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ABSTRACT
Multi-aspect data appear frequently in many web-related
applications. For example, product reviews are quadruplets
of (user, product, keyword, timestamp). How can we an-
alyze such web-scale multi-aspect data? Can we analyze
them on an off-the-shelf workstation with limited amount of
memory?

Tucker decomposition has been widely used for discover-
ing patterns in relationships among entities in multi-aspect
data, naturally expressed as high-order tensors. However,
existing algorithms for Tucker decomposition have limited
scalability, and especially, fail to decompose high-order ten-
sors since they explicitly materialize intermediate data, whose
size rapidly grows as the order increases (≥ 4). We call this
problem M-Bottleneck (“Materialization Bottleneck”).

To avoid M-Bottleneck, we propose S-HOT, a scalable
high-order tucker decomposition method that employs the
on-the-fly-computation to minimize the materialized inter-
mediate data. Moreover, S-HOT is designed for handling
disk-resident tensors, too large to fit in memory, without
loading them all in memory at once. We provide theoretical
analysis on the amount of memory space and the number
of scans of data required by S-HOT. In our experiments,
S-HOT showed better scalability not only with the order
but also with the dimensionality and the rank than baseline
methods. In particular, S-HOT decomposed tensors 1000×
larger than baseline methods in terms dimensionality. S-
HOT also successfully analyzed real-world tensors that are
both large-scale and high-order on an off-the-shelf worksta-
tion with limited amount of memory, while baseline methods
failed. The source code of S-HOT is publicly available at
http://dm.postech.ac.kr/shot to encourage reproducibility.

1. INTRODUCTION
Tensor decomposition is a widely-used technique for the

analysis of multi-aspect data. Multi-aspect data, which are
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naturally modeled as high-order tensors, frequently appear
in many applications [5, 17, 21, 22, 28, 31], including the
following examples:

• Social media: 4-order tensor (sender, recipient, key-
word, timestamp)

• Internet security: 4-order tensor (source IP, destina-
tion IP, destination port, timestamp)

• Product reviews: 5-order tensor (user, product, key-
word, rating, timestamp)

To analyze such multi-aspect data, several tensor decompo-
sition methods have been proposed, and we refer interested
readers to the excellent survey [16]; tensor decompositions
have provided meaningful results in various domains [1, 16,
17, 19] as well as web [5, 11, 17, 22, 28, 32]. Especially,
Tucker decomposition [40] has been successfully applied in
many applications, such as web search [38], network foren-
sics [37], social network analysis [6], and scientific data com-
pression [2].

Developing a scalable Tucker decomposition method has
been a challenge due to a huge amount of intermediate data
generated during the computation. Briefly speaking, Alter-
nating Least Square (ALS), the most widely-used Tucker
decomposition method, repeats two steps: 1) computing an
intermediate tensor, denoted by Y, and 2) computing the
SVD of the matricized Y (see Section 2 or [16] for details).
Previous studies [18, 14] pointed out that a huge amount of
intermediate data are generated during the first step, and
they proposed methods for reducing the intermediate data
by carefully ordering computation.

However, existing methods still have a scalability limi-
tation, and easily run out of memory, particularly when
dealing with very high-order tensors. Specifically, existing
methods explicitly materialize Y, but the amount of space
required for storing Y grows rapidly with respect to the or-
der, the dimensionality, and the rank of the input tensor.
For example, the space required for Y is over 260 GBytes
for a 5-order tensor with 1 million dimensionality when the
rank of Tucker decomposition is set to 16. We call this prob-
lem M-Bottleneck, which stands for Materialization Bottle-
neck. Due to M-Bottleneck, existing methods are not suit-
able for decomposing a tensor with high order, dimensional-
ity, and/or rank. Our experimental results show that even
state-of-the-art methods easily run out of memory as these
factors increase (Figure 1).

To avoid M-Bottleneck, in this work, we propose S-HOT, a
scalable Tucker decomposition method. S-HOT is designed
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(a) S-HOT shows better order-scalability. (b) S-HOT decomposes 103× higher
dimension tensor

(c) S-HOT shows better rank-scalability.

Figure 1: S-HOT scales up. S-HOT successfully decomposes tensors with high order, dimensionality, and
rank, while the baseline methods fail running out of memory as those three factors increase. Especially, S-
HOT handles a tensor with 1000 times higher dimensionality. We use two baselines: 1) BaselineNaive: naive
method for Tucker decomposition, and 2) BaselineOpt [18]: the state-of-the-art memory-efficient method for
Tucker decomposition.

for decomposing high-order tensors on an off-the-shelf work-
station. Our key idea is to compute Y on the fly, without
materialization, by combining both steps in ALS. Specifi-
cally, we utilize the reverse communication interface of a
recent scalable eigensolver called Implicitly Restart Arnoldi
Method (IRAM), which enables SVD computation without
materializing Y. Based on this on-the-fly computation idea,
S-HOT performs Tucker decomposition by streaming non-
zero tensor entries from the disk. Moreover, we offer two
versions of S-HOT with distinct advantages: 1) S-HOTscan:
requiring multiple copies of the input tensor, but faster with
half the number of data scans, and 2) S-HOT: slower but
more space efficient requiring only one copy of the input
tensor.

Our experimental results demonstrate that S-HOT out-
performs baseline methods by providing significantly bet-
ter scalability, as shown in Figure 1. Specifically, both S-
HOTscan and S-HOT successfully decompose a 6-order ten-
sor, while baselines fail to decompose even a 4-order tensor
or a 5-order tensor due to their high memory requirements.
The difference is more significant in terms of dimensionality.
S-HOT decomposes a 1000× larger tensor than baselines
(see Figure 1(b)).

Our contributions are summarized as follows.

