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Abstract

How can we reverse-engineer the brain connectiv-
ity, given the input stimulus, and the correspond-
ing brain-activity measurements, for several experi-
ments? We show how to solve the problem in a prin-
cipled way, modeling the brain as a linear dynami-
cal system (LDS), and solving the resulting “system
identification” problem after imposing sparsity and
non-negativity constraints on the appropriate matri-
ces. These are reasonable assumptions in some appli-
cations, including magnetoencephalography (MEG).

There are three contributions: (a) Proof : We
prove that this simple condition resolves the ambigu-
ity of similarity transformation in the LDS identifica-
tion problem; (b) Algorithm: we propose an effective
algorithm which further induces sparse connectivity
in a principled way; and (c) Validation: our experi-
ments on semi-synthetic (C. elegans), as well as real
MEG data, show that our method recovers the neural
connectivity, and it leads to interpretable results.

1 Introduction

In computational neuroscience, one of the major re-
search challenges is estimating the functional connec-
tivity of the brain, i.e. a relation between neurons (or
groups of neurons) which encodes co-activation of the
neurons involved. Functional connectivity is often
determined via cross-correlation or mutual informa-
tion statistics [2, 11], albeit these approaches do not
explicitly model neuronal state dynamics. An intro-
ductory overview of techniques for estimating brain
connectivity can be found in [16].

Here, we want to estimate the functional connec-
tivity of the brain, under the following experimental
regime: a human subject is presented with a stimulus
(in particular concrete nouns of the English language)
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as well as a task (such as answering a simple ques-
tion regarding the shown noun, like is it alive?, can
you buy it? and so on), and their brain activity is
measured 1 over a course of a few seconds. Recently,
[13] proposed the “GeBM” model, a simple model
for the brain, that successfully captures the tempo-
ral dynamics of the brain. The “GeBM” model is as
follows:

(1.1)
x(t+ 1) = Ax(t) + Bu(t),

y(t) = Cx(t),

where u(t) is the stimulus signal, y(t) is the ob-
served brain activity measured via MEG, x(t) is the
latent brain activity, A is the functional connectiv-
ity matrix, B is the stimulus matrix, and C models
the measurement that maps the internal state of the
brain into MEG sensor values. In the original paper,
the “GeBM” model is solved using “system identifi-
cation” from control theory, and an ad-hoc, greedy
method, to sparsify the connectivity matrix A.

In this work, we formalize the problem, and pro-
vide a principled and theoretically sound treatment of
sparse system identification under an additional non-
negativity condition on C, with application to brain
functional connectivity estimation. Our main contri-
butions are the following: (a) a rigorous proof of iden-
tifiability for the constrained problem we propose; (b)
an effective, two-stage algorithm; and (c) validation
of both, using semi-synthetic and real (MEG) data.

Figure 1 shows an illustration of our results on
real MEG data. The left shows the recovered graph,
and the right part shows the corresponding adjacency
matrix. Notice that there are several ’white’ (=
empty) cells, exactly because our algorithm enforces
sparsity. See the experiments section for more details.

1Measurements may be taken either via Magnetoen-
cephalography (MEG) or functional magnetic resonance imag-

ing (fMRI), although the former offers finer temporal granu-
larity and is preferred when fine grained temporal dynamics
are considered.
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Figure 1: The neural connectivity (left), and its cor-
responding adjacency matrix (right), obtained from
real MEG data.

2 Identifiability

State-space and, more generally, dynamic latent
variable (e.g., Markov) models have a long history
across science, and neural data analysis in particular
[18, 14]. Even the simplest dynamic models, though,
can only be identified up to inherent indetermina-
cies which generally hide the underlying connectivity
pattern. For the linear state-space model in (1.1),
for example, this comes in the form of a simplicity
transformation that alters the structure of A. Such
indeterminacy is inherent to the model in (1.1), and
is also borne out of classical subspace-based system
identification methods [9, 8], which can only provide

Â, B̂, Ĉ satisfying

Â = MAM−1, B̂ = MB, Ĉ = CM−1,

for some unknown non-singular matrix M, due to
rotational freedom. The mapping from (A,B,C) →
(Â, B̂, Ĉ) is known as a similarity transformation.
A key message of this paper is that sparsity and
non-negativity of C can overcome this limitation and
render not only C, but also A and B identifiable
without rotational ambiguity (except the unavoidable
permutation and scaling).

