps

We generate timestamps using RDTSCP instruction available on modern x86

based architectures [1]. This instruction reads the value of the timestamp counter register,
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Program %Time
blackscholes 0.0000459
bodytrack 1.5
canneal 0.331
dedup 14.9
facesim 0.849
ferret 0.125
fluidanimate 0.0782
raytrace 0.0295
streamcluster 1.64
swaptions 0.00000353
vips 0.556
x264 0.676

Figure 4.1: Percentage of total execution time attributable to frames with duration less than
44,000 cycles.

which holds the number of cycles that have elapsed since the processor was last restarted.

It ensures that all instructions that come before it have been executed before it reads the

timestamp counter, and the values that are read are guaranteed to be monotonically in-

creasing. RDTSCP instruction has two benefits. First, since it is a single instruction, it

is much faster than a typical standard library time gathering function. Second, it measures

time in terms of cycles. There is one issue however – since each core of the processor has a

separate timestamp counter, and these timestamp counters are not synchronized, there can

be inaccuracy in the measured frame durations. If this inaccuracy is too large, it can lead

to observing a different event order, which will result in frames showing up that did not

actually occur. We show that this inaccuracy is too small to have any meaningful impact

on information collected and inferences made.

Using the approach proposed in [44], we measured the drift ∆ between the times-

tamp counters of a pair of cores on the same socket and on different sockets of the machine

used. ∆, computed as a range, was found to be [0, 24] and [0, 44] cycles respectively for
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intra-socket and inter-socket cases. Consider a frame that starts at time S on one core and

finishes at time F on another core. Since the times F and S are determined by RDTSCP

using different counters, the absolute error in the measured frame duration is ∆/(F − S).

For this error to be less than 0.1% of the frame duration, and assuming worst case ∆ of

44 cycles, the frame duration should be > 44,000 cycles. That is, all frames with measured

duration of ≤ 44,000 cycles can have > 0.1% error. In Figure 4.1, for Parsec programs

instrumented to detect waiting times at barriers and conditional variables, %Time is the

percentage of execution time spent in frames smaller than 44,000 cycles. We see, excluding

dedup where a large number of active threads in pipeline stages transition between regions,

these frames represent less than 2% of the total execution time, i.e. frames representing over

98% of the execution have error < 0.1% of their durations.

4.2 Overhead of Capturing CSPs

To measure the time and space overhead of CSPs, we performed a realistic analysis

of twelve out of the thirteen benchmarks from the Parsec benchmark suite (all of the bench-

marks which included pthreads parallelizations.) We created a histogram of all threads

showing the their total time broken down into waiting time and running time. For code

regions we chose waits on condition variables and barriers, as well as the entry function

for each thread. For each thread t, we determined the total time by evaluating the query

Duration(t, entryt), where entryt is the entry function for thread t. We determined the

waiting time by evaluating the query Duration(t, w), where w is the static region ID cor-

responding to the barrier and condition waits. This analysis is typical of a first step one
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blackscholes bodytrack canneal dedup facesim ferret

fluidanimate raytrace streamcluster swaptions vips x264
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Figure 4.2: Execution time for each thread divided into wait time (gold) and total time
(blue), normalized wrt the main thread.

might take in analyzing the runtime behavior of a parallel program, since it gives a rough

idea of which threads are doing the most work and how efficiently that work is parallelized.

Our experiments were conducted on a Dell Poweredge T410, having two 2.27GHz quad core

Intel Xeon E5607 processors (no hyperthreading) for a total of 8 physical cores with 32GB

of RAM. For all benchmarks, native inputs (the largest available) were used, and a thread

count of 8 was used in the launch options.

In Figure 4.2 the blue regions correspond to total time, and gold regions correspond

to waiting time. All measurements are normalized with respect to the total execution time

of the main thread. About half of the benchmarks show very little gold, suggesting they are

efficiently parallelized and require little or no waiting. The others have waiting times from

15% to 40%, suggesting that they are harder to efficiently parallelize. Of particular interest

are streamcluster and x264, which employ dynamic parallelization, launching 49 and 1024

threads respectively. Neither exhibit large waiting times.

Figure 4.3 shows the time overhead. In five out of the twelve cases, the time

overhead was within the variance of the unmodified runtime. In six of the remaining seven
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Benchmark Min (+prof) Max (+prof) Avg (+prof)
blackscholes 60.50 (-0.69) 62.61 (+0.61) 61.13 (-0.22)
bodytrack 73.27 (+0.21) 76.57 (-1.91) 74.07 (-0.11)
canneal 94.11 (+2.78) 100.67 (+4.05) 97.93 (+2.33)
dedup 12.22 (+0.87) 13.37 (+0.05) 12.78 (+0.45)
facesim 189.91 (+2.74) 199.28 (+2.93) 193.30 (+1.77)
ferret 76.54 (-0.18) 77.14 (+0.06) 76.86 (+0.03)
fluidanimate 95.42 (+11.26) 123.17 (+4.74) 110.61 (+1.95)
raytrace 103.91 (-0.15) 107.77 (-1.00) 105.80 (-0.51)
streamcluster 107.88 (+2.21) 111.08 (+0.41) 109.48 (+1.38)
swaptions 50.86 (-0.09) 51.21 (-0.04) 51.02 (-0.09)
vips 23.07 (+0.06) 26.41 (-1.12) 24.26 (-0.47)
x264 22.27 (+0.91) 29.35 (+2.82) 24.19 (+3.14)

Figure 4.3: Time overhead in seconds. Numbers in parentheses represent the overhead of
profiling.

cases, the time overhead was less than 5%. The x264 benchmark has high overhead due to

large number of threads launched. Since our instrumentation gathers thread local buffers

that must be written to disk upon thread termination, a parallelization that launches a

large number of threads with relatively little work causes a large serial overhead when those

buffers are saved to disk. Even in this case, the runtime overhead is modest.

Figure 4.4 shows the space overhead. In nine out of twelve benchmarks, the space

overhead is less than 10%. Two of the remaining three have overhead less than 25%. The

highest overhead was exhibited by the bodytrack benchmark at 45.75%. These overheads

are acceptable as experiments were conducted by holding all generated events in memory

and only writing them out to disk at thread termination. If peak memory consumption

becomes a problem, then we can periodically flush the thread local buffers to disk.

Finally, Figure 4.5 shows the size of the log files generated. Only one benchmark

(facesim) had log files with an average size in excess of one MB. These small log files, as

55



Benchmark Min (+prof) Max (+prof) Avg (+prof)
blackscholes 627048 (-12) 627088 (+1872) 627069 (+414)
bodytrack 33872 (+13764) 33948 (+16072) 33912 (+15516)
canneal 962436 (+3560) 968508 (-296) 964042 (+2902)
dedup 1642340 (+93244) 1760540 (+2210) 1717930 (+32310)
facesim 324576 (+29124) 329840 (+34948) 326874 (+30664)
ferret 117992 (+4920) 130232 (-2836) 121317 (+4443)
fluidanimate 693100 (+3256) 693304 (+5324) 693192 (+4482)
raytrace 1161224 (252) 1162460 (-270) 1161950 (-160)
streamcluster 113504 (+24984) 117896 (+23992) 114980 (+24977)
swaptions 6220 (-20) 8220 (-44) 7715 (-953)
vips 61432 (+7276) 65808 (+7564) 63171 (+7609)
x264 299528 (+6604) 303408 (+10912) 302154 (+8320)

Figure 4.4: Peak memory overhead in Kilobytes.

Benchmark Min (+prof) Max (+prof) Avg (+prof)
blackscholes 627048 (-12) 627088 (+1872) 627069 (+414)
bodytrack 33872 (+13764) 33948 (+16072) 33912 (+15516)
canneal 962436 (+3560) 968508 (-296) 964042 (+2902)
dedup 1642340 (+93244) 1760540 (+2210) 1717930 (+32310)
facesim 324576 (+29124) 329840 (+34948) 326874 (+30664)
ferret 117992 (+4920) 130232 (-2836) 121317 (+4443)
fluidanimate 693100 (+3256) 693304 (+5324) 693192 (+4482)
raytrace 1161224 (+252) 1162460 (-270) 1161950 (-160)
streamcluster 113504 (+24984) 117896 (+23992) 114980 (+24977)
swaptions 6220 (-20) 8220 (-44) 7715 (-953)
vips 61432 (+7276) 65808 (+7564) 63171 (+7609)
x264 299528 (+6604) 303408 (+10912) 302154 (+8320)

Figure 4.5: Log file sizes in Kilobytes.
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< 1000 < 10000 < 100000 < 1000000

800857 247680 38 1

Table 4.1: Sizes of empty regions, in cycles.

well as the very small execution time overhead and modest memory overhead are strong

evidence of the efficiency of CSPs for the analysis of real world, long running multi-threaded

programs.

In addition to the above, we also performed an experiment designed to directly

quantify the impact of the profiling code on the size of the measured frames. We did this

by repeatedly measuring the size of an empty region. We use the size of this region as an

estimate of the profiling overhead for a single frame. We used the same experimental setup

as before, and measured the size of an empty region 220 times. The breakdown of the sizes

of these regions is given in the following table:

The figures listed in this table do not overlap. In other words, the second column

does not include all regions included in the first column. 76.38% of the regions that were

measured had values less than 1000, and 99.99% had values that were less than 10000. The

39 outlier regions were due to two factors: first, expansion of the thread local buffer that

stores the events, and second, context switching by the operating system.

