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ABSTRACT OF THE DISSERTATION

Runtime Optimizations for Evaluating Batches of Graph Queries

by

Chengshuo Xu

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2021
Dr. Rajiv Gupta, Chairperson

Graph processing frameworks are typically designed to optimize the evaluation of a single
graph query. However, in practice, we often need to respond to multiple graph queries, either from
different users or from a single user performing a complex analytics task. This thesis is aimed at

simultaneously evaluating batches of graph queries of two types: point-to-all and point-to-point.

By fully utilizing system resources, batched evaluation amortizes runtime overheads incurred due
to fetching vertices and edge lists, synchronizing threads, and maintaining computation frontiers.
In addition, new runtime optimizations are developed that enable faster evaluation of batches of
queries than their independent and one by one evaluation.

In context of point-to-all queries we develop the sharing optimization that dynamically
identifies shared queries that substantially represent subcomputations in the evaluation of different
queries in a batch, evaluates the shared queries, and then uses their results to accelerate the evalua-
tion of all queries in the batch. The resulting SimGQ system delivers substantial speedups over a
conventional framework that evaluates and responds to queries one by one. We have also adapted

the batching principles used by SimGQ to the streaming graph scenario in which we continuously

vi



maintain the results of small batch of shared queries and use them for low cost evaluation of arbitrary
user queries.

For point-to-point queries we have identified unique characteristics of such queries and

based upon them developed two new optimizations. The first optimization, online pruning, elimi-
nates propagation from vertices that are determined to not contribute to a query’s final solution and

thus enables early termination. The second optimization, dynamic direction prediction, dynami-

cally selects direction in which to evaluate the query — either forward (from source) or backward
(from destination) — as their costs can differ greatly. The resulting system, PnP, delivers substan-
tial performance benefits over the state-of-the-art. To solve a batch of point-to-point queries, we
extended this system by incorporating the batching principles in SimGQ along with a new query
aggregation technique that eliminates the redundant computation across point-to-point queries that

share the same source or destination vertex
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Chapter 1

Introduction

Graph analytics is employed in many domains (e.g., social networks, web graphs, internet
topology, brain networks etc.) to uncover insights by analyzing high volumes of connected data.
An iterative algorithm updates vertex property values of active vertices in each iteration driving
them towards their final stable solution. When the solution values of all vertices become stable,
the algorithm terminates. It has been seen that real world graphs are often large with millions of
vertices and billions of edges. Moreover, iterative graph analytics requires repeated passes over
the graph till the algorithm converges to a stable solution. As a result, in practice, iterative graph
analytics workloads are data-intensive and often compute-intensive. Therefore, there has been a
great deal of interest in developing scalable graph analytics systems like Pregel [26], GraphLab [24],
Graphlt [60], PowerGraph [11], Galois [36], GraphChi [21], Ligra [41], ASPIRE [46].

While the performance of graph analytics has improved greatly due to advances intro-
duced by the above systems, much of this research has focussed on developing highly parallel

algorithms for solving a single iterative graph analytic query, which in many cases is a point-to-all



graph query computing property values from a single source to all other vertices in the graph (e.g.,
SSSP(s) query computes shortest paths from a single source s to all other vertices in the graph).
There are a variety of such single-query computing platforms for graph analytics including shared-
memory systems, distributed clusters, and systems with accelerators like GPUs. However, in prac-
tice the following two scenarios involve multiple queries: (a) Single-User scenario in which a single
user may conduct a complex analytics task requiring issuing of multiple queries; and (b) Multi-User
scenarios as in [34] and [44] where the same data set is queried by many users. In both scenarios,
machine resources can be fully utilized delivering higher throughput by simultaneously evaluating
multiple queries on a modern server with many cores and substantial memory resources.

In addition to the conventional point-to-all graph query, point-to-point graph query, which
computes from a single source vertex to a single destination vertex, is also drawing attention from
the research community. For instance, recently Yan et al. [S8] observed that many applications on
large graphs simply require computing point-to-point variants of heavyweight computations. As an
example, when analyzing a graph that represents online shopping history of shoppers, a business
may be interested in point-to-point queries over pairs of certain important shoppers. Thus, given a
pair of distinct vertices (s, d) in a graph, we are interested in computing point-to-point versions of
standard computations such as, shortest path from s to d, widest path from s to d and number of
paths from s to d. Yan et al. developed the Quegel [58] framework to solve point-to-point queries.
Since many such pairs of queries need to be evaluated, Yan et al. overlap the evaluation of multiple

point-to-point queries.

