
UNIVERSITY OF CALIFORNIA
RIVERSIDE

Hardware Acceleration of Irregular Applications Using Event-Driven Execution

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Shafiur Rahman

December 2021

Dissertation Committee:

Professor Nael Abu-Ghazaleh, Co-Chairperson
Professor Rajiv Gupta, Co-Chairperson
Professor Walid Najjar
Professor Daniel Wong

Copyright by
Shafiur Rahman

2021

The Dissertation of Shafiur Rahman is approved:

Committee Co-Chairperson

Committee Co-Chairperson

University of California, Riverside

Acknowledgments

As I am close to the end of this journey, I look back and remember all the people who

have inspired, supported, and guided me along the way. There are so many people I call

family, friends, and mentors. I probably cannot adequately thank all of them here. But I

am grateful that our paths crossed.

First and foremost, I must thank my committee members for their thoughtful

advice and feedback, and their support over the years. I appreciate the time they have

contributed into all the milestones in my journey.

This work would not have been possible without the support of my advisors. I

am grateful to Professor Nael Abu-Ghazaleh for extending me the opportunity to begin my

PhD here. He has been an exceptional mentor in both professional and personal aspects

of my doctoral journey. He had great patience and insights to motivate and mold a young

researcher. I am incredibly lucky to be working with him. I want to thank Professor Rajiv

Gupta. He was always available to offer me guidance and ideas in every aspect of my

research. His excitement for any new idea was contagious. His supervision was a significant

contributor to the timely completion of this project. The steady guidance and continuous

encouragement from my advisors have made me a better researcher and made this project

achievable. There were no two scholars better suited to guide me to complete this project.

I want to thank all my colleagues in our group. You were the most remarkable part

of my graduate life. Our time in and out of the lab will always be a cherished memory. I

regret that we could not make the most out of our time on campus because of the pandemic.

But I am hopeful that we will get chances to make up for it once the world becomes normal.

iv

I am thankful to the people with whom I started my first research work during my

undergraduate studies. Those days made me ready to undertake this far greater responsi-

bility today. Thanks to my professors, Md Atiqur Rahman Ahad and Upal Mahbub, and

my friend, Tonmoy Roy, for our collaboration. What I learned from them is invaluable.

A special thanks to my parents, who always supported all my life decisions and

were with me in every step of my life. Thanks to everyone in my family – all the sacrifices

I made, they made it too. I am thankful for all the support and comfort they have given

me from miles away.

Finally, and very importantly, I would like to acknowledge my wife and partner,

Farzana Kabir. You have been there through all the good times and all the struggles. We

both shared the same journey at the same time. Thank you for being so understanding and

being the person I can rely on. Your unwavering support and steady presence made it so

much easier for me.

v

DEDICATION

To my mother.

vi

ABSTRACT OF THE DISSERTATION

Hardware Acceleration of Irregular Applications Using Event-Driven Execution

by

Shafiur Rahman

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2021

Professor Nael Abu-Ghazaleh, Co-Chairperson
Professor Rajiv Gupta, Co-Chairperson

The consistent growth of DRAM memory bandwidth and capacity has enabled the com-

putation of increasingly larger workloads in high-performance computing. However, the

memory latency improvement over time is nominal, which severely bottlenecks the per-

formance of modern systems. Modern computers rely on the exploitation of data locality

using large cache hierarchies to keep the throughput high. Additionally, architects employ

multicore and multithreaded architectures to boost throughput by extracting parallelism.

However, irregular applications do not enjoy the same performance gain from these tech-

niques. The inadequate data locality in these applications renders the cache ineffective, and

the dynamic data dependence causes sub-optimal parallel processing. Hence, researchers

are motivated to look beyond conventional CPU and GPU platforms towards dedicated

hardware accelerators for these applications.

In this dissertation, we present strategies and architectures for accelerating irreg-

ular applications using the event-driven execution technique. We examine three irregular

applications – Parallel Discrete Event Simulation (PDES), Graph Processing, and Stream-

vii

ing Graph Analytics – to study their limitations in conventional systems and solve these

challenges using hardware primitives to build generalized accelerator frameworks. Our cus-

tom datapaths based on event-driven execution models promote parallelism and memory

bandwidth utilization in these applications.

The first application, Parallel Discrete Event Simulation, is inherently event-

driven. It demonstrates ordered irregular parallelism, characterized by strict ordering be-

tween tasks that constrains parallelism. First, we design an efficient hardware priority

queue, which becomes the core component of our event-driven systems. Then, we build

a highly scalable accelerator, PDES-A, that incorporates a decoupled datapath for robust

transmission of events and masking long memory access latency.

The second application, graph processing, has partial ordering among the tasks and

possesses similar dynamic data dependence. We convert the traditional iterative execution

model into an event-driven execution model. We demonstrate that fine-grained control over

the dynamic memory access patterns is achievable through strategic manipulation of events

to maximize spatial locality and, hence, memory bandwidth utilization. Our acceleration

framework, GraphPulse, uses this model to accelerate asynchronous graph processing.

Finally, we study a more complex variation of graph processing, streaming graph

analytics, to illustrate the extensibility of the event-driven model. This application has

multiple types of computation tasks and requires multi-phase execution. We employ incre-

mental recomputation of streaming data to reduce redundant computation. We develop an

incremental graph computation model suitable for the event-driven paradigm and subse-

quently develop JetStream to support streaming graphs using this algorithm.

viii

Contents

List of Figures xii

List of Tables xv

1 Introduction 1
1.1 Motivation: Challenges in Irregular Applications 4
1.2 Contributions of the Dissertation . 6

1.2.1 PDES-A: Parallel Discrete Event Simulation Accelerator 6
1.2.2 GraphPulse: an Accelerator for Graph Processing 7
1.2.3 JetStream: Accelerator for Streaming Graph Analytics 8

1.3 Organization of the Dissertation . 9

2 Related Work 10
2.1 Parallel Discrete Event Simulation . 10
2.2 Graph Processing . 13
2.3 Streaming Graph Processing . 18

3 PDES-A: Parallel Discrete Events Simulation Accelerator 20
3.1 Parallel Discrete Event Simulation . 20
3.2 PDES-A Design Overview . 22

3.2.1 Design Goals . 23
3.2.2 General Overview . 24
3.2.3 Event Queue . 26
3.2.4 Event Processor . 29
3.2.5 Event scheduling and processing . 29
3.2.6 Event History . 31
3.2.7 Rollback and Cancellation . 32

3.3 Implementation Overview . 33
3.3.1 Design Language and Application Modeling 34

3.4 Performance Evaluation . 37
3.4.1 Performance and Scalability . 38
3.4.2 Rollbacks and Simulation Efficiency 39

ix

3.4.3 Breakdown of event processing time 41
3.4.4 Memory Access . 43
3.4.5 Effect of event processing time . 44

4 Decoupled Datapath for PDES-A 46
4.1 Datapath Optimization via structure partitioning 47

4.1.1 Decoupled Event Processing Flow 50
4.1.2 Operational Characteristics . 52

4.2 Comparison With ROSS . 53
4.3 Resource Utilization Analysis and Scaling Estimates 56

5 Event-Driven Execution Model for Graph Processing 60
5.1 Conventional Computation Models . 61
5.2 Delta-based Accumulative Processing . 63
5.3 Overview of Event-Driven Graph Processing 66

5.3.1 Event-Processing Considerations . 66
5.3.2 Application Mapping . 71

6 GraphPulse: an Asynchronous Graph Processing Accelerator 73
6.1 GraphPulse Architecture . 74

6.1.1 Event Management . 75
6.1.2 Event Scheduling and Termination 77
6.1.3 In-Place Coalescing Queue . 78
6.1.4 Event Processors and Routing Network 82
6.1.5 GraphPulse Execution Flow . 84
6.1.6 Scaling to Larger Graphs . 85

6.2 GraphPulse Optimizations . 87
6.2.1 Vertex Property Prefetching . 87
6.2.2 Efficient Event Generation . 89

6.3 Experimental Evaluation . 89
6.3.1 Experimental Methodology . 90
6.3.2 Performance and Characteristics . 93
6.3.3 Hardware Cost and Power Analysis 97

7 Incremental Recomputation of Streaming Graphs 99
7.1 Streaming Graph Analytics . 101

7.1.1 Incremental Query Evaluation . 102
7.2 JetStream Design Overview . 105

7.2.1 Event-based Processing in GraphPulse 105
7.2.2 Streaming Graph Computation Objective 107
7.2.3 Event Representation of Graph Mutation 108
7.2.4 Impacted Vertex Detection and Recovery 112
7.2.5 Recomputaion of the Mutated Graph 115

x

8 JetStream: a Streaming Graph Processing Accelerator 119
8.1 Event Management . 121
8.2 Event Scheduler . 123
8.3 Event Processing Engine . 124
8.4 Stream Processing Modules . 125
8.5 JetStream Execution Flow . 126
8.6 Graph Representation and Partition . 127
8.7 Optimizations . 129

8.7.1 Value Aware Propagation (VAP) . 129
8.7.2 Dependency Aware Propagation (DAP) 130

8.8 Evaluation . 132
8.8.1 Experimental Setup . 133
8.8.2 Performance and Characteristics . 135
8.8.3 Hardware Cost and Power Analysis 141

9 Conclusions and Future Work 143

Bibliography 147

xi

List of Figures

3.1 Block diagram of basic control and data flow in a PDES system 25
3.2 The P-heap data structure [11] . 26
3.3 Multiple event issue priority queue . 28
3.4 Simplified timeline representation showing scheduling of events in the system. 30
3.5 Effect of variation of number of cores on (a) throughput and (b) percentage

of core utilization for 256 LP and 512 initial events in PDES-A. 37
3.6 (a) Event processing throughput (events/cycle) and (b) Ratio of number of

committed events to number of total processed events for different number
of LPs and initial events on 64 event processors. 39

3.7 Breakdown of time spent by the event processors on different tasks to process
an event using (a) 32 event processors and (b) 64 event processors with
respects to different number of LPs and initial event counts. 40

3.8 Timeline demonstrating different states of the cores for during a 5000 cycles
frame of the simulation. 41

3.9 Effect of number/size of state memory access on event processing time . . . 43
3.10 Effect of variation of processing delays (in cycles) on (a) throughput, (b)

ratio of core utilization for 64 event processors with 256 LP and 512 initial
events. 45

4.1 Overview of an event processing cycle . 50
4.2 Effects of optimized dataflow and concurrent resource access on PDES-A ac-

celerator performance compared to the baseline engine with different number
of event handlers. 52

5.1 Data access patterns for conventional graph processing models: Edge Centric
and Vertex Ordered (Push and Pull directions) processing paradigms. . . . 61

5.2 Data access pattern in event-driven approach with a FIFO event-queue. . . 68

6.1 Overview of GraphPulse Design . 74
6.2 Total events produced (blue) and remaining after coalescing (orange) with

the event-driven execution model in GraphPulse. 75
6.3 Data access pattern in event-driven approach with coalescing & sorting. . . 76

xii

6.4 An event is direct-mapped to a cell in a queue bin. Bits in the destination
vertex Id is used to find cell mapping. 79

6.5 In-place coalescing of events and retrieval in the direct mapped event storage
(for PageRank). 79

6.6 Look-ahead: Vertex contributions are compounded across iterations in the
event-driven model. 81

6.7 Degree of lookahead in events processed in each round. 82
6.8 Detailed GraphPulse datapath. Blue arrows show data flow, red arrows in-

dicate control signals, green and yellow arrows represent on-chip and off-chip
memory transfers respectively. 84

6.9 Optimization of event processing and generation in GraphPulse. 87
6.10 Performance comparison between GraphPulse (with and without optimiza-

tions), Graphicionado [38], and Ligra [90] frameworks; all normalized with
respect to the Ligra software framework. Twitter required partitioning from
Section 6.1.6. 94

6.11 Total off-chip memory accesses of GraphPulse normalized to Graphicionado. 95
6.12 Fraction of off-chip data transmissions that resulted in useful computations

in GraphPulse. 95
6.13 Cycles spent by an event in each execution stage, shown chronologically from

bottom to top. 96
6.14 Time breakdown for the GraphPulse processors (left-bar) and generation

units (right-bar). 97

7.1 Query evaluation on a streaming graph using an incremental algorithm (top)
and static algorithm (bottom). 101

7.2 Using intermediate and initial values leads to incorrect results for SSSP: (a)
an example graph; (b) uses previous state to recompute; (c) resets impacted
vertex. 102

7.3 Conceptual timeline showing vertex values over time through initial evalu-
ation, recovery, and reevaluation phases for SSSP on the example graph in
Figure. 7.2. 104

7.4 Propagation of events during processing of streaming edges in SSSP. (a) An
example graph. (b) Propagation and updates from the insertion of edge
A � D in the graph. (c) Propagation of deletes and resetting impacted
vertices due to the deletion of edge A � C in the graph. (d) Recovery of
approximate state after request events are processed. 108

7.5 Showing an edge deletion for accumulative algorithms: (a) initial graph with
B�C to be deleted; (b) intermediate representation; (c) mutated graph. . . 118

8.1 Detailed JetStream datapath. Blue arrows show data flow, red arrows indi-
cate control signals, green and yellow arrows represent on-chip and off-chip
memory transfers respectively. Shaded modules are new or modified in Jet-
Stream. 125

8.2 Dependency tree for the example in Figure 7.4: (a) before deletion; (b) after
reset; (c) after reevaluation for the deleted edge A→C. 129

xiii

8.3 Number of vertex and edge accesses in JetStream normalized to GraphPulse. 135
8.4 Number of vertices reset by 30K edge deletions. 137
8.5 Utilization of off-chip memory transfers in JetStream. 138
8.6 Speedup over GraphPulse for Baseline JetStream, VAP and DAP optimizations.139
8.7 Sensitivity to batch size. Run-time shown as speedup over JetStream with

100K batch. 140
8.8 Run-time sensitivity to batch composition. Run-time is normalized to 50:50

composition on JetStream. 140

xiv

List of Tables

4.1 Summary of the configurations used for performance comparison of ROSS
and PDES-A using Phold model . 55

4.2 Comparative analysis of PDES simulation performance for Phold model on
ROSS and PDES-A . 56

4.3 FPGA resource utilization for Optimized Datapath PDES-A 57

5.1 Functions for mapping algorithm to GraphPulse 71

6.1 Device configurations for software framework evaluation and GraphPulse
with optimizations. 91

6.2 Graph workloads used in the evaluations of GraphPulse. 92
6.3 Power and area of the GraphPulse accelerator components 98

8.1 Experimental configurations for JetStream. 133
8.2 Input graphs used in the experiments for JetStream. 134
8.3 Execution time (in ms) per query on JetStream and speedup over full eval-

uation in GraphPulse(GP), and incremental evaluation in KickStarter(KS)
and GraphBolt(GB). 136

8.4 Power and area of the JetStream accelerator components 142

xv

Chapter 1

Introduction

For years, the growth in high-performance computation capacity was facilitated

by the rapid increase in transistor density and clock speed in computer CPUs following

the predictions of Moore’s Law and Dennard Scaling [27]. However, the laws of physics

finally appeared as a barrier to this exponential growth preventing the ability to shrink

the transistors anymore than they already were. The end of Dennard Scaling restricts the

ability of software to scale the performance using larger and faster processors due to the Dark

Silicon effect. As a result, alternative strategies are required to support the rapidly growing

computational demands of the modern days. This incentivizes the push towards custom

hardware accelerators built for specific application domains. The accelerators can be orders

of magnitude more efficient in terms of performance and power since the complex pipelines

of modern CPUs can be streamlined and trimmed down. In addition, a large portion of

the industry workloads is a small set of repetitive tasks that can benefit significantly from

specialized accelerator units to execute them. The recent drive for integrating reconfigurable

1

accelerators in the cloud, as seen in the Microsoft Catapult Project [78] and Amazon F1

FPGA instances [45], recognizes the industry demand for application-specific accelerators.

This dissertation explores the advantages of using event-driven execution to accel-

erate irregular applications in hardware. An event-driven system records an update task as

an event in a queue. It only performs the task when the event is scheduled. Such systems

visit a state only when necessary, thus, reducing the workload of the system. Furthermore,

the event-based model transforms the dynamic dependence of irregular applications into or-

der among the events to preserve correctness. Then, synchronization complexity is reduced

by controlling the flow of events in the system to enhance parallelism. Additionally, fine-

grained control over the state access pattern is possible by manipulating the order of events

processing. Thus, memory bandwidth can be optimized by scheduling the events to execute

the tasks in a memory-access-friendly pattern. Event-driven execution, however, does not

achieve expected performance in conventional shared-memory systems because the task pro-

cessing throughput becomes dependent on the performance of an ordered queue structure

containing the events. Such queues are challenging to implement with high performance in

software, and event storage becomes the critical bottleneck of the system.

Nevertheless, it is possible to overcome this challenge in hardware accelerators with

hardware primitives for robust event storage and transmission to achieve a high degree of

parallelism. The hardware acceleration of these applications offers two primary advantages.

• Low-latency and high-bandwidth on-chip communication: Hardware platforms such as

FPGAs support fast high-bandwidth on-chip communication, substantially alleviating

the communication bottleneck limiting the performance of irregular applications [107].

2

• Specialized high-bandwidth datapaths: General-purpose processing provides high flexi-

bility but at the price of high overhead and a fixed datapath. A specialized accelerator,

in contrast, can more efficiently implement a required task without unnecessary over-

heads of fetching instructions and moving data around a general datapath. Moreover,

specialized hardware allows high parallelism limited only by the number of process-

ing units and the communication bandwidth available between them, as well as the

memory bandwidth available to the chip.

We approach the study of event-driven accelerator design from three perspectives.

First, we investigate the feasibility, profitability, and technical limitations of building

an event-driven system using hardware. Afterward, we analyze the adaptability of such

systems to different application domains that are not typically event-driven. Finally, we

explore the expansibility of the event-driven execution model for supporting complex

applications with multiple types of tasks and multiple phases of computations. Our study

confirms that event-driven execution can be a beneficial technique for accelerating diverse

application classes in hardware.

We examine three irregular applications – Parallel Discrete Event Simulation

(PDES), Asynchronous Graph Processing, and Streaming Graph Analytics – to investi-

gate and demonstrate the methodologies for designing accelerators using the event-driven

execution model. Parallel Discrete Event Simulation is an inherently event-driven applica-

tion. We establish the sustainability of a hardware architecture for event-driven execution

using Parallel Discrete Event Simulation as the target application. Graph Processing, on

the other hand, traditionally uses the iterative execution method. We demonstrate the tech-

3

niques and considerations for the algorithmic conversion of an irregular application (Graph

Processing) to execute in an event-driven approach and develop an architecture to support

this execution model. Finally, we illustrate how the event-driven model can accommodate

multi-phased computation and diverse tasks to support complex application domains by

extending the execution model for streaming graph analysis.

In the remainder of this chapter, we describe the motivations for this dissertation

and the limitations of existing technologies in Section 1.1. We continue to present the

contributions of this dissertation in Section 1.2, Finally, we describe the organization of this

dissertation in Section 1.3.

1.1 Motivation: Challenges in Irregular Applications

While computer architects quickly adopted multicore and multithreaded architec-

tures to subvert the limitation in processor speed using parallel processing, this adds new

challenges for scaling the performance of high-performance workloads. The increasing gap

between the processing speed and memory bandwidth becomes the primary bottleneck in

processing performance in these systems. Historically, the DRAM memory has enjoyed

rapid growth in capacity, while the bandwidth increased at a much lower rate and the

DRAM latency increased nominally. The high capacity of DRAM memory enables modern

systems to undertake huge workloads, but the performance suffers because of long latency

and limited bandwidth. If memory latency and bandwidth become insufficient to provide

processors with enough instructions and data to continue computation, processors will ef-

fectively always be stalled waiting on memory. The trend of placing more and more cores

4

on-chip exacerbates the situation since each core enjoys a relatively narrower channel to

shared memory resources. The problem is commonly referred to as memory wall, and it is

particularly acute in highly parallel systems.

In modern systems, these bottlenecks are alleviated using speculative execution

and large cache hierarchies. Many applications have little control flow divergence, pre-

dictable execution pattern, and high spatial or temporal locality receive good performance

boost from these techniques. However, some applications, dubbed Irregular Applications

have characteristics that prevent them from getting any significant improvements from these

techniques. Irregular applications have pointer-based indirection in their data structures

resulting in unpredictable memory access patterns and dynamic data-dependent control-

flow. Many critical HPC applications such as graph algorithms, machine learning, and

database operations fall in this category. These applications help derive actionable intel-

ligence from highly connected data of massive size, and they depend on highly dynamic,

multidimensional data structures such as graphs, trees, and grids.

In irregular applications, pointer-based memory indirections lead to data accesses

unrelated in any temporal or spatial sense. Such a lack of locality limits the performance

of modern processor architectures built on deep memory hierarchies and prefetching to

mitigate latencies. Moreover, irregular data structure-based applications usually have lim-

ited arithmetic intensity, as most of the computation time is spent navigating the data

structures. Thus, modern processors and accelerators designed to maximize floating-point

operations per memory access are a poor fit for these applications. These applications also

have large amounts of data parallelism as many data values can be explored in parallel.

5

However, the dynamic data dependence between tasks makes it difficult to exploit this par-

allelism. Moreover, they often require fine-grained synchronization as concurrent threads

may compete to modify the same data elements. These irregular applications become the

prime candidates for hardware acceleration. The dedicated architecture can re-purpose or

discard the cache hierarchy to optimize memory access and use specialized hardware prim-

itives to establish a fast and effective synchronization mechanism. As a result, significant

parallelism and performance gain can be expected from the accelerator.

1.2 Contributions of the Dissertation

We have designed several computation models and accelerators for different appli-

cations during our research in the acceleration of irregular applications. These computation

models demonstrate techniques for efficient event-driven execution and serve as pointers for

adapting iterative applications into the event-driven model. We also built three accelerators

demonstrating the performance potential of the event-driven method.

1.2.1 PDES-A: Parallel Discrete Event Simulation Accelerator

PDES-A is the first hardware accelerator for Parallel Discrete Event Simulation.

It includes a hardware priority queue capable of fast insertion and retrieval. This pipelined

priority queue allows PDES-A to support many processing cores and achieve high through-

put. In addition, we relax synchronization by employing an optimistic execution with a

rollback mechanism for recovery. PDES-A provides excellent scalability for PDES Model

Phold for up to 64 concurrent event processors. Our baseline prototype outperforms a sim-

6

ilar simulation on a 12-core 3.5GHz Intel Core i7 CPU by 2.5x. Afterward, we describe

re-designed PDES-A engines that relieve contention by partitioning all shared structures

such as event and state queues into multiple substructures. It also incorporates a decou-

pled datapath that significantly relaxes synchronization and improves the scalability of the

system. This optimized design results in another 25% improvement in throughput. The

optimized accelerator outperforms a 12-core Intel Core i7 by 3.2x while consuming less than

15% of the power.

1.2.2 GraphPulse: an Accelerator for Graph Processing

Our graph processing accelerator, GraphPulse, is the first asynchronous event-

driven graph processing accelerator. GraphPulse alleviates several performance challenges

faced in traditional software graph processing while bringing the benefits of hardware accel-

eration to graph computations. GraphPulse’s event-driven model decouples computations,

ergo memory accesses, from communications. In this model, memory accesses are only nec-

essary during vertex updates. As a result, one of the primary sources of random memory

access is eliminated. Moreover, synchronization is simplified by having the accelerator seri-

alize events destined to the same vertex; thus, the synchronization overhead of traditional

graph processing is reduced. At any point in time, the events present in the system nat-

urally correspond to the active computation. Thus the bookkeeping overhead of tracking

the active subset of the graph is also masked.

Supporting this model in software is difficult due to the high overheads of gener-

ating, communicating, managing, and scheduling events. GraphPulse architecture supports

events in the hardware queue and routes them using a fast on-chip communication network.

7

Thus, it essentially eliminates event-related overheads and making the model more efficient

than software implementations. GraphPulse performs asynchronous graph processing, re-

sulting in substantial speedups due to greater exploitation of parallelism and faster conver-

gence. In addition to this, it introduces coalescing of events to control event population and

allow transaction safety. We enhance the model with a prefetcher and smart scheduler to

achieve high throughput. This design substantially outperforms software frameworks due

to its efficient memory usage and bandwidth utilization. GraphPulse outperforms software

frameworks on a 12-core Intel Xeon system by 28x with about 300x better energy efficiency.

1.2.3 JetStream: Accelerator for Streaming Graph Analytics

The last accelerator we built as part of this dissertation is JetStream, an accelerator

for performing incremental evaluations of streaming graphs. Graphs are constantly evolving

in real-world applications. Restarting a query from scratch on a mutated graph is wasteful

because the changes usually modify only a small subset of the graph. Thus, much of

the computation performed during reevaluation is redundant. Streaming graph systems

support incremental update of query results to address this inefficiency, resulting in order

of magnitudes speedups over cold-start recomputation. JetStream builds on GraphPulse

and uses the same event-driven asynchronous processing model. It extends the event-

driven graph computation model to support incremental computation for edge addition,

deletion, and updates. JetStream proposes an event-driven approach to reset and recover

after edge deletions for monotonic graphs. JetStream achieves 18x speedup over software

graph processing framework, GraphBolt. It also performs 13x better than compared to a

complete recomputation of the streaming graphs in GraphPulse.

8

1.3 Organization of the Dissertation

We begin the rest of the dissertation by reviewing important literature related to

the applications considered in our work. Then, we describe the three accelerators that we

built in the following chapters. In Chapter 3, we present the design of a Parallel Discrete

Event Simulation accelerator, PDES-A. We explore the fundamental design considerations

and a baseline architecture for the accelerator in this design. We analyze the limitations

of the basic architectures that are resolved using a redesigned datapath in Chapter 4.

This chapter describes the optimizations for PDES-A and our techniques for designing a

decoupled datapath for the event-driven model.

Next, we present the limitations of conventional graph processing systems and

the development of event-driven methods to alleviate them in Chapter 5. This chapter

elaborates on the design considerations for event-driven execution and illustrates the trans-

formation of an iterative algorithm to an event-based model. We describe the architecture

of the GraphPulse accelerator in Chapter 6. This chapter also describes the evaluation of

the accelerator against state-of-the-art software and hardware graph analytics frameworks.

The last part of this dissertation describes the design of JetStream, an accelerator

for streaming graph analytics in Chapter 7. We present the challenges of incremental

computation and how the event-driven model can be extended to perform incremental

evaluation of streaming graphs. It is followed by the description of JetStream architecture

that implements this extended model in Chapter 8.

Finally, we conclude with a brief summary of our research and potential future

works in Chapter 9.

9

Chapter 2

Related Work

In this chapter, we present previous works relevant to this dissertation. We orga-

nize the relevant literature into three sections. The first section reviews literature related

to the techniques and software frameworks for parallel discrete events simulation. Then, we

describe recent works on software and hardware-based graph processing systems. Finally,

we highlight crucial works in the field of streaming graph analytics.

2.1 Parallel Discrete Event Simulation

Discrete Events Simulation is heavily used in real-world simulations and perfor-

mance evaluations where systems change in discrete states. A wide range of domains ex-

tending from military simulations and war-gaming [34, 42] to epidemiology and molecular

biology [32, 114] uses discrete event simulation for studying vast simulation space, which

is prohibitively expensive with traditional time-stepped simulation methods. PDES is an

important tools for digital design simulation [63] industry as well.

10

The parallel Discrete Event Simulation community extensively uses Phold [34]

models as a synthetic benchmark for profiling and evaluating PDES systems. The Phold

model consists of a model where an event is generated for a random destination whenever

a logical element receives an event. It is a communication-centric model to expose the

communication robustness of the simulation system. There is another model [55] that

utilizes real-world simulation profiles to generate more accurate and realistic synthetic PDES

models that are more parameterizable and customizable.