To put these figures in context, we examined the frames that we captured while

running the Parsec benchmarks in terms of these numbers. Specifically, we looked at the

contribution of frames less than these sizes to the overall waiting time. In contrast to the

total time overhead figure above, this gives a more accurate picture of the frames of interest

are affected (in this case, those in which some thread is waiting). The results are summarized
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benchmark % < 1000 % < 10000

blackscholes N/A N/A
bodytrack 0.012 0.275
canneal 0.0063 0.0397
dedup 1.518 3.055
facesim 0.0002 0.236
ferret 0.000 0.006
fluidanimate 0.0056 0.0537
raytrace 0.0005 0.0080
streamcluster 0.9411 6.1688
swaptions N/A N/A
vips 0.0164 0.3157
x264 0.3326 1.4250

Table 4.2: Ratio of time spent in small frames to overall waiting time in Parsec benchmarks.

in table 4.2.

The first column lists the percentage of overall waiting time contributed by frames

whose duration was less than 1000. The second column does the same for frames whose

values were less than 10000. The highest overhead was exhibited by the streamcluster

benchmark at just over 6%. This is because very little waiting occurred in this benchmark,

and so the frames in which waiting occurred were small relative to the size of the instrumen-

tation overhead. This case, in which small regions need to be measured, is where our tool

(and indeed any tool which uses instrumentation) will have the least accurate results. The

impact of this is mitigated by the tendency to focus on large regions during performance

debugging, since those are typically the places where optimizations will have the largest

impact.
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4.3 Accuracy of Captured Behaviors

If profiling changes the behavior of the program too drastically, then the corre-

sponding measurements will not be useful. To test the accuracy of our profiler, we studied

three microbenchmarks with predictable behavior: one to study contention, another to study

software pipelining, and a final one to study straggler threads. We introduce the queries

needed to understand performance behaviors of these common parallel programming pat-

terns. The control over their operating parameters allows us to effectively study CSP’s

accuracy.

4.3.1 Accuracy of Contention Measurement

Contention for shared resources is one of the primary factors limiting achievable

parallelism. A common programming pattern when dealing with shared resources is to use

locks to provide mutual exclusion. However, waiting on locks to shared resources can lead to

significant performance degradation. Using CSPs, one can easily measure the contention for

shared resources by marking the associated lock acquisition as a code region, and then issuing

any number of interesting queries. For example, one might be interested in the cumulative

waiting time of each thread on the lock. If we represent the lock acquisition code region

as L, then the above measure for a thread t is given by the query Duration((t, L)). If one

is interested in not only which threads experience long wait times, but also which threads

cause those threads to wait, then this can be easily accomplished as well. If we assume

that the critical section itself is marked as code region C, then the length of time which

thread t waited on lock L due to thread t′ is given by the query Duration((t, L) ∧ (t′, C)).
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This analysis also generalizes to other synchronization primitives such as semaphores and

reader/writer locks.

This microbenchmark tests the ability of our profiler to accurately measure con-

tention among threads. It consists of a number of threads which attempt to acquire a shared

global mutex, simulate some work while holding it, and then release the mutex. We simulate

the work by each thread incrementing a local variable some number of times (32K in our

experiments). Each thread calls this function 128 times, and a barrier is established at the

start of the function to ensure that all iterations are performed in lock step. The work

simulation is performed identically to the straggler case, and for this benchmark we used

a work degree of 32768 (215) and an iteration count of 128. We measure the contention as

the cumulative amount of time spent waiting on the mutex. For instance, if there are two

threads each doing W work, then the ideal measure of the contention would be W , because

the second thread has to wait for the first to complete its work before it can acquire the

mutex and begin. In general, for T threads, the ideal measurement of contention in terms

of work W is as follows:

(T − 1)W + (T − 2)W + ...+W = W ·
T−1∑
T=0

T = W · (T )(T − 1)

2
.

If M is the code region representing the acquisition of the global mutex, then the

query to measure the degree of contention as described above is given by Area(∃t : (t,M)).

We ran this benchmark for between 1 and 16 threads, and plotted the results in Figure 4.6.

In this figure, the x-axis marks the number of threads, and the y-axis marks the cumulative
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Figure 4.6: Contention variation.

time spent in acquiring the mutex. The crosses represent measured values and the curve

represents the best quadratic fit. As Figure 4.6 shows, measured results conform quite

closely to the expected quadratic distribution.

To illustrate the use of this contention query, we computed the total waiting time

among application threads of the bodytrack benchmark from Parsec suite – the program

was run with 16 threads and waiting was measured by annotating calls to pthread_cond_wait,

pthread_barrier_wait, and pthread_mutex_lock. The contention was found to be

quite high. In an attempt to alleviate this high contention, we reduced the number of threads

by half, and measured the contention again. We found that the waiting time was reduced

to 31.5% of original which translated into 2% reduction in overall execution time.
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4.3.2 Accuracy of Pipeline Behavior

Software pipelining is commonly used for parallelization. In a typical implementa-

tion of a software pipeline, each pipeline stage is represented by a thread pool and a function

which implements the work of that stage. Data is passed from one stage to the next, and

threads in a pool cooperate to transform that data in some way and pass it along to the

next stage. Synchronization between stages occurs during this hand off of data. Since each

stage is data-dependent on the one before it, the overall performance of the pipeline is lim-

ited by the slowest stage. Analyzing these types of applications using traditional tools can

be challenging since most of those see threads as individual actors instead of cooperating

entities. CSP queries make this type of aggregation very convenient, as shown below.

We characterize the performance of a software pipeline by measuring the amount

of time that each stage is caused to wait due to every other stage. For a pipeline with n

stages, this can be summarized in what we call a waiting matrix :

Wm,n =



w1,1 w1,2 · · · w1,n

w2,1 w2,2 · · · w2,n

...
...

. . .
...

wm,1 wm,2 · · · wm,n


in which the entry wi,j denotes the amount of time stage i spent waiting for stage j. These

quantities can be calculated in a straightforward manner using CSPs. Let threads(k) be the

threads that implement stage k of the pipeline (i.e., threads(1) are the threads belonging

to the pool of the first stage). Furthermore, let B be the pipeline stage barrier for stage i,
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and let P be the work region for stage j. The query which calculates this quantity has two

parts. The first part specifies that stage i has completed. Another way to say this is that

all of the threads which belong to stage i are waiting at the pipeline barrier. This query can

be written as:

Duration(∀t ∈ threads(i) : (t, B))

The second part specifies that pipeline stage j has not completed. Another way

of saying this is that there is at least one thread from stage j which is still executing that

stage region. This query can be written as:

Duration(∃t ∈ threads(j) : (t, P ))

The final query is just a conjunction of these two queries, or:

Duration(∀t ∈ threads(i) : (t, B) ∧ ∀t′ ∈ threads(j) : (t′, P ))

In this microbenchmark, we set up a pipeline with 3 stages. Each stage does some

amount of work, which is split among a set of threads. The amount of work, the number of

threads per stage, and the distribution of the work among the threads of the pipeline stage

is configurable via command line arguments. We simulate the passing of data between the

stages of the pipeline by having each of the stages synchronize with each other. That is, a

stage cannot proceed to the next iteration until all other stages have completed.

In experiments related to this microbenchmark, we use our profiler to create a

waiting matrix as defined above, with the entries normalized with respect to the stage
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length execution time. We allocate three threads to the first stage, three threads to the

second stage, and two threads to the third stage.

– Balanced Stages. For our first experiment, we gave each thread in each stage equal

amount of work (230 increments). For any waiting matrix, we expect the diagonal entries

to be exactly zero since it is not possible for a pipeline stage to be waiting for itself. For

the other entries of this matrix, we expect the values to be close to zero, since the work is

balanced across stages. The waiting matrix (W ), and the expected waiting matrix (W) for

this experiment are shown below. We observe the measured values are close to expected

values.

W =


0 0 0

0 0 0

0 0 0

 W =


0 0 6.41× 10−2

8.96× 10−3 0 7.3× 10−2

0 0 0



– Single Stage Imbalance. For our second experiment, we removed the workload for

the threads in the third stage of the pipeline. Since the threads in this stage now have no

work, we expect the third row of the resulting matrix to have values very close to one. The

resulting waiting matrix is given below. Once again we can see the measured values are very

close to expected values.

W =


0 0 0

0 0 0

1 1 0

 W =


0 8.57× 10−4 0

0 0 0

9.99× 10−1 1 0


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– Double Stage Imbalance. For our final experiment, we removed the workload for the

threads in the second stage as well. We now expect to see very high values forW2,1 andW3,1,

but very low values for the other entries in these rows. As in previous cases, the resulting

waiting matrix is shown below and conforms closely with our expectations.

W =


0 0 0

1 0 0

1 0 0

 W =


0 0 0

9.98× 10−1 0 0

9.99× 10−1 0 0


As an example of performance tuning using a waiting matrix, let us consider the

ferret program from Parsec suite that uses a 6 stage pipeline. The middle four stages

have an equal number of threads. We captured the waiting matrix when running the default

version using 4 threads each for the middle stages. The waiting matrix indicates that only the

rank stage experiences no waiting. Therefore we increased the number of threads of this

stage to 8 threads which yielded 1.73× speedup and thus a better performing configuration.