While the focus of above systems is on solving single point-to-all queries and single

point-to-point queries, this thesis develops techniques for simultaneously evaluating batches of




point-to-all and point-to-point queries. We first explore the opportunity to amortize the runtime

overhead and reduce the computational cost for evaluating a batch of point-to-all graph queries on
static graphs, and then extend the system for streaming graph scenarios. After that, we discuss the
batched evaluation of point-to-point queries following the same batching principle. Since point-to-
point graph queries are a class of workload which have not been widely studied in the literature,
we start with a study on how to accelerate a single point-to-point graph query, and then build upon
the observations for a single point-to-point query to develop further optimizations specifically for

evaluating a batch of point-to-point graph queries.

1.1 Dissertation Overview

Graph Processing

Shared-Fnemory

v

Batched Evaluation
1

v v
Point-To-All Query Point-To-Point Query
\ |
¥ v v v
Static Graph Streaming Graph Optimize Single Query Optimize Multiple Queries
SimGQ [HiPC20] Tripoline [EuroSys'21] PnP [ASPLOS’19] SimGQ+

Figure 1.1: Dissertation Overview

In this thesis, we exploit the synergy that exists in batched execution of iterative vertex
graph queries to accelerate the evaluation of a batch of point-to-all or point-to-point iterative graph
queries. Figure 1.1 shows the overview of this dissertation. We first studied batching in shared-

memory architecture and developed online sharing optimization to improve the performance of a



batch of point-to-all queries on static and dynamic graphs. And then we study and discover the
unique characteristics of point-to-point queries and further tackle the issues in evaluating a batch of

point-to-point queries.

1.1.1 Simultaneously Evaluating Batches of Point-to-All Queries

Conventional point-to-all graph queries have been widely studied in the literature. There-
fore, we do not further dive into how to evaluate a single point-to-all graph query. Instead, we
explore the synergy across a batch of queries. We first study the problem on static graphs which
models the relationships between entities that remain unchanged during the execution of graph al-
gorithms, and then adapt the observations and techniques developed for static graphs to streaming

graph scenarios.

Processing Static Graphs

Given an input graph and a batch of point-to-all queries, we can synergistically perform
simultaneous evaluation of all queries in a batch to deliver results of all queries in a greatly reduced
time. Essentially the synergy in evaluation of queries, that exists due to the substantial overlap be-
tween computations and graph traversals for different queries, is exploited to amortize the runtime
overhead and computation costs across the simultaneously evaluated queries. To amortize compu-
tation costs, we develop a novel strategy that dynamically identifies shared queries whose com-
putations substantially overlap with the computations performed by multiple queries in the batch,
evaluates the shared queries, and then uses their results to accelerate the evaluation of all the queries
in the batch. With the sharing optimization, we develop SimGQ, a graph analytics system aimed at

evaluating a batch of vertex queries received from users for different source vertices in the graph.



Processing Streaming Graphs

In many real-world application scenarios, a stream of updates are continuously applied to
the graph, often in batches for better efficiency, known as the streaming graph scenario. Incremental

computation can be used to quickly update the result of fixed queries in streaming graph scenarios.

When a batch of updates is applied to the graph, incremental computation reuses the query result
on the previous version of the graph and performs iterative computation starting from property
values which is closer to convergence compared with reevaluating query from scratch. However, the
applicability of incremental computation is restricted to accelerate fixed queries. In this thesis, we
extend SImGQ to generalize incremental computation to handle batches of arbitrary user queries
in the streaming graph scenario. Essentially we continuously apply incremental computation to
maintain the results of a small batch of preselected shared queries upon graph mutations, which can
be used to accelerate a batch of arbitrary user queries on the latest version of the graph using the

sharing optimization in SIimGQ.

