
UNIVERSITY OF CALIFORNIA
RIVERSIDE

High Performance Vertex-Centric Graph Analytics on GPUs

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Farzad Khorasani

December 2016

Dissertation Committee:

Dr. Rajiv Gupta, Chairperson
Dr. Laxmi N. Bhuyan
Dr. Zizhong Chen
Dr. Nael Abu-Ghazaleh

Copyright by
Farzad Khorasani

2016

The Dissertation of Farzad Khorasani is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

This dissertation would not have been possible if it wasn’t for the help of my

advisor, my professors, friends and collaborators, and my family.

First, I would like to express my gratitude to my academic prophet, my advisor,

Prof. Rajiv Gupta, for leading me through the hardships of this path. I have no doubt

it was Dr. Gupta’s trust in my abilities and his experience and guidance that made this

dissertation possible. I consider myself a lucky person for the opportunity of working with

Dr. Gupta. Thanks Dr. Gupta!

I would like to thank Dr. Bhuyan, for the collaboration and guidance during my

research. I would like to thank my dissertation committee members Dr. Chen and Dr.

Abu-Ghazaleh for their valuable feedback and support.

I would like to thank the members of our research group who were always willing

to help me during these years: Kishore, Min, Changhui, Yan, Sai, Mehmet, Vineet, Amlan,

Keval, Zack, Bo, and Bryan. I also extend my gratitude to all the teachers I have had

throughout my life.

I would like to thank my family, my mother Soheila Bahadori, my father Parviz

Khorasani, my brother Roozbeh Khorasani for their help and support throughout my life.

I would like to thank my wife Dänae G. Khorasani for her constant love and support.

Finally, I would like to acknowledge the support of National Science Foundation by

providing grants CCF-0905509, CCF-0963996, CNS-1157377, CCF-1318103, CCF-1423108,

and CCF-1524852 to UC Riverside.

iv

To my parents and my brother for all the love and support,

and to my wife Dänae.

v

ABSTRACT OF THE DISSERTATION

High Performance Vertex-Centric Graph Analytics on GPUs

by

Farzad Khorasani

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2016

Dr. Rajiv Gupta, Chairperson

Massive parallel processing power of GPU’s presents an attractive opportunity for

accelerating large scale vertex-centric graph computations. However, the inherent irregu-

larity and large sizes of real-world power law graphs creates many challenges. Lock-step

execution by threads within a SIMD group restricts exploitable parallelism, the limited

GPU’s DRAM size restricts the sizes of graphs that can be offloaded to the GPU, and

the limited inter-GPU communication bandwidth necessitates judicious use available band-

width. This dissertation addresses all of these challenges.

We present Warp Segmentation that greatly enhances GPU device utilization by

dynamically assigning appropriate number of SIMD threads to process a vertex while em-

ploying the compact CSR representation to maximize the graph size that can be held in

GPU global memory. Prior works can either maximize graph sizes (e.g., VWC [34]) or de-

vice utilization (e.g., CuSha [42]). We scale graph processing over multiple GPUs via Ver-

tex Refinement that dynamically collects and transfers only the updated boundary vertices

leading to dramatically reduced amount of inter-GPU data transfer. Existing multi-GPU

techniques (Medusa [94], TOTEM [24]) perform high degree of wasteful vertex transfers.

Since processing all vertices at every iteration wastes much of GPU’s computation

power, we present a work-efficient solution that processes only those vertices during an iter-

ation that were activated in the previous iteration. We employ an effective task expansion

vi

strategy that avoids intra-warp thread underutilization. For multi-GPU graph computa-

tion, we present permissive partitioning to dynamically balance load across GPUs. Also, as

recording vertex activeness requires additional data structures, to manage the graph storage

overhead, we introduce vertex grouping that enables trade-off between memory consumption

and work efficiency.

Finally, to apply the proposed solutions to other irregular applications, we gener-

alize our techniques and present Collaborative Context Collection (CCC) and Collaborative

Task Engagement (CTE). CCC is a software/compiler technique to enhance the SIMD-

efficiency in loops containing thread divergence. CTE abstracts away the complexities of a

rather complicated technique using a CUDA C++ device side template library and balances

load across threads within a SIMD group.

vii

Contents

List of Figures x

List of Tables xiii

1 Introduction 1
1.1 Dissertation Overview . 3

1.1.1 Addressing the Warp Efficiency and Scalability Challenges 4
1.1.2 Enabling Work Efficiency for the Vertex-Centric Model 5
1.1.3 Extending Techniques to Other GPU Applications 7

1.2 Dissertation Organization . 9

2 Warp Efficiency and Scalability 10
2.1 Warp Efficiency via Warp Segmentation . 13

2.1.1 Motivating Study . 14
2.1.2 Warp Segmentation . 16

2.2 Graph Processing Framework for WS . 19
2.2.1 Core Processing Procedure . 19
2.2.2 Framework Interface . 22

2.3 Scaling via Vertex Refinement . 23
2.3.1 Inefficiency of Existing Inter-GPU Communication 24
2.3.2 Data Structure Organization . 24
2.3.3 Vertex Refinement . 27

2.4 Performance Evaluation . 29
2.4.1 Warp Segmentation Performance Analysis 29
2.4.2 Vertex Refinement Performance Analysis 33

2.5 Summary . 38

3 Enabling Work-Efficiency 40
3.1 Data Structures for Work-Efficiency . 43

3.1.1 Recording Vertex Activeness using Bitmasks 45
3.1.2 Vertex Grouping . 47

3.2 Warp Efficiency with Dynamic Thread Assignment 49
3.3 Permissive Partitioning for Inter-GPU Load Balance 52

viii

3.4 KiTES and its Interface . 55
3.5 Evaluation of Techniques . 57

3.5.1 Single-GPU Performance Analysis 57
3.5.2 Multi-GPU Performance Analysis . 62

3.6 Summary . 66

4 Generalizing Techniques 67
4.1 Collaborative Context Collection . 68

4.1.1 CCC Core Procedure . 70
4.1.2 CCC Transformations . 76
4.1.3 CCC Optimizations . 83
4.1.4 CCC Implementation . 86
4.1.5 Experimental Evaluation . 89

4.2 Collaborative Task Engagement . 97
4.2.1 Motivation: Inefficiency of Static Task Decomposition Methods . . . 99
4.2.2 Collaborative Task Engagement . 104
4.2.3 Experimental Evaluation . 113
4.2.4 Sensitivity Analysis: varying coarse-grained task sizes 117

4.3 Summary . 119

5 Related Work 120
5.1 Graph Processing on GPUs . 120
5.2 SIMD Thread Divergence . 123

6 Conclusions and Future Work 128
6.1 Contributions . 128
6.2 Future Directions . 130

Bibliography 132

ix

List of Figures

2.1 An example graph with 5 vertices and 8 edges and its CSR representation. . 13
2.2 Degree distribution for graph vertices. 14
2.3 An example: reduction in VWC with assumed warp size of 8 and first 6

neighbors belonging to one vertex and last 2 belonging to another. 16
2.4 Reduction using Warp Segmentation with the same scenario in Figure 2.3. . 17
2.5 Discovering segment size and the index within segment by warp lanes for the

graph in Figure 2.1. Warp size is assumed 8. 17
2.6 Framework’s graph processing procedure pseudo-algorithm. Assumed warp

size is 32. Shared memory pointers in the program code are declared with
volatile qualifier. 20

2.7 User-specified structures and functions for SSWP. 22
2.8 Organization of data structures in multi-GPU processing. 25
2.9 An example of online vertex refinement stages. 28
2.10 Profiled average warp execution efficiency of Warp Segmentation compared

to VWC’s. SSSP is the benchmark. 32
2.11 Processing-time break down into computation time and communication time

for the Vertex Refinement (VR) compared to ALL and MS. Computation
time is the total duration of kernel execution, and communication time is
the total duration of inbox/outbox management plus inter-device memory
copies. For each benchmark, the times are normalized with respect to the
longest time. Note that this times cannot be used to infer the overall speedup
due to asynchronicity of devices. 36

2.12 The scalability of our framework over graphs with different number of edges
and densities for SSSP benchmark. All the graphs are Rmat created with
parameters a = 0.45, b = 0.25, and c = 0.15. y axis is the processing time
(lower is better). 39

3.1 The percentage of updated vertices and their connected edges across iterations. 41
3.2 An example directed graph, its CSR representation, and the main compo-

nents of its CSC representation. 44
3.3 The frequency distribution of differences between source and destination in-

dices of edges of 2 real-world graphs. 47

x

3.4 The effect of vertex grouping with ratio 2 on the size of the CSC representa-
tion of the example graph in Figure 3.2. 48

3.5 Iterative Vertex-Centric Graph Processing. 50
3.6 A simplified example demonstrating our dynamic thread assignment strategy. 51
3.7 The distribution of active edges on 3 GPUs across iterations in WS-VR [41]. 53
3.8 An example of permissive partitioning using the graph in Figure 3.2a and

the resulting data structures for each device. 54
3.9 A sample use of KiTES to execute user-defined SSSP with 3 GPUs. 56
3.10 Per-iteration kernel execution time for KiTES and Warp Segmentation (WS)

for PR and SSSP on LiveJournal. 59
3.11 Average warp execution efficiency profiled for KiTES and Warp Segmentation

for SSSP and PR. 60
3.12 The effect of vertex grouping on the GPU’s DRAM consumption and the

performance of the procedure for two algorithms. The graph is RMD25V200E. 63
3.13 The speedup of KiTES over WS-VR in multi-GPU graph processing with

and without permissive partitioning. 64
3.14 The effect of permissive partitioning on the distribution of active edges be-

tween 3 GPUs across iterations. RMD41V536E is the input graph. 65

4.1 An example: BFS graph processing visualization in CUDA [30]. 71
4.2 Applying Collaborative Context Collection to the program in Figure 4.1 elim-

inates warp execution inefficiency. 73
4.3 Applying CCC on the BFS CUDA kernel in Figure 4.1a. 74
4.4 A grid-stride loop applied to the BFS CUDA kernel in order to make it

accessible by CCC. The maximum theoretical occupancy is assumed 100%. 77
4.5 An example demonstrating the transformation of a CUDA device function

(BFS processing of a vertex’s neighbors) with variable trip-count to a form
accessible by CCC. 79

4.6 An example demonstrating the transformation of a recursive CUDA device
function (cuckoo hashing on GPU [3]) by CCC. 80

4.7 Transformation of a loop with unknown trip-count (Cuckoo Hashing on GPU [3])
by CCC. 81

4.8 Variation generation CUDA device function in Fractal Flame [77] from Iter-
ated Function System (IFS) class. 83

4.9 SSSP graph processing CUDA kernel from [30] containing a coalesced global
memory access to the costs buffer in the divergent path. We preserve the
coalescence in CCC by excluding the memory access from the divergent path. 84

4.10 12CCC Framework operates alongside NVCC. 86
4.11 A PTX sample code inside the repetitive section and the resulted graph from

connecting definition and usage of virtual registers. 88
4.12 The kernel execution speedup provided by CCC. For benchmarks with iter-

ative GPU kernel launches (BFS and SSSP) the speedup is measured based
on the aggregation of kernels. 92

xi

4.13 Warp execution efficiency comparison for kernels with and without CCC. For
BFS and SSSP the warp execution efficiency is averaged across all the kernel
launches. 92

4.14 CCC performance enhancement compared to the original divergent kernel
over different amount of intra-warp divergence (and hence workload imbal-
ance). The divergent path contains 20 FMAD operations. 96

4.15 Sensitivity of CCC against different execution paths lengths plotted for two
different amounts of intra-warp divergence. 97

4.16 An example — Sparse Matrix-Vector Multiplication (SpMV) CUDA kernel
with a CSR matrix using 1D decomposition. Intra-warp load imbalance in-
duces warp inefficiency and performance loss. 100

4.17 Warp execution visualization in sub-warp decomposition (with width 4) for
the example in Figure 4.16. Sub-warp decomposition attempts to exploit
parallelism inside coarse-grained tasks. 102

4.18 Visualization of the SpMV CUDA kernel in Figure 4.16a after applying CTE. 105
4.19 GPU pseudo-code for CCC. 107
4.20 Expressing the nested pattern in Fig. 4.16a CUDA C++ kernel in CTE form

using our template library interface. 110
4.21 The kernel execution speedup of CTE and sub-warp decomposition over 1D

decomposition for matrix operations on real-world matrices. 114
4.22 Profiled warp execution efficiency of CTE, sub-warp decomposition, and 1D

decomposition kernels for experiments in Figure 4.21. 115
4.23 The kernel execution speedup of CTE and sub-warp decomposition over 1D

decomposition for Fast Multiple Method [43] and Dynamical Quadrature
Grids [54] with different inputs. 116

4.24 The kernel execution speedup of CTE and sub-warp decomposition over 1D
decomposition for different graph applications and inputs. 117

4.25 Kernel execution duration (left plot) and Warp execution efficiency (right
plot) for decomposition methods when the task sizes vary linearly and quadrat-
ically proportional to the lane index. Map and reduce portion of the fine-
grained tasks each contain 20 FMAD instructions. For the LINE scenario,
the coarse-grained task size is calculated with 4×laneID while for the QUAD
scenario it is calculated with laneID2

8 . Task sizes for the sub-warp decompo-
sition are calculated using their sub-warp index. 118

xii

List of Tables

2.1 The percentage of useful vertex data among all the transferred data when
all the vertices (ALL) or the maximal subset of them (MS) are copied from
one GPU to another. In this two-GPU configuration, the graph under the
examination is an Rmat graph with approximately 40 million vertices and
470 million edges. 25

2.2 Graphs used in single-GPU experiments – across benchmarks the size ranges
in MBytes for CSR and CW representations. Sizes exceeding GPU’s global
memory capacity are bolded. 30

2.3 Raw running times (ms) of Warp Segmentation (WS) and VWC including
kernel executions and host-device data transfers for different algorithms and
different graphs. 31

2.4 Speedup ranges of Warp Segmentation over VWC excluding data transfer
times. Since both methods use CSR representation, their data transfer times
are equal. 32

2.5 The speedup of Warp Segmentation over CuSha’s [42] CW for large graphs.
The shards reside inside the host pinned buffers (x means graph is small -
fits in GPU memory). 33

2.6 The speedup of Warp Segmentation over CuSha’s [42] CW for small graphs.
The shards reside inside the GPU’s global memory (x means graph is large -
requires host memory). 33

2.7 Graphs for multi-GPU experiments: Top 6 graphs used in experiments with
3 GPUs; rest used with 2 GPUs. 34

2.8 The speed-up of VR over ALL and MS for three-GPU and two-GPU config-
urations. 35

2.9 The speedup of our framework when scaling to more GPUs: From 2 to 3
GPUs for the top 6 graphs; and From 2 to 3 and from 1 to 2 GPUs for the
rest of the graphs. 38

3.1 The memory required for CSR representation of four directed graphs [50] and
their additional CSC representation. 47

3.2 Graphs for single-GPU evaluations and their representation sizes (in MB).
For undirected graphs, CSC size is zero. 57

xiii

3.3 Raw execution time (ms) of KiTES (KT) in comparison with Warp Segmen-
tation’s (WS) [41] and Concatenated Windows’s (CW) from CuSha [42] when
all the graphs reside inside the GPU’s global memory. 58

3.4 Execution times (ms) of KiTES (KT), Warp Segmentation (WS) [41] and
Concatenated Windows (CW) [42] including host to device copy time. While
WS and KiTES can fit the graph inside the GPU, CuSha must hold graphs
in host pinned memory. 61

3.5 Execution time (ms) of KiTES (KT), Warp Segmentation (WS) [41] and
Concatenated Windows (CW)[42] including host to device copy time. KiTES
has to apply vertex grouping to fit the representation inside the GPU’s DRAM. 62

3.6 Graphs used for multi-GPU experiments: Top 4 graphs employed for exper-
iments with 3 GPUs and bottom 4 graphs for experiments with 2 GPUs. . . 63

3.7 Speedup provided by KiTES over WS-VR [41]. Top 4 entries use 3 GPUs
and bottom 4 entries use 2 GPUs. 64

4.1 The CCC overhead in terms of resource usage (per thread). Underlined entry
results from spilling two excessive registers into local memory (L1 cache) via
-maxrregcount compiler option. The maximum theoretical occupancy is
100% in all cases. 94

4.2 Kernel warp execution efficiency of CUDA applications exposed to different
inputs with 1D and sub-warp decomposition methods. The efficiency of ker-
nels not only varies from one sub-warp width to another (the best in each
row is underlined), it is also well below 100%. 103

xiv

Chapter 1

Introduction

Graph analytics have become one of the critical members in the suite of infrastruc-

tures dealing with big data processing. The need for efficient large scale graph processing

has grown due to the importance of applications involving graph mining and graph analyt-

ics. Iterative vertex-centric processing model is one of the most popular and a methodical

yet straightforward approach to representing graph algorithms. It has been incorporated

in software systems such as PowerGraph [27], GraphLab [53], GraphChi [47] and others.

The designer only needs to focus on the interaction of a vertex with its neighbors during an

iteration. The underlying system orchestrates the execution of the vertex-centric methods

on graph vertices over multiple iterations until convergence.

The deployment of GPUs as general purpose accelerators that started a decade

ago has now become mainstream. Today GPUs serve as an essential processing platform for

speeding-up data parallel computations. GPUs contain thousands of execution units and

sufficient memory bandwidth that makes them well-suited for graph applications requiring

massive parallelism. However, using GPUs for efficient graph processing has remained a

challenging open problem. Even though GPUs provide a massive amount of parallelism with

the potential to outperform general purpose CPUs, the underlying architecture imposes

restrictions and introduces challenges in processing irregular real-world power law graphs.

Thus, the challenges this thesis seeks to address are as follows.

1

– Lock-step traversal of SIMD threads restricts exploitable parallelism on GPUs.

The SIMD architecture demands repetitive processing patterns on regular data which is

contrary to the irregular nature of real-world graphs. All the threads inside a SIMD group

(i.e., all the warp lanes) execute the same instruction at any given time. The presence of

conditionals – such as if-else code blocks – causes thread divergence because a conditional

may evaluate to true for some warp lanes and false for other lanes. In this situation, the warp

takes all the divergent paths, while disabling non-relevant lanes inside every path. That

is, the warp scheduler fetches instructions for all the divergent paths while the execution

stage is performed only for a number of threads that are active in the path. As a result,

a portion of the available processing power goes unutilized for the duration of divergence,

diminishing the SIMD execution benefits. On the other hand, real-world graphs usually

exhibit an irregular degree distribution known as power-law in which a great portion of the

vertices have a few neighbors and a small portion of the vertices have a very high number

of neighbors. Previously introduced task decomposition schemes assign one [30] or a fixed

number [34] of threads to process vertices; thus, the mismatch between static decomposition

and unpredictable irregularity of the computation in graph processing leads to the problem

of underutilization of GPUs and thus limits performance.

– Limited amount of available DRAM presents another challenge in processing of

large graphs. High performance GPUs come in the form of discrete GPUs and are equipped

with high bandwidth GDDR5 or HBM off-chip memories. However, available memories

are fixed, limiting the maximum size of the graph that can be kept at the device side and

efficiently processed by the GPU. Therefore, the applicability of solutions with high storage

overhead such as CuSha [42] is limited. In addition, although there has been research on uti-

lizing host memory as auxiliary storage [78] to hold a larger graph, the resulting unavoidable

performance drop is large due to the comparatively low communication bandwidth between

the host and the GPU device.

2

– Comparatively low inter-GPU bandwidth makes processing very large graphs over

multiple GPUs a challenge. A natural approach for processing very large graphs that do

not fit inside one GPU is to partition them and process the partitions using multiple GPUs.

However, during this out-scaled processing of the graph computation over multiple GPUs,

the devices have to communicate via PCIe links which have low transfer rates compared

to the rate at which GPUs access their own DRAM. Addressing this challenge requires

a carefully-designed inter-device communication scheme. However, multi-GPU graph pro-

cessing frameworks such as TOTEM [24] and Medusa [94] suffer from redundant inter-GPU

communication data which makes the PCIe links a major bottleneck that limits achievable

performance.

In this thesis, we address above challenges in high performance vertex-centric graph

analytics on GPUs. This dissertation develops a dynamic task decomposition scheme to

overcome the SIMD efficiency problem in irregular graph processing, while maximizing the

allowable graph size by employing space-efficient CSR representations. It further extends

the techniques to eliminate computation redundancy, and generalizes them via template

libraries and compiler techniques to be deployed easily in other GPU applications that

exhibit similar issues.

1.1 Dissertation Overview

The vast computing power of GPUs makes them an attractive platform for acceler-

ating large scale data parallel computations such as popular graph processing applications.

However, the inherent irregularity and large sizes of real-world power law graphs makes ef-

fective use of GPUs a major challenge. In this dissertation, we develop techniques based on

CUDA platform that greatly enhance the performance and scalability of iterative vertex-

centric graph processing on GPUs. In the vertex-centric model of graph computation,

vertices update their value at every iteration using the vertex values seen at the other end

of an edge. The computed values must be reduced to get the new vertex content. When

3

there is no change to the content of vertices at an iteration, the computation has converged,

and the procedure terminates.

1.1.1 Addressing the Warp Efficiency and Scalability Challenges

We introduce techniques for efficient scaling of iterative graph algorithms to larger

graphs using multiple GPUs. The graphs are stored in the space-saving CSR form that

allows processing large graphs. To overcome the SIMD execution inefficiency in existing

CSR-based graph processing methods, we present Warp Segmentation, a novel technique

that assigns appropriate number of warp threads to process vertices with irregular number of

neighbors on-the-fly. To scale the graph processing over multiple GPUs, we introduce Vertex

Refinement that collects and transfers only those vertices that are boundary and recently

updated. Vertex Refinement maximizes the inter-device bandwidth utilization efficiency.

Warp Segmentation for Efficient Warp Execution

Real-world graphs often exhibit power-law degree distribution, i.e. the number

of neighbors a vertex owns vary greatly from one vertex to another. This makes existing

methods such as Virtual Warp Centric (VWC) [34] that statically assign a fixed number

of threads to vertices vulnerable to the intra-SIMD underutilization. We present Warp

Segmentation, a novel method that greatly improves intra-warp utilization by dynamically

assigning appropriate number of SIMD threads to process vertices with irregular-sized neigh-

bors while employing compact CSR representation to maximize the graph size that can be

kept inside the GPU global memory. This is in contrast to prior vertex-centric methods

such as CuSha [42] that use G-Shards and CW representations requiring up to 2.5x more

memory than CSR in order to boost the SIMD efficiency. Warp Segmentation assigns a

warp to process a group of vertices and let threads iterate over the expanded list of neigh-

bors. When the set of neighbors for the vertices is viewed as expanded, each thread can visit

a neighbor, and then reduce the computed value with other threads inside the SIMD group

that have processed a neighbor belonging to the same vertex. Therefore, at every iteration

4

all the threads execute the compute function without underutilization, and participate in a

parallel reduction with appropriate threads. As a result, warp utilization is increased and

the processing time is reduced. Warp Segmentation delivers average speedups of 1.29x to

2.80x over VWC.

Vertex Refinement for Efficient Inter-GPU Communication

We further scale graph processing to make use of multiple GPUs while proposing

Vertex Refinement to address the challenge of judiciously using the limited bandwidth

available for transferring data between GPUs over the PCIe bus. Whereas existing multi-

GPU techniques (Medusa [94] and TOTEM [24]) perform high degree of wasteful vertex

transfers, Vertex Refinement picks out, packs, and transfers only the updated boundary

vertices thus dramatically reducing inter-GPU data transfer volume. Vertex Refinement

essentially works as a fused stream compaction. To perform it inside the same GPU kernel

by warp threads efficiently, at the end of the computation, threads get assigned to vertices.

Threads check vertices for updates, each producing a predicate. Using techniques such as

intra-warp binary reduction and prefix sum, intra-warp data propagation using shuffle, and

warp-aggregated atomics, threads with true predicate effectively write the updated vertex

index and content into the outbox buffer. Our design achieves up to 2.71x performance

improvement compared to inter-GPU vertex communication schemes used by other multi-

GPU techniques (i.e., Medusa and TOTEM).

1.1.2 Enabling Work Efficiency for the Vertex-Centric Model

The above vertex-centric solution lacks work-efficiency because, at the expense of

being generic, it processes all vertices at every iteration. As a result GPU’s SIMD power is

wasted on processing inactive vertices that do not result in any change in vertex values. We

remedy this issue by enabling work-efficiency when processing the graph on one or more

GPUs. Our solution processes only those vertices that are activated in the previous iteration

and hence their values are subject to change. Our experiments show that enabling work

5

efficiency enhances the performance of the procedure by up to 5.46x and 1.67x for single

and multi-GPU configurations respectively over multiple algorithms and inputs. Below are

the techniques used to overcome the challenges induced as the side effects of enabling work

efficiency.

Vertex Grouping

Enabling work efficiency for the vertex-centric model needs a mechanism to keep

track of the propagation of updates which necessitates storing outgoing neighbors for the

vertices of the graph alongside its incoming neighbors. In directed graphs, we utilize the

CSC representation of the graph and store it alongside the CSR representation. However,

this increases space required by 1.5x to 1.98x and thus limits the maximum allowable size

of the graph that can be kept inside the GPU. To attenuate the impact of graph storage

overhead on limited GPU DRAM, we introduce vertex grouping as a technique that enables

trade-off between memory consumption and work efficiency in our solution. Vertex grouping

groups consecutive vertices in the CSC representation and represents them as a single entity,

therefore, if there are multiple edges between vertices in two groups, they are represented

by only one edge between entities. This results in reduced space consumption but also lower

work efficiency since activation of any one vertex in the group leads to processing of all the

vertices in the group during the next iteration.

Warp Efficiency with Dynamic Thread Assignment

In Warp Segmentation, the list of accessed neighbors for the set of vertices assigned

to the warp are placed consecutively in the memory. However, by enabling work efficiency,

only the neighbors assigned to active vertices need to be visited requiring the warp to ac-

cess disjoint locations inside the memory. For a SIMD-efficient kernel operation we require

gathering of active neighbors and performing reduction on them. This is achieved by an

effective task expansion strategy that avoids intra-warp thread underutilization. Threads

iterate over a concatenated view of the neighbors for active vertices and utilize high per-

6

formance SIMD primitives such as intra-warp binary reduction and binary prefix sum to

realize the actual neighbor locations and indices. Our experiments show that this method

sustains a high warp execution efficiency and is 82.4% on average.

Permissive Partitioning for Inter-GPU Load Balancing

Without work efficiency, since all the vertices are processed at every iteration,

static partitioning of the graph is enough to balance the load across devices. However,

when work efficiency is enabled, the amount of load for each GPU dynamically changes

with each iteration. In a given iteration, one GPU may end up with a great number of

active vertices and edges while another GPU may have much lower number of active graph

components. This creates inter-device load imbalance in graph processing. To deal with this

problem, for multi-GPU graph computations, we present permissive partitioning to achieve

a maximally balanced load across GPUs. Permissive partitioning allows partitions stored

on GPUs to overlap as much as the GPUs’ available DRAM allows. During the iterative

graph computation, while GPUs are busy processing the graph, the host asynchronously

calculates the approximate borders for the set of vertices that will lead to the best load

balance across devices. Accordingly, the sets of vertices assigned to the GPUs change in the

next iteration. This scheme enhances the overall multi-GPU graph processing performance

by up to 20%.

1.1.3 Extending Techniques to Other GPU Applications

GPU’s SIMD architecture is a double-edged sword confronting parallel tasks with

control flow divergence. On the one hand, it provides a high performance yet power-

efficient platform to accelerate applications via massive parallelism; however, on the other

hand, irregularities induce inefficiencies due to the warp’s lockstep traversal of all diverging

execution paths. This is true not only for graph applications, as we described earlier, but

also for other programs that exhibit characteristics such as thread divergence or irregular

load distribution. Sparse matrix vector multiplication (SpMV), parallel hashing, and ray

7

tracing are a few examples of such programs. We extend two SIMD efficiency enhancement

techniques and make them applicable to GPU kernels beyond graph computation.

Collaborative Context Collection

We present a software (compiler) technique named Collaborative Context Collec-

tion (CCC) that increases the warp execution efficiency when faced with thread divergence

incurred either by different intra-warp task assignment or by intra-warp load imbalance.

CCC collects the relevant registers of divergent threads in a warp-specific stack allocated in

fast shared memory, and restores them only when the perfect utilization of warp lanes be-

comes feasible. We propose code transformations to enable applicability of CCC to program

segments such as recursive functions and loops with variable trip-count. We also introduce

optimizations to reduce the cost of CCC and to avoid device occupancy limitation or mem-

ory divergence. We experiment with CCC on real-world applications, and analyze it under

multiple scenarios using synthetic programs. CCC improves the warp execution efficiency

of real-world benchmarks by up to 56% and achieves up to 3.08x speedup compared to the

original programs.

Collaborative Task Engagement

Nested patterns are one of the most frequently occurring algorithmic themes in

GPU applications where coarse-grained tasks are constituted from a number of fine-grained

ones. However, efficient execution of irregular nested patterns, with coarse-grained tasks

that substantially vary in size, has remained an open problem for the GPUs SIMT ar-

chitecture. Existing methods, similar to what we observe in graph computation domain,

rely on static task decomposition where one or a fixed number of threads inside the SIMD

grouping (warp) carry out the fine-grained tasks. These approaches fail to provide portable

performance across diversity of irregular inputs. Moreover, due to intra-warp load imbal-

ance, they incur warp underutilization. We generalize our dynamic decomposition scheme

for graph processing and introduce it as a software technique called Collaborative Task En-

8

gagement (CTE) that, unlike previous methods, achieves sustained high warp execution

efficiencies across irregular inputs and provides portable performance. CTE assigns a group

of coarse-grained tasks to the warp and allows threads inside the warp to carry out the

expanded list of fine-grained tasks collaboratively. In multiple rounds, all the warp threads

perform mapping portion of fine-grained tasks and participate in a reduction phase with

appropriate lanes to reduce calculated values. This strategy avoids over-subscription or

under-subscription of threads while preserving the benefits of parallel reduction. We pre-

pared a CUDA C++ device-side template library for developers to easily express nested

patterns in GPU kernels using our technique. Our experiments show that CTE delivers up

to 37% warp execution efficiency improvement and gives up to 1.51x speedup over sub-warp

decomposition with the best sub-warp width.

1.2 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 presents Warp Seg-

mentation for SIMD-efficiency and Vertex Refinement for effective multi-GPU scalability

of vertex-centric graph processing. Chapter 3 gives our solution to enable work-efficiency

and offers a dynamic task assignment scheme. Chapter 3 also presents Vertex Grouping

and Permissive Partitioning to overcome challenges introduced as side-effects of supporting

work-efficiency. Chapter 4 generalizes two of our techniques and extends them as Collabora-

tive Context Collection and Collaborative Task Engagement in forms of compiler optimiza-

tion and template library respectively. Chapter 5 discusses the related work and Chapter 6

concludes the thesis by giving a summary of our work as well as directions for future work.

9

Chapter 2

Warp Efficiency and Scalability

Due to their ability to represent relationships between entities, graphs have become

the building blocks of many high performance data analysis algorithms. A wide variety of

graph algorithms are iterative in nature – during each iteration vertices update their state

based upon states of neighbors connected by edges using a computation procedure until the

graph state becomes stable. The inherent data parallelism in an iterative graph algorithm

makes many-core processors, with underlying SIMD hardware such as GPUs, an attractive

platform for accelerating the algorithms. However, efficient mapping of real-world power

law graphs with irregularities to symmetric GPU architecture is a challenging task [55].

This chapter presents techniques that enhance the scalability and performance of

vertex-centric graph processing on multi-GPU systems. This is achieved by fully exploiting

the resources available on a multi-GPU system as follows:

• The irregular nature of power law graphs makes it difficult to balance load across

threads leading to underutilization of SIMD resources. We address the device un-

derutilization problem by developing Warp Segmentation that dynamically assigns

appropriate number of SIMD threads to process a vertex with irregular-sized neigh-

bors. Our experiments show that the warp execution efficiency of warp segmentation

exceeds 70% while for the well known VWC [34] technique it is around 40%.

10

• For scaling performance to large graphs, they must be held in the global memories of

GPUs in the system. To maximize the graph sizes that can be held in global memories,

a compact graph representation must be used. Therefore Warp Segmentation makes

use of the compact CSR representation. To tolerate the long latency of non-coalesced

memory accesses that arise while accessing the neighbors of a vertex in CSR, warp

segmentation keeps the GPU cores busy by scheduling other useful operations that

compute the segment size and lane’s intra-segment index.

• Since large graphs must be distributed across the global memories of multiple GPUs,

processing at each GPU requires values of neighboring vertices that reside on other

GPUs. Here we must make judicious use of the limited bandwidth available for trans-

ferring data between GPUs via the PCIe bus. We introduce an approach based upon

parallel binary prefix sum that dynamically limits the inter-GPU transfers to only

include updated vertices. In contrast, existing multi-GPU techniques perform high

degree of wasteful vertex value transfers.

Our solution maximizes the graph sizes for which high performance can be achieved

by fully utilizing GPU resources of SIMD hardware, memory, and bandwidth.

