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ABSTRACT OF THE DISSERTATION

Application of Software Analysis in Detecting Vulnerabilities:
Testing and Security Assessment

by

Arash Alavi

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2019

Dr. Rajiv Gupta, Co-Chairperson
Dr. Zhiyun Qian, Co-Chairperson

With the increasing complexity of application software there is an acute need for

software analysis approaches that are capable of identifying bugs, failures, and most impor-

tantly vulnerabilities on a large scale. In this dissertation, first we stress the necessity of

having automated software analysis approaches and then propose analysis approaches for

detecting vulnerabilities in software via analysis and testing in general, and security assess-

ment in particular. We show the efficiency and effectiveness of these analysis techniques in

detecting vulnerabilities.

First, we study security issues in smartphone applications by studying the security

discrepancies between Android apps and their website counterparts, depicting the essential

need of efficient software analysis techniques to fully automate the mobile app analysis

process. By a comprehensive study on 100 popular app-web pairs, we find that, with

respect to various security policies, the mobile apps often have weaker or non-existent

security measures compared to their website counterparts.
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Second, as a consequence of the former, we develop AndroidSlicer, the first

novel, efficient, and effective dynamic program slicing tool for Android apps that is useful for

a variety of tasks, from testing to debugging to security assessment. Our work in this domain

focuses on making large scale applications of slicing practical in order to detect bugs and

vulnerabilities in real-world apps. We present two new applications of the dynamic slicing

technique in mobile apps: (1) detecting the “stuck” states (missing progress indicators) in

mobile apps. We present, implement, and evaluate ProgressDroid, a tool for discovering

missing progress indicator bugs based on program dependencies; and (2) detecting security

vulnerabilities in unique device ID generators.

Finally, in the same vein of deploying analysis tools for detecting vulnerabilities, we

present GAGA, an efficient genetic algorithm for graph anonymization that simultaneously

delivers high anonymization and utility preservation. Experiments show that GAGA im-

proves the defense against DA techniques by reducing the rate of successfully de-anonymized

users by at least a factor of 2.7� in comparison to the baseline and at the same time, under

16 graph and application utility metrics, GAGA is overall the best at preserving utilities.
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Chapter 1

Introduction

Many of the existing research works for detecting vulnerabilities still rely on signif-

icant manual e�orts (i.e., reverse engineering, trial and error, and hacky workarounds) [66,

117, 36, 17]. On the other hand, while there are various security analysis tools which engi-

neers, developers, and researchers have at their disposal, some of them are insu�cient for

e�ective automated vulnerability detection [122, 29, 55, 119, 121]. Hence, improving the

array of software analysis tools in order to deploy e�ective and e�cient software analysis

approaches capable of making the vulnerability detection process far easier, widespread,

and automated is essential.

This research addresses the challenges in detecting vulnerabilities via automated

software analysis approaches. An overview is shown in Figure 1.1. Detected vulnerabilities

can be a bug which can lead to a security breach, a wrong implementation of a security

policy, or a weak defense mechanism. We stress the necessity of having automated software

analysis approaches and then propose analysis approaches for detecting vulnerabilities.
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Figure 1.1: Detecting vulnerabilities via software analysis

1.1 Security Vulnerabilities in Android Apps

Nowadays, users appear to be substituting websites for mobile applications which

may be more convenient to access throughout the day. Given that a large number of services

already exist and are o�ered as traditional websites, it is expected that many apps are basi-

cally remakes or enhanced versions of their website counterparts. Examples of these include

mobile �nancial applications for major banking corporations like Chase and Wells Fargo or

shopping applications like Amazon and Target. The software stack for the traditional web

services has been well developed and tested for many years. The security features are also

standardized (e.g., cookie management and SSL/TLS certi�cate validation). However, as

the web services are re-implemented as mobile apps, many of the security features need to

be re-implemented as well. This can often lead to discrepancies between security policies

of the websites and mobile apps. As demonstrated in a recent study [37], when the stan-

dard feature of SSL/TLS certi�cate validation logic in browsers is re-implemented on mobile

apps, serious 
aws are present that can be exploited to launch MITM (Man-In-The-Middle)

attacks. Such an alarming phenomenon calls for a more comprehensive analysis of aspects

beyond the previous point studies.
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Hence, We aim to identify security vulnerabilities in mobile Apps by presenting

security discrepancies in mobile apps and their website counterparts [17]. Speci�cally, we

examine a number of critical website security policies that need to be re-implemented in

mobile apps. For this purpose, we explore the top 100 popular Android apps from various

categories in Google Play, as well as their website counterparts to perform a comprehensive

study about their security discrepancies on their security policies. As expected, we observe

that often the app security policies are much weaker than their website counterparts.

1.2 Dynamic Slicing for Android

Our semi-automated approaches in the above work stresses the necessity of having

more automated and e�cient software analysis tools to help detect vulnerabilities. There-

fore, as our next contribution is a dynamic slicing approach for mobile applications [24] {

the choice of dynamic slicing is motivated by its versatility in automating variety of analyses

ranging from testing to debugging to security assessment. The key contribution of this work

is the design and implementation of the �rst novel, e�cient, and e�ective dynamic program

slicing tool for Android apps. While dynamic slicing has targeted traditional applications

running on desktop/server platforms, our work brings dynamic slicing to Android. This

is challenging for several reasons. First main challenge is due to asynchronous callback

constructions and the IPC-heavy environment. Second, the sensor-driven, timing-sensitive

nature of the Android platform poses a signi�cant challenge as it requires that dynamic

slicing entail minimal overhead. Any instrumentation system to support capturing relevant

system and app state should be lightweight. To address the above challeges, we introduce

3



AndroidSlicer 1, the �rst slicing approach for Android. We present three conventional

applications of AndroidSlicer that are relevant in the mobile domain: (1) �nding and

tracking input parts responsible for an error/crash; (2) fault localization, i.e., �nding the

instructions responsible for an error/crash; and (3) reducing the regression test suite. Ex-

periments with these applications show thatAndroidSlicer is e�ective and e�cient .

1.3 New Applications of Dynamic Slicing in Android

We present two new applications of dynamic slicing in mobile apps domain. The

�rst facilitates testing Android apps from the perspective of one of the important user

interface design principles { always showing a progress indicator to the user forlong-running

operations. The second helps identify a speci�c type of vulnerability in approaches for

forming unique device identi�cation signature.

User interface guidelines often emphasize the importance of using progress in-

dicators [5, 6, 91] for long-running operations such as network communications. To the

best of our knowledge, there is no study addressing the \missing progress indicators" for

heavy-weighted network operations in mobile apps. Hence in the �rst application, we try to

automatically �nd \missing progress indicators" based on program semantics, in particular

program dependencies using our dynamic slicing technique.

In the second application, we identify the potential vulnerabilities in unique device

identi�cation approaches in mobile apps. There are many use cases where the mobile app

developers need an unique ID to identify Android devices. In this work, we focus on

1https://github.com/archer29m/AndroidSlicer

4



tracking the apps installations approaches where the developers try to identify unique fresh

installations on users devices. One use case of such an approach is where the developers

want to know the number of devices that have installed their apps through a speci�c app

promoter channel. Another use case is related to apps with initial discounts. We show the

vulnerabilities in both use cases which lead to �nancial loss.

1.4 E�cient Genetic Algorithm for Graph Anonymization

In the next section of this thesis, in the same direction of deploying analysis tools

for detecting vulnerabilities, we address the problem of user data privacy preservation in

graph data (e.g., social networks). The main drawback of existing anonymization tech-

niques is that they trade-o� anonymization with utility preservation. To address this lim-

itation, we propose, implement, and evaluateGAGA , an e�cient genetic algorithm for

graph anonymization [16]. Our results show thatGAGA is highly e�ective and has a better

trade-o� between anonymization and utility preservation compared to existing techniques.

1.5 Thesis Organization

The dissertation is organized as follows. In Chapter 2, we study security discrepan-

cies between mobile apps and their website counterparts. Chapter 3 discusses our dynamic

slicing technique. Next in Chapter 4, we present two new applications of dynamic slicing

that identify a new kind of bug and a new vulnerability in mobile apps. In Chapter 5, we

present our new e�cient graph anonymization technique to preserve user privacy in graph

data. Finally in Chapter 6, we provide the conclusion and discuss the possible future work.
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Chapter 2

Security Vulnerabilities in Android

Apps

Many web services are now delivered via mobile apps. It is expected that many

apps are basically remakes or enhanced versions of their website counterparts. The re-

implementation of many of these web services in mobile apps, can often lead to discrepancies

between security policies of the websites and mobile apps. Traditional web services have

been well developed, tested, and standardized for many years but the mobile apps are newly

developed and may naturally lack the maturity of web services. Hence, our hypothesis is

that many security policies in mobile apps are signi�cantly weaker than those in traditional

website environment. To verify our hypothesis, we study the top 100 popular Android apps

(each of which has more than 5,000,000 installs at the time of the study) from various

categories in Google play, as well as their website counterparts, to perform a comprehensive

study about their security discrepancies.
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We study the security discrepancies between apps and their websites from the

following 3 main domains: authentication policies, cookie management security policies, and

use of libraries. We identify a set of critical security policies that are commonly employed

by app/web service pairs. Since such pairs represent essentially the same services, the

discrepancy in security policies e�ectively lowers the security of the overall service.

2.1 Background

In this section, we provide some background knowledge of three main security

policies that we use to compare the implementations of those policies in mobile apps and

their websites. We begin with the introduction to di�erent authentication related security

policies, and then we discuss the storage encryption methods that are used in mobile apps

and by di�erent browsers. Finally, we give a brief overview of library use in Android apps

and how it di�ers from the browser scene.

2.1.1 Authentication Security Policies

We anticipate to see many di�erent forms of authentication security policies in

place for both apps and websites. One of the most common forms of authentication policies

that can be seen are CAPTCHAs. Others include a mandatory wait period or denial of

access either to an account or service. All three of these have potential to be IP/machine-

based or globally user-based.

CAPTCHA. Though CAPTCHAs are designed with the purpose of defeating

machines, prior research has shown that they can be defeated by machines algorithmically
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[77] or via speech classi�cation [100]. Due to the possibility of CAPTCHA replay attacks,

Open Web Application Security Project (OWASP) recommends that CAPTCHA be only

used in \rate limiting" applications due to text-based CAPTCHAs being crackable within

1-15 seconds [83].