1.1.2 Efficiently Evaluating Batches of Point-to-Point Queries

Since not much research has been conducted on evaluating point-to-point queries, we first
propose a greatly enhanced method, based on which we developed a system named PnP, for eval-
uating a single point-to-point query by leveraging the observation that point-to-point queries may
only require a small portion of computation compared with its heavy-weight point-to-all counter-
part. After that, we further study the opportunity to eliminate redundant computation across a batch

of point-to-point queries.



Optimizing a Single Point-to-Point Query

To quickly respond to point-to-point queries, we developed the PnP system that incorpo-
rates optimizations that greatly improve performance over the Quegel system [58]. First, wasteful
work performed by Quegel is reduced via an online pruning optimization that eliminates unnec-
essary propagation to vertices which are determined to not contribute to the query’s final answer.
Second, we recognize that evaluation times of point-to-point queries in backward and forward direc-
tions can greatly differ because different subgraphs are used with the traversal in different directions,

and thus introduce a light-weight dynamic direction selection optimization that at runtime predicts

the faster direction of execution based on each combination of input query and input graph.

Optimizing a Batch of Point-to-Point Query

Moreover, we are also interested in evaluating a batch of point-to-point queries as users
are interested in computing point-to-point information between a subset of vertices in the graph, as
mentioned in Quegel [58]. In addition to the batching principle studied in SimGQ and the online
pruning technique for a single point-to-point query developed in PnP, we developed a novel query
aggregation optimization for evaluating a batch of point-to-point graph queries. Essentially query
aggregation eliminates the shared computation across point-to-point queries with the same source or
destination which widely exists in the workload of computing point-to-point information between a

subset of vertices in the graph.



1.2 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 presents SimGQ, the system
for batched evaluation of point-to-all graph queries. Chapter 3 describes how the batching principle
and sharing optimization in SimGQ can be leveraged to quickly respond to arbitrary queries in
the streaming graph scenarios. Chapter 4 presents the optimizations and the resulting two phase
algorithm for fast evaluation of a single point-to-point query. Chapter 5 discusses batched evaluation
of point-to-point queries which combines the batching principle from SimGQ, the pruning technique
from PnP, and a new query aggregation optimization. Chapter 6 discusses various related works in

the literature. Chapter 7 concludes the thesis and discusses directions for future work.



Chapter 2

SimGQ — Batched Evaluation with

Online Sharing Optimization

Graph analytics is employed in many domains (e.g., social networks, web graphs, internet
topology, brain networks etc.) to uncover insights by analyzing high volumes of connected data.
An iterative algorithm updates vertex property values of active vertices in each iteration driving
them towards their final stable solution. When the solution values of all vertices become stable, the
algorithm terminates. The existing graph processing frameworks are typically designed to optimize
the evaluation of a single iterative graph query. However, in practice, we often need to respond to
multiple graph queries, either from different users or from a single user performing a complex ana-
lytics task. In both scenarios, machine resources can be fully utilized delivering higher throughput
by simultaneously evaluating multiple queries on a server with many cores and substantial memory.

In this chapter we exploit the synergy across a batch of point-to-all graph queries based on

which we develop a graph analytics system SimGQ [56], aimed at evaluating a batch of point-to-all



queries received from users for different source vertices of a large graph. For example, for SSSP al-
gorithm, we may be faced with the following batch of point-to-all queries: SSSP(s1), SSSP(s2),
------ SSSP(sy). Many other important algorithms belong to this category [22, 16, 13] etc. Our
overall approach is as follows. Given an input graph and batch of vertex queries, we synergistically
perform simultaneous evaluation of all queries in a batch to deliver results of all queries in a greatly
reduced time. Essentially the synergy in evaluation of queries, that exists due to the substantial
overlap between computations and graph traversals for different queries, is exploited to amortize
the runtime overhead and computation costs across the simultaneously evaluated queries. Two tech-

niques, batching and online sharing, are employed to simultaneously and efficiently evaluate a set

of queries.

(a) Batching for Resource Utilization and Amortizing Overheads. Batching takes a group
of queries, forming the batch, and simultaneously processes these queries to achieve higher
throughput by fully utilizing system resources and amortizing runtime overhead (e.g., syn-
chronization) costs across queries. SImGQ is capable of evaluating large batches (up to 512

queries) of a general class of queries on a shared-memory system for high throughputs.

