
Collaborative Client-Side DNS Cache Poisoning
Attack

Fatemah Alharbi∗†, Jie Chang‡, Yuchen Zhou§, Feng Qian¶, Zhiyun Qian∗, and Nael Abu-Ghazaleh∗

∗ Computer Science Department,
University of California Riverside

{falha08@,zhiyunq@cs.,nael@cs.}ucr.edu

† Taibah University,
Yanbu, Saudi Arabia

fmhharbi@taibahu.edu.sa

‡ LinkSure Network,
China

changjie@wifi.com

§ Information Assurance Department
Northeastern University

zhou.yuc@husky.neu.edu

¶ Computer Science Department
University of Minnesota – Twin City

fengqian@umn.edu

Abstract— DNS poisoning attacks inject malicious entries into
the DNS resolution system, allowing an attacker to redirect
clients to malicious servers. These attacks typically target a DNS
resolver allowing attackers to poison a DNS entry for all machines
that use the compromised resolver. However, recent defenses can
effectively protect resolvers rendering classical DNS poisoning
attacks ineffective. In this paper, we present a new class of DNS
poisoning attacks targeting the client-side DNS cache. The attack
initiates DNS poisoning on the client cache, which is used in all
main stream operating systems to improve DNS performance,
circumventing defenses targeting resolvers. Our attack allows an
off-path attacker to collaborate with a piece of an unprivileged
malware to poison the OS-wide DNS cache on a client machine.
We developed the attack on Windows, Mac OS, and Ubuntu
Linux. Interestingly, the behaviors of the three operating systems
are distinct and the vulnerabilities require different strategies to
exploit. We also generalize the attack to work even when the
client is behind a Network Address Translation (NAT) router. Our
results show that we can reliably inject malicious DNS mappings,
with on average, an order of tens of seconds. Finally, we propose
a defense against this type of poisoning attacks.

I. INTRODUCTION

The Domain Name System (DNS) is an essential component
for the Internet: it provides resolution primarily of Fully
Qualified Domain Names (FQDNs) (i.e., human-readable do-
main names such as foobar.com) to their corresponding
Internet Protocol (IP) addresses. DNS resolution information
is maintained by a hierarchical and distributed set of name
servers in order to support scalability and to enable distributed
management at each individual organization. DNS queries
from clients are serviced using a set of resolvers that can
walk the DNS hierarchy to reach an authoritative name server
that provides the answer to the DNS query. To improve
performance, resolvers and end hosts heavily use caching,
exploiting locality to avoid unnecessary and slow queries that
consist of several round-trips as a resolver walks the DNS
hierarchy.

The security of DNS is critical to the security of the
Internet: if an attacker can manipulate the mapping, she can
redirect connections to cause users to access a malicious
server, to facilitate Man-in-the-Middle (MitM) attacks, or to

cause denial of service (DoS). One of the most serious attack
classes against DNS is the cache poisoning attack, where an
attacker attempts to inject malicious DNS mappings to the
cache of a DNS resolver [1]–[4]. To protect against cache
poisoning attacks on DNS resolver caches, Source UDP Port
Randomization (SPR) [2], [5] was introduced and is currently
widely deployed. In this defense, a DNS query from a resolver
uses a random source UDP port when forwarding a DNS
query. An off-path attacker must guess this random port
number in order to successfully spoof a reply to the same port
(otherwise, the reply will not be accepted), in the time window
before the true response is received. Although it does not
close the vulnerability completely, SPR substantially reduces
the chances of effective cache poisoning attacks. Even though
fundamentally secure DNS protocols such as DNSSEC [6]
have been proposed, it has been difficult to get traction with
respect to real-world deployment, and most websites continue
to run insecure versions of DNS.

In this paper, we introduce a new and dangerous DNS
poisoning attack targeting the end user devices. Most oper-
ating systems on client devices use DNS caches that retain
DNS responses and share them across applications including
browsers. We show that these caches can be compromised
via a DNS cache poisoning attack oftentimes in a couple of
seconds for Windows and a few minutes for Ubuntu Linux and
Mac OS. Specifically, the attack is initiated by an unprivileged
malicious program (e.g., a malware or a malicious JavaScript)
who simply asks for DNS resolution for a domain it is
attempting to poison. The malicious program coordinates with
an off-path attacker (i.e., an attacker anywhere on the Internet)
that responds to the DNS request attempting to poison the
cache entry and succeeding with high probability. To succeed
in the attack, a malicious response with a matching TXID has
to arrive before the real response. This is challenging task as
there is really only an attack window equivalent of a round-
trip time between the client and resolver. To make matters
worse, once the authentic DNS response is cached, one may
need to wait for the entry to timeout before being able to
launch the next round of attack on the same domain. However,

1153

we discover that specific OS implementations and real-world
TTL/network latency make our proposed attack highly feasible.
We also consider the scenario where the victim is behind a
Network Address Translation (NAT) router. Through analysis
of NAT implementation on commercial routers, we show
reliable strategies to launch the attack even through a NAT
router.

Client devices are typically not considered to be part of
the DNS hierarchy and therefore have not been considered by
defenses against DNS cache poisoning. Thus, defenses against
resolver cache poisoning attacks including SPR [2], [5] and
0x20 [7] do not protect against this new attack. Even new
proposals such as DNSSEC which rely on cryptography to
completely close cache poisioning [8] operate at the resolver
level but leave the network behind the resolver unprotected.
As a result, the attack represents a new and dangerous vulner-
ability that threatens most computing devices. The attack also
expands our understanding of the threat surface of DNS cache
poisoning attacks when designing mitigations within DNS.

The paper also contributes a lightweight client-side defense
strategy to mitigate this vulnerability. In particular, although
the attack significantly reduces the entropy by removing the
uncertainty regarding the source UDP port number, it still
relies on guessing the transaction ID (TXID) field, which
has a range of 216. The attack is successful because today’s
DNS clients simply discard illegal DNS responses that do not
match the port and TXID of a pending request. In contrast,
our defense first detects a suspected attack when it encounters
DNS replies with the wrong TXID. Once an attack is detected,
the client can respond in a number of ways to mitigate the
attack while maintaining the ability of the client to continue
to resolve DNS requests. The defense requires only a client-
side patch.
Disclosure. We reported the attack to Apple, Microsoft, and
Ubuntu. Apple intends on issuing a security advisory along
with mitigation to the vulnerability. We also understand that
Microsoft and Ubuntu are considering mitigation strategies.