4.3.3 Accuracy of Straggler Degrees

Next we show how we can use the frame query language to detect and identify

straggler threads. Let L and B denote the regions corresponding to some loop and a bar-

rier at the end of each iteration of that loop respectively. The presence of a straggler is

indicated by frames where one thread is in region L while all other threads are in region

B. The performance impact of the straggler can be characterized by computing the ratio

of StagglerDuration and LoopDuration which represent the time all other threads spend

waiting at the barrier for the straggler thread and the total time spent on executing the
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entire loop respectively. We denote this as StragglerDegree whose value falls between 0

and 1 with closer to one being worse:

LoopDuration = Duration(∃t : (t, L))

StragglerDuration = Duration(∃1t : (t, L) ∧ ∀t′ 6= t : (t′, B))

StragglerDegree =
StragglerDuration
LoopDuration

There can be multiple causes for the presence of a straggler. (1) A thread may

be assigned relatively too much work. (2) The code representing the work preceding the

barrier can exhibit a great deal of variability in its execution time and thus different threads

manifest as stragglers during different executions of the barrier. To determine the actual

scenario we can identify the StragglerDegree for each thread t using concretization below:

StragglerDurationt = Duration((t, L) ∧ ∀t′ 6= t : (t′, B))

StragglerDegreet =
StragglerDurationt

LoopDuration

This microbenchmark is structured around a single function which executes a loop

for a predetermined number of iterations. The body of this loop contains a call to a function

which simulates work by incrementing a local variable w times. Each iteration of the loop is

guarded at the beginning and the end by a barrier. This ensures that no thread is executing

the work region if there is some other thread in a different iteration of the loop. This function

is executed concurrently by 8 threads. In each experiment we mark the work function and

loop barriers as code regions, spawn 8 threads, and perform the straggler analysis as above.
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Tid StragglerDegree
1 0.124939
2 0.123676
3 0.123717
4 0.123647
5 0.126137
6 0.124745
7 0.124485
8 0.125010

Figure 4.7: Small Workload Even Distribution.

Tid StragglerDegree
1 0.000172
2 0.000191
3 0.000139
4 0.000151
5 0.000164
6 0.000162
7 0.000179
8 0.000168

Figure 4.8: Even Work Distribution.

– Small Workload Evenly Distributed In this experiment we give each of the threads

an equal but very small amount of work. We expect each thread to be able to finish its work

before the next thread is released from the barrier and begins its work.

StragglerDegree =
w

8w
≈ 1

8

Since we expect no bias in the order in which the threads are released from the

barrier, we expect the threads to have approximately the above degree. The results of this

experiment are shown in Figure 4.7. The above table confirms that measured straggler

degrees for all threads are close to the expected value.
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Tid StragglerDegree
1 0.497517
2 0.000000
3 0.000000
4 0.000000
5 0.000000
6 0.000000
7 0.000000
8 0.000000

Figure 4.9: Uneven Distribution.

– Even Work Distribution. In this experiment we increase the amount of work given to

each thread so that it is large relative to the amount of time it takes to exit the barrier. This

should lead to a situation where threads do almost all their work concurrently. Assuming

there is no scheduling bias, then all of the threads should arrive at the end barrier at about

the same time. Whichever thread arrives last will incur a straggler penalty equivalent to

however long it remains as the only thread in the loop. We expect the straggler score for

this last thread to be:

StragglerDegree = x/w ≈ 0

Furthermore, as the work size increases, we expect this degree to approach zero.

We expect no bias amongst the threads as to which arrives last on any given iteration, and

so we expect to see every thread with a straggler degree close to zero. The measured results

of this experiment, shown in Figure 4.8, are as expected.

– Uneven Work Distribution. In our final experiment, we induce a straggler problem

by doubling the work that the last thread performs. In this case, we expect all but the last
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thread to arrive at the barrier with about w work still left for the last thread to perform.

We expect the straggler degree to be:

StragglerDegree = w/2w ≈ 1/2

This time, since the work is not evenly distributed, we expect to see the same

thread as the straggler every time. By extension, we expect one thread to have a straggler

degree of about one half, and the rest to have a score of zero. The measured results of this

experiment, shown in Figure 4.9, are close to expected results.

As an example of using this query, let us examine the swaptions benchmark from

Parsec. In an older version of Parsec, this benchmark was arranged so that work was not

ideally distributed amongst the worker threads [34]. When the native input set containing

128 work items is split amongst 13 threads, 12 of the threads are given 9 items, and the

13th is given 20 items. This leads to one of the threads having a distinctly high straggler

degree as evaluated using the above query. When we amend the work distribution so that

11 threads are given 10 items and 2 threads are given 9 items, we realize a speedup of 1.45×.

4.4 Related Work

There are tools that make use of sampling and hardware performance counters

to provide a highly scalable way to analyze concurrent programs [4, 36, 18]. There are a

few challenges with this approach. The first is that of relating the performance statistics

(such as cache misses) to source level entities. The second is in interpreting the fine grained
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measurements to locate and explain performance problems.

HPCToolkit [4] uses hardware sampling techniques to collect information about

many low level events, and then attributes those events to program entities such as loops and

procedures. It also provides an interface that allows these metrics to be combined into new

metrics for interactive analysis. The main benefit of this approach is that it is highly scalable,

and supports detailed hardware level measurements. [28] provides similar measurements in

a data-centric manner. Tmon [24] is a tool for measuring program bottlenecks induced by

various forms of excessive waiting. It primarily constructs four things. The first is a waiting

graph, which indicates how much time each thread spent waiting for every other thread. The

second is a histogram of the waiting queue lengths for each synchronization variable, which

is used to determine synchronization variables which are the cause of excessive waiting. The

third is a similar histogram for the ready queue, which gives a measure of the contention for

the CPU. The final thing they measure is a histogram of the number of wakeups associated

with each condition variable, which when combined with the number of total waits on that

condition variable, gives a measure of what they call "semi-busy-waiting". The main benefit

of hardware performance counters based approaches is their scalability. Since hardware

performance counters are (as their name suggests) implemented in hardware, their cost is

effectively zero. This strength also begets one of their biggest weaknesses: inflexibility.

Other works have considered software approaches for limiting the cost of perfor-

mance profiling. Log2 [13] system reduces the cost of logging via a sophisticated filtering

system which is configured and adapted to discard events that are unlikely to be useful. We

limit logging of events by: allowing user to select regions; and conditional logging.
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4.5 Summary

In this chapter, we presented the implementation of CSPs on shared memory ma-

chines. By making use of the very common timestamp counter feature in modern x86

machines, CSPs are able to capture profiling information with very little overhead: typi-

cally less than 5% in execution time and 46% in peak memory consumption. Additionally,

using the timestamp counter imparts zero inter-thread communication overhead since there

is a timestamp counter local to each core of the machine. Using carefully crafted synthetic

microbenchmarks, we showed that the information computed from CSPs is highly accurate

across a diverse set of circumstances. In conclusion, CSPs are both highly efficient and

highly accurate.
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Chapter 5

Distributed Platform: The FreeZer

Timestamp Conversion Algorithm

A flexible profiler should not be restricted to a single threading library or platform.

Thus far we have presented an implementation of CSPs only for shared-memory multicore

machines. In the next two chapters, we show how to generalize CSPs so that they can work

with distributed systems as well.

Timestamps play a fundamental role in the construction of CSPs. Without them,

we would not be able to determine frame boundaries or even order events in the system.

A distributed system poses a challenge for systems that use timestamps, since they have

multiple clocks. Two approaches are possible: either use a global clock (expensive) or use

local clocks and deal with the inconsistencies that involves. The algorithms for dealing with

these inconsistencies are known as timestamp synchronization algorithms. In this chapter,

we present the timestamp conversion problem in detail, show that existing algorithms are
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inadequate for the construction of CSPs, and present our new algorithm called FreeZer for

timestamp synchronization.

5.1 Timestamp Conversion Problem

Performance analysis of distributed programs involves capturing relevant program

events along with their timing information to deduce underlying performance bottlenecks.

While timing information can be easily gathered across events within a single machine,

absence of a global clock in any distributed setting makes it challenging to accurately capture

the timing information for events spanning across multiple machines.

To facilitate comparison across event timings that are captured locally on different

machines, we first convert them to a common timeline and then directly compare these

converted times. We first formally define the timestamp conversion process, and then discuss

the challenges involved in accurately converting event timestamps.

Distributed Timing Model Let N = {n0, n1, ..., nk} be the set of nodes in a distributed

system with k compute nodes and let C = {c0, c1, ..., ck} be the set of clocks such that ∀ci ∈

C, ci is the clock for ni. With absence of a global clock, the clocks in C are not synchronized

with each other and operate at different frequencies. Today’s multicore machines have a

separate clock associated with each core, hence, each core becomes a separate node in our

distributed system. However, this model can be used for distributed settings where all cores

within a socket or all cores within a machine rely on single synchronized clock, by simply

modeling each socket or each machine as a node in the distributed system.

Let TS = {ts0, ts1, ..., tsk} be the captured timestamps such that ∀tsi ∈ TS, tsi is
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captured on ci in units of clock cycles. Let rt(tsi) be an abstract oracle that maps tsi to

the real time. Since the captured timestamps are relative to their respective local epochs,

∀tsi, tsj ∈ TS, tsi may or may not be equal to tsj even though rt(tsi) = rt(tsj). Timestamp

conversion is the process to convert all the local timestamps to a common base so that they

become directly comparable. In particular, a function conv(tsi) that converts any given

timestamp to a common base must achieve the following ∀ tsi, tsj ∈ TS:

rt(tsi)⊕ rt(tsj)↔ conv(tsi)⊕ conv(tsj)

(5.1)

|rt(tsi)− rt(tsj)| = |rt(conv(tsi))− rt(conv(tsj))|

where ⊕ ∈ {=, 6=, >,<,≥,≤}. The first relation ensures that the ordering of timestamps

becomes comparable after conversion while the second relation ensures that the timing

information is preserved across the converted timestamps. For simplicity, we assume that

our common base is provided by n0, i.e., ∀tsi ∈ TS \{t0}, conv(tsi) converts the tsi in terms

of c0 such that conv(tsi) is directly comparable to ts0. To convert tsi in terms of c0, we

need two measures:

1. Frequencies of ci and c0, referred to as fr(ci) and fr(c0) respectively.

2. Special timestamps, zi and z0 that are captured on ci and c0 respectively at the same

moment of real time. We call these special timestamps as zeros.

