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ABSTRACT OF THE DISSERTATION

Out-Of-Core MapReduce System for Large Datasets

by

Gurneet Kaur

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2021

Dr. Rajiv Gupta, Chairperson

While single machine MapReduce systems can squeeze out maximum performance

from available multi-cores, they are often limited by the size of main memory and can thus

only process small datasets. Even though today’s computers are equipped with efficient

secondary storage devices, the frameworks do not utilize these devices mainly because disk

access latencies are much higher than those for main memory. Therefore, a single machine

set up of Hadoop system performs much slower when it is presented with the datasets larger

than the main memory. Moreover, such frameworks also require tuning a lot of parameters

which puts an added burden on the programmer. While distributed computational re-

sources are now easily available, efficiently performing large scale computations still remain

a challenge due to out-of-memory errors and complexity involved in handling distributed

systems. Therefore, we develop techniques to perform large-scale processing on a single

machine by reducing the amount of IO and exploiting sequential locality when using disks.

First, this dissertation presents OMR, a single machine out-of-core MapReduce

system that can efficiently handle datasets that are far larger than the size of main memory
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and guarantees linear scaling with the growing data sizes. OMR actively minimizes the

amount of data to be read/written to/from disk via on-the-fly aggregation and it uses block

sequential disk read/write operations whenever disk accesses become necessary to avoid

running out of memory. We theoretically prove OMRs linear scalability and empirically

demonstrate it by processing datasets that are up to 5× larger than main memory. Our

experiments show that in comparison to the standalone single-machine setup of the Hadoop

system, OMR delivers far higher performance. Also OMR avoids out-of-memory crashes

for large datasets and delivers high performance for datasets that fit in main memory.

Second, this dissertation presents a single-level out-of-core partitioner for large

irregular graphs GO, which can successfully partition large graphs by performing just two

passes over the entire input graph, partition creation pass that creates balanced partitions

and partition refinement pass that reduces edgecuts in a memory constrained manner via

disk-based processing. For graphs that can be successfully partitioned by the widely used

Mt-Metis system on a single machine, GO produces balanced 8-way partitions with 11.8×

to 76.2× fewer edgecuts using 1.9× to 8.3× less memory in comparable runtime.

Finally, we extend the API of the OMR system to enable graph partitioning and

partition-based graph processing for large graphs that do not fit in memory. Our ex-

periments show that the extended OMRGx system can be easily used to partition large

graphs and perform the partition-based graph processing. The API provided allows the

programmer to focus on the programming logic while remaining completely oblivious of the

out-of-core processing required to handle large graphs.

viii



Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Developing an Out-of-core MapReduce System . . . . . . . . . . . . 4
1.1.2 Partitioning Large Graphs on a Single Machine . . . . . . . . . . . . 6
1.1.3 Extended Support for Graph Partitioning and Partition-based Graph

Processing in OMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Out-of-core MapReduce for Large Datasets 9
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 MapReduce on a Single Machine . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 OMR: Out-of-core MapReduce system . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Minimizing I/O Overheads . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Lockless Memory Constrained Processing Model . . . . . . . . . . . 18
2.3.3 Map Phase: Sequential Writes of Ordered Batches . . . . . . . . . . 20
2.3.4 Reduce Phase: Sequential Reads from Ordered Batches . . . . . . . 22
2.3.5 Optimizing I/O for Fixed Size Types . . . . . . . . . . . . . . . . . . 24

2.4 I/O Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Out-of-core Graph Partitioner 40
3.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 Limitation of Multilevel Partitioning . . . . . . . . . . . . . . . . . . 42
3.2 GO Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 GO: Out-of-core Graph Partitioner . . . . . . . . . . . . . . . . . . . . . . . 47

ix



3.3.1 Memory Constrained Initial Partition Creation . . . . . . . . . . . . 48
3.3.2 Memory Constrained Partition Refinement . . . . . . . . . . . . . . 52

3.4 GO Prototype and its Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.1 Quality of Partitions: Edgecuts and Balance . . . . . . . . . . . . . 60
3.4.2 Memory Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4.3 Execution Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4.4 GridGraph Performance vs. GO Partitioning . . . . . . . . . . . . . 68

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 OMRGx: Extended OMR for Graph Partitioning and Processing 72
4.1 MapReduce for Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Extending OMR: An Implementation Choice . . . . . . . . . . . . . . . . . 75
4.3 The OMRGx Programming Interface . . . . . . . . . . . . . . . . . . . . . . 76

4.3.1 Graph Partitioning Algorithms . . . . . . . . . . . . . . . . . . . . . 78
4.3.2 Partition-based Graph Processing Algorithms . . . . . . . . . . . . . 81
4.3.3 Default Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Implementation and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5 Programmability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.6 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.7 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.8 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Related Work 93
5.1 Mapreduce on a Single Machine . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 Graph Partitioning on a Single Machine . . . . . . . . . . . . . . . . . . . . 96
5.3 Out-of-Core Graph Processing . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Conclusions and Future Work 98
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1.1 OMR: Out-of-core MapReduce for Large Datasets . . . . . . . . . . 98
6.1.2 GO: Out-of-core Graph Partitioner for Large Graphs . . . . . . . . . 99
6.1.3 OMRGx: MapReduce for Graph Partitioning and Processing . . . . 99

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Bibliography 102

x



List of Figures

1.1 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 OMR Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Left y-axis represent execution times in seconds for OMR-VR, OMR-FX

and Metis. Right y-axis represent execution times in seconds for Hadoop.
Majority of Metis datapoints are absent because it could not handle large
datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Read and write times in seconds. . . . . . . . . . . . . . . . . . . . . . . . 33
2.4 Size of intermediate files on disk. . . . . . . . . . . . . . . . . . . . . . . . 33
2.5 On-the-fly aggregation during map phase. . . . . . . . . . . . . . . . . . . 36
2.6 Varying record size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Overview of Out-of-Core GO Graph Partitioning. . . . . . . . . . . . . . . . 47
3.2 Organizing Memory into Buffers and Disk Usage. . . . . . . . . . . . . . . 49
3.3 Representation of example graph in memory and on disk where k = 2 and

t = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4 Illustration of Refinement Algorithm. . . . . . . . . . . . . . . . . . . . . . . 57
3.5 Edgecuts as a percentage of total number of edges for GO configurations. . 62

4.1 OMRGx APIs to support Graph Partitioning and Processing. . . . . . . . 77
4.2 Programming with OMRGx: the map() and reduce() APIs are used for

specifying the processing logic; diskReadPartition and diskWritePartition
APIs used for storing the entire or part of the partition on disk. . . . . . . 78

4.3 Hash partitioner programmed in OMRGx using its high-level API; showcasing
the ease and versatility of programming with OMRGx. . . . . . . . . . . . 79

4.4 GO partitioner programmed in OMRGx using its high-level API; showcasing
the ease and versatility of programming with OMRGx. . . . . . . . . . . . 79

4.5 MtMetis partitioner programmed in OMRGx using its high-level API; show-
casing the ease and versatility of programming with OMRGx. . . . . . . . 80

4.6 Graph Processing Algorithm - PageRank programmed in OMRGx using its
high-level API; showcasing the ease and versatility of programming with
OMRGx. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xi



4.7 Comparison of Execution Times (seconds) for Graph Partitioning Algorithms
implemented in OMRGx vs. their standalone implementations using input
graphs of varying sizes and different number of partitions. . . . . . . . . . 88

4.8 Comparison of Execution Times (seconds) for Partition-based Graph Pro-
cessing Algorithms implemented in OMRGx vs. their standalone implemen-
tations using input graphs of varying sizes and different number of partitions. 89

4.9 Scalability for Graph Partitioning and Processing Algorithms w.r.t the size
of the input graphs for the number of partitions k = 8. . . . . . . . . . . . 91

xii



List of Tables

2.1 Performance of Metis [14] on various MapReduce algorithms – 7 represents
out-of-memory crashes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 MapReduce algorithms and sizes associated with their keys and values. . . 24
2.3 MapReduce algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 Speedups achieved by OMR over Hadoop: OMR refers to OMR-VR for

benchmarks WC, II, SC, RII, AL and SJ and OMR-FX for benchmarks MR
and DC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Execution times (in seconds) on small datasets. OMR refers to OMR-VR
for benchmarks WC, II, SC, RII, AL and SJ and OMR-FX for benchmarks
MR and DC. 7 [k GB] means that the dataset could not be processed due
to out-of-memory crashes and the size of the largest dataset that could be
processed is k GB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Input Graphs of Varying Sizes: Flickr (FL), PokeC (PK), LiveJournal (LJ),
Orkut (OK), UKdomain2002 (UK02), Wikipedia-eng (WK), Twitter-WWW
(TW), Twitter-MPI (TM), and UKdomain-2007 (UK07). [35,60] . . . . . . 41

3.2 Comparison of serial implementation KMetis with the multithreaded Mt-
Metis in terms of the number of Edgecuts, Memory Consumption (GB) and
Execution Time (sec). 8 partitions produced for each input graph on a ma-
chine with 425GB main memory. . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Given Original Graph of Size | E | + | V | and (+L) Coarsened Graphs
Generated by Mt-Metis: Ratio is the times by which Cumulative Graph Size
of Mt-Metis is Greater than the Original Graph Size. . . . . . . . . . . . . . 45

3.4 Number of Edgecuts for GO-100 and Relative Number for Mt-Metis and Other
GO Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Balance of Partitions – GO Configurations vs. Mt-Metis: Values are MAXi(|
Vi |) as a percentage of | Vi |. The ideal balance percentage for 8, 16 and 24
partitions is 12.50%, 6.25% and 4.17% respectively. . . . . . . . . . . . . . . 61

3.6 Peak Memory in GB for GO configurations vs. Mt-Metis. . . . . . . . . . . 63
3.7 Execution Times in Seconds for GO Configurations vs. Mt-Metis. . . . . . . 66
3.8 I/O Time in Seconds for GO Configurations. . . . . . . . . . . . . . . . . . . 67

xiii



3.9 Scalability of GO Configurations: Execution Times in Seconds for PageRank
and WCC on GridGraph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.10 Execution Times in Seconds for GO-100, Mt-Metis, Cyclic, and Block-Cyclic
Partitionings on Medium Sized Graphs OK, WK and Large Graph TW for
PageRank and Weakly Connected Components (WCC) on GridGraph. . . . 70

4.1 Lines of Code needed to program the graph partitioning and processing al-
gorithms in OMRGx vs the lines of code in the corresponding standalone
systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 Input Graphs: Orkut (OK), Wikipedia-eng (WK), Twitter-WWW (TW),
Twitter-MPI (TM), and UKdomain-2007 (UK). [35, 60] used in the evalua-
tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xiv



Chapter 1

Introduction

MapReduce is a functional programming model to process large datasets in par-

allel. Users specify a map function that processes a key/value pair to generate a set of

intermediate key/value pairs and a reduce function that merges all the intermediate values

associated with the same intermediate key. Such a framework enables users to easily express

the processing logic using the simple APIs while runtime takes care of all the other details

like automatically scheduling computations across machines and managing the available

resources.

The simplicity of MapReduce framework along with its applicability to practi-

cal problems has made it a popular choice amongst a range of computing platforms (e.g.

Hadoop [1], Mars [9]). MapReduce model provides an efficient and scalable implementation

on distributed runtime that scales the processing across available computing resources.

While distributed computational resources are now easily available, efficient large

scale computations still remain a challenge due to out-of-memory errors and complexity
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involved in handling distributed systems. Even distributed Hadoop commonly suffers from

out-of-memory errors. iTask [6] reports 73 out-of-memory errors from stack overflow when

using Hadoop in a distributed setting due to great memory pressure that occurs when

processing large datasets. Although not all the errors have recommended fixes, fixing some of

the errors requires tuning a number of parameters. More generally, using distributed systems

requires users to be highly skillful since tuning a cluster using a number of parameters and

debugging distributed algorithms are non-trivial tasks.

To avoid the complexity involved in handling distributed systems, performing ana-

lytics on single machine systems have gained popularity in recent years. The wide availabil-

ity of multiple cores on todays desktops has led to the development of such data processing

systems that can operate on a single machine. Although single machine systems are gaining

popularity they are often limited by the available main memory. MapReduce Frameworks

like Metis [14], Phoenix++ [21] are highly tailored to efficiently utilize the available cores

and extract maximum efficiency to process large enough datasets that can fit in main mem-

ory. Such systems are naturally suitable for use cases requiring simple aggregations like

counting, joining etc over data used/generated in other larger analyses and experiments.

However, when such systems are presented with datasets larger than main memory, they

simply fail.

Recent single machine graph analytics frameworks like GraphChi [13], GridGraph

[47] etc have demonstrated that processing can scale beyond main memory by carefully uti-

lizing disks. Such frameworks transparently support out-of-core processing by incorporating

disk friendly data structures that can orchestrate disk accesses such that sequential disk

2



accesses get maximized. Furthermore, availability of frameworks like Infinimem [11] enable

size oblivious programming by exposing simple read/write functions that can be directly

used to scale runtime beyond main memory capacities.

Naively incorporating out-of-core support for MapReduce algorithms can signif-

icantly slow down the overall processing speed. Hadoop, for example, can be configured

in a standalone single machine setting. However, it greatly suffers from performance bot-

tlenecks due to massive exchange of intermediate results during its shuffle and sort phases

that aggressively aims to sort the intermediate data to route key/value pairs to reducers,

thereby causing larger (and more random) disk accesses.

Therefore, the goal of this dissertation is to develop an out-of-core MapReduce

system that can transparently support out-of-core processing to efficiently handle large

datasets in memory by lowering the overall I/O and by minimizing random disk accesses. We

further extend this system and generalize it by supporting graph partitioning and partition-

based graph processing.

1.1 Dissertation Overview

This dissertation presents OMRGx, a generic MapReduce framework that can

efficiently handle large datasets as well as enables graph partitioning and partition-based

graph processing. Figure 1.1 shows the overview of this dissertation. First, we propose

OMR, an out-of-core MapReduce system which is highly optimized for single machine and

can handle datasets far larger than the size of main memory. Second, we propose GO, a

single-level out-of-core graph partitioner which can successfully partition large graphs in a
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Figure 1.1: Dissertation Overview

memory constrained manner. Finally, we propose extending OMR to support end-to-end

graph processing by providing the APIs for graph partitioning and partition-based graph

processing. Next, we summarize the approaches proposed above.

1.1.1 Developing an Out-of-core MapReduce System

Naively incorporating secondary storage devices can lead to much higher disk ac-

cess latencies. In Chapter 2, we describe our out-of-core MapReduce system to enable

processing of very large datasets that cannot fit in main memory. Since secondary storage
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incurs high processing costs, the main challenge is to scale linearly with size of these large

datasets so that the processing times remain reasonably bounded. To achieve linear scal-

ability, our system ensures that each <key, value> pair generated during the map phase

is read/written from/to disk at most once throughout processing. The system also ac-

tively minimizes the intermediate data to be maintained while simultaneously maximizing

sequential disk accesses to speed up the overall processing. It achieves this via the following

techniques:

(a) Memory Constrained Processing. OMR partitions the available memory into

disjoint bounded buffer spaces. This allows map and reduce threads to fully own the

allotted buffer spaces for maintaining intermediate results. These buffer spaces are

backed with record batches that reside on disk to avoid out-of-memory crashes.

(b) Sequential Block Disk Accesses via Ordered Records. OMR maintains a

consistent ordering of intermediate results during the map phase using ordered in-

memory buffers. As these buffers become full, they are written to disk in form of

ordered batches of records using sequential block writes. During the reduce phase,

the ordering across record batches allows threads to fetch required portions of batch

records from disk using sequential block reads. Thus, maintaining ordering within

batches of intermediate results eliminates the need to fully sort intermediate results.

(c) I/O Reduction via On-the-fly Aggregation. To reduce the amount of disk I/O,

OMR actively performs combining operation during the map phase to merge inter-

mediate results based on their keys. This is efficiently performed using the ordering

information across in-memory buffers.
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Using the above techniques, the I/O performed by OMR remains linear in size of

intermediate data generated during the map phase, which makes it optimal (as proved in

Section 2.4). Moreover, OMR optimizes data management via fixed sized key-value pairs

by eliminating the need to maintain indexing information on disk, which further reduces

random disk accesses. Finally, to maintain efficient in-memory execution, OMR employs

lockless processing that eliminates thread synchronization within map and reduce phases.

1.1.2 Partitioning Large Graphs on a Single Machine

Graph analytics is employed in many domains to gain insights by analyzing large

graphs representing entities and interactions among them. Real world graphs often con-

tain millions of vertices and billions of edges, and iterative graph analytics queries require

multiple passes over the graph until convergence. Therefore, there has been a great deal of

interest in developing scalable graph analytics systems that exploit parallelism on shared

memory systems.