II. BACKGROUND–CACHE POISONING ATTACKS

DNS cache poisoning is a dangerous class of attacks that has
been the focus of studies in the past [9]–[11]. In 2007, Amit
Klein introduced sophisticated cache poisoning attacks against
BIND 9 DNS resolvers [4] and Windows DNS servers [12].
At that time, the attack’s entropy was totally based on the
TXID, and the implementation of the randomized algorithm
facilitated the attacks. In 2008, Dan Kaminsky presented
another significant attack [2] against DNS resolvers which also
depends on TXIDs for authentication. The attack assumes both
the UDP source and destination ports are fixed as 53. Indeed,
Paul Vixie already reported this vulnerability in 1995 [10], and
in response, Bernstein proposed a challenge-response defense
to substantially use ephemeral ports randomization in order
to expand the entropy of the correct response packet [13],
[14]. However, this solution was not practically supported until
Kaminsky’s attack [15]–[17].

More recently (starting in 2011), several new cache poi-
soning attacks against resolvers were proposed which have
varying degrees of assumptions of the attack requirements and
the network [18]–[23]. For example, Herzberg and Shul-
man [18] propose an attack that exploits packet fragmentation
of UDP packets of long DNS responses to spoof the second
fragment of a DNS response (only the first fragment includes
the TXID). The same authors [21] propose a poisoning attack
that exploits delegation of DNS resolution where intermediary
network devices perform recursive lookups on behalf of the
resolvers. In contrast, they also show attack principles (but
do not demonstrate the attack) [19], [20] that can poison the
cache of a DNS resolver located behind a NAT.

Because attacks that undermine DNS resolution are ex-
tremely powerful, several defenses were proposed to address
DNS cache poisoning attacks. The preponderance of these
defenses targets improving DNS resolver security and there-
fore are not effective against our attack. The defenses can be
classified into three categories: challenge-response defenses,
cryptographic defenses, and using alternative architectures.
Challenge-response defenses rely on the idea of increasing the
entropy of DNS request/response, such as UDP source port
randomization [2], [5], 0x20 encoding [7], random selection
of authoritative name servers [15], [17], and adding random
prefixes to domain names [24]. Challenge-response defenses
are vulnerable to MitM adversaries who can intercept the DNS
communication. To protect against this type of eavesdropping
attack, cryptographic defenses were proposed which include
primarily DNSSEC [6] that is based on digital signatures
for authentication; this solution in principle closes all cache
poisoning attacks since the validity of the response is no
longer only a function of the contents of the packet. Despite
the fact that DNSSEC is effective, the deployment is very
slow. For example, a recent study [25] discovered that 0.67%,
0.91%, and 0.91% of .com, .net, and .org Top Level Domains
(TLDs) are signed. Recently, Klien et al. did an Internet-
scale measurement study on the vulnerability of DNS resolvers
and discovered that 92% of resolvers are vulnerable to at
least one type of poisoning attack [23]. Unless DNSSEC is
extended to cover end clients, which introduces a substantial
key distribution problem and is likely to infringe on usability,
it does not prevent our attack. Recent defenses such as DNS
over HTTPS [26], DNS over TLS [27], and DNScrypt [28],
have been proposed primarily to preserve the privacy of
DNS traffic. These proposals can also have the side effect
of hardening DNS traffic against injection attacks. Although
there are standardization efforts behind these proposals, they
are not yet widely deployed.

A third defense alternative considers rethinking DNS imple-
mentation radically, resulting in different security properties.
For example, Schomp et al. [29] propose a radical change to
the DNS ecosystem by eliminating shared resolvers entirely
to have clients perform the recursive resolutions directly.
However, since our attack targets the endpoints, it should still
be effective against this architecture.

1154

III. ATTACK FUNDAMENTALS AND THREAT MODEL

Modern OSes have built-in DNS caches. These caches are
shared OS-wide, meaning that if an application populates an
entry in the cache, this entry will be used by any other
application that requires resolution for the same name. Similar
to records cached at the DNS resolvers, an OS-wide DNS
cache record is stored along with a Time-To-Live (TTL)
value which is set by the domain authoritative nameserver to
determine the lifetime of the record in the cache. The purpose
of having such a cache is to improve the performance of DNS
resolution as it is on the critical path of accessing Internet
resources, especially for applications that have many short-
lived connections.

We surveyed a number of modern operating systems, in-
cluding macOS Sierra version 10.12, several versions of Mi-
crosoft Windows (Microsoft Windows 7 Professional Edition,
Microsoft Windows 8.1, and Microsoft Windows 10), as well
as several Linux distributions. By default, the OS-wide cache
is enabled in all versions of Windows, Mac OS, and in
Ubuntu 17.04 and later. It is checked by DNS APIs such
as getaddrinfo(): only if the record is not found in the
cache, does the DNS cache service perform a DNS request on
behalf of the application. Thus, this client-side cache acts as
the de facto first level of resolution.

The OS-wide DNS cache is stored in memory. We measured
the size of the cache starting with an empty cache, warming
the cache with a number of domain names (say x), and then
resolving these names again while timing to see if the entry is
being resolved from the cache. We keep increasing x until
we start observing misses, which identifies the size of the
cache. We found the cache size to be 2050, 5076, and 4094
entries in Windows, Mac OS, and Ubuntu Linux respectively.
Furthermore, we found that the OS-wide DNS cache in all
operating systems stores all types of records (A, AAAA,
CNAME, PTR, RRSEG ...etc.) from only the answer section
of DNS responses. Thus, Kaminsky’s attack [2] relying on
malicious records from the additional section does not apply
to OS-wide DNS caches.
Threat Model. We consider four entities below. (1) The
victim client machine and its OS-wide DNS cache. (2) A
legitimate resolver which acts as a DNS server for the client
machine. The client may connect to this resolver via a NAT
device which has its own DNS cache. (3) The on-device
malware, which is unprivileged and cannot tamper with other
applications directly (we will instantiate this later in §IV).
This malware could be a malicious JavaScript running in
the browser after a victim browses a malicious/compromised
website, or a malicious application downloaded to the user’s
phone. (4) The off-path attacker, who is capable of spoofing
the IP address of the legitimate resolver. The malware and off-
path attacker collaborate to poison the OS-wide DNS cache
with a malicious mapping for a target domain name.