With the above measures, tsi can be converted in terms of c0 using conv(tsi) defined as:

conv(tsi) = (tsi − zi)×
fr(c0)

fr(ci)
+ z0 (5.2)
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Problem The main challenge is to compute fr(ci) and zi measures with high precision to

ensure that the relations in Eq. 5.1 are maintained correctly. While accurate estimates can

be computed when low-precision frequency and zero measures are adequate, the difficulty

increases quickly with rising precision requirement.

Our Approach Since in practice we cannot fully control the accuracy of frequency and

zero measures to a precision high enough that guarantees correct comparison of timestamps,

we tightly bound the inaccuracies in these estimates so that the timestamp conversion can

provide strong guarantees for converted values. This means, fr(ci) and zi are now in interval

domains with strong lower and upper bounds and conv(tsi) converts tsi from time domain

to interval domain to preserve strong bounds over the converted timestamp value, hence

capturing conversion inaccuracies.

5.2 FreeZer: Bounded Frequency & Zero Estimation

In this section, we analyze the inaccuracies involved in estimating frequency and

zero measures, and develop solutions to tightly bound the estimates for strong profiling

guarantees.

Algorithm 1 Computing absolute frequency of ci
1: ts1 ← timestamp( ) // e.g., using x86 TSC

2: sleep(t)

3: ts2 ← timestamp( )

4: fi(t)← (ts2 − ts1)/t
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5.2.1 Estimating Relative Frequencies

A straightforward way to compute frequency estimates is to individually determine

the absolute frequency at which each clock is operating by counting the number of cycles

elapsed for a predetermined amount of time, as shown in Algorithm 1. Here counting cycles

can be achieved using local x86 timestamp counters (TSC) – the use of the invariant TSC,

widely available on modern x86 Intel and AMD systems, provides a constant frequency time

source even in presence of dynamic frequency scaling. While this solution may suffice for

capturing less accurate frequency estimates, computing highly accurate frequencies requires

precisely measuring a given amount of time. Unfortunately, exact measurements are im-

possible due to the inherent non-determinism in today’s computing systems. For instance,

the sleep commands only guarantee suspension for at least (and not exactly) the amount

of time provided by the user. Furthermore, there is no guarantee of the closeness of the

amount of time that is actually slept to the amount of time that is requested. Although in-

creasing t to a high enough value in Algorithm 1 can arbitrarily mitigate these inaccuracies,

determining a sufficient value of t for some user defined tolerance is infeasible for reasons

already discussed.

Since we want to compare the timestamps of distributed events (i.e., timestamps

captured across on clocks), we aim to compute a relative measure between multiple clocks.

Comparing frequencies of multiple clocks can be achieved by directly computing relative

frequencies between those clocks. Furthermore, the computation for relative frequencies can

be carefully controlled to provide stronger guarantees which become useful to capture the

deterministic error bound. By carefully computing relative instead of absolute frequencies,
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we can not only arbitrarily mitigate the sources of inaccuracy, but we can do so in a way

that bounds the accuracy of our estimate.

Similar to computing absolute frequencies, a simple way to compute relative fre-

quencies across a pair of clocks is to measure the number of cycles spent for the same amount

of real time t on those clocks (see Algorithm 2). In this case, fj→i(t) (computed on line

5) is the relative frequency to convert durations captured on cj to the units of ci. We can

capture the inaccuracies introduced by the non-deterministic factors as follows:

fj→i(t) =
fr(ci)× (t+ a)

fr(cj)× (t+ b)
(5.3)

where fr(ci) is the frequency of clock i, and variables a and b represent the inaccuracies

introduced by the sleep calls (i.e., a call to sleep(t) will introduce a delay of t+a seconds

for some positive value of a). We can carefully eliminate the effect of inaccuracies by taking

the limit as t tends to ∞ as described next. Let A and B be positive constants such that

a < A and b < B. Consider continuous functions f+j→i and f
−
j→i as defined below:

Algorithm 2 Computing relative frequency of ci and cj using their absolute frequencies

ci

1: ts1 ← timestamp( )

2: sleep(t)

3: ts2 ← timestamp( )

4: diffi ← ts2 − ts1

cj

1: ts1 ← timestamp( )

2: sleep(t)

3: ts2 ← timestamp( )

4: diffj ← ts2 − ts1

5: fj→i(t)← diffi / diffj
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f+j→i(t) =
fr(ci)× (t+A)

fr(cj)(t)

∣∣∣∣ f−j→i(t) =
fr(ci)(t)

fr(cj)× (t+B)

By L’Hopital’s rule, we have:

lim
x→∞

f+j→i(x) = lim
x→∞

f−j→i(x) =
fr(ci)

fr(cj)

Since f−j→i(t) ≤ fj→i(t) ≤ f+j→i(t), we can conclude that:

lim
t→∞

fj→i(t) =
fr(ci)

fr(cj)

Hence, the impact of inaccuracies when calculating relative frequencies can be

eliminated by increasing t to a very high value (as is the case with absolute frequencies).

While exact relative frequencies cannot be practically achieved, we can determine the rate at

which relative frequencies become accurate as t increases. The error in a frequency estimate

can be computed based on Eq. 5.3 as:

Error =
fr(ci)× (t+ a)

fr(cj)× (t+ b)
− fr(ci)

fr(cj)

To achieve frequency estimates that are accurate within a tolerance T , we have:

fr(ci)× (t+ a)

fr(cj)× (t+ b)
− fr(ci)

fr(cj)
< T

=⇒ t >
1

T
(
fr(ci)

fr(cj)
(a− b))− b

In other words, the length of time that is required to achieve a desired accuracy grows

linearly with desired accuracy.
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Algorithm 3 Bounding relative frequency of ci and cj

by introducing causal dependencies

ci

1: ts1 ← timestamp( )

2: send_to(cj)

3: receive_from(cj)

4: ts2 ← timestamp( )

5: diffi ← ts2 − ts1

6:

cj

1: receive_from(ci)

2: ts1 ← timestamp( )

3: sleep(t)

4: ts2 ← timestamp( )

5: send_to(ci)

6: diffj ← ts2 − ts1

7: fUj→i(t)← diffi / diffj

8: receive_from(cj)

9: ts1 ← timestamp( )

10: sleep(t)

11: ts2 ← timestamp( )

12: send_to(cj)

13: diffi ← ts2 − ts1

8: ts1 ← timestamp( )

9: send_to(ci)

10: receive_from(ci)

11: ts2 ← timestamp( )

12: diffj ← ts2 − ts1

13:

14: fLj→i(t)← diffi / diffj
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Bounding Relative Frequencies Now we show how the error in computed frequency

estimates can be bounded. To determine the accuracy of computed frequency estimates,

we bound the relative frequency to intervals that contain the true relative frequency. The

challenge is to make these intervals as small as possible so that the residual inaccuracies do

not meaningfully impact the profiling results.

The key insight is that instead of trying to measure the same duration on each

clock, we intentionally measure durations which differ in a specific way. In particular, an

upper bound can be computed by measuring a larger interval on the first clock compared to

that on the second clock, and a lower bound can be computed by reversing this procedure,

i.e., by measuring a smaller interval on the first clock compared to that on the second clock.

Hence, we can achieve lower bound fLj→i(t) and upper bound fUj→i(t) defined as follows:

fLj→i(t) =
fr(ci)× t

fr(cj)× (t+ ε)

∣∣∣∣ fUj→i(t) =
fr(ci)× (t+ ε)

fr(cj)× t

fLj→i(t) <fj→i(t) < fUj→i(t)

where ε is an arbitrary variation to increase time intervals (ε > 0). While any positive ε

value can be used to compute fLj→i(t) and fUj→i(t), smaller ε values produce tighter bounds.

The key challenge is to control the timing to ensure that ε gets correctly applied

to the desired clock’s measurement. Hence, we don’t rely on measuring an increased real

time using sleep due to the inherent non-determinism, but we instead achieve this using

appropriate synchronization primitives. In order to ensure the epsilon is applied to the

correct machine, we introduce a causal dependency between the appropriate clock measure-

ments using communication primitives (i.e. send/recv). Algorithm 3 shows how we compute

bounds fLj→i(t) and fUj→i(t).
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With fj→i(t) bounded by fLj→i(t) and fUj→i(t), the error in fj→i(t) is bounded by

fUj→i(t) − fLj→i(t). If we were interested in minimizing the maximum error, we could take

the midpoint of this interval as a point estimate. However, directly using the midpoint will

lose the information about the direction of the error. Hence, instead of using the midpoint

value, we directly use the captured bounds (fLj→i(t) and fUj→i(t)) while processing runtime

profiles to provide strong end-to-end guarantees over profiling results.

5.2.2 Estimating Zeros

To analyze timestamps measured via different clocks, we also need to compute

comparable timestamps across those clocks that capture the same moment in real time.

These comparable timestamps will be used to shift all the remaining timestamps so that

the resulting time scale starts from zero. Hence, we refer to these pairs of comparable

timestamps as zeros.