Before parallel analytics on large graphs can be performed, they typically must

first be partitioned. In context of a single shared-memory machine, the graph is partitioned

to enable out-of-core or disk-based processing of a large graph on a single machine. When

the graph is too large to fit in the memory available on the machine, it is divided into

smaller partitions and stored on disk. This enables partitions to be loaded one at a time

into memory and processed. For superior performance, partitioning algorithms endeavor to

create partitions that are well balanced and minimize edgecuts (i.e., number of edges that

cross partition boundaries).
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Although the problem of graph partitioning is known to be NP-hard, highly ef-

fective multilevel graph partitioning algorithms have been developed and are widely used.

Multilevel graph partitioning algorithms generally have higher memory requirements due

to holding the original graph and all its coarsened graphs in memory. Therefore, the mul-

tilevel graph partitioning algorithms used by the most sophisticated partitioners cannot be

run on the same machine as their memory requirements far exceed the size of the graph.

To overcome this problem, we describe our single-level GO out-of-core graph partitioner

that can successfully partition large graphs on a single machine. GO performs just two

passes over the entire input graph, partition creation pass that creates balanced partitions

and partition refinement pass that reduces edgecuts. Both passes function in a memory

constrained manner via disk-based processing.

1.1.3 Extended Support for Graph Partitioning and Partition-based Graph

Processing in OMR

The ease of expressing wide variety of algorithms using our highly optimized

MapReduce system made us think in another direction - why not use MapReduce sys-

tem for partitioning and end-to-end processing of large graphs? Such a system is already

equipped with efficient engine to leverage parallelism, handle data efficiently in memory and

perform optimized IO operations. Therefore, a highly tailored single machine MapReduce

system becomes a good choice to partition and process large graphs that often need to

be written off to disk due to their iterative nature and BSP model semantics. Hence, we

can use the simple APIs provided by the MapReduce system to express the vertex-centric

computations. Such a framework is also ideal to partition the graphs by mapping the data
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to different partitions and assigning each reducer the task of refining each partition. This

led us to take a step forward and extend our existing MapReduce system - OMR to support

Graph Partitioning and Processing.

1.2 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 presents an out-of

core MapReduce systems that works in a memory constrained manner and avoids out-of-

memory crashes seen by the other systems. Chapter 3 presents a single-level out-of-core

graph partitioner which performs just two passes to partition the input graph - partition

creation pass and partition refinement pass. In Chapter 4, we describe a generic MapReduce

framework which can partition and process large graphs. Chapter 5 discusses various re-

search work in literature and Chapter 6 concludes the thesis as well as discusses directions

for the future work.
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Chapter 2

Out-of-core MapReduce for Large

Datasets

The prevalence of large datasets has led to development of various efficient big

data processing tools like Spark [26], MapReduce [5], PowerGraph [30], and many others.

Such tools typically provide a simplified programming model along with an efficient runtime

system to scale processing across available computing resources. The programming model

enables users to easily express the processing logic using simple APIs (for example, map(),

reduce(), etc.) whereas the runtime takes care of automatically scheduling computations

across machines and managing the available resources to provide best performance.

While the above systems were initially designed for distributed processing envi-

ronments, the wide availability of multiple cores on today’s desktops has led to the de-

velopment of such data processing systems that can operate on a single machine. Single

machine MapReduce frameworks like Metis [14], Pheonix++ [21] and others [4, 10, 25] are
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highly tailored to efficiently utilize the available cores and extract maximum efficiency to

process large enough datasets that can fit in main memory. Such systems are naturally

suitable for use cases requiring simple aggregations (like counting, joining, etc.) over data

used/generated in other larger analyses and experiments. However, these systems are funda-

mentally designed for in-memory data processing. This means, their processing capabilities

are severely limited by the amount of main memory since datasets are, more often than

not, much larger than main memory sizes.

Recent works like [13, 45] have demonstrated that processing can efficiently scale

beyond main memory by carefully employing disks (i.e., out-of-core processing) and devel-

oping a disk-friendly runtime to consciously maximize disk access bandwidth. Furthermore,

availability of frameworks like InfiniMem [11] enable size oblivious programming by expos-

ing simple read/write functions that can be directly used to scale runtime systems beyond

main memory’s capacity. However, naively enabling out-of-core support for MapReduce

algorithms can significantly slowdown the overall processing since the shuffling and sorting

phase typically performs massive exchange of intermediate results to route key-value pairs

to reducers; such massive exchange in an out-of-core setting can lead to a high volume

of random disk accesses, causing a strong performance bottleneck. While external sorting

algorithms can help alleviate this issue, they still require multiple passes over data residing

on disk which can be very expensive. This leaves us with an important challenge: how to

design an out-of-core MapReduce execution model that efficiently maps in-memory interme-

diate results to disk records such that: a) the overall disk I/O remains low; and, b) random

disk accesses get minimized.
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In this chapter, we present an out-of-core MapReduce system - OMR which can

efficiently process datasets far larger than the size of main memory and guarantees linear

scaling with the growing data sizes.

2.1 Overview

OMR1, a single machine Out-of-core MapReduce system that can successfully

process datasets that are much larger than main memory sizes. To limit slowdowns from

I/O overheads, OMR guarantees linear scaling with growing data sizes when using disks

for processing by actively reducing the amount of data written/read to/from disk, and by

ensuring that block sequential disk accesses are maximized.

OMR achieves its goals via three key techniques. First, OMR partitions the avail-

able memory into disjoint bounded buffer spaces. This allows map and reduce threads to

fully own the allotted buffer spaces for maintaining intermediate results. These buffer spaces

are backed with record batches that reside on disk to avoid out-of-memory crashes. Second,

OMR maintains a consistent ordering of intermediate results during the map phase using

ordered in-memory buffers. As these buffers become full, they are written to disk in form of

ordered batches of records using sequential block writes. During the reduce phase, the or-

dering across record batches allows threads to fetch required portions of batch records from

disk using sequential block reads. Thus, maintaining consistent ordering within batches of

intermediate results eliminates the need to fully sort intermediate results. Third, to reduce

the amount of disk I/O, OMR actively performs combining operation during the map phase

1OMR is pronounced Homer.
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to merge intermediate results based on their keys. This is efficiently performed using the

ordering information across in-memory buffers.

Using the above techniques, the I/O performed by OMR remains linear in size of

intermediate data generated during the map phase, which makes it optimal (as proved in

Section 2.4). Moreover, OMR optimizes data management via fixed sized key-value pairs

by eliminating the need to maintain indexing information on disk, which further reduces

random disk accesses. Finally, to maintain efficient in-memory execution, OMR employs

lockless processing that eliminates thread synchronization within map and reduce phases.

The key contributions of this paper are as follows.

• We present a single machine out-of-core MapReduce system that processes datasets

whose sizes are larger than main memory sizes.

• We design a lockless memory constrained processing model that actively reduces the

amount of disk I/O via on-the-fly aggregation, and ensures that block sequential disk

accesses get maximized whenever disk operations are required.

• We develop a key optimization that enables the use of fixed-sized records to eliminate

maintenance of indexing information on disk and further reduce random disk accesses.

• We thoroughly evaluate OMR using eight MapReduce algorithms and compare its

performance with that of Metis [14], a state of the art single-machine in-memory

MapReduce system. The experimental results in Figure 2.2, Figure 2.3, and Figure

2.4 show that OMR efficiently processes datasets that are up to 5× larger than main

memory, proving the linear scalability of OMR as analyzed in Section 2.4. In contrast,
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Metis fails to process large data sets. Furthermore, results in Table 2.5 show that OMR

outperforms Metis for smaller datasets that can fit in main memory and thus can be

successfully processed by Metis.

• We also compare the performance of OMR with a standalone (single machine setup)

Hadoop [1] system in Figure 2.2. While after tuning many parameters available on

Hadoop, Hadoop is able to process large data sets, OMR outperforms Hadoop by

1.5-41.2× for data sets ranging from 8GB to 80GB in size.

2.2 MapReduce on a Single Machine

MapReduce [5] is a popular execution model to process large datasets in parallel.

At the heart of MapReduce is a simple programming model consisting of two functions,

map() and reduce(), and a scalable runtime system that efficiently manages data across

map and reduce processing phases.

As an example, Algorithm 1 shows how the logic to count word frequencies can be

expressed in MapReduce. We use the notation <x, y> to represent a pair of x and y, and

[z] to represent a list containing multiple values; hence, <x, [y]> is a pair of x and the list

y. In Algorithm 1, for each word in the input, the map() function emits a <key, value>

pair (line 3) with key being the word itself and value being 1. The system aggregates all the

values for a given key and passes the resulting <key, [value]> pair to reduce() function

where the individual counts are summed together to produce the frequency of each word.

The programming model provides an optional combine() function to merge in-

termediate values for same key in the map phase to reduce processing needs for shuffling
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<key, [value]> pairs and for the subsequent reduce phase. While expressing only the core

processing logic using functions map(), reduce() and optionally combine() makes it easy

for programmers to work with large datasets, the runtime remains burdened with process-

ing details like parallelism, data partitioning, synchronization and resource management for

efficient and scalable processing system.

Algorithm 1 Word count example in MapReduce

1: function map(line)

2: for word ∈ line do

3: emit(<word, 1>)

4: end for

5: end function

6: function reduce(<key,[value]>)

7: frequency ← sum([value])

8: output(key, frequency)

9: end function

One option for employing MapReduce on a single machine is to use Hadoop as

it can be setup in a standalone single machine configuration. Hadoop is able to handle

large inputs using disks so that it doesn’t run out of memory. However, since it is not

fundamentally designed for a single machine environment, its shuffle and sort (merge) phase

aggressively aims to sort the intermediate data which leads to larger (and more random)

disk I/O. Even though Hadoop’s performance can be improved by tuning a number of

parameters, its workflow cannot be drastically changed to suit the needs of out-of-core

processing where minimizing disk access while economically utilizing main memory becomes

the primary concern. Moreover, parameter tuning imposes great deal of burden on the

users and requires them to gain an architectural understanding of Hadoop. This is contrary

to the simplicity of the MapReduce [5] model which aims at providing the user with a
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simple programming interface without requiring detailed understanding of the underlying

architecture. Our experimental results in Section 5 show that after tuning the available

parameters, even though we are able to process large inputs using Hadoop, the observed

execution times are still very high.

Another option available is to make use of a single machine MapReduce frame-

work [4, 10, 14, 17, 21, 25] that aim to efficiently utilize the available cores to process large

enough datasets that can fit in main memory. For example, Metis [14], designed optimally

for single machine, minimizes the bottlenecks involved in aggregating <key, [value]> pairs

by reorganizing intermediate data in a hash table of B+ tree entries. It also reduces thread

synchronization across map and reduce phases by first allowing map threads to operate on

separate hash tables and then repartitioning hash table entries for reducers to individually

work on them.

While such frameworks provide high performance, the limited amount of main

memory severely curtails their processing capabilities. For example, on a standard multicore

machine with 16GB main memory, Metis can successfully process 8-16GB datasets for

only two out of eight MapReduce algorithms as shown in Table 2.1. Even though today’s

computers are equipped with efficient secondary storage devices, the frameworks do not

utilize them since disk access latencies are much higher than those for main memory.

Recent works in out-of-core big data processing like [13,45] have shown that large

amounts of data can be processed on a single machine by carefully orchestrating disk accesses

such that sequential disk accesses get maximized. Furthermore, availability of frameworks
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Table 2.1: Performance of Metis [14] on various MapReduce algorithms – 7 represents
out-of-memory crashes.

Algorithms Key Size Value Size Dataset Metis

WordCount 1-32 bytes 8 bytes

8GB 3

16GB 3

32GB 7

InvertedIndex 1-32 bytes 32 bytes
8GB 3

16GB 7

SequenceCount 7-132 bytes 4 bytes 8GB 7

RankedInvert- edIndex 5-98 bytes 130 bytes 8GB 7

MovieRatings 8 bytes 4 bytes 8GB 7

DegreeCount 8 bytes 4 bytes
8GB

7
16GB

AdjacencyList 8 bytes Unbounded
8GB

7
16GB

SelfJoin 1-32 bytes Unbounded 8GB 7

like InfiniMem [11] enable size oblivious programming by exposing simple read/write func-

tions that can be directly used to scale runtime systems beyond main memory capacities.

Therefore, in this work we develop an out-of-core MapReduce system to enable processing

of very large datasets that cannot fit in main memory. Since secondary storage incurs high

processing costs, the main challenge is to scale linearly with size of these large datasets so

that the processing times remain reasonably bounded. To achieve linear scalability, our sys-

tem ensures that each <key, value> pair generated during the map phase is read/written

from/to disk at most once throughout processing. The system also actively minimizes
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the intermediate data to be maintained while simultaneously maximizing sequential disk

accesses to speed up the overall processing.

2.3 OMR: Out-of-core MapReduce system

In this section, we will first present our memory constrained processing model, and

then discuss the I/O aspects across different phases of processing.

2.3.1 Minimizing I/O Overheads

A straightforward way to support processing of large datasets on a single machine

is to incorporate disk-friendly out-of-core data structures in place of regular in-memory

data structures. While such a solution will ensure that the system is no longer bounded by

the main-memory size, it will effectively transform the accesses to irregular data-structures

into random disk accesses, hence slowing down the entire processing. Furthermore, the

traditional MapReduce processing model includes a shuffling phase where keys are sorted

to be sent out to respective reduce tasks and performing this phase over data residing in

out-of-core data structures can further increase random disk accesses and greatly impacting

the processing speed.

To ensure reasonable input scalability, it becomes necessary to actively manage

disk accesses such that expensive random accesses get minimized. Furthermore, sequential

locality can be exploited by performing disk read and write operations at a coarser granu-

larity, i.e., in blocks. In other words, maximizing sequential disk accesses can increase the

disk utilization bandwidth, hence reducing the overheads of utilizing disks while processing.

17



Hence, we design the OMR processing model to ensure that:

1. Each <key, value> pair is written to disk at most once during map phase.

2. Each <key, value> pair is read from disk at most once during reduce phase.

3. Sequential disk accesses get maximized during both map and reduce phases.

2.3.2 Lockless Memory Constrained Processing Model

OMR maintains the above properties by incorporating a memory constrained pro-

cessing model. In this model, we partition the available memory into disjoint buffer spaces

such that their size remains bounded throughout the execution. As shown in Figure 2.1a,

the <key, value> pairs emitted by the user-defined map() function are maintained in size-

constrained ordered in-memory buffers that are ordered based on keys. As the buffers grow

large, they are spilled off to disk to make room for further <key, value> pairs. These

ordered buffers are written in entirety as ordered batches on the disk. Hence, at the end of

the map phase, the disk contains multiple ordered batches, which become input to the sub-

sequent reduce phase. Since these batches are ordered based on keys, the reduction process

streams multiple batches from beginning to end and collects values for same keys (similar

to merge process in mergesort) to pass <key, [value]> pairs to user-defined reduce()

function.

The concurrent execution in the presence of multiple threads can be visualized

by laying out the batches for each buffer in a three dimensional grid as shown in Figure

2.1b. During map phase, each thread owns a row of in-memory buffers and the <key,
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Figure 2.1: OMR Overview.

value> pairs processed by a thread are hashed to one of the buffer in its respective row

using a user-defined consistent hashing function. As the size of buffers reach a certain

memory threshold, they are written to disk as batches so that they can be emptied for

further processing. Presence of multiple batches for each buffer is represented via the z

dimension in Figure 2.1b. At the end of the map phase, any given key would be present

in some or all of the batches with the same color. Hence, during the reduce phase, each

thread independently operates on batches with the same color. This means, threads during

the reduce phase own batches with the same color. Such disjoint ownership of buffers and

batches during map and reduce phases enables threads to independently process data in the

system, causing the entire data processing pipeline to be lockless. Next, we discuss different

I/O aspects of the map and reduce phases in detail.
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Algorithm 2 Map Phase

1: tid: Thread identifier

2: buffers[∗][∗]: Buffers in memory (2-dim)

3: batches[∗][∗][∗]: Batches on disk (3-dim)

4: input: Input from file to map function

5: threshold: Parameter controlling block

writes

6: for kvpair emitted by map(input) do

7: key ← kvpair.getKey();

8: value ← kvpair.getValue();

9: bufferId ← hash(key);

// Alias buffer

10: buffer ← buffers[tid][bufferId];

11: if key ∈ buffer then

12: bufferValue ← buffer.getValue(key);

13: combinedvalues ←

combine(bufferValue, value);

14: buffer.setValue(key, combinedvalues);

15: else

16: buffer.insertNew(kvpair);

17: end if

18: if |buffer| ≥ threshold then

19: batch ← serialize(buffer);

20: blockdiskwrite(batch);

// Alias tbatches

21: tbatches ← batches[tid][bufferId];

22: tbatches.insertNewBatch(batch);

23: buffer.clear();

24: end if

25: end for

2.3.3 Map Phase: Sequential Writes of Ordered Batches

The <key, value> pairs emitted during map phase are maintained in ordered in-

memory buffers. We employ red-black trees as our in-memory buffers with ordering based on

keys. While the payload on these tree nodes can directly be the emitted value, we allow the

nodes to hold list of values to support on-the-fly aggregation of values for same keys. Hence,

multiple <key, value> pairs with same key are aggregated within these buffers as <key,

[values]> pairs using the user-defined combine() function. Such on-the-fly aggregation
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reduces the buffer size by: A) not repeating the key for each <key, value> pair; and, B)

reducing values to be managed when aggregation results in scalar values (e.g., sum, min,

etc.). The amount of size reduction achieved due to aggregation varies based on the dynamic

interplay between available memory size and the nature of input.

