
UNIVERSITY OF CALIFORNIA
RIVERSIDE

Pre- and Post-Deployment Dynamic Bug Detection Techniques for MPI Programs

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Hongbo Li

September 2018

Dissertation Committee:

Dr. Rajiv Gupta, Co-Chairperson
Dr. Zizhong Chen, Co-Chairperson
Dr. Philip Brisk
Dr. Zhijia Zhao

Copyright by
Hongbo Li

2018

The Dissertation of Hongbo Li is approved:

Committee Co-Chairperson

Committee Co-Chairperson

University of California, Riverside

Acknowledgments

This dissertation would not have been possible without the generous help of various

kinds I received from my advisors, professors, lab-mates and friends, and my family.

I would like to express my sincere gratitude to Prof. Rajiv Gupta for leading

me to this milestone. His critical suggestions bettered my research work. His tireless

revising of my papers improved more than my writing and presentation skills. His extensive

knowledge ensured this dissertation stay on the right track. His insightful vision helped me

find simplicity out of clutter. His perpetual enthusiasm in research and hard-working spirit

kept me motivated. Most importantly, his great understanding, patience, and tolerance

helped me survive my lowest point. Thank you, Prof. Gupta!

I would like to express my sincere gratitude to Prof. Zizhong Chen for the generous

support of the last five years. It is conference attending opportunities he gave that broad-

ened my horizon. It is the freedom he provided that allowed me to find the most exciting

project that transfers Software Engineering knowledge to High Performance Computing. It

is his encouragement, perseverance, and valuable suggestions that turned naive ideas into

decent research with years of honing. Also I appreciate his great understanding, patience,

and tolerance for all these years. Thank you, Prof. Chen!

I would like to thank my committee members Prof. Philip Brisk and Prof. Zhijia

Zhao for their valuable feedback and support. I would like to thank Ms. Kelly Downey for

having me work as her teaching assistant for one full year.

I would like to like to acknowledge the support of National Science Foundations

via grants CCF-1318103, CCF-1513201, CCF-1524852, CNS-1617424, and OAC-1305624. I

iv

also would like to acknowledge the support of the MOST key project 2017YFB0202100 and

the SZSTI basic research program JCYJ20150630114942313.

I would like to thank my lab-mates and friends for helping me in various ways:

Zachary Benavides, Jieyang Chen, Longxiang Chen, Sihuan Li, Yuanlai Liu, Xin Liang,

Kaiming Ouyang, Li Tan, Dingwen Tao, Keval Vora, Panruo Wu, Chengshuo Xu, and Keli

Zhang. I am grateful for the joyful chats we had, encouraging words you gave, the basketball

games we played, the delicious food we had, and the time we fought hard together as a team

for paper submissions.

Words cannot express my gratitude to my parents and my sister. Without their

unconditional love and unflagging support, I could not have gone this far. I am also indebted

and grateful to my parent-in-laws for treating me like their own son. Last but not least, I

would like to thank my better half, Shangjie, for her encouragement, for her understanding,

for her great temper, for her standing by me all the time, and for her making me realize the

most precious thing in life. It is your company and endless love that make all this happen.

v

To my wife and parents.

vi

ABSTRACT OF THE DISSERTATION

Pre- and Post-Deployment Dynamic Bug Detection Techniques for MPI Programs

by

Hongbo Li

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2018

Dr. Rajiv Gupta, Co-Chairperson
Dr. Zizhong Chen, Co-Chairperson

MPI is the de-facto standard message-passing based parallel programming model.

However, the bug detection support for MPI applications is lacking. This thesis seeks to

address the challenges of bug detection techniques for MPI applications. Specifically, it

tackles two kinds of bugs: (1) general software bugs (e.g., segmentation faults, assertion

violations, and infinite loops) that lead to abnormal execution termination or program

hangs at small scale, i.e., when a program is executed with only a few processes and a small

problem; and (2) scaling problems that manifest only at large scale, i.e., when a program

is executed with a large number of processes or a large-sized problem.

To aid in the detection of general bugs, we developed COMPI as an automated

bug detection tool. COMPI tackles two major challenges. First, it provides an automated

testing framework for MPI programs — it performs concolic execution on a single process

and records branch coverage across all. Second, COMPI effectively controls the cost of

testing as too high a cost may prevent its adoption or even make the testing infeasible.

Furthermore, we enhanced the usability of COMPI via addressing two issues: input

vii

values generated by COMPI do not deliver cost-effective testing, and COMPI does not

support floating-point arithmetic and thus much code cannot be explored. We address the

first issue via proposing a novel input tuning technique without requiring the intervention

of users. We enable handling of floating point data types and operations and demonstrate

that the efficiency of constraint solving can be improved if we rely on the use of reals instead

of floating point values.

To tackle scaling problems, we provided a testing suite and designed an avoidance

framework for scaling problems associated with the use of MPI collectives. To improve

users’ productivity, we establish the necessity of user side testing and provide a protection

layer to avoid scaling problems non-intrusively, i.e., without requiring any changes to the

MPI library or user programs. This provides an immediate remedy when an official fix is

not readily available.

Finally, we built a hang detection tool that saves computing resources in the

presence of program hangs at large scale. ParaStack is an extremely lightweight tool to

detect hangs in a timely manner with high accuracy, in a scalable manner with negligible

overhead, and without requiring the user to select a timeout value. For a detected hang,

it tells users whether the hang is the result of an error in the computation phase or the

communication phase. For a computation-error induced hang, our tool pinpoints the faulty

process by excluding hundreds and thousands of other processes.

viii

Contents

List of Figures xii

List of Tables xv

1 Introduction 1
1.1 Dissertation Overview . 4

1.1.1 Concolic Testing for MPI Applications 5
1.1.2 Efficient Concolic Testing of MPI Applications 6
1.1.3 Tackling Scaling Problems with the Use of MPI Collectives 7
1.1.4 Hang Detection at Large Scale . 8

1.2 Dissertation Organization . 9

2 Concolic Testing for MPI Applications 10
2.1 Concolic Testing . 11

2.1.1 Challenges for MPI Application . 13
2.1.2 Our Solution: COMPI . 15

2.2 Overview of COMPI . 16
2.2.1 Work Flow of COMPI . 16
2.2.2 Search Strategy Selection . 18

2.3 Framework Adaptation . 21
2.3.1 Automatic Marking . 21
2.3.2 Constraints Insertion . 22
2.3.3 Conflicts Resolving . 23
2.3.4 Test Setup and Program Launching 25

2.4 Practical Testing . 27
2.4.1 Input Capping . 27
2.4.2 Two-way Instrumentation . 28
2.4.3 Constraint Set Reduction . 29

2.5 Implementation . 31
2.6 Evaluation . 32

2.6.1 Uncovered Bugs . 34
2.6.2 Input Capping . 35

ix

2.6.3 Two-way Instrumentation . 36
2.6.4 Constraint Set Reduction . 37
2.6.5 COMPI Framework and Random Testing 40

2.7 Summary . 41

3 Efficient Concolic Testing of MPI Applications 42
3.1 Issues of COMPI and Our Solution . 43

3.1.1 Issues of COMPI . 43
3.1.2 Our Solution: Input Tuning and Floating-Point Support 44

3.2 Background and Overview of Solutions . 46
3.2.1 Concolic Testing of MPI Programs 46
3.2.2 Overview of Our Solutions . 48

3.3 Input Tuning . 51
3.3.1 Design of Our Approach . 51
3.3.2 Applicability . 56

3.4 Floating Point Support . 57
3.5 Evaluation . 60

3.5.1 HPL . 62
3.5.2 IMB-MPI1 . 65
3.5.3 SUSY-HMC . 67

3.6 Summary . 70

4 Tackling Scaling Problems In and Out of MPI Collectives 71
4.1 Scaling Problems . 73

4.1.1 Challenges . 75
4.1.2 Our Approach . 76
4.1.3 Overview . 78

4.2 Manifesting Scaling Problems . 79
4.2.1 Basics of MPI Collectives . 79
4.2.2 Testing . 80
4.2.3 Scaling Problems Uncovered . 82

4.3 Online Problem Detectors . 84
4.3.1 Class D : Displacement Array Corruption 85
4.3.2 Class G : Global Data Buffer Too Large 88
4.3.3 Class X : Trigger Form Not General 90
4.3.4 Case Studies: Class G and X . 91

4.4 Non-intrusive Avoidance . 92
4.4.1 Workaround 1: Communication Partitioning 93
4.4.2 Workaround 2: Big Data Type . 95
4.4.3 Applicability and Limitation . 96
4.4.4 Evaluation . 97

4.5 Summary . 103

x

5 Hang Detection at Large Scale 104
5.1 Program Hang at Large Scale . 105

5.1.1 Challenge . 105
5.1.2 Our Solution: ParaStack . 106
5.1.3 The Case for ParaStack . 108

5.2 Lightweight Hang Detection . 110
5.2.1 Model Based Hang Detection Scheme 116
5.2.2 Robust Model with a Limited Sample Size 120
5.2.3 Lightweight Design Details . 123

5.3 Identifying Faulty Process . 126
5.4 Implementation . 128
5.5 Discussion . 129
5.6 Experimental Evaluation . 131

5.6.1 Hang Detection Evaluation . 132
5.6.2 Faulty Process Identification . 140

5.7 Summary . 142

6 Related Work 143
6.1 General Bug Detection . 143
6.2 Tackling Scaling Bugs . 146
6.3 Techniques for Handling a Program Hang 147

7 Conclusions and Future Work 149
7.1 Contributions . 149
7.2 Future Work . 151

Bibliography 154

xi

List of Figures

1.1 Dissertation overview. 4

2.1 Concolic testing for a sequential C program. 12
2.2 An MPI program’s code skeleton and its execution tree. 13
2.3 The iterative testing of COMPI: i-th test to (i+ 1)-th test (marked in green). 18
2.4 Branch coverage of HPL using four search strategies. 19
2.5 Resolving the conflicts among rw and rc variables by using the most up-to-

date values. Each row in the left table maps to one communicator, and each
column maps to one process. 24

2.6 The achieved branch coverage as well as the time cost at various matrix sizes
for HPL. 27

2.7 Instrumentation comparison: one-way v.s. two-way. 28
2.8 Constraint set reduction given x is marked as symbolic and x = 0 before

entering the loop. 30
2.9 Evaluation of input capping. 35
2.10 Constraint set size distribution for SUSY-HMC. 38
2.11 Constraint set size distribution for HPL: 38
2.12 Constraint set size distribution for IMB-MPI1. 39

3.1 Concolic testing of MPI programs: (1) on the left is a segment of one in-
strumented program with the code lines in bold being the original code,
mark symbolic() being inserted by developers, and the remaining being the
symbolic execution code inserted automatically; and (2) on the right shows
how the test engine tests the instrumented program. 47

3.2 Input tuning achieves cost-effective testing: (1) on the left is an MPI program
performing square matrix multiplication with n denoting the matrix width;
(2) on the right input tuning helps avoiding expensive execution via replacing
1234567 with 101. 49

3.3 Concolic testing of a program without support for floating-point data types
and operations. 50

xii

3.4 Two-stage tuning is applied on the solution generated by the solver — the
solution contains the values generated for variables x1, x2, and x3, which are
respectively C1, C2, C3. After Stage I tuning, the smallest upper bound, B1,
is found for all involved variables (i.e., x ≤ B1 for ∀x ∈ {x1, x2, x3, ...} with
B1 ≤ max{C1, C2, C3, ...}). After Stage II, the smallest bound is found for
variable x1 if x1 is the single variable in the target constraint (i.e., x1 ≤ B2
with B2 ≤ B1). Within the limits of these bounds, the constraints are solved
to get the optimized solution. 51

3.5 Branch coverage progress over one-hour of testing of HPL using input tuning,
input capping, and None of them: a point (x, y) in each plot indicates that
it takes x seconds to attain the maximum branch coverage of y. 63

3.6 Branch coverage progress over one-hour of testing of IMB-MPI1 using input
tuning, input capping, and None of them: a point (x, y) in each plot indicates
that it takes x seconds to attain the maximum branch coverage of y. 66

3.7 Branch coverage progress over one-hour testing of SUSY-HMC using input
tuning and input capping. 68

3.8 Branch coverage progress of testing of SUSY-HMC based on 3 versions of
COMPI: (Int) only integers; (Real) with floating point extension using re-
als; and (Float) with floating point extension directly using floating point
numbers. 69

4.1 Avoiding scaling problems via interception. 78
4.2 Safe bounds of G problems (Prob. 10, 11 and 13). 91
4.3 Safe bounds of an X problem (Prob. 12). 92
4.4 Illustration of the partitioning strategies for MPI Gatherv (P = 4 and n = 2)

by breaking down the filling process of the global data buffer. Process 0 is
the root and the bug would be triggered when nP > 4. 93

4.5 Workaround 1-A for MPI Gatherv. 94
4.6 Performance comparison between W1-A and the default MPI Gatherv (MPICH)

before the scaling problem’s occurrence. 100
4.7 Performance comparison among the three workarounds for MPI Gatherv

(MPICH) whose scaling problem (Class D) is triggered once sn > 2.625MB
when P = 768. 100

4.8 Performance comparison among the three workarounds for MPI Igather (Open-
MPI) whose scaling problem (Class G) is triggered once sn > 2.625MB when
P = 768. 100

4.9 Performance trend of W1-B for MPI Gather (MPICH) whose scaling problem
(Class X) is triggered once sn > 7.75MB when P = 768. 101

4.10 Performance comparison based on MPI Gather (MPICH) supposing a Class
G problem is triggered when n > 128K at P = 768. 101

4.11 Performance comparison based on MPI Allgatherv (MPICH) supposing a
Class G problem is triggered when n > 128K at P = 768. 102

5.1 ParaStack workflow – steps with solid border are performed by ParaStack
and those shown with dashed border require a complimentary tool. 109

xiii

5.2 Dynamic variation of Sout observed from 3 benchmarks: LU, SP, FT from
NPB suite. All are executed with 256 processes at problem size D. 111

5.3 The Sout variation of a faulty run of LU, where a fault is injected on the left
border of the red region. 112

5.4 Hang detection. Three panels show the empirical distribution of randomly
sampled Sout of LU, where the red region shows the suspicion region, the blue
curve shows the probability density function P (Sout), and the dashed black
curve shows the cumulative distribution function Fn(Sout). The red arrow
crosses the suspicion region 3 times meaning 3 consecutive observations of
suspicion. 118

5.5 Relation among sample size, suspicion probability and tolerance error, where
n̂(p̂) = 3.8416

e2
p̂(1− p̂). 121

5.6 Faulty process identification for computation-error induced hangs. On the
left is an MPI program skeleton, which hangs due to a computation error in
process 100. Traditionally, the faulty process can be detected based on the
progress dependency graph as shown in the middle. Our technique greatly
simplifies the idea by just checking runtime states as shown on the right. . 126

5.7 Performance comparison of running applications with ParaStack (I = 100
ms), with ParaStack (I = 400 ms) and without ParaStack (clean) on Stam-
pede at scale 1024 based on 5 runs in each setting. The performance is
evaluated as GFLOPS for HPCG and as time cost in seconds for all the
others, and the the 5 runs are ordered by performance. 133

5.8 Performance comparison of running applications with ParaStack (I = 100
ms), with ParaStack (I = 400 ms) and without ParaStack (clean) on Tianhe-
2 at scale 1024. 135

5.9 The response delay of hang detection based upon 100 erroneous runs for
each application at scale of 256 on Tardis. The horizontal axis represents
response delay in seconds and the vertical axis represents the number of times
ParaStack identifies a hang with the corresponding delay. 138

5.10 The percentage of time savings ParaStack brings to application users in batch
mode based on 10 erroneous runs of HPL with the average percentage equal
to 35.5%. 139

xiv

List of Tables

2.1 MPI semantics related variables. 21
2.2 The mapping between local ranks and global ranks. 26
2.3 Complexity of Target Programs. 32
2.4 One-way vs. Two-way . 36
2.5 Evaluation of constraint set reduction based on branch coverage. 37
2.6 Evaluation of COMPI’s framework based on branch coverage. 40

3.1 Time cost (unit: seconds) of floating-point constraint solving using reals and
floating-point values based 100 iterative tests of a simple synthetic program. 60

3.2 Comparison among Tuning, Capping (C2, C4, C8, and C8 using No Timeout),
and None based on HPL with two metrics: the time costs of covering 1860
branches and the number of tests completed in one hour. 64

3.3 Comparison among Tuning, Capping (C2, C4, C8, and C8 using No Timeout),
and None based on IMB-MPI1 with two metrics: the time costs of covering
730 branches and the number of tests completed in one hour. 67

4.1 Well-documented scaling problems reported online [20, 21, 133, 13, 6, 15].
Notes: (1) Effect - H ang, C rash and performance Degradation; (2) Failing
scale (P,M) - the Parallelism scale and M essage size that trigger the problem. 72

4.2 Newly uncovered scaling problems. 73
4.3 Who can fix the scaling problems? . 76
4.4 Notations. 79
4.5 MPI collectives and their global data buffer size. If (I) follows a collective, the

collective has a non-blocking variation; if v follows a collective, the collective
has an irregular variation. 80

4.6 Experiment Setup. 81
4.7 Safe bounds. 83
4.8 Scaling problem detectors. 84
4.9 Detector G’s lookup table. 90
4.10 Workarounds applicability: ”3” - apply; ”7” - does not apply; ”37” - apply

with restrictions. 96

xv

4.11 Workarounds’ effectiveness for MPI Gatherv (D). The unit of ns is 1 M, i.e.
220, and that of RM is GB. 97

4.12 Workarounds’ Effectiveness for MPI Igather (G). The unit of ns is 1 M, i.e.
220, and that of RM is GB. 98

4.13 Effectiveness of Workaround 1-B for MPI Gather (X). The unit of ns is 1 M,
i.e. 220, and that of RM is GB. 98

5.1 Adjusting the timeout method to various benchmarks, platforms and input
sizes at scale 256 based on 10 erroneous runs per configuration. Metrics: AC
– accuracy; FP – false positive rate; D – average response delay in seconds,
i.e. the elapsed time from when the fault is injected to when a hang is detected.114

5.2 Default input sizes used by each application at various running scales. Inputs
D and E are the two largest inputs that come with the benchmarks. The
input size for HPL specifies the width of a square matrix and the input size
for HPCG specifies the local domain dimension. 130

5.3 For an execution of HPL on a 15000*15000 matrix, the clean run on average
takes 185.05 seconds. Ot is the total stack trace overhead due to n stack
trace operations. 132

5.4 Performance comparison of running applications with ParaStack (I = 100ms),
with ParaStack (I = 400ms) and without ParaStack (clean) on Tardis at
scale 256. Performance is measured by the delivered GFLOPS for HPCG
and by the time cost in seconds for the others, and S tandard deviation of
the performance is shown. 134

5.5 ParaStack’s Overhead on Tianhe-2 at scale 1024 based on the average of 5
runs. 135

5.6 Accuracy of hang detection. The rough time cost of a correct run is shown. 136
5.7 Response delay on Tianhe-2: D is the average response delay in seconds; S

is the standard deviation. 137
5.8 Response delay on Stampede: D is the average response delay in seconds and

S is the standard deviation. 137
5.9 ParaStack’s generality for variation of platforms, benchmarks and input sizes

at scale 256 based on 10 erroneous runs per configuration. Notes: (1) P
stands for the default ParaStack with I being initialized as 400ms; P∗ stands
for ParaStack with I being initialized as 10ms. (2) AC, accuracy; FP, false
positive rate; D, average response delay. 140

5.10 Evaluation of faulty process identification. 141

xvi

Chapter 1

Introduction

High-performance computing has been profoundly impacting our world. It pro-

vides vital support to various scientific discoveries and technological innovations such as

physics simulation, weather forecasting, climate research, and oil and gas exploration. To

meet this critical demand, ever-increasingly powerful supercomputers have kept being cre-

ated – in 1993 the fastest supercomputer only attained 59.7 gigaflops (5.97× 1010 FLOPS),

now the No. 1 supercomputer, Sunway TaihuLight, reaches 93 petaflops (9.3×1016 FLOPS),

and exascale computing (1018 FLOPS) is just around the corner [31]. Over the past two

decades, distributed cluster system has evolved from none to the predominant architecture

in the current HPC world — it accounts for over 85% of the current top500 supercomput-

ers [31]. Along with the rise of cluster, MPI has evolved into the de facto standard for

HPC applications on distributed clusters due to its great portability and performance [52].

Hence, enormous amount of MPI applications have been developed to serve various scientific

discoveries and technological innovations.

1

It is known that software bugs undermine the correctness of applications and thus

impair the efficient use of high performance applications. In the pre-deployment phase, i.e.,

software development phase, general software bugs such as segmentation fault, assertion

violation, and infinite loop, can lead to abnormal execution termination or program hang

at small scale (i.e., when a program is executed only with a few processes and a small

problem). In the post-deployment phase, i.e., after software release, challenging scaling

problems (bugs) — a class of bug that manifests only at large scale (i.e., when a program

is executed with too many processes or a too large problem) — can escape the testing

and linger inside software, and harm application users’ use experience. However, the bug

detection support for MPI applications lags far behind the ever-increasingly sophisticated

hardware. The lack of support manifests in following respects.

• Scarce systematic testing techniques and tools. Though testing is the pre-

dominant technique in industry to manifest bugs prior to software release, there is

little effort spent on developing systematic software testing techniques for HPC appli-

cations [70, 106], let alone MPI programs. The lack of testing techniques is likely the

result of inadequate interaction between scientists, who play a leading role in HPC

application development, and industrial software engineers [77, 70, 106, 76]. Without

effective testing techniques, general software bugs can easily escape developers’ sight

and linger in released MPI applications.

• No immediate remedies for scaling problems. As the complexity of MPI

collectives is directly impacted by both parallelism scale and problem size, their use

often triggers scaling problems. Scaling problems arising from MPI collectives can be

2

very challenging to deal with due to the aggregated complexity of a large number of

processes, a big input, the user code space, the MPI library, the environment setting,

and even platform [134, 92, 13, 14, 6, 15, 16, 20, 22]. It thus is very common that

application users are limited to inefficient small scale runs prior to an official patch

release which sometimes is even not available as developers cannot reproduce the

reported bug [15].

• Deficient hang detection at large scale. On supercomputers, users execute

programs in batch mode and each job execution occupies the requested computing

resources till its completion. Errors causing a program hang can arise in either the

computation phase, e.g., a thread-level deadlock within a process, an unexpected in-

finite loop, and a soft error in one single process, or the MPI communication phase,

e.g., a communication deadlock. Program hangs, once occurring, stall the program

execution and thus waste all the requested resources before the allocated time expires.

A suitable solution to reduce wastage is thus detecting hangs at runtime and termi-

nating the job once a hang is detected. Ad hoc timeout mechanism [11, 85, 84, 98]

is a traditional hang detection method; however, it is difficult to set an appropriate

threshold even for users who have good knowledge of an application considering the

threshold can vary across computing platforms, input sizes, and applications [90].

This thesis addresses all of the above challenges of bug detection for MPI applica-

tions. Our novel bug detection techniques facilitate the experience of software development

for developers as well as the software use experience for software users. Prior to deployment,

our tool automates the testing of MPI applications and provides bug reports using which

3

Figure 1.1: Dissertation overview.

developers can easily reproduce the bug and then fix it. After deployment, our testing suite

can help users test suspicious MPI collectives and our avoidance framework helps avoid

detected bugs, if any, without requiring any changes to MPI library and applications; also

our hang detection tool helps save a great amount of computing resources in presence of a

hang at large scale production runs.

1.1 Dissertation Overview

In this dissertation, we use dynamic techniques to aid the bug detection for both

application developers and users. Figure 1.1 depicts the overview of this dissertation. Prior

to software deployment, we provide an automated testing tool for developers to aid the

detection of general software bugs. With the generated bug reports, developers can easily

reproduce the bug and then fix it. After the deployment, we facilitate the use of applications

in presence of scaling problems in two aspects. First, for users we provide a testing suite

to test suspicious MPI collectives and an easy-to-use avoidance framework as an immediate

remedy for a scaling problem. Also, for users we built a hang detection tool that saves

computing resources in presence of program hangs at large scale production runs.

4

1.1.1 Concolic Testing for MPI Applications

We develop COMPI, the first concolic testing framework for MPI applications.

COMPI tackles two major challenges. First, it provides an automated testing framework

for MPI programs — it performs concolic execution on a single process and records branch

coverage across all. Infusing MPI semantics such as MPI rank and MPI COMM WORLD

into COMPI enables it to automatically direct testing with various processes’ executions as

well as automatically determine the total number of processes used in the testing. Second,

COMPI employs three techniques to effectively control the cost of testing as too high a cost

may prevent its adoption. By capping input values, COMPI is made practical as too large

an input can make the testing extremely slow and sometimes even fail as memory needed

could exceed the computing platform’s memory limit. With two-way instrumentation, we

reduce the unnecessary memory and I/O overhead of COMPI and the target program.

With constraint set reduction, COMPI keeps significantly fewer constraints by removing

redundant ones in the presence of loops so as to avoid redundant tests against these branches.

COMPI’s framework make it achieve 4.8-81% more coverage than regular concolic

testing. It uncovered four new bugs in one physics simulation program. It achieved 69-86%

branch coverage which far exceeds the 1.8-38% coverage achieved via random testing. Its

testing cost controlling techniques’ effectiveness for practical testing is justified: (1) input

capping lays the foundation of applying COMPI to practical MPI applications, without

which the testing cost could be unreasonably high; (2) two-way instrumentation enables up

to 66% testing time saving; and (3) constraint set reduction enables 4.7-10.6% more branch

coverage.

5

1.1.2 Efficient Concolic Testing of MPI Applications

COMPI has extended concolic testing to MPI programs. However, two issues

hinder its usability. First, it requires the user to specify an upper limit on input size – if

the chosen limit is too big, considerable time is wasted and if the chosen limit is too small,

the branch coverage achieved is limited. Second, COMPI does not support floating point

arithmetic that is common in HPC applications.

To address the above issues, we propose input tuning and support floating-point

data types and operations. We propose input tuning that eliminates the need for users to set

hard limits and generates inputs such that the testing achieves high coverage while avoiding

waste of testing time by selecting suitable input sizes. Moreover, we enable handling of

floating point data types and operations and demonstrate that the efficiency of constraint

solving can be improved if we rely on the use of reals instead of floating point values. Our

evaluation demonstrates that with input tuning the coverage we achieve in 10 minutes is

typically higher than the coverage achieved in 1 hour when input tuning is not used. Without

input tuning, 9.6-57.1% loss in coverage occurs for a real-world physics simulation program.

For the physics simulation program, using our floating-point extension that uses reals covers

46 more branches than without using the extension. Also, we cover 122 more branches

when solving floating-point constraints using reals rather than directly using floating-point

numbers.

6

1.1.3 Tackling Scaling Problems with the Use of MPI Collectives

As the complexity of MPI collectives is directly impacted by both parallelism scale

and problem size, their use often triggers scaling problems. Scaling problems’ root cause can

be outside of MPI libraries and these can be easily exposed via dynamic interaction between

user code and MPI library as the scale goes up. Specifically, irregular collectives suffer the

most as the C int displacement array can easily be corrupted with integer overflow. Scaling

problems can also result from a bug inside the released MPI libraries due to the lack of a

systematic testing of MPI libraries as well as the platform or environment dependency of

some scaling problems. Hence it is important for library users to perform testing on their

platform to expose potential scaling problems. Fixing a scaling problem is challenging, and

thus it usually takes much time for users to wait for an official fix, which sometimes is

even not possible due to the difficulty of bug reproduction, root-cause identification, and

fix development. To improve users’ productivity, we establish the necessity of user side

testing and provide a protection layer to avoid scaling problems non-intrusively — once the

protection layer detects a condition that triggers a scaling problem it avoids the problem

by either (1) chopping the communication into smaller ones or (2) building big data types.

Our work hence provides an immediate remedy when an official fix is not readily available.

We uncover two kinds of Type-3 scaling problems: (1) an inherent defect in MPI

standard on irregular collectives that impacts 8 MPI routines; and (2) 4 hidden scaling

problems inside the released MPI libraries including OpenMPI and MPICH. Our protection

layer consisting of three potential avoidance strategies is validated to be effective to bypass

the scaling problems.

7

1.1.4 Hang Detection at Large Scale

While program hangs on large parallel systems can be detected via the widely

used timeout mechanism, it is difficult for the users to set the timeout — too small a

timeout leads to high false alarm rates and too large a timeout wastes a vast amount of

valuable computing resources. To address the above problems with hang detection, this

thesis presents ParaStack, an extremely lightweight tool to detect hangs based on runtime

history in a timely manner with high accuracy, negligible overhead with great scalability,

and without requiring the user to select a timeout value. It detect hangs by detecting

dynamic manifestation of following pattern of behavior — persistent existence of very few

processes outside of MPI calls. This simple, yet novel, approach is based upon the following

observation. Since processes iterate between computation and communication phases, a

persistent dynamic variation of the count of processes outside of MPI calls indicates a

healthy running state while a continuous small count of processes outside MPI calls strongly

indicates the onset of a hang. Based on execution history, ParaStack builds a runtime model

of count that is robust even with limited history information and uses it to evaluate the

likelihood of continuously observing a small count. A hang is verified if the likelihood of

persistent small count is significantly high. Upon detecting a hang, ParaStack checks if

there is any process in computation phase. If there is at least one process, it claims the

hang is incurred by a computation error and reports such processes as faulty processes

that contain the root-cause of this hang; otherwise, it claims the hang is incurred by a

communication error.

We have adapted ParaStack to work with the Torque and Slurm batch schedulers

8

and validated its functionality and performance on Tianhe-2 and Stampede that are re-

spectively the world’s current 2nd and 12th fastest supercomputers. Experimental results

demonstrate that ParaStack detects hangs in a timely manner at negligible overhead with

over 99% accuracy. No false alarm is observed in correct runs taking 66 hours at scale of

256 processes and 39.7 hours at scale of 1024 processes. ParaStack accurately reports the

faulty process for computation-error induced hangs.

1.2 Dissertation Organization

The rest of thesis is organized as follows. Chapter 2 presents COMPI, an concolic

testing tool for MPI programs in search of general software bugs. Chapter 3 details we

improve COMPI with our proposed methods: input tuning and floating-point extension.

Chapter 4 details the testing techniques to uncover scaling problems with the use of MPI

collectives as well as our avoidance framework. Chapter 5 introduces our hang detection

technique at large scale considering the detection efficiency and accuracy. Chapter 6 surveys

existing literature in related areas and Chapter 7 summarizes our work and presents future

outlook.

9

Chapter 2

Concolic Testing for MPI

Applications

In industry, software testing is the predominant technique to ensure software qual-

ity, which is commonly known as an effective technique to uncover software bugs. However,

little effort has been spent on developing systematic software testing techniques for HPC

applications [70, 106], let alone MPI programs. It is thus not unexpected that the quality

of HPC code is often lacking [78]. The lack of testing techniques for MPI applications is

likely the result of inadequate interaction between scientists, who play a leading role in

HPC application development, and industrial software engineers [77, 70, 106, 76].