Note that the IP spoofing capability of the off-path attacker
is commonly available in networks unless ingress filtering [30]
is implemented [31]. A significant number of Internet Service

Providers (ISPs) and networks do not implement ingress
filtering and therefore an attacker connected to such a network
can directly spoof IP addresses [32]–[34]. This threat model
matches the threat model used in recent papers (e.g., off-path
TCP injection attacks [35], [36]).

��������	�
�����
���

��������

Attacker’s Web Server
�������

������������	
� �������
�����������	 ��
�����������	
�����������	 �� �����������	
�����������	
 �������

������

��������

��
�
�����

Fig. 1: High Level Attack Overview

IV. ATTACK CONSTRUCTION AND ANALYSIS

We first overview the attack at a high level and introduce
possible attack scenarios. We then explain how to overcome a
number of challenges needed to implement the attack, leading
to a complete end-to-end attack under realistic conditions.

A. Attack Overview

The basic attack is overviewed in Fig. 1. A malicious
user-level program requests a DNS resolution for the target
DNS domain (in this example, www.bank.com). The goal of
the attacker is to poison the cached DNS entry such that it
resolves to the IP address of an attacker server redirecting user
connections targeting www.bank.com to go to the attacker’s
web server. Once the DNS request is sent, the attacker attempts
to respond with fake responses. DNS resolvers accept the first
correct response: a response with both a matching port number
so that it is received correctly, and a matching TXID field; if
a correct response from the attacker is received before the
response from the DNS authoritative name server, the client
simply accepts this response and caches it in its OS-wide DNS
cache. The attacker’s response uses a large TTL to ensure
that the poisoned value remains in the cache. Any future
connections from this machine to www.bank.com will redirect
to the attacker’s server.

B. Attack Scenarios

The attack requires a malicious user level program to exe-
cute on the victim machine. We consider two main scenarios
for launching the attack.
• Public/shared machines. such machines are commonly found
in many places including universities, libraries, hotels, and
stores. Any user who can log in to the machine can run a
malicious program and collaborate with an off-path attacker
to conduct the attack, poisoning the DNS cache, and leaving
the machine to be used by victims. For all tested operating
systems, we find that the OS-wide DNS cache is in fact shared
across multiple users. This means that a malicious user (e.g.,
guest) capable of poisoning the OS-wide DNS cache can cause
a different user (admin or guest) to also use the poisoned
cache. Furthermore, for Windows, any user (including guest)

1155

can clear the cache directly without requiring admin privilege,
so that the malware can clear legitimate entries to make room
for poisoned entries. We confirmed, after obtaining permission
from the system administrators to conduct an experiment then
clearing the cache, that shared public machines in four large
universities are vulnerable to the attack.
• Malware. Applications downloaded from an App store,
or malicious JavaScript on a website that is malicious or
compromised, can also be used to launch the attack. In the
public machine scenario, the attacker may need physical access
to the machine. In this attack scenario, the victim unknowingly
downloads a malicious application that launches the attack,
without requiring physical access to the machine.

Off-path
Attacker
�������

Step 2

Step 3

Step 4

Unprivileged malware
on Client machine

�������
Legit DNS Resolver

�������

Attacker’s Server
�������

Step 1

CtoR

RtoC

CtoCi

Legit Server
�������

AtoC1000

Field Source Destination
IP 1.1.1.1 2.2.22

Port 49152 53
TXID 1000

Payload A? www.bank.com

CtoR : Client to Resolver

AtoCi : Attacker to Client
Field Source Destination

IP 2.2.2.2 1.1.1.1
Port 53 49152
TXID i (1≤i≤65536)

Payload www.bank.com A 4.4.4.4

Field Source Destination
IP 2.2.2.2 1.1.1.1

Port 53 49152
TXID 1000

Payload www.bank.com A 5.5.5.5

RtoC : Resolver to Client

Fig. 2: Design of client-side DNS cache poisoning attack

C. Challenges and Detailed Attack Procedure

Source Port Reservation. In order to send spoofed responses,
the off-path attacker must first obtain the DNS request’s
source IP address, source UDP port, destination IP address,
and destination UDP port. IP addresses of the victim and
resolver can be obtained easily using the unprivileged malware
on the victim through standard OS interfaces, and the well-
known destination UDP port for DNS requests is 53. The final
challenge is to identify the source UDP port. As stated in RFC
6056 [16], the 16-bit dynamic port range of UDP is 49152
through 65536 which is typically used in Windows and Mac
OS operating systems. However, we found out that in Ubuntu
Linux, the ephemeral port range is 32768 through 60999.

There exist many port selection algorithms [16]. Many are
proposed specifically to defeat port predictions which means
the port allocated each time for a new socket will appear
to be random; however, the work in [20], [22] show that
these algorithms are not efficient. Without documentation,
it is unclear which algorithm is used in Windows or Mac
OS. Nevertheless, after testing the source UDP port number
selection of the DNS services in Windows and Mac OS, we
find that they appear to be unpredictable.