Algorithm 4 Computing zero for ci and cj using causal dependencies

ci

1: receive_from(cj)

2: ts2 ← timestamp( )

3: send_to(cj)

cj

1: ts1 ← timestamp( )

2: send_to(ci)

3: receive_from(ci)

4: ts3 ← timestamp( )

5: zeroj→i ← <(ts1, ts3), ts2>

Algorithm 4 shows how we can compute zeros across a pair of clocks. We do
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so by trapping a timestamp from one clock between a pair of timestamps taken on the

other clock. To achieve this, we introduce causal dependencies that ensure that ts2 on ci is

captured between ts1 and ts3 on cj . Hence, zeroj→i = <(ts1, ts3), ts2> effectively means:

rt(ts1) < rt(ts2) < rt(ts3)

where rt(tsi) maps tsi to the moment in real time when it was captured. While the zero can

be approximated by picking the midpoint so that it becomes <(ts1 + ts3)/2, ts2>, similar

to relative frequency bounds, we explicitly maintain the bounds for zeros so that they can

be directly used along with relative frequency bounds to provide strong guarantees over

profiling results. The lower bound of the zero (i.e., ts1) is matched with that of relative

frequency (i.e., fLj→i(t)) to achieve a lower bound of the converted timestamp, while the

upper bound of zero (i.e., ts3) is matched with that of relative frequency (i.e., fUj→i(t)) to

achieve an upper bound of the converted timestamp. With both bounded frequencies and

zeros, strong conversion bounds can be provided for all timestamps taken in the system.

5.3 Evaluation of Timestamp Synchronization

In this section we evaluate the accuracy and cost of our timestamp synchronization

method and compare it with the accuracy and costs of existing methods. The experiments

were carried out on a heterogeneous 8-node cluster with a total of 76 cores operating at

800-2,261 MHz and 8-32 GB main memory per node. Each node runs 64-bit Ubuntu 14.04

kernel.
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Figure 5.1: Distribution of maximum error in relative frequency measurements.

Maximum Error - Relative Frequency and Zeros In our first experiment, we sought

to get an idea for how the error in the relative frequency is affected by the relative location

of the clocks in the cluster. To do so, we calculated the relative frequencies of each of the

clocks in our cluster. Measurements were performed for each pair of cores (there are 76

cores spread across 8 machines). We measured the frequencies over a duration of 24 hours

in order to minimize the effects of variance in communication costs. Figure 5.1 shows the

maximum error in terms of the difference between the bounds for our relative frequency

measurements. Since the actual relative frequency can be anywhere within the computed

bounds, we measure the worst case error as the size of the range defined by those bounds.

As we can see, the maximum error is clustered in two regions: (across machines) the causal

dependencies incur a round trip network communication that increases the error; and on

(same machine) the errors for different cores are lower as there is no network overhead.
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Figure 5.2: Increase in relative frequency accuracy with t. Subscript micj indicates core j
on machine i.

While frequency error for cores across different sockets have higher error in some samples

compared to error for those within the socket, the inter-socket communication does not

impact the relative frequency measurements as much.

We validated our claim that length of time required to achieve a desired accuracy

grows linearly with desired accuracy by measuring the maximum error of a relative frequency

as difference of its bounds, i.e., errorj→i = f+j→i(t)− f
−
j→i(t) for varying t. Figure 5.2 shows

that the error drops rapidly and after 12 hours the accuracy increase is extremely small.

Our next experiment measures the distribution of the error sizes among the zero

values calculated over the clocks in our cluster. We calculated the zero between each pair of

clocks in our system, and took the maximum error as the difference between the upper and

lower bounds in the measurement. Figure 5.3 summarizes the results of this experiment.

The plurality of the zero values had an error around 0.7 million cycles, and none of the
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Figure 5.3: Distribution of maximum errors in zero measures.

measurements had zero values greater than 1.6 million cycles. For the gigahertz clocks

present on the machines in our system, the error in the zero measurement is in the millisecond

range.

Algorithm 5 Algorithm for timestamp inversions
Process 1

1: ts1 ← timestamp( )

2: sleep(d)

3: barrier( )

Process 2

1: barrier( )

2: ts2 ← timestamp( )

Inversions due to error If the error in frequency and zeros is larger than the difference

between two causally ordered events in the system, then an inversion will occur. Our next

experiment investigates how far apart these causally related events needed to be before we

stopped witnessing inversions. We used the algorithm from Algorithm 5 to generate pairs of

timestamps which are causally ordered, then we converted the first timestamp to the base
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of the second timestamp and compared them to see if there was an inversion. By inserting

a sleep between the taking of the first timestamp and the waiting at the barrier, we can

separate the timestamps by an arbitrary amount of time. To mitigate the effects of variance

in the sleep function we averaged each of our measurements across 1000 trials. Figure 5.4

shows that the percentage of inversions drops drastically at around the 50 microsecond delay

mark and disappeared completely when the delay exceeded 140 microseconds. Thus, if the

events in a program are separated by more than about 140 microseconds in real time, we

expect the ordering to be correctly inferred.

We further study the impact of error in our measured frequency and zero in Algo-

rithm 5 by computing the number of inversions with respect to the communication delay.

While the barrier() ensures that ts2 is captured after ts1 in real time, we separate the

two timestamps further apart by adding a delay (d in µs) on line 2. Figure 5.4 shows that

the percentage of inversions across 1000 runs starts dropping sharply after 50 µs and fur-
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Figure 5.5: Time & memory consumption to capture events.

thermore, there are no inversions after 140 µs. This is a narrow enough window where very

few (inherently concurrent) events fall that remain unordered in our profiles.

Cost of capturing events The timing information is captured using the x86 timestamp

counters whose relative frequency and zero bounds are captured by FreeZer in the previous

step. Querying these counters is a relatively inexpensive operation since it does not need

any synchronization across different cores and can be executed in user space. This helps to

keep the overall profiling lightweight and cause minimal perturbation to the program. We

measured the amount of time that it took to generate and save one hundred thousand to

one million events. The results in Figure 5.5 show that capturing 1M events requires only

197 ms while consuming less than 51MB of main memory.
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Algorithm MIN AVERAGE MAX
FreeZer 0.000 0.000 0.000
Convex hull [16] 36.855 40.647 49.490
Linear regression [16] 0.075 3.142 30.790

Table 5.1: Accuracy comparison in terms of % fast sends.

5.4 Comparison with Other Algorithms

Accuracy comparison Next we compare FreeZer with two other timestamp synchroniza-

tion methods, linear regression and convex hull algorithms from [16]. The linear regression

algorithm forms a set of points from pairs of timestamps taken from message transmission

events during the execution. A linear regression is performed on this set, and the resulting

trend line is used as the conversion function estimate. In the convex hull algorithm, the

same set is formed as above, and then further split into two subsets based on the message

transmission direction. The conversion function is estimated as the line passing through the

middle of the corridor formed by the convex hulls of these subsets.

Since most algorithms do not provide explicit error bounds, we must take care to

define what is meant by accuracy. We use a popular measure of accuracy for timestamp

synchronization algorithms called fast sends. A fast send is a send which is closer to its

corresponding receive than the minimum network transmission time. To measure the number

of fast sends we used two trace files of timestamps generated by running a program on a pair

of machines that repeatedly exchanges messages in both directions. Each message exchange

consists of a send and a receive and causes two events, one before the send and another after

the receive, to be generated. Since the intervals reported by the bounded algorithms are not
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Figure 5.6: Comparison of the synchronization times for different algorithms – note that
both axes are on a log-scale; Annotations show speedup relative to FreeZer.

directly comparable to the point estimates of the unbounded algorithms, we use the interval

midpoints in the following comparison. The results gathered over 100 trials, presented in

Tables 5.1, show that FreeZer performs favorably relative to the other two algorithms. This

is due primarily to the fact that FreeZer performs its synchronization offline and independent

of the traces being converted.

Efficiency comparison The primary factor affecting the synchronization time is the

number of events in the traces. Therefore in Figure 5.6 we compare the synchronization
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times of different algorithms with increasing trace size. Traces were generated in the same

way as for accuracy measurements.

First let us consider the efficiency of linear regression and convex hull algorithms

from [16] who efficiency is nearly the same. FreeZer is only slightly slower than the lin-

ear regression algorithm – at 10k messages 0.39× and at 1M messages 0.35×. The small

performance gap between FreeZer and these algorithms is due to FreeZer’s use of arbitrary

precision integer arithmetic to ensure that floating point inaccuracy and finite integer pre-

cision do not affect the validity of the bounds. While the two algorithms are slightly more

efficient than FreeZer, they do not provide error bounds.

The only previous algorithm that reports error bounds is the accuracy reporting

convex hull (ar-convex hull) algorithm of Poirier et al. [33]. This works similarly to the

regular convex hull algorithm above, but it derives bounds on the conversion error for indi-

vidual timestamps by considering the set of all possible lines in the corridor of the convex

hulls. We observe that the ar-convex hull algorithm is the slowest. For instance, with 10k

messages exchanged in each direction, the speedup of FreeZer over ar-convex hull is 57.25×.

The expense of the ar-convex hull algorithm stems from its formulation. Every bound for

each timestamp is found by solving a linear programming problem whose size grows with

the number of timestamps being converted. However, FreeZer finds each bound for each

timestamp by simply using the appropriately bounded relative frequency and zero. Since

the calculation of the relative frequency and zero is independent of the timestamps being

converted, it can be done offline.

There are two additional algorithms. The two-point algorithm [6] first forms the
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same set of points as the linear regression algorithm. It then uses this set to construct a set

of "equivalences", which are estimates of points that lie on the true conversion line. The

conversion function estimate is taken as the line connected the two "best equivalences" as

defined by a set of rules intended to minimize error. The controlled logical clock [35] first

runs one of the above algorithms, and then retroactively adjust timestamps which violate

pre-determined causality rules. We chose not to further evaluate these two algorithms for

the following reasons. The controlled logical clock algorithm is a wrapper algorithm which

first requires a pre-synchronization step; it is not a standalone algorithm. The two-point

algorithm requires a minimum number of events to operate, and this threshold is not met

by the traces encountered in our later experiments with real applications.