For MEG sensors, the assumption that C is non-
negative and sparse can be motivated as follows. The
brain activity recorded by MEG is limited to very low
frequencies, typically ≤ 30 Hz [12]. Since the corre-
sponding wavelength is so much larger than the size
of a skull, the spatial phase variation of the magnetic
wave from one sensor to the next is insignificant, i.e.,
the MEG sensors are approximately in phase, hence
C can be assumed non-negative. Furthermore, since
field intensity decays very fast as the distance be-
tween the source and the sensor increases, a MEG
sensor only measures (diffuse) sources that are close
to it, leading to a sparse C. Similar arguments can
be made for electroencephalography (EEG) [15].

Notation We denote the true system matrices
as A, B, and C. The matrices Â, B̂, and Ĉ represent
the results obtained from the subspace method, i.e.,
they are unconstrained. If we take the constraints
into consideration, the estimates are denoted Ã,
B̃, and C̃. Generally speaking, when we study
identifiability, we compare A, B, C with Ã, B̃, C̃,
and when we design algorithms, we use Â, B̂, Ĉ, and
the constraints to obtain Ã, B̃, and C̃.

Since linear dynamical systems can generally
only be identified up to a similarity transformation,
special transformations can be used to bring the
system matrices into certain convenient forms. In
the controls field, A, B, and C are often put into
canonical forms, such as the controller forms or the
observer forms [1, Sec. 3.4], in which case the
structure of A is confined to a specific pattern. Since
our main purpose here is to discover the underlying
structure of the true A, imposing structure through
transformation to some canonical form is generally
inappropriate.

One interesting difference between our model and
the classical controls literature is that the dimension
of the output is larger than the number of states2. In
other words, the matrix C is tall. Moreover, because
of the nature of MEG sensors, we can also assume
that C is sparse and takes only non-negative values.
In this section, we will first propose a condition under
which a non-negative C is identifiable, and then study
the connection between sparsity, non-negativity, and
the proposed condition.

Throughout this paper we will assume that
CT1 = 1, because otherwise we can scale the columns
of C to satisfy that, which will result in a similarity
transformation with a diagonal matrix, thus does not
change the structure of the system.

Since we are given Ĉ, which we know is a
transformed version of a non-negative matrix C, and
its columns are scaled to sum up to 1, we should be
able to find a matrix M that satisfies

ĈM ≥ 0, MT ĈT1 = MT1 = 1.

In fact, there are clearly infinitely many M that
satisfy that. Therefore, we can set up a criterion and
try to find the one with the maximum |det M| (one
can relate this idea to SVM, in which case there are
infinitely many linear separators and we seek for the

2As we discovered from rank analysis of experimental MEG
data.



one with the maximum “margin”), i.e.,

(2.2)
maximize

M
|det M|,

subject to ĈM ≥ 0, MT1 = 1,

Geometrically, (2.2) tries to find the simplicial cone

that contains all the row vectors of Ĉ, and with
minimum “volume” [10]. Next, we will propose a
condition under which the true C can be recovered
by solving (2.2) and then set the estimate as ĈM.

Denote cone(CT )∗ as the polyhedral cone
parametrized by C,

cone(CT )∗ = {x|Cx ≥ 0},

and K as the second-order cone [3],

K = {x ∈ Rn|1Tx ≥ ‖x‖2},

our proposed assumption on C is the following.

Assumption 1. The non-negative matrix C satisfies
the following conditions:

1. cone(CT )∗ ⊆ K;

2. cone(CT )∗ ∩ bdK = {λei|λ ≥ 0, i = 1, 2, . . . , n}.