Waiting Time. A less common method of authentication policy is the usage of

waiting periods to limit the number of logins that can be attempted. The response is in the

form of an explicit message or disguised through a generic \Error" message. Waiting periods,

either for a single IP or for the user account is a very e�ective method to slow down and

mitigate aggressive online credential guessing attacks. Depending on the implementation,

it may operate on a group of IPs (e.g., belonging to the same domain).

Denial of Access. An extreme policy is the denial of access, where an account

is essentially \locked" and additional steps are necessary to regain access (e.g., making a

phone call) [111]). If an attacker knows the login ID of an account, then he can lock the

account by repeatedly failing the authentication. Though denial of access is very secure

against online password guessing attacks, OWASP recommends that such method be used

in high-pro�le applications where denial of access is preferable to account compromises [82].

2.1.2 Storage Encryption Methods

Browsers on PCs by default encrypt critical data for long term storage. In the case

of Chrome on Windows, after a successful login into a website, by clicking \Save Password",

the browser stores the password in encrypted form using the Windows login credential as

the key. It is not the same for mobile apps. For instance, the APIs for managing cookies

do not require the cookies to be encrypted.
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2.1.3 Libraries

Mobile apps use libraries for di�erent functionalities such as advertisements, au-

dio and video streaming, or social media. Previous studies [43, 30, 8] have shown security

and privacy issues that arise by use of some libraries which can lead to leakage of sensitive

user information, denial-of-service, or even arbitrary code execution. For services delivered

through websites on the other hand, no website-speci�c native libraries are loaded. Un-

like libraries embedded in apps that may be out-of-date and vulnerable, libraries used in

browsers (e.g., 
ash) are always kept up-to-date and free of known vulnerabilities.

2.2 Related Work

As far we know, there are no in depth studies that explicitly analyze the similar-

ities and di�erences between mobile applications and their website counterparts in terms

of security. Fahl et al. [37] understood the potential security threats posed by benign

Android apps that use the SSL/TLS protocols to protect data they transmit. Leung et

al. [62] recently studied 50 popular apps manually to compare the Personally Identi�able

Information (PII) exposed by mobile apps and mobile web browsers. They conclude that

apps tend to leak more PII (but not always) compared to their website counterparts, as

apps can request access to more types of PII stored on the device. This is a demonstration

of the discrepancy of privacy policies between apps and websites. In contrast, our work

focuses on the discrepancy of security (not so much privacy) policies between apps and

websites. Zuo et al. [123] automatically forged cryptographically consistent messages from

the client side to test whether the server side of an app lacks su�cient security layers. They
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applied their techniques to test the server side implementation of 76 popular mobile apps

with 20 login attempts each and conclude that many of them are vulnerable to password

brute-forcing attacks, leaked password probing attacks, and Facebook access token hijacking

attacks. Sivakorn et al. [93] recently conducted an in-depth study on the privacy threats

that users face when attackers have hijacked a user's HTTP cookie. They evaluated the

extent of cookie hijacking for browser security mechanisms, extensions, mobile apps, and

search bars. They observed that both Android and iOS platforms have o�cial apps that

use unencrypted connections. For example, they �nd that 3 out of 4 iOS Yahoo apps leak

users' cookies.

2.3 Methodology and Implementation

In this section we describe our methodology and implementation details of our

approach to analyze app-web pairs. We selected the top 100 popular Android apps (each of

which has more than 5,000,000 installs) from popular categories such as shopping, social,

news, travel & local, etc. in Google play. All apps have a corresponding website interface

that o�ers a similar functionality. For each app-web pair, we created legitimate accounts

using default settings. This was done to mimic the processes of an actual user interacting

with an app or website.

2.3.1 Login Automation Analysis

We automate logins and logging for apps and websites for the purposes of this

study. For each app-web pair, we perform 101 login attempts automatically using randomly
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generated alphanumeric passwords for the �rst 100 attempts followed by an attempt with

the correct password. 100 attempts was chosen as this was an order of magnitude larger

than what an average user would perform within a span of 24 hours [18] so that we can

identify the polices when the number of lognin attempts goes much beyond the average

frequency of attempts in real world. Allowing unlimited number of login attempts is a

security vulnerability because it allows an attacker to perform brute force or dictionary

attacks. Another security aspect of login attempts is that if the system leaks the user ID

(e.g., email) during the login authentication checking, by returning error messages such as

\wrong password" either in the UI or in the response message, then an attacker can send a

login request and learn whether a user ID has been registered with the service. Therefore,

we also compare the servers' responses to login requests, either shown in the UI or found in

the response packet, for both apps and websites.

2.3.2 Sign up Automation Analysis

Besides login tests, we perform the sign up tests that can also potentially leak

if the username has been registered with the service. Again, we simply need to compare

the servers' responses to sign up requests for apps and websites. For both login and sign

up security policies, if a service where the website allows for only a limited number of

logins/sign-ups before a CAPTCHA is shown whereas the mobile app never prompts with

a CAPTCHA, an attacker would be inclined to launch an attack following the mobile app's

protocol rather than the website's. Test suites for the purposes of testing mobile apps and

websites were created usingmonkeyrunner and Selenium Webdriver, respectively.
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2.3.3 Authentication Throughput Analysis

From the login automation analysis, we collect the set of app-web pairs where

we �nd di�erent behaviors between the app and the website counterpart, we call this set

\discrepancy list". Using the network tra�c monitoring tools Fiddler and mitmproxy, we

log network tra�c traces for all app-web pairs in the discrepancy list. Using the informa-

tion in the network tra�c traces, we analyze how authentication packets are structured for

each client as well as �nding what sort of information is being shared between a client and

server. This enables us to determine whether the app-web pair has the same authentication

protocol and share the same set of backend authentication servers. In addition, this allows

us to construct tools capable of sending login request packets without actually running the

mobile app, pushing for higher throughput of authentication attempts. The tool also logs

all responses received from a server. To push the throughput even further, we can option-

ally parallelize the login requests (from the same client) by targeting additional backend

authentication server IPs simultaneously. Our hypothesis is that the throughput can be

potentially multiplied if we target multiple servers simultaneously.

2.3.4 IP-Changing Clients Analysis

Using VPN Gate and a sequence of 12 IP addresses from di�erent geographical

locations, including 3 from North America and 9 from other countries, we test the apps

and websites regarding their response to accounts being logged in from multiple locations

separated by hundreds of miles in a short span of time. The motivation of this analysis was

to determine whether app/website has a security policy against IP changes can indicate
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session hijacks [35]. If not, then an attacker can use the hijacked cookies anywhere without

being recognized by the web service. For example an attacker can use a stolen cookie from

an app with any IP address to obtain personal and/or �nancial information pertaining to

the user account.

2.3.5 Cookie Analysis

For each app-web pair, we analyze the cookies that are saved on the phone/PC. We

collect all the cookies and analyze cookie storage security policies to �nd whether they are

stored in plaintext and more easily accessible. We also perform expiration date comparison

testing on 18 shopping app-web pairs from our list of app-web pairs. The hypothesis is

that mobile apps run on small screens and it is troublesome to repeatedly login through the

small software keyboard; therefore the corresponding app's servers will likely have a more

lenient policy allowing the cookies to stay functional for longer time periods.

2.3.6 Vulnerable Library Analysis

While both apps and websites execute client-side code, app code has access to

many more resources and sensitive functionalities compared to their website counterpart,

e.g., apps can read SMS on the device while javascript code executed through the browser

cannot. Therefore, we consider the app code more dangerous. Speci�cally, vulnerable

app libraries running on the client-side can cause serious attacks ranging from denial of

service (app crash) to arbitrary code execution. Because of this, for each app, we identify

if it uses any vulnerable libraries. We conduct the analysis beyond the original 100 apps

to 6400 apps in popular categories. Ideally the libraries should be tagged with versions;
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unfortunately, we discover that most libraries embedded in Android apps do not contain the

version information as part of their metadata. Therefore, in the absence of direct version

information, we perform the following steps instead. First, we search the extracted libraries

through the CVE database. If there is any library that is reported to have vulnerabilities,

we perform two tests to conservatively 
ag them as vulnerable. First is a simple time test:

we check if the last update time of the app is before the release time of patched library.

Obviously, if the app is not updated after the patched library is released, then the app must

contain a vulnerable library. If the time test cannot assert that the library is vulnerable, we

perform an additional test on the symbols declared in the library �les. Speci�cally, if there

is a change (either adding or removing a function) in the patched library, and the change

is lacking in the library �le in question, then we consider it vulnerable. Otherwise, to be

conservative, we do not consider the library as vulnerable.

2.4 Observations

We present our results obtained from following the methodology outlined earlier

with respect to several security policies.

Security policies against �led login and sign up attempts. By performing login

attempts automatically for each pair of app and website, many interesting discrepancies in

security policies have been found. Figure 2.1 summarizes the main results for all 100 pairs,

considering their latest versions at the time of experiment (summer 2016).

In general, we see that the security policy is weaker on the app side. There are

more apps without security policies than websites. We also see that there are signi�cantly
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Figure 2.1: Security policies against failed login attempts in apps vs. websites

fewer apps asking for CAPTCHA, presumably due to the concern about usability of the

small keyboards that users have to interact with them.

Interestingly, in the case when CAPTCHAs are used both by app and website, the

CAPTCHA shown to app users is usually simpler in terms of the number of characters and

symbols. For instance, LinkedIn website asks the user to enter a CAPTCHA with 2 words

while its app CAPTCHA only has 3 characters. Unfortunately, an attacker knowing the

di�erence can always impersonate the mobile client and attack the weaker security policy.