(b) Online Sharing. To amortize computation costs, we develop a novel strategy that dynamically
identifies shared queries whose computations substantially overlap with the computations
performed by multiple queries in the batch, evaluates the shared queries, and then uses their
results to accelerate the evaluation of all the queries in the batch. The shared subcomputa-
tions are essentially query evaluations for a small set of high degree source vertices, different
from the source vertices of queries in the batch, such that they can be used to accelerate the

evaluation of all queries in the batch.



Online sharing has multiple advantages over classical global indexing methods for opti-
mizing evaluation of queries. First, indexing entails heavy weight precomputation used to build a
large index that can be used to accelerate all future queries (e.g., Quegel [58] uses Hub-Accelerator
based indexing). Second, as soon as the graph changes, precomputed indexing/profiling information
becomes invalid. The online sharing as performed by SimGQ involves no precomputation and thus
eliminates its high cost while also accommodating changes to the graph between different batches
of queries. Thus, our approach applies to streaming/evolving graphs.

In SimGQ, the evaluation of a batch of queries is carried out as follows. We partially
evaluate the queries in the batch for a few iterations till some high degree vertices enter the frontiers
of the queries in the batch. We pause the evaluation of the batch queries and select a small set of high
degree vertices encountered. Treating selected vertices as source vertices of queries, we construct a
batch of shared queries and then evaluate this batch. The results of shared queries are then used to
quickly update the solutions of all queries in the original batch and hence accelerate their advance
towards the final stable solution. Finally, we resume the paused evaluation of original batch till
their stable solutions have been found. By simultaneously evaluating queries we also amortize the
runtime overheads incurred, such as costs of accessing vertices and edges, synchronization costs,
and maintaining frontiers as multiple queries traverse the same regions of the graph.

We implemented SimGQ by modifying the state-of-the-art Ligra [41] system. Our ex-
periments with multiple input power-law graphs and multiple graph algorithms demonstrate best
speedups ranging from 1.53 x to 45.67 x with batch sizes ranging up to 512 queries over the a base-
line implementation that evaluates the queries one by one using the state of the art Ligra system.

We also show that both batching and sharing techniques contribute substantially to the speedups.

10



The remainder of the chapter is organized as follows. In section 2.1 we first provide an
overview of SImGQ and then present our algorithms in detail. In section 2.2 we experimentally

evaluate SImGQ. Finally, we summarize this chapter in section 2.3.

2.1 SimGQ: Evaluating a Batch of Queries

When a group of iterative graph queries are evaluated as a batch, following opportunities
for speeding up their evaluation arise that are ignored when evaluating the queries one by one.
First, it is easy to see that during batched evaluation, we can share the iteration overhead across
the queries. This overhead includes the cost of iterating over the loop, synchronizing threads at the
barrier, as well as fetching vertex values and edge lists of active vertices to update vertex values
and the computation frontier. Second, synergy or overlap between computations performed by
the queries can be exploited to reduce the overall computation performed. In particular, we can
identify and evaluate shared queries whose results can be used to accelerate the evaluation of all
the queries in the batch. The computation performed by the shared queries substantially represent
subcomputations that are performed by many queries in the batch. This is because different queries
typically traverse the majority of the graph and consequently present an opportunity to share a
subcomputation across multiple queries. By evaluating the shared queries once, we can speedup the
evaluation of the entire batch of queries. Note that the shared queries must be identified dynamically

because they may vary from one batch to another.
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2.1.1 Overview of SImMGQ

Next we provide an overview of SImGQ via an illustrating example. Figure 2.1 shows
how a batch of two queries can be synergistically evaluated by identifying and evaluating shared
queries first. While in the example we use a directed graph, our approach works equally well for
undirected graphs with a minor adjustment. As in other works, each undirected edge is represented

by a pair of directed edges with equal weight.

p (b) Phase I. Evaluate Batch(A,B), Pause and

(a) Initialization for Batch(A,B) of SSS i
Identify SSET.

Queries.

(d) Phase Il Contd. Update Batch(A,B)
Results Using SSET Results.

(e) Phase I1I. Resume Batch(A,B) Evaluation till
Termination.