Let us briefly consider the related works and see how our approach overcomes

their drawbacks. First, we consider the prominent single GPU techniques for vertex-centric

graph processing, namely VWC [34] and CuSha [42]. Virtual-Warp Centric (VWC) [34]

is the state-of-the-art method that uses the compact CSR representation and is inevitably

prone to load imbalance when processing real-world graphs due to high variation in degrees

of vertices. When the size of the virtual warp is less than the number of neighbors for a

vertex, the virtual warp needs to iterate over the neighbors forcing other virtual warps within

the warp that are assigned to vertices with fewer neighbors to stay inactive. When the size

of the virtual warp is greater than the the size of the neighbors for a vertex, a great portion

of the virtual warp is disabled. Both cases lead to underutilization of SIMD resources and

poor warp execution efficiency. In addition, discovering the best virtual warp size for every

11

graph and every expressed graph algorithm requires multiple tries. CuSha [42] addresses the

drawbacks of VWC, namely warp execution inefficiencies and non-coalesced accesses, but

at the cost of using G-Shards and CW graph representations which are 2x-2.5x larger than

the CSR representation due to vertex replication. In contrast, Warp Segmentation uses

the compact CSR representation while delivering high SIMD hardware utilization. In warp

segmentation the neighbors of warp-assigned vertices are grouped into segments. Warp

lanes then get assigned to these neighbors and recognize their position inside the segment

and the segment size by first performing a quick binary search on the fast shared memory

content and then comparing their edge index with corresponding neighbor indices. When

the segment size and the position in the segment are known for the lanes, user-defined

reduction can be efficiently performed between neighbors of a vertex without introducing

any intra-warp load imbalance. It will be shown in experiments that WS outperforms VWC

by 1.29x−2.80x on average.

Next let us consider the related works on multi-GPU graph processing [94, 24].

Given a partitioning of a graph across multiple GPUs, these techniques underestimate the

importance of efficient inter-device communication and do not effectively utilize the PCIe

bandwidth. This is a significant problem because, the PCIe bus, as the path to communi-

cate data from one GPU to another GPU, is tens of times slower than GPU global memory.

Previous multi-GPU techniques either copy the whole vertex set belonging to one GPU to

other GPUs at every iteration [94], or they identify boundary vertices in a pre-processing

stage and make GPUs exchange these subsets of vertices in every iteration [24, 25]. In both

approaches, a great number of vertices that are exchanged between devices is redundant.

In contrast, we propose Vertex Refinement, a new strategy that enables our framework to

efficiently scale to multiple GPUs. Vertex Refinement refines and transfers only those ver-

tices that are updated in the previous round and are needed by other devices. It consists

of two stages: online and offline. In the offline stage, boundary vertices are recognized and

marked during pre-processing. In the online stage, we exploit parallel binary prefix sum to

refine updated vertices from not-updated ones on-the-fly. A vertex is transferred to another

12

V0

V1

V2V3

V4

8

V0 V1 V2 V3 V4

0 1 3 3 5

01 0 2 0 2

E5E0 E1 E2 E3 E4

31

E7E6

VertexValues

NbrIndices

NbrVertexIndices

EdgeValues

E0

E1E5

E2
E3

E4

E7

E6

Figure 2.1: An example graph with 5 vertices and 8 edges and its CSR representation.

device only if it is marked and refined by the online stage. Thus, Vertex Refinement elim-

inates wasteful communication and provides higher multi-GPU performance and provides

exclusive speedup of up to 2.71x over other multi-GPU vertex communication schemes.

The remainder of this chapter is organized as follows. We first present Warp

Segmentation and the interface of the framework we created to express and execute the

graph vertex-centric algorithms. Then we describe efficient scaling of our framework to

multiple GPUs via Vertex Refinement. Finally, we evaluate the performance of our methods.

2.1 Warp Efficiency via Warp Segmentation

In this section we present Warp Segmentation (WS) that eliminates intra-warp

load imbalance and enhances execution efficiency for processing a graph in CSR form. CSR

is a compact form suitable for representing large and sparse graphs in a minimum space.

Due to its space-efficiency, CSR is a good choice to hold large graphs inside the limited

GPU memory.

As Figure 2.1 shows, CSR consists of 4 arrays:

• VertexValues holds the content of the ith vertex in its ith element.

• NbrVertexIndices holds the indices for a vertex’s neighbors in a contiguous fashion.

• NbrIndices holds a prefix sum of the number of neighbors for vertices. The ith

13

vertex’s neighbors inside NbrVertexIndices start at NbrIndices[i] and end before

NbrIndices[i + 1].

• EdgeValues holds the edge values corresponding to the neighbors inside NbrVer-

texIndices.

2.1.1 Motivating Study

1

10

100

1000

10000

100000

1000000

10000000

1 10

N
u

m
b

er
 o

f
ve

rt
ic

es

100 1000 10000 100000

Degree

(a) LiveJournal [4]

1

10

100

1000

10000

100000

1000000

1 10

N
u

m
b

er
 o

f
ve

rt
ic

es

100 1000 10000

Degree

(b) SocPokec [80]

1

10

100

1000

10000

100000

1 10

N
u

m
b

er
 o

f
ve

rt
ic

es

100 1000 10000 100000

Degree

(c) HiggsTwitter [18]

0

2

4

6

8

10

0 2 4

N
u

m
b

er
 o

f
ve

rt
ic

es
 x

 1
0

0
0

0
0

4 6 8 10

Degree

(d) RoadNetCA [51]

1

10

100

1000

10000

100000

1000000

1 10

N
u

m
b

er
 o

f
ve

rt
ic

es

100 1000 10000

Degree

(e) WebGoogle [51]

1

10

100

1000

10000

100000

1 10

N
u

m
b

er
 o

f
ve

rt
ic

es

100 1000 10000

Degree

(f) Amazon0312 [49]

Figure 2.2: Degree distribution for graph vertices.

14

To motivate the need for WS, we first describe the drawbacks of the Virtual-Warp

Centric (VWC) [34] method that also uses the CSR representation. VWC divides the SIMD

group (warp, in CUDA terms) with the physical length of 32 into smaller virtual warps with

fixed lengths (2, 4, 8, 16, or 32). Virtual warp size is kept the same throughout the graph

processing. Each virtual warp is assigned to process one vertex and its incoming edges.

As an enhancement of the original work [34], Khorasani et al. proposed a generalized form

of VWC in [42] in which threads of the virtual warp are involved in reduction over the

computed values. However, real-world graphs often exhibit power-law degree distribution,

as it is evident in Figure 2.2, i.e. the number of neighbors a vertex owns vary greatly from

one vertex to another. Thus, due to fixed number of virtual lanes involved in a reduction,

VWC unavoidably suffers from underutilization:

• If the virtual warp is smaller than the vertex’s number of neighbors, it will have to

iterate over the vertex’s connected edges hence dragging with it other virtual warps

that have already finished their jobs (see the example in Figure 2.3a).

• If the virtual warp has a size that is larger than the number of neighbors for a

vertex, a portion of virtual warp’s lanes stays idle during the reduction leading to

underutilization (see the example in Figure 2.3b).

This motivates the need for a technique that, independent of inner graph structure,

takes minimum number of reduction steps in a SIMD environment, i.e. Warp Segmentation.

Note that VWC suffer from the SIMD load imbalance in the same way PRAM-style thread

assignment [30] does. In both PRAM-style and VWC, assigning fixed number of SIMD

threads to process one vertex and its edges leads to thread-idling due to highly irregular

vertex degree distribution. This fixed number in the former is exactly one while in the latter

it can be a power of 2.

15

N0 N1

N2 N3

N4 N5

N6 N7

R R

RF

R

RF

RF

R

RF

C0 C1 C6 C7

C2 C3

R

Lane 0 Lane 1 Lane 2 Lane 3

RF

R

RF

R

RF

C4 C5

R

RF

T
im

e

(a) VWC with Virtual Warp size 2.

N0 N1 N2 N3

N4 N5

N6 N7

R R

R

RF

R

RF

R

RF

C0 C1 C2 C3 C6 C7

R R

R R

RF RF

Lane 0 Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6 Lane 7

R

RF

C4 C5

T
im

e

(b) VWC with Virtual Warp size 4.

Figure 2.3: An example: reduction in VWC with assumed warp size of 8 and first 6 neighbors
belonging to one vertex and last 2 belonging to another.

2.1.2 Warp Segmentation

To remedy the drawbacks of fixed-sized virtual warps, we propose Warp Segmen-

tation (WS) technique. In WS, a warp is assigned to a group of 32 consecutive vertices

and their connected edges. When warp lanes process edges iteratively, those that process

edges belonging to one vertex—i.e. having the same destination index—form a segment.

By knowing the segment size and the index inside the segment, lanes can participate in the

appropriate reduction of segment, minimizing the total number of reduction steps.

16

C0 C1 C2 C3 C4 C5 C6 C7

R R

R

R

RF RF

R

R

N0 N1 N2 N3 N4 N5 N6 N7

R R

R R

R R

RF RF

Lane 0 Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6 Lane 7
T

im
e

Figure 2.4: Reduction using Warp Segmentation with the same scenario in Figure 2.3.

Figure 2.4 shows the reduction in WS in an example scenario. In this example,

first six lanes belong to one segment and two last lanes belong to another. The minimum

number of reduction steps in this case is dlog2 6e = 3 which is also the case in WS. As

Figure 2.3 shows, on-the-fly efficient reduction procedure in WS leads to better utilization

of SIMD resources compared to VWC. In addition, WS does not need any pre-processing

or trial-and-error for the best configuration determination.

8

V0 V1 V2 V3 V4

0 1 3 3 5

N5N0 N1 N2 N3 N4 N7N6

VertexValues

NbrIndices

NbrVertexIndices

Binary Search EdgeIndex
inside NbrIndices

Belonging Vertex Index

Index inside Segment

Index inside Segment
from right

Segment Size

Operation N0

[0,8]

[0,4]

[0,2]

[0,1]

0

0

0

1

N1

[0,8]

[0,4]

[0,2]

[1,2]

1

0

1

2

N2

[0,8]

[0,4]

[0,2]

[1,2]

1

1

0

2

N3

[0,8]

[0,4]

[2,4]

[3,4]

3

0

1

2

N4

[0,8]

[0,4]

[2,4]

[3,4]

3

1

0

2

N5

[0,8]

[4,8]

[4,6]

[4,5]

4

0

2

3

N6

[0,8]

[4,8]

[4,6]

[4,5]

4

1

1

3

N7

[0,8]

[4,8]

[4,6]

[4,5]

4

2

0

3

Figure 2.5: Discovering segment size and the index within segment by warp lanes for the
graph in Figure 2.1. Warp size is assumed 8.

17

The key feature of WS is its fast determination of the segment a lane belongs

to and the index of the lane within the segment. The step-by-step approach shown in

Figure 2.5 illustrates this. Warp lanes perform a binary search over NbrIndices elements

for their assigned edge index. Since NbrIndices elements are already fetched to the fast

shared memory of the GPU, the binary search is performed quickly. After log2(warpSize)

steps, the starting position of the resulting search boundary shows the vertex index to which

the edge belongs. Knowing the vertex index, the lane’s index inside the segment and the

segment size is retrieved using NbrIndices array. The distance of the holding edge index

from the vertex’s corresponding NbrIndices element reveals the position of the vertex in the

segment. The difference between the holding edge index and the next vertex’s corresponding

NbrIndices element, minus one, yields the distance of the lane from the end of the segment.

Addition of these two distances plus one represents the segment size.

WS is based upon the vertex-centric paradigm where in every iteration the shared

memory serves as a scratchpad for vertices. The shared memory regions corresponding to

vertices are: initialized by the vertex content within the global memory, modified depending

upon the edges connected to the vertex using appropriate reductions, and at the end of the

iteration, the updated values are pushed back to the global memory. Two alternatives for

the intra-warp reduction in WS are possible. The first one is to use atomics to survive the

concurrent modifications of the vertices as in [42]. However, this alternative imposes heavy

use of atomics on shared memory locations on top of CSR’s inherent non-coalesced neighbor

accesses. The second alternative is processing a groups of vertices by one thread block.

However, this approach necessitates multiple synchronization primitive across the thread

block that degrade the performance. WS assigns a set of vertices to GPU’s architectural

SIMD grouping (warp) and performs efficient reductions hence it avoids shared memory

atomic operations alongside any explicit synchronizations throughout the kernel.

The reduction in WS can be viewed as a form of intra-warp segmented reduction

but without a head flags array, consisting of two main steps. First, warp lanes identify the

vertex index via a fast binary search. Second, they discover the intra-segment index and the

18

segment size. Also, note that these two sets of operations are independent from the neighbor

vertex value hence can be used to cover the latency of the inevitable non-coalesced access.

The thread exploits instruction level parallelism by simultaneously executing non-dependent

instructions. Thus, GPU cores are kept busy performing operations while neighbor’s vertex

value is on its way.

2.2 Graph Processing Framework for WS

Next we describe the framework that uses the graph processing procedure based on

WS. Then, we present the interface functions that allow easy expression of graph algorithms

by non-expert users.

2.2.1 Core Processing Procedure

Figure 2.6 shows the graph processing procedure. The convergence of iterative

graph processing is controlled via a variable passed between the host and the device. If no

thread updates this variable, it means the algorithm has converged and no more iterations

are needed. In the outer-most for loop, according to the WS paradigm, each warp is

assigned to process a contiguous set of vertices with the size equivalent to the warp size

(32 for current CUDA devices). A warp task during one iteration is to process its assigned

vertices. This task can be broken down into three major steps.

First step. In this step (lines 11 to 15 in Figure 2.6) threads of a warp fetch 32 elements

of VertexValues and initialize the designated shared memory region for vertex values using

user-provided initialization function. The threads also put 32+1 corresponding elements of

NbrIndices into another shared memory buffer. Using the NbrIndices starting and ending

element, warp lanes can recognize the region within EdgeValues and NbrVertexIndices arrays

that belongs to the assigned group of vertices.

19

0. converged = false;

1. while(!converged) {
2. converged = true;

3. parallel-for warp w {
5. __shared__ Vertex V[blockDim];

6. __shared__ Vertex tLocal_V[blockDim];

7. __shared__ uint NIdx[blockDim];

8. w_V = V + warpOffsetWithinCTA;

9. w_tLocal_V = tLocal_V + warpOffsetWithinCTA;

10. w_NIdx = NIdx + warpOffsetWithinCTA;

/* 1st major step */

11. initVertex(w_V+laneID, VertexValues+globalTID);

12. w_NIdx[laneID] = NbrIndices[globalTID];

13. startEIdx = w_NIdx[0];

14. endEIdx = NbrIndices[warpGlobalOffset+32];

/* 2nd major step */

15. for(currEIdx = startEIdx + laneID;

currEIdx < endEIdx;

currEIdx += 32) {
16. nbrIdx = NbrVertexIndices[currEIdx];

17. srcV = VertexValue[nbrIdx];

18. belongingVIdx = binarySearch(currEIdx, w_NIdx);

19. inSegID = min(laneID,

currEIdx - w_NIdx[belongingVIdx]);

20. SegSize= inSegID + 1 + min(31 - laneID,

((belongingVIdx==31)?endEIdx:

w_NIdx[belongingVIdx+1]) - currEIdx - 1);

21. ComputeNbr(srcV, EdgeValues+currEIdx,

w_tLocal_V+laneID);

22. reduceInsideSegment(w_tLocal_V+laneID,

inSegID, SegSize);

23. if(inSegID==0)

24. ReduceVertices(w_V+belongingVIdx,

w_tLocal_V+laneID);

25. }
/* 3rd major step */

26. if(IsUpdated(w_tLocal_V+laneID,

VertexValues+globalTID)) {
27. atomicExch(VertexValues+globalTID,

w_tLocal_V[laneID]);

28. converged = false;

29. }
30. }
31. sync_device_with_host();

32. }

Figure 2.6: Framework’s graph processing procedure pseudo-algorithm. Assumed warp size
is 32. Shared memory pointers in the program code are declared with volatile qualifier.

20

Second step. This step involves iteration of warp lanes over the elements of the EdgeVal-

ues and NbrVertexIndices arrays region (lines 15 to 25 in Figure 2.6). Warp lanes perform a

user-provided compute function with the fetched neighbor vertex value and the connected

edge value and save the outcome in a local shared memory buffer (line 21). Besides, ev-

ery warp lane must discover which of 32 vertices that are assigned to the warp owns the

processed edge and neighbor. This involves a log 32 = 5 stepped binary search on fetched

edgeIndices in the shared memory (line 18). Using the resulting vertex index, warp lanes

can be grouped into segments, each segment corresponding to one vertex. Each lane iden-

tifies its position within the segment and the size of the segment it belongs to (lines 19 and

20). Therefore warp lanes can execute user-provided reduction function in parallel (line 22).

Finally, the first lane in each segment performs the reduction function over the outcome and

associated element in the shared memory region for vertex values (lines 23 and 24). Warp

lanes perform these steps iteratively until all the edges for the set of vertices are processed.

Third step. In this step, the warp lanes compare the content of designated shared mem-

ory region for vertex values with the corresponding VertexValues elements using the user-

provided function (line 26). If the function returns true, the vertex content inside the global

memory will be updated.

Once all the vertices are processed, the framework executes another iteration of the

algorithm on all the graph vertices if any vertex in the current iteration is updated. Graph

processing with WS method dynamically determines the proper size for reduction based on

the segment size and it is guaranteed that the number of steps for parallel reduction will

never exceed five (logwarpSize).

Note that the memory transactions in all the steps are coalesced except for access-

ing the neighbor vertex value (line 17), which is inherent in the compact graph representation

like CSR. However by moving “binary search” and “segment realization” functions (lines

18 to 20) before the neighbor computation function, we exploit instruction level parallelism

to hide the latency associated with the non-coalesced memory access.

21

2.2.2 Framework Interface

0. struct Edge{ uint BW; };
1. typedef unsigned int Vertex;

2. inline __device__ void initVertex(

volatile Vertex* initV, Veretx* V){
3. *initV = *V;

4. }
5. inline __device__ void ComputeNbr(

Vertex SrcV, Edge* E, volatile Vertex* localV) {
6. *localV = min(SrcV, E->BW);

7. }
8. inline __device__ void ReduceVertices(

volatile Vertex* firstV, Veretx* secondV){
9. *firstV = max(*firstV, *secondV);

10. }
11. inline __device__ bool IsUpdated(

volatile Vertex* computedV, Veretx* V){
12. return (*computedV > *V);

13. }

Figure 2.7: User-specified structures and functions for SSWP.

In addition to trivial input/output handling functions, type definition for the ver-

tex, and the structure definition for the edge, our framework accepts the following user

specified functions:

• InitVertex initializes the vertex at the beginning of an iteration.

• ComputeNbr is performed for every neighbor vertex.

• ReduceVertices acts as the reduction function between the results of ComputeNbr for

two neighbors of a vertex.

• IsUpdated verifies if a vertex has updated during the current iteration.

Figure 2.7 illustrates the usage of the framework by showing the functions for Single Source

Widest Path (SSWP) algorithm as an example. SSWP requires a variable for expressing

the edge bandwidth and another variable for specifying maximum visible bandwidth by the

22

vertex from the source. In SSWP, during multiple rounds, the content of a vertex is updated

by the maximum bandwidth it observes picked from the minimums between incoming edges

and corresponding neighbors. As Figure 2.7 shows, this algorithm can be easily expressed

in our framework via the above processing functions. First, the vertex content inside the

shared memory is initialized by the most updated content of the vertex. Second, for each

neighbor a local value is computed, which in this case is the minimum between every

connecting edge bandwidth and its corresponding source vertex visible bandwidth. Third,

these values are reduced two-by-two using the reduction function and the result is saved to

the first argument content. For SSWP, reduction function selects the maximum of visible

values through neighbors. Also, at the end of the third step of the processing procedure,

the reduction function is executed for the initialized vertex and the final reduction result.

Finally, in the fourth step, the framework verifies if the vertex should be updated. If the

IsUpdated function returns true—which in case of SSWP is observing a greater bandwidth

to the source—the content of the vertex inside global memory is replaced with the reduced

vertex content at the current iteration. If any vertex is updated, the host must executes

another iteration.

2.3 Scaling via Vertex Refinement

To handle larger graphs we must scale our method to use multiple GPUs that

provide more memory and processing resources. Although graph partitioning strategies for

GPUs have been explored, inter-GPU data transfer efficiency has not received adequate

attention. Given a partitioning, for scaling of graph processing to be effective, we must

make good use of limited PCIe bandwidth. We show the inefficiency of existing techniques

and then present Vertex Refinement that avoids redundant data exchange between GPUs.

23

2.3.1 Inefficiency of Existing Inter-GPU Communication

Existing multi-GPU generic graph processing schemes divide the graph in two

or more partitions and assign each partition to one GPU. Graph vertices completely fall

into partitions while there can be edges that pass the partition boundaries. Due to these

boundary edges, a GPU needs to be informed of the vertex updates happening in other

GPUs. To keep the content of its assigned vertices held inside other GPUs updated, the

GPU needs to transfer vertices belonging to its own partition over the PCIe bus. PCIe data

transfer rate is tens of times slower than that of GPU global memory; thus extra care must

be taken to transfer only necessary data so as not to waste PCIe precious bandwidth.

Nonetheless, since implementing a mechanism to efficiently manage queues in

GPU’s massively multithreaded environment is challenging, previous works choose sim-

ple but inefficient approaches. Medusa [94] copies all the vertices belonging to one de-

vice to other devices at every iteration. We refer to this solution as the ALL method.

TOTEM [24, 25] pre-selects the boundary vertices in a pre-processing stage but similar to

Medusa copies the boundary vertices after every iteration. We refer to this solution as Max-

imal Subset (MS) method. Both of these methods suffer from wastage of PCIe bandwidth

because usually only a small portion of the vertices are updated during each iteration. Ta-

ble 2.1 shows the ratio of useful transferred vertices—vertices that are updated in the last

iteration—to all the vertices that are transferred in such schemes. Such low percentages

motivate the need for a new solution that utilizes limited PCIe bandwidth economically.

To eliminate the overhead of transferring unnecessary vertices between devices, our

framework performs Vertex Refinement in two steps: offline and online. We first describe

the required data structures and then present the two-staged refinement procedure.

2.3.2 Data Structure Organization

To process a graph with multiple GPUs, our framework divides the vertices and

their associated edges into partitions and assigns each partition to one GPU, so that each

24

Graph Algorithm ALL % MS %

Breadth-First Search (BFS) 10.43 12.21

Connected Components (CC) 9.55 11.19

Circuit Simulation (CS) 2.34 2.39

Heat Simulation (HS) 31.29 36.66

Neural Network (NN) [5] 15.66 18.34

PageRank (PR) [65] 10.38 13.65

Single Source Shortest Path (SSSP) 13.65 15.99

Single Source Widest Path (SSWP) 3.14 3.68

Table 2.1: The percentage of useful vertex data among all the transferred data when all the
vertices (ALL) or the maximal subset of them (MS) are copied from one GPU to another.
In this two-GPU configuration, the graph under the examination is an Rmat graph with
approximately 40 million vertices and 470 million edges.

GPU processes a continuous set of vertices. Since the processing time is mostly affected by

the memory accesses associated with gathering the values of neighbor vertices, determining

the boundaries of vertex partitions depends upon the total number of edges that vertices

of each subset hold. In our scheme, vertices of each partition will have roughly the same

number of edges in order to provide a balanced load between GPUs. Each GPU will hold

relevant subset of NbrIndices, NbrVeretxIndices, and EdgeValues but will contain a full

version of VertexValues array. This organization allows each device to process vertices

belonging to its own partition as long as vertices inside VertexValues that belong to other

GPUs are updated during an iteration.

PCIe Lanes

≤M
≤M

M+1

VertexValues

Q

Q

GPU #0

NbrIndices

NbrVertexIndices

EdgeValues

Values
Indices

≤N
≤N

N+1

VertexValues

R

R

GPU #1

NbrIndices

NbrVertexIndices

EdgeValues

Values
Indices

≤P

P+1

VertexValues

T

T

GPU #2

NbrIndices

NbrVertexIndices

EdgeValues

Values
Indices ≤P

Outbox Outbox Outbox

M M MN N NP P P

≤M ≤N ≤P
≤M ≤N

Values
Indices ≤P

Inbox #0 Inbox #1 Inbox #2

Host Memory

≤M ≤N ≤P
≤M ≤N

Values
Indices ≤P

Inbox #0 Inbox #1 Inbox #2
Odd Buffer Even Buffer

PCIe Lanes PCIe Lanes

Figure 2.8: Organization of data structures in multi-GPU processing.

25

In addition to CSR representation buffers, each GPU will hold one Outbox buffer

that is filled with updated vertex indices and vertex values of the GPU-specific division. As

shown in Figure 2.8, we keep the inboxes inside host pinned buffers. In other words, the

set of host buffers is similar to a hub that are filled by devices. At the start of an iteration,

a device accesses inboxes corresponding to other devices and updates its own VertexValues

array. Also at the end of an iteration, the device transfers its own outbox content to device’s

corresponding inbox. Moreover, we apply double buffering technique by alternating read

buffers and write buffers. In an odd (even) iteration, devices read from the odd (even) inbox

buffers and copy their outbox to their designated even (odd) inbox buffer. In summary:

• Inbox and outbox buffers are vital for a fast data transfer between GPUs. Direct

peer-device memory access as an alternative will introduce significant performance

penalty due to non-coalesced transactions over PCIe bus [86]. In contrast, inbox and

outbox buffers allow the collection of necessary data together and hence accelerate

the inter-device communication.

• Using Host memory as the hub not only reduces memory constraint pressure for GPUs,

but is also beneficial when more than two GPUs are processing the graph. A device

copies its own outbox to a host buffer only once. In contrast, if there is no intermediate

host buffer, the device has to copy the outbox to each of the other GPUs’ inboxes

causing unnecessary traffic over connected PCIe lanes since the same data are passed

over more than once. Our experiments show that using host as the hub is always

beneficial in reducing the communication traffic and overall multi-GPU processing

time in comparison to using inbox and outbox buffers residing inside the GPUs.

• Double buffering eliminates the need for additional costly inter-device synchronization

barriers between data transfers and kernel executions. For instance, when device A

grabs inbox buffer content of the device B during an iteration, since device B is going

to fill another inbox buffer in the current iteration, needless of synchronizing with

device B we will be sure that device A does not receive corrupted data.

26

If there are two GPUs processing the graph, during the runtime our framework

queries the available global memory on the GPUs. If there is enough memory to hold the

pertained part of the graph plus both the odd and even inboxes belonging to the other

device, the framework puts the inboxes inside the GPUs global memory. Otherwise, it

chooses host pinned buffers for this purpose.

2.3.3 Vertex Refinement

Offline Vertex Refinement. In this pre-processing stage, the framework scans NbrVer-

texIndices elements and identifies the boundary vertices: those that are being accessed by

edges of one division while belonging to another division. For such a vertex, we set the

most significant bit of its corresponding element inside NbrIndices buffer. During the on-

line refinement, if a vertex is not a boundary vertex, it will be filtered out. Note that this

bit will be ignored during other computations that involve NbrIndices buffer. Also during

this stage, the framework can determine the maximum size to allocate for inbox and outbox

buffers.

Online Vertex Refinement via parallel binary prefix sum. As opposed to Offline

Vertex Refinement, Online Vertex Refinement happens on-the-fly inside the GPU kernel.

At the last level of graph processing, lanes of a warp examine warp-assigned vertices for

updates, each producing a binary predicate associated with one vertex. If this predicate

is true and at the same time the vertex is marked during the offline stage, the vertex is

required to be transferred to other devices.

By means of any() intrinsic, we first verify if any of the warp lanes has an eligible

vertex to transfer. If yes, warp lanes quickly count the total number of updated vertices

inside the warp via intra-warp binary reduction and realize the number of updated vertices

in lower lanes via intra-warp binary prefix sum. For a fast computation of binary reduction

and inclusive binary prefix sum, our framework utilizes Harris et al. approach [31] in which

popc() and ballot() CUDA intrinsic functions are exploited. Having total number of

27

updated vertices, one lane in the warp atomically adds it to a moving index inside the global

memory, which its returned value specifies the starting position in the designated outbox

buffer to write the warp’s updated vertex indices and values. In other words, a lane reserves

a region inside the Outbox for eligible warp lanes. The starting position of the region is

shuffled to other lanes in the warp via shfl() intrinsic, and lanes with updated vertex fill

up the buffer using this position plus their intra-warp prefix sum. Figure 2.9 presents an

example showing online vertex refinement procedure.

O
[A

+
0
]=

V
0

O
[A

+
1
]=

V
3

O
[A

+
2
]=

V
7

Is (Updated & Marked)

Shuffle A

Binary Prefix Sum

Operation V0

3

A

0

V1

3

A

1

V2

3

A

1

V3

3

A

1

V4

3

A

2

V5

3

A

2

V6

3

A

2

V7

3

A

2

Y N Y YN N N N

Binary Reduction

Reserve Outbox Region A = atomicAdd(deviceOutboxMovingIndex, 3);

Fill Outbox Region

Figure 2.9: An example of online vertex refinement stages.

An alternative to above approach is extending the binary reduction and the binary

scan to the CTA; however, we did not find this alternative faster since it required two

synchronizations across the thread-block. Whereas in our approach the atomic addition

is performed by only one lane in the warp which avoids heavy contention for the atomic

variable.

When processing in an iteration is done, the moving index determines how much

of the device outbox buffer has been filled. We significantly reduce the communication time

by transferring the content of this buffer to the corresponding inbox buffer only with the

length specified by the moving index. At the beginning of the next iteration, in order to

have newly updated vertex values from other devices, each device distributes the content of

28

other devices’ inboxes only with the length specified by their associated moving indexes over

its own VertexValues array.

In summary, Offline Vertex Refinement identifies boundary vertices and Online

Vertex Refinement recognizes the vertices that updated in the previous iteration. The

combination of two yields the set of updated boundary vertices and maximizes the inter-

device communication efficiency.

2.4 Performance Evaluation

The system we performed experiments on has 3 NVIDIA GeForce GTX780 GPUs

each having 12 Kepler Streaming Multiprocessors and approximately 3 GBytes of global

memory. The first GPU is connected to the system with PCIe 3.0 16x while the rest are

operating at 4x speed. The single-GPU experiments are reported from the GPU with the

highest PCIe bandwidth. We compiled and ran all programs for Compute Capability 3.5

on Ubuntu 14.04 64-bit with CUDA 6.5 and applied the highest optimization level flag.

2.4.1 Warp Segmentation Performance Analysis

In this section, we analyze the performance of Warp Segmentation on a single GPU.

We use the graphs shown in Table 2.2 for experiments in this section. In the table, graphs

with prefix RM refer to Rmat [11] graphs created with parameters a = 0.45, b = 0.25,

and c = 0.15. Rmat graphs are known to imitate the characteristics of real-world graphs

such as power-law degree distribution. The graph with prefix ER is a uniformly random

(Erdős-Rényi) graph. Other graphs are extracted from real-world origins and are publicly

available at SNAP dataset [50]. Graphs in Table 2.2 cover a wide range of sizes with different

densities and characteristics.

29

Input Graph N. Vertices N. Edges CSR size CW size

RM33V335E 33 554 432 335 544 320 1611-3087 5503-8321

ComOrkut [90] 3 072 441 234 370 166 962-1912 3762-5649

ER25V201E 25 165 824 201 326 592 1007-1913 3322-5033

RM25V201E 25 165 824 201 326 592 1007-1913 3322-5033

RM16V201E 16 777 216 201 326 592 940-1812 3288-4966

RM16V134E 16 777 216 134 217 728 671-1275 2215-3355

LiveJournal [4] 4 847 571 68 993 773 315-610 1123-1695

SocPokec [80] 1 632 803 30 622 564 136-265 496-748

HiggsTwitter [18] 456 631 14 855 875 63-124 240-360

RoadNetCA [51] 1 965 214 5 533 214 38-68 96-149

WebGoogle [51] 875 713 5 105 039 27-51 85-130

Amazon0312 [49] 400 727 3 200 440 16-30 53-80

Table 2.2: Graphs used in single-GPU experiments – across benchmarks the size ranges in
MBytes for CSR and CW representations. Sizes exceeding GPU’s global memory capacity
are bolded.

Warp Segmentation vs VWC – Performance Comparison.

First we compare the performance of WS method against VWC with graphs shown

in Table 2.2 for the benchmarks in Table 2.1. Table 2.3 presents the raw processing time for

the completion of all the benchmarks over all the graphs for both methods. We experimented

on VWC with all the possible virtual warp sizes (2, 4, 8, 16, and 32) hence its processing

times are specified in ranges. Table 2.4 shows the average speedup of WS compared to

VWC over input graphs and benchmarks. In comparison with VWC, WS shows better

performance across all the graphs and all the benchmarks. WS speedup over VWC when

averaged across all the input graphs and benchmarks ranges from 1.29x to 2.80x.

