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ABSTRACT OF THE DISSERTATION

Adapting Data Representations for Optimizing Data-Intensive Applications

by

Amlan Kusum

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2016

Dr Rajiv Gupta, Chairperson

The need for efficiently managing Big Data has grown due the large sizes of data sets

encountered by real-world Big Data applications. For example, large-scale graph analytics

involves processing of graphs that have billions of nodes or edges. Because of the compute-

and data-intensive nature of data analytics, programmers face multiple challenges in trying

to achieve efficiency. This dissertation presents two novel approaches for handling data to

scale up the performance of Big Data applications.

The first approach supports multiple in-memory physical representations (data

structures) for data and dynamically selects, or switches to, the best representation for

the given data/workload characteristics. For example, in a graph processing application,

where the graph evolves over time, our approach switches to the best data structure as the

characteristics of the graph (e.g., graph density) change over time. Similarly, in a key-value

store, upon changes in relative frequencies of different types of queries over time, we switch

to a more efficient data structure for that query load. Our programming and compiler

support produces adaptive applications that automatically switch data structures on-the-fly
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with little overhead and without the developer worrying about safety. Our evaluation

shows running that our adaptive applications enjoy average speedups of 1.6× for graph

applications and average throughput increase of 1.4× for a key-value store, compared to

their non-adaptive versions.

The second approach employs data transformations to create alternate data repre-

sentations to accelerate shared memory and out-of-core applications. A large input graph

is transformed into smaller graphs using a sequence of data transformations. Execution

time reductions are achieved using a processing model that effectively runs the original

iterative algorithm in two phases: first, using the reduced input graph to reduce execution

time; and second, using the original input graph along with the results from the first phase

for computing precise results. In the context of out-of-core applications this model is used

to reduce I/O cost by creating a smaller graph that can be held in memory during the

first phase. For parallel graph applications, our approach yields speedups of up to 2.14×

and 1.81× for in-memory and out-of-core processing respectively, compared to applications

running on untransformed data.
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Chapter 1

Introduction

Modern day computing has been focusing on Big Data due to the massive amount of

information that must be processed by a wide range of applications from numerous domains.

Current trends show that the amount of information is continuing to grow. For example,

Facebook has grown from 50M users in 2009 to 1.55B users in 2015. The developers have

continuously focused on increasing scalability of the “Big Data” applications to cater to this

need of ever-increasing data size. Due to their data-intensive nature, Big Data applications

require large amounts of memory for successful execution. If the memory is insufficient, Big

Data applications may crash or end abruptly, thus new approaches are required to meet this

challenge.

Even when there is sufficient memory to hold the data, the performance of the

application is highly sensitive to the data representations and its characteristics. For example,

if programmers of a matrix multiplication application assume abundance of system memory

they may choose to use a simple two-dimensional array representation. However, for matrices
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that are sparse, a Compressed Column Storage representation [19] is a better choice as it

requires less memory and finishes the matrix multiplication operation faster. Hence, there

are instances when a fixed (compile time) choice of data structure may not be the most

efficient across inputs with varying characteristics.

Moreover, the characteristics of many modern large datasets change over time, e.g.,

Facebook users (nodes) and friendships (edges) evolve continuously. Other examples include

real-world evolving graphs found in the Konect [42] and Snap [31] repositories. A fixed

choice of data structure is a ppor match for evolving datasets. Techniques for automatic

data structure selection have been proposed. Jung et al. developed DDT [29], a dynamic

program analysis tool that identifies the data structures used by executing the application

binary with the objective of identifying problems in the data structure choice with respect

to a particular compiler and microarchitecture. Their follow-up work, Brainy [30], predicts

the best data structure for a particular program input and underlying architecture. While

the aforementioned techniques predict the best data structure choice, they are ineffective

when data characteristics change over the course of execution.

Even when the characteristics of the input do not change during the course of

execution, there is still scope for accelerating the execution of data-intensive applications.

Many data-intensive computations iterate over the same data, and owing to large data

sizes, the resulting data accesses are costly. Example of such applications include graph

processing on large social graphs. To address this issue, researchers have proposed techniques

to optimize memory usage and increase performance via approximation techniques. Task

skipping [65, 64] is one such approximation strategy to reduce the iteration over the large
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input graph. However, this code-centric approach fails to achieve efficiency since intelligent

skipping is difficult as the program lacks a global view of input graph characteristics.

Therefore, we have developed an approach that employs multiple data representations to

optimize data access while producing accurate results.

1.1 Dissertation Overview

This dissertation introduces strategies for addressing the previously mentioned

challenges for Big Data applications. First, we propose a runtime approach for selecting and

switching between data representations to optimize application performance. Second, we

propose a runtime approach for reducing the input size to optimize performance. Finally,

we propose extending the above techniques to out-of-core algorithms (that do not run out

of memory as they rely on disk storage to hold the full data set and bring parts of it in

memory for processing). We now summarize these proposed approaches.

1.1.1 Employing Alternate Data Structures for Holding Data

The performance of data-intensive applications is highly dependent upon the main

data structures used. In Chapter 2, we demonstrate, via a wide range of applications and

input characteristics, that using a single data structure representation for an entire program

run is problematic in many cases: when input characteristics vary (e.g., a graph algorithm

analyzing an input graph that evolves over time); or when task characteristics vary (e.g.,

workload profile for a key-value store); or when state characteristics vary (e.g., an online

game with a variable number of players).
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For example, on a read-mostly workload, the performance of the Memcached object

cache can double by switching to Cuckoo hashing [20, 61], compared to Memcached’s default

hashing. However, to achieve this performance gain, the entire implementation has to be

switched; we allow this switch to be performed on-the-fly. As a second example, consider

running six popular graph algorithms (described in Chapter 3) on MovieLens, a naturally-

evolving graph containing movie reviews which has 3,979,428 edges and 36,526 vertices in

its final state. Alternate data structures can store the graphs—adjacency list, adjacency

matrix, or shards—each with its own trade-offs. Using a single data structure representation

imposes a typical performance overhead of 22% compared to our adaptive version which

uses different representations during different execution intervals. Hence data structure

representation cannot be selected a priori at compile time—rather, it should be selected at

runtime, when the choice of the data structure can be adapted to changing input or task

characteristics.

We propose a programmer-assisted approach to adaptation in Chapter 3, where

data structures and algorithms change on-the-fly, safely and efficiently. Our approach is

based on: (1) programming support for transforming off-the-shelf applications into adaptive

applications; (2) compile-time analyses that automatically identify program points at which

the application can safely switch between alternative algorithms and data structures, relieving

developers from a burdensome and error-prone task; and (3) a runtime component that

performs on-the-fly switching, allowing the application to select the right implementation to

exploit available resources.
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Runtime adaptation poses several challenges: guaranteeing the safety of on-the-

fly data structure and algorithm changes, imposing low steady-state overhead, reacting

quickly to system and input changes, minimizing programmer burden. We address these

challenges as follows. Programmers render applications adaptive by indicating the alternate

implementations of a certain data structure, the application’s main computation loops,

and writing conversion functions between the alternate data structures. Programmers,

however, do not specify where adaptation should be performed, as that could jeopardize

safety, substantially increase programmer burden, and reduce opportunities for adaptation.

Instead, our infrastructure uses a suite of static analyses to find safe adaptation points and

increase timeliness, i.e., react quickly to a mismatch between the current data structure and

the input or workload characteristics.

1.1.2 Employing Data Transformations to Create Multiple Data Repre-

sentations

We present a general approach for accelerating parallel vertex-centric iterative graph

algorithms – a class of data- and compute-intensive algorithms that repeatedly process large

graphs until convergence. Even though these algorithms are parallel, their execution times

can still be large for real-world inputs. Thus there is substantial benefit in approximating

them to save processing time. The novel aspect of our two-phased approach is that it is

input data-centric. In the first phase, the original (unchanged) iterative algorithm is applied

on a smaller graph which is representative of the original large input graph; this step yields

savings in execution time. In the second phase, the results from the smaller graph are

transferred to the original larger graph and, by applying the original graph algorithm, error
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reduction is achieved, possibly converging to the final accurate results. The additional time

required to process the reduced graph in the first phase pays off, as it is significantly lower

than the savings achieved by the second phase.

To reduce the sizes of input graphs, we propose input reduction transformations

whose application is guided by their impact on graph connectivity (i.e., the global structure

of the graph). Our analysis of various characteristics of vertex centric algorithms and

properties of these input reduction transformations has shown that it is possible to achieve

fully accurate results for a subclass of graph algorithms, with remaining algorithms produce

approximate solutions. In comparison to algorithmic works, our approach is more general

and in contrast to code-centric our approach has two major advantages:

– Input Data-centric Approximation: via input graph reduction, we also achieve

the effect of skipping computations like the code-centric approach. However, since skipping

is achieved as a consequence of input graph reduction that is performed as a preprocessing

phase, the decision of what to skip is sensitive to the structure of the input graph. In

particular, graph connectivity guides the application of reduction transformations.

– Uncompromised Processing Algorithm: our approach requires no changes to the

core graph analysis algorithm. The original algorithm is used until convergence on the

reduced graph and for a limited number of iterations on the full graph for error reduction.

As a consequence, with careful choice of input reduction transformations, the algorithm’s

capability can remain uncompromised, i.e., if the error reduction phase is continued long

enough, precise results can be obtained.

6



Finally, programmers have designed out-of-core applications to handle large data

(e.g., geographical system information and social networking) which runs into terabytes

in size, hence often does not fit in the main memory. These out-of-core applications use

persistent storage as an extension of main memory. Specifically, the applications fetch part

of input data from disk such that it fits in memory, process, and then store the results

back to disk. We propose to extend our two-phased data-centric acceleration technique for

out-of-core applications and use parallel vertex-centric graph applications for evaluation.

Since most of the execution time in out-of-core execution is spent in fetch and store, one of

the key challenge is to reduce the time spent in the I/O. The representative input to be used

in the first phase could also possibly not fit in memory, hence out-of-core execution would

be necessary for first phase, which might the subsume the savings achieved in two-phase

execution.

1.2 Dissertation Organization

The rest of the dissertation is organized as follows: Chapter 2 presents the study

pertaining to the impact of data structure choice on applications with respect to changes in

input/workload characteristics. In Chapter 3, we present our runtime technique of deploying

Alternate Data Structure on different classes of the application. Next, Chapter 4 presents

our Transformation techniques for multiple representation of input graphs. In Chapters 5

and 6 we present the Two Phase approach for multithreaded and out-of-core applications.

In Chapter 7, we review related work, and in Chapter 8 we conclude with a summary of our

work and future directions.
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Chapter 2

Choice of Data Structure

Representation

Big Data application performance is greatly impacted by the data structure it uses

to hold data in memory. The programmer fixes the data structure during the implementation,

considering characteristics of input data and the operations to be performed on the input data.

Many existing works aid the programmer in choosing data structures [29, 30, 70, 45, 72].

However, choosing a fixed data structure might lead to poor performance and use of

excessive amounts of memory, or even failing to complete, when there is a variation in input

or workload characteristics. There are two important aspects that need to be thoroughly

investigated. First, how input/workload characteristics vary for different types of applications

over the course of execution. Second, whether a fixed data structure is unsuitable for such

applications. In this chapter, we demonstrate these two aspects using 4 real-world data-

intensive applications: first, a graph application that computes the Multiple Source Shortest
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Path (MSSP); second, a database application implementing an Indexed Flat File DB (DBMS);

third, an online multi-player game, SpaceTyrant (ST); finally, a popular key-value data

store utility, Memcached (MEMC). The goal of our experiments is to quantify the impact of

input/workload characteristics on the application for alternate representation of the same

data.

2.1 Choosing Representations for Evolving Graphs

Graph processing continues to increase in popularity with the emergence of ap-

plications such as social network mining, real-time network traffic monitoring, etc. These

applications, due to their data-intensive nature, require large amounts of memory. The large

graphs being processed are held in dynamic data structures constructed at runtime. These

applications spend a significant portion of their execution time on memory management

associated with large data sets. Therefore we observe that the performance and dependability

of such applications depends upon how well the choice of runtime data structure matches

the input data characteristics, as discussed next.

Let G = (V,E,W ) be a graph, where V is the set of nodes, E is the set of edges,

and W holds the edge weights. Graph density, defined as

Density =
2 ∗ |E|

|V | ∗ (|V | − 1)
(2.1)

i.e., the ratio of the number of edges in the graph compared to a fully-connected graph, is a

key characteristic; we use percentages to indicate density, where a low percentage indicates

a sparse graph and a high percentage a dense graph. The main data structure (the input

graph G) can be represented in different ways. We focus on three representations: Adjacency
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List (ADJLIST), which stores the outgoing edges of each node in a list; a collection of Shards

(SHARDS), where each shard contains all edges incident to a distinct subset of nodes in the

graph [44, 38]; and Adjacency Matrix (ADJMAT), which stores the edge weights in a matrix.

MSSP computes the shortest path from each vertex to every other vertex, and it can be

implemented using multiple applications of SSSP, with each vertex as source.
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Figure 2.1: Density Variation of MovieLens evolving graph from 1998 to 2004.

Variation in Graph Density. Evolving graphs are a special class of graph data, where

edges and vertices are added/deleted over time. Examples of such kind of graphs include

social networks and web graphs. In case of social network graphs users join the network

(vertices are added) and friendships are created (edges are added). Similarly, new websites

(vertices are added) are added to the web with the links are created (edges are added). Along

with the size of the evolving graph, other characteristics changes over time as well. We

demonstrate this via the real-world evolving graph MovieLens, where the vertices represents
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movies and reviewers. The edges represents the reviews from users for a movie. We considered

the snapshot of the MovieLens from 1998 to 2004 and plot the density of the graph in

Figure 2.1. We can observe that the density of the graph increases from 1.51% at the

beginning of 1998 to 3.7% at the end of 2002, and then decreases from 3.7% to 1.71% at

the end of 2004. Therefore, we can conclude that for graph input the characteristics could

change over period of time.

Space-time Trade-off. Table 2.1 shows the space requirements and edge weight lookup

times for the three graph representations. The ADJLIST representation exploits graph sparsity

to achieve a compact form, but it has the highest worst-case edge weight lookup time, which

increases with graph density. The SHARDS representation uses additional space and in return

provides lower worst-case edge lookup time; note that k1 depends on shard size and graph

density, while k2 depends on graph density. Finally, the ADJMAT representation uses the most

space and performs edge weight lookup in constant time, i.e., independent of graph density.

Thus, it is expected that input graph density, which is not known at compile time, will

affect runtime memory consumption and execution time, and there is an inherent trade-off

between space and time among these three representations.

We studied the space and time costs of using the three representations for com-

puting MSSP on a real-world graph, Google+ circles [42]. The graph consists of 23,628

nodes representing users, and 39,242 edges representing links to users in his/her circle.

Figure 2.2 plots the execution time and memory consumption for all three representations

and demonstrates the expected space–time trade-off among the three representations. For

clarity we only show “interesting” graph density ranges, around crossover points (2%, 9%

11



Table 2.1: Worst-case complexity of graph representations.

Data Structure Space Edge Lookup Time

Adjacency List (ADJLIST) O(|V |+ |E|) O(|E|)

Shards (SHARDS) O(|V |+ k1|E|) O(|E|/k2)

Adjacency Matrix (ADJMAT) O(|V |2) O(1)

Table 2.2: Best graph representation, by density interval.

Criterion Density

0-2% 2-25% 25-67% 68-100%

Space ADJLIST ADJLIST ADJMAT ADJMAT

Time ADJLIST SHARDS SHARDS ADJMAT

and 68% for time; 20% and 25% for space), i.e., densities at which one representation starts

to outperform another.

Stability across input sizes. To see how the space-time trade-off manifests for repre-

sentations at different input sizes, we conducted a series of experiments: we varied the

graph size from 10,000 to 25,000 nodes, in increments of 5,000; and we varied the density by

changing the number of edges. This helps identify crossover points, i.e., threshold densities

where one representation starts outperforming another. Table 2.2 summarizes our findings.

The thresholds found in this experiment clarified which representation is a better

choice for what density ranges. For example, when the graph density is less than 2%,

ADJLIST is the “better” representation as it is both more memory- and time-efficient than

12
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Figure 2.2: MSSP on Google+ graph with varying density: execution time (top) and

memory consumption (bottom).

ADJMAT. Similarly, in the last interval (> 68%) ADJMAT is the clear winner as it takes less

memory and is faster. SHARDS wins the race of time-efficiency between 2% and 25%. Between

25% and 67%, however, ADJMAT is more memory-efficient while SHARDS is more time-efficient,

hence the best representation depends on characteristics of input graph.

2.2 Choosing Representations in a DBMS

We now illustrate the impact of data structure choice on database operations’

performance. For our experiments, the data is stored in a flat file on disk, however the

database indexes are stored in memory, in a tree (along with file offsets so data could be
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accessed in O(1) time after an offset value is fetched from the tree). There are numerous

ways to store the indexes; we chose three popular data structures: BTree (BTREE) of order 5,

AVL Tree (AVLTREE), and Red Black Tree (RBTREE). The database operations are real-world

social network queries, as explained next.

Variation in Workload. The workload size for a database application may change over

a period of time. A typical database would have times when the Database Administrators

(DBAs) perform maintenance, which would require more INSERT operations than SEARCH

operations. Similarly, there would be times when the SEARCH operations would be far more

prevalent than INSERT operations. For example, a typical online shopping website would

have agents issuing more INSERT operations during inventory update, while at other times

the number of SEARCH operations would vastly outnumber INSERT operations. Therefore, a

typical workload has a varied mix of INSERT and SEARCH, which could change over time.

Time Requirements. Although the three indexing data structures have the same worst-

case time complexity for insert and search operations—O(log n), where n is the number

of nodes—they have different insertion and search times due to their rebalancing policy

(Table 2.3). For example, AVLTREE has a more rigid balance strategy than RBTREE, hence

taking more time for inserts, but less time for searches. Similarly, in BTREE, the searches are

faster than AVLTREE and RBTREE as there is more than one key per node and the nodes are

cached from the previous searches, leading to faster searches in the presence of locality. The

BTREE inserts are also time-consuming as each insert might cause splitting of nodes and/or

rebalancing. Table 2.3 summarizes the above observations.

14



Table 2.3: Runtime performance of representations for DBMS.

Data Structure Insert Search

BTREE Slow Fast

AVLTREE Slow Intermediate

RBTREE Fast Slow

We measured the execution time of insert and search operations on a social network

database, with the data and queries from the BG Benchmark [6]. Social networks support a

variety of actions, however we consisted of two actions, initiate friend request (user X sends

a friend request to user Y), and search friendship (find if X and Y are friends). Initiate

friend request requires an insert (SQL INSERT operation) while search friendship requires

a search (SQL SELECT operation). We populate the initial network with 10,000 users and

100 friend requests for each user. We generated a workload of 5,000,000 operations which

varies the insert/search ratios, from 10% inserts–90% searches to 90% inserts–10% searches.

These workloads are run on 3 indexing trees: RBTREE, AVLTREE and BTREE. The goal of our

experiments in this section is to show the impact of workload characteristics and indexing

data structure on execution time. Similar to the MSSP example, the characterization of

program behavior is also simple in this example. In Figure 2.3 we show the execution

time for the three index data structures when the workload changes from 10% inserts–90%

searches to 90% inserts–10% searches. From the graph we can conclude that for a lower

percentage of inserts, BTREE performs better than RBTREE and AVLTREE. Between 37% and

62%, AVLTREE is better than the other two. Beyond 62%, RBTREE is the best.