Thus our results show that FreeZer not only exhibits high efficiency, it also provides

error bounds.

5.5 Summary

In this chapter, we presented FreeZer, our new algorithm for timestamp synchro-

nization. FreeZer works by calculating relative frequencies and zeros using carefully con-

trolled communications between nodes in the system. The FreeZer algorithm is independent

of the timestamps being converted, so it can be done offline, minimizing perturbation of

the program under test. FreeZer not only provides error bounds on its conversion, but it

does so up to 57x faster than the only other bounded algorithm available. Furthermore,

FreeZer beats other existing algorithms in the commonly accepted synthetic measure of fast

sends. In the next chapter, we show how FreeZer can be used as the basis for DProf, our
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implementation of CSPs on distributed systems. We will also show that FreeZer is more

accurate than other algorithms when used to make actual predictions about performance

improvements resulting from potential optimizations.
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Chapter 6

The DProf Distributed Profiler

In the previous chapter, we presented FreeZer, our new algorithm for timestamp

synchronization. In this chapter, we show how we use FreeZer as a basis for DProf, a

platform for the construction of distributed profilers. First, we present the overall structure

of DProf. Then, we present dCSP, our implementation of CSPs for clusters of shared-memory

multicore machines. Additionally, we use DProf to construct dCOZ, a distributed version

of the popular causal profiling technique for shared-memory multicore machines. Finally,

we validate the accuracy of FreeZer by using dCSP and dCOZ in combination to detect

performance problems and predict the impact of optimizations on those problems.

6.1 Putting It All Together: DProf and its Uses

Figure 6.1 shows how DProf uses the bounded frequency and zero estimates gener-

ated by FreeZer to perform distributed profiling. DProf performs the following steps: first,

FreeZer collects bounded frequency and zero estimates based on techniques just discussed.

93



Bounded	
  	
  
Frequency	
  Estimates	
  

Frequency	
  
Estimation	
  

Bounded	
  	
  
Zero	
  Estimates	
  

Zero	
  
Estimation	
  

Event	
  Traces	
  with	
  	
  
Local	
  Timestamps	
  

Distributed	
  	
  
Pro>iling	
  	
  

Pro>ile	
  
Consolidation	
  

Event	
  Traces	
  with	
  	
  
Bounded	
  Timestamps	
  

Pro>ile	
  	
  
Analysis	
  

Distributed	
  
Program	
  

1	
   1	
  

2	
   3	
  

4	
  

FreeZer	
  

Figure 6.1: DProf workflow.

Then, DProf profiles the distributed execution using local x86 timestamp counters to gen-

erate process local profiles. These local profiles are then consolidated using the bounded

frequency and zero estimates to generate a unified profile with global event ordering and

timing information. The consolidated profile is then queried and analyzed based on the kind

of profiling being performed by the end user. Next, we discuss each of the steps in detail.

Step 1: Computing Relative Frequency & Zero Bounds

FreeZer computes relative frequency and zero bounds between pairs of clocks. To

compare all the timestamps in the system a base core is chosen, and all the relative frequen-

cies and zeros involving that base core are computed. Then during the profile consolidation
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phase, the timestamps are all converted to the units of the base core. While causal depen-

dencies across cores may require network operations, it is important to ensure that they

don’t introduce unpredictable delays that impact the overall accuracy. For this, DProf per-

forms send-receive operations using UDP over unix sockets instead of using a higher level

network programming layer like MPI.

Step 2: Capturing Distributed Event Profiles

DProf profiles the distributed execution by capturing events and timing information

about marked code regions that are of interest for profiling (we support annotations intro-

duced in CSP [8]). DProf provides an API to mark entry and exit points for code regions

that need to be profiled. During execution, these entry and exit points translate into events

whose timing information must be captured. As mentioned earlier, the timing information

is captured using the x86 timestamp counters whose relative frequency and zero bounds are

captured by FreeZer.

DProf also enables enriching profiles by dynamically capturing context sensitive

information that is necessary for performing different types of analyses. For example, strag-

gler detection (case study presented in next section) needs information about distributed

barriers; hence, the entry and exit events for distributed barriers are annotated with infor-

mation about the barrier, like its unique identifier and number of expected threads. Such

context sensitive enrichment of profiles enables our profiler to be generalized across various

profile analyses.

Note that the collected distributed profiles have event and timing information that

95



is local to individual processes in the distributed system. Next, we discuss how they are

consolidated so that profile information across processes can be collectively used to perform

a global analysis.

Step 3: Consolidating Distributed Event Profiles

Consolidation of event profiles mainly includes converting the captured timestamps

across all processes into a globally consistent time scale. DProf picks one of the core’s clock

as a reference and converts all the timestamps from remaining clocks to that in terms of

this reference clock. Since FreeZer captures relative frequency and zero information in terms

of bounds, the timestamps are converted into interval of timestamps, i.e., the profiling

information is transformed from point domain to interval domain.

Consider a timestamp k captured with corej ’s clock cj which needs to be converted

in terms of the reference clock ci of corei. Assuming the zero for corej with respect to corei

to be zeroj→i = <(zLj , z
U
j ), zi>, k is converted to <kL, kU> as:

kL = (ts1 − zi)× fLj→i(t) + zLj

kU = (ts1 − zi)× fUj→i(t) + zUj

Converting all the timestamps in this manner with respect to the same reference core makes

them globally consistent and enables distributed profile analysis.

96



Step 4: Analyzing Profiles

The consolidated profiles represent directly comparable event and timing informa-

tion along with context sensitive information that is dynamically captured during runtime.

Hence, different kinds of analyses can be performed over these profiles to gain useful insights

about the program, ranging from simply determining how much time was spent in different

regions of the program, to understanding complicated relationships like expected impact of

speeding up a code region on the application’s performance.

— Strong Guarantees. Since the timing information in consolidated profiles are in terms

of bounded intervals, the profiling strategy can leverage these intervals to provide strongly

bounded results. This requires carefully maintaining the interval bounds throughout the

analysis by designing interval-aware strategies like interval arithmetic and translation of

time intervals into domain-specific intervals based on the kind of profiling that is being

performed. For example, in next section we will carefully transform the time intervals to

strongly bounded straggler scores and speedup ranges to provide domain-specific guaranteed

results.

— Eliminating Inverted Orderings. With bounded time intervals, ordering of events

occurring nearly at the same time can sometimes become difficult if the intervals are over-

lapping. In such cases, causality ordering across such events can be used to enforce event

ordering in the consolidated profiles and hence, eliminate inverted orderings. For instance,

a synchronous send-receive operation with end of send occurring at <tLsd, t
U
sd> and end of

receive occurring at <tLrv, tUrv> has the causality ordering tLsd < tLrv and tUsd < tUrv. This

causality ordering can be explicitly incorporated in the profile to eliminate inversion be-
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tween the end of send and the end of receive events. However, it is important to note

that such enhancement of consolidated profiles must be done without adjusting the timing

information in bounded intervals in order to maintain strong guarantees.

— Extensibility. Different analyses can be performed by viewing the overall profiles

in different ways. In the remainder of this section, we demonstrate this by developing

distributed versions of two recent shared memory performance analysis techniques: Context

Sensitive Profiling (dCSP) and Causal Profiling (dCOZ). These can be effectively used in

tandem for performance debugging – dCSP identifies performance bottlenecks and dCOZ

estimates how much application performance can be expected to improve if the identified

performance bottleneck is removed.

6.2 Context Sensitive Profiling: dCSP

Context Sensitive Profiling (CSP) [8] allows analysis of execution times for different

code regions of interest in shared memory parallel programs. The overall execution time is

divided into a sequence of time intervals called frames, during which no process transitions

between code regions. The sequence of frames is then queried to expose different perfor-

mance insights like bottlenecks at synchronization points, workload imbalance, and many

others. Using DProf, we develop CSP to analyze distributed programs by representing our

distributed profiles as sequence of frames.

Aggregated Event View Constructing the frame sequence using DProf profiles requires

an ordering across events. Since inter-process events that occur nearly at the same time
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Figure 6.2: Aggregating overlapping events B, C and D into a single aggregated event BCD.

can have overlapping time intervals, ordering events results in a simple DAG structure that

captures multiple possible execution orders. Typical context sensitive analysis like straggler

detection requires computation for each different execution path; however, enumerating all

possible execution paths can become infeasible due to path explosion.

To address the above issue, we develop an Aggregated Event View that merges

overlapping events into combined events so that the resulting sequence of events have to-

tal ordering. Availability of such a total ordering enables computation of straggler scores

with a linear pass over the entire distributed profile. Since the aggregated event represents

multiple underlying events, its timing interval is computed as the largest interval range

spanning across all the underlying events’ intervals. The interval lower (upper) bound of

the aggregated event is the minimum (maximum) of its underlying events. As illustrated in

Figure 6.2, the overlapping events B, C and D are merged together to a single aggregated

event BCD that spans from 7 to 20 so that it fully incorporates the three intervals.

6.3 Causal Profiling: dCOZ

Causal profiling [11] is a technique similar to logical zeroing [22] that determines

the potential impact of optimizing a selected code region on the overall performance of

the program. Such kind of profiling enables users to understand different bottlenecks in
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Figure 6.3: Adjusting the time weighted DAG on left to the one on the right causes change
in weights of elastic edges.

concurrent programs and to prioritize various optimizations to be incorporated in those

programs. While causal profiling systems like COZ [11] enable causal analysis over parallel

programs, we develop causal profiling for distributed applications using DProf.