We believe that there is an urgent need to explore effective systematic testing tech-

niques in the field of HPC. As manually generating test inputs is very expensive, error-prone

and non-exhaustive, random testing [38, 49, 57, 47] is commonly employed for automated

test generation. But it is impossible to test all interesting behaviors of a program. Symbolic

10

techniques [37, 82] overcome the limitation by generating inputs to force the execution of

various paths. However, they do not scale to large programs because (1) large programs

result in too complex constraints that are hard to be solved and (2) large programs lead to

path explosion and thus exploring all paths is impractical.

2.1 Concolic Testing

Concolic testing [116, 65] has been proposed as a solution to the problem of solv-

ing complex constraints — it uses concrete values to simplify intractable constraints. To

alleviate the path explosion problem, Burnim and Sen [42] propose a trade-off between

the capability and practicality: they focus on branch coverage (the percentage of branches

being executed at least once during testing) instead of path coverage, where the former is

a more practical metric to evaluate code than the latter as the former is bounded by the

total number of branches that is significantly smaller than the total number of paths.

Concolic testing automates the iterative testing of a program by automatically

generating inputs with the goal of achieving a high branch coverage. It works as follows.

Given a program, execution-path dominant variables reading inputs (from either a file or

a command line) need to be marked by developers as symbolic, and then the program is

instrumented such that the symbolic execution code is inserted into the given program. Test-

ing involves iterative execution of this instrumented program. In each concrete execution,

all operations of the marked variables are captured by the symbolic execution component.

After each execution, symbolic execution history like encountered branches and symbolic

constraint set satisfying the branches are logged in a file. In the next execution, the sym-

11

Figure 2.1: Concolic testing for a sequential C program.

bolic execution component reads the log and generates new inputs for marked variables

to potentially force a different execution path as follows: the constraint set is updated by

negating a selected constraint; and the updated constraint set is solved with the results

yielding the new inputs.

Figure 2.1 shows how concolic testing applies to a sequential program. We denote

a branch as [condition id][T/F], where condition id is the branch condition’s unique ID

and T/F represents True or False evaluation of the condition. On the left is a sequential

program consisting of four branches: 0T , 0F , 1T and 1F with a bug hidden at branch 0F .

Variables x and y are marked as symbolic. On the right is the process of concolic testing.

At the start, the program is run with random inputs {x ← 10, y ← 50}, which covers

branches 0T and 1F satisfying constraints x 6= 100 and x/2 + y ≤ 200. To cover a new

branch, the testing tool negates x 6= 100 and thus gets {x = 100}. It then generates the

next inputs {x ← 100, y ← 50} by solving the updated constraints. The inputs force the

execution of 0F . As the testing continues, it can derive new inputs and force the execution

12

Figure 2.2: An MPI program’s code skeleton and its execution tree.

of 1T . Finally, 100% branch coverage is achieved. It should be noted during testing a bug

is triggered when 1T is executed. The testing logs the error-inducing inputs for developers

to perform further bug analysis.

2.1.1 Challenges for MPI Application

Typical SPMD (single program, multiple data) MPI programs usually consist of

the following steps: read inputs, check the validity of inputs — known as sanity check,

distribute workloads across processes, and finally solve the problem based on a loop-based

solver. Figure 2.2 shows the code skeleton of a such program where the inputs x and y from

the user are first read (the reads are omitted for brevity), a sanity check is performed on

x and y as well as their combination x ∗ y, the work is shared and finally the while loop

solves the problem. When applying concolic testing to such programs, we encounter two

challenges described next.

13

First, standard concolic testing that only tests one process is not sufficient for

MPI applications that run with multiple processes. It cannot deal with MPI semantics

including MPI rank (a process’ unique ID) and the number of processes. Hence, it fails to

cover branches related to such MPI semantics. Suppose concolic testing is only performed

on process 0 for the program in Figure 2.2. During execution, branches 3F and 4T are

encountered only by processes different from process 0, 4F is not encountered, and the

remaining are covered by process 0. The testing fails to cover 3F and 4T as it does not

record branches covered by processes other than process 0; it does not cover 4F as it does

not test processes other than process 0 to satisfy both rank 6= 0 and y ≥ 100. Besides

the above missed branches, it should be noted that the testing can not cover branches that

can only be executed once a certain number of processes are used as its ignorance of MPI

semantics makes it unable to vary the number of processes.

In addition, concolic testing could be impractical for MPI applications without

carefully controlling the testing cost. This could results from three potential sources. First,

too large an input can make the testing extremely slow and sometimes even fail as the

memory needed could exceed the computing platform’s memory limit. Second, running all

processes using the same heavy-weight instrumentation incurs unnecessarily high overhead

as not all processes need to perform symbolic execution. Third, too much effort is wasted

in the presence of loops that characterize MPI applications as loops lead to too many

redundant constraints being generated and solving as well as testing with them does not

help to boost branch coverage.

14

2.1.2 Our Solution: COMPI

To address the above issues, this chapter presents COMPI — a practical concolic

testing tool to automate the testing of MPI applications. It is implemented on top of

CREST [42], a scalable open-source concolic testing tool for C programs that replaces

CUTE (one of the first implementations of concolic testing) [116]. COMPI supports testing

of SPMD MPI programs written in C. It exposes bugs that result in assertion violation,

segmentation fault, or infinite loops. It is able to tackle MPI semantics, covering branches

that cannot be covered by standard concolic testing, by employing the following strategies:

(1) it records branch coverages across all processes instead of just the one used to generate

inputs; (2) it automatically determines the number of processes used in the testing as well as

which process’ execution should be used to generate the inputs to guide iterative testing. For

the program in Figure 2.2, strategy (1) helps cover 3F and 4T , and strategy (2) helps cover

4F . It curtails testing costs via three simple yet effective techniques: (1) input capping —

allowing developers to cap the values of marked variables so as to limit the problem size and

control the testing time cost; (2) two-way instrumentation — generating two versions of the

target program with one being heavily-instrumented to be used by one single process and

the other being lightly-instrumented to be used by the other processes; and (3) constraint

set reduction — reducing the constraint sets by removing redundant constraints resulting

in the presence of loops. COMPI makes the following key contributions.

• COMPI is the first practical automated testing tool for complex MPI applications —

it tackles basic MPI semantics and effectively controls the testing cost.

• COMPI uncovered four new bugs in one physics simulation program that were con-

15

firmed by the developers.

• In our experiments COMPI achieved 69-86% branch coverage which far exceeds the

1.8-38% coverage achieved by random testing.

• COMPI exploits MPI semantics causing it to achieve 4.8-81% higher coverage than

standard concolic testing.

• COMPI achieves high branch coverages quicker with input capping delivering practical

testing; it reduces testing time by up to 66% via two-way instrumentation; it achieves

4.7-10.6% more coverage for two programs and achieves the best coverage much faster

for another with constraint set reduction than without it.

2.2 Overview of COMPI

2.2.1 Work Flow of COMPI

The work flow of COMPI consists of two phases: (1) in the instrumentation phase,

COMPI inserts symbolic execution code into the source code; and (2) during the testing

phase, COMPI iteratively tests the program to potentially cover new branches via automatic

input generation.

Instrumentation. Given a program, developers need to mark the execution-path

dominant input-taking variables. Then COMPI instruments the program so as to insert

symbolic execution code. In the instrumentation, COMPI marks MPI-semantics variables

that represent MPI rank or the size of MPI COMM WORLD (the number of processes)

so that these variables’ values for the next test could be derived like other variables’ input

16

values. Figure 2.2 illustrates the marking of one MPI program — rank is marked by COMPI

and variable x and y are marked manually by developers.

Testing. COMPI performs an iterative testing procedure until a user-specified

budget of iterations (executions of the program under test) is exhausted. In each iteration,

it first determines the number of processes, as well as which process should be used to

perform concolic testing so as to generate inputs to drive the next test — we call this

process focus and the remaining processes as non-focus. In the first iteration, the number

of processes and the focus process can be set by the developer, and all other symbolic

variables are assigned random values; in future iterations, all the values are generated

based on previous iteration. In each iteration, the instrumentation code generates branch

coverage information and a set of constraints via executing the program. COMPI updates

the coverage information. It updates the constraint set by selecting and negating one of the

constraints, and then generates new inputs by solving the updated constraint set. With the

new inputs, it drives the testing in the next iteration.

Highlights of COMPI. In summary, COMPI extends CREST with the following two

critical features:

• It provides an automated testing framework specifically for MPI programs — it per-

forms symbolic execution on a single focus process and records branch coverage across

all processes. Due to its knowledge of MPI semantics, it automatically drives the

testing by varying the number of processes as well as the focus process. Recording

coverage across all processes makes sure the overall coverage is recorded accurately.

17

Figure 2.3: The iterative testing of COMPI: i-th test to (i+ 1)-th test (marked in green).

• It enables practical testing via effectively controlling the testing cost based on three

techniques: input capping, two-way instrumentation, and constraint set reduction.

Figure 2.3 illustrates the iterative testing of COMPI from the i-th test to the

(i + 1)-th test on the program given in Figure 2.2. Suppose after Step 2 of the i-th test,

only branch 4F is left, and in Step 3 the constraint rank = 0 is negated. Supposedly

rank ← 1 is obtained from the constraint solver. Hence, in the (i+1)-th test COMPI shifts

its focus from rank 0 to rank 1. With this focus change, COMPI can cover the branch 4F

in a future test.

2.2.2 Search Strategy Selection

The decision on which constraint to negate (and thus which path to explore next)

is made according to the search strategy. There are four strategies available in CREST:

BoundedDFS, random branch search, uniform random search, and control flow graph

18

Figure 2.4: Branch coverage of HPL using four search strategies.

(CFG) search. BoundedDFS allows users to specify a depth bound and thus can skip

branches deeper than the bound, which is better than DFS as it avoids exploring infinitely

deep execution tree. Random branch search and uniform random search randomly select a

branch to negate, and CFG search selects the branch based on a scoring system that checks

the distance between the covered branches and uncovered branches.

BoundedDFS is a classical search strategy that is slow yet steady [116] and it

matches the need of MPI programs much better than the others because of the major

difference between MPI applications and regular ones: MPI programs usually read many

inputs and thus need to perform a sanity check before entering the solver to ensure

the validity of inputs (see Figure 2.2). The sanity check can consist of many conditional

statements, and only by passing all the checks can the program enter the solving phase.

BoundedDFS is very effective in passing the sanity check as it systematically traverses

the execution tree and aims to cover all possible branches. The remaining strategies are

ineffective as they do not search branches in the order by which they are ordered in an

execution path. Consider an example based on the execution tree of Figure 2.2. Suppose

the current execution path is 0T → 1T → 2F with all the branches above 2T being covered

19

already. These strategies may not take the required step (take 2T by negating 2F) and

rather take 0F by negating 0T , and thus they fail to pass the check. This is very common,

especially for a complex sanity check. Even if they pass the check, they can deteriorate to

the limited path in sanity check due to the same reason.

Let’s consider High-Performance Linpack Benchmark (HPL) [9] is one of the most

widely used HPC benchmarks. It performs highly optimized LU factorization and has 28

input parameters that include variables and arrays — we treat each array as one regular

variable. In its sanity check, each parameter as well as the combinations of parameters are

checked. Figure 2.4 shows its branch coverage comparison for four strategies using COMPI.

BoundedDFS with default depth of 1,000,000 and BoundedDFS with bound equal to 100

perform the best with a coverage of over 1100 branches while the others cover at most 137

branches as they fail to pass the sanity check. This shows that a bad bound selection results

in poor branch coverage and non-systematic strategies are unable to pass the sanity check.

BoundedDFS for COMPI. To ensure a good choice of the bound for BoundedDFS,

COMPI’s testing consists of two phases: (1) it uses DFS first so that the maximal size of the

constraint set (the longest execution path) can be observed; and (2) it uses BoundedDFS in

the remaining iterations with the bound being slightly bigger than the observed considering

longer execution path might be observed later. In this way, COMPI has one full execution

tree in its sight.

20

Symbol Meaning

rw Variables denoting global rank in MPI COMM WORLD

rc Variables denoting local rank in other communicators

sw Variables denoting the size of MPI COMM WORLD

Table 2.1: MPI semantics related variables.

2.3 Framework Adaptation

The framework of COMPI can be summarized as one focus and all recorders,

i.e., it drives the testing with one focus process and accurately tracks the branch coverage

across all. One focus is the basic requirement for a concolic testing tool, and all recorders

are needed specifically for MPI programs considering that otherwise only recording the

coverage of the focus process is not accurate as it misses the branches already being covered

by non-focus processes. To enable automated testing for MPI programs, we automate the

selection of the focus as well as the determination of the number of processes to be used using

concolic execution. The framework consists of 4 major aspects: (1) automatic marking, (2)

MPI-semantics constraints insertion, (3) conflicts resolving, and (4) test setup and program

launching.

2.3.1 Automatic Marking

To make the symbolic execution logic recognize important MPI semantics, COMPI

automatically marks rw, rc and sw shown in Table 2.1 as symbolic. Application developers

mark regular input variables manually with trivial effort as these usually cluster together

and read inputs at the beginning of the program from either a user-specified file or a

command line. Variables including rw, rc and sw do not have to cluster together considering

21

they obtain their values anytime from MPI environment. Since manually marking them

is laborious, COMPI automatically marks them in the instrumentation phase. At each

invocation of

MPI Comm rank(comm, rank),

COMPI marks rank as a rw if comm is checked to be a constant as MPI COMM WORLD

is a constant in MPI semantics; otherwise, rank is marked as a rc. At each invocation of

MPI Comm size(comm, size),

COMPI marks size as a sw if comm is found to be a constant. So far COMPI does not

mark variables representing the size of communicators other than the default.

2.3.2 Constraints Insertion

The inherent relations among rw, rc and sw should be obeyed by the constraint

solver, e.g., one global rank must be smaller than the size of MPI COMM WORLD (rw <

sw). Without knowing these, the solver can generate invalid inputs, e.g., rw ≥ sw. It is thus

necessary to inform the solver these inherent relations, i.e., add the inherent MPI-semantics

related constraints to the constraint set to be solved. Suppose there are m variables of type

rw — each is represented symbolically as xi with 0 ≤ i < m, n variables of type rc — each

is represented as yi with 0 ≤ i < n, and k variables of type sw — each is represented as

zi with 0 ≤ i < k. As the focus process drives the testing, we need to generate these MPI

inherent constraints from the perspective of the focus considering it may only associate with

some of the non-default communicators. We summarize these inherent constraints as the

22

union of the following:



⋃m
i=1 {x0 − xi = 0}

⋃k
i=1 {z0 − zi = 0}

{x0 − z0 < 0}

⋃n
i=0 {yi − si < 0 | 0 < i < n}

⋃n
i=0 {yi ≥ 0}

⋃
{x0 ≥ 0}

⋃
{z0 > 0}

where the first specifies the equivalence of all rw variables representing the focus’s global

rank, the second specifies the equivalence of all sw variables representing the default com-

municator’s size, the third specifies the relation between the global rank and the default

communicator’s size, the fourth specifies the relation between the local rank and non-default

communicators’ size si (0 < i < n), where si is a concrete value obtained by the instru-

mentation code at runtime, and the last specifies that the size of the default communicator

should be no less than 1 and any of the others should be no less than 0.

2.3.3 Conflicts Resolving

The above constraints are not complete as the relation between local ranks and

global ranks is not included. The solver thus could generate conflicting constraints — the

generated input values for various variables denoting MPI ranks don’t map to the same

process. Figure 2.5 shows an example. Suppose there are 3 processes in total with the focus

being process 0 (global rank). The focus process resides in MPI COMM WORLD as well

as two local communicators, and x0, y0 and y1 respectively record the rank of the focus in

23

Figure 2.5: Resolving the conflicts among rw and rc variables by using the most up-to-date
values. Each row in the left table maps to one communicator, and each column maps to
one process.

each communicator. Starting with an input (0, 0, 0) for (x0, y0, y1), COMPI supposedly

negates y0 = 0 and generates input values in conflict as (0, 1, 0) — x0 = 0 and y1 = 0 map

to global rank 0 but y0 = 1 maps to global rank 2. We resolve the conflicts based on the

following important property of the underlying constraint solver.

Incremental solving property. Solving the whole constraint set every time is

time consuming. Incremental solving is thus proposed an efficient strategy based on the

iterative tests’ property — two constraint sets being solved consecutively usually share many

common constraints. It works in following way: (1) it only solves incremental constraints

— the negated constraint as well as the constraints dependent upon it, and (2) it assigns old

values from the previous inputs to variables not being solved. We find an useful property:

if the value of one variable read from the solver is different from its previous reading, its

value is more up-to-date compared with those whose values stay the same.

Conflict resolving. Because of the presented property, we resolve the potential

conflicts by using the most up-to-date values among rw and rc since they satisfy the negated

constraints while stale values don’t. As shown in Figure 2.5, only y0 is updated and thus is

the most up-to-date value. The conflicting values are corrected using y0, so they map to the

24

same process, i.e., global rank 2. Note this resolving method assumes that the rc and rw

variables are not dependent, which does make sense as one constraint involving both (MPI

ranks) doesn’t map to a realistic meaning.

2.3.4 Test Setup and Program Launching

In the iterative testing, we launch the current test by feeding the inputs generated

from the previous test. However, the value passing phase of rw, rc and sw differs from that

of regular input variables: the former has to take place in the test setup phase to guide

the program launching while the latter occurs at runtime, which is due to the fact that the

values of rw, rc and sw are fixed when the program is launched, e.g., global rank can’t be

changed at runtime.

Test setup consists of two parts: determine the number of processes used to

launch the program, and select focus process. The number of processes is set as the derived

value for sw. To set the focus, we need to find the global rank of the focus as it is the key to

launch the program. Based on the presented property, the focus stays unchanged if there is

not any value change among rw and rc; otherwise, the focus’s global rank should be derived

based on the value change. When rw changes, its new value is the focus’ new global rank;

otherwise (rc changes), the case is trickier as the new value of rc doesn’t directly translate

to a global rank. To solve this problem, COMPI builds a mapping data structure between

local ranks and global ranks at runtime — a two dimensional array with each row storing all

the global ranks belonging to one local communicator by the increasing order of local MPI

ranks. Given a local rank with its communicator’s index known, its mapped global rank can

be easily retrieved. Table 2.2 illustrates the mapping array from the perspective of the focus

25

Sorted local ranks → 0 1 2 3 4 5

Global ranks →
Local Comm. 0 0 4 2 - - -
Local Comm. 1 0 3 - - - -

...

Table 2.2: The mapping between local ranks and global ranks.

(global rank 0) given five processes in MPI COMM WORLD. There are three global ranks

(0, 4, and 2) in local communicator 0 and two global ranks (0 and 3) in local communicator

1. Suppose we hope to access the global rank of local rank 1 in local communicator 0. The

global rank can be obtained as mapping[0][1] = 4.

Program launching. The instrumentation generates two copies of programs:

ex1 and ex2, where the former is used to launch the focus process and the latter is used

to launch the remaining. COMPI runs the given SPMD program in a MPMD (multiple

program, multiple data) style. Suppose the focus’ global rank is i and the total number of

processes to run the program is s. We launch the program with

mpiexec -n 1 ./ex1 : -n s−1 ./ex2

if i = 0; otherwise, we launch it with

mpiexec -n i−1 ./ex2 : -n 1 ./ex1 :

-n s−i ./ex2

By default, global ranks are assigned by the order in launching processes. We hence can

shift the focus by varying i, and vary the number of processes by varying s.

26

Figure 2.6: The achieved branch coverage as well as the time cost at various matrix sizes
for HPL.

2.4 Practical Testing

The tool would not be practical to be adopted without seeking every means to

reduce its testing cost. Below we detail three major techniques to reduce the test cost.

2.4.1 Input Capping

Usually MPI programs are designed to be capable of solving various problems

sizes. Given a fixed number of parallel processes, the larger the problem size is the more

time-consuming the testing is though very often varying problem sizes lead to very similar

coverages. Take HPL for example. We respectively run it at various matrix size (the width

of a square matrix) 100, 200, ..., 1000 while maintaining all other inputs as default (see

Figure 2.6). Except for the small coverage increase from matrix width 100 to 200 the

coverage almost stays the same from 200 to 1000. However, the execution time cost at

matrix width 1000 is 27.2 times the cost at 200. Most importantly, too large an input value

can make the testing fail. This manifests in two ways: (1) too large a problem size might

exceed the testing platform’s memory limit; and (2) way too many processes can crash the

platform, e.g., once our rudimentary COMPI made the computer freeze when it demanded

27

Figure 2.7: Instrumentation comparison: one-way v.s. two-way.

hundreds of thousands of processes to run the program.

To avoid unnecessary time-consuming tests, COMPI provides additional marking

interfaces to allow developers to specify a cap for the input variable that plays a pivotal role

on determining the execution time cost. Take the marking of an int variable for example.

It can be marked as

COMPI int with limit(int x, int cap),

where the cap is the upper bound for variable x. COMPI would generate the symbolic

constraint x ≤ cap and feed it to the solver as shown in Section 2.3.2.

2.4.2 Two-way Instrumentation

The instrumentation code performs symbolic execution at runtime. After execut-

ing the program, each process outputs collected symbolic execution information (symbolic

constraints, branch coverage, inputs, etc.) to a file, which will be read by COMPI to drive

the next test. With very little effort, we can enable concolic testing for MPI programs

28

based on one-way instrumentation — all processes run with the same instrumented pro-

gram. However, this effort-saving way is not efficient due to two reasons: (1) it brings about

unnecessary memory overhead at runtime for non-focus processes since these perform un-

necessary symbolic execution though they only care about recording branch coverage; and

(2) it brings about much unnecessary I/O overhead for non-focus processes considering I/O

on data unrelated to coverage is not useful for the testing framework.

Hence we propose two-way instrumentation: (1) the program (ex1) used to launch

the focus process is instrumented heavily — each expression is instrumented — to enable

full symbolic execution in each concrete run; and (2) the program (ex2) used to launch

the non-focus processes is instrumented lightly — only branches are instrumented — to

only record the branch IDs being covered. This differentiating style minimizes the work-

load for non-focus processes and makes testing efficient. Figure 2.7 illustrates how two-way

instrumentation saves redundant I/O for non-focus processes compared with one-way in-

strumentation.

2.4.3 Constraint Set Reduction

Loops characterize MPI programs and cause hundreds and thousands of reducible

constraints generated from the same branch. They thus cause a significant waste of test-

ing efforts on the repetitive branches. For example, as shown in Figure 2.8 at least 101

constraints can be generated from one loop’s execution — the constraint set size could be

far greater considering function do A() could also contain branches. Repetitive tests over

if(x < 100) simply waste time as the first constraint x < 100 subsumes the remaining but

29

Figure 2.8: Constraint set reduction given x is marked as symbolic and x = 0 before
entering the loop.

the last one, i.e.,

{x | x+ i < 100 and 0 < i < 100} ⊂ {x | x < 100}.

We avoid such unnecessary tests via a heuristic based on the property of reducible con-

straints as shown following.

Property of reducible constraints. Given a time-ordered sequence of con-

straints generated by one single conditional statement in one non-nested loop at runtime.

All constraints except the last one evaluate to True (or False), and the last constraint

evaluates to False (or True).

Constraint set reduction. Based on the property, we reduce the number of

constraints generated by each conditional statement using following heuristics. At runtime,

a constraint is recorded only if (1) this conditional statement is encountered for the first

time or (2) its evaluated boolean value is the opposite of the previous observed value.

30

2.5 Implementation

COMPI is implemented on top of CREST that consists of four main parts: an

instrumentation module, an execution library, and a search strategy framework, and a

constraint solver based on Yices SMT (satisfiability modulo theories) solver [33]. COMPI’s

work spreads across all four. COMPI’s implementation is based on over 3500 lines of

C++/Ocaml code changes – 1436 lines of CREST were modified and 2151 new lines of code

were added. COMPI is publicly available at https://github.com/westwind2013/compi.

Instrumentation is performed using CIL (C Intermediate Language) [99] un-

der the guidance of an instrumentation module written in OCaml [18]. COMPI provides

two separate OCaml instrumentation modules to achieve two-way instrumentation. Both

modules instrument MPI Init(), MPI Comm rank() and MPI Comm size() so as to equip

COMPI with basic MPI knowledge. Only one module instruments programs heavily by

inserting the symbolic execution code, while the other instruments only programs’ branches

to help non-focus processes record coverage.

Concolic execution library defines all instrumentation functions. The major

new features of COMPI include following: (1) it provides separate instrumentation functions

for the program used by non-focus process; (2) it defines additional marking functions to

achieve input capping; and (3) it implements the constraint set reduction technique.

Search strategy framework is the brain of COMPI as it directs the testing.

Particularly, COMPI selects the focus as well as sets the number of processes based on

derived input values before the program launching. Additionally, COMPI allows developers

to specify a timeout for a test. It logs the derived error-inducing input for further analysis if

31

https://github.com/westwind2013/compi.

Program ↓ SLOC ↓ The number of branches
Total Reachable

SUSY-HMC 19,201 2,870 2030

HPL 15,699 3,754 3,468

IMB-MPI1 7,092 1,290 1,114

Table 2.3: Complexity of Target Programs.

either the program returns a non-zero value or fails to complete within the specified timeout.

Constraint solver solves the constraint sets. COMPI creates additional con-

straints based on MPI semantics and input capping and insert them to the set before

solving.

2.6 Evaluation

We detail the newly uncovered bugs first and then evaluate four major features of

COMPI: input capping, two-way instrumentation, constraint set reduction, and framework.

Each feature is evaluated by comparing the default COMPI with its variation that either

modifies or disables the feature of interest while incorporating all the other features.

Target programs Table 2.3 shows the three target programs we use to evaluate COMPI:

(1) SUSY-HMC, a major component in SUSY LATTICE — a physics simulation program

performing Rational Hybrid Monte Carlo simulations of extended-supersymmetric Yang–

Mills theories in four dimensions [110]; (2) HPL (High-Performance Linpack Benchmark)

used for solving a dense linear system via LU factorization; (3) IMB-MPI1, which is one

major component of IMB (Intel MPI benchmarks) and can benchmark MPI-1 functions’

performance. Table 2.3 also shows the code complexity in different metrics: the source lines

32

of code (SLOC) measured by SLOCCount [27]; the total number of branches obtained in the

instrumentation phase via static analysis; and the estimated number of reachable branches

obtained via summing up all the branches of all the encountered functions in testing [42].

We use the reachable branches to evaluate our coverage as some of branches found by static

analysis are not reachable due to build configurations [42].

Marking input variables The users of COMPI must mark a subset of input variables

– these are non-floating point inputs as COMPI does not handle floating-point variables.

The effort required is minimal. Respectively, we marked 13 variables in SUSY-HMC, 24

variables in HPL, and 15 variables in IMB-MPI1. For illustration we describe one relevant

input for each program: (1) the lattice size of each of the four dimensions in SUSY-HMC

— we change the four as well as set input caps for them with the same value; (2) the width

of the square matrix in HPL; and (3) the number of iterations required to benchmark one

function’s performance in IMB-MPI1. We denote these as N .

Experiment setup We perform experiments on a platform that is equipped with two

Intel E5607 CPUs (totaling 8 cores) and 32 GB memory. Initially, 8 processes are used to

launch the program with the focus being process 0. The number of processes is restricted

to no bigger than 16 via input capping. Suppose each test consists of n iterations. To be

consistent as directed in Section 2.2.2, in each test we use pure DFS in the first x iterations —

x = 50 for SUSY-HMC, x = 1000 for HPL and IMB-MPI1; we use BoundedDFS afterwards

for the remaining n− x (n > x) iterations — the depth limits are 500 for SUSY-HMC, 600

for HPL, and 300 for IMB-MPI1 (estimated based on the constraint set sizes in the first

33

phase). Unless otherwise specified, the default caps of the introduced input variable N are:

(1) NC = 5 for SUSY-HMC, (2) NC = 300 for HPL and (3) NC = 100 for IMB-MPI1.

Sometimes the testing can be constrained to a very short shallow path in the execution tree

due to an error that is lacking a constraint for tackling it. Once this error is encountered,

like bugs in SUSY-HMC, concolic testing can not step out of this error as its constraint-

based derivation is broken. Using tens of tests that only costs a few seconds this can be

found easily if the constraint set size is too small. We just redo the testing to avoid it.

In practice, developers should fix such known bugs and then continue testing for covering

additional bugs.

2.6.1 Uncovered Bugs

The use of COMPI on the programs detected four bugs in SUSY-HMC, where

three cause segmentation faults [30] and one causes a floating point exception [7].

The segmentation fault occurs due to wrong use of malloc(). Take one bug for

example. The program declares a double pointer src and allocates space for it:

Twist Fermion ∗ ∗src = malloc(Nroot ∗ sizeof(∗ ∗ src));

where Twist Fermion is a struct and Nroot is an integer denoting the number of elements

the allocated space would hold. Variable src expects the space allocation to store Nroot

Twist Fermion* elements, but the above allocates space to store Nroot Twist Fermion

elements. This causes a program crash due to a segmentation fault. This can be easily

fixed by changing sizeof(∗ ∗ src) to sizeof(Twist Fermion∗). COMPI detects three bugs due

34

Figure 2.9: Evaluation of input capping.

to this error. We reported these bugs and the fix to the developer, who confirmed them

and adopted our fix.

The floating point exception bug is a more serious one. It leads to a division-by-

zero error whose triggering requires not only specific input values but also a specific number

of processes in the run — it manifests with 2 or 4 processes but it does not occur with 1 or

3 processes. We provided the triggering condition generated by COMPI to the developer

and he was easily able to reproduce the bug and then fix it.

2.6.2 Input Capping

We compare the testing cost using various input caps. Each cap is evaluated using

10 times of testing with each containing 50 iterations for SUSY-HMC and 500 iterations for

both HPL and IMB-MPI1, which are enough to show the time cost variance on the basis of

a decent coverage is achieved, i.e., the testing passes the programs’ sanity check. Figure 2.9

shows the testing time and the coverage comparison using different caps. For SUSY-HMC,

35

Program N
Time cost (seconds) Avg. log size (B)

1-way 2-way Saving 1-way 2-way

SUSY-HMC
2 163 86 47.0% 104M 6.4K
4 479 226 52.8% 337M 6.4K

HPL
300 92 35 62.0% 71.1M 4.5K
600 382 127 66.8% 261.8M 4.5K

IMB-MPI1
100 7 7 0.0% 562.0K 1.9K
400 16 14 12.5% 1.8M 1.9K
1600 43 38 11.6% 5.5M 1.9K

Table 2.4: One-way vs. Two-way

the average time increases by four times as NC increases from 5 to 10 while the coverages

using two caps are comparable. For HPL, the coverage ranges from about 1100 to 1300

(such variance can occur even for the same cap size), and when NC = 1200 the testing time

cost in the worst case is about seven times of the cost when NC = 300. For IMB-MPI1, the

average cost increases by four times as NC increases from 50 to 400 while always about 685

branches are discovered. Obviously, bigger caps lead to more expensive testing cost on the

basis of providing comparable coverages. Without it the concolic testing is never possible.