In Assumption 1, bdK means the boundary of K, i.e.,
bdK = {x ∈ Rn|1Tx = ‖x‖2}, and ei is the all 0 vec-
tor except for the i-th element being 1. An interpre-
tation of the second requirement of Assumption 1 is
the following: obviously the first requirement means
every element in cone(CT )∗ is also contained in K,
and the second requirement further constrains the el-
ements of cone(CT )∗ to be contained in the interior
of K, except for the ei’s and their positively scaled
versions. In other words, if C satisfies Assumption 1,
and there is a point x such that x ∈ cone(CT )∗ and
1Tx = ‖x‖2, then x = λei.

Theorem 2.1. Suppose C is non-negative (C ≥ 0)
and each column sums up to 1 (CT1 = 1), and we are

given a transformed version of it, Ĉ. If C satisfies
Assumption 1, then by solving (2.2) optimally, we can
recover C up to permutation of its columns.

Proof. Cf. Appendix A.

This condition that we imposed on C was first
proposed in a different context in [6], and used to
prove uniqueness of non-negative matrix factoriza-
tion. It was soon thereafter extended to the minimum
volume enclosing simplicial cone problem in [4], under
a similar setting (they assumed, using our notation,

that the rows of C sum up to 1). As it turns out, the
same type of result holds in our present setup, with
an even simpler proof.

It is shown in [6] that if C satisfies Assumption
1, then each column of C contains at least n − 1
zeros. However, checking the condition exactly is
NP-hard. In Appendix B, we propose a method
to approximately check Assumption 1, and show
empirically that sparse, non-negative tall C satisfies
Assumption 1 with high probability.

3 Proposed Method

Theoretically, if C is sparse, non-negative and tall, in
which case Assumption 1 is satisfied with high prob-
ability, it is enough to only work on Ĉ to figure out
the true similarity transformation, thus successfully
identifying the true A, B, and C, up to permutation
of the states. We will first introduce an algorithm
that approximately solves (2.2), under a noiseless sce-
nario. In practice, when the measurements are noisy,
we found that the aforementioned formulation is very
sensitive to noise. We therefore use a modified robust
formulation, followed by a least-squares refinement
procedure to make the resulting Ã, B̃, and C̃ sparse
(and non-negative, if/as appropriate).

3.1 Algorithm for (2.2) and a robust formu-
lation The absolute value of the determinant of a
non-symmetric matrix is proportional to the volume
of a simplex defined by the columns of that matrix
(and the origin) [10]. The objective function of (2.2)
is non-convex, therefore (2.2) is presumably hard to
solve. Two approaches that can be used to handle
this type of non-convexity are successive lineariza-
tion, and block coordinate descent—see [10] and the
references therein. In our experiments we found that
the block coordinate descent method works better in
the noiseless case, therefore this method is briefly ex-
plained next.

If we fix all columns of M but one, the objective
is linear over that column,

det M =

n∑
i=1

(−1)i+jmj(i) det Mi,j ,

where mj(i) means the i-th entry of the j-th column
of M, and Mi,j is obtained by deleting the i-th row
and j-th column of M. Thus, the update of one
column of M becomes

(3.3)
maximize

mj

∣∣∣∣∣
n∑

i=1

(−1)i+jmj(i) det Mi,j

∣∣∣∣∣ ,
subject to Ĉmj ≥ 0, mT

j 1 = 1.
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Now (3.3) is still non-convex, but we can get rid of
the absolute value and solve two linear programming
problems instead (maximizing and minimizing the
linear objective function), then set mj as the one
that gives the larger absolute value.

If Ĉ is not exactly a transformed version of C,
but includes some noise due to subspace estimation
errors, one potential problem with formulation (2.2)
is that it may not even be feasible. As a trade-
off between the maximum determinant criterion and
non-negativity of C, we can use instead

(3.4)

maximize
M

log |det M| − λ
∑
i,j

[ĈM]−,

subject to MT1 = 1,

where [·]− sums the negative elements of its argu-
ment. We put a log to the determinant term because
we found that otherwise, in order to make the second
term large, the algorithm tends to make M singular,
even if the regularization parameter λ is very small.
By taking the log of the determinant term, it will
decrease the objective function sharply when M is
close to singular, while increasing it slowly when it is
not. Algorithmically, we can still update M column
by column, since the sub-problem can still be cast as
two convex optimization problems.