Furthermore, if enough memory is available, the buffers are never spilled to disk

and all the <key, [value]> pairs represent all values for their corresponding keys and

hence, they can be directly sent to the reduce phase.

Algorithm 2 shows how <key, value> pairs are processed during map phase. In

order to write a buffer off to disk (lines 18-24), its contents are serialized into a batch of

contiguous records such that each <key, [value]> pair becomes a record. The records

within a batch are ordered under the same ordering as that of their corresponding pairs in

the buffer from which they are serialized. Since records within the batch are contiguous, as

shown in Figure 2.1a, the entire batch can be written out to disk via a single sequential write

(blockdiskwrite() on line 20). We use InfiniMem’s block-based I/O [11] to seamlessly

manage disk writes. In particular, InfiniMem provides efficient I/O support for variable

size records which we leverage since size of our records vary based on number of values

aggregated and variable sized key/value types (e.g., string). To support variable size

records, InfiniMem also writes index information for batch records on disk; as we will see in

Section 2.3.5, the runtime completely eliminates I/O for this additional index information

for cases where record sizes remain fixed.

It is important to note that each <key, value> pair emitted by the map() func-

tion is written to disk at most once throughout the map phase. In absence of on-the-fly
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aggregation, each <key, value> pair would be written exactly once to disk and the aggre-

gation reduces this by combining multiple <key, value> pairs into <key, [value]> pairs.

In worst case, the aggregation simply results in list of original values in [value] which still

reduces the amount of data written to disk due to elimination of multiple same keys. On

other hand, the ideal case is when aggregation results in a single scalar value which reduces

disk write cost of multiple <key, value> pairs to a single <key, value> pair.

2.3.4 Reduce Phase: Sequential Reads from Ordered Batches

Since the map phase organizes data as ordered batches on the disk, the reduce

phase carefully orchestrates reads from disk to maximize sequential disk reads. This is done

using a process that streams records from batches in a manner similar to the merge phase

in merge-sort algorithm. Furthermore, the map phase ensures that any given key can only

be present in batches of the same color in Figure 2.1b, hence making subsets of batches

independent of each other for the reduce phase. The runtime leverages this invariant during

reduce phase by assigning one reduce thread for each disjoint set of buffers that hold similar

set of keys.

Algorithm 3 shows processing performed during the reduce phase. The get-

NextMinKV() function streams records from multiple batches belonging to a given reduce

thread (line 18) using blocked sequential reads from batches on disk; blockdiskread() (line

19) reads k contiguous records from a given batch starting from next unread record. Since

batches contain variable size records, we use InfiniMem’s block-based I/O [11] to seamlessly

manage reading of multiple variable size records from disk. The records are then deserial-
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ized (line 20) to become <key, [value]> pairs and multiple pairs from different batches

with same key are aggregated together by concatenating their list of values (line 21) to

form a single <key, [value]> pair, as shown in Figure 2.1a. Since blocks of k records are

read from each batch, it is guaranteed that all the values associated to the least k keys are

available in mergedpairs at line 7. Hence, the pairs with k least keys are sent to reduce()

for processing (lines 8-11).

Algorithm 3 Reduce Phase

1: tid: Thread identifier

2: batches[∗][∗][∗]: Batches on disk (3-dim)

3: k: Parameter controlling block reads

4: mergedpairs ← ∅

5: while unprocessed kvpairs ∈ batches[∗][tid][∗]

do

6: pairs ← getNextMinKV(tid, k);

7: mergedpairs ← mergedpairs ∪ pairs;

8: for pair ∈ k least pairs of mergedpairs do

9: reduce(pair);

10: mergedpairs ← mergedpairs \ {pair}

11: end for

12: end while

13: for pair ∈ mergedpairs do

14: reduce(pair); // Remaining pairs

15: end for

16: function getNextMinKV(tid, numpairs)

17: allpairs ← ∅

18: for batch ∈ batches[∗][tid][∗] do

19: records ←

blockdiskread(batch, numpairs);

20: pairs ← deserialize(records);

21: allpairs ← allpairs ∪ pairs;

22: end for

23: return allpairs;

24: end function
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It is important to note that since blockdiskread() always reads contiguous

records starting from the earliest unread records, the runtime streams through all the

batches exactly once during the reduce phase. This means, each <key, value> pair gen-

erated from the original input is read from disk at most once throughout the reduce phase

because it is written to disk at most once throughout the map phase (see Section 2.3.3).

2.3.5 Optimizing I/O for Fixed Size Types

While InfiniMem provides efficient support for variable size <keys, [values]>

pairs, it also indexes these records in order to correctly retrieve records from disk. This

means, along with writing batches of varying record sizes on disk during the map phase,

Table 2.2: MapReduce algorithms and sizes associated with their keys and values.

Algorithm Key/Size Value/Size Combine/Size Fixed Size

MovieRatings Integer/Fixed Integer/Fixed Integer/Fixed

YesHistogramMovies Integer/Fixed Integer/Fixed Integer/Fixed

DegreeCount Integer/Fixed Integer Pair/Fixed Integer Pair/Fixed

WordCount String/Variable Integer/Fixed Integer/Fixed Conditional:

InvertedIndex String/Variable Bit Vector/Fixed Bit Vector/Fixed bounded

SequenceCount String/Variable Integer/Fixed Integer/Fixed maximum

RankedInvertedIndex String/Variable Bit Vector/Fixed Bit Vector/Fixed key size

Grep Integer/Fixed String/Variable String Vector/Variable

No
SelfJoin String/Variable String/Variable String Vector/Variable

AdjacencyList Integer/Fixed
Pair of Vector of Pair of

Integers/Variable Integers/Variable
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InfiniMem also writes batches of index information corresponding to those records on disk.

Similarly, in the reduce phase, InfiniMem first reads batches of index information from

disk to then correctly read batches of variable size records from disk. While maintaining

such additional information is unavoidable for variable size records, OMR automatically

eliminates it for fixed size records.

To use fixed size records, we first understand the source of variability involved

in record sizes. The size of records becomes variable due to three reasons: variable key

size, variable value size, and variable number of values in <key, [value]> pairs. Since

values are typically numerical types like integers, doubles, etc., they can easily be of same

fixed size (e.g., 8 bytes for uint64 t in C++). Furthermore, for such numerical value

types, partial aggregation capabilities of combine() function can retain the same fixed size

by maintaining number of values in <key, [value]> to be exactly one; this is common

across various reduction operations like sum, min, etc. which can be naturally decomposed.

Table 2.2 shows various MapReduce algorithms and sizes associated with their keys and

values. While algorithms use variable size strings for keys for efficient text processing, there

are various algorithms for which keys are numerical types, making them fixed size. Also,

algorithms relying on string types for keys can still use fixed size records by leveraging the

domain knowledge of maximum size of keys across different input datasets.

Based on type information of keys and values and the return type of the combine()

function, the runtime can automatically switch to utilizing fixed size records instead of

variable size records. By using fixed size records, we completely eliminate maintenance of

the index information for records and the related disk I/O operations induced by InfiniMem.
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InfiniMem’s uniform API for I/O with fixed and variable size records allows minimal changes

in the runtime to incorporate this optimization. Furthermore, this optimization does not

impact the overall MapReduce interface for users, hence allowing them to seamlessly benefit

from this optimization.

2.4 I/O Analysis

We analyze the I/O efficiency of OMR in terms of number of block transfers

between disk and main memory. We will show that the I/O cost of our strategy is linear in

terms of the total size of <key, value> pairs generated by map() function, hence making

it optimal. We first analyze the I/O cost when using fixed size records and then, extend it

to the general case of using variable size records.

A) Fixed Size Records: Let B be the size of disk block transfer in terms of number of

<key, value> pairs. With the total number of <key, value> pairs generated by map()

function as n, we compute an upper bound in terms of block transfers as the ratio of n and B

with an added cost of number of non-sequential seeks. The amount of I/O performed during

runtime depends on the input’s characteristic to leverage on-the-fly aggregation during the

map phase. Let p be the average number of <key, value> pairs that get aggregated during

map phase before the corresponding buffer is written off to disk (p ≥ 1). This means, the

amount of I/O decreases with increase in p. Since each batch of records gets written once

during the map phase and then read once during the reduce phase, the total number of block

transfers for each phase is (n/p)/B. To capture non-sequential disk seeks, we define bm (br)

as the number of contiguous pairs written (read) during the map (reduce) phase. Hence,
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the number of non-sequential disk seeks can be computed by dividing the total number of

pairs by bm and br. For easier illustration, we assume p, B, bm and br to be appropriate

factors of n. Hence, the total I/O cost CB can be computed as:

CB = 2 · n/p
B︸ ︷︷ ︸

sequential
block transfers

+
n/p

bm
+
n/p

br︸ ︷︷ ︸
non-sequential

disk seeks

(2.1)

Since bm > B and br > B, CB is linear in (n/p)/B.

B) Variable Size Records: Here, B is the average size of disk block transfer in terms of

number of records containing <key, [value]> pairs, and p, bm and br are similarly defined

over <key, [value]> pairs. Since there are multiple sources of variability in record sizes,

we can bound the I/O cost by analyzing these different sources.

A lower bound can be achieved when keys are variable size and the on-the-fly

aggregation strategy results in a single scalar value. This case is similar to WordCount

benchmark in Table 2.2. The size of index information maintained by InfiniMem for a <key,

[value]> pair is smaller than the size of the pair itself. By using Bi as the average size of

disk block transfer in the unit of index information, we can compute the total number of

block transfers for index information for each phase as (n/p)/Bi. Also, InfiniMem performs

a batch write (and read) of index information for every batch write (and read) of the record

pairs. This means, the number of non-sequential disk seeks double compared to Eq. 2.1.

Hence, the lower bound on total I/O cost CL
B can be computed as:
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CL
B = 2 · n/p

B︸ ︷︷ ︸
record

block transfers

+ 2 · n/p
Bi︸ ︷︷ ︸

index
block transfers

+ 2 ·
(n/p
bm

+
n/p

br

)
︸ ︷︷ ︸

record & index
disk seeks

(2.2)

It is important to note that Bi ≥ B which makes CL
B linear in (n/p)/B.

The upper bound can be achieved when on-the-fly aggregation strategy results

in vector of values such that it retains each of the generated value. This case is similar

to SelfJoin benchmark in Table 2.2. While the I/O costs for disk seeks and index block

transfers remain same as in Eq. 2.2, block transfers for records themselves can be computed

by explicitly using sizes as parameters. Let Sp and Sk be the average sizes of a <key,

value> record and key respectively. Since aggregation eliminates redundant keys, we need

to subtract sizes of these redundant keys from total size of all pairs, i.e., n× Sp. The total

number of batches written during map phase is (n/p)/bm and for each of these batches,

p − 1 redundant keys are removed by on-the-fly aggregation. Hence, the upper bound on

total I/O cost CU
B can be computed as:

CU
B =

n · Sp − {( n
p·bm ) · (p− 1)} · Sk
B · Sp︸ ︷︷ ︸
record

block transfers

+

2 · n/p
Bi︸ ︷︷ ︸

index
block transfers

+ 2 ·
(n/p
bm

+
n/p

br

)
︸ ︷︷ ︸

record & index
disk seeks

(2.3)

Using Eq. 2.2 and Eq. 2.3, we bound the total I/O cost CB as:

CL
B ≤ CB ≤ CU

B (2.4)

making CB linear in n/B (from CU
B in Eq. 2.3).
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C) Non-Sequential Disk Seeks: Finally, Eq. 2.1, Eq. 2.2 and Eq. 2.3 identify that

non-sequential disk seeks can be reduced by increasing bm and br. Variable bm is controlled

by the threshold parameter in Algorithm 2 whereas br is controlled by the k parameter in

Algorithm 3. Hence, by increasing threshold, we utilize a larger portion of main memory

during the map phase which effectively delays writes to disk as much as possible. Similarly,

by increasing k, we utilize larger portion of main memory during the reduce phase by reading

larger batches of records and hence, delaying reads from disk as much as possible.

2.5 Evaluation

2.5.1 Experimental Setup

We developed OMR using the InfiniMem I/O runtime [11] to leverage its support

for seamless batch disk I/O for fixed size and variable size records. OMR is a generic

framework that accepts custom key and value types, making it easier for the user to express

a wide variety of MapReduce algorithms. Both, variable size and fixed size types are directly

expressed using Protocol Buffers [3] which provides efficient serialization/deserialization.

For fixed size string types we use C++ structs.

Table 2.3 shows the MapReduce algorithms used from [2] to evaluate our OMR

system. While WC, II, SC and RII use string types making them variable size, we also

evaluate them using fixed size records by bounding the word size to 32 characters as a

conservative estimate [16]. Since SC and RII operate on tuples of continuous words and

file names, their record sizes are larger compared to WC and II. We used input datasets

from [2] to create inputs of sizes between 8GB to 80GB.
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Table 2.3: MapReduce algorithms.

Algorithm Record Type Fixed Record

Size

WordCount (WC) Variable+Fixed 40 bytes

InvertedIndex (II) Variable+Fixed 64 bytes

SequenceCount (SC) Variable+Fixed 136 bytes

RankedInvertedIndex (RII) Variable+Fixed 228 bytes

MovieRatings (MR) Fixed 12 bytes

DegreeCount (DC) Fixed 12 bytes

AdjacencyList (AL) Variable N/A

SelfJoin (SJ) Variable N/A

All experiments were conducted on a single machine with 8 cores and 16GB main

memory, equipped with 500GB SSD and running 64-bit Ubuntu 14.04. The sequential read

and write bandwidth of the SSD is up to 550MB/s and 520MB/s respectively, whereas the

random read and write performance is up to 50K IOPS and 60K IOPS respectively.

2.5.2 Performance

To evaluate our OMR system, we compare the performance of following four single

machine MapReduce versions:

• OMR-VR: This is our out-of-core MapReduce system using variable size records.

• OMR-FX: This is our out-of-core MapReduce system using fixed size records.
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• Hadoop: This is the standalone single machine setup of Hadoop system [1].

• Metis: This is the state of the art, high performance in-memory MapReduce sys-

tem [14].
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Figure 2.2: Left y-axis represent execution times in seconds for OMR-VR, OMR-FX and
Metis. Right y-axis represent execution times in seconds for Hadoop. Majority of Metis

datapoints are absent because it could not handle large datasets.

Figure 2.2 presents the execution times with input sizes varying from 8GB to 80GB.

The left y-axis represent the execution times for OMR-VR, OMR-FX, and Metis and the

right y-axis represent execution times for Hadoop. As we can see, OMR-VR and OMR-FX

do not fail even when they process datasets larger than main memory. In contrast, Metis

crashes as soon as the dataset size is increased; in fact apart from WC and II, Metis was

unable to process 8GB datasets for other benchmarks.

Since Metis operates in memory, we observed that the crashes occurred during

the map phase itself as the intermediate data produced grew beyond main memory; the

memory overhead due to its hashmap of B+ trees data structure significantly limits the size
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Table 2.4: Speedups achieved by OMR over Hadoop: OMR refers to OMR-VR for
benchmarks WC, II, SC, RII, AL and SJ and OMR-FX for benchmarks MR and DC.

Input Benchmarks

Size WC II SC RII MR DC AL SJ

8 GB

Hadoop (sec) 2876 2006 2455 1638 5474 3815 6436 2175

OMR (sec) 71 78 807 718 693 1010 1553 1326

Speedup 40.6× 25.8× 3.04× 2.28× 7.90× 3.78× 4.14× 1.64×

16 GB

Hadoop (sec) 5844 3778 4907 3168 9346 7481 12932 4566

OMR (sec) 142 379 1550 1195 1356 1992 2521 2652

Speedup 41.3× 9.97× 3.17× 2.65× 6.90× 3.76× 5.13× 1.72×

32 GB

Hadoop (sec) 10953 10540 9162 5435 19104 12861 24288 8326

OMR (sec) 616 728 2848 1977 2642 4035 4773 5293

Speedup 17.8× 14.5× 3.22× 2.75× 7.23× 3.19× 5.09× 1.57×

48 GB

Hadoop (sec) 20733 20790 15344 7779 28527 20557 37261 12254

OMR (sec) 1052 939 4522 2792 3854 6002 7044 8050

Speedup 19.7× 22.1× 3.39× 2.79× 7.40× 3.43× 5.29× 1.52×

64 GB

Hadoop (sec) 24434 30383 19809 12937 38518 30864 52262 16989

OMR (sec) 1169 1198 5304 2905 5074 8206 9032 10930

Speedup 20.9× 25.4× 3.74× 4.45× 7.59× 3.76× 5.79× 1.55×

80 GB

Hadoop (sec) 33203 43821 27152 14330 47755 40008 63763 22745

OMR (sec) 1519 1459 6699 3287 6105 10201 11087 12893

Speedup 22× 30× 4.05× 4.4× 7.82× 3.92× 5.75× 1.76×

of intermediate data that Metis is able to process. Hadoop, on the other hand was able to

process all the datasets successfully by writing intermediate results on disk. However, for
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Figure 2.3: Read and write times in seconds.