2.6.3 Two-way Instrumentation

COMPI using two-way instrumentation is compared with its variation that uses

one-way instrumentation based on simulated testing that fixes the inputs to defaults for each

program (the dynamic derivation of input values is disabled). The time cost is fixed and thus

the comparison reflects only the difference between instrumentations. Each configuration

is evaluated using one 10-iteration test. Table 2.4 shows the testing cost comparison of

two instrumentation methods given different input values. Two-way instrumentation saves

over 47% testing time for SUSY-HMC, over 62% for HPL, and 0-12.5% for IMB-MPI1.

36

Program ↓ COMPI (R) NRBound NRUnl
Avg. Max. Avg. Max. Avg. Max.

SUSY-HMC 84.7% 86.1% 80.0% 82.0% 80.1% 80.2%

HPL 69.6% 71.9% 59.0% 59.6% 59.4% 60.4%

IMB-MPI1 69.0% 69.1% 69.0% 69.1% 69.0% 69.0%

Table 2.5: Evaluation of constraint set reduction based on branch coverage.

Also Table 2.4 shows the average size of non-focus processes’ log files — the I/O between

the target program and COMPI. Using two-way instrumentation non-focus processes only

output a few kilobytes while using one-way instrumentation the log size could be as high

as a few hundred megabytes. Moreover, the trivial log file size indicates that non-focus

processes don’t eat too much memory at runtime as they do not need to perform tasks

other than executing the program and recording the branch coverage information.

2.6.4 Constraint Set Reduction

We evaluate constraint set reduction by comparing COMPI with reduction (R)

with its two variations: non-reduction with a depth limit (NRBound) (the same to COMPI’s

default depth limit for each program) and non-reduction with unlimited depth (NRUnl). To

perform a fair comparison, we apply COMPI (R), NRBound and NRUnl to each program

based on a fixed time budget. The time budget of each test experiment is set to match the

time taken by COMPI (R) to achieve the maximum attainable coverage. The durations are

1.5 hours for SUSY-HMC, 3.5 hours for HPL, and 34 minutes for IMB-MPI1. The reported

results are based upon three repetitions of each experiment.

37

Figure 2.10: Constraint set size distribution for SUSY-HMC.

SUSY-HMC As shown in Table 2.5, R in average achieves about 4.6% more coverage

than NRBound and NRUnl. Also we notice that sometimes both NRBound and NRUnl

need to spend tens of minutes to derive a set of inputs. This occurs due to two reasons:

too many redundant constraints are generated and negating these makes the constraint set

insolvable. Figure 2.10 shows that our reduction technique generates constraint sets whose

size are always smaller than 500, but without using it the constraint set could be as large

as a few thousands to tens of millions.

Figure 2.11: Constraint set size distribution for HPL:

HPL Based on the average coverage, we observe following: (1) R achieves respectively

10.6% and 10.2% more coverage than NRBound and NRUnl ; (2) all three achieve about

59% coverage (the maximum of NRUnl) in three minutes; (3) In the remaining time of over

three hours, NRBound ’s and NRUnl ’s coverages stay the same as the coverage in the first

38

Figure 2.12: Constraint set size distribution for IMB-MPI1.

three minutes, let alone get any closer to R’s coverage. This results from the fact that the

non-reduction methods spend a significant portion of time traversing redundant branches.

Figure 2.11 shows that our reduction technique significantly reduces the constraint set size

— R’s maximal size is about 500 but the size for other two can be over 1600.

IMB-MPI1 All of them achieve equivalent coverages with a difference of only 1 or 2

branches — the average coverage rate is 69.0%. The required time to achieve the minimum

of all methods’ maximal coverages, i.e., 767 branches, are respectively: (1) 116s, 64s and

386s for R; (2) 257s, 279s and 966s for NRBound ; and (3) 226s, 286s and 4433s for NRUnl.

By excluding the outliers 966s and 4433s — their occurrences are related to the randomness

feature of COMPI, the average time costs to cover 767 branches are respectively 189s, 268s

and 256s. Most importantly, Figure 2.12 shows that R generates less than 300 constraint

in testing while the other two generate more than 2,000 constraints in over 30% testing

iterations.

39

Program ↓ COMPI(Fwk) No Fwk Random
Avg. Max. Avg. Max. Avg. Max.

SUSY-HMC 84.7% 86.1% 3.4% 3.5% 38.3% 38.3%

HPL 69.4% 71.6% 58.9% 59.1% 2.2% 2.2%

IMB-MPI1 69.0% 69.1% 64.2% 64.3% 1.8% 1.8%

Table 2.6: Evaluation of COMPI’s framework based on branch coverage.

2.6.5 COMPI Framework and Random Testing

We evaluate the effectiveness of COMPI’s framework by comparing COMPI with

the framework enabled (Fwk, COMPI itself) with its variation with the framework disabled

(No Fwk) — No Fwk drives the testing using only one fixed focus process, records the

coverage of this process only, and always uses 8 processes (the initial setting of COMPI).

we apply COMPI (Fwk) and No Fwk to each program based on a fixed time budget as used

in Section 2.6.4. The reported results are based on three repetitions of each experiment. As

No Fwk doesn’t vary the focus process, the above evaluation is performed on each process

and the obtained branch coverage using each process are combined to form No Fwk ’s final

coverage. As shown in Table 2.6, for SUSY-HMC Fwk achieves an average coverage of

84.7% which is about 25 times the coverage of No Fwk ; for HPL Fwk achieves an average

coverage of over 69% that is about 10% higher than No Fwk ; for IMB-MPI1, Fwk achieves

69% coverage that is about 5% higher than No Fwk. We observe that No Fwk performs

far worse than Fwk only for SUSY-HMC because under the condition of using 8 processes

persistently No Fwk fails to generate sound inputs that exercise the full program. The

effectiveness of our framework is hence obvious — it gives COMPI the freedom to vary not

only the focus process but also the number of processes and this freedom helps COMPI

achieve higher coverages.

40

We also compared the default COMPI with purely random testing (Random).

Random testing generates random values for marked variables and randomly sets the num-

ber of processes used as well as the focus process. For a fair comparison, all the random

values are generated under the limits set by the input capping. We apply COMPI and

Random to each application using the fixed time budgets as used in Section 2.6.4. The

reported results are based on three repetitions of each experiment. As shown in Table 2.6,

COMPI’s coverage is over 2 times that of Random’s for SUSY-HMC, and it is over 30 times

the coverage of Random for HPL and IMB-MPI1.

2.7 Summary

We presented COMPI that automates the testing of MPI programs. In COMPI,

MPI semantics guide testing using different processes and dynamically varying the number

of processes used in testing. Its practicality is achieved by effectively controlling its testing

cost. COMPI was evaluated using widely used complex MPI programs. It uncovered new

bugs and achieved very high branch coverages.

41

Chapter 3

Efficient Concolic Testing of MPI

Applications

COMPI [91] applied concolic testing [116, 65] to boost the branch coverage of

MPI applications. It proposed a concolic testing framework for MPI applications with

adaptations enabling practical testing via controlling the cost of testing MPI programs. It

performs symbolic execution only on one focus process in each execution and records branch

coverage across all processes. Based on the same input, it can dynamically vary the number

of processes (i.e., the size of MPI COMM WORLD), as well as the focus such that it can

cover branches whose conditional statement depends on the size of MPI COMM WORLD

or MPI rank such as the statement if (rank == 0).

42

3.1 Issues of COMPI and Our Solution

3.1.1 Issues of COMPI

First, the input values generated by COMPI do not guarantee cost-effective testing.

It is known that the larger the problem size presented to an MPI program, the more

time-consuming is the execution. If an excessively large value is generated for a variable

that is closely related to the size of the problem, the testing cost can be exorbitant. To

address this problem, COMPI proposes a technique, known as Input Capping, allowing

developers to set an upper limit, referred to as the cap, for the input generation of each

variable. Its underlying idea is that with a well-selected smaller cap values, inputs generated

achieve branch coverages that are comparable to larger cap values at a far less testing

cost. However, selecting such good caps is challenging. Excessively large caps ensure good

coverage but incur exorbitantly high testing cost. Conversely, too small caps ensure the

overhead per program execution is low but this comes at the cost of lower coverage because

some constraints may have no solution under the cap limits and thus some branches cannot

be explored. For simple programs manual inspection of the constraints of all branches can

help developers find caps such that the caps do not prevent the constraints from being

solved. However, manual inspection is infeasible for complex or large programs and thus an

automated approach is essential.

Second, COMPI does not support floating-point types and operations that are

commonly used in HPC applications. Using COMPI to test an MPI program that reads

many floating-point values requires developers to manually fix the floating-point variables

to selected values. But fixing the variables to certain values prevents testing from cover-

43

ing branches depending on these variables (e.g., the true side of conditional statement if

(x < 1) cannot be exercised if we fix x to 2.0). Furthermore, floating-point operations are

either ignored or recorded imprecisely (e.g., assignment statement x = y + 1.5 is ignored

as expression y + 1.5 is a floating point operations). The lack of floating-point support

can cause some constraints not to be recorded or solved, and branches related to the use of

floating-point types and operations may never be covered during testing.

3.1.2 Our Solution: Input Tuning and Floating-Point Support

We propose input tunning to make testing cost-effective while avoiding the need

for user to manually set hard cap limits. Its overall idea is as follows. COMPI generates

new input values via solving a subset of dependent constraints (details in Section 3.2.1) —

the new values are consumed by the variables appearing in these constraints in the next test

run. Input tuning aims to make these values as small as possible as follows. It identifies the

largest value L in the generated values and then, via binary search over the range (0, L],

it finds the smallest values for the involved variables such that the constraints can still be

satisfied and thus uses them to drive the next test run. That is to say, we can achieve cost-

effective testing via searching for small values to drive the testing as (1) the search does

not disrupt the constraint solving unlike hard cap limits, and (2) they are small enough to

ensure the least-expensive execution during testing.

We also extend COMPI to support floating-point data types and operations and

show that the efficiency of constraint solving can be greatly improved if we rely on the use

of reals instead of floating point values. Satisfiability modulo theories (SMT) solvers like

Z3 [50] have begun to support floating point reasoning due to the recent advances of the

44

solver technology. This leads to the incorporation of floating-point reasoning into concolic

testing [95]. However, solving constraints over floating-point numbers is far slower than

over reals. Though approximating floating-point arithmetic using real arithmetic sacrifices

precision, we show that the high efficiency of the approximation outweighs the imprecision

in terms of achieving higher testing coverage in practice.

Our main contributions include:

• We present input tuning to achieve the most cost-effective testing via automatically

searching for the smallest values that satisfy the collected constraints and thus elimi-

nate the need for manually setting hard cap limits.

• We support floating-point data types and operations and demonstrate significant im-

provement in constraint solving and testing efficiency by approximating floating-point

arithmetic using real arithmetic.

• We evaluate input tuning for HPL, IMB-MPI1, and SUSY-HMC based on one-hour of

testing. For HPL, with input tuning we cover 1865 branches in less than 10 minutes

which is 6× faster than the time it takes to achieve the same coverage without using

input tuning. For IMB-MPI1, with input tuning we achieve coverage of 766 branches

in less than 8 minutes while without it only 735 branches are covered in one hour.

For SUSY-HMC, with input tuning we achieve the highest coverage, while with input

capping 9.6-57.1% coverage loss occurs in other settings.

• We evaluate our floating-point extension using SUSY-HMC physics simulation pro-

gram with one-hour of testing. With our floating point extension using reals we cover

45

46 more branches than without it. Also we cover 122 more branches when solving

floating point constraints using reals rather than directly using floating point numbers

during solving.

3.2 Background and Overview of Solutions

Here we briely describe the concolic testing process for MPI programs and the

incremental constraint solving approach used for testing. We also illustrate with examples

the existing issues of the current concolic testing tool for MPI programs as well as overview

our proposed solutions.

3.2.1 Concolic Testing of MPI Programs

Testing process. The concolic testing of a given MPI program consist of two major steps:

instrumentation and iterative testing.

In the instrumentation step, developers manually mark variables that read input

values and dominate the program execution, then the marked program is transformed into

a simplified program in C Intermediate Language (CIL) [99], and finally the simplified

program is instrumented with symbolic execution code as shown in Figure 3.1. With the

simplification, branch statements like loops and switch are all translated into goto and if

statements. Each if statement only contains a simple condition, e.g., {x > 0} instead of

{x > 0 and x < 10}, and is always accompanied with an else statement. The true/false

branch outcome causes the execution of the if -side/else-side of the conditional statement.

The branch coverage metric represents the number of branch outcomes covered during

46

Figure 3.1: Concolic testing of MPI programs: (1) on the left is a segment of one instru-
mented program with the code lines in bold being the original code, mark symbolic() being
inserted by developers, and the remaining being the symbolic execution code inserted auto-
matically; and (2) on the right shows how the test engine tests the instrumented program.

testing. Note the term branch coverage used in this chapter refers to the branch coverage

of the simplified CIL program.

Next, iterative testing (i.e., iteratively executing the target program with generated

inputs) is performed so as to increase the branch coverage and potentially uncover software

bugs. At the end of each execution, a series of symbolic constraints mapped to the branches

along the program execution path are recorded. The testing tool can generate a set of input

values via solving constraints in a prefix of the execution path followed by a negation of

the next constraint in the prefix. Due to the negation, the new inputs can potentially cover

a new branch outcome. Among these inputs, some are used to determine the number of

processes to be used as well as which process should be the focus process — the focus is the

only process on which symbolic execution is performed while all the other processes only

perform concrete execution (e.g., the code lines in bold in Figure 3.1). Based on these, the

test engine can configure the right number of processes and the focus when launching the

program. The remaining input values are passed to the marked variables at runtime, e.g.,

variable x takes one value via mark symbolic() in Figure 3.1.

47

Incremental constraint solving is a widely used approach in many concolic testing

tools due to its efficiency when solving similar constraints repeatedly. CREST [42], on

which COMPI is built, benefits from it as well. Its basic idea is to exploit the similarity

between two constraint sets being solving consecutively to speedup the solving process. It

works as follows: (1) it only solves subset of constraints — the target negated constraint as

well as constraints depending on it 1 — such that new values are generated for variables

appearing in these constraints; and (2) it assign old values from previous input to all the

other variables that do not appear in the constraints. Since each time only a subset of,

instead of all, the constraints are solved, this technique greatly speedups the constraint

solving.

We observe that a property inherent to this technique is: An input value generated

for a variable remains unchanged as long as the variable does not appear in the incrementally

solved constraints.

3.2.2 Overview of Our Solutions

Input tuning. Though COMPI’s input capping relieves the issue to a certain degree, it

is very challenging to select a good set of cap limits. Consider the MPI program performing

square matrix multiplication shown in Figure 3.2 where variable n representing the matrix

width determines the execution time. The program is designed to use different strategies for

different range of matrix widths to optimize performance — small matrix multi() is invoked

when n < 100 and large matrix multi() is invoked otherwise. If the upper cap limit is set

to 50 (i.e., n ≤ 50), large matrix multi() will not be explored during testing. On the other

1Two symbolic constraints are claimed to be dependent if only they share the same variables.

48

Figure 3.2: Input tuning achieves cost-effective testing: (1) on the left is an MPI program
performing square matrix multiplication with n denoting the matrix width; (2) on the right
input tuning helps avoiding expensive execution via replacing 1234567 with 101.

hand, if the upper limit is set to 500, the testing could be very expensive as the matrix

width could be as high as 500. The property of incremental solving as discussed earlier in

Section 3.2.1 exacerbates the high cost problem — once a large width value is generated it

could stay unchanged for a long time and thus repeated time-consuming executions will be

performed.

With our input tuning technique we can achieve the best cost-effective testing

without the need for finding the best upper limits as input tuning always finds the smallest

value to satisfy a given constraint. In Figure 3.2, the input tunning technique is illustrated.

Suppose in the first run a random value is generated n ← 10. After execution, constraint

n ≤ 100 is obtained. Via negating it (n > 100) the testing aims to cover the branch outcome

that invokes large matrix multi(). The solver can generate any value like n ← 1234567 to

satisfy n > 100. This obviously is the worst scene the testing needs to avoid. With

input tuning, we can find that n ← 101 also satisfy n > 100. This small value ensures

large matrix multi() is invoked with the minimum possible execution time.

49

Figure 3.3: Concolic testing of a program without support for floating-point data types
and operations.

Floating-point support. We exemplify the consequence of missing floating point sup-

port with the example shown in Figure 3.3. In this program, variable a and b read inputs

from users. We mark a as symbolic. As there is no marking interface to support marking

of b, a float variable, as symbolic in COMPI, we can only fix it to a selected value (e.g.,

1.1). Variable c is also a float and its value is derived from a. Suppose a is initialized to

1 in the first test. However, function f1() cannot be explored as b = 1.1 does not satisfy

b > 1.1 && b < 1.2, and f2() cannot be explored as the symbolic constraint a ∗ 1.1 ≤ 2

is not recorded, which is ultimately due to the fact that floating-point multiplication like

a ∗ 1.1 is ignored by COMPI’s symbolic execution component.

To address this issue, we provide an interface to developers for marking floating-

point variables and allow floating-point arithmetic in the symbolic execution component.

Our extension helps cover branches related to the use of floating-point calculations.

50

Figure 3.4: Two-stage tuning is applied on the solution generated by the solver — the
solution contains the values generated for variables x1, x2, and x3, which are respectively
C1, C2, C3. After Stage I tuning, the smallest upper bound, B1, is found for all involved
variables (i.e., x ≤ B1 for ∀x ∈ {x1, x2, x3, ...} with B1 ≤ max{C1, C2, C3, ...}). After
Stage II, the smallest bound is found for variable x1 if x1 is the single variable in the target
constraint (i.e., x1 ≤ B2 with B2 ≤ B1). Within the limits of these bounds, the constraints
are solved to get the optimized solution.

3.3 Input Tuning

Directly applying the values generated by the constraint solver often incurs high

testing cost that is not necessary. Though setting upper limits relieves this problem to

a certain degree, it is challenging to manually find the best limits with which the testing

achieves a high coverage yet incurs the least time cost. We thus propose input tuning as a

solution to achieve effective testing that eliminates the challenge of setting hard cap limits.

3.3.1 Design of Our Approach

The tuning process consists of two stages: (Stage I) Multi-variable tuning that

optimizes all variables appearing in the dependent constraints such that their values are

no bigger than the detected smallest upper bound; and (Stage II) Single-variable tuning

that optimizes the single variable in the target negated constraint, i.e., the target negated

constraint only contains one variable, under the limit of the detected bound. Figure 3.4

51

illustrates how the two-stage tuning optimizes the solution, i.e., input values. These two

stages are complimentary. Stage I ensures a dependent variable, like x2 and x3 in Figure 3.4,

is not significantly increased when tuning the single variable in the target constraint, like

x1. Stage II ensures the single variable gets the smallest value under the upper bound

detected in Stage I. Below we details the two-stage tuning process shown as Algorithm 1,

Algorithm 2, and Algorithm 3.

Stage I. Suppose target is the negated constraint, cstrs stands for the constraint set

including target as well as the constraints depending on target (see Section 3.2.1), excls is

a set of symbolic symbols 2 that do not need tuning, and soln stores the generated values for

symbols appearing in cstrs as key-value pairs with key being a symbolic symbol and value

being the generated value for symbol key. The goal of Stage I tuning is to find the lowest

upper bound for all symbols not appearing in excls, i.e., we exclude symbols/variables that

do not need to be tuned. This process is composed of the following steps:

• Decide to tune or not (Algorithm 1 and Algorithm 2). At first, we find the largest

value, denoted as bound, among the generated values, stored in soln, for symbols not

appearing in excls (lines 3 in Algorithm 1, i.e., Algorithm 2). If the largest value is

too small (i.e., bound < 2), we directly return soln as the input values are already

small enough and there is no need to tune them further (lines 4-5 in Algorithm 1).

• Fix variables requiring no tuning (Algorithm 1). We fix the variables that do not

2Each symbolic symbol represents a variable marked in the tested program. In the chapter, we use the
term symbol and variable interchangeably

52

Algorithm 1 Two-stage Input Tuning

1: function tune(target, cstrs, excls, soln)
2: /∗ ∗ ∗ STEP 1: optimize a group of variables ∗ ∗ ∗/
3: bound← get largest(soln, excls)
4: if bound ¡ 2 then return soln . 1.1
5: end if
6: cstrs← cstrs . 1.2
7: // fix the values of symbols in excls
8: for all s.key ∈ excls do
9: // construct new constraint: s.key = s.value

10: c← new cstr(” = ”, s.key, s.value)
11: cstrs← cstrs ∪ {c}
12: end for
13: opt bound← optimize multi(cstrs, excls, . 1.3
14: soln, bound);
15: // set upper bounds . 1.4
16: for all s ∈ soln AND s.key /∈ excls do
17: c← new cstr(” <= ”, s.key, opt bound)
18: cstrs← cstrs ∪ {c}
19: end for
20: /∗ ∗ ∗ STEP 2: optimize a single variable ∗ ∗ ∗/
21: if target contains more than one variable then . 2.1
22: return solve(cstrs)
23: end if
24: if opt bound < 2 then
25: return solve(cstrs)
26: end if
27: symb← single symbolic symbol in target
28: opt bound2← optimize single(cstrs, excls, . 2.2
29: opt soln, opt bound, symb)
30: if opt bound2 < opt bound then . 2.3
31: c← new cstr(” <= ”, symb, opt bound2)
32: cstrs← cstrs ∪ {c}
33: end if
34: return solve(cstrs) . 2.4
35: end function

53

Algorithm 2 Retrieve the largest value in a solution

1: function get largest(soln, exls)
2: max← −1
3: for all s ∈ soln do
4: // largest not in excls
5: if s.key /∈ excls and s.value > max then
6: max← s.value
7: end if
8: end for
9: return max

10: end function

Algorithm 3 Search for the lowest upper bound

1: function optimize multi(cstrs, excls, soln, bound)
2: /∗ ∗ ∗ optimize variables ∗ ∗ ∗/
3: lower ← 0, upper ← bound
4: prev upper ← upper
5: while lower + 1 < upper do
6: mid← lower + (upper − lower)/2
7: cstrs ← ∅
8: for all s ∈ soln do
9: if s.key /∈ excls then

10: // construct constraint: s.key ≤ mid
11: c← new cstr(” <= ”, s.key,mid)
12: cstrs ← cstrs ∪ {c}
13: end if
14: end for
15: if cstrs is consistent with cstrs then
16: upper ← mid
17: else
18: lower ← mid
19: end if
20: end while
21: return upper
22: end function

54

need tuning, i.e., those appearing in excls, to the generated values in soln to avoid

any value changes caused by the tuning (lines 6-12).

• Search the lowest upper bound (Algorithm3). We search for the smallest upper

bound for symbols/variables to be tuned using binary search in the range of (0, bound]

(lines 2-21). In the search, we construct new constraints via new cstr() that specifies

tuned variables are no greater than mid, where mid is the average of the lower and

upper bound (lines 6-14). Then we check if the new constraints cstrs are consistent

with old ones cstrs (line 15), and set the upper bound as mid if they are consistent

(line 16) and the lower bound as mid otherwise (line 18). The lowest bound is obtained

after the search is complete.

• Set upper bound (Algorithm 1). We set an upper bound for tuned variables via con-

structing new constraints specifying their values must be no larger than the detected

bound (lines 15-19).

Stage II. Stage II aims to optimize the value for the single variable within the restriction

of the upper bound detected in Stage I only if the variable is the single variable in the target

negated constraint. It consists of similar steps.

• Decide to tune or not (Algorithm 1). We check if the target negated constraint,

namely target, only contains single variable (lines 21-23) and if the detected bound

is already small enough (lines 24-26). If either is not satisfied, we directly solve and

return; otherwise, we proceed to the next step.

• Search for the lowest upper bound (Algorithm 1). This is the same to the search

55

in Stage I except that it optimize only a single variable (lines 27-29).

• Update upper bound (Algorithm 1). If the new bound is smaller than the older

one, we update the upper bound for the single variable (lines 30-33).

• Generate optimized values (Algorithm 1). We solve the updated constraints, i.e.,

cstrs, to get the optimized values (line 34).

Additional setup. As no constraints are available prior to the first test, input generation

for the first test is not available. We need to assign input values. We make all the initial

values as the smallest positive integer for integer varaiables (i.e., 1). This setting makes not

only the first test as well as latter tests efficient enough considering the value persistence

property of incremental constraint solving.

3.3.2 Applicability

Input tuning is effective for tuning input values for a variable when the following

conditions are satisfied: (1) the variable is of integer type like char, int, and long; (2) the

larger the value of the variable is the longer the execution takes; and (3) eligible values

allowing the program performing its function must be positive. For example, for the square

matrix multiplication program the matrix width must be positive so as to perform valid ma-

trix multiplication. Below we detail how we deal with the cases when one of the conditions

is not satisfied.

Floating-point variables do not satisfy condition (1). We do not perform input

tuning for floating-point variables as usually the values of integer variables, like matrix

56

width in the matrix multiplication program, determine the problem size. However, this

technique can be applied for floating-point variables as well.

There two types of variables that do not satisfy condition (2): Type-1 variables

whose values are unrelated to execution time and Type-2 variables for which increase in

value leads to shorter execution. We do not differentiate type-1 when applying the tuning

as tuning it does not have much side-effect other than the tuning cost. To deal with type-2,

we allow developers to mark variables that need to be excluded from the tuning process.

A variable representing the number of processes, i.e., the size of MPI COMM WORLD,

is a good example of Type-2. As aforementioned, the testing also generates input values

used for determining the number of processes: for the same workload the execution takes

more time when less processes are used to run the program. In this chapter, we only mark

variables representing the number of processes in exclusion, but application developers can

feel free to add more when needed.

We do not tune the variables violating condition (3) as for the majority of, if not

all, HPC applications only positive values are meaningful.

3.4 Floating Point Support

Enabling floating-point data types and operations in concolic testing requires

adapting three components of COMPI: instrumentation module, symbolic execution library,

and the constraints solving component.

Instrumentation module guides the insertion of symbolic execution code into the target

program. The instrumentation is performed at instruction level. For example, the instruc-

57

tion x = y+ z needs to be inserted with four code sequences to achieve symbolic execution:

two for loading the symbolic expressions of x and y, one for applying the add operation,

and one for storing the symbolic expression for y + z into x. The instrumentation module

of COMPI only instruments integer variables and operations. We adapted the module such

that it also instrument floating-point variables and operations.

Symbolic execution library defines all the instrumentation functions — the instru-

mented instructions discussed above are function calls to the functions of the library.

These functions manipulate symbolic expressions according to the original instructions.

In COMPI, all symbolic expressions only represent linear arithmetic operations as

E = C +
i=N−1∑
i=0

Ci ∗ xi,

where E is a symbolic expression, C is a constant, xi denotes a symbolic symbol representing

one input-taking variable, Ci is the coefficient of xi, andN is the number of symbolic symbols

in E. COMPI ensures linear constraints via replacing symbolic expressions with concrete

values as needed. For example, consider the multiplication of two symbolic expressions:

x ∗ y with both x and y being symbolic expressions. To avoid non-linear operation x ∗ y

being recorded, COMPI substitutes the symbolic expression of y with the concrete value of

y like 2 such that the result expression is 2x which is still linear. As COMPI only targets

integers, it records C and Ci using 64-bit integers.

Our floating-point extension requires us to represent integer expressions in the

same way, but for a floating-point expression we record C and Ci using double-precision

58

floating point values. Also, the extension also needs conversion between floating-point and

integer expressions. We convert a integer expression into a floating -point expression via

converting C and Ci from 64-bit integers to double precision floating point numbers. We

convert a floating-point expression into an integer expression via converting the concrete

value of the floating-point expression into an 64-bit integer, i.e., after the conversion the

integer expression is a concrete value instead of symbolic expression. In addition, we provide

the marking functions for developers to mark variables of data type float and double as

symbolic such that these variables can also be involved in the symbolic execution.

Constraints solving component solves constraints to generate new inputs that are

used in the next test run and this process is used repeatedly during iterative testing. For

incremental solving, this component finds all constraints depending on the target negated

constraint, and uses Yices-1.0 [33], an SMT solver, to solve the dependent constraints. In

COMPI, the component is only able to solve integer constraints.

As SMT solvers like Z3 [50] has begun to support floating-point reasoning, concolic

testing is also able to solve constraints with floating-point arithmetic based on the floating-

point reasoning of Z3. However, the floating-point reasoning is known for its high cost

— the cost of solving floating-point constraints is hundreds of times the cost of solving

integer constraints [129]. Therefore, instead we propose simulating floating-point arithmetic

using real arithmetic that is far less expensive. To compare the efficiency between solving

using reals and using floating-point values, we created two versions of COMPI: one solves

constraints using floating-point reasoning of Z3, and the other solves constraints using real

arithmetic of Z3. We use the two versions of the tool to test a simple synthetic program

59

Expression → x x+ y x+ y + z

Float → 31.4 75.0 91.2

Real → 8.2 8.1 8.2

Table 3.1: Time cost (unit: seconds) of floating-point constraint solving using reals and
floating-point values based 100 iterative tests of a simple synthetic program.

with 3 if statements below:

i f (expr == 0) . . .

i f (expr < 0) . . .

i f (expr <= 0) . . .

where expr stands for an C floating-point expression. In the testing, the program can

generates 6 constraints including expr = 0, expr 6= 0, expr < 0, expr ≥ 0, expr ≤ 0, and

expr > 0 such that all the relational operators are covered.

Based on 100 iterative tests, we measured the time cost of constraints solving using

reals and using floating-point values based on three expressions: x, x + y, x + y + z (the

data type of x, y and z are all float). Table 3.1 shows that the solving time using floating

point values is 3.8× to 11.1× times the solving time using reals. Also the solving time using

floating point value grows as the number of variables in the expression grows, while the

solving time using reals stays almost the same. Hence, we believe the efficiency of solving

floating point constraints using reals makes it a better fit for practical testing.

3.5 Evaluation

We evaluate input tuning and floating point extension of concolic testing based on

three non-trivial MPI applications.

60

Hardware and Tool setup. The evaluation is performed on a computer equipped with

two Intel E5607 CPUs with total of 8 cores and 32 GB memory. In the evaluation, COMPI

tool uses Z3 instead of Yices-1.0 as its constraint solver due to the floating point extension.