3.2 Sparse refinement While our ultimate goal
is to estimate A, B, and C, our identifiability results
show that a tall non-negative and sparse of C can be
enough to guarantee identifiability, in the noiseless
case. In practice, when the noiseless scenario is not
realistic, what we observe is that while the robust
formulation (3.4) is able to recover C with minor
errors, the resulting Ã and B̃ are not close to A
and B, even when the perturbation in the data is
quite small. We therefore propose to refine the result
from (3.4) by solving the problem given in (3.5),
which also takes into account possible sparsity in A
and B. In (3.5), the operation ‖ · ‖0 returns the
cardinality of the argument. Notice that we have
introduced an auxiliary variable Minv and a penalty
term λ‖MinvM−I‖2F to make it close to M−1, instead
of working directly with both M and M−1, which is
presumably hard.

This formulation is still non-convex; but it is
amenable to block coordinate descent—the updates
for M and Minv are classical linear least-squares,
whereas the updates for Ã, B̃, and C̃ are simple
projections. Although the cardinality constraints are
not convex, the corresponding projections are very
easy—we only need to keep the entries with largest

(absolute) values and zero out the others. Note that
there is no reason to use an l1 norm surrogate of the
cardinality constraints, as hard projection is in fact
easier here, and the MinvM term makes the problem
non-convex, regardless. Note that, due to non-
convexity, the block coordinate descent algorithm can
get stuck at a local minimum. This is why initializing
it with the result of (3.4) is crucial.

3.3 Summary of the proposed method The
method proposed for principled neuro-functional con-
nectivity discovery (NFCD) is summarized in Alg. 1,
which consists of three steps: i) A system identifica-

tion step to get Â, B̂, and Ĉ from the input-output
data U and Y, and a given system order n; ii) a
determinant maximization step as discussed in §3.1;
and iii) a sparse refinement step as discussed in §3.2.

In the system identification step, an interesting
observation is that our model has more outputs than
states, unlike typical LDS models in automatic con-
trol where the number of outputs is smaller than the
number of states. Having more outputs than states
makes system identification easier. As described in
the first step of Alg. 1, we only need to take the
‘thin’ SVD of the output samples, and then solve a
linear least-squares problem. In line 3, T is a random
n× n matrix—we found by simulations that this im-
proves the conditioning. In line 4, X̂0 is the first N−1
columns of X̂, and X̂1 is the last N−1 columns of X̂,
where N is the number of samples, i.e., the number
of columns of X̂.

In the 3rd step of Alg.1, we used the (hard)
thresholding operator Tt(·) parameterized by t, and
its non-negative version T +

t (·), which are defined as:

Tt(z) =

{
z , if |z| ≥ t
0 , else

, T +
t (z) =

{
z , if z ≥ t
0 , else

.

A brief discussion on the complexity of NFCD
is useful at this point. For the MEG data that we
consider in this paper, m (the input dimension) and
p (the number of MEG sensors) are no more than a
few hundreds, and, as shown in [13], for n ranging
from 10 to 30 the LDS model is able to capture
most of the brain dynamics. Therefore, steps 2 and
3 of NFCD are relatively small scaled. The only
number that can possibly go large is N , the number
of samples collected by the MEG sensors, which only
comes into play in step 1. Notice that for both SVD
and least-squares, complexity grows linearly in the
large dimension (times the small dimension squared).
Thus, even if N is very large, NFCD is able to scale
well.