A basic building block of our attack is the ability to predict
or infer the source UDP port of a DNS request. Based on
our measurements, we discover that surprisingly all operating
systems we tested are permissive in terms of the number of
simultaneously open sockets they allow to any program. This

allows an application (e.g., malware) to reserve all local port
numbers but one so that the system DNS service will be
forced to pick the one and only available port. Specifically,
in Windows, any unprivileged application by default can open
as many UDP sockets as desired and bind to a selected
ephemeral port number. In Mac OS, there is a limit of the
system resources consumption (which is 10240 file descriptors
by default) but can be raised to a higher number (e.g., 100,000)
without root privileges [37]. Likewise, Ubuntu Linux has a
default limit of 4096 file descriptors for each process which
also can be raised to meet the attack requirements [38]. Even
without raising the per-process limit, we can simply create a
single application to fork multiple child processes (e.g., 2 and
6 processes in Mac OS and Ubuntu Linux respectively) to be
able to reserve the required number of ports. We have verified
that Android have similar behaviors to Mac OS and Ubuntu
Linux.
Cache Poisoning. After the port reservation is done, the
cache poisoning attack is started. The unprivileged malware
on the client machine contacts the off-path attacker machine to
coordinate the attack. We assume there is only one unoccupied
UDP port (e.g., port 49152) and the target domain name is
www.bank.com.

The steps of the attack are illustrated in Figure 2. First, the
malware on the client machine, at address 1.1.1.1, reserves
all UDP ports except 49152. Second, the malware triggers a
DNS query, denoted by CtoR, for the target domain name
www.bank.com to the legitimate DNS resolver at address
2.2.2.2 with the source UDP port of 49152. The client OS
randomly selects a TXID (say 1000). Third, the attacker re-
peatedly sends spoofed responses, denoted by AtoC1, AtoC2,
..., AtoC65536, each with a different TXID field. If one of these
responses contains the correct TXID (which is AtoC1000), the
cache can be poisoned to store a malicious IP address for
www.bank.com.

Since TXID is a 16-bit field, a brute-force attack is possible
even though the number of guesses seems large, especially
given the attack may need to repeat over many trials (i.e., by
simply issuing getaddrinfo() calls). Finally, the resolver
responds to the DNS query issued by the malware and sends an
authentic response, denoted by RtoC. However, the response
is ignored by the DNS system service since there is no longer
a pending query. Otherwise, the authentic IP address will be
cached and the attacker will repeat the attack starting from the
second step. The steps are the same as if the client is behind
NAT except that the attacker tries to poison the response of
the NAT instead of the resolver.

V. TAILORED ATTACK STRATEGIES AND ANALYSIS

In this section, we consider OS-specific attack strategies
depending on whether the client is behind a NAT router.

A. Attacks without considering NAT

In this scenario, we assume the attacks are against networks
without a NAT device on the route between the off-path
attacker and the victim client (Fig. 3-a). This setting is

1156

���������

�

���	
����
�����

�������	�����

(a) Client without NAT

����
��������� �

�

	
���
��

������
��
���
��
��

(b) Client Behind NAT

Fig. 3: Attack Network Topologies

common; many networks do not use NAT. Moreover, if the
attacker and victim are in the same wired or wireless LAN,
then a NAT will not be traversed.

To succeed in the attack, a malicious response with a
matching TXID has to arrive before the real response. On
paper, this may be a challenging task as there is really only
an attack window equivalent of a round-trip time between the
client and resolver. Even with a high bandwidth, the attack
has a fairly low probability of success. Assuming an RTT of
5msec (client and resolver are close), and an attack bandwidth
of 10,000 spoofed responses per second, only 50 packets will
be received before the authentic response, leading to a success
probability of 50

65536 = 0.076%. To make matters worse, once
the authentic DNS response is cached, one may need to wait
for the entry to timeout before being able to launch the next
round of attack on the same domain. However, we discover
that specific OS implementations and real-world TTL/network
latency make our proposed attack highly feasible. We next
detail three OSes: Windows, Mac OS, and Ubuntu Linux.

1) Windows: We observed an interesting behavior when
testing the attack on Windows. In particular, we find that
the DNS system service (e.g., getaddrinfo()) retransmits
the request as soon as it receives a (spoofed) response with
an incorrect TXID, and it simply aborts after five failed
retransmissions. We reverse engineered the DNS system ser-
vice binary (dnsapi.dll) and found that it indeed has a
simple loop with select() for up to five times. Thus, if
the legitimate response is preceded by five spoofed responses,
it will not be accepted (since the request resets, and the new
request has a different TXID). This makes the attack much
easier as the authentic response can hardly be cached when
attack traffic is present. Meanwhile, although the attacker
only gets five chances to guess the TXIDs before each in-
vocation of getaddrinfo(), the attacker can always call
getaddrinfo() multiple times until the attack succeeds.

2) Mac OS: For Mac OS, we find that unlike Window’s 5
response limit behavior, Mac’s DNS system service continues
to accept DNS responses until receiving a response with a
matching TXID. If none is found before the timeout, it will
simply retransmit and continue to wait for the correct response
to arrive. This means that the attack window is only a single
round-trip time before the legitimate response is received. This
makes the attack window somewhat limited: if we can send
10K spoofed messages per second, and RTT = 5msec, then

TABLE I: TTL for Alexa top 10 global websites
Rank Website TTL (seconds) Rank Website TTL (seconds)

1 Google.com 60 6 Reddit.com 30
2 Youtube.com 60 7 Yahoo.com 60
3 Facebook.com 60 8 Google.co.in 60
4 Baidu.com 300 9 Qq.com 20
5 Wikipedia.org 600 10 Taobao.com 180

TABLE II: The average RTT (in milliseconds) for Alexa top
500 global websites from different vantage points

DNS Server VP1 VP2 VP3 VP4 Google Cloud EC2

Google DNS 61 141 62 57 36 50
Quad9 104 191 109 103 77 70

OpenDNS 70 156 68 57 60 55
Norton 34 121 38 65 293 35

Comodo 164 185 130 80 82 94
Level3 58 136 77 71 58 58

the number of chances is 50. Also, if the current attempt fails,
we have to wait for the cached authentic response to timeout
before we can retry (recall that this is not the case for Windows
whose cache can be cleared even by a non-administrator user,
e.g., guest). While this slows down the attack, we found the
TTL values are typically short. Table I shows the TTLs of
the top 10 global websites based on Alexa [39]. We find that
58%, 27%, and 19% of the Alexa top 500 global websites
have a TTL value less than or equal to 60sec, 30sec, and
20sec, respectively. Importantly, since at the start of every
attempt, the value has expired in all the caches, this gives us
an RTT window of the full resolution through the DNS system,
traversing several resolvers, which can be in the tens if not
hundreds of msecs. Thus, the attacker gets a larger number of
guesses before the authentic response is received. To confirm
the larger RTT time, we tested the RTTs from 6 different
vantage points (VPs) including EC2 and Google cloud servers
and 4 large universities to 6 public DNS servers. The dataset
is the top 500 global websites based on Alexa [39]. We used
nslookup to forcibly send a DNS query to open DNS servers
(e.g., 8.8.8.8 for Google public DNS server) regardless of its
caching status. As shown in Table II, the RTTs are indeed
relatively high.