We also observe that more apps employ IP block policies for a short period of time. This

is e�ective against naive online credential guessing attacks that are not operated by real

players in the underground market. In reality, attackers are likely operating on a large

botnet attempting to perform such attacks, rendering the defense much less e�ective than

it seems. In fact, if the attackers are aware of the discrepancy, they could very well be

impersonating the mobile client to bypass stronger protections such as CAPTCHA (which
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App-Web App Security Layer
(App Verrsion)

Website
Security

Layer
App Host Website Host

Babbel
None(5.4.072011)

Account lock(5.6.060612) Account lock www.babbel.com/api2/login accounts.babbel.com/en/
accounts/sign in

Ebay None(3.0.0.19)
IP block(5.3.0.11)

Captcha mobiuas.ebay.com/servicesmobile
/v1/UserAuthenticationService

signin.ebay.com/ws/eBayISAPI.dll

Expedia None(5.0.2) Captcha www.expedia.com/api/user/signin www.expedia.com/user/login

Hotels.com
None(12.1.1.1)

IP block(20.1.1.2)
Captcha ssl.hotels.com/device/signin.html ssl.hotels.com/pro�le/signin.html

LivingSocial None(3.0.2)
IP block(4.4.2) Wait time

accounts.livingsocial.com/v1/oauth
/authenticate

accounts.livingsocial.com
/accounts/authenticate

OverDrive None(3.5.6) Captcha overdrive.com/account/sign-in www.overdrive.com/account
/sign-in

Plex
None(4.6.3.383)

IP block(4.31.2.310) IP block plex.tv/users/sign in.xml plex.tv/users/sign in

Quizlet None(2.3.3) Wait time api.quizlet.com/3.0/directlogin quizlet.com/login

Skype None(7.16.0.507)
Wait time
& Captcha uic.login.skype.com/login/skypetoken login.skype.com/login

SoundCloud
None(15.0.15)

IP block(2016.08.31-release)
Captcha api.soundcloud.com/oauth2/token sign-in.soundcloud.com/

sign-in/password

TripAdvisor None(11.4)
IP block(17.2.2)

Captcha api.tripadvisor.com/api/internal/1.5/
auth/login

www.tripadvisor.com
/Registration

Twitch
None(4.3.2)

Captcha(4.11.1)
Captcha api.twitch.tv/kraken/oauth2/login

passport.twitch.tv/authorize
We Heart It None(6.0.0) Captcha api.weheartit.com/oauth/token weheartit.com/login/authenticate

Zappos None(5.1.2) Captcha api.zappos.com/oauth/accesstoken
secure-www.zappos.com

/authenticate

Table 2.1: Discrepancy of authentication policies among app-web pairs.

sometimes requires humans to solve and is hence an additional cost to operate cyber crime).

Table 2.1 lists app-web pairs in detail where apps operate without any security

protections whatsoever, at least for the version when we began our study but their websites

have some security policies. This allows attackers to follow the app protocol and gain

unlimited number of continuous login attempts (con�rmed with 1000+ trials). In total,

we �nd 14 such app-web pairs; 8 apps have subsequently strengthened the policy after we

noti�ed them. There are however still 6 that are vulnerable to date (that is the time of the

study: summer 2016). We also provide a detailed list of all 100 app-web pairs on our project

website [9]. To ensure that there is indeed no security protection for these apps, we perform

some follow-up tests against the 14 applications and con�rm that we could indeed reach

up to thousands of attempts (without hitting any limit). Note that our approach ensures
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that no hidden security policy goes unnoticed (such as the account being silently blocked),

as our test always concludes with a successful login attempt using the correct password,

indicating that it has not been blocked due to the failed attempts earlier. In the table, we

also list the URLs that correspond to the login requests. Since both the domain names and

resolved IP addresses (which we did not list) are di�erent, it is a good indication that apps

and websites go through di�erent backend services to perform authentications, and hence

there are di�erent security policies.

Impact of online credential guessing attacks. To perform online password guessing

attacks, one can either perform a brute force or dictionary attack against those possibilities

that are deemed most likely to succeed. As an example, the recent leakage of passwords from

Yahoo [10] consisting of 200 million entries (without removing duplicates). According to our

throughput result, at 600 login attempts per second (which we were able to achieve against

some services), one can try every password in less than 4 days against a targeted account

(if we eliminate duplicate passwords the number will be much smaller). Let us consider an

attacker who chooses the most popular and unique 1 million passwords; it will take less than

half an hour to try all of them. Note that this is measured from a single malicious client,

greatly lowering the requirement of online password guessing attacks, which usually are

carried out using botnets. Another type of attack which can be launched is Denial of Service

(DoS) attack. By locking large amount of accounts through repeated logins, attackers could

deny a user's access to a service. As we mentioned earlier, we �nd more apps than websites

which have the account lock security policy against the failed authentication (11 apps vs.

9 websites). Account lock security policy is a double edge sword: while it provides security
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against unauthorized login attempts, it also allows an attacker to maliciously lock legitimate

accounts with relative ease. The result shows that this kind of attack can be more easily

launched on the app side. We verify this claim against our own account and con�rm that

we are unable to login with the correct password even from a di�erent IP address.

To perform online username guessing attacks, we report the result of the sign up

(registration) security policy testing, which aligns with the login results. We �nd 5 app-web

pairs | 8tracks, Lovoo, Newegg, Overdrive, StumbleUpon | where the app has no security

protection against 
ooded sign up requests while the website has some security protection

such as CAPTCHA. We also �nd that 14 websites leak the user email address during the

authentication checking by returning error messages such as \wrong password". In contrast,

17 apps leak such information. The three apps with weaker security policies are AMC

Theaters, Babbel, and We Heart It. The discrepancy allows one to learn whether a user

ID (e.g., email) has been registered with the service by performing unlimited registration

requests. Combined with the password guessing, an attacker can then also attempt to test

a large number of username and password combinations.

Throughput measurement. In throughput testing, we tested authentications-per-second

(ApS) that are possible from a single desktop computer. Table 2.2 shows the throughput

results for login testing. An interesting case was Expedia, which allowed� 150 ApS when

communicating with a single server IP and upwards of� 600 ApS when using multiple server

IPs during testing. The existence of multiple server IPs, either directly from the backend

servers or CDN, played a role in the ampli�cation of an attack. It is interesting to note

that in the case of Expedia, di�erent CDN IPs do not in fact allow ampli�cation attacks.
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App ApS (Single-server-IP) ApS (Multi-server-IP) # of IPs found CDN/Host

Ebay � 77 � 100 2 Ebay

Expedia � 150 � 600 20 Akamai/Expedia

SoundCloud � 77 � 178 2 EdgeCast

We Heart It � 83 � 215 5 SoftLayer/ThePlanet.com

Zappos � 84 � 188 20 Akamai

Table 2.2: Throughput results for login testing.

We hypothesize that it is due to the fact that these CDNs still need to access the same

set of backend servers which are the real bottleneck. To identify backend server IPs, we

perform a step we call \domain name scanning" and successfully locate a non-CDN IP for

\ftp.expedia.com". From this IP, we further scan the subnet and �nd 19 other IPs capable

of performing authentication. By talking to these IPs directly, we are able to improve the

throughput from 150 to 600.

Finally, we also obtain throughput results for 4 of the applications in sign up

testing and their average throughput is around 90 to 240 ApS.

Client IP changing. During IP address testing, we �nd that 11 app-web pairs have client

IP changing detection and associated security policy on the server side. The remaining 89

app-web pairs have no visible security policy. Among them there are 8 app-web pairs for

which both the app and the website have the same behavior against IP changing. For the

remaining 3 pairs, | Target, Twitch, Steam | the app and website have di�erent behaviors

where the website returns an access denied error for some IP address changes (in the case

of Target and Twitch) or forces a logout for any change of the IP address (in the case of

Steam) but the app allows changing client IP address frequently.

One main consequence is that when an app/website has no security policy against
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App-Web App Cookies Expiration Time Website Cookies Expiration Time
AliExpress several months 60 minutes
Amazon several months 14 minutes
Best Buy several months 10 minutes

Kohl's several months 20 minutes
Newegg several months 60 minutes
Walmart several months 30 minutes

Table 2.3: Cookies expiration time.

IP changing, an attacker can perform HTTP session hijacking with stolen cookies more

easily without worrying about what hosts and IP addresses to use in hijacking. For instance,

Steam is a gaming client; it does have security protection in its websites. When a cookie is

sent from a di�erent IP, the website immediately invalidates the cookie and forces a logout.

However, using the Steam app and the associated server interface, if the attacker can steal

the cookie, he can impersonate the user from anywhere (i.e., any IP address).

Cookies. Cookies are commonly used for web services as well as mobile apps. In browsers,

cookie management has evolved over the past few decades and gradually become more

standardized and secure. However, on the mobile platform every app has the 
exibility to

choose or implement its own cookie management, i.e. cookie management is still far from

being standardized.

We observe that many apps store their cookies unencrypted (47 apps among all

100 apps). An attacker can access the cookie more easily as compared to browsers on PCs.

First, smartphones are smaller and more likely to be lost or stolen. Therefore, a simple

dump of the storage can reveal the cookies (assuming no full-disk encryption). In contrast,

in the case of browsers on PCs, cookies are often encrypted with secrets unknown to the
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Library Vulnerabilities # of Apps Example Vulnerable Apps(Version)(Installs)

libzip
DoS or possibly execute arbitrary code

via a ZIP archive 13
com.djinnworks.StickmanBasketball(1.6)(10M+)

com.djinnworks.RopeFly.lite(3.4)(10M+)

FFmpeg * DoS or possibly have unspeci�ed other impact 9
co.vine.android(5.14.0)(50M+)

com.victoriassecret.vsaa(2.5.2)(1M+)

libxml2

DoS via a crafted XML document 8
com.avidionmedia.iGunHD(5.22)(10M+)
com.pazugames.girlshairsalon(2.0)(1M+)

Obtain sensitive information 5 com.pazugames.girlshairsalon(2.0)(1M+)
com.
exymind.pclicker(1.0.5)(0.1M+)

com.pazugames.cakeshopnew(1.0)(0.1M+)
DoS or obtain sensitive information

via crafted XML data 5
DoS via crafted XML data 5

libcurl Authenticate as other users via a request 1 sv.com.tigo.tigosports(6.0123)(0.1M+)

Table 2.4: Vulnerable libraries used by apps.
* FFmpeg includes 7 libraries:

libavutil, libavcodec, libavformat, libavdevice, libav�lter, libswscale, and libswresample.

attacker even if the attacker can gain physical access to the device. For instance, Windows

password (used in Chrome) and master password (used in Firefox) are used to encrypt the

cookies [112]. Second, if the device is connected to an infected PC (with adb shell enabled),

any unprivileged malware on PC may be able to pull data from the phone. For instance, if

the app is debuggable then with the help ofrun-as command, one can access the app data

such as cookies. Even if the app is not debuggable, the app data can still be pulled from

the device into a �le with .ab(android backup) format [54].

We also report another type of important discrepancy | cookie expiration time.