Figure 2.1: Overview of Sharing Among a Batch of Queries
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Initialization Step. Since all queries in a given batch are to be evaluated simultaneously,
each vertex is assigned a vector to hold data values for all queries in the batch — each position in
the vector corresponds to a specific query in the batch. In Figure 2.1a we aim to solve a batch of
two SSSP queries for source vertices A and B marked in red. Each node is annotated with a pair
of initial values for the two queries, A first and then B. Initial value O is assigned to source vertices

and value oo to all non-source vertices for each of the SSSP queries.

Phase I: Identifying Shared Queries. Simultaneously starting from the source vertices,
we start traversing the graph updating the shortest path lengths for the processed vertices along the
frontier as shown in red in Figure 2.1b. The evaluation of the batch continues and once good
candidate vertices for shared queries SSET are found, the evaluation of the batch is paused. Let us
assume that after one iteration we identify SSSP(C) (C marked in green) as a good shared query
candidate for the two queries in the batch in our example. Thus, we pause the evaluation of the

batch queries and proceed to the next step to process the identified shared queries.

Phase II. Accelerating Batch Queries Using Shared Queries. In this step we eval-
uate the shared queries first, that is we evaluate them till their stable results have been computed.
For example, in Figure 2.1c we evaluate the shared query SSSP(C). Once the shared queries have
been evaluated, their results are used to rapidly update the partial results of all the original batch
queries as shown in Figure 2.1d. Note that at this point the results of all vertices except B and E
have already reached their final stable values. That is, the evaluation of batch queries has greatly

advanced or accelerated.

Phase Ill. Completing the Evaluation of Batch Queries. In this final step we resume

the evaluation of batch queries from the frontier at which the evaluation was paused earlier. In our
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example, the resumption of evaluation takes place at vertices B and E and finally the algorithm
terminates after updating the results at vertices E and H. Note that if the acceleration performed in
Phase 11 is effective, the combined cost of Phase I and Phase III would be significantly less than the

cost of evaluating the batch without employing sharing affected via Phase II.

While the above example provides an overview of our approach, many algorithm details
and heuristic criteria need to be developed. For example, there are different ways to select shared
queries (queries on vertices with high centrality or high degree, queries on vertices that are reachable
by most source vertices in the batch etc.). Since our work focuses on power-law graphs that have
small diameter and skewed degree distribution, high degree vertices are the best candidates for
global queries that in general traverse nearly the entire graph. Our algorithm first marks a set of
high degree vertices as potential shared vertices. At runtime, a heuristic is used to select a small
subset of shared vertices that are not only marked, but also have been encountered more frequently
during partial evaluation of batch queries. After evaluating the shared queries, we use the results to
quickly update the results of all batch queries. In subsequent subsections we present a push-style

evaluation of a batch of queries assisted by our idea of using shared queries.

2.1.2 Push-Style Batch Evaluation With Sharing

Now we present a detailed algorithm that evaluates a batch of vertex queries, employing
both batching and sharing, using Push model (a similar algorithm can be easily designed for the Pull
model). In Algorithm 1, function EVALUATEBATCH (line 3) simultaneously evaluates a batch of

vertex queries for source vertices s1, S2, ..., g, over a directed graph G (V| E). The algorithm uses
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Algorithm 1 Batched Evaluation With Sharing

1:

2:

Given: Directed graph G(V, E); High Degree Set M C V of Marked Vertices

Goal: Evaluate a Batch of Queries, QUERYBATCH + { Q1(s1), @2(s2), ..., Qx(sk) }

3: function EVALUATEBATCH( QUERYBATCH )

4:

10:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24

> [Initialization Step]
INITIALIZE RESULTT for QUERYBATCH
ACTIVE <« { s1, S2, ..., Sk }; NEXTTRACK < ¢; ITER < 0
CURRTRACK < { (s;, Qi) : Qi(si) € QUERYBATCH }
> Iterate till Convergence
while ACTIVE # ¢ do
> [Phase I: Iteration < p] [Phase III: Iteration > p]
> Process Active Vertices
ACTIVE < PROCESSBATCH ( ACTIVE, ITER, CURRTRACK, NEXTTRACK, RESULTT )
if ITER = p then > [Phase II]
> Identify #SSET as the Most Frequently Visited Vertices from M as the source of Shared Queries
SSET < SELECTSHAREDQS (M, Visits, #SSET)
> Evaluate Shared Queries with Sources in SSET
SHAREDT < EVALUATEBATCH (SSET)
> Update RESULTT using SHAREDT
SHAREUPDATEBATCH ( SSET, SHAREDT, RESULTT )
end if
CURRTRACK <~ NEXTTRACK; NEXTTRACK < ¢; ITER++
end while
return RESULTT

end function
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Algorithm 2 Batched EdgeMap Function to Update Vertex Values and Compute New Frontier