In recent years, researchers have developed and analyzed PDES simulators on var-

ious parallel and distributed platforms as these platforms have continued to evolve. The

widespread adoption of both shared and distributed memory cluster environments has moti-

vated the development of PDES kernels optimized for these environments, such as GTW[25],

ROSS[18] and WarpIV[95]. These systems can be conservative or optimistic simulators that

employ a diverse range of techniques for checkpointing, reverse computation, implementa-

tions of GVT, and anti-messages. Apart from the works on new simulation frameworks,

there are many individual works that experiment on optimizations for a particular system

or architecture. For example, Jagtap et al. [49, 106] proposed and analyzed several op-

timizations for multi-threaded PDES simulators to improve scalability on shared-memory

platforms such as Intel Core-i7 and such. One of the notable contributions of their work

involves the conversion of an MPI-driven strategy to a shared-memory threaded strategy.

Other PDES implementations explore various upcoming architectures. For exam-

ple, Jagtap et al. studies the performance of PDES [49] on the many-core Tilera architecture.

Their result displays good scalability, and the architecture proves capable of sustaining high

11

throughput even under a heavy workload. A study of PDES in Intel Many Integrated Core

(MIC) system [20] suggests that full utilization of the Knights Corner processor’s vector

units are required to outperform the Xeon host processors. A PDES system designed by

Bauer et al. [9] replaces the checkpointing system in ROSS with reverse computation to

achieve close to linear speedup, utilizing 128K cores in the IBM Blue Gene Supercomputer.

Reverse computation tries to trace backwards the states using the opposite computation

of the regular update operation. Thus, it can eliminate the overhead for checkpointing

states and maintaining a global time if the computation can be rolled back using reverse

computation. Barnes et al. [8] extend the previous work to analyze performance in the Se-

quoia BlueGene/Q supercomputer with 2 million cores. Their experiments show impressive

throughput for PDES with an MPI-driven execution. Several researcher explore the use of

GPGPUs to accelerated PDES [76, 97, 77, 19]. In contrast to these effort, very few works

considered acceleration of PDES using non-conventional architectures such as FPGAs.

Other optimizations of PDES systems focus on improving the robustness and

throughput of the priority queue of the PDES system. For example, the study by Gupta

et al. [37] looks at the use of ladder queues for a lock-free event management structure

that can substitute the more commonly used linked list-based event queue. This work as-

sumes that the events in a small simulation time window have no dependence and can be

issued without sorting in an optimistic simulation system. Optimization to the calendar

queue is considerred in [68] to propose a lock-free non-blocking event pool woth O(1) time

complexity for both insertion and dequeuing. The event queue structure and its impact

on PDES performance have been studied in the context of software implementations [82];

12

however, it is crucial to understand suitable queue organizations implemented in hardware.

Prior work has studied hardware queue structures supporting different features. For exam-

ple, hardware priority queues offer attractive properties for PDES such as constant-time

operation, scalability, low area overhead, and simple hardware routing structures. Simple

binary heap-based priority queues are commonly used in hardware-based implementations

but require O(log(n)) time for enqueue and dequeue operations. Other options have other

drawbacks; for example, Calendar Queues [13] support O(1) access time but are difficult

and expensive to scale in a hardware implementation. QuickQ[80] uses multiple dual-ported

RAM in a pipelined structure which provides easy scalability and supports constant-time

access. However, the access time is proportional to the size of each stage of RAM. There-

fore, configuring them to achieve a short access time necessitates many stages, which leads

to high hardware complexity.

2.2 Graph Processing

The next application, graph processing, is employed in many domains, including

social networks [96, 15, 22, 46, 30], web graphs [109], and brain networks [14], to uncover

insights from high volumes of connected data. Iterative graph analytics require repeated

passes over the graph until the algorithm converges. Since real-world graphs can be massive

(e.g., YahooWeb has 1.4 billion vertices and 6.6 billion edges), these workloads are highly

memory-intensive. Thus, there has been significant interest in developing scalable graph

analytics systems. Some examples of graph processing systems include GraphLab [64],

GraphX [36], PowerGraph [35], Galois [74], Giraph [3], GraphChi [60], and Ligra [90].

13

Maiter [116] is a graph analytics framework for delta-accumulative computation, which is

the basis of the event-driven model. Maiter shows the computation model for a distributed

systems where vertices communicate only the incremental change in their states, and graph

updates incrementally accumulate in vertices to reach the final converged state.

Graph Accelerators

Template-based graph accelerators process hundreds of vertices in parallel to mask

long memory latency [4]. They use hardware primitives for synchronization and hazard

avoidance. Swarm [51] allows speculative execution to increase parallelism and support

commit and rollback on a many-core architecture so that when tasks proceed speculatively,

there is the option to revert with little overhead. This increases the number of concurrent

tasks processed for ordered or tree-based algorithms. However, inherent memory access inef-

ficiencies of graph algorithms still persist. Spatial Hints [52] uses application-level knowledge

to tag tasks with specific identifiers for mapping them to processing elements which allows

better locality and more efficient serialization, thus, addressing the inefficiencies of Swarm.

Chronos [1] provides another hardware acceleration framework based on speculative execu-

tion. On the other hand, serialization becomes unnecessary after coalescing in GraphPulse

since transaction safety is implicitly guaranteed by the execution model and architecture.

Ozdal [75] proposes a graph processing architecture in hardware that takes ad-

vantage of a hardware-based commit queue to provide transaction safety in asynchronous

graphs. Graphicionado [38], a pipelined architecture, optimizes vertex-centric graph models

using a fast temporary memory space. It improves locality using on-chip shadow memory for

vertex property updates. Throughput increases due to reduced memory consistency over-

14

heads and higher memory bandwidth using the temporary storage. However, GraphPulse

substantially outperforms Graphicionado due to the advantages of the event-driven model

over conventional models. Graph processing systems for FPGAs include ForeGraph [23],

Zhou et al. [119, 120] etc.

PIM-based solutions

These solutions lower memory access latency and increase performance. Tesser-

act [2] implements simplified general-purpose processing cores in the logic layer of a 3D

stacked memory. Like distributed graph processing, it uses messages to access/update

data. GraphPIM [73] replaces atomic operations in the processor with atomic operation

capability in Hybrid Memory Cube (HMC) 2.0 to achieve low latency execution of atomic

operations. Another solution explores robust partitioning and cross-communication to fit

large graphs in 3D stacked memory [113]. There have been other recent works that focus

on architectures for PIM-based graph processing, such as GraphP [112], and GraphQ [121].

Our approach has the potential to be advantageous on PIM platforms too, because memory

accesses are simplified, and the complex scheduling and synchronization tasks are isolated

to the logic layer.

Tolerating irregular memory accesses

The propagation blocking technique for PageRank [10] temporarily holds contribu-

tions in hashed bins in memory, merges contributions to the same vertex, and later replays

them to maximize bandwidth utilization and cache reuse. However, it entails the overhead

of maintaining bins. Zhou et al. [119, 120] store contributions temporarily to memory and

15

combines them using hardware when possible for the edge-centric model. Due to a large

number of edges, there is a substantial increase in random memory writes to temporary bins

and small combination windows limit combining. To optimize irregular memory accesses,

IMP [110] uses a dynamic predictor for indirect accesses to drive prefetching. HATS [70]

proposes a hardware-assisted traversal scheduler for locality-aware scheduling to increase

data reuse. RAts [92] memory model exploits commutativity in atomic operations to reduce

complexity. In contrast, GraphPulse coalesces the application’s computations rather than

memory operations and controls the scheduling and frequency of vertex accesses to improve

memory access patterns.

Efficient vertex update handling

Since vertex updates are a crucial bottleneck in a graph-analytics application,

some prior works focus on improving the locality and cost of scattering updates to the

neighbors. Beamer et al. [10] uses Propagation Blocking to accumulate the vertex contribu-

tions in cache-resident bins instead of applying them immediately. Later, the contributions

are combined and then applied, thus eliminating the need for locking and improving spatial

locality. Propagation Blocking technique creates perfect spatial locality but fails to uti-

lize potential temporal locality for vertices having many incoming updates since updates

are binned and spilled to memory first. Other methods exploit commutative nature of

the reduction (apply) operation seen in many graph algorithms to relax synchronization

for atomic operations. Coup [111] extends the coherence protocol to apply commutative-

updates to local private copies only and reduce all copies on reads. This reduces read and

write traffic by taking advantage of the fact that commutative reduction can be unaware of

16

the destination value. PHI [71] also uses the commutativity property to coalesce updates

in private cache and incorporates update batching to apply scatter updates in bulk while

reducing the on-chip traffic further. Both PHI and Coup optimize memory updates, but

have no fine grain control over the memory access pattern. Like PHI, GraphPulse utilizes

commutative property to fully coalesce updates using the specialized on-chip queue. Fur-

thermore, GraphPulse applies these updates at a dataflow-level abstraction to reorder and

schedule updates for maximizing spatial locality and bandwidth use.

Dataflow architectures

GraphPulse bears some similarities to dataflow architectures in that computation

flows with the data [98, 57, 24, 44]. The Horizon architecture supports lightweight context

switching among a massive number of threads for tolerating memory latency. It heavily relies

on the compiler [24] but dynamic parallelism in graph applications is not amenable to similar

compiler techniques. The SAM machine [44], which is a hybrid dataflow/von Neumann

architecture, employs a highspeed memory (register-cache) between memory and execution

units is a better match for graph applications. However, neither of these architectures

address issues in graph processing addressed by GraphPulse. Specifically, GraphPulse uses

data-carrying events to eliminate random and wasteful memory accesses, coalescing strategy

eliminates atomic operations and reduces storage for events, and event queues improve

locality and enable prefetching.

17

2.3 Streaming Graph Processing

Taxonomy on streaming graph analytics is not yet well-established and several

conventions are observed for streaming graph papers. Most works refer to a graph system

where new edges additions or deletions appear over time as streaming graphs. However,

these graphs are also referred to as time-evolving [47], dynamic, or continuous [28] in many

literatures.

A number of streaming graph frameworks have been developed that are based on

the BSP [100] model similar to a software framework like Pregel [65]. Of these frameworks,

Kineograph [21], Tornado [89], Naiad [72], and Tripoline [53] are limited to growing graphs

(i.e., deletion updates are not allowed). In contrast, Kickstarter [103], GraphBolt [67], and

DZiG [66] support both addition and deletion of edges. Our work in this dissertation,

JetStream, supports both the addition and deletion of edges.

Streaming graph frameworks employ various techniques for performing incremental

computations. Some frameworks put the responsibility on the end-user to write methods

for discovering inconsistent vertices after graph mutation is applied. GraphIn [88] and

EvoGraph [87] use this technique. The user-defined method detects whenever inconsistency

arises in a graph based on the batch of edge updates and schedules the updated vertices for

recomputation. GraphBolt [67], and KickStarter [103] on the other hand, automatically

detects the affected vertices using a dependence tracking technique built into their systems.

There is a difference between the targeted class of graph algorithms between GraphBolt and

KickStarter. KickStarter targets a class of algorithms that have monotonic properties and

selects a single edge update to set the property of a vertex. GraphBolt, on the other hand,

18

proposes a dependency tracking technique that works on graph algorithms of iterative nature

and accumulative update functions. GraphInc [16] uses a memoization-based technique to

support incremental evaluation on iterative graphs. This technique attempts to preserve the

states of all computations performed and attempts to reuse the preserved states to answer

a graph query quickly. Other frameworks, such as KineoGraph [21] maintain a snapshot

of the graph states at repeated intervals and recompute the differences in the snapshot to

identify the part of the graph that needs recomputation. This strategy works even when

vertex update computations are not minimalistic or deterministic.

There are also designs of graph representations to support high-throughput graph

updates, such as Aspen [29], STINGER [31], and Version Traveller [54]. Other works

handling changing graphs include GraphTau [48], Vora et al. [102], Chronos [40]. However,

these works consider scenarios in which historical data is being analyzed, i.e., graph versions

are available a priori. GraSU [108] provides the first FPGA-based high-throughput graph

update library for dynamic graphs.

19

Chapter 3

PDES-A: Parallel Discrete Events

Simulation Accelerator

In this section, we introduce a baseline design targeted to run a PDES system in an

FPGA. The design focuses on the development of a high performance pipelined queue with

constant time insertion and dequeue to facilitate maximum parallelism in the accelerator.

It provides a simple datapath with all the components required for a PDES engine.

3.1 Parallel Discrete Event Simulation

A discrete event simulation (DES) models the behavior of a system that has dis-

crete state changes. This is in contrast to the more typical time-stepped simulations where

the complete state of the system is computed at regular intervals in time. DES has ap-

plications in many domains such as computer and telecommunication simulations, war-

gaming/military simulations, operations research, epidemic simulations, and many more.

20

PDES leverages the additional computational power and memory capacity of multiple pro-

cessors to increase the performance and capacity of the simulation, allowing the simulation

of larger, more detailed models and the consideration of more scenarios in a shorter amount

of time [33].

In a PDES simulation, the simulation objects are partitioned across a number of

logical processes (LPs) that are distributed to different Processing Elements (PEs). Each

PE executes its events in simulation time order (similar to DES). Each processed event can

update the state of its object, and possibly generate future events. Maintaining correct

execution requires preserving time stamp order among dependent events on different LPs.

If a PE receives an event from another PE, this event must be processed in time-stamped

order for correct simulation.

To ensure correct simulation, two synchronization algorithms are commonly used:

conservative and optimistic synchronization. In conservative simulation, PEs coordinate

with each other to agree on a lookahead window in time where events can be safely executed

without compromising causality. This synchronization imposes an overhead on the PEs to

continue to advance. In contrast, optimistic simulation algorithms such as Time Warp [50]

allow PEs to process events without synchronization. As a result, it is possible for an LP

to receive a straggler event with a time stamp earlier than their current simulation time.

To preserve causality, optimistic simulators maintain checkpoints of the simulation, and

rollback to a state in the past earlier than the time of the straggler event. The rollback

may require the LP to cancel out any event messages it generated erroneously using anti-

messages. This approach uses more memory for keeping checkpoint information, which need

21

to be garbage collected when they are no longer needed to bound the dynamic memory size.

A Global Virtual Time (GVT) algorithm is used to identify the minimum simulation time

that all LPs have reached: checkpoints with a time lower than the GVT can be garbage

collected, and events earlier than the GVT may be safely committed.

3.2 PDES-A Design Overview

FPGAs are progressing quickly in terms of both capabilities and integration with

computing platforms making them increasingly accessible to programmers. However, con-

cerns regarding longer development time and different development tools, and lack of flex-

ibility and portability are significant impediments to FPGA adoption. Considering these

concerns, our goal is to enable simulation of different applications within an easy-to-use

framework. An interesting characteristic of PDES simulation algorithms is that, despite

the irregular nature of the dependencies, the algorithm itself has a relatively clean and

straightforward execution semantics, iterating over the event list to schedule events, pro-

cessing these events, and then scheduling any events that result from their execution. Most

of the complexity lies in the data structures to manage the event lists and those for handling

synchronization and causality, which are common to any PDES application. In contrast,

application-specific event processing often is computationally and logically contained, and

for many simulation models, they are simple. For example, the Simian project[85] shows

that a completely functional PDES engine can be implemented in less than 500 lines of

python code. An FPGA-based PDES engine can leverage these properties to make it mod-

ular and scalable so that experts in any domain can simulate their application models

22

by simply defining the state transition and event processing logic, not requiring hardware

development expertise.

In this paper, we present an overview of the unit PDES accelerator (PDES-A),

the building block of our PDES accelerator. Each PDES-A accelerator is a tightly coupled

high-performance PDES simulator in its own right. However, hardware limitations such as

contention for shared event and state queue ports, local interconnection network complexity,

and bandwidth limit restrict the scalability of this tightly coupled design approach. These

properties suggest a design where multiple interconnected PDES-A accelerators together

work on a large simulation model, and exploiting the full available FPGA resources. In

this paper, we explore and analyze only PDES-A, and not the full architecture consisting

of many PDES-A accelerators.

In an FPGA implementation, event processing, communication, synchronization,

and memory access operations occur in a way different from how these operations occur

on general purpose processors. Therefore, both performance bottlenecks and optimiza-

tion opportunities differ from those in conventional software implementations of PDES. We

developed a baseline implementation of PDES-A and used it to identify performance bot-

tlenecks. We then used these insights to develop improved versions of the accelerator. We

describe our design and optimizations in this section.

3.2.1 Design Goals

PDES-A provides a modular framework where various components can be adjusted

independently to attain the most effective data path flow control across different PDES

models. Since the time to process events in different models will vary, we designed an

23

event-driven execution model that does not make assumption about event execution time.

We decided to implement an optimistically synchronized simulator to allow the system

to operate around the large memory access latencies. However, the tight coupling within

the system should allow us to control the progress of the simulation and naturally bound

optimism. We avoided any model specific tuning to retain generality of the accelerator.

The simulator is organized into four major components: (1) Event Queue: stores

the pending events; (2) Event Processors: custom datapaths for processing the event tasks in

the model; (3) System State Memory: holds relevant system state, including checkpointing

information; (4) and the Controller: it coordinates all aspects of operation. The first

three components correspond to the same functionality in traditional PDES engines in any

discrete event simulator, and the last one oversees the event processors to ensure correct

parallel operation and communication.

Communication between different components uses message passing. We currently

support three message types: Event messages, anti-messages, and GVT messages. These

three message types are the minimum required for an optimistic simulator to operate, but

additional message types could be supported in the future to implement optimization, or

to coordinate between multiple PDES-A units.

3.2.2 General Overview

Figure 3.1 shows the major components of PDES-A and their interactions. The

event queue contains a list of all the unprocessed events sorted in ascending order of their

timestamp. Event processors receive event messages from the queue. After processing

24

Figure 3.1: Block diagram of basic control and data flow in a PDES system

events, additional events that may be generated are sent and inserted into the event queue

for scheduling. The system needs to keep track of all the processed events and the changes

made by them until it is guaranteed that the events will not be rolled back. When an event is

received for processing, the event processor checks for any conflicting events from the event

history. Anti-messages are generated when the event processor discovers that erroneous

events have been generated by an event processed earlier. Since the state memory is shared,

a controller unit is necessary to monitor the event processors for possible resource conflict

and manage their correct operation. Another integral function of the control unit is the

generation of GVT which is used to identify the events and state changes that can be safely

committed. The control unit computes GVT continuously and forwards updated estimates

to the commit logic. These messages should have low latency to limit the occurrence of

rollbacks and to control the size of the event and message history. In the remainder of this

section, we describe the primary components in more detail.

25

Figure 3.2: The P-heap data structure [11]

3.2.3 Event Queue

The event queue maintains a time-ordered list of events to be processed by the

event processors. It needs to support two basic operations: insert and dequeue. An invali-

date operation can be included to facilitate faster cancellation of events that have not been

processed yet. However, this function was not considered in our preliminary implementation

to avoid circuit complexity.

We selected a pipelined heap (P-heap in short) [11] structure as the basic organi-

zation in our implementation, except for a few modifications described later. P-heap uses

a pipelined binary heap to provide two cycles constant access time. The P-heap structure

uses a conventional binary heap with each node storing a few additional bits to represent

the number of vacancies in the sub-tree rooted at the node (Figure 3.2). The capacity

values are used by insert operations to find the path in the heap that it should percolate

26

through. P-heap also keeps a token variable for each stage which contains the current op-

eration, target node identifier and value that is percolating down to that stage. During an

insertion operation, the value in token variable is compared with the target node: a smaller

value replaces the target node value and a larger value passes down to the token variable of

the following stage. The id value of the next stage is determined by checking the capacity

associated with the nodes.

For the dequeue operation, the value of the root node is dequeued and replaced

by the smaller between its two child nodes. The same operation continues to move through

the branch, promoting the smallest child at every step. During any operation any two

of the consecutive stages are accessed; one read access and the other write access. As a

result, a stage can handle a new operation every two cycles, since the operation of the

heap is pipelined with different insert and/or dequeue operations at different stages in their

operation [11].

P-heap can be efficiently implemented in an FPGA. Every stage requires a Dual

Port RAM. Depending on the size of the stage, it can be synthesized with registers, dis-

tributed RAM, or block RAM to maximize resource utilization. An arbitrary number of

stages can be added (limited by resource availability) as the performance is not hurt by the

number of stages in the heap, making it straightforward to scale.

In an optimistic PDES system, it is possible that ordering can be relaxed to im-

prove performance, while maintaining simulation correctness via rollbacks to recover from

occasional ordering violations. This opens up possibilities for optimization of the queue

structure. For example, multiple heaps may be used in parallel to service more than one

27

Comparator

Randomizer

Network

New

Events

Dequeued

Events

Dequeue

Signal

Figure 3.3: Multiple event issue priority queue

request in a single cycle. In an approach similar to [41], we can use a randomizer network to

direct multiple requests to multiple available heap (Figure 3.3). There is a chance that two

of the highest priority events may reside in the same heap and ordering violation will occur

when a lower priority event from same LP is dequed from another queue during multiple

dequeue. However, as the number of LPs and events grow, the probability that two events

from the same LP are at different queue heads decreases. So, the number of such events

will be low enough to result in a net performance gain. We used the simple P-heap model

in the baseline implementation and explored the effect of this version in our optimized ar-

chitecture discussed in section 4.1. Other structures that sacrifice full ordering but admit

higher parallelism such as Gupta and Wilsey’s lock-free queue may also be explored [37].

The queue stores a key-value pair. Event time-stamp acts as the key and the value

contains the id of the target LP and a payload message. In case the payload message is too

large, we store a pointer to a payload message in memory.

28

3.2.4 Event Processor

The event processor is at the core of PDES-A. The front-end of the processor is

common to all simulation models. It is responsible for the following general operations: (1)

to check the event history for conflicts; (2) to store and clean up state snapshots by checking

GVT; (3) support events exchange with the event queue; and (4) respond to control signals

to avoid conflicting event processing. In addition, the event processors execute the actual

event handlers which are specialized to each simulation model to generate the next events

and compute state transitions.

The task processing logic is designed to be replaceable and easily customizable to

the events in different models. It appears as a black box to the event processor system. All

communications are done through the pre-configured interface. The event processor passes

event message and relevant data to the core logic by populating FIFO buffers. Once the

events are processed, the core logic uses output buffers to load the generated events. The

core logic has interfaces to request state memory by supplying addresses and sizes. The

fetched memory is placed into a FIFO buffer to be read from the core. The interface to

the memory port is standard and provided in the core to be easily accessible by the task

processing logic.

3.2.5 Event scheduling and processing

Figure 3.4 shows a representative event execution timeline in the system. Events

are assigned to the event processors in order of their timestamps; in the figure, the event is

represented by a tuple (x,y) where x is the LP number and y is the simulation time. When

29

Figure 3.4: Simplified timeline representation showing scheduling of events in the system.

a second event (1, 12) is scheduled while another event (1, 8) associated with the same LP

is already being processed, the core is stalled by the controller unit until the first event

completes. At the completion of an event, the controller unit allows the earliest timestamp

among the waiting (stalled) events for that core to proceed as shown in window 1. Each

event generates one or more new events when it exits which are schedule at some time in the

future when a core is available. Occasionally, an event is processed after another event with

a later timestamp has already executed (i.e., a straggler event). It needs to be rolled back

to restore causality. Windows 2 in figure 3.4 shows one such event (2,22) which executes

before event (2,15). We use a lazy cancellation and rollback approach. Event processing

logic detects the conflict by checking the processed events list and initiates the rollback.

The new event will restore the states and generate events it would have normally scheduled

(6, 28) along with anti-messages (3, 27*) for all events generated by the straggler event,

and new event (2, 22) that reschedules the straggler event itself.

The anti-messages may get processed before or after its target event is done. An

anti-message (3, 27*) checks the event history and if the target event has already been

30

processed, it rolls back the states and generate other anti-messages (1, 30*) to chase the

erroneous message chain much like a regular events as shown in window 3 of Figure 3.4.

If the target message is yet to arrive, the anti-message is stored in the event history table.

The target message (1,30) cancels itself upon discovery of the anti-message in the history

and no new event is generated as shown in window 4.

3.2.6 Event History

An important component for maintaining order of execution in an optimistic sim-

ulation is the checkpointing and state restoration mechanism. To revert back the changes

done by an event, we keep records of it until it’s guaranteed to be committed. To be able to

do this, we store the processed events along with a set of information required for rollbacks

in an Event History Memory. The memory is organized as a free list of memory blocks in

the on-chip memory, each block containing space for 4 entries and pointer metadata. The

history entries contain event data and a rollback data structure defined by the programmer.

Hardware structure generation is done by the framework based on the computed size of the

entries after user defines the data structure.

Each LP has a list for history where blocks are appended as history grows and

entries are stored in order of their execution. The on-chip memory gives fast access to the

history, but put a restriction on how large it can be. So, when the on-chip memory is close

to being full, we allocate memory blocks in the off-chip RAM. This will add latency to

event history access and put a burden on the memory bandwidth. To prevent this, when

the event history starts spilling into off-chip memory, we initiate a flush of the processing

cores. A flush would temporarily prevent issuing new events for processing until all event

31

processors are idle. This allows the GVT to be recomputed, and the pending event sets

to be properly reordered. As a result, stale history entries can be removed and the event

history shrinks in size.

The history list is maintained and pruned at the processor. The list is pulled

into the processor as a whole, then the stale events with timestamps older than the GVT

are removed from the list. If there are events violating causality, they are removed and

passed to the rollback module. The active event in the processor is appended to the rest of

the history list, and the list is stored to memory when event processing is complete. The

memory allocation and communication, when done in the hardware, is cheap and doesn’t

add much overhead.

3.2.7 Rollback and Cancellation

The state restoring or reverse computation logic for rollback needs to be defined

by the programmer. The programmer also defines the data structure for the event history

and which values should be stored during forward computation. The model specific logic

populates the data structure with correct states and the framework takes care of storing

the checkpoint data to the history. On causality violation, processor receives a list of

violating events in reverse order of execution. The programmer needs to define the way

the checkpoint data is used to restore the states. For smaller states, state value may be

saved in the event history and later restored directly. For more complex cases, the user

can store other information, such as a random number generator seed, that can be used to

reverse compute the states and create anti-messages. We save the history for each events

and rollbacks are done for every event executed out-of-order.

32

Rolling back an event also reinserts the rolled back event to the event queue and

generates anti-messages to revert the events it wrongly created. This anti-messages are

scheduled like normal events and they trigger cancellation during the checking of event

history in processors as described in section 3.2.5. Each event message, along with its

payload, carries an unique identifier which is a tuple (processor ID, sequence number of

active event) that serves as a identifier for its parent event. The sequence number simply

indicates the number of events processed in a processor and each new event received in a

processor gets an unique sequence number from a counter in the processor. The unique

identifier for the parent event is stored in its history entry along with rest of the event

data. When the parent event is reversed, rollback process emits anti-messages carrying this

identifier with timestamp and LP of the target events to be cancelled. The anti-message

can be matched with their target event using the unique identifier and event timestamp.

3.3 Implementation Overview

We used a full RTL implementation on Convey WX-2000 accelerator for prototyp-

ing the simulator. The current prototype fits comfortably in a Virtex-7 XC7v2000T FPGA.

The event history table and queue were implemented in the BRAM memory available in the

FPGA. The on-board 32GB DDR3 memory was used for state memory implementation,

although very little memory was necessary for our prototype. The system uses a 150MHz

clock rate. The host server was used to initialize the memory and events at the beginning

of the simulation. The accelerator communicates through the host interface to report re-

sults as well as other measurements we collected to characterize the operation of the design.

33

For any values that we wanted to measure during run time, we instrumented the design

with hardware counters that keep track of these events. We complemented these results

with other statistics such as queue and core occupancy that we obtained from functional

simulator of the RTL implementation using Modelsim.

Since our design is modular, we can scale the number of event processors easily.

However, as the number of processors increases, we can expect contention to arise on the

fixed components of the design such as the event queue and the interconnection network.

We experiment with cluster sizes from 8 to 64 in order to analyze the design trade-offs and

scalability bottlenecks. The performance of the system under variable number of LPs and

event distribution gives us insight about the most effective design parameters for a system.

We sized our queues to support up to 512 initial events in the system. The queue is flexible

and can be expanded in capacity, or even be made to handle overflow by spilling into the

memory.