Here we focus on 18 shopping app-web pairs (a subset from the list of 100 pairs). We observe

that app cookies remain valid for much longer time than web cookies. The cookie expiration

time in all 18 shopping websites is around 3 hours on average, whereas it is several months

in their app counterparts. The result is shown in Table 2.3. We �nd that 6 apps have

cookie expiration time set to at least 1 month while their websites allow only minutes before

the cookies expire. An attacker can easily use a stolen cookie for these apps and perform

unwanted behavior such as making purchases. For instance, Amazon app appears to use
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cookies that never expire to give the best possible user experience. We con�rmed that a

user can make purchases after 1 year since the initial login in.

Vulnerable libraries. During vulnerable library testing, we �nd two apps (Vine and

Victoria's Secret) use unpatched and vulnerable libraries from FFmpeg [7] framework, which

motivates us to look at a larger sample of 6,400 top free apps in di�erent categories. Table 2.4

summarizes our observation for vulnerable libraries with the number of apps using them. For

example, an attacker can cause a DoS (crash the application) or possibly execute arbitrary

code by supplying a crafted ZIP archive to an application using a vulnerable version of libzip

library [11]. As we discussed before, javascript vulnerabilities are unlikely to cause damage

to the device compared to app libraries, especially given the recent defences implemented

on WebView [40].

2.5 Summary

We identi�ed serious security related discrepancies between android apps and their

corresponding website counterparts. By analyzing 100 mobile app-website pairs, we discov-

ered that Android apps in general have weaker security policies in place as compared to their

websites, likely due to either negligence or usability considerations on the smartphones. We

responsibly disclosed all of our �ndings to the corresponding companies including Expedia

who acknowledged and subsequently �xed the problem. The lesson learnt is that, for the

same web service, even though their websites are generally built with good security mea-

sures, the mobile app counterparts often have weaker or non-existent security measures.
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Chapter 3

Dynamic Slicing for Android

Dynamic program slicing is a very useful technique for a variety of tasks, from

testing to debugging to security. However, prior slicing approaches have targeted traditional

desktop/server platforms, and to the best of our knowledge there are no slicing techniques

have been implemented in for smartphone mobile platforms such as Android. In this chapter,

we present the challenges of slicing the event-based mobile apps and propose a technique

(AndroidSlicer ) to address the challenges e�ectively. Our technique combines a novel

asynchronous slicing approach for modeling data and control dependences in the presence of

callbacks with lightweight and precise instrumentation. We show our technique is capable

of handling a wide array of inputs that Android supports without adding any noticeable

overhead; makingAndroidSlicer a very e�cient and e�ective tool for variety of tasks.
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Figure 3.1: Android activity simpli�ed lifecycle

3.1 Background

In this section, �rst we present a brief overview of Android platform and its event-

based model, second we brie
y introduce program slicing.

Android's event-based model. Android apps consist of components (e.g., an

app with a GUI consists of screens, named Activities1) and one or more entry points.

Activities are the fundamental part of the platform's application model. Unlike traditional

programming paradigms in which apps are launched with amain() method, the Android

system initiates code in an Activity instance by invoking speci�c callback methods that

correspond to speci�c stages of its lifecycle. Figure 3.1 shows the activity lifecycle in Android.

Each Activity provides a core set of callbacks (e.g., onCreate(), onStart(),onResume())

which are invoked by the system as an activity enters a new state. Hence, the even-driven

model in apps dictates control 
ow of the program. Generally, a non-deterministic event

1The vast majority of Google Play apps consist of Activities. There are other component types such as
Services, Content Providers, and Broadcast Receiver [20] but these are used much more sparsely.
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can be a user action (e.g., touch), a lifecycle event (e.g., onPause()), arrival of sensor data

(e.g., GPS), and inter- or intra-app messages. Non-deterministic manner of these callbacks

challenges the slicing. We show the details of this challenge in 3.2.

Program Slicing. Dynamic program slicing, a class of dynamic analysis, was

introduced by Korel and Laski [59] to assist programmers in debugging. The backward

dynamic slice at instruction instance s with respect to slicing criterion ht; s; valuei (where t

is a timestamp) contains executed instructions that have a direct or indirect e�ect on value;

more precisely, it is the transitive closure over dynamic data and control dependences in

the PDG starting from the slicing criterion. The slicing criterion represents an analysis

demand relevant to an application, e.g., for debugging, the criterion means the instruction

execution that causes a crash.

3.2 Android Slicing Challenges

We now show how the Android programming model/platform introduce challenges

for constructing a dynamic slicer and hence we can not directly apply the traditional slicing

techniques, and discuss how we have overcome these challenges.

3.2.1 Challenge 1: Low Overhead

Dynamic slicing (as with any dynamic analysis) on mobile platforms must not

interfere with the execution of the app that is being analyzed. This requirement ismuch

more stringent on mobile platforms than in traditional desktop/server programs, because

mobile apps do not tolerate delays gracefully: we illustrate this with three examples.
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App Original run AndroidSlicer run Pin run AndroidSlicer
overhead

(s) (s) (s) (%)
Indeed Job Search 15.8 17.1 Crashed 8
Geek 29.4 32.2 Crashed 9
Scanner Radio 29.5 30.9 Crashed 5
Daily Bible 23.9 24.2 Crashed 1
CheapOair 21.7 22.8 Crashed 5
Kmart 24.5 25.2 Crashed 3

Table 3.1: AndroidSlicer and Pin comparison.

First, even just attaching the standard dynamic analyzer Pin [68] to an Android

app { a trivial operation on desktop/server { can have unacceptable overhead, or outright

crash the app. To do the comparison with Pin, we instrumented 6 well-known apps using

AndroidSlicer and Pin (for Pin we used a simple instrumenter that prints the number

of dynamically executed instructions, basic blocks and threads in the app). Table 3.1

presents the results. Apps are sorted based on number of installs. We used Monkey with

default settings to send the apps 5,000 UI events. Note that Pin instrumentation crashed

all examined apps due to non-responsiveness2 while AndroidSlicer instrumentation had

a low overhead of 5% in average. Second, introducing delays in GUI event processing can

alter the semantics of the event: an uninstrumented app running at full speed will interpret

a sequence of GUI events as one long swipe, whereas its instrumented version running slower

might interpret the sequence as two shorter swipes [41]. Third, harmful interference due to

delays in GPS timing, or in event delivery and scheduling, can easily derail an execution [52].

Our approach. We address this challenge by optimizing register tracking at the

AF/library boundary. First, in the runtime tracing phase, for a call into the AF/library

2https://developer.android.com/reference/java/util/concurrent/TimeoutException
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we only track live registers, and only up to the boundary; upon exiting the AF/library we

resume tracking registers. Second, in the static analysis phase we compute taint (source!

sink) information to identify those methods that take values upward to the AF (sources)

as well as those methods which return values downward to the app code (sinks). Finally,

in the trace processing phase we instantiate the static taint information with the registers

tracked into and out of the framework.

3.2.2 Challenge 2: High-throughput Wide-ranging Input

\Traditional" applications take their input mostly from �les, the network, and

the occasional keyboard or mouse event. In contrast, Android apps are touch- and sensor-

oriented, receiving high-throughput, time-sensitive input from a wide range of sources.

Typical per-second event rates are 70 for GPS, 54 for the camera, 386 for audio, and 250

for network [52]. A simple swipe gesture is 301 events per second [41]. Thus, we require

low-overhead tracking of high-throughput multi-sourced input.

Our approach. Android employs AF-level event handlers for capturing external

events. We achieve both scalability and precision by intercepting the registers at event pro-

cessing boundary, as illustrated next. Swipes are series of touches, with the event handler

onFling(MotionEvent e1, MotionEvent e2, 
oat velocityX , 
oat velocityY ). We intercept

the event by tracking the registers that hold the event handler parameters, i.e.,e1, e2,

velocityX , velocityY , and tagging them asexternal inputs. This approach has two advan-

tages. First, register tracking is e�cient, ensuring scalability. Second, being able to trace

program behavior, e.g., an app crash, to a particular external input via a backward slice

allows developers to \�nd the needle in the haystack" and allows us to perform e�cient and
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e�ective fault localization. Although our implementation targets Android, it is agnostic of

the low-level OS layer.

3.2.3 Challenge 3: Finding Program Starting Points

Dynamic backward slicing requires traversing the execution back to the \begin-

ning". In traditional Java programs, this is straightforward: the slicer traverses the execu-

tion back to the beginning of the main() method. However, Android apps have multiple

entry points. Moreover, each activity can be restarted,e.g., due to screen rotation or when

taking a call; when the activity is restarted, the onCreate() callback is invoked by the sys-

tem. Hence we have to trace execution back to entry points or back across restarts. We

illustrate this on a sample activity in Figure 3.2. Suppose we want to compute the slice

with respect to variable name, using statement 7 as slicing start point. For this we need

to traverse the set of reachable nodes in the PDG. The slice should contain statements

f 7, 6, 3, 2g. During execution, a con�guration change (e.g., screen rotate) will restart the

activity. As a result, the onCreate() method is called to recreate the activity. Without a

lifecycle-aware slicing approach, i.e., understanding thatonCreate() is called upon restart,

we would not be able to construct the correct slice (shown in Figure 3.2, right). Conse-

quently, a traditional slicing approach cannot �nd the start point of slicing and would yield

an empty slice rather than the correct slicef 7, 6, 3, 2g. Therefore, the �rst challenge is to

accurately �nd an apps entry points (including onCreate() in our example).

Our approach. To discover all entry points, we use a �xpoint approach. Note

that Android apps must de�ne an Activity which launches the app initially, known as the

\home activity". Therefore we start our analysis from the home activity and create pseudo-
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1 public class AccountSetting
extends Activity {

2 S Account mAccount;
3 S String name = "";
4 @Override
5 public void onCreate(Bundle

savedInstanceState) {
6 S mAccount = new Account();
7 S name = name + mAccount.

getName();
8 }}

Program PDG

Figure 3.2: Program and its associated PDG. In the program: lines marked with anS
denote the slice with respect to variablename on line 7. In the PDG: solid edges denote
data dependences; graph nodes marked with anM denote nodes that would be missed by
traditional slicing techniques. Labels on solid edges denote the variables which cause the
data dependence.

entry points that correspond to callbacks. We borrow the concept of \pseudo entry point"

from FlowDroid [22] but extend that approach with other necessary callbacks (i.e., callbacks

accepting no parameters) to increase precision, according to the following strategy:

� Start with pseudo-entry points, including life-cycle callbacks, i.e., onCreate(), onRe-

sume(), onStart().