15



 500

 1000

 1500

 2000

 2500

10 20 30

E
X

E
C

U
T

IO
N

 T
IM

E
 (

S
E

C
)

% OF INSERT 
OPERATION

BTREE

 2000

 3000

 4000

 5000

 6000

 7000

30 40 50

% OF INSERT 
OPERATION

RBTREE

 5000

 6000

 7000

 8000

 9000

 10000

 11000

50 60 70

% OF INSERT 
OPERATION

AVLTREE

Figure 2.3: DBMS: Execution time with varying the INSERT percentage.

Table 2.4: Workload characteristic vs. best representation.

Criterion Percentage of Insert Operations

0-37% 37-62% 62-100%

Time BTREE AVLTREE RBTREE

Stability across Workload Sizes. Similar to MSSP, we varied the workload size from

1,000,000 queries to 5,000,000 queries and found that crossover points are stable across

workload sizes. We summarize our findings in Table 2.4: each representation has an interval

where it is the most suitable.

2.3 Choosing Representations in an Online Multiplayer Game

Space Tyrant is an online multiplayer game server, where players move their ships

around a 2D universe. The game state is kept in a map divided into sectors and information

for each sector is stored in a LIST, which is backed up periodically on the disk. We found an
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alternative, compressed method of representing sectors in memory, CLIST, in which only the

occupied sectors are stored, along with their neighboring sectors. Let G = {U, S} be a game

where U is the number of users, and S is the number of points in the space represented as

sectors. Game crowding, defined as the following,

Crowding =
U

S
(2.2)

i.e., the ratio of the number of users playing to the number of sectors is a key characteristic

for choosing the map representation.

Table 2.5: Worst-case complexity of sector representations.

Data Structure Space Sector Lookup Time

List (LIST) O(|S|) O(1)

Compressed List (CLIST) O(|U |) O(|U |)

Variation in Crowding. A typical online multiplayer game has users joining and leaving

the game in-between a game-play. This would make the game crowding change multiple

times during game-play.

Space and Throughput Trade-off. Table 2.5 shows the worst-case space complexity

and the sector information look-up time for each representation. The CLIST representation

exploits the crowding property of the map to reduce memory consumption, however it causes

sector lookups to cost more. The LIST representation requires more space but performs

the sector lookup in constant time. Since crowding is unknown during the compile time,

the runtime throughput and memory consumption will get affected by the choice of data
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Figure 2.4: SpaceTyrant with varying Crowding: execution time (left) and memory

consumption (right).

structure, hence the intrinsic time–memory trade-off. We studied the throughput and space

costs of the two representations during game plays with 1-million sector maps. For each

game play, we varied the number of users from 10,000 to 900,000, thus increasing crowding

from 1% to 90%. Figure 2.4 shows that for low crowding, i.e., below 8%, CLIST is a better

representation in terms of both the throughput and the memory consumption; however,

above 35%, LIST is better in terms of both memory and time.

Stability across Game Sizes. We studied the stability of the crossover points by varying

the game size from 500,000 to 1,000,000. The crossover points remain consistent across

different game sizes. We summarize the findings in Table 2.6, and we conclude that each

representation has an interval where it is the most suitable.
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Table 2.6: Best sector representation, by crowding interval.

Criterion Crowding

0-8% 8-35% 35-100%

Space CLIST CLIST LIST

Time CLIST LIST LIST

2.4 Choosing Representation in an Object Caching System

Memcached is a high performance object caching system used by websites such

as LiveJournal, Wikipedia, and Flickr. The object caching is achieved by employing a

hash table. The hashing technique used in stock Memcached is Jenkin Hash (JH). MemC3

(“Memcached with CLOCK and Concurrent Cuckoo Hashing” [20]) is another variation of

Memcached which employs Cuckoo Hashing (CH) [61].

Variation in Workload Characteristics. Atikoglu et al. [3] have analyzed Memcached

use at Facebook, one of the largest Memcached deployments. They have found that a

typical workload consists of a mix of GET and SET operation. Interestingly, the distribution of

GETs:SETs operation varies from 30:1 to 8:37 over time. Therefore, the workload characteristics

for Memcached could vary multiple times during execution.

Time Requirements. The hashing technique could greatly impact the performance of

Memcached. The authors of MemC3 have measured the relative performance of GET and SET

for both hashing techniques (JH & CH), and have concluded JH has faster SETs and slower

GETs than CH [20, 61]. A typical workload consists of a mix of GETs and SET commands. We
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now study the effect of hashing technique on Memcached performance using different mix

of workload, i.e., change the GET:SET ratio. We used YCSB to generate 100 million queries

with increasing GET:SET ratio from 10:90 to 90:10. These workload runs on two different

hashing techniques and measure the execution time. We report our findings in Figure 2.5,

where we plot the execution time of the workload for both hashing techniques.

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

10
:9

0

20
:8

0

30
:7

0

40
:6

0

50
:5

0

60
:4

0

70
:3

0

80
:2

0

90
:1

0

E
X

E
C

U
T

IO
N

 T
IM

E
 (

S
E

C
)

GET:SET RATIO

CH
JH

Figure 2.5: Memcached: execution time with varying workload characteristics using JH and

CH hashing technique.

We can conclude from Figure 2.5 that for lower percentage of GETs in the workload

JH works better than CH. When the GET:SET ratio goes beyond 44:56, the CH hashing technique

performs better than JH.

Stability accross Workload Sizes. Similar to previous applications, we wanted to

study the stability of crossover point across different workload sizes, therefore we varied

the workload size from 10 million queries to 100 million queries with a step of 10 million

queries. We found that the crossover points remained consistent across workload sizes.

Table 2.7 summarizes our finding: each hashing technique has a distinct range of workload

characteristics where it performs the best.
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Table 2.7: Workload characteristic vs. best representation.

Criterion Percentage of GET

0-44% 44-100%

Time JH CH

2.5 Summary

This chapter presented a detailed study of several applications for alternate repre-

sentations of the main data structure, under different input/workload characteristics. The

study demonstrated that in real world applications a single compile time choice of data

structure may not be appropriate because the input/workload characteristics may change

over time. We further established the relationship between input/workload characteristics

and the optimal data structure choice. This simple characterization of program behavior

will guide data structure selection by the runtime system described in Chapter 3. Our

proposed system naturally switches from one representation to another to match the changing

characteristics of input/workload.
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Chapter 3

Employing Alternate Data

Structure Representations

When input or workload characteristics change multiple times during execution,

a single compile-time data structure choice is limits data processing efficiency. Therefore,

switching between alternate data structure representations to continuously match the

changing input/workload characteristics is the optimal solution. In this chapter we present

a runtime system that automatically switches data structures to match the input/workload

characteristics during execution, therefore making the application adaptive. However,

an adaptive application poses several challenges: first, it should not be difficult for the

programmer to turn off-the-shelf applications into adaptive ones; second, switching between

data structures should not violate type safety or produce incorrect results; third, the switching

should be fast enough to respond timely to the input/workload changes.
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We show that our proposed technique solves the above challenges. We present the

overview of our approach in Section 3.1. We illustrate the effectiveness of our technique

via multiple real-world applications and datasets in Section 3.3. We evaluate our technique

across multiple dimensions: ease of use, effectiveness, and efficiency.

3.1 Overview

We now present our approach for transforming off-the-shelf applications into

adaptive applications that safely and efficiently switch between data structure representations

to optimize their operation (higher speed, lower memory usage, etc.) and adapt to changes

in input, workload, or state.
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Figure 3.1: High level overview of our approach.

An overview is shown in Figure 3.1; we now describe each step in the process.

Programmers need to add a handful of annotations to the source code, to indicate alternative

representations (data structures & implementations); mark the application’s long-running,
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compute-intensive loop(s); use a progress indicator (variable holding the value of “progress

bar”); and write representation conversion functions. This annotated source code is passed

through our static analyzer and compiler, which: find safe adaptation points in the source

code; perform a source-to-source translation to instrument the code to permit adaptation;

and add the transition logic. This code is then compiled with a normal C compiler, e.g.,

gcc, and then linked with an adaptation module to yield the adaptive application that will

adapt by safely switching among R1, R2, and R3 (and their associated implementations) at

runtime. The adaptation module makes adaptation decisions based on system state and/or

input characteristics; the conditions under which adaptation should be triggered are defined

via transition policies.

Running example: Minimum Spanning Tree using Kruskal’s algorithm (MST-

K). In Figure 3.2 we show an excerpt from the MST-K application, which computes the

minimum weight spanning tree (MST) using Kruskal’s algorithm. The input is an undirected

graph, while the output is a subgraph whose total weight is less than or equal to every other

spanning tree. Three alternate data structure representations are used for holding the large

graph in the memory: ADJLIST, ADJMAT and SHARDS, as indicated by the programmer

on lines 1–3. The function computeMSTK ADJMAT, as the name suggests, finds the MST in

the ADJMAT representation; similar functions, for ADJLIST and SHARDS representations

have been written as well. In each representation, edges have two associated flags. The first

flag, “used,” indicating whether the edge has been visited to check if it can be added to

the spanning tree, is set by markEdgeUsed on line 29. The second flag, “spanningTreeEdge,”

indicating that the edge is being used in the spanning tree, is set by addEdgeInTree on
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1 #pragma ADAPT DS(GRAPH)(”ADJMAT”)
2 #pragma ADAPT DS(GRAPH)(”ADJLIST”)
3 #pragma ADAPT DS(GRAPH)(”SHARD”)
4 #pragma ADAPT LONG RUNNING(”LR”)
5 #pragma ADAPT LOOP(”AL”)
6 typedef struct { //first representation
7 ...
8 } ADJMAT;
9

10 typedef struct { //second representation
11 ...
12 } ADJLIST;
13
14 typedef struct { //third representation
15 ...
16 } SHARD;
17
18 void computeMSTK ADJMAT( ADJMAT∗ graph, int∗ progress)
19 {
20 int totalNodes = graph−>totalNodes;
21 Edge∗ edge;
22
23 LR:{
24 AL: while(∗progress < totalNodes)
25 {
26 check4adapt(progress);
27 edge = findMinimumEdge(graph);
28 check4adapt(progress);
29 markEdgeUsed(graph,edge);
30
31 ∗progress = addEdgeInTree(graph,edge);
32 check4adapt(progress);
33 }
34 }
35 }
36
37 ...
38
39 callOP1(void∗ graph, int startDS, int∗ progress) {...}

Figure 3.2: Excerpt from Minimum Spanning Tree (MST-K); code in green is inserted
automatically by our compiler.
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line 30. In addition to nodes and edges, each graph representation also stores the start node

of the spanning tree. The progress argument (line 19) holds the value of a “progress bar”

for the execution—in this case, the length of the longest tree in the MST (which had no

edges initially and the number of nodes is equal to the number of nodes in graph ). The

algorithm’s main part is implemented as a long-running loop LR (line 24) whose counter

gets incremented each time an edge is successfully added to the subgraph represented in

graph data structure. MST-K is a greedy algorithm, trying to add an edge of minimum

value to the tree and terminating when the spanning tree has every node connected (an

MST has been constructed); findMinimumEdge (line 27) finds the minimum weight edge in

the graph which is not yet in the spanning tree and markEdgeUsed (line 29) marks that edge

for possible addition. The function addEdgeInTree (line 31) is two fold: first, it checks if

adding the edge to the spanning tree (by setting the spanningTreeEdge true) connects two

trees and does not form a cycle; secondly, the spanningTreeEdge is set to true and returns

the length of the longest spanning tree. The calls to check4adapt (lines 26, 28, and 32)

and the definition of callOP1 (line 37) are inserted automatically by our source-to-source

compiler after the static analysis.

Programming Model. Our approach is designed to minimize programmer’s burden.

To support adaptation, programmers use just four simple annotations, as shown in the

following table, to indicate alternative definitions of data structures, as well as long-running

code that should be subject to adaptation. Our compiler (static analysis and source code

transformation) will use these annotations to generate code that adapts in a safe and flexible

manner. In addition, while programmers need to write functions for converting between
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representations, they do not need to invoke these functions—for safety and timeliness reasons,

these functions are invoked automatically by the runtime system.

Annotation Purpose

progress progress indicator

ADAPT DS(DSname)(ConcreteRep) mark data type for adaptation

ADAPT LONG RUNNING long-running block

ADAPT LOOP adaptive loop

In addition to these annotations, the programmer needs to add support for long-

running code, as follows. First, the programmer should define a variable (named progress in

our examples) which tracks execution progress, e.g., the amount of input processed or the

amount of result produced. Second, the long-running computation should be prepared to

start processing from a certain progress value rather than assuming it starts from scratch

(note the compute MSTK ADJMAT(ADJMAT∗ graph, int∗ progress) in Figure 3.2) so the

computation can resume at the new representation after a representation switch.

ADAPT DS is used to mark a data type for adaptation; the DSname parameter

is used as a common name to identify alternate representations, while ConcreteRep indicates

the type of the concrete representation. For example, in Figure 3.2 we use the #pragma

ADAPT DS’s on lines 1–3 to indicate that ADJMAT, ADJLIST, and SHARD are alternative

implementations of the same conceptual type, GRAPH.

The compute-intensive code, usually the program’s main loop, is a lexical scope

marked via ADAPT LONG RUNNING (lines 4 and 24). This annotation indicates to our
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compiler that it should find adaptation opportunities in that scope (or in code transitively

called from it, e.g., callees), though the compiler does not descend into loops automatically—

this has to be indicated separately, as explained next.

Programmers can annotate a loop with ADAPT LOOP to tell the compiler that

it should find adaptation opportunities inside that loop’s body, i.e., break out of the loop

upon the first check4adapt(progress),1 transfer control to the code associated with the new

representation, and begin execution from the same “progress” state. In the Figure 3.2

example, if the runtime system indicates a switch is needed from ADJMAT to ADJLIST, we

break out of the loop on line 25 and control is transferred from computeMSTK ADJMAT to

computeMSTK ADJLIST. Loop annotations are particularly useful when programs contain

nested loops: programmers can control the granularity of adaptation, i.e., loops marked

with ADAPT LOOP will permit fine-grained adaptation.

We have provided the users with minimal number of annotations, so that the burden

is relived from the programmer. With fewer changes to the source code, the programmer

can rely on our static analysis and compilation tools for the rest of the activities: first,

finding out the safe points in the code for switching the data structure; second, making the

application react quickly to the changes to input/workload characteristics.

Static Analysis and Compilation. Our static analysis and compiler do the heavy-lifting

of carrying out safe and efficient adaptation, which achieves several key goals:

1(check4adapt(progress) is actually an if (check4adapt( progress))return;)
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1. Reduce programmer’s burden when converting applications into adaptive ones.

2. Automate reasoning about, and enforcing of, adaptation safety.

3. Improve adaptation timeliness.

The results of the static analysis (explained in Section 3.2.1) contain those program

points where the transition logic can operate in a manner that there is no type safety

violation and the adaptation timeliness is improved.

The source-to-source compiler is responsible for (a) inserting transition code, i.e.,

the code that will perform the runtime conversion between data structure representations,

based on the manual annotations and the results of the static analysis; and (b) inserting

potential adaptation points (check4adapt). These insertions are guided by pragmas, as

explained next. In Figure 3.2, the long-running loop is marked with LR. After static

analysis, a check4adapt(progress) adaptation check is inserted at appropriate safe points

where the adaptation could be triggered. A custom function callOP1 is added, which is

responsible for converting the in-memory data structures to the new representation. All

calls to computeMSTK ADJMAT are then replaced by callOP1 and the second parameter

of callOP1, startDS, represents the current data structure representation. When compute-

intensive code executes, at check4adapt(progress), it checks whether the switch is necessary

and if required, the program switches to another representation and the operation is resumed

from the point indicated by progress (which in this case is from the length of the longest

tree in the minimum spanning tree till last execution).
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Adaptation Policies. To specify adaptation points, programmers define a transition

policy file that defines which representation should be used for which interval—the system

then monitors the input/workload and triggers adaptation automatically. For example, to

reduce processing time, the programmer specifies graph density intervals as shown on the

left:

/∗ reduce TIME ∗/ or /∗ reduce MEMORY ∗/
ADJLIST [0,2) ADJLIST [0,25)
SHARD [2,67) ADJMAT [25,100]
ADJMAT [67,100]

/∗ HYSTERESIS ∗/
TIME 2

To reduce memory, the programmer specifies intervals as shown on the right. We also

support a hysteresis value (2 seconds in our example); the system waits for the specified

time before switching, to avoid too frequent representation changes due to frequent changes

in the input characteristics.

Releasing physical memory: When switching representations, after the conversion

is finished, our runtime system releases the memory holding the old representation via

malloc trim (similar to application-directed releases [11]). This is particularly important

when adapting in response to memory pressure, e.g., from ADJMAT to ADJLIST.

3.2 Static Analysis

We use static analysis for safety (automatically finding points where it is safe to

switch representations) as well as timeliness (responding faster to adaptation requests). The

analysis frees the programmer from worrying about adaptation’s safety and timeliness—an

intractable manual job for any non-trivial program.
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3.2.1 Safety Analysis

The safety analysis prevents the computation code from using mixed data structure

representations, as that would be a violation of type safety. We illustrate this on the MST-K

example with an excerpt of code from function findMinimumEdge. In a nutshell, the function

takes an input graph, sorts its unused edges by calling createSortedEdgeList and returns the

first element of the list. We show the function and add a comment to assume we perform a

data representation switch from ADJMAT to ADJLIST at line 51:

48 Edge∗ findMinimumEdge(ADJMAT∗ graph)
49 {
50 EdgeList∗ edgeList; // graph in ADJMAT representation
51 // switch ADJMAT to ADJLIST

52 edgeList = createSortedEdgeList(∗graph); // type−unsafe!
53
54 return edgeList[0]−>edge; ...

Clearly, performing a switch at line 51 would violate type safety: since the current

function’s activation record (findMinimumEdge’s stack layout) is set up to assume ∗graph

has type ADJMAT and createSortedEdgeList takes an ADJMAT argument, performing the switch

would invoke createSortedEdgeList with an ADJLIST argument, which is a violation of type

safety—note that ADJMAT and ADJLIST differ in size and representation hence have different

memory layouts.

We solve this problem by enforcing representation consistency, a concept originally

used to enforce type safety for live program updates [78]. In particular, we use static analysis

to annotate each program point with the set ∆ of adaptable types used concretely in that
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point’s delimited continuation2 and prohibit switching to a new type when the representation

assumed by the continuation contains the old type. We now illustrate the analysis by showing

the analysis-inferred ∆’s in the MST-K example.

27 edge = findMinimumEdge(graph);
48 Edge∗ findMinimumEdge(ADJMAT∗ graph)
49 {
50 EdgeList∗ edgeList;
51 ∆ = {ADJMAT, . . .}; cannot switch
52 edgeList = createSortedEdgeList(∗graph);
53 ∆ = {. . .}, ADJMAT 6∈ ∆; OK to switch
54 return edgeList[0]−>edge;
55 }

On line 51, ∆ contains ADJMAT because the code in the continuation (edgeList =

createSortedEdgeList(graph)) assumes the ADJMAT representation. The ∆ on line 53 does not

contain ADJMAT as the remaining code in the delimited continuation does not use the graph,

hence no representation assumptions are made. To construct ∆’s, we have extended the

static analysis in [78] to track concrete uses of adaptable data types (as they are marked

with an ADAPT DS).