 0

 5

 10

 15

 20

 25

OMR-V
R

OMR-FX

OMR-V
R

OMR-FX

OMR-V
R

OMR-FX

OMR-V
R

OMR-FX

WC
32GB 48GB 64GB 80GB

Si
ze

 
(G

B
) Data

Index

 0

 5

 10

 15

 20

 25

 30

 35

OMR-V
R

OMR-FX

OMR-V
R

OMR-FX

OMR-V
R

OMR-FX

OMR-V
R

OMR-FX

II
32GB 48GB 64GB 80GB

Si
ze

 
(G

B
) Data

Index

 0

 25

 50

 75

 100

 125

 150

OMR-V
R

OMR-FX

OMR-V
R

OMR-FX

OMR-V
R

OMR-FX

OMR-V
R

OMR-FX

SC
32GB 48GB 64GB 80GB

Si
ze

 
(G

B
) Data

Index

 0

 20

 40

 60

 80

OMR-V
R

OMR-FX

OMR-V
R

OMR-FX

OMR-V
R

OMR-FX

OMR-V
R

OMR-FX

RII
32GB 48GB 64GB 80GB

Si
ze

 
(G

B
)

Data
Index

Figure 2.4: Size of intermediate files on disk.

each benchmark executed, it showed a slowdown between 8.7-21.8× in the processing speed

with the increase in the input size from 8GB to 80GB.

While Hadoop crashed under the default settings, it was able to process the in-

puts after tuning a number of parameters. Since most of the crashes occurred during shuffle

and sort phase, when the data is read/written from/to the disk to/from in-memory buffers,

mapred.child.java.opts was varied up to 15536MB and also mapreduce.task.io.sort.mb

was varied between 100-500MB for each different input to allocate more heap space to the

map and reduce tasks and to increase the in-memory buffer size during sorting of the

intermediate data respectively. Also, mapreduce.map.output .compress was also tuned

(True/False) to shrink the map outputs, thereby reducing the shuffle time and making

disk spills faster by writing less amount of data. We also tuned io.file.buffer.size (4-

128KB), mapreduce.reduce.shuffle.input.buffer.percent (0.7-0.8), mapreduce.inpu-

t.fileinputformat.split.minsize (0-256MB), mapreduce.reduce.shuffle.parallel-
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Table 2.5: Execution times (in seconds) on small datasets. OMR refers to OMR-VR for
benchmarks WC, II, SC, RII, AL and SJ and OMR-FX for benchmarks MR and DC. 7 [k
GB] means that the dataset could not be processed due to out-of-memory crashes and the

size of the largest dataset that could be processed is k GB.

Dataset Version WC II SC RII DC MR AL SJ

1GB

OMR 8.51 8.60 16.17 35.07 118.62 45.51 121.79 27.83

Metis 20.74 22.26 33.66 21.40 24.13 46.86 28.45 7 [0.94GB]

Hadoop 275 173 230 95 508 670 666 241

2GB

OMR 15.88 17.79 36.54 68.71 236.09 97.19 242.37 50.01

Metis 44.88 48.50 7 [1.7GB] 45.32 13.88 7 [1.9GB] 61.87 7 [0.94GB]

Hadoop 511 292 436 188 883 1366 1684 511

4GB

OMR 30.40 35.11 78.05 133.25 469.00 204.40 487.17 467.52

Metis 95.00 98.73 7 [1.7GB] 94.36 7 [3.8GB] 7 [1.9GB] 7 [2.5GB] 7 [0.94GB]

Hadoop 1081 629 928 334 1780 2923 3406 1036

copies (5-10) to bring down the execution times. However, even after changing these pa-

rameters and gaining better performance, as shown in Table 2.4, OMR greatly outperforms

Hadoop across all the benchmarks.

In Table 2.4, we compare the performance of OMR and Hadoop for the different

input datasets (8GB-80GB). Apart from MR and DC which used OMR-FX, the speedup of

all the other benchmarks has been calculated using OMR-VR. For 16GB (which equals the

size of available memory) dataset OMR-VR shows speed up of 41.3× over Hadoop for WC

benchmark since OMR is able to process the entire 16GB input in memory while Hadoop

had to spill intermediate data on disk due to its in-memory data-structure and Java runtime

overheads. For other benchmarks where the 16GB datasets are processed using disk, OMR

performs 1.7-9.9× faster than Hadoop. With datasets larger than 16GB, OMR outperforms
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Hadoop by up to 25.4× since OMR primarily achieves minimal disk I/O via partial ordering

as opposed to Hadoop (as explained in Section 2.2).

The performance of OMR-VR and OMR-FX scales linearly with input size. With

a 10× increase in dataset size, the increase in execution times is between 4.6-10.3× for

all benchmarks except WC and II. For WC (II), processing of datasets up to 16GB (8GB)

happens entirely in memory and hence, its linear scale begins after 16GB (8GB). We observe

plateaus for OMR-VR in WC and RII at 48-64GB which represent faster execution for

64GB datasets; this is because the I/O times for 64GB datasets in those benchmarks do

not increase as sharply from 48GB datasets, as shown in Figure 2.3.

We also compare the raw file sizes for intermediate data generated by map phase

in Figure 2.4. As we can see, the total size of data records read/written to disk for WC

and II is similar for OMR-FX and OMR-VR; however, OMR-VR additionally maintains

the index information which increases the overall amount of disk I/O that is performed.

Even though record sizes are large in SC and RII (see Table 2.3) due to keys representing

multiple words and filenames, the absence of index information offsets the increase in key

sizes, making the overall file sizes (including index information) comparable for OMR-FX

and OMR-VR. It is interesting to note that even though file sizes for RII are slightly higher

for OMR-FX than OMR-VR, Figure 2.3 shows significant reduction in disk I/O time for

RII using OMR-FX.

Furthermore, as seen for WC, II, SC, and RII, OMR-FX consistently outperforms

OMR-VR while processing using disks. This is because the batch writing process for OMR-

VR requires InfiniMem to create an index that captures the variable record sizes. This
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Figure 2.5: On-the-fly aggregation during map phase.

process significantly increases the overall batch writing time for InfiniMem compared to

that for OMR-FX (see Figure 2.3). While such index maintenance also impacts the batch

reading process, the increase in reading time is less significant since parsing the records

requires a single read-only pass over the index information.

Finally, Figure 2.5 compares the on-the-fly aggregations that take place for OMR-

VR and OMR-FX. As the input size increases, the number of values combined during the

map phase steadily increase. Since combinations in AL and SJ occur by simply joining

the value vectors in <key, [value]> pairs, the aggregation does not lead to reduction in

memory footprint that is as large as that in other benchmarks. This means, the in-memory

buffers for AL and SJ are flushed off to disk more often during the map phase, which in turn

limits the possibility of aggregating subsequent <key, value> pairs. Hence, the increase in

number of combinations is slower for AL and SJ compared to other benchmarks.

Impact of Record Sizes: Figure 2.6 shows the impact of record size on performance for

WC on 48GB dataset by increasing the fixed size records up to 100×, from 40 bytes to 4K

bytes. As we can see, the execution time increases linearly with intermediate record size.

This is because the I/O cost incurred in OMR is linear in total size of <key, value> pairs
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Figure 2.6: Varying record size.

generated by map() function. Since record size has a direct impact on the overall data size,

the InfiniMem file sizes also increase linearly with record size. This in turn increases the

read and write times, as shown in Figure 2.6.

Comparing the execution time with OMR-VR in Figure 2.2, the performance while

using fixed size records is better for record sizes up to 400 bytes. This gives a large enough

window for leveraging from OMR-FX as words or tuples of consecutive words typically do

not grow this large.

Comparison on Small Datasets: While OMR scales well on large datasets, we com-

pared its performance with Hadoop and Metis on datasets that are small enough to be

processed on 16GB main memory. Table 2.5 shows the performance over various datasets

on OMR-VR (OMR-FX for DC and MR), Metis, and Hadoop. As we can see, OMR-VR

(OMR-FX) can efficiently process small datasets in memory; in fact, OMR-VR (OMR-FX)

outperforms Hadoop across all benchmarks, and compares favorably with Metis. This is

because of our highly concurrent architecture using simple ordered buffers which enables

fast on-the-fly aggregation. Metis’s hash table and B+ tree based data structure forces it

to perform multiple memory accesses per <key, value> pair which increases it’s execu-
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tion time. Hadoop which is originally designed for the distributed systems, on the other

hand, is able to fully process all the small datasets as opposed to Metis because it spills

data on disk as needed. The execution times for RII, DC and AL are higher for OMR-VR

(OMR-FX) compared to Metis since we employ line-by-line processing (to adhere with orig-

inal MapReduce programming standard) which is slower for input files that only contain

short lines. Metis, on the other hand, allows map() function to directly process very large

partitions of file, hence eliminating the overheads.

Finally, it is important to note that nine out of twenty four cases crashed for

Metis because it required more main memory. On the other hand, processing for OMR-VR

(OMR-FX) successfully finished in memory for all cases, except for SJ on 4GB dataset

where the runtime automatically resorted to using InfiniMem due to constrained memory.

For benchmarks that Metis could not process, Table 2.5 shows the largest dataset size that

could be handled by Metis; as we can see, the largest size varies across benchmarks due to

variations in characteristics like key and value sizes, frequencies, etc.

2.6 Summary

In this chapter, we presented an out-of-core MapReduce system that can process

datasets far larger than the size of the memory. It achieves this via - 1) Memory Constrained

Processing, 2) Sequential Block Disk Accesses via Ordered Records, and 3) I/O Reduction

via On-the-fly aggregation. Our evaluation results show that in contrast to OMR, both

Metis [14] an in-memory MapReduce system and a standalone single-machine setup of

the Hadoop [1] system either experience out-of-memory crashes or poorer performance.
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Moreover, even when datasets are small enough to fit in main memory, OMR outperforms

Hadoop across all benchmarks while its performance compares favorably with Metis.
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Chapter 3

Out-of-core Graph Partitioner

Graph analytics is employed in many domains to gain insights by analyzing large

graphs representing entities and interactions among them. Real world graphs often contain

millions of vertices and billions of edges (see Table 3.1), and iterative graph analytics queries

require multiple passes over the graph until convergence. Therefore, there has been a

great deal of interest in developing scalable graph analytics systems that exploit parallelism

available on distributed systems [28, 30, 38, 39]) as well as shared memory systems [40, 43].

In this chapter, we describe an effiicent single-level out-of-core graph partitioner that can

partition large graphs in just two passes.

3.1 Background and Motivation

Before parallel or distributed analytics on large graphs can be performed, they

typically must first be partitioned. In context of distributed systems the graph is partitioned

across multiple machines such that each machine is primarily responsible for computations
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Table 3.1: Input Graphs of Varying Sizes: Flickr (FL), PokeC (PK), LiveJournal (LJ),
Orkut (OK), UKdomain2002 (UK02), Wikipedia-eng (WK), Twitter-WWW (TW),

Twitter-MPI (TM), and UKdomain-2007 (UK07). [35,60]

Graph Vertices Edges Graph Size | E |

G | V | | E | | E | + | V | | V |

FL 1,715,255 15,551,249 17.3 million 9.1

PK 1,632,803 30,622,564 32.3 million 18.7

LJ 4,036,537 34,681,189 38.7 million 8.6

OK 3,072,441 117,185,083 120.3 million 38.1

UK02 18,520,486 261,787,258 280.3 million 14.1

WK 12,150,976 378,142,420 390.3 million 31.1

TW 41,652,230 1,202,513,195 1,244.2 million 28.9

TM 999,999,987 1,614,106,343 2,614.1 million 1.6

UK07 105,153,952 3,301,876,564 3,407.0 million 31.4

that operate on its assigned partition. In context of a single shared-memory machine, the

graph is partitioned to enable out-of-core or disk-based processing of a large graph on a single

machine [13, 44, 45, 47]. When the graph is too large to fit in the memory available on the

machine, it is divided into smaller partitions and stored on disk. This enables partitions to

be loaded one at a time into memory and processed. For superior performance, partitioning

algorithms endeavor to create partitions that are well balanced and minimize edgecuts (i.e.,

number of edges that cross partition boundaries).

Although the problem of graph partitioning is known to be NP-hard [27], highly ef-

fective multilevel graph partitioning algorithms have been developed and are widely used [31,

32, 46]. A large graph goes through a series of coarsening phases which, by merging ver-

tices, produces significantly smaller graphs at each subsequent level. Once a sufficiently
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small graph is obtained, it is partitioned. Next this partitioning is projected to the coars-

ened graph at the next level to obtain its partitioning that is further refined using the

Kernighan-Lin algorithm [34] to reduce edgecuts. This preceding step is repeated through

the levels eventually producing a partitioning for the original full graph. Many implementa-

tion frameworks for multilevel graph partitioning are available for distributed systems (e.g.,

ParMetis [33], Scotch [41], KaFFPa [42]). These frameworks enable end-to-end processing

of large graphs on distributed systems as both partitioning and subsequent analytics tasks

can be performed on the same distributed platform.

Although a framework that implements multilevel graph partitioning on a single

shared-machine, called Mt-Metis [36, 37], is also available, it does not enable end-to-end

processing of large graphs on a single machine because Mt-Metis requires that not only

the input graph be held in memory but also the coarsened graphs. Since the out-of-core

processing of large graphs is required in the first place because the entire graph does not

fit in memory, executing Mt-Metis to partition such a graph fails as it runs out of memory.

Therefore current out-of-core graph processing systems employ very simple partitioning

schemes to distribute vertices among partitions [44]. Consequently, end-to-end processing

of large graphs on a single machine using sophisticated partitioners is an open problem.

3.1.1 Limitation of Multilevel Partitioning

Given a graph G = (V,E), the goal of k-way graph partitioning is to partition V

into k non-empty disjoint subsets V1, V2, · · · , Vk. In general all vertices and edges in the

graph have a weight but to simplify the discussion let us assume all weights are one. The

quality of resulting partition is measured by its balance and edgecuts. Balance is defined as
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kMAXi(|Vi|)
|V | , which is ideally 1, and when it exceeds 1, the greater the value the greater is

the degree of imbalance. Edgecuts corresponds to the number of edges that connect vertices

from different partitions. A partitioning with lower edgecuts is preferred.

The multilevel graph partitioning scheme employed by Mt-Metis [36,37] has three

phases. The Coarsening Phase transforms the given graph G into a sequence of smaller

graphs G1, G2, · · · , GL such that |V | > |V1| > |V2| > · · · > |VL|. The Partitioning Phase

generates k-way partitioning PL of GL. The Uncoarsening Phase projects PL back to

partitioning P of G going through intermediate partitions PL−1, PL−2, · · · , P1.

A detailed evaluation of Mt-Metis carried out by Lasalle and Karypis [36] shows

that in comparison to ParMetis [33] and Scotch [41] which are both distributed implemen-

tations, the memory requirements of Mt-Metis is significantly lower. In fact, the memory

requirements of Mt-Metis are only slightly higher than the serial implementation KMetis [32]

Table 3.2: Comparison of serial implementation KMetis with the multithreaded Mt-Metis
in terms of the number of Edgecuts, Memory Consumption (GB) and Execution Time

(sec). 8 partitions produced for each input graph on a machine with 425GB main memory.

Input KMetis

Graph Edgecuts Mem Time

FL 3,371,075 1.70 18.0

PK 4,351,130 2.20 25.0

LJ 7,377,230 4.5 58.0

OK 24,257,372 11.10 103.0

UK02 2,107,793 10.4 62.0

WK 45,803,435 25.5 269.0

Mt-Metis

Edgecuts Mem Time

3,974,999 2.30 6.0

4,196,212 4.00 8.0

7,563,933 6.4 15.0

24,163,859 22.40 32.0

2,241,490 15.4 34.0

44,993,565 55.1 121.8
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– the extra memory is needed primarily for thread local data structures and it increases with

the number of threads. Moreover, Mt-Metis is optimized to work for irregular graphs [37].

Table 3.2 compares Mt-Metis and KMetis in terms of edgecuts, peak memory used, and

execution times on 425GB machine.

Multilevel algorithms generally have a high memory requirement because in ad-

dition to holding G in memory, the coarsened graphs G1, G2, · · · , GL must also be held in

memory. While the original graph size is |E|+ |V |, the cumulative graph size of coarsened

graphs is
∑L

i=1 |Ei|+ |Vi|. Thus, the combined size of the original graph and the coarsened

graphs is 1 +
∑L

i=1
|Ei|+|Vi|
|E|+|V | times the size of the original graph. We collected the values

of this ratio for the sample graphs in Table 3.1 by running Mt-Metis and the results are

presented in Table 3.3. All experiments in this paper were performed on a machine with 32

cores (2 sockets, each with 16 cores) with Intel Xeon Processor E5-2683 v4 processors, 425

GB memory, 1TB SATA Drives, and running CentOS Linux 7. We observe that the ratio

varies from 4.8× to 13.8× for the first six graphs. The number of levels of coarsening L is

also given for each run. We could not collect the data for the three largest graphs because,

on the machine used, Mt-Metis ran out of memory.