3) Ubuntu Linux: The first release of Ubuntu Linux
that supports OS-wide DNS caching is Ubuntu 17.04 that
uses systemd-resolved as the default system DNS ser-
vice [40]. We find that the behavior is almost identical to Mac
OS. The main difference appears to be that when all UDP ports
are reserved on Ubuntu Linux, we find that DNS queries can
still be sent to the resolver using random source TCP ports.
To overcome this problem, we use the same port reservation
technique in §IV-C to reserve all TCP ports and force the
DNS service to use the one and only available UDP port for
all outgoing queries. For completeness, we also measured the
behavior of dnsmasq, a popular DNS/DHCP software [41],
for other Linux distributions which behave very much the same
way as Mac OS and Ubuntu. In other words, our attack is also
effective on any Linux-based system running this DNS API.

To further improve the attack time for MacOS and Linux,
we can try to accelerate flushing of the DNS entry from the
cache, for example, by filling the cache with new requests.
In addition, we developed a strategy to interfere with the re-
solver’s ability to respond to the DNS requests, which provides

1157

a larger time window for the attacker to operate. Specifically,
the attacker can launch a DoS attack that floods the external
resolver with spoofed DNS requests for domain names differ-
ent than the one the attacker targets (e.g., www.bank1.com,
www.bank2.com, ... etc) to fill its socket buffer. The idea is
that since we can predict the source UDP port of the DNS
request, all spoofed DNS requests will target the same exact
socket buffer to which the real DNS request will also go. If the
legitimate DNS request is received while the socket buffer is
full, it is dropped and no response is sent back. For example,
we configured our own DNS server which runs Ubuntu Linux
14.04 LTS, and we measured the per-socket buffer for the
OS and found that the default per-socket buffer size is 17KB
which can hold only � 300 DNS packets.

B. Client behind NAT Attacks

As shown in Fig. 3-b, a NAT allows clients on a private
network to connect to the Internet by remapping their private
addresses to its own IP address and using port numbers to
keep track of the mapping of internal connections to external
ones. With respect to our attack, since the attacker does
not generally know the external port assigned to the DNS
query, NAT increases the entropy. Fortunately, we found that
under several popular settings, we can derive the external
port allowing the attack to proceed. We tested three NAT
devices (Linksys WRT3200ACM, Netgear WNDR4500 v3,
and Netgear WGR614 v9). We found the NAT’s port trans-
lation behaviors for DNS sessions depends on how DNS is
configured on the client and on the NAT:

1. Both Client and NAT Use DHCP. By default, DHCP
configures both the client and NAT to use the local DNS
server. In this scenario, the NAT translates the source
UDP port of the client to a random port each time the
client contacts the local DNS server.

2. Client Manually Configures DNS. When a client
changes the DNS settings to an alternative DNS server
(e.g., 8.8.8.8 for Google public DNS), the NAT preserves
the source port of UDP sessions to that DNS server. Us-
ing an open resolver is becoming increasingly common:
a recent study shows that 12.70% of a sample of size
� 735 million machines around the world use Google
Public DNS server [42]. Moreover, there are other Open
DNS servers that are popular (e.g., Quad9, OpenDNS,
Norton, Comodo, and Level3).

3. NAT Manually Configures DNS. If the client uses
DHCP but NAT uses a manually configured DNS server,
the NAT assigns a fixed source port to all DNS sessions
to that DNS server.

4. Both Client and NAT Manually Configure DNS. In
this case, similar to Case 2, the NAT preserves the
client’s source UDP port.

Our attack can be easily carried out in all above scenarios
except Case 1: in Cases 2, 3, and 4, the external source UDP
port is known to the attacker, and the attack can be easily
modified to attack a client behind NAT. For Case 1, we can
bootstrap our attack by using principles proposed by Herzberg

et al. [19], [20] to reserve the source port. In particular, this
attack creates a large number of connections to attempt to
reserve all the external source UDP ports of the NAT router.
If only one port is left, the NAT router is forced to use it and
the attacker no longer has to guess the port number.

C. Performance Analysis

For a single spoofed reply, the probability of making a
correct guess for the TXID is 1 out of 216 (216 is the TXID
field range). The probability of failure of the attack in response
to a single invocation of getaddrinfo() is determined
as follows: P (failure) = 216−z

216 , where z is the number
of guesses up to a maximum of 216. For Windows, z is 5
since the getaddrinfo() fails after 5 tries, leading to a
success rate of 0.0076% for each try. The overall success
of the attack over x invocations of getaddrinfo() is:
P (X ≤ x) = 1−P (failure)x. The average number of trials
before a success is determined by the geometric distribution
and is 1

1−P (failure) . For Windows, this comes out to be a
little over 13000 tries. Since Windows does not rate limit
getaddrinfo(), each attempt can take as short as 2msec,
which means that the average time to succeed will be as short
as 2msec ∗ 13K = 26 seconds.

For Mac and Linux, z is determined by the bandwidth of
the off-path attacker to the client and the RTT of the DNS
resolution (which determines when the legitimate response
is received). For example, pessimistically assuming a low
RTT of 5msec, and an attacker bandwidth of 10K spoofed
messages per second, z is 50 packets, leading to a success rate
of approximately 0.076% (about 10 times that of Windows),
leading to the average number of trials before the success of
just over 1300. However, since each retry has to wait for the
value to expire from the DNS cache (e.g., 30 seconds), the
time until success can be long (close to 11 hours for this
example). We note that this is highly pessimistic since the
uncached RTT is much higher than 5msec. For instance, using
the average value in Table II which 92msec, z is 920 packets,
leading to a success rate of approximately 1.4% and an average
number of trials before the success of 70. In this case, the time
until success is dropped to 35 minutes. The analysis does not
take into account network effects (e.g., dropped packets due to
overrunning buffers) which we found to have significant (even
dominating) effects in some scenarios.