To further examine the effectiveness of WS against VWC method, as the state-of-

the-art CSR based generic graph processing method, we profiled both our framework and

VWC over different graphs for warp execution efficiency. Figure 2.10 shows the average warp

execution efficiency (predicted and non-predicted combined) over all the iterations of graph

processing with SSSP benchmark. It is evident from the figure that for different graphs,

best warp execution efficiency for VWC happens in different virtual warp sizes. For example

30

Input Graph BFS CC CS HS NN PR SSSP SSWP

RM33V335E
WS 1257 1118 1629 2812 1416 6056 2882 5505

VWC 1428-1811 1270-1680 2012-2562 3501-4412 2030-2506 6563-8275 3237-3959 6740-8268

ComOrkut
WS 403 351 4162 681 904 4290 1398 931

VWC 455-664 382-572 5566-8847 692-1056 989-1634 6296-13334 1515-2519 1029-1626

ER25V201E
WS 837 644 704 8330 773 5004 2181 2462

VWC 976-1385 710-1045 748-1313 9499-16047 805-1160 5287-6095 2386-3505 2574-3756

RM25V201E
WS 845 835 1052 4782 1023 3856 1802 4216

VWC 933-1231 935-1233 1287-1709 5619-8716 1190-1529 4183-5491 2080-2653 4787-5991

RM16V201E
WS 667 663 959 1762 840 3762 1625 2998

VWC 750-907 746-908 1187-1438 2058-2337 984-1159 4043-4526 1800-2230 3403-4284

RM16V134E
WS 512 514 660 1244 572 4068 1159 2028

VWC 591-820 592-822 850-1218 1539-2133 691-913 4448-5656 1402-1832 2427-3267

LiveJournal
WS 172 154 535 346 2061 2326 446 772

VWC 215-296 201-273 807-1084 378-536 2297-4746 2498-4043 619-814 1059-1345

SocPokec
WS 75 66 121 226 464 1145 194 194

VWC 90-107 80-106 175-203 264-329 614-761 1302-2817 237-327 236-314

HiggsTwitter
WS 48 37 117 75 159 483 100 77

VWC 54-170 49-178 157-495 95-294 192-812 927-2433 113-432 98-355

RoadNetCA
WS 386 330 1694 41 193 55 465 1077

VWC 480-3400 493-3437 2392-23659 45-301 191-1668 62-448 619-4402 118-5619

WebGoogle
WS 41 36 61 15 84 109 63 108

VWC 81-109 75-99 124-186 23-35 124-167 145-248 113-172 186-288

Amazon0312
WS 17 17 263 81 41 44 33 38

VWC 25-46 26-46 419-797 142-237 42-78 63-110 63-90 57-92

Table 2.3: Raw running times (ms) of Warp Segmentation (WS) and VWC including kernel
executions and host-device data transfers for different algorithms and different graphs.

with RoadNetCA, a 2D mesh of intersections and roads, virtual warp size 2 yields the best

results due to special structure of the graph; while it leads to the poorest performance for

other graphs. On the other hand, WS exhibits a steady warp execution efficiency (71.8% on

average) regardless of the graph. WS warp execution efficiency is 1.75x-3.27x better than

VWC when averaged across all graphs. This result proves the SIMD efficiency of WS over

fixed-width intra-SIMD thread assignment in VWC.

Warp Segmentation Performance against CW.

We present the speedup of WS over CW having large graphs in Table 2.5 and

having small graphs in Table 2.6. For the large graphs, CW representation cannot fit the

whole graph inside GPU global memory. For these combinations, CuSha fails; therefore, as

31

Averages Across Input Graphs Averages Across Benchmarks

BFS 1.27x−2.60x RM33V335E 1.23x−1.56x
CC 1.33x−2.90x ComOrkut 1.15x−1.99x
CS 1.43x−3.34x ER25V201E 1.09x−1.69x
HS 1.27x−2.66x RM25V201E 1.15x−1.57x
NN 1.21x−2.70x RM16V201E 1.16x−1.41x
PR 1.22x−2.68x RM16V134E 1.22x−1.69x
SSSP 1.31x−2.76x LiveJournal 1.29x−1.99x
SSWP 1.28x−2.80x SocPokec 1.27x−1.77x

HiggsTwitter 1.34x−4.78x
RoadNetCA 1.24x−9.90x
WebGoogle 1.79x−2.69x
Amazon0312 1.53x−2.68x

Table 2.4: Speedup ranges of Warp Segmentation over VWC excluding data transfer times.
Since both methods use CSR representation, their data transfer times are equal.

0

20

40

60

80

W
ar

p
 E

xe
cu

ti
on

 E
ff

ic
ie

n
cy

 (
%

) VWC-2 VWC-4 VWC-8 VWC-16 VWC-32 Warp Seg.

Figure 2.10: Profiled average warp execution efficiency of Warp Segmentation compared to
VWC’s. SSSP is the benchmark.

a straightforward workaround, we kept vertex value and small auxiliary buffers inside the

GPU global memory and put shards at mapped pinned buffers inside the host. For large

graphs, CW processing time is significantly higher than our method’s due to involvement of

PCIe bus, limiting the scalability of CW representation. Also for the small graphs, although

CW provides fully regular access patterns, it incurs larger memory footprints. In addition,

our framework covers the latency of CSR-inherent irregular accesses, therefore we observe

32

Input Graph BFS CC CS HS NN PR SSSP SSWP

RM33V335E 3.41 3.21 8.44 14.14 4.02 5.38 4.36 4.66

ComOrkut 5.11 5.91 1.72 10.76 5.23 6.85 7.92 5.72

ER25V201E 3.47 3.36 6.20 10.43 3.72 2.59 4.46 4.34

RM25V201E 3.07 2.76 7.71 9.65 3.55 3.54 3.99 4.14

RM16V201E 3.45 3.06 6.53 8.42 3.87 4.50 4.63 4.41

RM16V134E x x 3.19 4.97 x 3.93 x x

Average 3.70 3.66 5.63 9.73 4.08 4.47 5.07 4.65

Table 2.5: The speedup of Warp Segmentation over CuSha’s [42] CW for large graphs. The
shards reside inside the host pinned buffers (x means graph is small - fits in GPU memory).

Input Graph BFS CC CS HS NN PR SSSP SSWP

RM16V134E 0.74 0.80 x x 0.88 x 0.67 0.56

LiveJournal 1.06 1.21 0.74 1.10 1.03 0.60 0.86 0.82

SocPokec 0.92 1.02 1.04 0.81 0.41 0.34 0.73 0.67

HiggsTwitter 1.48 2.30 1.48 1.64 2.20 1.19 1.65 2.03

RoadNetCA 0.67 1.13 0.98 0.92 1.02 1.20 0.76 0.91

WebGoogle 0.58 0.82 0.78 1.74 1.69 0.59 0.61 0.74

Amazon0312 1.05 1.47 0.39 0.91 0.91 0.97 1.21 1.20

Average 0.93 1.25 0.90 1.19 1.16 0.82 0.93 0.99

Table 2.6: The speedup of Warp Segmentation over CuSha’s [42] CW for small graphs.
The shards reside inside the GPU’s global memory (x means graph is large - requires host
memory).

near par performance, as shown by averages in Table 2.6.

2.4.2 Vertex Refinement Performance Analysis

Next we analyze the performance of our framework when it is scaled to multiple

GPUs. First we present the speedup provided by Vertex Refinement compared to existing

methods over very large input graphs, and analyze its cost and benefits. For the experi-

ments in this section, we created 12 Rmat and Erdős-Rényi graphs with different sizes and

densities, shown in Figure 2.7. 6 of these graphs can be fit inside two of our GPUs and 6

require three GPUs. Finally, we analyze the performance when smaller graphs are processed

on multiple GPUs.

33

Input Graph N. Vertices N. Edges

RM54V704E 54 525 952 704 643 072

ER50V671E 50 331 648 671 088 640

RM50V671E 50 331 648 671 088 640

RM46V671E 46 137 344 671 088 640

RM46V603E 46 137 344 603 979 776

RM41V536E 41 943 040 536 870 912

RM41V503E 41 943 040 503 316 480

ER39V469E 39 845 888 469 762 048

RM39V469E 39 845 888 469 762 048

RM37V469E 37 748 736 469 762 048

RM37V436E 37 748 736 436 207 616

RM35V402E 35 651 584 402 653 184

Table 2.7: Graphs for multi-GPU experiments: Top 6 graphs used in experiments with 3
GPUs; rest used with 2 GPUs.

Vertex Refinement Performance Comparison.

To better realize the importance of data communication strategy and the efficiency

of Vertex Refinement, we have implemented two other inter-device communication methods

in our framework. The first method is the straightforward solution that copies all the

vertices belonging to one device to other devices at every iteration. We refer to this solution

as ALL. The second one is the maximal subset method where vertices that belong to one

device and can be accessed by another device are identified in a pre-processing stage. During

the iterative execution, only these vertices are communicated to other devices. We refer to

this method as MS. We compare these methods with Vertex Refinement - VR. Note that to

better realize the benefits of VR, for all the inter-device communication methods, we keep

intra-device processing style intact. In other words, underlying graph processing method is

WS for all the experiments in this section.

Table 2.8 shows the speedup of our framework when VR is employed over ALL

and MS, for all the graphs and benchmarks. In all cases, our solution performs better than

other methods. When averaged over all the graphs and benchmarks, our approach provides

1.81x and 1.30x speedups over ALL and 1.77x and 1.28x speedups over MS for three-GPU

34

Input Graph BFS CC CS HS NN PR SSSP SSWP

RM54V704E
over ALL 1.85 1.81 2.53 1.64 1.66 1.48 1.75 2.03
over MS 1.82 1.78 2.46 1.59 1.63 1.47 1.71 1.98

ER50V671E
over ALL 1.64 1.36 2.19 1.55 1.43 1.22 1.72 2.02
over MS 1.67 1.4 2.24 1.49 1.48 1.21 1.76 2.05

RM50V671E
over ALL 1.83 1.76 2.51 1.68 1.63 1.49 1.72 1.98
over MS 1.78 1.74 2.47 1.6 1.6 1.36 1.68 1.93

RM46V671E
over ALL 1.78 1.77 2.48 1.7 1.62 1.43 1.72 1.98
over MS 1.75 1.74 2.42 1.64 1.6 1.41 1.69 1.93

RM46V603E
over ALL 1.84 1.82 2.58 1.67 1.67 1.43 1.79 2.07
over MS 1.81 1.8 2.51 1.59 1.64 1.37 1.75 2.01

RM41V536E
over ALL 1.89 1.84 2.71 1.62 1.69 1.44 1.8 2.1
over MS 1.82 1.81 2.63 1.58 1.66 1.39 1.75 2.04

RM41V503E
over ALL 1.29 1.29 1.61 1.23 1.21 1.18 1.24 1.35
over MS 1.27 1.28 1.57 1.21 1.2 1.15 1.21 1.32

ER39V469E
over ALL 1.21 1.06 1.49 1.18 1.14 1.19 1.23 1.21
over MS 1.23 1.09 1.53 1.16 1.17 1.15 1.25 1.24

RM39V469E
over ALL 1.29 1.3 1.64 1.28 1.21 1.39 1.26 1.38
over MS 1.28 1.28 1.61 1.24 1.2 1.29 1.23 1.35

RM37V469E
over ALL 1.26 1.26 1.6 1.24 1.2 1.23 1.22 1.36
over MS 1.25 1.26 1.57 1.21 1.19 1.18 1.2 1.33

RM37V436E
over ALL 1.33 1.32 1.66 1.27 1.22 1.25 1.28 1.41
over MS 1.31 1.29 1.63 1.23 1.22 1.24 1.26 1.39

RM35V402E
over ALL 1.32 1.31 1.72 1.28 1.23 1.21 1.25 1.41
over MS 1.3 1.29 1.66 1.23 1.22 1.2 1.22 1.38

Table 2.8: The speed-up of VR over ALL and MS for three-GPU and two-GPU configura-
tions.

and two-GPU configurations respectively.

In Figure 2.11, we analyzed the cost of VR queue management versus the savings it

provides (in terms of eliminating redundant inter-device vertex communication) by breaking

down the processing time into computation time and communication time. To create this

plot, we measured the time for each and every kernel execution, memory copy, and outbox-

loading/inbox-unloading. Aggregated computation duration refers to the total duration of

GPU kernel executions, whereas aggregated communication time refers to the total duration

of copies and/or box handling kernels.

35

0

0.2

0.4

0.6

0.8

1

A
L

L

M
S

V
R

A
L

L

M
S

V
R

A
L

L

M
S

V
R

A
L

L

M
S

V
R

A
L

L

M
S

V
R

A
L

L

M
S

V
R

A
L

L

M
S

V
R

A
L

L

M
S

V
R

BFS CC CS HS NN PR SSSP SSWP

N
or

m
al

iz
ed

 A
gg

re
ga

te
d

 T
im

e

Aggregated Computation Duration Aggregated Communication Duration

(a) RM54V704E graph with 3 GPUs.

0

0.2

0.4

0.6

0.8

1

A
L

L

M
S

V
R

A
L

L

M
S

V
R

A
L

L

M
S

V
R

A
L

L

M
S

V
R

A
L

L

M
S

V
R

A
L

L

M
S

V
R

A
L

L

M
S

V
R

A
L

L

M
S

V
R

BFS CC CS HS NN PR SSSP SSWP

N
or

m
al

iz
ed

 A
gg

re
ga

te
d

 T
im

e

Aggregated Computation Duration Aggregated Communication Duration

(b) RM41V503E graph with 2 GPUs.

Figure 2.11: Processing-time break down into computation time and communication time
for the Vertex Refinement (VR) compared to ALL and MS. Computation time is the total
duration of kernel execution, and communication time is the total duration of inbox/outbox
management plus inter-device memory copies. For each benchmark, the times are normal-
ized with respect to the longest time. Note that this times cannot be used to infer the
overall speedup due to asynchronicity of devices.

36

First, it is evident from both plots in Figure 2.11 that MS is not an effective

solution for reducing communication overhead. In fact, in one case (PR in Figure 2.11a)

the overhead of outbox handling overcomes the benefits of pre-selection. Second, unlike MS,

VR significantly reduces the total communication duration by refining vertices on-the-fly

while adding negligible overhead to the computation duration. Note that even though in

VR the vertex information is communicated accompanying its index, the communication

duration is still much less compared to ALL and MS for all the cases. We note that another

overhead of VR is higher register consumption. In our configuration, compared to ALL

and MS, the kernel with Online Vertex Refinement requires two more 32-bit registers per

thread, asking 30 in total. Since Nvidia Kepler architecture allows a thread to consume

up to 32 registers without limiting occupancy, this higher register pressure does not hurt

the performance. Third, by comparing Figure 2.11a and Figure 2.11b, we notice that more

time is spent on the communication by employing more GPUs. By adding another GPU,

each device needs to send and receive more vertex information to and from more devices,

signifying VR’s supremacy even further. Especially in the 3-GPU configuration, using host

as the hub supports reducing inter-device traffic by passing the data over PCIe only once.

Scaling to multiple GPUs for smaller graphs.

To observe the effect of scaling graph processing procedure from one or two GPUs

to three GPUs, we experimented our framework with smaller graphs and more GPUs and

reported the speedups in Table 2.9. As this table shows, the performance does not scale

linearly as we add more GPUs. This is due to comparatively slow PCIe paths and also

imperfect load division between different GPUs. Also, the speedup of adding more GPUs

greatly depends on the graph algorithm. For example, in PageRank (PR) the chances that

a vertex is updated during an iteration is relatively high (especially in earlier iterations)

thus more vertices have to be transferred from one GPU to another. As a result, we observe

lower speedups in PageRank compared to other algorithms when adding more GPUs.

37

Input Graph GPUs BFS CC CS HS NN PR SSSP SSWP

RM41V503E 3 vs. 2 1.39 1.38 1.32 1.23 1.21 1.12 1.32 1.35

ER39V469E 3 vs. 2 1.36 1.11 1.44 1.19 1.33 1.09 1.28 1.26

RM39V469E 3 vs. 2 1.3 1.37 1.42 1.22 1.28 1.13 1.42 1.29

RM37V469E 3 vs. 2 1.21 1.27 1.32 1.24 1.38 1.19 1.34 1.43

RM37V436E 3 vs. 2 1.22 1.18 1.32 1.17 1.21 1.18 1.28 1.34

RM35V402E 3 vs. 2 1.5 1.37 1.42 1.23 1.29 1.14 1.33 1.39

RM33V335E
3 vs. 1 1.75 1.56 1.95 1.33 1.52 1.1 1.55 1.59
2 vs. 1 1.27 1.24 1.4 1.07 1.12 1.06 1.21 1.2

ComOrkut
3 vs. 1 1.65 1.81 1.95 1.28 1.97 1.43 1.96 1.85
2 vs. 1 1.19 1.31 1.65 1.15 1.36 1.32 1.4 1.39

ER25V201E
3 vs. 1 1.5 1.55 1.44 1.19 1.38 1.18 1.48 1.58
2 vs. 1 1.14 1.33 1.16 1.07 1.13 1.15 1.11 1.19

RM25V201E
3 vs. 1 1.47 0.96 1.56 1.29 1.38 0.93 1.29 1.17
2 vs. 1 1.08 0.97 1.26 1.1 1.08 1.01 1.07 0.94

RM16V201E
3 vs. 1 1.45 1.64 1.74 1.3 1.56 1.02 1.42 1.6
2 vs. 1 1.26 1.36 1.44 1.12 1.21 1.06 1.17 1.34

RM16V134E
3 vs. 1 1.36 1.58 1.86 1.36 1.47 1.19 1.46 1.66
2 vs. 1 1.21 1.21 1.44 1.14 1.11 1.12 1.12 1.31

Table 2.9: The speedup of our framework when scaling to more GPUs: From 2 to 3 GPUs
for the top 6 graphs; and From 2 to 3 and from 1 to 2 GPUs for the rest of the graphs.

We also present the effect of the graph characteristics (graph size and density)

on the scalability of our framework in Figure 2.12. By comparing large graphs and small

graphs in Figure 2.12, we observe that as the graphs get larger with greater number of edges,

adding more GPUs produces greater reductions in graph processing time. In addition,

higher density in larger graphs signifies the reduction in the processing time when scaling

to multiple GPUs by downsizing inter-device vertex transfer volumes.

2.5 Summary

This chapter introduced a CUDA-based solution for efficient scaling of iterative

graph algorithms to larger graphs and multiple GPUs. The graphs are stored in the space-

saving CSR form that allows processing large graphs. To overcome the SIMD execution

inefficiency in existing CSR-based graph processing methods, this chapter proposed Warp

38

0

1

2

3

4

5

d
=

8

d
=

1
6

d
=

3
2

d
=

8

d
=

1
6

d
=

3
2

d
=

8

d
=

1
6

d
=

3
2

d
=

8

d
=

1
6

d
=

3
2

d
=

8

d
=

1
6

d
=

3
2

d
=

8

d
=

1
6

d
=

3
2

Edges: 168M Edges: 235M Edges: 302M Edges: 369M Edges: 436M Edges: 537M

P
ro

ce
ss

in
g

T
im

e
(s

)

1 GPU 2 GPUs 3 GPUs

Figure 2.12: The scalability of our framework over graphs with different number of edges
and densities for SSSP benchmark. All the graphs are Rmat created with parameters
a = 0.45, b = 0.25, and c = 0.15. y axis is the processing time (lower is better).

Segmentation, a novel technique that assigns appropriate number of warp threads to process

vertices with irregular-sized neighbors on-the-fly and provides 1.29x−2.80x speedup over

state-of-the-art Virtual Warp-Centric method. It also offered Vertex Refinement in order to

scale the graph processing over multiple GPUs. Vertex Refinement efficiently collects and

transfers only those vertices that are boundary and recently updated. Vertex Refinement

maximizes the inter-device bandwidth utilization efficiency and enables up to 2.71x exclusive

speedup over existing multi-GPU communication schemes.

39

Chapter 3

Enabling Work-Efficiency

Proposed solution in the previous chapter, due to being generic and being able to

express a wide variety of algorithms, processes all the vertices and visits all the neighbors

belonging to vertices iteratively. However, in reality only a subset of vertices and their

incoming edges need to be processed in each iteration. To study this issue, we measured

the percentage of updated vertices and their connected edges across iterations for two well-

known graph algorithms, and plotted the results in Figure 3.1. It is evident from these

plots that in most iterations the vast majority of the vertices do not cause any changes in

the values, and thus need not be processed. In other words, the necessary volume of work

to carry out is only the integral of presented plots. The redundant calculations account for

a great deal of SIMD power and memory bandwidth being wasted.

In another class of GPU graph processing solutions ([60, 16, 84]) this problem

is mitigated by focusing on vertex and edge frontiers. These solutions are categorized as

push-based methods [63] where the computation is invoked alongside outgoing edges. Never-

theless, push-based approaches have a few disadvantages compared to vertex-centric model

which limit their usage. First, push-based methods have to deal with the multiple writers

issue, hence for a correct functionality they require atomics in the main computation routine

which restricts the framework expressiveness and complicates the description of the desired

40

0

20

40

60

80

100

0 40 80 120 160

%
 U

p
d

at
ed

 V
er

ti
ce

s

Iteration

PR - Vertices

LiveJournal socPokec HiggsTwitter amazon0601

0

20

40

60

80

100

0 10 20 30 40 50

%
 U

p
d

at
ed

 V
er

ti
ce

s

Iteration

SSSP - Vertices

0

20

40

60

80

100

0 10 20 30 40 50

%
 U

p
d

at
ed

 E
d

ge
s

Iteration

SSSP - Edges

0

20

40

60

80

100

0 40 80 120 160

%
 U

p
d

at
ed

 E
d

ge
s

Iteration

PR - Edges

Figure 3.1: The percentage of updated vertices and their connected edges across iterations.

algorithm. On the other hand, vertex-centric model follows the single writer semantics and

does not use atomics. Second, unlike vertex-centric methods, push-based approaches inhibit

natural out-scaling. A GPU has to perform remote atomics on scattered locations of the

destination device’s memory resulting in significant performance loss. Finally, it is easier

to think like a vertex and express an algorithm in the vertex-centric model as opposed to

think like a frontier. Henceforth, the focus of this chapter and this thesis is vertex-centric

model.

This chapter presents a mechanism to keep track of active vertices– the subset

of vertices that are subject to change in the current iteration– and subsequently process

only those, providing a vertex-centric yet work-efficient design that functions according

to the propagation of vertex activities in the graph. This mechanism records the vertex

41

activeness within an auxiliary bitmask data structure in which each bit corresponds to one

vertex. During an iteration, threads retrieve the content of assigned vertex’s bit in the

bitmask, and process only those that are activated. Processing an active vertex during

an iteration, if the vertex is updated, activates the vertices sitting at the other end of

its outgoing edges. Compared to frontier-based approaches, bitmasks incur much lower

memory overhead, facilitate scaling the solution to multiple GPUs, and eliminate the need

for– and consequently the cost of– a duplicate elimination strategy.

Adding work-efficiency to vertex-centric graph processing naturally requires a se-

lective vertex processing approach. In other words, only those vertices that are active will

be processed in the current iteration. Accompanied with the irregularity of the real-world

graphs [55], it necessitates a task expansion strategy that not only accounts for visiting

vertices with irregular number of neighbors, but also distributes these irregular adjacency

lists– which may be located disjointly in memory– appropriately among threads. We intro-

duce a dynamic task assignment strategy that utilizes high performance GPU primitives

to efficiently map threads inside the warp to the adjacency list elements of the active ver-

tices. Using this technique, the kernel avoids intra-warp thread starvation during neighbor

expansion and sustains a high SIMD efficiency.

Moreover, enabling work-efficiency for vertex-centric computation of a directed

graph requires us to accompany its CSC representation with its primary CSR representation.

This places burden on limited available GPU global memory and limits the size of the graph

that can be held inside and processed by a GPU. We propose vertex grouping technique

that creates a trade-off between the work-efficiency and the consumed amount of DRAM. In

vertex grouping, the vertices in the CSC representation are grouped together and multiple

edges between the groups are represented only by one edge. As the number of vertices

inside a group increases, the size of the CSC representation is reduced. However, on the

other hand, all the vertices inside the vertex group are activated together which introduces

some work-inefficiency.

A common approach for scaling a graph computation to multiple GPUs is to

42

partition the graph and store each partition inside a GPU’s DRAM. However, this scheme

can lead to inter-device load imbalance since during an iteration GPUs can have significantly

different number of active vertices to process. We mitigate this issue using permissive

partitioning technique. In permissive partitioning, the graph partitions stored in the GPUs

have overlap to an extent the global memory of devices allow. Therefore, during an iteration,

vertex activeness distribution is analyzed using the constructed bitmask and the regions at

which GPUs process the graph are resized accordingly so as to provide a maximally balanced

load between GPUs.

We packaged aforementioned methods in a CUDA C++ template library named

KiTES allowing its ultimate integration with the user’s code– unlike existing frameworks

which are implemented as stand-alone programs. While KiTES abstracts away the compli-

cation of the GPU command enqueuing and kernel orchestration via its API, it gives users

freedom to control various execution settings such as specific GPUs that process the graph,

the synchronicity of the computation, etc. Most importantly, the user supplies the desired

device function objects which are passed to the main GPU kernels and constitute the heart

of the computation. Our experiments show that KiTES provides up to 5.46x and 1.67x

speedup over the non-work-efficient solution for single and multi-GPU configurations over

multiple algorithms and inputs respectively.

The remainder of the chapter is organized as follows: Section 3.1 presents the re-

quired data structures for enabling work-efficiency. Section 3.2 and Section 3.3 describe tech-

niques to overcome the warp efficiency and scalability challenges induced as work-efficiency

side-effects. Section 3.4 discusses the KiTES library collecting these techniques. Section 3.5

gives the results of our evaluation and Section 3.6 summarizes the chapter.

3.1 Data Structures for Work-Efficiency

In iterative vertex-centric graph processing, a vertex’s value is subject to change

only if the value of at least one of the vertices at the other end of its incoming edges changes.

43

In the existing vertex-centric work-inefficient approach [42, 41], updates are captured auto-

matically since all the vertices– regardless of the changes in the graph in previous iterations–

are processed in each iteration. However, to enable work-efficiency, the set of vertices that

are activated by the changes in the current iteration must be identified. Therefore, the set

of outgoing neighbors for a vertex have to be discoverable by threads inside the kernel with

minimum overhead. Towards this end, for directed graphs, we accompany the Compressed

Sparse Row (CSR) representation of the graph with primary components of the Compressed

V0 V4

V1

V2

V3 V5

V6

V7

(a) Example graph.

V0 V1 V2 V5 V6

0 0 1 4 2 5

0 0 1 6 7 9

3 4 5

V3 V4

2 4R

C

V

4

10

V7

(b) CSR representation.

0 2 3 8 10 104 5ColOffset 10

1 2 3 4 5 3 6 7 4RowIndex 6

(c) CSC representation.

Figure 3.2: An example directed graph, its CSR representation, and the main components
of its CSC representation.

Sparse Column (CSC) format, as shown in Figure 3.2. An array named ColOffset with size

|V | + 1 stores the prefix sum of the number of outgoing neighbors for vertices (i.e., the

frequency of non-zero elements in columns of the adjacency matrix), and another array

named RowIndex with size |E| that stores the index of the outgoing neighbors. In this

representation, the indices of vertices pointed to by a vertex are placed contiguously and

their location inside RowIndex is easily retrievable by an access to ColOffset at vertex’s

index position.

As an example, consider the vertex V4 in Figure 3.2. The 4th and 5th elements

of R array in Figure 3.2b tell us that the set of V4’s incoming neighbors start from the 4th

element in C and end before the 6th element in C, which gives vertices 2 and 5 as indices

44

for vertices sitting at the other end of incoming edges. Now, for the outgoing neighbors, the

4th and 5th elements in ColOffset array reveal that the set of outgoing neighbors start

from 5th element in RowIndex and end before the 8th element in RowIndex, thus vertices

with indices 3, 6, and 7 are at the other end of V4’s outgoing edges. Please note that if the

graph is undirected, its CSC representation is not necessary due to the graph’s symmetric

adjacency matrix.

3.1.1 Recording Vertex Activeness using Bitmasks

We utilize two auxiliary bitmask data structures in order to keep track of active

vertices. Both bitmasks reside inside the GPU global memory and the corresponding bits

of the bitmasks are associated with one vertex in the graph. Setting a bit in the bitmask

means that the corresponding vertex will be active and thus will be processed in the next

iteration. During a given iteration, one of the bitmasks is written to for recording the active

vertices that will be processed during the next iteration, and the other one contains the

activeness of vertices for the current iteration, i.e. it was written in the previous iteration.

At the end of each iteration, bitmasks switch their roles, and before invoking the main

computation kernel, the bitmask to be written is reset.

Our approach for keeping track of the activeness of vertices to provide work-

efficiency has the following advantages:

• Minimum memory overhead. Only two bits are needed for a vertex. The upper-

limit for the space to store the bitmaskss is 2×4×d |V |32 e bytes. In comparison, frontier-

based approaches require buffers to collect active frontier in which each element needs

to be the size of vertex index. Without pre-processing, the algorithm must set aside

storage to keep producer and consumer frontiers each of which in general can be as

large as the number of edges, thus leading to overall storage overhead upper-limit of

2×|E|×sizeof(vIdx) bytes. To put this into perspective, consider the LiveJournal [4]

graph that has around 4 million vertices and 34 million edges. The required storage to

45

store bitmasks would be only 1 MB while frontiers require 272 MB of space (assuming

vertex indices are 4 bytes long each).

• Automatic duplicate elimination. To provide work-efficiency, frontier-based ap-

proaches require schemes to eliminate duplicate indices in the new frontier. Hashing

is the preferred method in this case and is utilized to imitate the behavior of an un-

ordered set. However, in addition to consuming compute resources, hashing inevitably

introduces non-coalesced memory accesses that reference irregular memory positions.

Moreover, hashing approaches requires additional data structures. On the other hand,

using bitmasks instinctively eliminates the duplicates since setting an already set bit

in the bitmask has no adverse effect (i.e., no duplicates are created).

• Facilitates multi-GPU scalability. To enable work-efficiency in a multi-GPU pro-

cessing environment, during each iteration each device needs to know the set of vertex

indices assigned to it that are activated by vertices at other GPUs. A GPU can easily

do this by ORing its bitmask section with the corresponding bitmask section in other

GPUs. In comparison, in frontier-based approaches, explicit vertex indices need to

be copied across devices which requires duplicate elimination both before inter-device

transfer to save PCIe bandwidth and after inter-device transfer to avoid redundant

processing.

As mentioned earlier, in our method, each vertex of the graph is assigned to one

specific bit inside a bitmask. Considering that the global memory writes in Kepler archi-

tecture (and also later architectures) are cached in L2, and in currently available CUDA-

enabled GPUs L2 holds 32 bytes per cache line, setting bits for the vertices inside the

bitmask has the probability of hitting the cache if at least one of 255 adjacent vertices

have recently been marked. There is a considerably high likelihood of a hit given that

nearby vertex indices in real-world graphs are more likely to be neighbors compared to

indices that are far from each other. Figure 3.3 illustrates this phenomenon by plotting the

difference of vertex indices of source and destination of edges belonging to two real-world

46

Frequency

0

10000

20000

30000

40000

-2 -1 0 1 2

Log(|dst.index – src.index|)
(a) SocPokec [80].

Frequency

0

200000

400000

600000

-2 -1 0 1 2

Log(|dst.index – src.index|)
(b) LiveJournal [4].

Figure 3.3: The frequency distribution of differences between source and destination indices
of edges of 2 real-world graphs.

Graph Algorithm |CSR|+ |V |+ |E| |CSC|

LiveJournal [4]
BFS 315 MB

295 MB
SSSP 591 MB

socPokec [80]
BFS 136 MB

129 MB
SSSP 258 MB

HiggsTwitter [18]
BFS 63 MB

61 MB
SSSP 123 MB

amazon0601 [49]
BFS 17 MB

15 MB
SSSP 30 MB

Table 3.1: The memory required for CSR representation of four directed graphs [50] and
their additional CSC representation.

graphs. The high frequency of data points distributed close to the y axis confirms our claim.

Moreover, atomic operations used to set bits of the bitmask within the CUDA kernel have

fire-and-forget semantics. Thus, the warp scheduler can hide their latency by moving on

and executing further instructions (from same warp or other warps) after an atomic request.

3.1.2 Vertex Grouping

We previously mentioned that directed graphs in our solution require CSC repre-

sentation to be processed in a work-efficient manner. RowIndex and ColOffset arrays in

47

0

1

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

1

1

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

(a) Graph’s adjacency matrix be-
fore vertex grouping.

0 2 3 6 6ColOffset

0 1 2 1 2 3RowIndex

1

1

0

0

0

0

1

0

0

1

1

1

0

0

0

0

0 1 2 3

0

1

2

3

(b) Graph’s adjacency matrix and
its CSC representation after vertex
grouping.

Figure 3.4: The effect of vertex grouping with ratio 2 on the size of the CSC representation
of the example graph in Figure 3.2.

CSC impose storage overhead especially in discrete GPUs with fixed amount of DRAM.

Table 3.1 compares the required memory to store CSR format plus the vertex and edge

arrays with the required memory to store CSC representation for multiple graphs and two

algorithms. Based on the table, adding CSC incurs 1.5x-1.97x memory overhead. This high

memory overhead can potentially limit the size of the graph that can be processed by the

GPU. To ameliorate this issue and enable processing of larger graphs, we propose vertex

grouping technique to be applied onto these two buffers.