3.3.1 Design Language and Application Modeling

The baseline design was implemented using Verilog. However, during optimization,

we reimplemented the system using Chisel[5], a hardware construction language. This

decision was driven primarily by the design goal of lowering the barrier for domain modelers

to build and run simulation models on the framework. Chisel is based on Scala, which is

an easy to use and already familiar language to most domain experts. This would reduce

development time and effort to anyone inclined to use the framework. The encapsulation

property of the object oriented approach of Chisel also allows us to separate modeling and

framework development code which requires from the end-users lesser understanding of the

34

framework. Moreover, the generated code is highly parameterizable with metaprogramming.

This gives the users the capability to configure size and some basic parameters without the

in-depth understanding of the language or design. Effectively, the hardware implementation

becomes almost similar to the CPU based PDES engines from the perspective of the user.

Additionally, quicker development and easier maintenance of the framework was

possible thanks to the object oriented nature and metaprogramming capabilities of Scala

language. The code-base was reduced in size by about 40%. The simplicity in code leads to

better maintainability. Unlike industrial applications, research projects are usually devel-

oped without a fixed set of constraints in mind, and thus keep evolving rapidly throughout

each experiment. In the standard HDL languages, small adjustments in one component

tend to ripple through the whole design requiring lots of edits which is not congenial to

rapid prototyping. Because of the metaprogramming capabilities of the Chisel framework,

effort and time required for such a task can be reduced significantly which makes many ex-

plorations feasible. This is tangential to the architecture or performance of the accelerator,

but we still put these comments as a note for the benefit of future researches.

Simulation Models

Our goal in the evaluation is to present a general characterization of this initial

prototype of PDES-A. We used the Phold model for our experiments because it is widely

used to provide general characterization of PDES execution that is sensitive to the system.

On the Convey machines, the memory system provides high bandwidth at the cost of high

latency (a few hundred cycles) which end up dominating event execution time. To emulate

event processing, we let each event increment a counter up to a value picked randomly

35

between 10 and 75 cycles to represent the computation complexity. The model generates

memory accesses by reading from the memory when the event starts and writing back to it

again when it ends. Phold is state oblivious, but we still use a dummy state holding a counter

and restore it during rollback so that we can analyze the effects of rollback in our system.

New outgoing agents are generated to a random LP using a random number generator.

We also use the Airport model[34] on our optimized system to analyze performance for an

application with multiple event type and larger state. We developed our model to represent

the Airport model included with ROSS models[17].

Design Validation

Verification of hardware design is complex since it is difficult to peek into the

simulation running on the hardware. However, the hardware design flow supports a logic

level simulator of the design that we used to validate that the model correctly executes the

simulation. In particular, the Modelsim simulator was used to study the complete model

including the memory controllers, cross bar network, and the PDES-A logic. Since the

design admits many legal execution paths, and many components of the system introduce

additional variability, we decided to validate the model by checking a number of invariants.

In particular, we verified that no causality constraints are violated in the full event execution

trace of the simulation under a number of PDES-A and application configurations.

36

1 8 16 32 64

0

10

20

30

40

50

(a) Throughput Scaling

1 8 16 32 64

0%

20%

40%

60%

80%

100%

(b) Utilization Ratio

Number of event processors

Number of event processors

Figure 3.5: Effect of variation of number of cores on (a) throughput and (b) percentage of
core utilization for 256 LP and 512 initial events in PDES-A.

3.4 Performance Evaluation

In this section, we evaluate the design under a number of conditions to study

its performance and scalability. In addition, we analyze the hardware complexity of the

design in terms of the percentage of the FPGA area it consumes. Finally, we compare the

performance to PDES on a multi-core machine and use the area estimates to project the

performance of the full system with multiple PDES-A accelerators.

37

3.4.1 Performance and Scalability

In this first experiment, we scale the number of event processors from 1 to 64 while

executing a Phold model. Figure 3.5-a shows the scalability of the throughput normalized

with respect to the throughput of a single event handler configuration. The scalability is

almost linear up to 8 event handlers and continues to scale with the number of processors

up to 64 where it reaches a above 49x. As the number of cores increases, contention for the

bandwidth of the different components in the simulation starts to increase leading to very

good but sub-linear improvement in performance. Figure 3.5-b shows the event processor

utilization, that is, the portion of time the event processor is actively processing event and

not stalling or waiting for resource. The utilization is generally high, but starts dropping

as we increase the number of event processors reflecting that the additional contention is

preventing the issuing of events to the handlers in time.

Figure 3.6-a shows the throughput of the accelerator as a function of the number

of LPs and the events population in the system for 64 event processors. The throughput

increases significantly with the number of available LPs in the system. This is to be ex-

pected: as the events get distributed across a larger number of LPs, the probability of

events being at the same LP and therefore blocking due to dependencies goes down. In our

implementation we stall all but one event when multiple cores are processing events belong-

ing to the same LP to protect state memory consistency. Thus, having a higher number of

LPs reduces the average number of stalled processors and increases utilization. In contrast,

the event population in the system influences throughput to a lesser degree. Even though

having a sufficient number of events is crucial to keeping the cores processing, once we have

38

32 LP 64 LP 128 LP 256 LP

0.00

0.05

0.10

0.15

(a) Event Throughput

64 128 256 512 events

32 LP 64 LP 128 LP 256 LP

0.0

0.2

0.4

0.6

0.8

1.0

(b) Commit Efficiency

64 128 256 512 events

Figure 3.6: (a) Event processing throughput (events/cycle) and (b) Ratio of number of
committed events to number of total processed events for different number of LPs and
initial events on 64 event processors.

a large enough number of events increasing the event population further does not improve

throughput measurably.

3.4.2 Rollbacks and Simulation Efficiency

The efficiency of the simulation, measured as the ratio of the number of committed

events to processed events, is an important indicator of the performance of optimistic PDES

simulators. Figure 3.6-b shows the efficiency of a 64-processor PDES-A as we vary the

number of events and the number of LPs. For our Phold experiment, we observed that the

fraction of events that are rolled-back depends on the number of events in the system but

is not strongly correlated to the number of LPs in presence of sufficient number of events.

39

64 12
8
25

6
51

2 64 12
8
25

6
51

2 64 12
8
25

6
51

2 64 12
8
25

6
51

2 64 12
8
25

6
51

2 64 12
8
25

6
51

2 64 12
8
25

6
51

2 64 12
8
25

6
51

2

0

200

400

600

800

1,000

1,200

32 LP 64 LP 128 LP 256 LP 32 LP 64 LP 128 LP 256 LP

C
y
cl

es
Memory Access Stall Event Processing Record Keeping Idle

Events

(a) 32 Cores (b) 64 Cores

Figure 3.7: Breakdown of time spent by the event processors on different tasks to process
an event using (a) 32 event processors and (b) 64 event processors with respects to different
number of LPs and initial event counts.

With a large population of initial events, we observe virtually no rollbacks since there are

many events that are likely to be independent at any given point in the simulation. Newly

scheduled events will tend to be in the future relative to currently existing events, reducing

the potential for rollbacks. However, keeping all other parameters same, reducing the

number of initial events can cause the simulation efficiency to drop to around 80% (reflecting

around 20x increase in the percentage of rolled back events). For similar reasons, the number

of rolled-back events decreases slightly with a greater number of LPs in the simulation. Most

causality concerns arise when events associated with same LP are processed in the wrong

order. When events are more distributed when number of LPs is higher, thus reducing the

occurrence of stalled cores. However, this effect is relatively small.

40

0 1000 2000 3000 4000 5000

8

16

24

32

40

48

56

64
ActiveIdle Stalled

Cycles

C
or
es

Figure 3.8: Timeline demonstrating different states of the cores for during a 5000 cycles
frame of the simulation.

3.4.3 Breakdown of event processing time

Figure 3.7 shows how average event processing time varies with the number of

LPs and initial events and breaks down the time taken for different tasks for systems

with 32 and 64 processors. The primary source of delay in event processing is the large

memory access latency on the Convey system. Another major delay is due to the processors

stalling for potentially conflicting events. These two primary delays in the system dominate

other overheads in the event processors such as task processing delays and event history

maintenance, which increase as we go from 32 to 64 cores.

The average event processing time is highest when the number of LPs or the

number of initial events is low. Conversely, the average number of cycles goes down as more

events are issued to the system or the number of LP increases (which reduces the stalling

probability). The reason for this behavior is apparent from the breakdown of the event

cycles. We notice that about the same number of cycles are consumed for memory access

regardless of the system’s configuration because the memory bandwidth of the system is

41

very large. However, the average stall time for the processors is significantly higher with

fewer LPs and constitutes the major portion of the event processing delay. For example,

with 64 cores, and 32 LPs, we can have no more than 32 cores active; any additional core

holds an event for an LP that has another active event at the moment. A system of 64 LP

has over 150 stall cycles on average with 64 processors. The stall times drop substantially

as we increase the number of LPs and events. These dependencies result in many stall

cycles to prevent conflicts in LP-specific memory and event history. At the same time, a

small number of LPs increases the chance of a causality violation. This effect is most severe

when the number of LP is close to the number of event processors. As the number of LPs

increases, the events are more distributed in terms of their associated LP and can be safely

processed in parallel. Even if stalls are less frequent, each can take a long time to resolve.

Figure 3.8 helps visualize PDES-A’s operation by showing how the processors are

behaving over time for a simulation with 256 LPs and 512 events. The black color marks

show the cycles when the processors are idle before receiving a new event. Each yellow

streak highlights the time a processor is stalled.

The memory access time remains mostly unaffected by the parameters in the sys-

tem. The state memory is distributed in multiple banks of RAM and accesses depend on

the LPs being processed. The appearance of different LPs in the event processor are not

correlated in Phold and therefore poor locality results without any special hardware sup-

port. However, having higher number of events may increase the probability of consecutive

accesses to the same memory area and therefore occasionally decrease the memory access

latency reducing the average memory access time slightly.

42

0 1 2 3 4 5 0 1 2 3 4 5

0

500

1,000

1,500

32 cores 64 cores

Number of memory accesses

C
y
cl

es

Cycles for memory accesses other non-memory tasks

Figure 3.9: Effect of number/size of state memory access on event processing time

We note that the actual event handler processing time is a minor component, less

than 10%, of the overall event processing time even in the best case. This observation

motivates our future work to optimize PDES. In particular, the memory access time can be

hidden behind event processing if we allow multiple applications to be handled concurrently

by each handler: when one event accesses memory, others can continue execution. This and

other optimization opportunities are a topic of our future research.

3.4.4 Memory Access

Memory access latency is a dominant part of the time required to process an event.

Figure 3.9 shows the effect of variation of state memory access pattern on average execution

time. The number of memory accesses can also be thought of as the size of state memory

read and updated during each event processing. The leftmost column in the plot shows

43

the execution time without any memory access which is small compared to the execution

time with memory accesses. About 300 cycles are added for the first memory access. Each

additional memory access adds about 50 cycles to the execution time. The changes in

the average execution time are almost completely the result of the changes in memory

access latency. It is apparent that the memory access latency does not scale linearly with

the number or size of memory requested. Even if stalls are less frequent, each can take

long time to resolve. Thus, we believe the memory system can issue multiple independent

memory operations concurrently leading to overlap in their access time. We have made the

memory accessed by any event a contiguous region in the memory address space, which may

also lead to DRAM side row-buffer hits and/or request coalescing at the memory controller.

In an optimized event processing logic, the processor may continue operation with partially

available state memory to overlap computation and communication time.

3.4.5 Effect of event processing time

Figure 3.10 shows the effect of event processing time on the system performance.

Since a computation can be synthesized differently in a hardware (single-cycle combinational

vs multi-cycle sequential) with different resource usage footprint, different processing time

may be achieved for same model. We use this experiment to analyze how different processing

time affects performance to serve as a guideline for RTL design of the model. Since memory

access latency is a major source that is currently not being hidden (and therefore adds

a constant time to event processing), we configure a model that does not access memory

in this experiment. We also allow the event processing time to be artificially adjusted.

44

1 50 100 150 200 250
0.00

0.05

0.10

0.15

0.20

0.25

(a) Throughput

E
ve

n
ts

/
C

y
cl

e

1 50 100 150 200 250
0%

20%

40%

60%

80%

(b) utilization ratio

Event processing delay in cycles

Event processing delay in cycles

Figure 3.10: Effect of variation of processing delays (in cycles) on (a) throughput, (b) ratio
of core utilization for 64 event processors with 256 LP and 512 initial events.

The results of this study are shown in Figure 3.10-a. A higher processing time represents

computations for models that have computationally intensive event processing. When the

processing time is small, changes in the processing time does not reflect much in the system

throughput since the system overheads lead to low utilization of the event handling cores

causing throttled speed. When processing time is higher, the utilization rises(Figure 3.10-

b), and increasing the event processing time start to lower the throughput. Thus, reducing

processing time can improve performance, but up to a certain degree. Throughput gain

becomes negligible for reduction of processing time beyond 150 cycles.

45

Chapter 4

Decoupled Datapath for PDES-A

From the performance analysis of the baseline PDES-A simulation engine presented

in the previous section, we observed that a critical source of inefficiency is the overhead that

results from multiple event processors contending for access to one of the shared processor

components such as the event list. This contention both hurts the performance of the

system and presents a major barrier to future optimizations. In particular, Figure 4.2-a

shows that the contention at the interfaces of the processed events list, state memory, and

event queue grows quickly as the number of event processors increases. For example, with 64

event processors, through 30% of the total execution time, at least one processor is waiting

for the processed events list to become available. The same happens for the event queue

through 15% of total simulation time.

We discover that going to a larger scale does not result in additional performance

as expected since the shared structures cannot meet the demands of the event processors.

Additional problems can be observed in Figure 3.10-a, where we see that the throughput of

46

the system remains flat at 0.25 events per cycle even when the event processing time is made

very small. This indicates that these shared structures form a significant bottleneck at this

scale. Hence, because of contention, memory optimizations (the other major bottleneck)

will not be rewarded with a proportional improvement in performance.

In this chapter, we describe a reorganization of the PDES-A datapath in order

to alleviate these bottlenecks originating from contentions at different interfaces and naive

scheduling.

4.1 Datapath Optimization via structure partitioning

Reducing wait times due to contention can result in substantial improvement in

performance because contention delay creates an implicit positive feedback loop that can

amplify the effect: Waiting for resources increases the event processing time, which in turn

causes longer stall for other conflicting events if present. Moreover, delay in processing

events increases the probability that the resulting event will be a straggler event, which

consequently creates more rollbacks, anti-messages, and more entries in processed event

history, again increasing contention.

One approach for alleviating this problem is to increase the number of ports avail-

able for each resource. However, handling simultaneous requests requires an arbitration

mechnism (e.g., crosspoint switches) to allow event processors to access any of the available

resources; such structures introduce significant hardware complexity. Moreover, while this

approach is conceptually simple, implementation becomes difficult because of the increased

complexity of synchronization in the presence of multiple communication paths. In contrast,

47

the baseline design needs only simple synchronization since critical events were already be-

ing serialized as exchanges happen at one interface at a time. This serialization did not

obstruct parallelization when number of processors are smaller and concurrent accesses to

any particular resource were rare. However, as the number of event processors increases,

we observe sublinear throughput scaling as contention grows.

Instead of increasing the number of ports, we elected to re-architect the com-

munication scheme in a way that simplifies the synchronization requirements, making the

synchronization less tightly coupled. Our future vision for the framework also motivated

this change: we plan to integrate multiple PDES-A engines on the same FPGA, or even

across multiple FPGAs to increase the throughput of the system. In such a setting, the sys-

tem must be able to manage a high volume of remote events. A centralized synchronization

scheme would result in very high contention at event queues making fast event exchange

nearly impossible.

As discussed in section 3.2.3, it is possible to drain events from the event queue

without maintaining strict order because the chance of violating causality constraints is

small among events near the top of the heap. When causality is violated, we have the

rollback mechanism to fall back on and recover. Therefore, we built the event queue out

of multiple smaller queues and created an interface for each of them to be accessed in-

dependently. From our simulations, we have noticed that violating order between events

associated to the same LP causes rollbacks which keeps cascading in the absence of order.

Therefore, we map events for each LP to one queue to make sure that they remain ordered

with respect to each other. We do not maintain order between different queues, and an

48

event for LP A may be processed ahead of another at LP B even if it has a later timestamp

when the LPs are mapped to different event queues.

We have added a replace capability to the queues (described in Section 3.2.3) so

that insert and delete operations become independent of each other. All event processors

were given the ability to push events to any queue interfaces based on the target LP using a

crossbar. Furthermore, the task of governing event issue was separated into a controller that

translates event requests from available event handlers to event issue instructions for the

cores. Based on the status of the event queues, this controller optimizes the event issue task

to achieve minimum rollback and maximum utilization. The events issued from the queues

are delivered to the recipient event handler using a broadcast network. A broadcast network

is simpler than a more precise event delivery mechanism since the number of cores can be

large, complicating routing with other network structures. The broadcast mechanism can be

hierarchical and easily alterable to fit any system configuration efficiently. Thus, decoupling

the task of insertion and removal of events makes it possible to separate the control and

dataflow paths for the queues and reduces interdependence between the two tasks.

To adapt the state memory and processed events history for servicing multiple

requests while maintaining memory consistency semantics, we partitioned the state space

and events history with respect to LPs in a fashion similar to the event queue. This design

ensures consistency without special mechanisms when considering the fact that the design

guarantees that no read will be performed to data associated with an LP while another

event processor is in the process of updating it. Similar to the event queue, requests are

sent through a crossbar network and responses are broadcast to the core.

49

Figure 4.1: Overview of an event processing cycle

Essentially, this design creates different partitions for each LP, while preserving

their ability to share event processors It also spreads contention to two stages: the crossbar

followed by the partitioned queues, resulting in a higher throughput multi-stage network. As

a result, the effective bandwidth of each of the shared structures is multiplied by the number

of partitions since each of them can operate on an event independently. This relaxation

in synchronization comes at the price of relaxing strict (sequential) event processing across

partitions, which can result in additional rollbacks, but in practice, since the design keeps

the LPs within similar simulation time of each other, this effect is minimal.

4.1.1 Decoupled Event Processing Flow

Figure 4.1 shows the event processing flow in the optimized design. An event goes

through three different phases throughout its life cycle.

50

Issue Phase

At any given moment, a list of idle event processors is available to the issue con-

troller. Whenever any processor is idle, the issue control logic requests events from the

event queue on behalf of the idle event processors in step 1. In step 2, the event at the head

of the queue is broadcast to a bus connected to all processors. The targeted event processor

picks up the event from the broadcast bus. An execution controller always monitors the

event broadcast activity and keep a record of the LP-processor association. The controller

checks its whether it is safe to process the event and signals the event processor in step 3

to start execution when it’s not going to create any conflicts with other event processors.

Compute Phase

The event processors, upon receiving this signal, fetches state memory and pro-

cessed events list in step 4. The event history is checked in the preprocessing step (step 5)

to find if any rollback or cancellation is necessary. At the same time, the processor cleans

up the stale history entries from the event history list. The event data, state memory, and

event types are then delivered to the model specific event handling logic provided by the

user. Depending on the event type, in step 6 and 7, the event handler performs rollback

computation if necessary, computes new states based on the model, and create next set of

events along with any anti-messages generated due to rollback.

Apply Phase

When the event handling logic returns, the event processor does the necessary

clean up by pushing the new event to the appropriate queues in step 8. At the same time,

51

1 8 16 32 64 64opt

0%

10%

20%

30%

(a) Contention at interfaces

Processed list
State memory
Event queue

1 8 16 32 64 64opt

0

100

200

300

400

(b) Mean processing and stall length

cy
cl

es

Event Processing
Stall

1 8 16 32 64 64opt

0%

20%

40%

60%

80%

(c) Event handlers utilization ratio
1 8 16 32 64 64opt

0

20

40

60

(d) Normalized throughput

Figure 4.2: Effects of optimized dataflow and concurrent resource access on PDES-A accel-
erator performance compared to the baseline engine with different number of event handlers.

the updates to state memory and processed events list are written to the memory in step

9. At this point, the event processing is complete and the event processor notifies the

execution controller and issue controller in step 10 so that their internal records can be

updated. Afterward, the processor prepares to receive a new event.

4.1.2 Operational Characteristics

Figure 4.2 shows different performance measures of the optimized design along with

the baseline design at different point of scaling. We see in figure 4.2-a that the contention

at the interfaces was almost completely eliminated. The effect of this is apparent in the plot

52

of cycles required on average for event processing shown in figure 4.2-b. The average event

processing time decreases to the same level as it was for 16 event processors in parallel.

The time spent stalling to avoid conflicts also reduces as a result of faster event processing

time. Consequently, the system achieves better utilization ratio as can be seen in figure

4.2-c, which shows improvement in the fraction of time a processor remains active. Finally,

all these effects combine into significant improvement in throughput.

This organization is highly throughput oriented and almost completely removes

interdependence among the data flow paths. The only remaining source of divergence is

straggler events. This organization restores the throughput to almost linear scaling. With

64 cores, this organization achieves approximately 62 times the throughput of a single

core (figure 4.2-d) where the baseline design shows throughput dwindling to only 49x. We

expect the design to be scalable to a higher number of event processors given the reduction

in contention.

4.2 Comparison With ROSS

To provide an idea of the performance of PDES-A relative to a CPU-based PDES

simulator, we compared the performance of PDES-A with MPI based PDES simulator

ROSS[18].

We urge the readers to note that a simple comparison between a software frame-

work and hardware cannot be taken as a serious benchmark. In a realistic application, major

performance gain for the hardware accelerator will come from the superiority of hardware

primitives. For example, many mathematical and scientific libraries requires floating point

53

numbers and vectors computations, long iterative operations, and traverses many condi-

tional branches. A programmer can reduce these expensive tasks to only few cycles with

hardware support. This will contribute to massive throughput gain in hardware compared

to conventional CPU.

The purpose of our comparison with ROSS is to establish that the base framework

has comparable performance with software. It also helps us estimate the relative complexity

of the models from their software evaluation and use that knowledge in hardware analysis.

For this reason, Phold is a good choice of benchmark because it models the underlying

operations without being burdened by application specific logic.

Although the modeling flow for the two environments is quite different, we con-

figured ROSS to run the Phold model with similar parameters to the PDES-A model. We

changed the Phold model in ROSS to resemble our system by replacing the exponential

timestamp distribution with a uniform distribution. We set the number of processing ele-

ments, LPs and number of events to match our system closely. One particular difference

is in the way remote events are generated and handled in ROSS. In our system, all cores

are connected to a shared set of LPs, so there is no difference between local and remote

events. In ROSS, remote events have to suffer the extra overhead of message passing in

MPI, although MPI uses shared memory on a single machine. We set the remote event

threshold in ROSS to only 5% to allow marginal communication between cores.

Table 4.1 shows the parameters for both the systems used in comparison. Their

performance reported in Table 4.2 include the numbers for both the baseline and optimized

architecture. At this configuration, baseline PDES-A can process events 2.5x faster than a

54

Table 4.1: Summary of the configurations used for performance comparison of ROSS and
PDES-A using Phold model

Parameters ROSS PDES-A

System

Device Intel Xeon E5-1650

12 MB L2

Xilinx Virtex-7

XC7V2000T

Frequency 3.50GHz 150MHz

Memory 32 GB 32 GB

Simulation

PE 72 (12 cores× 6 KP) 64

LP 252 256

Event Density 504 512

Remote Events 5% 100%

12-core CPU version of ROSS and after optimization the advantage grows to 3.2x. When

the remote event percentage in ROSS is higher, ROSS performance suffers and the PDES-A

advantage increases, gaining up to 15x for 100% remote messages. We believe that as we

continue to optimize PDES-A this advantage will be even larger.

We also run the Airport model in the partitioned version of the accelerator to

compare performance in presence of multiple type of events. We achieve about 1.5x perfor-

mance gain over ROSS. The gain drops compared to Phold model. LPs in this model send

two-third of the events to self. Therefore, a the processors are often processing same LPs

and had to stall more to avoid conflicts. This result highlights the need to implement new

55

Table 4.2: Comparative analysis of PDES simulation performance for Phold model on ROSS
and PDES-A

Performance Phold Airport

ROSS Basic PDES-A Opt. PDES-A ROSS Opt. PDES-A

Events/second 9.2 mil 23.85 mil 29.98 mil 5.7 mil 8.7 mil

Commit Efficiency 80% ∼100% ∼100% 83% ∼100%

Power Estimate 130 Watt ∼17.8 Watt ∼18.5 Watt 130 Watt ∼18.5 Watt

strategies to reduce stalls, such as interrupt based preemption, workload reassignment etc.

We are exploring these optimizations for the next iteration of our design.

4.3 Resource Utilization Analysis and Scaling Estimates

In this section, we first present an analysis of the area/utilization requirements

of PDES-A. The FPGA resources utilization by the cores is presented in Table 4.3. The

overall system takes over about 25% of the available LUTs in the FPGA. The larger portion

of this is consumed by the memory interface and other static coprocessor circuitry which

will remain constant when the simulator size scales. The core simulator logic utilizes 6.11%

of the device logics. Each individual Phold event processor contributes to less than 0.03%

resource usage. Register usage is less than 3% in the simulator. We can reasonably expect

to replicate the simulation cluster more than 10 times in an FPGA, even when a more

complex PDES model is considered and networking overheads are taken into account. This

would put 640 cores in the coprocessor. The simulator offers good raw computing potential

if it can be scaled up to this extent.

56

Table 4.3: FPGA resource utilization for Optimized Datapath PDES-A

Component LUT (1221600) FF (2443200) BRAM (1203)

Used % Util. Used % Util. Used % Util.

Simulator 74670 6.11% 56115 2.30% 8 0.67%

Event Processor (each) 367 0.03% 211 0.01% 0 0%

Controller 3610 0.30% 5557 0.23% 0 0%

Event Queue (each) 4488 0.37% 1402 0.06% 0 0%

Memory Interface 116799 9.56% 4748 0.19% 222 18.45%

Crossbar Network 15757 1.29% 28192 1.15% 32 2.66%

Overall 300695 24.61% 320728 13.13% 271 22.53%

Finally, an inherent advantage of FPGAs is their low power usage. The estimated

power of PDES-A was less than 18 Watts in contrast to the rated 130 Watts TDP of the

Intel Xeon CPU. We believe that this result shows that PDES-A holds promise to uncover

significant boost in PDES simulation performance.

FPGA designs are limited by a lot of engineering constraints. Even when scaling

shows a promising trend of performance increase, sometimes it is undesirable to simply

increase the design size: since the design has to be physically synthesized using limited

resources of the chosen FPGA, routing complexity puts a limit on how large a tightly

coupled module can be.

In our design, we observe that without sufficient event saturation and higher num-

ber of LPs, the amount of time spent in stall and the possibility of causality violation

57

becomes prohibitively large reducing commit efficiency and can slow the system down (fig-

ure 3.6-a). Increasing the number of events is relatively simple. Either the queue sizes need

to be increased to accommodate more events, or queues should be spilled into main memory

in case of overflow. The first approach requires a linear increase in on-chip memory usage,

the second chokes the system if it occurs repeatedly. Increasing the number of LPs also

require proportional increase in memory for states and processed event history. The on-chip

memory is a limited resource which is scattered throughout the chip. One cannot simply

use as many of them as needed in a compact design because the routing complexity will

prevent synthesis at optimum frequency.

However, the routing complexity becomes most prominent when scaling number of

event processors because they need to be connected to the same interfaces and synchroniza-

tion mechanisms. The custom logic has to be physically synthesized alongside the common

logic. However, The design is then highly likely to fail timing constraints. A good engineer

with enough perseverance can probably make any configuration work by using hierarchies

and buffers, but this contradicts our design objective of making a portable framework with

minimal user input. Proper partitioning of the design is crucial in ensuring that the design

should work after customizations[91].

We found that the optimal size for a PDES-A engine is 64 event processors. At

this scale, the engine remains tightly coupled with sufficient parallelism while remaining

capable of synthesizing any model specific logic. It should be noted that this observation

is purely empirical in nature and the number should increase for different generations of

more powerful FPGAs. Each PDES-A engine would be equivalent to a design partition in-

58

terconnected in a larger simulation environment. Designers may also also choose to develop

Application Specific IC (ASIC) version of their model using PDES-A as base, in which case,

we expect PDES-A to continue to scale to reach either the limit on parallelism within the

model, or the memory bandwidth of the chip.