By default, the tool runs the target program with 8 processes with the focus being rank

0 in the first test. Additionally, the number of processes is restricted to no more than 16

during dynamic variation as without it the computer can crash when running with too many

processes. Our tool sets all input values to 1 for the first test run for both input tuning and

input capping techniques for fair comparison. The decision on which constraint to negate

is made by the search strategy — COMPI uses is BoundedDFS. BoundedDFS explores the

execution tree using a variation of depth-first search (DFS) strategy which skips constraints

as well as branches that are deeper than a specified depth bound in the execution tree. The

depth bound is selected to ensure that COMPI has the ability to explore the entire execution

tree. The testing process using BoundedDFS (1) applies x tests without setting a bound

first so that the maximal number of constraints M can be observed and (2) performs the

testing with a selected bound B, which is obtained via rounding up M to the next hundred.

In the default setting, we perform 100 tests to detect the bound, i.e., x = 100.

Evaluation goals and applications. Our evaluation aims to show that input tuning is

more effective than input capping, i.e., it achieves higher coverage at lower testing cost. We

use HPL [9], IMB-MPI1 [10], and SUSY-HMC [111] to evaluate input tuning as they all have

integer inputs. For floating-point support, we aim to show that testing with floating-point

extension achieves higher coverage than without it and solving floating-point constraints

using real values saves testing time without sacrificing branch coverage. This evaluation

61

uses only SUSY-HMC as it has multiple floating-point inputs while HPL has only one and

IMB-MPI1 has none.

3.5.1 HPL

HPL [9] is a high-performance Linpack benchmark for distributed memory com-

puters. It solves a dense linear system using LU factorization. Many of the algorithm

features can be exploited by configuring the abundant parameters it provides. To enable

concolic testing, we need to mark variables for which the testing tool is to generate input

values. HPL read inputs from a designated file, marking variables requires us to insert the

marking lines as well as commenting out the reading from the file. For HPL we mark 23

integer variables (the variable can also be an array) by inserting 23 lines of code as well as

commenting out the same amount of lines. The depth bound for BoundedDFS is 500 based

on the observations in the first 100 tests.

We compare input tuning with four input capping settings as well as the case

where neither input tuning or input capping is used (called None). In the input capping

evaluations, we set the same cap (or upper bound limit), denoted as c, for all variables,

and use three caps: c = 2, c = 4, and c = 8. We also evaluate c = 8 without the timeout

mechanism — the tool by default uses timeout to identify excessively long executions such

as those caused by infinite loops — to avoid the interference from timeout as many large

input values cause the execution to timeout when c = 8. We allow each of the above

configurations to test for one hour.

Figure 3.5 shows that using input tuning, the testing covers 1865 branches, which

62

Figure 3.5: Branch coverage progress over one-hour of testing of HPL using input tuning,
input capping, and None of them: a point (x, y) in each plot indicates that it takes x
seconds to attain the maximum branch coverage of y.

is only 1 less the highest coverage. Using input capping with c = 2, the testing achieves

the highest coverage but the time cost to achieve such coverage is almost 1 hour while the

time cost of covering 1865 branches using input tuning is less than 10 minutes. This is

because, for c = 2 the values of all variables must be smaller than 2, and thus very often the

constraints have no solution. Using capping with c = 4, the testing coverage is 17 branches

fewer than when using input tuning. Using capping with c = 8 in the default setting, 321

63

Metric ↓ T C2 C4 C8 C8 NT N

Cost (1860) 539 3563 – – – –

tests 390 1717 231 63 32 215

Table 3.2: Comparison among Tuning, Capping (C2, C4, C8, and C8 using No Timeout),
and None based on HPL with two metrics: the time costs of covering 1860 branches and
the number of tests completed in one hour.

branches fail to be covered as larger upper bound permits larger values and larger values

make the execution unnecessarily long such that many executions are killed by the timeout

mechanism. Using capping with c = 8 without the timeout scheme, the coverage obtained

is even less due to the same reason — too large values can cause one program execution to

take tens of minutes (the program execution that started after 768 seconds did not finish

till finally 1 hour expired). The None configuration that directly uses the values generated

by the solver (i.e., neither tuning nor capping is used) delivers coverage of 1840 branches

after running for over 30 minutes. This is not only worse coverage than input tuning but

also at a much higher execution time cost (10 minutes vs. 30 minutes).

Table 3.2 demonstrates the high efficiency of testing using input tuning. The

time it takes to cover 1860 branches using input tuning is 539 seconds which is only 15.1%

cost of using capping with c = 2. In all other configurations the coverages and time

costs are significantly worse. This high efficiency is the result of input tuning preferring

smaller values and only using larger values when necessary. Thus, input tuning ensures

testing makes progress at a good pace. Table 3.2 also shows the efficient testing using input

tuning executed 390 tests in one hour. All other configurations, except input capping with

c = 2, perform fewer tests in one hour because unnecessarily long executions are involved.

Although input capping with c = 2 executes many more test cases with short runs, it still

64

takes about one hour to deliver nearly the same coverage because frequently constraints

have no solution. In other words, input tuning choses neither too small nor too large inputs

and as a result execution runs are just long enough to keep delivering solvable constraints

and thus higher and higher coverage.

3.5.2 IMB-MPI1

IMB-MPI1 [10] is a major component of Intel MPI Benchmarks (IMB) and is

used for benchmarking MPI-1 functions. It reads inputs by parsing the command line. We

mark 14 integer variables by commenting out the whole code block that parses command

line and inserting 30 lines with about half of them being the marking lines and the others

being sanity checks on the inputs. The depth bound for BoundedDFS is 200 based on the

observation in the first 100 tests. We compare input tuning with input capping as well as

the case where neither tuning nor capping is used. In the input capping evaluation, we set

the same cap for all variables, and use three configurations: c = 2, c = 4, c = 8. We also

evaluate c = 8 without using timeout. Once again we perform testing for one-hour testing

in each configuration.

Figure 3.6 shows using input tuning, we cover the most branches, i.e., 766 branches.

Using capping with c = 2, we cover about 700 branches as the cap limit is too small. When

we use bigger cap limits like c = 4 and c = 8 in the default setting, the coverage is over

30 branches less than the coverage based on input tuning. Using capping when c = 8

without timeout scheme, the coverage does not improve since without timeout expensive

tests costing several minutes are used and thus one hour is not enough to explore the

65

Figure 3.6: Branch coverage progress over one-hour of testing of IMB-MPI1 using input
tuning, input capping, and None of them: a point (x, y) in each plot indicates that it takes
x seconds to attain the maximum branch coverage of y.

branches. Without using either input tuning or capping technique (None), the coverage is

less than the coverage using input tuning as frequently long executions are killed by the

timeout mechanism of COMPI.

Most importantly, the efficiency of input tuning is justified — with input tuning

we cover 766 branches in only 439 seconds, which cannot be achieved in any other configu-

rations. Further Table 3.3 shows with input tuning we cover 730 branches in 142 seconds,

66

Metric ↓ T C2 C4 C8 C8 NT N

Cost (730) 142 – 449 559 545 1011

tests 2806 280 246 244 240 224

Table 3.3: Comparison among Tuning, Capping (C2, C4, C8, and C8 using No Timeout),
and None based on IMB-MPI1 with two metrics: the time costs of covering 730 branches
and the number of tests completed in one hour.

which is only 14.0-31.6% the time cost of other techniques. Still this is because input tun-

ing permits large values as well as long program executions only when necessary. Table 3.3

shows the number of tests performed by testing using input tuning is far bigger than the

number of tests performed by testing in input capping configurations. This result from the

fact that if using input capping we need to carefully find the most appropriate cap limit for

each variable to achieve cost-effective testing, while the default limits for all variables are

set to the same value. It is obviously very challenging to make input capping cost-effective

as selecting cap limits is hard. On the other hand, input tuning eliminates the need for

setting limits.

3.5.3 SUSY-HMC

SUSY-HMC [111] is a major component in SUSY LATTICE — a physics simu-

lation program for Rational Hybrid Monte Carlo simulations of extended-supersymmetric

Yang–Mills theories in four dimensions. It reads inputs from standard input stream. We

consider 13 integer variables and 7 double-precision floating point variables and mark dif-

ferent numbers of variables depending on the evaluation goals. The marking is achieved by

commenting out the code block that reads values from standard input stream and inserting

around 23 lines of marking code. The depth bound for BoundedDFS is 500 based on the

observation in the first 100 tests.

67

Figure 3.7: Branch coverage progress over one-hour testing of SUSY-HMC using input
tuning and input capping.

Input tuning. We mark 13 integer variables using COMPI that does not have floating-

point support. We compare input tuning with three input capping settings (c = 2, c = 8,

and c = 8 without the timeout scheme). Our tool aborts in two configurations: capping

with c = 4 and the case where neither input tuning nor input capping are used. Thus,

results in these configurations are not shown. Each configuration is evaluated over one-hour

of testing.

Figure 3.7 demonstrates with input tuning we obtain the highest coverage, i.e.,

1662 branches. Using input capping with c = 2, we only cover 713 branches. Using capping

with c = 8, we covers at most 1503 branches regardless of whether the timeout scheme

is used or not. Using input capping, the loss in coverage ranges from 9.6% to 57.1%.

Obviously, the serious coverage loss using input capping is caused by a bad cap limit. On

the other hand, input tuning delivers high coverage without requiring users to find a good

cap limit.

Floating-point support. On the basis of input tuning, we evaluate our floating point

extension by comparing three versions of the testing tool: one that only considers integers

68

Figure 3.8: Branch coverage progress of testing of SUSY-HMC based on 3 versions of
COMPI: (Int) only integers; (Real) with floating point extension using reals; and (Float)
with floating point extension directly using floating point numbers.

(Int); one with floating point extension using reals (Real); and one with floating point

extension that directly uses floating point numbers (Float). When using Real and Float, we

mark all the identified 13 integer variables and 7 floating-point variables. When using Int,

we (1) only mark the 13 integer variables as floating-point variables cannot be marked in

the Int version, and (2) fix the floating-point variables to 1 for fair comparison, considering

all COMPI versions set all input values to 1 in the first test run. We perform one-hour of

testing using each version of the tool.

Figure 3.8 shows that Real achieves the best coverage after 200 seconds of testing.

Real covers 1704 branches, Int covers 1662 branches, and Float only covers 1582 branches.

We find that Real covers 42 more branches than Int. This demonstrates that floating-

point extension help testing achieve greater coverage. Also, we find Float achieves the

worst coverage though it also support floating point arithmetic. This results from the fact

that constraint solving directly using floating-point arithmetic is inefficient — the constraint

solving cost of Float accounts for 10.9% in the total testing time while the cost of constraint

solving with Real only accounts for 1.7%. Thus, constraint solving using reals is efficient

69

and thus more practical for testing in comparison to solving constraints by directly using

floating-point numbers.

3.6 Summary

Two existing issues hinder the use of COMPI. First, the input values generated

by COMPI do not guarantee cost-effective testing. Second, floating-point data types and

operations are not supported and thus coverage loss can occur. We propose input tuning

to achieve cost-effective testing by favoring small input values. Also, we provide floating-

point support and argue that the efficiency of constraint solving as well as testing could

be significantly boosted if solving using reals instead of floating-point numbers. Evaluation

results demonstrate that input tuning achieves high branch coverages much quicker than

when it is not used. We further demonstrate that floating-point extension using reals helps

us achieve higher coverage and solving constraints using reals is a better fit for practical

testing compared with direct use of floating-point numbers.

70

Chapter 4

Tackling Scaling Problems In and

Out of MPI Collectives

MPI application developers face the challenge of dealing with bugs whose root-

cause is often hard to locate because errors in one process can easily propagate to other

processes via communication. To make matters worse, some errors, such as integer over-

flow and resource exhaustion, manifest only at large scale. We refer to them as scaling

problems [133, 134, 121, 86].

It has been recognized that program scale has two dimensions: parallelism scale,

i.e. the number of parallel processes; and problem size [134] that impacts the message size

that must be handled by the MPI library. Thus, scaling problems can be triggered by

large values in either one dimension or both leading to the following natural classification:

Type-1 problems are only triggered by a large parallelism scale; Type-2 problems are only

triggered by a large problem size; and Type-3 problems are triggered by the combination of

71

P
ro

b
.

C
ol

le
ct

iv
e

M
P

I
li

b
ra

ry
T

y
p

e
E

ff
ec

t
S

ca
le

(P
,M

)
R

o
ot

ca
u

se
(i

n
si

d
e

M
P

I)

1
M

P
I

G
a
th

er
O

p
en

M
P

I
1.

4.
3

3
H

(6
4,

4K
B

)
E

n
v
ir

on
m

en
t

se
tt

in
g

d
ep

en
d

en
cy

2
M

P
I

A
ll

to
al

l
O

p
en

M
P

I
1.

4.
3

3
H

(4
4,

4M
B

)
E

n
v
ir

on
m

en
t

se
tt

in
g

d
ep

en
d

en
cy

3
M

P
I

A
ll

g
a
th

er
O

p
en

M
P

I
1.

4.
3

3
H

(6
4,

4M
B

)
—

4
M

P
I

A
ll

to
a
ll

v
O

p
en

M
P

I
1.

7
3

H
(9

6,
51

2K
B

)
N

et
w

or
k

co
n

n
ec

ti
on

fa
il

u
re

5
M

P
I

A
ll

g
a
th

er
M

P
IC

H
2

3
D

P
·M

>
IN

T
M

A
X

In
te

ge
r

ov
er

fl
ow

in
M

P
I

6
M

P
I

S
en

d
+

R
ec

v
In

te
l

M
P

I
5.

1.
2

2
H

(2
,

64
K

B
)

O
S

(u
b

u
n
tu

)
d

ep
en

d
en

cy

7
M

P
I

B
ca

st
In

te
l

M
P

I
5.

1.
2

2
or

3
H

(2
,

64
K

B
)

U
n

k
n

ow
n

to
d

ev
el

op
er

s

8
M

P
I

B
ca

st
In

te
l

M
P

I
20

17
2

or
3

H
(—

,
16

K
B

)
P

la
tf

or
m

(K
N

L
&

B
D

W
)

d
ep

en
d

en
cy

T
a
b

le
4.

1:
W

el
l-

d
o
cu

m
en

te
d

sc
a
li

n
g

p
ro

bl
em

s
re

p
or

te
d

on
li

n
e

[2
0,

21
,

13
3,

13
,

6,
15

].
N

ot
es

:
(1

)
E

ff
ec

t
-

H
an

g,
C

ra
sh

an
d

p
er

fo
rm

an
ce

D
eg

ra
d

at
io

n
;

(2
)

F
a
il

in
g

sc
al

e
(P
,M

)
-

th
e

P
ar

al
le

li
sm

sc
al

e
an

d
M

es
sa

ge
si

ze
th

at
tr

ig
ge

r
th

e
p

ro
b

le
m

.

72

Prob. Collective MPI library Type Effect Scale (P,M) Root cause

9

MPI Gatherv(I)

MPI Standard

3 C

(48, 44MB)
MPI Scatterv(I) 3 C/H Outside
MPI Allgatherv(I) 3 C MPI
MPI Alltoallv(I) 3 C

10 MPI Igather OpenMPI 1.7 3 C
(48, 44MB)

11 MPI Iscatter & 1.10 3 C/H Inside
12 MPI Gather

MPICH 3.1.3
3 C (48, 128MB) MPI

13 MPI Scatter 3 C (48, 44MB)

Table 4.2: Newly uncovered scaling problems.

the two. We collected a list of well-documented scaling problems reported online as shown

in Table 4.1. Also, we detected new bugs in various MPI versions that are listed in Table 4.2.

A scaling problem is classified as Type-3 if the description stresses both parallelism scale

and message size, as Type-2 if it is only related to message size, and as unknown (either

Type-2 or Type-3) if it depends on message size while its dependence on parallelism scale

is unknown. With such classification, ten scaling problems are Type-3 (Prob. 1-5, 9-13),

one is Type-2 (Prob. 6), and two are unknown (Prob. 7-8). To our knowledge, Type-3 is

the most common type of scaling problem, Type-2 is next, and Type-1 is the least common

as in our investigation we are yet to observe a Type-1 problem. This chapter focuses on

Type-2 and Type-3 scaling problems – Type-3 problems are discussed in the context of MPI

collectives as collective communication directly depends on both the parallelism scale and

the problem size.

4.1 Scaling Problems

Scaling problems can be exposed in the dynamic interaction between user code and

MPI library. In the interaction, the target program runs with various number of processes

73

and demands the passing of messages of differing lengths. In extreme cases, the use of

too many processes (too large messages) causes the corruption of MPI routines though

it only demands communications of messages of moderate lengths (a moderate number

of processes). Among all the MPI routines, irregular collectives, that enable processes to

transfer varying amounts of data, suffer from this problem the most due to their use of

C int displacement array that characterizes irregular collectives. Take MPI Gatherv as

an example and suppose P processes are used, the address of the root’ buffer for received

messages is recvbuf , and the displacement array is displs. With MPI Gatherv, one process,

known as the root, gathers messages from all P processes and stores them in recvbuf

according to displs — the i-th entry of displs specifies the displacement relative to recvbuf

at which to place the incoming message from process i (0 ≤ i < P), i.e., the starting address

of the message from process i is

recvbuf + displs[i] ∗ s, (4.1)

where s denotes the size of the messages’ data type. The maximum of a int type in C is

denoted as INT MAX. Since displs[P − 1] ≤ INT MAX, the number of elements that the

root receives from the first P − 1 processes must be no bigger than INT MAX− 1, which is

about 1/(P − 1) of the number of elements the root receives from the first P − 1 processes

when using MPI Gather (INT MAX∗(P−1)). In addition, C int is represented with 32 bits

on most current platforms [68]. When P = 1024, each process sending a few megabytes (220

Bytes) can easily corrupt MPI Gatherv’s displs as well as MPI Gatherv. Hence irregular

collectives face an urgent scalability issue that must be dealt with.

74

Scaling problems can result from a bug inside released MPI libraries due to the

following two reasons. First, the lack of systematic testing over MPI software stack has

caused scaling problems to go undetected – Type-2 problems triggered when operating on

large messages have seen little test coverage [68] and the fact that Type-3 scaling problems

manifest due to the combined force of parallelism scale and message size has not been

adequately appreciated. Second, manifestation of some scaling problems is platform or

environment dependent [20, 22, 13, 14, 6, 15] and compleletly removing them is extremely

challenging. Therefore, it is important for the library users, including both MPI application

developers and the application users, to perform testing by themselves to detect potential

scaling problems of MPI routines of their interest.

4.1.1 Challenges

A scaling problem caused by breaking the aforementioned limits of irregular col-

lectives can be fixed by MPI application developers via changing the application code so as

to avoid corrupting the irregular collectives’ displacement array. But application developers

might not be willing to fix it when most often the application is used at small scale without

breaking the limit. In addition, many — surely not all — application developers argue that

MPI standard should replace all the uses of C int with C long long int to avoid the scaling

problem due to integer overflow on MPI routines. However, it has been a struggle for MPI

standard to make this replacement. The issue of C int has been discussed since at least

2011. However, MPI forum believes that developers can support large count by themselves,

like by building big data types, and persists using C int till today to provide backward

compatibility [4, 12].

75

Prob. MPI Developer App. Developer App. Users Our protection

1-4, 6-8 3 3

9 3 3

5, 10-13 3 3

Table 4.3: Who can fix the scaling problems? .

For a scaling problem whose root cause is inside MPI, MPI library developers are

responsible for fixing it, but it takes time to release an official fix and sometimes even not

possible due to the difficulty of platform or environment dependent bugs’ reproduction.

Reproducing a scaling problem is challenging since some scaling problems are platform-

dependent [13, 14, 6, 15] and some occur due to an incompatible environment setting [20, 22].

Because of these reasons some scaling problems might never be reproduced [6]. After a bug

is reproduced, it can still take much time to issue a fix due to the difficulties of root-cause

identification and the development of a safe fix [100].

4.1.2 Our Approach

To relieve the tension among MPI developers, application developers and applica-

tion users as shown in Table 4.3, this chapter proposes user-side testing to uncover scaling

problems and provides a framework that non-intrusively bypasses the uncovered problems.

First, we eliminate the aforementioned limits of irregular collectives: based on interception,

we check if the displacement array is corrupted, i.e., if it contains negative values, recover

the value if a corruption occurs, and avoid the scaling problem via either (1) chopping the

communication into smaller ones or (2) building big data types. Second, we bypass scaling

problems inside the MPI collectives based on testing and the same avoidance strategies.

76

We provide an automated testing tool set for MPI collectives that users can use to test

the correctness of MPI routines of interest at large scale either when MPI is installed or

when they suspect that some routines trigger scaling problems for applications built on

them. If a scaling problem is detected for an MPI routine, the testing procedure reveals

the problem trigger point, i.e. the parallelism scale or message size that triggers a scaling

problem. When running an application, MPI routines are intercepted to dynamically check

if the problem trigger is reached. If this is the case, our avoidance routine as discussed

above is invoked to bypass the problem. The key contributions of this chapter are:

• It makes a clear classification of scaling problems, and this classification leads to a

useful observation — testing for Type-3 scaling problems does not necessarily require

a large scale supercomputer if we exploit the interplay between message size and

parallelism scale.

• It establishes the necessity of user-side testing to manifest scaling problems inside MPI

collectives. We uncover two kinds of Type-3 scaling problems as shown in Table 4.2:

(1) an inherent defect in MPI standard on irregular collectives that impacts eight

MPI routines; and (2) four hidden scaling problems inside the released MPI libraries

including OpenMPI and MPICH.

• It provides a protection layer to avoid scaling problems without requiring any changes

to the MPI library or user programs. It is an immediate remedy when an official fix

is not readily available.

77

Figure 4.1: Avoiding scaling problems via interception.

• It evaluates the practicality of our protection layer consisting of three potential avoid-

ance strategies for four representative MPI collectives.

4.1.3 Overview

To affect a non-intrusive fix, we need the following: (1) problem trigger which is

the scale at which a scaling problem manifests itself; and (2) an avoidance that alters the ex-

ecution to avoid the problem. Once both of them are known we intercept an MPI Collective

as shown in Figure 4.1. The interception permits the default collective PMPI Collective()

only when a scaling problem’s trigger is not reached; otherwise, it invokes the avoidance

routine MPI Collective F ix().

The trigger of the scaling problems caused by the corruption of the displacement

array of irregular collectives is obvious: it is when at least one element in the array is

negative (corrupted). To identify the triggers for other problems, we employ testing. As

both Type-2 and Type-3 scaling problems relate to the message size, they can be triggered

even on a small cluster by testing using large message sizes. Testing not only tells us if a

scaling problem exists, it also identifies the scale that triggers the problem.

The avoidance we develop either (1) replaces the default large scale communication

78

Symbol Meaning

n Element count in one message

s Size of the data type in bytes

P Total number of processes

Gb Global data buffer size in bytes

Ge Global data buffer size in element count, Gb
s

Table 4.4: Notations.

specified by multiple communications at a smaller scale or (2) exploits the interplay between

element count and data type size, whose product equals the message size, by building a big

data type. Without involving uncovered details, we just give an example of one strategy

for the above approach (1). As shown in Table 4.1, MPI Gather (Prob. 1) breaks when the

message size is 4KB when running with 64 processes. Suppose users use it at 8 KB message

size with 64 processes. By testing we supposedly get the maximum workable message size

like 3KB. Our avoidance bypasses it by carrying out two rounds of 3KB message transfers

and one round of 2KB transfer.

4.2 Manifesting Scaling Problems

4.2.1 Basics of MPI Collectives

Table 4.4 lists the notations we use. With a collective, P processes communicate

with each message having n elements whose data type’s size is s. MPI collectives can be

classified into four types: All-to-All, All-to-One, One-to-All, and other collectives that do

not fit into any type above [120]. Table 4.5 lists the collectives considered in this chapter,

which covers both the blocking/non-blocking regular collectives and blocking/non-blocking

irregular collectives. Root process is the process holding the final result for All-to-One

79

Type Function Gb

One-to-All
MPI Bcast(I) sn
MPI Scatter(I, v) snP

All-to-All

MPI Allgather(I, v) snP
MPI Allreduce(I) sn
MPI Alltoall(I, v) snP
MPI Reduce scatter sn

All-to-One
MPI Gather(I, v) snP
MPI Reduce(I) sn

Table 4.5: MPI collectives and their global data buffer size. If (I) follows a collective,
the collective has a non-blocking variation; if v follows a collective, the collective has an
irregular variation.

collectives and the one holding the data sent out to all processes for One-to-All collectives.

No root exists in symmetrical All-to-All collectives.

Global data buffer stands for the data buffer whose contents are either con-

tributed by or distributed to all processes. The global data buffer is the root’s receiving

buffer for All-to-One and the root’s sending buffer for One-to-All. Each data buffer for

All-to-All is a global data buffer, but we refer to the largest data buffer when discussing its

size. We denote the global data buffer size in bytes as Gb and in terms of element count as

Ge. Gb can be expressed as functions of s, n, and P (see Table 4.5), and Ge = Gb/s.

4.2.2 Testing

Experiment Setup. Table 4.6 provides an overview of our experiment setup.

The MPI libraries we study include MPICH 3.1.3, OpenMPI 1.7, and OpenMPI 1.10.0.

MPICH 3.1.3 runs over of TH-express—a specialized high performance network interconnect

of Tianhe-2 [104]. OpenMPI on the other hand is run by using TCP/IP over TH-express,

which can be achieved by assigning btl framework to tcp [62]. We modified collective

80

Platform Tianhe-2, each node having 2 E5-2692 processors (24 cores) and 64GB memory

MPI
MPICH 3.1.3 based on InfiniBand
OpenMPI 1.7 & 1.10.0 based on TCP/IP

Programs OMB adapted for automated testing

Table 4.6: Experiment Setup.

benchmark set from the OSU micro-benchmark suite (OMB) [23] so that it enables us to

set a time limit for the test at each message size and to vary n and s.

Testing Scheme. We perform testing by scaling both parallelism and message

size. To increase parallelism P , we increment the number of nodes while allocating 24

processes per node (1 process per core). To increase message size sn we increase n while

fixing s – for MPI Reduce, MPI Reduce scatter, and MPI Allreduce, s = 4B as data type

MPI FLOAT is used and for the rest s = 1B as MPI CHAR is used. We perform testing

for P = 48 and 96. Given P , the testing is fully automated via a Linux shell script that

submit time-limited tests (jobs) to job scheduler — each test is denoted as test(n, t), where

t stands for the time limit requested to run the job. If a test crashes or cannot finish in

time t, a failure is reported. Testing steps are:

– Step 1 iterates until (1) the message size grows to INT MAX, the maximum

allowed by its data type, (2) memory limit is hit 1 or (3) a failure is encountered. This

process starts from n = 1 with t = 60 seconds as it is far more than enough to complete a

transfer of 1 or 4 bytes with 60 seconds for any collective in our configuration. If it succeeds,

we update t as the real time cost of the current run. We continue tests by increasing message

size via n ← 2 ∗ n as well as sufficiently increasing the time limit via t = 10 ∗ t. In this

1During execution if a test runs out of memory due to the huge memory footprint, we can identify this
error from the error logs showing some processes being killed by the kernel, or more specifically by OOM
killer.

81

step, the testing procedure terminates without finding any scaling problem if condition (1)

is met; the testing with the next P configuration starts if condition (2) is met; and the

testing proceeds to Step 2 upon condition (3) with the detected largest n that passes the

test, denoted as n′s.

– Step 2 refines n′s found in Step 1 as follows. We know n′s succeeds and 2n′s fails,

so we test at interval ∆ = n′s/f (we use f = 16 in our testing and users can vary f to

configure ∆ to satisfy their requirement) in the range [n′s + ∆, 2n′s). Finally the largest

n that passes the test at interval ∆ is found. The safe bound, ns, is the largest n that

passes the test under our testing scheme for the given s and P , i.e., the test is able to pass

if n ≤ ns but it fails if n > ns + ∆.

4.2.3 Scaling Problems Uncovered

Using the above testing scheme we uncovered scaling problems shown in Table 4.2.

These scaling problems can result from (1) Displacement array corruption outside MPI

library that impacts all 8 irregular collectives from any MPI library and (2) A corruption

inside MPI library, which maps to 4 corrupted functions in various released MPI libraries.

Outside MPI (Prob. 9). In the default setting that allocates 24 processes per

node, all irregular collectives except MPI Alltoallv(I) are found to be susceptible to this

problem, and MPI Alltoallv(I) are not as it hits the memory limit first due to its higher

memory consumption. The scaling problem occurs with the use of MPI Alltoallv(I) when

we reduce the memory consumption by allocating one process per node. These scaling

problems are invariably caused by an integer overflow error when calculating the C int

displacement array for irregular collectives. On the other hand, even this error does not

82

Root cause location Prob.
Safe bound ns (∆)
P = 48 P = 96

Outside MPI 9
42M (2M) 21M (1M)

Inside MPI
10-11, 13
12 124M (4M) 62M (2M)

Table 4.7: Safe bounds.

occur in user code, i.e., users calculate correctly based on a larger data type like C long

long int, the scaling problems would still occur due to truncation error in the data type

conversion.

Inside MPI (Prob. 10, 11, 12, 13). Table 4.2 shows two collectives — each in

both OpenMPI 1.7 and 1.10.0 and MPICH 3.1.3 — encounter a scaling problem due to an

integer overflow inside the MPI library. Next we illustrate this problem using MPI Igather

from OpenMPI 1.10. In MPI Igather’s underlying function ompi coll libnbc igather, the root

process needs to calculate the starting address rbuf for storing the message from process i

with

rbuf = (char *)recvbuf + i ∗ recvcount ∗ rcvext, (4.2)

where recvbuf is the starting address of the root’s receiving buffer, recvcount (C int) is the

number of elements in one message, and recvext is the size of the used data type. Integer

overflow occurs when i ∗ recvcount > INT MAX, which results in a negative integer as

well as an invalid address assigned to rbuf . Considering there are P processes in total, the

problem is triggered once n(P − 1) ≥ INT MAX.

Safe bound. For each MPI routine having a scaling problem, we report the safe

bound ns, where test is able to pass if n ≤ ns but it fails if n > ns + ∆. The safe bound for

each scaling problem is reported in Table 4.7.

83

Class Detector

D displs[i0] < 0

G Gb > Bh or Ge > Bh

X n > Bh given s and P

• displs, the displacement array for an irregular collective
• i0, the index of the first corrupted element
• Bh, a bound restricted by an unknown scaling problems

Table 4.8: Scaling problem detectors.

Useful insights have been gained based on the problems reported online as well

as new problems detected by us. First, manifesting a Type-3 scaling problems does not nec-

essarily demand a supercomputer and many scaling problems can be found by interplaying

the message size and parallelism scale. Second, the testing coverage of MPI software stack

is inadequate as shown by newly uncovered problems and scaling problems resulting from

platform and environment dependency are hard be removed. Third, it takes time to obtain

an official fix and sometimes the fix is not possible considering the platform-dependent scal-

ing problems that are hard to be reproduced [6] as well as the displacement array corruption

for irregular collectives. All these inspires us to propose user-side testing and to provide an

easy-to-use protection layer, which acts as an immediate remedy when an official fix is not

available.

4.3 Online Problem Detectors

Depending upon the difficulty of detection, we classify the problems into 3 classes

as shown in Table 4.8: (1) Class D caused by displacement array corruption, (2) Class G

triggered when the global data buffer is too big, and (3) Class X whose trigger form is not

known.