(3.5)

minimize
Ã,B̃,C̃,
M,Minv

‖Ã−MinvÂM‖2F + ‖B̃−MinvB̂‖2F + ‖C̃− ĈM‖2F ,+λ‖MinvM− I‖2F

subject to ‖Ã‖0 ≤ sA, ‖B̃‖0 ≤ sB , ‖C̃‖0 ≤ sC , C̃ ≥ 0,

Algorithm 1 Neuro-Functional Connectivity Dis-
covery (NFCD)

1: procedure SystemIdentification(U, Y, n)
2: Y ≈ UnΣnVT

n

3: Ĉ← UnT−1, X̂← TΣnVT
n

4:
[
Â B̂

]
= X̂1

[
X̂0

U

]†
5: Scale the columns of Ĉ to sum up to 1, and

then counter-scale Â and B̂ accordingly
6: end procedure

7: procedure Solve Problem (3.4)
8: initialize M as a random matrix
9: repeat

10: for j = 1, . . . , n do
11: Solve (3.4) with respect to mj .
12: end for
13: until convergence
14: end procedure

15: procedure Solve Problem (3.5)
16: initialize M as the result obtained from the

previous step, and Minv as its inverse
17: repeat
18: t← the sA-th largest value in |MinvÂM|
19: Ã← Tt(MinvÂM),

20: t← the sB-th largest value in |MinvB̂|
21: B̃← Tt(MinvB̂),

22: t← max(0,the sC-th largest value in ĈM)

23: C̃← T +
t (ĈM),

24: Minv ←
[
Ã B̃ λI

] [
ÂM B̂ λM

]†
25: M←

MinvÂ

Ĉ
λMinv

† Ã

C̃
λI


26: until convergence
27: end procedure

4 Experiments

We next present some numerical results to corrobo-
rate our theoretical claims and illustrate the robust-
ness of our methods. The convex optimization sub-
problems are solved by using CVX, a package for
specifying and solving convex programs [5].

4.1 Synthetic data We start by experimenting
with synthetically generated data, where we know
A, B, C, and we can check whether our proposed
method is able to recover them from input-output
data. We begin by assuming that the system is
noiseless, and simply use (2.2) without refinement.
The true A, B, and C are generated randomly, and
whether an entry is zero or not is determined by
drawing from an i.i.d. Bernoulli distribution. The
non-zeros entries of A and B are drawn from an i.i.d.
Gaussian distribution, whereas the non-zeros of C
are drawn from an i.i.d. exponential distribution, to
ensure non-negativity of C. Then A is scaled down
by its spectral radius to ensure stability of the system,
and the columns of C are scaled to sum up to 1.
The inputs u(t), t = 1, . . . , N , as well as the initial
state x(0), are generated from an i.i.d. Gaussian
distribution. Then the inputs are sent into the system
in (1.1) to obtain the outputs y(t), t = 1, . . . , N .

As one particular example, with n = 30, m = 50,
p = 300, and approximately 50% of the entries of A,
B, and C being zero, 104 input-output pairs are used
to do subspace system identification, and then the
estimated Ĉ is fed to (2.2). The convergence of the
proposed block coordinate descent method is shown
in Figure 2. Notice that the horizontal axis starts at
30 because M becomes feasible and non-singular only
after the first round of column updates, therefore it
is meaningless to show the objective before 30.

As shown in Figure 2, the algorithm converges
very fast. In fact, considering that the first round
of column updates tries to find a feasible M, it
converges even before the second round of column
updates finishes. Let M∗ be the result obtained from
solving (2.2); in this noiseless case we simply set

Ã = M−1
∗ ÂM∗, B̃ = M−1

∗ B̂, C̃ = ĈM∗.

Before we compare Ã, B̃, and C̃ with the ground

5
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Figure 2: Column update of M for approximately
solving (2.2).

Table 1: System matrices recovery in the noiseless
case.

n = 30 n = 30 n = 15
s = 0.5 s = 0.3 s = 0.5

‖A−Ã‖F
‖A‖F 7.33e-07 5.85e-06 1.03e-05

‖B−B̃‖F
‖B‖F 7.11e-07 5.49e-06 1.50e-05

‖C−C̃‖F
‖C‖F 5.93e-07 5.14e-06 1.30e-05

truth, we need to be aware that there is still a per-
mutation ambiguity, i.e., the similarity transforma-
tion can be a permutation matrix, which does not
affect the true structure of the system, but only rela-
bels the states. We resolve this by first matching the
columns of C̃ with C, i.e.,

min
P∈Π
‖C− C̃P‖2F ,

where Π indicates the set of permutation matrices.
This problem can be cast as a linear assignment
problem, which be solved optimally by the Hungarian
method [7] 3. After obtaining the best permutation
P, the rows and/or columns of Ã, B̃, and C̃ are
permuted accordingly.