59

Chapter 5

Event-Driven Execution Model for

Graph Processing

Extracting massive parallelism is key to obtaining higher performance on large

graphs. However, it is challenging to build an efficient parallel graph processing application

from the ground up. Software graph processing frameworks solve this issue by providing sim-

ple primitives to the user for describing the algorithm specific operations and relying upon

runtime system for complex data management and scheduling. Decoupling the application

logic from low level management exposes opportunities to integrate many optimization tech-

niques that are opaque to the application programmer. However, software frameworks do

not fully address locality challenges originating from the irregular memory access patterns

and synchronization requirements of graph applications. In this chapter, we discuss some

relevant background on graph processing models and elaborate our design of an event-driven

model for overcoming the limitations on existing graph processing techniques.

60

Vertex Centric
Push Pull

2

3

2

3

2

5

2

5

3

4

3

4

4

2

4

2

4

1

4

1

1

2

1

2

5

3

5

3

1

3

1

3

4

5

4

5

2

3

2

5

3

4

4

2

4

1

1

2

5

3

1

3

4

5

D1 D2 D3 D4 D5D1 D2 D3 D4 D5

X2X2

D1 D2 D3 D4 D5D1 D2 D3 D4 D5

Edge list

<src, dst>

V.cur

V.nxt

V.cur

2

3

2

5

3

4

4

2

4

1

1

2

5

3

1

3

4

5

D1 D2 D3 D4 D5

X2

D1 D2 D3 D4 D5

Edge list

<src, dst>

V.cur

V.nxt

V.cur

loop

Edge Centric

2

3

2

5

3

4

4

2

4

1

1

2

5

3

1

3

4

5

D1 D2 D3 D4 D5

X2

D1 D2 D3 D4 D5

Edge list

<src, dst>

V.cur

V.nxt

V.cur

loop

Edge Centric

X2X2

11 22 33 44 551 2 3 4 5

4 1 4 1 2 5 3 4 24 1 4 1 2 5 3 4 24 1 4 1 2 5 3 4 2

D1 D2 D3 D4 D5D1 D2 D3 D4 D5

Sched

Edge.in

V.nxt

V.cur

X2

1 2 3 4 5

4 1 4 1 2 5 3 4 2

D1 D2 D3 D4 D5

Sched

Edge.in

V.nxt

V.cur

loop

X2

1 2 3 4 5

4 1 4 1 2 5 3 4 2

D1 D2 D3 D4 D5

Sched

Edge.in

V.nxt

V.cur

loop

Sched

D1 D3 D4 D5D2D1 D3 D4 D5D2

11 22 33 44 551 2 3 4 5

2 3 3 5 4 1 2 5 32 3 3 5 4 1 2 5 32 3 3 5 4 1 2 5 3

X3 X5X3 X5

V.cur

Edg.out

V.nxt

Sched

D1 D3 D4 D5D2

1 2 3 4 5

2 3 3 5 4 1 2 5 3

X3 X5

V.cur

Edg.out

V.nxt

loop

Sched

D1 D3 D4 D5D2

1 2 3 4 5

2 3 3 5 4 1 2 5 3

X3 X5

V.cur

Edg.out

V.nxt

loop

11

22

3344

55

1

2

34

5

Example Graph

RND RD

RND WR

SEQ RD

SEQ WR

RND RD

RND WR

SEQ RD

SEQ WR

1

2

34

5

Example Graph

RND RD

RND WR

SEQ RD

SEQ WR

atomic

Figure 5.1: Data access patterns for conventional graph processing models: Edge Centric
and Vertex Ordered (Push and Pull directions) processing paradigms.

5.1 Conventional Computation Models

Graph processing frameworks usually follow either Vertex-Centric or Edge-Centric

paradigm for sequencing their computation. In these frameworks, graph memory contains

three components: 1) a vertex property memory containing the vertex attributes; 2) a graph

structure specifying the relationships, i.e. edges; and optionally 3) memory for intermediate

states of computation in progress.

61

The scheduling determines the order in which the vertex or structural properties

in memory are accessed. The memory access patterns for various approaches are shown in

Figure 5.1. In the vertex-centric paradigm the vertex computation performed is designed

from the perspective of a vertex, i.e. vertex property value is updated by a computation

based upon property values of its neighbors [69]. Most vertex-centric computation models

follow one of two approaches: pull or push. In the pull approach, each vertex reads the

properties of all its incoming neighbors and updates its value. Thus, it involves random

reads; many of which are redundant as the vertex values read may not have experienced

any change and hence do not contribute any change to their outgoing neighbors. These

redundant reads lead to poor utilization of memory bandwidth and wasted parallelism due

to memory latency. On the other hand, push approach performs a vertex read-modify-update

operation for each of its outgoing neighbor. These updates must be performed via atomic

operations. Since graph processing algorithms suffer from poor locality resulting in frequent

cache misses, atomic operations are very inefficient. For example, a Compare-And-Switch

(CAS) operation on an Intel Haswell processor is more than 15 times slower when data is

in RAM vs in L1 cache [86].

In an edge-centric model, the edges are sorted, typically in the order of their

destination vertex ids, and streamed into the processor. The processors read both source

and destination to perform the vertex update. This approach either suffers from redundant

reads of inactive source vertices or locking overhead of destination vertices. The memory

traffic for reading edges of a vertex v typically achieves high spatial locality since the edges

are stored in consecutive locations. However, vertex accesses have poor spatial locality

62

as v can be connected to other vertices that are scattered in memory; there is a little

chance of vertices being stored in consecutive memory locations. Thus, vertex traffic suffers

significantly due to memory access latency being on the critical path. Additionally, since

the graphs are large, the reuse distance of a cached memory is also large, i.e. temporal

locality is non-existent. Thus, on-chip caches are mostly ineffective and compute resources

are poorly utilized.

Without maintaining active sets, many vertices will be read unnecessarily as their

values would not have changed in prior iterations. One could simply process all vertices in

each iteration and forego the need for maintaining active sets, but this is extremely wasteful

because the number of vertices that are active can vary greatly from iteration to iteration.

To avoid processing of all vertices, software frameworks typically invest in tracking the

active set of vertices. While this tracking eliminates redundant processing, it unfortunately

incurs significant overhead for maintaining the active set in the form of bitvector or a list.

Efficient tracking of active set in hardware accelerators is difficult to achieve.

The inherent simplicity of the vertex-ordered scheduling is lost due to scheduling and syn-

chronization overheads in the hardware. Additionally, the efficacy of many performance-

optimizing hardware primitives is reduced due to the irregularities introduced by active set

scheduling.

5.2 Delta-based Accumulative Processing

GraphPulse targets graph algorithms that can be expressed as a delta-accumulative

computation [116] – this includes many popular graph processing workloads [105, 104, 39,

63

116, 117]. In this model, updates aimed at a vertex by different incoming edges can be

applied independently. A vertex whose value changes, conveys its “change” or delta to its

outgoing neighbors. The neighbors update themselves upon receiving the delta, and propa-

gate their own delta further. Thus, the computation is turned into a data flow computation

that remains active as long as necessary until convergence. The continuous tracking of the

active set is inherent to the data flow model. The updates are broken into two steps:
vkj = vk−1j ⊕∆vkj

∆vk+1
j =

∑n
i=1⊕g〈i,j〉

(
∆vki

) (5.1)

vj is the vertex state. ∆vj is the change to be applied to the vertex using algorithm specific

operator ‘⊕’. The two equations can be visualized as a sequence of recursive operations

going back to the initial conditions v0j and ∆v0j that are also specific to the algorithm under

consideration. We highlight two key components in the equation: g〈i,j〉, the propagate

function, which modifies and conveys the change(delta) in the vertex value to its neighbors;

and ‘⊕’, the reduce function, that both reduces the propagated deltas to compute new delta

and applies it to the current vertex state. To express an iterative graph algorithm in the

incremental form, we make use of the following two properties:

Reordering Property. The deltas can be applied to the vertex state in any order.

This reordering is allowed when the propagation function g〈i,j〉 is distributive over ⊕, i.e.,

g (x⊕ y) = g (x)⊕ g (y); and ⊕ is both commutative and associative, i.e., x⊕ y = y⊕x and

(x⊕ y)⊕ z = x⊕ (y ⊕ z).

Simplification Property. Given an edge i → j, the ‘⊕’ operation is constructed to

incrementally update the vertex value vj when there is a change in vi. Therefore if vi does

64

not change, it should have no impact on vj . That is,

vkj ⊕ g〈i,j〉
(

∆vki

)
= vkj if ∆vki = 0

This property is satisfied when g〈i,j〉 (·) is constructed to emit an Identity value for the

reduce operator ⊕ when ∆vi = 0.

A wide class of graph algorithms – PageRank, SSSP, Connected Components, Ad-

sorption, and many Linear Equation Solvers – satisfy the above properties [116]. However,

there are exceptions. For example, graph coloring cannot be expressed since the update is

a function of all vertex values obtained along the incoming edges, i.e. they cannot be up-

dated using a value obtained along a single edge. Delta-based update algorithms break the

iteration abstraction, allowing asynchronous processing of vertices and thus substantially

increasing available parallelism, removing the need for barrier synchronization at iteration

boundaries (required by the Bulk Synchronous Parallel Model [100]), and providing op-

portunities for combining multiple delta updates. All these properties are exploited by

GraphPulse to improve performance.

Limitations to the model

We assume that Reordering and Simplification preserve correctness; however, some

graph algorithms do not satisfy this condition and thus cannot be expressed using our

model. For example, Graph Coloring, K-Core, and MIS algorithms require vertex contribu-

tion across all incoming edges to update a vertex. This violates the Simplification Property

since contributions from some neighboring vertices are needed even if their states were un-

changed. If the algorithm requires contributions from neighbors that are multi-hop away

65

(e.g., Triangle Counting) or a normalization step after each iteration (e.g., Label Propaga-

tion), then they violate the Reordering Property because a particular order must be imposed

upon the evaluation of the contributions through some edges. These algorithms cannot

be implemented in GraphPulse. It should be noted that some algorithms that are not

supported in their common iterative forms may have variations that may be suitable for

event-driven implementations. For example, PageRank and Adsorption have incremental

forms that are supported in GraphPulse and JetStream. As a rule of thumb, algorithms

supported by this model often have the characteristic that a single edge can update a vertex,

and the updates are monotonic.

5.3 Overview of Event-Driven Graph Processing

Before introducing the GraphPulse accelerator architecture, we overview important

considerations in the event processing model (see Algorithm 1). This section also discusses

the mapping of a delta-based graph computation to GraphPulse.

5.3.1 Event-Processing Considerations

Computation with Delta/Data Carrying Events

In the delta-based model, the only data that is passed between vertices are the

delta messages. These messages (implemented as events) encode the computation and carry

the input data needed by the computation as well, removing the need for expensive reads

of the input set of a vertex computation. Moreover, vertex updates can be performed

asynchronously; in other words, a vertex can be updated at any time with the delta it has

66

Algorithm 1 Event-Driven Execution Model for SSSP

V [:]← fill(∞) .InitializeVertex()

Q← insert({〈root, 0〉}) . InitialEvents()

1: procedure Compute(G(V,E), Q)

2: while Q is not empty do

3: 〈i, δi〉 ← pop(Q)

4: temp← V [i]

5: V [i]← min(V [i], δi) . Reduce(a, b)

6: if V [i] 6= temp then . Needs to propagate

7: for each 〈u→ v, w〉 ∈ E | u = i do

8: δv ← V [u] + w . Propagate(u, v, w)

9: Q← insert(〈v, δv〉)

10: end for

11: end if

12: end while

13: end procedure . Converged graph state in V

received so far. Based on these two properties, we develop an event-driven model to support

delta-based graph computation. This approach completely decouples the communication

and control tasks of the graph computation.

We define an event as a lightweight-message that carries a delta as its payload.

Multiple events carrying deltas to the same vertex can be combined using a reduce operator

specific to the application to reduce the event population and, subsequently, event storage

and processing overheads. Execution of a vertex program can only be triggered by an event.

67

3 Δ3 3 Δ3

1 Δ1 1 Δ1

2 3 3 5 4 1 2 5 32 3 3 5 4 1 2 5 32 3 3 5 4 1 2 5 3 Edge.out

X2 X5X2 X5 V.next

D1 D2 D3 D4 D5D1 D2 D3 D4 D5 V.cur

∙ ∙ ∙ ∙

∙ ∙ ∙ ∙

4 Δ4 4 Δ4

5 Δ5 5 Δ5

2 Δ2 2 Δ2

3 Δ3 3 Δ3

3 Δ3 3 Δ3

5 Δ5 5 Δ5

pop

RND WRRND WR

RND RDRND RD

SEQ RDSEQ RD

atomic

push

Figure 5.2: Data access pattern in event-driven approach with a FIFO event-queue.

A set of initial events is created at the beginning as part of the application initialization.

When a processor receives an event for a vertex, it executes two tasks: 1) update of the

vertex state using the reduce operation, and then 2) generate a new set of events using the

propagate function described in Section 5.2. The newly generated events are collected in an

event queue from which they are scheduled to other processors to start execution of new

vertex programs.

Figure 5.2 shows a view of the computation model. At any time, the event queue

has a set of pending events. The event at the head of the queue is issued to a processor

which read-modify-writes the vertex value, then reads the corresponding adjacency list to

prepare and insert new events into the event queues. The memory accesses are still in

random order and require locking for parallel operation since two or more events to the

same vertex may be issued from the queue; our optimized design mitigates both of these

limitations.

68

Coalescing Inflight Events

As discussed in Section 5.2, the reordering property of the propagation parameter

allows the architecture to combine multiple events to the same destination while still in

the queue using the reduce function without affecting program correctness; we call this

operation event coalescing. Event coalescing is critical for a practical asynchronous design

because every event in the queue can cause the generation of new events for every outgoing

neighbor or destination vertex, unless a termination condition is met. Consequently, for

every event consumption, new events are produced and the number of events in the system

will rapidly grow. For designing an event-driven processor with limited storage, we require

the event coalescing capability to ensure control over the rate of event generation.

Implicit Atomic Updates

In parallel execution, processors may attempt to update the same vertex’s state

simultaneously, necessitating locking or atomic updates. In Graphpulse, all the vertex mem-

ory accesses are associated with an event, and an event only modifies a single vertex value.

With the guarantee that, via coalescing, no more than one event is in-flight for any vertex,

safety for atomic access is naturally ensured. Our implementation completely coalesces all

events targeted to a vertex into one before it is scheduled preventing race conditions that

can otherwise arise in presence of concurrent updates.

Isolating Control Tasks from Computation

All memory accesses to vertex and edge data are isolated to the algorithm specific

task processing logic. The control tasks, which primarily consist of scheduling of vertex

69

operations, are naturally encapsulated using the events abstraction, and do not require any

accesses to the graph data to schedule their computation. Coupled with the guarantee of

memory consistency, this isolation makes the vertex scheduling logic extremely simple and

the datapath highly independent and parallelizable. Also, the memory interfaces designed

are simple and efficient since there are only simple memory accesses to the vertex properties.

This model reduces memory accesses compared to the classical graph processing approaches

including Vertex-Centric Push/Pull and the Edge-Centric paradigms.

Active Set Maintenance

The events resident in the queue encapsulate the entire active computation, which

provides an alternative way to manage active sets using hardware structures. Vertices that

are inactive will have no events updating them; and the set of unprocessed events indicate

a set of vertices that are to be activated next. Most existing graph frameworks use bitmaps

or vertex-lists to maintain an active set which entails significant management overhead.

The event maintenance task is decoupled from the primary processing path in our model

which results in greater parallelization opportunities. Efficient fine-grained control over the

event-flow, thereby the scheduling of vertices, can be achieved via hardware support.

Initialization and Termination

After loading a graph, we bootstrap the computation as follows. We define an

Identity parameter that, when passed to the reduce operator with another value, leaves the

latter unchanged (e.g., 0 is identity for the sum() operation). We set the vertex memory to

the identity parameter for the graph. The initial events, that are set with the initial target

70

Table 5.1: Functions for mapping algorithm to GraphPulse

propagate(δ) reduce Vj,init ∆Vj,init

PR-Delta α · Ei,j · δ/N(src) + 0 1− α

Adsorption αi · Ei,j · δ + 0 βj · Ij

SSSP Ei,j + δ min ∞ 0 (j=r); ∞

BFS 0 min ∞ 0 (j=r); ∞

Conn. Comp. δ max -1 j

value of the vertices, populate the event queue. The first event of a vertex is guaranteed to

trigger a change and then propagate it to other vertices to bootstrap the computation. The

event population eventually declines as the computation converges; an update event may

not generate new events if the update magnitude is below a threshold (e.g., in PageRank).

Eventually, the event queue becomes empty without replenishment and the application

terminates when there is no more event to schedule. We also provide the ability to specify

a global termination condition for better control with some applications (see Section 6.1.2).

5.3.2 Application Mapping

To implement a delta-based accumulative graph computation for compatible ap-

plications with our model shown in Algorithm 1, the user must define the few functions

described next. Table 5.1 shows the reduction and propagation functions, and the initial-

ization values for five graph applications.

71

Reduce function expresses the reduction operation that accumulates incoming

neighbors’ contributions to a vertex, and coalesces event deltas in queue. It takes a delta

value and current vertex state to update state = state⊕ delta.

Propagate function expresses the source vertex’s propagation function (g(x)) that

generates contributions for the outgoing neighbors. It uses the change in state to produce

outgoing delta, ∆out = g〈E.src,E.dst〉 (∆V).

Initialization function defines the initial vertex states to an identity value for

the reduction operator. Also, the initial event delta is set such that Reduce(Identity,

delta) results in the intended initial state of the target vertex.

Terminate function defines a local boolean termination condition in the framework

that checks for changes in the vertex state. Propagation for an event stops when the local

termination condition is valid and the vertex state is unmodified. The program stops if all

events have terminated locally.

Application Programming Interface

Due to the simple programming abstraction, user effort is modest. The user can

define program logic in HDL using custom functional modules and pipeline latency, or use

some common functional modules in GraphPulse (e.g., Min, Max, Sum). The user also

creates the array of initial events and vertex states, which are written to the accelerator

memory and registers by the host CPU.

72

Chapter 6

GraphPulse: an Asynchronous

Graph Processing Accelerator

GraphPulse is an event-based asynchronous graph processing accelerator that

leverages the decoupled nature of event-driven execution. The event processing datap-

ath exposes the computational parallelism and exploits available memory bandwidth and

hardware resources. The accelerator takes advantage of low-latency on-chip memory and

customizable communication paths to limit the event management and scheduling over-

heads. The following insights from Section 5.3.1 guide the datapath design:

1. Vertex property reads and updates are isolated and independent, eliminating the

need for atomic operations. When sufficient events are available for processing, the

throughput is only limited by the memory bandwidth.

2. To sustain many parallel vertex operations, it should be possible to insert, dequeue,

and schedule events with high throughput.

73

Accelerator Memory

Vertex PropertiesGraph Structure

Event

Processors

Host

Processor
Event

Scheduler

Event

Issue

Status

Event

Emit
Event

Queues
Q

Q

Event

Queues
Q

Q

EPEP EPEP

EPEP EPEP
New Event Insertion

Memory R/W

DMA

Figure 6.1: Overview of GraphPulse Design

3. Since no explicit scheduling is needed, the number of parallel vertex processing tasks

can be easily scaled to process increasingly larger graphs.

We next describe a baseline implementation guided by these considerations, and then de-

scribe the optimizations we incorporate to improve its performance.

6.1 GraphPulse Architecture

Figure 6.1 overviews the architecture of GraphPulse. The primary components

of the accelerator are Event Queues, the Event Scheduler, Event Processors, the System

Memory, as well as the on-chip network interconnecting them. The event processors directly

access the memory using an efficient high-throughput memory crossbar interface. For scal-

ability our goal is to leverage the bandwidth to support high degree of memory parallelism

and simultaneously present many parallel requests to memory. Because events are the unit

of computation, we aim to fit all active events in on-chip memory to avoid having to spill

and fetch events. However, for larger graphs, this is not possible, and we use a partitioning

74

0 5 10 15 20
Iterations

0

2

4

6

#E
ve
nt
s

1e7

Figure 6.2: Total events produced (blue) and remaining after coalescing (orange) with the
event-driven execution model in GraphPulse.

approach to support them (see Section 6.1.6). We consider a configuration with 256 event

processors for our baseline.

6.1.1 Event Management

Event Queue stores the events representing the active vertex set of the graph.

Events are stored as a tuple of destination vertex ID and payload (delta). Schedulers drain

events from the queue in sequence giving them to the processors, while newly generated

events are fed back to the queue. Since events are generated for all edges, the volume of

events grows rapidly, which represents an obstacle for efficient processing. Moreover, due to

the asynchronous processing, multiple activations of a vertex can coexist that then generate

multiple set of events over the vertex edges. Figure 6.2 shows the total number of events

produced during each iteration and the number of events remaining after coalescing for

PageRank running on the LiveJournal social network graph [6] (∼5M nodes, ∼69M edges).

We see that over 90% of the events are eliminated via coalescing multiple events destined

75

4 Δ4 4 Δ4

5 Δ5 5 Δ5

2 3 3 5 4 1 2 5 32 3 3 5 4 1 2 5 32 3 3 5 4 1 2 5 3 Edge.out

X2 X3X2 X3 V.next

D1 D2 D3 D4 D5D1 D2 D3 D4 D5 V.cur

∙ ∙ ∙ ∙

∙ ∙ ∙ ∙

∙ ∙ ∙ ∙

2 Δ2 2 Δ2

3 Δ3 3 Δ3

3 Δ3 3 Δ3

4 Δ4 4 Δ4

5 Δ5 5 Δ5

poppop

pushpush

(coalesce)

SEQ WRITESEQ WRITE

SEQ READSEQ READ

Figure 6.3: Data access pattern in event-driven approach with coalescing & sorting.

to the same vertex. Dramatic reduction in the number of events also reduces the numbers

of computations and memory accesses. The queue is modeled as a group of collector bins

dedicated to a subset of vertices to simplify and scale event management. We set up the

mapping of vertices to bins such that a block of vertices close in memory map to the same

bin. Thus, when events from a bin are scheduled, the set of vertices activated over a short

period of time are closely placed in memory and thus the memory accesses exhibit high

spatial locality. The ordering approach transforms the inefficient random read/writes into

sequential read/writes as shown in Figure 6.3.

Events are deposited in the bin and the coalescer iterates over the events and

applies the Reduce methods over matching events. Following coalescing passes, only a

small fraction of unique events remain. However, buffering uncoalesced events significantly

increases pressure on the event queues, increases congestion and requires large memory.

Therefore to address this limitation, in Section 6.1.3, we present an in-place coalescing

queue that combines events during event insertion.

76

6.1.2 Event Scheduling and Termination

The event scheduler dequeues a batch of events in parallel from the collectors. It

arbitrates and forwards new events to the idle processors via the interconnection network.

Scheduler drains events from one bin at a time, and iterates over all bins in a round-robin

manner (other application-informed policies are possible). We call one complete pass over

all bins a round. The scheduler allocates events to any idle processor through an arbiter

network. The processing cycle for an event begins with the event scheduler dequeueing an

event from the output buffer of the event queue when it detects an idle processor. The

event is sent via the on-chip routing network to the target processor. Upon receiving an

event, the processor starts the vertex program that can cause memory reads and updates

of the vertex state. After processing the event, the processor produces all output events

to propagate update of its state to directly impacted vertices along outgoing edges. The

events produced are sent to the event queues mapped to the impacted vertices.

Global Termination Condition

The scheduler maintains an accumulator to store the local progress from the pro-

cessors after they perform updates. The default behavior is to terminate when no events

remain. However, for applications that can propagate events indefinitely, an optional termi-

nation condition provides a way to stop the execution based on a user defined condition such

as a convergence threshold. For example, PageRank terminates when the sum of changes

in score of all vertices are lower than a threshold. Here, processors pass the deltas as local

progress updates to the scheduler where they are summed. A pass over the queue means

77

all active vertices are accessed once, and the global accumulator represents global progress,

which can be used for termination condition.

6.1.3 In-Place Coalescing Queue

To avoid rapid growth of event population, we explore an in-place coalescing queue

that combines events during insertion, compressing the storage of events destined to the

same vertex. If no matching event exists, the event is inserted normally. Conversely, if an

event exists, the deltas are simply combined based on the application’s reduction function.

We use multiple bins inside the queue, with each bin structured like a direct-

mapped cache (Figure 6.4). The bins are split into rows and columns, and only one vertex

ID maps to a bin-row-column tuple so that there is no collision. Vertex ID isn’t stored since

the events are direct mapped. Vertices are mapped in column-bin-row order so that clusters

in the graph are likely to spread over multiple bins. The number of rows is based on the on-

chip RAM block granularity (usually 4096) and multiple memory blocks are operated side-

by-side to get a wider read/write interface that can hold power-of-two number of columns.

Each bin consists of a Simple Dual-Ported RAM block (with one read and one write port).

Event Insertion and Coalescing

Each bin can accept one new event per cycle, but the insertion has multi-cycle

latency. Specifically, insertion units are pipelined so that a bin can accept multiple events

in consecutive cycles. In the first cycle during the insertion of an event, the event in its

mapped block (if one exists) is read using the read port. In the next cycle, the incoming

78

payload

ro
w

b
in col

Event

Data

Figure 6.4: An event is direct-mapped to a cell in a queue bin. Bits in the destination
vertex Id is used to find cell mapping.

payload

ro
w

b
in col

Event

Data

Figure 6.5: In-place coalescing of events and retrieval in the direct mapped event storage
(for PageRank).

79

event is pushed into a combiner function pipeline along with the existing event (FPA unit in

Figure 6.5). We use four stages in the pipeline as most common operators can be designed to

have less than 4 cycles latency (e.g., 3 cycles for floating point addition) while maintaining

desirable clock speed. After the operation is finished, the combined event is sent to the

write port. During these 4 cycles, other event insertions can be initiated for another row,

since the read-write ports are independent and the coalescer is pipelined. When insertions

contend for the same row, the later events are stalled until the first event is written.

Event Retrieval

Events are removed from one bin at a time in a round-robin fashion. When it’s

time to schedule events from a bin, a full row is read in each cycle and the events are placed

in an output buffer. We prefer wide rows so that many events can be read in one cycle.

Insertion to the same bin is stalled in the cycles in which a removal operation is active.

Often towards the beginning or the end of an application, the queue is sparsely occupied.

It might waste many cycles sweeping over empty rows in these situations. We mark the row

occupancy using a bit-vector for each bin. A priority encoder gives fast look-up capability

of occupied rows during sweeping the queue.

Due to coalescing at insertion, only one event exists for a vertex in the queue.

As removal is done by sweeping in one direction in the bins, we can issue only one event

for a vertex in a given round. After a round is complete, the scheduler waits until all the

cores are idle before rolling over to the first bin again. This guarantees that race conditions

cannot occur without the need for atomic operations or per vertex synchronization.

80

Time

AA BBA B CCC EE FFE F

⊕A⊕A ⊕B⊕B ⊕C⊕C ⊕E⊕E
Event Processors

a a’c+a’a’

c’+a’’

e+c’+a’+a’’

Bins

Figure 6.6: Look-ahead: Vertex contributions are compounded across iterations in the
event-driven model.

Another advantage of event coalescing is its ability to combine the effect of prop-

agation across multiple iterations, which is a virtue of the asynchronous graph processing

model. Figure 6.6 shows an example: the delta from processing event A in bin 1 is sent to

vertex C mapped to bin 2, where another event for vertex C already exists. Due to coalesc-

ing, vertex C will pick up the contribution that otherwise would have been processed in the

next iteration. Similarly event E will compound the effect of A two iterations earlier than

usual. We call this effect lookahead. In Figure 6.2, we showed that a significant fraction of

the events are eliminated by coalescing. Figure 6.7 shows the degree of lookahead contained

in these coalesced events for each round in a 256-bin event queue during PageRank-Delta

running on the LiveJournal graph. Because of coalescing and asynchronous execution, an

event quickly compounds the effects of hundreds of previous iterations of events in a single

round. Note that, the contributions from many vertices should quickly stop propagating

in uncoalesced model because of damping in PageRank, but they carry on here after be-

ing compounded with a bigger valued event. Coalescing exploits temporal locality for the

graph, while binning promotes spatial locality, without requiring large caches.