� Analyze the resulting callgraph using SOOT [104]. If the callgraph contains calls to

AF events, such as button clicks, add the corresponding event-handling callbacks to

the list of entry points. For outgoing calls, add the incoming callbacks,e.g., for the

outgoing call sendBroadcast() we add the corresponding callback onReceive() to the

list of entry points.

� Continue this process until we converge to a �xpoint (no new callbacks to be added).
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3.2.4 Challenge 4: Inter-App Communication.

Android relies heavily on inter-process communication (IPC). Originally designed

to permit apps to access system resources in a controlled way, IPC mechanisms are also used

for intra-app communication, e.g., between two activities. The fundamental IPC mechanism

is called Intent: using an intent, an activity can start another activity, or ask another app

for a service, receiving the result via intents as well. For example, the Facebook app can

send an Intent to the Camera app asking it to take a picture. there are two types of intents:

implicit and explicit. An implicit intent starts any component that can handle the intended

action, potentially in another app; because of this, an implicit intent does not name a speci�c

destination component. An explicit intent speci�es the destination component (a speci�c

Activity instance) by name. Explicit intents are used intra-app to start a component that

handles an action; we will describe the challenges introduced by explicit intents shortly,

in next section. Implicit intents and consequently, inter-app communications, complicate

slicing.

We illustrate this in Figure 3.3. The example shows theGetContacts activity that

allows the user to pick a contact. An intent can launch an activity via the startActivity

or startActivityForResult methods. Upon completion, Android calls the onActivityResult

method with the request code that we have passed tostartActivityForResult method (line 5

in the example). Without understanding the impact of inter-app intents, we would not be

able to �nd complete slices. Assume we want to compute the slice with respect to variable

name starting at statement 14. the resulting slice should contain statementsf 14, 9, 10,

12, 13, 8, 11, 5, 4g. However, using traditional slicing, we would not �nd the complete
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1 public class GetContacts extends Activity {
2 @Override
3 public void onCreate(Bundle savedInstanceState) {
4 S Intent i = new Intent(Intent.ACTION_PICK, Uri.

parse("content://contacts"));
5 S startActivityForResult(i, PICK_CONTACT_REQUEST)

;
6 }
7 @Override
8 S public void onActivityResult(int requestCode, int

resultCode, Intent data) {
9 S if (requestCode == PICK_CONTACT_REQUEST) {

10 S if (resultCode == RESULT_OK) {
11 S Uri contactData = data.getData();
12 S Cursor c = getContentResolver().querty(

contactData,null,null,null,null);
13 S if (c.moveToFirst()) {
14 S String name =c.getString(c.getColumnIdx(

ContactsContract.Ctcs.DISP_NAME));
15 }}}}}

Program

PDG

Figure 3.3: Program and its associated PDG. In the program: lines marked with anS
denote the slice with respect to variablename on line 14. In the PDG: solid edges denote
data dependences; dashed edges denote control dependences; graph nodes marked with an
M denote nodes that would be missed by traditional slicing techniques. Labels on solid
edges denote the variables which cause the data dependence.

slice because the technique only adds statementsf 14, 13, 12, 11, 10, 9g to the slice it

will miss statements 4 and 5 for two main reasons. First, traditional slicing fails to pair

startActivityForResult() with onActivityResult() { which are similar to a caller-callee { and

thus it fails to reconstruct control 
ow to account for IPC. Second, note how we cross

memory spaces into the Contacts app, hence we need to account for Androids sandboxing

to be able to trace the initial (request) and result intents.

Our approach. We analyze app inputs and internal callbacks to detect intents

and construct data dependence edges accordingly. In practice, IPC message objects (i.e.,

Intents) are processed by callbacks hence introduce asynchronous data dependences, which

are naturally handled by our approach.
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1 public class ActivityOne extends Activity
{...

2 S Intent i = new Intent(this, ActivityTwo.
class);

3 S i.putExtra("Value", "Some Value");
4 S startActivity(i);
5 ...}
6 public class ActivityTwo extends Activity

{...
7 S Bundle extras = getIntent().getExtras();
8 S String value = extras.getString("Value");
9 ...}

Program

PDG

Figure 3.4: Program and its associated PDG. In the program: lines marked with anS
denote the slice with respect to variablevalue on line 8. In the PDG: solid edges denote
data dependences; graph nodes marked with anM denote nodes that would be missed by
traditional slicing techniques. Labels on solid edges denote the variables which cause the
data dependence.

3.2.5 Challenge 5: Intra-App Communication.

Explicit intents also complicate slicing, as shown in Figure 3.4. The example shows

ActivityOne starting ActivityTwo ; the message \Some Value" is passed via IPC mechanisms,

the Bundle in this case. Let us assume we need to compute the slice with respect to variable

value starting at statement 8. The dynamic slice should contain statementsf 8, 7, 4, 3, 2g.

However, traditional slicing cannot �nd the precise slice because it does not account for

intra-app communication. Speci�cally, the example uses BundlesputExtra and getExtra

to pass the data between the two activities; the Bundle is a system component, so in this

case the data 
ow is mediated by the system, and would elude a traditional slicer. Hence

traditional slicing would not traverse statements f 4, 3, 2g due to the missing dependences

between the two activities and would yield slicef 8, 7g which would be incorrect.

Our approach. To deal with challenges imposed by inter- and intra-app commu-

nication, we track callbacks and Android Framework APIs. For example if an activity calls
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another activity through Android APIs startActivity or sendBroadcastby passing an intent,

we trace the receiver callback and the parameter referencing the intent. Hence such kinds

of callbacks employing new communication impose dependences that must be handled.

To summarize, by recording callbacks and intents,AndroidSlicer captures inter-

app and intra-app communication precisely, with no under- or over-approximation.

3.3 Algorithm Design

In this section, we describeAndroidSlicer 's implementation. An overview is

shown in Figure 3.5 : an o�ine instrumentation stage, followed by online trace collection,

and a �nal o�ine computation stage. In the �rst stage, the app is instrumented to allow

instruction tracing. Next, as the app executes, runtime traces are collected. Then we

perform an on-demand static analysis to optimize trace processing, and then compute the

PDG. Finally, we calculate slices for a given slicing criterion. We now discuss each phase.

3.3.1 Instrumentation

The purpose of this stage is three-fold: identify app entry points; construct method

summaries; and add instruction/metadata tracing capabilities to the app.

Finding app entry points. As discussed in Section 3.2, identifying app entry

points is a challenge that must be addressed in order to correctly compute backward dynamic

slices. This is performed via a �xpoint computation, as described in Section 3.2. First, we

use static analysis and create a \dummy" main method that systematically considers all

system callbacks from a callback de�nition �le.
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Figure 3.5: AndroidSlicer overview.

Constructing method summaries. Method summaries (which include in/out

registers and method type) capture method information for the online trace collection phase.

For this purpose, we �rst build a callgraph for each app class from the analyzed app entry

points to create method summaries (i.e., in/out registers and method type). For each node

in the callgraph (i.e., method) we add instrumentation tags that summarize that method.

This instrumentation is an extended version of the method signature present in the Dexcode

(Android bytecode); we save information for parameter registers and return value registers.

We also detect callbacks at this time and add necessary information about input parameters.
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We identify intents referenced through registers used as callback parameters and construct

metadata such as caller information (i.e., name of the callback-generating and broadcasting

the intent), as well as string properties associated with the intent's action �lter. This

information helps reveal callers and their calleesduring o�ine trace analysis.

Adding tracing instructions. We add tracing capabilities via Soot [104]. An-

droidSlicer 's instrumenter takes the app binary as input; the output is the instrumented

app, which we run on the phone. To support tracing, we inject a new Dexcode instruction

for every app instruction or callback routine. The trace format is described next.

3.3.2 Runtime Trace Collection

We collect the traces while the instrumented app is running on the phone. Traces

have the following format:

trace_entry := <t, instruction_number_offset, instruction, [summary]>

summary := <type, invoked_method, parameter_registers,

return_registers, callback_parameter_registers,

intent_source, intent_action_filters>

Trace entries have the following semantics: t is the actual time the instruction

was executed;instruction_number_offset is the instruction's relative line number in the

printed dex code; Summaryinformation is only used for method invocations; it contains the

method's type , e.g., an IPC or a non-IPC call, in/out register values, caller information,

and where applicable, the action string (�lter) associated with the intent.

35



3.3.3 On-demand Static Analysis

The PDG contains data and control dependence edges for regular nodes and su-

pernodes (callbacks). To build the PDG e�ciently, we conduct a post-run on-demand static

analysis that uses the collected runtime information to narrow down the scope of the static

analysis to only those app parts that have been exercised during the run. The advantage of

this on-demand approach is that, instead of statically analyzing the whole program (which

for Android apps raises scalability and precision issues), we only analyze those methods

encountered during execution. The on-demand analysis phase performs several tasks.

3.3.4 Trace Processing and PDG Construction

With the static analysis information at hand, we analyze the application traces to

generate the PDG of that particular execution. The PDG is built gradually via backward

exploration of dependences, adding nodes and edges. Our prior static analysis produces

two sets: (1) StaticData si { the set of static data dependence nodes for an instruction

si , and (2) StaticControl si { the set of static control dependence nodes for an instruction

si . As mentioned in Section 3.3, su�x t distinguishes between di�erent occurrences of an

instruction; the implementation uses a global counter for this purpose.

Sequential data dependence edges. For every occurrence of an instructionsi , add a data

dependence edge to the last executed occurrence of every instruction in itsStaticData si .

Sequential control dependence edges. For every occurrence of an instructionsi , add

a control dependence edge to the last executed occurrence in itsStaticControl si .

Asynchronous data dependence superedges. For every occurrence of a callbackcallee
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node, add a data dependence to the last occurrence of itscaller . This information is revealed

via static callback analysis. We also identify the instruction Sipct that contains the actual

IPC method call in the caller that passed the intent reference at timet. The callee receives

the intent through one of its parameter registersvintent . We then identify the last occurrence

of the �rst instruction in callee at time t that uses vintent . Let us name this Sint . We then

add a data dependenceSipct  d Sint .

Asynchronous control dependence superedges. If there is no data dependence be-

tween the corresponding supernodes from two consecutive activity contexts, i.e., callback

callee and its caller (N1 and N2), we add a control dependence superedgeN1  c N2. Oth-

erwise, we add a control dependence superedgeN0  c N2, where N0 is the supernodeN1

is control-dependent on.