In Table 1, we provide the normalized estima-
tion error of the system matrices for various settings,
where s indicates the ratio of nonzero entries. Some-
times the algorithm fails to generate a non-singular
matrix, in which case a different initialization is used
and the algorithm is run again. For each setting,
10 Monte-Carlo trials are performed, and we only
show the largest error. In all cases, m = 50, and
p = 300. As we can see, this simulation justifies the
claim in Theorem 2.1 that sparse, non-negative and
tall C yield an identifiable system.

3A MATLAB inplementation of the Hungarian method
is used and available at http://www.mathworks.com/

matlabcentral/fileexchange/11609-hungarian-algorithm
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Figure 3: Convergence of Algorithm 1, step 2 (left)
and step 3 (right).

Table 2: System matrices recovery of the C. elegans
system with noisy data.

n = 10 n = 15 n = 20
‖A−Ã‖F
‖A‖F 3.71e-04 0.0650 0.0299

‖B−B̃‖F
‖B‖F 4.77e-04 0.0455 0.0153

‖C−C̃‖F
‖C‖F 3.73e-04 0.0375 0.0135

4.2 Semi-synthetic data Next we try noisy data.
Instead of synthetically generating the whole system,
the A matrix we use here comes from real data –
the neural connectivity of C. elegans4. Specifically,
we take the connectivity of the first 10 ∼ 20 C. ele-
gans neurons as the matrix A (those neurons are rel-
atively more densely connected), again scaled down
by its spectral radius to ensure stability. Then we
synthetically generate B and C, similar to the pre-
vious experiment. The inputs and the initial state
of the system are generated as before, but now we
introduce state and measurement noise, i.e.,

x(t+ 1) = Ax(t) + Bu(t) + v(t),

y(t) = Cx(t) + w(t),

where v(t) and w(t) are white Gaussian, with stan-
dard deviation σ = 10−3. The matrices B and C are
generated with m = 50, p = 300, and approximately
50% zeros. Then Algorithm 1 is applied to the input-
output data. In step 2, we set λ = 0.5, and in step 3,
we set λ = 100. The cardinality constraints in step 3
are set to be approximately 10% more than the true
density. For n = 20, the convergence of these two
steps is shown in Figure 3.

Finally, the resulting Ã, B̃, and C̃ are compared
with the true system A, B, and C, after column
matching using the Hungarian method, and the nor-
malized errors for different values of n are shown in

4available at http://www.wormatlas.org/neuronalwiring.
html.

http://www.mathworks.com/matlabcentral/fileexchange/11609-hungarian-algorithm
http://www.mathworks.com/matlabcentral/fileexchange/11609-hungarian-algorithm
http://www.wormatlas.org/neuronalwiring.html
http://www.wormatlas.org/neuronalwiring.html
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Figure 4: Recovery of C. elegans neural connectivity.

Table 2. Notice that the recovery is almost perfect
when n = 10. For n = 15, the estimated connectiv-
ity matrix is compared with the true connectivity in
Figure 4, in which case we managed to recover all the
true connectivity, with only a few redundant ones. In
fact, if we set the sparsity constraint in (3.5) to be
the exact one, the connectivity is recovered perfectly.

4.3 Real data Next we apply our proposed
method to a set of real input-output data. The ex-
periment was conducted by asking a yes/no question
about a particular word to a human subject, and then
his/her brain activities are measured by the 306 MEG
sensors. Approximately 20 questions were asked for
60 words, and then 340 MEG measurements were col-
lected for each particular question/word. We sampled
10 samples for each experiment, and also added 2 di-
mensions to indicate the time the subject responded
to the question, and the answer given. This forms the
output matrix Y, with p = 308 and N ≈ 12000. The
input dimension m = 40, which is a subset of the 218-
questions description of those 20 words conducted by
Amazon Mechanical Turks. For more details on the
dataset, see [13, 17].