Safety condition: We can now provide our formal safety condition: a type-safe

switch from representation type τ to τ ′ can be performed at program point n if:

∆n ∩ {τ} = ∅ (3.1)

This check is performed statically. In our example, the condition ∆n∩{ADJMAT} = ∅

is satisfied at line 53, hence our compiler will insert a check4adapt call to trigger a

representation change if needed.

2The continuation is delimited by the scope of an adaptive loop, as check4adapt can break out of the
loop, effectively “cutting” the concrete uses in the current iteration or subsequent iterations.
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3.2.2 Improving Timeliness

After annotating the program with the type-safety analysis results we are left with

a set of program points where a switch is safe. However, a safe switching point does not

ensure timeliness, as we will illustrate shortly.

We first introduce some terminology. We name “IR” the intermediate result of

the computation, e.g., the partially-constructed spanning tree in the MST-K example. We

say that the IR is “dirty” if it has been modified and a representation change will require

recomputing the changes made to the IR since the last increment—such recomputations are

called “killing” the IR.

The key mechanism we introduce for improving timeliness is to use contextual

effects [57] to figure out if the IR is dirty and should be killed (in other words, if the last

computation increment should be discarded, or can be used before waiting for the next

computation increment). In a nutshell, contextual effects are sets that characterize each

function and each program point. For functions, the important part of contextual effects

is a set named ε that captures whether that function modifies the IR. In MST-K where

the IR is stored in graph, some functions, e.g., addEdgeInTree, do write to the IR, hence we

have {graph} ∈ εaddEdgeInTree; others, e.g., findMinimumEdge, do not write to the IR, hence

{graph} 6∈ εfindMinimumEdge. The ε effects are chained together to compute, at each program

point, a prior effect α, i.e., the effect of code that has executed so far, and a future effect

ω, i.e., the effect of code that will execute. To explain how contextual effects help improve

timeliness, we will again use the MST-K example in Figure 3.2. For the sake of this example,

let us assume that all points in LR’s loop body are type-safe so the representation can be
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switched at any point (of course, in practice only type-safe points will be used to improve

timeliness). For each line in LR’s body, the next code excerpt indicates the prior contextual

effect α (which captures whether the program has modified graph) and ω (which captures

whether the program will modify graph):

26 α = ∅, ω = {graph}
27 edge = findMinimumEdge(graph); // doesn’t modify the IR (graph)
28 α = ∅, ω = {graph}
29 markEdgeUsed(graph,edge);
30 α = {graph}, ω = {graph}
31 ∗progress = addEdgeInTree(graph, edge);
32 α = {graph}, ω = ∅

If we inspect the α and ω annotations on lines 26–32 we see that it is OK to perform the

representation switch at lines 26 or 28 without “killing” the graph, because the code has

not yet written to graph (findMinimumEdge does not change graph). Similarly, it is OK to

perform the switch at line 32 without killing the graph, because the code has written to the

graph and will not perform any further writes. However, if we perform the switch at line 30,

we have to kill the graph since it is dirty—it has changed and it will change. Hence we can

perform a static check to determine whether the switch should kill the IR or not; in the

MST-K case, {graph} 6∈ αn ∩ ωn. For this, we have extended the static analysis in [57] to

track writes to the IR.

Timeliness condition: We can now provide our formal timeliness condition: a

type-safe switch can be performed at program point n without killing the IR if:

{IR} 6∈ αn ∩ ωn (3.2)

Safety Proofs and Analysis Infrastructure. Our safety condition is an instance of a

property called “con-freeness” while the timeliness condition is an instance of a property
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called “transactional version consistency”. In this dissertation we just apply these properties

— their formal definitions and proofs of correctness can be found elsewhere [78, 57]. The

static analyses are inter-procedural, flow-sensitive, though context- and path-insensitive; the

pointer analysis is Steensgaard [77]. The analyses and the source-to-source compiler are

built on top of the Ginseng infrastructure, which can handle arbitrary C programs [58].

3.3 Evaluation

We evaluate our approach along multiple dimensions. We show that it is easy

to use (off-the-shelf applications can be converted to adaptive applications with modest

programmer burden), efficient (applications adapt quickly to changes in input or system

characteristics, and their performance is nearly identical to using the best representation at

all times) and imposes minimal time and memory overhead.

Applications. We used graph algorithms, database operations, and two real-world ap-

plications. The six graph algorithms were: Betweenness Centrality (BC) computing the

importance of a node in a network; Breadth First Search (BFS), the classical graph traversal;

Boruvka’s algorithm (MST-B) finds the minimum spanning tree; Preflow Push (PP) finds

the maximum flow in a network starting with each individual node as source; MSSP was

described in Chapter 2 and MST-K was explained in Section 3.1. The alternative data

structure representations were ADJLIST, ADJMAT and SHARDS. For database operations, we

used the indexed flat file-based DBMS benchmark described in Chapter 2, with AVLTREE,

BTREE and RBTREE as alternative representations. Space Tyrant (ST), an online game server,

was described in Chapter 2; the alternate data structures were LIST and CLIST. Memcached
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(MEMC) is a high-performance object caching system used widely in the construction

of high-traffic websites. The stock Memcached uses hash tables to store the objects in

a key-value store; we name this representation (JH) after Jenkin’s hash; as an alternate

representation we used Cuckoo hashing (CH), a complete redesign of Memcached by Fan et

al. [20, 61] which can deliver more than double throughput compared to stock Memcached

on read-mostly workloads (≥ 95% reads).

3.3.1 Effort and Safety of Manual Adaptation

Programming effort. Converting an off-the-shelf application into an adaptive

application is a four-step process:

Step 1. Identify alternate representations, beyond the existing (single) representation.

These alternate representations may already exist in the source code though turned

off by a compiler #define, or off-the-shelf (e.g., as in Memcached), or have to be

implemented.

Step 2. Run the application with a variety of input/workload characteristics to expose the

trade-offs and construct the Adaptation Policy.

Step 3. Implement alternate representations’ conversion functions. If a data structure has

N different representations, there will be N*(N-1) conversion functions.

Step 4. Annotate the source code with pragmas, and add support for incremental compu-

tation.

We report this effort in Table 3.1. We assume the implementation of alternate representations

is available (Step 1) hence we only focus on the programming effort for adaptation itself
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(Steps 3 and 4). The conversion code size (“Step 3” column in Table 3.1) depends on the

number of alternate representations. For graph applications, the 6 conversion functions for

PP amounted to a total of 565 LOC; we were able to reuse that conversion code for the rest

of the graph algorithms. The 6 conversion functions for DBMS amounted to 386 LOC, while

the 2 conversion functions for ST and MEMC amounted to 215 and 192 LOC, respectively.

“Step 4” code consists of adaptation annotations and support for incrementalization.

For annotations (the four grouped columns in Table 3.1) the input data structure names

have to be marked using ADAPT DS; indicating the IR is not required when it has the

same type as the input— this was the case for 8 out of our 9 programs; for BC only, we

used one annotation to indicate the IR (column 5). Identifying the long-running section

was straightforward for all these applications: we had one such scope per data structure

representation (hence 3 per application for graphs and DBMS, 2 per application for ST

and MEMC), which we marked with ADAPT LONG RUNNING (column 6). In each long-

running scope for graph application, DBMS and ST, we found one loop which needed to be

made adaptive, indicated via ADAPT LOOP (column 7).

Incrementalization and Other Changes. This effort is shown in the last column of

Table 3.1. We modified the compute-intensive functions, so they could be executed in

incrementalized fashion (the progress variable from Section 3.1). Increments are “IR units”

to be completed toward the final result. Increments have two benefits: (1) enabling the

runtime system to stop and start the execution from a particular state and (2) avoiding

recomputation after a transition (note that killing the IR means recomputing that increment).

An example of incrementalization is shown in the Listing 3.3, where we present original
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1 void main()

2 {

3

4

5 ...

6

7 computeMSSP(gr);

8 }

9 void computeMSSP(Graph* gr)

10 {

11 int i;

12 for(i = 0;i < gr->numNodes;i++)

13 {

14 sourceID = i;

15 computeSSSP(gr, sourceID);

16 }

17 }

(a) Original MSSP.

void main()

{

int* progress =

(int *) malloc(sizeof(int));

*progress = 0;

...

computeMSSP(gr, progress);

}

void computeMSSP(Graph* gr, int* prog)

{

while ( *prog < gr->totalNode )

{

sourceID = *progress;

computeSSSP(gr, sourceID);

*progress++;

}

}

(b) Incrementalized MSSP.

Listing 3.3: Incremetalization of MSSP code.

Multiple Source Shortest Path (MSSP) and incrementalized MSSP code in Listing 3.3a and

3.3b respectively. MSSP is computed as follows: each vertex in the graph is considered as

source vertex and Single Source Shortest Path (SSSP) is computed from that source vertex

to every other vertex. In the Listing 3.3a, the method computeMSSSP computes MSSP as

follows: a for-loop iterates over all the vertices (lines 12–16) and for each vertex Single

Source Shortest Path (SSSP) is computed (line 15). The increments emerge naturally for

MSSP, where one unit means computing the SSSP for one vertex. Incrementalization of

MSSP (Listing 3.3b) is done as follows: first, progress is defined which stores the vertex

id for which SSSP needs to be computed (lines 3–4); second, the progress is added to the

computeMSSP method signature so that computation could stop and start from a progress

point after adaptation; third, the iterative loop in Listing 3.3b (lines 12–16) is changed
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to use progress variable for calculating SSSP from corresponding source vertex stored in

progress; finally, the progress is incremented after each unit of MSSP, i.e., SSSP is computed.

Finally, for Memcached, we had to write 216 LOC to create a new cache manager which can

use either hashing technique (CH or JH); we believe this effort is acceptable, as we effectively

had to merge two off-the-shelf Memcached implementations.

Note that although some of our test applications are sizable, only a very small

section of code (the main data structure and the compute-intensive functions) needed to be

identified and annotated. This was straightforward even though we were not familiar with

the code, and we believe it is even easier for developers already familiar with the code.

Analyses’ effectiveness. Finding safe and timely adaptation points manually is im-

practical for any nontrivial program; reasoning about safety is particularly difficult in the

presence of nested loops and aliasing. Our two analyses eliminate this programmer burden:

in Table 3.2 we show the number of safe adaptation points discovered by our analyses. All

these points are type-safe; furthermore, the presence of multiple points increases adaptation

timeliness (Section 3.3.6).

Programmer-defined Adaptation Points and their Safety. Our static analyses find

program points where representation switching is safe, i.e., type-safe and IR-safe. However,

since static analyses must be conservative, we investigated if the programmer could have

found better opportunities for adaptation that were missed by our analysis. For this,

we manually added adaptation points where we thought it was safe to do so, and then

constructed a dynamic analysis that traced type and IR accesses to check whether the points
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Table 3.1: Application size and programming effort.

Program Size Step 3 Step 4

Annotations Other

DS DS LONG RUNNING LOOP

(LOC) (LOC) (input) (IR) (LOC)

PP 1,066 565 3 0 3 3 14

MSSP 596 ” 3 0 3 3 13

BC 629 ” 3 1 3 3 15

MST-K 425 ” 3 0 3 3 13

BFS 506 ” 3 0 3 3 10

MST-B 795 ” 3 0 3 3 19

DBMS 2,566 386 3 0 3 3 6

ST 9,027 215 2 0 2 2 0

MEMC 11,722 192 2 0 2 0 216

Table 3.2: Static analysis results: safe adaptation points discovered (second row) and

analysis time (third row).

Program MSSP BC MST-K BFS MST-B PP DBMS ST MEMC

Safe points 3 4 3 3 4 2 4 4 5

Analysis time (sec.) 0.38 0.39 0.24 0.34 0.41 0.36 0.59 8.1 11
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were really safe; after the execution, we inspected the trace to find type- and IR-safety

violations. We found 1 additional adaptation point in MSSP, BFS and PP; and 2 points

in BC that were missed by our static analyses. However, in MST-K (Figure 3.2), line 30,

which we thought was safe, was actually found IR-unsafe by the dynamic analysis; of course,

line 30 had already been deemed unsafe by the static analyses.

We set out to investigate what would happen if we let programmers pick adaptation

points manually: would the points be type-safe and IR-safe? would the adaptation be more

timely? We illustrate this with an excerpt of the PreflowPush (PP) application:

1 while (∗progress < networkGraph−>totalNode −1)
2 {
3 resetFlow(&networkGraph);
4
5 startFlow(&networkGraph);
6
7 adjustFlow(&networkGraph, progress);
8 }

The PP code computes the flow across each node and edges in a network (graph). The

function resetFlow reverts the flow across all the nodes and edges, but assumes that amount

of incoming flow to node is equal to outgoing flow. The startFlow function assigns initial

excess flows to the all the nodes to start the flow, irrespective of the capacity of outgoing

edges. The function adjustFlow adjusts the flow across all the nodes and edges, such that

total amount of incoming flow to a node should be equal to the total amount of the outgoing

flow. As all three functions modify the IR which is the networkGraph itself, our compiler

would insert the check4adapt at line 3 and line 9 based on the static analysis. However, if

the check4adapt is inserted at line 5 manually, and switching is done at that program point,

the execution of ADAPT LONG RUNNING loop after the switch will begin with line 3. The
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networkGraph which was modified before the switch with the resetFlow, will again try to

reset the flow after the representation switch, but it does not modify the networkGraph again

(since the flow across all the edges and node is zero). Hence there could be more program

points where the data structure switch can occur other the ones found by our tool.

Since the programmer has detailed knowledge of the implementation, she could

use her knowledge to insert the adaptation points manually, improving the timeliness of

responding to adaptation request, however risking a violation of type-safety, IR-safety, or

both. Let us assume the programmer inserts a check4adapt at line 7, and a switching

is done at that point. After switching the representation, the ADAPT LONG RUNNING

loop would resume the execution from resetFlow. This would be incorrect as it violates the

IR-safety, because the resetFlow expects the networkGraph to have no excess flows. Hence

allowing the programmers to define the adaptation points carries a risk of safety violation.

Analysis time. The “Analysis time” row of Table 3.2 presents the sum of static analysis

and source-to-source compilation times — at most 11 seconds for our examined applications.

3.3.2 Dataset and System Specification

Real-world Datasets. For graph applications we used real-world graphs from the Konect [42]

repository. We used snapshots of MovieLens (evolving graph) from 1999 to 2004; the final

snapshot has 3,979,428 edges representing reviews from 8,286 users for 28,240 movies (1.7%

density). For the DBMS application, we used the data and queries from the BG Bench-

mark [6] (Chapter 2). For Memcached we used YCSB [16] to generate key-value queries. For

Space Tyrant, we used a large map with various degrees of crowding and a game “controller”
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Table 3.3: DBMS: throughput of non-adaptive versions and the adaptive version; values in

bold represent the best representation for that workload.

Phase 1 2 3 4 5
Overall

Workload Breakup %INSERT–%SELECT 20–80 50–50 80–20 50–50 20–80

Non-Adaptive Throughput

BTREE (queries/sec) 5,847 725 384 683 5,151 860

RBTREE (queries/sec) 4,752 897 492 801 4,231 1,033

AVLTREE (queries/sec) 4,315 920 422 867 3,854 980

Adaptive Throughput (queries/sec) 5,725 895 465 843 4,977 1,035

Latency (seconds) 1.57 2.12 3.43 5.24

Overhead (queries/sec) 122 25 27 24 175

which drives game play by adding/removing users and generating commands for each user.

System Specification. All experiments were run on a 6-core machine (Intel Xeon CPU

X5680) with 24GB RAM. This system ran CentOS 5.11 with kernel version 2.6.18-398.el5.

Applications were compiled with GCC 4.1.2.

3.3.3 Benefits of Adaptation

DBMS. In this scenario we study how adaptive applications respond to the mismatch

between the data structure and workload (query) characteristics. We chose a workload

size of 5,000,000 queries partitioned into 5 equal sets (execution phases) with different

INSERT–SELECT ratios. The first set has 20% INSERTs–80% SELECTs, while the remaining

sets have ratios 50–50, 80–20, 50–50, and 20–80, respectively. We start the program with

BTREE; as the workload varies, the adaptive version switches representation as needed.

The results are presented in Table 3.3. Note that the adaptive version’s throughput

is close to the best non-adaptive version in each phase, as it adapts to the appropriate version
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Figure 3.4: DBMS: query throughput before, during, and after adaptation.

shortly after the beginning of the phase. The overall throughput is computed by dividing

the total number of queries processed in all 5 phases over total time taken to complete

the phases. The overall throughput of the adaptive version is 1,035 queries/sec, virtually

the same as the best performing representation (RBTREE at 1,033) and 20% higher than

worst-performing representation (BTREE at 860) for the entire execution. For the last phase

(phase 5), Table 3.3 contains no latency value as there was no representation change at the

end of the execution.

To visualize the adaptation, in Figure 3.4 we show how the throughput varies over

time around the interesting (adaptation) region between phase 1 and phase 2, i.e., while

changing to a more INSERT-heavy workload. Before the transition, as workload characteristics

change, the throughput drops due to the mismatch between the characteristics and the

current representation. During the transition, the throughput briefly drops to 0, and then

after the transition to AVLTREE, the throughput stabilizes. The figure reveals that (1) the
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mismatch is detected early on during the change in workload characteristics, and (2) the

transition time is low, relative to the total execution time.

Graph Applications. We use MovieLens as the evolving input graph. The final (year

2004) snapshot has 1.7% density, thus making ADJLIST the best representation (lowest

memory consumption and execution time). However, at the end of 2002, the density was

3.4%, thus making SHARDS the most time-efficient representation. As initial density is less

than 2%, the execution starts with ADJLIST in the first phase. Then, during execution, the

density increases to 3.4% in the second phase, and decreases back to 1.7% in the third phase.

The result of this experiment is summarized in Table 3.4: for each algorithm, we

show the maximum density; completion time, in seconds, for the non-adaptive and adaptive

versions; the transition latency between phases (again, no transition after phase 2); and

the overhead, computed as the difference between phase completion time for the adaptive

version and the non-adaptive version at the same representation.

As we can see, during each phase, the performance of the adaptive version is

close to the best performing representation in that phase as our system selects the most

appropriate version. The overall execution time for non-adaptive versions is calculated as

the sum of execution times for each phase. For the adaptive version, the overall execution

time is the sum of execution times for each phase, plus the time required for transitions. The

overall time of the adaptive version is less than the execution times of the ADJMAT, ADJLIST

and SHARDS by an average of 38%, 2%, and 5% respectively. For the PP application, the

execution time of the adaptive version is 11% more than ADJLIST, and 41% less than ADJMAT,

the worst choice. Hence, the adaptive version proves to be a better choice than using a
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Table 3.4: Non-adaptive and adaptive execution times adaptations for MovieLens graph.

App.
Max Non-adaptive Execution time Adaptive Latency Overhead

Density (%) ADJMAT (sec) ADJLIST (sec) SHARDS (sec) (sec) (sec) (sec)

MSSP

2 1,270 800 910 837 43 37

3.4 2,508 1,639 1,415 1,445 35 30

2 2,103 1,344 1,654 1,380 36

Overall 5,881 3,783 3,980 3,668 103

BC

2 1,197 691 803 727 32 36

3.4 2,399 1,471 1,278 1,311 28 33

2 2,044 1,204 1,419 1,241 37

Overall 5,639 3,366 3,500 3,286 106

MSTK

2 430 261 304 298 14 37

3.4 844 638 511 546 19 35

2 771 473 544 504 31

Overall 2,044 1,372 1,358 1,354 104

BFS

2 1,394 929 1,041 961 22 32

3.4 2,718 1,814 1,695 1,733 17 38

2 2,323 1,678 1,839 1,718 40

Overall 6,436 4,421 4,575 4,421 110

MSTB

2 1,203 739 844 778 15 39

3.4 2,375 1,534 1,370 1,404 18 34

2 2,060 1,245 1,548 1,277 32

Overall 5,637 3,518 3,762 3,466 105

PP

2 72 26 36 35 7 9

3.4 138 62 58 64 1 6

2 186 119 163 125 6

Overall 395 207 256 230 21

single data structure for the entire execution. In addition, we observe that the maximum

transition latency is just 43 seconds, which represents 1.1% of the execution time for MSSP.