• Handling Bottleneck: We identify M-Bottleneck,
which limits the scalability of existing Tucker decom-
position methods, and we avoid it by an on-the-fly
computation.
• Algorithm Design: We propose S-HOT, a scalable

Tucker decomposition method carefully designed for
high-order tensors too large to fit in memory. In our
experiments, S-HOT offers up to 1000× better scala-
bility than baseline methods.
• Theoretical analysis: We provide a theoretical anal-

ysis on the amount of memory space and the number
of scans of data that our methods require.

Reproducibility: The source code of S-HOT and the datasets
used in the paper are available at http://dm.postech.ac.kr/
shot.

In Section 2, we give the preliminaries on tensors and

Tucker decomposition. In Section 3, we review related work,
and introduce M-Bottleneck, which past methods commonly
suffer. In Section 4, we propose S-HOT, a scalable high-
order tucker decomposition, for addressing M-Bottleneck.
After presenting experimental results in Section 5, we make
a conclusion in Section 6.

2. PRELIMINARIES
In this section, we give the preliminaries on tensors (Sec-

tion 2.1), basic tensor operations (Section 2.2), Tucker de-
composition (Section 2.3), and Implicitly Restarted Arnoldi
Method (Section 2.4).

2.1 Tensors and Notations
A tensor is a multi-order array which generalizes a vec-

tor (an one-order tensor) and a matrix (a two-order tensor)

Table 1: Table of Symbols

Symbol Definition

N number of modes
X N -order input tensor ∈ RI1×···×IN

X(i1, ..., iN ) (i1, ..., iN )-th entry of X (also denoted by Xi1i2...iN )
Θ(X) set of the indices of all non-zero entries in X

Θ
(n)
i (X) subset of Θ(X) where the n-th mode index is i
X(n) mode-n unfolding of X
M number of non-zero entries in X

In dimensionality of the n-th mode of X
Jn number of component (rank) for the n-th mode
G N -order core tensor ∈ RJ1×···×JN

{A} set of all the factor matrices of X

A(n) mode-n factor matrix ( ∈ RIn×Jn) of X

ā
(n)
i i-th row-vector of A(n)

a
(n)
j j-th column-vector of A(n)

◦ outer product
×̄n n-mode vector product
×n n-mode matrix product
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to higher orders. Let X ∈ RI1×···×IN be the input tensor,
whose order is denoted by N . Like the rows and columns
in a matrix, X has N modes, whose lengths, also called di-
mensionality, are denoted by I1, . . . , IN ∈ N, respectively.
We denote general N -order tensors by boldface Euler script
letters e.g., by X, while matrices and vectors are denoted
by boldface capitals, e.g., A, and boldface lowercases, e.g.,
a, respectively. We use the MATLAB-like notations to indi-
cate the entries of tensors. For example, X(i1, ..., iN ) indi-
cates the (i1, ..., iN )th entry of X. The similar notations is
also used for matrices and vectors. A(i, :) and A(:, j) (or āi

and aj in short) indicate the ith row and the jth column of
A. The ith entry of a vector a is denoted by a(i) (or ai in
short).

Definition 1 (Fiber). A mode-n fiber is an one-order sec-
tion of a tensor, obtained by fixing all indices except the n-th
index.

For example, in a three-order tensor X, there are three
kinds of fibers, X(:, j, k) (mode-1), X(i, :, k) (mode-2), and
X(i, j, :) (mode-3) depending on fixed indices.

Definition 2 (Slice). A slice is a two-order section of a
tensor, obtained by fixing all indices but two.

For example, in a three-order tensor X, there are three
kinds of slices, X(i, :, :), X(:, j, :), and X(:, :, k). Table 1 lists
the symbols frequently used in this paper.

2.2 Basic Tensor Operations
We review basic tensor operations, which are the building

blocks of tucker decomposition, explained in the following
section.

Definition 3 (Tensor Unfolding/Matricization). Unfolding,
also known as matricization, is the process of re-ordering
the entries of an N-order tensor into a matrix. The mode-n
matricization of a tensor X ∈ RI1×···×IN is a matrix X(n) ∈
RIn×(

∏
q 6=n Iq) whose columns are the mode-n fibers.

For example, the mode-1 unfolding of a three-order tensor
X ∈ RI1×I2×I3 is denoted by X(1) ∈ RI1×(I2I3). Note that,
there are multiple ways to unfold a tensor in terms of the
order that the entries of each slice are stacked. For example,
the followings are two different ways of mode-1 unfolding

X(1)(i, j + (k − 1)I2) = X(i, j, k),

X(1)(i, k + (j − 1)I3) = X(i, j, k).

However, specific orders do not have an impact on our algo-
rithm as long as an order is used consistently.

Definition 4 (N -order Outer Product). The N-order outer
product of vectors v1 ∈ RI1 ,v2 ∈ RI2 , . . . ,vN ∈ RIN is
denoted by v1 ◦ v2 ◦ · · · ◦ vN and is an N-order tensor in
RI1×I2×···×IN . Elementwise, we have

[v1 ◦ · · · ◦ vN ](i1, . . . , iN ) = v1(i1)v2(i2) . . .vN (iN ).

Definition 5 (n-mode Vector Product). The n-mode vec-
tor product of a tensor X ∈ RI1×···×IN with a vector v ∈
RIn is denoted by X×̄nv, and is an (N-1)-order tensor in
RI1×...In−1 ×In+1×···×IN . Elementwise, we have

[X×̄nv](i1, . . . , in−1, in+1, . . . , iN ) =

In∑
in=1

xi1i2...iN vin .