As mentioned earlier, the LDS (Linear Dynam-
ical System) modeling of the brain provides good
input-output predictions. However, the ultimate goal
is not simply to predict outputs, but also to study the
functional connectivity of the brain. As we have ar-
gued in Section 1, for MEG sensors the measurement
matrix C is non-negative and sparse, therefore satis-
fies Assumption 1 with high probability. Using the
identifiability results and the algorithm developed in
this paper, we can analyze this dataset and see if we
obtain interpretable results.

We tried this real input-output data using Algo-
rithm 1 to fit a 15-state LDS, with the same λ values
as in the previous simulation, assuming 50% spar-
sity of A, B, and C. The regularization parameters
in the optimization problem of step 2 and 3 are set
equal to the previous simulation for the C. elegans
data. The resulting Ã is represented as a graph to
show the functional connectivity, in Figure 1 in the

introduction. As expected, the (hidden) functional
connectivity matrix obtained from the MEG experi-
ments is quite sparse, and diagonally dominant. In
lieu of ground truth data, we gain confidence in our
model because of the fact that under our assump-
tions, our algorithms are able to recover a sparse func-
tional connectivity matrix which successfully (and in
a stable and robust manner) models MEG brain ac-
tivity in the least squares sense. We omit the corre-
sponding figures due to space restrictions, however, in
our experiments we observed robust reconstruction of
the MEG recorded brain activity using the obtained
model.

5 Conclusions

Our goal is to solve the linear dynamical system
(LDS) model of the brain by tackling the subtle,
identifiability issue as well as the sparsity and non-
negativity constraints, in a principled, effective way.
Our contributions are the following:

• Proof that our proposed conditions resolve the
identifiability issue.

• Algorithm: our two-stage algorithm is carefully
designed. We give a robust problem reformula-
tion when the data is noisy; and we propose a
refinement step to sparsify the connectivity ma-
trix.

• Validation, using real and synthetic data. For
the semi-synthetic data, we used a subset of
the neuro-connectivity of the C. elegans as the
system to simulate a set of noisy input-output
data, and managed to recover the true neuro-
connectivity with high accuracy. On real data
measured by MEG, our method produced inter-
pretable results.
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A Proof of Theorem 2.1

We use the following lemma to prove Theorem 2.1.

Lemma A.1. Suppose the matrix C satisfies that
C ≥ 0, and CT1 = 1. If it further satisfies
Assumption 1, then for any C̃ = CT that maintains

7



non-negativity and the scaling, i.e.,

C̃ ≥ 0, C̃T1 = 1,

we have that |det T| ≤ 1. Furthermore, equality holds
if and only if T is a permutation matrix.

Proof. First of all, since CT1 = 1, and TTCT1 =
C̃T1 = 1, obviously TT1 = 1.

The condition CT = C̃ ≥ 0 geometrically means

ti ∈ cone(C)∗, i = 1, . . . , n,

where ti is the i-th column of T. Since C satisfies
Assumption 1, i.e., cone(C)∗ ⊆ K, we have

ti ∈ K,

which means ti satisfies that tTi 1 ≥ ‖ti‖2. Therefore,

(A.1) |det T| ≤
n∏

i=1

‖ti‖2 ≤
n∏

i=1

tTi 1 = 1,

where the first inequality is Hadamard’s inequality.
From the discussion about the second requirement
of Assumption 1, the second inequality of (A.1)
holds as an equality if and only if the ti’s are all
standard vectors (because they have to sum up to
one, the scalings are all 1); in this case, the first
inequality holds as an equality if the ti’s are all
different standard vectors, in other words, when the
matrix T is a permutation matrix. Thus, |det T| = 1
if and only if T is a permutation matrix. QED

Proof. [Proof of Theorem 2.1] By contradiction. Sup-

pose M∗ is an optimal solution of (2.2), but ĈM∗ is
not a column permutation of C, then at least it is a
transformation of C, i.e., there exists a non-singular
matrix G (which is not a permutation matrix) such

that ĈM∗ = CG. Let C̃ = ĈM∗, then obviously,

C̃ ≥ 0, C̃T1 = 1.