To visualize the adaptation, in Figure 3.5 we show how the memory consumption

of graph applications varies over time. We consider two scenarios. First, using the 1999

MovieLens graph, we start in the ADJMAT representation. Since its density is low, a mismatch

is detected and the representation is switched to ADJLIST. Second, we use a MovieLens

snapshot from 2002 when it had 3.4% density. Under this scenario we start with ADJLIST;
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Figure 3.5: Graph applications: memory consumption before, during, and after adaptation

for BC.

our system then switches to SHARDS, the most time-efficient representation. In both scenarios,

we observe that the mismatch is detected at a very early stage and the system switches to

the most efficient representation.

Space Tyrant. We study how the adaptive version quickly rectifies the mismatch between

the current crowding level (Chapter 2) and the current data structure. In a real-world

gameplay users join, play and leave the game. We used a controller which emulates this

scenario and controlled the number of players in the game, thus maintaining the crowding

value. We started the game with 1% crowding and CLIST representation; after 10 seconds

the controller increases the crowding to 10%; after 20 seconds the controller removes players

to bring crowding back to 1%. The results of this experiment are summarized in Table 3.5:

for each time interval, we show the crowding range; total number of commands executed;

the transition latency between intervals (no latency from 1 to 10 seconds as there was no
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transition); and the overhead, computed as the difference between the average throughput

for the adaptive version and the best non-adaptive version. We can see that, in two out of

three time periods, the performance of the adaptive version is better than the non-adaptive

version, since there is a mismatch in that time period. In the first period, from 0 to 10

seconds, there was no transition required, since the controller maintained 1% crowding.

The low overhead incurred during this time period, (5,000 commands/second, i.e., 0.01%),

indicates the efficiency of the adaptive version running with the same representation as

the best non-adaptive version. In the second and third time periods, the adaptive version

has better performance, since there was a mismatch between the crowding value and its

corresponding best representation, hence the overhead is subsumed by increased performance

due to switching. The overall throughput is computed by dividing the total number of

commands executed in all 3 time periods by 30 seconds. Overall, the throughput of the

adaptive version is 3.18% better than CLIST and 42% better than LIST.

To visualize the adaptation, in Figure 3.6 we show how the throughput varies

during game play. Before the first transition, the throughput is decreasing as crowding is

increasing from 1% to 10%. When it crosses 8%, the adaptation logic quickly detects the

mismatch, and triggers the transition from CLIST to LIST. Similarly, between seconds 23

and 24, the adaptation logic detects the change in crowding, and triggers the change from

LIST to CLIST.

Memcached. This application is a high-performance object cache used by sites such as

YouTube, Facebook, Twitter, and Wikipedia [51]. We considered two different hashing

techniques as alternate representations: Jenkin’s hash (JH) used in stock Memcached, and
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Table 3.5: Space Tyrant: throughput under input-triggered adaptation; values in bold

represent the best representation for that phase; units for throughput and overhead are

thousand commands/sec.

Time 1-10 10-20 20-30
Overall

Crowding 1% 1-10% 10-1%

Non-Adaptive Throughput (Kcmd/s)
LIST 2,551 1,388 1,278 1,739

CLIST 4,975 1,958 1,849 2,927

Adaptive Throughput (Kcmd/s) 4,970 2,241 1,860 3,024

Latency (seconds) 0.132 0.206

Overhead (Kcmd/s) 5

Cuckoo hashing (CH) used in its MemC3 variant [20, 61]. Atikoglu et al. [3] have analyzed

Memcached use at Facebook, and found that the distribution of request type ratios (GET:SET)

range from 30:1 to 8:37. JH has faster SETs and slower GETs than CH [20, 61]. We studied the

behavior of Memcached using both representations on workloads with fixed size (10 million)

and found that JH is the better representation when the GET percentage is below 44% while

CH is the better representation above 44%.

To realize the benefits of adaptation, we used YCSB [16] to generate 300 million

queries, in three phases of 100 million. The SET–GET split is 70%–30% in the first phase,

30%–70% in the second phase, and 70%–30% in the third phase. Table 3.6 summarizes the

results. For each phase, we show the workload characteristics; throughput for non-adaptive

and adaptive versions; the transition latency after phases 1 and 2 (no latency for phase 3

since there was no transition). The table shows that during each phase the performance

of the non-adaptive version is close to the best-performing representation in the phase, as

our system quickly detects the workload characteristics and switches to the best-performing
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Figure 3.6: Space Tyrant: throughput of the adaptive version.

representation. The overall throughput is computed by dividing the total number of queries

processed in all 3 phases over total completion time. The overall throughput of the adaptive

version is 2.58% higher than JH and 6.45% higher than CH. The overhead is subsumed

by the benefits of adapting to the best hashing technique in each phase; these findings

clearly show the benefit of adaptation. Figure 3.7 shows the throughput of the adaptive

version: before, during, and after the transition between phase 1 and phase 2. Before the

transition the throughput drops due to representation mismatch. During the transition, the

throughput drops to around 30,000 queries per second, as the transfer of key-values from

one hash to another takes place. After the transition to CH, the throughput increases again.

We conclude the following from this figure: first, the mismatch is detected early during

the change in workload characteristics; second, although the throughput decreases during

the transition, transition time is low compared to the total execution time; third, there is

significant performance improvement after the transition.
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Table 3.6: Memcached: throughput under input-triggered adaptation; values in bold

represent the best representation for that phase; units for throughput and overhead are

million queries/sec.

Phase 1 2 3
Overall

Workload Breakup (%GET--%SET) 30–70 70–30 30–70

Non-Adaptive Throughput (Mqueries/s)
JH 1.65 1.27 1.67 1.51

CH 0.95 1.86 0.95 1.45

Adaptive Throughput (Mqueries/s) 1.45 1.59 1.64 1.55

Latency (seconds) 0.001 0.001

Overhead (Mqueries/s) 0.25 0.27 0.03

3.3.4 Overhead of our Approach

The superior performance of the adaptive version is in part achieved because the

overhead of our approach is low. The overhead of adaptation has two components: the

overhead imposed by the runtime system; and the overhead of switching between the data

structure representations.

Runtime Overhead. We measured the overhead of the runtime system as follows. For

graph applications, we computed the difference in execution time between the adaptive

version and the non-adaptive version for the same data structure in the respective execution

phase; the sum of the overheads in each phase gives the execution overhead of the runtime

system for a particular graph application. For DBMS, ST, and MEMC, we found the

difference in throughput between the adaptive and non-adaptive versions executing with

the same representation in the corresponding phase; the average of the overhead in each

phase gives the execution overhead. We note from Table 3.3 (last row) that the DBMS
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Figure 3.7: Memcached: throughput before, during and after transition.

overhead imposed by our system is on average 4% of the throughput in each phase. Similarly,

Table 3.4 (last column) shows that for all graph applications, the execution time overhead

imposed by our runtime system is on average 5.2% of the total execution time. Memcached

has higher overhead (15%) than other applications, as the mismatch check is performed at

the end of every query. The memory overhead of the runtime system itself ranges between 9

to 23 KB, which is negligible compared to the memory used by the rest of the application.

Conversion Overhead. We measured the time and memory overheads incurred during

representation changes. For graph applications, we used BC running on MovieLens graph’s

first snapshot (1.7% density). For DBMS, we used a workload of 5,000,000 queries with

50% INSERTs and 50% SELECTs with 1,000 initial records in the database. For MEMC we

used 100 million queries, 30% GETs and 70% SETs. For ST, we used the same game play as

for measuring the benefits of adaptation. The memory overhead is the additional memory

required to carry out the transition between data structures. The time overhead is the

duration of the conversion. In Table 3.7 we show the minimum and maximum time/memory
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overheads across all adaptations. The results show that conversion time is approximately

1% of the total execution time. We also infer that although there is a memory spike (at

most 30.12 MB) for some conversion scenarios, it lasts for a short time (less than 2% of total

execution time). The additional memory required to handle transition for Space Tyrant is

zero, as there was no additional data structure required to carry out the transition.

Table 3.7: Conversion overhead.

Application Conversion time Memory

overhead (seconds) overhead (MB)

min max min max

Graph 3.65 5.84 0.35 30.12

DBMS 4.25 6.54 7.62 7.62

Space Tyrant 2.84 2.84 0 0

Memcached 3.16 3.82 0.07 0.07

3.3.5 Effect of Late Adaptation

We now turn to studying the effect of adaptation occurring late in the execution.

For this experiment, we used the wiki-Vote graph modified to 20% density for which

SHARDS is the best choice. We consider two scenarios, starting with ADJMAT and starting

with ADJLIST. We turned off the automatic adaptation based on input data monitoring

and forced adaptation at the 75% point in the execution. We compare the total execution

time in both scenarios with the three non-adaptive versions. In Figure 3.8 we present the

execution time, normalized to ADJLIST, of SHARDS, ADJMAT, ADJLIST (three leftmost bars)

and adaptive versions starting the execution with ADJMAT and ADJLIST (two rightmost bars).

We observe that, for all the applications, even if the adaptation occurs late, the execution
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Figure 3.8: Normalized execution times of adaptive and non-adaptive versions in the late

adaptation scenario.

time is still in between the worst (ADJLIST) and the best (SHARDS) representation for the

corresponding input graph.

3.3.6 Timeliness Improvements due to Static Analysis

To quantify the benefits of the timeliness-improving static analysis, we ran all

the benchmarks as follows: all start in the wrong representation, so an adaptation will be

triggered when deemed safe. We measured response time as the difference between the time

the input monitor has signaled an adaptation and the time when the program reaches a

safe adaptation point. We performed this experiment in two settings: first, the program
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Table 3.8: Response time without/with timeliness analysis.

Analysis Response time (sec.)

MSSP BC MST-K BFS MST-B PP Others

Safety avg. 6.32 2.17 3.62 3.57 4.52 2.18 <0.001

Only max 13.87 11.43 8.35 7.42 43.17 4.21 <0.001

Safety & avg. 4.51 1.23 2.17 2.01 1.13 0.57 <0.001

Timeliness max 5.11 5.72 3.56 2.77 6.41 1.02 <0.001

with the safety analysis enabled and a single adaptation point in the main loop; second,

using our normal compilation scheme, with both the safety and timeliness analyses enabled,

hence the compiler could discover additional adaptation points. We present the average

and maximum (worst-case) response times in Table 3.8. On average, the timeliness analysis

reduces response time by 45%. For Space Tyrant, Memcached and DBMS, (the “Others”

column) this benefit is less apparent since adaptation can occur at the end of each query. For

graph algorithms, however, where a long-running block consists of several compute-intensive

statements, the benefit is clear, e.g., in one MST-B scenario, the response time without the

timeliness analysis was 43.17 seconds while with the analysis it was just 0.57 seconds, out of

a total execution time of 874 seconds.

3.4 Summary

In this chapter, we have presented our approach for switching to appropriate data

structure representations depending on the input/workload characteristics. In this approach,

programmers render applications (constructed from scratch, or off-the-shelf) adaptive by

simply indicating the alternate implementations of a certain data structure and the main

55



computation loops in the application. The programmer, however, does not need to be

concerned with specifying where adaptation should be performed, as that could jeopardize

safety, substantially increase programmer burden, and reduce opportunities for adaptation.

Our infrastructure uses a suite of static analyses to: first, find safe adaptation points in the

program; second, increase adaptation opportunities hence increase timeliness, i.e., reduce

the time interval between the time where the adaptation need is signaled to when it is

effected. The evaluation has demonstrated the effectiveness, ease-of-use and efficiency of

our technique, moreover, it has showed that the programming effort required to convert

off-the-shelf applications into adaptive applications is modest (9 annotations per application)

and the benefits of our technique can be substantial.
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Chapter 4

Employing Data Transformations

to Create Multiple Representations

Big Data applications process inputs which can easily run into GBs in size even

when using the most memory-efficient data structure representation. For example, the social

networking graph Friendster (FT) [42] occupies 28GB in memory when stored in the ADJLIST

representation. Many graph applications are iterative in nature and thus the entire input

graph is accessed multiple times making the total cost of data access very high. Completing

a widely-used rank computing graph application, Pagerank, on the Friendster graph takes

31 iterations; thus the large input graph is accessed multiple times. Even though graph

applications are run in parallel, their execution time can be very high. The performance of

such applications can be enhanced by reducing the number of access to the graph.

In this chapter, we propose a novel two-phased processing technique, where we

accelerate the execution of parallel vertex-centic graph applications by using multiple rep-

57



resentations of the input graph. The first phase includes processing of a representative

input graph which is smaller in size than original input graph. We present our local and

non-interfering reduction technique to extract the representative input from the original

input graph. Since the first phase processes the smaller input graph, the number of data

accesses is reduced, which in term saves execution time. The second phase uses the original

input graph to reduce the error (possibly converging to accurate results), present in results

produced by the first phase due to missing vertices and edges.

The rest of the chapter is organized as follows. Section 4.1 presents an overview of

our proposed technique. Section 4.2 introduces the technique for input graph reduction –

the transformation required to generate the representative input (creating multiple represen-

tations of input) and the properties of transformation. In Section 4.3 we present a detailed

analysis on how these transformation would affect the vertex-centric graph algorithms

to benefit from the two-phased model. Section 4.4 presents: first, a theoretical analysis

of the performance benefits that can be achieved by using two-phased approach; second,

the generality of two-phased execution technique to accelerate the processing in different

scenarios.

4.1 Overview of Our Approach

This section provides an overview of our two-phased processing model. While graph

reduction-based processing strategies have been used in various works [26, 52], we focus on

iterative general purpose graph algorithms and operate on a single reduced graph along

with the original input graph (i.e., there are no multiple levels in the hierarchy). We use
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the vertex-centric programming model as it is intuitive and commonly used by many graph

processing systems like GraphLab [46], GraphX [88], and Galois [62]. We consider directed

graphs in our discussion; our approach can easily be simplified to handle undirected graphs.

Given an iterative vertex-centric graph algorithm iA and a large input graph G,

the accurate results of vertex values VG can be computed by applying iA to G, that is:

VG = iA(G)

To accelerate this computation, we use the following steps:

• Reduce input G to G′: we transform the large input graph G into a smaller graph G′

via multiple applications of an input reduction transformation T .

• Compute results for G′: we apply iA to G′ to compute VG′ . Computing on VG′ takes

lesser time than on VG .

• Obtain results for G: using simple mapping rules mRs, we convert the results VG′ to

V 1
G . Then, via multiple application of update rules in iA, we reduce the error in V 1

G

and obtain the result V 2
G .

Thus, our approach replaces computation VG = iA(G) by:

[INPUT REDUCTION] G′ = T ∆(G)

[PHASE 1] VG′ = iA (G′)

[MAP RESULTS] mR : VG′ → V 1
G

[PHASE 2] V 2
G = iA (V 1

G , G)

where ∆ is a parameter that controls the degree of reduction performed as it represents the

number of applications of T to G. Thus, the greater the value of ∆, the smaller the size of
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the reduced graph G′. Depending on various properties of input reduction transformations

T (Section 4.2.2) and the nature of iterative algorithm iA, the computed values will be

accurate, i.e., V 2
G = VG . However, we identify cases in which V 2

G may not be the same as VG

(Section 4.3) — the computed results are approximate for those cases.

4.1.1 Efficient Input Reduction Transformations

Given the iterative nature of algorithms considered, applying iA to G′ as opposed to

G is expected to result in execution time savings. However, these savings can be offset by the

extra overhead due to application of input reduction transformations and result converting

rules. Therefore we must ensure that these steps are simpler than the iterative computation

that they aim to avoid. We do so by placing the following restrictions on the kind of

transformation that is allowed (local) and the sequence of its application (non-interfering)

permitted for reducing G to G′.

A: Local transformation. Transformation T (v,G), where v is a vertex in G, is a local

transformation if its application only examines edges directly connected to v. The subgraph

involving v and its edges is denoted as subGraph(T (v,G)).

G1 ← T (v1,G); G2 ← T (v2,G1) · · ·

· · · G∆−1 ← T (v∆−1,G∆−2); G′ ← T (v∆,G∆−1)

B: Non-interfering sequence. T ∆, a sequence of ∆ applications of local transformation

T as shown above is non-interfering if and only if: vertices v1 · · · v∆ are distinct vertices in

G; and each subGraph(T (vi,G)) is contained in G. Note that the above restrictions (local
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and non-interfering) ensure that input reduction is performed via a single pass over the

original graph because:

• An edge vi → vj from G is only examined when considering the application of T to vi

or vj ; and

• Any vertex or edge created during one application of T cannot be involved in any

other application of T .

Thus, the cost of applying the transformation sequence is linear in the size of G, i.e., the

number of vertices and edges in it. Moreover, the cost of converting results is proportional

to the size of the transformed portions of G. In contrast, those computations over the

transformed portions of G that we avoid would have required repeated passes due to the

iterative nature of graph algorithms considered.

In conclusion, the restrictions on transformations and sequences ensure that the

cost of applying them will be less than the cost of the computation they avoid, leading to

net savings in execution time.

4.1.2 Original and Two-Phased Algorithms

Next we summarize our approach by presenting the general form of an original

iterative vertex-centric graph algorithm (Algorithm 1) and its corresponding two phased

version (Algorithm 2). In Algorithm 1, function iA represents the original algorithm whose

application to graph G produces the accurate (VG) result. In Algorithm 2, only the functions

specific to two-phased approach is shown, while other function which is present original

iterative vertex is omitted. Function TPiA in Algorithm 2 is the two phased version that
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calls iA (Algorithm 1) and iAP2 in first and second phases. Note that the processing logic in

iAP2 (lines 32-37) is exactly the same as that in iA (lines 3-6). The result (V 2
G ) is obtained

from the application of TPiA to G. The result obtained from TPiA might not be accurate;

we discuss this in Sections 4.3.1 and 4.3.2.

Algorithm 1: Iterative Vertex-Centric Graph Algorithm.

1 Function iA (input G)
2 Initialize VG & WorkQ
3 while ( ! WorkQ.empty ) do
4 v ← WorkQ.getFirst()
5 if ( UpdateVals(v, VG)) then
6 WorkQ.add ( outNeighbors (v) )

7 return VG

8 Function UpdateVals(v, VG)
9 Updated ← false

10 if ( updateCheck(v, inNeighbors(v) ) then
11 update VG [v]
12 Updated ← true

13 return Updated

ReduceGraph examines the vertices in G one at a time and if T (v,G′) is non-

interfering with transformations already applied, then it is applied on v. The function NI

enforces non-interference by ensuring that all vertices and edges in subGraph(T (v,G)) are

being examined for the first time. The algorithm terminates after applying ∆ transformations.

The function iAP2 copies results from vertices in G′ to vertices in G for each vertex that is

present in both graphs. The vertices in G that were eliminated in the process of creating G′

are assigned initial values by initval(). Then, similar to iA, UpdateVals is applied to V 2
G

until convergence.
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Algorithm 2: Two-Phase Iterative Vertex-Centric Graph Algorithm.