81

0 5 10 15 20
Rounds

0

1M

2M

3M

4M

5M

#E
ve
nt
s

0
<300

<100
<400

<200
>400

#Lookahead

Figure 6.7: Degree of lookahead in events processed in each round.

The event-driven approach is prohibitively expensive to implement in software

due to the high overhead for generation, management, queueing, sorting, coalescing and

scheduling of events using message passing in software. However, since these primitives are

directly implemented by the accelerator in hardware, the overheads are essentially mitigated.

6.1.4 Event Processors and Routing Network

The event processors are independent, parallel, and simple state machines. The

processors are connected to the scheduler using a broadcast network to enable delivery

of events from any bin to any available processor. A memory bus connects the event

processors to the main memory for reading graph properties. The graph is stored in a

Compressed Sparse Row format in memory. The state machine starts after receiving a new

event from the scheduler. It reads the vertex property from memory, computes update from

the received event using the reduce() function, and writes update to the memory in the

subsequent steps. It resolves local termination check, and starts reading from EdgeTable if

82

it is not terminated. Then, it uses propagate() function to compute new delta using the

neighbor ID. It pushes the new events to a broadcast channel which connects to the event

queues where they are picked up. After finishing its tasks, the processor generates a local

progress update (also defined by the application) that is passed to the scheduler along with

the processor’s status message for global progress checking. In our evaluation, we assumed

that event processing logic is specified via a Hardware Description Language, resulting in

specialized processors for the application. However, the function encapsulation provides a

clean interface to build customizable event processors or use a minimalistic CPU for the

event processors.

The baseline GraphPulse configuration consists of 256 processors on a system

connected to 4 DRAM memory controllers and coalescing event queues. The scheduler-

to-processor interconnect for the baseline design is a multi-staged arbiter network. The

processor-to-queue network is a 16x16 crossbar with 16 processors multiplexed into one

crossbar port. The complexity of the network is minimized by a number of characteristics of

the design: (1) we only need unidirectional dataflow through the network; (2) the datapath

communication can tolerate delays arising due to conflicts enabling us to use multi-stage

networks and to share ports among multiple processing elements; and (3) our events are

fixed in size so that we do not face complexity of variable size messages. We note that the

optimizations in Section 5 allow us to retain performance with a much smaller number of

cores which further reduces interconnect complexity.

83

Prefetcher

Processing Buffer

Prefetcher

Edge ID Buffer

Queues

33

4422 55

66

88

Scheduler1a1a

1b1b

Initializer

77
Apply

Propagate

Processing Engine x8

Generation Stream x4

99

00

Scratchpad Memory Edge Cache

Event Bus

NoC

C
o

a
le

s
c
e
r

DRAM

Figure 6.8: Detailed GraphPulse datapath. Blue arrows show data flow, red arrows indicate
control signals, green and yellow arrows represent on-chip and off-chip memory transfers
respectively.

6.1.5 GraphPulse Execution Flow

Fig. 6.8 shows the steps and direction of the dataflow during the life-cycle of an

event in GraphPulse. Execution starts with some events already loaded in the queue, and

continues until the queue is empty.

Initialization. We assume that the accelerator starts with the host processor writing

the graph structure, initial vertex states, and a list of initial events corresponding to the

application to the main memory. Then, during step 0○, the Initializer module reads and

inserts the initial events into the queue to make the system ready for processing.

Event Issue. In step 1○a, the scheduler requests events from the queue, and the queue

emits events (if any) in batches in 1○b. The steps in 1○ execute in a continuous loop. The

scheduler holds the events in a buffer and passes them to the processing buffer in 2○ where

they are staged for execution.

Vertex Update. While the events wait in the queue, the prefetcher scans the vertex id,

computes the memory addresses, and prefetches all vertex properties (typically located in

84

the same memory page) to the scratchpad memory in 3○. The Apply module takes the event

at the head of the buffer, reads vertex states and edge pointers from the scratchpad, and

applies the update to the event in 4○. After writing back the updated value to memory via

the scratchpad, 〈update value, edge pointer, number of edges〉 for a vertex is pushed to the

Edge Buffer in 5○ to generate the outgoing events only if the vertex requires propagation

(i.e., its state has been updated).

Event Generation. During step 6○, the prefetcher computes the edge address range to

be read, and fetches all needed edges (typically within a single memory page) to the cache.

Each generation stream takes the head of the buffer and loops over all the edges for the

vertex to generate new events in 7○. The events are pushed to an event bus through an

on-chip routing network in 8○. In step 9○ the event queue continuously scans the event

bus to pick up and insert the events in corresponding bins. This processing cycle repeats

until the queue is empty; this marks the end of evaluation where the initial graph has been

updated to the converged state.

6.1.6 Scaling to Larger Graphs

GraphPulse uses the on-chip memory to store the events in the coalescer queue.

Each vertex is mapped to an entry in the coalescer, which puts a limit on the size of the

active portion of the graph to be less than the maximum number of vertices serviced by

the coalescer. For large graphs, the on-chip memory of the accelerator will, in general, not

be big enough to hold all vertices. The inherent asynchronous and distributed data-flow

pattern of GraphPulse model allows it to correctly process a portion of the graph at a time.

85

Thus, to handle large graphs, we partition the graph into multiple slices such that each

slice completely fits into the on-chip. Each slice is processed independently and the events

produced from one slice are communicated to other slices. This can be achieved using two

different strategies: a) on-chip memory can be shared by different slices sequentially over

time while the inter-slice events are temporarily stored in off-chip memory; and b) multiple

accelerator chips can house all slices while an interconnection network streams inter-slice

events in real-time. We use the first option to illustrate GraphPulse scalability.

We assume that the graph is partitioned offline into slices that each fits on the

accelerator [56, 93, 94]. Most graph frameworks employ either a vertex-cut or edge-cut

strategy in partitioning graphs. Since our model is dependent on the number of vertices, we

limit the maximum number of vertices in each slice while minimizing edges that cross slice

boundaries. We relabel the vertices to make them contiguous within each slice. When a slice

is active, the outbound events to other slices are stored in off-chip memory. These events are

streamed in later when the target slice is swapped in and activated. Partitioning necessarily

gives rise to increased off-chip memory accesses and bandwidth demand. However, the

events do not require any particular order for storing and retrieval. We buffer the events

that are outbound to each slice to fill a DRAM page with burst-write. When a slice is

marked for swap-out, the bins are drained to the buffer and the new active slice’s events

are read in from memory. Both the read and write accesses to the off-chip memory is very

fast since they are sequential and can be done in bursts. The bins in the queues have

their independent pipelined insertion units that can insert the swapped-in events in parallel

without delay. Event coalescing occurs during insertion of events into the bins. Normal

86

Scratchpad

PrefetcherPrefetcher

Edge Cache

Process Unit

Generation UnitsInput Buffer

Stream 1

Stream 3

Stream 0

Stream 2

F
ro

m
 S

c
h

e
d
u

le
r

Graph Memory

T
o

 Q
u
e

u
e

Gen. Buffers

Figure 6.9: Optimization of event processing and generation in GraphPulse.

operation can proceed as soon as the first bin is swapped-in, allowing the swap-in/swap-out

process to be pipelined, and masking the switch-over latency.

6.2 GraphPulse Optimizations

In this section, we discuss optimizations and extensions to the baseline GraphPulse.

Analyzing the performance of the event execution, we discovered that the event processing

time was dominated by two overheads: (1) memory accesses to obtain the output vertices

needed to identify the targets of the generated events; and (2) the sequential cost to generate

the outgoing events. In this section, we introduce two optimizations to alleviate these

overheads.

6.2.1 Vertex Property Prefetching

Graph processing applications have notoriously low computation to memory la-

tency ratio. We implement a prefetching scheme to prevent starvation and idling of the

event processors. An input buffer is added to the processors and a small scratchpad mem-

87

ory sits between the processor and the graph memory to prefetch and store vertex properties

for the events waiting in the input buffer as shown in Figure 6.9. Prefetching is possible

since we know the vertices mapped to each coalescing queue, and we are able to accurately

prefetch their outgoing set while they are scheduled for execution. We map the events in

the queue such that a block of vertices that are adjacent in graph memory remains adjacent

in the queue. The events in a block are swept and streamed together to the same input

buffer. The predictor inspects a window from the buffer to prefetch only the required data

in cache-line-size granularity. A carefully sized block (128 in this work) will cause prefetch

of all required addresses from a DRAM page together, allowing higher bandwidth utilization

than possible via caching alone. Since processors no longer manage data themselves and

the memory latency is separated from their critical path, we employ fewer processors (8 in

the experiments) to process only the vertices with data available for processing.

We include a small caching buffer with the edge memory reader to enhance the

throughput. Prefetching the outgoing edges makes it possible to streamline the generation

of events without experiencing expensive memory accesses during event generation. This

substantially reduces the event processing time and enhances the event processing through-

put. A simple N-block prefetching (N=4) scheme is used for edge memory reads. Since the

degree of a vertex are known during the processing phase, we pass this information to the

generation unit encoded in the vertex data as a hint for the edge prefetcher to set the limit

of prefetching (N) to avoid unnecessary memory traffic for low degree vertices.

88

6.2.2 Efficient Event Generation

The memory traffic requirement for edge data compared to vertex properties is

very high for most graphs: edge data is typically orders of magnitude larger for most

graphs. After an event is processed, update events are generated to its outgoing edge set.

We observed that this step is expensive and frequently stalls the event processors limiting

processing throughput. The data per edge is small (4 bytes in most of our graphs and

applications). This makes reading and generation of events for multiple edges in the same

cycle essential for saturating memory bandwidth. Since the data dependence between the

processing and event generation phase is unidirectional, we decouple the processor into

two units: Processing and Generation (see Figure 6.9). We increase the event generation

throughput by connecting multiple of these generation streams to the same processing unit.

A group of streams in one generation unit share the same cache but multiple ports in the

event delivery crossbar. Each generation stream is assigned one vertex from the processing

unit when idle. Thus, we use parallelism to match the event generation bandwidth to the

event processing bandwidth enabling the processing units to work at or near capacity.

6.3 Experimental Evaluation

Next we evaluate GraphPulse along a number of dimensions: performance, mem-

ory bandwidth requirements, hardware complexity, and power consumption. First we de-

scribe our experimental methodology.

89

6.3.1 Experimental Methodology

System Modeling

We use a cycle accurate microarhitectural simulator based on Structural Simula-

tion Toolkit [81] to model the primary components, the memory controller, and interconnec-

tion network. The event processor models are designed as state machines with conservative

estimation for latency of the computation units. The memory backend is modeled with

DRAMSim2 [83] for realistic memory access characteristics. The coalescing engine was

modeled as a 4 stage pipelined floating point unit in RTL. The interconnection network is

simulated with input and output queue to ensure congestion does not create a bottleneck.

Comparison Baselines

We compare the performance of GraphPulse with a software framework, Ligra [90].

We chose Ligra as the software baseline because, along with Galois [74], it is the highest

performing generalized software framework for shared-memory machines [118]. Moreover,

Ligra has an efficient shared memory implementation of one of the most robust technique

for active set management and versatile scheduling depending on the active set, which is at

the core of our work. We considered frameworks that support delta-accumulative processing

but those were all targeted for distributed environments and performed much slower than

Ligra. We measure the software performance on a 12-core Intel Xeon CPU. The relevant

configurations for both systems are given in Table 6.1.

In addition, we compare the performance with a hardware accelerator Graphi-

cionado [38], a state of the art hardware-accelerator for graph processing that uses the Bulk

90

Table 6.1: Device configurations for software framework evaluation and GraphPulse with
optimizations.

Software Framework GraphPulse

Compute Unit 12× Intel Xeon Cores

@3.50GHz

8× GraphPulse

Processor @ 1GHz

On-chip

memory

12MB L2 Cache 64MB eDRAM @22nm

1GHz, 0.8ns latency

Off-chip

Bandwidth

4× DDR3

17GB/s Channel

4× DDR3

17GB/s Channel

Synchronous execution model. Since the implementation of Graphicionado is not publicly

available, we modeled Graphicionado to the best of our ability with the optimizations (paral-

lel streams, prefetching, data partitioning) proposed by the authors. We also gave zero-cost

for active vertex management and unlimited on-chip memory to Graphicionado to sim-

plify implementation, making our speedup vs. Graphicionado conservative. We provision

Graphicionado with a memory subsystem that is identical to that of GraphPulse.

Workloads

We use five real world graph datasets – Google Web graph, Facebook social net-

work, LiveJournal social network, Wikipedia link graph, and Twitter follower network in

our evaluations obtained from the Network Repository [84] and SNAP network datasets [61]

(see Table 6.2). We evaluate five graph algorithms – PageRank (PR), Adsorption(AD), Sin-

gle Source Shortest Path (SSSP), Breadth-first Search (BFS) and Connected Components

91

Table 6.2: Graph workloads used in the evaluations of GraphPulse.

Graph Nodes Edges Description

Web-Google(WG) [62] 0.87M 5.10M Google Web Graph

Facebook(FB) [99] 3.01M 47.33M Facebook Social Net.

Wikipedia(Wk) [26] 3.56M 45.03M Wikipedia Page Links

LiveJournal(LJ) [6] 4.84M 68.99M LiveJournal Social Net.

Twitter(TW) [59] 41.65M 1.46B Twitter Follower Graph

(CC) on each of these graphs. We use the contribution based PageRank implementation

(commonly referred to as PageRankDelta), which is a delta-accumulative version of PageR-

ank. PageRankDelta execution was faster than the conventional PageRank in the Ligra

software framework and Graphicionado for our graph workloads, and therefore we use it

for our baselines as well. Ligra does not provide a native Adsorption implementation. We

created randomly weighted edges for the graphs and normalized the inbound weights for

each vertex. PageRank-Delta model was modified to consider edge weights and propagate

based on the functions provided in Table 5.1 for Adsorption. Twitter is large and does not

fit within the accelerator memory; thus we split it into three slices with one slice active at

a time using the methodology from Section 6.1.6.

92

6.3.2 Performance and Characteristics

Overall Performance

Figure 6.10 shows the performance of the GraphPulse architecture in comparison

to the Ligra software framework. We observe an average speedup of 28× (10× to 74×)

for GraphPulse over Ligra across the different benchmarks and applications. The speedup

mainly comes from hardware acceleration, memory friendly access pattern, and the on-

the-fly event coalescing capability. BFS, SSSP and CC have similar traversal algorithms.

However, BFS and SSSP performance suffers because fewer vertices are active at a time

and vertices are reactivated in different rounds of the computation in contrast to CC where

the full graph is active for the majority of the computation. The Twitter graph achieves

comparable speedup to the other graphs, despite the fact that it incurs the overhead of

switching between active slices. Our intuition is that software frameworks incur more over-

head for large power law graphs for a computation like PageRank where vertices are visited

repeatedly; these overheads are not incurred by GraphPulse as communication is mostly on

chip.

Comparing GraphPulse performance to Graphicionado [38], we found that, on

average, GraphPulse is about 6.2× faster. The Figure also shows the performance of both

the baseline and the optimized version of GraphPulse (with prefetching and parallel event

generation); we see that the two optimizations dramatically improve performance.

93

WG FB WK LJ TW AVG WG FB WK LJ TW AVG WG FB WK LJ TW AVG WG FB WK LJ TW AVG WG FB WK LJ TW AVG
0

10

20

30

40

50

60

Sp
ee

du
p

ov
er

 S
of

tw
ar

e
(L

ig
ra

)

74

PageRank-Delta Adsorption Shortest Path Breadth-first Search Connected Components

GraphPulse+Opt GraphPulse-Base Graphicionado

Figure 6.10: Performance comparison between GraphPulse (with and without optimiza-
tions), Graphicionado [38], and Ligra [90] frameworks; all normalized with respect to the
Ligra software framework. Twitter required partitioning from Section 6.1.6.

Memory Bandwidth and Locality

GraphPulse implements a number of optimizations to promote spatial locality and

utilize DRAM burst transfer speed whenever possible. Figure 6.11 shows the total number of

off-chip memory accesses required by GraphPulse normalized to Graphicionado. Even com-

pared to the efficient data access of Graphicionado, GraphPulse requires 54% less off-chip

traffic on average. GraphPulse’s processing model is memory friendly with events carrying

the input data to the computation. Coalescing and lookahead also contribute heavily to

reduce data traffic by combining computations and memory accesses and stabilizing many

nodes earlier. The effect is particularly apparent in CC, where many vertices gets stabilized

with the very first event. Finally, Figure 6.12 shows that in GraphPulse very large fraction

of data brought via off-chip accesses is utilized by the computation supporting its ability to

reduce random memory accesses.

94

WG FB WK LJ TW
AVG

WG FB WK LJ TW
AVG

WG FB WK LJ TW
AVG

WG FB WK LJ TW
AVG

WG FB WK LJ TW
AVG

0.0

0.2

0.4

0.6

0.8

PRD ADS SSSP BFS CC

Figure 6.11: Total off-chip memory accesses of GraphPulse normalized to Graphicionado.

WG FB WK LJ TW
AVG

WG FB WK LJ TW
AVG

WG FB WK LJ TW
AVG

WG FB WK LJ TW
AVG

WG FB WK LJ TW
AVG

0.0

0.2

0.4

0.6

0.8

1.0

PRD ADS SSSP BFS CC

Figure 6.12: Fraction of off-chip data transmissions that resulted in useful computations in
GraphPulse.

Event Execution Profile

The average life-cycle of an event is highly dependent on the graph structure and

the algorithm. Figure 6.13 shows a breakdown of average time spent in different stages of the

processing path for an event. Individual vertex memory reads have long memory latency.

But due to locality aware scheduling and prefetching in the input buffer, latencies for the

accesses are masked and the average latency for the vertex memory reads become only few

cycles. This indicates the efficiency of the prefetcher. The process stage takes only few

95

WG FB WK LJ TW WG FB WK LJ TW WG FB WK LJ TW WG FB WK LJ TW WG FB WK LJ TW
0

25

50

75

100

C
yc

le
s

PRD Adsorption SSSP BFS CC

Vtx Mem Process Gen-Buffer Edge Mem Generate

Figure 6.13: Cycles spent by an event in each execution stage, shown chronologically from
bottom to top.

cycles too because of pipelining and brevity of typical apply tasks. The Gen Buffer stage

shows the time spent in the input buffer of generation streams after an event is processed

and waiting for generation units to be available. The time spent on edge memory access

appears to be high, but this is due to the large number of edges that need to be read for

event generation in power-law graphs. Figure 6.14 shows the fractions of time the processors

and generators spend accessing memory, processing and stalling. It is noticeable that event

generation units (right-side bar) spend close to 80% of the cycles reading edge memory.

This includes the latency to both read edges from cache and fetch from main memory. We

observed that the generation units saturate the memory bandwidth with prefetching and

high off-chip utilization. The processors (left hand bars) stall for about 70% of the cycles

waiting for generators to become available. We observed that this can be reduced to less

than 40% by doubling the ratio of generation streams at the trade-off of increased routing

complexity.

96

WG FB WK LJ TW WG FB WK LJ TW WG FB WK LJ TW WG FB WK LJ TW WG FB WK LJ TW
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 e

xe
cu

tio
n

tim
e

PRD Adsorption SSSP BFS CC

Processor States--> Vertex Read
Generator States--> Edge Read

Process
Generate

Stalling
Idle

Figure 6.14: Time breakdown for the GraphPulse processors (left-bar) and generation units
(right-bar).

6.3.3 Hardware Cost and Power Analysis

The coalescing event queue consumes the most power since it closely resembles

a cache in design and operation with the addition of a coalescer pipeline. We model the

queue using 64MB on-chip memory composed of 64 smaller bins operating independently. 8

scratchpads with 1KB capacity are placed alongside 8 processing cores (with 8×4 generation

streams). We use CACTI7 [7] for analysis of power and area for both memory elements.

The dynamic memory access is estimated conservatively from simulation trace. The total

energy for the whole event queue memory is ∼9 Watts when modeled in a 22nm ITRS-HP

SRAM logic. Although we use identical systems, GraphPulse accesses 60% less memory

than Graphicionado; we did not include DRAM power.

The event collection network is a 16×16 crossbar attached to a network of arbiters

allowing groups of Generation Streams to share a port. We modeled a complete RTL design

containing the communication network, coalescer engine, and event processors using Chisel

and synthesized the model. We assumed that the coalescing pipeline and event processors

require floating point units, which results in worst case complexity and power consumption

97

Table 6.3: Power and area of the GraphPulse accelerator components

#
Power(mW)

Area(mm2)

Static Dynamic Total

Queue 64 116 22.2 8825 190

Scratchpad 8 0.35 1.1 11.6 0.21

Network 51.3 3.4 54.7 3.10

Processing Logic - - 1.30 0.44

estimates (recall that the coalescing logic is application dependent). The area of the circuit

stands at 3.5mm2 with a 28nm technology (excluding the on chip memory) and comfortably

meets the timing constraint for 1GHz clock. Power estimates show that custom computation

modules and the communication network consumes less than 60mW. A breakdown of the

power consumption of our evaluated design is presented in Table 6.3. GraphPulse is 280×

more energy efficient than Ligra due to the low power from the customized processing and

faster overall execution time.

98

Chapter 7

Incremental Recomputation of

Streaming Graphs

Most graph frameworks optimize the performance of a given query against a fixed

graph. However, in many real-world applications, we are faced with the streaming graph

scenario where the graph is constantly changing as new entities are created, old entities are

removed, and new interactions take place over time. A stream of updates in the form of

edge/vertex additions/deletions is typically applied to the graph in batches for efficiency.

As the graph evolves, a straightforward approach is to restart the query from scratch after

applying a batch of graph updates. However, the number of vertices or edges modified

in a batch is typically exceedingly small relative to the size of the graph. Thus, as the

changes only modify a small subset of the graph for many queries, much of the computation

performed during reevaluation is redundant.

99

To address this inefficiency, streaming graph systems support incremental update

of query results following changes to the graph, resulting in order of magnitudes speedups

over restarting the query. Examples of such software systems include Kineograph [21],

Tornado [89], and Naiad [72] that can handle only growing graphs (i.e., no deletions are

allowed). By far, the problem of incrementally supporting deletions is more challenging, and

only KickStarter [103], Graphbolt [67], and DZig [66] support it. We propose an algorithm

for incremental recomputation of a streaming graph and design an accelerator, JetStream

for running this algorithm in hardware.

The addition of edges is straightforward in the event-driven model; the added edge

simply creates a new event. In contrast, edge deletion is substantially more difficult for most

algorithms because it is often impossible to determine whether an update should propagate.

We support deletions in two phases: (1) incrementally transforming query results for the

previous version of the graph into a recoverable state for the updated graph, and (2) bringing

the results to convergence again. Although GraphBolt and KickStarter also proceed in two

phases, they rely on the Bulk Synchronous Processing (BSP), model which cannot work in

JetStream’s asynchronous model. Therefore, we develop new event-based algorithms where

both phases execute in a fully asynchronous fashion. JetStream serves both the class of

accumulative algorithms supported by GraphBolt and monotonic algorithms supported by

KickStarter.

In this chapter, we first illustrate the challenges and techniques for streaming graph

analytics, and then describe our event-driven algorithm for JetStream.

100

G 0

inc

Q

R1

G+Δ 1

G+Δ 1

Approximate

statesfull

Q

R

full

Q

R

full

Q

R

full

Q

RG 1

full

Q

R

full

Q

R

inc

Q

R2

G+Δ 2

G+Δ 2

Approximate

states

full

Q

R

full

Q

R2

Figure 7.1: Query evaluation on a streaming graph using an incremental algorithm (top)
and static algorithm (bottom).

7.1 Streaming Graph Analytics

A query evaluation over a streaming graph, as shown in Fig. 7.1, has two distinct

characteristics. First, it supports streaming updates: new graph updates also arrive as

the query is being evaluated. These updates are collected in a batch (e.g., ∆1 or ∆2

in Fig. 7.1) and are applied only after the query evaluation is complete and its results

reported. Graph updates consist of edge additions and deletions. A vertex addition can

be modeled by addition of the first edge to/from the vertex while modification of an edge

weight is modeled by its deletion followed by an addition of an edge with the same weight.

Second, query reevaluation leverages the existing state computed before the updates: after

a batch of updates has been applied, the query evaluation is resumed incrementally to

obtain the query results for the updated graph. In an algorithm (or accelerator) that

supports streaming operation, the reevaluation is performed as an incremental update of

the previous query result computed on the original graph, shown as approximate states in

Fig. 7.1, to avoid wasteful redundant computations. As updates continue to arrive, the

incremental computation is performed repeatedly. JetStream improves upon most prior

software streaming algorithms, which only support streaming edge additions, by allowing

101

A

B

E

D

C

7

3

8
5

2

7
2

6

EDCBA EDCBA

128350 128350

128350 128350

delete(A→C)

expected

EDCBA EDCBA

128350 128350

1281450 1281450

delete(A→C)

128∞ 50 128∞ 50

1281450 1281450

(a) (b) (c)

1381570 1381570

Figure 7.2: Using intermediate and initial values leads to incorrect results for SSSP: (a) an
example graph; (b) uses previous state to recompute; (c) resets impacted vertex.

edge deletions. It also improves on most software frameworks by supporting concurrent

processing of multiple updates, gaining efficiencies from combining some of their overheads.

7.1.1 Incremental Query Evaluation

Incremental reevaluation uses the result of the prior query to find an intermedi-

ate approximation, which becomes the initial state for computing the query result on the

updated graph. Using the previous result for an approximation can lead to faster conver-

gence than using a random initial state for the updated graph. Intuitively, for many query

types, only a small fraction of vertices are affected by graph changes since batch sizes are

typically tiny compared to the size of the graph (thousands of edges in graphs with billions

of edges). Thus, a complete restart of the graph computation ends up doing substantial

redundant work. Of course, we need to have an effective algorithm for identifying which

vertices require recomputation for doing incremental updates.

102

Motivation and Basic Operation

Monotonic algorithms often produce incorrect results in the presence of deleted

edges. We consider the example of an edge deletion(A→C) in the graph of Fig. 7.2(a)

for Shortest Path algorithm. Since the vertices only update when they receive a shorter

path value than their current state, the graph never reaches the expected result using the

previous result as shown in Fig. 7.2(b). We call this approximation unrecoverable because

the computation cannot recover to the correct result after being set into an incorrect state by

the edge deletion. If we reset the target of deletion to its initial value as shown in Fig. 7.2(c),

it still never reaches the correct result because other vertices (B,D,E) previously influenced

by it are also in incorrect states.

Fig. 7.3 shows the progress of a query evaluation through different phases. First, a

graph is initialized to an initial state. As computation progresses, the graph moves through

several intermediate states to reach a final state when the algorithm terminates. Here, the

final state is the correct converged state (static), and all intermediate states (including the

initial state) are recoverable states because the graph can reach the correct state from there.

A recoverable approximation is equivalent to one of these recoverable states from which the

graph is guaranteed to converge correctly. After applying the graph mutations, the challenge

in incremental graph computation is to find a recoverable approximation based on the

previous converged states. For this example, all the vertices possibly influenced through

the deleted edge in the initial evaluation is identified and reset in the recovery phase to

arrive at a recoverable approximation for the reevaluation. Incremental recomputation on

this approximation in the reevalauation phase leads to the correct result.

103

∞

∞

∞

∞

∞

E

A

B

C

D

13

0

7

3

8

5

12

7

13

15

in
it
ia

liz
e

 v
e

rt
ic

e
s

►

►

►

►

►

∞

∞

∞

re
c
o

m
p

u
te

►

►

► ∞

initial evaluation recovery reevaluation

static convergence approximation

3

8

12

5

0

∞

8

∞

∞

0

initial states incremental convergence

c
o

m
p

u
te

►

►

►

►

►

∞

∞

∞

∞

∞

time

►

d
e

le
te

 (
A

 →
 C

)

8

3

5

0

8

∞

∞

0

8

13

7

0

Figure 7.3: Conceptual timeline showing vertex values over time through initial evaluation,
recovery, and reevaluation phases for SSSP on the example graph in Figure. 7.2.

Recovery Algorithms

A simple way to find the set of vertices affected by a deleted edge is to iteratively

propagate a tag downstream from the target vertex of the deleted edge as in GraphIn [88].