84

4.3.1 Class D: Displacement Array Corruption

To detect the occurrence of a scaling problem (e.g., Prob. 9) because of displace-

ment array displs corruption is very straightforward. One pass over the array is enough.

Below we detail the validity of our assumptions and how we detect the corruption as well

as how displs can be recovered.

Assumptions. We assume (1) uncorrupted values in array displs are non-

descending; (2) n ≤ INT MAX; and (3) two’s complement is used to represent integers.

Assumption (1), though not specified by MPI standard, is based on a commonly used pro-

gramming convention of organizing the data in global data buffer by MPI rank. Using this

convention makes programming less error-prone. Assumption (2) implies that the number

of elements sent by each process is at most INT MAX, which is specified by the standard.

Assumption (3) is true on nearly all modern machines [40].

Detector D. A corruption is detected if displs[i0] < 0, where 0 ≤ i0 ≤ P − 1 and

the itho entry is the first element being corrupted.

Proof. We denote the actual value of displs[x] as ax and its correct value as cx

(cx > 0), where 0 ≤ x ≤ P − 1. Let the first corrupted value in displs be displs[i0]. As a

correct displs is non-descending, all elements following the ith0 element must be corrupted.

Our goal is to prove ai0 < 0 based on the known relations below:



ci0 = ci0−1 + n,

ai0 6= ci0 ,

ai0−1 = ci0−1,

(4.3)

85

From ai0−1 = ci0−1, we get

0 ≤ ai0−1 ≤ INT MAX (4.4)

As ci0 = ci0−1 + n and n ≤ INT MAX, we get

INT MAX < ci0 ≤ 2 INT MAX. (4.5)

As mentioned earlier, the corruption of displs can result from a positive overflow of integer

addition in user code as well as truncation error during type conversion from long long int

to int. In either case, based on two’s complement system, we have:

ai0 = ci0%(2 INT MAX + 2)− (2 INT MAX + 2), (4.6)

and hence

ai0 = ci0 − (2 INT MAX + 2). (4.7)

Combining Equations 4.5 and 4.7, we get ai0 ≤ −2 < 0 and thus the validity of Detector I

is proved.

Recovery. Suppose the actual values of array displs are a0, a1, a2, ..., aP−1 and

the supposed correct values are c0, c1, c2, ..., cP−1. Upon two’s complement system, we

have:

ai = ci%(2 INT MAX + 2)− (2 INT MAX + 2). (4.8)

This implies that for a corrupted array the actual values will have several segments, where

86

the actual values are sorted increasingly in the range of [−INT MAX− 1, INT MAX]. We

can always recover displs based on the corrupted values as below: (1) if i = 0,

ci = a0 ; (4.9)

(2) else if i > 0 and ai ≥ ai−1

ci = ci−1 + ai − ai−1 ; (4.10)

and (3) else

ci = ci + ai + 2INT MAX + 2− ai−1 ; (4.11)

Proof. Let [s0, s1 − 1] be the index range of one segment while ci and ai denote

the correct and actual values respectively of the element at index i in displs such that

i ∈ [s0, s1 − 1] and s1 < P . First, we guarantee c0 = a0 as a0 = displs[0] > 0. Secondly,

we consider the case of inside the segment, i.e. when i > 0, ai ≥ ai−1. When corruption

doesn’t occur, Equation 4.10 holds for sure. Below justifies when corruption occurs. The

correct value ci can be expressed as

ci = ki ∗ (2 INT MAX + 2) + Ci, (4.12)

where ki is an integer and INT MAX + 1 ≤ Ci ≤ 3 INT MAX. Since in the same segment

ci ∈ [−INT MAX − 1, INT MAX], we guarantee that ki−1 = ki when s0 < i ≤ s1. Based

87

on Equation 4.8, we proved

ai − ai−1 = ci − ci−1 = Ci − Ci−1, (4.13)

and thus Equation 4.10 is proved. Lastly, let’s consider the last case, i.e., the relationship

among cs1 , cs1−1, as1 and as1−1. In this case, we have

cs1−1 = ks0 ∗ (2 INT MAX + 2) + Cs1−1,

cs1 = ks0 ∗ (2 INT MAX + 2) + Cs1

+2 INT MAX + 2.

(4.14)

Still based on Equation 4.8, we get

as1 − as1−1 = Cs1 − Cs1−1, (4.15)

while

cs1 − cs1−1 = Cs1 − Cs1−1 + 2 INT MAX + 2. (4.16)

Hence, we obtain Equation 4.11. The proof is complete.

4.3.2 Class G: Global Data Buffer Too Large

This class of scaling problem manifests when the global data buffer size exceeds a

certain bound Bh. For example, Prob. 5, 10, 11, and 13 fall in this class.

Detector G: Gb > Bh or Ge > Bh, i.e., the global data buffer size, evaluated in

either bytes or elements, exceeds a bound caused by an unknown scaling problem.

88

This problem trigger is built based upon the analysis of certain scaling problems –

Prob. 5, 10 and 11. Prob. 5 is a Type-3 scaling problem that was found in MPI Allgather

in MPICH2 [133]. It was tracked down to an integer overflow that caused a non-optimal

communication algorithm to be selected and this leads to serious performance degradation.

Its problem trigger relation is

snP > INT MAX. (4.17)

The triggers of Prob. 10 and 11 can be expressed as

n(P − 1) ≈ nP > INT MAX, (4.18)

where P � 1. All these problem triggers represent cases where the global data buffer size

exceeds a certain bound.

Based on the global data buffer size, we can classify MPI collectives into two

types: (1) collectives with Gb = snP including MPI Alltoall(I,v), MPI Allgather(I,v),

MPI Gather(I,v), and MPI Scatter(I,v), whose trigger (Type-3) can be expressed as

nP > Bh, or snP > Bh; (4.19)

and collectives with Gb = sn including MPI Allreduce(I), MPI Reduce(I),

MPI Reduce scatter(I) and MPI Bcast(I), whose triggers (Type-2) are

n > Bh, or sn > Bh. (4.20)

89

1 2 3
Detector Type

(ss, Ps) (ss, 2Ps) (2ss, Ps)

ns

ns/2 ns/2 snP > ssnsPs 3
ns/2 ns nP > nsPs

ns ns/2 sn > ssns 2
ns ns n > ns

Table 4.9: Detector G’s lookup table.

Identifying class G and its detector. Based on one round of testing, we can

get the safe bound ns given (ss, Ps, ∆). To tell whether such scaling problem is from Class

G, we simply check two additional safe bounds at different (s, P) configurations by varying

each parameter – (2ss, Ps) and (ss, 2Ps) as given in Table 4.9. To avoid unnecessary brute-

force stress testing on finding these two additional safe bounds, we verify if the safe bound

is ns/2 or ns. If the test passes at ns/2 and fails at (ns + ∆)/2, the safe bound is ns/2;

otherwise, we continue checking ns: if the test passes at ns while failing at ns + ∆, the safe

bound is verified to be ns. If all the safe bounds match any row of Table 4.9, we claim this

problem is from Class G and its detector is given in the fourth column. Otherwise, it falls

in class X as discussed below.

4.3.3 Class X : Trigger Form Not General

Class X represents scaling problems that cannot be quantitatively expressed using

a general form. Although Prob. 1, 2, 3, 4, 7 were reported, we cannot conclude that its

trigger can be expressed in a general form like for Class G and thus we capture them in a

restrictive condition.

Detector X: n > Bh given s and P . Note it is not a general method; it works

only within the restriction.

90

Figure 4.2: Safe bounds of G problems (Prob. 10, 11 and 13).

4.3.4 Case Studies: Class G and X

Detector D is sound enough based on proof. Here we show how to find detectors

for Class G and Class X.

Class G. To check if a scaling problem is of Class G or not, we first find the safe

bound at (s = 1B, P = 48), and then verify the two safe bounds at (s = 1B, P = 96) and

(s = 2B, P = 48). The detected safe bounds of Prob. 10, 11 and 13 are shown in Figure 4.2,

where the required three as well as three additional safe bounds are shown so as to provide

a clear picture of how the safe bounds vary given different (s, P) settings. By checking

Table 4.9, we conclude that these problems are from Class G. However, their detectors are

different. For Prob. 10 and 11, the detectors are the same:

Ge = nP > 2016M. (4.21)

Prob. 13’s detector is:

Gb = snP > 2016MB. (4.22)

Class X. Similarly we found that the three safe bounds at (s = 1B, P = 48),

(s = 2B, P = 48) and (s = 1B, P = 96) are 124M, 68M and 62M respectively as shown in

91

Figure 4.3: Safe bounds of an X problem (Prob. 12).

Figure 4.3. However, these do not map to any row in Table 4.9 and thus we classify this

problem into Class X. Based on Figure 4.3, it follows:


snP > 5952MB if s = 1 and P ≥ 48

snP > 6144MB if s ≥ 2 and P ≥ 96

(4.23)

Note that users do not necessarily need to find the exact bound in all situations. Easily

users can find a bound though overly restrictive. For example, an application uses the

buggy MPI Gather at s = 1B and P = 96. Based on testing it is easy to obtain 62M as the

safe bound. Thus, we assume that the problem can occur if n > 62M.

4.4 Non-intrusive Avoidance

To avoid the risk of introducing other scaling problems, we keep our design clean

via following protocols: (1) the avoidance of an MPI routine’s scaling problem is based on

the routine itself; (2) the avoidance uses the minimal number of MPI routines other than

the target routine, i.e. other routines at most do some control messages’ passing involving

only a few bytes. For example, though avoiding MPI Gather with MPI Gatherv is easy, it

it not allowed to avoid any problems existing in MPI Gatherv.

92

Figure 4.4: Illustration of the partitioning strategies for MPI Gatherv (P = 4 and n = 2)
by breaking down the filling process of the global data buffer. Process 0 is the root and the
bug would be triggered when nP > 4.

4.4.1 Workaround 1: Communication Partitioning

Partitioning strategies. Consider a Type-3 scaling problem of Class G that

manifests when Gb > Bh (or Ge > Bh). An inherent workaround (W1) is to partition the

communication such that for each sub-communication nP ≤ Bh (or Ge ≤ Bh). Specifically,

W1 has two partitioning strategies: (A) shrink P while fixing n; and (B) shrink n while

fixing P . Consider MPI Gatherv, for which the scaling problem is triggered when nP > 4.

Figure 4.4 shows a simplified view of how the two strategies are applied. W1-A creates two

process groups – {0, 1} and {0, 2, 3}. Since process 0 is the root that receives messages from

all, it is present in every group. In the 2nd group process 0 can be configured to send out

nothing; thus the real number of processes participating in each sub-communication is still

two, i.e., P = 2 and n = 2. With W1-B, P = 4 and n = 1 in each sub-communication.

Since nP = 4 with either strategy, the scaling problem is avoided.

93

Figure 4.5: Workaround 1-A for MPI Gatherv.

Applying Workaround 1-A to MPI Gatherv Applying the workarounds to Class G

and X is straightforward, but it involves the tricky issue of displacement array’s corruption

for Class D. We hence illustrate how W1-A works for MPI Gatherv (Class D) here. As shown

in Figure 4.5, one corrupted displacement array displs consists of at least two segments with

all elements in each segment are either non-negative or negative. Each such segment maps

to one segment of root process’ recvbuf as well as a group of processes, in which the root

process should be added if it is not included as it is the one that holds recvbuf . The

communication then could be naturally partitioned, each of which is performed within one

group of processes.

Constructing uncorrupted displacement array. Recall that we have recov-

ered displs from corruption with all of its correct values stored in array c. For each sub-

94

communication, we construct a new displacement array (disps2) as

displs2[i] =


0 if i = 0,

cs0+i − cs0 if i > 0,

(4.24)

where the range [s0, s1 − 1] depicts the process id range of one process group. In one run,

we have cs1−1 − cs0 ≤ INT MAX and thus displs2 would not be corrupted.

4.4.2 Workaround 2: Big Data Type

Building a big data type is a potential alternative strategy (W2) for scaling prob-

lems that are unrelated to data type size s such as Prob. 8, 9, and 10. With the newly

created big data type of size d-bytes, an original message having x elements with each ele-

ment accounting for y bytes can be converted to a new message containing xy/d elements

with each element having d-bytes. That is, the number of elements in one message (n) is

decreased by a factor of d. Suppose the safe bound limit for an s-irrelevant scaling problem

is ns. This could increase the safe bound from ns to dns. In addition, W2 ’s performance is

expected to be comparable to the original’s as the cost of building new data type is trivial.

The size of big data type in byte (d) can be set as following: (1) d = sns for

regular collectives; and (2) d = sngcd with ngcd being the greatest common divisor of all

values in displs and recvcounts for irregular collectives, which ensures that using the new

data type the collective is able to work as intended. Note that for case (2) W2 is effective

only when ngcd > 1.

95

Scaling problems W1-A W1-B W2

Type-3
Class D 37

3 37
Class G 37

Class X 7

Type-2 7

Table 4.10: Workarounds applicability: ”3” - apply; ”7” - does not apply; ”37” - apply with
restrictions.

4.4.3 Applicability and Limitation

Table 4.10 summarizes the applicability of all strategies on various scaling prob-

lems. W1-A can tackle the majority of scaling problems of Class D and G from Type-3,

its restriction is for MPI Alltoall(I,v) as this routine has the highest communication com-

plexity and partitioning the parallelism scale will only lead to complex error-prone logic.

It cannot handle Class X as we use the detector n > Bh. It does not handle Type-2 as

only message size matters for this type. W1-B that cuts message size is the most general

avoidance that applies unconditionally. W2 is less general compared with W1-B because

of following limitations: (1) it only works for scaling problems that are unrelated to s; and

(2) it does not work for irregular collectives when ngcd = 1.

W2 ’s limitation resides in its limited applicability. W1 has limitations as well.

First, non-blocking communication routines has been turned into its blocking communi-

cation using W1-A and W1-B. Second, additional memory overhead is incurred in the

implementation of some workarounds like W1-B for MPI Gather. Third, the performance

of W1-A and W1-B is not as good as the performance of W2.

96

Scale ↓ Original W1-A W1-B W2
ns RM ns RM ns RM ns RM

P
192 10.5 2.21 256 54.00 256 54.0 272 57.38
768 2.625 2.03 68 52.60 72 55.69 72 55.69

Table 4.11: Workarounds’ effectiveness for MPI Gatherv (D). The unit of ns is 1 M, i.e.
220, and that of RM is GB.

4.4.4 Evaluation

We evaluate our non-intrusive workarounds based on 4 representative MPI rou-

tines. They stand for all-to-one and all-to-all — one-to-all is ignored as it is very similar to

all-to-one, and also they represent irregular, regular, blocking and non-blocking collectives.

Our default setting is the same as mentioned earlier—24 processes per node (1 process per

core), s = 1B and f = 16.

Effectiveness

The effectiveness is evaluated by the degree to which a workaround can increase

the safe bounds of the default buggy functions – the greater the safe bounds are increased

the more effective is the workaround. In the evaluation, our workarounds increase the safe

bounds significantly, but the workarounds’ safe bounds are limited by the physical memory

size. To show this point, we also report the maximum memory consumption on one node,

denoted as RM , which is calculated according to the MPI standard.

I. Class D (Prob. 9: MPI Gatherv). As shown in Table 4.11, all three

workarounds have comparable effectiveness, and their safe bounds are roughly 24 times the

safe bound of the default MPI Gatherv. W1 and W2 have comparable effectiveness. The

workarounds do not go further because the physical memory limit is reached — note MPI

97

Scale ↓ Original W1-A W1-B W2
ns RM ns RM ns RM ns RM

P
192 10.5 2.21 256 54.00 256 54.00 272 57.38
768 2.625 2.03 72 57.02 42 32.48 42 32.48

Table 4.12: Workarounds’ Effectiveness for MPI Igather (G). The unit of ns is 1 M, i.e. 220,
and that of RM is GB.

Scale ↓ Original W1-B
ns RM ns RM

P
192 31 6.75 240 50.63
768 7.75 6.19 64 49.50

Table 4.13: Effectiveness of Workaround 1-B for MPI Gather (X). The unit of ns is 1 M,
i.e. 220, and that of RM is GB.

has hidden memory footprint besides the obvious RM .

II. Class G (Prob. 10: MPI Igather). Its evaluation is shown in Table 4.12.

At scale P = 192, three workarounds are of comparable effectiveness and their safe bounds

are 24+ times the default MPI Igather’s safe bound. At P = 768, W1-A is the best, W2

and and W1-B are worse, where the first is limited by the memory size while the last two are

not. The last two’s worse performance is traced down to the error of connection time out,

i.e., when too many processes connect to the root process that is only capable of responding

a portion of the connection requests at a time due to the ongoing communication with

large message sizes, some connections fail to be established within a time limit. This error

doesn’t negatively impact W1-A as each time it communicates with only a small portion of

processes.

III. Class X (Prob. 12: MPI Gather). The detection only works under a

specific restriction as mentioned earlier. Here the restrictions are s = 1 and P ≥ 48 and the

98

scaling problem manifests when n ≥ 5952
P . W1-B is the only workable solution. Table 4.13

shows W1-B ’s safe bounds are 7+ times of the default’s. As W1-B incurs 5.8 GB memory

overhead, RM is smaller compared with the previous experiments.

Performance

The performance is measured as time cost in seconds. As each process might

have varying time costs in one run, we report both the average and the maximum. Given

a (s, n, P) configuration, a collective is run Y times, where Y = 500 if n <= 1M and

Y = 20 otherwise. We evaluate the performance of workarounds using the above three

buggy collectives first and then two correctly-functioning routines with supposed scaling

problems for which all the workarounds apply.

I. Class D. For MPI Gatherv, all workarounds are effective; they detect scaling

problems of class D by detecting if the displacement array displs is corrupted, which involves

checking all elements in displs and broadcasting the judgment to all P processes with

respectively O(P) and O(logP) time complexity. Considering such overhead, we evaluate

their performance both before and after the problem’s occurrence. Figure 4.6 shows the

comparison between the default MPI Gatherv and W1-A before the problem occurs. Note

all workarounds detect the scaling problem in the same way and thus have the same detection

overhead before the problem’s occurrence, so we only evaluate W1-A. We observe that the

performance of W1-A is comparable to the default as the detection overhead is trivial.

Figure 4.7 shows that the time costs of W1-A and W1-B grow linearly with message size

as it cuts communication into roughly equal-sized pieces. W2 ’s performance is better as it

retains the communication only by varying the parameter setting, but it should be noted

99

Figure 4.6: Performance comparison between W1-A and the default MPI Gatherv
(MPICH) before the scaling problem’s occurrence.

Figure 4.7: Performance comparison among the three workarounds for MPI Gatherv
(MPICH) whose scaling problem (Class D) is triggered once sn > 2.625MB when P = 768.

it is not guaranteed to work for irregular collectives as explained previously. To make W2

work in this case, we configure all processes transfer equal-sized messages in the experiment.

II. Class G. Since the problem detection is only based on checking an inequality

which is far less overhead than the detection overhead discussed above, we only measure the

performance after the problem’s appearance. Figure 4.8 shows the performance comparison

Figure 4.8: Performance comparison among the three workarounds for MPI Igather (Open-
MPI) whose scaling problem (Class G) is triggered once sn > 2.625MB when P = 768.

100

Figure 4.9: Performance trend of W1-B for MPI Gather (MPICH) whose scaling problem
(Class X) is triggered once sn > 7.75MB when P = 768.

Figure 4.10: Performance comparison based on MPI Gather (MPICH) supposing a Class
G problem is triggered when n > 128K at P = 768.

of W1-A, W1-B, and W2 for MPI Igather. W1-A is better than W2 by only a small margin,

and W1-B ’s performance is about half of W2 ’s.

III. Class X. As the detection is also trivial, the performance is measured only

after the problem’s appearance, which is shown in Figure 4.9.

IV. Evaluation of all workarounds based on correct MPI Gather. To

make sure all workarounds apply, we suppose a class G scaling problem would be triggered

if nP > 96M. Figure 4.10 shows the performance comparison among all and the default.

It is observed that: (1) For the default and W2 the maximum time cost is about 50 times

101

Figure 4.11: Performance comparison based on MPI Allgatherv (MPICH) supposing a Class
G problem is triggered when n > 128K at P = 768.

the average, but for W1-A and W1-B the maximum is at most 1.2 times the average, which

results from the fact that the partitioning method of W1-A and W1-B delays all the non-

root processes while W2 does not; (2) W2 is of comparable performance to the default;

(3) Based on the maximum, W1-A’s time cost is 1.8 times the default’s and W1-B ’s is 1.5

times the default’s.

V. Evaluation of all workarounds based on correct MPI AllGatherv. For

the same reason, we assume a class G scaling problem would be triggered if nP > 96M .

Figure 4.11 shows the performance comparison. We have following observations: (1) the

average and the maximum has little difference as the communication is symmetrical, i.e., all

the processes transfer the same amount of data; (2) W2 and the default have comparable

performance; (3) W1-A and W1-B respectively demands about 1.7 and 2.2 times the time

cost of the default.

Evaluation summary. Before a scaling problem’s occurrence, the performance

of any workaround is comparable to that of the default. After its occurrence, W2 ’s perfor-

102

mance is comparable to the default’s. W1-A’s and W1-B ’s performance are worse because

they partition the default communication, and their time cost increases linearly as the mes-

sage size goes up. In conclusion, W1-B is the a general solution, and W2 has the best

performance.

4.5 Summary

We demonstrate the necessity of user-side testing. We show that testing with

limited computing resources can manifest scaling problems based on the interplay between

message size and parallelism scale. We provide a protection layer consisting of three poten-

tial avoidance strategies and evaluate its practicality based on representative MPI routines.

Our strategies can also be easily applied to point-to-point communication.

103

Chapter 5

Hang Detection at Large Scale

Program hang, the phenomenon of unresponsiveness [122], is a common yet difficult

type of bug in parallel programs. In large scale MPI programs, errors causing a program

hang can arise in either the computation phase or the MPI communication phase. Hang

causing errors in the computation phase include infinite loop [98] within an MPI process,

local deadlock within a process due to incorrect thread-level synchronization [84], soft error

in one MPI process that causes the process to hang, and unknown errors in either software or

hardware that cause a single computing node to freeze. Due to communication dependency,

an error triggered in one process (faulty process) gradually spreads to others, finally leading

to a global hang. Errors in MPI communication phase that can give rise to a program hang

include MPI communication deadlocks/failures.

104

5.1 Program Hang at Large Scale

It is widely accepted that some errors manifest more frequently at large scale both

in terms of the number of parallel processes and problem size as testing is usually performed

at small scale to manage cost and some errors are scale and input dependent [35, 86, 133,

134, 121]. A program hang at large scale freezes the execution and wastes all the requested

computing resources in production runs based on batch job systems on supercomputers. The

wastage could be significant espeically considering the it is not uncommon that thousands

of cores or more need to be allocated for one job execution. Hence, it is urgent to devise a

tool to detect hangs at runtime and terminates hanging job to avoid the wastage.

5.1.1 Challenge

Ad hoc timeout mechanism [11, 85, 84, 98] is a commonly used hang detection

method; however, it is difficult to set an appropriate threshold even for users that have

good knowledge of an application. This is because the optimal timeout not only varies

across applications, but also with input characteristics and the underlying computing plat-

form. Choosing a timeout that is too small leads to high false alarm rates and too large

timeouts lead to long detection delays. The user may favor selecting a very large time-

out to achieve high accuracy while sacrificing delay in detecting a hang. For example,

IO-Watchdog [11] monitors writing activities and detects hangs based on a user specified

timeout with 1 hour as the default. Up to 1 hour on every processing core will be wasted if

the user uses the default timeout setting. Thus, a lightweight hang detection tool with high

accuracy is urgently needed for programs encountering non-deterministic hangs or sporad-

105

ically triggered hangs (e.g., hangs that manifest rarely and on certain inputs). It can be

deployed to automatically terminate erroneous runs to avoid wasting computing resources

without adversely effecting the performance of correct runs.

5.1.2 Our Solution: ParaStack

To address the above need for hang detection, this chapter presents ParaStack, an

extremely lightweight tool to detect hangs in a timely manner with high accuracy, negligible

overhead with great scalability, and without requiring the user to select a timeout value.

Due to its lightweight nature, ParaStack can be deployed in production runs without ad-

versely affecting application performance when no hang arises. It handles communication-

error-induced hangs and hangs brought about by a minority of processes encountering a

computation error. For a detected hang, ParaStack provides direction for further analy-

sis by telling whether the hang is the result of an error in the computation phase or the

communication phase. For a computation-error induced hang, it pinpoints faulty processes.

ParaStack is a parallel tool based on stack trace that judges a hang by detecting

dynamic manifestation of following pattern of behavior – persistent existence of very

few processes outside of MPI calls. This simple, yet novel, approach is based upon

the following observation. Since processes iterate between computation and communication

phases, a persistent dynamic variation of the count of processes outside of MPI calls indicates

a healthy running state while a continuous small count of processes outside MPI calls

strongly indicates the onset of a hang. Based on execution history, ParaStack builds a

runtime model of count that is robust even with limited history information and uses it to

evaluate the likelihood of continuously observing a small count. A hang is verified if the

106

likelihood of persistent small count is significantly high. Upon detecting a hang, ParaStack

reports the process in computation phase, if any, as faulty.

The above execution behavior based model is capable of detecting hangs for differ-

ent target programs, with different input characteristics and sizes, and running on different

computing platforms without any assistance from the programmer alike. ParaStack reports

hang very accurately and in a timely manner. By monitoring only a constant number

of processes, ParaStack introduces negligible overhead and thus provides good scalability.

Finally, it helps in identifying the cause of the hang. If a hang is caused by a faulty pro-

cess with an error, all the other concurrent processes get stuck inside MPI communication

calls. If the error is inside communication phase, the faulty process will also stay in com-

munication; otherwise, it will stay in computation phase. Simply checking whether there

are processes outside of communication can tell the type of hang, communication-error or

computation-error induced, as well as the faulty processes for a computation-error induced

hang. The main contributions of ParaStack are:

• ParaStack introduces highly efficient non-timeout mechanism to detect hangs in a

timely manner with high accuracy, negligible overhead, and great scalability. Thus it

avoids the difficulty of setting the timeout value.

• ParaStack is a lightweight tool that can be used to monitor the healthiness of pro-

duction runs in the commonly used batch execution mode for supercomputers. When

there is a hang, by terminating the execution before the allocated time expires, ParaS-

tack can save, on average, 50% of the allocated supercomputer time.

• ParaStack sheds light on the roadmap for a detected hang’s further analysis by telling

107

whether it was caused by an error in computation or communication phase. In addi-

tion, it pinpoints faulty processes for a computation-error induced hang.

• ParaStack is integrated into two parallel job schedulers Torque and Slurm and we val-

idated its performance on the world’s current 2nd and 12th fastest supercomputers—

Tianhe-2 and Stampede. For a significance level of 0.1%, experiments demonstrate

that ParaStack detects hangs in a timely manner at negligible overhead with over

99% accuracy. No false alarm was observed in correct runs taking about 66 hours

in total at the scale of 256 processes and 39.7 hours at the scale of 1024 processes.

In addition, ParaStack accurately identifies the faulty process for computation-error

induced hangs.

5.1.3 The Case for ParaStack

Hang detection is of value to application users and developers alike. Application

users usually do not have the knowledge to debug the application. In batch mode, when a

hang is encountered, the application simply wastes the remainder of the allocated computing

time. This problem is further exacerbated by the fact that users commonly request a bigger

time slot than what is really needed to ensure their job can complete. If users are unaware of

a hang occurrence, they may rerun the application with even a much bigger time allocation,

which will lead to even more waste. By attaching a hang detection capability to a batch

job scheduler with negligible overhead, ParaStack can help by terminating the jobs and

reporting the information to users when it detects a hang. Thus the unnecessary waste of

computing resources is avoided.

108

Figure 5.1: ParaStack workflow – steps with solid border are performed by ParaStack and
those shown with dashed border require a complimentary tool.

Application developers need to detect a hang first and then debug based on the

information given by ParaStack. First, knowing whether the hang-inducing error is in

computation or communication sheds light on the direction for further analysis. To debug

hangs due to communication error, such as global deadlock, is hard and it usually requires

comparatively more heavyweight progress dependency analysis, communication dependency

analysis or stack trace analysis. Since stack-trace analysis based tools such as STAT [35] do

not require runtime information, they can be applied immediately after ParaStack reports a

hang. In addition, the faulty process can be identified easily for a computation error induced

hang, which benefits developers significantly by reducing from hundreds and thousands of

suspicious processes to only one or a few.

The workflow of our tool is depicted in Figure 5.1. The path marked with blue

109

stars is the main focus of this chapter. If a hang happens and no faulty process is reported,

we assume implicitly that the hang is caused by communication errors. For ParaStack

users, debugging of a computation error induced hang has two phases: (1) monitoring the

execution to detect hangs and report the faulty process with a lightweight diagnosis tool;

and (2) debugging the faulty process with a fully functional debugger. ParaStack is an

extremely lightweight tool for the first phase.

5.2 Lightweight Hang Detection

We begin by presenting the key observation that distinguishes the runtime behavior

of a correctly functioning MPI program from one that is experiencing a hang. An MPI

program typically consists of a trivial setup phase followed by a time-consuming loop-based

solver phase where the latter is more error-prone. The solver loop can be viewed as consisting

of a mix of computation code and communication code where the latter belongs to the MPI

library. Depending upon the code being executed by a process, we classify the runtime

state of the process as: IN MPI if it is executing code in an MPI call; or OUT MPI

if it is executing non-MPI code. At any point in time, each process can be only in one

state. Further OUT MPI significance, denoted as Sout, is defined as the fraction of an

application’s parallel processes that are in state OUT MPI at a given time. Next we argue

that Sout can be used to distinguish between healthy state and hang state.

– Healthy runtime state is characterized by Sout’s periodic pattern. Parallel pro-

cesses run in and out of MPI functions repeatedly in a healthy run. Thus, a healthy process

frequently switches between states IN MPI and OUT MPI . Because of the loop struc-

110

Figure 5.2: Dynamic variation of Sout observed from 3 benchmarks: LU, SP, FT from NPB
suite. All are executed with 256 processes at problem size D.

ture, parallel processes are expected to show a repetitive pattern in terms of how they flip

state from one to the other. Thus, Sout is expected to vary over time in a periodic pattern.

Figure 5.2 shows the periodic variation of Sout in healthy executions of 3 benchmarks: LU,

SP, and FT from NPB suite [17]. This is obtained by repeatedly checking Sout at fixed time

interval of 1 millisecond. We see that the length of the period varies as it is influenced by

factors such as problem size and application type.