1 Function TPiA (input G)
2 G′ ← ReduceGraph ( G, T , ∆ )
3 V 1

G ← iA(G′)
4 V 2

G ← iAP2(V 1
G , G)

5 return V 2
G

6 end
7 Function ReduceGraph (G, T , ∆)
8 G′ ← G
9 for ( Vertex v : G ) do

10 if ( NI ( subGraph(T (v,G)) ) then
11 G′ ← T (v,G′)
12 ∆← ∆− 1
13 if ( ∆ == 0 ) then
14 break
15 end

16 end

17 end
18 return G′
19 end
20 Function iAP2(V 1

G , G)
21 Initialize WorkQ
22 for ( Vertex v : G ) do
23 if ( v ∈ G′ ) then
24 V 2

G ( v ) ← V 1
G (v)

25 end
26 else
27 V 2

G ( v ) ← initval ( )
28 WorkQ.add ( v )

29 end

30 end
31 WorkQ.add ( Vertex v s.t. v is affected by addition / deletion of edges)
32 while ( ! WorkQ.empty ) do
33 v ← WorkQ.getFirst()
34 if ( UpdateVals (v, VG) ) then
35 WorkQ.add ( outNeighbors (v) )
36 end

37 end
38 return VG
39 end
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Algorithm 3: SSSP Algorithm.

1 Function TwoPhaseSSSP(inputG,srcVertex )
2 B VG of a vertex v = length of the shortest path from srcVertex to v

3 Function ReduceGraph(G, T , ∆, srcVertex)
4 B srcVertex is not part of applied T ’s

5 Function InitializeSSSP(input G; srcVertex)
6 B Initialize VG
7 for ( Vertex v : G ) do
8 VG [v] ← ∞
9 VG [srcVertex] ← 0

10 B Initialize WorkQ
11 WorkQ.add( outNeighbors(srcVertex) )

12 Function UpdateVals (v, VG)
13 Updated ← false
14 for ( Vertex v′ : inNeighbors (v) ) do
15 if (VG [v] > VG [v′] + wt(v′, v)) then
16 VG [v] ← VG [v′] + wt(v′, v)
17 Updated ← true

18 return Updated

19 Function Phase2SSSP(VG′ , G)
20 initval() assigns ∞ or results from phase 1

4.1.3 Example: Single Source Shortest Paths

Algorithm 3 presents the two-phased version of the Single Source Shortest Paths

(SSSP) algorithm. Only the code sequences that are specific to SSSP are shown while other

code sequences from Algorithm 2 remain the same. The function UpdateVals() computes

the shortest path for a vertex v based on its incoming edges.

Figure 4.1 illustrates graph reduction by converting G to G′ and Figure 4.2 illustrates

how the two-phased SSSP algorithm works on the example graph by first computing VG′

(Figure 4.2-a), then feeding these computed results to V 1
G (Figure 4.2-b), and then computing

V 2
G (Figure 4.2-c). In this case a single application of UpdateVals in the second phase
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Figure 4.1: Graph reduction example for multiple representation of data technique.

yields precise results (i.e., V 2
G = VG). In general, for large complex graphs and different

applications, this may not be the case; however, the results computed in the first phase will

accelerate the second phase.

4.2 Input Reduction

We present six transformations to reduce input graph and discuss their properties

to gain useful programming insights.

4.2.1 Transformations for Input Reduction

Since many graph algorithms are super-linear in the number of edges, the goal of

graph reduction is to reduce the number of edges in the graph. If all edges involving a node

are eliminated, then so is the node. Figure 4.3 shows the transformations. The red dashed

edges are the ones that are eliminated by the transformations. Algorithm 4 presents the

algorithm which examines every vertex of the input graph (G), and considers applicability

of transformations.
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Figure 4.2: Two-phased SSSP processing on G & G′.

T1/T2. If vertex v has no incoming/outgoing edges, its outgoing/incoming edges are removed

and v is dropped.

T3. For every vertex v with a single incoming and a single outgoing edge, transformation

T3 eliminates v and adds a direct edge between the other end vertices of v’s edges.

Thus, in a single step we bypass multiple nodes; however, for simplicity we consider

bypassing a single node only. Note that T3 ensures that a path between two vertices v

and w is preserved even though direct edges or intervening nodes are dropped.

T4. For a vertex v with high number of incoming edges,1 transformation T4 merges the

vertices for those incoming edges with v. T4 achieves input graph reduction by

coalescing directly connected nodes so that the edges connecting them are eliminated

1 An indegree threshold can be set while using T4 and T6. Based on our experiments, we set this threshold
to 1,000.

66



(a) T1 (inDegree = 0). (b) T2 (outDegree = 0).

(c) T3 (inDegree = outDegree = 1).

(d) T4 (coalesce nodes).

(e) T5 (drop edge). (f) T6 (drop edges).

Figure 4.3: Transformations for Input Reduction.

and a reduced graph with fewer edges is obtained. This approach does not reduce

connectivity, rather it can introduce new directed paths that were not present in the

original graph, hence increasing connectivity. As seen in Figure 4.3, T4 adds a path

between the two gray vertices which is not present in the original graph.

T5. This transformation drops edge v → w, if there exists a u such that v → u and u→ w.

Effectively, for vertex v, T3 drops the outgoing edge v → w if a neighboring vertex

of v is directly connected to w. As in T3, T5 ensures path preservation; however, T5
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increases the hops/distance between connected vertices.

T6. Transformations T1–T5 can only be applied when their preconditions are satisfied. Thus,

the amount of reduction obtained will depend upon the input graph’s structural

characteristics. In fact, in our experiments the input graph FT is greatly reduced by

T1–T5 compared to the other graphs. Hence, we introduce transformation T6 which

randomly eliminates incoming edges for a given vertex with high indegree. In this case,

the edges are dropped in proportion to the vertex’s indegree. Since T6 can aggressively

eliminate edges, it is applied when none of the previous transformations (T1–T5) can

be used because the vertex does not satisfy their corresponding preconditions.

4.2.2 Transformation Properties

We consider each transformation and deduce strong guarantees about various

properties of the transformed graph G′ compared to that of the original graph G. These

guarantees are categorized into two types: a) Structural Guarantees that determine a

relation of structural properties, i.e., edges, vertices and components ; and b) Non-Structural

Guarantees that determine a relation of edge-weights.

Structural guarantees. Consider six transformational properties that determine the

relation of structural properties of G′ with G when transformation Tk (1 ≤ k ≤ 6) is applied.

[V-ADD]: Tk results in vertex v s.t. v ∈ G′, v /∈ G.

[V-SUB]: Tk results in vertex v s.t. v ∈ G, v /∈ G′.

[E-ADD]: Tk results in edge e s.t. e ∈ G′, e /∈ G.

[E-SUB]: Tk results in vertex e s.t. e ∈ G, e /∈ G′.
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Algorithm 4: Graph Reduction Algorithm.

1 Algorithm TRANSFORM( G(V, E) )
2 E ′ ← E
3 for ∀v ∈ V do
4 if inDegree(v) = 0 then
5 B apply T1 : drop v → ∗
6 E ′ ← E ′\ outEdges(v)

7 else if outDegree(v) = 0 then
8 B apply T2 : drop ∗ → v
9 E ′ ← E ′\ inEdges(v)

10 else if inDegree(v) = outDegree(v) = 1 then
11 B apply T3 : bypass v
12 E ′ ← (E ′ \ {u→ v, v → w}) ∪ {u→ w}
13 else if all inNeighbors(v) are unchanged then
14 B apply T4 : coalesce v and inNeighbors(v)
15 E ′ ← coalesce(G, E ′, v)

16 if G requires further reduction then
17 for ∀v ∈ V s.t. v is unchanged do
18 if w ∈ outNeighbors(v) s.t. w is unchanged and outNeighbors(v)

∩ inNeighbors(w) 6= φ then
19 B apply T5 : drop v → w
20 E ′ ← E ′ \R where R ⊆ inEdges(v)

21 return E ′ of G′

22 Algorithm COALESCE ( G(V, E), E ′, v )
23 for ∀(w → v) ∈ inEdges(v) do
24 E ′ ← E ′ \ {w → v}
25 for ∀(u→ w) ∈ inEdges(w) do
26 E ′ ← E ′ \ {u→ w}
27 E ′ ← E ′ ∪ {u→ v}
28 for ∀(w → u) ∈ outEdges(w) do
29 E ′ ← E ′ \ {w → u}
30 E ′ ← E ′ ∪ {v → u}

31 return E ′ of G′

[C-MERGE]: Tk results in a new component c s.t.

c1 ∈ G, c2 ∈ G, c = c1 ∪ c2, c ∈ G′.

[C-SPLIT] Tk results in new components c1 and c2 s.t.
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T1 7 3 7 3 7 ?
T2 7 3 7 3 7 ?
T3 7 3 3 3 7 7

T4 7 3 3 3 7 7

T5 7 7 7 3 7 7

T6 7 7 7 3 7 ?

Table 4.1: Structural guarantees for each transformation. 3and 7 indicate occurrence and

non-occurrence of the corresponding property respectively, whereas ? indicates that the

corresponding property may or may not occur.

c1 ∈ G′, c2 ∈ G′, c = c1 ∪ c2, c ∈ G.

It is easy to follow that T1 and T2 guarantee occurrence of [V-SUB], [E-SUB] and

non-occurrence of [V-ADD], [E-ADD], [C-MERGE]. Also, [C-SPLIT] can occur when these

two transformations are applied. Transformations T3 and T5 guarantee occurrence of [E-SUB]

and non-occurrence of [V-ADD], [C-MERGE], [C-SPLIT]. T3 also guarantees occurrence of

[E-ADD] and [V-SUB], whereas T5 also guarantees non-occurrence of [E-ADD] and [V-SUB].

Transformation T4 guarantees occurrence of [V-SUB], [E-ADD], [E-SUB] and non-occurrence

of [V-ADD], [C-MERGE], [C-SPLIT]. Finally, T6 guarantees occurrence of [E-SUB] and

non-occurrence of [V-ADD], [V-SUB], [E-ADD], [C-MERGE]. While dropping edges using

T6, [C-SPLIT] can occur.

Table 4.1 overviews all structural properties guaranteed by each of the transforma-

tions. Note that all transformations guarantee non-occurrence of [V-ADD] and occurrence

of [E-SUB] which result in reduction of transformed graph sizes.
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Non-Structural guarantees. Since transformations T3 and T4 guarantee occurrence of

[E-ADD], correct edge weights need to be assigned to newly added edges for weighted graphs.

We define two transformational properties which determine the relation of edge weights of G′

with that of G when transformation Tk (1 ≤ k ≤ 6) is applied. In the following expressions,

a =⇒ b means b ∈ G′ is resulted from a ∈ G.

[E-EQUAL] Tk results in edges e1 and e2, both with weights w(e) s.t. e1 ∈ G, e1 /∈ G′, e2 ∈

G′, e2 /∈ G, e1 =⇒ e2.

[E-FUNC] Tk results in edges e1, e2 and e3, with weights w(e1), w(e2) and w(e3) respectively

s.t.

{e1, e2} ∈ G, {e1, e2} /∈ G′, e3 ∈ G′, e3 /∈ G,

w(e3) = func(w(e1), w(e2)), (e1, e2) =⇒ e3.

[E-FUNC] represents the weight of the newly added edge as a function of weights of edges

from the original graph that resulted in this new edge. For example, the new weight can be

set as the sum, minimum, or maximum of the original edge weights ([E-SUM], [E-MIN], or

[E-MAX] respectively).

Transformation T3 guarantees occurrence of [E-FUNC] and non-occurrence of [E-

EQUAL]. For transformation T4, both [E-EQUAL] and [E-FUNC] can occur. As we will

see in Section 4.3.1, we use [E-SUM] to benefit the exploratory and traversal based graph

algorithms.
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4.3 Programming for Transformed Graphs

Using the transformations described in Section 4.2.2, we discuss properties of

vertex-centric graph algorithms that permit them to benefit from the two-phased model.

4.3.1 Impact of Transformations on Vertex Functions

Since the aforementioned transformations change the structural and non-structural

properties of the graph, it is important to determine the impact of these changes on how

programmers should correctly express graph algorithms. Even though custom algorithms

can be written so that computations performed on transformed graphs always lead to correct

values, we eliminate this programming overhead by supporting the popular vertex centric

programming for our two-phased processing model.

Vertex-centric programming. In this model, algorithms are expressed in a vertex-

centric manner, i.e., computations are written from the perspective of a single vertex. These

computations, called vertex functions, are iteratively executed on all vertices, until all the

vertex values in the graph stabilize. Vertex functions typically use the values coming from

its incoming edges as inputs for computation. Hence, the newly computed value of a vertex

depends on the values coming from its incoming edges. Moreover, the asynchronous nature

of the graph algorithms requires computations over updates coming from incoming edges to

be commutative and associative — this way, updates coming from different incoming edges

can be processed in any order, e.g., the order of their arrival.

To guarantee correct answers at the end of computation, we need to reason about

the behavior of vertex functions, first when applied on the transformed graph G′, and later
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Algorithm 5: Variants of SSSP vertex functions.

1 Function SSSP-IN(Vertex v)
2 if ( v = source ) then
3 return 0

4 minPath←∞
5 for ( Vertex u : inNeighbors (v) ) do
6 if ( u.path+ wt(u,w) < minPath ) then
7 minPath← u.path+ wt(u,w)

8 return minPath

9 Function SSSP-SIN(Vertex v)
10 if ( v = source ) then
11 return 0

12 minPath← v.path
13 for ( Vertex u : inNeighbors (v) ) do
14 if ( u.path+ wt(u,w) < minPath ) then
15 minPath← u.path+ wt(u,w)

16 return minPath

on the original graph G. For illustration, we use two versions of the SSSP vertex functions,

SSSP-IN and SSSP-SIN, shown in Algorithm 5. Computations in SSSP-IN only depend on

values coming from incoming neighbors, whereas those in SSSP-SIN depend on the previous

value of the vertex in addition to the values coming from neighbors. The only difference

between SSSP-IN and SSSP-SIN is the initialization of minPath (line 3 and 14 marked in

red); the rest of the functions are identical. Note that both of these variants produce correct

results when used in the traditional vertex centric processing model. However, they behave

differently when used in our two-phased processing model, in which only SSSP-IN leads to

accurate results.

Let us evaluate each of the structural and non-structural properties which are

affected by our transformations.
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(A) [V-SUB] and [E-SUB]: [E-SUB] leads to computations being performed

even when all the incoming edges of a vertex are not available. Such computations are

equivalent to that in the staleness-based (i.e., relaxed consistency) computation model [84]

where the edges can potentially contain stale values; in this case, missing edges can be

viewed as edges with no new contribution. The same argument also holds true for [V-SUB]

since the effect of vertex deletion is viewed as edge deletion by its neighbors, reducing to

[E-SUB]. In both of these cases, SSSP-IN and SSSP-SIN produce an over-approximation of

path distance when applied on G′, compared to the precise distance computed on G, i.e.,

minPath(G′) ≥ minPath(G). In the second phase when missing vertices and edges become

available in G, this approximation automatically gets corrected.

(B) [E-ADD], [E-EQUAL], and [E-FUNC]: Transformations resulting in

[E-ADD] are introduced in order to preserve the connectivity in the graph which is essential

for various traversal-based graph algorithms. Moreover, both [E-EQUAL] and [E-SUM]

attempt to create edge-weights of newly added edges to represent an approximation of

the distance between corresponding vertices in the original graph. This allows traversal

algorithms to proceed with computations based on those newly added edges since the

results for transformed graphs are close to the results for the original graph, and hence can

accelerate processing over the original graph in the second phase. However, care must be

taken to ensure that algorithms which cannot tolerate such newly added relationships do

run correctly; in such cases, the newly added edges can be eliminated dynamically from

the computation. When [E-ADD] results from eliminating intermediate vertices such that
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there is a path between the end vertices in G (as in T3), correctness of both SSSP-IN and

SSSP-SIN is guaranteed by [E-SUM].

However, T4, which results in [E-EQUAL], can add an edge between two vertices

across which a directed path did not exist in G. In this case, the approximation computed by

SSSP-IN and SSSP-SIN can include calculated paths that are smaller than the true shortest

paths. During the second phase using G, SSSP-IN recovers from such an approximation since

the computation of a path does not depend on its own previous value, resulting in 100%

accurate results.2 On the other hand, computation in SSSP-SIN relies on the previously

computed path value for the given vertex, and hence SSSP-SIN cannot recover from an

approximate solution. In this case, instead of directly using [E-EQUAL], the edge weight

for such newly added edges resulting in new paths can be set to ∞ ([E-INF]) which can

guarantee 100% accurate results for SSSP-SIN as well.

(C) [C-SPLIT]: Finally, transformations resulting in [C-SPLIT] typically do not impact

correctness since computations are performed locally at vertex-level. If the algorithm requires

collaborative tasks at component level, they can be performed correctly in the second phase

on the original graph. In our examples, both SSSP-IN and SSSP-SIN remain unaffected by

[C-SPLIT].

Transformations beyond T1–T6. Note that our transformations can be used as funda-

mental building blocks to create more complicated transformations which can be applied

to reduce the graph size. Conversely, the correctness of graph algorithms while using any

new transformation Tx (x > 6) can be argued by reducing the new transformation to one

2This is true for graph structures consisting of loops as well.
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or many of the proposed set of transformations. If there exists a sequence of transforma-

tions among T1–T6 which produces the same transformed subgraph as that produced by

Tx, correct answers can be guaranteed at the end of computation using the transformed

graph produced by Tx. For some Tx which cannot be expressed as a sequence of proposed

transformations, arguments using their structural and non-structural properties can be used

to ensure correctness of results. Note that this relationship is transitive and hence, the newly

proved Tx can be further used along with T1–T6 to prove correctness of results while using

other new transformations.

Algorithm Vertex Function

SSSP v.path← min
e∈inEdges(v)

(e.source.path+ e.wt)

SSWP v.path← max
e∈inEdges(v)

(min(e.source.path, e.wt))

CC v.component← min
e∈edges(v)

(e.other.component)

GC

change← ∨
e∈edges(v)

(v.color == e.other.color)

if change == true then:

v.color ← c : where ∀e∈edges(v)(e.other.color 6= c)

PR v.rank ← 0.15 + 0.85×
∑

e∈inEdges(v)

e.source.rank

CD
∀e∈edges(v)frequency[e.other.community] += 1

v.community ← c : where frequency[c] = max
i∈frequency

(frequency[i])

Table 4.2: Various vertex-centric graph algorithms. SSSP, SSWP, CC, PR, and GC produce

100% accurate results.
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4.3.2 Graph Algorithms

We now discuss each of the graph algorithms used in this work. Table 4.2 shows

details of vertex functions. We will argue that PR, SSSP, SSWP, GC, and CC produce 100%

accurate results whereas the same accuracy cannot be ensured by CD.

(A) Shortest & Widest Paths: As discussed in Section 4.3.1, when shortest path

(SSSP) is computed on G′, the transformations lead to an approximate solution which

gets corrected in the second phase of processing when using SSSP-IN. For the widest path

(SSWP), recall that [E-SUM] is a specialization of [E-FUNC] which can support a wide

range of such traversal based algorithms. Hence, SSWP can be supported by ensuring that

the weight of any newly added edge is the minimum of the edges whose removal caused the

addition of this new edge ([E-MIN]). In this case, [E-MIN] ensures that the calculated path

width in G′ is always at most that of the equivalent path in G.