Note that if a vertex is not affected by an update, the propagation is not forwarded again.

The set of vertices tagged this way definitively contains all possibly impacted vertices. The

tagged vertices can then be reset to the initial value to acquire a recoverable approximation

for a monotonic convergence. When the query is reevaluated, the reset vertices converge

to correct states based on the mutated graph. An example for obtaining a recoverable

approximation using tag propagation in the recovery phase is shown in Fig. 7.3.

JetStream develops event-driven adaptations of vertex tagging and dependence

tracking so that they can be used to extend the GraphPulse architecture to support incre-

mental computation over a streaming graph. Monotonically converging algorithms where

vertex value computation is a selection task – such as ShortestPath, ConnectedCompo-

nents, WidestPath, and BFS – benefit from this approach. Graphs with accumulative

104

update functions – such as PageRank and Adsorption – uses a simpler recovery technique

in the event-driven approach. Here, the impact of a deleted edge is negated by sending the

total contribution through that edge with negative polarity. This makes the event-driven

approach highly suited for the incremental computation of these algorithms.

7.2 JetStream Design Overview

We present the design of our event-based streaming accelerator and its underlying

algorithms in this section. First, we describe the event-driven execution model that Graph-

Pulse [79] is based on. Then, we formalize the problems of building a streaming accelerator

over a static one and describe the JetStream model that solves these problems.

7.2.1 Event-based Processing in GraphPulse

JetStream extends GraphPulse to support streaming graphs [79]. GraphPulse

employs event-driven execution to eliminate overheads of shared-memory frameworks (e.g.,

poor temporal and spatial locality, atomic memory accesses, and synchronization). The

event-driven execution is based on the delta-accumulative incremental computation (DAIC)

[116] model. In this model, contributions coming over different edges (termed delta) can

be applied independently and without any fixed order to compute the vertex state. The

model has two primary components – i) a Reduce task used to compute vertex state from

incoming deltas and previous vertex state; and ii) a Propagate task used to compute the

delta over each outgoing edge. In the event-driven model, lightweight messages called events

carry the deltas to their respective destination vertices. A vertex recomputes its state only

105

if it receives an event (delta) and generates a new event only when its state changes from

the incoming event.

GraphPulse presents a complete execution model to run an iterative graph algo-

rithm using the event-based approach. Algorithm 1 shows the event-driven execution model

and how the SSSP application is mapped to the model. The user defines a Reduce() method

(line 5) expressing the reduction of incoming contribution and vertex state. A Propagate()

function (line 8) is defined for finding the delta over an outgoing edge and creating new

events. InitialVertex() and InitialEvents() methods are defined to initialize the vertex

states, V , and the initial set of events (Q) before the execution starts. The initial vertex

values are set to an Identity value for the Reduce() function, so that a vertex’s first re-

duction operation with an events is bound to change its state and propagate. With the

processing of the initial events, vertex states get updated towards convergence, and new

events are generated and inserted to Q. For each event in Q, the vertex update task is

triggered. When a vertex reaches convergence, its state does not change from incoming

events, preventing new event propagation (line 6). Eventually, Q becomes empty when all

vertices reach convergence terminating the application.

Proper execution and termination of the event-driven model depend on two prop-

erties of the graph algorithms. First, the Reordering Property requires that incoming contri-

butions over the incoming edges can be applied to a vertex in any order and independently

of each other. Second, the Simplification Property requires that vertex that does not change

state should not impact other vertices, i.e., it should not propagate, and other vertices

should not require its contribution for computing their states. Many important graph al-

106

gorithms such as SSSP, SSWP, BFS, Connected Components, Incremental PageRank, and

many Linear Equation Solvers satisfy these properties. These algorithms are supported in

GraphPulse. JetStream too supports all these algorithms supported in GraphPulse without

any change to the application model.

7.2.2 Streaming Graph Computation Objective

GraphPulse computes the final converged state of a static graph. We want to find

the new converged state of the graph using JetStream after some mutation is applied to

the graph structure. To formally describe the objective of JetStream, we consider a graph

G0 = (V,E0) being initialized to a set of values IG = 〈∀j : ij =Identity〉 and converging to

C0
G = 〈c0, c1, ..., cn−1〉 for its final state. The Identity parameter is application-specific for

the graph algorithm; it is the initial value of the vertices and the non-dominant value for the

Reduce() operation (Algorithm 1). For streaming algorithms, we need to compute a new

convergence state C1
G for the mutated graph, G1(V,E1), using a recoverable approximation

AG based on C0
G. The approximation AG = 〈a0, a1, ..., an−1〉 is recoverable if convergence

can be reached for algorithm S starting from this approximation (Section 7.1.1). For the

selection-type algorithms, The vertex states progress from the initial value (Identity) to

the direction of convergence monotonically. A more progressed value dominates the Reduce

operation. In a valid approximation, all elements in AG must be less progressed than or

equal to the corresponding elements in the eventual converged state, C1
G. An approximation,

A = 〈∀i, ai =Identity〉, set to the initial value is a valid recoverable approximation but

an inefficient one since it is equivalent to computing the graph from the beginning. Hence,

finding a good approximation is critical for performance. Our proposed approaches in

107

A

C F

B

D

E

G

∞→16
C

F

E

G

∞

∞
∞

∞

∞

E

F

9→∞

14→∞

∞→∞

17→∞

19→∞

∞→∞

C F

B

D

E

G

∞

24

19
25

∞

16
17

12

21

E

8

∞

12→12
∞→19

25→25

∞→21

A

F

D

E

G10

8
3

13

E16

G
16

12→3

17→13

19→10 8→8

10→10

0

14→8

3
7

3
5

8
59

8
8

4

(a) (b)

(c) (d)

Add

edge

Del.

Edge

5

6

Figure 7.4: Propagation of events during processing of streaming edges in SSSP. (a) An
example graph. (b) Propagation and updates from the insertion of edge A � D in the
graph. (c) Propagation of deletes and resetting impacted vertices due to the deletion of
edge A � C in the graph. (d) Recovery of approximate state after request events are
processed.

JetStream accomplish this by expressing the graph mutation as events and restoring the

mutated graph to a recoverable approximation for subsequent processing using the event-

driven model.

7.2.3 Event Representation of Graph Mutation

Any modification to the graph structure is expressed using an event in JetStream.

We assume that the modifications are batched, consistent with prior works on streaming

graphs. A batch will be queued as events that are released once the ongoing processing

iteration is complete. This choice to separate the update phase from the processing phase

eliminates the need for resolving race conditions between old and new values as the com-

108

putation proceeds. Each modified edge is expressed as an event from the source to the

destination of the edge. The payload (delta) carried by the event is generated by reading

the previous converged state of the source vertex (which is approximate with respect to

the mutated graph) and computing the propagation value based on this state and the edge

attribute. This event represents the effect of the modified edge with respect to the previous

graph structure. Events are queued and held until all the modified edges have generated a

corresponding event. At this point, the new graph structure is active, and the events are

processed from the queue. We demonstrate the processing of edge insertion and deletion

events next.

Edge Insertions

Edge insertions are supported naturally by the event-driven model. The inserted

edge did not exist in the previous graph and had no effect that needs to be reverted. An

update along an edge can be applied to a vertex at any time in the asynchronous model.

Hence, an update coming along a newly-inserted edge is conceptually similar to an update

along an existing edge that was delayed; it has the same effect and gets processed in the

same way. JetStream computes an update using the old converged state of the source vertex

and the weight of the inserted edge, and queues it as an event for the destination vertex

along with regular events (Algorithm 2). Fig. 7.4(b) shows how an edge insertion triggers

a chain of updates. As the new edge (A � D) contributes to vertex D, the vertex gets

updated and propagates further with more events (D � G). Propagation ultimately stops

due to monotonicity when the event arrives at a more progressed receiver via (G � E). If

the state of the source vertex A itself is not stable, subsequent updates to the vertex will

109

Algorithm 2 Converting edge-insertions to events

1: procedure ProcessInserts(G(V,E), Q, A〈u→ v, w〉)

2: for each 〈u→ v, w〉 ∈ A do . A = list of added edges

3: δv ← V [u] + w . Propagate(a, b)

4: Q← insert(〈v, δv〉)

5: end for

6: end procedure

be propagated using the mutated graph along the new edges and send the correct values

downstream eventually. Hence, a graph always remains in a correct or recoverable state

after edge insertions.

Edge Deletions

Edge deletions are not supported by most streaming systems (the exceptions being

Kickstarter and GraphBolt). JetStream supports deletions as in KickStarter while overcom-

ing some of its performance limitations when handling a batch of deletions. Specifically,

JetStream queues edge deletions as events in the same way as insertions. However, edge

deletion is more complicated since the deleted edge’s contribution to the previous converged

state must be reversed. For algorithms with accumulative updates, reverting the effect of

deleted edges is simpler. A vertex propagates an update downstream for all the updates it

receives and accumulates. As a result, we can infer the combined value of all updates it sent

along an edge during the previous evaluation by looking at its accumulated state and using

the Propagate function. Sending the inverse of its previous converged state, transformed

by the Propagate function, negates the cumulative effect of all updates over this edge.

110

Algorithm 3 Converting deletions to events for PageRank (accumulatative algorithm).

1: procedure ProcessDeleteCumulative(G(V,E), Q,D〈u � v, w〉)

2: for each 〈u→ v, w〉 ∈ D do . D = list of deleted edges

3: δv ← −1× V [u]× (1− α)/deg(u) . Propagate(a, b)

4: Q← insert(〈v, δv〉)

5: end for

6: end procedure

Further propagation downstream of negative events from the receiver vertices leads to the

rollback of all contributions from this edge and puts the graph in a recoverable state. We

create negative events for the deleted edges as shown in Algorithm 3 to initiate recovery.

For algorithms having selective updates, it is more difficult to identify which edges

contributed to a vertex. The destination vertex of a deleted edge is reset to its initial value so

that it can be updated later in the reevaluation phase. We queue events with a delete flag as

shown in Algorithm 4. A vertex, upon receiving an event with a delete flag, will reset itself.

This change in the state goes against the direction of monotonicity. Therefore, when this

vertex propagates its updates to its neighbors, the update events will be discarded by the

receivers in the Reduce function since they already have a more progressed state. However,

this more progressed state may have resulted from the contribution of the deleted edge.

Hence, the graph stays in an incorrect state if these vertices are not corrected. To solve this

problem, we devise an event-driven edge deletion algorithm that identifies the potentially

affected vertices and efficiently resets them to acquire a recoverable approximation following

the technique described next.

111

Algorithm 4 Converting deletions to events for SSSP (selective algorithm).

1: procedure ProcessDeletesSelective(G(V,E), Q, D〈u→ v, w〉)

2: for each 〈u→ v, w〉 ∈ L do

3: Q← insert(〈v, 0〉)

4: end for

5: end procedure

7.2.4 Impacted Vertex Detection and Recovery

To handle an edge deletion correctly, the vertices impacted by a deletion must be

identified, and their states reset to a recoverable value. Impacted vertices are identified by

propagating a delete tag to all outgoing neighbors of an impacted vertex and tagging them

as impacted in a manner similar to KickStarter [103]. When a deletion event first arrives

at a vertex, we set the vertex state to the initial Identity value (tag it) as shown for vertex

C in Figure 7.4(c). Hence, textittagged vertices can react to updates from future events.

Delete events are propagated along each outgoing edge. A delete event cycling back to an

already tagged vertex (e.g., G→ E) will not propagate. Multiple delete events queued for

the same vertex can be coalesced since tagging a vertex once is sufficient. When a vertex

is reset, the vertex Id is added to a list. Hence, the set of vertices tagged this way contains

all vertices whose states could have been potentially influenced by the deleted edge. The

process is shown in Algorithm 5. The list is used to revisit these vertices to recompute their

approximate states as described next.

A new recoverable approximation for the impacted vertices must be found in case

the query cannot progress to some impacted vertices. For example, in Fig. 7.4(a), a SSSP

112

query running from A cannot reach E because vertices B and D are already in a correct

state, and will not propagate new events along B → E and D → E after edge deletion.

KickStarter solves this problem by reading all neighbors states again to reestablish an

approximate state for an impacted vertex. Unfortunately, this approach generates many

memory reads with a random access pattern. Many of the vertices are also read by multiple

deleted vertices creating opportunities for data reuse. Instead of reading the states of

the neighboring vertices directly, we create a request event to request updates from the

neighbors. The request event has a request-flag bit set and the payload set to Identity in

order to avoid affecting any other events and vertices. When a vertex detects the request-

flag, it must propagate to its neighbors, even if it does not update itself. The request events

are coalesced, hence, combining the reads for each vertex. Also, when they pass through

the queue, the events are sorted by their destination vertex ID so that a sequential memory

access pattern occurs when they are processed. Upon receiving the response to the request

event, the impacted vertex will reestablish an approximate state closer to convergence based

on its neighbors’ approximate states.

A second inefficiency persists in other approaches because computing an approx-

imate state from neighbors’ approximate states is often wasteful since these approximate

states may change again during query evaluation. To address this problem, we exploit the

asynchronous nature of the model – we can delay the vertex reads or recomputation until

after the effect of the initial events and inserted edges are applied. We overlap the execution

of request events with query events and edge insertions, so the vertex updates move the

vertex closer to the final converged states.

113

Algorithm 5 Recovering approximations of vertices impacted by deletions for SSSP.

1: procedure ResetImpacted(G(V,E), Q)

2: X ← ∅ . List of impacted vertices

3: while Q is not empty do

4: (i, δi)← pop(Q)

5: if V [i] 6= Identity then

6: V [i]← Identity . Tag vertex

7: X ← X ∪ {i}

8: for each (u→ v, w) ∈ E | u = i do

9: Q← insert(〈v, 0〉) . Propagate delete

10: end for

11: end if

12: end while

13: end procedure

14: procedure Reapproximate(G(V,E), Q, X)

15: for each i ∈ X do . Create events with request flag(ρ)

16: for each (u→ v, w) ∈ E | v = i do

17: Q← insert(〈u, Identity, ρ〉)

18: end for

19: end for

20: end procedure

114

After the delete phase is over, JetStream revisits each vertex in the list of impacted

vertices and sends request events along each incoming edge of a vertex at the beginning of

the processing phase. If the impacted vertices are on the path of a propagating query, their

states update to the correct states since their approximate state (Identity) can be updated

by all contributions. If the vertex does not belong to the query propagation path, the

responses to request events set them to the correct state. Thus, a graph always remains in

a correct state after deletion is processed in this technique. The pseudocode for processing

deletes is shown in Algorithm 5.

7.2.5 Recomputaion of the Mutated Graph

JetStream execution process uses the original computation technique of Graph-

Pulse to recompute the graph after setting up the approximate state and populating the

event queue with appropriate events as described above. Because the recovery after delete

is handled differently in the two different types of algorithms (accumulative vs. monotonic),

the processing phases are scheduled differently for them. We discuss both of them next.

Algorithms with Selective Update

After receiving a batch of edge updates, we first process the deleted edges and

insert deletion events in the queue to reset the target vertices. In the next phase, the

events are allowed to execute on the previous version of the graph; all potentially impacted

vertices are reset to their initial value. Afterward, events with request-flags are queued for

all the neighbors of the impacted vertices. We process the inserted edges at this point to

115

Algorithm 6 Overall processing flow for SSSP.

1: procedure ProcessStream(G(V,E), Q, A〈u � v, w〉, D〈u � v, w〉)

2: ProcessDeleteSelective(G(V,E), Q, D〈u � v, w〉)

3: X ← ResetImpacted(G(V,E), Q) . Queue is empty

. Delete phase ends

4: Reapproximate(G(V,E), Q, X)

5: ProcessInsertions(G(V,E), Q, A〈u � v, w〉)

. Switch to new graph structure

6: Compute(G(V,E), Q)

7: end procedure . V holds correct result

Algorithm 7 Overall processing flow for PageRank.

1: procedure ProcessStream(G(V,E), Q, A〈u � v, w〉, D〈u � v, w〉)

2: ProcessDeleteCumulative(G(V,E), Q, D〈u � v, w〉)

. Switch to intermediate graph structure

3: Compute(G(V,E), Q) . Q empty : Delete phase ends

4: ProcessInsertions(G(V,E), Q, A〈u � v, w〉)

. Switch to new graph structure

5: Compute(G(V,E), Q)

6: end procedure . V holds correct result

116

create and queue the events for them. The insertion events can coalesce with the request

events existing in the event-queue simply by setting their request-flag bit. The graph is

then switched to the new version, and the events in the queue are allowed to process in the

typical computation flow of GraphPulse. The only difference is that whenever any vertex

receives an event with a request flag, it propagates its state to all its outgoing neighbors even

if it does not change its state. These responses to the reapproximation request allow the

impacted vertices to set their new state using the states of their neighbors. At the end of

this phase, when the queue is empty, the graph arrives at a correct state, and the process

of reevaluation concludes. The process is shown in Algorithm 6.

Algorithms with Accumulative Update

These algorithms do not need reset since a deleted edge can be negated with a

regular event with negative polarity. After creating events for the deleted edges, we load an

intermediate version of the graph without the deleted edges to break any cyclic path in the

graph. Algorithms that propagate updates based on degree, such as PageRank, undergo

changes in the weight of all edges when an edge is added or deleted. To handle this, we

first delete all outgoing edges of the vertex having an edge added or deleted, turning it into

a complete sink for the intermediate version of the graph. In the example of Fig. 7.5(a),

any cyclic propagation through vertex B is stopped by deleting edges to D and E too.

All outgoing edges of vertex B are added to the batch of deleted edges (Fig. 7.5(b)). We

next process these deleted edges to populate the event queue with negative events. Next,

a computation phase on this intermediate graph effectively removes all contributions of

vertex B from the graph. Creating the intermediate graph is not expensive since it can be

117

(a) (b) (c)

AA

BB

DD

CC

EE

AA

BB

DD

CC

EE

B→D
B→E

add

AA

BB

DD

CC

EE

B→C
B→D
B→E

del.

Figure 7.5: Showing an edge deletion for accumulative algorithms: (a) initial graph with
B�C to be deleted; (b) intermediate representation; (c) mutated graph.

achieved simply by adjusting the pointers to the edge list to skip the deleted vertices. We

then add back all the edges of vertex B (except the actually deleted edge B�C) to the batch

of inserted edges so that it resembles the new graph structure (Fig. 7.5(c)). This batch

of edge additions is processed to create events in the queue. When the compute phase is

rerun on the new version of the graph, the result is correct for the mutated graph. The

steps in this model are shown in Algorithm 7. We note that the manipulation of the edge

addition or deletion batch only affects the preparation of the streaming batch; the actual

vertex computation remains the same as GraphPulse.

118

Chapter 8

JetStream: a Streaming Graph

Processing Accelerator

JetStream builds on GraphPulse, which uses an event-driven asynchronous pro-

cessing model, with reported speedups of up to 6× relative to BSP-based accelerator

(Graphicionado [38]). The event-driven model naturally supports asynchronous graph pro-

cessing with faster convergence via greater parallelism, reduced work, and elimination of

synchronization at iteration boundaries. In addition to its state-of-the-art performance,

we chose GraphPulse because it maps incremental update operations to a series of events

naturally within the existing architecture. JetStream supports all algorithms compatible

with delta-accumulative computation [116], as is the case in GraphPulse.

JetStream is an asynchronous graph processing accelerator leveraging the event-

driven execution model to operate on streaming graphs. The decoupled nature of event-

driven execution allows the accelerator to extract abundant parallelism for the computation

119

flow and utilize memory bandwidth efficiently. A significant performance boost comes from

the efficient utilization of low-latency on-chip memory resources for the transient short-

lived communication data. In addition, specialized communication paths and scheduling

primitives allow the accelerator to operate with very little overhead for control and syn-

chronization. JetStream extends the datapath of GraphPulse, to accommodate the model

described in Section 7.2. JetStream adds new modules for reading and processing streaming

data, as well as re-implements the coalescing queue, and vertex update and propagation

logic to account for the new types of events.

The accelerator is designed to work alongside a host as an ASIC/FPGA-based

co-processor with dedicated DRAM memory and independently addressable memory space.

The host processor allocates and initializes the graph and the initial events in the accelerator

memory as defined by the programmer via a provided API. The accelerator performs the

graph computation independently based on configurations received from the host. It alerts

the host when computation finishes so that the graph state can be read back.

This chapter describes the architectural components of the GraphPulse core and

highlights the extensions for JetStream. JetStream retains the GraphPulse datapath and

adds a Stream Reader module for creating events from streaming data as described in

section 7.2.3. It extends the vertex update module with a vertex reset logic, a scheduler

with multiple policies, and coalescer logic incorporating delete event coalescing described

in Section 7.2.4. A detailed view of the JetStream datapath is shown in Fig. 8.1, where the

shaded components indicate modules added to or extended from GraphPulse. JetStream’s

architectural changes do not disrupt the regular computation on static graphs. As a result,

120

JetStream can perform both the initial non-incremental evaluation (like GraphPulse) and

streaming evaluation efficiently. We describe the complete execution flow of JetStream

later in this section. Furthermore, JetStream derives its functional module from the same

programming API defined for GraphPulse; so minimal additional user effort is necessary to

program JetStream. In the remainder of this section, we describe the primary GraphPulse

components and how JetStream extends them.

8.1 Event Management

All computations are expressed as contributions along edges and propagated us-

ing events in the event-driven model. Events are lightweight messages that trigger vertex

computation at the destination vertex. GraphPulse events are tuples containing a target

vertex Id and a payload. The payload contains the vertex contribution along the edge. In

JetStream, event payloads also contain some flags indicating special tasks (e.g., request flag

mentioned in Algorithm 5). We describe optimizations in Section 8.7 that add extra data

to the event payload in JetStream.

The event queue is the storage for active events in the system representing the set

of active vertices. GraphPulse employs a fast on-chip queue capable of in-place coalescing.

The queue contains multiple bins. Each bin is structured into a grid of rows and columns,

and only one vertex is mapped into each cell by vertex index. The bins behave similar to a

direct-mapped cache. During event insertion, if another event already exists in its mapped

cell in the queue, the events are combined with the Reduce operation (coalescing). Thus,

only one event for a vertex can exist in the queue at any time.

121

The queue is capable of fast parallel insertion of events received on the input bus.

The bins are implemented on Simple Dual-Ported on-chip memory where one row can be

read and written in each cycle. Furthermore, each bin is equipped with a coalescer pipeline

that can insert one event every cycle even though coalescing may have multi-cycle latency.

During insertion, the coalescer reads the existing event (if any) in the mapped block on the

first cycle. Then, the existing event is reduced with the new events in the following cycles

and written back.

Events are emitted in batches for processing. Since GraphPulse supported algo-

rithms allow reordering of edge contributions, events can be emitted in any order. Graph-

Pulse reads one full row of events at a time from a bin and puts it into a drain buffer. Events

are drained from one bin at a time in a round-robin fashion. The vertices are mapped in

such a way that a group of vertices whose states reside in the same DRAM page is also

mapped in the same row in the queue. Thus, processing the events in one row of the queue

within a short period provides a high spatial locality for the graph memory.

JetStream leverages the same queue architecture as GraphPulse. The coalescer

pipelines are extended to combine delete events as well during the recovery phase. Two

delete events can be merged since they do not carry any data. Additionally, fewer vertices

can be mapped to the queue (for the same on-chip memory size) since the event payload in

JetStream is bigger than GraphPulse. Hence, JetStream uses smaller-sized graph partitions

than GraphPulse.

122

8.2 Event Scheduler

The GraphPulse event scheduler dequeues events from the queue and puts them in

a buffer. It keeps track of processor occupancy, and arbitrates events to the processors with

the least workload. It issues the events in the same queue row to the same processor for

enhancing spatial locality. The scheduler also tracks the progress of the processing engines

and the occupancy of the queue. When all the bins have been drained once, we say that

a round is completed. The scheduler waits for the processors to idle before starting a new

round. Since only one event for a vertex can exist at the time of emitting event, there

cannot be more than one event scheduled for the same vertex in one round; this eliminates

the need for atomic operations and simplifies memory access and synchronization. When the

scheduler detects that the queue is empty and all processors have completed their assigned

workload, it indicates the end of the computation phase and terminates the application.

In JetStream, the scheduler is extended to run the execution in multiple phases.

When a streaming batch is ready, the scheduler starts processing for the recovery phase that

precedes the regular computation phase. The recovery phase starts with populating the

queue with delete events from graph mutation. Then it proceeds like a regular computation

phase and ends when there is no delete event remaining in the queue. At the end of this

phase, the graph is in a recoverable approximation state. Finally, the scheduler triggers

the creation of addition events from added edges and runs the a regular computation phase

(reevaluation) to obtain the final graph state.

123

8.3 Event Processing Engine

GraphPulse event processors are independent, parallel, and simple state machines.

They continuously process events that are placed in their input FIFO buffers by the sched-

uler. The processors compute the vertex states using the user-defined Reduce() method

and apply the updates to the vertex memory. Since the processors receive events that are

closely located in the memory in one batch, they can prefetch the vertex properties for these

events. Each processor is equipped with an on-chip scratchpad prefetcher that can prefetch

vertex data for all the events in the processing buffer. The prefetcher scans the buffer and

reads the off-chip memory in such a way that vertex properties residing in the same DRAM

memory page are read in a group, thus increasing memory access efficiency. The processors

read and write vertex data through the scratchpad memory. The scratchpads can access

any memory channel through an efficient memory bus.

When vertex states change, the processors pass the updates to one of their event

generation streams. The generation streams read the edges and compute the contributions

using the Propagate() method to pass along the edges. Event generation streams also

read the edge data through an edge cache connected to an off-chip memory bus. Since

edge lists are contiguous in memory, the prefetcher requests the next memory block smartly

based on the edge pointers and the number of edges in the Edge ID Buffer. The generation

streams are connected to the queue using a crossbar. 32 generators of 8 processing engines

share the input ports of the 16×16 crossbar, and the queue bins share the output ports.

JetStream utilizes the same event processor system during its regular computation

phase. The apply logic is extended with a reset logic that sets a vertex to Identity

124

Prefetcher

Processing Buffer

Prefetcher

Edge ID Buffer

Queues

33

44
22 55

66

88

Scheduler1a1a

1b1b

Initializer

77

Impact Buffer

Apply

Propagate

Stream Reader DRAM

Processing Engine x8

Generation Stream x4

99

00

Scratchpad Memory Edge Cache

Event Bus

NoC
AA CC

BB

C
o

a
le

s
c
e
r

DRAM

Reset Logic

Figure 8.1: Detailed JetStream datapath. Blue arrows show data flow, red arrows indicate
control signals, green and yellow arrows represent on-chip and off-chip memory transfers
respectively. Shaded modules are new or modified in JetStream.

(Algorithm 5, line 6) when it receives a valid delete event during the approximation phase.

It also, writes the vertex index to the Impact Buffer if a vertex resets its state from a delete

event. Additionally, the processing buffer is increased in width to accommodate larger event

size for JetStream.

8.4 Stream Processing Modules

JetStream adds a Stream Reader module that reads the lists of deleted and inserted

edges from the main memory and schedules them to the processing engines during the

approximation phase. The Stream Reader module and the other new modules that are

added for the JetStream datapath are shown with shaded boxes in Fig. 8.1. The list of

deleted edges is read first as 〈source, destination, weight〉 and events are created from these

edges according to Section 7.2.3. Next, these events are used to find the sets of impacted

125

vertices during the recovery phase. Finally, the list of added edges are read, and events are

created after the approximation is complete.

The Impact Buffer stores the indices of the vertices impacted by the deleted edges

during the recovery phase. The Apply unit sends the index of an impacted vertex to the

Impact Buffer module that writes to a list in its internal buffer. The list is written from

the buffer to the main memory in batches. The Impact Buffer module also reads back the

list and creates request events for the impacted vertices as described in Section 7.2.5. Since

the reads and writes are done in bulk, they are sequential accesses and can be done with

low overhead.

8.5 JetStream Execution Flow

Fig. 8.1 shows the steps and direction of the dataflow during the life-cycle of an

event. The dataflow differs for the initial (static) and incremental evaluation. JetStream

inherits the regular computation phase described in section 6.1.5 from GraphPulse and uses

it for the initial static evaluation. The incremental evaluation is added in JetStream and it

is required for fast evaluation of streaming graphs.