Next we present GO, a two-phase algorithm that does not employ multilevel par-

titioning, and can partition the larger graphs even when provided with memory less than

what is needed to hold the original graph.
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Table 3.3: Given Original Graph of Size | E | + | V | and (+L) Coarsened Graphs
Generated by Mt-Metis: Ratio is the times by which Cumulative Graph Size of Mt-Metis

is Greater than the Original Graph Size.

Input Ratio: 1 +
∑L

i=1
|Ei|+|Vi|
|E|+|V | × Coarsened Graph Levels: (+L)

Graph k=2 k=4 k=8 k=16 k=24 k=32

FL 9.8× (+6) 11.5× (+8) 12.2× (+9) 12.9× (+10) 13.5× (+11) 13.5× (+11)

PK 6.0× (+4) 6.9× (+5) 8.3× (+7) 8.2× (+7) 8.9× (+8) 8.9× (+8)

LJ 10.9× (+5) 13.0× (+7) 12.9× (+7) 13.7× (+8) 13.7× (+8) 13.8× (+8)

OK 9.3× (+5) 10.2× (+6) 10.1× (+6) 10.9× (+7) 10.1× (+6) 10.1× (+6)

UK02 4.8× (+6) 4.9× (+8) 4.9× (+8) 4.9× (+9) 4.9× (+9) 4.9× (+9)

WK 7.0× (+6) 8.0× (+8) 7.9× (+8) 8.2× (+9) 8.2× (+9) 8.2× (+9)

TW, TM, UK07 7 7 7 7 7 7

3.2 GO Overview

We present GO, an Out-of-core Graph Partitioner, that given a fixed amount of

memory on a machine, successfully partitions large graphs that cannot be held in the given

amount of memory. GO performs just two passes over the entire input graph, the partition

creation pass that creates balanced partitions and the partition refinement pass that reduces

edgecuts. Both passes are designed to function in a memory constrained manner. During

the partition creation phase parallel threads read the graph from disk and assign vertices,

along with their adjacency lists, to different partitions. Once the available memory is full,

the subpartitions created thus far are written to disk to free up the memory. Thus, the

threads can resume reading the remainder of the graph from disk and partitioning it. This

process produces an initial partitioning that resides on disk. Next the partition refinement

phase reads portions of all partitions into memory, refines these subpartitions against each

other using the KL-algorithm [34], and maintains the refined partitioning. This process is
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repeated until entire initial partitioning has been read and processed to generate the final

refined partitioning.

Since GO performs partitioning without creating coarsened graphs, it is a single

level partitioner with greatly reduced memory requirement. In other words, given a graph

that can be held in available memory, GO can partition the graph without requiring the

initial partitioning to be written to and then read back from disk during refinement. That

is, entire partitioning can be performed in-memory. On the other hand, since Mt-Metis

requires additional memory to hold coarsened graphs, total memory that it requires to hold

all graphs is several times (4.8× to 13.8×) the memory needed to simply hold the original

graph. Thus, Mt-Metis cannot partition the graph successfully even if enough memory is

available to hold the entire input graph in memory. The quality of partitions produced by

GO were found to be superior to those produced by Mt-Metis both in the terms of balance

and edgecuts. This is due to careful design of initial partitioning algorithm and our modified

application of KL-algorithm.

Our experiments with GO prototype on nine input graphs of varying sizes show

that GO can successfully partition large graphs for which Mt-Metis runs out of memory on

the machine used. For graphs that can be successfully partitioned by Mt-Metis on a single

machine, GO produces balanced 8-way partitions with 11.8× to 76.2× fewer edgecuts using

1.9× to 8.3× less memory and comparable runtime.
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3.3 GO: Out-of-core Graph Partitioner

Given a limited amount of memory that cannot even hold the input graph in

adjacency list format, GO uses the given memory to form memory buffers that are used

by multiple threads to perform parallel graph partitioning in two phases: Initial Partition

Creation; and Partition Refinement to Create Final Partitions. Both phases are designed

to function in memory constrained manner, i.e. they successfully execute using the given

memory that cannot hold the large input graph.

Figure 3.1 provides an overview of GO. The input graph is stored on disk in

adjacency list format. The available memory is organized as multiple in-memory buffers.

During the first phase threads read the graph from disk in parallel, assigning vertices to

create balanced initial partitions and accumulating their adjacency lists in the same buffers.

When a buffer is full, it is written to disk so that processing of rest of the graph can continue.

At the end of the first phase, the initial partitions are created and each partition is written

to disk (Infinimem object store [11]) as an ordered sequence of batches. In the second

Figure 3.1: Overview of Out-of-Core GO Graph Partitioning.
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phase once again the in-memory buffers are created, one for each partition. Portions of

partitions from Infinimem are read into these buffers until the buffers are full, and then the

in-memory portions of the partitions are refined against each other. Once initial partitions of

the graph have gone through the in-memory buffers, the final refined partitions are available

and written to the disk. Very high degree vertices are treated differently from other vertices

during the above phases to obtain partitioning with good balance and low edgecuts.

Note that if the buffers are large enough to accommodate the entire graph during

the first phase, then the initial partitions are not written to disk and re-read for refinement.

Instead the refinement is also fully carried out in memory and final partitions are finally

output to the disk. In subsequent subsections we present each of these phases in detail.

3.3.1 Memory Constrained Initial Partition Creation

For k-way partitioning of graph G, the memory available to the GO partitioner is

divided into k buffers B1, B2 · · ·Bk, one for each partition. The graph is read using blocked

serial reads from disk. Each source vertex v is assigned to some partition Pi, and the vertex

v and its adjacency list Adj(v) are stored in buffer Bi. By using a simple hashing function

for assigning partitions to source vertices, a balanced partitioning is ensured. The above

process is repeated as long as there is room in the buffers to accommodate more of the

graph. Once some buffer B∗ is full, its contents are written to the disk, that is, B∗ is

emptied and processing of the graph is resumed. Emptying of B∗ is referred to as writing

of a batch to disk. When the entire graph has been processed, all buffers are emptied and

the partitioned graph is available on disk. On disk the graph is now organized according

to partitions, where each partition is made up of series of batches. Consequently, after
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Figure 3.2: Organizing Memory into Buffers and Disk Usage.

this phase, the next phase (refinement) can read each partition using blocked serial reads

of its batches from the disk. While the partitioned graph is written to disk, an auxiliary

in-memory PID array, indexed by vertex id, remembers the partition ids of all vertices.

Parallelization To parallelize the I/O and processing, we use t threads that read from

disk in parallel and create the partitions in parallel. To ensure that the t threads do not

have to synchronize with each other when updating the buffers, each buffer is subdivided

into t sub-buffers, one for each thread. This leads to the organization of the graph as shown

in Figure 3.2 where the number of in-memory buffers is t × k. Corresponding to each of

t× k buffers, the disk contains a series of batches that are written to disk when the buffers

are emptied.

Vertex-Ordered Representation Note that the source vertices in the original graph,

and corresponding adjacency lists, are organized on disk in the order of source vertex ids.

Thus, they are read in the order of source vertex ids by the above partitioning phase, they
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(a) Example Input Graph.

(b) Partitioning in progress: In-Memory & On-Disk. (c) Completed Initial Partitioning.

Figure 3.3: Representation of example graph in memory and on disk where k = 2 and t = 2.

appear in the order of source vertex ids in B∗’s, and thus appear in order inside each batch

written to disk. To illustrate this phase let us consider the example shown in Figure 3.3.

In Figure 3.3(a) an example graph and its adjacency list representation is shown. Let us

assume that we are carrying out 2-way partitioning using 2 threads and hence the memory

is organized into 4 buffers. Figure 3.3(b) shows the representation of the graph where all of

the graph has been read and processed, part of it has been written to the disk in its batched

partition form while part resides in memory buffers. Here each buffer has been emptied

once. Once the buffers are emptied, the completed initial partitioning of the graph that

resides on the disk is shown in Figure 3.3(c). Note that the contents of in-memory buffers

and on-disk batches are all ordered according to vertex ids of source vertices in them.
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Split Adjacency Lists for Irregular Graphs In out-of-core processing by systems such

as GraphChi [13] and GridGraph [47], the graph partitions are represented as a subset of

edges from the graph. The edges present in the subgraph corresponding to a partition are

essentially contained in the partition’s representation. Balancing edges across partitions is

important because the work performed by analytics tasks (e.g., single source shortest paths)

is proportional to the number of edges. Since power-law graphs, due to their irregular

skewed degree distribution, contain vertices with very high degrees, we obtain a balanced

partitioning by distributing the edges incident to such vertices across the partitions. This

can be carried out simply by adding a threshold parameter δ such that when source vertex

v is processed by a thread, after placing δ edges in its current partition, the partition is

changed causing the next δ edges to be placed in a different partition. This approach enables

the edges for vertex v to be split across all k partitions in batches of δ.

Note that it is also possible for the adjacency list of some vertex v to get split

because the buffer to which the list is being written to has become full. This can be

observed in Figure 3.3(c) where vertex 7 is assigned to partition 1 and its adjacency list

consisting of two vertices, 6 and 4, are split across two consecutive batches on disk. However,

note that in this kind of splitting, the adjacency list is not split across partitions but rather

it is split across batches that belong to the same partition. Moreover, as we will show later,

when partitions are read from their batches in the refinement phase, these split adjacency

lists will be merged together.
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3.3.2 Memory Constrained Partition Refinement

For a k-way partitioning, the refinement phase is executed in parallel by k threads

where each thread is assigned the task of refining a single partition. The memory available

is divided into k buffers of equal size. All threads (Tis), in parallel, load as much of

the subgraphs (wPis) of their respective assigned initial partitions (Pis) into their buffers

(Buffer(Ti)s). After refining the loaded wPi’s against each other, the buffers are loaded

again and refined. This process continues until the entire graph has been refined and final

partitioning has been found.

Parallel Loading When buffer Buffer(Ti) is loaded from partition Pi the vertices as-

signed to Pi are loaded in increasing order of vertex id. This is achieved by performing a

merge sort across batches written to Pi by different threads. Note that when vertices and

their adjacency lists are loaded into Buffer(Ti) in this fashion, if the adjacency list of a

vertex v in Pi had been split across different batches due to emptying of filled buffers in the

initial partitioning phase, then the spilt adjacency list of v will get merged during loading.

Consequently, after loading, the contents of Buffer(Ti) are organized as follows. A low

degree vertex vl that is assigned to a unique partition Pi, appears in Buffer(Ti) along with

Adj(vl), its complete adjacency list. A high degree vertex vh whose edges are spread across

all k partitions appears in each Buffer(T∗) along with the complete subset of its adjacency

list assigned to each partition P∗.

Refinement The goal of refinement using the Kernighan-Lin (KL) algorithm [34] is to

reduce edgecuts in the existing partitioning by swapping pairs of vertices between partitions.
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Doing so does not alter the balance of the partitions that is achieved during the initial

partitioning phase, the swap operations are chosen merely to reduce edgecuts. The initial

partitioning is held in memory in Pid[*] array where using vertex id to index the array, we

can read the partition id of the vertex. When swap operations are applied, Pid[*] contents

are modified to reflect the change in partitioning.

Algorithm 4 Interval-based KL Algorithm

1: P1 · · ·Pk – Subgraphs Representing k Partitions

2: Pid[*] – Initial Partition Ids of Vertices

3: numInts – Number of Intervals

4: for all threads Ti ∈ {T1, · · · , Tk} do

5: do

6: B Load Partitions

7: Read Subgraph wPi of Pi into Buffer(Ti)

8: merge sorting over source vertex ids causing

9: split adjacency lists to be merged

10: Identify Boundary Vertices in wPi using Pid[*]

11: Divide Boundary Vertices into numInts Intervals

12: B Refine Partition wPi against partitions wPj , j > i

13: RefinePartition (wPi ⊆ Pi)

14: while (Pi is exhausted)

15: end for
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Algorithm 5 Refine Partition Function using KL Algorithm

1: B Refine Partition Pairs

2: function RefinePartition( wPi )

3: for wPj = wPi+1 · · ·wPk do

4: B Refine wPi wrt wPj

5: for interval id x = 1 · · ·numInts do

6: B refine interval pair (Iix ∈ wPi, I
j
x ∈ wPj)

7: loop B Making a Pass

8: (g, (v, w))← FindMaxGainPair(Iix, I
j
x)

9: break when g = 0

10: Add (v, w) to SwapSet

11: forever

12: B Update Partitions using SwapSet

13: for each (v, w) ∈ SwapSet do

14: Swap ( Pid[v], Pid[w] )

15: end for

16: end for

17: end for

18: end function
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Algorithm 6 Finding Pair with Maximum Gain using KL Algorithm

1: B Find Pair of Vertices to Swap

2: function FindMaxGainPair(Iix, Ijx)

3: MaxGain ← 0; MaxPair ← null

4: for v ∈ Iix do

5: for w ∈ Ijx do

6: D(v) ← EC(v)\Ijx − IC(v)\Iix

7: D(w)← EC(w)\Iix − IC(w)\Ijx

8: if D(v) ≥ 0 ∧ D(w) ≥ 0 then

9: ThisGain ← D(v) +D(w)− 2× Edge(v, w)

10: end if

11: if ThisGain > MaxGain then

12: MaxGain ← ThisGain;

13: MaxPair ← (v, w)

14: end if

15: end for

16: end for

17: return (MaxGain, MaxPair)

18: end function

Given a pair of vertices (v, w) from two different partitions, Pid[v] and Pid[w], the

decision to swap v and w between the two partitions is based upon the extent to which the

swap reduces edgecuts, which is also called the Gain. The external cost of v with respect

to Pid[w] (i.e., EC(v)\PID[w]) is the number of edges from v to vertices in Pid[w]. The

internal cost of v, IC(v), is the number of edges from v to vertices in Pid[v]. If the difference
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between external and internal costs of v and w, D(v) and D(w), are both positive, then

swapping of the vertices will definitely reduce edgecuts. The Gain is the sum D(v) and

D(w) if v and w are not directly connected by an edge; otherwise it is D(v) +D(w)− 2.

When refining a pair of partitions against each other, all pairs of vertices are

considered and the one that provides the highest Gain are chosen for swapping. This process

is repeated – each application is called a Pass that finds one pair to swap – until no more

pairs with positive Gain are available.

Taming KL-algorithm’s Complexity for Large Graphs In large graphs with millions

of vertices in each partition, it is not practical to consider every pair of vertices from every

pair of partitions and consider them for swapping. To reduce the complexity we first observe

that only boundary vertices – vertices that have edges cut by the initial partition – for a pair

of partitions need to be considered during refinement. To further lower the complexity of

refinement we limit the scope of refinement by dividing boundary vertices belonging to each

partition into equal-sized NumInts intervals. When refining two partitions with respect

to each other, only all pairs of vertices from corresponding intervals in the two partitions

are considered. This greatly reduces the pairs considered and hence the cost of refinement.

Note that high-degree vertices are not included in such pairs as, having partitioned their

edges across partitions, their is no benefit from swapping them. The low degree vertices

are plentiful in a large irregular graph and hence refinement of intervals that are smaller

subgraphs is still highly effective as will be observed from our experimental results for GO

in comparison to Mt-Metis.
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Figure 3.4: Illustration of Refinement Algorithm.

Interval-based Algorithm and Example Algorithm 4 presents Interval-based algo-

rithm of our refinement phase. Lines 4-15 show threads loading portions of partitions into

buffers in parallel, identifying boundary vertices, dividing them into intervals, and calling

RefinePartition to refine partitions. Lines 2-18 in Algorithm 5 show the function includ-

ing how a partition refines itself against all other partitions (Line 3), considering pairs of

intervals (Line 5), making multiple passes (Lines 7-11), and finally applying atomic Swap

operations that update partition ids stored in array Pid. When considering a pair of inter-

vals, function FindMaxGainPair defined in Algorithm 6 is used to consider all relevant

vertex pairs in those intervals and finds the pair with the highest gain and returns that pair.
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Figure 3.4 illustrates the above algorithm. We assume two partitions with two

intervals each. The top part of the figure refines the first intervals from both partitions

against each other and does not swap any vertices as no vertex pair with a positive gain is

found after a pass. The bottom part refines second intervals from both partitions and this

time the first pass identifies a vertex pair with positive gain and in the second pass (not

shown) none is found. The figure shows how the partitioning as expressed in Pid[*] array

changes. The EC, IC, and D values of the source vertices belonging to intervals are shown.

The gains computed in each pass are also shown. However, note that the tables that show

these are for illustration as no tables are maintained by the algorithm, only the pair with

maximum gain is remembered.