– Hang runtime state is characterized by a persistently low Sout. If a hang is

caused by a computation error, the majority of processes in state IN MPI should form a

tight communication dependency on the faulty processes and the faulty processes in state

OUT MPI should be in the minority. If a hang is caused by a communication error, all

processes should be in state IN MPI and thus Sout should be 0 persistently. Figure 5.3

plots Sout during a run of LU benchmark during which a hang is encountered – the dynamic

variation ceases and Sout is very low after the hang’s occurrence. Thus, the health of an

111

Figure 5.3: The Sout variation of a faulty run of LU, where a fault is injected on the left
border of the red region.

application can be judged by looking for consecutive observations of very low Sout.

Depending upon whether the utilized function is blocking or not, we classify MPI

communication styles into 3 types: blocking style, i.e. a blocking communication func-

tion; half-blocking, i.e. a non-blocking communication followed by a blocking function like

MPI Wait to wait for its completion; and non-blocking style where a non-blocking commu-

nication is performed followed by a check for completion using a busy waiting loop using

non-blocking message checking function like MPI Test. Our characterization of runtime

state is able to detect hangs for programs only using the first two styles of communication.

For a program that uses a mix of different communication styles, the lesser the use of third

communication style the more useful is our approach. For example, HPL uses a mixed style

with a small portion of the program in the third style, processes can get stuck at multiple

sites upon a program hang and thus a significant fraction of processes would ultimately

stay in blocking functions and thus be in IN MPI while some may flip states forever in

busy-waiting loops. Our observation is still useful in this case.

Putting Sout into Practice Precisely tracking Sout will require monitoring the runtime

state of all processes continuously and this will lead to high overhead. To achieve our objec-

tive of developing a lightweight hang detection method, we neither monitor all processes nor

112

do we monitor their states continuously. In particular, we determine the state of constant

number of processes (say C), at fixed time intervals (say I), and compute S′out that denotes

the fraction of C processes that are in state OUT MPI. A hang is reported if S′out is observed

to be persistently low, i.e., no bigger than a threshold t, for K consecutive intervals.

Now the next challenge is determine a selection of the values for C, I, K and

t. To simply the discussion, we fix C at 10 processes – this choice is out of performance

considerations and its justification is given later in Section 5.2.3, and fix t at 0 as it is

rare that the faulty process happens to be among the randomly selected C processes in a

small number of runs. Let us first consider a simple scheme in which the hang detection

algorithm a priori fixes the values of both I and K. In fact this scheme is similar in spirit

to the commonly used fixed timeout methods [11, 85, 84, 98] that avoid the complexities of

chosing the timeout value.

Next we studied the effectiveness of this simple scheme by studying its precision,

i.e. studying: (a) accuracy of catching real hangs; and (b) false positive rate, i.e. detection

of hangs when none exist. In this study we used two values for I (400ms and 800ms),

two values for K (5 times and 10 times) and then ran experiments for three applications

(FT, LU, SP) on two platforms (Tianhe-2 and Tardis). The results obtained are given in

Table 5.1 and by studying them we observe the difficulty of setting the (I,K) parameters

for different platforms, different input sizes, and different applications. In particular, we

observe the following:

• (Platforms: Tianhe-2 vs. Tardis) Consider the case for FT at input size D. For (I1,K1)

while on Tianhe-2 all actual hangs are correctly reported, on Tardis false hangs are

113

P
la

tf
or

m
→

T
ia

n
h

e-
2

T
ar

d
is

B
en

ch
m

a
rk

(I
n

p
u

t
si

ze
)
→

F
T

(D
)

F
T

(E
)

F
T

(D
)

L
U

(D
)

S
P

(D
)

M
et

ri
cs
→

A
C

F
P

D
A

C
F

P
D

A
C

F
P

D
A

C
F

P
D

A
C

F
P

D

I 1
=

4
0
0m

s,
K

1
=

5
ti
m
es

1.
0

0
.0

3.
3

0.
0

1.
0

—
0.

0
1.

0
—

0.
0

1.
0

—
0.

3
0.

7
2.

0

I 2
=

4
00
m
s,
K

2
=

10
ti
m
es

1.
0

0
.0

8.
1

1.
0

0.
0

10
.9

0.
9

0.
1

6.
5

1.
0

0.
0

5.
3

1.
0

0.
0

5.
1

I 3
=

8
0
0m

s,
K

3
=

5
ti
m
es

1.
0

0
.0

7.
2

1.
0

0.
0

11
.7

0.
8

0.
2

7.
0

1.
0

0.
0

3.
9

1.
0

0.
0

3.
9

I 4
=

8
00
m
s,
K

4
=

10
ti
m
es

1.
0

0
.0

13
.2

1.
0

0.
0

17
.4

1.
0

0.
0

10
.2

1.
0

0.
0

10
.7

1.
0

0.
0

8.
6

T
a
b

le
5
.1

:
A

d
ju

st
in

g
th

e
ti

m
eo

u
t

m
et

h
o
d

to
va

ri
ou

s
b

en
ch

m
ar

k
s,

p
la

tf
or

m
s

an
d

in
p

u
t

si
ze

s
at

sc
al

e
25

6
b

as
ed

on
10

er
ro

n
eo

u
s

ru
n

s
p

er
co

n
fi

gu
ra

ti
o
n

.
M

et
ri

cs
:

A
C

–
ac

cu
ra

cy
;

F
P

–
fa

ls
e

p
os

it
iv

e
ra

te
;

D
–

av
er

ag
e

re
sp

on
se

d
el

ay
in

se
co

n
d

s,
i.

e.
th

e
el

ap
se

d
ti

m
e

fr
o
m

w
h

en
th

e
fa

u
lt

is
in

je
ct

ed
to

w
h
en

a
h

an
g

is
d

et
ec

te
d

.

114

reported during the correct execution phase (i.e., before a hang actually occurs) in all

10 runs.

• (Input sizes for FT: D vs. E) On Tianhe-2 though (I1,K1) has a 100% accuracy for

FT at input size D, for input size E the accuracy drops to 0% and false positive rate

goes up to 100%.

• (Target Application: LU and SP vs. FT) For parameter settings (I2,K2) and (I3,K3),

on Tardis though the accuracy for LU and SP is 100%, the accuracy for FT is less

and false alarms are reported.

Clearly the above results indicate that fixed settings of (I,K) are not acceptable

and thus a more sophisticated strategy must be designed. We observe that no fixed setting

of parameters will work for all programs, on all inputs, and different platforms. Therefore

the choice of parameters must be made based upon on the runtime characteristics of an

application on a given input and platform. We cannot leave this choice to the users as they

are likely to resort to guessing the parameter settings and thus will not have any confidence

in the results of hang detection.

Therefore the approach we propose is one that automates the selection and tuning

of I and K at runtime such that hangs can be reported with high degree of confidence. In

fact the approach we propose allows the user to specify the desired degree of confidence and

our runtime method ensures that a hang’s presence is verified to meet the specified desired

degree of confidence. The details of this method are presented next.

115

5.2.1 Model Based Hang Detection Scheme

The basic idea behind our approach is as follows. We randomly sample Sout at

runtime to build and maintain a model and detect hangs by checking Sout against the model.

Random sampling of Sout. Variation of Sout over time is composed of many

small cycles, and all cycles exhibit similar trend over time. Suppose the cycle time is Ct.

If we randomly take a sample from a time range of NCt where N ∈ N+, no matter how N

varies it is clear this randomly observed Sout will follow the same distribution denoted as

F (Sout), considering the similarity across cycles. Such random sampling can be achieved

by inserting a good uniformly generated random time step, denoted as rstep, that makes the

next sample fall at any point in one or several cycles, between two consecutive samples.

Suppose I is the maximum time interval, and rand(I) is a uniform random number

generator over [0, I]. We make rstep = rand(I) + I/2 and thus the sampling interval ranges

over [I/2, 3I/2] with an average of I. An ideal model can be built either when I = NCt

or when the I is way bigger than Ct so that the sampling is approximately random rather

than time-dependent.

Automatically tuning I. Hand-tuning I is undesirable and impractical as Ct

varies across different applications, input sizes, and underlying computing platforms. In-

stead, we can achieve approximate random sampling through enlarging I as below. We

design an automatic method to enlarge the maximum interval I in the early execution

stage by checking the samples’ randomness. If the sampling is statistically found to lack

randomness, we double I, as a bigger I leads to better randomness, and then re-evaluate the

randomness. Below details the method we use to check the sampling’s randomness.

116

Runs test [123] is a standard test that checks a randomness hypothesis for a

two-valued data sequence. We use this to judge the randomness of a sample sequence.

Given a sample sequence of Sout, we set the average of samples as boundary. Samples

bigger than or equal to the boundary are coded as positive (+) and samples smaller than

that as negative (-). A run is defined as a series of consecutive positive (or negative)

values. Under the assumption that the sequence containing N1 positives and N0 negatives

is random, the number of runs, denoted as R, is a random variable whose distribution is

approximately normal for large runs test. Given a significance level 0.05, for small runs test

(N1 ≤ 20, N0 ≤ 20), we can get a range for the assumed correct number of runs via table

in [123], i.e. the non-rejection region. If R is beyond this range, we reject the claim that the

sequence is random and thus relax I. On the other hand, if either N1 ≤ 1 or N2 ≤ 1 and

thus the non-rejection region is not available, we also assume the sampling is not random

to avoid the risk of failing to identifying a non-random sampling process.

For example, consider an MPI program running with 10 processes and thus the

possible values of Sout are 0.1, 0.2, 0.3, ..., 1.0. There are a sequence 16 samples as follows

0.2 0.1 0.1 0.2 0.1 0.1 0.0 0.0

0.8 0.9 1.0 0.8 0.9 0.1 0.9 0.9,

which is equivalent to the two-valued sequence

−−−−−−−−+ + + + +−+ + .

Its boundary is 0.44375 with N1 = 7, N0 = 9 and R = 4. The assumed correct range is

117

Figure 5.4: Hang detection. Three panels show the empirical distribution of randomly
sampled Sout of LU, where the red region shows the suspicion region, the blue curve shows
the probability density function P (Sout), and the dashed black curve shows the cumulative
distribution function Fn(Sout). The red arrow crosses the suspicion region 3 times meaning
3 consecutive observations of suspicion.

(4, 14) and the number of runs 4 is not inside the range, so we claim the sampling is not

random and double I.

Note the model needs to be renewed when I is doubled. The size of old samples

collected at average time interval I is 2 times of the size if the old samples were collected

at interval 2I. Therefore, we cut the sample size by half.

Suspicion of hang. As samples accumulate, an empirical cumulative distribution

function, denoted as Fn(Sout), can be built, where n is the number of samples. Given a

probability p̂, we can obtain t = F−1n (p̂). A suspicion is defined as Sout ≤ t, i.e. a very low

118

Sout. The observed values can be classified into a pair of opposite random events:


A : Suspicion if Sout ≤ t,

A : Non-suspicion if Sout > t,

Note p̂ is selected dynamically to ensure robustness at various sample sizes and will be

discussed in Section 5.2.2.

Significance test of hang. A single suspicion does not justify a hang’s occur-

rence; instead, a continuous detection of suspicions indicates a hang with high confidence.

We can quantify the number of suspicions (A) before the first observation of a non-suspicion

(A) as a geometric distribution. The probability of Y = y observations of event A before

the first observation of A can be expressed as follows:

P (Y = y) = qy · (1− q)

where q is an estimation of the true suspicion probability, denoted as p, by adapting p̂

and will be discussed in Section 5.2.2. Let us consider the following null and alternate

hypothesis: 
H0 : The MPI application is healthy,

H1 : The MPI application has hung.

Under H0, the probability to observe at least k consecutive As is

PH0(Y ≥ k) = 1−
∑k−1

y=0 q
y · (1− q)

= qk.

119

Given the confidence level 1 − α, we reject H0 and accept H1 if PH0(Y ≥ k) ≤ α, i.e., as

below:

qk ≤ α

⇒ k ≥ dlogqαe .

Hence a hang would be reported at a confidence level of 1−α if dlogqαe times of consecutive

suspicions are encountered as depicted in Figure 5.4. The theoretical worst case time cost

required to detect a hang is I · dlogqαe, considering a few normal suspicions in the correct

phase may appear before a hang really appears.

5.2.2 Robust Model with a Limited Sample Size

Ideally, we would have p̂ ≈ p if the sample size is large enough. We can just apply

q = p̂ to the model. However, the problem is that the sample size can not be large enough as

the sample size always grows from 0, and the assignment q = p̂ thus would only make a bad

hang detection model. To overcome this difficulty, we introduce a method for a achieving a

credible q for each level of sample size.

Since we only care about suspicion versus non-suspicion, the sampling can be

viewed as a Bernoulli process, i.e. Xi
i.i.d.∼ Ber(p), where Xi is the i-th sample. By the rule

of thumb [25], when np̂ > 5 and n(1− p̂) > 5, p̂ follows

p̂ =

∑n
i=1Xi

n

◦∼ N(p,
p(1− p)

n
).

Its 95% confidence interval is p̂ ± 1.96

√
p̂(1−p̂)

n . If we estimate p with an error no bigger

than e, i.e. p̂ ∈ [p − e, p + e], at 95% confidence, we have 1.96

√
p̂(1−p̂)

n ≤ e. The minimal

120

Figure 5.5: Relation among sample size, suspicion probability and tolerance error, where
n̂(p̂) = 3.8416

e2
p̂(1− p̂).

sample size to justify p̂ is

n̂ = max{5

p̂
,

5

1− p̂
,
3.8416

e2
p̂(1− p̂)},

where 0 < p̂ < 1. Because p̂ and 1 − p̂ are exchangeable and 5
p̂ >

5
1−p̂ in (0, 0.5] , we only

study

n̂ = fmax(p̂) = max{5

p̂
,
3.8416

e2
p̂(1− p̂)}, where p̂ ∈ (0, 0.5].

where p̂ in(0, 0.5] and fmax is the function that gets the maximum between the given two

terms.

Given a tolerance error e, our goal is to get an acceptable p̂ that can be justified

by the smallest sample size n, where the smallest ensures the model as soon as possible

even with a small sample size. We provide 4 acceptable tolerance levels, 0.3, 0.2, 0.1 and

0.05, to study the relation among suspicion probability, tolerance error and sample size as

shown in Figure 5.5. Given e, let’s denote the minimal n̂ as n̂m and the p̂ that minimizes

n̂ as p̂m. With e equaling 0.3, 0.2, 0.1 and 0.05, we get (p̂m, n̂m) respectively as (0.47, 11),

121

(0.27, 19), (0.12, 42) and (0.06, 86). These points specify a path demanding the least sample

size to step from a larger tolerance error to a smaller one, i.e. from 0.3 to 0.05. At 95%

confidence, we estimate p as below:



p ∈ [0.17, 0.77] when 11 ≤ n < 19,

p ∈ [0.07, 0.47] when 19 ≤ n < 42,

p ∈ [0.02, 0.22] when 42 ≤ n < 86,

p ∈ [0.01, 0.11] when n ≥ 86.

It coincides with our intuition that a smaller p̂ with a smaller e must be justified by a larger

n.

However, the model is discrete and very likely such p̂m does not exist. We

thus need to find the sub-optimal p̂, denoted as p̂m′ , around p̂ = p̂m, which ensures

a sub-minimum n̂, denoted as nm′ . With t1 = max{X}, where Fn(X) < p̂m, and

t2 = min{X}, where Fn(X) ≥ p̂m, we have

n̂m′ = min{fmax(Fn(t1)), fmax(Fn(t2))},

upon which p̂m′ is known. With e equal to 0.3, 0.2, 0.1, 0.05, we can respectively obtain

(p̂m′ , n̂m′) as (p̂m′,0.3, n̂m′,0.3), (p̂m′,0.2, n̂m′,0.2), (p̂m′,0.1, n̂m′,0.1), (p̂m′,0.05, n̂m′,0.05), where

n̂m′,0.3 < n̂m′,0.2 < n̂m′,0.1 < n̂m′,0.05. Therefore, we would have a p̂ with a known maximal

122

error at 95% confidence for each level of sample size:



p̂m′,0.3 ∈ [p− 0.3, p+ 0.3] when n ∈ [n̂m′,0.3, n̂m′,0.2),

p̂m′,0.2 ∈ [p− 0.2, p+ 0.2] when n ∈ [n̂m′,0.2, n̂m′,0.1),

p̂m′,0.1 ∈ [p− 0.1, p+ 0.1] when n ∈ [n̂m′,0.1, n̂m′,0.05),

p̂m′,0.05 ∈ [p− 0.05, p+ 0.05] when n ≥ n̂m′,0.05.

Robust model. The value of (p̂m′ , n̂m′) is continuously updated as the sample

size increases. At each sample size level, a suspicion is defined by the obtained credible p̂m′ .

Because of the maximum error e, we might underestimate p (p̂m′ < p) and undermine the

hang detection accuracy. To avoid this, we make q = p̂m′ + e. Because the confidence of

p̂m′ ∈ [p− e, p+ e] is 95%, we claim q ≥ p with 97.5% confidence.

Before the hang detection is performed, ParaStack needs to accumulate at least

n̂m′,0.03 random samples to build a model. The model building time is thus n̂m′,0.03 ·I. Since

different applications may have different appropriate values of I that assure randomness,

the model building time also varies from one application to another.

5.2.3 Lightweight Design Details

One monitor per node can be launched to examine the runtime state of all processes

on a local node. But checking the call stack of all processes to sample Sout can slowdown

the target application’s execution. Hence, following lightweight strategy is introduced.

CROUT MPI significance. We monitor only a constant number, say C, of

processes instead of all. Accordingly, we define CROUT MPI Significance, denoted as

123

Scrout, as the fraction of processes at OUT MPI in a Randomly selected C processes. The

hang detection scheme is still valid by checking Scrout as the idea of looking for a rare event

remains unchanged.

Since only C processes need to be checked and some of them might coexist on

the same node, they at most occupy C compute nodes, each of which requires one monitor

actively checking the selected processes. We thus say monitors on these nodes are active

and the others are idle. This design makes our tool extremely lightweight because: (1) only

C processes’ states need to be checked at a time cost of several microseconds per check; (2)

communication is only required in a very limited scope of no more than C active monitors;

and (3) the already trivial time cost can be possibly overlapped by target applications’ idle

time.

Parameter Setting. (1) The lightweight design requires an appropriate setting

of C and I. A larger C leads to more overhead, and a smaller initial value of I also does

so though it will be enlarged at runtime. In addition, a small value for C like 2 or 3 can

flatten the variation of Scrout and thus diminishes the flexibility of adjusting p̂ that ensures

model robustness. Therefore, we set C to 10 first and then find I with initial value of

400 milliseconds to satisfy the above requirements. (2) We perform the runs test every

16 samples until randomness is ensured as that is large enough for runs test and small

enough to ensure ParaStack has the smallest sample size required to check hangs. (3) We

set α = 0.1%, which is statistically highly significant and implies 99.9% confidence. Note

this is the only parameter that is tailored by the users.

Prevention of a corner case failure. Rarely a corner case arises due to the

124

dynamic adjustment of what defines a suspicion to ensure model’s robustness. When a

suspicion is defined as Scrout = 0 and one faulty process, whose state is OUT MPI after a

hang happens, is one of the C processes being monitored, i.e. Scrout 6= 0, neither suspicions

nor hangs will be observed. This corner case failure can be avoided by monitoring two

disjoint random process sets, since the faulty process cannot be present in both sets. Of

course more sets are required to be resilient for the case containing multiple faulty processes.

ParaStack alternates between the two sets using each for a fixed number of observations.

Since ideally q ≤ 0.77 and log0.770.001 = 26.5, the maximal times of suspicions required to

verify a hang is 27. ParaStack alternates between two sets every 30 times to ensure it has

enough time to find hangs while monitoring the process set with Scrout = 0 before switching

to the other one with Scrout 6= 0.

Transient slowdowns at large scale. As noted in recent works, on large scale

systems, the system noise can sometimes lead to a substantial transient slowdown of an

application [73, 105]. We also occasionally encountered transient slowdowns on Tianhe-2

– typically in less than 4 runs out of a total of 50 runs. It is important not to confuse a

transient slowdown with a hang. We observe that a transient slowdown is distinguishable

from a hang because, unlike a hang, it is characterized by the presence of a few processes

stepping through the code slowly. This transient-slowdown-specific effect can be identified if

any of the following is true: (1) at least one process passes through different MPI functions;

(2) at least one process steps in and out of MPI functions other than MPI Iprobe, MPI Test,

MPI Testany MPI Testsome and MPI Testall, i.e. a process running in a busy-waiting loop

stepping across non-MPI code and a function like MPI Test is treated as staying in the MPI

125

Figure 5.6: Faulty process identification for computation-error induced hangs. On the left
is an MPI program skeleton, which hangs due to a computation error in process 100. Tra-
ditionally, the faulty process can be detected based on the progress dependency graph as
shown in the middle. Our technique greatly simplifies the idea by just checking runtime
states as shown on the right.

function. Thus we check if such slowdown-specific effect exists based on two stack traces

of each target process upon a hang report from the model-based mechanism. If it exists,

we report a transient slowdown rather than a hang and resume monitoring; otherwise, we

report a hang to users.

5.3 Identifying Faulty Process

Once a hang is detected, ParaStack reports the processes in OUT MPI as faulty.

The reported processes are claimed to contain the root cause of a hang that results from a

computation error. If no process is reported, we claim the hang is a result of a communi-

cation error. Next we focus on locating the faulty process for a computation error induced

hang.

On the left in Figure 5.6 we show the solver code skeleton of a typical MPI pro-

gram that is expected to run at large scale. In addition to the computation, all pro-

126

cesses perform both local communication and synchronization-like global communication.

Synchronization-like global communication stands for a communication type that works like

a synchronization across all processes such that no process can finish before all enter into

the function call. For example, MPI Allgather falls into this category, but MPI Gather does

not. In an erroneous run, process 100 fails to make progress due to a computation error,

so its immediate neighbors, processes 99 and 101, wait for it at the local communication,

which in turns causes all the others to hang at the global communication. Process 100

thus should be blamed as the faulty process for this hang. Locating this faulty process

would take programmers a giant step closer to the root cause considering hundreds and

thousands of suspicious processes are eliminated. Traditional progress-dependency-analysis

methods [85, 84, 98] are very effective in aiding the identification of faulty process for general

hangs but they involves complexities like recording control-flow information and progress

comparison as shown in the middle of Figure 5.6. But for computation-error induced hangs

these complexities are not necessary. ParaStack instead is inherently simple for this case.

Identification. Across all processes, we identify processes in state OUT MPI as

the faulty ones for a computation-error induced hang since all the other concurrent ones in

IN MPI would wait for the faulty processes. This can be achieved by simply glancing at

the state of each process. As shown on the right in Figure 5.6, process 100 is easily located

as it is the only one staying in state OUT MPI.

Busy waiting loop based non-blocking communication. If a hang occurs in

an application with busy waiting loops, in addition to persistently finding faulty processes

in OUT MPI, we may also occasionally find a few non-faulty in OUT MPI. For example,

127

HPL has its own implementation of collective communication based on busy waiting loops,

which can make a few non-faulty processes step back and forth in a track trace rooted at

such HPL communication functions when a hang appears. This can mislead ParaStack into

believing that such non-faulty processes are faulty. To avoid this, we check every process’s

state several times and then select the ones that are in OUT MPI persistently.

5.4 Implementation

ParaStack is implemented in C and conforms to the MPI-1 standard, by which we can ensure

the maximum stability by only using a few old, yet good, widely-tested MPI functions while

avoiding newly-proposed more error-prone functions. It was tested on Linux/Unix systems

and integrated with popular batch job schedulers Slurm and Torque. It is easily usable by

MPI applications using mainstream MPI libraries like MVAPICH, MPICH, and OpenMPI.

Job submission. We provide batch job submission command for Slurm and

Torque. It processes users’ allocation request, and executes the application and ParaStack

concurrently. It ensures only one monitor per node is launched.

Mapping between MPI rank and process ID. ParaStack finds all the pro-

cesses belonging to the target job by its command name using the common Linux/Unix

command ps. Users submit a job by specifying the number of nodes and processes per

node. Under this setting, the MPI rank assignment mechanism implies two rules: (1) MPI

rank increases as process id increases on the same node; and (2) MPI rank increases as node

id, in a ordered node list, increases. Suppose the number of target processes per node is

ppn and a monitor’s id is i. The MPI processes from rank i ∗ ppn to (i+ 1) ∗ ppn− 1 shares

128

the same node with Monitor i that does the local mapping by simply sorting process ids.

Hang detection. (1) ParaStack suspends and resumes a processes’ execution

using ptrace, and resolves the call-chain using libunwind. (2) To obtain the runtime state,

we examine stack frames to check if they start with ’mpi’, ’MPI’, ’pmpi’, or ’PMPI’ until

the backtrace finishes or such relation is found. If found, the state is IN MPI ; otherwise it

is OUT MPI. This works as mainstream MPI libraries use the above naming rule and users

rarely use function names starting with such strings. (3) Idle monitors wait for messages

in a busy waiting loop consisting of a hundreds-of-milliseconds-sleep and a nonblocking test

to avoid preemption.

5.5 Discussion

We discuss handling of complex situations by ParaStack.

Multi-threaded MPI program. A hybrid parallel program, using

MPI+OpenMP or MPI+Pthreads, can have both thread-level and process-level paral-

lelism. (1) For thread level MPI THREAD SINGLE and MPI THREAD FUNNE- LED,

only the master thread communicates. Thus, ParaStack works by simply monitoring

the master thread. (2) For more progressive mode, MPI THREAD SERIALIZED and

MPI THREAD MULTIPLE, ParaStack must be adapted by redefining the runtime state

of a process as: if at least one thread from a process is in MPI communication, we say this

process is in IN MPI ; otherwise, it is OUT MPI. Hence, a hang can still be captured by

the fact that too few processes are in OUT MPI persistently.

Applications with multiple phases. An application may alternate among

129

Scale 256 1024 4096 8192 16384

BT, CG
D E — —

LU, SP

FT D,E E — — —

MG E — — — —

HPL 8*104 2*105 2.5*105 3*105 3.5*105

HPCG 64 * 64 * 64 — — —

Table 5.2: Default input sizes used by each application at various running scales. Inputs
D and E are the two largest inputs that come with the benchmarks. The input size for
HPL specifies the width of a square matrix and the input size for HPCG specifies the local
domain dimension.

several phases with differing behaviors leading to imprecision in the Scrout model. However,

ParaStack can be easily adapted by constructing separate models for different phases if

the application is instrumented to inform ParaStack of phase changes during execution.

ParaStack can build separate models by sampling each of the phases and using them for

respective phases.

Applications with load imbalance. ParaStack is developed to detect hangs

for applications with good load balance and is not suitable for applications with severe load

imbalance. For applications with severe load imbalance, near the end of execution, a few

heavy-workload processes may be running. Thus our model based mechanism can fail. We

ignore this situation because applications with severe load imbalance should not be deployed

at large scale so as to avoid computing resources waste. For moderate load imbalance, we

can apply the technique of detecting transient slowdowns as the load imbalance is also

characterized by the effect that a few processes are still running slowly.

130

5.6 Experimental Evaluation

Computing platforms. We evaluate ParaStack on three platforms: Tardis,

Tianhe-2 and Stampede. Tardis is a 16-node cluster, with each node having 2 AMD Opteron

6272 processors (with 32 cores in all) and 64GB memory. Tianhe-2 is the 2nd fastest

supercomputer in the world [31], with each node having 2 E5-2692 processors (with 24 cores

in all) and 64GB memory. Stampede is the 12th fastest supercomputer in the world [31],

with each node having 2 Xeon E5-2680 processors (16 cores in all) and 32GB memory.

Infiniband is used for all. We allocate respectively 8 nodes—256 (8*32) processes—on

Tardis, 64 nodes—1,024 (64*16) processes—on Tianhe-2, and up to 1024 nodes—16,384

(1024*16) processes—on Stampede.

Applications and input sizes. We use six NAS Parallel Benchmarks (NPB: BT,

CG, FT, MG, LU and SP) [17], High Performance Linpack (HPL) [9], and High Perfor-

mance Conjugate Gradient Benchmark (HPCG) [53] for evaluation. The execution of these

widely used benchmarks consists of a trivial setup phase and a time-consuming iterative

solver phase. Though HPCG has multiple phases, all phases are iterative. As ParaStack

is developed to monitor long-running runs, we use large available input sizes indicated in

Table 5.2 by default unless otherwise specified. In our evaluation, we ignore MG due to its

short execution time on both Stampede and Tianhe-2, and ignore FT on Stampede as it

crashes at large scale due to memory limit. We did not inject errors in HPCG on Stampede

and Tianhe-2 as it has multiple iterative steps and our random error injection technique is

not readily applicable.

Fault injection. On Tardis, to simulate a hang, we suspend the execution of a

131

Time interval 10 ms 100 ms

Ot 50.88s 7.52s

n 18220 1870

Table 5.3: For an execution of HPL on a 15000*15000 matrix, the clean run on average
takes 185.05 seconds. Ot is the total stack trace overhead due to n stack trace operations.

randomly selected process by injecting a long sleep in a random invocation of a random user

function as faults are more likely to be in the application than in well-known libraries [98].

We use gprof to collect all the user functions. Dyninst [24] is used to statically inject errors,

i.e. long enough sleep calls, in application binaries. We discard the cases where error appears

in the first 20 seconds of execution because real-world HPC applications spend the majority

of time in the later solver phase and building our model takes around 20 seconds. Note our

tool targets hangs in the middle of long runs such as those reported in [2, 3] and the model

building time is trivial in comparison to the program execution time. On Stampede and

Tianhe-2 we inject errors in the source code and simulate a hang by injecting a long sleep

call in a randomly selected iteration of a randomly selected process.

5.6.1 Hang Detection Evaluation

I. Overhead. To begin with, we measured the overhead of stack trace for a single

process running HPL, a highly compute intensive application. We executed 5 clean runs and

5 runs with stack trace using time intervals of 10ms and 100ms. The average cumulative

total overhead (Ot) and number of stack trace operations (n) are given in Table 5.3. As we

can see, the overhead is high for interval of 10ms – a 50.88 seconds increase over clean run

that takes 185.05 seconds. However, for the interval of 100ms the overhead is low – 7.52

seconds. Thus, for I of 100ms or higher we can expect our tool to have very low overhead.

132

Figure 5.7: Performance comparison of running applications with ParaStack (I = 100 ms),
with ParaStack (I = 400 ms) and without ParaStack (clean) on Stampede at scale 1024
based on 5 runs in each setting. The performance is evaluated as GFLOPS for HPCG and
as time cost in seconds for all the others, and the the 5 runs are ordered by performance.

Now we study the impact of using ParaStack on runtimes for all applications

under two I settings of 100ms and 400ms at scales of 256 and 1024 processes. Note I does

not change in this study – we disable the automatic adjustment of I. Experiment results

are based on 5 runs at each setting. Table 5.4 shows results at scale 256 and it shows

that ParaStack has negligible impact on applications’ performance in either setting. At

scale 1024, we separately present the performance for each of the 5 runs in each setting

on Stampede and Tianhe-2 as the performance variations due to system noise are greater

than the prior experiment. On Stampede, Figure 5.7 shows the performance for I = 400ms

is often better than that with I = 100ms, and is almost the same as that of clean runs

(except for LU). Since Tianhe-2 suffers less system noise due to its lower utilization rate

133

B
en

ch
m

a
rk

B
T

C
G

F
T

L
U

M
G

S
P

H
P

L
H

P
C

G

M
et

ri
c

P
S

P
S

P
S

P
S

P
S

P
S

P
S

P
S

cl
ea

n
3
3
6.