(B) Connected Components: Since the main idea behind CC is that vertex values

within a component are the same and those in different components are different, we deter-

mine its correctness using [C-MERGE] and [C-SPLIT] properties. All the transformations

guarantee non-occurrence of [C-MERGE]; hence, values flowing in different components

of the original graph will always be different in the transformed graph. When [C-SPLIT]

occurs, vertices within the same component of the original graph can now belong to different

components of the transformed graph, leading to different values flowing in the same original

component. This approximation gets corrected when these vertices are re-grouped together

into the same component in the second phase; the computation simply picks one of the

vertex values to flow across the entire component.
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(C) Graph Coloring: The underlying idea behind GC is to assign different colors to

the end vertices of every edge while using minimal 3 set of colors to color all vertices. Hence,

we determine its correctness using [E-ADD] and [E-SUB] properties. When [E-ADD] occurs,

an edge connects two vertices in G′, which were disconnected in G. Even though this causes

the two vertices to be assigned different colors, it does not violate the correctness of the

solution: when the edge is removed in the second phase, the color assignment for one of these

two vertices gets updated and is propagated throughout the graph. When [E-SUB] occurs,

vertices which are connected by an edge in G become disconnected. This can cause the

vertices to be assigned the same color when processing on G′. However, during the second

phase, these edges become available in G which re-processes the vertices and hence, the

self-correcting nature of the algorithm detects and corrects the coloring inconsistency. This

in turn ensures that different colors are assigned to connected vertices. Note that different

executions of the same original graph coloring algorithm on the same graph can result in

different color assignments and minimal number of colors, i.e., the set of correct solutions is

not a singleton and hence, the solution computed by our two-phased approach is one of the

solutions in the correct set because it adheres to the two constraints of the problem.

(D) PageRank: As shown in [21], PR converges to the correct solution regardless of the

initial vertex values. With different initializations, the path to convergence changes. Since

computations over G′ provide an approximation of the final results, these results, when fed

as initialization values for G, cause the second phase to converge faster.

3Graph coloring is NP-complete and hence the constraint is usually relaxed to minimal colors which can
be solved in polynomial time.
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(E) Community Detection: CD detects communities in the graph by propagating

labels that are most frequent among the immediate neighborhood of the vertices. Both

[E-SUB] and [E-ADD] influence this computation since the frequency of labels get affected

by edge addition/deletion, which leads to an approximation at the end of first phase. During

the second phase when G becomes available, this approximation may not be fully corrected

because individual corrections due to availability of original edges might not affect the highly

approximate frequency calculated in previous iterations. This can lead to results which are

not accurate.

Early termination in the first phase. A key advantage of our approach is that none of

the algorithms require processing over G′ to converge to its final solution before moving on

to G. This is because the intermediate values produced while processing G′ also represent a

valid approximation of the final solution. Hence, to speed up the computation even further,

we can employ early termination of first phase, where the computation does not wait to

reach to its converged solution, and the available computed values are directly used in the

second phase to process the original graph.

4.4 Analysis and Generality

We first theoretically analyze the performance benefits that can be achieved by

our two-phased model and then discuss the generality of our approach to achieve similar

benefits in different scenarios.
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4.4.1 Analysis

Let PG and PT be the average execution times of a single iteration over G (original

graph) and GT (reduced graph) respectively. Further, let P T
G be the average execution time

of a single iteration over G in the second phase using computed results fed from GT to G.

Note that P T
G < PG. Moreover, since |GT | < |G|, i.e., GT has fewer edges than G, we know

that PT < PG. In order to accelerate processing using the two-phased approach, we require:

I1.PT + I2.P
T
G < I.PG (4.1)

where I1, I2, and I are the number of iterations in which GT is processed in the first phase, G

is processed in the second phase when computed results are fed from GT , and G is processed

in the original processing model, respectively. Upon rearranging Equation 4.1 we get:

I1.PT < I.PG − I2.P
T
G (4.2)

which conveys that in order to achieve benefits from our technique, the savings from the

second phase (I.PG − I2.P
T
G ) should be larger than the time spent in the first phase (I1.PT ).

For example, if we want to accelerate the overall processing by 25%, we should

have:

I1.PT +
1

4
.I.PG = I.PG − I2.P

T
G

=⇒ I1.PT =
3

4
.I.PG − I2.P

T
G

=⇒ I1.PT <
3

4
.I.PG  |GT | <

3

4
.|G| (4.3)

The above implication from processing times to graph sizes (|G| and |GT |) is an approximation
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that holds true as GT is created primarily by dropping vertices and edges from G and hence,

I1.PT reduces proportionately compared to I.PG.

Equation 4.3 shows that if we want to accelerate the overall processing by 25%

using our two-phased processing technique, we must ensure that the reduced graph is reduced

to at least 75% of the original graph.

4.4.2 Generality

From the above analysis, it can be clearly seen that the savings in the overall

processing times are largely dependent on |G| and |GT |, i.e., size of original and transformed

graphs. This allows us to argue that the our technique is independent of the underlying

processing environments, iterative algorithms, and input graphs.

Processing environments. Processing large graphs in different environments incurs

different overheads and since our technique eliminates significant amount of processing on

the entire large graph, it can help alleviate some of these overheads. For example, processing

large graphs on GPUs would require frequent transfer of subgraph information and computed

values between host-memory and device-memory which is a significant overhead [37, 71].

Since our transformed graph is much smaller, the bulk of this transfer gets eliminated in the

first phase and is only performed for remaining few iterations in the second phase. Moreover,

if the transformed graph fully fits in the GPU memory, absolutely no transfers are required

in the first phase.

In a distributed processing environment, the overall performance is largely de-

pendent on the communication of vertex updates between nodes [84]. Again, using our
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technique, much of the communication can be avoided in the first phase, hence reducing the

overall communication overheads. Moreover, the transformed graph in the first phase can be

processed on the subset of nodes in the cluster to reduce synchronization and communication

overheads.

The applicability is similar in an out-of-core processing environment where the

graph is resident on secondary storage [44, 66]. The first phase eliminates costly disk read

and writes while reducing them in the second phase due to reduction in number of iterations.

Iterative algorithms. The two-phased processing is suitable for iterative graph algorithms

whose convergence is dependent on the values being computed. The performance benefits

are noteworthy for different kinds of graph algorithms: on one hand, traversal algorithms like

SSSP/SSWP which require less computation and on other hand, algorithms like PR/GC/CD

which require more computation to compute the final solution. Also, the benefits achieved

are higher for asynchronous graph algorithms [84] because correctness guarantees are stronger

for those cases. Again, as deduced in the above analysis, the performance benefits of our

technique are mainly due to reduction in the data-size that needs to be processed and is

independent of the kind of processing being performed on the data.

Input graphs. The proposed reduction and processing techniques are best suited for

irregular graphs where the degree distribution across vertices is spread across a wider range,

allowing various pre-conditions for our transformations to be satisfied.4 As long as the

input graph is large enough that a reduction in its size achieves perceivable reduction in

4Real-word graphs from various domains like social network analytics, web analytics, mining, etc. are
highly irregular.
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processing time, the two-phased processing model can be used to accelerate processing. The

large real-world input graphs which are highly irregular and sparse for our evaluation in

Chapters 5 and 6 on which our technique achieves reasonable benefits. Moreover, our

transformations T4 and T6 are tunable so that they can be applied even to a graph on which

no other transformations can be applied.

4.5 Summary

In this chapter, we presented a generalized technique for accelerating graph ap-

plications. The novel technique presented in this chapter executes the application in two

phases while using multiple input representations: first, a smaller representative graph is

processed by the application until convergence; second, this output is used for computing the

final result with original graph as the input. Next, we demonstrate the applicability of the

two-phased technique on parallel graph processing environment (Chapter 5). In Chapter 6

we present a modified version of the two-phased technique for accelerating out-of-core graph

applications.
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Chapter 5

Employing Multiple Data

Representations for

Multithreaded Graph Processing

Programmers often use parallel processing to speed up computations over a large

graph. With the availability of multi-core and many-core machines, these parallel executions

have gained popularity. Several domain specific languages and programming models for

parallel graph analytics have been proposed which simplifies the task for expressing the

graph algorithm. The typical parallel processing of the graph requires the entire graph to be

stored in memory. Many popular parallel graph applications are iterative in nature, which

requires accessing the entire graph multiple times. This behavior makes the parallel graph

application a perfect example where two-phased processing could accelerate the execution. In

this chapter, we present a general parallel vertex-centric graph algorithm and its two-phased
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version (Section 5.1). We evaluate our proposed technique on six benchmark applications

using real-world graphs which are highly irregular and sparse (Section 5.2).

Algorithm 6: Parallel Iterative Vertex-Centric Graph Algorithm.

1 Function iA (input G)
2 Initialize VG & WorkL
3 VDist ← DistributeVertex(G,NUMTHREADS)
4 while ( ! WorkL.empty ) do
5 par-for ( i : NUMTHREADS )
6 for ( v : VDist[i] ) do
7 if ( WorkL.contains(v) ) then
8 WorkL.remove(v);
9 if ( UpdateVals(v, VG)) then

10 WorkL.add( outNeighbors (v) )
11 end

12 end

13 end

14 end

15 end
16 return VG
17 end
18 Function UpdateVals(v, VG)
19 Updated ← false
20 if ( updateCheck(v, inNeighbors(v) ) then
21 update VG [v]
22 Updated ← true

23 end
24 return Updated

25 end

5.1 Parallel Original and Two-Phased Algorithms

This section provides an overview of the application of the two-phased method

on a parallelized version of the vertex-centric graph application. A general form of an

original parallel vertex-centric graph algorithm (Algorithm 6) and its corresponding two-

phased version are presented (Algorithm 7). The function iA in Algorithm 6 represents the
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original parallel algorithm whose application to graph G produces the accurate (VG) result.

The DistributeVertex method (line 3) distributes the vertices of the graph G equally in

NUMTHREADS and generates VDist (line 3), which contains vertices to be processed by each

thread, i.e., VDist[i] contains the list of vertices to be processed by thread i. The vertices

to be processed in future iterations are stored in work list (WorkL). The parallel processing

logic is: each thread traverses its vertex list (line 6) and calls the UpdateVals method

only if the vertex is present in WorkL. Therefore, multiple threads would access the graph

several times per iteration. The two-phased method would greatly benefit graph applications

executing in parallel.

In Algorithm 7, we have omitted the methods which are the same as Algorithm 6

for brevity. Function TPiA is the two-phased version that calls iA (Algorithm 6) and iAP2

in first and second phases, where both functions process the graph in-parallel. The ease of

programming for the two-phased method lies in the fact that the processing logic for iAP2

in Algorithm 7 (lines 22–33)is exactly the same as that in iA in Algorithm 6 (lines 4–15).

5.2 Evaluation

We thoroughly evaluate our two-phased processing technique to show that our

approach is efficient (savings in execution time), scalable (higher savings in execution with

higher number of threads) and produces accurate results for most of the graph applications

with low time overhead.

Benchmarks, Inputs and System. We consider six popular vertex centric graph algo-

rithms, as shown in Table 5.1. We implemented baseline and the two-phased version of each
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Algorithm 7: Parallel Two Phase Vertex-Centric Graph Algorithm.

1 Function TPiA (input G)
2 G′ ← ReduceGraph ( G, T , ∆ )
3 V 1

G ← iA(G′)
4 V 2

G ← iAP2(V 1
G , G)

5 return V 2
G

6 end
7 Function iAP2(V 1

G , G)
8 Initialize WorkL
9 VDist ← DistributeVertex(G,NUMTHREADS)

10 par-for ( i : NUMTHREADS )
11 for ( v : VDist[i] ) do
12 if ( v ∈ G′ ) then
13 V 2

G ( v ) ← V 1
G (v)

14 end
15 else
16 V 2

G ( v ) ← initval ( )
17 WorkL.add ( v )

18 end

19 end

20 end
21 WorkL.add ( Vertex v s.t. v is affected by addition / deletion of edges)
22 while ( ! WorkL.empty ) do
23 par-for ( i : NUMTHREADS )
24 for ( v : VDist[i] ) do
25 if ( WorkL.contains(v) ) then
26 WorkL.remove(v);
27 if ( UpdateVals(v, VG)) then
28 WorkL.add( outNeighbors (v) )
29 end

30 end

31 end

32 end

33 end
34 return VG
35 end

of the benchmarks in Galois [62], a state-of-the-art parallel execution framework.

Table 5.2 shows the details of the input graphs, their reduced versions and time

taken for reduction. We use 4 input graphs, 3 of which are real-world graphs (Friendster,
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Twitter and UKDomain) from the public Konect repository [42]. The synthetic graph

(RMAT-24) is a scalefree graph (a = 0.5, b = c = 0.1, d = 0.3) similar to the one used in [62].

To transform these graphs, we define a tunable parameter Edge Reduction Percentage

(ERP) as:

ERP =
|EG′ |
|EG |

× 100

where |EG | and |EG′ | are the number of edges in original graph G and the reduced graph G′.

We generate the reduced graphs with varying ERP (75%, 70%, 60%, 50%, 40% and 30%)

using our transformation tool based on Algorithm 4.

Benchmark Type

Single Source Shortest Path (SSSP)

Accurate

Single Source Widest Path (SSWP)

PageRank (PR)

Graph Coloring (GC)

Connected Components (CC)

Community Detection (CD) Approximate

Table 5.1: Graph Algorithms.

Input Graph Graph Size Reduction

#Nodes #Edges Time (sec)

Friendster Original 68.3M 2.6B
5.63-9.37

(FT) Reduced 41.9-51.8M 0.78-1.9B

Twitter Original 41.7M 1.5B
1.31-7.13

(TT) Reduced 23.4-30.8M 0.4-1.1B

UKDomain Original 39.5M 936.4M
1.31-7.13

(UK) Reduced 27.6-32.1M 280.9-702.3M

RMAT-24 Original 17M 268M
0.05-0.34

(RM) Reduced 11.6-13.5M 80.4-201M

Table 5.2: Input Graphs.
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Experiments were performed on a machine with 4 six-core AMDTM 8431 processors

(total 24 cores) and 32 GB RAM running Ubuntu 14.04.1 (kernel version 3.19.0-28-generic).

The programs were compiled using GCC 4.8.4, optimization level -O3.

We evaluate the performance of following versions of the benchmark implementa-

tions:

• Baseline: based on the traditional processing model.

• TP-X: based on our two-phased processing model using reduced graphs with ERP

= X%. Note that the execution times include the graph reduction times which are

already presented in Table 5.2.

Unless otherwise specified, the benchmarks were run with 20 software threads.

Efficiency of Two Phased Processing. Figure 5.1 shows the speedups achieved by

TP-X over Baseline for X ∈ {30%, 40%, 50%, 60%, 70%, 75%}. As we can see, the speedups

increase as ERP decreases from 75% to 40%; on average, TP-75, TP-70, TP-60, TP-50

and TP-40 achieve a speedup of 1.16×, 1.20×, 1.3×, 1.37× and 1.29× respectively. This

is because of the high savings achieved in the second phase while processing the original

graphs. On average for TP-75, TP-70, TP-60, TP-50, and TP-40, the savings achieved

in the second phase are 79.26%, 77.30%, 74.16%, 71.09% and 66.88% respectively. These

high savings allow tolerating the execution times of reduction and first phase over reduced

graphs; the execution times normalized w.r.t. Baseline for the first phase of TP-75, TP-70,

TP-60, TP-50, and TP-40 are 0.65, 0.59, 0.50, 0.42, and 0.37 seconds, respectively; time

taken by reduction is as low as 0.01, 0.02, 0.03, 0.03, and 0.04 seconds, respectively. Since
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(a) Normalized Execution
times for SSSP. For

comparison, the Baseline
execution times (in sec) for
FT, TT, UK and RM are

127.14, 96.15, 4.65 and 2.71
respectively.
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(b) Normalized Execution
times for SSWP. For

comparison, the Baseline
execution times (in sec) for
FT, TT, UK and RM are

134.67, 104.32, 4.81 and 2.9
respectively.
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(c) Normalized Execution times
for PR. For comparison, the

Baseline execution times (in sec)
for FT, TT, UK and RM are

2957, 2120, 298 and 57.64
respectively.
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(d) Normalized Execution
times for GC. For

comparison, the Baseline
execution times (in sec) for
FT, TT, UK and RM are
1216, 1014, 771 and 33.51

respectively.
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(e) Normalized Execution
times for CC. For

comparison, the Baseline
execution times (in sec) for
FT, TT, UK and RM are

264.64, 118.71, 137.6 and 3.05
respectively.
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(f) Normalized Execution
times for CD. For

comparison, the Baseline
execution times (in sec) for
FT, TT, UK and RM are
1351, 896, 654 and 33.25

respectively.

Figure 5.1: Normalized execution time of two-phased execution for each
benchmark-graph-ERP value.
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our reduction transformations are local and non-interfering, the cost of performing the input

reduction is much lower than the savings achieved in processing.

As expected, the time taken to process the reduced graph in the first phase decreases

as ERP decreases simply because the work done is typically proportional to the size of graph.

On the other hand, the execution time in the second phase increases as ERP decreases. This

is mainly because an aggressively reduced graph with lower ERP is structurally less similar

to the original graph compared to that reduced with a higher ERP. Hence, the values which

are fed from reduced graph with lower ERP require more computation in the second phase

in order to reach to maximum possible accuracy for the original graphs.
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Figure 5.2: Scalability of Reduction Algorithm w.r.t. ERP (left) and number of threads

(right) for TP-50.

The savings achieved by our two-phased processing model increases as ERP de-

creases up to a certain limit. Across each of our benchmark-input-ERP combination, the

maximum savings are observed for ERP = 40-50%. However, note that further decreasing

ERP reduces the amount of savings achieved; with ERP = 30% the performance degrades

and the average speedup drops to 1.41×. This is because the reduced graph with very low

ERP becomes too small (i.e., structurally very dissimilar) compared to the original graph
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Figure 5.3: Improvement in scalability using the two-phased model with varying number of

threads. For comparison, the Baseline execution times (in sec) for PR/SSSP with 1 thread

for FT, TT, UK and RM are 24577/1674.43, 22307/1016.88, 3014.39/53.64 and

934.43/12.07.

and the major burden of processing then moves over from first phase to second phase. As

an extreme example, one can see that ERP = 0 means that no processing is required in the

first phase whereas the second phase is exactly same as processing the original graph from

the very beginning.

It is interesting to note that the benefits achieved from our two-phased approach

are greater for FT graph (1.37-1.69×) mainly because it is larger than TT and UK graphs.

Scalability of Input Reduction. We study the scalability of our input reduction algo-

rithm while 1) varying ERP from 30% to 75% with 20 threads; and, 2) varying number of
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threads from 1 to 20 for TP-50.1 As we can see in Figure 5.2 (left), with increase in ERP

the reduction algorithm performs faster compared to ERP=30% mainly because there are

fewer edges to be removed for higher ERP, and hence, the reduction algorithm only needs to

traverse certain percentage of the graph to achieve the expected ERP. Moreover, Figure 5.2

shows that the reduction algorithm is scalable w.r.t. the number of threads; this naturally

follows from the requirement of the transformations to be local and non-interfering allowing

them to be executed at vertex-level in parallel.