3.3.5 Generating Program Slices from the PDG

We now discuss our approach for generating slices given the PDG and a slicing

criterion. The slicing criterion ht; st ; vsi represents the registervs in instruction s at a

particular timestamp t. Since an instruction is a regular node in the PDG we will use

both terms interchangeably, i.e., st refers to both the exact instance of the instruction at

time t and the PDG node. We maintain a workset Ts that holds the nodes yet-to-be-

explored (akin to the working queue in Breadth-�rst search). The output OUTst is the set

of distinct nodes in the PDG we encounter while backward traversing fromst to any of

the app entry points a�ecting the value held in register vs. We �rst traverse the edges in

the PDG starting from st and create a dynamic data dependence tableDef n and a control
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Algorithm 1 Dynamic program slicing
Input: PDG, slicing criterion SliceCriterion = ( t; st ; vs) Output: set of nodes
OUTst

1: procedure Slice (SliceCriterion )
2: Ts  f st g // initialize workset Ts

3: OUTst  f st g
4: for all nodesn that are in Ts do
5: calculate setPn = Def n [ Ctrl n

6: for all nodesn0 in Pn do
7: if n0 is a supernodethen
8: Expand & extract the last regular node nr

9: Add nr to Def n

10: else if n0 � n & Pn0 � Pn then
11: Merge (n0; n); remove n0 from Pn0

12: else if previous occurrence ofn is in Pn0 & Pn0 � Pn then
13: Merge (n0; n); remove n0 from Pn0

14: else
15: add n0

i to OUTst ; add n0 to Ts; remove n from Ts

16: end if
17: end for
18: end for
19: end procedure

dependence tableCtrl n for each noden on paths to entry points. For each regular noden0

in the set Pn = Def n [ Ctrl n we add n0 to OUTst . If n0 is a supernode andn0 2 Def n we

expand n0. The expansion adds the last occurrence of the regular nodenr inside n0 that

broadcasts an intent to Def n and recalculatesPn . Note that nr passes the IPC reference

(intents) in a register to the next supernode, and hence it should be included in the slice.

Since the same instruction can appear multiple times because of di�erent occurrences at

di�erent timestamps, this procedure adds nodes with the same instructions to the slice for

each occurrence. This increases the size of the slice. To reduce the number of nodes in

OUTst we make two optimizations.

1. Node merging. Given di�erent occurrences (i.e., at times t and t0) of a
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regular node (i.e., n � st ; n0 � st0) if Pn = Pn0 we mergen and n0 into nmerged . For two

di�erent occurrences N and N 0 of the same supernode, we also apply merging: ifN and

N 0 have incoming or outgoing data dependence edges we expand the nodes and merge the

individual instructions, i.e., regular nodes inside them; ifN and N 0are connected by control

dependence edges only, we merge them.

2. Loop folding. In loops, for every new occurrence of a loop body instruction

s, we will add a new node in the slice. But these nodes may point to the same set of data

and control dependence in the PDG { they are di�erent occurrences ofs. To reduce these

duplications, we merge two distinct nodesn and n0 in the loop if the following conditions

are met: (a) current occurrence ofn0 depends on the previous execution ofn; (b) current

occurrence ofn depends on the current occurrence ofn0; and (c) Pn0 � Pn .

Let us call the new node created after the mergenmerged . Each time we �nd

a di�erent occurrence of the merged node we compute the setPnmerged . Then we apply

reduction to further reduce it to a single node.

3.3.6 Limitation

Since AndroidSlicer 's instrumenter is based on Soot, it inherits Soot's static

analysis size limitations, e.g., we could not handle extremely large apps such as Facebook.

Note that this is not a slicing limitation per se, but rather a static analysis one, and could

be overcome with next-generation static analyzers.
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3.4 Applications

We describe three applications { failure-inducing input analysis, fault localization,

and Regression test suite reduction { that leverageAndroidSlicer to facilitate debugging

and testing in Android apps.

3.4.1 Failure-inducing Input Analysis

This analysis �nds the input parts responsible for a crash or error. Note that

unlike traditional programs where input propagation and control 
ow largely depend on

program logic, in event-driven systems propagation depends on theparticular ordering of

the callbacks associated with asynchronous events. Leveraging our PDG, we can reconstruct

the input ! : : : ! failure propagation path.

Problem statement. Let I be the set of app inputsI 1; I 2; ::: (e.g., coming from

GUI, network, or sensors) through registersv1; v2; :::. Let the faulty register be verr , i.e.,

its value deviates from the expected value (including an incorrect numeric value, crash, or

exception). Hence the analysis' input will be the tuple hI; v err ; PDGi while the output will

be a sequence of registersv1; v2; :::; vn along with their callbacks c1; c2; :::; cm .

Tracking input propagation. In the PDG, for every asynchronous callback, we

can create an input propagation path by tracking the data dependence for the value of any

register vi . We determine whether the values propagated through registers arein
uenced

by any of the app inputs I . This is particularly useful for identifying faults due to corrupted

�les or large sensor inputs (e.g., a video stream).
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Figure 3.6: Failure-inducing input analysis.

Example. We illustrate our analysis on an actual bug, due to a malformed SQL

query, in Olam, a translator app.3 The app takes an input word from a text box and trans-

lates it. In Figure 3.6 (top) we show the relevant part of the code: the number of distinct

dynamic instances of an instruction (left), the actual instruction (center) and the value

propagation through registers v1; v2; :::; vn along the PDG edges (right). In the method

getSimilarStems , the app attempts to query the SQLite database, which generates an ex-

ception, resulting in a crash. The exception trace from the Android event log indicates that

the query is ill-formed. The PDG (bottom left) points out the callback in which the ex-

ception was thrown: the onClick event associated with the search button in theMainSearch

activity. We analyze the event inputs by following the data dependence edges backwards

and see that the registers' values are pointing towards the input text from the textbox

editText . We compute the slice using the faulty register reference as slicing criterion.

The execution slice is shown in Figure 3.6: we see that the ill-formatted string was

3https://play.google.com/store/apps/details?id=com.olam
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stored in register v1. Our approach back-propagates the value ofv1 to determine whether it

was impacted by any part of the input. Back-propagation starts from the error location, i.e.,

instruction instance 29754. The value propagates to registerv5 which references the return

value from getText invoked on an instance ofv4 that is pointing to the GUI control element

EditTextBox . Our analysis ends by returning the registerv5 with the corresponding callback

information. The second part of the �gure shows the associated supernodes which reveal

that the executed slices belong to theMainSearch:onClick callback. The failure-inducing

input was thus essentially identi�ed analyzing a much smaller set of instructions, and more

importantly, in the presence of non-deterministic callback orders.

3.4.2 Fault Localization

This analysis helps detect and identify the location of a fault in an app. For

sequential programs, fault localization is less challenging in the sense that it does not need

to deal with the non-determinism imposed by asynchronous events. Android apps are not

only event-driven but also can accept inputs at any point of the execution through sensors,

�les, and various forms of user interactions. For this reason, fault localization on Android

can be particularly challenging for developers.

Problem statement. The input to the analysis will be the application trace,

and the register verr holding the faulty value in a speci�c occurrence of an instruction. The

output this time will be the sequence of instructions s1; s2; :::; sn that de�ne and propagate

the value referenced inverr .
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Figure 3.7: Fault localization.

Tracking fault propagation. Our slicing approach aids fault localization as

follows. Given a fault during an execution, we determine the faulty value reference inside a

register verr by mapping the Android event log to our execution trace. Then we compute the

execution slice forverr by back propagating through the execution slice. While we traverse

the PDG backwards, we consider asynchronous callbacks and their input parameters if they

have a direct data or control dependence to the �nal value ofverr . This way, we can both

handle the non-determinism of the events and also support the random inputs from internal

and external sources.

Example. We illustrate our approach on a real bug in the comic book viewing

app ACV.4 Figure 3.7 shows the generated dependences for the faulty execution. The bug

causes a crash when the user opens the �le explorer to choose a comic book. If the user

long-taps on an inaccessible directory, the app crashes with anull pointer exception. From

Figure 3.7 we can see that the object reference stored in registerv6 at instruction 7153 was

the primary cause of the error. The corresponding callback is revealed to beonItemLongClick

4https://play.google.com/store/apps/details?id=net.androidcomics.acv
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in activity SDBrowserActivity . Our analysis tracks back the object reference inv6, reaching

instruction 6803. Here we can see a �le system API invocation (java.io.File.getName() )

that attempts to return a �lename, but fails because the �le's directory is inaccessible.

Our value propagation ends here, revealing the source of the error. We return the set

of instructions f 6803; :::; 7142; 7143; 7144; 7152; 7153g, and the traversed PDG nodes. For

simplicity, we only show the data dependence edges and relevant parts of the slices. Our

approach then back-propagates through the PDG according to the execution slice to localize

the fault (for presentation simplicity we have combined consecutive supernodes in the same

activity into a single node).

3.4.3 Regression Test Suite Reduction

Regression testing validates that changes introduced in a new app version do not

\break" features that worked in the previous version. However, re-running the previous

version's entire test suite on the new version is time-consuming and ine�cient. Prior

work [14, 45] has shown that slicing reduces the number of test cases that have to be

rerun during regression testing (though for traditional apps).

Problem statement. Given two app versions (V1 and V2), and a test suite T1

(set of test cases) that has been run on V1, �nd T 2, the minimal subset of T1, that needs

to be rerun on V2 to ensure that V2 preserves V1's functionality.

Test case selection. Agrawal et al. [14] used dynamic slicing to �nd T2 as follows:

given a program, its test cases, and slices for test cases, after the program is modi�ed, rerun

only those test cases whose slices contain a modi�ed statement. This reduces the test suite

because only a subset of program statements (the statements in the slice) have an e�ect on
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the slicing start point (program output, in their approach [14]). However, this technique can

be unsound, because it only considers whether a statement has been modi�ed, nothow it has

been modi�ed. When the changed instructions a�ect predicates leading to an asynchronous

control dependence, missed control dependences will lead to potentially missing some test

cases. Our approach considers such dependences to maintain soundness.

3.5 Evaluation

We �rst evaluate AndroidSlicer 's core slicing approach; next, we evaluate it on

the three applications from Section 3.4.