1: function PROCESSBATCH ( ACTIVE, ITER, CURRTRACK, NEXTTRACK, RESULTT )
2:  NEWACTIVE < ¢

3:  forall v € ACTIVE in parallel do

4: for all e € G.outEdges(v) in parallel do

S: > Apply conventional Update on e.dest

6: changed < EDGEFUNCBATCH ( e, CURRTRACK, NEXTTRACK, RESULTT)
7: if (ITER < p)and (e.dest € M ) then Visits[e.dest]++ end if

8: > Update Active Vertex Set for next Iteration

9: if changed then NEWACTIVE <~ NEWACTIVE U {e.dest} end if

10: end forall

11:  end forall

12:  return NEWACTIVE

13: end function

M C V as aset of marked high degree vertices from which a small number of vertices are selected to
form shared queries; different batches of queries yield different shared queries. In our experiments
|M] is set to 100 to provide choices that suit different batches, while up to 5 shared queries are
selected to limit the overhead of sharing (i.e., SSET size is 5). The algorithm maintains an ACTIVE
vertex set, the combined frontier for all queries in the batch. Although ACTIVE tells which vertices
are active, it cannot tell which queries are associated with each active vertex. Therefore, in addition
to ACTIVE, our algorithm maintains two fine-grained active lists, CURRTRACK and NEXTTRACK,
to indicate for each active vertex all the queries whose frontier the active vertex belongs to. While
CURRTRACK is the information for active set being processed, NEXTTRACK is the corresponding
information for the active set being formed for the next super step of the algorithm. The RESULTT

maintains the results of all the queries for each vertex.
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Algorithm 3 Batched Edge Update Function
1: function EDGEFUNCBATCH (e, CURRTRACK, NEXTTRACK, RESULTT)

2: > Initialize RETVALUE to false.
3: > Set to true if property value of vertex e.dest is changed.
4:  RETVALUE < false

5:  forall Q;(s;) € QueryBatch do

6: > Only Attemp Update for Queries activated e.source
7: if (e.source, Q;) € CURRTRACK then

8: > Perform Update via e

9: if UPDATEFUNC(e, @;, RESULTT) == true then

10: > Schedule e.dest for next Iteration
11: RETVALUE < true
12: NEXTTRACK <~ NEXTTRACK U {(e.dest, Q;)}
13: end if

14: end if
15:  end for

16:  return RETVALUE

17: end function

Following the initialization step (lines 4-7) in Algorithm 1, in each super iteration (lines 9-
22), the vertices in ACTIVE vertex set are processed in parallel by calling function PROCESSBATCH
(Algorithm 2). Function PROCESSBATCH updates the value of out-neighbors of active vertices in
Push style fashion and generates NEWACTIVE containing the active vertices for next iteration which
it returns to EVALUATEBATCH at the end. The work performed by the loop at line 9 executes the
three phases of our algorithm. The first p iterations form Phase I, following which, next in Phase
first shared queries SSET are identified by calling SELECTSHAREDQS (line 15) and then the queries

in SSET are evaluated (line 17). Finally, the evaluation of original batch of queries is accelerated by
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Algorithm 4 Identify Shared Queries from M
1: Given: High Degree Set M C V of Marked Vertices

2: Vector Visits: Number of Visits of All Vertices € M
3: Constant #SSET: # of Shared Vertices Selected
4: Goal: Select #SSET most frequently visited Vertices in M
5: function SELECTSHAREDQS (M, Visits, #SSET)
6: > Init: Set of Source Vertices for Shared Queries
7:  SSET «+ ¢
8: > Init: Set of (vertex, vertex visits number) pairs
9:  VERTVISITSPAIRS < ¢
10: forallv e M do
11: VERTVISITSPAIRS 4+ VERTVISITSPAIRSU{ v, Visits[v] }
12:  end for
13: > Sort Vertices subject to Number of Visits
14:  Sort ( VERTVISITSPAIRS, moreVisits() )
15: > Select most frequently visited Marked Vertices
16:  for #SSET top {v, Visits[v]} € VERTVISITSPAIRS do
17: SSET « SSET U {v}
18:  end for
19:  return SSET