Delete Setup and Preparation. Edge additions are directly supported as regular events

since they do not affect the monotonicity of the algorithm; we focus on the more difficult

deletion support. The Stream Reader reads the deleted edges first in A○ and passes them

to the processing engines through the scheduler (2○). Reusing steps 3○ - 5○, the vertex

state for the source vertex is read (but not updated) and the 〈vertex state, destination, edge

weight〉 is passed to the generation unit. Step 7○ is used to find the propagated value, and

126

create a delete event for the destination vertex that is forwarded to the queue using 8○, 9○.

Note that the computing elements of 4○ and 7○ are not necessary for the basic model. But

they are used during the optimizations described in Section 8.7.

Delete Propagation. After all the delete events are queued, a normal computation cycle

(steps 0○- 9○) is executed until there remains no delete events in the queue. The Apply unit

and Propagation unit use the logic defined in Algorithm 5, line 6 and 9. The Apply unit also

writes the Id of a deleted vertex in step B○ to the Impact Buffer during step 4○.

Finalizing Approximation. After the delete propagation step concludes, we reschedule

the vertices from the Impact Buffer (step C○) and reuse steps 2○- 9○ once to create request

events for their incoming edges. In this phase, step 4○ reads the incoming edge pointers

from the memory (in contrast to the outgoing edge pointer as in other phases). Following

this, the Stream Reader reads the inserted edges, and creates insertion events using 2○- 9○

the same way as deleted events. This completes the approximation phase. At this point, the

regular computation phase (0○- 9○) can execute again to evaluate the modified graph. As

further streaming updates are received, the engine keeps finding recoverable approximation

and rerun computation phase keep processing streaming data.

8.6 Graph Representation and Partition

GraphPulse stores the graph structure in a Compressed Sparse Row (CSR) format

and the vertex states in simple contiguous arrays. JetStream assumes the same CSR graph

storage format. However, different from GraphPulse, JetStream requires access to the

incoming edges for each vertex, which are stored in another CSR structure. Since the host

127

processor maintains the graph structure, we leave the task of maintaining the evolving edge

list to a suitable software graph versioning framework. In the simplest case, we assume

the host writes a new CSR for the mutated graph version to the accelerator memory and

swaps the pointer to the CSR after each batch iteration. Thus, JetStream can start using

the new version of the graph. In practice, any graph versioning storage, such as Version

Traveler [54] or GraphOne [58], can be used. JetStream can interface with any framework

that allows a CSR abstraction to access the internal evolving graph structure, and only the

address translation logic needs to be extended for interfacing.

The hardware queue can accommodate events for a limited number of vertices.

So large graphs are partitioned into slices using a minimum edge-cut strategy to avoid

overwhelming the queue. GraphPulse processes one slice of the graph at a time in a round-

robin manner and temporarily stores the cross-partition events to the off-chip memory.

After one round over a slice, it is swapped out by writing the pending events to the off-chip

memory. Then, a new slice is activated; its events are read back from memory and inserted

into the queue. We keep the same partitioning and swapping technique of GraphPulse, as

JetStream extensions are not dependent on graph structure. Note that the partitions may

not remain optimal as the graph continues to evolve. To reduce the fraction of edge-cuts, we

can periodically re-partition the graphs or deploy dynamic graph partitioning tools [43, 101]

without affecting the JetStream workflow.

128

(a)

A(0,×)

B(8,A) C(0,9)

D(12,B)

G(19,D)

E(14,C) F(17,C)

A(0,×)

B(8,A)

C(∞,×)

D(12,B)

G(19,D) F(21,E)

E(16,B)

A(0,×)

B(8,A)

C(∞,×)

D(12,B)

G(19,D)

F(∞,×)

E(∞,×)

(b) (c)

Figure 8.2: Dependency tree for the example in Figure 7.4: (a) before deletion; (b) after
reset; (c) after reevaluation for the deleted edge A→C.

8.7 Optimizations

We have described a system that uses a tagging approach during edge deletion

(Section 7.2). Next, we describe extensions to the delete propagation algorithms to capture

a smaller set of impacted vertices.

8.7.1 Value Aware Propagation (VAP)

A fundamental property of monotonic algorithms is that the updates propagated

from a vertex along its outgoing edges are always less progressed (closer to Identity) than

the vertex itself. For example, in a Shortest Path (SSSP) algorithm, all the distances trans-

mitted via edges are longer than the vertex’s distance from the root. In typical selection-

based algorithms, a vertex selects only the incoming edge with the most progressed update

to set its state. VAP exploits the observation that any source vertex that propagates an

update that is less progressed than the destination’s state, can not be the contributor to its

state. Thus, when a vertex is impacted, VAP avoids resetting any neighbor that is more

progressed than the resulting contribution from the impacted source.

Implementing VAP requires changes to the event propagation and update logic.

The JetStream engine already uses a Propagate logic to compute the value of the events

129

generated along outgoing edges. This same logic is used to compute the propagated value

along the deleted edge during the creation of delete events. Upon receiving this event, a

receiver vertex compares the event payload to its current state. If the received value is less

progressed than the receiver, it can be safely discarded. Otherwise, the vertex resets itself

to the initial value and propagates the updates along its edges using its previous state. The

delete events with value can be coalesced in the queue using the same reduce() function

as the one for regular events. Only the most progressed event will remain, and if that does

not impact the destination vertex, the delete event is not propagated. This substantially

reduces the number of impacted vertices in the system for applications with distinct edge

weights and vertex states

8.7.2 Dependency Aware Propagation (DAP)

Comparing values in applications where clustering vertices settle to the same value

is futile. For example, a BFS algorithm sets all nodes to the same value, and VAP cannot

exclude any vertex based on value. For such algorithms, we exploit another observation that

the vertex states depend on the contribution of only one incoming edge for each vertex. The

first contribution that sets a vertex state to the final value is the one that the vertex depends

on. Subsequent contributions carrying the same update value cannot affect the vertex.

Therefore, deletes propagated along these edges can be safely discarded. The approximate

state is recoverable as long as the first contributing vertex remains stable. We adapt the

notion of Dependency Tree introduced in KickStarter [103] to the event-based model for

these kinds of applications.

130

Formalization

We capture the flow of useful contributions across the graph to identify depen-

dency. We use the notion of a Leads-To relationship (Z⇒) that represents the effect of a

vertex on the transition of a neighbor’s state. Specifically, A Z⇒ B if the state of B tran-

sitions from the contribution of A. In a cyclic path A � B � C � A with a BFS query, if

A Z⇒ B and B Z⇒ C, then C YZ⇒ A because A would have already reached the final state

and would not transition from the contribution (futile) from C. Discarding all delete prop-

agation u � v where u YZ⇒ v still produces a recoverable approximation. We can represent

the Leads-To relationship in the form of a tree. Note that multiple valid versions of the

dependency tree may exist depending on the order in which events are processed.

Implementation

We add a dependency field to the vertex state to record the source of the first

event that updates it to a stable value. We also add a field to the event payload that carries

the Id of the source of that event. When an event updates a vertex, the vertex changes its

dependency field to match the source of this event.

While coalescing two events in the queue during regular computation, we retain

the source of the event that is dominant in the Reduce function. We disable coalescing

during the recovery phase because the source information of a delete event will be lost after

coalescing. We extend the queue with an overflow buffer that stores the extra events when

multiple events are received for the same vertex. The overflow buffer writes to the off-chip

memory in blocks when full and reads back in blocks when issuing events. These off-chip

131

accesses have low overhead as the number of delete events is far smaller than the events in

a regular computation.

During event processing, a vertex only resets itself and propagates the delete if

the dependency field matches the source ID of the delete event. Other delete events are

discarded, greatly pruning the set of impacted vertices. Fig. 8.2 shows the vertex states

and dependency trees during different stages of the incremental evaluation for the example

graph of Fig. 7.4.

Overheads

This approach changes the data structure requiring more memory for vertex states

and on-chip events compared to VAP. However, the dataflow architecture and the control

sequence remain intact. Only the vertex update logic and event coalescing logic need to be

modified. Not coalescing events during recovery raises the concern of transaction safety if

multiple events are issued to processors concurrently. This is not an issue. Because in this

approach, only one event matching the dependency field can reset a vertex, and thus only

one vertex process will write back to memory.

8.8 Evaluation

JetStream is implemented on a cycle-accurate microarchitectural simulator based

on the Structural Simulation Toolkit (SST) [81]. The off-chip memory is modeled with

DRAMSim2 [83]. We use a detailed bus communication, scratchpad, and cache memory

model built within SST to evaluate communication and memory access characteristics. The

132

Table 8.1: Experimental configurations for JetStream.

Software Framework JetStream

Compute

Unit

36× Intel Core i9

@3GHz

8× JetStream Processor

@ 1GHz

On-chip

memory

24MB

L2 Cache

64MB eDRAM @22nm

1GHz, 0.8ns latency

Off-chip

Bandwidth

4× DDR4

19GB/s Channel

4× DDR3

17GB/s Channel

event processing and memory system configuration of the modeled framework is shown in

Table 8.1. For large workloads unable to fit in the on-chip memory, we followed the same

partitioning technique as GraphPulse. We used PulP [93] for edge-cut-based slicing of the

graphs.

8.8.1 Experimental Setup

Our comparison is focused on showing both the advantage stemming from algo-

rithmic support and hardware acceleration. First, we show the benefit of the incremental

reevaluation by comparing the performance with ”cold-start” computation of GraphPulse,

where the whole graph is processed from initial states after each batch of updates. We

used the same hardware configuration for GraphPulse and JetStream. Then, we compare

the performance and characteristics with two software frameworks to show the benefit of

133

Table 8.2: Input graphs used in the experiments for JetStream.

Graph Nodes Edges Description

Wikipedia(Wk) [26] 3.56M 45.03M Wikipedia Page Links

Facebook(FB) [99] 3.01M 47.33M Facebook Social Network

LiveJournal(LJ) [6] 4.84M 68.99M LiveJournal Social Network

UK-2002(UK) [12] 18.5M 298M .uk Domain Web Crawl

Twitter(TW) [59] 41.65M 1.46B Twitter Follower Graph

accelerating a streaming graph analytics engine. We compare with GraphBolt [67] for accu-

mulative algorithms and KickStarter [103] for monotonic algorithms with selective updates.

The system configuration for software benchmarks is shown in Table 8.1.

Workloads

To demonstrate the performance of realistic workloads, we select five real-world

graph datasets (see Table 8.2). Among these workloads, Wikipedia and UK-2002 domains

graphs represent narrow graphs with long paths, and Facebook, Livejournal, and Twit-

ter graphs represent large, highly connected networks. We run 6 graph algorithms on

these datasets for our evaluation. ShortestPath (SSSP), WidestPath (SSWP), Breadth-

First Search (BFS) and Connected Components (CC) are the representative applications

for selection based update functions. Incremental PageRank and Adsorption are evaluated

to show the performance of accumulative algorithms. We note that, for our optimization

technique with the embedding of dependency information in events (DAP), the event size

134

FB WK LJ UK FB WK LJ UK FB WK LJ UK FB WK LJ UK FB WK LJ UK
0.0

0.1

0.2

0.3

0.4

R
at

io
 o

f
Ve

rte
x

&
Ed

ge
 A

cc
es

s

SSWP SSSP BFS CC PR

0.
54

0.
49Vertex Access

Edge Access

Figure 8.3: Number of vertex and edge accesses in JetStream normalized to GraphPulse.

is bigger than GraphPulse and thus requires a smaller graph slice to fit in the memory. We

run 6 slices on Twitter and 3 slices on UK-domain graph for the selective algorithms in

JetStream compared to 3 and 2 slices respectively for GraphPulse.

8.8.2 Performance and Characteristics

Overall Performance

Table 8.3 shows the execution time of JetStream with different workloads for

batches of 100K edge updates. Each batch contains 70% insertions and 30% deletions

of edges. The table also shows the speedup over GraphPulse (GP), KickStarter (KS), and

GraphBolt (GB) for comparative workloads. GraphPulse demonstrates the cost of com-

plete recomputation of the graph in an accelerator. JetStream takes 3 to 74 times less

than GraphPulse (13× on average) to reevaluate a graph. This advantage primarily comes

from heavily reduced vertex computation and edge communication required in JetStream.

Fig. 8.3 shows that JetStream limits the number of vertex accesses to less than 54% and as

low as 3% of what GraphPulse would require with less than 30% events generated.

135

Table 8.3: Execution time (in ms) per query on JetStream and speedup over full evaluation
in GraphPulse(GP), and incremental evaluation in KickStarter(KS) and GraphBolt(GB).

WK FB LJ UK TW GMean

Jet 1.63 1.21 4.17 3.87 22.55

SSWP GP 10.4× 9.3× 16.7× 66.7× 43.2× 21.6×

KS 12.4× 13.1× 8.4× 24.2× 5.2× 11.1×

Jet 4.76 4.31 5.36 6.23 15.17

SSSP GP 9.4× 9.95× 13.3× 73.4× 35.5× 20.1×

KS 21.8× 8.7× 6.5× 25.6× 11.2× 12.9×

Jet 2.74 1.24 1.61 8.12 17.75

BFS GP 3.10× 5.35× 7.80× 8.18× 15.1× 6.9×

KS 30.1× 8.31× 11.7× 11.5× 5.57× 11.3×

Jet 1.64 1.44 2.59 5.07 11.73

CC GP 12.9× 13.2× 12.4× 21.4× 23.4× 16×

KS 7.62× 8.60× 5.25× 9.38× 8.51× 7.72×

Jet 5.17 4.29 6.62 6.99 169

PageRank GP 12.8× 19.5× 19.9× 56.6× 9.70× 19.4×

GB 143× 231× 180× 402× 51.6× 165×

Jet 4.19 5.27 9.84 12.10 65.30

Adsorption GP 5.78× 3.90× 5.08× 5.95× 9.41× 5.77×

GB 12.7× 14.4× 15.9× 12.8× 38.6× 17.1×

136

FB WK LJ UK TW FB WK LJ UK TW FB WK LJ UK TW FB WK LJ UK TW
0K

10K

20K

30K

#V
er

te
x

R
es

et

74
K

SSWP SSSP BFS CC

JetStream KickStarter

Figure 8.4: Number of vertices reset by 30K edge deletions.

Similar speedup in comparison to KickStarter and GraphBolt shows that the event-

driven model is effective across incremental techniques. We observe up to 30× speedup

over KickStarter and 400× over GraphBolt. JetStream is 18× faster on average than both.

JetStream’s asynchronous model performs better on the narrow but long graphs (UK, WK)

than the synchronous software frameworks.

Approximation Effectiveness

JetStream adopts a technique similar to KickStarter for trimming the set of ver-

tices. KickStarter employs value-aware and dependency graph (with levels) based trimming

to limit recomputations. The source-based dependency-aware propagation technique in Jet-

Stream often finds smaller set of impacted vertices. Fig. 8.4 shows the number of vertices

reset in JetStream and KickStarter for the same 30K batch of deletions.

Memory access efficiency

The ability to prefetch and utilize memory effectively is one of the major source of

speed up in GraphPulse. The caches use 64-bytes lines which may not all be accessed. We

137

W
K FB LJ U
K

TW W
K FB LJ U
K

TW W
K FB LJ U
K

TW W
K FB LJ U
K

TW W
K FB LJ U
K

TW

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f
M

em
or

y
U

til
iz

at
io

n

PR SSWP SSSP BFS CC

JetStream GraphPulse

Figure 8.5: Utilization of off-chip memory transfers in JetStream.

show in Fig. 8.5 the ratio of bytes read into the computation engine from cache/prefetcher

to bytes read from memory into caches to demonstrate how efficiently the off-chip data

transfers were utilized as an indication of spatial locality. JetStream uses the same memory

prefetching and edge cache structures already built into the GraphPulse datapath. Since

the active tasks (events) in JetStream are fewer and sparse in JetStream, it cannot harvest

spatial locality as well as GraphPulse. As a result, the memory access utilization ratio is

less than one-third of GraphPulse. However, having fewer computational tasks still makes

JetStream significantly faster during incremental computation. Optimizing the memory

access efficiency of JetStream is a potential avenue for future improvements.

Effects of Optimizations

We show the effects of the optimizations in terms of speedup over full recompu-

tation in GraphPulse in Fig. 8.6. The baseline JetStream model is conceptually simple.

However, without a mechanism to restrict tagging to only the affected vertices, it tags too

many vertices in the graph, often leading to work comparable to full recomputation for

most applications. VAP performs sufficiently well for SSSP and SSWP, but fails to provide

138

SSWP SSSP BFS CC SSWP SSSP BFS CC
0

10

20

30

Sp
ee

du
p

LiveJournal UK-2002

67 68 73

Base +VAP +DAP

Figure 8.6: Speedup over GraphPulse for Baseline JetStream, VAP and DAP optimizations.

a noticeable advantage for BFS and CC. The latter two applications have many vertices set

to the same value, making the VAP optimization ineffective. DAP alleviates this problem

and works well for all applications. However, VAP has the advantage over DAP in that it

does not expand the event size to include source information.

Sensitivity to Batch Size

In Fig. 8.7, we have shown how the performance of the engine varies with different

batch sizes. Taking a 100K batch size as the baseline, we showed the speed up for different

batches for PageRank and SSSP running on LiveJournal graph. The speedup is based

on JetStream’s runtime for 100K batch size. JetStream speeds up significantly as the

batch size gets smaller because it has little overhead for incremental data maintenance.

JetStream can handle computations very fast for smaller batches where the number of

changes or computations is low. JetStream’s speedup grows orders of magnitude faster that

KickStarter. This time is only the processing time, and the end-to-end performance may

have other overheads to receive and batch the updates.

139

101001K10K100K
Batch Size

10 1

1

101

102

103

104

S
pe

ed
up

SSSP on
LiveJournal

101001K10K100K
Batch Size

10 2

10 1

1

101

102

103 PageRank on
LiveJournal

KickStarter JetStream GraphBolt

Figure 8.7: Sensitivity to batch size. Run-time shown as speedup over JetStream with 100K
batch.

100:0 50:50 0:100
Insertion:Deletion

2

4

6

N
or

m
al

iz
ed

 R
un

tim
e SSSP on

LiveJournal

100:0 50:50 0:100
Insertion:Deletion

0.0

2.5

5.0

7.5

10.0 CC on
LiveJournal

JetStream KickStarter

Figure 8.8: Run-time sensitivity to batch composition. Run-time is normalized to 50:50
composition on JetStream.

Sensitivity to Batch Composition

Edge deletions require more processing than edge additions in JetStream. An

approximation phase is required to revert the effects of a deleted edge on the graph, which

may propagate to many vertices for some critical edges. All the impacted vertices need to

be reprocessed in the recomputation phase. Edge addition resembles regular events during

the recomputation phase, and their effects are usually localized. Fig. 8.8 shows the effect of

the composition of a batch on the run-time for SSSP and CC. Note that the run-times are

140

normalized to JetStream’s run-time for a 50-50 batch. An insertion-only batch converges 3

to 4 times faster on average than a deletion-only batch of the same size. Run-time increases

as the ratio of deleted edges increases. KickStarter, too, demonstrates faster convergence

with fewer deletions, but there is no concrete dependence of the run time on the ratio of

deletions. KickStarter attempts to approximate the value of an impacted vertex before

propagating the tag. JetStream attempts to minimize tagging using DAP optimization but

only approximates after all tags are propagated. On the other hand, for PageRank and

Adsorption in JetStream, the addition or deletion of one edge also mutates the other edges

(weight) for a vertex, and both types of updates are handled similarly. Therefore, such

algorithms are not noticeably affected by batch composition.

8.8.3 Hardware Cost and Power Analysis

We model JetStream using the same configuration as GraphPulse: 64MB on-chip

memory for queue, and 8 processing pipelines with 2KB scratchpad and 1KB edge-cache

on each. We use CACTI 7 [7] for power and area estimate for all memory elements. The

queue memory is modeled in 22nm ITRS-HP SRAM logic. The biggest component of the

communication network is a 16x16 NoC between the event generation streams and the

queues. Each port of the NoC is shared by several generator or queue ports.A breakdown

of the total power and area estimate for the accelerator is shown in Table 8.4. The number

in parenthesis is the increase over similarly configured GraphPulse. The overall increase in

area and power is around 3% and 1% respectively.

JetStream reuses most architectural components of GraphPulse, including the

event queue, prefetcher, and cache. Memory elements have the same physical size but

141

Table 8.4: Power and area of the JetStream accelerator components

#
Power(mW)

Area(mm2)

Static Dynamic Total

Queue 64 117 (+1%) 20.7 (-6%) 8815 (∼0%) 192 (+1%)

Scratchpad 8 0.35 (∼0%) 1.2 (+6%) 12.1 (+4%) 0.21 (∼0%)

Network 91 (+78%) 5.4 (+58%) 97 (+77%) 5.7 (+84%)

Proc. Logic - - 1.8 (+40%) 0.7 (+51%)

Total - - 8926 (+1%) 199 (+3%)

contain fewer events due to the larger event size. As a result, there are some resource

overheads due to larger buffers and interconnects. However, the dynamic energy is lower

because JetStream processes fewer vertices propagating events (many vertices are already

converged). Overhead from the buffers and communication buses also increases due to the

larger event size. Floating point units account for the bulk of the processing and coalescing

logic and remain the same in input size. Thus, the extra processing logic for JetStream adds

only a small power and area overhead. The processing time in JetStream is shorter, making

JetStream ∼13 times more energy-efficient than full recomputation with GraphPulse. The

total area of JetStream is about 200mm2 with a 28nm technology.

142

Chapter 9

Conclusions and Future Work

This dissertation presents and analyzes our methodology for building accelerators

for irregular applications using event-driven techniques. We have studied the limitations

of irregular applications and their current software implementations to identify bottlenecks

and overheads. To develop efficient hardware implementations for these applications, we

found that we need to shift focus away from the execution techniques optimized for conven-

tional CPUs and look for specialized methods that can take advantage of the features and

capacities of hardware platforms such as FPGAs and ASIC. An event-driven system stands

out as the optimal candidate for implementation in hardware. Many distributed implemen-

tations of different irregular applications follow a message-passing approach, which is not

replicated in a shared memory system because the overhead for maintaining and managing

the messages can be overwhelming and become the bottleneck of these systems. However,

the complexities of the message storage can be relegated to dedicated hardware components,

making these systems very simple to parallelize and optimize in a shared memory system.

143

Therefore, we studied event-driven systems focusing on designing suitable hardware imple-

mentation and developing methodologies for converting traditional execution methods to

event-driven execution models.

In this course of our work, we designed and analyzed a PDES accelerator on an

FPGA. PDES-A is designed to support arbitrary PDES models, although we studied our

initial design only with Phold. The design shows excellent scalability up to 64 concurrent

event handlers, outperforming a 12-core CPU PDES simulator by 3.2x for this model. We

identified significant opportunities to improve further the performance of PDES-A targeted

around hiding the very high memory latency on the system. We also analyzed the resource

utilization of PDES-A: we believe that we can fit up to 16 PDES-A processors with 64 event

processing cores on the same FPGA chip, further improving performance at a fraction of

the power consumed by CPUs.

We also presented GraphPulse, an event-based asynchronous graph processing ac-

celerator. We showed how the event abstraction naturally expresses asynchronous graph

computations and optimizes memory access patterns. It also simplifies computation schedul-

ing and tracking, and eliminates the overhead for synchronization or atomic operations. As

a result, GraphPulse achieves an average of 28x improvement in performance over Ligra run-

ning on a 12 core CPU implementation and an average of 6.2x performance improvement

over Graphicionado.

Our third accelerator, JetStream, is the first hardware accelerator for streaming

graphs. JetStream extends GraphPulse to reuse intermediate states to avoid a complete

cold-start recomputation on the updated graph. JetStream supports edge additions and

144

deletions for both monotonic and accumulative algorithms. It achieves an average speedup

of 13x over hardware accelerator GraphPulse and 18x over software frameworks at baseline

batch sizes. This advantage increases substantially for small batch sizes.

The accelerators share a similar datapath but differ in implementing the event

queues and the execution model for the applications they support. A standard limitation of

the accelerators is their dependence on the size of the event queue for the largest workload

they can handle at a time. The way to subvert this limitation is through partitioning

approaches. We show how a large graph can be partitioned for GraphPulse and JetStream

so that the event queue can fit within the available on-chip memory. However, there are

many different possible partitioning approaches that can result in different performance

characteristics for the application. Analysis of different partition approaches and their

profitability with event-driven systems is a future area of study for our research.

There is vast potential for future extensions and impacts for the event-driven

computation model. We can look into the possibilities from two perspectives. First, within

the applications that we have demonstrated, there are many possible areas that can result

in significant performance improvement. Task scheduling is decided by the order of events

in these applications. There are opportunities to gain algorithmic or computational benefits

by studying different event-scheduling policies. For instance, events can be manipulated in

GraphPulse to impart fine-grained control over the vertex access pattern or the convergence

speed. Prior works on graph processing demonstrate good performance from well-crafted

edge update prioritization policy [115]. Similar benefits may be obtainable in GraphPulse

by exploiting the event scheduling policy.

145

The second approach is to broaden the application domains supported by the

event-driven acceleration. Since event-driven representation closely resembles message-

passing-based distributed systems, many existing distributed computation models can be

adapted to the event-driven execution model, as demonstrated by our development of the

graph execution model. Especially the domains working on relational data, such as Graph

Mining and Graph Neural Network, may be susceptible to an event-driven implementation

with relative ease. We consider this an area of possible future explorations.

The analysis we have shown on the three accelerators in this dissertation estab-

lishes our hypothesis that significant performance gain can be achievable for irregular ap-

plications using accelerators based on event-driven execution. The dissertation also details

the methodology for developing such architectures and converting existing algorithms to

event-driven paradigm. Overall, we consider event-driven systems to have great potential

as the basis for accelerating irregular applications.

146

Bibliography

[1] Maleen Abeydeera and Daniel Sanchez. Chronos: Efficient Speculative Parallelism
for Accelerators. In Proc. International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), 2020.

[2] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. A
Scalable Processing-in-memory Accelerator for Parallel Graph Processing. SIGARCH
Computer Architecture News, 43(3), June 2015.

[3] Ching Avery. Giraph: Large-scale graph processing infrastructure on hadoop. Pro-
ceedings of the Hadoop Summit. Santa Clara, 11, 2011.

[4] A. Ayupov, S. Yesil, M. M. Ozdal, T. Kim, S. Burns, and O. Ozturk. A Template-
Based Design Methodology for Graph-Parallel Hardware Accelerators. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 37(2):420–430,
Feb 2018.

[5] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas
Avižienis, John Wawrzynek, and Krste Asanović. Chisel: Constructing Hardware in
a Scala Embedded Language. In Proceedings of the 49th Annual Design Automation
Conference, DAC ’12, pages 1216–1225, New York, NY, USA, 2012. ACM.

[6] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. Group For-
mation in Large Social Networks: Membership, Growth, and Evolution. In Proc. In-
ternational Conference on Knowledge Discovery and Data Mining (SIGKDD), pages
44–54, 2006.

[7] Rajeev Balasubramonian, Andrew B. Kahng, Naveen Muralimanohar, Ali Shafiee, and
Vaishnav Srinivas. CACTI 7: New Tools for Interconnect Exploration in Innovative
Off-Chip Memories. ACM Trans. Archit. Code Optim., 14(2), June 2017.

[8] Peter D. Barnes, Christopher D. Carothers, David R. Jefferson, and Justin M. LaPre.
Warp speed: Executing time warp on 1,966,080 cores. In Proceedings of the 1st ACM
SIGSIM Conference on Principles of Advanced Discrete Simulation, SIGSIM PADS
’13, page 327–336, New York, NY, USA, 2013. Association for Computing Machinery.

147

[9] David W. Bauer Jr., Christopher D. Carothers, and Akintayo Holder. Scalable time
warp on blue gene supercomputers. In 2009 ACM/IEEE/SCS 23rd Workshop on
Principles of Advanced and Distributed Simulation, pages 35–44, 2009.

[10] S. Beamer, K. Asanović, and D. Patterson. Reducing Pagerank Communication via
Propagation Blocking. In 2017 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 820–831, May 2017.