Environment. An LG Nexus 5 phone (Android version 5.1.1, Linux kernel version

3.4.0, 2.3 GHz) for online and an Intel Core i7-4770 CPU (3.4 GHz, 24 GB RAM, 64-bit

Ubuntu 14.04 kernel version 4.4.0) for o�ine processing.

3.5.1 Core Slicing

App dataset. We ran AndroidSlicer on 60 apps selected from Google Play, the

o�cial Android app store. The apps were selected from a wide range of categories (shopping,

entertainment, communication, etc.) and with various bytecode sizes to ensure diversity

in tested apps. In Table 3.2, we present detailed results for all apps sorted by number of

installs. We summarize the �ndings (min/median/max) in the last three rows. The second

column shows the app's bytecode size (median size of 1,485 KB). The third column shows

app popularity (number of installs, in thousands, per Google Play as of August 2018). 28

apps had more than one million installs (median popularity 500,000 - 1,000,000 installs).
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Generating inputs and slicing criteria. We used Monkey [21] to send the

app 1,000 UI events and then collected traces. To measure 's runtime overhead, same

event sequence was used in instrumented and uninstrumented runs. For slicing criteria,

variables were selected to cover all types of registers ( local variables, parameters, �elds)

from a variety of instructions (static invokes, virtual invokes, conditions, method returns),

allowing us to draw meaningful conclusions about slicing e�ectiveness and e�ciency.

Correctness. We manually analyzed 10 out of the 60 apps to evaluateAndroid-

Slicer 's correctness. The manual analysis e�ort in some apps can be too high, because

of the large number of instructions and dependences (e.g., in the Twitch app, there are

5,969 instructions in the slice and 9,429 dependences). Therefore, we picked 10 apps whose

traces were smaller so we could verify them manually with a reasonable amount of ef-

fort. We decompiled each app to get the Java bytecode, and manually computed the slices

from the slicing criterion. The manually-computed slices were then compared withAn-

droidSlicer 's; we con�rmed that slice computation is correct, with no instruction being

incorrectly added or omitted.

E�ectiveness. Table 3.2 demonstrates that AndroidSlicer is e�ective. The

\Instructions Executed" column shows the total number of instructions executed during

the entire run. The median number of instructions is 14,491. If the programmer has to

analyze these, the analysis task will be challenging.AndroidSlicer reduces the number of

instructions to be analyzed to 44, i.e., 0.3% (column \Instructions In slice"). The median

number of dependences to be analyzed, data and control, is not much larger, 63, (column

\CD+DD"). The next column shows the number of callback events �red during the run.
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App Dex Installs Instructions CD Callback Time (seconds) Over-
code Executed In slice +DD events Stage 1 Original Stage 2 Stage 3 head

size (KB) (thousands) Instrumentation run Instrumented run Slicing (%)
Twitter 50688 500000-1000000 107847 559 563 557 293.5 233.4 236.5 40.3 1
*Indeed Job Search 2457 50000-100000 21752 246 264 235 24.0 222.2 234.3 12.1 5
Geek 12902 10000-50000 152640 1422 1423 1420 116.3 215.2 221 84.9 2
GroupMe 14438 10000-50000 45876 471 476 467 81.1 205.4 212.8 45.4 3
ROM Manager 7270 10000-50000 141333 181 184 178 82.1 233.7 236.9 56.3 1
*Scanner Radio 9216 10000-50000 83190 745 750 741 120.6 231 238.2 51.6 3
Twitch 30105 10000-50000 2025505 5969 5978 5965 144.2 260.3 284.9 103.0 9
Weather by WeatherBug 18841 10000-50000 235773 355 356 353 141.6 242.3 245.7 68.6 1
*AHABER 1228 1000-5000 166 17 19 1 17.0 237.4 240 9.2 1
Apps Organizer 850 1000-5000 28685 15 22 12 7.7 241.6 262.5 5.9 8
BankID sakerhetsapp 1638 1000-5000 25833 19 24 1 22.4 233.1 237.4 13.2 1
Energy Saver 9011 1000-5000 175612 150 198 139 65.9 235.6 242.3 54.2 2
Hypnotic Spiral 47 1000-5000 15356 270 280 1 3.7 238.5 240.3 2.9 0
Idiotizer Pro 299 1000-5000 2426 32 33 30 3.9 248.8 254.7 8.2 2
iTelHybridDialer 1433 1000-5000 1899 19 23 18 17.1 214.8 221.5 8.7 3
Johnny's web 621 1000-5000 246 24 27 23 13.2 257.7 262.7 9.4 1
Turkish English Translator 1536 1000-5000 23525 65 72 63 19.2 227 260.3 24.9 14
*XFINITY Home 2150 1000-5000 1567 23 28 19 10.7 219.9 223.4 14.9 1
Contactor Select 373 500-1000 1362 6 6 4 2.5 223.9 227.4 3.6 1
Notepad for Android 2867 500-1000 17 4 8 2 30.6 233.5 237.8 7.2 1
Phone2Phone Internet Call. 764 500-1000 10487 800 952 748 14.1 229.6 253.1 8.2 10
The Art of War E-Book 404 500-1000 16855 5 8 4 6.5 232.1 238.5 4.4 2
Weight Diary 1740 500-1000 24017 6 9 5 34.0 240.5 244.6 14.8 1
CallTrack 75 100-500 114 4 5 2 3.6 227.6 235.3 4.2 3
Droid Splitter 467 100-500 20322 48 54 14 3.3 220.5 223 4.0 1
Element53 Lite 411 100-500 31399 80 88 75 9.7 237.8 255.4 8.0 7
Ethiopian Calendar 290 100-500 1671 105 124 92 2.3 228.5 233.4 3.2 2
Event Planner 2252 100-500 15846 186 202 184 21.0 234 256.1 12.2 9
Learn Advertising&Mktng. 2150 100-500 13626 72 77 70 16.6 219.6 238.5 21.9 8
NewsBook News Reader 2150 100-500 6935 24 39 20 41.3 228.3 243.5 24.7 6
Noticias Caracol 1331 100-500 1794 42 43 40 21.5 223.6 228.7 6.5 2
•O�nungszeiten •Osterreich 1638 100-500 7933 56 65 55 23.5 240.8 241.4 11.4 0
Out Call Blocker 440 100-500 1546 3 6 2 7.8 221.7 234.5 5.0 5
PDD Rus 3072 100-500 3195 51 62 50 30.5 228.6 241.4 5.9 5
Scrollable News Widget 759 100-500 1489 28 34 19 5.7 241.2 260.2 5.2 7
Time-Lapse - Lite 331 100-500 2274 8 10 5 7.2 234.6 236.7 5.1 0
backport.android.bluetooth 143 50-100 460 25 29 23 4.3 231 232.4 6.4 0
Digital Tasbeeh Counter 417 50-100 28911 3 4 2 7.2 219.4 221.5 6.5 0
Glasgow 1433 50-100 1144 75 79 60 3.7 240.6 256.7 3.5 6
*Mirrord Picture Re
ection 1331 50-100 16938 73 82 65 17.3 238.5 249 13.3 4
Power writer 482 50-100 33383 4 5 2 6.9 227.3 241.7 22.5 6
*Alo 1740 10-50 129 5 8 1 21.9 224.3 236.5 33.8 5
*Australian Postcode Search 1024 10-50 3350 13 18 8 3.7 260.7 266.3 3.7 2
Fail Log 233 10-50 135 13 17 9 3.6 230.2 234.8 6.9 1
Got-IT! Free 1843 10-50 19664 240 256 237 5.7 253.9 255.6 13.8 0
Grid Size Free File Manager 296 10-50 3830 9 13 7 9.6 231 237.5 6.4 2
Pad - a simple notepad 91 10-50 35 2 2 1 3.6 217.1 235.6 2.0 8
Quickcopy 193 10-50 1360 19 23 17 4.3 229.7 237.8 4.1 3
StayOnTask 987 10-50 2297 24 26 23 5.3 238.7 269.2 6.6 12
TagNote 160 10-50 935 17 26 13 4.0 231.8 246.8 7.2 6
*Time Tracker 1433 10-50 57 5 6 4 20.9 225.7 233.6 24.3 3
*ToDoid 976 10-50 5518 93 104 89 5.5 220.3 229.7 6.3 4
TPV-POS Haird. Peluq. 2150 10-50 1019 5 6 4 10.3 226.9 238.8 7.9 5
*Upvise Projects 968 10-50 11903 11 26 22 18.9 229.5 247.7 6.5 7
Vremenska napoved 3174 10-50 6131 17 22 14 29.5 230.3 251.5 12.4 9
Bundlr 3174 5-10 3159 101 120 99 19.2 241.6 246.1 11.6 1
HNotes 671 5-10 82937 6 8 3 3.7 236 247.7 27.1 4
HP Designjet ePrint & Share 2560 - 2377 27 32 25 23.8 238.6 261.1 16.4 9
Update your phone 182 - 10 3 3 1 9.0 224.4 231.3 6.5 3
Yandex.Auto 1536 - 2109 5 7 4 5.9 246.7 272.1 6.4 10

Across min 47 10-50 10 2 3 1 2.3 205.4 212.8 2.0 0
all 60 median 1,485 500{1000 14,491 44 63 23 19.1 229.85 239.7 11.9 4
apps max 50,688 500,000-1,000,000 2,025,505 5,969 5,978 5,965 293.5 260.7 284.9 103.0 14

Table 3.2: AndroidSlicer evaluation: core slicing results.
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E�ciency. The remaining columns (\Time" and \Overhead") show that An-

droidSlicer is e�cient. We show the time for each processing stage. Stage 1 (instrumen-

tation), typically takes just 19.1 seconds, and at most 293.5 seconds for the 50.6 MB Twitter

app. The \Original run" column shows the time it took to run the uninstrumented app {

typically 229.85 seconds, and at most 260.7 seconds. Column \Stage 2 Instrumented run"

shows the time it took to run the instrumented app, while collecting traces. The typical run

time increases to 239.7 seconds. The \Stage 3 Slicing" column shows post-processing time,

i.e., computing slices from traces, including on-demand static analysis; this time is low,

typically just 11.9 seconds, and at most 103 seconds. The \Overhead" column shows the

percentage overhead between the instrumented and uninstrumented runs; the typical �gure

is 4% which is very low not only for dependence tracking, but for any dynamic analysis in

general. Furthermore, our instrumentation strategy does not require monitoring the app or

attaching the app to a third-party module { this allows the app to run at its native speed.