Definition 6 (n-mode Matrix Product). The n-mode ma-
trix product of a tensor X ∈ RI1×···×IN with a matrix U ∈
RJn×In is denoted by X×nU, and is an N-order tensor in
RI1×...In−1×Jn×In+1×···×IN . Elementwise, we have

[X×nU](i1, . . . , in−1, jn, in+1, . . . , iN ) =

In∑
in=1

xi1i2...iN ujnin .

We adopt the shorthand notations in [18] for all-mode
matrix product and matrix product in every mode but one:

X× {U} ≡ X×1U
(1) . . .×NU(N), and

X×−n{U} ≡ X×1U
(1) . . .×n−1U

(n−1)×n+1U
(n+1) . . .×NU(N).

Likewise, for brevity, we also use the following shorthand
notations for outer product:

◦(i1,...,iN ){A} = ā
(1)
i1
◦ · · · ◦ ā

(N)
iN

, and

◦−n
(i1,...,iN ){A} = ā

(1)
i1
◦ · · · ◦ ā

(n−1)
in−1

◦ [1] ◦ ā
(n+1)
in+1

◦ · · · ◦ ā
(N)
iN

.

2.3 Tucker decomposition
Tucker decomposition [40], which is also called N -mode

PCA, decomposes a tensor into a core tensor and N factor
matrices so that the original tensor is approximated best.
Specifically, X ∈ RI1×···×IN is approximated by

X ≈ G× {A},

where G ∈ RJ1×···×JN , Jn denotes the rank of n-th mode,
and {A} is the set of factor matrices A(1), . . . ,A(N), each
of which is in RIn×Jn . Using n-mode matrix product and
N -order outer product, Tucker is also presented as follows:

X ≈ G×1 A(1) ×2 A(2) · · · ×N A(N)

=

J1∑
j1=1

J2∑
j2=1

· · ·
JN∑

jN=1

gj1j2...jN a
(1)
j1
◦ a

(2)
j2
· · · ◦ a

(N)
jN

. (1)

Solving Tucker is to find the G and {A} that approximate
X best. It is worth noting that the solution of Tucker is not
unique. The most widely used way to solve Tucker is Tucker-
ALS (or Higher Order Orthogonal Iteration (HOOI)), which

assumes that all column vectors in A(n) are orthonormal
and solves Tucker by Alternating Least Squares (ALS). In
addition, [18] found that G can be uniquely computed by X×
{AT } once {A} is determined, and simplified the objective
function as follows (see [18] for details):

max
{A}
||X× {AT }||. (2)

The details of the conventional Tucker-ALS is presented in
Algorithm 1.

2.4 Implicitly Restarted Arnoldi Method (IRAM)
Computing the Eigendecomposition for large-scale datasets

is important because it is an important foundation of var-
ious dimensionality reduction and low-rank approximation
techniques. Vector iteration (or power method) is one of the
fundamental algorithms for solving large-scale Eigenprob-
lem [29]. Briefly speaking, for a given matrix U ∈ Rn×m,
Vector iteration finds the leading eigenvector corresponding
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Algorithm 1: Tucker-ALS

Input : X, a N -order tensor of RI1×···×IN .
J1, . . . , JN , the rank size of each mode.
T , the number of iterations.

Output: {A}, a set of factor matrices {A(1), . . . ,

A(N)} where A(n) ∈ RIn×Jn .
G, a N -order core tensor of RJ1×···×JN .

1 Initialize all A(n)

2 for t← 1..T do
3 for n← 1..N do
4 Y(n) ← [X×−n {AT }](n)

5 A(n) ← top-Jn left singular vectors of Y(n)

6 G← Y(N)×NA(N)T

7 return G, {A}

to the largest eigenvalue by repeating the following updating
rule from a randomly initialized v(0) ∈ Rm.

v(k+1) =
Uv(k)

||Uv(k)||
.

It is known that, as k increases, v(k+1) converges to the
leading eigenvector [29].

Arnoldi iteration is one of subspace iteration methods that
extend Vector iteration to find k leading eigenvectors simul-
taneously. Specifically, it finds the k eigenvectors from a sub-
space called Krylov space, which is spanned by {v,Uv, . . . ,
Ujv}, where j ≥ k−1. Implicitly Restarted Arnoldi Method
(IRAM) is one of the most advanced techniques for Arnoldi [29].
Briefly speaking, IRAM only keeps k orthonormal vectors
which are a basis of the Krylov space, and updates the basis
until it converges, then computes the k leading eigenvectors
from the basis. One virtue of IRAM is reverse communica-
tion interface, which enables users to compute Eigendecom-
position by viewing Arnoldi as a black box. Specifically, the
leading k eigenvectors of a square matrix U are obtained as
follows:

(1) User initializes an instance of IRAM.

(2) IRAM returns v(j) (initially v(0)).

(3) User computes v′ ← Uv(j), and gives v′ to IRAM.
(4) After an internal process, IRAM returns new vector

v(j+1).
(5) Repeat steps (3)–(4) until the internal variables in

IRAM converges.
(6) IRAM computes eigenvalues and eigenvectors from its

internal variables, and returns them.

For details of IRAM and reverse communication interface,
we refer interested readers to [20, 29].

3. RELATED WORKS
We describe the major challenges in scaling Tucker de-

composition in Section 3.1. Then, in Section 3.2, we briefly
survey the literature on scalable Tucker decomposition to see
how these challenges have been addressed. However, we no-
tice that past methods still commonly suffer M-Bottleneck,
which is explained in Section 3.3. Lastly, we briefly intro-
duce scalable methods for other tensor decomposition meth-
ods in Section 3.4.

Table 2: S-HOT is space efficient. It produces sev-
eral orders of magnitude less intermediate data than
state-of-the-art methods. For simplicity, we assume
N = 5, In = I = 1 million, Jn = J = 10 for all n, M =1
billion.