VI. EVALUATION

In this section, we experimental ly assess the effectiveness
of the end-to-end attack in realistic settings for all our attack
scenarios.
Client Platform. We conduct our experiments on client ma-
chines running Microsoft Windows 7, 8.1, and 10, MacOS
Sierra, and Ubuntu 17.04 which all support an OS-wide DNS
cache. We note that most other Linux distributions, including
Ubuntu versions prior to 17.04 do not enable an OS-wide
cache by default, although DNS cache implementations could
be installed for example by enabling dnsmasq [41].

1158

Network Configuration. We use two different network
topologies mirroring those shown in Fig.3-a (without NAT)
and Fig. 3-b (with NAT). For the NAT-based attacks, we
configure an internal DNS resolver, using the BIND name
server software (BIND9) on Ubuntu 14.04 LTS; (which we
denote by U14). The NAT acts as port-preserving, attempting
to allocate the same outside port as the inside port, (case 2
as described in §V). We also verified the attack on fixed-port
NATs (case 3) and found it to be easier since there is no need
to reserve the ports on the client machine.

The network bandwidth between all nodes is 1Gbps. In
a real attack environment, there may not be such a high
bandwidth and we therefore intentionally limit the attacker’s
throughput using the Linux Traffic Control utility tc [43]. TC
allows us to configure the Linux packet scheduler to simulate
lower bandwidth connections and also control the effective
RTT to the attacker. In addition, we emphasize that since
the off-path attacker knows which source UDP port the DNS
request will use, she can start flooding the client/NAT with
spoofed responses even before the client initiates the DNS
request. With this strategy implemented, the attacker has a full
round-trip time window to try and guess the correct TXID.
Experimental Details. We show the measurement results of
the attack against all operating systems. Each data point is gen-
erated by 50 repeated experiments. Given the large dispersion
in the time to succeed (due to the geometric distribution of the
number of tries until success of the attack), we estimated that
bounding the confidence interval of the mean requires many
thousand experiments in several of our scenarios. This is not
feasible since some experiments take on the order of hours.
Thus, instead of using the mean, we use the median of 50
experiments for each point since the median is more robust to
outliers. We also calculate the 95% confidence intervals of the
medians and show those on the figures. Note that confidence
intervals for medians are not symmetric around the median.
We use the formula in [44] to calculate the rank order of the
upper and lower bounds instead of their actual values. For
one representative case, we show the histogram of the time
to succeed for individual experiments to provide insight into
the distribution of the time to success of the attack for the
different operating systems.

A. Results of attacks without considering NAT

(a) Windows (b) Ubuntu Linux

Fig. 4: Median time to an attack success without NAT

Fig. 5: Success Time Statistics

1) Windows: Fig. 4-a shows the measurement results of
the attack against Windows. The time to succeed is small,
one the order of 10s of seconds, in most configurations as
shown in Fig. 5, even though the number of trials to succeed
is typically in the tens of thousands. The fast success time is
possible because getaddrinfo() can be invoked extremely
quickly— most of the time getaddrinfo() returns in less
than 2 milliseconds after 5 spoofed responses are received.
In practice, however, we do observe that rarely (< 0.1%
of the trials) the authentic response arrives within the first
5 responses due to network jitter, especially as RTT gets
larger. Furthermore, the results show that the likelihood of
a successful attack depends significantly on the two factors
(RTT and bandwidth): the more resources the attacker has the
faster the attack can succeed.

2) Ubuntu Linux: Fig. 4-b shows the attack against Ubuntu.
Since the malware does not have access to flush the DNS
cache (as in the Windows attacks), we consider an attack on
a website with a TTL of 30 seconds (which is in the common
range experimentally measured in §V-A). Thus, for each failed
trial, the attacker waits for 30 seconds before the next trial. As
shown in the figure, the attack time-to-success also depends
on RTT and bandwidth.

Note that in this scenario (as well as MacOS), every trial
waits until the TTL expires before it is initiated. Thus, the
response to the query will miss the caches and likely go
through the full resolution step, or hit a cache upstream,
resulting in a large delay until the authentic response is
received. We measured this delay to be on average 92msec
(See Table II). Thus, for the attack on Ubuntu and Mac OS,
we start with RTT of 10msec (which is still quite conservative).

3) Mac OS: Figure 6-a shows the results of the attack
against Mac OS. Similar to the Linux attacks, we assume
a TTL of 30secs for the resource record in the OS-wide
DNS cache. As we can see, overall time to success improves
with increased bandwidth or RTT. Although the time to
success is not prohibitive, the attack is slow. Thus, as we
discussed earlier, we consider a case where the attacker also
performs a DoS attack against the resolver with 15K packets
per second (could be from the same attack machine or an
external one). For ethical reasons, we set up our own resolver
for this experiment so that we do not carry out a DoS

1159

(a) Mac OS (without DoS) (b) Mac OS (with DoS)

Fig. 6: Median time to success on Mac OS without NAT

attack on part of the DNS infrastructure. The time to success
improves dramatically, to a few minutes or lower under most
configurations, as shown in Fig. 6-b. We note that more than
60% of the attacks succeeded in less than a minute for the
configuration shown in Fig. 5.). With the DoS attack, the
average number of trials to succeed drops dramatically to less
than 5, since most of the real DNS requests are dropped by
the resolver, providing a larger window to spoof responses.

(a) Windows (b) Ubuntu Linux

Fig. 7: Median time to success when client is behind NAT

B. Client behind NAT

Fig. 7-a and Fig. 7-b show the attack results against Win-
dows and Ubuntu Linux when the client is behind a NAT (Mac
OS behaved similar to Linux), respectively. As shown in the
figures, in addition to RTT and bandwidth, the success time
is also affected when we add NAT to the network topology.