We emphasize thatAndroidSlicer 's low overhead is keyto its usability, because Android

apps are timing-sensitive (Section 3.2).

3.5.2 Failure-inducing Input Analysis

We evaluated this application on real bugs in 6 sizable apps (Table 3.3) by re-

producing the bug traces. Our failure-inducing input analysis is very e�ective at isolating

instructions and dependences of interest { the number of executed instructions varies from

320 to 182,527, while slices contain just 16{57 instructions. The CD and DD numbers are

also low: 18{73.
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App Dex Installs Instructions Log CD+ Call- Time (seconds) Over-
code Executed In slice size DD back Stage 1 Original Stage 2 Stage 3 head

size (KB) (thousands) (KB) events Instrumentation run Instrumented run Slicing (%)
Etsy 5,400 10,000{50,000 182,527 19 20,623 24 9 94 8.7 10.4 129.2 19
K-9 Mail 1,700 5,000{10,000 13,042 30 1,937 34 16 89.1 107.4 125.3 58.8 16
AnyPlayer M. Player 780 100{500 26,936 16 3,714 18 11 21.9 7.6 7.8 17.2 2
Olam M. Dictionary 651 100{500 31,599 57 3,802 73 22 17.3 46.7 50.1 19.4 3
Etsy 5,400 10,000{50,000 182,527 19 20,623 24 9 94 8.7 10.4 129.2 19
K-9 Mail 1,700 5,000{10,000 13,042 30 1,937 34 16 89.1 107.4 125.3 58.8 16
AnyPlayer M. Player 780 100{500 26,936 16 3,714 18 11 21.9 7.6 7.8 17.2 2
Olam M. Dictionary 651 100{500 31,599 57 3,802 73 22 17.3 46.7 50.1 19.4 3
>>>>>>> .r2562VuDroid 475.5 100{500 320 21 38 27 20 8.7 6.2 6.7 6.4 8

Slideshow 3,700 10{50 68,013 43 9,918 52 22 52.6 7.2 8.1 28.9 12

Table 3.3: AndroidSlicer evaluation: Failure-inducing input analysis.

App Dex Installs Instructions Log CD+ Call- Time (seconds) Over-
code Executed In slice size DD back Stage 1 Original Stage 2 Stage 3 head

size (KB) (thousands) (KB) events Instrumentation run Instrumented run Slicing (%)
SoundCloud 516.3 100,000{500,000 9,590 128 1,910 173 62 41.7 63.5 71.6 32.7 9
Notepad 44.2 10,000{50,000 2,366 15 343 17 6 4.5 36.5 41 9.1 12
A Comic Viewer 569.1 1,000{5,000 12,679 18 2,007 24 13 26.7 52.6 61.3 18.7 16
AnkiDroid Flashcards 804.6 1,000{5,000 27,164 32 3,722 38 27 87.6 17.3 19.5 28.7 12
APV PDF Viewer 52.9 1,000{5,000 24,672 67 3,436 79 45 11 10.3 11.2 27.2 8
NPR News 285.1 1,000{5,000 45,298 239 5,473 327 107 28.7 49.3 52.7 42.5 6
Document Viewer 3,900 500{1000 5,451 8 854 11 2 11.2 34 36.1 9 6

Table 3.4: AndroidSlicer evaluation: Fault localization.

3.5.3 Fault Localization

We evaluated our approach on 7 apps. Table 3.4 shows the results. Note how fault

localization is e�ective at reducing the number of instructions to be examined from thou-

sands down to several dozen. SoundCloud and NPR News have large slices due to intense

network activity and background services (audio playback), which increase the callback

count substantially.

3.5.4 Regression Test Suite Reduction

We evaluated our reduction technique on 5 apps. For each app, we considered two

versions V1 and V2 and ran a test suite T1 that consisted of 200 test cases; on average, the

suite achieved 62% method coverage. Next, we used to compute the reduced test suite as

described in Section 3.3.
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App Dex code Installs Test Covered Instructions Reduced
size V 1{V 2 suite methods test

(KB) size (%) V 1 V 2 suite
Mileage 443.8-471.3 500-1,000 200 66 28,252 36,531 22
Book Catalogue 444.9-445.4 100-500 200 69 28,352 28,450 7
Diary 125.5-129.8 100-500 200 53 4,591 4,842 47
Root Veri�er 462.9-1700 100-500 200 58 23,482 83,170 5
Traccar Client 49.4-51.6 50-100 200 66 1,833 1,937 8

Table 3.5: AndroidSlicer evaluation: Regression testing.

Table 3.5 shows the results: the bytecode sizes for V1 and V2, the number of

installs, the coverage attained by T1 on V1, and the instructions executed when testing V1

and V2, respectively. The last column shows the size of T2. Notice how our approach is

very e�ective at reducing the test suite size from 200 test cases down to 5{47 test cases.

3.6 Related Work

Slicing event-based programs has been investigated for Web applications [73, 103,

87] written in HTML, PHP, and JavaScript. These approaches record traces through a

browser plugin [73] and construct the UI model to generate the event nodes. While both

Web and Android apps are event-based, their slicing approaches di�er signi�cantly. First,

Android apps life-cycle cause apps to run in di�erent scopes (i.e., activity, app, system),

and handle di�erent sets of requests (launch another activity, respond to an action, pass

data). In contrast, Web apps have di�erent build phases: UI building phase (HTML nodes)

and event-handling phase (JavaScript nodes). Second, Web app slicing tool (e.g., as a

browser plugin) does not require low-overhead like in Android. Third, Android requires

IPC tracking; that is not the case for Web.
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Traditional program slicing of Java bytecode has only targeted single-entry se-

quential Java programs [109, 107, 2, 97]. Zhou et al. [122] and Zeng et al. [116] have used

bytecode slicing for Android apps, but to achieve entirely di�erent goals: mining sensitive

credentials inside the app and generating low-level equivalent C code. They create slices

at bytecode level and consider data dependences only; this makes the approach imprecise

as there is no tracking of code dependences or accounting for many Android features (e.g.,

callbacks, IPC, input from sensors).

Compared to Agrawal and Horgan's slicing for traditional programs [13], we add

support for Android's intricacies, node merging for control dependence edges, dealing with

slicing in the presence of restarts as well as asynchronous callback invocation. We support

loop folding for regular nodes inside the supernodes. Slicing multithreaded programs is

tangentially related work, where slicing was used to debug multithreaded C programs [118,

99, 98, 110, 108] | this setup di�ers greatly from ours.

Ho�mann et. al. developed SAAF [48], a static slicing framework for Android

apps. A static slicing framework such as SAAF would not be su�cient to achieve our goals

as it does not consider myriad aspects, from late binding to the highly dynamic event order

in real-world Android apps.

3.7 Summary

We presented AndroidSlicer , a novel slicing approach and tool for Android

that addresses challenges of event-based model and unique traits of the platform. Our

asynchronous slicing approach that is precise yet low-overhead, overcomes the challenges.
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Experiments on real Android apps show that AndroidSlicer is e�ective and e�cient.

We evaluated three slicing applications that reveal crashing program inputs, help locate

faults, and reduce the regression test suite. In the future we plan to investigate forward

slicing [27, 49] and language-agnostic slicing that would permit slicing apps containing code

in di�erent programming languages [28].

52



Chapter 4

Applications of Dynamic Slicing in

Android

In this chapter we explore two new problems (bug and vulnerability) and show

how we use the dynamic slicing technique introduced in the previous chapter to identify

these two types of new bug/vulnerability. In the �rst problem, we address the issue of

missing progress indicators in mobile apps. We present a novelsemantic approach based

on slicing for automatic detection of missing progress indicators for long-running operations

such as network communications in mobile apps. In the second problem, we brie
y show

a new type of vulnerability in unique device identi�cation techniques used in mobile apps

which can lead to �nancial loss.
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4.1 Missing Progress Indicators

A standard tenet of user interface (UI) design is to maintain \visibility of system

status" [81]: the user should always be made aware of what work is currently being per-

formed by the software. In particular, when a program is performing some long-running

operation in response to a user action, aprogress indicator should be displayed to indicate

that the operation is ongoing. Missing progress indicators can lead to user confusion and

frustration, as noted by Nielsen [80]:

"Progress indicators have three main advantages: They reassure the user that
the system has not crashed but is working on his or her problem; they indicate
approximately how long the user can be expected to wait, thus allowing the user
to do other activities during long waits; and they �nally provide something for
the user to look at, thus making the wait less painful."

User interface guidelines frequently emphasize the importance of consistent use of progress

indicators [5, 6, 91] as one of the main UI design principles.

Hence, we present a new technique forautomatically detecting cases where an

application is missing an appropriate progress indicator. We focus on the scenario where

some user interaction leads to a long-running operation, and the output of that operation

is required to render a �nal result. This scenario is extremely common in networked mobile

and web applications, as any network request can potentially be long running, depending

on network conditions and the amount of data requested.

Recent work by Kang et al. [58] presents a technique for detecting unresponsive

Android UIs, which are often caused by a missing progress indicator. Their technique works

by monitoring app execution at a system level and detecting cases where after a user input,

there are no UI updates of any kind for some given time period. While this approach �nds
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Figure 4.1: High-level illustration of relevant dependencies for correct use of a progress
indicator.

many real issues, it su�ers from having no way to distinguish di�erent types of UI updates.

Their approach may treat a non-progress-related UI update as evidence of a responsive UI,

leading to missed bugs. (See Section 4.1.1 and Section 4.1.6 for further discussion.)

Unlike Kang et al. [58] work, we present a novelsemantic approach to detecting

missing progress indicators based onprogram dependencies[38]. Figure 4.1 gives a high-level

illustration of relevant dependencies and matchings for correct progress indicator usage. The

white nodes represent the main logic processing the user request: a user interaction triggers

the start of a long running operation, and the result of the operation can only be shown once

it has completed. The grey nodes indicate desired indicator behavior: the user interaction

should also trigger the display of a progress indicator, which should be stopped after the

long-running operation has ended. The dashed edges re
ect the natural pairing between

the start and stop of the long-running operation and display of the progress indicator.

The solid edges in Figure 4.1 represent (forward) program dependencies, which

can be control or data dependencies depending on the scenario. With this formulation,

missing progress indicators can be detected via the following two high-level steps:

1. Find sequences of program operations matching the white nodes and their dependen-

cies (user interaction, start of long-running operation, etc.).
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