Since C satisfies Assumption 1, according to Lemma
A.1, and the fact that G is not a permutation matrix,
we have

|det G| < 1.

Now let M0 = M∗G
−1, clearly

|det M0| = |det M∗||det G|−1 > |det M∗|,

and M0 is feasible for (2.2). However, M0 has a
larger objective value than M∗, which is assumed to
be optimal for (2.2). This means the initial statement

is a contradiction. Therefore, ĈM∗ must be a column
permutation of C. QED

B Sparsity and Assumption 1

We show empirically that sparse non-negative tall
matrices satisfy Assumption 1 with very high proba-
bility. It is shown in [6] that to check this condition
exactly is NP-hard, but here we will show that by us-
ing a simple majorization technique, it can be solved
locally; and with multiple initializations global opti-
mality can be often attained.

The essence of Assumption 1 is cone(CT )∗ ⊆ K∗,
and this condition can be checked if we can solve
the following non-convex quadratic programming op-
timally.

(B.2)
maximize

x
‖x‖22,

subject to Cx ≥ 0, xT1 = 1.

Then cone(CT )∗ ⊆ K∗ is true if and only if the
optimal value of (B.2) is strictly larger than 1. A
simple observation is that since C is non-negative,
the standard vectors ei are clearly feasible, and that
they lead to the cost equal to 1. In fact, if a feasible
point makes the cost equal to 1, then it lies on bdK∗.
Therefore, C satisfies Assumption 1 if and only if
the optimal value of (B.2) is 1, and all the optimal
solutions are the set of standard vectors.

Since that particular set containment problem
is NP-hard to check, clearly (B.2) is also NP-hard.
A heuristic is to iteratively linearize the objective
function and solve a linear program, i.e.,

(B.3)
maximize

x
xT
k x,

subject to Cx ≥ 0, xT1 = 1,

where xk is obtained from the solution of the previous
iteration. Since the first-order Taylor expansion
of a convex function is always a lower-bound of
that function, we can see that by iteratively solving
(B.3), we are actually iteratively maximizing a lower-
bound of (B.2), which falls into the majorization-
optimization method category.

One very important implication from Assump-
tion 1 is the following.

Proposition B.1. If the p × n matrix C satisfies
Assumption 1, then each column of C contains at
least n− 1 zeros.

Proof. Cf. [6].

Using Proposition B.1 as a rule of thumb for the
sparsity requirement for the matrix, which is not
very strict in terms of sparsity, we can generate
random sparse non-negative matrices and try to check



Table 3: The percentage of the matrices with p = 300
rows that result in a solution with norm larger than 1.

n = 20 n = 30 n = 50
s = 0.3 0% 0% 0%
s = 0.5 0% 0% 1%
s = 0.7 0% 1% 3%

whether they satisfy Assumption 1 by approximately
solving (B.2). Although the method we propose to
solve (B.2) is not guaranteed to be optimal, we can
try different initializations to ensure that most of the
local optima are found.

As a simple example, we randomly generate ma-
trices with p = 300 rows, and with various number of
columns n and/or ratio of non-zeros s. Similar to the
synthetic data generated in §4, whether the entries
are zeros follow an i.i.d. Bernoulli distribution, and
the non-zeros are drawn from an i.i.d. exponential
distribution. For each case 100 random matrices are
generated and set as input to the optimization prob-
lem (B.2), and then approximately solved by succes-
sively solving (B.3) with 100 random initial points.
The percentage of the matrices that result in a solu-
tion with norm larger than 1 is given in Table 3. As
we can see, sparse, non-negative tall matrices satisfies
Assumption 1 with very high probability.
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