Network congestion due to overflowing buffers within the
network software stack is the main cause of packet loss which
makes the attacks more challenging. Specifically, when the
socket receive queue of the NAT receives packets at a rate
that exceeds the router’s renaming and forwarding capacity,
the NAT starts dropping packets. In our case, since the attacker
sends malicious response packets aggressively, we found that a
fraction of these packets is not delivered to the client machine.
As a result, we observe that the number of rounds until an
attack is successful increases when NAT is present resulting
in the higher success times. Moreover, on the client side,
before a response packet gets processed by the DNS API
getaddrinfo(), it is transmitted through different network
queues until it reaches the OS-wide UDP socket receive queue.

Since the IP stack filling the queue and the network driver
that is draining the queue run asynchronously, packets might
be dropped before they are even processed by DNS. This
problem is especially apparent in the Mac attack results as
shown in Fig. 6-a since the queue size is small (only 9216
Bytes) compared to Ubuntu Linux (212992 bytes).

VII. ATTACK MITIGATION

Since existing defenses do not prevent the proposed attack,
we explore a defense which requires only changes to the
client DNS cache software, making it practical to deploy
immediately through an OS patch. The defense first detects
an attack using unique signatures (a large number of DNS
replies with wrong TXID and local UDP port reservation),
and then takes corresponding measures for mitigation.
Attack Detection. The detection module sniffs on UDP port
53 for all DNS traffic. After a DNS query is sent, a potential
attack can be detected by observing a number of malicious
responses with incorrect TXID. Once an attack is detected, a
number of mitigations are possible, which we describe in the
remainder of this section.
Attack Mitigation. The proposed mitigation strategies are
two fold: (1) targeting the local malicious process; and (2)
preventing the cache poisoning. To interfere with the malware
process, the client OS notifies the user about the attack and
the perpetrating process that reserves a large number of ports.
Then depending on the user’s preference or pre-configured
security policy, the OS takes corresponding mitigation actions.
A preferred action is to stop the malicious process, release the
reserved ports, and then resend the same DNS query.
Verify Response to Interfere with cache poisoning. An
additional mechanism we propose is to verify the responses
received when an attack signature is detected. We consider
two potential verification strategies: (1) Repeat request: since
the likelihood of attack success in any round is small, we
can accept a response only if it stays the same in successive
lookups; (2) Verify by reverse lookup: we verify the IP address
in the response DNS packet by sending a Pointer (PTR) DNS
query. This query type is used to resolve an IP address to
an FQDN. If the FQDN and the query name of the pending
query do not match, then we can be more confident that an
on-going attack is present (we notice that the PTR reply itself
can also be spoofed though). We probed Alexa top 500 global
websites by sending PTR DNS requests, and found that PTR
queries have moderate support on today’s Internet. We found
that nearly 52% of the sites have PTR records and only 24%
return an FQDN that contains the domain name in the query.
Thus, this defense will work only opportunistically.

With these mechanisms, we suggest a less intrusive but more
risky action of accepting the returned DNS response with the
correct TXID but not cache it until/unless it is verified. By
not caching the DNS response, at least we limit the damage
by making sure that the DNS cache is not poisoned, allowing
the cache to be used only when no foul play is suspected.

We tested the above defense on a number of operating
systems including Windows, Mac OS, Ubuntu Linux as well as

1160

on a NAT device (Linksys WRT3200ACM router running DD-
WRT firmware). The implementation uses a co-located proxy
(to enable portability across different operating systems), but
ideally the defense would be realized directly by the DNS
caching module itself in the OS. The defense mitigates all of
our attacks: we were not able to poison the cache after running
each attack for several hours with the defense deployed.
Other Recommendations. Additional mechanisms to hinder
the attack include having the OS restrict the total number of
open sockets to avoid the port reservation attack. Even though
ulimit is supposed to limit the file descriptors of each user
to 1024 or 4096, it does not seem to be enforced correctly
on Mac or Linux at the moment. A second recommendation
is to have the OS provide isolation among users of the same
machine with each user having its own dedicated DNS cache.
Isolation prevents a malicious user from poisoning the cache
for other users as in the attack scenario with a public machine.

VIII. CONCLUSION

To conclude, we are the first to practically report, evaluate,
and measure the client-side OS-wide DNS cache poisoning
attack against Windows, Mac OS, and Linux operating sys-
tems. By understanding the specific OS implementations, we
tailor the attacks against them individually and show that the
attack can generally succeed in tens of seconds under realistic
conditions. We hope that the lessons learned can help improve
the future design and implementation of DNS and even other
OS-wide caching systems.
Acknowledgments: Fatemah Alharbi is supported by Taibah
University (TU) and the Saudi Arabian Cultural Mission
(SACM). The work is partially supported by the National
Science Foundation under grants No. CNS-1619391, CNS-
1652954, and CNS-1618898.

REFERENCES

[1] D. Atkins and R. Austein, “RFC 3833 - Threat Analysis of the Domain
Name System (DNS),” https://tools.ietf.org/html/rfc3833, 2004.

[2] D. Kaminsky, “Black ops 2008: It’s the end of the cache as we know
it,” Black Hat USA, 2008.

[3] C. Jackson, A. Barth, A. Bortz, W. Shao, and D. Boneh, “Protecting
browsers from dns rebinding attacks,” ACM Transactions on the Web
(TWEB), vol. 3, no. 1, p. 2, 2009.

[4] A. Klein, “Bind 9 dns cache poisoning,” Report, Trusteer, Ltd, vol. 3,
2007.

[5] “Multiple DNS implementations vulnerable to cache poisoning,” http:
//www.kb.cert.org/vuls/id/800113, 2012.

[6] S. Weiler and D. Blacka, “Rfc 6840 - clarifications and implementation
notes for dns security (dnssec),” https://tools.ietf.org/html/rfc6840, 2013.

[7] D. Dagon, M. Antonakakis, P. Vixie, T. Jinmei, and W. Lee, “Increased
dns forgery resistance through 0x20-bit encoding: security via leet
queries,” in ACM CCS, 2008, pp. 211–222.