Method
Space Requirements for Intermediate Data

(in Theory) (in Example)

BaselineNaive MJN−1 ∼ 40TB

BaselineOpt [18] IJN−1 ∼ 40GB

HaTen2 [14] max(IJN−1,M(N − 1)J) ∼ 160GB

S-HOT max(I, JN−1) ∼ 4MB

S-HOTscan JN−1 ∼ 40KB

3.1 Intermediate Data Explosion
The most important challenge in scaling Tucker decom-

position is the “intermediate data explosion” problem which
was first identified in [18] (Definition 7). It states that a
naive implementation of Algorithm 1, especially the compu-
tation of [X ×−n {AT }](n), can produce huge intermediate
data that do not fit in memory or even on a disk. We shall
refer to this naive method as BaselineNaive.

Definition 7. (Intermediate Data Explosion in Baseline-
Naive) [18] . Let M be the number of non-zero entries in
X. In Algorithm 1, naively computing X×−n {AT } requires
O(M

∏
p6=n Jp) space for intermediate data.

For example, if we assume a 5-order tensor with M=1
billion and Jn=10 for all n, M

∏
p6=n Jp=10 trillions, which

requires 40TB, which exceeds the capacity of a typical hard
disk as well as RAM.

3.2 Scalable Tucker decomposition
Memory Efficient Tucker (MET) [18]: MET care-

fully orders the computation of X×−n {AT } in Algorithm 1
so that space required for intermediate data is reduced. Let
Y = X×−n {AT }. Instead of computing entire Y at a time,
MET computes a part of it at a time. Depending on the
unit computed at a time, MET has various versions, and
METfiber is the most space-efficient one.

In METfiber, each fiber (Definition 1) of X is computed at
a time. The specific equation when X is 3-order is as follows:

Y:j2j3 ←

I1︷ ︸︸ ︷
X×̄2a

(2)
j2
×̄3a

(3)
j3

. (3)

The amount of intermediate data produced during the com-
putation of a fiber in Y by Equation (3) is only O(I1). This
amount is the same for general N -order tensors. METfiber is
one of the most space-optimized tensor decomposition meth-
ods, and we shall refer to METfiber as BaselineOpt from now
on.

Hadoop Tensor Method (HaTen2) [14]: HaTen2,
in the same spirit as MET, carefully orders the computation
of X ×−n {AT } in Algorithm 1 on MapReduce so that the
amount of intermediate data and the number of MapReduce
jobs are reduced. Specifically, HaTen2 first computes X×p

(A(p))T for each p 6= n, then combines the results to obtain
X ×−n {AT }. However, HaTen2 requires O(M

∑
p6=n Jp)
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space for intermediate data, which is larger than O(In) space
that BaselineOpt requires.

Other Work Related to Scalable Tucker Decompo-
sition: Several methods were proposed for the case when
the input tensor X is dense so that it cannot fit in memory.
Specifically, [39] uses random sampling of non-zero entries to
sparsify X, and [2] distributes the entries of X across multi-
ple machines. However, in this work, our method stores X in
disk, thus, the memory requirement does not depend on the
number of non-zero entries (i.e., M). In addition, we assume
that X is a large but sparse tensor, which is more common
in real-world application, and thus its non-zero entries fit on
a disk.

Related to our work are more recent variations of the
Tucker model, such as Hierarchical Tucker [12, 26] which
are specifically tailored for high-order tensor analysis, how-
ever such models require additional knowledge that may be
application dependent. Note that our method is a scalable
algorithm for the original Tucker model with no modifica-
tion. We leave exploration of such variations for future work.

3.3 Limitation: M-bottleneck
Although BaselineOpt and HaTen2 successfully reduce

the space required for intermediate data produced while
Y(n) ← [X×−n {AT }](n) is computed, they have an impor-
tant limitation. Both methods materialize Y(n), but its size
O(In

∏
p6=n Jp) is usually huge, mainly due to In, and more

seriously, it grows rapidly as N , In or {Jn}Nn=1 increases.
For example, if we assume a 5-order tensor with In=1 mil-
lion and In=10 for all n, In

∏
p6=n Jp =10 billions. Thus,

if single-precision floating-point numbers are used, materi-
alizing Y(n) in a dense matrix format requires about 40GB
space, which exceeds the capacity of typical RAM. Note that
simply storing Y(n) in a sparse matrix format does not solve
the problem since Y(n) is usually dense.

Considering this fact and the results in Section 3.2, we
summarize the amount of intermediate data required during
the whole process of tucker decomposition in each method
in Table 2. Our proposed S-HOTscan and S-HOT methods,
which are discussed in detail in the following section, require
several orders of magnitude less space for intermediate data
by avoiding the materialization of Y(n).

3.4 Scalable Algorithms for Other Tensor De-
composition Methods

Comprehensive surveys on scalable algorithms for var-
ious tensor decomposition methods can be found in [25,
30]. Among other methods except Tucker decomposition,
PARAFAC decomposition, which can be seen as a special
case of Tucker decomposition where the core tensor has only
super-diagonal entries, has been widely used in many appli-
cations including chemometrics [36] and signal processing
[34]. The memory explosion problem in PARAFAC decom-
position was studied in [15], and recently, many scalable
PARAFAC decomposition methods have been proposed to
reduce memory requirements and/or computation. These
approaches can be grouped into the following categories:

• Optimized standard approaches: Standard optimiza-
tion algorithms including ALS and its variants [14, 15,
7, 13, 27], Gradient Descent [7], Stochastic Gradient
Descent [4], Coordinate Descent and its variants [32,

33], are optimized for PARAFAC decomposition to re-
duce intermediate data and computation.
• Sampling or Subdivision: Smaller tensors are obtained

by sampling [23, 24] or subdivision [9, 10], and each
subtensor is factorized. Then, the factor matrices of
the entire tensor are reconstructed from those of sub-
tensors. In [41], a partially observable tensor, obtained
by randomly sampling entries in the input tensor, is
factorized instead of the original tensor.
• Compression: In [34, 8], tensor is compressed before

being factorized.