In vertex grouping, fixed number of vertices with consecutive indices are grouped

and represented as one entity in RowIndex and ColOffset arrays. If vertex A in the graph

has an edge to vertex B, the vertex group containing A will have an edge to the vertex

group containing B. Using this technique, if there are multiple edges between vertices in

two vertex groups, they will be represented by one element inside the ColOffset array, hence

reducing the array size, as demonstrated by the example in Figure 3.4. The amount of the

reduction in the ColOffset array depends on the structure of the graph. However, with a

grouping ratio of Ratio, the space used by RowIndex will be reduced by a factor of Ratio.

Note that when vertices are grouped, the bitmasks shrink according to the grouping ratio.

48

Vertex grouping provides a knob that can be turned to perform trade-off between

memory consumption and work efficiency. By representing a group of vertices as a single

combined entity we save space; however, if any vertex inside a group is activated, all the

vertices inside the group must be processed in the next iteration, i.e. the computation

will include some redundancy. The parameter that controls this trade-off is the number of

vertices per group. The more the number of vertices inside a group, the less memory is

consumed to store two aforementioned arrays, and the more the redundant computation

performed. Note that a work-inefficient approach sits at the end of this spectrum where the

whole adjacency matrix is represented as one entity.

3.2 Warp Efficiency with Dynamic Thread Assignment

Figure 3.5 presents the core computation routine in our solution. Until the graph

computation converges, the host side launches GPU kernels in which parallel threads are

assigned to active vertices. A local version of the vertex content is initialized using the

user-provided device function (line 3). Then, for all the incoming neighbors of the active

vertex a neighbor visitation function (line 5) and a reduction function (line 6) are executed

both of which are provided by the user for the given graph computation. After visiting

all the neighbors, another function produces a boolean predicate (line 8) which signals the

update of the global vertex value and the activation of the vertex’s outgoing neighbors.

Essentially, the procedure utilizes these predicates created inside the kernel to determine

the propagation of computation.

In this procedure, the neighbor visitation and reduction routine (lines 4 to 7)

dominate the kernel’s execution time; thus, its SIMD parallelization strategy for the GPU

environment is of great importance. Once having introduced the notion of vertex activeness,

the main challenge of parallelization is load balancing. Vertices assigned to threads inside

a warp may or may not be active, which makes the set of to-be-visited adjacency lists

in C array disjoint. Please note that work-inefficient schemes do not have this issue. In

49

Figure 3.5: Iterative Vertex-Centric Graph Processing.

Warp Segmentation [41], for example, threads inside the warp that are assigned to process

consecutive vertices access consecutive locations in R array (Figure 3.2b) and read the

neighbor indices placed consecutively in C array. Since all the vertices are supposed to be

processed at every iteration, adjacent locations are being accessed in R and C arrays which

makes it trivial to avoid intra-warp thread underutilization. In addition, employing simpler

static assignment approaches [30, 34] makes the kernel susceptible to load imbalance in

presence of irregular graphs. Hence an effective assignment strategy needs to be devised.

Next we present a dynamic thread assignment technique to overcome the above

challenge. In our method, threads inside the warp iterate over a packed view of the neighbors

belonging to different vertices . Therefore, in each round, each thread inside the SIMD group

is assigned to visit and process one neighbor, avoiding intra-warp load imbalance and leading

to a sustained high warp execution efficiency.

Figure 3.6 illustrates the implementation details of our dynamic thread assign-

ment technique via an example. First, the number of neighbors that need to be visited

is calculated for active vertices – threads inside the warp compute the intra-warp binary

50

V0 V1 V2 V3 RV 0 1 3 6 7 n0 n1 n2 n3 n4 n5 n6C

1 0 3 0nbrSize = R[vIdx+1] – R[vIdx]2

loc = Intra-warp binary scan(active?) 0 1 1 23

ps = Intra-warp prefix sum(nbrSize) 1 1 4 44

totalLoad = shfl(ps , warpSize-1) 4 4 4 45

eVirIdx = { 0, 1, . . ., totalLoad-1 } 0 1 2 38

vLoc = binary search(eVirIdx, loadPS) 0 1 1 19

adjLstOffset = Ra[vLoc] 0 3 3 310

adjLstIdx = virIdx - loadPS[vLoc] 0 0 1 211

nbrIdx = C[adjLstOffset + adjLstIdx] n0 n3 n4 n512

Shared Ra[loc] = R[vIdx] 0 36

Shared loadPS[loc] = ps - nbrSize 0 1 ∞ ∞7

0 1 2 3vIdx1

Figure 3.6: A simplified example demonstrating our dynamic thread assignment strategy.

prefix sum [31] using the vertex activeness binary predicate (line 3) so that threads with

active vertices realize their relative location between similar threads inside the warp. Then

threads perform an intra-warp inclusive prefix sum [86] using the number of neighbors for

active vertices (line 4), and shuffle the last lane’s element to determine the total number

of neighbors to visit (line 5). We also utilize two on-chip shared memory buffers to collect

the row offset array elements and the exclusive prefix sum of number of neighbors both for

active elements (lines 6 and 7).

Now, by knowing the total number of neighbors, threads can iterate over the loads

without underutilization. The iteration index can be considered as a virtual neighbor index

that has to be mapped to an actual neighbor inside the loop. Threads identify the active

vertex location corresponding to their assigned virtual index using a binary search over the

buffer containing the prefix sum of the number of neighbors (line 9), and figure out the ad-

jacency list element index and offset inside C array (lines 10 and 11) using the information

collected inside the shared memory. Therefore, threads find their assigned neighbors and

continue the computation which involves a compute function with the neighbor content and

reducing it with other neighbors. This technique essentially enables a one-to-one mapping

between a thread and the neighbors of an active thread thus avoiding thread underutiliza-

tion. The same scheme is used for activating a vertex’s outgoing neighbors too.

51

3.3 Permissive Partitioning for Inter-GPU Load Balance

In the approach proposed in Section 2.3 as well as in existing multi-GPU graph

processing solutions [94, 24], in order to distribute the computation across multiple GPUs,

the graph is statically partitioned and each partition is assigned to one GPU. To maximize

the allowable size of the input graph, a partition that is assigned to a GPU stays on the

device throughout the iterative graph processing duration. However, this scheme can lead

to inter-device load imbalance and GPU idling. This is because as the iterations go forward,

the set of active vertices constantly change. In an iteration, a GPU that holds a partition

of the graph and is assigned to process vertices in that particular partition may contain

only a few active vertices and edges, while another GPU may end up with a considerably

high number of active graph components. To illustrate this argument, in Figure 3.7 we

have plotted the number of active edges for three devices with static partitioning across

iterations for two graph algorithms. The deviation between the number of active edges

across devices during iterations is clear from these plots. This issue can potentially introduce

device underutilization, since, assuming similar GPU characteristics, all the GPUs have to

wait for the GPU with the most active graph components to finish its job in an iteration.

Essentially in work-efficient solutions a GPU’s load is mainly determined by the activeness

of vertices.This motivates the need for our technique: permissive partitioning.

In permissive partitioning we allow graph partitions being held by GPUs to overlap

as much as device memories allow – see Figure 3.8. This enables us to dynamically slide the

borders using which the GPUs determine the corresponding graph partitions they compute.

The direction and the amount by which borders slide are determined on-the-fly during the

iteration by observing the distribution of the active vertices in the bitmask. If a device in the

current assignment has considerably higher number of active vertices and edges compared to

other devices, the border that specifies its computation region is shrunk so that all devices

have possibly equivalent or at least closer number of active graph components. Therefore,

52

0

5

10

15

20

25

0 10 20 30 40 50 60 70

A
ct

iv
e

E
d

ge
s

(M
il

li
on

s)

Iteration
PR - LiveJournal

Dev #0 Dev #1 Dev #2

0

5

10

15

20

25

0 5 10 15 20 25 30

A
ct

iv
e

E
d

ge
s

(M
il

li
on

s)

Iteration

SSSP - LiveJournal

0

1

2

3

4

5

6

0 5 10 15 20 25

A
ct

iv
e

E
d

ge
s

(M
il

li
on

s)

Iteration

SSSP - HiggsTwitter

0

1

2

3

4

5

6

0 10 20 30 40 50 60

A
ct

iv
e

E
d

ge
s

(M
il

li
on

s)

Iteration

PR - HiggsTwitter

Figure 3.7: The distribution of active edges on 3 GPUs across iterations in WS-VR [41].

it provides a more balanced load and thus diminishes device underutilization. We employ

permissive partitioning with the following offline and online phases.

Offline Phase

After estimating number of edges per device (as in static partitioning), we query

the devices’ available DRAM and then expand the initial static vertex-range estimate to

use the additional device memory available. We maximize the usage of GPU’s DRAM by

storing as much of the graph data as possible. We also count the average number of edges

per vertex for every 128 consecutive vertices, the same size as the thread-block dimension

in our solution 1. The resulting array is used in the online phase described next.

1Since our kernels are warp-centric, 128 as the thread-block size gives the kernel full theoretical occupancy,
and simultaneously, minimizes the inter-warp load imbalance.

53

V0 V4

V1

V2

V3 V5

V6

V7

0 0 1 4 2 5

0 0 1 6 7

3

2 4R0

C0 1 4 2 5

6 7 9

3 4 5

2 4R1

C1 4

10

0 1 2 5 63 4 5 6 73 4 8

GPU #1GPU #0

Figure 3.8: An example of permissive partitioning using the graph in Figure 3.2a and the
resulting data structures for each device.

Online Phase

At the beginning of each iteration of the iterative graph processing procedure, the

number of active vertices in every group of 128 vertices (the same size as the sections in

the offline phase) are counted by the GPU. Counting kernel utilizes the already existing

bitmask and native population count primitive. Our profiling shows that GPUs spend less

than half a percent of their aggregated kernel execution time on this counting kernel. The

kernel writes the results directly into a pre-allocated host pinned buffer. After enqueuing all

the commands to GPUs, the host waits for the events associated with the bitmask counting

kernel. When this kernel ends, the host calculates an array containing the prefix sum of the

element-wise multiplication outcome of active number of vertices and the average number

of edges per vertex in that section. When this array is created, the total approximate

number of active edges can be found at the end of the array, and therefore, the fair amount

of edges per device that balances load can be easily calculated. The host discovers the

regions standing for the fair loads by binary searching the constructed array– which has a

logarithmic time complexity. For each device, the host slides the border based upon the fair

load value. If the load falls outside of the vertex region held by the device, the end of the

region becomes the assignment border for the next iteration. Using permissive partitioning,

at every iteration each device receives an approximately equal– or at least fairer– number

of active edges. Note that since the bitmask counting kernel is enqueued earlier than other

54

commands, the host and the devices execute concurrently. Our experiments show that the

host carries out its computation much sooner than when the devices finish the iteration;

hence, the devices are not blocked.

3.4 KiTES and its Interface

We packaged the introduced techniques of our solution in a CUDA C++11 tem-

plate library named KiTES. This design maximizes the solution’s portability and ease-of-

use. KiTES abstracts away the complexities of dealing with CUDA API for data structure

management and command buffer orchestration for GPUs, as well as the subtleties of GPU

kernel development. KiTES gets compiled by NVCC alongside the code that includes and

uses it therefore the developer need not worry about installing the framework or satisfying

dependencies.

We illustrate the simplicity of its usage via an example. Figure 3.9 shows an actual

sample code utilizing KiTES to run SSSP algorithm on the requested graph using 3 GPUs.

Inside the main function, the user instantiates a CSR graph constructed from the specified

edge-list (lines 6-10). The property of the graph and the preprocessing function for the

graph are also supplied during the construction. The template arguments determine the

types of the vertex and the edge used to hold the graph and also the storage space for the

graph. In this example, the final form of the CSR graph will be collected inside the host

pinned memory.

Lines 11 to 18 define four device functions with lambda expressions 2 for: vertex

initialization, neighbor visitation, partial value reduction, and update predicate creation.

These device functions describe the procedure to perform on a vertex during an iteration so

as to carry out SSSP iteratively. Line 19 in Figure 3.9 specifies the GPUs with IDs 0, 1, and

2 as a device group. KiTES allows the user’s code to determine the processing platforms as

a combination of all or a number of processing devices. At line 20 the processing function

2CUDA 7.5 and 8.0 allow GPU lambdas – device function objects that are defined in the host code.

55

1 #include <kites.cuh>

2 #include “pre_process_func_def_dec.hpp”

3 int main(){

4 using vT = uint;

5 using eT = uint;

6 kites::graph_csr<vT, eT, kites::mem::pinned> grph(

7 kites::input_graph_form::edge_list_s_d,

8 “graph_edgelist.dat”,

9 kites::graph_property::directed,

10 pre_process_func_per_edge_sssp<vT, eT>);

11 auto vInitF = [] __device__ (volatile vT& locV,

12 vT& glob) { locV = globV; };

13 auto nbrVstF = [] __device__ (volatile vT& parV,

14 vT& nbrV, eT& connE) { parV = nbrV + connE; };

15 auto parRedF = [] __device__ (volatile vT& lV,

16 volatile vT& rV) { if(lV > rV) lV = rV; };

17 auto upPredF = [] __device__ (volatile vT& newV,

18 vT& oldV) { return newV < oldV; };

19 kites::device::nv_gpu devs{ 0, 1, 2 };

20 kites::process< kites::launch::async >(

21 grph, devs, vInitF, nbrVstF, parRedF, upPredF);

22 kites::sync_with(devs);

23 kites::io::output(devs, grph, “outVertices.dat”);

24 return 0; }

Figure 3.9: A sample use of KiTES to execute user-defined SSSP with 3 GPUs.

is called by specifying the graph object, device object, and the GPU device functions. This

essentially means that the specified graph will be processed by the set of GPUs specified as

the compute device.

Behind the scene, the library transfers the graph data into GPUs’ DRAM and or-

ganizes the graph processing procedure while utilizing specified device functions iteratively.

The function call is specified as asynchronous to the host in the template argument, which

makes the call non-blocking. After submitting the process request, the host can synchronize

with the devices and output the vertex content into a file (or alternatively another buffer

or vector). As you can see, KiTES has effectively hidden the complexity of the design in-

cluding the scheduling of commands to GPUs, kernel execution details, data transfer, buffer

allocation and deallocation, etc.

56

Input Graph |V | |E| |CSR| |CSR|+ |CSC|
Large

RMD33V330E 33.0M 330.0M 1584-3036 3036-4356

RMD30V250E 30.0M 250.0M 1240-2360 2360-3360

RMD25V250E 25.0M 250.0M 1200-2300 2300-3300

Medium

RMU33V330E 33.0M 330.0M 1584-3036 1584-3036

ComOrkut [90] 3.0M 234.3M 962-1912 962-1912

RMD25V200E 25.0M 200.0M 1000-1900 1900-2700

Small

LiveJournal [4] 4.8M 68.9M 315-610 610-886

SocPokec [80] 1.6M 30.6M 136-265 265-387

HiggsTwitter [18] 0.4M 14.8M 63-124 124-184

RoadNetCA [51] 1.9M 5.5M 38-68 38-68

WebGoogle [51] 0.8M 5.1M 27-51 51-72

Amazon0601 [49] 0.4M 3.2M 16-32 32-45

Table 3.2: Graphs for single-GPU evaluations and their representation sizes (in MB). For
undirected graphs, CSC size is zero.

3.5 Evaluation of Techniques

This section presents performance evaluation of introduced techniques in two parts.

The first part focuses on the performance of the solution on a single GPU and the second

part analyzes the techniques when multiple GPUs are employed.

3.5.1 Single-GPU Performance Analysis

In this section, we present an analysis of our solution’s performance on a single

GPU. We use the graphs listed in Table 3.2. Graphs with RMD and RMU prefixes are

directed and undirected Rmat [11] graphs respectively, created with parameters a = 0.45,

b = 0.25, and c = 0.15 while the rest are real-world graphs from SNAP dataset [50].

To compare the performance of our solution with Warp Segmentation’s [41] and

CuSha’s [42], we categorize the graphs in Table 3.2 into small, medium, and large groups.

For small graphs, all the graph components reside in the device memory in all three methods.

For medium graphs, CuSha has to put the graphs inside the host pinned memory. Finally,

57

Input Graph BFS CC CS HS NN PR SSSP SSWP

LiveJournal
KT 130 122 329 311 1631 1110 297 672
WS 172 154 535 346 2061 2326 446 772
CW 183 187 378 382 2116 1129 386 631

SocPokec
KT 65 60 114 170 216 603 171 177
WS 75 66 121 226 464 1145 194 194
CW 69 67 126 184 183 363 133 127

HiggsTwitter
KT 58 54 128 72 143 559 133 77
WS 48 37 117 75 159 483 100 77
CW 71 85 152 123 350 574 165 156

RoadNetCA
KT 71 211 1477 43 142 62 124 350
WS 386 330 1694 41 193 55 465 1077
CW 238 374 1666 37 196 66 341 927

WebGoogle
KT 29 29 39 23 43 71 43 82
WS 41 36 61 15 84 109 63 108
CW 24 30 48 26 59 65 34 61

Amazon0312
KT 18 23 109 71 34 45 34 39
WS 19 18 278 84 45 46 38 41
CW 20 26 85 76 41 45 37 49

Avg. Speedup
WS 1.87 1.11 1.48 1.05 1.53 1.38 1.62 1.45
CW 1.50 1.37 1.09 1.18 1.42 0.93 1.32 1.39

Table 3.3: Raw execution time (ms) of KiTES (KT) in comparison with Warp Segmenta-
tion’s (WS) [41] and Concatenated Windows’s (CW) from CuSha [42] when all the graphs
reside inside the GPU’s global memory.

large graphs are directed graphs for which KiTES applies vertex grouping to fit the graph

inside the device memory.

Small Graphs

Table 3.3 presents the execution time provided by our method in comparison with

Warp Segmentation (WS) [41] and Concatenated Windows (CW) from CuSha [42] frame-

work. All the graphs are inside the GPU’s global memory. As you can see, KiTES speeds up

the iterative procedure by up to 1.87x. When averaged across all the graphs and algorithms,

the speedup of KiTES over WS and CW are 1.43x and 1.27x respectively.

To illustrate the supremacy of our solution over work-inefficient methods, we mea-

sured the WS and KiTES kernel execution times across iterations over the graph processing

58

0

10

20

30

0 10 20 30

E
xe

cu
ti

o
n

 T
im

e
(m

s)

Iteration

KiTES WS

(a) SSSP

0

10

20

30

40

0 50 100 150

E
xe

cu
ti

o
n

 T
im

e
(m

s)

Iteration

KiTES WS

(b) PR

Figure 3.10: Per-iteration kernel execution time for KiTES and Warp Segmentation (WS)
for PR and SSSP on LiveJournal.

duration for PageRank and SSSP on LiveJournal graph, and plotted the results in Fig-

ure 3.10. As we can see, in both cases the execution time for WS stays approximately the

same since all the vertices are being visited and all the edges are being processed in each

iteration, regardless of the updates. However, in our solution the kernel execution time

significantly varies across iteration since it processes only active vertices. An interesting

observation is the matching patterns in Figure 3.10 and Figure 3.1 which demonstrates that

the amount of time the kernel spends on the graph is a function of active graph components.

In addition, in Figure 3.10 we see that the peak kernel execution time for KiTES is greater

than the roughly constant WS’s kernel execution time. This is due to the majority of ver-

tices being active in those iterations such that the overhead of reading from the bitmask

and writing to it exceeds the benefits it provides. However, this happens only in a few

iterations while in most iterations enabling the work-efficiency is highly beneficial. Also,

we can see that using WS the computation can take less iterations to converge which is a

minor positive side-effect of work-inefficiency.

To further examine the effectiveness of our dynamic thread assignment strategy, we

profiled the average warp execution efficiency of our kernels and compared it with WS’s and

59

0

20

40

60

80

100

L
iv

eJ
ou

rn
al

S
oc

P
o
ke

c

H
ig

gs
T

w
it

te
r

R
o
ad

N
et

C
A

W
eb

G
o
og

le

A
m

az
o
n

0
6
0

1

L
iv

eJ
ou

rn
al

S
oc

P
o
ke

c

H
ig

gs
T

w
it

te
r

R
o
ad

N
et

C
A

W
eb

G
o
og

le

A
m

az
o
n

0
6
0

1

SSSP PR

A
vg

.
W

ar
p

 E
xe

cu
ti

on
 E

ff
ic

ie
n

cy
 (

%
)

KiTES Warp Segmentation

Figure 3.11: Average warp execution efficiency profiled for KiTES and Warp Segmentation
for SSSP and PR.

plotted the results in Figure 3.11. It is evident that even though, unlike Warp Segmentation,

the disjoint segments of the adjacency list array are being accessed, our strategy handles

the introduced challenge effectively and avoids warp underutilization. Due to a longer

kernel code, KiTES’s profiled warp execution efficiencies are usually higher than Warp

Segmentation’s and are on average 82.4%.

Medium Graphs

Table 3.4 compares the execution time of KiTES with WS’s and CW’s for graphs

for which both KiTES and WS can keep inside the GPU’s DRAM but in CW the shards

have to be put inside a pinned mapped host memory. Since CW’s execution time in this

case is heavily affected by communications across PCIe bus with much slower bandwidth,

the speedup provided by our method over CW is now much bigger. When averaged, KiTES

is 7.07x and 1.32x faster than CW and WS respectively.

60

Input Graph BFS CC CS HS NN PR SSSP SSWP

RMU33V330E
KT 793 906 1011 2889 900 3139 1612 4026
WS 1164 1123 1530 2716 1589 5016 2476 5330
CW 3958 3594 12852 38296 6404 26685 10672 21960

ComOrkut
KT 332 344 3212 603 751 3803 996 866
WS 403 351 4162 681 904 4290 1398 931
CW 2059 2074 7159 7328 4728 29387 11072 5325

RMD25V200E
KT 603 683 809 4011 616 3020 1148 2769
WS 827 820 1019 4487 970 3810 1805 4066
CW 2531 2247 7744 41415 3327 13754 6877 16427

Avg. Speedup
WS 1.35 1.15 1.36 1.06 1.51 1.33 1.50 1.29
CW 5.13 4.43 8.17 11.91 6.27 6.93 7.91 5.85

Table 3.4: Execution times (ms) of KiTES (KT), Warp Segmentation (WS) [41] and Con-
catenated Windows (CW) [42] including host to device copy time. While WS and KiTES
can fit the graph inside the GPU, CuSha must hold graphs in host pinned memory.

Large Graphs

Next, we show the performance on graphs for which our method has to apply

vertex grouping to keep the graph inside device memory. KiTES enables vertex grouping

with ratios 2, 4, 32, or 64, all of which are integer powers of two so as to facilitate the

implementation. Our experiments revealed that vertex grouping ratios of 32 and 64 provide

better speedups compared to ratios higher than 4 and lower than 32. This is because,

for smaller vertex grouping ratios the overhead of dynamic thread assignment offsets the

benefits of lower amounts of redundant computation. In contrast, for ratios 32 and 64 there

is no need for dynamic thread assignment since all the threads inside the warp become

assigned to active vertices or otherwise all retire early in the kernel. Ratios higher than 64

are not desired due to very high redundancy. During buffer allocation, KiTES prioritizes

smaller vertex groups so as to provide higher performance.

Table 3.5 shows the execution time of our method KT, WS, and CW for large

graphs. On average, KiTES’s speedups over CW and WS are 5.97x and 1.19x respectively.

As we can see, KiTES still provides superior performance over WS, although its speedup is

61

Input Graph BFS CC CS HS NN PR SSSP SSWP

RMD33V330E
KT 1077 898 1465 5006 1319 4340 2432 5013
WS 1143 1103 1689 5868 1550 4907 2663 5342
CW 3692 3474 14238 82862 6231 26131 11557 21475

RMD30V250E
KT 806 761 941 4729 956 3265 1682 4589
WS 1064 963 1342 4788 1112 4230 2056 4816
CW 3203 2542 10242 44050 3792 15288 7988 19697

RMD25V250E
KT 771 781 743 5404 671 3208 1355 4258
WS 941 907 1088 4605 976 3977 1840 4770
CW 2898 2458 8304 42044 3387 14596 6642 19128

Avg. Speedup
WS 1.20 1.22 1.35 1.01 1.26 1.22 1.23 1.08
CW 3.72 3.45 10.59 11.22 4.58 5.08 4.80 4.36

Table 3.5: Execution time (ms) of KiTES (KT), Warp Segmentation (WS) [41] and Con-
catenated Windows (CW)[42] including host to device copy time. KiTES has to apply
vertex grouping to fit the representation inside the GPU’s DRAM.

now lower due to the some computation redundancy introduced by vertex grouping.

To further observe the effect of vertex grouping, we manually enabled it for one of

the medium graphs, and examined the execution times with different vertex grouping ratios.

Figure 3.12 presents representation size coupled with the speedup over Warp Segmentation

for different vertex grouping ratios and two graph algorithms. The plot confirms the trade-

off between the memory consumption and the performance enabled by vertex grouping.

The more vertices there are inside each group, the lower is the memory consumption but

more redundant computation is present that leads to a bigger performance penalty. Also,

the amount of reduction in size is highly dependent on the structure of the graph. If the

distribution of elements in the adjacency matrix of the graph is uniform, the adjacency

matrix becomes denser after reduction lowering the reduction achieved by vertex grouping.

3.5.2 Multi-GPU Performance Analysis

Next we analyze KiTES’s scalability when multiple GPUs are being deployed for

the graph processing task. For experiments in this part, we utilize directed and undirected

Rmat graphs with different sizes and densities presented in Table 3.6.

62

1

1.1

1.2

1.3

0

500

1000

1500

2000

2500

3000

Sp
ee

d
u

p
 o

ve
r

W
S

C
o
n

su
m

ed
 S

iz
e

(M
B

)
Representation Size Speedup

(a) SSSP

1

1.2

1.4

1.6

1.8

0

500

1000

1500

2000

2500

Sp
ee

d
u

p
 o

ve
r

W
S

C
o
n

su
m

ed
 S

iz
e

(M
B

)

Representation Size Speedup

(b) PR

Figure 3.12: The effect of vertex grouping on the GPU’s DRAM consumption and the
performance of the procedure for two algorithms. The graph is RMD25V200E.

Input Graph N. Vertices N. Edges

RMU50V671E 50 331 648 671 088 640

RMD50V671E 50 331 648 671 088 640

RMD46V603E 46 137 344 603 979 776

RMD41V536E 41 943 040 536 870 912

RMU39V469E 39 845 888 469 762 048

RMD39V469E 39 845 888 469 762 048

RMD37V436E 37 748 736 436 207 616

RMD35V402E 35 651 584 402 653 184

Table 3.6: Graphs used for multi-GPU experiments: Top 4 graphs employed for experiments
with 3 GPUs and bottom 4 graphs for experiments with 2 GPUs.

Table 3.7 gives the speedup provided by KiTES over WS-VR framework [41] (the

multi-GPU version of WS) with the same configuration. This table shows the superiority

of our method and also the importance of work-efficiency when scaling out to multiple

processing devices. For two- and three-GPU configurations, the average speedups provided

by KiTES are 1.29x and 1.37x respectively.

To better understand the effect of permissive partitioning, we plotted the speedups

of KiTES over WS-VR [41] with and without permissive partitioning for a number of graphs

63

Input Graph BFS CC CS HS NN PR SSSP SSWP

RMU50V671E 1.43 1.32 1.41 1.12 1.43 1.40 1.66 1.34

RMD50V671E 1.39 1.30 1.34 1.08 1.39 1.44 1.62 1.36

RMD46V603E 1.30 1.26 1.35 1.17 1.46 1.34 1.59 1.27

RMD41V536E 1.34 1.29 1.28 1.14 1.57 1.42 1.67 1.36

RMU39V469E 1.29 1.29 1.27 1.10 1.34 1.29 1.55 1.28

RMD39V469E 1.24 1.28 1.30 1.04 1.30 1.33 1.54 1.24

RMD37V436E 1.26 1.25 1.33 1.03 1.38 1.39 1.51 1.25

RMD35V402E 1.21 1.22 1.28 1.06 1.27 1.38 1.53 1.31

Table 3.7: Speedup provided by KiTES over WS-VR [41]. Top 4 entries use 3 GPUs and
bottom 4 entries use 2 GPUs.

1

1.2

1.4

1.6

1.8

R
M

D
3
5

V
4

0
2
E

R
M

U
3

9
V

4
6

9
E

R
M

D
4
1

V
5

3
6
E

R
M

U
5

0
V

6
7

1
E

R
M

D
3
5

V
4

0
2
E

R
M

U
3

9
V

4
6

9
E

R
M

D
4
1

V
5

3
6
E

R
M

U
5

0
V

6
7

1
E

R
M

D
3
5

V
4

0
2
E

R
M

U
3

9
V

4
6

9
E

R
M

D
4
1

V
5

3
6
E

R
M

U
5

0
V

6
7

1
E

R
M

D
3
5

V
4

0
2
E

R
M

U
3

9
V

4
6

9
E

R
M

D
4
1

V
5

3
6
E

R
M

U
5

0
V

6
7

1
E

CC PR SSSP SSWP

S
p

ee
d

u
p

 o
ve

r
W

S
-V

R

Without Permissive Partitioning With Permissive Partitioning

Figure 3.13: The speedup of KiTES over WS-VR in multi-GPU graph processing with and
without permissive partitioning.

64

0

50

100

150

200

250

0 10 20 30

A
ct

iv
e

E
d

ge
s

(M
il

li
on

s)

Iteration

Dev #0 Dev #1 Dev #2

(a) SSSP - no perm. partitioning

0

50

100

150

200

250

0 10 20 30

A
ct

iv
e

E
d

ge
s

(M
il

li
on

s)

Iteration

Dev #0 Dev #1 Dev #2

(b) SSSP - with perm. partitioning

0

40

80

120

160

200

0 10 20 30 40 50

A
ct

iv
e

E
d

ge
s

(M
il

li
on

s)

Iteration

Dev #0 Dev #1 Dev #2

(c) PR - no perm. partitioning

0

40

80

120

160

200

0 10 20 30 40 50

A
ct

iv
e

E
d

ge
s

(M
il

li
on

s)

Iteration

Dev #0 Dev #1 Dev #2

(d) PR - with perm. partitioning

Figure 3.14: The effect of permissive partitioning on the distribution of active edges between
3 GPUs across iterations. RMD41V536E is the input graph.

and two algorithms in Figure 3.13. This not only tells the benefits of permissive partitioning,

but also reveals how much of the multi-device performance superiority is coming from only

the work-efficiency. Based on the information in Figure 3.13, for two-GPU configuration

17% of the speedup comes from permissive partitioning while for three-GPU configuration

this percentage is slightly higher and, on average, is 20%. As more devices are deployed

to carry out the graph processing task, the benefits of permissive partitioning rise. This is

because with more GPUs, the load imbalance between multiple devices is greater and so is

the need for permissive partitioning.

65

We also measured the distribution of the loads with and without permissive par-

titioning across iterations for two graph algorithms on a sample graph and plotted the

results in Figure 3.14. As you can see, enabling permissive partitioning has reduced the

gaps between plots belonging to different devices meaning that there is less deviation be-

tween GPU’s load volumes. The small remaining gap in load volumes between devices

when using permissive partitioning is due the delay in applying vertex assignments. Since

the activeness distribution information is obtained by reading the bitmask created in the

previous iteration, and the result of the calculation is going to be applicable in the next

iteration, there is always one-iteration delay in the feedback. However, as we can see, this

delay only mildly disrupts the balance in distribution.

3.6 Summary

This chapter presented our solution to enable work-efficiency in GPU vertex-centric

graph processing by keeping track of active vertices. It employs a dynamic task assignment

strategy to efficiently map threads to disjoint elements of adjacency lists during the expan-

sion, avoiding intra-warp thread underutilization. Vertex grouping technique mitigates the

memory consumption overhead issue and enables processing of bigger graphs on the GPU

with limited DRAM size. In addition, permissive partitioning provides dynamic inter-GPU

load balancing. The collection of these techniques are gathered in a CUDA C++ template

library named KiTES to facilitate their deployment in user applications. Our experiments

show that KiTES provides up to 5.46x and 1.67x speedup over the work-inefficient solution

for single and multi-GPU configurations over multiple algorithms and inputs respectively.

66

Chapter 4

Generalizing Techniques

This chapter discusses the feasibility of extending techniques that we developed

for graph analytics to other domains of GPU computing. More specifically, it introduces

two generic techniques, inspired by the previously discussed graph processing methods, to

enhance the SIMD execution efficiency of CUDA applications. This chapter consists of the

following two sections.

The first section proposes CCC, a compiler technique for CUDA programs that

boosts the warp execution efficiency upon divergence. CCC collects tasks at warp granu-

larity and remedies inefficiency due to intra-warp load imbalance or dissimilar task assign-

ment. To enhance the applicability of CCC, this section presents transformations to make

common code patterns accessible to CCC and develop optimizations to increase the CCC

performance. It discusses automating CCC at the CUDA PTX level via a source-to-source

compiler and enbed it into a framework that operates alongside NVCC and allows CCC ap-

plication by annotating loops and divergent paths in CUDA C/C++ kernels. CCC increases

the warp execution efficiency of real-world applications containing divergent execution paths

by up to 56% and provides speedup of up to 3.08x.