7
1
.0

13
2
.0

1.
1

17
8.

8
0.

3
24

7.
8

2.
9

34
7.

3
0.

5
51

1.
1

0.
3

27
7.

8
0.

8
29

.1
0.

1

I
=

1
00

3
3
6.

4
0
.6

13
1
.6

0.
2

17
9.

5
0.

2
24

7.
8

0.
6

34
7.

0
0.

5
51

0.
3

0.
4

27
7.

7
0.

5
29

.1
0.

1

I
=

4
00

3
3
6.

8
1
.4

13
2
.4

0.
6

17
9.

07
0.

7
24

6.
6

0.
6

34
7.

1
0.

3
51

1.
0

0.
6

27
7.

2
0.

4
29

.1
0.

1

T
a
b

le
5.

4:
P

er
fo

rm
a
n

ce
co

m
p

a
ri

so
n

of
ru

n
n

in
g

ap
p

li
ca

ti
on

s
w

it
h

P
ar

aS
ta

ck
(I

=
10

0
m
s)

,
w

it
h

P
ar

aS
ta

ck
(I

=
40

0
m
s)

an
d

w
it

h
o
u

t
P

a
ra

S
ta

ck
(c

le
an

)
o
n

T
ar

d
is

a
t

sc
al

e
25

6.
P

er
fo

rm
an

ce
is

m
ea

su
re

d
b
y

th
e

d
el

iv
er

ed
G

F
L

O
P

S
fo

r
H

P
C

G
an

d
b
y

th
e

ti
m

e
co

st
in

se
co

n
d
s

fo
r

th
e

o
th

er
s,

a
n

d
S

ta
n

d
ar

d
d

ev
ia

ti
on

of
th

e
p

er
fo

rm
an

ce
is

sh
ow

n
.

134

Figure 5.8: Performance comparison of running applications with ParaStack (I = 100 ms),
with ParaStack (I = 400 ms) and without ParaStack (clean) on Tianhe-2 at scale 1024.

than Stampede, the performance variation on it is less. Hence we can expect Tianhe-2 better

captures ParaStack’s overhead. On Tianhe-2, Figure 5.8 clearly shows that I = 400ms is

always better than I = 100ms, and introduces a slight overhead compared with the clean

runs. Table 5.5 shows the overhead for each application. The overhead with I = 400ms is

at most 1.14%, which is always better than the overhead in the other setting. Hence for

the rest of the experiments we use the setting of I = 400ms.

Benchmark BT CG LU SP HPL HPCG

I=100 2.44% 7.61% 3.35% 0.26% 0.12% 1.64%

I=400 -0.08% 0.55% 1.14% 0.04% 0.12% 0.35%

Table 5.5: ParaStack’s Overhead on Tianhe-2 at scale 1024 based on the average of 5 runs.

135

Platform Tardis Tianhe-2 Stampede

runs 100 50 20

Scale 256 1024 1024

Metric Time(s) ACh Time(s) ACh Time(s) ACh

BT 336 99% 487 100% 495 100%

CG 132 100% 177 100% 278 100%

FT 179 98% 100 100% — —

LU 247 98% 328 98% 311 100%

MG 347 100% — — — —

SP 511 100% 454 100% 528 100%

HPCG — 100% — — — —

HPL 277 99% 362 100% 411 100%

Table 5.6: Accuracy of hang detection. The rough time cost of a correct run is shown.

II. False positives were evaluated using 100 correct runs of each application

at scale 256 on Tardis taking about 66 hours, 50 correct runs for BT, CG, FT, LU, SP,

HPCG, and HPL at scale 1024 on Tianhe-2 taking about 27.9 hours, and 20 correct runs

for BT, CG, LU, SP, HPCG, and HPL at scale 1024 on Stampede taking about 11.8 hours.

The false positive rate was observed to be 0% when the theoretical false positive rate is

α = 0.1%. In addition, no false positives were observed even in all erroneous runs performed

in experiments presented next.

III. Accuracy refers to the effectiveness of ParaStack in detecting hangs in erro-

neous runs. Let the total number of faulty runs be T and the total number of times that the

hang can be detected correctly be Th. The accuracy is defined as Th/T . Table 5.6 shows the

accuracy based on 100 erroneous runs at scale 256 on Tardis, 50 erroneous runs at scale 1024

on Tianhe-2 and 20 runs at scale 1024 on Stampede. ParaStack misses only 6 times out of

800 runs at scale 256. In these cases, hangs happen very early (even before ParaStack has

collected enough samples to build an accurate model) and thus I is continuously enlarged

136

Scale↓ Metric↓ BT CG FT LU SP HPL

1024
D 7.2 18.8 8.8 9.0 4.8 6.8
S 7.3 14.7 7.3 4.2 2.2 3.3

Table 5.7: Response delay on Tianhe-2: D is the average response delay in seconds; S is
the standard deviation.

Scale↓ BT CG LU SP HPL
D S D S D S D S D S

1024 7.1 4.5 7.6 4.5 7.8 5.9 4.1 1.2 5.0 2.5

4096 5.4 3.6 24.1 13.1 4.3 1.3 3.7 2.0 5.6 4.7

Table 5.8: Response delay on Stampede: D is the average response delay in seconds and S
is the standard deviation.

and the probability of Scrout = 0 is increased. Hence there is not enough time to verify the

hang before the allocated time slot expires. One hang in LU is also missed at scale 1024 on

Tianhe-2; for all other runs at scale 1024, the accuracy is 100% on Stampede and Tianhe-2.

Due to the high cost, a limited number of experiments was conducted. At scale

4096, we studied ParaStack’s accuracy based on 10 erroneous runs for BT, CG, LU, SP, and

HPL. For BT, LU, and HPL, ACh = 1; for CG and SP, ACh equals 0.8 and 0.9 respectively.

Also, as the later two take less time, errors are more likely to happen earlier. At scale 8192,

the accuracy based on 5 erroneous runs of HPL is ACh = 5/5. At scale 16384, the accuracy

based on 3 erroneous runs of HPL is ACh = 3/3.

IV. Response delay is the elapsed time from a hang’s occurrence to its detection

by ParaStack. For the erroneous runs where hangs are correctly identified by ParaStack,

we collected the response delays for all applications. Figure 5.9 shows the response delay

distribution for 100 erroneous runs at scale of 256 on Tardis. Table 5.7 shows the average

response delay and the standard deviation based on 50 erroneous runs at scale of 1024 on

137

Figure 5.9: The response delay of hang detection based upon 100 erroneous runs for
each application at scale of 256 on Tardis. The horizontal axis represents response delay
in seconds and the vertical axis represents the number of times ParaStack identifies a hang
with the corresponding delay.

Tianhe-2. Table 5.8 shows the average response delay and the standard deviation based on

20 erroneous runs at scale of 1024 and 10 erroneous runs at scale of 4,096 on Stampede. At

scale 8,192 the response delay for 5 erroneous runs of HPL are 5, 6, 14, 16, and 17 seconds.

At scale 16,384 response delays for 3 erroneous runs are 6, 7, and 10 seconds. ParaStack

commonly detects a hang with a delay of no more than 1 minute at various scales. We

observe that the response delay not only varies across applications, it also differs from one

hang to another for a given application. As we know, the response delay in worst case is

I · dlogqαe. The variation of q depending upon sample size and the adaptation of I leads to

the variation in response delay.

138

Figure 5.10: The percentage of time savings ParaStack brings to application users in batch
mode based on 10 erroneous runs of HPL with the average percentage equal to 35.5%.

V. ParaStack enabled time savings for application users. Supercomputers

typically charge users in Service Units (SUs) [19, 26]. The total number of SUs charged

for a job is equal to the product of the number of nodes occupied, the number of cores per

node, and the elapsed wallclock time of the job. Application users run their job assuming

absence of hangs; thus, when running an application in batch mode, the allocated time

will be wasted if a hang arises and the user is charged for it. ParaStack saves this cost

by terminating the application upon a hang. To quantify the time saving, we ran HPL 10

times using a problem size 100,000 with a (uniform) random error injected in the iterative

phase. The correct run takes around 518 seconds, so users are inclined to request a larger

time slot – conservatively let us assume a 10-minute time slot is requested. The percentage

of time ParaStack saves is shown in Figure 5.10. For the 10 runs, on average the time

saved is 35.5%. With increasing number of tests, the average time saved will approach 50%.

Because ParaStack detects a hang soon after its occurrence, if hang is expected to happen

randomly during execution, the average time at which the program is terminated is about

half of the execution time.

VI. ParaStack vs. timeout. Unlike timeout method, ParaStack can report

hang according to the user specified confidence which automatically adjust parameters like

139

Platform Bench.
P P*

AC FP D AC FP D

Tianhe-2
FT(D) 1.0 0.0 4.8 1.0 0.0 3.5
FT(E) 1.0 0.0 29.4 1.0 0.0 14.9

Tardis
FT(D) 1.0 0.0 14.0 0.9 0.0 25.2
LU(D) 1.0 0.0 4.5 1.0 0.0 1.1
SP(D) 1.0 0.0 3.3 1.0 0.0 1.0

Table 5.9: ParaStack’s generality for variation of platforms, benchmarks and input sizes
at scale 256 based on 10 erroneous runs per configuration. Notes: (1) P stands for the
default ParaStack with I being initialized as 400ms; P∗ stands for ParaStack with I being
initialized as 10ms. (2) AC, accuracy; FP, false positive rate; D, average response delay.

sampling interval, what defines a suspicion, how many times of suspicions confirm a hang.

Our experimental results in Table 5.1 already demonstrated the drawbacks of timeout-based

mechanism. In contrast, ParaStack’s default configuration shows 100% accuracy and 0%

false positive rate (see Table 5.9). Even though we initialize I with a very small value

that does not deliver random sampling – say I = 10 in comparison to the default value of

I = 400, ParaStack’s effectiveness (P∗) still compares well with the default (P) as shown

in Table 5.9. This is because ParaStack has capability of adapting I automatically so as to

ensure random sampling. In short, the key advantage of ParaStack is that it reports hang

based on runtime history with high confidence 1 − α while traditional timeout method is

based upon guesses as shown in Table 5.1.

5.6.2 Faulty Process Identification

We evaluate the the effectiveness of faulty process identification using two met-

rics: faulty process identification accuracy (ACf); and faulty process identification precision

(PRf). As the faulty process identification is only performed after a hang is detected, this

evaluation is based on the same experiment as conducted in the hang detection accuracy

140

Platform Tardis Tianhe-2 Stampede

Scale 256 1024 1024

Metric ACf PRf ACf PRf ACf PRf

BT 99/99 1.0 50/50 1.0 20/20 1.0

CG 100/100 1.0 50/50 1.0 20/20 1.0

FT 97/98 0.99 50/50 1.0 — —

LU 98/98 1.0 49/49 1.0 20/20 1.0

MG 100/100 1.0 — — — —

SP 100/100 1.0 50/50 1.0 20/20 1.0

HPCG 100/100 1.0 — — — —

HPL 99/99 1.0 50/50 1.0 20/20 1.0

Table 5.10: Evaluation of faulty process identification.

evaluation. Recall, Th denotes the total number of times that the hang is detected correctly.

Let the number of times that the faulty process is found be Tf out of Th times, and let xi

be the number of processes reported as faulty ones in the i-th run. For the i-th run, if the

true faulty process is in this report, we say its precision (pi) is pi = 1/xi in this single run;

otherwise, pi = 0. The 2 metrics are defined as ACf = Tf/Th and PRf = 1
Th

∑Th
i=1 pi .

Table 5.10 gives results based on 100 erroneous runs at scale of 256 on Tardis,

50 erroneous runs at scale of 1024 on Tianhe-2, and 20 erroneous runs at scale 1024 on

Stampede. In terms of accuracy, ParaStack misses the faulty process once at scale 256.

Because this is a rare occurrence, we can handle it by printing debugging information for

further analysis. The precision of faulty process identification for FT is approximately

99.0% as ParaStack misses the faulty process once out of 98 runs. The precision for all

other applications is 100%.

At scale 4096, ParaStack’s effectiveness based on 10 erroneous runs for BT, CG,

LU, and SP is ACf = 1.0, and PRf = 100%; for HPL, ACf = PRf = 0.9. At scale 8192,

ParaStack’s effectiveness based on 5 erroneous runs of HPL is ACf = 5/5, and PRf =

141

86.7% as in one run ParaStack identifies 3 processes as faulty which includes the real faulty

process while it precisely identifies the real faulty process the other 4 runs. At scale 16384,

ParaStack’s effectiveness based on 3 erroneous runs of HPL is ACf = 3/3, and PRf = 100%.

5.7 Summary

By observing Scrout, ParaStack detects hangs with high accuracy, in a timely

manner, with negligible overhead and in a scalable way. Based on the concept of runtime

state, it sheds light on the roadmap for further debugging. It does not require any complex

setup and supports mainstream job schedulers – Slurm and Torque. Its compliance with

MPI standard ensures its portability to various hardware and software environments.

142

Chapter 6

Related Work

6.1 General Bug Detection

Various tools have been developed to aid the detection of general software bugs in

MPI programs. We classify these tools into three categories: (1) testing that detects bugs

via iteratively executing the program and aims to satisfy some criteria of code coverage

like branch coverage, statement coverage, and non-determinism coverage due to message

interleaving, (2) static methods that detect MPI errors by analyzing the code without the

need of executing it, and (3) dynamic methods that check the correctness of an MPI program

by executing it.

Testing. The study of testing in the filed of HPC is scarce. Some notable works in

this less-studied area include: message perturbation to improve the testing coverage of non-

determinism [128], Automated Testing System (ATS) for regression testing [5], Fortran-

TestGenerator for generating unit tests for legacy HPC applications written in Fortran [75],

143

and GKLEE for concolic testing for GPU programs [89, 93]. However, none performs code

coverage based testing for MPI applications — code coverage based testing can manifest

software bugs via achieving a high coverage and thus improves the software quality. COMPI

hence fills the gap and performs branch coverage based testing for MPI applications.

Research works on concolic testing [116, 65] are most closely related to our COMPI

tool. Concolic testing, also known as dynamic symbolic execution, automatically generates

test inputs via combining symbolic execution dynamically with concrete execution. Since its

birth, concolic testing has been a great success to test a variety of sequential programs [36,

107, 43, 55, 103, 80]. Also concolic testing has been applied to shared-memory parallel

programs including GPU programs [89, 93, 94, 48], multi-threading programs in C and

Java [114, 115, 56]. None of the above tackle distributed-memory applications. jCUTE [112]

instead applies concolic testing to boost the branch coverage as well as to detect deadlock in

distributed Java programs. While jCUTE does not tackle MPI programs that are commonly

used in HPC area, MPISE [61] and MPI-SV [131] deals with the non-determinism of message

passing in MPI programs and mainly focus on communication deadlock detection based on

concolic testing, and they are both built on top of CLOUD9 [41] — a parallel version of

concolic testing tool KLEE [43]. Complimentary to MPISE and MPI-SV, COMPI [91],

built on top of concolic testing tool CREST [42], performs branch coverage based testing

efficiently for real-world MPI applications and aims to detect runtime errors unrelated to

non-determinism.

Static methods. Existing static methods [117, 119, 132, 118, 54] mainly focus on the

detection of illegal use of MPI functions and communication deadlocks. Among these, quite

144

a few methods including MPI-Spin [118], TASS [119], and CIVL [132], make use of sym-

bolic execution. These works are complimentary to our approach as they employ symbolic

execution alone as opposed to concolic testing. Concolic testing distinguishes itself from

traditional symbolic execution via simplification of symbolic constraints by using concrete

values. The cost of concolic testing is the sacrifice of completeness as some constraints can

be lost or not recorded precisely due to the use of concrete values. What distinguishes our

COMPI tool from above works is that it focuses on efficiently performing branch coverage

based testing of real-world MPI applications.

Dynamic methods. Most existing bug detections tools for HPC programs are dynamic

methods. DAMPI [127], Intel Message Checker [51], Intel Trace Analyzer and Collec-

tor [102], ISP [125], Marmot [83], MUST [72, 71], and Umpire [126] detects deadlocks and

incorrect MPI usage based on runtime information collected by intercepting MPI library.

Besides, dynamic approaches are also used to detect defects inside MPI library such as data

movement anomaly and synchronization error [44, 63, 46] as well as non-deterministic mes-

sage race [109]. Unlike above, our COMPI tool does not aim to uncover a specific class of

bug; instead, it aims to improve the code quality via achieving high branch coverage and can

detect software bugs that lead to abnormal execution termination as well as program hangs

in the process of achieving a high coverage. Hermes [79] detect communication deadlocks

using dynamic symbolic verification that is very similar to concolic testing. COMPI differs

from it in that the goal of COMPI is to improve code quality of real-world MPI programs

using branch-coverage based testing.

145

6.2 Tackling Scaling Bugs

To aid the development of MPI applications, developers have to deal with the

challenge of scaling bugs. Such challenge involves three steps: (1) how to manifest a scaling

bug, (2) how to diagnose it to find the root cause, and (3) how to fix it.

Manifestation. To manifest scaling bugs, many research relies on model-based predic-

tion [133, 134, 88]. Zhou et al. [133, 134] predict the happening of scaling problems based

on a model built from bug-free runs at small scale. Laguna and Schulz [88] predict the

scale-dependent integer overflow bugs at code-level in large-scale parallel applications based

upon a model of small scale runs that monitoring integer operations related to the number

of processes and the input size. Techniques in [97, 39, 87] debug large-scale applications by

deriving their normal timing behavior and looking for deviations from it. Unlike these, we

propose the feasibility of testing to manifest scaling bugs with the use of MPI collectives and

justify that testing is not necessarily expensive by using only a small number of processes

at the expense of a large message size.

Diagnosing. It is very common that MPI application developers still use use traditional

debugging tools such as GDB [8] to diagnose scaling bugs. Following this line, DDT [1]

and TotalView [32] are fully functional debuggers that allow developers interact with many

processes instead of just one. However, interacting with a huge number of processes usually

overwhelm users. Many lightweight diagnosing tools [34, 85, 84, 98], though only applicable

to hangs and performance slowdowns, have been developed to aid the identification of root

causes. Our work tackling scaling bugs with the use of MPI collectives is complimentary to

146

these as it aims to find an integrated solution that detects and bypasses scaling problems

of the MPI libraries without the need of root cause diagnosis.

Fixing. Fixing a scaling bug is challenging due to the aggregated complexity of technical

difficulty, history reason (MPI backward compatibility), and responsibility issue (who should

fix the bug). Hammond et al. [68] extends MPI to support the need of sending a message

having a large element count that exceeds INT MAX based on building big data types.

Our work used the idea of big data types as one of our approaches to solve a different

problem: (1) the element count does not disobey the MPI standard, i.e. it is smaller than

INT MAX; and (2) we provide non-intrusive workarounds for more than integer overflow,

e.g. the workarounds can also work for environment-dependent scaling bugs.

6.3 Techniques for Handling a Program Hang

At various running scales, a variety of tools exist for detecting as well as diagnosing

communication deadlocks — a special case of hang — and hangs.

Handling hangs at small scale. At small scale, existing work focus on detect-

ing communication-deadlock using methods like time-out [83, 64, 101], communication

dependency analysis [126, 69], and formal verification [125]. These tools either use an

imprecise timeout mechanism or precise but centralized technique that limits scalability.

MUST [72, 71] claims to be a scalable tool for detecting MPI deadlocks at large scale,

but its overhead is still non-trivial as it ultimately checks MPI semantics across all pro-

cesses. These non-timeout methods do not address the full scope of hang detection, as

147

they do not consider computation-error induced hangs. Compared with those, our work,

ParaStack, deals with both kinds of hangs. Besides, the advantage of ParaStack over these

non-timeout tools is that it incurs negligible overhead to detect hangs; the advantage of non-

timeout tools is they are precise and potentially gives detailed insights to remove the errors.

Also, ParaStack is better than time-out methods as it avoids the difficulty of parameter

setting.

Handling hangs at large scale. At large scale, a few recent efforts focus on detecting

and diagnosing hangs. STAT [35] divides tasks (process/thread) into behavioral equivalence

classes using call stack traces. It is very useful for further analysis once ParaStack iden-

tifies a hang, especially when hangs are hard to reproduce. STAT-TO [34] extends STAT

by providing temporal ordering among processes that can be used to identify the least-

progressed processes; however, it requires expensive static analysis that fails in the absence

of loop-ordered-variables. AutomaDed [85, 84] draws probabilistic inference on progress

dependency among processes to nominate the least-progressed task, but it fails to handle

loops. Prodometer [98] performs highly accurate progress analysis in the presence of loops

and can precisely pinpoint the faulty processes of a hang. Prodometer’s primary goal is

to diagnose cause of hangs by giving useful progress dependency information. In contrast,

ParaStack ’s main aim is to detect hangs with high confidence in production runs. Thus

Prodometer’s capabilities are complementary to our tool.

148

Chapter 7

Conclusions and Future Work

7.1 Contributions

This dissertation contributes various dynamic bug detection techniques pre- and

post-deployment for both developers and users of MPI applications. For developers, we

provide an automated testing tool to aid the bug detection in their software development.

For users, we provide a testing suite helping users test suspicious MPI collectives and

an avoidance framework helping avoid detected scaling bugs without requiring any user

effort; also we devise a hang detection tool helping users save a great amount of computing

resources in presence of a hang at large scale production runs. Specifically, we highlight

following contributions.

Concolic Testing for MPI Applications

We develop COMPI, the first concolic testing framework for MPI applications.

First, we provide an automated testing framework for MPI programs — COMPI performs

concolic execution on a single process and records branch coverage across all. Infusing

149

MPI semantics such as MPI rank and MPI COMM WORLD into COMPI enables it to

automatically direct testing with various processes’ executions as well as automatically

determine the total number of processes used in the testing. Second, we make COMPI a

very practical testing tool via three techniques: input capping, two-way instrumentation,

and constraint set reduction.

In addition, we improve the usability of COMPI via addressing two issues: input

values generated by COMPI do not deliver cost-effective testing, and COMPI does not sup-

port floating-point arithmetic. We address the first issue via proposing a novel input tuning

technique. To address the second issue, we enable handling of floating point data types and

operations and demonstrate that the efficiency of constraint solving can be improved if we

rely on the use of reals instead of floating point values.

Tackling Scaling Bugs

The complexity of MPI collectives is directly impacted by both parallelism scale

and problem size, and their use often triggers scaling problems. Fixing a scaling problem

is challenging, and thus it usually takes much time for users to wait for an official fix,

which sometimes is even not possible due to the difficulty of bug reproduction, root-cause

identification, and fix development. To improve users’ productivity, we first establish the

necessity of user side testing and justifies that testing is feasible at moderate scale computing

platforms. Next we provide a protection layer to avoid scaling bugs non-intrusively — once

the protection layer detects a condition that triggers a scaling problem it avoids the bug

by either (1) chopping the communication into smaller ones or (2) building big data types.

Our work hence provides an immediate remedy when an official fix is not readily available.

150

Hang Detection at Large Scale

While program hangs on large parallel systems can be detected via the widely used

timeout mechanism, it is difficult for the users to set the timeout. To address the above

problems with hang detection, this thesis presents ParaStack, an extremely lightweight tool

to detect hangs based on runtime history in a timely manner with high accuracy, negligible

overhead with great scalability, and without requiring the user to select a timeout value.

For a detected hang, it further sheds light on the roadmap for further debugging: (1) it

tells whether such hang is caused by a computation error or not, and (2) it reports the

root-cause process for a hang induced by a computation error. ParaStack is integrated

into two parallel job schedulers Torque and Slurm and we validated its performance on two

world-leading supercomputers.

7.2 Future Work

Verification of MPI Programs

Our current work, COMPI, cannot avoid limitations. These limitations shed light

on the roadmap of our future work. First, more efficient search strategy that guides the ex-

ploration of execution tree is in need. BoundedDFS is a very traditional search strategy, and

is adopted by COMPI only because it is the only strategy that can make the testing pass the

sanity check of MPI programs. It is known there exist an array of more efficient strategies

for the concolic testing of sequential programs. We believe combining BoundedDFS with

other more efficient strategies would lead to a more efficient strategy that works for MPI

programs. Second, supporting other mainstream programming languages in the field of

151

HPC like C++ and Fortran is important to enable the verification of more real-world MPI

programs. Third, enabling symbolic execution across different processes is necessary. This

is because the values of variables marked as symbolic in one process could also determine

if some branches could be explored or not in other processes, considering the values of the

marked variables could be passed across processes. Fourth, a better constraint construction

method is in need. COMPI simplifies the constraints via replacing symbolic expressions

with concrete values. The simplification cause imprecise constraints (e.g., multiplication of

two symbolic expressions like x ∗ y can be simplified as 2x supposing the concrete value

of y is 2), or even loss of constraints (e.g., division operations is not even recorded sym-

bolically). The imprecision and loss of constraints impair the symbolic reasoning and thus

can cause some branches not to be covered. Fifth, lightweight instrumentation is possible

using taint analysis. COMPI relies on instrumentation such that symbolic execution code

can be inserted, but the instrumentation performed at code level is too heavy. With taint

analysis, we can only instrument instructions related to the use of variables being marked

symbolically, which would avoid a significant portion of instrumentation and thus enable

faster execution of programs in testing.

Also, advances in areas outside of HPC also inspire potential research directions.

First, combining concolic testing with random testing [96, 67] has proved to be more effec-

tive to manifest defects in sequential programs: random testing can quickly reach execution

states deep in the execution tree, and symbolic execution can thoroughly explore the neigh-

borhood of the states. We would also like to study the effectiveness of such combination

for MPI applications. Second, concolic testing can also be used to check specific type of

152

software bugs such as integer overflow. Via inserting conditional statements that checks if

integer overflow occurs among integer operations, the symbolic reasoning can easily check

if any inputs can lead to integer overflow based on the constraints issued by the inserted

conditional statements.

Tackling Scaling Bugs

One way to fix a scaling bug is to eradicate the bug from its root. Statistics has

proved its importance to aid the diagnosing of a scaling bug [39, 87, 85, 84, 90], i.e., extract-

ing the root cause from the massive amount of debugging information at large scale runs.

Future work could explore the applicability of statistics and machine learning techniques

on scaling bugs of various kinds other than hangs.

The other way is to propose techniques that mitigate the bugs negative impact

when the first solution is not possible. In this way, hard-to-fix scaling bugs can be fixed

indirectly. Future work could explore such indirect solution’s application scenarios other

than MPI collectives.

Beyond MPI

It has become the mainstream for supercomputers to be infused with the power

of both traditional CPUs and co-processors. To make full use of their combined power,

hybrid parallel programming models have been proposed, e.g., MPI + CUDA and MPI +

OpenMP. The correctness support for HPC applications demands the progress on not only

each programming model but also their combinations. In the future, we hope to go beyond

MPI to provide correctness support for other popular programming interfaces as well as

their combinations.

153

Bibliography

[1] Allinea ddt. URL: http://www.allinea.com/products/ddt.

[2] Bug occurs after 12 hours. URL: https://github.com/open-mpi/ompi/issues/81/.

[3] Bug occurs after 200 iterations. URL: https://github.com/open-mpi/ompi/

issues/99.

[4] Can we count on mpi to handle large datasets? URL: http://blogs.cisco.com/
performance/can-we-count-on-mpi-to-handle-large-datasets.

[5] Catching bugs with the automated testing system. URL: https://computation.

llnl.gov/research/mission-support/WCI/automated-testing-system.

[6] Code hangs when variables value increases. URL: https://software.intel.com/en-
us/forums/intel-clusters-and-hpc-technology/topic/601182.

[7] Floating point exception in susy-hmc. URL: https://github.com/daschaich/susy/
issues/16.

[8] Gdb: The gnu project debugger. URL: http://www.gnu.org/software/gdb.

[9] Hpl: a portable implementation of the high-performance linpack benchmark for
distributed-memory computers. URL: http://www.netlib.org/benchmark/hpl/.

[10] Intel mpi benchmarks user guide. URL: https://software.intel.com/en-us/imb-
user-guide.

[11] Io-watchdog. URL: https://code.google.com/p/io-watchdog/.

[12] Mpi: A message-passing interface standard version 3.1. URL: http://mpi-forum.
org/docs/mpi-3.1/mpi31-report.pdf.

[13] Mpi code hangs when send/recv large data. URL: https://software.intel.com/
en-us/forums/intel-clusters-and-hpc-technology/topic/610561.

[14] Mpi has bad performance in user mode. URL: https://software.intel.com/en-
us/forums/intel-clusters-and-hpc-technology/topic/607259.

154

http://www.allinea.com/products/ddt
https://github.com/open-mpi/ompi/issues/81/
https://github.com/open-mpi/ompi/issues/99
https://github.com/open-mpi/ompi/issues/99
http://blogs.cisco.com/performance/can-we-count-on-mpi-to-handle-large-datasets
http://blogs.cisco.com/performance/can-we-count-on-mpi-to-handle-large-datasets
https://computation.llnl.gov/research/mission-support/WCI/automated-testing-system
https://computation.llnl.gov/research/mission-support/WCI/automated-testing-system
https://software.intel.com/en-us/forums/intel-clusters-and-hpc-technology/topic/601182
https://software.intel.com/en-us/forums/intel-clusters-and-hpc-technology/topic/601182
https://github.com/daschaich/susy/issues/16
https://github.com/daschaich/susy/issues/16
http://www.gnu.org/software/gdb
http://www.netlib.org/benchmark/hpl/
https://software.intel.com/en-us/imb-user-guide
https://software.intel.com/en-us/imb-user-guide
https://code.google.com/p/io-watchdog/
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://software.intel.com/en-us/forums/intel-clusters-and-hpc-technology/topic/610561
https://software.intel.com/en-us/forums/intel-clusters-and-hpc-technology/topic/610561
https://software.intel.com/en-us/forums/intel-clusters-and-hpc-technology/topic/607259
https://software.intel.com/en-us/forums/intel-clusters-and-hpc-technology/topic/607259

[15] Mpi bcast in intel mpi library 2017 hangs on large user-defined datatypes.
URL: https://software.intel.com/en-us/articles/intel-mpi-library-2017-
known-issue-mpi-bcast-hang-on-large-user-defined-datatypes.

[16] Mpi get count and large messages. URL: http://trac.mpich.org/projects/

mpich/ticket/1005.

[17] Nas parallel benchmarks. URL: https://www.nas.nasa.gov/publications/npb.

html.

[18] Ocaml. URL: https://ocaml.org/.

[19] Ohio supercomputer center’s charging policy. URL: https://www.osc.edu/

supercomputing/software/general#charging.