[8] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “RFC 4035
- Threat Analysis of the Domain Name System (DNS),” 2005.

[9] S. M. Bellovin, “Security problems in the tcp/ip protocol suite,” ACM
SIGCOMM CCR, vol. 19, no. 2, pp. 32–48, 1989.

[10] P. Vixie, “Dns and bind security issues.” in Usenix Security, 1995.
[11] A. Klein, “OpenBSD DNS Cache Poisoning and Multiple O/S

Predictable IP ID Vulnerability,” http://www.openbsdsupport.com.
ar/books/OpenBSD DNS Cache Poisoning and Multiple OS
Predictable IP ID Vulnerability.pdf., 2007.

[12] ——, “Windows DNS Server Cache Poisoning ,” https:
//dl.packetstormsecurity.net/papers/attack/Windows DNS Cache
Poisoning.pdf, 2007.

[13] D. J. Bernstein, “”dns forgery”,” https://cr.yp.to/djbdns/forgery.html,
2002, internet publication.

[14] ——, “”the dns random library interface”,” https://cr.yp.to/djbdns/dns.
html, 2008, internet publication.

[15] A. Hubert and R. van Mook, “RFC 5452 - Measures for Making DNS
More Resilient against Forged Answers,” 2009.

[16] M. Larson and F. Gont, “RFC 6056 - Recommendations for Transport-
Protocol Port Randomization,” https://tools.ietf.org/html/rfc6056, 2011.

[17] M. Larson and P. Barber, “RFC 4697 - Observed DNS Resolution
Misbehavior,” https://tools.ietf.org/html/rfc4697, 2006.

[18] A. Herzberg and H. Shulman, “Fragmentation considered poisonous,
or: One-domain-to-rule-them-all. org,” in Communications and Network
Security (CNS), 2013 IEEE Conference on. IEEE, 2013, pp. 224–232.

[19] Y. Gilad, A. Herzberg, and H. Shulman, “Off-path hacking: The illusion
of challenge-response authentication,” IEEE Security & Privacy, vol. 12,
no. 5, pp. 68–77, 2014.

[20] A. Herzberg and H. Shulman, “Security of patched dns,” in European
Symposium on Research in Computer Security. Springer, 2012, pp.
271–288.

[21] ——, “Vulnerable delegation of dns resolution,” in European Symposium
on Research in Computer Security. Springer, 2013, pp. 219–236.

[22] H. Shulman and M. Waidner, “Fragmentation considered leaking: port
inference for dns poisoning,” in International Conference on Applied
Cryptography and Network Security. Springer, 2014, pp. 531–548.

[23] A. Klein, H. Shulman, and M. Waidner, “Internet-wide study of dns
cache injections,” in IEEE INFOCOM, pp. 1–9.

[24] R. Perdisci, M. Antonakakis, X. Luo, and W. Lee, “Wsec dns: Protecting
recursive dns resolvers from poisoning attacks,” in IEEE/IFIP DSN,
2009, pp. 3–12.

[25] “TLD Zone File Statistics,” https://www.statdns.com/, online; accessed
24 July 2018.

[26] P. Hoffman and P. McManus, “DNS Queries over HTTPS,” https://tools.
ietf.org/html/draft-hoffman-dns-over-https-01, 2017.

[27] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and P. Hoffman,
“Specification for dns over transport layer security (tls),” Tech. Rep.,
2016.

[28] F. Denis, “DNSCrypt,” https://www.dnscrypt.org/, 2015.
[29] K. Schomp, M. Allman, and M. Rabinovich, “Dns resolvers considered

harmful,” in Proceedings of the 13th ACM Workshop on Hot Topics in
Networks. ACM, 2014, p. 16.

[30] T. Killalea, “RFC 3013 - Recommended Internet Service Provider
Security Services and Procedures,” 2000.

[31] R. Beverly, A. Berger, Y. Hyun et al., “Understanding the efficacy of
deployed internet source address validation filtering,” in ACM IMC,
2009, pp. 356–369.

[32] R. Beverly, R. Koga, and K. Claffy, “Initial longitudinal analysis of ip
source spoofing capability on the internet,” 2013.

[33] P. Mockapetris, “State of IP Spoofing,” https://spoofer.caida.org/
summary.php, online; accessed 7 May 2018.

[34] T. Ehrenkranz and J. Li, “On the state of ip spoofing defense,” ACM
Transactions on Internet Technology (TOIT), vol. 9, no. 2, p. 6, 2009.

[35] Z. Qian and Z. M. Mao, “Off-path tcp sequence number inference attack-
how firewall middleboxes reduce security,” in Security and Privacy (SP),
2012 IEEE Symposium on. IEEE, 2012, pp. 347–361.

[36] Z. Qian, Z. M. Mao, and Y. Xie, “Collaborative tcp sequence number
inference attack: how to crack sequence number under a second,” in
ACM CCS, 2012, pp. 593–604.

[37] “setrlimit(2) - Linux man page,” https://linux.die.net/man/2/setrlimit,
online; accessed 8 May 2018.

[38] “Mac OS X/Darwin man pages: setrlimit (2),” http://www.manpages.
info/macosx/setrlimit.2.html, online; accessed 8 May 2018.

[39] “Top Sites in United States,” https://www.alexa.com/topsites/countries/
US, 2017.

[40] D. Kirkland, “Ubuntu Manpage: systemd-resolved.service, systemd-
resolved - Network Name Resolution,” http://manpages.ubuntu.com/
manpages/bionic/man8/systemd-resolved.service.8.html.

[41] “dnsmasq,” https://wiki.archlinux.org/index.php/dnsmasq, 2017.
[42] “Use of DNSSEC-ECDSA Validation for World (XA),” https://stats.labs.

apnic.net/ecdsa/XA, online; accessed 25 July 2018.
[43] M. Brown, “The linux traffic control HOWTO,” 2006, accessed May

2018 from http://tldp.org/HOWTO/Traffic-Control-HOWTO/index.html.
[44] D. Altman, D. Machin, T. Bryant, and M. Gardner, Statistics with

confidence: confidence intervals and statistical guidelines. John Wiley
& Sons, 2013.

1161