Above approaches focused only on PARAFAC decomposi-
tion. Although PARAFAC decomposition is simple, it has a
limitation in capturing nontrilinear variation in a tensor. In
contrast, Tucker decomposition successfully captures nontri-
linear variation and also compresses a tensor optimally [25].
In this work, we focus on Tucker decomposition and propose
a scalable algorithm for it.

4. PROPOSED METHOD: S-HOT
In this section, we develop a novel method called S-HOT,

which avoids M-Bottleneck caused by the materialization of
Y(n). S-HOT enables high-order Tucker decomposition to
be performed even in an off-the-shelf workstation. In Ta-
ble 3, two versions of S-HOT are compared with baseline
methods in terms of objectives, update equations, and ma-
terialized data.

Specifically, we focus on the memory-efficient computation
of the following two steps (lines 4 and 5 of Algorithm 1):

Y(n) ← [X×−n{AT }](n) (∈ RIn×(
∏

p6=n Jp))

A(n) ← top-Jn left singular vectors of Y(n).

Our key idea is to tightly integrate the above two steps,
and compute the singular vectors through IRAM directly
from X without materializing the entire Y at once. We
also use the fact that top-Jn left singular vectors of Y(n)

are equivalent to the top-Jn eigenvectors of Y(n)Y(n)
T ∈

RIn×In . Specifically, if we use reverse communication inter-
face of IRAM, the above two steps are computed by simply
updating v′ repeatedly as follows:

v′ ← Y(n)Y(n)
Tv, (4)

where we do not need to materialize Y(n) (and thus we can
avoid M-Bottleneck) if we are able to update v′ directly from
the X. Note that, using IRAM does not change the result
of the above two steps. Thus, final results of Tucker decom-
position are also not changed, while space requirements are
reduced drastically, as summarized in Table 3.

The remaining problem is how to update v′ directly from
X, which is stored in disk, without materializing Y(n). For
addressing this problem, we first examine a naive method
extending BaselineOpt and then eventually propose two al-
gorithms, S-HOT and S-HOTscan.

4.1 First step: “Naive S-HOT”
Naive S-HOT is a straight-forward extension of Base-

lineOpt, which computes Y fiber by fiber, for computing
Equation (4). Thus, Naive S-HOT computes v′ progres-
sively on the basis of each column vector of Y(n), which
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Table 3: S-HOT is nimble. Key differences in the objectives, update equations, materialized data of methods;
and figures illustrating how they work. In the illustrating figures, colored regions need to be explicitly
materialized in memory.

Method BaselineNaive and BaselineOpt [18] S-HOT S-HOTscan

Objective Left singular vectors of Y(n) Right singular vectors of Y(n)

Update vk+1 ← Y(n)Y(n)
Tvk s←

∑
p∈Θ(X) vk

in
X(p)

[
◦−n
p {A}

]
(n)

yi ←
∑

p∈Θ
(n)
i (X)

X(p)
[
◦−n
p {A}

]
(n)

equation vk+1
in
←
∑

p∈Θ
(n)
in

(X)
sTX(p)

[
◦−n
p {A}

]
(n)

wk+1 ←
∑In

i=1

(
yi

Twk
)
yi

Materialization Y(n) ∈ RIn×
∏

p6=n Jp
s ∈ R

∏
p6=n Jp yi ∈ R

∏
p6=n Jp

Illustration

corresponds to a fiber in Y, as follows:

v′ ← Y(n)Y(n)
Tv =

∑
c

yc

(
yc

Tv
)
, (5)

where yc ∈ RIn is a column vector of Y(n).

This equation can be reformulated by X and {AT }. For
ease of explanation, let X be a 3-order tensor and let a fiber
Y:j2j3 correspond a column vector yc. By plugging Equa-
tion (3) into Equation (5), we obtain

v′ ←
∑
c

yc

(
yc

Tv
)

=
∑
∀(j2,j3)

Y:j2j3

(
Y:j2j3

Tv
)

=
∑
∀(j2,j3)

(
X×̄2a

(n)
j2
×̄3a

(n)
j3

)((
X×̄2a

(n)
j2
×̄3a

(n)
j3

)T
v

)
.

As clarified in Equation (3), X×̄2a
(n)
j2
×̄3a

(n)
j3

is computed
within O(I1) space, which is significantly smaller than space
required for Y(n).

However, Naive S-HOT is impractical because the num-
ber of scans of X increases explosively, as Lemmas 1 and 2
state.

Lemma 1 (Scan cost of computing a fiber). Computing a
fiber on the fly requires a complete scan of X.

Proof. Computing a fiber consists of multiple n-mode vector
products. Each n-mode vector product is considered as a
weighted sum of (N − 1)-order section of X as follows:

X×̄nv =

In∑
in=1

X(:, . . . , :︸ ︷︷ ︸
n−1

, in, :, . . . , :︸ ︷︷ ︸
N−n

)vin . (6)

Thus, a complete scan of X is required to compute a fiber.
�

Lemma 2 (Minimum scan cost of Naive S-HOT). Let
Mb be the memory budget, i.e., the number of floating-point
numbers that can be stored in memory at once. Then, Naive
S-HOT requires at least In

Mb

∏
p6=n Jp scans of X for comput-

ing Equation (5).