[20] Ompi 1.4.3 hangs in imb gather. URL: https://github.com/open-mpi/ompi/

issues/125.

[21] Ompi-1.7 mpi alltoallv hangs. URL: https://github.com/open-mpi/ompi/issues/
1620.

[22] Ompi v1.6 running out of registered memory. URL: https://svn.open-mpi.org/
trac/ompi/ticket/3134.

[23] Osu micro-benchmarks. URL: http://mvapich.cse.ohio-state.edu/benchmarks.

[24] Paradyn project: Dyninst. URL: http://www.paradyn.org/html/manuals.html#
dyninst.

[25] Probability theory and mathematical statistics: normal approximation to binomial.
URL: https://onlinecourses.science.psu.edu/stat414/node/179.

[26] San diego supercomputer center’s charging policy. URL: http://www.sdsc.edu/

support/user_guides/comet.html#charging.

[27] Sloccount. URL: https://www.dwheeler.com/sloccount/.

[28] Solve the 1d time dependent heat equation using mpi. URL: http://people.sc.
fsu.edu/~jburkardt/c_src/heat_mpi/heat_mpi.html.

[29] Stampede user guide [online]. URL: https://portal.tacc.utexas.edu/user-

guides/stampede.

[30] Three segmentation fault bugs in susy-hmc. URL: https://github.com/daschaich/
susy/issues/15.

[31] Top500 list. URL: http://www.top500.org/lists/2014/11/.

[32] Totalview debugger. URL: http://www.roguewave.com/products-services/

totalview.

155

https://software.intel.com/en-us/articles/intel-mpi-library-2017-known-issue-mpi-bcast-hang-on-large-user-defined-datatypes
https://software.intel.com/en-us/articles/intel-mpi-library-2017-known-issue-mpi-bcast-hang-on-large-user-defined-datatypes
http://trac.mpich.org/projects/mpich/ticket/1005
http://trac.mpich.org/projects/mpich/ticket/1005
https://www.nas.nasa.gov/publications/npb.html
https://www.nas.nasa.gov/publications/npb.html
https://ocaml.org/
https://www.osc.edu/supercomputing/software/general#charging
https://www.osc.edu/supercomputing/software/general#charging
https://github.com/open-mpi/ompi/issues/125
https://github.com/open-mpi/ompi/issues/125
https://github.com/open-mpi/ompi/issues/1620
https://github.com/open-mpi/ompi/issues/1620
https://svn.open-mpi.org/trac/ompi/ticket/3134
https://svn.open-mpi.org/trac/ompi/ticket/3134
http://mvapich.cse.ohio-state.edu/benchmarks
http://www.paradyn.org/html/manuals.html#dyninst
http://www.paradyn.org/html/manuals.html#dyninst
https://onlinecourses.science.psu.edu/stat414/node/179
http://www.sdsc.edu/support/user_guides/comet.html#charging
http://www.sdsc.edu/support/user_guides/comet.html#charging
https://www.dwheeler.com/sloccount/
http://people.sc.fsu.edu/~jburkardt/c_src/heat_mpi/heat_mpi.html
http://people.sc.fsu.edu/~jburkardt/c_src/heat_mpi/heat_mpi.html
https://portal.tacc.utexas.edu/user-guides/stampede
https://portal.tacc.utexas.edu/user-guides/stampede
https://github.com/daschaich/susy/issues/15
https://github.com/daschaich/susy/issues/15
http://www.top500.org/lists/2014/11/
http://www.roguewave.com/products-services/totalview
http://www.roguewave.com/products-services/totalview

[33] The yices smt solver. URL: http://yices.csl.sri.com/.

[34] D.H. Ahn, B.R. De Supinski, I. Laguna, G.L. Lee, B. Liblit, B.P. Miller, and M. Schulz.
Scalable temporal order analysis for large scale debugging. In High Performance
Computing Networking, Storage and Analysis, Proceedings of the Conference on, pages
1–11, Nov 2009.

[35] D.C. Arnold, D.H. Ahn, B.R. de Supinski, G.L. Lee, B.P. Miller, and M. Schulz.
Stack trace analysis for large scale debugging. In Parallel and Distributed Processing
Symposium, 2007. IPDPS 2007. IEEE International, pages 1–10, March 2007.

[36] Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip, Danny Dig, Amit Paradkar, and
Michael D Ernst. Finding bugs in dynamic web applications. In Proceedings of the
2008 international symposium on Software testing and analysis, pages 261–272. ACM,
2008.

[37] Dirk Beyer, Adam J. Chlipala, Thomas A. Henzinger, Ranjit Jhala, and Rupak Ma-
jumdar. Generating tests from counterexamples. In Proceedings of the 26th Inter-
national Conference on Software Engineering, ICSE ’04, pages 326–335, Washington,
DC, USA, 2004. IEEE Computer Society. URL: http://dl.acm.org/citation.cfm?
id=998675.999437.

[38] D. L. Bird and C. U. Munoz. Automatic generation of random self-checking test cases.
IBM Systems Journal, 22(3):229–245, 1983. doi:10.1147/sj.223.0229.

[39] Greg Bronevetsky, Ignacio Laguna, Saurabh Bagchi, Bronis R. de Supinski, Dong Ahn,
and Martin Schulz. Automaded: Automata-based debugging for dissimilar parallel
tasks. In Proceedings of the 2010 IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2010, Chicago, IL, USA, June 28 - July 1 2010, pages
231–240, July 2010.

[40] Randal E Bryant, O’Hallaron David Richard, and O’Hallaron David Richard. Com-
puter systems: a programmer’s perspective, volume 2. Prentice Hall Upper Saddle
River, 2003.

[41] Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. Parallel symbolic
execution for automated real-world software testing. In Proceedings of the sixth con-
ference on Computer systems, pages 183–198. ACM, 2011.

[42] J. Burnim and K. Sen. Heuristics for scalable dynamic test generation. In 2008 23rd
IEEE/ACM International Conference on Automated Software Engineering, pages
443–446, Sept 2008. doi:10.1109/ASE.2008.69.

[43] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: Unassisted and au-
tomatic generation of high-coverage tests for complex systems programs. In OSDI,
volume 8, pages 209–224, 2008.

156

http://yices.csl.sri.com/
http://dl.acm.org/citation.cfm?id=998675.999437
http://dl.acm.org/citation.cfm?id=998675.999437
http://dx.doi.org/10.1147/sj.223.0229
http://dx.doi.org/10.1109/ASE.2008.69

[44] Zhezhe Chen, J. Dinan, Zhen Tang, P. Balaji, Hua Zhong, Jun Wei, Tao Huang,
and Feng Qin. Mc-checker: Detecting memory consistency errors in mpi one-sided
applications. In High Performance Computing, Networking, Storage and Analysis,
SC14: International Conference for, pages 499–510, New Orleans, LA, Nov 2014.
IEEE Computer Society.

[45] Zhezhe Chen, Qi Gao, Wenbin Zhang, and Feng Qin. Flowchecker: Detecting bugs in
mpi libraries via message flow checking. In High Performance Computing, Networking,
Storage and Analysis (SC), 2010 International Conference for, pages 1–11, Nov 2010.

[46] Zhezhe Chen, Xinyu Li, Jau-Yuan Chen, Hua Zhong, and Feng Qin. Syncchecker:
Detecting synchronization errors between mpi applications and libraries. In Parallel
Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International, pages
342–353, May 2012.

[47] Koen Claessen and John Hughes. Quickcheck: A lightweight tool for random
testing of haskell programs. In Proceedings of the Fifth ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP ’00, pages 268–279, New
York, NY, USA, 2000. ACM. URL: http://doi.acm.org/10.1145/351240.351266,
doi:10.1145/351240.351266.

[48] Peter Collingbourne, Cristian Cadar, and Paul HJ Kelly. Symbolic crosschecking of
floating-point and simd code. In Proceedings of the sixth conference on Computer
systems, pages 315–328. ACM, 2011.

[49] Christoph Csallner and Yannis Smaragdakis. Jcrasher: an automatic robustness tester
for java. Software: Practice and Experience, 34(11):1025–1050, 2004.

[50] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 337–340. Springer, 2008.

[51] Jayant DeSouza, Bob Kuhn, Bronis R. de Supinski, Victor Samofalov, Sergey Zhel-
tov, and Stanislav Bratanov. Automated, scalable debugging of mpi programs with
intel® message checker. In Proceedings of the Second International Workshop
on Software Engineering for High Performance Computing System Applications, SE-
HPCS ’05, pages 78–82, New York, NY, USA, 2005. ACM.

[52] J. Diaz, C. Munoz-Caro, and A. Nino. A survey of parallel programming models
and tools in the multi and many-core era. Parallel and Distributed Systems, IEEE
Transactions on, 23(8):1369–1386, Aug 2012.

[53] Jack Dongarra and Michael A Heroux. Toward a new metric for ranking high perfor-
mance computing systems. Sandia Report, SAND2013-4744, 312:150, 2013.

[54] Alexander Droste, Michael Kuhn, and Thomas Ludwig. Mpi-checker: static analysis
for mpi. In Proceedings of the Second Workshop on the LLVM Compiler Infrastructure
in HPC, page 3. ACM, 2015.

157

http://doi.acm.org/10.1145/351240.351266
http://dx.doi.org/10.1145/351240.351266

[55] Michael Emmi, Rupak Majumdar, and Koushik Sen. Dynamic test input generation
for database applications. In Proceedings of the 2007 international symposium on
Software testing and analysis, pages 151–162. ACM, 2007.

[56] Mahdi Eslamimehr and Jens Palsberg. Sherlock: scalable deadlock detection for
concurrent programs. In Proceedings of the 22nd ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, pages 353–365. ACM, 2014.

[57] Justin E Forrester and Barton P Miller. An empirical study of the robustness of
windows nt applications using random testing. In Proceedings of the 4th USENIX
Windows System Symposium, pages 59–68. Seattle, 2000.

[58] G. C. Fox and S. W. Otto. Matrix algorithms on a hypercube i: Matrix multiplication.
Parallel Computing, 4:17–31, 1987.

[59] Xianjin Fu, Zhenbang Chen, Hengbiao Yu, Chun Huang, Wei Dong, and Ji Wang.
Symbolic execution of mpi programs. In Proceedings of the 37th International Con-
ference on Software Engineering-Volume 2, pages 809–810. IEEE Press, 2015.

[60] Xianjin Fu, Zhenbang Chen, Hengbiao Yu, Chun Huang, Wei Dong, and Ji Wang.
Symbolic execution of mpi programs. In Proceedings of the 37th International Con-
ference on Software Engineering - Volume 2, ICSE ’15, pages 809–810, Piscataway,
NJ, USA, 2015. IEEE Press. URL: http://dl.acm.org/citation.cfm?id=2819009.
2819178.

[61] Xianjin Fu, Zhenbang Chen, Yufeng Zhang, Chun Huang, Wei Dong, and Ji Wang.
Mpise: Symbolic execution of mpi programs. In High Assurance Systems Engineering
(HASE), 2015 IEEE 16th International Symposium on, pages 181–188. IEEE, 2015.

[62] Edgar Gabriel, Graham E Fagg, George Bosilca, Thara Angskun, Jack J Dongarra,
Jeffrey M Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, et al. Open mpi: Goals, concept, and design of a next generation mpi
implementation. In European Parallel Virtual Machine/Message Passing Interface
Users Group Meeting, pages 97–104. Springer, 2004.

[63] Qi Gao, Feng Qin, and Dhabaleswar K. Panda. Dmtracker: Finding bugs in large-
scale parallel programs by detecting anomaly in data movements. In Proceedings of
the 2007 ACM/IEEE Conference on Supercomputing, SC ’07, New York, NY, USA,
2007. ACM.

[64] James Coyle Jim Hoekstra Glenn R. Luecke, Yan Zou and Marina Kraeva. Deadlock
detection in MPI programs. Concurrency and Computation: Practice and Experience,
14(11):911–932, 2002.

[65] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated ran-
dom testing. In Proceedings of the 2005 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’05, pages 213–223, New York,
NY, USA, 2005. ACM. URL: http://doi.acm.org/10.1145/1065010.1065036,
doi:10.1145/1065010.1065036.

158

http://dl.acm.org/citation.cfm?id=2819009.2819178
http://dl.acm.org/citation.cfm?id=2819009.2819178
http://doi.acm.org/10.1145/1065010.1065036
http://dx.doi.org/10.1145/1065010.1065036

[66] Patrice Godefroid, Michael Y. Levin, and David Molnar. Sage: Whitebox fuzzing for
security testing. Queue, 10(1):20:20–20:27, January 2012. URL: http://doi.acm.
org/10.1145/2090147.2094081, doi:10.1145/2090147.2094081.

[67] Patrice Godefroid, Michael Y Levin, David A Molnar, et al. Automated whitebox
fuzz testing. In NDSS, volume 8, pages 151–166, 2008.

[68] Jeff R Hammond, Andreas Schäfer, and Rob Latham. To int max... and beyond!: ex-
ploring large-count support in mpi. In Proceedings of the 2014 Workshop on Exascale
MPI, pages 1–8. IEEE Press, 2014.

[69] W. Haque. Concurrent deadlock detection in parallel programs. Int. J. Comput.
Appl., 28(1):19–25, Jan 2006.

[70] Dustin Heaton and Jeffrey C Carver. Claims about the use of software engineer-
ing practices in science: A systematic literature review. Information and Software
Technology, 67:207–219, 2015.

[71] Tobias Hilbrich, Bronis R. de Supinski, Wolfgang E. Nagel, Joachim Protze, Christel
Baier, and Matthias S. Müller. Distributed wait state tracking for runtime mpi dead-
lock detection. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC ’13, New York, NY, USA, 2013.
ACM.

[72] Tobias Hilbrich, Bronis R. de Supinski, Martin Schulz, and Matthias S. Müller. A
graph based approach for mpi deadlock detection. In Proceedings of the 23rd Inter-
national Conference on Supercomputing, number 10, pages 296–305, New York, NY,
USA, 2009. ACM.

[73] Torsten Hoefler and Roberto Belli. Scientific benchmarking of parallel computing
systems: twelve ways to tell the masses when reporting performance results. In Pro-
ceedings of the international conference for high performance computing, networking,
storage and analysis, page 73. ACM, 2015.

[74] C. Hovy and J. Kunkel. Towards automatic and flexible unit test generation for legacy
hpc code. In 2016 Fourth International Workshop on Software Engineering for High
Performance Computing in Computational Science and Engineering (SE-HPCCSE),
pages 1–8, Nov 2016. doi:10.1109/SE-HPCCSE.2016.005.

[75] Christian Hovy and Julian M Kunkel. Towards automatic and flexible unit test gen-
eration for legacy hpc code. In SE-HPCCSE@ SC, pages 1–8, 2016.

[76] Arne Johanson and Wilhelm Hasselbring. Software engineering for computational
science: Past, present, future. Computing in Science & Engineering, 2018.

[77] Upulee Kanewala and James M Bieman. Testing scientific software: A systematic
literature review. Information and software technology, 56(10):1219–1232, 2014.

159

http://doi.acm.org/10.1145/2090147.2094081
http://doi.acm.org/10.1145/2090147.2094081
http://dx.doi.org/10.1145/2090147.2094081
http://dx.doi.org/10.1109/SE-HPCCSE.2016.005

[78] Diane Kelly and Rebecca Sanders. The challenge of testing scientific software. In Pro-
ceedings of the 3rd annual conference of the Association for Software Testing (CAST
2008: Beyond the Boundaries), pages 30–36. Citeseer, 2008.

[79] Dhriti Khanna, Subodh Sharma, César Rodŕıguez, and Rahul Purandare. Dynamic
symbolic verification of mpi programs. In International Symposium on Formal Meth-
ods, pages 466–484. Springer, 2018.

[80] Yunho Kim, Moonzoo Kim, Young Joo Kim, and Yoonkyu Jang. Industrial appli-
cation of concolic testing approach: A case study on libexif by using crest-bv and
klee. In Software Engineering (ICSE), 2012 34th International Conference on, pages
1143–1152. IEEE, 2012.

[81] Yunho Kim, Youil Kim, Taeksu Kim, Gunwoo Lee, Yoonkyu Jang, and Moonzoo
Kim. Automated unit testing of large industrial embedded software using concolic
testing. In Automated Software Engineering (ASE), 2013 IEEE/ACM 28th Interna-
tional Conference on, pages 519–528. IEEE, 2013.

[82] James C King. Symbolic execution and program testing. Communications of the
ACM, 19(7):385–394, 1976.

[83] Bettina Krammer, Katrin Bidmon, Matthias S. Müller, and Michael M. Resch. Mar-
mot: An mpi analysis and checking tool. In Parallel Computing: Software Technology,
Algorithms, Architectures and Applications, PARCO 2003, Dresden, Germany, pages
493–500, 2003.

[84] Ignacio Laguna, Dong Ahn, Bronis de Supinski, Saurabh Bagchi, and Todd Gam-
blin. Diagnosis of performance faults in large scale mpi applications via probabilistic
progress-dependence inference. 2014.

[85] Ignacio Laguna, Dong H. Ahn, Bronis R. de Supinski, Saurabh Bagchi, and Todd
Gamblin. Probabilistic diagnosis of performance faults in large-scale parallel applica-
tions. In Proceedings of the 21st International Conference on Parallel Architectures
and Compilation Techniques, pages 213–222, New York, NY, USA, 2012. ACM.

[86] Ignacio Laguna, Dong H Ahn, Bronis R de Supinski, Todd Gamblin, Gregory L Lee,
Martin Schulz, Saurabh Bagchi, Milind Kulkarni, Bowen Zhou, Zhezhe Chen, et al.
Debugging high-performance computing applications at massive scales. Communica-
tions of the ACM, 58(9):72–81, 2015.

[87] Ignacio Laguna, Todd Gamblin, Bronis R. de Supinski, Saurabh Bagchi, Greg Bron-
evetsky, Dong H. Anh, Martin Schulz, and Barry Rountree. Large scale debugging
of parallel tasks with automaded. In Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis, SC ’11, pages
50:1–50:10. ACM, 2011.

[88] Ignacio Laguna and Martin Schulz. Pinpointing scale-dependent integer overflow bugs
in large-scale parallel applications. In Proceedings of the International Conference

160

for High Performance Computing, Networking, Storage and Analysis, page 19. IEEE
Press, 2016.

[89] Guodong Li, Peng Li, Geof Sawaya, Ganesh Gopalakrishnan, Indradeep Ghosh, and
Sreeranga P Rajan. Gklee: concolic verification and test generation for gpus. In ACM
SIGPLAN Notices, volume 47, pages 215–224. ACM, 2012.

[90] Hongbo Li, Zizhong Chen, and Rajiv Gupta. Parastack: Efficient hang detection for
mpi programs at large scale. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’17, pages 63:1–63:12,
New York, NY, USA, 2017. ACM. URL: http://doi.acm.org/10.1145/3126908.
3126938, doi:10.1145/3126908.3126938.

[91] Hongbo Li, Zizhong Chen, and Rajiv Gupta. Compi: Concolic testing for mpi ap-
plications. In Proceedings of the International Parallel and Distributed Processing
Symposium, pages 865–874. IEEE, 2018.

[92] Hongbo Li, Zizhong Chen, Rajiv Gupta, and Min Xie. Non-intrusively avoiding
scaling problems in and out of mpi collectives. In 2018 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), pages 415–424. IEEE,
2018.

[93] Peng Li, Guodong Li, and Ganesh Gopalakrishnan. Parametric flows: automated
behavior equivalencing for symbolic analysis of races in cuda programs. In High
Performance Computing, Networking, Storage and Analysis (SC), 2012 International
Conference for, pages 1–10. IEEE, 2012.

[94] Peng Li, Guodong Li, and Ganesh Gopalakrishnan. Practical symbolic race checking
of gpu programs. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 179–190. IEEE Press, 2014.

[95] Daniel Liew, Daniel Schemmel, Cristian Cadar, Alastair F Donaldson, Rafael Zahl,
and Klaus Wehrle. Floating-point symbolic execution: A case study in n-version
programming. In Automated Software Engineering (ASE), 2017 32nd IEEE/ACM
International Conference on, pages 601–612. IEEE, 2017.

[96] Rupak Majumdar and Koushik Sen. Hybrid concolic testing. In Software Engineering,
2007. ICSE 2007. 29th International Conference on, pages 416–426. IEEE, 2007.

[97] Alexander V Mirgorodskiy, Naoya Maruyama, and Barton P Miller. Problem diag-
nosis in large-scale computing environments. In Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, page 88. ACM, 2006.

[98] Subrata Mitra, Ignacio Laguna, Dong H. Ahn, Saurabh Bagchi, Martin Schulz, and
Todd Gamblin. Accurate application progress analysis for large-scale parallel de-
bugging. In Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, pages 193–203. ACM, 2014.

161

http://doi.acm.org/10.1145/3126908.3126938
http://doi.acm.org/10.1145/3126908.3126938
http://dx.doi.org/10.1145/3126908.3126938

[99] George C Necula, Scott McPeak, Shree P Rahul, and Westley Weimer. Cil: Intermedi-
ate language and tools for analysis and transformation of c programs. In International
Conference on Compiler Construction, pages 213–228. Springer, 2002.

[100] Adrian Nistor, Po-Chun Chang, Cosmin Radoi, and Shan Lu. Caramel: Detecting and
fixing performance problems that have non-intrusive fixes. In Software Engineering
(ICSE), 2015 IEEE/ACM 37th IEEE International Conference on, volume 1, pages
902–912. IEEE, 2015.

[101] P. Ohly and W. Krotz-Vogel. Automated mpi correctness checking: What if there
was a magic option? In Proceedings of the 8th LCI International Conference on
High-Performance Clustered Computing, 2007.

[102] Patrick Ohly and Werner Krotz-Vogel. Automated mpi correctness checking: What
if there was a magic option. In Proceedings of the 8th LCI International Conference
on High-Performance Clustered Computing, pages 19–25, 2007.

[103] Kai Pan, Xintao Wu, and Tao Xie. Generating program inputs for database appli-
cation testing. In Proceedings of the 2011 26th IEEE/ACM International Conference
on Automated Software Engineering, pages 73–82. IEEE Computer Society, 2011.

[104] Zhengbin Pang, Min Xie, Jun Zhang, Yi Zheng, Guibin Wang, Dezun Dong, and
Guang Suo. The th express high performance interconnect networks. Frontiers of
Computer Science, 8(3):357–366, 2014.

[105] Fabrizio Petrini, Darren J Kerbyson, and Scott Pakin. The case of the missing su-
percomputer performance: Achieving optimal performance on the 8,192 processors of
asci q. In Supercomputing, 2003 ACM/IEEE Conference, pages 55–55. IEEE, 2003.

[106] Prakash Prabhu, Hanjun Kim, Taewook Oh, Thomas B Jablin, Nick P Johnson,
Matthew Zoufaly, Arun Raman, Feng Liu, David Walker, Yun Zhang, et al. A survey
of the practice of computational science. In High Performance Computing, Network-
ing, Storage and Analysis (SC), 2011 International Conference for, pages 1–12. IEEE,
2011.

[107] Raimondas Sasnauskas, Olaf Landsiedel, Muhammad Hamad Alizai, Carsten Weise,
Stefan Kowalewski, and Klaus Wehrle. Kleenet: discovering insidious interaction bugs
in wireless sensor networks before deployment. In Proceedings of the 9th ACM/IEEE
International Conference on Information Processing in Sensor Networks, pages 186–
196. ACM, 2010.

[108] Kento Sato, Dong H. Ahn, Ignacio Laguna, Gregory L. Lee, and Martin Schulz.
Clock delta compression for scalable order-replay of non-deterministic parallel ap-
plications. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’15, pages 62:1–62:12, New York,
NY, USA, 2015. ACM. URL: http://doi.acm.org/10.1145/2807591.2807642,
doi:10.1145/2807591.2807642.

162

http://doi.acm.org/10.1145/2807591.2807642
http://dx.doi.org/10.1145/2807591.2807642

[109] Kento Sato, Dong H. Ahn, Ignacio Laguna, Gregory L. Lee, Martin Schulz, and
Christopher M. Chambreau. Noise injection techniques to expose subtle and un-
intended message races. In Proceedings of the 22Nd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’17, pages 89–101,
New York, NY, USA, 2017. ACM. URL: http://doi.acm.org/10.1145/3018743.
3018767, doi:10.1145/3018743.3018767.

[110] David Schaich and Thomas DeGrand. Parallel software for lattice n= 4 supersym-
metric yang–mills theory. Computer Physics Communications, 190:200–212, 2015.

[111] David Schaich and Thomas DeGrand. Parallel software for lattice n= 4 supersym-
metric yang–mills theory. Computer Physics Communications, 190:200–212, 2015.

[112] Koushik Sen and Gul Agha. Automated systematic testing of open distributed pro-
grams. In International Conference on Fundamental Approaches to Software Engi-
neering, pages 339–356. Springer, 2006.

[113] Koushik Sen and Gul Agha. Automated systematic testing of open distributed pro-
grams. In International Conference on Fundamental Approaches to Software Engi-
neering, pages 339–356. Springer, 2006.

[114] Koushik Sen and Gul Agha. Cute and jcute: Concolic unit testing and explicit path
model-checking tools. In International Conference on Computer Aided Verification,
pages 419–423. Springer, 2006.

[115] Koushik Sen and Gul A Agha. Concolic testing of multithreaded programs and its
application to testing security protocols. Technical report, 2006.

[116] Koushik Sen, Darko Marinov, and Gul Agha. Cute: A concolic unit testing engine for
c. In Proceedings of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software En-
gineering, ESEC/FSE-13, pages 263–272, New York, NY, USA, 2005. ACM. URL:
http://doi.acm.org/10.1145/1081706.1081750, doi:10.1145/1081706.1081750.

[117] Stephen F Siegel. Model checking nonblocking mpi programs. In International
Workshop on Verification, Model Checking, and Abstract Interpretation, pages 44–
58. Springer, 2007.

[118] Stephen F Siegel. Verifying parallel programs with mpi-spin. In European Paral-
lel Virtual Machine/Message Passing Interface Users Group Meeting, pages 13–14.
Springer, 2007.

[119] Stephen F Siegel and Timothy K Zirkel. Tass: The toolkit for accurate scientific
software. Mathematics in Computer Science, 5(4):395–426, 2011.

[120] Anthony Skjellum, Nathan E Doss, and Kishore Viswanathan. Inter-communicator
extensions to mpi in the mpix (mpi extension) library. Technical report, Citeseer,
1994.

163

http://doi.acm.org/10.1145/3018743.3018767
http://doi.acm.org/10.1145/3018743.3018767
http://dx.doi.org/10.1145/3018743.3018767
http://doi.acm.org/10.1145/1081706.1081750
http://dx.doi.org/10.1145/1081706.1081750

[121] Marc Snir, Robert W Wisniewski, Jacob A Abraham, Sarita V Adve, Saurabh Bagchi,
Pavan Balaji, Jim Belak, Pradip Bose, Franck Cappello, Bill Carlson, et al. Address-
ing failures in exascale computing. The International Journal of High Performance
Computing Applications, 28(2):129–173, 2014.

[122] Xiang Song, Haibo Chen, and Binyu Zang. Why software hangs and what can be done
with it. In Dependable Systems and Networks (DSN), 2010 IEEE/IFIP International
Conference on, June 2010.

[123] Frieda S Swed and Churchill Eisenhart. Tables for testing randomness of grouping in
a sequence of alternatives. The Annals of Mathematical Statistics, 14(1):66–87, 1943.

[124] Nikolai Tillmann and Jonathan De Halleux. Pex: White box test generation for .net.
In Proceedings of the 2Nd International Conference on Tests and Proofs, TAP’08,
pages 134–153, Berlin, Heidelberg, 2008. Springer-Verlag. URL: http://dl.acm.

org/citation.cfm?id=1792786.1792798.

[125] Sarvani S. Vakkalanka, Subodh Sharma, Ganesh Gopalakrishnan, and Robert M.
Kirby. Isp: A tool for model checking mpi programs. In Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
’08, New York, NY, USA, 2008. ACM.

[126] Jeffrey S. Vetter and Bronis R. de Supinski. Dynamic software testing of mpi appli-
cations with umpire. In Proceedings of the 2000 ACM/IEEE Conference on Super-
computing, SC ’00, Washington, DC, USA, 2000. IEEE Computer Society.

[127] A. Vo, G. Gopalakrishnan, R.M. Kirby, B.R. de Supinski, M. Schulz, and G. Bronevet-
sky. Large scale verification of mpi programs using lamport clocks with lazy update.
In Parallel Architectures and Compilation Techniques (PACT), 2011 International
Conference on. IEEE Computer Society, 2011.

[128] Richard Vuduc, Martin Schulz, Dan Quinlan, Bronis De Supinski, and Andreas
Sæbjørnsen. Improving distributed memory applications testing by message perturba-
tion. In Proceedings of the 2006 workshop on Parallel and distributed systems: testing
and debugging, pages 27–36. ACM, 2006.

[129] X. Wu, Z. Xu, D. Yan, T. Wu, J. Yan, and J. Zhang. The floating-point extension
of symbolic execution engine for bug detection. In 2016 23rd Asia-Pacific Software
Engineering Conference (APSEC), pages 265–272, Dec 2016.

[130] Ruini Xue, Xuezheng Liu, Ming Wu, Zhenyu Guo, Wenguang Chen, Weimin Zheng,
Zheng Zhang, and Geoffrey Voelker. Mpiwiz: Subgroup reproducible replay of mpi
applications. In Proceedings of the 14th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’09, pages 251–260, New York, NY,
USA, 2009. ACM. URL: http://doi.acm.org/10.1145/1504176.1504213, doi:

10.1145/1504176.1504213.

164

http://dl.acm.org/citation.cfm?id=1792786.1792798
http://dl.acm.org/citation.cfm?id=1792786.1792798
http://doi.acm.org/10.1145/1504176.1504213
http://dx.doi.org/10.1145/1504176.1504213
http://dx.doi.org/10.1145/1504176.1504213

[131] Hengbiao Yu. Combining symbolic execution and model checking to verify mpi pro-
grams. In Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings, pages 527–530. ACM, 2018.

[132] Manchun Zheng, Michael S Rogers, Ziqing Luo, Matthew B Dwyer, and Stephen F
Siegel. Civl: formal verification of parallel programs. In Automated Software Engi-
neering (ASE), 2015 30th IEEE/ACM International Conference on, pages 830–835.
IEEE, 2015.

[133] Bowen Zhou, Milind Kulkarni, and Saurabh Bagchi. Vrisha: using scaling properties
of parallel programs for bug detection and localization. In Proceedings of the 20th
international symposium on High performance distributed computing, pages 85–96.
ACM, 2011.

[134] Bowen Zhou, Jonathan Too, Milind Kulkarni, and Saurabh Bagchi. Wukong: au-
tomatically detecting and localizing bugs that manifest at large system scales. In
Proceedings of the 22nd international symposium on High-performance parallel and
distributed computing, pages 131–142. ACM, 2013.

165