20: end function

updating their results in RESULTT using the results of SSET queries in SHAREDT (line 19). Finally
in Phase |l the computation of batch queries is resumed and completed in remaining iterations of
the while loop. During Phase | the algorithm maintains a count of number of visits to each vertex in
M. These counts are used for selecting vertices to form SSET, more visits implies greater relevance

to queries in the original batch and hence higher priority for inclusion in SSET. Following the call
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to PROCESSBATCH in the p'* iteration (1! in our experiments), we enter Phase Il at which point
SSET is built. The details of SSET construction are presented in Algorithm 4. If lines 13-20
are eliminated, the algorithm will not perform sharing and thus its execution will revert to simple
batched evaluation.

Function PROCESSBATCH (Algorithm 2) loops over each outedge e of every active vertex,
and calls function EDGEFUNCBATCH (Algorithm 3) to attempt update of e.dest by relaxing edge
e using conventional edge update function UPDATEFUNC. If the relaxation is successful, i.e. the
value of e.dest is changed, e.dest becomes an active vertex for next iteration. Note that function
EDGEFUNCBATCH does not blindly relax e for all queries. Instead it looks up CURRTRACK to
check which queries activated e.source in the previous iteration, and only attempts update of value
of e.dest for corresponding queries. The conventional edge update function UPDATEFUNC for four
algorithms is given in Table 2.1. Here CASMIN(a, b) sets a = bif b < a atomically using compare-
and-swap); and CASMAX(a, b) sets a = bif b > a atomically using compare-and-swap).

Finally, Algorithm 5 shows how we accelerate the convergence of the solution of the
original batch of queries in RESULTT using the results of the shared queries in SHAREDT. Since
the cost for looping over all vertices and applying share updates is significant, we limit the number
of shared vertices with which each query is used to speed up convergence of property values by
choosing a small SSET size. Let us see how the result of a shared query with source vertex r
can benefit a batch query given that the reachability is known to be true. Given a vertex d, its
value in query @); can take advantage of the shared result of subquery on vertex » in SHAREDT
and be expressed as follows: SHAREUPDATEFUNC(d, 7, ();, SHAREDT, RESULTT). The above

function for four benchmarks is given in Table 2.2. For example, for SSSP, RESULTT[s;][r] +
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Table 2.1: Conventional Updates for Five Algorithms.

| ALG \ RESULTT(s;][e.dest] + UPDATEFUNC ( e, Q;, RESULTT) \
SSWP CASMAX(RESULTT[s;][e.dest], min(RESULTT[s;][e.src], e.w)))
Viterbi CASMAX(RESULTT([s;][e.dest], RESULTT[s;][e.src] / e.w)
BFS CASMIN(RESULTT[s;][e.dest], RESULTT[s;][e.src] + 1)
SSSP CASMIN(RESULTT[s;][e.dest], RESULTT[s;][e.src] + e.w)
TopkSSSP | KSMALLEST({RESULTT[s;][e.dest]} U {RESULTT[s;][e.src] + e.w})

Table 2.2: Directed Graphs: SHAREUPDATEFUNC for Five Algorithms.

| ALG | RESULTT[s;][d] < SHAREUPDATEFUNC(d,r,Q;, SHAREDT,RESULTT) |
SSWP CASMAX( RESULTTs;][d], min(RESULTT[s;][r], SHAREDT[r][d]))
Viterbi CASMAX( RESULTT(s;][d], RESULTT[s;][r] * SHAREDT[r][d])
BFS CASMIN( RESULTT([s;][d], RESULTT|s;][r] + SHAREDT|[r][d])
SSSP CASMIN( RESULTT[s;][d], RESULTT[s;][r] + SHAREDT[r][d])
TopkSSSP| KSMALLEST({RESULTT([s;][e.dest]} U {RESULTT[s;][r] + SHAREDT[r][d]})

SHAREDT/[r][d] is a safe approximation of the shortest path value from source vertex of g; to d via
r, and we can use the estimation to accelerate the convergence of the value of d.