Proof. Since we compute yc

(
yT
c v
)
, yc should be stored in

memory requiring In space, until the computation of yT
c v

finishes. Thus, we can compute at most Mb
In

fibers at the
same time within one scan of X. Therefore, Naive S-HOT
requires at least In

Mb

∏
p6=n Jp scans of X to compute Equa-

tion (5). �

4.2 Proposed: “S-HOT”
To avoid the explosion in the number of scans of X re-

quired, we propose S-HOT, which computes Equation (4)
within two scans of X. S-HOT progressively computes v′

from each row vector of Y(n). Specifically, v′ is computed
by:

1 ≤ ∀i ≤ In, v′(i)← ȳiY(n)v = ȳi

In∑
i=1

v(i)ȳT
i (7)

where ȳi is the ith row vector of Y(n), which corresponds to
an (N − 1)-order segment of Y where the n-th mode index
is fixed to i. When entire Y does not fit in memory, Equa-
tion (7) should be computed in the following two steps:

s←
In∑
i=1

v(i)ȳT
i (8)

1 ≤ ∀i ≤ In, v′(i)← ȳis. (9)

This is since we cannot store all ȳi in memory until the com-
putation of

∑In
i=1 v(i)ȳT

i finishes. Algorithm 2 gives a formal
description of S-HOT, and Lemma 3 states the number of
scans required in the algorithm

Lemma 3 (Scan cost of S-HOT). S-HOT requires only two
scans of X for computing Equation (4).

Proof. Each ȳi can be computed as follows.

ȳi ← [X×−n{AT }](n)(i, :) =
∑

p∈Θ
(n)
i (X)

X(p)×−n{AT }

=
∑

p∈Θ
(n)
i (X)

X(p)
[
◦−n
p {A}

]
(n)

, (10)

where p is a tuple (i1, . . . , iN ) whose n-th mode index is
fixed to i; X(p) is an entry specified by p. Based on each ȳi,
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Algorithm 2: Formal description for S-HOT.

Input : N -order Tensor: X,
The size of the core tensor: J1 × · · · × JN

Output: Core tensor: G ∈ RJ1×···×JN ,
Factor matrices: {A}

1 Initialize {A}
2 repeat
3 for n← 1 . . . N do
4 v← IRAM_init(In, Jn)

5 repeat
6 v′ ← UpdateMethod(X, n, v)
7 v← IRAM_doIter(v′)

8 until IRAM_isconv();

9 A(n) ← getSingularVec()

10 until terminal condition;

11 G← X× {AT }
12 return G, {A}

13 Subroutine NaiveTucker(X, n,v)
14 Materialize Y(n) =

[
X×−n {AT }

]
(n)

if it does not

exist.
15 return Y(n)Y(n)

Tv

16 Subroutine S-HOT (X, n,v)
17 s,v′ ← 0
18 forall (i1, . . . , iN ) ∈ Θ(X) do

19 s← s + vinX(i1, . . . , iN )
[
◦−n
{i1,...,iN}

{A}
]

(n)

20 forall (i1, . . . , iN ) ∈ Θ(X) do

21 v′in ← v′in + sTX(i1, . . . , iN )
[
◦−n
{i1,...,iN}

{A}
]

(n)

22 return v′

23 Subroutine S-HOTscan (X, n,w)

24 w′ ← 0
25 for i← 1 . . . In do
26 yi ←

∑
p∈Θ

(n)
i (X)

X(p)
[
◦−n
p {A}

]
(n)

27 w′ ← w′ + (yT
i w)yi

28 Deallocate yi

29 return w′

Equation (8) can be computed progressively as follows:

s←
In∑
i=1

v(i)ȳT
i =

In∑
i=1

v(i)
∑

p∈Θ
(n)
i (X)

X(p)
[
◦−n
p {A}

]
(n)

=
∑

p∈Θ(X)

v(in)X(p)
[
◦−n
p {A}

]
(n)

. (11)

Thus, computing Equation (8) requires only one scan of X.
Similarly, Equation (9) also can be computed within one
scan of X. Therefore, Equation (7), consisting of Equa-
tion (8) and Equation (9), can be computed within two scans
of X. �

4.3 Even faster: “S-HOTscan”
We propose S-HOTscan, which further reduces the num-

ber of scans of X at the expense of requiring multiple (disk-

resident) copies of X sorted by different mode indices. In
effect, S-HOTscan trades-off disk space for speed.

Our key idea for the further optimization is to compute Jn

right leading singular vectors of Y(n), which are eigenvectors

of Y(n)
TY(n), and use the result to compute the left singular

vectors. Let Y(n) = UΣVT be the SVD of Y(n). Then,

Y(n)VΣ−1 = UΣVTVΣ−1 = U. (12)

Thus, left singular vectors are obtained from right singular
vectors.

S-HOTscan computes top-Jn right singular vectors of Y(n)

by updating the vector w ∈ R
∏

p6=n Jp as follows:

w′ ← Y(n)
TY(n)w =

In∑
i=1

(ȳT
i w)ȳi. (13)

The virtue of S-HOTscan is that it requires only one scan
of X for calculating Equation (13), as Lemma 5 states.

Lemma 4 (Scan cost for computing ȳi). ȳi can be computed
from by scanning the entries of X whose n-mode index is i.

Proof. Proven by Equation (10). �

Lemma 5 (Scan cost of S-HOTscan). S-HOTscan computes
Equation (13) within one scan of X when X is sorted by the
n-mode index.

Proof. By Lemma 4, only a section of tensor, whose n-mode
index is i, is required for computing ȳi. If X is sorted by the
nth mode index, we can sequentially compute each yi on
the fly. Moreover, once ȳi is computed, we can immediately
compute (ȳT

i w)ȳi. After that, we do not need ȳi anymore,
and can discard it. Thus, Equation (13) can be computed
on the fly within only a single scan of X. �

In this paper, we satisfy the sort constraint for all modes
by simply keeping N copies of X sorted by each mode index.