3.4 GO Prototype and its Evaluation

GO is implemented in C++ and it uses the Infinimem I/O runtime [11] to leverage

its support for seamless batch disk I/O for variable size records. The records are expressed

using Protocol Buffers [3] which provide efficient serialization/deserialization. The graph is

divided among multiple threads for parallel processing where each thread reads its assigned

part of the graph and puts it into the in-memory buffers. The graph is represented in

memory using the adjacency list format and written to disk by the threads to which vertices

are assigned using Infinimem’s batch I/O.

The goal of our evaluation is to compare the quality and cost of graph partitioning

as performed by GO and Mt-Metis. We study the scalability of GO with increasing graph

size and varying memory availability. For modest sized graphs that could be successfully
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partitioned by both GO and Mt-Metis, we compare the partitions produced by both the

systems in terms of number of edgecuts, balance and peak memory used in handling graphs

of varying sizes.

The graph partitioning experiments were performed on a machine with 32 cores

(2 sockets, each with 16 cores) with Intel Xeon Processor E5-2683 v4 processors, 425 GB

memory, 1TB SATA Drives and running CentOS Linux 7. Table 3.1 includes graphs of

varying sizes ranging from 15.5 million edges to 3.3 billion edges. This allows us to compare

the scalability of partitioning algorithms and demonstrate that eventually for large graphs

Mt-Metis runs out of memory while GO can successfully partition them even when only

given part of the memory is available on the machine used in the experiments.

Our evaluation considers following partitioning algorithms:

• GO-100 corresponds to the amount of memory so the graph fits in memory and initial

partition is not written to and re-read from disk;

• GO-75, GO-50, and GO-25 correspond to running GO with 75%, 50% and 25% of graph

in memory. GO will need to write and re-read the initial partition from disk.

• Mt-Metis is a multithreaded version of Metis [36]. We compare GO’s performance with

Mt-Metis 0.6.0 that incorporates enhanced coarsening scheme [37] for graphs with

highly variable degree distribution (e.g., power-law).
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Table 3.4: Number of Edgecuts for GO-100 and Relative Number for Mt-Metis and Other
GO Configurations.

k Algo. Input Graphs

FL PK LJ OK UK02 WK TW TM UK07

8

GO-100 337,908 173,738 452,443 316,918 113,265 655,057 5,837,535 112,048 6,760,828

Mt-Metis 11.8× 24.2× 16.7× 76.2× 19.8× 68.7× 7 7 7

GO-75 2.4× 0.8× 0.4× 1.1× 1.4× 0.5× 1.5× 1.6× 0.6×

GO-50 2.4× 1.3× 0.5× 1.4× 1.2× 0.9× 1.6× 2.5× 0.7×

GO-25 2.8× 1.7× 0.6× 2.4× 2.2× 1.1× 1.7× 4.3× 0.6×

16

GO-100 1,145,151 366,450 493,762 2,640,637 649,569 1,923,263 14,249,266 1,078,944 10,342,321

Mt-Metis 4.2× 15.2× 20.3× 12.5× 4.0× 28.9× 7 7 7

GO-75 2.1× 1.3× 0.9× 0.4× 0.4× 0.8× 1.9× 0.9× 0.5×

GO-50 2.1× 1.5× 1.1× 0.4× 0.3× 1.0× 1.9× 0.8× 1.1×

GO-25 2.2× 2.1× 1.4× 0.6× 0.7× 1.1× 1.9× 1.0× 1.0×

24

GO-100 2,469,269 1,672,698 2,260,283 9,278,356 869,908 6,232,550 22,486,575 3,923,882 13,110,702

Mt-Metis 2.1× 3.8× 5.3× 3.8× 3.3× 10.3× 7 7 7

GO-75 2.0× 0.5× 0.4× 0.2× 0.6× 0.6× 1.7× 0.2× 1.8×

GO-50 2.0× 0.7× 0.5× 0.2× 0.4× 0.7× 1.7× 0.3× 1.8×

GO-25 2.1× 0.7× 0.6× 0.3× 1.1× 0.8× 1.8× 0.6× 1.7×

3.4.1 Quality of Partitions: Edgecuts and Balance

We demonstrate that GO can successfully partition all graphs in Table 3.1 using

varying amounts of memory that holds 100%, 75%, 50%, or 25% of the graph. Since

different configurations have different amounts of memory available, the partitionings they

produce are different. We compare the quality of partitions produced using Mt-Metis with

the various GO configurations. Table 3.4 presents edgecuts data while Table 3.5 presents

the balance data for partitionings produced. For Mt-Metis no data is presented for the three
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Table 3.5: Balance of Partitions – GO Configurations vs. Mt-Metis: Values are
MAXi(| Vi |) as a percentage of | Vi |. The ideal balance percentage for 8, 16 and 24

partitions is 12.50%, 6.25% and 4.17% respectively.

k Algo. Input Graphs

FL PK LJ OK UK02 WK TW TM UK07

8

GO-100 12.50% 12.50% 16.12% 12.50% 12.50% 12.50% 12.50% 12.51% 12.50%

Mt-Metis 13.76% 13.70% 16.65% 13.70% 12.54% 14.61% 7 7 7

GO-75 12.50% 12.50% 16.12% 12.50% 12.50% 12.50% 12.50% 12.50% 12.50%

GO-50 12.51% 12.51% 16.12% 12.51% 12.50% 12.50% 12.50% 12.51% 12.50%

GO-25 12.52% 12.52% 16.12% 12.51% 12.50% 12.50% 12.50% 12.51% 12.50%

16

GO-100 6.25% 6.25% 8.06% 6.25% 6.25% 6.25% 6.25% 6.26% 6.25%

Mt-Metis 7.62% 6.76% 8.76% 7.21% 6.28% 6.67% 7 7 7

GO-75 6.25% 6.25% 8.06% 6.25% 6.25% 6.25% 6.25% 6.26% 6.25%

GO-50 6.27% 6.27% 8.07% 6.26% 6.25% 6.25% 6.25% 6.26% 6.25%

GO-25 6.30% 6.31% 8.08% 6.29% 6.26% 6.26% 6.25% 6.26% 6.25%

24

GO-100 4.17% 4.17% 5.37% 4.17% 4.17% 4.17% 4.17% 4.17% 4.17%

Mt-Metis 4.86% 4.82% 5.70% 4.48% 4.19% 5.14% 7 7 7

GO-75 4.17% 4.17% 5.37% 4.17% 4.17% 4.17% 4.17% 4.17% 4.17%

GO-50 4.21% 4.23% 5.40% 4.19% 4.17% 4.18% 4.17% 4.17% 4.17%

GO-25 4.22% 4.24% 5.41% 4.24% 4.18% 4.19% 4.17% 4.17% 4.17%

largest graphs (TW, TM and UK07) because it ran out of memory in the coarsening phase

and terminated (indicated by 7 in the tables).

Edgecuts From number of edgecuts given in Table 3.4, we observe that the number of

edgecuts produced by all GO configurations are typically far fewer than Mt-Metis, i.e. irre-

spective of the amount of memory available to GO. This is because the interval size employed

by the KL algorithm during the refinement is similar for all the GO configurations. The
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Figure 3.5: Edgecuts as a percentage of total number of edges for GO configurations.

variation in edgecuts for different GO configurations is due to the difference in refinement

intervals caused by batches merged during the partition refinement phase. Mt-Metis creates

8-way/16-way/24-way partitioning with 11.8/4.2/2.1× to 76.2/28.9/10.3× more edgecuts

than GO-100. And this is in spite of GO-100 using much less memory as, being a single-level

algorithm, it does not create coarsened graphs. As expected, the percentage of edges that

are cut increases with number of partitions.

When we look at the ratio of edgecuts for MT-Metis and GO-100, we also make

another observation. The higher the |E||V | ratio for the input graph, the higher is the edgecuts

ratio of Mt-Metis over GO-100. Among the six graphs that are successfully handled by Mt-

Metis, the three largest |E||V | ratios are 38.1 for OK, 31.1 for WK, and 18.7 for PK. Their
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Table 3.6: Peak Memory in GB for GO configurations vs. Mt-Metis.

k Algo. FL PK LJ OK UK02 WK TW TM UK07

8

Mt-Metis 2.30 4.00 6.4 22.40 15.4 55.1 7 7 7

GO-100 0.61 0.72 1.7 2.70 8.0 7.6 29.8 72.9 79.1

GO-75 0.27 0.31 0.8 0.96 3.3 2.5 10.0 52.0 26.5

GO-50 0.26 0.27 0.6 0.93 2.6 2.4 9.8 46.0 26.1

GO-25 0.14 0.16 0.4 0.48 1.6 1.5 6.4 40.4 13.4

16

Mt-Metis 2.40 2.70 7.8 20.50 16.2 53.1 7 7 7

GO-100 0.67 0.78 1.9 2.80 8.6 8.0 31.2 104.2 82.4

GO-75 0.37 0.38 0.9 1.00 3.8 2.9 11.0 83.0 29.0

GO-50 0.31 0.32 0.8 0.99 3.2 2.8 10.3 77.8 28.0

GO-25 0.23 0.22 0.6 0.52 2.2 1.9 7.9 71.4 17.2

24

Mt-Metis 2.60 3.70 8.1 17.40 15.9 47.1 7 7 7

GO-100 0.45 0.50 2.1 2.90 9.2 8.4 32.6 135.6 85.7

GO-75 0.41 0.45 1.0 1.10 4.2 3.3 12.0 114.0 32.0

GO-50 0.38 0.40 0.9 1.00 3.8 3.1 11.5 109.0 31.0

GO-25 0.35 0.30 0.8 0.64 2.8 2.1 8.8 104.0 19.3

Mt-Metis over GO-100 edgecut ratios are the worst – 76.2× for OK, 68.7× for WK, and

24.2× for PK. In other words, GO is more effective in dealing with irregular graphs.

Finally, Figure 3.5 presents the percentage of edges that are cut by partitioning.

As we can see, the percentage is generally greater for smaller graphs than for larger graphs,

the edgecut percentage increases with the number of partitions.
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3.4.2 Memory Usage

Table 3.6 shows the peak memory used by GO and Mt-Metis for varying the number

of partitions. The peak memory is noted using the top utility on Linux. For the first six

graphs, since Mt-Metis could successfully partition the graphs, we calculate the ratio between

peak memory used by Mt-Metis versus that used by GO configurations.

From the data in Table 3.6 we observe the following. As expected, GO-100 is far

more memory efficient than Mt-Metis as GO is a single level algorithm while Mt-Metis is a

multilevel algorithm that must additionally hold coarsened graphs in memory. For first six

graphs, GO-100 uses 1.9× to 8.3× lesser amount of memory than Mt-Metis for an 8-way

partitioning. For producing greater number of partitions (i.e., 16 and 24), both GO-100

and Mt-Metis require greater amount of memory although this increase is modest (less than

10%). For the largest three TW, TM, and UK2007 graphs, GO-100 uses 29.8-32.6GB, 72.9-

135.6GB, and 79-85.7GB of memory respectively. Given that typically Mt-Metis uses many

times the memory used by GO-100, it is not surprising that Mt-Metis runs out of memory

and fails to partition the graphs.

The |E||V | ratio impacts the memory used by the algorithms, much more so for Mt-

Metis than for GO-100 resulting in the following observations. Although the sizes of WK

and UK2002 are fairly close, their |E||V | ratios are quite different – 31.1 for WK versus 14.1

for UK2002. This impacts the relative memory usage of Mt-Metis and GO. MT-Metis uses

6.6× for WK and 1.9× for UK2002 in comparison to GO-100. This is because the coarsened

graphs for Mt-Metis contain greater numbers of edges for WK than for UK2002 causing

greater need for additional memory by WK than UK2002.
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The memory used by GO-25 is at least four times less than the memory used by

GO-100. The exception is the TM input graph for which GO-100 uses around 1.5× to 2×

the memory used by GO-25. This is because TM has the smallest |E||V | ratio of 1.6 and hence

edges account for smaller fraction of memory needs. In fact the auxiliary array for holding

partition ids of vertices accounts for significant fraction of memory. Thus, reducing buffer

memory impacts peak memory consumption far less than for all other graphs.

3.4.3 Execution Times

Table 3.7 shows the execution time in seconds for different GO configurations -

GO-100, GO-75, GO-50, GO-25, and Mt-Metis. The execution times of GO-100 compare well

with Mt-Metis and better for graphs with higher |E||V | ratio (PK, OK WK) with speedups

ranging from 1.3× to 1.7×. For the two larger graphs the results are quite different – for

UK2002 the execution times for Mt-Metis are roughly 2× faster than GO-100 while for WK,

Mt-Metis runs 1.6× slower. Nevertheless, GO-100 produces partitioning with fewer edgecuts

than Mt-Metis for both UK2002 and WK.

Balance of partitions Next we examine how well balanced are the partitions that are

produced. We present the percentage of vertices that belong to the largest partition in

a partitioning in Table 3.5. Note that the ideal percentage for best balance is 12.5% for

8-way, 6.25% for 16-way, and 4.17% for 24-way partitioning. We observe that for six graphs

– FL, PK, OK, WK, TW, and UK2007 – GO-100 produces almost perfect partitioning. On

the other hand, with Mt-Metis the largest partitions vary from 12.54% to 16.65% in size.
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Table 3.7: Execution Times in Seconds for GO Configurations vs. Mt-Metis.

k GO-Mem Input Graphs

Config. FL PK LJ OK UK02 WK TW TM UK07

8

GO-100 7.4 6.2 18.9 18.2 70.9 71.9 397.1 1,722.0 1,026.0

Mt-Metis 6.0 8.0 15.0 32.0 34.0 121.8 7 7 7

GO-75 7.5 6.5 19.1 20.1 83.4 75.1 426.8 1,794.0 1,057.0

GO-50 7.9 6.6 19.2 20.2 84.1 78.0 450.1 1,814.0 1,073.0

GO-25 8.0 8.2 19.4 20.4 87.6 79.9 453.3 2,068.0 1,113.0

16

GO-100 7.2 5.8 17.4 17.5 65.1 66.2 396.1 1,763.0 965.2

Mt-Metis 7.0 7.0 19.0 34.0 34.0 123.6 7 7 7

GO-75 7.4 6.9 17.7 19.1 65.7 69.1 405.2 1,789.0 1,020.0

GO-50 8.2 8.2 18.5 20.4 68.3 70.6 412.5 1,811.0 1,049.0

GO-25 9.4 8.5 19.2 21.0 69.5 74.1 431.9 1,929.0 1,094.0

24

GO-100 7.4 6.1 18.6 19.9 60.4 69.0 424.2 1,869.0 1,028.0

Mt-Metis 6.0 8.0 17.0 30.0 35.0 126.6 7 7 7

GO-75 7.9 6.5 19.1 21.2 64.8 71.7 425.1 1,911.0 1,075.0

GO-50 8.2 6.6 19.1 21.9 70.6 73.7 435.4 1,937.0 1,080.0

GO-25 9.0 7.5 19.2 29.0 71.9 79.2 462.3 1,948.0 1,095.0

Thus, the partitions generated by GO-100 are more balanced and have fewer edgecuts than

partitions produced by Mt-Metis. When GO is given less memory, balance of partitions is

not adversely impacted but only very slightly. The highly balanced partitions produced by

GO is due to its superior initial partitioning phase. This is because the swapping of vertices

performed during refinement, reduce edgecuts without altering the balance of partitions.
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Table 3.8: I/O Time in Seconds for GO Configurations.
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The runtimes of GO scale with graph size ranging from few seconds for the smallest

graph to roughly 32 minutes for large graphs. Let us compare the execution times of GO-100

with GO-25. We observe that typically GO-25 exceeds the execution times of GO-100 by less

than 50%. For the largest graph of UK2007 with over 3.3 billion edges, the execution time

of GO-25 exceeds that of GO-100 by 8.5%, 13.4%, and 6.5% for 8-way, 16-way, and 24-way

partitionings. Thus, we see that the runtimes of GO scale well with graph size, number of

partitions, and amount of memory available to run.

Finally, we observed that the I/O times of GO-100 differ from the I/O times of

GO-25 only by a small amount because the I/O performed by the out-of-core feature is

highly efficient. Table 3.8 presents the I/O times of writing/reading of initial partitioning

to/from Infinimem is small compared to rest of the I/O time (numbers in parenthesis in the

table) for reading the initial graph and writing out the final partitioning.

3.4.4 GridGraph Performance vs. GO Partitioning

Next we study the impact of partitions produced on runtimes of graph algorithm on

a state-of-the-art out-of-core system. We executed two graph algorithms, PageRank and

WCC (Weakly Connected Components), on the GridGraph [47] out-of-core system using

the partitions produced by GO-100, GO-75, GO-50 and GO-25. The execution times of

GridGraph are given in Table 3.9. As we can seen from this table, the execution times of all

the GO configurations are comparable. In fact, the runtimes are same for most of the GO

configurations. In other words, reducing memory to 25% does not result in any slowdowns

on GridGraph as the quality of partitions produced does not change significantly from GO-

100 to GO-25. Therefore we can conclude that the quality of partitions produced by GO
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Table 3.9: Scalability of GO Configurations: Execution Times in Seconds for PageRank
and WCC on GridGraph.

k Part. PageRank

Algo. OK WK TW

8

GO-100 6 19 128

GO-75 7 22 134

GO-50 7 21 128

GO-25 8 20 126

16

GO-100 6 21 96

GO-75 7 23 100

GO-50 8 20 100

GO-25 7 21 102

24

GO-100 8 16 100

GO-75 7 19 110

GO-50 8 20 99

GO-25 7 18 109

WCC

OK WK TW

3 7 48

4 8 48

4 7 49

5 7 44

4 7 37

6 8 39

5 7 39

6 7 38

5 6 33

6 7 34

6 8 37

7 7 40

is fairly insensitive to the aount of memory provided to GO. The above results are to be

expected because, as we reduce the memory available to GO, the number of edgecuts does

not change significantly.