Scalability of Two-Phased Processing. As shown in [62], the Baseline system scales

well with increase in number of threads. To show the impact of our approach, Figure 5.3

shows the improvement in scalability achieved by TP-501 over Baseline while varying the

number of threads from 1 to 20. Note that in Figure 5.3 the Baseline is also parallel, i.e., a

data-point with t threads represents improvement achieved by our technique using t threads

compared to baseline using t threads. As we can see in most cases, the improvements slowly

increase as number of threads increase and the maximum improvements are achieved with

20 threads. We believe this is because the reduced graphs become denser compared to the

original graphs and hence, the probability of the same vertex to be scheduled multiple times

by different threads increases rapidly in TP-50 with increase in threads compared to that in

Baseline. This in turn allows more merging of such multiple schedule requests of same vertices

to single vertex computations. Moreover, the second phase majorly involves correction of

values and hence, lesser contention is expected since probability of all neighboring vertices

to be scheduled simultaneously greatly reduces.
1 Since ERP = 50 performs best across most cases in our previous experiments, we only consider TP-50

to save space.
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Memory Overhead. While the two phases can be processed separately, feeding values

from the first phase to the next can incur expensive reads and writes which can offset

the performance benefits achieved by our technique. Hence, it is crucial to maintain the

reduced and original graphs in memory and eliminate the explicit intermediate feeding by

incorporating a unified graph which leverages the high structural overlap across the two

graphs. Figure 5.4 shows the increase in memory when using a unified graph. On average,

the memory consumption increases by 1.25×; it goes higher for TT (1.34×-1.48×) mainly

because the percentage of newly added edges in the transformed graphs is much higher

(25%-40%) for TT compared to other graphs (2.7%-23%).

Note that the overhead increases as ERP decreases. This is due to the impact of

increase in the structural dissimilarity between the original and transformed graphs that

requires representing the dissimilar components (i.e., newly added edges) separately for both

graphs. Note that these overheads are tolerable compared to those incurred by representing

both the graphs separately in memory which can be as high as 1.75×.
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Relative Error for CD. As discussed in Section 4.3.2, the accuracy of results for CD

could not be guaranteed. In order to determine how good the calculated results are, we

define relative error as the ratio of vertices whose computed community values are different

compared to the ideal results. Table 5.3 shows the relative error for CD across all input-ERP

combinations. As we can see, the relative error is very small; the average relative error

across all cases is 0.02 and the maximum relative error is only 0.065. In fact, the relative

error for FT across ERP-60, ERP-70 and ERP-75 is very low (<1E-5). It is interesting to

note that the error values decrease as ERP increases. This is mainly because with fewer

reduction transformations being applied for higher values of ERP, the probability of merging

communities in reduced graphs decreases.

Input TP-30 TP-40 TP-50 TP-60 TP-70 TP-75

FT 0.017 0.002 0.001 <1E-5 <1E-5 <1E-5

TT 0.049 0.041 0.036 0.021 0.019 0.017

UK 0.065 0.023 0.017 0.013 0.012 0.011

RM 0.043 0.034 0.021 0.018 0.012 0.01

Table 5.3: Relative Error for CD.

We further study how the relative error changes during execution by plotting it

for TP-40 in Figure 5.5. The vertical dotted lines indicate different phases of execution;

the first line (close to 0) indicates the end of reduction process and the second line (in the

middle) indicates the end of the first phase and the beginning of the second phase. As we

can see, the relative error remains high during the first phase mainly because of the vertices

which are missing in the reduced graph.
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Figure 5.5: Relative Error (log scale) vs. Execution Time (sec) for CD: Baseline and TP-40.

Note that the point at which the Baseline version terminates, i.e., relative error becomes

zero, is not plotted due to use of log scale.

However, the relative error drops rapidly during the second phase due to availability

of missing vertices and edges in the original graph. At the end of the first phase, the relative

error for FT, TT, UK and RM remain at 0.014, 0.084, 0.22 and 0.12 respectively.

Contribution of Individual Transformations. Finally, we evaluate the effect of ap-

plying individual transformations one after the other on the overall performance. We define

a transformation set T1−k as the set of transformations starting from T1 up to Tk. Hence,

the transformation set T1−4 includes T1, T2, T3 and T4 whereas T1−1 only includes T1.
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Figure 5.6: Actual ERP achieved (left) and speedups achieved (right) while using different

transformation sets when ERP is set to 50%.

The reduced graphs for this set of experiments are generated using different

transformation sets T1−k (1 ≥ k ≤ 4). To clearly present the impact of transformations on

both, the size of reduced graphs and the savings in execution time, we select ERP = 50%

and only consider the SSSP benchmark. Figure 5.6 shows the speedups achieved for each

of the graphs transformed using the transformation sets, compared to the Baseline. Since

the transformations being applied have their pre-conditions which need to be satisfied, the

actual ERP using a smaller transformation set can be higher than the requested ERP of

50%. Hence, we also present the actual ERP obtained using the transformation sets.

As we can see in Figure 5.6, T1, T2 and T3 collectively reduce only small portion of

TT, UK and RM graphs; T1−3 achieve 95.26%, 96.58% and 99.39% ERP for TT, UK and

RM respectively. Due to this, little to no savings are achieved until T4 is included in the

transformation sets for which speedups of up to 1.34–1.55× are achieved. The FT graph, on

the other hand, is amenable to T2 and T3, allowing 50% ERP to be achieved for T1−2 and

T1−3 too. Hence, the speedups achieved for those transformation sets are ∼2.15×.
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5.3 Summary

In this chapter, we presented the application of our multiple data representation

technique on parallel graph processing for accelerating the execution of the iterative al-

gorithms. A detailed evaluation of our proposed execution model on the parallel graph

processing shows that speedups up to 2.14× could be achieved. The approach scales well

with increase in number of threads, i.e., with increase in number of threads the speed up

increases w.r.t parallel baseline. Our technique poses a minimal memory overhead for storing

the multiple representations of data (max 1.48×). The precise results were obtained for

5 out of 6 benchmarks, with maximum relative error of 0.065. The evaluation was done

assuming that the graph fits in memory. In the next chapter, we consider the scenario

where the graph does not fit into memory, and propose a modified version of the two-phased

processing model for the out-of-core graph applications.
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Chapter 6

Employing Multiple Data

Representations for

Out-of-core Graph Processing

Many modern workloads are large enough to fit in memory (e.g., social networking

data and geographical information system), which may run into terabytes in size. Program-

mers have designed out-of-core applications to handle such large data. In these out-of-core

applications, the persistent storage is used as an extension to memory, where the application

fetch the parts of input such that it fits in memory. After processing, the results are stored

back to disk. The graph applications are iterative in nature, for which the parts of input

graph are fetched and the results are stored multiple times, which leads to significant amount

of time being spent on disk I/O. The key challenge in these applications is to limit this

I/O overhead. The data transformation technique could be extended to reduce the size of
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input graph hence reduce I/O. However, there are challenges in direct application of the

two-phased processing model: first, the data transformation could not be applied directly

(unlike shared-memory approach) since the graph itself could not fit in memory: second,

the transformed graph could not possibly fit in memory. The out-of-core execution would

be necessary in the first phase, which might subsume any savings in execution time using

two-phased execution.

To address these challenges, this chapter provides a modified version of two-phased

approach which reduces the disk I/O during execution. It uses a multi-level edge-cut

reducing partitioning scheme to partition the graph into smaller subgraphs, then the data

transformation technique is applied for creating multiple representation of input graph such

that each transformed subgraph fits in memory. It achieves savings in disk I/O time, thereby

ensuring the efficient execution under memory limitation.

6.1 Out-of-Core Graph Processing

There are many popular out-of-core graph application frameworks (e.g., Graphchi [44]

and X-Stream [66]). The Graphchi framework uses vertex-centric programming model to

express the graph applications and, X-Stream uses edge-centric programming model. The

data transformation and the two-phased processing model was designed around vertex-centric

programming model, hence Graphchi is chosen for the purpose of extension and evaluation.

Next, we turn our focus on the functioning of Graphchi, and present how a graph is

processed in an out-of-core fashion. Figure 6.1 presents the high level overview of Graphchi

out-of-core processing. The programmer provides the graph processing system with a User-
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Figure 6.1: High level overview of our approach.

Defined Function (UDF), which is the vertex-centric graph application code. Graphchi

process the graph by the following steps: 1) The input graph is read, vertices and edges are

partitioned into chunks; 2) Each chunk is loaded from disk to memory and UDF for all the

vertices in the corresponding chunks is applied; 3) Computed values are stored back onto

disk; 5) Step 2 and 3 are repeated until the computed values converge.

Table 6.1: I/O time analysis for PR and CC graph applications.

Graph

App.
CC PR

Exec. Time I/O Time I/O % Exec. Time I/O Time I/O %

(sec) (sec) (sec) (sec)

WK EN 141.81 86.6 61 272.75 190.97 70

WK FR 43.5 27.61 63 75.88 56.44 74

We studied the time spent on disk I/O for two real-world graph applications:

Pagerank (PR) and Connected Components (CC). Each graph application is run with two

real-world graphs from Konect [42]: first, Wikipedia Links in English (WK EN) graph which

has 29M vertices and 266M edges; second, Wikipedia Links in French (WK FR) graph which
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ha 3M vertices and 102M edges. We measured execution time and time spent on I/O for

three applications and two graphs and present our findings in Table 6.1. The goal of these

experiments is to state the significance of disk I/O for out-of-core applications. We can

observe that percentage of time spent on I/O (fourth column and seventh column) is more

than 61%, with highest for PR application running on WK FR graph (74%). Therefore, we

can conclude that significant amount of time is spent on disk I/O.

The time spent on I/O is significant and out-of-core applications could benefit from

two-phased technique. The graph transformation would reduce the input size which would

lead to reduction in disk I/O. The straight-forward application of Two-phase technique would

require the graph to be reduced significantly in size, however it could not be guaranteed that

the disk I/O could be avoided in the first phase. In Section 6.2, we present our modified

two-phased technique suited for out-of-core graph processing, which would ensure that the

first phase would have no disk I/O.

6.2 Original and Two-Phased Algorithms

We now present our approach for customized Two-phase technique to benefit

out-of-core graph application.

Given an iterative vertex-centric graph algorithm iA and a large input graph G

which does not fit in memory, the accurate results of vertex values VG can be computed by

applying iAo (out-of-core execution of iA) to G, that is:

VG = iAo(G)
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To accelerate out-of-core computation, we use the following steps:

• Partition input G into n partitions: we partitions the large input graph into n smaller

subgraphs (G1, . . . ,Gn) such that each subgraph Gi fits in memory.

• Reduce each subgraph Gi to G′i: we transform each subgraph Gi into a smaller graph G′i

via multiple applications of an input reduction transformation T .

• Compute results for G′i: we apply iAm (in-memory execution of iA) to G′i to compute

VG′i . Computing on VG′i takes place in-memory, hence savings in execution time is

achieved.

• Obtain results for G: using simple mapping rules mRs, we convert the results VG′i to

V 1
G . Then, via multiple application of update rules in iAo, we reduce the error in V 1

G

and obtain the result V 2
G .

Thus, our approach replaces computation VG = iAo(G) by:

[PARTITION GRAPH] P (G) = [G1 . . .Gn]

[INPUT REDUCTION] G′i = T ∆(Gi)

[PHASE 1] VG′i = iAm (G′i)

[MAP RESULTS] mR : VG′i → V 1
G

[PHASE 2] V 2
G = iAo (V 1

G , G)

Next, we summarize our approach by presenting the general form of an original out-

of-core vertex-centric graph algorithm (Algorithm 8) and its corresponding two-phased version

(Algorithm 9). In Algorithm 8, function iA represents the original out-of-core algorithm whose
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Algorithm 8: Out-of-core Vertex-Centric Graph Algorithm.

1 Function iA (input G)
2 Initialize VG & WorkQ
3 while ( ! WorkQ.empty ) do
4 for ( Chunk C : GetGraphFromDisk(G) ) do
5 for ( Vertex v : C ) do
6 if ( WorkQ.contains(v) ) then
7 WorkQ.remove(v)
8 if ( UpdateVals (v, VG) ) then
9 WorkQ.add ( outNeighbors (v))

10 end

11 end

12 end
13 SaveChunk(C)

14 end

15 end
16 return VG
17 end
18 Function UpdateVals(v, VG)
19 Updated ← false
20 if ( updateCheck(v, inNeighbors(v)) ) then
21 update VG [v]
22 Updated ← true

23 end
24 return Updated

25 end

application to graph G produces the accurate (VG) result. The method GetGraphFromDisk

fetches the chunks (Chunk C) of graph from disk for processing. The vertex-centric function

is applied to the all the vertices in that chunk (lines 4–12). GetGraphFromDisk fetches graph

from disk chunk-by-chunk, where each chunk contains a set of vertices and edges and fits in

memory. The updated vertex values and edge values are saved back to disk by SaveChunk

method call.

In Algorithm 9, function TPiA is the two-phased version that calls iAm (in-memory

execution) and iAPo (out-of-core version) in first and second phases respectively. The
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function iAm represents in-memory execution mode for the original out-of-core algorithm

which is used in the first phase and its code sequence is same as the original parallel iterative

graph function in Algorithm 6. Note that the processing logic in iAo (lines 26–38) is exactly

same as that in iA (lines 3–14). The ∆V stores the vertices that are present in G but

eliminated in the subgraphs G′i and, is computed via FindVertexDifference method (line

5) of Algorithm 9. The function iAo copies results from vertices in G′i to vertices in G for

each vertex that is present in both graphs. The vertices in G that were eliminated in the

process of creating G′i for each partition Gi are assigned initial values by initval(). Then,

similar to iA, UpdateVals is applied to V 2
G until convergence. The result (V 2

G ) is obtained

from the application of TPiA to G.

6.3 Evaluation

We now evaluate the customized two-phased processing model for the out-of-core

graph applications. We implemented baseline and the two-phased version of each of the

benchmarks in GraphChi [44], a state-of-the-art out-of-core graph processing system.

Table 6.3 shows the details of the input graphs, their reduced versions, time taken

for reduction and the number of partitions to required in the first phase. We use 3 real-world

input graphs (Wikipedia-English, Wikipedia-French and LiveJournal) from publicly available

Konect repository [42]. To reduce the size of each subgraph we use the tunable parameter

Edge Reduction Percentage (ERP) as in Equation 4.1. We generate the reduced graphs

with varying ERP (75%, 70%, 60%, 50%, 40% and 30%) using our transformation tool based

on Algorithm 4.
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Algorithm 9: Two Phase Out-of-core Vertex-Centric Graph Algorithm.

1 Function TPiA (input G)
2 [G1 . . .Gn]← PartitionGraph (G, n)
3 for ( i → 1 to n ) do
4 G′i ← ReduceGraph( Gi, T , ∆ )
5 ∆V ← ∆V + FindVertexDifference ( G′i, Gi )
6 V 1

Gi ← iAm (G′i)
7 end
8 for ( i → 1 to n ) do
9 V 1

G ← MergeValues( Gi, V 1
Gi )

10 end
11 V 2

G ← iAPo(V
1
G , G, ∆V)

12 return V 2
G

13 end
14 Function iAo(V

1
G , G, ∆V )

15 Initialize WorkQ
16 for ( Vertex v : G ) do
17 if ( v ∈ ∆V ) then
18 V 2

G ( v ) ← initval ( )
19 WorkQ.add ( v )

20 end
21 else
22 V 2

G ( v ) ← V 1
G (v)

23 end

24 end
25 WorkQ.add ( Vertex v s.t. v is affected by addition / deletion / partition

of edges)
26 while (! WorkQ.empty) do
27 for Chunk C : GetGraphFromDisk(G) do
28 for Vertex v : C do
29 if WorkQ.contains(v) then
30 WorkQ.remove(v)
31 if ( UpdateVals (v, VG) ) then
32 WorkQ.add ( outNeighbors (v))
33 end

34 end

35 end
36 SaveChunk(C)

37 end

38 end
39 return VG
40 end
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Table 6.2: Graph Algorithms.

Benchmark Type

Pagerank (PR)

AccurateGraph Coloring (GC)

Connected Components (CC)

Table 6.3: Input Graphs.

Input Graph Graph Size Reduction #Partitions

#Nodes #Edges Time (sec)

Wikipedia-English Original 12.1M 378M
0.83-1.32 15

(WK-EN) Reduced 7.1-9.4M 205-333M

Wikipedia-French Original 3M 102.3M
0.5-0.96 10

(WK-FR) Reduced 1.61-2.5M 65.9-81.5M

LiveJournal Original 4.8M 69M
0.41-0.83 8

(LJ) Reduced 1.2-2.9M 34.1-52.1M

We performed our experiments on a machine with 4 six-core AMDTM 8431 pro-

cessors (total 24 cores) and 32 GB RAM running Ubuntu 14.04.1 (kernel version 3.19.0-28-

generic). The programs were compiled using GCC 4.8.4, optimization level -O3.

We evaluate the performance of following versions of the benchmark implementa-

tions:

• Baseline: based on the traditional processing model.

• TP-X: based on our two-phased processing model using reduced graphs with ERP

= X%. Note that the execution times include the graph reduction times which are

already presented in Table 6.3.

Efficiency of Two-Phased Processing. Figure 6.2 shows the speedups achieved by

TP-X over Baseline for X ∈ {50%, 60%, 70%, 75%}. On an average, ERP 70% has the
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(a) Normalized Execution times for PR.
For comparison, the Baseline execution
times (in sec) for WK-EN, WK-FR and

LJ are 272.75, 75.88 and 61.77
respectively.
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(b) Normalized Execution times for GC.
For comparison, the Baseline execution
times (in sec) for WK-EN, WK-FR and

LJ are 206.76, 67.65 and 54.94
respectively.
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(c) Normalized Execution times for CC.
For comparison, the Baseline execution
times (in sec) for WK-EN, WK-FR and

LJ are 140.81, 43.5 and 36.65
respectively.

Figure 6.2: Normalized execution time of two-phased execution for each
benchmark-graph-ERP value.

maximum speedup (1.48 ×). We can observe that the speedups decrease as ERP decreases

from 70% to 50%; on an average TP-70, TP-60 and TP-50 achieve a speedup of 1.48×, 1.38×

and 1.25× respectively. This because the savings achieved in phase 1 for TP-70, TP-60 and

TP-50 is minimal w.r.t. to the additional time taken to reduce the error in phase 2 which

uses out-of-core execution. On average for TP-70, TP-60 and TP-50, the savings achieved in

the second phase are 44.15%, 42.45%, 36.76% and 38.54% respectively.

The average speedup increase as ERP decreases from 75% (1.47×) to 70%(1.48 ×).

This is because the savings is achieved in phase 1 subsumes the additional time required in
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phase 2 for 70% ERP, since the 70% ERP subgraphs are structurally less similar to original

graph than 75% ERP.

The savings achieved in phase 1 w.r.t. Baseline for TP-75, TP-70, TP-60 and

TP-50 are 87.97%, 90.09%, 91.71% and 92.65%. These high savings achieved in the allow

tolerating the execution times of reduction and second phase over original graphs; the

execution times normalized w.r.t. Baseline for the second phase of TP-75, TP-70, TP-60

and TP-50 are 0.56, 0.58, 0.63, and 0.71 respectively and for the reduction are as low as 0.01

for all the ERP. Since our reduction transformations are local and non-interfering, the cost

of performing the input reduction is much lower than the savings achieved in processing the

graph in out-of-core fashion.

As expected, the time taken to process the reduced graph in the first phase decreases

as ERP decreases simply because the work done is typically proportional to the size of

subgraph. On the other hand, the execution time in second phase increases as ERP decreases.

This is mainly because an aggressively reduced graph with lower ERP is structurally less

similar to the original graph compared to that reduced with a higher ERP. Hence, the values

which are fed from reduced graph with lower ERP require more computation in the second

phase in order to reach to maximum possible accuracy for the original graphs.