The formal description for S-HOTscan is in Algorithm 2.
It is assumed that w is initialized by passing (

∏
p6=n Jp, Jn)

instead of (In, Jn) at Line 4. Although one additional scan
of X is required for computing left singular vectors from the
obtained right singular vectors (Equation (12)), S-HOTscan

still requires fewer scans of X than S-HOT since it saves
one scan during w′ computation, which is repeated more
frequently.

Table 3 summaries the key differences of BaselineOpt, S-
HOT, and S-HOTscan in terms of objective, update equa-
tions, and materialized data of methods. The table also
presents the figures illustrating how the methods work.

5. EXPERIMENTS
In this section, we present experimental results supporting

our claim that S-HOT outperforms state-of-the-art base-
lines. Specifically, our experiments are designed to answer
the following two questions:
–Q1. How scalable is S-HOT compared to the state-of-the-
art competitors with respect to 1) the dimensionality, 2) the
rank, 3) the order, and 4) the number of non-zero entries?
–Q2. Can S-HOT decompose real-world tensors that are
both large-scale and high-order?
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5.1 Experimental setting

Competitors: Throughout all experiments, we use two base-
line methods and two versions of our proposed method:

(1) BaselineNaive: naive method computing X×−n{A} in
a straight-forward way.

(2) BaselineOpt: the state-of-the-art Memory Efficient Tucker
decomposition which computes Y fiber by fiber.

(3) S-HOT: the proposed method that avoids M-Bottleneck
by on-the-fly computation.

(4) S-HOTscan: the scan-optimized variant of S-HOT.

For BaselineOpt and BaselineNaive, we use the implementa-
tion in Matlab Tensor Toolbox 2.6 [3]. We exclude HaTen2
because HaTen2 is designed for Hadoop, and thus it takes
too much time in a single machine. For example, in order
to decompose a synthetic tensor with default parameters,
HaTen2 takes 10,700 seconds for an iteration, which is al-
most 100× slower than S-HOTscan.

Dataset: We use both of synthetic and real-world datasets.
Specifically, synthetic datasets are mainly used to evaluate
the scalability of methods with respect to various factors
(i.e., the dimensionality, rank, order, and the number of
non-zero entries) by controlling each factor while fixing the
others. In addition, we also decompose a high-order real-
world dataset called Microsoft Academic Graph [35], which
cannot be decomposed by the baselines.

Synthetic tensor: To synthesize a random N -order tensor,
we randomly sample M tuples where each n-mode index is
sampled from [1, In]. Once the indices of an tuple is sam-
pled, the value of the tuple is set to 1. However, this does
not mean that S-HOT is limited to binary tensors or our
implementation is optimized for binary tensors. We choose
binary tensors for simplicity because generating realistic val-
ues, while we control each factor, is not a trivial task.

As a default parameter setting, we used N = 4, M = 105;
In = 103; and Jn = 8 for each n. These default values are
chosen to compare the scalability of competitors. If we in-
crease these values, both BaselineNaive and BaselineOpt run
out of memory. All experiments using synthetic datasets are
repeated nine times (three times for each of three randomly
generated tensors), and reported values are the average of
the multiple trials.

Equipment: All experiments are conducted on a machine
with Intel Core i7 4700@3.4GHz (4 cores), 32GB RAM, and
Ubuntu 14.04 trusty. S-HOT is implemented in C++ with
OpenMP library and AVX instruction set; and the source
code is available at http://dm.postech.ac.kr/shot. We used
Arpack [20], which implements IRAM supporting reverse
communication interface. It is worth noting that Arpack
is an underlying package for a built-in function called eigs(),
which is provided in many popular numerical computing en-
vironments including SciPy, GNU Octave, and Matlab.
Therefore, S-HOT is numerically stable and has the sim-
ilar reconstruction error with eigs() function in the above
mentioned numerical computing environments.

For fairness, we must note that, a fully optimized C++ im-
plementation could potentially be faster than that of Mat-
lab, (although that is unlikely, since Matlab is extremely
well optimized for matrix operations). But in any case, our
main contribution still holds: regardless of programming

Figure 2: S-HOT scales near linearly with respect
to the number of non-zero entries.

languages, S-HOT scales to much larger settings, thanks to
our proposed “on-the-fly” computation (Equations (7) and
(13))

5.2 Evaluation

5.2.1 S-HOT scales up
We evaluate the scalability of the competing methods with

respect to various factors: 1) the order, 2) the dimension-
ality, 3) the number of non-zero entries, and 4) the rank.
Specifically, we measure the elapsed wall clock time for a
single iteration on synthetic tensors.

Order: First, we investigate the scalability of competitors
with respect to the order by controlling the order of ten-
sors from three to six while fixing the other factors to the
default value. As shown in Figure 1(a), S-HOT outper-
forms baselines. BaselineNaive fails to decompose the 4-
order tensor because it suffers from intermediate explosion
problem. BaselineOpt is more efficient than BaselineNaive
since it avoids the intermediate explosion problem, however,
it fails to decompose a tensor whose order is higher than
four due to M-Bottleneck. On the contrary, both S-HOT
and S-HOTscan successfully decompose even the six-order
tensor.