In order to compare the effectiveness of GO’s partitioning with Mt-Metis partition-

ing and other simple partitioning schemes, we ran the workloads of PageRank and WCC

on GridGraph. We compare the running times of GridGraph on OK, WK and TW input

graphs for multiple partitioning schemes. In addition to Mt-Metis and GO, we also collected

the running times of GridGraph when using simple partitioning strategies, cyclic and block-
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Table 3.10: Execution Times in Seconds for GO-100, Mt-Metis, Cyclic, and Block-Cyclic
Partitionings on Medium Sized Graphs OK, WK and Large Graph TW for PageRank and

Weakly Connected Components (WCC) on GridGraph.

k Part. PageRank

Algo. OK WK TW

8

Mt-Metis 7 21 7

GO-100 6 19 128

Cyclic 8 19 133

Block-Cyclic 8 24 130

16

Mt-Metis 9 22 7

GO-100 8 21 96

Cyclic 9 23 109

Block-Cyclic 8 29 99

24

Mt-Metis 7 18 7

GO-100 6 16 100

Cyclic 7 20 101

Block-Cyclic 7 21 105

WCC

OK WK TW

4 8 7

3 8 48

5 8 50

5 7 49

5 14 7

4 12 37

5 15 39

4 17 37

6 9 7

6 7 33

8 9 44

9 11 35

cyclic, as these strategies have been used by existing out-of-core systems for evaluating

graph queries to circumvent the memory intensive nature of graph partitioning. The re-

sults shown in Table 3.10 demonstrate that running times for GO-100 partitioning are same

or less than that for Mt-Metis, Cyclic and Block-Cyclic partitionings with the exception of

WCC for k=8. Note that in Table 3.10 the minimum execution times are shown in bold.

This is to be expected because GO-100 always produces partitioning that is superior to the

partitioning generated by other methods.
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3.5 Summary

In this chapter we presented the GO out-of-core graph partitioner that can function

within the memory constraints imposed by the machine and successfully partition graphs

that far exceed the size of a graph that can be held in memory. The execution time and

memory requirements scale well with the graph size. For graphs that can be successfully

partitioned using the in-memory Mt-Metis graph partitioner, GO produces high quality

partitioning in terms of edgecuts and balance. In contrast to multilevel partitioning scheme

used by Mt-Metis, GO is single level and it partitions the graph in two highly memory

efficient parallel passes. For graphs that can be successfully partitioned by Mt-Metis on a

single machine, GO produces balanced 8-way partitions with 11.8 to 76.2 fewer edgecuts

using 1.9 to 8.3 lesser memory in comparable runtime.
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Chapter 4

OMRGx: Extended OMR for

Graph Partitioning and Processing

We already discussed the growing popularity of single machine analytics systems

and described existing systems for MapReduce and iterative Graph Analytics. In Chapter 2

we studied how a MapReduce system like OMR [48] can be efficiently used on a single

machine to process huge datasets in parallel with the optimized IO operations when using

disk. Such a framework enables programmers to easily express the processing logic using

the simple APIs while runtime system transparently manages parallelism, memory, and IO.

In Chapter 3, we studied how similar challenges can be addressed for partitioning large

graphs while maintaining its balance and minimizing the edgecuts. The ease of expressing

wide variety of algorithms using our highly optimized MapReduce system motivated us to

address the following challenge - using MapReduce system for partitioning and end-to-end

processing of large graphs.
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In this Chapter, we present a general purpose MapReduce framework which sup-

ports graph partitioning and performs partition-based graph processing. We show the efficacy

of our system by showing its programmability, performance and scalability by running the

programmed applications on five input graphs of medium and large sizes.

4.1 MapReduce for Graphs

A common concern across graph processing systems is the nature of consistency

semantics they offer for programmer to accurately express graph algorithms. Consistency

semantics in the context of iterative graph processing fundamentally decide when should

a vertex’s value (that is computed in a given iteration) become visible to its outgoing

neighbors. The most popular consistency semantics is offered by the Bulk Synchronous

Parallel (BSP) [49] model (hereafter called synchronous processing semantics) that separates

computations across iterations such that vertex values computed in a given iteration become

visible to their outgoing neighbors in the next iteration, i.e., values in a given iteration are

computed based on values from the previous iteration. Such clear separation between values

being generated versus values being used allows programmers to clearly reason about the

important convergence and correctness properties. Hence, synchronous processing semantics

often becomes a preferred choice for large-scale graph processing [39,47,51,52].

Originally, MapReduce systems were designed to work in a distributed manner

where the workload was distributed amongst the multiple nodes. Therefore, expressing

graph algorithms for distributed MapReduce systems will end up having to take multiple

iterations of MapReduce which requires the output of one iteration to be fed as the input to
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another. This, in turn, will slow down the entire process as data has to be written to files at

the end of everymap() and reduce() operation and moved between nodes. The entire state of

the graph needs to be transmitted in each stage, which will require a lot more communication

overhead. Bringing the MapReduce framework on a single machine where the vertices and

edges remain on the machine that performs the computation mitigates the communication

cost, unlike performing MapReduce operations on distributed systems where communication

overhead between the nodes takes over the advantages of using MapReduce systems to

express different computations. Therefore, MapReduce systems on a single machine can

easily simulate the Bulk Synchronous Parallel (BSP) model by splitting the computations

in parallel across multiple reducers which are responsible for performing the computation

on the assigned vertices and then communicate through shared-memory structures and wait

for all the reducers to finish the computations of the assigned tasks. This implies that we

can exploit the features provided by the runtime to easily express graphs in a MapReduce

model where a key can be specified as a vertex/node and the edges will be the value for that

specific key. The graph algorithms can be easily expressed using the map() and reduce()

functions where the vertex-centric computations can be performed based on the assigned

vertices to different mapper and reducer threads, which can operate independently.

Another challenge in handling graphs is that they usually have a specific struc-

ture which makes them to be expressed using highly specialized systems. However, recent

systems like OMR and Infinimem [11] have shown the applicability of Protocol buffers to

further extend the capabilities of the system to express custom input formats which makes

it easier to express the graph structure.
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4.2 Extending OMR: An Implementation Choice

In the previous section, we discussed how a single machine MapReduce system

can overcome the challenges in large scale processing of the graphs by simulating the BSP

model and avoiding the communication costs that incur in a distributed environment. Such

a system is already equipped with efficient engine to leverage parallelism, handle data

efficiently in memory and perform optimized IO operations. Therefore, a highly tailored

single machine MapReduce system becomes a good choice to partition and process large

graphs that often need to be written off to disk due to their iterative nature and BSP

model semantics. Hence, we can use the simple APIs provided by the MapReduce system

to express the vertex-centric computations. Such a framework is also ideal to partition the

graphs by mapping the data to different partitions and assigning each reducer the task of

refining each partition. This motivated us to take a step forward and extend our existing

MapReduce system - OMR to support Graph Partitioning and Processing.

Therefore, we present OMRGx, an out-of-core graph partitioning and processing

system by extending OMR’s API to support graphs. OMRGx allows programmers to ex-

press a wide variety of graph partitioners from simple partitioners like cyclic, block cyclic,

hash to more sophisticated partitioners like GO [50], Mt-Metis [36, 37]. Programmers can

then perform partition-based graph processing based on the partitioning strategy of their

choice. OMRGx provides a simple yet all-inclusive API which makes it easier to program

different graph partitioning algorithms: GO, MtMetis, hash and processing algorithms:

GraphChi [13]. We further demonstrate the versatility of OMRGx by implementing differ-

ent partitioners and graph processing frameworks: GO partitioner with GraphChi; simple
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Hash partitioner with GraphChi; and MtMetis partitioner with GraphChi. OMRGx runs

the PageRank algorithm, using the different graph partitioners and processing frameworks

implemented in OMRGx, on medium and large sized input graphs by producing a num-

ber of partitions of the input graphs and performing the partition-based processing. This

demonstrates the scalability of OMRGx. We also run the default processing of OMRGx to

show how the framework itself can be used to process large graphs using simple map() and

reduce() functions making users oblivious about Out-Of-Core.

4.3 The OMRGx Programming Interface

OMRGx provides a rich programming interface that allows programmers to be

oblivious about Out-of-Core and easily express different graph partitioning and processing

algorithms using simple map() and reduce() functions provided by the system. Program-

mers just need to specify the partitioning/processing logic and let runtime take care of the

entire process of efficiently handling large amounts of data in memory and optimizing IO

operations to store data on disk whenever needed. This gives programmers the flexibility

to program different applications, as seen in Figure 4.1. We now describe OMRGxs simple

yet all-inclusive application programming interface (API) that enables graph partitioning

and processing.

Figure 4.2 shows the high-level API provided by OMRGx that allows program-

mers to express different graph partitioning strategies and also perform partition-based

graph processing. This implies that the programmers can use OMRGx to express graph
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Figure 4.1: OMRGx APIs to support Graph Partitioning and Processing.

partitioning algorithms and partition-based graph processing algorithms. This does not

limit the user to any specific partitioner when processing large graphs, rather provides the

freedom to implement graph partitioning algorithm of their choice. In addition, the pro-

grammer can transparently make use of the out-of-core capabilities of the underlying OMR

system.
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Figure 4.2: Programming with OMRGx: the map() and reduce() APIs are used for specify-
ing the processing logic; diskReadPartition and diskWritePartition APIs used for storing
the entire or part of the partition on disk.

4.3.1 Graph Partitioning Algorithms

In OMRGx, the programmer can implement their graph partitioning algorithm

using the map and reduce APIs. The programmer specified map function is used to split

the input into key − value pairs. Here keys are represented by vertices/nodes and values

represent adjacencylist for the vertex. The setPartitionId API is used to set the PID in

memory for the input key − value pair which is then passed to the map function to map

the key to the specified partition. If during the map phase, the in-memory partitions reach
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Figure 4.3: Hash partitioner programmed in OMRGx using its high-level API; showcasing
the ease and versatility of programming with OMRGx.

Figure 4.4: GO partitioner programmed in OMRGx using its high-level API; showcasing
the ease and versatility of programming with OMRGx.
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Figure 4.5: MtMetis partitioner programmed in OMRGx using its high-level API;
showcasing the ease and versatility of programming with OMRGx.

their capacity, the contents are serialized into a batch of contiguous records and written off

to disk. The reduce function processes all the vertices in the partitions on disk in parallel

based on the logic provided by the application programmer and emits the final partitions.

This process repeats until the entire graph is read and processed.

Figure 4.3, Figure 4.4 and Figure 4.5 illustrate the different graph partitioners

programmed in OMRGx. Hash partitioner, as demonstrated in Figure 4.3, is a simple

partitioner which hashes the vertices into different partitions based on their keys during the

map phase and simply writes out the final partitions during the reduce phase. On the other

hand, GO and MtMetis (Figure 4.4 and Figure 4.5 ), being the sophisticated partitioners,

refine the partitions during the reduce phase and hence perform additional processing. Once

all the partitions are read from disk and refined during the reduce phase, the final partitions

are available at the end which can be used for further processing by the graph algorithms.
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Since MtMetis employs multilevel graph partitioning strategy where a graph is

transformed into a sequence of smaller graphs during the coarsening phase. The Partitioning

phase generates the initial partitioning of the coarsest graph. The Uncoarsening phase

refines the partitions produced and projects them to their finer level graph and all the way

to the original graph. Figure 4.5 shows the ease of programming multilevel algorithm using

the simple APIs provided by OMRGx. If the input graph is large, MtMetis stores all its

coarsened graphs on disk using OMRGx’s diskWritePartition API by specifying the count

for the key − value pairs to be stored on disk. During the uncoarsening phase, it simply

reads the finer level graphs using the diskReadPartition API provided by OMRGx.

4.3.2 Partition-based Graph Processing Algorithms

The graph processing algorithms tend to be iterative in nature, therefore, OMRGx

provides setIterations API to set the number of iterations for successful convergence and

correctness. The beforeMap, beforeReduce and afterReduce APIs are used to set/clear

the graph related structures. Based on the set number of iterations, the reduce operation is

performed. The updateReduceIteration API is used to update the computation data struc-

tures to prepare for the next iteration. For the iterative algorithms, the entire graph is read

from or written off to disk multiple times using diskReadPartition and diskWritePartition

APIs to propagate the updated values for the next iteration. The programmers have the

choice to read/write the entire partition or a part of it based on their implementation.

As an example, Figure 4.6 shows the implementation of PageRank in OMRGx.

During the map phase, vertex v and all its corresponding edges e are written off to buffers
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in memory. The Protocol Buffers enable the use of the custom format to store the extra

information like rank, number of neighbors etc along with the incoming edge e. If the

partition to which this incoming vertex−edge pair is written is not provided, then OMRGx

chooses its default partitioning strategy which is hashing the key−value pairs based on their

vertex IDs. During the reduce phase, all the edges corresponding to each vertex are merged

together by the reducer and available in the partition. Therefore, for each vertex v, all of

Figure 4.6: Graph Processing Algorithm - PageRank programmed in OMRGx using its
high-level API; showcasing the ease and versatility of programming with OMRGx.
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its neighbors are processed based on which the pagerank is calculated and then updated

for all the neighbors of vertex v. The updateReduceIter API is used to increment to the

next iteration. It is important to note that OMRGx internally uses its diskWritePartition

API to propagate the updated values for the next iteration. The entire process of reading

and writing graphs from disk in parallel and optimized IO operations is oblivious to the

application programmer.

4.3.3 Default Processing

OMRGx is extended from our OMR system which includes all the capabilities

of the engine including the mapping of all the key − value pairs and outputting the final

key−value pairs through the reduce phase. Therefore, the extended OMRGx system which

includes the capabilities to partition and process large graphs can itself be used for the

default processing without using any formal graph processing framework. Our experiments

in Section 4.4 compares the performance of the default OMRGx system with the specialized

Graph Processing frameworks like GraphChi.

4.4 Implementation and Evaluation

OMRGx is embedded in OMR and built by extending the API provided by OMR

to support both graph partitioning and processing. It is implemented in C++. OMRGx

can be used to partition large graphs and then perform the partition-based graph processing.

Users can easily implement simple partitioners like cyclic, block-cyclic, hash etc as well as

sophisticated partitioners like GO, MtMetis without worrying about the complex details
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like memory used, parallelism, IO. Users can then feed these partitions to graph processing

algorithms like pagrank, sssp to perform end-to-end processing of graphs. The entire process

is seamless to the user.

We evaluate the programmability, scalability and performance of the OMRGx

system. The evaluation is based on two classes of algorithms: graph partitioning and

partition-based graph processing. We programmed different graph partitioning and pro-

cessing algorithms using OMRGx’s simple API. The goal of the experiments is to compare

the programming effort, performance and scalability of the graph analytics systems imple-

mented in OMRGx with their specialized standalone versions. Our evaluation considers

following partitioning and processing algorithms:

• OMRGx-Hash, OMRGx-GO, and OMRGx-Mt correspond to the Hash, GO, and MtMetis

partitioners implemented using OMRGx’s API.

• GO-S and MtMetis-S refer to standalone implementation of GO and MtMetis.

• OMRGx-D and OMRGx-GC correspond to the OMRGx default and GraphChi imple-

mentations in OMRGx.

• GraphChi-S corresponds to running the standalone implementation of GraphChi.

4.5 Programmability

Writing graph partitioning and processing algorithms using OMRGx’s API is sim-

ple. The programmer needs to only: (a) set the initial partitioning ID of the input vertices

which is input to the map function, (b) specify the format (adjacencylist or edges) for
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Table 4.1: Lines of Code needed to program the graph partitioning and processing algo-
rithms in OMRGx vs the lines of code in the corresponding standalone systems.

Partitioning Framework Processing Framework

Algorithm OMRGx Standalone Algorithm OMRGx Standalone

Hash 10 GraphChi 83 1323*

GO 176 1300 OMRGx-D 29

MtMetis 200 22489

the values to be stored corresponding to each key, (c) use the default processing engine

or provide a custom processing algorithm to the reduce function. Table 4.1 quantifies the

ease of programming with OMRGx by listing the lines of code for different graph partition-

ing and processing algorithms using OMRGx’s APIs and compares it with their standalone

implementations.