[11] R. Bhagwan and B. Lin. Fast and scalable priority queue architecture for high-speed
network switches. In Proceedings IEEE INFOCOM 2000. Conference on Computer
Communications. Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies (Cat. No.00CH37064), volume 2, pages 538–547 vol.2, Tel
Aviv, Israel, 2000. IEEE.

[12] Paolo Boldi and Sebastiano Vigna. The WebGraph Framework I: Compression
Techniques. In Proc. of the Thirteenth International World Wide Web Conference
(WWW), pages 595–601, 2004.

[13] R. Brown. Calendar Queues: A Fast 0(1) Priority Queue Implementation for the
Simulation Event Set Problem. Commun. ACM, 31(10):1220–1227, October 1988.

[14] E. Bullmore and O.Sporns. Complex brain networks: graph theoretical analysis of
structural and functional systems. In Nature Reviews Neuroscience, 10(3), pages
186–198, 2009.

[15] P. Burnap, O. F. Rana, N. Avis, M. Williams, W. Housley, A. Edwards, J. Morgan,
, and L. Sloan. Detecting tension in online communities with computational Twitter
analysis. In Technological Forecasting and Social Change, 95, pages 96–108, 2015.

[16] Zhuhua Cai, Dionysios Logothetis, and Georgos Siganos. Facilitating real-time graph
mining. In Proceedings of the Fourth International Workshop on Cloud Data Manage-
ment, CloudDB ’12, page 1–8, New York, NY, USA, 2012. Association for Computing
Machinery.

[17] Christopher D. Carothers. ROSS-Models. https://github.com/carothersc/

ROSS-Models, 2018.

[18] Christopher D. Carothers, David Bauer, and Shawn Pearce. ROSS: A High-
performance, Low Memory, Modular Time Warp System. In Proceedings of the Four-
teenth Workshop on Parallel and Distributed Simulation, PADS ’00, pages 53–60,
Washington, DC, USA, 2000. IEEE Computer Society.

[19] Guillaume Chapuis, Stephan Eidenbenz, Nandakishore Santhi, and Eun Jung Park.
Simian Integrated Framework for Parallel Discrete Event Simulation on GPUs. In
Proceedings of the 2015 Winter Simulation Conference, WSC ’15, pages 1127–1138,
Piscataway, NJ, USA, 2015. IEEE Press.

148

https://github.com/carothersc/ROSS-Models
https://github.com/carothersc/ROSS-Models

[20] Huilong Chen, Yiping Yao, Wenjie Tang, Dong Meng, Feng Zhu, Yuewen Fu, and
Yiping Yao. Can MIC Find Its Place in the Field of PDES?: An Early Perfor-
mance Evaluation of PDES Simulator on Intel Many Integrated Cores Coprocessor.
In Proceedings of the 19th International Symposium on Distributed Simulation and
Real Time Applications, DS-RT 2015, pages 41–49, Piscataway, NJ, USA, 2015. IEEE
Press.

[21] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming Wu,
Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. Kineograph: taking the pulse
of a fast-changing and connected world. In Proc. 7th ACM european conference on
Computer Systems, pages 85–98, 2012.

[22] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi
Muthukrishnan. One trillion edges: Graph processing at facebook-scale. Proc. of
the VLDB Endowment, 8(12):1804–1815, 2015.

[23] Guohao Dai, Tianhao Huang, Yuze Chi, Ningyi Xu, Yu Wang, and Huazhong Yang.
ForeGraph: Exploring Large-Scale Graph Processing on Multi-FPGA Architecture.
In Proc. International Symposium on Field-Programmable Gate Arrays (FPGA), page
217–226, 2017.

[24] J. M. Daper. Compiling on Horizon. In Proceedings of the 1988 ACM/IEEE Confer-
ence on Supercomputing, Supercomputing ’88, pages 51–52, 1988.

[25] Samir Das, Richard Fujimoto, Kiran Panesar, Don Allison, and Maria Hybinette.
GTW: A Time Warp System for Shared Memory Multiprocessors. In Proceedings of
the 26th Conference on Winter Simulation, WSC ’94, pages 1332–1339, San Diego,
CA, USA, 1994. Society for Computer Simulation International.

[26] Timothy A. Davis and Yifan Hu. The University of Florida Sparse Matrix Collection.
ACM Trans. Mathematical Software, 38(1):1:1–1:25, December 2011.

[27] Robert H Dennard, Fritz H Gaensslen, V Leo Rideout, Ernest Bassous, and Andre R
LeBlanc. Design of ion-implanted MOSFET’s with very small physical dimensions.
IEEE Journal of Solid-State Circuits, 9(5):256–268, 1974.

[28] Philip Dexter, Yu David Liu, and Kenneth Chiu. Formal foundations of continuous
graph processing, 2020.

[29] Laxman Dhulipala, Guy E Blelloch, and Julian Shun. Low-latency graph streaming
using compressed purely-functional trees. In Proc. 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 918–934, 2019.

[30] M. De Domenico, A. Lima, P. Mougel, and M. Musolesi. The anatomy of a scientific
rumor. In Scientific Reports, http://dx.doi.org/10.1038/srep02980, 2013.

[31] David Ediger, Rob McColl, Jason Riedy, and David A Bader. Stinger: High per-
formance data structure for streaming graphs. In Proc. IEEE Conference on High
Performance Extreme Computing, pages 1–5, 2012.

149

[32] R Ewald, C Maus, A Rolfs, and A Uhrmacher. Discrete event modelling and simula-
tion in systems biology. Journal of Simulation, 1(2):81–96, 2007.

[33] Richard Fujimoto. Parallel and Distributed Simulation. In Proceedings of the 2015
Winter Simulation Conference, WSC ’15, pages 45–59, Piscataway, NJ, USA, 2015.
IEEE Press.

[34] Richard M. Fujimoto. Parallel and Distribution Simulation Systems. John Wiley &
Sons, Inc., New York, NY, USA, 1st edition, 1999.

[35] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
Powergraph: Distributed graph-parallel computation on natural graphs. In Proc. 10th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
12), pages 17–30, 2012.

[36] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J
Franklin, and Ion Stoica. Graphx: Graph processing in a distributed dataflow frame-
work. In Proc. {USENIX} Symposium on Operating Systems Design and Implemen-
tation ({OSDI} 14), pages 599–613, 2014.

[37] Sounak Gupta and Philip A. Wilsey. Lock-free Pending Event Set Management in
Time Warp. In Proceedings of the 2nd ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation, SIGSIM PADS ’14, pages 15–26, New York, NY, USA,
2014. ACM.

[38] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi. Graphicionado: A
high-performance and energy-efficient accelerator for graph analytics. In Proc. 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
1–13, Oct 2016.

[39] Minyang Han and Khuzaima Daudjee. Giraph Unchained: Barrierless Asynchronous
Parallel Execution in Pregel-like Graph Processing Systems. PVLDB, 8(9):950–961,
2015.

[40] Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou, Vijayan
Prabhakaran, Wenguang Chen, and Enhong Chen. Chronos: a graph engine for tem-
poral graph analysis. In Proc. European Conference on Computer Systems (Eurosys),
2014.

[41] M. C. Herbordt, F. Kosie, and J. Model. An Efficient O(1) Priority Queue for Large
FPGA-Based Discrete Event Simulations of Molecular Dynamics. In 2008 16th In-
ternational Symposium on Field-Programmable Custom Computing Machines, pages
248–257, Palo Alto, CA, USA, April 2008. IEEE.

[42] R.R. Hill, J.O. Miller, and G.A. McIntyre. Applications of discrete event simula-
tion modeling to military problems. In Proceeding of the 2001 Winter Simulation
Conference (Cat. No.01CH37304), volume 1, pages 780–788 vol.1, 2001.

150

[43] Jiewen Huang and Daniel J. Abadi. Leopard: Lightweight Edge-Oriented Partitioning
and Replication for Dynamic Graphs. Proc. VLDB Endowment, 9(7), March 2016.

[44] H.H.J. Hum and G.R. Gao. Efficient support of concurrent threads in a hybrid
dataflow/von Neumann architecture. In Proceedings of the IEEE International Sym-
posium on Parallel and Distributed Processing, IEEE IPDPS ’91, pages 190–193, 1991.

[45] Amazon Web Services, Inc. Amazon EC2 F1 Instances, 2018.

[46] H. Isah, P. Trundle, , and D. Neagu. Social media analysis for product safety using text
mining and sentiment analysis. In 14th UK Workshop on Computational Intelligence
(UKCI), 2014.

[47] Anand Padmanabha Iyer, Li Erran Li, Tathagata Das, and Ion Stoica. Time-evolving
graph processing at scale. In Proceedings of the Fourth International Workshop on
Graph Data Management Experiences and Systems, GRADES ’16, New York, NY,
USA, 2016. Association for Computing Machinery.

[48] Anand Padmanabha Iyer, Li Erran Li, Tathagata Das, and Ion Stoica. Time-evolving
graph processing at scale. In Proc. Fourth International Workshop on Graph Data
Management Experiences and Systems, pages 1–6, 2016.

[49] Deepak Jagtap, Ketan Bahulkar, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Char-
acterizing and Understanding PDES Behavior on Tilera Architecture. In Proceedings
of the 2012 ACM/IEEE/SCS 26th Workshop on Principles of Advanced and Dis-
tributed Simulation, PADS ’12, pages 53–62, Washington, DC, USA, 2012. IEEE
Computer Society.

[50] David R. Jefferson. Virtual Time. ACM Trans. Program. Lang. Syst., 7(3):404–425,
July 1985.

[51] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez. A scalable ar-
chitecture for ordered parallelism. In Proc. 48th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 228–241, Dec 2015.

[52] Mark C. Jeffrey, Suvinay Subramanian, Maleen Abeydeera, Joel Emer, and Daniel
Sanchez. Data-Centric Execution of Speculative Parallel Programs. In The 49th An-
nual IEEE/ACM International Symposium on Microarchitecture, MICRO-49. IEEE
Press, 2016.

[53] Xiaolin Jiang, Chengshuo Xu, Xizhe Yin, Zhijia Zhao, and Rajiv Gupta. Tripoline:
generalized incremental graph processing via graph triangle inequality. In Proc. Six-
teenth European Conference on Computer Systems, pages 17–32, 2021.

[54] Xiaoen Ju, Dan Williams, Hani Jamjoom, and Kang G. Shin. Version Traveler: Fast
and Memory-Efficient Version Switching in Graph Processing Systems. In Proceedings
of the 2016 USENIX Conference on Usenix Annual Technical Conference, USENIX
ATC ’16, page 523–536, USA, 2016. USENIX Association.

151

[55] Sean Kane, Sounak Gupta, and Philip A. Wilsey. Analyzing simulation model profile
data to assist synthetic model generation. In 2019 IEEE/ACM 23rd International
Symposium on Distributed Simulation and Real Time Applications (DS-RT), pages
1–10, 2019.

[56] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on scientific Computing, 20(1):359–392,
1998.

[57] J. T. Kuehn and B. J. Smith. The Horizon Supercomputing System: Architecture
and Software. In Proceedings of the 1988 ACM/IEEE Conference on Supercomputing,
Supercomputing ’88, pages 28–34, 1988.

[58] Pradeep Kumar and H. Howie Huang. GraphOne: A Data Store for Real-time Ana-
lytics on Evolving Graphs. In Proc. USENIX Conference on File and Storage Tech-
nologies (FAST), 2019.

[59] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is Twitter, a
Social Network or a News Media? In Proc. 19th International Conference on World
Wide Web, WWW ’10, pages 591–600, New York, NY, USA, 2010. ACM.

[60] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi : Large-scale graph computation
on just a PC. In USENIX OSDI, pages 31–46, 2012.

[61] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network Dataset
Collection. http://snap.stanford.edu/data, June 2014.

[62] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. Com-
munity Structure in Large Networks: Natural Cluster Sizes and the Absence of Large
Well-Defined Clusters. Internet Mathematics, 6(1):29–123, 2009.

[63] Lijun Li and Carl Tropper. A design-driven partitioning algorithm for distributed
verilog simulation. In 21st International Workshop on Principles of Advanced and
Distributed Simulation (PADS’07), pages 211–218. IEEE, 2007.

[64] Yucheng Low, Joseph E Gonzalez, Aapo Kyrola, Danny Bickson, Carlos E Guestrin,
and Joseph Hellerstein. Graphlab: A new framework for parallel machine learning.
arXiv preprint arXiv:1408.2041, 2014.

[65] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph pro-
cessing. In Proc. ACM SIGMOD International Conference on Management of data,
pages 135–146, 2010.

[66] Mugilan Mariappan, Joanna Che, and Keval Vora. DZiG: Sparsity-Aware Incremental
Processing of Streaming Graphs. In Proc. Sixteenth European Conference on Com-
puter Systems, page 83–98, 2021.

152

http://snap.stanford.edu/data

[67] Mugilan Mariappan and Keval Vora. Graphbolt: Dependency-driven synchronous
processing of streaming graphs. In Proc. Fourteenth European Conference on Com-
puter Systems, pages 1–16, 2019.

[68] Romolo Marotta, Mauro Ianni, Alessandro Pellegrini, and Francesco Quaglia. A lock-
free o(1) event pool and its application to share-everything pdes platforms. In 2016
IEEE/ACM 20th International Symposium on Distributed Simulation and Real Time
Applications (DS-RT), pages 53–60, 2016.

[69] Robert Ryan McCune, Tim Weninger, and Greg Madey. Thinking Like a Vertex: A
Survey of Vertex-Centric Frameworks for Large-Scale Distributed Graph Processing.
ACM Comput. Surv., 48(2):25:1–25:39, October 2015.

[70] Anurag Mukkara, Nathan Beckmann, Maleen Abeydeera, Xiaosong Ma, and Daniel
Sanchez. Exploiting Locality in Graph Analytics through Hardware-Accelerated
Traversal Scheduling. In Proc. International Symposium on Microarchitecture (MI-
CRO), 2018.

[71] Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. PHI: Architectural Sup-
port for Synchronization- and Bandwidth-Efficient Commutative Scatter Updates. In
Proc. International Symposium on Microarchitecture (Micro), page 1009–1022, 2019.

[72] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and
Mart́ın Abadi. Naiad: a timely dataflow system. In Proc. Twenty-Fourth ACM
Symposium on Operating Systems Principles, pages 439–455, 2013.

[73] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim. GraphPIM: Enabling
Instruction-Level PIM Offloading in Graph Computing Frameworks. In IEEE In-
ternational Symposium on High Performance Computer Architecture (HPCA), pages
457–468, Feb 2017.

[74] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A Lightweight Infrastructure
for Graph Analytics. In Proc. ACM Symposium on Operating Systems Principles
(SOSP), page 456–471, 2013.

[75] M. M. Ozdal, S. Yesil, T. Kim, A. Ayupov, J. Greth, S. Burns, and O. Ozturk. Energy
Efficient Architecture for Graph Analytics Accelerators. In Proc. ACM/IEEE 43rd
Annual International Symposium on Computer Architecture (ISCA), pages 166–177,
June 2016.

[76] Hyungwook Park and Paul A. Fishwick. A GPU-Based Application Framework Sup-
porting Fast Discrete-Event Simulation. Simulation, 86(10):613–628, October 2010.

[77] Kalyan S. Perumalla. Discrete-event Execution Alternatives on General Purpose
Graphical Processing Units (GPGPUs). In Proceedings of the 20th Workshop on Prin-
ciples of Advanced and Distributed Simulation, PADS ’06, pages 74–81, Washington,
DC, USA, 2006. IEEE Computer Society.

153

[78] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Constan-
tinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal,
Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati, Joo-Young
Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason
Thong, Phillip Yi Xiao, and Doug Burger. A Reconfigurable Fabric for Accelerating
Large-scale Datacenter Services. In Proceeding of the 41st Annual International Sym-
posium on Computer Architecuture, ISCA ’14, pages 13–24, Piscataway, NJ, USA,
2014. IEEE Press.

[79] S. Rahman, N. Abu-Ghazaleh, and R. Gupta. GraphPulse: An Event-Driven
Hardware Accelerator for Asynchronous Graph Processing. In Proc. 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 908–921,
2020.

[80] Joseph Rios. An efficient FPGA priority queue implementation with application to
the routing problem. Technical report, UC Santa Cruz, Santa Cruz, CA, USA, 2007.

[81] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield, M. Weston,
R. Risen, J. Cook, P. Rosenfeld, E. Cooper-Balis, and B. Jacob. The Structural
Simulation Toolkit. SIGMETRICS Perform. Eval. Rev., 38(4):37–42, March 2011.

[82] Robert Rönngren and Rassul Ayani. A comparative study of parallel and sequential
priority queue algorithms. ACM Transactions on Modeling and Computer Simulation
(TOMACS), 7(2):157–209, 1997.

[83] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A Cycle Accurate Memory
System Simulator. IEEE Computer Architecture Letters, 10(1):16–19, 2011.

[84] Ryan A. Rossi and Nesreen K. Ahmed. The Network Data Repository with Interac-
tive Graph Analytics and Visualization. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, 2015.

[85] N. Santhi, S. Eidenbenz, and J. Liu. The Simian concept: Parallel Discrete Event
Simulation with interpreted languages and just-in-time compilation. In 2015 Win-
ter Simulation Conference (WSC), pages 3013–3024, Huntington Beach, CA, USA,
December 2015. IEEE.

[86] H. Schweizer, M. Besta, and T. Hoefler. Evaluating the Cost of Atomic Operations
on Modern Architectures. In 2015 International Conference on Parallel Architecture
and Compilation (PACT), pages 445–456, October 2015.

[87] D. Sengupta and Shuaiwen Song. Evograph: On-the-fly efficient mining of evolving
graphs on gpu. In ISC, 2017.

[88] Dipanjan Sengupta, Narayanan Sundaram, Xia Zhu, Theodore L. Willke, Jeffrey
Young, Matthew Wolf, and Karsten Schwan. GraphIn: An Online High Performance
Incremental Graph Processing Framework. In Proc. European Conference on Parallel
Processing (EuroPar), page 319–333, 2016.

154

[89] Xiaogang Shi, Bin Cui, Yingxia Shao, and Yunhai Tong. Tornado: A system for
real-time iterative analysis over evolving data. In Proc. International Conference on
Management of Data, pages 417–430, 2016.

[90] Julian Shun and Guy E Blelloch. Ligra: a lightweight graph processing framework
for shared memory. In Proc. SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 135–146, 2013.

[91] Philip Andrew Simpson. FPGA Design. Springer International Publishing, Cham,
2015. DOI: 10.1007/978-3-319-17924-7.

[92] M. D. Sinclair, J. Alsop, and S. V. Adve. Chasing Away RAts: Semantics and
evaluation for relaxed atomics on heterogeneous systems. In ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA), page 161–174, Jun 2017.
Citation Key: RAts.

[93] G. M. Slota, K. Madduri, and S. Rajamanickam. PuLP: Scalable multi-objective
multi-constraint partitioning for small-world networks. In IEEE International Con-
ference on Big Data (Big Data), pages 481–490, 2014.

[94] George M. Slota, Sivasankaran Rajamanickam, Karen Devine, and Kamesh Madduri.
Partitioning Trillion-Edge Graphs in Minutes. In 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), page 646–655. IEEE, May 2017.

[95] Jeffrey S. Steinman. The WarpIV Simulation Kernel. In Proceedings of the 19th
Workshop on Principles of Advanced and Distributed Simulation, PADS ’05, pages
161–170, Washington, DC, USA, 2005. IEEE Computer Society.

[96] L. Takac and M. Zabovsky. Data analysis in public social networks. In Proceedings
of the International Scientific Conference and International Workshop Present Day
Trends of Innovations, 2012.

[97] Wenjie Tang and Yiping Yao. A GPU-based Discrete Event Simulation Kernel. Sim-
ulation, 89(11):1335–1354, November 2013.

[98] M. R. Thistle and B. J. Smith. A Processor Architecture for Horizon. In Proceedings
of the 1988 ACM/IEEE Conference on Supercomputing, Supercomputing ’88, pages
35–41, 1988.

[99] Amanda L Traud, Peter J Mucha, and Mason A Porter. Social structure of Facebook
networks. Phys. A, 391(16), Aug 2012.

[100] Leslie G Valiant. A bridging model for parallel computation. Communications of the
ACM, 33(8):103–111, 1990.

[101] Luis M. Vaquero, Felix Cuadrado, Dionysios Logothetis, and Claudio Martella. Adap-
tive Partitioning for Large-Scale Dynamic Graphs. In Proc. International Conference
on Distributed Computing Systems, pages 144–153, 2014.

155

[102] Keval Vora, Rajiv Gupta, and Guoqing Xu. Synergistic analysis of evolving graphs.
ACM Transactions on Architecture and Code Optimization (TACO), 13(4):1–27, 2016.

[103] Keval Vora, Rajiv Gupta, and Guoqing Xu. Kickstarter: Fast and accurate computa-
tions on streaming graphs via trimmed approximations. In Proc. 22nd International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, pages 237–251, 2017.

[104] Keval Vora, Sai Charan Koduru, and Rajiv Gupta. ASPIRE: Exploiting Asyn-
chronous Parallelism in Iterative Algorithms Using a Relaxed Consistency Based
DSM. In Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA ’14, pages 861–878, New
York, NY, USA, 2014. ACM.

[105] Keval Vora, Guoqing Xu, and Rajiv Gupta. Load the Edges You Need: A Generic
I/O Optimization for Disk-based Graph Processing. In 2016 USENIX Annual Tech-
nical Conference (USENIX ATC 16), pages 507–522, Denver, CO, 2016. USENIX
Association.

[106] Jingjing Wang, Deepak Jagtap, Nael Abu-Ghazaleh, and Dmitry Ponomarev. Parallel
discrete event simulation for multi-core systems: Analysis and optimization. IEEE
Transactions on Parallel and Distributed Systems, 25(6):1574–1584, 2014.

[107] Jingjing Wang, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Performance Analysis
of a Multithreaded PDES Simulator on Multicore Clusters. In Proceedings of the
2012 ACM/IEEE/SCS 26th Workshop on Principles of Advanced and Distributed
Simulation, PADS ’12, pages 93–95, Washington, DC, USA, 2012. IEEE Computer
Society.

[108] Qinggang Wang, Long Zheng, Yu Huang, Pengcheng Yao, Chuangyi Gui, Xiaofei
Liao, Hai Jin, Wenbin Jiang, and Fubing Mao. GraSU: A Fast Graph Update Library
for FPGA-Based Dynamic Graph Processing. In Proc. International Symposium on
Field-Programmable Gate Arrays, page 149–159, 2021.

[109] Yahoo! Webscope Program. http://webscope.sandbox.yahoo.com/. Accessed:
2021-09-22.

[110] Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, and Srinivas Devadas. IMP:
Indirect Memory Prefetcher. In Proceedings of the 48th International Symposium on
Microarchitecture (MICRO), 2015.

[111] G. Zhang, W. Horn, and D. Sanchez. Exploiting commutativity to reduce the cost of
updates to shared data in cache-coherent systems. In Proc. 48th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), page 13–25, Dec 2015.

[112] Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei Wu, Kang Chen,
Christos Kozyrakis, and Xuehai Qian. GraphP: Reducing Communication for PIM-
Based Graph Processing with Efficient Data Partition. In IEEE International Sym-
posium on High Performance Computer Architecture (HPCA), pages 544–557, 2018.

156

http://webscope.sandbox.yahoo.com/

[113] Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei Wu, Kang Chen,
Christos Kozyrakis, and Xuehai Qian. GraphP: Reducing Communication of PIM-
based Graph Processing with Efficient Data Partitioning. In Proc. IEEE International
Symposium on High-Performance Computer Architecture (HPCA), 2018.

[114] Xiange Zhang. Application of discrete event simulation in health care: a systematic
review. BMC health services research, 18(1):1–11, 2018.

[115] Yanfeng Zhang, Qixin Gao, Lixin Gao, and Cuirong Wang. Priter: A distributed
framework for prioritized iterative computations. In Proceedings of the 2nd ACM
Symposium on Cloud Computing, SOCC ’11, New York, NY, USA, 2011. Association
for Computing Machinery.

[116] Yanfeng Zhang, Qixin Gao, Lixin Gao, and Cuirong Wang. Maiter: An Asynchronous
Graph Processing Framework for Delta-based Accumulative Iterative Computation.
CoRR, abs/1710.05785, 2017.

[117] Yu Zhang, Xiaofei Liao, Hai Jin, Lin Gu, and Bing Bing Zhou. FBSGraph: Accel-
erating Asynchronous Graph Processing via Forward and Backward Sweeping. IEEE
Trans. Knowl. Data Eng., 30(5):895–907, 2018.

[118] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun, and
Saman Amarasinghe. Graphit: A high-performance graph dsl. Proc. ACM Program.
Lang., 2(OOPSLA), October 2018.

[119] S. Zhou, C. Chelmis, and V. K. Prasanna. High-Throughput and Energy-Efficient
Graph Processing on FPGA. In Proc. IEEE 24th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), pages 103–110, May
2016.

[120] Shijie Zhou, Rajgopal Kannan, Hanqing Zeng, and Viktor K. Prasanna. An FPGA
Framework for Edge-centric Graph Processing. In Proc. 15th ACM International
Conference on Computing Frontiers, pages 69–77, 2018.

[121] Youwei Zhuo, Chao Wang, Mingxing Zhang, Rui Wang, Dimin Niu, Yanzhi Wang, and
Xuehai Qian. GraphQ: Scalable PIM-Based Graph Processing. In Proc. International
Symposium on Microarchitecture (Micro), page 712–725, 2019.

157

	List of Figures
	List of Tables
	Introduction
	Motivation: Challenges in Irregular Applications
	Contributions of the Dissertation
	PDES-A: Parallel Discrete Event Simulation Accelerator
	GraphPulse: an Accelerator for Graph Processing
	JetStream: Accelerator for Streaming Graph Analytics

	Organization of the Dissertation

	Related Work
	Parallel Discrete Event Simulation
	Graph Processing
	Streaming Graph Processing

	PDES-A: Parallel Discrete Events Simulation Accelerator
	Parallel Discrete Event Simulation
	PDES-A Design Overview
	Design Goals
	General Overview
	Event Queue
	Event Processor
	Event scheduling and processing
	Event History
	Rollback and Cancellation

	Implementation Overview
	Design Language and Application Modeling

	Performance Evaluation
	Performance and Scalability
	Rollbacks and Simulation Efficiency
	Breakdown of event processing time
	Memory Access
	Effect of event processing time

	Decoupled Datapath for PDES-A
	Datapath Optimization via structure partitioning
	Decoupled Event Processing Flow
	Operational Characteristics

	Comparison With ROSS
	Resource Utilization Analysis and Scaling Estimates

	Event-Driven Execution Model for Graph Processing
	Conventional Computation Models
	Delta-based Accumulative Processing
	Overview of Event-Driven Graph Processing
	Event-Processing Considerations
	Application Mapping

	GraphPulse: an Asynchronous Graph Processing Accelerator
	GraphPulse Architecture
	Event Management
	Event Scheduling and Termination
	In-Place Coalescing Queue
	Event Processors and Routing Network
	GraphPulse Execution Flow
	Scaling to Larger Graphs

	GraphPulse Optimizations
	Vertex Property Prefetching
	Efficient Event Generation

	Experimental Evaluation
	Experimental Methodology
	Performance and Characteristics
	Hardware Cost and Power Analysis

	Incremental Recomputation of Streaming Graphs
	Streaming Graph Analytics
	Incremental Query Evaluation

	JetStream Design Overview
	Event-based Processing in GraphPulse
	Streaming Graph Computation Objective
	Event Representation of Graph Mutation
	Impacted Vertex Detection and Recovery
	Recomputaion of the Mutated Graph

	JetStream: a Streaming Graph Processing Accelerator
	Event Management
	Event Scheduler
	Event Processing Engine
	Stream Processing Modules
	JetStream Execution Flow
	Graph Representation and Partition
	Optimizations
	Value Aware Propagation (VAP)
	Dependency Aware Propagation (DAP)

	Evaluation
	Experimental Setup
	Performance and Characteristics
	Hardware Cost and Power Analysis

	Conclusions and Future Work
	Bibliography