Time Weighted DAG View To perform causal analysis on the captured events, we need

to carefully propagate the impact of optimizing a code region to the remaining execution

events. Such propagation ensures that the causal dependencies remain consistent while the

timing information for events change.

We design a Time Weighted DAG to represent the event and timing information

captured by profiling. Vertices in the graph represent captured events while edges connect

events that are sequentially executed by the same thread, and inter-thread events that
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are directly related by causality. The edges are weighted with timestamp intervals that

represent the difference between intervals of events represented by source and destination

vertices. For COZ analysis, we categorize the edges into two types: elastic and inelastic

edges. An elastic edge is one whose weights can be adjusted during COZ analysis, i.e., the

duration between their source and destination events is allowed to grow or shrink during

impact propagation. We set all the communication edges to be elastic so that it enables us to

carefully adjust the timestamps of communication events while simultaneously ensuring that

causal dependencies are never violated. Inelastic edges, on the other hand, are those whose

weights remain same throughout the analysis. We set all the non-communication based

edges as inelastic. Figure 6.3 shows two time weighted DAGs with elastic and inelastic

edges. We can transform the left time weighted DAG to the one on the right by adjusting

the timing information; note that the inelastic edge weights remain the same while elastic

edges grow (e.g., between receive_begin and receive_end) and shrink (e.g., between

send_end and receive_end) based on the adjustments.

Algorithm 6 shows the overall algorithm to perform causal analysis using time

weighted DAG. Given a code region r and the amount of reduction, lines 5-18 process the

events belonging to r by directly reducing their execution times. Events that occur after r

are collected in global_list to be processed in lines 20-29. While processing each event

in the global_list, the amount of reduction to be performed can be limited by causal

dependencies that need to be maintained during reduction. For example, while adjusting

an end of receive event, the analysis should ensure that the timestamps do not precede

end of send events to avoid inversions (as shown in Figure 6.3). Similarly, any exit event
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Algorithm 6 Causal Analysis using Time Weighted DAG.
1: r: code region whose impact is being analyzed

2: reduction: percentage of time reduction for r

3: region_list: {v|source(edge(v)) is an entry event for r}
4: global_list: ∅

5: while region_list 6= ∅ do

6: v ← first(region_list)

7: region_list← region_list \ {v}
8: if v is not processed then

9: cut← weight(v)× (reduction/100)

10: weight(v)← weight(v)− cut
11: if v is an exit event for r then

12: pair ←<dest(edge(v)), cut>

13: global_list← global_list ∪ {pair}
14: else

15: region_list← region_list ∪ {dest(edge(v))}
16: end if

17: end if

18: end while

19:

20: while global_list 6= ∅ do

21: <v, cut> ← first(global_list)

22: global_list← global_list \ {<v, cut>}
23: new_cut← adjust(v)

24: if new_cut > 0 then

25: weight(v)← weight(v)− new_cut
26: pair ←<dest(edge(v)), new_cut>

27: global_list← global_list ∪ {pair}
28: end if

29: end while

30:

31: new_time← time(program_exit_event)

32: speedup← (original_time− new_time)/original_time× 100
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from a given barrier should not precede the latest entry event to the same barrier. Such

dependencies are taken care by adjust() (line 23) which analyzes the causal dependencies

of the given event and its predecessor events, its elastic edges and its inelastic edges to

determine the amount of reduction that can be safely performed. This makes the reduction

value dynamic, which gets attached to the future events to be adjusted (lines 26-27). The

work-list based reduction algorithm terminates when there is no remaining reduction to be

performed on any event.

6.4 Performance Debugging with dCSP & dCOZ

We present how dCOZ and dCSP can be used for performance debugging of dis-

tributed programs. In particular, we show how dCSP can be first used to identify a perfor-

mance bottleneck, and then how dCOZ can be used to estimate the expected performance

improvement resulting from removal of the identified bottleneck. We also demonstrate the

importance of error bounds by showing that the inferences drawn by dCSP and dCOZ dete-

riorate significantly if instead of using FreeZer we use either the linear regression or convex

hull algorithms.

To showcase the strength of FreeZer, we choose three popular distributed programs

which have varying degrees of performance bottlenecks: Connected Components [45] (CC),

PageRank [32], and K-Means [2]. All three programs iterate over data-elements (graph

vertices/edges for CC and PageRank, points for K-Means) to compute results; as an exam-

ple, the overall structure of K-Means is shown in Algorithm 7. We use [37] for K-Means

and LiveJournal [27] for PageRank and CC to generate important events for performance
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Algorithm 7 Distributed K-Means. Region 0 (blue) is the body region, and region 1 (red)

is the barrier region for the dCSP and dCOZ analyses.
1: objects ← read_objects( )

2: Send_Receive(objects)

3: clusters← init_clusters(random_centroids)

4: All_Reduce(clusters)

5: do

#Region(0)

6: for o ∈ objects do

7: c← compute_closest_cluster(o, clusters)

8: o.cluster ← c

9: c.objects← c.objects ∪ {o}
10: end for

# Region(0)

#Region(1)

11: All_Reduce(clusters)

# Region(1)

12: new_centroids← compute_new_centroids(clusters)

13: All_Reduce(new_centroids)

14: clusters← init_clusters(new_centroids)

15: change← compute_change(objects)

16: All_Reduce(change)

17: while change > threshold
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analysis. These three distributed programs reflect modern real-world distributed programs

that also extract multicore performance via threading on each machine; in each iteration,

all machines execute their share of the workload in parallel using multiple threads and then

they synchronize at a barrier, exchange information, and move to the next iteration.

We consider stragglers as performance bottlenecks in our distributed programs.

Straggler processes arise when all processes but one finish their assigned task and are left

waiting at the barrier while the single remaining process slowly finishes its task. Stragglers

are a common reason for slowdown in distributed programs since they can be caused due to

several reasons including load imbalance, hardware performance imbalance, network delays,

etc. We used 5 machines to perform this case study and the presence of a straggler process

was ensured via workload imbalance, i.e., one of the processes was assigned significantly

more work compared to other processes. On each machine the workload was executed in

parallel by 8 threads. The impact of stragglers is highest in CC and lowest in K-Means

which allows us to perform sensitivity analysis of Freezer’s strong guarantees.

Algorithm 7 shows the code region annotations used to generate events for detecting

stragglers. The blue region is where primary work is performed, and the red region is

the immediately following barrier synchronization point. These regions allow us to detect

stragglers by searching for dCSP frames in which all but one process/thread are in the red

region, while there is exactly one thread/process in the blue region. For concrete analysis,

we define straggler score (SS) of a thread t to be the percentage of time that the thread was

in the blue region while all other threads were in the red region.

We perform our analysis in three steps. First, we use dCSP to calculate the straggler
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CC PageRank K-Means
FreeZer 47.19 - 47.21 % 37.17 - 37.19 % 18.9 - 19.9 %
Linear Reg. 23.46 % 18.48 % 8.7 %
Convex Hull 11.75 % 9.73 % 6.9 %

Table 6.1: Straggler scores for the straggler process. Higher percentage means more severe
straggling. The execution times for the programs were: CC – 1799.173 seconds; PageRank
– 844.251 seconds; and K-Means – 13.7 seconds.

scores for each of the threads in the system. Second, we use the straggler scores calculated by

dCSP as input to dCOZ, and calculate the expected speedup when the straggler identified by

dCSP is sped up by the value of its straggler score. And finally, we eliminate the straggler

by removing workload imbalance and measure the actual execution time to compute the

overall prediction error under each of the three timestamp synchronization schemes: FreeZer,

Convex Hull, and Linear Regression.

Step 1. dCSP: Straggler Detection. With one process chosen to be the straggler, we

used dCSP to measure the straggler score of the chosen process. The results of this step are

shown in Table 6.1. Since Freezer provides bounded timestamp information, we calculate

bounds for straggler scores by propagating the timestamp bounds throughout the straggler

analysis. As we can see, Freezer’s bounds for straggler scores are tight, i.e., at most one

percent, which is due to our strongly bounded synchronization technique. This shows that

FreeZer not only provides tight bounds in theory, but also in practice. It is interesting to see

that linear regression (Linear Reg.) also provides positive straggler scores, however they are

not even close to FreeZer’s bounds. Furthermore, convex hull (Convex Hull) provides even

smaller straggler scores, incorrectly diminishing the imbalance issue among threads.
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Figure 6.4: Size of aggregated events.

It is interesting to note that the coarse grained view provided by aggregated events

does not impact our profiling results such that the straggler threads go undetected. This

is because the aggregated view mostly summarizes small number of events, leaving out

majority of events from the original profile. Figure 6.4 shows the distribution of aggregated

event sizes in terms of number of underlying events. As we can see, the size distribution

drops sharply; with 1,219 aggregated events, over 89% have at most 20 underlying events

and less than 1% have over 100 underlying events.