For undirected graphs, when applying update using result of shared queries, we can benefit
from a more accurate approximation of the property value from source vertex to shared vertex. Take
SSSP as an example. Given an undirected graph, SHAREDT[r][s;] can be used as the accurate
measurement of the distance from s; to r. Compared with RESULTT[s;][r] used in Table 2.2,
which is an approximation value, SHAREDT[r][s;] can be used to compute a better estimation of
the distance between s; and d and therefore give better acceleration on the evaluation of the original

batch of queries.
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Algorithm 5 Accelerate Batch Queries Using Shared Queries From SSET
1: function SHAREUPDATEBATCH (SSET, SHAREDT, RESULTT)

2:  forall Q;(s;) € QUERYBATCH do

3: for r € SSET do

4: > Update using r only if r is reachable from s;
5: if RESULTT[s;][r] # —1 then

6: for d € ALLVERTICES do

7: > Attempt Update if d is reachable from r
8: if SHAREDT[r][d] # —1 then

9: > Update d for Query ¢ using r

10: SHAREUPDATEFUNC (d, 7, QQ;, SHAREDT, RESULTT )
11: end if
12: end for

13: end if

14: end for

15:  end for

16: end function

2.1.3 Applicability

Our sharing algorithm can be applied to batched iterative graph algorithms where each
query in the batch begins at single source vertex and the property values from these sources to
all other vertices are computed. Sharing of results of subqueries is effective because they rep-
resent overlapping subcomputations. Graph problems with dynamic programming solutions have
the opportunity to benefit from our sharing algorithm because of the optimal substructure prop-

erty of dynamic programming. Examples include monotonic computations like SSWP, Viterbi,
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TopkSSSP, and BFS used in our evaluation as well as other non-monotonic algorithms like Per-
sonalized Page Rank (PPR) [13] used by recommender services like twitter and Single-Source
SimRank (SimRank) [16] queries that are evaluated to compute similarities of graph nodes. It does
not apply to algorithms with a global solution, i.e. not originating at source-vertex (e.g., Connected
Components). Sharing will work less effectively for local queries like 2-Hop queries due to low
overlap between them; however, local queries are inexpensive and can be processed efficiently with
batching alone. Sharing works well on power-law graphs as they contain high centrality nodes but
it is less effective for high-diameter graphs like road-networks. Only when source vertices are in

proximity of each other can there be significant reuse in high-diameter graphs.

2.2 Experimental Evaluation

2.2.1 Experimental Setup

For evaluation we implemented our SimGQ framework using Ligra [41] which uses the
Bulk Synchronous Model [45] and provides a shared memory abstraction for vertex algorithms
which is particularly good for graph traversal. We evaluate our techniques for evaluation of batches
of queries using four benchmark applications (SSWP — Single Source Widest Path, Viterbi [22],

BFS — Breadth First Search, and TOpkSSSP — Top k Single Source Shortest Paths). We used four

Table 2.3: Input graphs used in experiments.

| Graphs | #Edges | #Vertices |
Twitter (TT) [5] 2.0B 52.6M
Twitter (TTW) [20] 1.5B 41.7M
Livedournal (LJ) [3] 69M 4.8M
PokeC (PK) [42] 3IM 1.6M
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Table 2.4: BASELINE — Total Execution Times for Evaluating Randomly Selected Queries One by
One in Seconds on the Ligra [41] System. For first 3 benchmarks 512 queries are used and for
TopkSSSP we use 64 queries.

| Graph | SSWP | Viterbi | BFS | Top 2 & 1 SSSP

TTW 2,989s | 3,737s | 2,574s | 4,073s 2,337s
TT 3,949s | 4,902s | 3,538s | 2,768s 1,574s
LJ 134s 258s 102s 389s 226s
PK 63s 116s 55s 232s 123s

real world power-law graphs shown in Table 4.3 in these experiments — TT [5] and TTW [20] are
large graphs with 2.0 and 1.5 billion edges respectively; and LJ [3] a