The second section of this chapter proposes Collaborative Task Engagement (CTE),

a novel task decomposition technique to efficiently process irregular nested parallel patterns

in GPUs. Unlike previous methods, warp threads in CTE pass over the expanded list of

67

fine-grained tasks, making it resilient against input irregularities. In order to abstract

away the complexities of the CUDA implementation, CTE is developed as a CUDA C++

device-side template library for easy-expression of nested patterns. CTE is resilient against

irregularities and provides up to 1.51x speedup over the best sub-warp decomposition width

and exhibits excellent warp execution efficiency.

4.1 Collaborative Context Collection

Graphics Processing Units (GPUs) have become the essential part of high-performance

and power-efficient parallel computing. Recent emergence of programming APIs such as

CUDA and OpenCL have played an important role in enabling general purpose parallel

computing using GPUs. A key to the success of such APIs is the freedom they provide to

define different execution paths for the threads inside a SIMD group (warp or wavefront);

while the underlying architecture manages the resulting complexities. To emphasize this

aspect of GPUs, they are also called SIMT (Single Instruction Multiple Thread) microar-

chitecture devices. However, the combination of this attribute with GPUs inherent lack of

fine-grained task parallelism support may result in a significant performance loss.

All the threads inside a SIMD group (i.e., all the warp lanes) execute one unique

instruction at a time. The presence of conditionals—such as due to if-else code blocks—

causes thread divergence because a conditional may evaluate to true for some warp lanes and

false for other lanes. In this situation, the warp takes all the divergent paths, while disabling

non-relevant lanes inside every path. That is, the warp scheduler fetches instructions for all

the divergent paths while the execution stage is active only for a number of corresponding

threads. As a result, a portion of the available processing power goes unutilized for the

duration of divergence, diminishing the SIMD execution benefits.

Microarchitectural and compiler solutions have been suggested to remedy thread

divergence. While most microarchitectural methods are based on warp formation [22, 59, 68]

or warp compaction [23, 66, 82], the compiler solutions rely on the warp lanes majority vote

68

to gain partial warp execution enhancement [28, 13, 21]; however, full warp utilization

is usually out-of-reach. The compiler based solutions require program-specific and input-

specific information about divergence behavior to speculate on scheduling divergent code

blocks and lack systematic application procedure. Other software approaches disrupt the

GPU kernel autonomy by offloading data/task reordering onto CPU [92], implement global

locks with heavy contention for global queues [81], or accept errors in the output by ignoring

the task of minorities [74]. The above limitations of software methods make them often

inapplicable and unreliable.

We propose Collaborative Context Collection (CCC), a software (compiler) tech-

nique for GPUs that enables efficient execution of warps in presence of dissimilar intra-warp

task assignment or intra-warp load imbalance. Unlike previous solutions, CCC does not rely

on heuristics to increase warp utilization; instead, it accumulates tasks to provide maximum

warp execution efficiency. CCC utilizes the fast shared memory of the Streaming Multi-

processor (SM) to collect threads’ context which includes the content of the thread-private

registers that are sufficient to describe the thread’s task inside the divergent path. Context

collection provides all the warp lanes with homogeneous tasks and hence allows efficient

warp execution. CCC is primarily aimed at removing divergence from repetitive GPU code

blocks (e.g., loops). Threads in a warp are provided with a warp-specific stack in shared

memory. In each iteration, if there are insufficient contexts of the divergent path in the

stack to keep unemployed threads busy, warps collect their context on the stack. Otherwise,

each unemployed thread grabs a context from the shared memory and all the warp lanes

execute the divergent branch. This eliminates warp underutilization since the warp lanes

follow the all-or-none principle for taking the divergent path. By collecting tasks at the

warp granularity, CCC avoids need for any syncing or fencing operations. CCC exploits

fast CUDA intrinsics to implement intra-warp binary reduction and prefix sum necessary

for collaborative context storing and restoring.

We further present transformations to extend the applicability of CCC to many

common code patterns with intra-warp load imbalance or dissimilar task assignment, such

69

as loops with varying or unknown trip-count and recursive functions. We also provide

optimizations for CCC to increase performance in certain situations and to eliminate or

reduce the CCC possible side-effects such as memory divergence or theoretical occupancy

limitation. Finally, we implemented CCC in a software framework that allows annotating

the repetitive patterns and the divergent paths in CUDA C/C++ kernels. Annotations are

then replaced and transferred to the Nvidia CUDA Compiler (NVCC) generated intermedi-

ate PTX where CCC is applied to PTX code via our source-to-source PTX compiler. Then,

the framework feeds the transformed code to the rest of the compilation chain.

The rest of this section is organized as follows. We first define the thread diver-

gence problem and describe CCC. Then we present transformations to apply CCC or to

convert common code patterns to representations accessible by CCC. We also discuss CCC

optimization techniques elaborate upon CCC implementation as a compiler framework.

Finally we evaluate CCC performance and analyze its sensitivity.

4.1.1 CCC Core Procedure

Here, we first explain the thread divergence problem and then discuss our solution.

Thread Divergence Problem Overview

The SIMT microarchitecture in GPUs provides a parallel processing platform that

groups fine-grained threads into warps. A warp owns only one active Program Counter

(PC) at a given time, allowing the hardware to schedule one instruction for execution by

multiple execution units (SM cores, in terms of CUDA) using only one instruction fetch and

decode. This design reduces the die size and power consumption while providing massive

parallelism. However, warp lanes must run in lockstep. Therefore, specifying different

execution paths for threads of a warp—also called warp lanes—results in the traversal of all

the divergent branches by them. For a divergent branch, the processor masks off inactive

threads while holding their reconvergence PC in a hardware divergence stack [43]. Until

the warp’s active PC reaches the reconvergence PC, masked off threads stay inactive; thus

70

1 __global__ void CUDA_kernel_BFS(
2 const int numV, const int curr, int* levels,
3 const int* v, const int* e, bool* done) {
4 for(
5 int vIdx = threadIdx.x + blockIdx.x * blockDim.x;
6 vIdx < numV;
7 vIdx += gridDim.x * blockDim.x) {
8 bool p = levels[vIdx] == curr; // Block A.
9 if(p)
10 process_nbrs(vIdx,
11 curr, levels, v, e, done); // Block B.
12 } }

(a) The CUDA kernel for iterative BFS graph processing.

A

B

(b) Kernel CFG.

A0 A1

Lane 0 Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6 Lane 7

A2 A3 A4 A5 A6 A7

B0 B3 B6

A8 A9 A10 A11 A12 A13 A14 A15

B8 B9 B11 B12 B13 B15

A16 A17 A18 A19 A20 A21 A22 A23

B18 B20

A24 A25 A26 A27 A28 A29 A30 A31

B26 B27

B16 B22

B31

T
im

e

(c) Resulting warp execution visualization.

Figure 4.1: An example: BFS graph processing visualization in CUDA [30].

some reserved execution units are not utilized, causing warp execution inefficiency.

Figure 4.1 illustrates the above using BFS adapted from [30]. Each thread is

assigned processing of a number of vertices. If a vertex is updated in the previous CUDA

kernel invocation, the thread must update vertex’s neighbors. This condition leads to thread

divergence as it can evaluate to true for some warp lanes and to false for others. Threads

that do not execute divergent branch must wait for other threads in the warp to finish

processing block B as illustrated in Figure 4.1c.

71

Boosting Warp Efficiency with CCC

To eliminate thread divergence due to imbalanced load/task assignment to warp

lanes, we propose Collaborative Context Collection (CCC). CCC increases the warp execu-

tion efficiency for kernels containing repetitive diverging tasks with independent iterations.

This pattern is common in GPU thread task assignment. The BFS graph processing CUDA

kernel shown in Figure 4.1a matches this model and Figure 4.1b depicts the corresponding

control flow graph (CFG). Later in Section 4.1.2 we introduce transformations enabling a

wide variety of GPU algorithms to be expressed in this form.

In the above program model, threads inside the repetitive code block (the loop)

iterate over divergent tasks. The key idea of CCC is keep collecting tasks corresponding to

threads of a warp until there are tasks to keep all threads busy. To establish a connection

between the divergent task and its required data, we define a context as the minimum set

of variables that can fully describe the functionality of the task if the task is carried out by

another thread. For a GPU thread, these variables are a subset of thread’s registers (that

are thread-private).

In CCC, at every iteration, if there are insufficient divergent tasks to keep all the

warp lanes busy, then lanes that are assigned such tasks collect their context in the context

stack. Context stack is a warp-specific shared memory region for collecting unprocessed

task contexts. After stacking the contexts, the warp moves to the next iteration without

entering the divergent branch. Later, if the aggregation of tasks that are stacked and

the tasks assigned to the warp lanes in the current iteration exceeds the warp size, lanes

without a task can grab a context from the shared memory, and the entire warp executes

the divergent branch. Thus, warp lanes execution discipline upon divergence is all-or-

none which avoids warp underutilization. Figure 4.2 demonstrates the impact of CCC on

the divergent CUDA program in Figure 4.1 by visualizing the execution of a warp.

72

A0 A1

Lane 0 Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6 Lane 7

A2 A3 A4 A5 A6 A7

A8 A9 A10 A11 A12 A13 A14 A15

B8 B9 B6 B11 B12 B13 B3 B15

A16 A17 A18 A19 A20 A21 A22 A23

A24 A25 A26 A27 A28 A29 A30 A31

B22 B20 B26 B27 B18 B16 B0 B31

AC0 AC3 AC6

Context stack

AC0

AC0

AC0 AC16 AC18 AC20 AC22

T
im

e

Figure 4.2: Applying Collaborative Context Collection to the program in Figure 4.1 elimi-
nates warp execution inefficiency.

CCC’s Efficient CUDA Implementation

Let us first precisely define context. We refer to a thread’s task context as a set of

its designated registers that are

1. defined prior to divergent task path as a function of thread-specific special registers

including %tid, %laneid, and lane masks such as %lanemask eq; and

2. used inside the divergent task path.

Note that a context may contain special registers themselves. This definition enables CCC

to distinguish the minimal subset of thread’s registers that need to be collected and retrieved

at every iteration.

Next we describe CCC’s application to the CUDA BFS kernel. Figure 4.3 shows

CUDA BFS kernel in Figure 4.1a after applying CCC. The first highlighted section (lines 4-7

in Figure 4.3) is initialization of variables and the stack for CCC. The context stack consists

of vIdx in Original CUDA code (Figure 4.1a) since it is the only variable that depends on

the thread index and is used in the divergent region. CCC uses shared memory —the

fastest memory after thread-private registers— for collecting contexts. The stack is marked

volatile to pass data between warp lanes without any need for adding synchronization

73

1 __global__ void CUDA_kernel_BFS_CCC(
2 const int numV, const int curr, int* levels,
3 const int* v, const int* e, bool* done) {
4 volatile __shared__ int cxtStack[CTA_WIDTH] ;
5 int stackTop = 0;
6 int wOffset = threadIdx.x & (~31);
7 int lanemask_le = getLaneMaskLE_PTXWrapper();
8 for(
9 int vIdx = threadIdx.x + blockIdx.x * blockDi m.x;
10 vIdx < numV;
11 vIdx += gridDim.x * blockDim.x) {
12 bool p = levels[vIdx] == curr; // Block A.
13 int jIdx = vIdx;
14 int pthBlt = __ballot(!p);
15 int reducedNTaken = __popc(pthBlt);
16 if(stackTop >= redNTaken) { // All take path.
17 int wScan = __popc(pthBlt & lanemask_l e);
18 int pos = wOffset + stackTop – wScan;
19 if(!p) jIdx = cxtStack[pos]; // Pop.
20 stackTop -= reducedNTaken;
21 process_nbrs(jIdx,
22 curr, levels, v, e, done); // Block B.
23 } else { // None take path.
24 int wScan = __popc(~pthBlt & lanemask_le);
25 int pos = wOffset + stackTop + wScan – 1 ;
26 if(p) cxtStack[pos] = jIdx; // Push.
27 stackTop += warpSize – reducedNTaken; } } }

Figure 4.3: Applying CCC on the BFS CUDA kernel in Figure 4.1a.

or fencing primitives. volatile qualifier inhibits unsolicited optimization of references and

enforces sequential consistency between the threads of a warp accessing the shared memory.

Also, all the threads initialize the context stack top to zero indicating no context has been

collected yet.

The second highlighted region in Figure 4.3 (lines 14-15) is executed in every

iteration. Threads count the total number of lanes for which the predicate for taking

divergent path is false. This is the total number of lanes inside the warp that will be idle

during the divergent branch in the original program. If the result is less than or equal to

the number of stacked contexts, it means all unemployed lanes can restore context, i.e., the

warp can take divergent path without underutilization (starting from line 17). Otherwise,

full warp utilization is not possible by taking the divergent path; hence, threads with task

collect their context into the stack (starting from line 24) and the warp moves to the next

74

iteration without executing the divergent branch. In the third highlighted section (lines

17-20 in Figure 4.3) unemployed threads calculate the stack index from which they pop

contexts. After popping, all the threads move down the stack. Note that it is necessary to

check the predicate before popping the stack (line 19) since only those warp threads that

do not have any task to perform should grab an existing context. Those that have a task

simply execute the task context they already hold. The fourth highlighted section (lines

24-27) is the counterpart of the third section for pushing contexts. Finally, there is another

section (not shown) for executing leftover task contexts in the stack after finishing all the

iterations (such section is present in every program discussed).

For simplicity, the stack size (number of elements) for each warp is made the same

as the warp size, although the number of stacked contexts will never exceed warp size minus

one because if it does, it means that in a previous iteration all the warp threads could have

been utilized but were not. Note that CCC requires iterations of the repetitive pattern to

be independent of each other so the reordering of iterations preserves program semantics.

Therefore, barriers and memory fences, as long as they do not disrupt this feature, can be

used in the iterative code segment. Finally, if a register is written inside the divergent path

and the write operation can be expressed in form of a associative reduction function that

has an atomic operation counterpart, to apply CCC, the register needs to be transferred

to a shared memory buffer. Accesses to the register will be replaced with accesses to the

corresponding shared memory buffer; especially the writes inside the divergent path should

be made atomically.

The key methods that make CCC feasible yet fast are:

• counting the total number of warp lanes with the false predicate–this is a form of

intra-warp binary reduction; and

• realizing the stack position to/from which a thread needs to store/restore the context–

this is a stream compaction problem that we solve using inclusive intra-warp binary

prefix sum (scan).

75

We employed Harris and Garland’s methods [31] for both intra-warp binary reduction and

scan. Both methods utilize popc() and ballot() CUDA intrinsics and translate into

very few binary operations.

4.1.2 CCC Transformations

To provide unique tasks for all the warp lanes, CCC requires repetition over the

divergent code block. However, a GPU kernel in its original form may not expose this

pattern readily. Therefore to extend the applicability of CCC, in this section, we pro-

vide transformations to enable application of CCC to many common forms of GPU kernel

patterns.

Task Repetition with Grid-Stride Loops

It is a well known software technique to launch the GPU kernel with exactly

enough threads so that all the Streaming Multiprocessors are occupied. In this technique,

threads inside the GPU kernel iterate over assigned tasks using a loop. The BFS CUDA

code in Figure 4.4a employs this technique in order to allow a thread to iterate over multiple

vertices. Figure 4.4 shows an example of such transformation and required changes in the

host and the device code. Enabling task repetition with grid-stride loops is similar to

persistent threads technique introduced in [2] in which enough residing GPU threads are

invoked inside the kernel. However, in a grid-stride loop, the assignment of tasks to threads

is predetermined rather than being controlled by a shared queue.

A grid-stride loop can transform a kernel with divergence into a form suitable

for CCC. Beside this, it usually exhibits two other benefits that increase the performance.

First, it eliminates the overhead associated with scheduling new thread-blocks since the

same thread-blocks that are invoked initially do the whole computation by iterating over

the tasks. Second, it lowers the inter-warp load imbalance effect. A thread-block is not

finished until all its associated warps terminate. Load imbalance between different warps of

76

1 __global__ void CUDA_kernel_BFS(
2 const int numV, const int curr, int* levels,
3 const int* v, const int* e, bool* done) {
4 int vIdx = threadIdx.x + blockIdx.x * blockDim.x;
5 if(vIdx < numV) {
6 bool p = levels[vIdx] == curr;
7 if(p)
8 process_nbrs(vIdx,
9 curr, levels, v, e, done); } }

10 int main() { // Host side program.
11
12 int gridD = ceil(numV / blockD);
13 gpuKernel <<< gridD, blockD >>> // Kernel launch.
14 (numV, kernelIter, lev, v, e, done);
15 }

(a) Before transformation.

1 __global__ void CUDA_kernel_BFS_with_gridstride_loop(
2 const int numV, const int curr, int* levels,
3 const int* v, const int* e, bool* done) {
4 for(
5 int vIdx = threadIdx.x + blockIdx.x * blockDim.x;
6 vIdx < numV;
7 vIdx += gridDim.x * blockDim.x) {
8 bool p = levels[vIdx] == curr;
9 if(p)
10 process_nbrs(vIdx,
11 curr, levels, v, e, done); } }

12 int main() { // Host side program.
13
14 int gridD = nSMs * maxThreadsPerSM / blockD;
15 gpuKernel <<< gridD, blockD >>> // Kernel launch.
16 (numV, kernelIter, lev, v, e, done);
17 }

(b) After transformation.

Figure 4.4: A grid-stride loop applied to the BFS CUDA kernel in order to make it accessible
by CCC. The maximum theoretical occupancy is assumed 100%.

77

one thread-block may cause one warp to hold hostage the entire thread-block and disallow

further thread-block scheduling. This issue is also referred to as warp-level divergence [89].

Grid-stride loops greatly reduce this effect by allowing assigned tasks to be processed by

warps that are done with an iteration. The cost of a grid-stride loop is using a register to

keep the status of the loop iteration index.

Loops with Variable Trip-Count

A common load assignment pattern is to assign a coarse-grained task to each

GPU thread via a loop. In this pattern, the loop trip-count determines the amount of

fine-grained tasks, i.e. the load volume, for the thread. The thread iterates over the load

until it is done. This approach is specifically prevalent in GPU graph processing (pioneered

in [30]) in which threads are assigned to graph vertices and process all the vertex’s neighbors

using a loop. Figure 4.5a exhibits this assignment pattern. Although this load assignment

strategy provides code readability, it can introduce heavy load imbalance and warp execution

inefficiency. For instance, in case of GPU graph processing, since different vertices can have

very different number of neighbors, different threads have to iterate different number of

times over the loop. In real-world power law graphs the load imbalance can be especially

high.

Loops with variable trip-count can be expressed in form of a loop with uniform

trip-count containing a divergent path, and hence, benefit from CCC similar to the example

in Figure 4.1. Figure 4.5b depicts this transformation applied onto the BFS CUDA device

function shown in Figure 4.5a. First, warp lanes reduce the largest trip-count using the

butterfly shuffle instruction (as in [86]), and select the resulting value as the uniform trip-

count. Then, the code block inside the loop is wrapped by a condition check that verifies if

the iteration is less than the thread’s original trip-count.

78

1 __device__ void process_nbrs(
2 const int vIdx, const int curr, int* levels,
3 const int* v, const int* e, bool* done) {
4 int eIdx = v[Idx];
5 int nNbrs = v[vIdx + 1] – eIdx;
6 for(int nbrIdx = 0; nbrIdx < nNbrs; ++nbrIdx)
7 process_nbr(curr, eIdx + nbrIdx,
8 levels, v, e, done); }

(a) Before transformation.

1 __device__ void process_nbrs(
2 const int vIdx, const int curr, int* levels,
3 const int* v, const int* e, bool* done) {
4 int eIdx = v[Idx];
5 int nNbrs = v[vIdx + 1] – eIdx;
6 int UniCount = intra_warp_reduce_max(nNbrs);
7 for(int nbrIdx = 0; nbrIdx < UniCount; ++nbrIdx)
8 if(nbrIdx < nNbrs)
9 process_nbr(curr, eIdx + nbrIdx,
10 levels, v, e, done); }

(b) After transformation.

Figure 4.5: An example demonstrating the transformation of a CUDA device function (BFS
processing of a vertex’s neighbors) with variable trip-count to a form accessible by CCC.

Recursive Device Functions

CUDA allows recursion on device functions that provides intuitive ways to express

algorithms. Cuckoo hashing on GPU [3] is one example as shown in Figure 4.6a. In cuckoo

hashing a key-value pair is provided with multiple hash functions. On every insertion

endeavor, the pair is inserted into the bucket pointed to by one of hash functions using an

atomic exchange. The return value of the atomic operation yields the content of the bucket

right before insertion. If this content holds another key-value pair, the returned pair has

to be rehashed with an altered hash function. The recursion of insertion endeavor goes on

until the returned bucket had been empty.

While some threads might be successful inserting their key-value pair into the

table in the very first try, other threads in the same warp might take the divergent path

over and over again causing overall warp underutilization. CCC can be applied to recursive

device functions as well to eliminate the load imbalance. Figure 4.6b shows the resulting

79

1 __device__ bool try_insert(
2 ulonlong* pos, ulonglong& kvp) {
3 kvp = atomicExch(pos, kvp);
4 return (uint)(kvp >> 32); }

5 __device__ void insert_KVPair(ulonglong kvp,
6 uint loc, const uint tSize, ulonglong* table) {
7 uint retKey = tryInsert(table + loc, kvp);
8 bool p = retKey != EMPTY_KEY;
9 if(p) {
10 loc = find_next_location(retKey, loc, tSize);
11 insert_KVPair(kvp, loc, tSize, table); } }

12 __global__ void generate_hash_table(
13 const int nKVPairs, const uint tableSize,
14 const ulonglong* kvpairs, ulonglong* table) {
15 for(
16 int eIdx = threadIdx.x + blockDim.x * blockIdx.x;
17 eIdx < nKVPairs;
18 eIdx += blockDim.x * gridDim.x) {
19 ulonglong kvp = kvpairs[eIdx];
20 uint key = (uint)(kvp >> 32);
21 uint loc = hash_func(key, tableSize, 0);
22 insert_KVP(kvp, loc, tableSize, table); } }

(a) Before transformation.

1 __device__ void insert_KVPair_CCC(ulonglong kvp,
2 uint loc, const uint tSize, ulonglong* table) {
3 uint retKey = tryInsert(table + loc, kvp);
4 bool p = retKey != EMPTY_KEY;
5 int redNtaken = intra_warp_binary_reduce(!p);
6 if(stackTop >= redNtaken) {
7 pop(p, retKey, loc, kvp);
8 loc = find_next_location(retKey, loc, tSize);
9 insert_KVPair(kvp, loc, tSize, table);
10 } else {
11 push(p, retKey, loc, kvp); } }

(b) After transformation. Operations and variables related to context stack
are shortened for brevity.

Figure 4.6: An example demonstrating the transformation of a recursive CUDA device
function (cuckoo hashing on GPU [3]) by CCC.

80

code after applying CCC. Before taking the divergent path, which contains the call to the

recursive function, warp lanes count the predicates (line 5), and take the divergent path if

all of them can be fully utilized. Otherwise, threads that have to call the recursive function

stack their contexts, and the warp exits the function to grab fresh key value pairs and repeat

the procedure.

Similar to the previous transformation shown, warp lanes discipline for calling the

recursive function is all-or-none and thus enabling maximum warp utilization. Note that

this solution focuses on single recursion where the recursive function contains a single call to

itself. Having multiple references to itself (multiple recursion) and also dynamic parallelism

are task generation problems that are beyond the scope of this work.

Loops with Unknown Trip-Count

1 __device__ void insert_KVPair_noRec(ulonglong kvp,
2 uint loc, const uint tSize, ulonglong* table) {
3 uint retKey = tryInsert(table + loc, kvp);
4 bool p = retKey != EMPTY_KEY;
5 while(p) {
6 loc = find_next_location(retKey, loc, tSize);
7 retKey = tryInsert(table + loc, kvp);
8 p = retKey != EMPTY_KEY; } }

(a) Before transformation.

1 __device__ void insertKVPair_noRec_CCC(ulonglong
2 kvp, uint loc, const uint tSize, ulonglong* table) {
3 uint retKey = tryInsert(table + loc, kvp);
4 bool p = retKey != EMPTY_KEY;
5 int redNtaken = intra_warp_binary_reduce(!p);
6 while(stackTop >= redNtaken) {
7 pop(p, retKey, loc, kvp);
8 loc = find_next_location(retKey, loc, tSize);
9 retKey = tryInsert(table + loc, kvp);
10 p = retKey != EMPTY_KEY;
11 redNtaken = intra_warp_binary_reduce(!p); }
12 if(p) push(p, retKey, loc, kvp); }

(b) After transformation. Operations and variables related to context stack
are shortened for brevity.

Figure 4.7: Transformation of a loop with unknown trip-count (Cuckoo Hashing on GPU [3])
by CCC.

81

The transformation for recursive functions naturally extends to the loops with

unknown trip-count. For example, codes in Figures 4.7 are functionally equivalent counter-

parts of recursive GPU hashing functions in Figures 4.6 written using a while loop. Similar

to recursive functions, warp lanes count the predicates before taking the path (Figure 4.7b

line 5). Then inside the while loop, taskless lanes pop contexts (line 7), all the warp lanes

perform the divergent task, and count the predicate again (line 11). Threads of a warp stay

inside the loop as long as there are enough tasks to keep them all busy. When the warp

gets out of the loop, lanes that hold task push the contexts into the stack.

Again, all the warp lanes either get inside and stay inside the while loop, or all

of them get out, respecting the all-or-none discipline.

Nested and Multi-Path Context Collection

CCC can be applied in a nested manner to a divergent path containing intra-warp

divergence. In this scenario, a separate stack collects the context of the parent divergent

path and another stack collects the child’s.

An example of this scenario is again CUDA BFS kernel. While neighbors of a

vertex are visited only when it is updated in the previous GPU kernel invocation (Figure 4.1a

line 9), variable trip-count for the inner loop (Figure 4.5a line 6), due to irregularity of the

graph, creates load imbalance inside the divergent path. For this problem, nested CCC

collects the context for the outer and the inner divergent paths independently, and executes

each path only when enough contexts of that particular path exist.

Now consider the example of Iterated Function Systems (IFS) inside CUDA ker-

nels. Figure 4.8 presents a device function in Fractal Flames GPU program [77] in which

each thread executes a random function variation. For such cases, multi-path CCC assign a

separate context stack to each task. Threads collect the contexts for each divergent branch

separately, and warp lanes execute a path only if enough contexts of a certain task, that

can provide full warp efficiency, are available.

82

1 __device__ cuFloatComplex variation_gen(
2 const float x, const float y, const uint var) {
4 switch(var) {
5 case 0: // Linear variation.
6 return make_cuFloatComplex(x, y);
7 case 1: // Sinusoidal variation.
8 return make_cuFloatComplex(sinf(x), sinf(y));
9
10 case 7: // Power variation.
11 float theta = atanf(x / y);
12 float len = sqrtf(x * x + y * y);
13 float sinTh = sinf(theta);
14 float mul = powf(len, sinTh);
15 float r = mul * cosf(theta);
16 float i = mul * sinf(theta);
17 return make_cuFloatComplex(r, i); } }

Figure 4.8: Variation generation CUDA device function in Fractal Flame [77] from Iterated
Function System (IFS) class.

4.1.3 CCC Optimizations

In this section, we discuss techniques that can be implemented on top of CCC to

further optimize the performance in certain situations.

Context Compression: Reducing Context Storage and Context Saving/Restoring

Overhead

If in a context, a register value can be computed from another register’s value with

a computationally inexpensive operation(s), i.e. one can be expressed as a trivial compute-

only function of another, only one of them needs to be collected during storing. For the

restoration, one register content is then derived from the other one using the function. This

optimization reduces shared memory consumption and lowers storing/restoring overhead.

An example can be found in Figure 4.6 where the context includes three variables:

kpv, loc, and retKey. Since retKey can be recomputed from kvp using only a shift oper-

ation (Figure 4.6a line 4), the context is compressed by saving one less variable. Excluded

variable (retKey) will be reconstructed from available context variable (kpv) using this shift

operation during the pop procedure.

83

Memory Divergence Avoidance

Applying CCC reorders the iterations of the loop. In the original program, a group

of iterations with consecutive indices get assigned to threads with consecutive global indices;

but employing CCC may disrupt this assignment. This becomes an issue when there are

global/host memory reads and writes in the divergent path that are in a direct relationship

with the iteration index. The original coalesced and cache-friendly memory accesses may

lose the notion of locality due to context collection and retrieval. The introduction of

memory divergence can hurt the performance.

1 __global__ void CUDA_kernel_SSSP(
2 const int numV, int* bitMask, int* costs, int* Ua,
3 const int* v, const int* e, const int* eValues) {
4 for(
5 int vIdx = threadIdx.x + blockIdx.x * blockDim.x;
6 vIdx < numV;
7 vIdx += gridDim.x * blockDim.x) {
8 int container = bitMask[vIdx >> 5];
9 bool p = (container >> (vIdx & 31)) & 1;
10 if(p) { \\ Divergent path.
11 int vCost = costs[vIdx];
12 visit_nbrs(vIdx, vCost, costs, Ua,
13 v, e, done, eValues); } } }

(a) Without optimization.

1 __global__ void CUDA_kernel_SSSP(
2 const int numV, int* bitMask, int* costs, int* Ua,
3 const int* v, const int* e, const int* eValues) {
4 for(
5 int vIdx = threadIdx.x + blockIdx.x * blockDim.x;
6 vIdx < numV;
7 vIdx += gridDim.x * blockDim.x) {
8 int container = bitMask[vIdx >> 5];
9 bool p = (container >> (vIdx & 31)) & 1;
10 int vCost;
11 if(p) vCost = costs[vIdx];
12 if(p) { \\ Divergent path.
13 visit_nbrs(vIdx, vCost, costs, Ua,
14 v, e, done, eValues); } } } .

(b) With Optimization (before transformation).

Figure 4.9: SSSP graph processing CUDA kernel from [30] containing a coalesced global
memory access to the costs buffer in the divergent path. We preserve the coalescence in
CCC by excluding the memory access from the divergent path.

84

Figure 4.9a presents an example of such scenario: Single-Source Shortest Path

(SSSP) in a graph using CUDA [30]. In this example, threads are assigned to process

vertices iteratively. A vertex is processed only if its corresponding bit in the bitMask buffer

is set. In the divergent path, accesses to the costs array have locality and are coalesced.

However, if we apply CCC to this kernel, as we did in Figure 4.3, due to reordering of

iterations, this memory access will not be necessarily coalesced. In other words, nearby

memory locations may be accessed at distant iterations which wastes memory bandwidth.

CCC can avoid memory divergence by taking the memory access out of the diverg-

ing path to the non-divergent block and stacking the memory content alongside the context.

In other words, excluding the coalesced memory access from the path and executing it with

the path predicate, as shown in Figure 4.9b. Therefore, CCC can be applied to the new

divergent path similar to Figure 4.3 while preserving coalesced access pattern. The only

difference is that now the context includes the memory content (vCost) as well.

Prioritizing the Costliest Branches

When there are multiple divergent paths taken by the warp lanes, context collec-

tion for all the branches may exceed SM’s available shared memory and limit the theoretical

GPU occupancy. Sometimes it might not even be possible to launch the kernel with a con-

text stack for each and every path, due to requested capacity exceeding the limit. For

example, applying CCC to all or most of the divergent paths inside the device function

in Figure 4.8 is not possible or limits the occupancy because of limited available shared

memory.

To avoid restricting the occupancy due to excessive use of shared memory, and at

the same time, to avoid intra-warp divergence as much as possible, we prioritize the costliest

branches, i.e. those branches for which context collection provides the most benefits. The

cost of taking a divergent branch is proportional to the volume of operations inside the

branch plus how infrequently it is visited by the warp lanes; later in Section 4.1.5 we verify

this argument. Therefore, CCC applies to the longest branches with the least probability

85

CCC Framework

CUDA C++
kernel with
pragma-like
annotations

Annotated
Source Modifier

PTX Source-to-
source Compiler

CUDA C++
kernel with

marked
regions

NVCC

C
IC

C

P
T

X
A

S

Original PTX
for kernel with

marked
regions

PTX for
kernel with

CCC applied

GPU
Assembly with
CCC applied

C
U

D
A

C

+
+

F

ro
n

t-
en

d

Figure 4.10: CCC Framework operates alongside NVCC.

of traversal. In case of the example in Figure 4.8, the path belonging to latest variations

are longer and more expensive; hence, are more suitable candidates for CCC.

4.1.4 CCC Implementation

To implement CCC, we designed a framework based on a combination of user-

provided annotations identifying the paths for CCC application and an automatic com-

pilation chain intervention that transforms the code. The user annotates the repetitive

pattern and the divergent path inside the CUDA C++ kernel. Then, the framework oper-

ates alongside NVCC and applies CCC to the code automatically, as shown in Figure 4.10.