Step 2. dCOZ: Causal Analysis. Next we use dCOZ to answer the question: if the

straggler had finished on time, what reduction in execution time would be observed? Our

dCOZ profiler takes two inputs: the code region that will be sped up to eliminate delay

caused by straggler, and the amount of speedup to apply to that region. It estimates the

expected overall speedup of the program. We again examine the primary work region (blue

region in Algorithm 7), except that instead of using a static region identifier of 0, we use
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CC PageRank K-Means
FreeZer 44.37-45.30 % 32.94-33.72 % 18.1-18.4 %
Linear Regression 21.60 % 15.53 % 7.7 %
LR w/ FreeZer SS 23.46 % 18.48 % 8.1 %
Convex Hull 8.44 % 6.79 % 5.3 %
CH w/ FreeZer SS 11.75 % 9.72 % 7.6 %

Table 6.2: Predicted overall speedups via causal profiling given a speedup of the straggler
process equal to its straggler score as computed in Step 1. LR w/ Freezer SS and CH w/
Freezer SS indicate Linear Regression and Convex Hull synchronization when using straggler
scores calculated by FreeZer.

a dynamic region identifier corresponding to the rank of the process in the MPI global

communicator. This allows us to select the right edge in time weighted DAG view whose

loop body corresponds to the process that we’ve elected as the straggler.

The results of dCOZ are shown in Table 6.2. When we calculated the causal

profiles using the linear regression and convex hull synchronizations, we did so using not

only the straggler scores corresponding to those methods, but also using the straggler score

as calculated with the FreeZer synchronization; this eliminates the errors coming from step

1 and clearly shows errors induced by linear regression and convex hull in dCOZ alone.

As we can again see, FreeZer provides strongly bounded results; in fact, even with smaller

execution times for K-Means, FreeZer’s bounds are tight. While Linear Regression and

Convex Hull indicate some performance improvement upon removal of stragglers, are again

far from FreeZer’s results. Even when using FreeZer’s straggler scores, Linear Regression

and Convex Hull provide low numbers, again incorrectly estimating that little performance

improvement can be achieved.
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CC PageRank K-Means
FreeZer 4.28-5.88 % 4.46-5.57 % 1.8-1.8 %
Linear Regression 34.9 % 20.35 % 10.5 %
LR w/ FreeZer SS 31.7 % 16.14 % 10.5 %
Convex Hull 57.54 % 32.8 % 14.0 %
CH w/ FreeZer SS 51.85 % 28.63 % 11.4 %

Table 6.3: Percentage error in prediction.

Step 3. Prediction Error. Next we show the strength of FreeZer over linear regression

and convex hull methods by comparing our dCOZ predictions (from Table 6.2) with execution

times when the straggler is eliminated, i.e., using balanced workload across all threads.

The execution times with/without straggler are: 1799.2s/1045.6s for CC, 844.3/592.6s for

PageRank, and 13.7/11.4s for K-Means, and the error in our dCOZ prediction is shown in

Table 6.3. The error values for FreeZer is an order of magnitude lower compared to convex

hull and linear regression methods; this is because FreeZer captures and retains tight bounds

throughout the analysis instead of approximating the estimates, as done by other techniques.

Even when using FreeZer’s straggler scores for linear regression and convex hull, their error

values remain high which indicates the low accuracy of these methods in dCOZ alone.

It is interesting to note that Linear Regression and Convex Hull underestimate

straggler scores in all cases; this is because our straggler score is defined based on all but one

thread being inside the barrier and synchronization inaccuracies offsetting relative times-

tamps end up causing multiple threads to be observed as being outside the barrier.
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6.5 Summary

We developed DProf, a profiler for distributed programs that provides results with

strong guarantees. DProf relies on bounded frequency and zero measures that tightly capture

the inaccuracies in the timing information. Using DProf, we developed two performance

analysis techniques, dCSP and dCOZ, to demonstrate its versatility and effectiveness in

developing tools for distributed performance debugging.
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Chapter 7

Conclusion and Future Work

7.1 Contributions

In this thesis, we presented Context Sensitive Parallel Execution Profiles (CSPs),

which are a novel, flexible method for understanding and debugging performance problems

in parallel programs. Our contributions can be divided into three key components: interface,

shared memory implementation, and distributed memory implementation.

7.1.1 User Interface

The CSP interface consists of three parts: the annotation language, the frame

representation, and the query language. The annotation language allows users to identify

arbitrary regions of interest in their program. With features like dynamic names, conditional

regions, and object properties, runtime behavior can be captured with a wealth of context

sensitivity. The frame representation models the execution of the program in terms of the

regions defined with the annotation language. A single frame gives a vertical slice of the
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program execution that shows you what each thread was doing during that slice of time, in

terms of the code regions each thread was executing. Thus, frames capture the concurrency

context of the program behavior. The CSP itself is a sequence of frames, and due to the

simple nature of frames, the overall CSP capturing and construction costs are very low.

Finally there is the query language, using which programmers can extract information from

the CSP using an intuitive first-order logic inspired language.

7.1.2 Shared Memory Profiling

Owing to its careful design, our implementation of CSPs on shared memory sys-

tems is very efficient. The time overhead of capturing CSPs is typically less than 5%, and

memory overhead typically less than 25%. We use the commonly available x86 timestamp

counter register to capture timestamps with no system call overhead or inter-thread commu-

nication/synchronization. Microbenchmarks show that our approach is able to accurately

capture fine-grained timing information, and case studies show that CSPs are effective at

diagnosing and fixing performance problems in real applications. Among the programs in

the Parsec benchmark suite, we were able to realize optimizations of 36% and 17%.

7.1.3 Distributed System Profiling

In addition to implementing CSPs for shared memory multi-core machines, we

adapted and implemented them for distributed systems as well. In the course of doing so,

we developed a new algorithm (FreeZer) for the timestamp synchronization problem, which

is more accurate for the targeted analysis style of CSPs than existing options. Additionally,

we exhibited the flexibility of CSPs by building a distributed causal profiler on top of our
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annotation language. Based upon FreeZer we built the DProf distributed profiler and used

it to develop dCOZ and dCSP analysis tools. We showed how dCSP can be first used to

identify a performance bottleneck, and then how dCOZ can be used to estimate the expected

performance improvement resulting from removal of the identified bottleneck.

7.2 Future Work

While the contributions of this thesis provide a definite step in the right direction,

there still remains much to be done in the field of performance analysis for parallel programs.

In this section, we discuss two avenues that would be interesting to explore as natural

extensions of the work presented herein.

7.2.1 Online Performance Monitoring

In general, there are two strategies that can be adopted when measuring the per-

formance of a program. The first (and what we have chosen to do for this thesis) is to collect

relevant information during execution and then perform analysis offline. The advantage of

this approach is that it helps to minimize the intrusion on the program under test, which

if too large could render the analysis results meaningless. This approach allows the most

freedom in designing the profile format and accompanying analyses, because we need not

worry about the analysis cost.

The offline approach does have its fair share of downsides however. First, it is

wholly inappropriate for programs which do not terminate, such as servers or long-lived

programs with multiple phases of processing. Simply put, if the program never terminates
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then the analysis never happens.

In contrast, an online approach performs the analysis during the execution of the

program, turning the analysis program into a monitor. This is very well suited to programs

like servers which are not expected to terminate, but which nonetheless can have a great

impact on overall system performance.

There are a number of reasons CSPs would be a natural fit for building online

performance monitoring tools. First, the algorithm for constructing the profile itself, which

is a sequence of frames, can be structured as a multi-way fold over the event streams. This

means that each frame can be calculated from only the previous frame and the next event

to be generated. In principle, this could form the basis for a monitoring tool with constant

memory overhead and amortized constant time overhead. Additionally, the query language

examines only one frame at a time, so it is a natural fit for a streaming processing structure

as well.

DProf would also form a strong basis for constructing CSP based monitoring tools

for distributed systems. Because the FreeZer calculations are completely independent of the

timestamps being converted, FreeZer could be adapted for online use with only minimal

changes. Since existing timestamp synchronization algorithms all make use of the times-

tamps being synchronized, they would be incapable of being used in an online setting.

The challenges to solve to make this a reality revolve primarily around the question

of intrusion. In the offline setup, there is no additional inter-thread communication overhead.

But in the online case, there would have to be some communication of the locally generated

events. Determining the best time to do this in order to perturb the program minimally
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would be an interesting problem to solve. Inspiration could be drawn from research in

parallel garbage collection, as that topic shares some of the same problem constraints.

7.2.2 CSPs in a Virtual Environment

When we explored the extensibility of CSPs, we did so by porting them to dis-

tributed systems composed of individual shared memory parallel machines. While this is a

common and effective technique for building distributed systems, it is becoming popular to

use virtualized resources to do the same. Virtualization presents some interesting challenges

in terms of profiling. In our work, a major contributor to the overall efficiency is the use of

the timestamp counter register on the machine.

If this register is virtualized, it raises questions about its ability to be used as

a measure of wall clock time. For instance, when the virtual machine is paused, is the

counting of the virtual register paused as well? Does the virtualized register share the same

guarantees as the physical register vis a vis monotonicity and constancy of rate? Both of

these properties are critical to the accuracy of profiles built on top of timestamps generated

using this register.

On the other hand, if this register is not virtualized, there are still other concerns

that arise. What if the virtual machine running our program is migrated from one physical

machine to another during execution? If we blindly use the timestamp counter register from

the new machine, we will experience a jump discontinuity, potentially backwards in time.

Moreover, the frequency of the new machine may not be the same as the frequency of the

old machine, causing the duration of intervals to be incomparable as well.

Furthermore, there is the question of whether the physical/virtual barrier should
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be visible in the profile format. Certainly some performance problems could arise as a result

of the underlying virtualization. In these cases having this information available would aid

the programmer in their debugging task. But for most cases this information is probably

not relevant, especially if the programmer is unable to control the virtualization subsystem

(because it’s being provided by a third party for instance). Handling this will be a trade off

amongst the goals we defined in the introduction, and must be carefully considered.

Though this is a challenging direction, the potential impact is significant. In the

world of virtualization execution time translates directly to money, so a good profiler would

quite literally pay for itself.
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