Programmability of Graph Partitioning Algorithms A simple hash partitioner can

be implemented with a fewer lines of code. It is implemented with around 10 lines of code

in OMRGx. As noted earlier, it does not need to refine the partitions during the reduce

phase and hence, outputs the entire partition. The standalone version of GO is implemented

with around 1300 lines of code whereas only 176 lines of code are needed to implement GO

in OMRGx. This is because OMRGx’s engine does all the heavy lifting with around 900

lines of code, all of which hides the complexity of parallelizing tasks, efficiently managing

memory and optimizing IO from the user. The standalone implementation of MtMetis uses

around 22, 489 lines of code just to express the coarsening and uncoarsening heuristics for

the multilevel algorithm. On the other hand, this same algorithm can be programmed in
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OMRGx with around 200 lines of code; rest of the complex details of handling out-of-core

structures is managed by OMRGx.

Programmability of Graph Processing Algorithms Implementing GraphChi in OMRGx

was relatively easy with less than 100 lines of code including loading memory and corre-

sponding sliding shards, building subgraph in memory, and processing the subgraph to run

PageRank algorithm. On the other hand, the standalone implementation of GraphChi is

done with around 1323 lines of code1. It is important to note that the extra lines of code for

preprocessing the shards, building subgraphs and meta data have not been added. OMRGx-

D is the default processing provided by OMRGx which uses a hash partitioner to partition

the vertex − edge pairs based on their vertex ID and runs PageRank on the partitioned

graph. It is implemented in about 29 lines of code.

Table 4.2: Input Graphs: Orkut (OK), Wikipedia-eng (WK), Twitter-WWW (TW),
Twitter-MPI (TM), and UKdomain-2007 (UK). [35,60] used in the evaluation.

Graph Vertices Edges Graph Size | E |

G | V | | E | | E | + | V | | V |

OK 3,072,441 117,185,083 120.3 million 38.1

WK 12,150,976 378,142,420 390.3 million 31.1

TW 41,652,230 1,202,513,195 1,244.2 million 28.9

TM 999,999,987 1,614,106,343 2,614.1 million 1.6

UK 105,153,952 3,301,876,564 3,407.0 million 31.4

1The lines of code provided in Table 4.1 for standalone implementation of GraphChi is just for the engine
program which provides the code for processing the shards. The extra lines of code for preprocessing the
shards, building subgraphs and meta data have not been added
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4.6 Experimental Setup

All the experiments were performed on a machine with 32 cores (2 sockets, each

with 16 cores) with Intel Xeon Processor E5 − 2683 v4 processors, 425GB memory, 1TB

SATA Drives, and running CentOS Linux 7. The input graph datasets consists of varying

vertices and edges, listed in Table 4.2; ranging from medium sized graphs - OK, WK with

around 120M - 378M edges to large sized graphs - TW, TM, UK consisting of edges between

1, 244M − 3, 407M . UK is the largest graph at 55GB on disk, 3, 407M edges and 105M

vertices.

4.7 Performance

We now present the runtime performance of applications programmed with OMRGx

in terms of number of partitions produced and the size of the input graph datasets. We

compared the performance of algorithms programmed in OMRGx with their standalone

versions.

First, we discuss the performance of graph partitioning algorithms programmed in

OMRGx - OMRGx-Hash, OMRGx-GO in terms of number of partitions produced and the size

of the input graph datasets. OMRGx-Hash is a simple partitioner implemented in OMRGx

by hashing the vertices to different partitions while reading the input during the map phase

and then it combines the adjacency− lists for each vertex during the reduce phase to emit

the final partitions without performing any refinement. On the other hand, OMRGx-GO and

GO-S refine the reduced partitions before writing them off to disk. Therefore, the overall

execution time for OMRGx-GO and GO-S is higher than OMRGx-Hash as seen in Figure 4.7.
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It is interesting to note that the execution time for all the algorithms is comparable

for the largest UK graph. This shows that the performance of the algorithms implemented in

OMRGx is not adversely impacted with the increase in the size of input graph. Furthermore,

the performance of OMRGx-GO compares well with the highly optimized standalone graph

partitioner GO-S.

Figure 4.7: Comparison of Execution Times (seconds) for Graph Partitioning Algorithms
implemented in OMRGx vs. their standalone implementations using input graphs of

varying sizes and different number of partitions.
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Figure 4.8: Comparison of Execution Times (seconds) for Partition-based Graph
Processing Algorithms implemented in OMRGx vs. their standalone implementations

using input graphs of varying sizes and different number of partitions.

Next, we compare the runtime performance for the graph processing frameworks

implemented in OMRGx with their standalone counterparts. We ran two iterations of

PageRank with all the graph processing algorithms used in our evaluation. OMRGx-D is

OMRGx’s default processing framework implemented using a hash partitioner. For the all

the input graphs (except UK), both OMRGx-D and OMRGx-GC perform far better than well-

tuned and hand-optimized GraphChi-S. This is due to the highly optimized reduce phase in

OMRGx which maximizes sequential disk accesses when processing input from disk. With
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the largest input graph UK, our OMRGx-GC implementation runs slower as the runtime

switches to using disk with the number of partitions increasing beyond 8. As we noticed

in Table 4.2, the E/V ratio forUK is high and we store the other information along with

the edges using the protocol buffers, as seen in Figure 4.8. Furthermore, the implementa-

tion of GraphChi specific data structures to store the sub-graph in memory and building

GraphChi meta data for the sliding shards needs more memory for the large input graph

showing the overall slowdown. However, the default processing algorithm OMRGx-D which

uses the available memory and does not need additional data structures is able to run the

input UK graph entirely in memory without using disk and hence performs far better.

4.8 Scalability

Next, we study the scalability of our graph partitioning and processing algorithms.

Figure 4.9a shows the size of the input graphs in terms of number of edges. UK has the

highest number of edges. Figure 4.9 shows the scalability data for both graph partitioning

and processing algorithms for creating 8 partitions of each input graph. As seen in Figure

4.9b, both our graph partitioning algorithms OMRGx-Hash and OMRGx-GO scale well with

the size of the input graph. We see that the execution time for TM graph is more than UK

graph when we compare the corresponding number of edges for each graph. This is because

the TM graph has highest number of vertices with E/V ratio of 1.6. Since we perform

vertex-based processing in memory, the overall execution time for TM graph increases.

Nevertheless, both OMRGx-Hash and OMRGx-GO were able to process the entire graph in

memory without the need to store the intermediate results on disk.
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(a) Size of Input Graphs in terms of number of edges.

(b) Showing Scalability of Graph Partitioning
Algorithms.

(c) Showing Scalability of Graph Processing
Algorithms.

Figure 4.9: Scalability for Graph Partitioning and Processing Algorithms w.r.t the size of
the input graphs for the number of partitions k = 8.

For our graph processing algorithms, we ran two iterations of PageRank imple-

mented on top of all the graph partitioning algorithms used in the evaluation. As shown

in Figure 4.9c our OMRGx-D and OMRGx-GC implementations scale well for both medium

and large input graphs used in the experiments. For the largest UK graph, both OMRGx-D

and OMRGx-GC show a speedup greater than 50 when compared with the finely-tuned

standalone implementation GraphChi-S. As noted earlier, the execution time for TM graph

is more than UK graph due to low E/V ratio which implies more time is spent in performing

vertex-based computations in memory i.e., calculating the PageRank for each vertex.
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It is important to note that OMRGx-D and OMRGx-GC perform consistently better

with the speedups ranging from 2.2× for the medium sized OK graph to 2.4× for the largest

UK graph when compared with the standalone implementation GraphChi-S.

4.9 Summary

In this chapter, we presented our extended out-of-core MapReduce system which

can perform graph analytics. OMRGx can be easily programmed by using its simple API

to express the processing logic while runtime takes care of all the complex details like

parallelism, memory management and IO. Through our evaluation we showed that our

system can be easily used to 1) partition large graphs and 2) perform the partition-based

graph processing of the input graphs, making the user oblivious about out-of-core and focus

more on the programming logic.

92



Chapter 5

Related Work

This chapter summarizes various prior research in domains and problems addressed

by this thesis. We first summarize the existing solutions for single machine MapReduce

systems. Next, we present the related work for out-of-core graph partitioner for single

machine. Finally, we summarize the work related to out-of-core graph partitioning and

partition-based graph processing using MapReduce.

5.1 Mapreduce on a Single Machine

Various single machine based MapReduce solutions have been developed over the

past decade [4,10,14,17,21,25] that efficiently utilize the processing capabilities of a single

machine (i.e., cores, caches and memory) to perform in-memory data-processing. In other

words, none of the systems actively employ disks for processing, and hence they assume

that the entire data being processed must fit in the main-memory of a single machine.
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Metis [14] is the state of the art single machine map-reduce system that primarily

addresses the performance bottlenecks in the data-structure that groups intermediate key-

value pairs. It develops different strategies based on workload characteristics like number

of keys used by the application and the frequency of repetition of keys. It mainly relies

on a combination of hash table and B+ tree data structures where each entry of the hash

table is a B+ tree entry. However, for workloads with unexpected key distributions, it falls

back to the simplified B+ tree data structure. To further accelerate processing, it uses the

Streamflow [18] memory allocator.

Pheonix [17] showed that the MapReduce model could be used on shared-memory

machines, with scalability comparable to hand-coded Pthreads solutions. It is optimized

for a class of workloads that feature high per task computation and a large, unknown

number of keys. Pheonix rebirth [25] optimizes Pheonix for a quad-chip, 32-core, 256-thread

UltraSPARC T2+ system with NUMA characteristics. It uses a multi-layered approach

that comprises optimizations on the algorithm, implementation, and OS interaction to

achieve up to 19× speedup over 256 threads. Pheonix++ [21] is a rewrite of Pheonix to

address its various performance issues including uniform intermediate storage, combiner

implementation, and poor task overhead amortization. However, it uses expensive copy

operation for resizing its hash table and grouping values with the same key across threads.

MATE [10] explores the effectiveness of traditional MapReduce API to produce

efficient implementations of a subclass of data-intensive applications. It further extends

the API by including support for programmer-managed reduction object, which results in

lower memory requirements at runtime; and operates on top of Pheonix. [4] divides a large
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MapReduce job into a number of small sub-jobs and iteratively processes one sub-job at a

time. It also incorporates several optimizing techniques targeting multicore, including the

intermediate data-structure reuse, a NUCA/NUMA-aware scheduler, and pipelining reduce

phases with successive map phases.

Hone [12] scales down Hadoop to run on shared-memory machines. It efficiently

executes an existing Hadoop jar on a multi-core shared memory machine, enabling existing

Hadoop algorithms to run on most suitable runtime environment on datasets of varying

sizes. Google’s MR4C [8] enables running native code within Hadoop [1] and HDFS [19]

to seamlessly scale over distributed setting. Hadoop also supports single machine based

execution for debugging and processing smaller datasets; as discussed in Section 2.5, it

often requires main-memory to perform its sorting and shuffling phase which limits the

amount of data that can be processed in a single machine setting.

MapReduce implementations have also been widely explored beyond single ma-

chine based processing, including in-memory execution on supercomputers using MPI [7]

and GPU based processing [9, 20]. Finally, [13, 45] demonstrate scalable single machine

out-of-core graph processing solutions comparable to distributed in-memory processing

like [22–24], which are based on a different execution and programming model compared to

the generalized MapReduce model. Recent works like [15] also argue about single-machine

designs due to their promising performance.
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5.2 Graph Partitioning on a Single Machine

It is important to note that there is no related paper on out-of-core graph par-

titioning. While there is a single machine multilevel graph partitioner like Mt-Metis [36],

however, it cannot generate partitions when presented with large graphs. Therefore, end-to-

end graph partitioning using the sophisticated partitioners is still an open problem. Existing

out-of-core graph processing systems employ light-weight partitioning strategies like cyclic

hashing, chunking, and random partitioning based upon vertex ids. Similarly, LUMOS [44]

uses an equally simple vertex-degree based partitioning strategy that has synergy with its

intra- and inter-partition dependence-aware value propagation strategy. LUMOS and other

systems cannot use sophisticated partitioners like Metis [32], or its adaptations [36, 37],

because Metis would require much more memory than the size of the graph and thus could

not run on a machine where the graph does not fit in memory. Our work makes it possible

for out-of-core systems to use a sophisticated general partitioning algorithm as is embodied

in GO that minimizes inter-partition edges and balances partition sizes.

5.3 Out-of-Core Graph Processing

With the popularity of single machine Graph Analytics, many graph processing

frameworks [13,43,44,47,51,53–59] have been developed that allow disk based processing of

large graphs to scale beyond the available main memory. To enable out-of-core processing of

large graphs, these systems first divide the graph into partitions that reside on disk, and then

process these partitions one-by-one by streaming through them, i.e., by sequentially loading

them in memory and immediately processing them. The preprocessing of the partitions is
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dependent on the graph processing framework. For example, GraphChi [13] allows the

processing of large graphs by creating the shards in specific format. Gridgraph [47], on the

other hand, requires the input graph to be preprocessed into a binary format. Nonetheless,

there is no out-of-core system which can provide application programmers with the flexibility

to use a graph partitioner of their choice paired up with the graph processing framework.
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Chapter 6

Conclusions and Future Work

6.1 Contributions

This dissertation’s contributions address the memory problems faced by single

machine systems when processing large datasets. The contributions are divided into three

parts: 1) an efficient approach to perform out-of-core MapReduce by maximizing sequential

disk access when handling large datasets; 2) a single-level graph partitioner which can

efficiently partition large graphs in a memory constrained manner; and 3) an extension of

a single machine MapReduce system to perform single machine graph analytics, including

both graph partitioning and graph processing.

6.1.1 OMR: Out-of-core MapReduce for Large Datasets

We presented a single machine out-of-core MapReduce system to process datasets

that are larger than main memory using a memory constrained processing model. OMR ac-

tively minimizes disk I/O operations by enabling On-the-fly aggregation of the intermediate
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values and sequential block disk accesses via ordered batches. Therefore, OMR guarantees

linear scaling with growing data sizes. Moreover, OMR optimizes data management via

fixed sized key-value pairs by eliminating the need to maintain indexing information on

disk, which further reduces random disk accesses. Finally, to maintain efficient in-memory

execution, OMR employs lockless processing that eliminates thread synchronization within

map and reduce phases.

6.1.2 GO: Out-of-core Graph Partitioner for Large Graphs

We showed the efficacy of using a single-level graph partitioner versus multilevel

graph partitioning strategy employed by the popular Mt-Metis system. GO is a single-level

out-of-core graph partitioner that can function within the memory constraints imposed by

the machine and successfully partition graphs that far exceed the size of a graph that can

be held in memory. GO performs just two passes over the entire input graph, the partition

creation pass that creates balanced partitions and the partition refinement pass that reduces

edgecuts. Both passes are designed to function in a memory constrained manner.

6.1.3 OMRGx: MapReduce for Graph Partitioning and Processing

Finally we presented OMRGx, a MapReduce system that can partition graphs and

perform partition-based processing of large input graphs. OMRGx has been built by ex-

tending the API of our OMR system which supports out-of-core MapReduce applications.

We showed how a single machine MapReduce system can overcome the challenges in large

scale processing of graphs by simulating the BSP model and avoiding the communication

costs that are incurred in a distributed environment. We leveraged the parallelism, effi-
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cient memory management and optimized IO provided by our single machine out-of-core

MapReduce system making it a good choice to be used as a graph partitioning and process-

ing system. We demonstrated the efficacy of our OMRGx system by programming different

graph partitioning and processing algorithms.

6.2 Future Work

This thesis demonstrated the effectiveness of leveraging the runtime provided by

well-optimized out-of-core single machine systems to program graph processing frameworks

and algorithms with ease. OMRGx can also be used as a tool to perform analytics for social

media networks by programming different algorithms to analyze datasets for retrieving

useful information. Our OMR system demonstrated the applicability of MapReduce in

use cases requiring simple aggregations (like counting, joining etc). However, the extended

API in OMRGx system can be used to program applications for social media datasets like

analyzing the age of your followers on instagram or finding people with the same interest

etc to yield useful results.

Application in Diverse Domains We would like to explore the use of OMRGx system

by programming applications in various domains. OMRGx can be used to program both

compute and data intensive tasks to achieve parallelism by leveraging its runtime while

making users oblivious about out-of-core. Specifically, domains like bioinformatics and

computational genomics involve algorithms that process large connected structures similar

to graphs. Therefore, such domains are good candidates to explore first. Future work can

explore the applicability and customization of our proposed solutions to specific domains.
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Single-level Graph Partitioner Our single-level out-of-core graph partitioner GO demon-

strated its effectiveness in partitioning large graphs on a Single-PC while maintaining bal-

ance and low edgecuts. The algorithms works intuitively by creating the balanced partitions

at the first place and then refining the partitions to minimize edgecuts. Since the datasets

continue to grow larger, this approach can be used as the first step to partition large datasets

in general for the data or compute intensive tasks thereby, minimizing the communication

costs between the nodes while efficiently performing out-of-core.

Extending to Other Platforms With the tremendous growth of datasets in the past

few years, we believe that this work can be extended to a platform where a mobile device

serves as the frontend and a server in the cloud serves as the backend. Thus, the power

of large scale analytics can be put in hands of users who can carry out analytics tasks at

anytime and from anywhere.
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