Each transformation described in section 4.1.2 is specified by a different annotation. For

example, for the code in Figure 4.1a a user needs to insert only #CCC for const above the

for loop and specify the divergent code block by putting #CCC if above the if condition

evaluation line. The first part of the framework, Annotated Source Modifier, marks these

specific regions to transfer them to the PTX level. The second part of the compiler, PTX

Source-to-source Compiler, applies CCC and the optimizations described in Section 4.1.3.

86

Annotated Source Modifier

This part of the framework analyzes the code, identifies specific user-specified

directives in CUDA C++ source code, and enables recognition of these patterns inside

the PTX code. The frameowrk replaces and also inserts assembler statement asm with

volatile keyword to mark the repetitive section and the beginning and the end of the

divergent code path region. asm statement allows arbitrary code to propagate into and

appear inside the PTX code, without even necessarily being a valid PTX statement. In

addition, volatile keyword prevents optimization on specified assembly statement and

preserves the relative order of instructions before and after the statement. These two

properties of asm volatile() enables marking PTX code regions of interest from inside

the CUDA C++ kernel. As shown in Figure 4.10, the framework feeds the marked CUDA

kernel into NVCC front-end— which is tightly bound to CICC (LLVM-based optimizer and

PTX generator)— to yield the PTX code.

PTX Source-to-source Compiler

The second part of the framework receives a PTX source with distinct annotations

that mark regions of interest including the beginning and the end of the divergent code

block (similar to lines 9 and 13 in Figure 4.11a) and the immediate path after the repetitive

pattern. This part outputs the PTX code with CCC and its optimizations applied, and

sends the resulting PTX code to the rest of the compilation chain. Applying our technique

at the PTX level is advantageous since the PTX code has a closer-to-machine assembly-like

form with a limited number of instructions and directives. This facilitates reasoning about

the functionality, throughput, inputs, and output of each instruction.

To apply CCC to the PTX code, It is necessary to recognize the context vari-

ables corresponding to a divergent path. To identify context registers, we generate a data

dependence graph in which every node represents a PTX virtual register and every edge

stands for the def-use link that defines the destination node and uses the source node. The

87

1 mov.u32 c, %ctaid.x;

2 mov.u32 b, %tid.x;

3 min.s32 a, b, c;

4 add.s32 d, c, 1;

5 mad.s32 e, c, a, d;

6 mul.wide.s32 f, e, 4;

7 setp.le.s32 p, b, 15;

8 %p bra POST_PATH_LBL;

9 #CCC_if_marked_begin

10 add.s32 g, e, c;

11 sub.s32 h, g, f;

12 add.s32 i, g, 2;

13 #CCC_if_marked_end

14 POST_PATH_LBL:

(a) PTX code.

b

a

c

e

g

h i

tid.x ctaid.x

2

d

1

f

4

TT

T

T
F

F

F

F

p

F

15

(b) Resulting graph.

Figure 4.11: A PTX sample code inside the repetitive section and the resulted graph from
connecting definition and usage of virtual registers.

BFS traversal starting from thread-specific special registers induces sub-graphs of virtual

registers (directly and indirectly) affected by them. Figure 4.11a shows a sample PTX

code and Figure 4.11b presents its corresponding graph, in which the induced sub-graph is

highlighted. In addition, the framework assigns every edge a boolean property for which a

true value specifies if the def-use link between two virtual registers is established inside the

divergent path. The framework then identifies a virtual register as a context if and only if,

inside the sub-graph, its corresponding node’s incoming edges are assigned false and at least

one of its outgoing edges is assigned true. In Figure 4.11, registers e and f are recognized

as the context.

The framework automates CCC optimizations using this analysis as well. For

context compression, the framework examines a context register’s parents inside the graph.

If all the parent nodes are from the set of literals, function parameters, or other context

registers and the instruction corresponding to the connecting edges is high-throughput and

compute-only, the context is compressed. In Figure 4.11, virtual register f satisfies the

compression condition. To avoid memory divergence, the index of the global memory read

is examined to have a reaching definition from tid.x and to fulfill the coalescence. To

88

prioritize the costliest branch, the inverse of the instruction throughput inside every branch

is aggregated and compared with other branches’.

After identification of context registers, the source-to-source compiler declares ap-

propriate resources such as shared memory buffers and inserts CCC code segments.

4.1.5 Experimental Evaluation

In this section, we first briefly describe the benchmarks, then evaluate their per-

formance with and without CCC in various respects. Lastly, we analyze the sensitivity of

CCC. These experiments were performed on a Nvidia GeForce GTX 780 GPU equipped

with 12 Streaming Multiprocessor from Kepler microarchitecture. Up to 2048 threads can

reside on each SM while each SM contains 64K 32-bit registers. Up to 32 32-bit registers per

thread and up to 24 bytes of shared memory per thread can be requested without affecting

the occupancy. All GPU programs are compiled with the highest optimization level flag

(-O3) for Compute Capability 3.5 on Ubuntu 14.04 64-bit with CUDA 7.0.

Benchmarks

We selected 8 real-world benchmarks from various domains including scientific

computing, visualization, and graph analytics. These programs demonstrate substantial

amount of intra-warp divergence; hence, they can benefit from CCC. Below we introduce

these benchmarks and identify the transformations and optimizations that were applied to

each of them.

• BFS Breadth-First Search is an iterative graph traversal algorithm. As previously

mentioned, CUDA implementation of BFS [30] assigns one thread to process a number

of vertices and their neighbors. We used LiveJournal [4], a social network graph with

approximately 4.8M vertices and 69M edges, as the input graph. We applied a grid-

stride loop, the transformation for loops with variable trip-count, and nested context

collection to prepare BFS CUDA kernel for CCC.

89

• DQG Dynamical Quadrature Grids [54] program computes the points in a quadrature

grid in which the integrand can evolve in time. Becke kernel of this program is the

subject of our experiment. In the kernel, one thread is assigned to a point which then

has to iterate over atoms two-by-two. The number of atoms in the list can vary from

2 to 80, which creates a load imbalance between threads. We used a grid-stride loop

to enable application of CCC. The test molecule is BPTI and floating-point formats

are double-precision.

• EMIES Electromagnetic Integral Equation Solvers [52] compute the electromagnetic

field using Nonuniform Grid Interpolation Method (NGIM). The potential field do-

main is divided into subdomains of different sizes. The type of parallelization is

“one-thread-per-observer”. As a result, when comparing the domains, some threads

in the warp may satisfy the Near-Field criterion and calculate the volume integral

equation while others may not. We applied CCC with no transformation since the

kernel is in a form that readily exposes the divergence in the repetitive code block.

Average number of sources per box is set to 64 for the experiments.

• FF Fractal Flames [77] belongs to the Iterated Function Systems (IFS) class of al-

gorithms and is based on chaos game. It involves selecting and executing a function

randomly from the set of available non-linear functions. Picking and executing differ-

ent functions for threads inside the warp causes task serialization. In our experiments,

we defined 10 function variations and rendered a 2D scene with 10M random points.

We used a grid-stride loop to iterative over points and prioritized 3 costliest branches.

Since the context for all the divergent paths is 8 bytes (4 bytes for x and 4 bytes for

y), and also since the original kernel does not consume shared memory, collecting up

to 3 branches does not affect the occupancy.

• HASH GPU Cuckoo hashing [3] constructs a hash table given a set of key-value pairs.

Each thread is assigned to carry out insertion of a set of key-value pairs into the hash

table. Threads perform insertions simultaneously via atomic exchange operation.

90

Some threads in the warp may need to retry insertion due to collision creating intra-

warp load imbalance. We applied a grid-stride loop to prepare the application for

CCC. Then used the transformation for recursive functions. We also compressed the

initial context that reduced the context size from 16 to 12 bytes. In the experiments

we used 100 M randomly generated 8-byte-long key-value pairs, and the table load

factor is set to 0.9.

• IEFA Inverse Error Function Approximation [26] involves selection and execution

of one out of three possible functions depending on the input. Warp lanes that are

assigned to compute the inverse error function usually take different paths. This

causes traversal and execution of all three functions by the warp. We prepared the

application for CCC with a grid-stride loop. For the experiments, we approximated

double-precision inverse error function for 100M values.

• RT Ray Tracing [72] is a simple ray tracing CUDA kernel in which threads are assigned

to rays and they verify if a ray hits the objects in the scene. A ray that hits an object

has to update the closest hit depth and its own color. Threads inside the warp may

or may not hit an object. This creates load imbalance and warp underutilization. We

defined 8.8M rays (4K resolution) and 80 sphere objects in the scene. We applied a

grid-stride loop to iterative over rays and enable context collection.

• SSSP Single-Source Shortest Path finds the shortest path to every vertex reachable

from a single source vertex using iterative CUDA kernels. We used Harish et. al. [30]

approach for the SSSP. A thread is assigned to process a set of vertices. Similar to

BFS, the pattern of SSSP load imbalance is nested. LiveJournal [4] is our input graph.

Applied transformations are the same as BFS. We also applied memory divergence

avoidance optimization for SSSP.

91

0

0.5

1

1.5

2

2.5

3

3.5

BFS DQG EMIES FF HASH IEFA RT SSSP

Sp
ee

d
u
p

Benchmarks

Figure 4.12: The kernel execution speedup provided by CCC. For benchmarks with iterative
GPU kernel launches (BFS and SSSP) the speedup is measured based on the aggregation
of kernels.

0

25

50

75

100

BFS DQG EMIES FF HASH IEFA RT SSSP

W
ar

p
 E

xe
c.

 E
ff

.
(%

)

Benchmarks

Without CCC With CCC

Figure 4.13: Warp execution efficiency comparison for kernels with and without CCC. For
BFS and SSSP the warp execution efficiency is averaged across all the kernel launches.

CCC Performance Improvement

Figure 4.12 presents the speedups obtained by applying CCC to the eight real-

world programs. These speedups are measured exclusively for CUDA kernels. On an

average, the set of benchmarks experience sppedup of 1.69x due to application of CCC.

We further profiled the warp execution efficiency (predicated and non-predicated averaged)

of these benchmarks with and without CCC and plotted the results in Figure 4.13. On

average, applying CCC increases the warp execution efficiency of benchmarks from 43.7%

to 89.8%. We also measured the overhead introduced by CCC in terms of added shared

92

memory and register usage per thread and reported them in Table 4.1. As mentioned earlier,

for our GPU, up to 32 32-bit registers per thread and 24 bytes of shared memory per thread

can be requested without affecting the kernel occupancy. Now we examine the results in

more detail.

CCC achieves the highest speedup of 3.08x for the FF benchmark. For FF we

collected the longest 3 divergent paths so as not to limit the occupancy by using extra

shared memory. Although there are 10 divergent branches in the kernel, collecting the most

expensive 3 of them enhanced the warp execution efficiency from 13% without CCC to 53%

with CCC. This result demonstrates the importance of branch prioritization technique. Also

note that the newest Nvidia GPU microarchitecture named Maxwell doubles the maximum

shared memory available to the thread-block. More shared memory enables collecting more

divergent path contexts without affecting the occupancy. Therefore, this allows higher

speedup for benchmarks similar to Fractal Flames where diverging paths are numerous.

The benchmark for which CCC provides the next highest speedup of 2.72x is

IEFA. All three branches that can be taken by the warp lanes are collected and traversed

only when full warp utilization is possible. By collecting all branches, CCC boosts the

warp execution efficiency of IEFA from 41% to 97%. Similar to FF, IEFA experiences

warp divergence due to dissimilar intra-warp task assignment and contains relatively long

compute-only divergent task paths. These features make FF and IEFA the most benefiting

benchmarks from the application of CCC.

The next benchmark for which CCC shows a relatively high speedup is DQG

with speedup of 1.63x. The different load volume assignments to each GPU thread in the

original DQG results in the warp execution efficiency of 37% while CCC enhances to 93%.

The RT benchmark has the highest amount of warp execution efficiency in the

original kernel with 67%. This is because warp lanes are assigned to contiguous rays which

are more likely to hit an object in the scene. Nevertheless CCC provides speedup of 1.38x

for RT while increasing the warp efficiency to 96%.

93

Benchmark
32-bit Reg. Usage Shared Mem. Usage (B)

w.o. CCC with CCC w.o. CCC with CCC

BFS 15 26 0 8

DQG 25 31 8 24

EMIES 28 32 0 24

FF 21 29 0 24

HASH 22 28 0 12

IEFA 24 32 0 24

RT 21 27 0 24

SSSP 19 29 0 16

Table 4.1: The CCC overhead in terms of resource usage (per thread). Underlined entry
results from spilling two excessive registers into local memory (L1 cache) via -maxrregcount

compiler option. The maximum theoretical occupancy is 100% in all cases.

Further, CCC increased the warp execution efficiency of EMIES from 44% to

92% resulting in speedup of 1.34x. EMIES divergent paths are long, but also containing

global memory accesses. EMIES is the only benchmark where applying CCC can limit the

maximum theoretical occupancy to 75% by requesting 34 registers per thread. However,

for this benchmark, we pass the compiler option -maxrregcount 32 to enforce the compiler

to spill two registers into the local memory. Since the kernel asks for 24 bytes of shared

memory per thread, 16 KB of shared memory in the SM is left for L1 cache, which is just

enough for spilled registers.

Finally, benchmarks HASH, BFS, and SSSP are primarily memory-bound bench-

marks; hence application of CCC results in smaller, yet significant, performance improve-

ments. HASH benchmark relies heavily upon 8-byte-long atomic exchange operation on

table entries. Entries accessed by threads inside the warp reside in distant memory seg-

ments. These accesses create non-coalesced and cache-unfriendly global memory requests

which represent a major performance bottleneck for this kernel. As a result, although the

warp execution efficiency increases from 25% to 96%, CCC provides smaller speedup of

1.20x. The speedup of HASH without context compression optimization is lower – nearly

1.17x.

94

Benchmarks BFS and SSSP are memory-bound graph algorithms. Both suffer

from a great deal of load imbalance; however, the set of non-coalesced memory accesses to

the content of neighboring vertices represents a major performance bottleneck. Therefore,

applying nested CCC to BFS and SSSP provides smaller speedups of 1.13x and 1.09x

respectively. The speedup in SSSP is the lowest due to higher amount of memory accesses;

SSSP introduces additional memory accesses to the bit mask and edge value buffers. Also

without memory divergence avoidance optimization, SSSP speedup is 1.06x. Considering

the irregularity of the input graph, original BFS and SSSP kernels exhibit 58% and 64%

warp execution efficiency on average. Note that this is due to early and late CUDA kernels

in which most threads do not take the divergent paths. Kernels belonging to middle graph

algorithm iterations carry out most of the computation and exhibit warp execution efficiency

as low as 14%.

Sensitivity Analysis

In this subsection, using synthetic programs, we study the sensitivity of our tech-

nique to (a) varying amount of warp divergence over warp threads and (b) varying execution

lengths of the divergent path. Original GPU kernels are in form of grid-stride loop. The

loop is executed 230 times (aggregated over all the CUDA kernel launched threads).

Figure 4.14 compares the execution time and the warp execution efficiency of the

synthetic GPU kernel when executed normally and when CCC applied. The loop contains

a divergent path with 20 FMAD instructions. We repeated the experiments each time with

different number of threads inside the warp taking the divergent path (x axis). Increasing

this number also increases the amount of load carried out by the CUDA kernel.

The left plot in Figure 4.14 shows that the original kernel takes an approximately

constant amount of time to finish with different amount of intra-warp divergence and work-

load imbalance. This is a natural behavior of a SIMD device. On the other hand, when

CCC is applied, we see that by increasing the workload, the execution time grows linearly.

It means CCC provides work efficiency.

95

The right plot in Figure 4.14 presents the warp execution efficiencies. We observe

that although the warp execution efficiency of the original kernel increases proportionally to

the amount of intra-warp divergent tasks, the kernel with CCC always has a high warp effi-

ciency (%96.6 on average) regardless of the amount of intra-warp divergence. In summary,

both plots demonstrate the effectiveness of CCC in form of its resistance against various

amounts of load imbalance.

0

200

400

600

800

0 8 16 24 32

E
xe

c.
 t

im
e

(m
s)

Divergent warp lanes

Original With CCC

0

25

50

75

100

0 8 16 24 32

W
ar

p
 E

xe
c.

 E
ff

.
(%

)

Divergent warp lanes

Figure 4.14: CCC performance enhancement compared to the original divergent kernel over
different amount of intra-warp divergence (and hence workload imbalance). The divergent
path contains 20 FMAD operations.

Figure 4.15 shows the execution times for the original kernels and kernels with

CCC for different divergent path lengths. The left and right plots demonstrate it for when

1
4 and 3

4 of the warp lanes take the divergent path, respectively. In both plots, it is clear that

as the length of the divergent path increases, the speedups approach to inverse of utilized

threads in the original codes, i.e. 4
1 and 4

3 respectively. It is evident that CCC shows more

speedup where the divergent path is longer. In addition, by comparing the two plots, we

realize that to cope with the overhead of CCC, either the divergent path has to be long or

the divergent ratio should be high. In both plots, the speedup is less than one only when

96

0

1.2

2.4

3.6

4.8

0

0.4

0.8

1.2

1.6

0 10 20 30 40

Sp
ee

d
u

p

T
im

e
(s

)

Divergent path FMAD instructions

(8 threads of every warp take the path)

Orig. Exec. Time Exec. Time with CCC CCC Speedup

0

0.4

0.8

1.2

1.6

0

0.4

0.8

1.2

1.6

0 10 20 30 40

Sp
ee

d
u

p

T
im

e
(s

)

Divergent path FMAD instructions

(24 threads of every warp take the path)

Figure 4.15: Sensitivity of CCC against different execution paths lengths plotted for two
different amounts of intra-warp divergence.

the divergent path contains only one operation and at the same time 24 threads inside every

warp take the path. In all other cases, the speedup provided by CCC is higher than one.

4.2 Collaborative Task Engagement

The abundance of execution units, accompanied with a high memory bandwidth,

have made GPUs the primary candidates for accelerating algorithms containing data paral-

lelism. To increase the energy efficiency, GPU threads are grouped into warps1 (on current

Nvidia devices, 32 threads are grouped into one warp). While the instruction fetch and de-

code are performed once for all the threads inside the warp, threads map into different GPU

execution units (cores) to process different data. Hence, the underlying design enforces the

whole warp to contain only one active PC (Program Counter) at a time. However, GPU’s

SIMT architecture design allows threads inside the warp to take different execution paths

by masking off inactive threads. This feature has made GPU programming easier since the

developers need not worry about handling diverging threads executing unwanted pieces of

1We use terms employed in CUDA platform to describe GPU specific architecture and programming
model.

97

code. However, this comfort can jeopardize the performance. One such frequent scenario

is of nested patterns that contain imbalanced loads, more specifically a pattern where a set

of coarse-grained tasks hold a number of fine-grained tasks with different sizes.

Early work for handling such nested patterns on GPUs employed 1D decomposi-

tion by assigning one thread to every coarse-grained task. The thread then iterates over the

fine-grained tasks and carries them out. This approach has appeared in many GPU appli-

cations including graph processing [30], Sparse Matrix Vector Multiplication (SpMV) [8],

and the analysis framework in [48] where it is known as 1D mapping. While being concise

and easy to reason about, 1D decomposition is highly prone to underutilization in presence

of imbalanced loads since all the threads inside the warp have to wait for the thread that

has been assigned the largest number of fine-grained tasks. To cope with the warp under-

utilization issue in irregular nested workloads, researchers suggested assigning fixed-sized

sub-warps to coarse-grained tasks [34, 91]. Therefore, threads in a sub-warp carry out its

assigned fine-grained tasks iteratively. We refer to this approach as sub-warp decomposi-

tion. Although providing better warp utilization compared to 1D decomposition, sub-warp

decomposition lacks portable performance since every application and input combination

exhibits the best performance at a specific sub-warp width. Most importantly, the same is-

sue that hurts 1D decomposition performance still exists in sub-warp decomposition. Here,

the whole warp has to wait for the sub-warp with the largest assigned task size.

We present Collaborative Task Engagement (CTE) technique to enhances the warp

utilization of irregular nested tasks compared to previous approaches. It provides a portable

performance across inputs and applications. Unlike aforementioned static task-to-thread as-

signment methods, CTE delivers dynamic decomposition via the expansion of coarse-grained

tasks. In multiple rounds, each thread inside the warp gets assigned the work of mapping

portion of a fine-grained task regardless of the coarse-grained task it belongs to. Later,

the thread determines the coarse-grained task to which the fine-grained task belongs. This

is achieved efficiently via a binary search of the buffer containing prefix sum of task sizes

– the buffer is held inside the shared memory. Therefore, it can participate in the reduc-

98

tion for the coarse-grained task’s final value, if necessary. CTE does not over-subscribe or

under-subscribe warp threads in the mapping stage and yet performs parallel reduction in

minimum number of steps between the fine-grained tasks of a coarse-grained task in every

round. To facilitate the employment of our technique, we have prepared a CUDA C++

device-side template library. The template library abstracts away the complications of the

implementation of nested pattern with CCC, allowing developers to focus on the program’s

algorithm and to quickly obtain the desired functionality. In addition, the template library

is built with the program hence providing ultimate portability across various systems. We

measured and analyzed the performance of our CTE in comparison with other static decom-

position methods across different class of applications. CTE improves the warp execution

efficiency of CUDA kernels by up to 37% and provides 1.51x speedup compared to the

sub-warp decomposition with the best sub-warp width.

The rest of this section is organized as follows. We first explain the drawbacks

of available static task-to-thread assignment approaches and motivate the necessity of a

solution that copes with irregularities in the input. Then we present our solution that

dynamically assigns tasks to SIMD threads and is robust against load imbalance. Finally

we give experimental evaluation results.

4.2.1 Motivation: Inefficiency of Static Task Decomposition Methods

GPU’s innovative SIMT architecture enables the implementation of conditional

device code in which threads belonging to a warp take different execution paths. The

underlying hardware keeps track of active and inactive warp threads in diverging paths and

masks off irrelevant threads. While this scheme speeds up GPU software development, it

can easily make GPU kernels prone to resource underutilization. If only a few threads take

a divergent path, all other threads inside the warp will have to wait for those threads before

they can continue. In other words, execution units are reserved for inactive threads and

they perform no operations.

99

1 template<typename valT, typename idxT>

2 __global__ void spmv_CSR_1D_mapping(const valT* mat,

3 const idxT* nnzRowScan, const valT* inVec,

4 const idxT* colIdx, valT* outVec) {

5 int rowID = threadIdx.x + blockIdx.x * blockDim.x;

6 valT sum = 0;

7 const idxT startPos = nnzRowScan[rowID];

8 const idxT endPos = nnzRowScan[rowID + 1];

9 for(idxT i = startPos; i < endPos; ++i) {

10 valT mapped =

11 mat[i] * inVec[colIdx[i]]; // MAP.

12 sum += mapped; // REDUCE.

13 } outVec[rowID] = sum; }

(a) The SpMV CUDA C++ kernel with 1D decomposition.

M0 R0 M R M R M R M R M R M R M R

M1 R1 M1 R1 M1 R1 M1 R1 M1 R1 M1 R1 M1 R1 M1 R1

M2 R2 M2 R2 M2 R2 M R M R M R M R M R

M3 R3 M3 R3 M3 R3 M3 R3 M R M R M R M R

Time

M4 R4 M4 R4 M R M R M R M R M R M R

M5 R5 M5 R5 M5 R5 M5 R5

M6 R6 M R M R M R M R M R

M7 R7 M7 R7 M7 R7 M7 R7 M7 R7 M3 R M R M R

Lane 0

Lane 1

Lane 2

Lane 3

Lane 4

Lane 5

Lane 6

Lane 7

(b) The visualization of a possible warp execution of the kernel in Figure 4.16a. Warp size
is assumed 8.

Figure 4.16: An example — Sparse Matrix-Vector Multiplication (SpMV) CUDA kernel
with a CSR matrix using 1D decomposition. Intra-warp load imbalance induces warp
inefficiency and performance loss.

100

Aforementioned issue intensifies in GPU kernels with irregular nested patterns

where there are a number of coarse-grained tasks each of which contains a different number

of fine-grained tasks. Therefore, threads inside the same warp may have to iterate different

number of times over the code to fully carry out their task. Figure 4.16a illustrates the

above problem using an example of nested pattern that appears in the SpMV kernel with

CSR (scalar) [7] decomposition. Since all the threads reconverge at the end of the loop,

different amounts of load for different warp threads results in partial warp utilization. In

other words, threads that finish early stay inactive until the thread with the longest number

of iterations finishes. In Figure 4.16a, inside the loop, threads first compute the intermediate

value (map) and then reduce it with the thread’s private variable. Figure 4.16b visualizes

the utilization of warp threads executing this loop. Note that in this work, we focus on

intra-warp task assignment strategies.

This task assignment strategy, being very intuitive, is frequently seen in widely-

used GPU applications involving nested parallel patterns; especially when the algorithm

contains a set of coarse-grained tasks each of which containing a number of fine-grained

tasks. Sparse Matrix-Vector Multiplication (SpMV) with Compressed Sparse-Row (CSR)

format in [8] uses this task assignment strategy, and is algorithmically identical to the kernel

in Figure 4.16a. This method is also employed by the analysis framework in [48] where it

is called 1D mapping. We use the term 1D decomposition throughout this paper.

To tackle the inefficiencies of 1D decomposition, CUDA provided dynamic par-

allelism to let threads spawn thread blocks for ease of expressing nested patterns; it has

been shown in [91, 83] that dynamic parallelism imposes overheads such as parent thread

blockage and communication via relatively slow global memory between the parent and

children threads. These overheads have hindered the adoption of dynamic parallelism in

GPU applications.

Other task assignment approaches aim to exploit parallelism inside a coarse-

grained task— which is untouched by the 1D decomposition. The most notable among

them, groups the threads belonging to the same warp and assigns the resulting coarse-

101

grained tasks to the warps [8]. Later works improve upon this strategy by dividing the

warp into smaller sub-warps and assigning each sub-warp to process a coarse-grained task.

Sub-warps have fixed width – one of 2, 4, 8, 16, or 32 – throughout the kernel computation.

Threads within a sub-warp participate in carrying-out the fine-grained tasks of the coarse-

grained task. As an instance of usage of this scheme, CUSP library [79] assigns a sub-warp

to process a row of the CSR matrix in SpMV computation. Threads inside the sub-warp

execute the mapping function for a section of the row and reduce the outcomes in paral-

lel. This procedure is performed iteratively on all the sections of the row. CUDA-NP [91]

expressed a similar approach in form of a primary thread and a few subordinate threads

for nested parallel patterns. Here we refer to this approach as the sub-warp decomposition

(such approaches have also been called warp-based mapping [48]). Figure 4.17 visualizes the

warp execution for the example in Figure 4.16 when sub-warp decomposition with width 4

is employed.

M0 M R R0 M2 R2 R2 M4 R4 M6 R6

M2 M4

M2

M3

Time

M1 M1 R1 R1 R1 M3 R3 M5 R5 R5 M7 R7 R7

M1 M1 R1 R1 M3 M5 M7 R7

M1 M1 R1 M5 M7

M1 M1 R1 M7

Lane 0

Lane 1

Lane 2

Lane 3

Lane 4

Lane 5

Lane 6

Lane 7

Figure 4.17: Warp execution visualization in sub-warp decomposition (with width 4) for
the example in Figure 4.16. Sub-warp decomposition attempts to exploit parallelism inside
coarse-grained tasks.

102

Benchmark Input 1D VW2 VW4 VW8 VW16 VW32

SpMV
Wbedu 16.6% 36.8% 41.1% 49.8% 50.4% 28.9%
Delau 57.0% 63.4% 66.5% 61.3% 52.7% 38.7%

FMM
nEquProb 20.9% 26.8% 39.7% 33.2% 37.8% 39.4%
EquProb 42.2% 44.3% 44.7% 44.8% 36.7% 29.1%

Table 4.2: Kernel warp execution efficiency of CUDA applications exposed to different
inputs with 1D and sub-warp decomposition methods. The efficiency of kernels not only
varies from one sub-warp width to another (the best in each row is underlined), it is also
well below 100%.

Although sub-warp decomposition provides improved SIMD utilization, it suffers

from a constraint. In order to guesstimate the best sub-warp width, for every specific GPU

kernel, the developer needs to know the characteristics of the algorithm and must analyze the

input in a preprocessing step. This constraint of sub-warp decomposition makes application

portability unachievable. A sub-warp width that works well for one input, may not deliver

a good performance for another input. In addition, sub-warp decomposition suffers from

the same issue as 1D decomposition. It leaves a great portion of the warp underutilized

when some coarse-grained tasks contain a large number of fine-grained tasks while others

have only a few. For example, CUSP’s heuristic to determine the best sub-warp width is to

choose the closest equal or higher power of 2 to the average of the non-zeros per row (for

averages bigger than the warp size it chooses the warp size). Relying only on the average

of the coarse-grained task distribution, this method basically ignores their variance. Some

rows of the input matrix may have much larger number of non-zero elements than other

rows but this method assigns the same processing power to each and every row. Thus, the

entire warp must wait for the sub-warp with the largest amount of fine-grained tasks.

Essentially, in both 1D and sub-warp decomposition methods, the static

thread-to-task assignment not only lacks portable performance across differ-

ent inputs, but also makes the kernel highly susceptible to the warp execution

inefficiency due to load imbalance between irregular coarse-grained tasks. Ta-

103

ble 4.2 confirms this observation by showing profiled warp execution efficiency2 of different

benchmarks (FMM stands for Fast Multiple Method [43] for n-body approximation) and

inputs for 1D decomposition and sub-warp decomposition with different sub-warp widths.

We can see that different applications with different inputs demonstrate the best execution

efficiency at various sub-warp widths.

Above observation motivates the need for an approach that, regardless of the input

task size variance, effectively maps the irregular tasks to threads for efficient execution for

nested patterns on the GPU architecture.

4.2.2 Collaborative Task Engagement

In this section, we introduce our technique, Collaborative Task Engagement (CTE),

that eliminates warp inefficiencies induced by irregular nested patterns. We first describe

our solution, then explain its efficient CUDA implementation, and finally, we present our

template library that allows developers to use this technique with ease.

Dynamic Task Assignment in CTE

To handle irregularities in nested patterns, we propose Collaborative Task Engage-

ment (CTE). In CTE, similar to sub-warp decomposition, a fine-grained task is defined as a

combination of a mapping function and an associative reduction function. While a mapping

function computes a candidate value for the fine-grained task, the reduction function does

a summary operation over fine-grained tasks’ candidate values for the coarse-grained task.

For instance, lines 11 and 12 in Figure 4.16a show the mapping function which computes

the result by multiplying the matrix element with the corresponding vector element, and

line 13 shows the reduction function which accumulates the resulting values to yield the

output vector element.

2Warp Execution Efficiency is a metric provided by Nvidia Profiler defined as the “ratio of the average
active threads per warp to the maximum number of threads per warp supported on a multiprocessor.” It is
a measure indicating what fraction of threads of warps in a kernel have been active on an average. It can
also be seen as a measure that is inversely proportional to the overall thread divergence.

104

In CTE, instead of assigning one coarse-grained task to one thread (1D decompo-

sition) or a fixed number of threads inside the warp (sub-warp decomposition), we assign a

group of coarse-grained tasks to a warp, and let the threads in the warp collab-

orate to carry out the fine-grained tasks belonging to the coarse-grained tasks

assigned to the warp. More specifically, threads of the warp view and iterate over the

list of fine-grained tasks resulting from the expansion of coarse-grained ones. Figure 4.18

demonstrates this scheme for the example in Figure 4.16.

M0 M1 M1 M1 M1 M1 M1 M5 M5 M5 M6 M7 M7 M7 M7

R R RR

M1 M2 M2 M2 M3 M3 M4 M4M1

R R R R

(a) The warp acts as a sliding window executing the expanded list of fine-grained tasks in
the regions with the size equal to the warp size.

Lane 0

Time

M0 R0 M R0 M1 M R1 M5 M1 R5 R5

M1 R1 R1 R1 M2 R2 R2 M5 M1 R5 M1

M1 R1 R1 R2 M2 R2 R M5 M1 R

M1 R1 R1 R3 M2 M3 R3 M6 R6

M1 R1 M4 R4 M3 R3 R3 M7 R7 R7 R7

M1 R1 M5 R5 M3 R3 M7 R7

M1 R1 M4 R4 R4 M7 M R M

M1 R1 M7 R7 M4 M7 R7 M7 M3 R M

Lane 1

Lane 2

Lane 3

Lane 4

Lane 5

Lane 6

Lane 7

(b) CCC reduces the execution time of irregular nested tasks by enhancing the warp effi-
ciency.

Figure 4.18: Visualization of the SpMV CUDA kernel in Figure 4.16a after applying CTE.

Unlike previous static task decomposition methods, Each thread inside the

warp is assigned to execute one compute function corresponding to a fine-

105

grained task; regardless of the coarse-grained task from which the fine-grained

task comes from. By unbundling fine-grained tasks from their coarse-grained task, the

execution of compute stage in CTE completely avoids the warp inefficiency. After the com-

pute stage, since fine-grained tasks from a coarse-grained task are processed by consecutive

threads in the warp, a thread can find its corresponding coarse-grained task and execute the

reduction function over the results with its neighbors, if necessary. The parallel reduction is

performed over the results of the computation for a coarse-grained task to produce its final

result. Figures 4.18a and 4.18b exhibit this procedure. As can be seen, warp inefficiencies

due to load imbalance in CTE can only appear during the reduction phases, however, their

effect will not last longer than at most logwarpSize reduction steps. The advantages of

CTE include:

• It avoids under-subscribing or over-subscribing warp threads during the mapping by

assigning a map function to every thread in each round regardless of their correspond-

ing coarse-grained task; and

• It reduces the effect of load imbalance between coarse-grained tasks by performing

parallel reduction over the fine-grained tasks belonging to a coarse-grained one.