To visualize the reduction in I/O caused by our technique, we measure the time

spent in I/O for both Baseline and TP-X execution. The average I/O savings achieved using

TP-X over Baseline for X ∈ {75%, 70%, 60%, 50%} are 1.92, 1.86, 1.71 and 1.50. The savings

decreases with decrease in ERP value, because the amount of work to be done in the second

phase increases as ERP decreases. Figure 6.3 shows savings in I/O for PR, CC and GC
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using ERP-70 (most efficient ERP setting). The savings increases as size of graph increases

with WK-EN having the largest amount of savings. The reason for such behavior is the

I/O savings achieved by in-memory execution of first phase is significant larger graphs as

compared to the smaller graphs.
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Figure 6.3: Savings in I/O using ERP-70 for PR, GC & CC.

Slowdown for Path-Based Applications. We ran experiments on other path-based

applications – SSSP and SSWP. Our proposed technique could not accelerate these applica-

tions because of the following reason. We use edge-cut partitioning technique to partition

the input graph, which distributed vertices across multiple partitions. It is not guaranteed

that each vertex in the input graph will be present in every partition. SSSP and SSWP

computes the shortest and widest path respectively from a source vertex. The partitioning

scheme does not ensure the source vertex to be present in every partitions. There will be

partitions where the source vertex will not be present, all the vertex values will remain in

their initialized states. The results obtained from the first phase are not useful for many

partitions, which increases the amount of work to be done in the second phase.
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Overhead of Two-Phased Method. Our customized Two Phased method creates

multiple partitions for the input graph such that the first phase could be carried out in-

memory. The partitions are reduced and processed separately, therefore additional disk

space is required. Our approach imposes a disk overhead of ≈ 2× to store these additional

subgraphs.

6.4 Out-of-Core Graph Partitioning

To ensure the first phase is carried out in-memory, there is a need to partition the

graph into smaller subgraphs before each subgraph is transformed. Metis [34] has provided

an in-memory partitioning scheme which requires graph to fit in memory. The partitioning

technique in PowerGraph [24] doesnot require the entire graph to load in-memory. However,

this partitioning scheme introduces more edge-cuts unlike Metis. With increase in edge-cuts

in partitioning, the phase 1 generate lesser useful approximation of result, which makes

the phase 2 (the I/O costly phase) work more. Hence, we need an out-of-core partitioning

technique which introduces less edge-cuts like Metis [34].

We now present our out-of-core partitioning algorithm which is based on multilevel

k-way partitioning scheme by Karypis [34]. Given a large input graph G which does not

fit in memory, and number of partitions nparts, our out-of-core algorithm would make

partitions with minimal edge-cuts. Partitioning has 3 major steps: the coarsening step (lines

4–14), the initial partitioning step (lines 15–20) and the uncoarsening step (lines 21–24).

Coarsening step follows recursion where in each step, graph Gi+1 is created from Gi by

randomly matching vertices of the graph Gi. Since the graph doesnot fit in memory, the
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chunks of graphs are fetched from disk via FetchGraphFromDisk function and each vertex is

matched with its neighbors using the method RandomMatchVertex. Therefore, in each step

of recursion Gi+1 is has lesser number of vertices than Gi. The recursion is terminated when

either of two conditions are met: 1) The number of vertices in Gi = nparts. 2) No further

vertex pair can be matched. Initial partitioning step is done on Gi graph, where each vertex

is assigned to the partition which has the least number of vertices and, the partition data is

saved in PDi.

The uncoarsening phase is done iteratively by refining the partition for each coarser

graph Gj till G0 which is same as G (line 2). In each iteration the following steps are done:

1) The partition data PDj is loaded for graph Gj . 2) RefinePartition function is called

which projects the partition PDj on Gj−1 and generates PDj−1 by refining the partition for

Gj−1. The partition refinement step incrementally swaps vertices among the partitions to

reduce the number of edge-cut in the partitioning until a local minima is reached. This final

step ensures the number of edge-cut to be minimal for partitioning.

6.5 Summary

In this chapter we showed that time spent on I/O for the out-of-core graph

applications is significant (up to 74%). Therefore, our two-phased processing model could

benefit out-of-core applications by reducing I/O. We then presented a modified version of

two-phased technique, which reduces the amount of I/O in out-of-core graph application.

The first phase is carried out in-memory, however the second phase is still executed in

out-of-core fashion. The processing logic of phase 1, phase 2, and original graph algorithms
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Algorithm 10: Out-of-core Graph Partitioning Algorithm.

1 Function PartitionGraph (G, nparts)
2 i ← 0
3 Gi ← G
4 while ( !(VertexMatchLimitReached(Gi)) && nVertices(Gi) < nparts )

do
5 Gi+1 ← initialize
6 for ( Chunk C:FetchGraphFromDisk(Gi) ) do
7 for ( Vertex v: C ) do
8 RandomMatchVertex(v, neighbors(v))
9 end

10 SaveChunk(C, Gi+1)

11 end
12 i ← i + 1
13 Gi ← Gi+1

14 end
15 for ( Chunk C: FetchGraphFromDisk(Gi) ) do
16 PDi ← initialize
17 for ( Vertex v: C ) do
18 PDi.add(v, nparts) // s.t. each vertex gets assigned to partition

with least number of vertices)
19 end

20 end
21 for ( j ← i to 1 ) do
22 PDj ← LoadPartitionData (Gj)
23 RefinePartition(Gj−1, PDj)

24 end
25 return PD0

26 end

is similar, except phase 1 store the entire graph in memory. Our evaluation shows that

average execution savings upto 1.4× could be achieved and I/O could be saved by 1.75×.

Finally, we developed an out-of-core partitioning technique which introduces fewer edge-cuts

than Metis [34].
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Chapter 7

Related Work

This chapter summarizes various prior research in domains and problems addressed

by this thesis. We first summarize the existing solutions for data structure selection and

runtime adaptation techniques. Next, we present the related work for data transformation

and approximate computing. Finally, we summarize the work for out-of-core graph processing

and partitioning techniques.

7.1 Data Structure Selection and Runtime Adaptation.

Data Structure Selection. There has been a large body of work that helps the program-

mer to select the data structure during the runtime. Jung et al. developed DDT [29], a

dynamic program analysis tool that identifies the data structures used by executing the

application binary with the objective of identifying problems in the data structure choice

with respect to a particular compiler and microarchitecture. Their followup work devel-

oped the Brainy [30] tool which predicts the best data structure for a particular program
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input and underlying architecture. They rely on the cost model of the data structure for

a particular input and architecture combination. Sharir et al. proposed data structure

selection techniques for SETL [70] programs, where the programmer codes the algorithms

while the data structures are selected automatically at compile-time based on instructions in

the program. Perflint [45], a tool for identification of suboptimal patterns in C++, suggests

data structure changes to the programmer. Chameleon [72] assists the programmer in the

choice of collections in Java and C#. These approaches are offline, hence do not support

adaptation when input characteristics change during a single run.

Huang et al. proposed Self Adaptive Containers [27] where they provide the

developer with a container library which adjusts the underlying data structure associated

with the container to meet Service Level Objectives (SLO) specified by the developer.

During runtime, the adaptation of underlying data structure in the container takes place

whenever there is a violation in the specified SLO. Similarly, Xu proposed a technique named

CoCo [89] for runtime replacement of Java collections, depending on a predefined condition

e.g., container size. The developer must add the abstractions and concretization operations

for the container classes manually. CoCo generates glue code to join the container classes and

make a combo object, which is capable of profiling and container replacement. Our approach

differs from these two on several dimensions. We deliberately avoid manual specification of

abstraction and concretion operations or SLO for the underlying data structure, because such

identification is tedious, error-prone and discourages programmers from using off-the-shelf

code. Self Adaptive Containers and CoCo replace some standard collections, which have

a standard but narrow interface, and no scope for user-defined data structures. We allow
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general replacement of any user-defined data structure and their methods without any

constraint on the type of operations. CoCo does not consider the space-time trade-off.

While Self Adaptive Containers specifications may contain both response time and memory

consumption for a particular service, those are fixed for the entire course of execution rather

than catering to the need for change in input/workload characteristics.

Runtime Adaptation. One way to effect adaptation is via programming support. In our

approach we consider the data structure to be the key for the adaptation. Our infrastructure

offers programming support for specifying adaptation policies, as well as alternative versions

of data structures and implementations among which execution can be switched to match

the current operating conditions. We target applications written in C. Ghezzi et al. have

developed ContextErlang [23], which implements Context-Oriented Programming in Erlang

and support the construction of self-adaptive software. They implement context dependent

behavior by allowing messages to be processed by variations (different callback modules).

The dynamic binding of these variations are available in Erlang. The Elastin framework[54]

allows runtime adaptation via different configuration. These different configurations are

combined into a single elastic application which can switch the configurations on the fly

at runtime. This approach does not take into consideration of the changes in the input

data property as a trigger for the adaptation. Their adaptation is done via a dynamic

software update tool Ginseng [55, 58], which allows the adaptation at safe update points.

This adaptation does not occur at the middle of a computation and it has no measure to

adapt the saved result of a computation. Its configuration does not take into consideration

the change in the input data characteristics.
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7.2 Data Transformations and Approximate Computing

Graph processing has gained a lot of attention due to its applicability across

various domains. Many graph processing frameworks have been developed for distributed

([48, 47, 84, 88, 68]), shared memory ([62, 74, 85]) and GPU-based environments ([37, 71]).

These frameworks include a parallel runtime that iteratively processes the input graph

until all the graph values converge. The computation is based on asynchronous or bulk

synchronous model [82]. This traditional style of processing includes a single processing

phase.

Multilevel Transformation Techniques. There is a body of work [26, 52, 7, 53, 67, 91,

35, 33, 36, 86] that reduces the size of graphs to accelerate processing. These works mainly

rely on algorithm-specific reduction techniques and mostly operate of regular meshes. [26]

presents a multilevel graph partitioning algorithm where first a hierarchy of smaller graphs

is created, then the highest level graphs are partitioned and then, these partition results are

carefully propagated back down the hierarchy to achieve partitioning of the original graph.

It uses edge contraction where neighbors are unified into a single vertex which is suitable for

relatively regular meshes. [52] uses the same three phases and relies on quality functions of

the reduced (coarse) grids based on aspect ratio. Moreover, the reduction algorithm operates

on the dual graph and uses maximal independent set computation which requires non-trivial

processing. [7, 35, 33, 36] also aim to partition graphs via recursive edge contraction using

maximal independent set computation and edge contraction to generate multinodes. In

contrast, our work identifies light-weight, local and non-interfering transformations that are

general (i.e., not algorithm-specific) and effective for irregular input graphs. Moreover, our

117



reduction strategy is not hierarchical (multi-level) since our transformations are designed

from the vertex’s perspective and are applied at most once on each vertex. [86] processes

queries by providing multiple levels of abstractions and refining the query to these abstraction

levels. [67] is specifically designed for distance based algorithms like SSSP where they aim

to achieve gate vertex sets which allow traversals to be constructed on the reduced graphs.

[91] reduces by pruning weakest edges based on cost functions and which adhere to specific

constraints related to connectivity maintenance. These works require path- or component-

level transformations that are computationally expensive whereas our transformations are

light-weight and hence effective for large graphs.

Beyond these works, various optimization techniques have been developed which

attempt to accelerate processing at the cost of achieving approximate results. We divide

the literature encompassing such approximation based graph processing techniques into two

categories, discussed below. None of these techniques provide correctness guarantees and

hence the results of these techniques are always approximate.

Algorithm-specific Approximation. Chazelle et al. proposed a technique for approxi-

mating the weight of minimum spanning tree in sublinear time by approximating the number

of connected components [14]. The technique approximates the weight of the minimum

spanning tree but it does not find the tree. Nanongkai [53] proposed an approximation

technique to find SSSP and all-pair shortest path (APSP) by bounding the diameter of

the graph. Bader et al. [4] proposed the approximation of Betweenness Centrality (BC) by

employing an adaptive sampling technique. The algorithm samples a subset of vertices and

performs SSSP on them selected, thus reducing the number of SSSP operations to determine
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BC. In contrast to sampling, our approach to input graph reduction is smarter as it considers

graph connectivity and is more general as it is applied to a class of graph algorithms. In

fact all of the above approximation techniques were developed for a single specific graph

application. In contrast, our technique applies to many iterative graph algorithms all using

the same input reduction transformations.

Compiler-based Approximation. Researchers have focused on trading accuracy for

execution time by skipping a task’s execution or by choosing a specific implementation from

multiple ones provided by the developer. Rinard proposed early termination [65] and task

skipping [64] that are applied during execution. These techniques use a distortion model

based on sampling to estimate the error introduced due to early termination or task skipping.

The work does not provide an empirical justification for the distortion model and thus it

is unclear if it will work for input graphs with different characteristics. Green [5] selects a

specific implementation out of many different implementations provided by the developer

while maintaining the quality of output. Hoffman et al. [75] proposed loop perforation where

certain iterations of a loop are skipped to trade off accuracy for faster execution. The loops

that are perforated are chosen with the help of training input and the error bound set by the

user. This technique is not useful for different graph applications since it requires perforated

loops to fall into one of the specified categories of the global patterns. Our technique does

not require loops to follow any such pattern and it does not perform any static or dynamic

analysis of the application to achieve approximation.

The Sage [69] compiler generates CUDA kernels that exploit GPUs to achieve

approximation using different optimizations. The runtime system includes a tuning phase
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which selects the best optimization technique and a calibration phase to help maintain

quality. Although we tested our methodology only for CPU systems, it can be easily applied

for GPUs as we achieve approximation by reducing the input graph. Shang et al. [73]

proposed auto-approximation of vertex-centric graph applications by automatically synthe-

sizing the approximate version of an application. They combined different approximation

techniques such as task skipping, sampling, memorization, interpolation and system function

replacement for synthesizing the approximate version. Carbin et al. [12] proposed a language

to specify approximate program transformations. Our approach works without modifying the

original implementation. Moreover input reductions, guided by impact on graph connectivity,

customize the skipped computations to input characteristics.

7.3 Out-of-core Graph Processing

Researchers have focussed on improving out-of-core graph processing via different

data organization techniques. Infinimem [40] has introduced language and runtime support

for size-oblivious programming, where a program is written without the concern of input size,

i.e., if the data does’t fit in the memory then it will be stored in disk as object. Similarly,

Graphchi [44] uses SHARDS (a sorted collection of edges) in the disk for storing the input

graph. Our technique doesn’t rely on any specific representation in disk and it could be easily

applied to any out-of-core graph processing system which uses vertex-centric programming

model. X-Stream [66] uses streaming partitions (a vertex set, an edgelist and an updatelist)

for storing graph in disks, however they require the programs to be written in edge-centric

fashion. We developed a vertex-centric system as it is easy for the programmer.
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Chapter 8

Conclusions and Future Directions

8.1 Contributions

This dissertation contributes to enhancing the performance and functionality of Big

Data applications. The contributions are divided into three parts: 1) a runtime technique

for switching between the representation of data in memory to match the input/workload

characteristics; 2) data transformation techniques for optimized processing of data via a

two-phased processing model; and 3) extending the two-phased processing model to handle

out-of-core applications which use disk as an extension to memory. Next, we highlight the

novel aspects of each of these above contributions.

8.1.1 Alternate Data Structure Representations

The performance of Big Data applications is sensitive to the choice of data structure

used to hold the data being processed. This dissertation investigates an important aspect

of data structure selection. For applications where the input/workload characteristics can
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change over time, the best performing data structure choice also changes with time. Therefore,

choice of data structure must be adapted based upon input/workload characteristics. This

dissertation presents a runtime technique for switching the data structure dynamically and

safely, when there is a mismatch between the data structure choice and input/workload

characteristics. This technique addresses multiple challenges: first, it is not difficult for the

programmer to use; second, the switching between the alternative representation is safe;

third, the system responds quickly to changes in the input/workload characteristics.

The above challenges are addressed as follows. The programmer is provided with a

small set of annotations whose use requires minor changes in the source code. The static

analysis and the compilation tool takes care of the identification of program points for safely

and timely switch of the data structure representation. The experiments presented in the

dissertation demonstrate that runtime technique allows applications to react quickly to the

input/workload characteristics changes, with little execution time and memory overhead.

8.1.2 Data Transformations

The sizes of data processed by Big Data applications are (unsurprisingly) large,

thus so is the memory footprint. The data held in memory is accessed multiple times during

execution, which leads to significant amount of time being spent on data access. This

dissertation provides a processing model called two-phased processing model, where the

input is transformed to reduce the memory footprint and thus reducing the data access.

This transformed input is used for majority of the computation and thus accelerates the

execution by cutting down the time spent on data access.

The two-phased processing model presented in this dissertation is primarily focused
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on accelerating vertex-centric graph applications. The most important aspect of this

processing model is its input-data centric data transformation and requires no change in

original vertex centric algorithm. In the first phase, the original (unchanged) iterative

algorithm is applied on a transformed input (smaller graph) which is representative of the

original large input; this step yields savings in execution time. In the second phase, the

results from the smaller graph are transferred to the original larger graph and, via application

of the original graph algorithm, error reduction is achieved, possibly converging to the final

accurate results. This acceleration could be applied on multiple processing environment

such as GPU, Distributed System and out-of-core Systems.

8.1.3 Out-of-core Computations

Often the size of input for Big Data applications is so large that it cannot be held

in memory. The programmers have introduced the out-of-core programming model to handle

such scenarios, where a persistent storage is used as an extension to memory. The data is

brought into memory for processing, and after the processing is done, data is stored back

into disk. This leads to a significant amount of time being spent on the disk I/O.

This dissertation presents a technique which scales the functionality of the graph

application by extending the two-phased execution to reduce I/O. It uses the edge-cut

reducing partitioning algorithm to partition the input graph, so that each partitioned

subgraph could be transformed in-memory to reduce the input size; this step saves the time

spent on disk I/O. In the second phase, the results from these subgraphs are transferred to

original graph and, final processing is done in regular out-of-core fashion. This technique

123



requires no change in original out-of-core implementation and, efficiently uses input-data

centric data transformation to reduce disk I/O.

8.2 Future Work

Data Storage Optimization. Data storage has become one of the most important

application of cloud computing, where the users can remotely store their data into cloud

and, often the cloud provides persistent data storage devices. The data storage system

manages and backs up the data remotely, and the data representation for reading and writing

secondary storage can greatly impact application performance. The alternate data structure

representation technique enhances functionality and optimizes the disk usage for these data

storage system. Therefore it is an important future direction to use alternate data structure

representation for optimizing data storage for cloud computing.

Application to Diverse Domains. The multiple data representations technique could

be applied to other domains such as bioinformatics and computational genomics where the

input representations matters. They process graph-like connected structure which could

greatly benefit from the multiple data representation technique. Therefore, future work can

explore applicability and customization of our solutions to these domains.

This dissertation has presented the alternate data structure technique corresponding

to the changes in input/workload characteristics. The alternate data structure representations

technique could be extended to save energy by switching to more energy efficient data

structure during execution. Future work in this direction requires detailed study of energy

profile of data structure representation.
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Our safe switching technique between alternate data structure representation could

be further extended to enhance the data structure obfuscation, by switching multiple times

between obfuscated alternate data structure. This would serve as an important future work,

as exploring this direction would produce enhanced security measures and increase the

difficulty level of reverse engineering.

Scaling to Large Clusters. The experiments done in this dissertation are limited to

multi-core systems. Scaling the multiple data representation techniques to distributed system

could expose multiple challenges which were not encountered on a single machine (e.g., the

overhead of communication cost and the data representation synchronization across multiple

nodes).
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