Dimensionality: Second, we investigate the scalability of
the competitors with respect to the dimensionality. Specif-
ically, we increase the dimensionality In from 103 to 107,
where In = 103 means that the tensor has size 103 × 103 ×
103 × 103 since the default order is four. As shown in
Figure 1(b), S-HOT is orders-of-magnitude scalable
than the baselines. Specifically, BaselineNaive fails to de-
compose any 4-order tensors, and thus does not appear in
the plot. In the case of BaselineOpt, the elapsed time for
an iteration rapidly increases as the dimensionality grows,
and eventually fails to decompose tensors with dimension-
ality larger than 104. This is since the space for Y in-
creases rapidly with respect to the size of dimensionality (M-
Bottleneck). On the contrary, both S-HOT and S-HOTscan

show better scalability with respect to the dimensionality.
Specifically, S-HOTscan shows almost constant time, since
it solves the transposed problem, whose size is only affected
by rank and order. In the case of S-HOT, the elapsed time
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Table 4: Sample venue clustering results on Mi-
crosoft Academic Graph dataset
CS-related International Conference on Networking(ICN),

Wired/Wireless Internet Communications(WWIC),

Database and Expert Systems Applica-

tions(DEXA), Data Mining and Knowledge

Discovery, IEEE Transactions on Robotics, . . .

Nanotech. Nature Nanotechnology, PLOS ONE, Journal of Ex-

perimental Nanoscience, Journal of Nanoscience and

Nanotechnology, Journal of Semiconductors, Trends

in Biotechnology, . . .

Clinical European Journal of Cancer, PLOS Biology, Clin-

ical and Applied Thrombosis-Hemostasis, Journal

of Infection Prevention, RBMC Clinical Pharmacol-

ogy, Regional Anesthesia and Pain . . .

is affected by dimensionality, and increases after 106. Be-
fore that, the effect of dimensionality is negligible because
the cost for outer-product in lines 19 and 21 of Algorithm 2
is the major factor within that range.

Rank: We also investigate the scalability with respect to the
rank. In this experiment, we set dimensionality to 20, 000
because it is better to experimentally show the difference
in the scalability of competitors, but the overall trends do
not change with the other parameter settings. As shown in
Figure 1(c), S-HOT outperforms baselines. Similar to
the other evaluation results, BaselineNaive does not appear
in this plot, and BaselineOpt fails for rank larger than 6.
On the contrary, both S-HOT and S-HOTscan successfully
perform Tucker decomposition with larger rank. In most
cases, S-HOTscan is faster than S-HOT, but the difference
between two methods decreases as rank increases. This is
because, as the rank increases, the cost for outer product
becomes the major bottleneck, which is common in Baseli-
neOpt, S-HOT, and S-HOTscan.

Nonzero entries: We investigate the scalability of the com-
petitors with respect to the number of non-zero entries by
evaluating the methods using tensors with 104 to 107 non-
zero entries. As shown in Figure 2, both S-HOT and
S-HOTscan show near linear scalability with respect to
the number of non-zero entries. This is because both meth-
ods scan all the non-zero entries, and processing each non-
zero entry takes almost same time, which is decided by outer
products and inner products. With respect to the number of
non-zeros, BaselineOpt shows better scalability, since it ex-
plicitly materializes Y. Once Y is materialized, since its size
does not depend on the number of non-zero entries, elapsed
time is less affected by the number of non-zero entries.

5.2.2 S-HOT at work
We test the scalability of S-HOT on Microsoft Academic

Graph dataset [35] (a snapshot on Feb 5, 2016). The dataset
contains 42 million papers; 1,283 conferences and 23,404
journals; 115 million authors; and 53,834 keywords used
to annotate the topics of the papers. We model this as a
4-order tensor whose modes are (Author, Venue, Year, Key-
word). Since papers having missing attributes are ignored,
the final tensor is of size 9380418× 18894× 2016× 37000.

We note that, since this tensor is high-order and large,
both baselines fail to handle it running out of memory. How-

ever, S-HOT successfully computes Tucker decomposition of
the tensor.

To interpret the result of Tucker decomposition better,
we runs k-means clustering treating the factor matrices as
the low-rank embeddings of each mode, as suggested in [18].
Specifically, we perform Tucker decomposition with a core
tensor of size 8 × 8 × 8 × 8 and 30 iterations, and k-means
by setting the number of clusters to 400 and max iteration
to 100.

Table 4 shows sample clusters in the venue mode. The
first cluster seems to be related to Computer Science. The
second one contains many nano-technology-related venues
such as Nautre Nanotechnology, Journal of Experimental
Nanoscience. The third one have venues related to Medi-
cal Science and Diseases. This result indicates that Tucker
decomposition discovers meaningful concepts and groups en-
tities related to each other. However, there is a vast array of
methods for multi-aspect data analysis, and we leave a com-
parative study as to which one performs the best for future
work.

6. CONCLUSIONS
In this paper, we propose S-HOT, a scalable Tucker de-

composition method. We offer two version of S-HOT, which
optimize space and time, resp., and show that they success-
fully decompose large tensors that cannot be decomposed
by baseline methods. Furthermore, we provide a theoreti-
cal analysis on the number of scans of data required in the
methods. To sum up, our contributions are as follows.

• Handling Bottleneck: M-Bottleneck, the scalability
bottleneck of existing Tucker decomposition methods,
is identified (Section 3.3) and avoided by a novel ap-
proach based on an on-the-fly computation (Section 4).
• Algorithm Design: We propose S-HOT, which em-

ploys the on-the-fly computation approach. Moreover,
S-HOT is carefully optimized for large-scale disk-resident
tensors. This enables S-HOT to offer up to 1000× bet-
ter scalability than baseline methods (Section 5.2.1).
• Theoretical analysis: We prove the amount of mem-

ory space and the number of scans of X that S-HOT
requires (Table 2 and Lemma 3). We also show that
the number of scans can be reduced by half if we keep
multiple copies of the tensor which are sorted by dif-
ferent modes (Lemma 5).

For reproducibility and extensibility of our work, we make
the source code of S-HOT publicly available at http://dm.
postech.ac.kr/shot.
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