Efficient CUDA Implementation of CTE

Next, we describe the details of CTE’s CUDA implementation using the pseudo-

code presented in Figure 4.19. We provide a step by step description of the pseudo-code.

Shared memory declaration and allocation – CTE requires shared memory

buffers to exchange data between threads of a warp. To enforce sequential consistency be-

tween the shared memory accesses within a warp, volatile qualifier accompanies shared

memory declarations (lines 1-4). Using this technique— and since in CTE the set of in-

teractions between threads is confined to within their own warp— our procedure avoids

introducing any explicit syncing or fencing primitives.

106

1 volatile shared scans[N_CTA_WARPS][WARP_SIZE];

2 volatile shared reds[N_CTA_WARPS][WARP_SIZE];

3 volatile shared mapped[N_CTA_WARPS][WARP_SIZE];

4 volatile shared taskDesc[N_CTA_WARPS][WARP_SIZE];

5 scans[warp_id][lane_id] =

prefix_sum(ThreadCoarseTask.size);

6 NFineTasks = scans[warp_id][WARP_SIZE - 1];

7 firstLoad = scans[warp_id][0];

8 reds[warp_id][lane_id] =

ThreadCoarseTask.initRedVal;

9 taskDesc[warp_id][lane_id] =

ThreadCoarseTask.fineTaskDescriptor;

10 for(fineTaskID = lane_id;

fineTaskID < NFineTasks;

fineTaskID += WARP_SIZE) {

11 coarseTaskID =

binary_search(fineTaskID, scans[warp_id]);

12 fineTask = task_descriptor(fineTaskID,

taskDesc[warp_id], coarseTaskID);

13 mapped[warp_id][lane_id] = map(fineTask);

14 inSegIdx = min(lane_id, fineTaskID –

scans[warp_id][coarseTaskID] + firstLoad);

15 segSize = min(scans[warp_id][coarseTaskID]

– fineTaskID, WARP_SIZE – lane_id) + inSegIdx;

16 redElemPos = (inSegIdx != 0) ?

(mapped[warp_id] + lane_id – 1) :

(reds[warp_id] + coarseTaskID);

17 for(i = WARP_SIZE / 2; i > 0; i /= 2)

18 if((inSegIdx + i) <= segSize)

19 *redElemPos = reduce(*redElemPos,

mapped[warp_id][lane_id + i - 1]);

20 }

21 return reds[warp_id][lane_id];

Figure 4.19: GPU pseudo-code for CCC.

Coarse-grained task feature extraction – Initially, each thread corresponds

to one coarse-grained task. This coarse-grained task is the input to the procedure in Fig-

ure 4.19. First, at line 5, we compute the inclusive prefix sum of coarse-grained task sizes

that threads of the warp hold and save them into the scan buffer. This buffer is necessary

for multiple uses in the iterative code section (lines 10-20). For a fast intra-warp prefix

sum, we employed the method introduced in [86] that utilizes the shuffle intrinsic. After

calculating prefix sums, the last element gives the total number of fine-grained tasks (line

6). Plus, we put the first element into a variable (line 7) so we can use it inside the iterative

segment to get the exclusive prefix sum results. At line 8, each thread inserts the initial

107

value (given by the user-specified algorithm) for the reductions of fine-grained tasks over its

initially assigned coarse-grained task. The reds buffer collects the reduction results in the

iterative section and eventually to be output by the program (line 21). Moreover, taskDesc

specifies the set of shared memory buffers that collect the fine-grained task descriptors for

coarse-grained tasks.

Each thread, which is initially assigned to a coarse-grained task, has a number of

variables that are used by the fine-grained tasks inside the coarse-grained task and vary

among the coarse-grained tasks. For example, in Figure 4.16a startPos and endPos are

thread-private variables that directly affect the execution of fine-grained tasks inside the

loop. We call such variables task descriptor. Since in CTE fine-grained tasks of one coarse-

grained task are executed by multiple threads, the thread saves its task descriptor variables

inside the shared memory so as to make them accessible by all the threads inside the warp.

Note that this is necessary for all decomposition methods that need to exploit the parallelism

inside coarse-grained tasks (such as sub-warp decomposition).

Fine-grained task assignment and mapping – Lines 11-20 present the iter-

ative segment in which every thread inside the warp is assigned to one fine-grained task

identified by fineTaskID. First, the coarse-grained task owning the thread’s assigned fine-

grained task is found via a binary search on the scans buffer inside the shared memory at

line 11. Then, at line 12, thread’s assigned fine-grained task is retrieved from the taskDesc

buffer using thread’s fine-grained task index and its corresponding coarse-grained task in-

dex. The thread executes the mapping portion of the described fine-grained task in line 13

and saves the result inside the designated shared memory buffer position.

Parallel reduction of mapped fine-grained tasks – At this point, threads

inside the warp performed mapping on fine-grained task, and now, need to properly reduce

mapped values. Since fine-grained tasks belonging to one coarse-grained task were assigned

to consecutive threads, they form segments when they are processed using the for loop

specified in line 10. If the thread discovers its index inside the segment and also the segment

size, parallel reduction inside the segment will become feasible. Thus, line 14 calculates the

108

intra-segment index using scans buffer and line 15 computes the segment size by adding

the intra-segment index with the fine-grained task index inside the segment when observed

from right to left. In line 16, we assign the first thread inside the segment to the segment’s

reduction element inside reds buffer and assign the rest of the threads to the mapped value

of the thread before them inside the segment. This re-assignment becomes beneficial by

eliminating the need for an additional reduction with the corresponding element inside the

reds buffer at every iteration. Finally, an intra-segment parallel reduction (with unrolled

loop in the actual implementation) reduces the mapped values and saves the outcome inside

the corresponding reds buffer position. Threads keep executing the code section in lines

10-20 until all the fine-grained tasks are carried out. Finally each thread returns the reduced

value for its initially-assigned coarse-grained task (line 21).

CTE as A Device-side Template Library

While CTE provides an efficient method to handle irregular nested patterns, its

implementation from scratch for every GPU kernel can be time-consuming and challenging

for CUDA programmers. To enable easy usage of CTE by developers, we provide our

technique as a CUDA C++ device-side template library. A CUDA developer only needs to

include our library header file and call the designated library function. The library function

takes as its parameters the thread’s fine-grained task index range, mapping and reduction

functions, and initial content for thread’s coarse-grained task’s reduction value. While the

programmer expresses the tasks as if each thread is assigned to one coarse-grained task

(similar to 1D decomposition), the library manages the CTE execution behind the scenes.

Figure 4.20 shows the usage of our library for the SpMV kernel. In this example,

the mapping function is defined as a lambda (lines 10 and 11) that takes the iteration index

as the parameter and returns the corresponding element, i.e. the multiplication outcome.

The signature of the mapping function for our library requires the first parameter to be

the iteration index while the rest of the parameters can be passed by the user as the lane

109

1 #include <cte.cuh> // CTE library inclusion.

2 template<uint BlockDim, typename valT, typename idxT>

3 __global__ void spmv_CSR_with_CTE(const valT* mat,

4 const idxT* nnzRowScan, const valT* inVec,

5 const idxT* colIdx, valT* outVec) {

6 int rowID = threadIdx.x + blockIdx.x * blockDim.x;

7 valT sum = 0;

8 const idxT startPos = nnzRowScan[rowID];

9 const idxT endPos = nnzRowScan[rowID + 1];

10 auto mapF = [&](idxT idx) { // MAP.

11 return mat[idx] * inVec[colIdx[idx]]; };

12 auto redF = [](valT lhs, valT rhs) { // REDUCE.

13 return lhs + rhs; };

14 sum = cte::for_each_index<BlockDim, cte::scanned>

15 (startPos, endPos, mapF, redF, sum);

16 outVec[rowID] = sum; }

Figure 4.20: Expressing the nested pattern in Fig. 4.16a CUDA C++ kernel in CTE form
using our template library interface.

state. Lines 12 and 13 in Figure 4.20 present the reduction function— again as a lambda

expression— for this example. The reduction function signature for the library accepts only

two parameters and returns one value of the same type. Finally, lines 14 and 15 give the

function call to execute the tasks with CTE technique.

CTA (thread-block) dimension needs to be sent to the function as the first template

argument so the library would have the correct size for the static shared memory allocation.

Also, the second template argument hints the library that the indices of consecutive threads

are prefix summed. In other words, the ending index for thread i’s region is the beginning

index for thread (i + 1)’s. This template specialization will allow the library to avoid

recalculation of the prefix sum of the fine-grained task sizes. If such relationship between

indices does not exist, the user will have to pass cte::disjoint as the template argument.

We mentioned earlier that in this example startPos and endPos act as task descriptors

and need to be passed as function arguments. We specialized the CCC function calls with

more template signatures so that for an arbitrary mapping function, other task descriptor

variables can be passed as the last variables of the CTE function call in the order they

appear as the further mapping function parameters.

110

Finally, since all the threads of the warp need to be present for a correct CTE ex-

ecution, upon entering the execution function, the library performs a ballot() operation

with true predicate. If the result of this operation is not a variable with all bits set, it

means one or a number of warp threads are absent. In this case, as a safety procedure the

library falls back to the 1D decomposition method.

CTE Analysis for Comparison with Static Decomposition Methods

To analyze the CTE characteristics and compare it with static decomposition

methods, we briefly provide analysis over the execution time for static decomposition meth-

ods and CTE. We show that while the execution time for 1D decomposition and the upper-

bound for sub-warp decomposition execution times are a function of the maximum(s) of

the set of coarse-grained task sizes, the upper-bound for the execution time of CTE is a

function of the average of the workload.

Assumptions and notation. For analysis, let us assume that the warp size is

W , and for simplicity, further assume that there are W coarse-grained tasks to be processed

– the time for bigger coarse-grained tasks can be obtained via scaling. Let us denote the

execution time of the mapping and reduction functions by TMAP and TRED respectively.

Note that for simplicity of analysis we assume that these times are constant and not affected

by memory access latencies.

1D decomposition – Given a set of coarse-grained tasks L = {l1, l2, ..., lW }, the

execution time of this set of loads with 1D decomposition is given by:

t1D(L) = maxL× (TMAP + TRED) (4.1)

Equation 4.1 above can be easily understood by examining Figure 4.16b. Note that the

above equation shows that t1D is a function of the maximum of the set of loads.

Sub-warp decomposition – For sub-warp decomposition, if the width of the

chosen sub-warp is S (note logS W ∈ N), then the upper-bound for its execution time is

111

given by:

tSW (L, S) =
S∑

s=1

(TRED × log2 S + (TMAP × d
max {li| (s−1)×WS < i ≤ s×W

S }
S

e))

= TRED × S log2 S + TMAP ×
S∑

s=1

d
max {li| (s−1)×WS < i ≤ s×W

S }
S

e (4.2)

Initial form of Equation 4.2 sums up the execution times in different rounds since sub-

warp decomposition assigns V threads to process a coarse-grained task. While log2 V is the

maximum number of steps required for the reduction, the mapping operation is repeated

within a round by the warp as long as the largest coarse-grained task’s mapping functions

assigned to a sub-warp are being performed. The final form of Equation 4.2 shows that

tVW is still a function of the largest tasks. Also, V appears at both top and the bottom

of the fractions of Equation 4.2 which usually makes tVW a non-monotonic function of V .

The V for which tVW is minimum depends on the load distribution.

CTE – On the other hand, the upper-bound of the execution time for CCC is

expressed as below:

tCTE(L) = d

W∑
i=1

li

W
e× (TMAP +TRED× log2W) = dAvg(L)e× (TMAP +TRED× log2W)

(4.3)

In CTE, in every round the fine-grained compute portion of the tasks are assigned to the

warp threads and therefore the sum of loads divided by the warp size is the coefficient of

both TMAP and TRED in Equation 4.3. Also, the reduction will take log2W steps at most,

therefore, this term accompanies TRED. Considering the final form of Equation 4.3, we

can see that the upper-bound for tCTE is a function of the average of the loads, not their

maximum unlike the previous two methods, i.e. 1D and sub-warp decomposition.

112

4.2.3 Experimental Evaluation

In this section, we evaluate the performance of CTE and compare it with 1D and

sub-warp decomposition methods. We selected applications from various domains including

sparse matrix operations, scientific computing, and graph analytics for this purpose. We

performed the experiments on a Nvidia GeForce GTX 780 with 12 Streaming Multiproces-

sors from the Kepler family. We compiled and ran all the programs for CUDA Compute

Capability 3.5 with -O3 and C++11 compilation flags on a system with Ubuntu 14.04 and

CUDA 7.0.

Performance Analysis

Sparse matrix operations – Figure 4.21 presents the speedup of CCC over

1D decomposition and compares it with the speedup provided by sub-warp decomposition

from CUSP library [79] for two application from sparse matrix operation domain. SpMV is

the Sparse Matrix Vector Multiplication and DIAG is the extraction of the diagonal of the

given matrix. Input graphs are from The University of Florida sparse matrix collection [17]

and exhibit different structures and therefore nested load size variation. Rajat31 (Rajat) is

an unsymmetric and rather regular matrix with a dimension of 4.69M and approximately

20M non-zero elements. Delauny n24 (Delau) is a symmetric irregular matrix with 16.7M

rows and columns and 100M non-zero elements. Wb-edu (Wbedu) is a more irregular

unsymmetric matrix compared to Delau with 9.8M rows and columns and 57M non-zero

elements. Also, to further verify the CCC performance compared to static decomposition

methods, we profiled the warp execution efficiency of CCC, sub-warp and 1D decomposition

kernels with Nvidia Profiler and plotted the results in Figure 4.22.

Starting with Wbedu in Figure 4.21 as the most irregular input, CTE provides 2.8x

and 2.3x speedup compared to 1D decomposition for SpMV and DIAG respectively. SpMV

is a more compute-intensive application compared to DIAG and can benefit more from our

113

0

0.5

1

1.5

2

2.5

3

Rajat Delau Wbedu Rajat Delau Wbedu

SpMV DIAG

Sp
ee

d
u

p
 o

ve
r

1
D

 d
ec

om
p

os
it

io
n

SW2 SW4 SW8 SW16 SW32 CTE

Figure 4.21: The kernel execution speedup of CTE and sub-warp decomposition over 1D
decomposition for matrix operations on real-world matrices.

technique. CTE speedup becomes more compelling in the light of sub-warp decomposition

speedup over 1D decomposition which can be less than 1 (for sub-warp width 32) and max-

imize at 1.8x. The CTE supremacy is explained via Figure 4.22 in which CTE shows 87%

and 96% warp execution efficiency for SpMV and DIAG respectively while 1D decomposi-

tion warp efficiency does not exceed 20% and sub-warp decomposition warp efficiency for

different sub-warp widths varies greatly from SpMV to DIAG. As we move toward more

regular input matrices (Delau and Rajat), the variation in the size of coarse-grained loads

reduces hence 1D and sub-warp decomposition exhibit a better warp utilization and perform

better. For Delau, CTE provides 1.9x and 1.3x speedup over 1D decomposition by enhanc-

ing the warp efficiency 25% and 23% for SpMV and DIAG respectively. It also provides

1.28x and 1.3x speedup over the sub-warp decomposition method with the best sub-warp

width. Finally, for Rajat, since the graph is very regular, CCC shows approximately the

same speedup as the best sub-warp decomposition width (1.18x) for SpMV.

Scientific applications – In this section, we measured the performance of two sci-

entific applications, Fast Multiple Method [43] (FMM) and Dynamical Quadrature Grids [54]

(DQG) when performed using CTE and 1D and sub-warp decomposition methods. The re-

114

0

20

40

60

80

100

Rajat Delau Wbedu Rajat Delau Wbedu

SpMV DIAG

W
ar

p
 E

xe
cu

ti
on

 E
ff

ic
ie

n
cy

 (
%

)

1D SW2 SW4 SW8 SW16 SW32 CTE

Figure 4.22: Profiled warp execution efficiency of CTE, sub-warp decomposition, and 1D
decomposition kernels for experiments in Figure 4.21.

sults are depicted in Figure 4.23. For FMM, which is an n-body approximation that groups

the particles in a quad-tree, we consider 10M points in 3D space as the input, and vary

the maximum density (Q) of points in each leaf between 5 and 10. We calculate the U-list

phase of FMM procedure and distribute the points with non-equal probability distribution

(nEquProb) and equal probability distribution (EquProb). It is evident that for two irregu-

lar inputs, our technique outperforms both 1D decomposition and sub-warp decomposition

by up to 1.5x and 1.15x-1.67x. However, for the regular input sub-warp decomposition with

sub-warp width 16 shows slightly better performance. Moreover, DQG computes the points

inside a quadrature grid. For DQG, we vary the maximum number of atoms per molecule

between 20 and 40 and provide regular and irregular input sets. For the regular input, the

number of atoms in molecules are randomly selected between 1 and maximum allowed. For

irregular inputs, they are selected using normal distribution. Similar to FMM, irregularity

in inputs manifests the CCC supremacy while for a regular input CTE performs on-par with

the best sub-warp decomposition width. Also, since compared to FMM, DQG kernel has a

more compute-intensive map portion, resulting speedups are slightly higher, covering CTE

overhead of re-bundling fine-grained tasks with their corresponding coarse-grained ones.

115

0

0.5

1

1.5

2

nEquProb_5 nEquProb_10 EquProb_5 IRR_20_atoms IRR_40_atoms REG_20_atoms

FMM DQG

Sp
ee

d
u

p
 o

ve
r

1
D

 d
ec

o
m

p
o
si

ti
o
n

SW2 SW4 SW8 SW16 SW32 CTE

Figure 4.23: The kernel execution speedup of CTE and sub-warp decomposition over 1D
decomposition for Fast Multiple Method [43] and Dynamical Quadrature Grids [54] with
different inputs.

Graph Analytics – Figure 4.24 shows the kernel execution speedup of CTE and

sub-warp decomposition over 1D decomposition for 3 graph applications (BFS, SSSP, and

PageRank [65]) over 3 real-world graphs. These graphs have different number of nodes and

edges and exhibit various degree distribution patterns. A coarse-grained task in this case

processes a node which includes visiting its neighbors as the fine-grained tasks. For this

section, we used the sub-warp decomposition implementation in [42] and hand-wrote 1D

decomposition. First, LiveJournal [4] (LiveJ) has around 4.85M nodes and 69.0M edges and

has a power-law degree distribution. CCC shows better performance for this graph in all

application by being 1.30x, 1.08x, and 1.34x better than the best sub-warp decomposition

option for BFS, PageRank, and SSSP respectively. Also note that the best sub-warp for dif-

ferent applications differ; this signifies the need for try-and-error or profiling in sub-warp de-

composition for every algorithm and input combination. Second, HiggsTwitter [18] (Higgs)

is even more irregular compared to LiveJournal and contains 0.46M nodes and 14.8M edges.

The results for this graph demonstrate the ineffectiveness of 1D decomposition confronting

heavy amount of load imbalance in nested patterns. Finally, RoadNetCA [51] (RoadN)

with 1.96M nodes and 5.53M edges is an example of a regular input for the benchmarks

116

due to its internal connectivity. Most of the nodes in this graph have approximately 1 to

4 neighbors. Therefore, for this graph, 1D decomposition usually performs the best since

coarse-grained tasks have roughly equal amounts of fine-grained loads. However, even for

this regular pattern, CTE exhibits performance in-par with 1D decomposition by 0.92x,

0.96x, and 1.03x speedup for BFS, PageRank, and SSSP respectively. Also, it is clear that

sub-warp decomposition performance becomes worse as we increase the sub-warp size due

to over-subscription.

0

1

2

3

4

5

6

7

RoadN Higgs LiveJ RoadN Higgs LiveJ RoadN Higgs LiveJ

BFS PageRank SSSP

Sp
ee

d
u

p
 o

ve
r

1
D

 d
ec

om
p

os
it

io
n

SW2 SW4 SW8 SW16 SW32 CTE

Figure 4.24: The kernel execution speedup of CTE and sub-warp decomposition over 1D
decomposition for different graph applications and inputs.

4.2.4 Sensitivity Analysis: varying coarse-grained task sizes

In this section, we analyze the performance of 1D, sub-warp decomposition, and

CTE with two synthetic compute-intensive scenarios. The first scenario assigns each thread

inside the warp a task size linearly proportional to its laneID. Whereas, in the second

scenario, the task sizes are proportional to laneID2. These two scenarios are distinguished

in Figure 4.25 with LINE and QUAD respectively. Note that in sub-warp decomposition

threads calculate their task size using their sub-warp ID so that kernels for all decomposition

117

0

50

100

150

200

250

LINE QUAD

K
er

n
el

 E
xe

c.
 D

u
r.

 (
m

s)

1D SW2 SW4 SW8 SW16 SW32 CTE

0

20

40

60

80

100

LINE QUAD

W
ar

p
 E

xe
c.

 E
ff

.
(%

)

Figure 4.25: Kernel execution duration (left plot) and Warp execution efficiency (right plot)
for decomposition methods when the task sizes vary linearly and quadratically proportional
to the lane index. Map and reduce portion of the fine-grained tasks each contain 20 FMAD
instructions. For the LINE scenario, the coarse-grained task size is calculated with 4 ×
laneID while for the QUAD scenario it is calculated with laneID2

8 . Task sizes for the
sub-warp decomposition are calculated using their sub-warp index.

methods get the same overall task sizes for a fair comparison. The coefficients for these

two scenarios are selected so that they give approximately the same overall kernel execution

duration for the 1D decomposition.

While 1D decomposition kernel takes the same amount of time for both LINE and

QUAD scenarios to finish, as it is shown in Figure 4.25, average number of fine-grained

tasks per a coarse-grained task for LINE and QUAD are approximately 60.8 and 40.5.

This confirms our previous statement about the kernel duration being a function of the

maximum of coarse-grained load sizes in 1D decomposition. Also, by making the loads

more irregular (LINE vs QUAD), warp execution efficiency for 1D decomposition kernel

halves, demonstrating its vulnerability to the intra-warp load imbalance. For sub-warp

decomposition, although the kernel duration for different sub-warp sizes reduces by moving

from LINE to QUAD by 12 to 24 percent, it does not reflect 33% reduction in the load size.

On the other hand, CTE kernel duration drops by 33% confirming the CTE performance

dependency to the average of the loads. Plus, unlike sub-warp decomposition that exhibits

varying warp execution efficiency for different sub-warp widths in both scenarios, CTE

exhibits excellent warp efficiency.

118

4.3 Summary

This chapter extended the applicability of our graph computation techniques and

generalized them as a compiler solution and a template library for SIMD execution efficiency

enhancement in CUDA applications. First it introduced Collaborative Context Collection

(CCC) that overcomes the SIMD inefficiency of GPU kernels containing thread divergence

due to intra-warp load imbalance or dissimilar task assignment. CCC collects the context

of divergent threads at the stacks inside the shared memory and retrieves them such that a

uniform task is performed by all the warp lanes. This chapter proposed transformations to

extend the applicability of CCC to various program patterns, such as recursive functions,

and also presented optimizations to enhance CCC performance and to avoid CCC potential

side-effects such as occupancy limitation. Moreover, CCC’s implementation as a compiler

optimization relieves the user from developing the technique from the scratch.

The second section of this chapter introduced Collaborative Task Engagement

(CTE) for efficient expression and execution of GPU kernels containing nested patterns. Un-

like existing solutions where static assignment of threads to tasks does not provide portable

application performance across multiple inputs and induces warp underutilization, CTE

assigns threads inside the warp to process a group of tasks collaboratively. Consecutive

threads process the consecutive fine-grained tasks resulted from the expansion of coarse-

grained tasks, determine the coarse-grained task they belong to, and participate in parallel

reduction with their neighbors. Packaging Collaborative Task Engagement as a CUDA C++

device-side template library facilitated its employment in arbitrary GPU application.

119

Chapter 5

Related Work

This chapter discusses the research in domains addressed by this thesis. First, we

provide the related work on graph processing on GPUs, and then, summarize the general

software and microarchitectural solutions addressing thread divergence issue.

5.1 Graph Processing on GPUs

Over the past decade there has been a great deal of interest in utilizing GPUs

as general purpose accelerators to perform graph processing. The work of Harish and

Narayanan [30] was the first step in this direction presenting a simple parallelization scheme

that gives each CUDA thread a vertex to process. One of the paths later works took was

to diminish the SIMD inefficiency due to irregularity of real-world graphs. Hong et al. [34]

proposed dividing the physical warp into smaller virtual warps so as to provide finer control

over the task assignment. However, this approach, which was inspired by the work of

Bell and Garland for sparse matrix vector multiplication [8], can also suffer from the warp

underutilization. Later works endeavored to fix this problem not only for BFS [56, 60]

but also for other graph algorithms such as SSSP [16], Betweenness Centrality [57], and

PageRank [88]. Nonetheless, algorithm-oriented specializations limit applicability and hence

wide deployment of these methods.

120

For generic graph processing, CuSha [42] framework utilizes edge-centric repre-

sentations namely G-Shards and Concatenated Windows (CW) to perform user-defined

vertex-centric computation with coalesced memory accesses. However, not only these rep-

resentations consume 2x to 2.5x more space compared to CSR format, their use inhibits

work-efficiency. In this thesis we mitigated the space consumption issue by introducing a

SIMD-friendly technique named Warp Segmentation [41] but work-inefficiency issue still

exists in its framework. Both of the above solutions perform redundant computations on

inactive vertices and their belonging edges. As we elaborated in the thesis, we overcame

this issue by accompanying the CSR representations with auxiliary data structures and CSC

representation, and provided a dynamic thread assignment for intra-warp underutilization

avoidance. GunRock [84] is a recent work-efficient data-centric model for which the user

has to provide algorithms by focusing on the operations on the frontiers. As an approach

conforming to the push-based model, it heavily relies on atomics to indicate the computa-

tion, which lowers the expressiveness and hinders scaling to multiple GPUs. In contrast,

the solutions in this thesis choose a pull-based model which avoids these issues.

The importance of graph computation has also lead to creation of Domain-Specific

Languages. Green-Marl [33] is an example of a DSL that provides instructions and prim-

itives to accelerate the graph processing on multi-core machines. Falcon [10] is another

DSL that allows utilizing GPUs for this purpose as well. Falcon is an example of a hybrid

solution in which CPU and GPU cooperate to offload the graph processing task. In [35],

authors propose a scheme for heterogeneous BFS graph traversal that utilizes CPUs for

early iterations with low activation and then GPUs for later iterations where most of the

vertices need visitation. TOTEM [24] views the host as another accelerator and statically

distributes the graph between the devices. Recently, GraphReduce [78] proposed utilizing

host memory for scaling the computation to graphs exceeding the size of GPU’s DRAM.

Similarly, GTS [45] exploits PCIe-connected SSDs to stream very large graphs into GPUs

in order to harness its massive parallel processing power. This is an interesting aspect

which is orthogonal to our work and can be employed simultaneously with our approach.

121

[58, 64] propose solutions for processing the graphs that mutate during the computation.

In contrast, the focus of this dissertation is algorithms that do not change the structure of

the graph.

From a data structure point-of-view, vertex grouping, discussed in Section 3.1.2,

can be viewed as a form of input reduction which has recently become popular among

researchers [46]. In addition, vertex grouping is the equivalent of constructing the CSC

representation for the reduced adjacency matrix of the graph, and therefore, resembles

the idea of mipmaps [85] that is widely used in Computer Graphics. Here, instead of an

image and its pixels, the graph’s adjacency matrix and the vertices inside it are reduced.

Furthermore, the idea of using a bitmask and atomically updating it has been used in

multi-core BFS graph exploration [1, 75] as well as GPU hashing [38]. The bitmasks in

these solutions are used to imitate the behavior of a bloom filter without false positives.

Various other graph representation formats have been proposed that are typically beneficial

for targeted applications. For instance, [58] introduces a novel idea of using sparse bit

vectors, a structure similar to linked list. However, this representation is highly space

inefficient and is only beneficial for morph algorithms when data accesses patterns exhibit

spatial locality. [88] tries to balance the load in graphs represented in CSR format by

reorganizing the vertices and putting them in three bins. Based on the size of these bins,

appropriate number of GPU threads are assigned to process these bins, hence providing a

balanced workload distribution.

Dymaxion [12] is an API to improve memory access patterns on GPUs. It uses

two fundamental techniques to leverage high memory coalescing:

• Data restructuring: Although this method is effective and quite common [70], its

use in Dymaxion is limited to predictable data patterns, such as transformation of

two-dimensional matrices from row-major order to column-major order or vice versa.

• Memory remapping: Allows efficient accessing of data elements via an intermediate

mapping function.

122

Zhang et al. [93] present data reordering and job swapping techniques to remove GPU

memory access irregularities. Data reordering, similar to data restructuring, repositions

elements of an array to minimize required global memory transactions. In job swapping,

threads exchange work in order to achieve more coalesced memory accesses. It is usually

done using reference redirection, which is similar to memory remapping. Despite their

benefits for applications with regular chunkable input data, irregular and unpredictable

dependency between real-world graph elements makes it costly to employ these techniques

for graph applications. Recently, Wu et al. [87] classified and analyzed few fundamental

methods such as duplication, reordering, and sharing to minimize non-coalesced memory

accesses.

5.2 SIMD Thread Divergence

Next we discuss microarchitectural and software solutions to address the SIMD

thread divergence problem on GPUs, and compare them with CCC and CTE techniques.

Microarchitectural Solutions

Although these techniques cannot be exploited on available hardware, clever solu-

tions can guide future designs. Dynamic Warp Formation (DWF) [22] is the basis for many

microarchitectural solutions. DWF merges threads from different warps but with the same

PC to form new warps with no thread divergence. To enhance DWF performance, Meng

et. al. propose Dynamic Warp Subdivision (DWS) [59] and Rhu et. al. [68] suggest SIMD

lane permutation (SLP). Furthermore, Narasiman et. el [62] suggest Large Warp Microar-

chitecture (LWM) in which fewer but wider warps can create sub-warps that match SIMD

width size when facing branch divergence.

Compaction techniques have also been proposed to remedy the SIMD divergence

problem. Fung et. al. [23] offer Thread Block Compaction (TBC) to exploit control flow

locality between threads of a block for divergent paths. Unlike our solution CCC, TBC

123

makes the warps synchronize at divergent branches to provide homogeneous tasks for warp

lanes. To avoid the overhead of unnecessary compaction on non-diverging branches or

workloads, Rhu et. al. [66] propose CAPRI, a compaction-adequacy predictor influenced by

branch predictors. Moreover, Vaidya et. al [82] attempted to harvest dead execution cycles

and position SIMD channels in order to group enabled channels together.

Other microarchitectural techniques focus on efficient scheduling for thread diver-

gence and are complementary to CCC. Kim and Batten [44] propose a fine-grained hardware

worklist that acts as a distributed queue to provide load balance in data-driven computa-

tions. Doubling stage resources in processing pipelines has also been popular [9]. Rhu

and Erez [67] examine a dual-path execution model provided by two PC reconvergence

stacks and two register scoreboards in order to expose the warp scheduler to more paral-

lelism when facing divergent execution paths. To extend this solution, [20] replaces the

reconvergence stack with two warp split and warp reconvergence tables. Rogers et. al. [69]

propose Divergence-Aware Warp Scheduling (DAWS) for a cache-conscious warp scheduling

upon divergence. Also, [19] and [36] suggest reconvergence methods for GPU kernels with

unstructured and recursive control flow.

Software Solutions

Not requiring hardware modifications, software solutions for thread divergence

are of great importance; however, existing strategies introduce limitations that restrict

their usage. Branch and data herding [74] eliminates branch divergence by guiding all the

threads in the SIMD group to take the path with the majority vote. In return herding

expects and accepts errors in the output. Similarly, [28], [13], and [21] steer the warp lanes

to take one execution path. The problem with such techniques is the lack of systematic

reliability and applicability. Unlike CCC, these approaches do not take methodical measures

to cope with the divergence problem, do not guarantee utilizing all the warp lanes by relying

upon warp lanes majority voting, do not devise task accumulation strategies, and need

information from the program and the input to schedule the traversal of divergent paths.

124

These issues prevent wide employment of these solutions. On the other hand, CCC and

its transformation and optimization techniques offer methodical approaches to guarantee

warp execution enhancement in divergent GPU kernels and can be completely realized and

implemented in compile time.

Zhang et. al. [92] try to eliminate thread divergence via thread-data remapping.

Unfortunately, this solution not only needs global memory accesses to realize the redirected

position of the appropriate data for the warp lanes, it does not preserve GPU kernel auton-

omy by involving the CPU. Bauer et. al. [6] suggest an intra-CTA producer-consumer model

based on which warps can have unique tasks for their threads. As opposed to CCC, this

model does not support irregular data-dependent tasks; in other words, the quantity of each

task has to be known at compile-time. Tzeng et.al. [81] propose a task management mecha-

nism for irregular parallel workloads based on task donation and stealing. Nonetheless, this

technique suffers from GPU underutilization and heavy use of global queues and associated

global locks. Merrill et al. [60] enhance the warp execution efficiency of BFS graph traversal

via efficient expansion of unequal adjacency lists. Our work is different from [60] in two

major ways. First, thread divergence problem in [60] appears as a form of load imbalance

on the tasks while it is assumed all the tasks will be carried out. However, CCC allows the

existence of conditionals on the tasks in addition to imbalance loads. Second, CCC does

not require additional storage to collect the frontiers; instead, it defers processing of tasks

via stacking. Our work can also be viewed as a form of in-place stream compaction and

consumption.

The load imbalance and consequently thread divergence caused by nested par-

allelism in GPUs have also been the subject of recent work. Han et. al. [29] introduce

loop merging to reorder the code blocks inside a loop with varying trip-count and improve

the performance ; however, unlike CCC, the solution does not guarantee full warp execu-

tion efficiency. Yang and Zhou created CUDA-NP [91], a source-to-source compiler that

transforms GPU codes with parallel sections using the idea of master and slave threads.

However, fixed number of slave threads for a master thread can hurt the performance in

125

irregular workloads. In [48] Lee et. al. also propose a framework supporting a number of

widely-used parallel patterns for efficient nested parallelism. [37] introduces warp-aware

trace scheduling for GPUs based on speculating loads and arithmetic instructions upon

divergence in order to exploit ILP. Recently, Schaub et. al. [76] evaluated compiler tech-

niques that aim to mitigate divergence against larger SIMD widths. [14] and [71] offer static

code analyzers helping GPU developers to optimize the code manually. Also, [15] and [73]

provide profile-guided approaches to recognize and then optimize code regions exhibiting

divergence. These works complement our work.

In addition to the methods and works mentioned in Section 4, queue-based ap-

proaches are also implemented to handle irregularities of task loads. [81] gives a dynamic

decomposition scheme based on task stealing and donation using queues. However, the

implementation of such queues involves heavy contention over the atomic variable and also

over global locks that have to be passed around spawned CTAs. Design that works around

a central lock, such as [56] for BFS graph traversal, imposes inefficiencies due to latencies.

Early works of graph computation on CUDA platform [30] employ 1D decomposition and

assign every coarse-grained task (e.g., processing of a graph node) to one GPU thread.

The thread then iterates over fine-grained tasks (e.g., visiting the node’s neighbors). Later,

[34] presented sub-warp decomposition for graph algorithms and named each sub-warp a

virtual warp. Similarly, virtual warps have a fixed power-of-2 size throughout the kernel

computation. While only one thread inside the virtual warp performs the SISD (Single

Instruction Single Data) phase of the kernel, all the threads inside the virtual warp par-

ticipate in the SIMD phases. Merril et.al. [60] realized the significance of load balancing

with parallel scan [61] in sparse graph processing. However, their solution is limited to

BFS graph traversal and does not consider the interaction between fine-grained tasks of a

coarse-grained task. In comparison to Warp Segmentation [41], CTE [39] breaks the asso-

ciativity between fine-grained and coarse-grained tasks, formulates the idea of expansion of

fine-grained tasks, and generalizes the solution by introducing an efficiently implemented

template library.

126

Xiang et. al. examined the effect of inter-warp load imbalance in [89], in which they

referred to it as warp-level divergence. This solution compliments intra-warp decomposition

methods (1D, sub-warp, CTE); even though inter-warp load imbalance effect is insignificant

especially for GPU kernels with high occupancy. Similar to CTE library, Thrust [32] is a

CUDA C++ template library that provides interfaces such as thrust::for each for the

expression of iterative code segments. However, underlying scheme to carry out the fine-

grained tasks in nested patterns is 1D decomposition.

Load imbalance, as a problem for SIMT architecture, is generally a variation of

thread divergence; thus, offered solutions for divergence are of importance for irregular

nested parallel patterns. Collaborative Lanes [38] is a method to overcome intra-warp un-

derutilization during batched insertions in GPU Hashing. To mitigate thread divergence,

[21] schedules the path in the program that most threads take using all() and any()

CUDA primitives; however, it fails to provide full warp utilization. Other solutions that rely

on majority voting, [28, 29, 74], attempt to eliminate thread divergence similarly by enforc-

ing all or none of the threads to take the divergent path. While [28, 29] require information

from the program to schedule the execution of divergent path, [74] approximates the final

outcome and accepts errors in the output. Moreover, CCC [40] implements an efficient all-

or-none discipline for repetitive divergent tasks. Warp specialization [6] is another method

to overcome thread divergence but only when there are tasks for threads within a warp

that are of differing nature. Furthermore, data remapping techniques [92, 93] may reduce

divergence at the expense of static analysis or disrupting GPU kernel autonomy. [73, 15, 71]

aim to mitigate the effect of divergence by profiling the GPU application. Profile-guided

approaches are orthogonal to our technique and can be applied contemporaneously.

127

Chapter 6

Conclusions and Future Work

6.1 Contributions

This dissertation enables high performance vertex-centric graph analytics on GPUs

by addressing the challenges of SIMD-efficiency, scalability, and work-efficiency. Warp Seg-

mentation provides dynamic thread assignment when visiting neighbors of vertices and

Vertex Refinement eliminates the unnecessary inter-GPU data transfer during iterations.

Moreover, this dissertation presented data structures for enabling work-efficiency and ex-

tended Warp Segmentation to sustain the high warp execution efficiency in presence of

disjointed adjacency lists. It also suggested Vertex Grouping and Permissive Partition-

ing for memory overhead reduction and dynamic inter-GPU load balancing respectively.

Finally, this dissertation discussed the generalization of graph processing techniques by

proposing the CCC compiler technique and the CTE template library.

Addressing Warp Efficiency and Scalability

This thesis addressed the problems of SIMD efficiency and scalability for vertex-

centric graph processing on GPUs. Due to the irregularity of real-world graphs, effective

utilization of GPU’s SIMD environment is challenging. We proposed Warp Segmentation

(WS), a novel technique for compact graph representations that overcomes SIMD underuti-

128

lization during graph processing. In addition, we introduced Vertex Refinement that enables

effective scaling of the graph processing procedure to multiple GPUs. It efficiently filters

updated vertices of a GPU on-the-fly via high performance CUDA primitives, and there-

fore, unlike previous approaches that waste a great deal of PCIe bandwidth, it maximizes

inter-device communication efficiency.

Enabling Work Efficiency

We enabled work-efficiency in iterative vertex-centric graph processing on one or

multiple GPUs, thus conserving processing power and spending it only on vertices whose

values are subject to change in the current iteration. We equipped the GPU kernels with

a dynamic task assignment technique that efficiently maps warp threads to the elements

of disjoint adjacency lists of active vertices and achieves a high warp execution efficiency.

We offered vertex grouping that enables a trade-off between required global memory con-

sumption for directed graphs and the work-efficiency during the computation, essentially

allowing processing of larger directed graphs on GPUs. For multi-GPU computations, we

presented permissive partitioning that allows overlap between graph segments stored in

GPUs enabling dynamic inter-GPU load balancing. We packaged the above techniques in

KiTES, the first GPU graph analytics framework implemented as a CUDA C++ template

library. This design greatly facilitates the employment and integration of our methods

with the user’s code while providing options through the library API to manage the graph

computation.

Extending Techniques to Other GPU Applications

We generalized two of our graph processing techniques as a compiler optimization

and a template library and make them applicable to other GPU applications exposing

irregularities. We proposed CCC, a compiler technique for CUDA programs that boosts

the warp execution efficiency upon divergence. CCC collects tasks at warp granularity

and remedies inefficiency due to intra-warp load imbalance or dissimilar task assignment.

129

To enhance the applicability of CCC, we present transformations to make common code

patterns accessible to CCC and develop optimizations to increase the CCC performance.

We also proposed Collaborative Task Engagement (CTE), a novel task decompo-

sition technique to efficiently process irregular nested parallel patterns in GPUs. Unlike

previous methods, warp threads in CTE pass over the expanded list of fine-grained tasks,

making it resilient against input irregularities. We developed a CUDA C++ device-side

template library for easy-expression of nested patterns with CTE.

6.2 Future Directions

The youth of GPGPU computing and the constant evolvement of GPU microarchi-

tecture accompanied with the emergence of big data analytics will cause graph computation

on GPUs to remain an interesting topic to explore.

Graph Processing Challenges in Upcoming Technologies

The recent introduction of High Bandwidth Memory (HBM) technology on GPUs

has opened up a great room for improving graph processing applications. Memory access

bandwidth enhancement will cause the improved SIMD efficiency to further boost the overall

performance of processing even larger graphs. Studying this improvement could give us

insights that will lead to better design of the data structure and the approach for graph

computation. In addition, recently introduced NVLink technology improves the inter-GPU

and host-GPU communication bandwidth up to 16 times. Investigating the simultaneous

effect of HBM and NVLink in multi-GPU graph processing and its comparison with the

traditional approaches would provide a better understanding of the characteristics of the

computation. Also, the inter-connectivity pattern of GPUs and the host with NVLink and

modifying it based on the graph structure is an interesting topic to look at in the future.

130

Processing Graphs In-Memory

Contemporary advancements in 3D-stacked memory technology has revived the

Processing-In-Memory (PIM) approach which reduces the off-chip data communication and

hence increases performance and power efficiency. However, the graph data structure place-

ment for an effective computation on PIM processors is challenging since the memory avail-

able on each stack is limited and inter-PIM communication is costly. These problems are

similar to ones introduced in this thesis and we wish to explore the application of our

proposed solutions to graph computation on PIM in the future.

Dynamically Evolving Graphs

The solutions introduced in this thesis focus on the algorithms that do not change

the structure of the graph, hence, extending them to graph algorithms that change the

structure of the graph is an interesting future direction. One of the main challenges for

computing evolving graphs with GPUs is having an efficient representation that not only

incurs minimal foorprint but also allows fast deletion and addition of graph components.

This requires exploring the ways for redefining our dynamic load assignment and graph

distribution schemes for the new representation.

131

Bibliography

[1] Virat Agarwal, Fabrizio Petrini, Davide Pasetto, and David A. Bader. Scalable graph
exploration on multicore processors. In Proceedings of the 2010 ACM/IEEE Interna-
tional Conference for High Performance Computing, Networking, Storage and Analysis,
SC ’10, pages 1–11. IEEE Computer Society, 2010.

[2] Timo Aila and Samuli Laine. Understanding the efficiency of ray traversal on gpus. In
Proceedings of the Conference on High Performance Graphics 2009, HPG ’09, pages
145–149. ACM, 2009.

[3] Dan A. Alcantara, Vasily Volkov, Shubhabrata Sengupta, Michael Mitzenmacher,
John D. Owens, and Nina Amenta. Chapter 4 - building an efficient hash table on
the {GPU}. In Wen-mei W. Hwu, editor, {GPU} Computing Gems Jade Edition,
Applications of GPU Computing Series, pages 39 – 53. Morgan Kaufmann, 2012.

[4] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. Group forma-
tion in large social networks: Membership, growth, and evolution. In Proceedings of
the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’06, pages 44–54. ACM, 2006.

[5] A. Bakhoda, G.L. Yuan, W.W.L. Fung, H. Wong, and T.M. Aamodt. Analyzing
cuda workloads using a detailed gpu simulator. In Performance Analysis of Systems
and Software, 2009. ISPASS 2009. IEEE International Symposium on, pages 163–174,
April 2009.

[6] Michael Bauer, Sean Treichler, and Alex Aiken. Singe: Leveraging warp specialization
for high performance on gpus. In Proceedings of the 19th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’14, pages 119–130. ACM,
2014.

[7] Nathan Bell and Michael Garland. Efficient sparse matrix-vector multiplication on
cuda. Technical report, Nvidia Technical Report NVR-2008-004, Nvidia Corporation,
2008.

[8] Nathan Bell and Michael Garland. Implementing sparse matrix-vector multiplication
on throughput-oriented processors. In Proceedings of the Conference on High Perfor-
mance Computing Networking, Storage and Analysis, SC ’09, pages 18:1–18:11. ACM,
2009.

132

[9] Nicolas Brunie, Sylvain Collange, and Gregory Diamos. Simultaneous branch and
warp interweaving for sustained gpu performance. In Proceedings of the 39th Annual
International Symposium on Computer Architecture, ISCA ’12, pages 49–60. IEEE
Computer Society, 2012.

[10] Unnikrishnan C, Rupesh Nasre, and Y. N. Srikant. Falcon: A graph manipulation
language for heterogeneous systems. ACM Trans. Archit. Code Optim., 12(4):54:1–
54:27, December 2015.

[11] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-MAT: A Recursive
Model for Graph Mining, chapter 43, pages 442–446.

[12] Shuai Che, J.W. Sheaffer, and K. Skadron. Dymaxion: Optimizing memory access
patterns for heterogeneous systems. In High Performance Computing, Networking,
Storage and Analysis (SC), 2011 International Conference for, pages 1–11, 2011.

[13] Dan Connors, Skyler Saleh, Tejas Joshi, and Ryan Bueter. Data-driven techniques
to overcome workload disparity. In Proceedings of the Fourth Workshop on Irregular
Applications: Architectures and Algorithms, IA3 ’14, pages 41–48. IEEE Press, 2014.

[14] B. Coutinho, D. Sampaio, F.M.Q. Pereira, and W. Meira. Divergence analysis and
optimizations. In Parallel Architectures and Compilation Techniques (PACT), 2011
International Conference on, pages 320–329, Oct 2011.

[15] Bruno Coutinho, Diogo Sampaio, Fernando M. Q. Pereira, and Wagner Meira. Pro-
filing divergences in gpu applications. Concurrency and Computation: Practice and
Experience, 25(6):775–789, 2013.

[16] A. Davidson, S. Baxter, M. Garland, and J. D. Owens. Work-efficient parallel gpu
methods for single-source shortest paths. In Parallel and Distributed Processing Sym-
posium, 2014 IEEE 28th International, pages 349–359, May 2014.

[17] Timothy A. Davis and Yifan Hu. The university of florida sparse matrix collection.
ACM Trans. Math. Softw., 38(1):1:1–1:25, December 2011.

[18] M. De Domenico, A. Lima, P. Mougel, and M. Musolesi. The anatomy of a scientific
rumor. Sci. Rep., 3, 2013.

[19] Gregory Diamos, Benjamin Ashbaugh, Subramaniam Maiyuran, Andrew Kerr,
Haicheng Wu, and Sudhakar Yalamanchili. Simd re-convergence at thread frontiers. In
Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchi-
tecture, MICRO-44, pages 477–488. ACM, 2011.

[20] A. ElTantawy, J.W. Ma, M. O’Connor, and T.M. Aamodt. A scalable multi-path
microarchitecture for efficient gpu control flow. In High Performance Computer Ar-
chitecture (HPCA), 2014 IEEE 20th International Symposium on, pages 248–259, Feb
2014.

133

[21] S. Frey, G. Reina, and T. Ertl. Simt microscheduling: Reducing thread stalling in
divergent iterative algorithms. In Parallel, Distributed and Network-Based Processing
(PDP), 2012 20th Euromicro International Conference on, pages 399–406, Feb 2012.

[22] Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt. Dynamic warp
formation and scheduling for efficient gpu control flow. In Proceedings of the 40th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 40, pages
407–420. IEEE Computer Society, 2007.

[23] W.W.L. Fung and T.M. Aamodt. Thread block compaction for efficient simt control
flow. In High Performance Computer Architecture (HPCA), 2011 IEEE 17th Interna-
tional Symposium on, pages 25–36, Feb 2011.

[24] Abdullah Gharaibeh, Lauro Beltrão Costa, Elizeu Santos-Neto, and Matei Ripeanu. A
yoke of oxen and a thousand chickens for heavy lifting graph processing. In Proceed-
ings of the 21st International Conference on Parallel Architectures and Compilation
Techniques, PACT ’12, pages 345–354. ACM, 2012.

[25] Abdullah Gharaibeh, Elizeu Santos-Neto, Lauro Beltrão Costa, and Matei Ripeanu.
Efficient large-scale graph processing on hybrid CPU and GPU systems. CoRR,
abs/1312.3018, 2013.

[26] Mike Giles. Chapter 10 - approximating the erfinv function. In Wen-mei W. Hwu,
editor, {GPU} Computing Gems Jade Edition, Applications of GPU Computing Series,
pages 109 – 116. Morgan Kaufmann, 2012.

[27] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
Powergraph: Distributed graph-parallel computation on natural graphs. In Presented
as part of the 10th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 12), pages 17–30, Hollywood, CA, 2012. USENIX.

[28] Tianyi David Han and Tarek S. Abdelrahman. Reducing branch divergence in gpu
programs. In Proceedings of the Fourth Workshop on General Purpose Processing on
Graphics Processing Units, GPGPU-4, pages 3:1–3:8. ACM, 2011.

[29] Tianyi David Han and Tarek S. Abdelrahman. Reducing divergence in gpgpu programs
with loop merging. In Proceedings of the 6th Workshop on General Purpose Processor
Using Graphics Processing Units, GPGPU-6, pages 12–23. ACM, 2013.

[30] Pawan Harish and P. J. Narayanan. Accelerating large graph algorithms on the gpu
using cuda. In Proceedings of the 14th International Conference on High Performance
Computing, HiPC’07, pages 197–208. Springer-Verlag, 2007.

[31] Mark Harris and Michael Garland. Chapter 3 - optimizing parallel prefix operations
for the fermi architecture. In Wen-mei W. Hwu, editor, {GPU} Computing Gems Jade
Edition, Applications of GPU Computing Series, pages 29 – 38. Morgan Kaufmann,
Boston, 2012.

[32] J Hoberock and N Bell. Thrust: A parallel template library, 2015. Version 1.8.1.

134

[33] Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle Olukotun. Green-marl: A dsl
for easy and efficient graph analysis. In Proceedings of the Seventeenth International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS XVII, pages 349–362. ACM, 2012.

[34] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun. Accelerating
cuda graph algorithms at maximum warp. In Proceedings of the 16th ACM Symposium
on Principles and Practice of Parallel Programming, PPoPP ’11, pages 267–276. ACM,
2011.

[35] Sungpack Hong, Tayo Oguntebi, and Kunle Olukotun. Efficient parallel graph explo-
ration on multi-core cpu and gpu. In Proceedings of the 2011 International Conference
on Parallel Architectures and Compilation Techniques, PACT ’11, pages 78–88. IEEE
Computer Society, 2011.

[36] Xin Huo, Sriram Krishnamoorthy, and Gagan Agrawal. Efficient scheduling of recursive
control flow on gpus. In Proceedings of the 27th International ACM Conference on
International Conference on Supercomputing, ICS ’13, pages 409–420. ACM, 2013.

[37] James A. Jablin, Thomas B. Jablin, Onur Mutlu, and Maurice Herlihy. Warp-aware
trace scheduling for gpus. In Proceedings of the 23rd International Conference on
Parallel Architectures and Compilation, PACT ’14, pages 163–174. ACM, 2014.

[38] F. Khorasani, M. E. Belviranli, R. Gupta, and L. N. Bhuyan. Stadium hashing: Scal-
able and flexible hashing on gpus. In 2015 International Conference on Parallel Archi-
tecture and Compilation (PACT), pages 63–74, Oct 2015.

[39] F. Khorasani, B. Rowe, R. Gupta, and L. N. Bhuyan. Eliminating intra-warp load
imbalance in irregular nested patterns via collaborative task engagement. In 2016
IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages
524–533, May 2016.

[40] Farzad Khorasani, Rajiv Gupta, and Laxmi N. Bhuyan. Efficient warp execution
in presence of divergence with collaborative context collection. In Proceedings of the
48th International Symposium on Microarchitecture, MICRO-48, pages 204–215. ACM,
2015.

[41] Farzad Khorasani, Rajiv Gupta, and Laxmi N. Bhuyan. Scalable simd-efficient graph
processing on gpus. In 2015 International Conference on Parallel Architecture and
Compilation (PACT), pages 39–50, Oct 2015.

[42] Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N. Bhuyan. Cusha: Vertex-
centric graph processing on gpus. In Proceedings of the 23rd International Symposium
on High-performance Parallel and Distributed Computing, HPDC ’14, pages 239–252.
ACM, 2014.

[43] Hyesoon Kim, Richard Vuduc, Sara Baghsorkhi, Jee Choi, and Wen-mei Hwu. Perfor-
mance Analysis and Tuning for General Purpose Graphics Processing Units. Morgan
& Claypool Publishers, 1st edition, 2012.

135

[44] Ji Kim and Christopher Batten. Accelerating irregular algorithms on gpgpus using fine-
grain hardware worklists. In Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-47, pages 75–87. IEEE Computer Society,
2014.

[45] Min-Soo Kim, Kyuhyeon An, Himchan Park, Hyunseok Seo, and Jinwook Kim. Gts:
A fast and scalable graph processing method based on streaming topology to gpus. In
Proceedings of the 2016 International Conference on Management of Data, SIGMOD
’16, pages 447–461. ACM, 2016.

[46] Amlan Kusum, Keval Vora, Rajiv Gupta, and Iulian Neamtiu. Efficient processing of
large graphs via input reduction. In Proceedings of the 25th ACM International Sym-
posium on High-Performance Parallel and Distributed Computing, HPDC ’16, pages
245–257. ACM, 2016.

[47] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. Graphchi: Large-scale graph compu-
tation on just a pc. In Presented as part of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12), pages 31–46, Hollywood, CA, 2012.
USENIX.

[48] HyoukJoong Lee, Kevin J. Brown, Arvind K. Sujeeth, Tiark Rompf, and Kunle Oluko-
tun. Locality-aware mapping of nested parallel patterns on gpus. In Proceedings of the
47th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-47,
pages 63–74. IEEE Computer Society, 2014.

[49] Jure Leskovec, Lada A. Adamic, and Bernardo A. Huberman. The dynamics of viral
marketing. ACM Trans. Web, 1(1), May 2007.

[50] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

[51] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. Com-
munity structure in large networks: Natural cluster sizes and the absence of large
well-defined clusters. Internet Mathematics, 6(1):29–123, 2009.

[52] Shaojing Li, Ruinan Chang, A. Boag, and V. Lomakin. Fast electromagnetic integral-
equation solvers on graphics processing units. Antennas and Propagation Magazine,
IEEE, 54(5):71–87, Oct 2012.

[53] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J.M. Hellerstein. Dis-
tributed graphlab: a framework for machine learning and data mining in the cloud. In
Proceedings of the VLDB Endowment, pages 716–727, April 2012.

[54] Nathan Luehr, Ivan Ufimtsev, and Todd Martinez. Chapter 3 - dynamical quadrature
grids: Applications in density functional calculations. In Wen-mei W. Hwu, editor,
{GPU} Computing Gems Emerald Edition, Applications of GPU Computing Series,
pages 35–42. Morgan Kaufmann, 2011.

136

http://snap.stanford.edu/data

[55] Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and Jonathan Berry. Chal-
lenges in parallel graph processing. Parallel Processing Letters, 17(01):5–20, 2007.

[56] Lijuan Luo, Martin Wong, and Wen-mei Hwu. An effective gpu implementation of
breadth-first search. In Proceedings of the 47th Design Automation Conference, DAC
’10, pages 52–55. ACM, 2010.

[57] Adam McLaughlin and David A. Bader. Scalable and high performance betweenness
centrality on the gpu. In Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, SC ’14, pages 572–583. IEEE
Press, 2014.

[58] Mario Mendez-Lojo, Martin Burtscher, and Keshav Pingali. A gpu implementation of
inclusion-based points-to analysis. In Proceedings of the 17th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, PPoPP ’12, pages 107–116.
ACM, 2012.

[59] Jiayuan Meng, David Tarjan, and Kevin Skadron. Dynamic warp subdivision for in-
tegrated branch and memory divergence tolerance. In Proceedings of the 37th Annual
International Symposium on Computer Architecture, ISCA ’10, pages 235–246. ACM,
2010.

[60] Duane Merrill, Michael Garland, and Andrew Grimshaw. Scalable gpu graph traversal.
In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’12, pages 117–128. ACM, 2012.

[61] Duane Merrill and Andrew Grimshaw. Parallel scan for stream architectures. Univer-
sity of Virginia, Department of Computer Science, Charlottesville, VA, USA, Technical
Report CS2009-14, 2009.

[62] Veynu Narasiman, Michael Shebanow, Chang Joo Lee, Rustam Miftakhutdinov, Onur
Mutlu, and Yale N. Patt. Improving gpu performance via large warps and two-level
warp scheduling. In Proceedings of the 44th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, MICRO-44, pages 308–317. ACM, 2011.

[63] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. Atomic-free irregular compu-
tations on gpus. In Proceedings of the 6th Workshop on General Purpose Processor
Using Graphics Processing Units, GPGPU-6, pages 96–107. ACM, 2013.

[64] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. Morph algorithms on gpus.
In Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’13, pages 147–156. ACM, 2013.

[65] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: bringing order to the web. 1999.

[66] Minsoo Rhu and Mattan Erez. Capri: Prediction of compaction-adequacy for han-
dling control-divergence in gpgpu architectures. In Proceedings of the 39th Annual
International Symposium on Computer Architecture, ISCA ’12, pages 61–71, 2012.

137

[67] Minsoo Rhu and Mattan Erez. The dual-path execution model for efficient gpu control
flow. In Proceedings of the 2013 IEEE 19th International Symposium on High Perfor-
mance Computer Architecture (HPCA), HPCA ’13, pages 591–602. IEEE Computer
Society, 2013.

[68] Minsoo Rhu and Mattan Erez. Maximizing simd resource utilization in gpgpus with
simd lane permutation. In Proceedings of the 40th Annual International Symposium
on Computer Architecture, ISCA ’13, pages 356–367. ACM, 2013.

[69] Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. Divergence-aware warp
scheduling. In Proceedings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-46, pages 99–110. ACM, 2013.

[70] Mehrzad Samadi, Amir Hormati, Mojtaba Mehrara, Janghaeng Lee, and Scott Mahlke.
Adaptive input-aware compilation for graphics engines. In Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’12, pages 13–22. ACM, 2012.

[71] Diogo Sampaio, Rafael Martins de Souza, Sylvain Collange, and Fernando Magno
Quintão Pereira. Divergence analysis. ACM Trans. Program. Lang. Syst., 35(4):13:1–
13:36, January 2014.

[72] Jason Sanders and Edward Kandrot. CUDA by Example: An Introduction to General-
Purpose GPU Programming. Addison-Wesley Professional, 1st edition, 2010.

[73] Santonu Sarkar and Sayantan Mitra. A profile guided approach to optimize branch
divergence while transforming applications for gpus. In Proceedings of the 8th India
Software Engineering Conference, ISEC ’15, pages 176–185. ACM, 2015.

[74] John Sartori and Rakesh Kumar. Branch and data herding: Reducing control and
memory divergence for error-tolerant gpu applications. In Proceedings of the 21st In-
ternational Conference on Parallel Architectures and Compilation Techniques, PACT
’12, pages 427–428. ACM, 2012.

[75] Daniele Paolo Scarpazza, Oreste Villa, and Fabrizio Petrini. Efficient breadth-first
search on the cell/be processor. IEEE Trans. Parallel Distrib. Syst., 19(10):1381–1395,
October 2008.

[76] Thomas Schaub, Simon Moll, Ralf Karrenberg, and Sebastian Hack. The impact of the
simd width on control-flow and memory divergence. ACM Trans. Archit. Code Optim.,
11(4):54:1–54:25, January 2015.

[77] Christoph Schied, Johannes Hanika, Holger Dammertz, and HendrikP.A. Lensch.
Chapter 18 - high-performance iterated function systems. In Wen-mei W. Hwu, editor,
{GPU} Computing Gems Emerald Edition, Applications of GPU Computing Series,
pages 263 – 273. Morgan Kaufmann, 2011.

138

[78] Dipanjan Sengupta, Shuaiwen Leon Song, Kapil Agarwal, and Karsten Schwan.
Graphreduce: Processing large-scale graphs on accelerator-based systems. In Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’15, pages 28:1–28:12. ACM, 2015.

[79] Luke Olson Steven Dalton, Nathan Bell and Michael Garland. Cusp: Generic parallel
algorithms for sparse matrix and graph computations, 2014. Version 0.5.0.

[80] Lubos Takac and Michal Zabovsky. Data analysis in public social networks. In In-
ternational Scientific Conference AND International Workshop Present Day Trends of
Innovations, 2012.

[81] Stanley Tzeng, Anjul Patney, and John D. Owens. Task management for irregular-
parallel workloads on the gpu. In Proceedings of the Conference on High Performance
Graphics, HPG ’10, pages 29–37. Eurographics Association, 2010.

[82] Aniruddha S. Vaidya, Anahita Shayesteh, Dong Hyuk Woo, Roy Saharoy, and Mani
Azimi. Simd divergence optimization through intra-warp compaction. In Proceedings of
the 40th Annual International Symposium on Computer Architecture, ISCA ’13, pages
368–379. ACM, 2013.

[83] Jin Wang and Sudhakar Yalamanchili. Characterization and analysis of dynamic par-
allelism in unstructured gpu applications. In 2014 IEEE International Symposium on
Workload Characterization, October 2014.

[84] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and
John D. Owens. Gunrock: A high-performance graph processing library on the gpu.
In Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’16, pages 11:1–11:12. ACM, 2016.

[85] Lance Williams. Pyramidal parametrics. In Proceedings of the 10th Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH ’83, pages 1–11. ACM,
1983.

[86] Nicholas Wilt. The cuda handbook: A comprehensive guide to gpu programming, pages
410–411. Pearson Education, 2013.

[87] Bo Wu, Zhijia Zhao, Eddy Zheng Zhang, Yunlian Jiang, and Xipeng Shen. Complexity
analysis and algorithm design for reorganizing data to minimize non-coalesced memory
accesses on gpu. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’13, pages 57–68. ACM, 2013.

[88] Tianji Wu, Bo Wang, Yi Shan, Feng Yan, Yu Wang, and Ningyi Xu. Efficient pagerank
and spmv computation on amd gpus. 2014 43rd International Conference on Parallel
Processing, 0:81–89, 2010.

[89] Ping Xiang, Yi Yang, and Huiyang Zhou. Warp-level divergence in gpus: Characteri-
zation, impact, and mitigation. In High Performance Computer Architecture (HPCA),
2014 IEEE 20th International Symposium on, pages 284–295, Feb 2014.

139

[90] Jaewon Yang and J. Leskovec. Defining and evaluating network communities based on
ground-truth. In Data Mining (ICDM), 2012 IEEE 12th International Conference on,
pages 745–754, Dec 2012.

[91] Yi Yang and Huiyang Zhou. Cuda-np: Realizing nested thread-level parallelism in
gpgpu applications. In Proceedings of the 19th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, PPoPP ’14, pages 93–106. ACM, 2014.

[92] Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, and Xipeng Shen. Streamlining gpu appli-
cations on the fly: Thread divergence elimination through runtime thread-data remap-
ping. In Proceedings of the 24th ACM International Conference on Supercomputing,
ICS ’10, pages 115–126. ACM, 2010.

[93] Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian, and Xipeng Shen. On-the-fly
elimination of dynamic irregularities for gpu computing. In Proceedings of the Sixteenth
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XVI, pages 369–380. ACM, 2011.

[94] J. Zhong and B. He. Medusa: Simplified graph processing on gpus. IEEE Transactions
on Parallel and Distributed Systems, 25(6):1543–1552, June 2014.

140

	List of Figures
	List of Tables
	Introduction
	Dissertation Overview
	Addressing the Warp Efficiency and Scalability Challenges
	Enabling Work Efficiency for the Vertex-Centric Model
	Extending Techniques to Other GPU Applications

	Dissertation Organization

	Warp Efficiency and Scalability
	Warp Efficiency via Warp Segmentation
	Motivating Study
	Warp Segmentation

	Graph Processing Framework for WS
	Core Processing Procedure
	Framework Interface

	Scaling via Vertex Refinement
	Inefficiency of Existing Inter-GPU Communication
	Data Structure Organization
	Vertex Refinement

	Performance Evaluation
	Warp Segmentation Performance Analysis
	Vertex Refinement Performance Analysis

	Summary

	Enabling Work-Efficiency
	Data Structures for Work-Efficiency
	Recording Vertex Activeness using Bitmasks
	Vertex Grouping

	Warp Efficiency with Dynamic Thread Assignment
	Permissive Partitioning for Inter-GPU Load Balance
	KiTES and its Interface
	Evaluation of Techniques
	Single-GPU Performance Analysis
	Multi-GPU Performance Analysis

	Summary

	Generalizing Techniques
	Collaborative Context Collection
	CCC Core Procedure
	CCC Transformations
	CCC Optimizations
	CCC Implementation
	Experimental Evaluation

	Collaborative Task Engagement
	Motivation: Inefficiency of Static Task Decomposition Methods
	Collaborative Task Engagement
	Experimental Evaluation
	Sensitivity Analysis: varying coarse-grained task sizes

	Summary

	Related Work
	Graph Processing on GPUs
	SIMD Thread Divergence

	Conclusions and Future Work
	Contributions
	Future Directions

	Bibliography

